
 LinuxÆ Userís Guide

0898004-670

February 2013

Copyright 2013 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer
Corporation, 2881 Gateway Drive, Pompano Beach, Florida, 33069. Mark the envelope “Attention: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All
other Concurrent product names are trademarks of Concurrent while all other product names are trademarks or
registered trademarks of their respective owners. Linux® is used pursuant to a sublicense from the Linux Mark
Institute.

Printed in U. S. A.

Revision History:

Date Level Effective With

August 2002 000 RedHawk Linux Release 1.1
September 2002 100 RedHawk Linux Release 1.1
December 2002 200 RedHawk Linux Release 1.2
April 2003 300 RedHawk Linux Release 1.3, 1.4
December 2003 400 RedHawk Linux Release 2.0
March 2004 410 RedHawk Linux Release 2.1
July 2004 420 RedHawk Linux Release 2.2
May 2005 430 RedHawk Linux Release 2.3
March 2006 500 RedHawk Linux Release 4.1
May 2006 510 RedHawk Linux Release 4.1
May 2007 520 RedHawk Linux Release 4.2
April 2008 600 RedHawk Linux Release 5.1
June 2008 610 RedHawk Linux Release 5.1
October 2008 620 RedHawk Linux Release 5.2
December 2009 630 RedHawk Linux Release 5.4
May 2011 640 RedHawk Linux Release 6.0
March 2012 650 RedHawk Linux Release 6.0
September 2012 660 RedHawk Linux Release 6.3
Februrary 2013 670 RedHawk Linux Release 6.3

iii

Preface

Scope of Manual

This manual consists of three parts. The information in Part 1 is directed towards real-time
users. Part 2 is directed towards system administrators. Part 3 consists of backmatter:
appendixes, glossary and index. An overview of the contents of the manual follows.

Structure of Manual

This guide consists of the following sections:

Part 1 - Real-Time User

• Chapter 1, Introduction, provides an introduction to the RedHawk Linux
operating system and an overview of the real-time features included.

• Chapter 2, Real-Time Performance, discusses issues involved with achieving
real-time performance including interrupt response, process dispatch latency
and deterministic program execution. The shielded CPU model is described.

• Chapter 3, Real-Time Interprocess Communication, discusses procedures for
using the POSIX® and System V message-passing and shared memory
facilities.

• Chapter 4, Process Scheduling, provides an overview of process scheduling
and describes POSIX scheduling policies and priorities.

• Chapter 5, Interprocess Synchronization, describes the interfaces provided
by RedHawk Linux for cooperating processes to synchronize access to
shared resources. Included are: POSIX counting semaphores, System V
semaphores, rescheduling control tools and condition synchronization tools.

• Chapter 6, Programmable Clocks and Timers, provides an overview of some
of the RCIM and POSIX timing facilities available under RedHawk Linux.

• Chapter 7, System Clocks and Timers, describes system timekeeping and the
per-CPU local timer.

• Chapter 8, File Systems and Disk I/O, explains the xfs journaling file system
and procedures for performing direct disk I/O on the RedHawk Linux
operating system.

• Chapter 9, Memory Mapping, describes the methods provided by RedHawk
Linux for a process to access the contents of another process’ address space.

• Chapter 10, Non-Uniform Memory Access (NUMA), describes the NUMA
support available on certain systems.

Part 2 - Administrator

• Chapter 11, Configuring and Building the Kernel, provides information on
how to configure and build a RedHawk Linux kernel.

RedHawk Linux User’s Guide

iv

• Chapter 12, Kernel Debugging, provides guidelines for saving, restoring and
analyzing the kernel memory image using kdump and crash and basic use
of the kdb kernel debugger.

• Chapter 13, Pluggable Authentication Modules (PAM), describes the PAM
authentication capabilities of RedHawk Linux.

• Chapter 14, Device Drivers, describes RedHawk functionality and real-time
issues involved with writing device drivers.

• Chapter 15, PCI-to-VME Support, describes RedHawk’s support for a PCI-
to-VME bridge.

Part 3 - Common Material

• Appendix A, Example Message Queue Programs, contains example
programs illustrating the POSIX and System V message queue facilities.

• Appendix B, Kernel Tunables for Real-time Features, contains a listing of
the kernel tunables that control unique features in RedHawk Linux and their
default values in pre-built kernels.

• Appendix C, Capabilities, lists the capabilities included in RedHawk Linux
and the permissions provided by each.

• Appendix D, Kernel Trace Events, lists pre-defined kernel trace points and
methods for defining and logging custom events within kernel modules.

• Appendix E, Migrating 32-bit Code to 64-bit Code, provides information
needed to migrate 32-bit code to 64-bit processing on an x86_64 processor.

• Appendix F, Kernel-level Daemons on Shielded CPUs, describes how
kernel-level daemons execute on shielded CPUs and provides methods for
improving performance.

• Appendix G, Cross Processor Interrupts on Shielded CPUs, describes how
cross-processor interrupts execute on shielded CPUs and provides methods
for improving performance.

• Appendix H, Serial Console Setup, provides instructions for configuring a
serial console.

• Appendix I, Boot Command Line Parameters, discusses the boot parameters
unique to RedHawk.

• The Glossary provides definitions for terms used throughout this Guide.

• The Index contains an alphabetical reference to key terms and concepts and
the pages where they occur in the text.

Syntax Notation

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify appear in
italic type. Special terms may also appear in italic.

Preface

v

list bold User input appears in list bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in list bold type.

list Operating system and program output such as prompts, messages and
listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify these options or
arguments.

hypertext links When viewing this document online, clicking on chapter, section, fig-
ure, table and page number references will display the corresponding
text. Clicking on Internet URLs provided in blue type will launch
your web browser and display the web site. Clicking on publication
names and numbers in red type will display the corresponding manual
PDF, if accessible.

Related Publications

The following table lists RedHawk Linux documentation. Click on the red entry to display
the document PDF (optional product documentation is available for viewing only if the
optional product has been installed). These documents are also available by clicking on
the “Documents” icon on the desktop and from Concurrent’s web site at www.ccur.com.

RedHawk Linux Operating System Documentation Pub. Number

RedHawk Linux Release Notes 0898003

RedHawk Linux User’s Guide 0898004

Real-Time Clock & Interrupt Module (RCIM) User’s Guide 0898007

RedHawk Linux FAQ N/A

Optional RedHawk Product Documentation

RedHawk Linux Frequency-Based Scheduler (FBS) User’s Guide 0898005

RedHawk Linux User’s Guide

vi

vii

Chapter 0Contents

Preface . iii

Chapter 1 Introduction

Overview. 1-1
RedHawk Linux Kernels. 1-3
System Updates. 1-4
Real-Time Features . 1-4

Processor Shielding . 1-4
Processor Affinity . 1-4
User-level Preemption Control . 1-5
Fast Block/Wake Services . 1-5
RCIM Driver . 1-5
Frequency-Based Scheduler . 1-5
/proc Modifications . 1-6
Kernel Trace Facility . 1-6
ptrace Extensions . 1-6
Kernel Preemption . 1-6
Real-Time Scheduler . 1-7
Low Latency Enhancements . 1-7
Priority Inheritance . 1-7
High Resolution Process Accounting . 1-7
Capabilities Support . 1-7
Kernel Debuggers . 1-8
Kernel Core Dumps/Crash Analysis . 1-8
User-level Spin Locks . 1-8
usermap and /proc mmap. 1-8
Hyper-threading. 1-8
XFS Journaling File System . 1-9
POSIX Real-Time Extensions . 1-9

User Priority Scheduling . 1-9
Memory Resident Processes. 1-9
Memory Mapping and Data Sharing . 1-10
Process Synchronization. 1-10
Asynchronous Input/Output . 1-10
Synchronized Input/Output . 1-10
Real-Time Signal Behavior . 1-11
Clocks and Timers . 1-11
Message Queues . 1-11

Chapter 2 Real-Time Performance

Overview of the Shielded CPU Model . 2-1
Overview of Determinism . 2-2
Process Dispatch Latency . 2-2

Effect of Disabling Interrupts . 2-4
Effect of Interrupts. 2-5
Effect of Disabling Preemption . 2-8

RedHawk Linux User’s Guide

viii

Effect of Open Source Device Drivers . 2-9
How Shielding Improves Real-Time Performance . 2-9

Shielding From Background Processes . 2-9
Shielding From Interrupts . 2-10
Shielding From Local Interrupt . 2-11

Interfaces to CPU Shielding . 2-12
Shield Command . 2-12

Shield Command Examples . 2-13
Exit Status. 2-13
Shield Command Advanced Features . 2-14

/proc Interface to CPU Shielding. 2-14
Assigning Processes to CPUs . 2-14

Multiprocessor Control Using mpadvise . 2-15
Assigning CPU Affinity to init . 2-17

Example of Setting Up a Shielded CPU . 2-17
Procedures for Increasing Determinism . 2-20

Locking Pages in Memory. 2-20
Setting the Program Priority . 2-21
Setting the Priority of Deferred Interrupt Processing . 2-21
Waking Another Process . 2-21
Avoiding Cache Thrashing . 2-22
Reserving Physical Memory . 2-23
Binding to NUMA Nodes . 2-27
I/O Throughput on Quad Opteron Systems. 2-27
Understanding Hyper-threading . 2-28

System Configuration . 2-30
Recommended CPU Configurations . 2-30

Avoiding a Low Memory State . 2-34
Known Issues with Linux Determinism . 2-34

Chapter 3 Real-Time Interprocess Communication

Overview. 3-1
POSIX Message Queues . 3-2
System V Messages . 3-3

Using Messages . 3-4
The msgget System Call . 3-7
The msgctl System Call . 3-9
The msgsnd and msgrcv System Calls . 3-10

Sending a Message . 3-10
Receiving a Message . 3-11

POSIX Shared Memory . 3-12
Using the shm_open Routine. 3-13
Using the shm_unlink Routine . 3-15

System V Shared Memory . 3-15
Using Shared Memory. 3-16
The shmget System Call . 3-19
The shmctl System Call . 3-21
Binding a Shared Memory Segment to I/O Space. 3-22

Using shmget . 3-22
Using shmbind . 3-23

The shmat and shmdt System Calls . 3-23
Attaching a Shared Memory Segment . 3-24
Detaching Shared Memory Segments . 3-24

Contents

ix

Shared Memory Utilities . 3-25
The shmdefine Utility. 3-25
The shmconfig Command . 3-25

Chapter 4 Process Scheduling

Overview. 4-1
How the Process Scheduler Works . 4-2
Scheduling Policies . 4-3

First-In-First-Out Scheduling (SCHED_FIFO) . 4-3
Round-Robin Scheduling (SCHED_RR) . 4-4
Time-Sharing Scheduling (SCHED_OTHER) . 4-4

Procedures for Enhanced Performance. 4-4
How to Set Priorities . 4-4
Interrupt Routines . 4-5
SCHED_FIFO vs SCHED_RR . 4-5
Fixed Priority Processes Locking Up a CPU. 4-5
Memory Locking . 4-6
CPU Affinity and Shielded Processors . 4-6

Process Scheduling Interfaces. 4-6
POSIX Scheduling Routines . 4-6

The sched_setscheduler Routine . 4-7
The sched_getscheduler Routine . 4-8
The sched_setparam Routine . 4-9
The sched_getparam Routine . 4-10
The sched_yield Routine . 4-10
The sched_get_priority_min Routine . 4-11
The sched_get_priority_max Routine . 4-11
The sched_rr_get_interval Routine . 4-12

The run Command . 4-13

Chapter 5 Interprocess Synchronization

Understanding Interprocess Synchronization . 5-1
Rescheduling Control . 5-3

Understanding Rescheduling Variables . 5-3
Using resched_cntl System Call . 5-4
Using the Rescheduling Control Macros. 5-5

 resched_lock . 5-5
 resched_unlock . 5-6
 resched_nlocks . 5-6

Applying Rescheduling Control Tools . 5-7
Busy-Wait Mutual Exclusion . 5-7

Understanding the spin_mutex Variable . 5-7
Using the spin_mutex Interfaces . 5-8
Applying spin_mutex Tools. 5-9
Understanding the nopreempt_spin_mutex Variable. 5-10
Using the nopreempt_spin_mutex Interfaces . 5-10

POSIX Counting Semaphores . 5-12
Overview . 5-12
Interfaces . 5-13

The sem_init Routine . 5-14
The sem_destroy Routine . 5-15
The sem_open Routine . 5-16
The sem_close Routine. 5-17

RedHawk Linux User’s Guide

x

The sem_unlink Routine . 5-18
The sem_wait Routine . 5-19
The sem_timedwait Routine. 5-19
The sem_trywait Routine . 5-20
The sem_post Routine . 5-20
The sem_getvalue Routine . 5-21

Extensions to POSIX Mutexes . 5-21
Robust Mutexes . 5-22
Priority Inheritance . 5-23
User Interface. 5-23

pthread_mutex_consistent_np . 5-24
pthread_mutex_getunlock_np . 5-24
pthread_mutex_setconsistency_np . 5-24
pthread_mutex_setunlock_np. 5-25
pthread_mutexattr_getfast_np . 5-25
pthread_mutexattr_getprotocol. 5-25
pthread_mutexattr_getrobust_np . 5-26
pthread_mutexattr_getunlock_np . 5-26
pthread_mutexattr_setfast_np. 5-26
pthread_mutexattr_setprotocol . 5-27
pthread_mutexattr_setrobust_np . 5-27
pthread_mutexattr_setunlock_np . 5-27

Compiling Programs with POSIX Mutexes . 5-27
System V Semaphores . 5-28

Overview . 5-28
Using System V Semaphores . 5-29
The semget System Call . 5-31
The semctl System Call . 5-34
The semop System Call . 5-36

Condition Synchronization . 5-37
The postwait System Call . 5-37
The Server System Calls . 5-39

server_block . 5-39
server_wake1 . 5-40
server_wakevec. 5-41

Applying Condition Synchronization Tools . 5-42

Chapter 6 Programmable Clocks and Timers

Understanding Clocks and Timers . 6-1
RCIM Clocks and Timers . 6-1
POSIX Clocks and Timers. 6-2

Understanding the POSIX Time Structures . 6-3
Using the POSIX Clock Routines. 6-4

Using the clock_settime Routine . 6-4
Using the clock_gettime Routine . 6-5
Using the clock_getres Routine . 6-5

Using the POSIX Timer Routines. 6-6
Using the timer_create Routine . 6-6
Using the timer_delete Routine . 6-8
Using the timer_settime Routine . 6-8
Using the timer_gettime Routine. 6-9
Using the timer_getoverrun Routine . 6-10

Using the POSIX Sleep Routines . 6-11

Contents

xi

Using the nanosleep Routine . 6-11
Using the clock_nanosleep Routine . 6-12

Chapter 7 System Clocks and Timers

System Timekeeping. 7-1
Local Timer. 7-1

Functionality . 7-2
CPU Accounting. 7-2
Process Execution Time Quanta and Limits. 7-3
Interval Timer Decrementing . 7-3
System Profiling . 7-3
CPU Load Balancing . 7-3
CPU Rescheduling . 7-4
POSIX Timers . 7-4
RCU Processing . 7-4
Miscellaneous . 7-4

Disabling the Local Timer . 7-4

Chapter 8 File Systems and Disk I/O

Journaling File System . 8-1
Creating an XFS File System . 8-2
Mounting an XFS File System . 8-2
Data Management API (DMAPI) . 8-2

Direct Disk I/O . 8-3

Chapter 9 Memory Mapping

Establishing Mappings to a Target Process’ Address Space. 9-1
Using mmap(2) . 9-1
Using usermap(3) . 9-3
Considerations . 9-4
Kernel Configuration Parameters . 9-4

Chapter 10 Non-Uniform Memory Access (NUMA)

Overview. 10-1
Memory Policies . 10-2
NUMA User Interface. 10-3

Memory-shielded Nodes . 10-3
Memory-shielding and Preallocated Graphics Pages . 10-5
NUMA Support for Processes using run(1) . 10-7
NUMA Support for Shared Memory Areas using shmconfig(1) 10-9
System Calls . 10-11
Library Functions . 10-11
Informational Files and Utilities . 10-11

Node Statistics . 10-11
Node IDs for Mapped Pages. 10-12

NUMA Hit/Miss Statistics Using numastat. 10-13
kdb Support . 10-13

Kernel Text Page Replication . 10-14
Kernel Module Page Allocations. 10-15

Performance Guidelines . 10-16

RedHawk Linux User’s Guide

xii

Task-Wide NUMA Mempolicy . 10-16
Shared Memory Segments . 10-17

Configuration . 10-17

Chapter 11 Configuring and Building the Kernel

Introduction. 11-1
Configuring a Kernel Using ccur-config. 11-2
Building a Kernel . 11-4
Building Driver Modules . 11-5

Example–Building a Dynamic Loadable Module in a Pre-built RedHawk Kernel 11-6
Additional Information . 11-7

Chapter 12 Kernel Debugging

Overview. 12-1
Taking and Analyzing a System Crash . 12-1

Activating kdump . 12-1
How a Crash Dump is Created . 12-2
Installation/Configuration Details . 12-3
kdump Options Defined in the Configuration File . 12-3
kdump Command Line Interface . 12-4
Using crash to Analyze the Dump. 12-5

Analyzing a Dump File . 12-5
Analyzing a Live System . 12-7
Getting Help . 12-7

Kernel Debuggers . 12-8
kdb . 12-8

NMI Interrupts . 12-8
NMI Button . 12-9

Chapter 13 Pluggable Authentication Modules (PAM)

Introduction. 13-1
PAM Modules . 13-1
Services . 13-2
Role-Based Access Control . 13-2

Examples . 13-3
Defining Capabilities . 13-3

Examples . 13-4
Implementation Details. 13-5

Chapter 14 Device Drivers

Understanding Device Driver Types . 14-1
Developing User-level Device Drivers . 14-1

Accessing PCI Resources . 14-1
PCI BAR Interfaces . 14-2

Kernel Skeleton Driver . 14-6
Understanding the Sample Driver Functionality . 14-6
Testing the Driver . 14-9

Developing Kernel-level Device Drivers . 14-11
Building Driver Modules . 14-11

Contents

xiii

Kernel Virtual Address Space . 14-11
Real-Time Performance Issues . 14-11

Interrupt Routines. 14-11
Deferred Interrupt Functions (Bottom Halves) . 14-12
Multi-threading Issues . 14-14
The Big Kernel Lock (BKL) and ioctl . 14-14

Userspace I/O Drivers (UIO) . 14-15
Analyzing Performance . 14-16

Chapter 15 PCI-to-VME Support

Overview. 15-1
Documentation . 15-2
Installing the Hardware. 15-2

Unpacking . 15-2
Configuring the Adapter Cards . 15-3
Installing the PCI Adapter Card . 15-4
Installing the VMEbus Adapter Card . 15-4
Connecting the Adapter Cable. 15-4

Installing the Software . 15-5
Configuration . 15-6

The btp Module . 15-6
Device Files and Module Parameter Specifications . 15-6
VMEbus Mappings . 15-7

User Interface . 15-7
API Functions . 15-8
Bind Buffer Implementation . 15-9

bt_get_info BT_INFO_KMALLOC_BUF. 15-9
bt_set_info BT_INFO_KMALLOC_SIZ. 15-10
bt_set_info BT_INFO_KFREE_BUF . 15-10
Additional Bind Buffer Information. 15-11

Mapping and Binding to VMEbus Space . 15-13
bt_hw_map_vme . 15-13
bt_hw_unmap_vme . 15-14
The /proc File System Interface . 15-15

Example Applications . 15-17
bt_bind_mult . 15-18
bt_bind_multsz . 15-19
bt_hwmap . 15-19
bt_hwunmap . 15-19
readdma . 15-20
shmat . 15-20
shmbind . 15-20
shmconfig-script . 15-21
vme-mappings . 15-21
writemem . 15-21
writedma. 15-21

Appendix A Example Message Queue Programs . A-1

POSIX Message Queue Example . A-1
System V Message Queue Example . A-4

RedHawk Linux User’s Guide

xiv

Appendix B Kernel Tunables for Real-time Features . B-1

Appendix C Capabilities . C-1

Overview. C-1
Capabilities . C-1

Appendix D Kernel Trace Events . D-1

Pre-defined Kernel Trace Events . D-1
User-defined Kernel Trace Events . D-4

Pre-defined CUSTOM Trace Event. D-4
Dynamic Kernel Tracing . D-4

Appendix E Migrating 32-bit Code to 64-bit Code . E-1

Introduction. E-1
Procedures. E-2
Coding Requirements . E-3

Data Type Sizes . E-3
Longs . E-3
Pointers . E-3
Arrays . E-4
Declarations . E-4
Explicit Data Sizes . E-4
Constants . E-5

APIs . E-5
Calling Conventions . E-5
Conditional Compilation . E-6
Miscellaneous . E-6

Compiling . E-6
Testing/Debugging . E-6
Performance Issues . E-7

Memory Alignment and Structure Padding. E-7

Appendix F Kernel-level Daemons on Shielded CPUs . F-1

Appendix G Cross Processor Interrupts
on Shielded CPUs . G-1

Overview. G-1
Memory Type Range Register (MTRR) Interrupts. G-1
Graphics Interrupts . G-3
NVIDIA CUDA Interrupts . G-4
User Address Space TLB Flush Interrupts . G-5

Contents

xv

Appendix H Serial Console Setup . H-1

Appendix I Boot Command Line Parameters . I-1

Glossary. Glossary-1

Index . Index-1

Screens

Screen 11-1 Kernel Configuration GUI . 11-3
Screen 11-2 Kernel Configuration GUI Adding Serial Card Support 11-6

Illustrations

Figure 2-1 Normal Process Dispatch Latency . 2-3
Figure 2-2 Effect of Disabling Interrupts on Process Dispatch Latency 2-4
Figure 2-3 Effect of High Priority Interrupt on Process Dispatch Latency 2-5
Figure 2-4 Effect of Low Priority Interrupt on Process Dispatch Latency 2-6
Figure 2-5 Effect of Multiple Interrupts on Process Dispatch Latency 2-7
Figure 2-6 Effect of Disabling Preemption on Process Dispatch Latency 2-8
Figure 2-7 Quad Opteron I/O Throughput Layout . 2-28
Figure 2-8 The Standard Shielded CPU Model . 2-31
Figure 2-9 Shielding with Interrupt Isolation . 2-32
Figure 2-10 Hyper-thread Shielding . 2-33
Figure 3-1 Definition of msqid_ds Structure . 3-5
Figure 3-2 Definition of ipc_perm Structure . 3-5
Figure 3-3 Definition of shmid_ds Structure . 3-17
Figure 4-1 The Scheduler . 4-2
Figure 5-1 Definition of sembuf Structure . 5-29
Figure 5-2 Definition of semid_ds Structure . 5-30
Figure 10-1 CPU/Bus Relationship on a NUMA System . 10-1
Figure 11-1 Example of Complete Kernel Configuration and Build Session 11-5

Tables

Table 1-1 Pre-built Kernels . 1-3
Table 2-1 Options to the shield(1) Command . 2-12
Table 3-1 Message Queue Operation Permissions Codes . 3-8
Table 3-2 Shared Memory Operation Permissions Codes . 3-20
Table 3-3 Options to the shmconfig(1) Command . 3-26
Table 5-1 Semaphore Operation Permissions Codes . 5-33
Table 14-1 Types of Bottom Halves . 14-13
Table 15-1 PCI-to-VME Library Functions. 15-8
Table 15-2 PCI-to-VME Example Programs. 15-17
Table B-1 Kernel Tunables for Real-time Features . B-2
Table D-1 Pre-defined Kernel Trace Events . D-1
Table E-1 Sizes of Data Types . E-3
Table E-2 Variable Size Data Types. E-4
Table E-3 Fixed Precision Data Types. E-4
Table E-4 Calling Conventions . E-5
Table E-5 Macros for Conditional Compilation . E-6
Table I-1 Boot Command Line Parameters . I-2

RedHawk Linux User’s Guide

xvi

1-1

1
Chapter 1Introduction

1

This chapter provides an introduction to RedHawk Linux and gives an overview of the
real-time features included in this operating system.

1

Overview 1

Concurrent Computer Corporation’s RedHawk™ Linux® is a real-time version of the
open source Linux operating system. Modifications are made to the standard Linux
version 2.6 kernel to support the functionality and the performance required by complex
time-critical applications. RedHawk uses a single kernel design to support a single
programming environment that directly controls all system operation. This design allows
deterministic program execution and response to interrupts while simultaneously
providing high I/O throughput and deterministic file, networking, and graphics I/O
operations. RedHawk is the ideal Linux environment for the deterministic applications
found in simulation, data acquisition, industrial control and medical imaging systems.

Included with RedHawk is the popular Red Hat® Enterprise Linux distribution.The
installation discs provide additional real-time kernels and libraries for accessing specific
kernel features. Except for the kernel, all Red Hat components operate in their standard
fashion. These include Linux utilities, libraries, compilers, tools and installer unmodified
from Red Hat. Optionally, the NightStar™ RT development tool set is available for
developing time-critical applications, and the Frequency-Based Scheduler and
Performance Monitor can be used to schedule processes in cyclical execution patterns and
monitor performance.

The RedHawk kernel integrates both open source patches and Concurrent developed
features to provide a state of the art real-time kernel. Many of these features have been
derived from the real-time UNIX® implementations that Concurrent has supported in its
over 40 years experience developing real-time operating systems. These features are
described briefly in the section “Real-Time Features” later in this chapter with references
to more detailed information.

RedHawk is included with each Concurrent iHawk system. iHawks are symmetric multi-
processor (SMP) systems available in a variety of architectures and configurations. Either
32-bit or 64-bit versions of the operating system and its supporting software products are
installed, depending upon the iHawk architecture type and the support included in
RedHawk for that architecture.

Support for SMPs is highly optimized. A unique concept known as shielded CPUs allows
a subset of processors to be dedicated to tasks that require the most deterministic
performance. Individual CPUs can be shielded from interrupt processing, kernel daemons,
interrupt bottom halves, and other Linux tasks. Processor shielding provides a highly
deterministic execution environment where interrupt response of less than 30
microseconds is guaranteed.

RedHawk Linux User’s Guide

1-2

RedHawk Linux has at least the same level of POSIX conformance as other Linux
distributions based on the 2.6 series of kernels. Concurrent has added additional POSIX
compliance by adding some of the POSIX real-time extensions that are not present in
standard Linux. Linux on the Intel x86 architecture has defined a defacto binary standard
of its own which allows shrink-wrapped applications that are designed to run on the
Linux/Intel x86 platform to run on Concurrent’s iHawk platform.

NightStar RT is Concurrent’s powerful tool set that provides a robust graphic interface for
non-intrusive control, monitoring, analysis, and debugging of time-critical
multiprocessing applications. The RedHawk kernel contains enhancements that allow
these tools to efficiently perform their operations with a minimum of interference to the
application’s execution. All tools can be run natively on the same system as the
application or remotely for less intrusive application control.

The NightStar RT tools include the following. Refer to the individual User’s Guides for
complete information.

• NightView™ source-level debugger – allows multi-language, multi-
processor, multi-program and multi-thread monitoring and debugging from a
single graphical interface. NightView has the capability to hot patch running
programs to modify execution, retrieve or modify data and insert conditional
breakpoints, monitor points and watch points that execute at full application
speed.

• NightTrace™ run-time analyzer – used to analyze the dynamic behavior of a
running application. User and system activities are logged and marked with
high-resolution time stamps. These events are then graphically displayed to
provide a detailed view of system activity that occurs while the application is
running. NightTrace is ideal for viewing interactions between multiple
processes, activity on multiple processors, applications that execute on
distributed systems and user/kernel interactions. Its powerful capabilities
allow searching for specific events or summarizing kernel or user states.

• NightSim™ periodic scheduler – allows the user to easily schedule
applications that require periodic execution. A developer can dynamically
control the execution of multiple coordinated processes, their priorities and
CPU assignments. NightSim provides detailed, highly accurate performance
statistics and allows various actions when frame overruns occur.

• NightProbe™ data monitor – used to sample, record or modify program data
in multiple running programs. Program data is located with a symbol table
browser. Application pages are shared at the physical page level to minimize
the impact on the application’s execution. NightProbe can be used for
debugging, analysis, fault injection or in a production environment to create
a GUI control panel for program input and output.

• NightTune™ performance tuner – a graphical tool for analyzing system and
application performance including CPU usage, context switches, interrupts,
virtual memory usage, network activity, process attributes, and CPU
shielding. NightTune allows you to change the priority, scheduling policy,
and CPU affinity of individual or groups of processes using pop-up dialogs
or drag-and-drop actions. It also allows you to set the shielding and hyper-
threading attributes of CPUs and change the CPU assignment of individual
interrupts.

Introduction

1-3

RedHawk Linux Kernels 1

There are three flavors of RedHawk Linux kernels. The system administrator can select
which version of the kernel is loaded via the boot loader. Table 1-1 provides a complete
description of each pre-built kernel.

Table 1-1 Pre-built Kernels

Kernel Type Generic Trace Debug

Kernel Name * vmlinuz-kernelversion-
RedHawk-x.x

vmlinuz-kernelversion-
RedHawk-x.x-trace

vmlinuz-kernelversion-
RedHawk-x.x-debug

Recommended Use Running time-critical
applications

Using NightStar RT tools to
evaluate performance

Developing new applications
or drivers

Description The standard kernel is the
most optimized and will
provide the best overall
performance, however it
lacks certain features
required to take full
advantage of the NightStar
RT tools.

The trace kernel is
recommended for most users
as it supports all of the
features of the generic kernel
and provides support for the
kernel tracing feature of the
NightTrace performance
analysis tool. This kernel is
loaded at system boot by
default.

The debug kernel supports all
of the features of the trace
kernel and in addition
provides support for kernel-
level debugging. This kernel
is recommended for
developing drivers or trying
to debug system problems.

Features

Kernel Debuggers disabled disabled enabled

System Dumps enabled enabled enabled

Kernel Tracing (used
by NightTrace)

disabled enabled enabled

High Resolution
Process Accounting

enabled enabled enabled

NMI Watchdog disabled disabled enabled

Frequency Based
Scheduler (FBS)

enabled when module is
loaded

enabled when module is
loaded

enabled when module is
loaded

Performance Monitor
(PM)

disabled enabled enabled

* kernelversion is the official version of Linux kernel source code upon which the kernel is based.
x.x indicates the version number.
Example: vmlinuz-2.6.26.6-RedHawk-5.2.

RedHawk Linux User’s Guide

1-4

System Updates 1

RedHawk Linux updates can be downloaded from Concurrent’s RedHawk Updates
website. Refer to the RedHawk Linux Release Notes for details.

NOTE

Concurrent does not recommend downloading Red Hat updates.

The RedHawk Linux kernel replaces the standard Red Hat kernel
and is likely to work with any version of the Red Hat distribution.
However, installing upgrades, especially to gcc and glibc, from
sources other than Concurrent may destabilize the system and is
not recommended. Security updates from outside sources may be
installed if desired.

Real-Time Features 1

This section provides a brief description of the features included in the operating system
for real-time processing and performance. More detailed information about the
functionality described below is provided in subsequent chapters of this guide. Online
readers can display the information immediately by clicking on the chapter references.

Processor Shielding 1

Concurrent has developed a method of shielding selected CPUs from the unpredictable
processing associated with interrupts and system daemons. By binding critical, high-
priority tasks to particular CPUs and directing most interrupts and system daemons to
other CPUs, the best process dispatch latency possible on a particular CPU in a
multiprocessor system can be achieved. Chapter 2 presents a model for shielding CPUs
and describes techniques for improving response time and increasing determinism.

Processor Affinity 1

In a real-time application where multiple processes execute on multiple CPUs, it is
desirable to have explicit control over the CPU assignments of all processes in the system.
This capability is provided by Concurrent through the mpadvise(3) library routine and
the run(1) command. See Chapter 2 and the man pages for additional information.

Introduction

1-5

User-level Preemption Control 1

When an application has multiple processes that can run on multiple CPUs and those
processes operate on data shared between them, access to the shared data must be
protected to prevent corruption from simultaneous access by more than one process. The
most efficient mechanism for protecting shared data is a spin lock; however, spin locks
cannot be effectively used by an application if there is a possibility that the application can
be preempted while holding the spin lock. To remain effective, RedHawk provides a
mechanism that allows the application to quickly disable preemption. See Chapter 5 and
the resched_cntl(2) man page for more information about user-level preemption
control.

Fast Block/Wake Services 1

Many real-time applications are composed of multiple cooperating processes. These
applications require efficient means for doing inter-process synchronization. The fast
block/wake services developed by Concurrent allow a process to quickly suspend itself
awaiting a wakeup notification from another cooperating process. See Chapter 2,
Chapter 5 and the postwait(2) and server_block(2) man pages for more details.

RCIM Driver 1

A driver has been added for support of the Real-Time Clock and Interrupt Module
(RCIM). This multi-purpose PCI card has the following functionality:

• connection of up to twelve external device interrupts

• up to eight real time clocks that can interrupt the system

• up to twelve programmable interrupt generators which allow generation of
an interrupt from an application program

These functions can all generate local interrupts on the system where the RCIM card is
installed. Multiple RedHawk Linux systems can be chained together, allowing up to
twelve of the local interrupts to be distributed to other RCIM-connected systems. This
allows one timer or one external interrupt or one application program to interrupt multiple
RedHawk Linux systems almost simultaneously to create synchronized actions. In
addition, the RCIM contains a synchronized high-resolution clock so that multiple
systems can share a common time base. See Chapter 6 of this guide and the Real-Time
Clock & Interrupt Module (RCIM) User’s Guide for additional information.

Frequency-Based Scheduler 1

The Frequency-Based Scheduler (FBS) is a mechanism for scheduling applications that
run according to a predetermined cyclic execution pattern. The FBS also provides a very
fast mechanism for waking a process when it is time for that process to execute. In
addition, the performance of cyclical applications can be tracked, with various options
available to the programmer when deadlines are not being met. The FBS is the kernel

RedHawk Linux User’s Guide

1-6

mechanism that underlies the NightSim GUI for scheduling cyclical applications. See the
Frequency-Based Scheduler (FBS) User’s Guide and NightSim RT User’s Guide for
additional information.

/proc Modifications 1

Modifications have been made to the process address space support in /proc to allow a
privileged process to read or write the values in another process’ address space. This is for
support of the NightProbe data monitoring tool and the NightView debugger.

Kernel Trace Facility 1

Support was added to allow kernel activity to be traced. This includes mechanisms for
inserting and enabling kernel trace points, reading trace memory buffers from the kernel,
and managing trace buffers. The kernel trace facility is used by the NightTrace tool. See
Appendix D for information about kernel tracing.

ptrace Extensions 1

The ptrace debugging interface in Linux has been extended to support the capabilities of
the NightView debugger. Features added include:

• the capability for a debugger process to read and write memory in a process
not currently in the stopped state

• the capability for a debugger to trace only a subset of the signals in a process
being debugged

• the capability for a debugger to efficiently resume execution at a new
address within a process being debugged

• the capability for a debugger process to automatically attach to all children
of a process being debugged

Kernel Preemption 1

The ability for a high priority process to preempt a lower priority process that is currently
executing inside the kernel is provided. Under standard Linux the lower priority process
would continue running until it exited from the kernel, creating longer worst case process
dispatch latency. Data structure protection mechanisms are built into the kernel to support
symmetric multiprocessing.

Introduction

1-7

Real-Time Scheduler 1

The real-time scheduler provides fixed-length context switch times regardless of how
many processes are active in the system. It also provides a true real-time scheduling class
that operates on a symmetric multiprocessor.

Low Latency Enhancements 1

In order to protect shared data structures used by the kernel, the kernel protects code paths
that access these shared data structures with spin locks and semaphores. The locking of a
spin lock requires that preemption, and sometimes interrupts, be disabled while the spin
lock is held. A study was made which identified the worst-case preemption off times. The
low latency enhancements modify the algorithms in the identified worst-case preemption
off scenarios to provide better interrupt response times.

Priority Inheritance 1

Semaphores used as sleepy-wait mutual exclusion mechanisms can introduce the problem
of priority inversion. Priority inversion occurs when one or more low-priority processes
executing in a critical section prevent the progress of one or more high-priority processes.
Priority inheritance involves temporarily raising the priority of the low priority processes
executing in the critical section to that of the highest priority waiting process. This ensures
that the processes executing in the critical section have sufficient priority to continue
execution until they leave the critical section. See Chapter 5 for details.

High Resolution Process Accounting 1

In the standard Linux kernel, the system accounts for a process’ CPU execution times
using a very coarse-grained mechanism. This means that the amount of CPU time charged
to a particular process can be very inaccurate. The high resolution process accounting
facility provides a mechanism for very accurate CPU execution time accounting, allowing
better performance monitoring of applications. This facility is incorporated in the “debug”
and “trace” kernels supplied by Concurrent and used by standard Linux CPU accounting
services and the Performance Monitor on those kernels. See Chapter 7 for information
about CPU accounting methods.

Capabilities Support 1

The Pluggable Authentication Module (PAM) provides a mechanism to assign privileges
to users and set authentication policy without having to recompile authentication
programs. Under this scheme, a non-root user can be configured to run applications that
require privileges only root would normally be allowed. For example, the ability to lock
pages in memory is provided by one predefined privilege that can be assigned to
individual users or groups.

Privileges are granted through roles defined in a configuration file. A role is a set of valid
Linux capabilities. Defined roles can be used as a building block in subsequent roles, with

RedHawk Linux User’s Guide

1-8

the new role inheriting the capabilities of the previously defined role. Roles are assigned
to users and groups, defining their capabilities on the system.

See Chapter 13 for information about the PAM functionality.

Kernel Debuggers 1

The open source kernel debugger kdb is supported on RedHawk Linux “debug” kernels.

More information can be found in Chapter 12.

Kernel Core Dumps/Crash Analysis 1

The kexec and kdump open source patches enable another kernel to load and capture a
crash dump, and the crash utility is provided for analyzing the dump. See Chapter 12 for
more information about crash dump analysis.

User-level Spin Locks 1

RedHawk Linux busy-wait mutual exclusion tools include a low-overhead busy-wait
mutual exclusion variable (a spin lock) and a corresponding set of macros that allow you
to initialize, lock, unlock and query spin locks. To be effective, user-level spin locks must
be used with user-level preemption control. Refer to Chapter 5 for details.

usermap and /proc mmap 1

The usermap(3) library routine, which resides in the libccur_rt library, provides
applications with a way to efficiently monitor and modify locations in currently executing
programs through the use of simple CPU reads and writes.

The /proc file system mmap(2) is the underlying kernel support for usermap(3),
which lets a process map portions of another process’ address space into its own address
space. Thus, monitoring and modifying other executing programs becomes simple CPU
reads and writes within the application’s own address space, without incurring the
overhead of /proc file system read(2) and write(2) system service calls. Refer to
Chapter 9 for more information.

Hyper-threading 1

Hyper-threading is a feature of the Intel Pentium Xeon processor. It allows for a single
physical processor to appear to the operating system as two logical processors. Two
program counters run simultaneously within each CPU chip so that in effect, each chip is a
dual-CPU SMP. With hyper-threading, physical CPUs can run multiple tasks “in parallel”
by utilizing fast hardware-based context-switching between the two register sets upon
things like cache-misses or special instructions. RedHawk Linux includes support for
hyper-threading. Refer to Chapter 2 for more information on how to effectively use this
feature in a real-time environment.

Introduction

1-9

XFS Journaling File System 1

The XFS journaling file system from SGI is implemented in RedHawk Linux. Journaling
file systems use a journal (log) to record transactions. In the event of a system crash, the
background process is run on reboot and finishes copying updates from the journal to the
file system. This drastically cuts the complexity of a file system check, reducing recovery
time. The SGI implementation is a multithreaded, 64-bit file system capable of large files
and file systems, extended attributes, variable block sizes, is extent based and makes
extensive use of Btrees to aid both performance and scalability. Refer to Chapter 8 for
more information.

POSIX Real-Time Extensions 1

RedHawk Linux supports most of the interfaces defined by the POSIX real-time
extensions as set forth in ISO/IEC 9945-1. The following functional areas are supported:

• user priority scheduling

• process memory locking

• memory mapped files

• shared memory

• message queues

• counting semaphores

• real-time signal behavior

• asynchronous I/O

• synchronized I/O

• timers (high resolution version is supported)

User Priority Scheduling 1

RedHawk Linux accommodates user priority scheduling––that is, processes scheduled
under the fixed-priority POSIX scheduling policies do not have their priorities changed by
the operating system in response to their run-time behavior. The resulting benefits are
reduced kernel overhead and increased user control. Process scheduling facilities are fully
described in Chapter 4.

Memory Resident Processes 1

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping,
RedHawk Linux allows you to make certain portions of a process’ virtual address space
resident. The mlockall(2), munlockall(2), mlock(2), and munlock(2)
POSIX system calls allow locking all or a portion of a process’ virtual address space in
physical memory. See the man pages for details.

RedHawk Linux User’s Guide

1-10

Memory Mapping and Data Sharing 1

RedHawk Linux supports shared memory and memory-mapping facilities based on IEEE
Standard 1003.1b-1993, as well as System V IPC mechanisms. The POSIX facilities allow
processes to share data through the use of memory objects, named regions of storage that
can be mapped to the address space of one or more processes to allow them to share the
associated memory. The term memory object includes POSIX shared memory objects,
regular files, and some devices, but not all file system objects (terminals and network
devices, for example). Processes can access the data in a memory object directly by
mapping portions of their address spaces onto the objects. This is generally more efficient
than using the read(2) and write(2) system calls because it eliminates copying the
data between the kernel and the application.

Process Synchronization 1

RedHawk Linux provides a variety of tools that cooperating processes can use to
synchronize access to shared resources.

Counting semaphores based on IEEE Standard 1003.1b-1993 allow multiple threads in a
multithreaded process to synchronize their access to the same set of resources. A counting
semaphore has a value associated with it that determines when resources are available for
use and allocated. System V IPC semaphore sets, which support interprocess semaphores,
are also available.

In addition to semaphores, a set of real-time process synchronization tools developed by
Concurrent provides the ability to control a process’ vulnerability to rescheduling,
serialize processes’ access to critical sections with busy-wait mutual exclusion
mechanisms, and coordinate client–server interaction among processes. With these tools, a
mechanism for providing sleepy-wait mutual exclusion with bounded priority inversion
can be constructed.

Descriptions of the synchronization tools and procedures for using them are provided in
Chapter 5.

Asynchronous Input/Output 1

Being able to perform I/O operations asynchronously means that you can set up for an I/O
operation and return without blocking on I/O completion. RedHawk Linux accommodates
asynchronous I/O with a group of library routines based on IEEE Standard 1003.1b-1993.
These interfaces allow a process to perform asynchronous read and write operations,
initiate multiple asynchronous I/O operations with a single call, wait for completion of an
asynchronous I/O operation, cancel a pending asynchronous I/O operation, and perform
asynchronous file synchronization. The “aio” functions are documented in info pages
(‘info libc”) on the system.

Synchronized Input/Output 1

RedHawk Linux also supports the synchronized I/O facilities based on IEEE Standard
1003.1b-1993. POSIX synchronized I/O provides the means for ensuring the integrity of
an application’s data and files. A synchronized output operation ensures the recording of
data written to an output device. A synchronized input operation ensures that the data read
from a device mirrors the data currently residing on disk. Refer to the man pages for more
information.

Introduction

1-11

Real-Time Signal Behavior 1

Real-time signal behavior specified by IEEE Standard 1003.1b-1993 includes
specification of a range of real-time signal numbers, support for queuing of multiple
occurrences of a particular signal, and support for specification of an application-defined
value when a signal is generated to differentiate among multiple occurrences of signals of
t h e s a m e t y p e . T h e P O S IX s i g n a l - m a n a g e m e n t f a c i l i t i e s i n c l u d e t h e
sigtimedwait(2), sigwaitinfo(2), and sigqueue(2) system calls, which
allow a process to wait for receipt of a signal and queue a signal and an application-
defined value to a process. Refer to the man pages for more information.

Clocks and Timers 1

Support for high-resolution POSIX clocks and timers is included in RedHawk. System-
wide POSIX clocks can be used for such purposes as time Linuxstamping or measuring
the length of code segments. POSIX timers allow applications to use relative or absolute
time based on a high resolution clock and to schedule events on a one-shot or periodic
basis. Applications can create multiple timers for each process. In addition, high-
resolution sleep mechanisms are provided which can be used to put a process to sleep for a
very short time quantum and specify which clock should be used for measuring the
duration of the sleep. See Chapter 6 for additional information.

Message Queues 1

POSIX message passing facilities based on IEEE Standard 1003.1b-1993 are included in
RedHawk Linux, implemented as a file system. POSIX message queue library routines
allow a process to create, open, query and destroy a message queue, send and receive
messages from a message queue, associate a priority with a message to be sent, and
request asynchronous notification when a message arrives. POSIX message queues
operate independently of System V IPC messaging, which is also available. See Chapter 3
for details.

RedHawk Linux User’s Guide

1-12

2-1

2
Chapter 2Real-Time Performance

2
1
2

This chapter discusses some of the issues involved with achieving real-time performance
under RedHawk Linux. The primary focus of the chapter is on the Shielded CPU Model,
which is a model for assigning processes and interrupts to a subset of CPUs in the system
to attain the best real-time performance.

Key areas of real-time performance are discussed: interrupt response, process dispatch
latency and deterministic program execution. The impact of various system activities on
these metrics is discussed and techniques are given for optimum real-time performance.

Overview of the Shielded CPU Model 2

The shielded CPU model is an approach for obtaining the best real-time performance in a
symmetric multiprocessor system. The shielded CPU model allows for both deterministic
execution of a real-time application as well as deterministic response to interrupts.

A task has deterministic execution when the amount of time it takes to execute a code
segment within that task is predictable and constant. Likewise the response to an interrupt
is deterministic when the amount of time it takes to respond to an interrupt is predictable
and constant. When the worst-case time measured for either executing a code segment or
responding to an interrupt is significantly different than the typical case, the application’s
performance is said to be experiencing jitter. Because of computer architecture features
like memory caches and contention for shared resources, there will always be some
amount of jitter in measurements of execution times. Each real-time application must
define the amount of jitter that is acceptable to that application.

In the shielded CPU model, tasks and interrupts are assigned to CPUs in a way that
guarantees a high grade of service to certain important real-time functions. In particular, a
high-priority task is bound to one or more shielded CPUs, while most interrupts and low
priority tasks are bound to other CPUs. The CPUs responsible for running the high-
priority tasks are shielded from the unpredictable processing associated with interrupts
and the other activity of lower priority processes that enter the kernel via system calls, thus
these CPUs are called shielded CPUs.

Some examples of the types of tasks that should be run on shielded CPUs are:

• tasks that require guaranteed interrupt response time

• tasks that require the fastest interrupt response time

• tasks that must be run at very high frequencies

• tasks that require deterministic execution in order to meet their deadlines

• tasks that have no tolerance for being interrupted by the operating system

RedHawk Linux User’s Guide

2-2

There are several levels of CPU shielding that provide different degrees of determinism for
the tasks that must respond to high-priority interrupts or that require deterministic
execution. Before discussing the levels of shielding that can be enabled on a shielded
CPU, it is necessary to understand how the system responds to external events and how
some of the normal operations of a computer system impact system response time and
determinism.

Overview of Determinism 2

Determinism refers to a computer system’s ability to execute a particular code path (a set
of instructions executed in sequence) in a fixed amount of time. The extent to which the
execution time for the code path varies from one instance to another indicates the degree
of determinism in the system.

Determinism applies not only to the amount of time required to execute a time-critical
portion of a user’s application but also to the amount of time required to execute system
code in the kernel. The determinism of the process dispatch latency, for example, depends
upon the code path that must be executed to handle an interrupt, wake the target process,
perform a context switch, and allow the target process to exit from the kernel. (The section
“Process Dispatch Latency” defines the term process dispatch latency and presents a
model for obtaining the best process dispatch latency possible on a particular CPU in a
multiprocessor system.)

The largest impact on the determinism of a program’s execution is the receipt of interrupts.
This is because interrupts are always the highest priority activity in the system and the
receipt of an interrupt is unpredictable – it can happen at any point in time while a
program is executing. Shielding from non-critical interrupts will have the largest impact
on creating better determinism during the execution of high priority tasks.

Other techniques for improving the determinism of a program’s execution are discussed in
the section called “Procedures for Increasing Determinism.”

Process Dispatch Latency 2

Real-time applications must be able to respond to a real-world event and complete the
processing required to handle that real-world event within a given deadline. Computations
required to respond to the real-world event must be complete before the deadline or the
results are considered incorrect. A single instance of having an unusually long response to
an interrupt can cause a deadline to be missed.

The term process dispatch latency denotes the time that elapses from the occurrence of an
external event, which is signified by an interrupt, until the process waiting for that external
event executes its first instruction in user mode. For real-time applications, the worst-case
process dispatch latency is a key metric, since it is the worst-case response time that will
determine the ability of the real-time application to guarantee that it can meet its
deadlines.

Real-Time Performance

2-3

Process dispatch latency comprises the time that it takes for the following sequence of
events to occur:

1. The interrupt controller notices the interrupt and generates the interrupt
exception to the CPU.

2. The interrupt routine is executed, and the process waiting for the interrupt
(target process) is awakened.

3. The currently executing process is suspended, and a context switch is
performed so that the target process can run.

4. The target process must exit from the kernel, where it was blocked waiting
for the interrupt.

5. The target process runs in user mode.

This sequence of events represents the ideal case for process dispatch latency; it is
illustrated by Figure 2-1. Note that events 1-5 described above, are marked in Figure 2-1.

Figure 2-1 Normal Process Dispatch Latency

The process dispatch latency is a very important metric for event–driven real–time
applications because it represents the speed with which the application can respond to an
external event. Most developers of real–time applications are interested in the worst-case
process dispatch latency because their applications must meet certain timing constraints.

Process dispatch latency is affected by some of the normal operations of the operating
system, device drivers and computer hardware. The following sections examine some of
the causes of jitter in process dispatch latency.

RedHawk Linux User’s Guide

2-4

Effect of Disabling Interrupts 2

An operating system must protect access to shared data structures in order to prevent those
data structures from being corrupted. When a data structure can be accessed at interrupt
level, it is necessary to disable interrupts whenever that data structure is accessed. This
prevents interrupt code from corrupting a shared data structure should it interrupt program
level code in the midst of an update to the same shared data structure. This is the primary
reason that the kernel will disable interrupts for short periods of time.

When interrupts are disabled, process dispatch latency is affected because the interrupt
that we are trying to respond to cannot become active until interrupts are again enabled. In
this case, the process dispatch latency for the task awaiting the interrupt is extended by the
amount of time that interrupts remain disabled. This is illustrated in Figure 2-2. In this
diagram, the low priority process has made a system call which has disabled interrupts.
When the high priority interrupt occurs it cannot be acted on because interrupts are
currently disabled. When the low priority process has completed its critical section, it
enables interrupts, the interrupt becomes active and the interrupt service routine is called.
The normal steps of interrupt response then complete in the usual fashion. Note that the
numbers 1-5 marked in Figure 2-2 represent the steps of normal process dispatch latency
as described earlier on page 2-3.

Obviously, critical sections in the operating system where interrupts are disabled must be
minimized to attain good worst-case process dispatch latency.

Figure 2-2 Effect of Disabling Interrupts on Process Dispatch Latency

Real-Time Performance

2-5

Effect of Interrupts 2

The receipt of an interrupt affects process dispatch latency in much the same way that
disabling interrupts does. When a hardware interrupt is received, the system will block
interrupts of the same or lesser priority than the current interrupt. The simple case is
illustrated in Figure 2-3, where a higher priority interrupt occurs before the target
interrupt, causing the target interrupt to be held off until the higher priority interrupt
occurs. Note that the numbers 1-5 marked in Figure 2-3 represent the steps of normal
process dispatch latency as described earlier on page 2-3.

Figure 2-3 Effect of High Priority Interrupt on Process Dispatch Latency

RedHawk Linux User’s Guide

2-6

The relative priority of an interrupt does not affect process dispatch latency. Even when a
low priority interrupt becomes active, the impact of that interrupt on the process dispatch
latency for a high-priority interrupt is the same. This is because interrupts always run at a
higher priority than user-level code. Therefore, even though we might service the interrupt
routine for a high-priority interrupt, that interrupt routine cannot get the user-level context
running until all interrupts have completed their execution. This impact of a low priority
interrupt on process dispatch latency is illustrated in Figure 2-4. Note that the ordering of
how things are handled is different than the case of the high-priority interrupt in
Figure 2-3, but the impact on process dispatch latency is the same. Note that the numbers
1-5 marked in Figure 2-4 represent the steps of normal process dispatch latency as
described earlier on page 2-3.

Figure 2-4 Effect of Low Priority Interrupt on Process Dispatch Latency

Real-Time Performance

2-7

One of the biggest differences between the effect of disabling interrupts and receipt of an
interrupt in terms of the impact on process dispatch latency is the fact that interrupts occur
asynchronously to the execution of an application and at unpredictable times. This is
important to understanding the various levels of shielding that are available.

When multiple interrupts can be received on a given CPU, the impact on worst-case
process dispatch latency can be severe. This is because interrupts can stack up, such that
more than one interrupt service routine must be processed before the process dispatch
latency for a high priority interrupt can be completed. Figure 2-5 shows a case of two
interrupts becoming active while trying to respond to a high priority interrupt. Note that
the numbers 1-5 marked in Figure 2-5 represent the steps of normal process dispatch
latency as described earlier on page 2-3. When a CPU receives an interrupt, that CPU will
disable interrupts of lower priority from being able to interrupt the CPU. If a second
interrupt of lower-priority becomes active during this time, it is blocked as long as the
original interrupt is active. When servicing of the first interrupt is complete, the second
interrupt becomes active and is serviced. If the second interrupt is of higher priority than
the initial interrupt, it will immediately become active. When the second interrupt
completes its processing, the first interrupt will again become active. In both cases, user
processes are prevented from running until all of the pending interrupts have been
serviced.

Conceivably, it would be possible for a pathological case where interrupts continued to
become active, never allowing the system to respond to the high-priority interrupt. When
multiple interrupts are assigned to a particular CPU, process dispatch latency is less
predictable on that CPU because of the way in which the interrupts can be stacked.

Figure 2-5 Effect of Multiple Interrupts on Process Dispatch Latency

RedHawk Linux User’s Guide

2-8

Effect of Disabling Preemption 2

There are critical sections in RedHawk Linux that protect a shared resource that is never
locked at interrupt level. In this case, there is no reason to block interrupts while in this
critical section. However, a preemption that occurs during this critical section could cause
corruption to the shared resource if the new process were to enter the same critical section.
Therefore, preemption is disabled while a process executes in this type of critical section.
Blocking preemption will not delay the receipt of an interrupt. However, if that interrupt
wakes a high priority process, it will not be possible to switch to that process until
preemption has again been enabled. Assuming the same CPU is required, the actual effect
on worst-case process dispatch latency is the same as if interrupts had been disabled. The
effect of disabling preemption on process dispatch latency is illustrated in Figure 2-6.
Note that the numbers 1-5 marked in Figure 2-6 represent the steps of normal process
dispatch latency as described earlier on page 2-3.

Figure 2-6 Effect of Disabling Preemption on Process Dispatch Latency

Real-Time Performance

2-9

Effect of Open Source Device Drivers 2

Device drivers are a part of the Linux kernel, because they run in supervisor mode. This
means that device drivers are free to call Linux functions that disable interrupts or disable
preemption. Device drivers also handle interrupts, therefore they control the amount of
time that might be spent at interrupt level. As shown in previous sections of this chapter,
these actions have the potential to impact worst-case interrupt response and process
dispatch latency.

Device drivers enabled in RedHawk Linux have been tested to be sure they do not
adversely impact real-time performance. While open source device driver writers are
encouraged to minimize the time spent at interrupt level and the time interrupts are
disabled, in reality open source device drivers are written with very varied levels of care. If
additional open source device drivers are enabled they may have a negative impact upon
the guaranteed worst-case process dispatch latency that RedHawk Linux provides.

Refer to the “Device Drivers” chapter for more information about real-time issues with
device drivers.

How Shielding Improves Real-Time Performance 2

This section will examine how the different attributes of CPU shielding improve both the
ability for a user process to respond to an interrupt (process dispatch latency) and
determinism in execution of a user process.

When enabling shielding, all shielding attributes are enabled by default. This provides the
most deterministic execution environment on a shielded CPU. Each of these shielding
attributes is described in more detail below. The user should fully understand the impact of
each of the possible shielding attributes, as some of these attributes do have side effects to
normal system functions. There are three categories of shielding attributes currently
supported:

• shielding from background processes

• shielding from interrupts

• shielding from the local interrupt

Each of these attributes is individually selectable on a per-CPU basis. Each of the
shielding attributes is described below.

Shielding From Background Processes 2

This shielding attribute allows a CPU to be reserved for a subset of processes in the
system. This shielding attribute should be enabled on a CPU when you want that CPU to
have the fastest, most predictable response to an interrupt. The best guarantee on process
dispatch latency is achieved when only the task that responds to an interrupt is allowed to
execute on the CPU where that interrupt is directed.

RedHawk Linux User’s Guide

2-10

When a CPU is allowed to run background processes, it can affect the process dispatch
latency of a high-priority task that desires very deterministic response to an interrupt
directed to that CPU. This is because background processes will potentially make system
calls that can disable interrupts or preemption. These operations will impact process
dispatch latency as explained in the sections “Effect of Disabling Interrupts” and “Effect
of Disabling Preemption.”

When a CPU is allowed to run background processes, there is no impact on the
determinism in the execution of high priority processes. This assumes the background
processes have lower priority than the high-priority processes. Note that background
processes could affect the time it takes to wake a process via other kernel mechanisms
such as signals or the server_wake1(3) interface.

Each process or thread in the system has a CPU affinity mask. The CPU affinity mask
determines on which CPUs the process or thread is allowed to execute. The CPU affinity
mask is inherited from the parent and can be set via the mpadvise(3) library routine or
the sched_setaffinity(2) system call. When a CPU is shielded from processes,
that CPU will only run processes and threads that have explicitly set their CPU affinity to
a set of CPUs that only includes shielded CPUs. In other words, if a process has a non-
shielded CPU in its CPU affinity mask, then the process will only run on those CPUs that
are not shielded. To run a process or thread on a CPU shielded from background
processes, it must have a CPU affinity mask that specifies ONLY shielded CPUs.

Certain kernel daemons created by Linux are replicated on every CPU in the system.
Shielding a CPU from processes will not remove one of these “per-CPU” daemons from
the shielded CPU. The impact of these daemons can be avoided through kernel
configuration or careful control of application behavior. The kernel daemons, their
functionality and methods to avoid jitter from per-CPU kernel daemons are described in
Appendix F.

Shielding From Interrupts 2

This shielding attribute allows a CPU to be reserved for processing only a subset of
interrupts received by the system. This shielding attribute should be enabled when it is
desirable to have the fastest, most predictable process dispatch latency or when it is
desirable to have determinism in the execution time of an application.

Because interrupts are always the highest priority activity on a CPU, the handling of an
interrupt can affect both process dispatch latency and the time it takes to execute a normal
code path in a high priority task. This is described in the section, “Effect of Interrupts”.

Each device interrupt is associated with an IRQ. These IRQs have an associated CPU
affinity that determines which CPUs are allowed to receive the interrupt. When interrupts
are not routed to a specific CPU, the interrupt controller will select a CPU for handling an
interrupt at the time the interrupt is generated from the set of CPUs in the IRQ affinity
mask. IRQ affinities are modified by the shield(1) command or through
/proc/irq/N/smp_affinity.

On the i386 architecture, the kirqd daemon periodically adjusts IRQ affinities in an
attempt to balance interrupt load across CPUs. This daemon conflicts with interrupt-
shielding and has been disabled by default in all RedHawk Linux kernel configurations
through the IRQBALANCE kernel configuration option. It can be enabled by enabling the

Real-Time Performance

2-11

IRQBALANCE kernel parameter, which is only available when the SHIELD tunable is turned
off.

Note that if it is desirable to disable all interrupts on all CPUs, the recommended
procedure is to shield all CPUs from interrupts except one, then make a call to
local_irq_disable(2) on the unshielded CPU. See the man page for details.

Certain activities can cause interrupts to be sent to shielded CPUs. These cross processor
interrupts are used as a method for forcing another CPU to handle some per-CPU specific
task. Cross processor interrupts can potentially cause noticeable jitter for shielded CPUs.
Refer to Appendix G for a full discussion.

Shielding From Local Interrupt 2

The local interrupt is a special interrupt for a private timer associated with each CPU.
Under RedHawk Linux, this timer is used for various timeout mechanisms in the kernel
and at user level. This functionality is described in Chapter 7. By default, this interrupt is
enabled on all CPUs in the system.

This interrupt fires every ten milliseconds, making the local interrupt one of the most
frequently executed interrupt routines in the system. Therefore, the local interrupt is a
large source of jitter to real-time applications.

When a CPU is shielded from the local timer, the local interrupt is effectively disabled and
the functions provided by the local timer associated with that CPU are no longer
performed; however, they continue to run on other CPUs where the local timer has not
been shielded. Some of these functions will be lost, while others can be provided via other
means.

One of the functions that is lost when the local interrupt is disabled on a particular CPU is
the low resolution mechanism for CPU execution time accounting. This is the mechanism
that measures how much CPU time is used by each process that executes on this CPU.
Whenever the local interrupt fires, the last clock tick’s worth of time is charged to the
process that was interrupted. If high resolution process accounting is configured, then
CPU time will be accurately accounted for regardless of whether or not the local interrupt
is enabled. High resolution process accounting is discussed in Chapter 7, “System Clocks
and Timers.”

When a CPU is shielded from the local timer, the local interrupt will continue to be used
for POSIX timers and nanosleep functionality by processes biased to the shielded CPU.
For this reason, if it is critical to totally eliminate local timer interrupts for optimum
performance on a specific shielded CPU, applications utilizing POSIX timers or nanosleep
functionality should not be biased to that CPU. If a process is not allowed to run on the
shielded CPU, its timers will be migrated to a CPU where the process is allowed to run.

Refer to Chapter 7, “System Clocks and Timers” for a complete discussion on the effects
of disabling the local timer and alternatives that are available for some of the features.

RedHawk Linux User’s Guide

2-12

Interfaces to CPU Shielding 2

This section describes both the command level and programming interfaces that can be
used for setting up a shielded CPU. There is also an example that describes the common
case for setting up a shielded CPU.

Shield Command 2

The shield(1) command sets specified shielding attributes for selected CPUs. The
shield command can be used to mark CPUs as shielded CPUs. A shielded CPU is
protected from some set of system activity in order to provide better determinism in the
time it takes to execute application code.

The list of logical CPUs affected by an invocation of the shield command is given as a
comma-separated list of CPU numbers or ranges.

The format for executing the shield command is:

shield [OPTIONS]

Options are described in Table 2-1.

In the options listed below, CPULIST is a list of comma separated values or a range of values
representing logical CPUs. For example, the list of CPUs “0-4,7” specifies the following
logical CPU numbers: 0,1,2,3,4,7.

Table 2-1 Options to the shield(1) Command

Option Description

--irq=CPULIST, -i CPULIST Shields all CPUs in CPULIST from interrupts.
The only interrupts that will execute on the
specified CPUs are those that have been
assigned a CPU affinity that would prevent
them from executing on any other CPU.

--loc=CPULIST, -l CPULIST The specified list of CPUs is shielded from the
local timer. The local timer provides time-
based services for a CPU. Disabling the local
timer may cause some system functionality
such as user/system time accounting and
round-robin quantum expiration to be disabled.
Refer to Chapter 7 for more a complete discus-
sion.

Real-Time Performance

2-13

Refer to Chapter 10, “Non-Uniform Memory Access (NUMA)”, for options to
shield(1) that control NUMA node memory shielding.

Shield Command Examples 2

The following command first resets all shielding attributes, then shields CPUs 0,1 and 2
from interrupts, then shields CPU 1 from local timer, shields CPU 2 from extraneous
processes, and finally, displays all new settings after the changes:

shield -r -i 0-2 -l 1 -p 2 -c

The following command shields CPUs 1,2 and 3 from interrupts, local timer, and
extraneous processes. CPU 0 is left as a “general purpose” CPU that will service all
interrupts and processes not targeted to a shielded CPU. All shielding attributes are set for
the list of CPUs.

shield --all=1-3

Exit Status 2

Normally, the exit status is zero. However, if an error occurred while trying to modify
shielded CPU attributes, a diagnostic message is issued and an exit status of 1 is returned.

--proc=CPULIST, -p CPULIST The specified list of CPUs is shielded from
extraneous processes. Processes that have an
affinity mask that allows them to run on a non-
shielded CPU only run on non-shielded CPUs.
Processes that would be precluded from exe-
cuting on any CPU other than a shielded CPU
are allowed to execute on that shielded CPU.

--all=CPULIST, -a CPULIST The specified list of CPUs will have all
available shielding attributes set. See the
descriptions of the individual shielding options
above to understand the implications of each
shielding attribute.

--help, -h Describes available options and usage.

--version, -V Prints out current version of the command.

--reset, -r Resets shielding attributes for all CPUs. No
CPUs are shielded.

--current, -c Displays current settings for all active CPUs.

Table 2-1 Options to the shield(1) Command (Continued)

Option Description

RedHawk Linux User’s Guide

2-14

Shield Command Advanced Features 2

It is recommended that the advanced features described below should only be used by
experienced users.

CPUs specified in the CPULIST can be preceded by a '+' or a '-' sign in which case the CPUs
in the list are added to ('+') or taken out of ('-') the list of already shielded CPUs.

Options can be used multiple times. For example, “shield -i 0 -c -i +1 -c” shows current
settings after CPU 0 has been shielded from interrupts and then displays current settings
again after CPU 1 has been added to the list of CPUs shielded from interrupts.

/proc Interface to CPU Shielding 2

The kernel interface to CPU shielding is through the /proc file system using the
following files:

/proc/shield/procs process shielding

/proc/shield/irqs irq shielding

/proc/shield/ltmrs local timer shielding

All users can read these files, but only root or users with the CAP_SYS_NICE capability and
file permissions may write to them.

When read, an 8 digit ASCII hexadecimal value is returned. This value is a bitmask of
shielded CPUs. Set bits identify the set of shielded CPUs. The radix position of each set
bit is the number of the logical CPU being shielded by that bit.

For example:

00000001 - bit 0 is set so CPU #0 is shielded
00000002 - bit 1 is set so CPU #1 is shielded
00000004 - bit 2 is set so CPU #2 is shielded
00000006 - bits 1 and 2 are set so CPUs #1 and #2 are shielded

When written to, an 8 digit ASCII hexadecimal value is expected. This value is a bitmask
of shielded CPUs in a form identical to that listed above. The value then becomes the new
set of shielded CPUs.

See the shield(5) man page for additional information.

Assigning Processes to CPUs 2

This section describes the methods available for assigning a process or thread to a set of
CPUs. The set of CPUs where a process is allowed to run is known as its CPU affinity.

By default, a process or thread can execute on any CPU in the system. Every process or
thread has a bit mask, or CPU affinity, that determines the CPU or CPUs on which it can
be scheduled. A process or thread inherits its CPU affinity from its creator during a
fork(2) or a clone(2) but may change it thereafter.

Real-Time Performance

2-15

You can set the CPU affinity for one or more processes or threads by specifying the
MPA_PRC_SETBIAS command on a call to mpadvise(3), or the -b bias option to the
run(1) command. sched_setaffinity(2) can also be used to set CPU affinity.

To set the CPU affinity, the following conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU affinity is being set, or

• the calling process must have the CAP_SYS_NICE capability or be root.

To add a CPU to a process’ or thread’s CPU affinity, the calling process must have the
CAP_SYS_NICE capability or be root.

A CPU affinity can be assigned to the init(8) process. All general processes are a
descendant from init. As a result, most general processes would have the same CPU
affinity as init or a subset of the CPUs in the init CPU affinity. Only privileged
processes (as described above) are able to add a CPU to their CPU affinity. Assigning a
restricted CPU affinity to init restricts all general processes to the same subset of CPUs
as init. The exception is selected processes that have the appropriate capability who
explicitly modify their CPU affinity. If you wish to change the CPU affinity of init, see
the section “Assigning CPU Affinity to init” below for instructions.

The mpadvise library routine is documented in the section “Multiprocessor Control
Using mpadvise” below and the mpadvise(3) man page. The run command is
documented in the section “The run Command” in Chapter 4 and the run(1) man page.
For information on sched_setaffinity(2) and sched_getaffinity(2), see
the sched_affinity(2) man page.

Multiprocessor Control Using mpadvise 2

mpadvise(3) performs a variety of multiprocessor functions. CPUs are identified by
specifying a pointer to a cpuset_t object, which specifies a set of one or more CPUs.
For more information on CPU sets, see the cpuset(3) man page.

Synopsis

#include <mpadvise.h>

int mpadvise (int cmd, int which, int who, cpuset_t *setp)

gcc [options] file -lccur_rt ...

Informational Commands

The following commands get or set information about the CPUs in the system. The which
and who parameters are ignored.

MPA_CPU_PRESENT Returns a mask indicating which CPUs are physically pres-
ent in the system. CPUs brought down with the cpu(1)
command are still included.

MPA_CPU_ACTIVE Returns a mask indicating which CPUs are active, that is,
initialized and accepting work, regardless of how many
exist in the backplane. If a CPU has been brought down
using the cpu(1) command, it is not included.

RedHawk Linux User’s Guide

2-16

MPA_CPU_BOOT Returns a mask indicating the CPU that booted the system.
The boot CPU has some responsibilities not shared with the
other CPUs.

MPA_CPU_LMEM Returns a mask indicating which CPUs have local memory
on a system with NUMA support. CPUs brought down with
the cpu(1) command are still included.

Control Commands

The following commands provide control over the use of CPUs by a process, a thread, a
process group, or a user.

MPA_PRC_GETBIAS Returns the CPU set for the CPU affinity of all threads in
the specified process (MPA_PID) or the exact unique bias for
the specified thread (MPA_TID).

MPA_PRC_SETBIAS Sets the CPU affinity of all threads in the specified pro-
cesses (MPA_PID) or the unique CPU affinity for the speci-
fied thread (MPA_TID) to the specified cpuset. To change the
CPU affinity of a process, the real or effective user ID must
match the real or the saved (from exec(2)) user ID of the
process, unless the current user has the CAP_SYS_NICE

capability.

MPA_PRC_GETRUN Returns a CPU set with exactly one CPU in it that
corresponds to the CPU where the specified thread is
currently running (or waiting to run) (MPA_TID). When
MPA_PID is specified, returns one CPU for non-threaded pro-
grams and the set of CPUs in use by all threads of a multi-
threaded program. Note that it is possible that the CPU
assignment may have already changed by the time the value
is returned.

Using which and who

which Used to specify the selection criteria. Can be one of the
following:

MPA_PID a specific process and all its threads
MPA_TID a specific thread
MPA_PGID a process group
MPA_UID a user
MPA_LWPID same as MPA_TID (compatible with PowerMAX)

who Interpreted relative to which:

a process identifier
a thread identifier
a process group identifier
user identifier

A who value of 0 causes the process identifier, process
group identifier, or user identifier of the caller to be used.

Real-Time Performance

2-17

Using MPA_PID with a reference to a single subordinate
(non-primordial) thread applies to the containing process as
it does when a primordial thread is supplied.

When using MPA_TID, who must be the numeric thread ID
(as returned by gettid), not a pthread identifier associated
with the POSIX Threads library.

Assigning CPU Affinity to init 2

All general processes are a descendant of init(8). By default, init has a mask that
includes all CPUs in the system and only selected processes with appropriate capabilities
can modify their CPU affinity. If it is desired that by default all processes are restricted to
a subset of CPUs, a CPU affinity can be assigned by a privileged user to the init process.
To achieve this goal, the run(1) command can be invoked early during the system
initialization process.

For example, to bias init and all its descendants to CPUs 1, 2 and 3, the following
command may be added at the end of the system’s /etc/rc.sysinit script, which is
called early during system initialization (see inittab(5)). The init process is
specified in this command by its process ID which is always 1.

/usr/bin/run -b 1-3 -p 1

The same effect can be achieved by using the shield(1) command. The advantage of
using this command is that it can be done from the command line at any run level. The
shield command will take care of migrating processes already running in the CPU to be
shielded. In addition, with the shield command you can also specify different levels of
shielding. See the section “Shield Command” or the shield(1) man page for more
information on this command.

For example, to shield CPU 0 from running processes, you would issue the following
command.

$ shield -p 0

After shielding a CPU, you can always specify selected processes to run in the shielded
CPU using the run command.

For example, to run mycommand on CPU 0 which was previously shielded from
processes, you would issue the following command:

$ run -b 0 ./mycommand

Example of Setting Up a Shielded CPU 2

The following example shows how to use a shielded CPU to guarantee the best possible
interrupt response to an edge-triggered interrupt from the RCIM. In other words, the intent
is to optimize the time it takes to wake up a user-level process when the edge-triggered
interrupt on an RCIM occurs and to provide a deterministic execution environment for that
process when it is awakened. In this case the shielded CPU should be set up to handle just
the RCIM interrupt and the program responding to that interrupt.

The first step is to direct interrupts away from the shielded processor through the
shield(1) command. The local timer interrupt will also be disabled and background

RedHawk Linux User’s Guide

2-18

processes will be precluded to achieve the best possible interrupt response. The shield
command that would accomplish these results for CPU 1 is:

$ shield -a 1

At this point, there are no interrupts and no processes that are allowed to execute on
shielded CPU 1. The shielding status of the CPUs can be checked using the following
methods:

via the shield(1) command:

$ shield -c
CPUID irqs ltmrs procs

0 no no no
1 yes yes yes
2 no no no
3 no no no

via the cpu(1) command:

$ cpu
cpu chip core ht ht-siblings state shielding
--- ---- ---- -- ----------- ----- ---------
0 0 - 0 2 up none
1 3 - 0 3 up proc irq ltmr
2 0 - 1 0 up none
3 3 - 1 1 up none

or via the /proc file system:

$ cat /proc/shield/irqs
00000002

This indicates that all interrupts are precluded from executing on CPU 1. In this example,
the goal is to respond to a particular interrupt on the shielded CPU, so it is necessary to
direct the RCIM interrupt to CPU 1 and to allow the program that will be responding to
this interrupt to run on CPU 1.

The first step is to determine the IRQ to which the RCIM interrupt has been assigned. The
assignment between interrupt and IRQ will be constant for devices on the motherboard
and for a PCI device in a particular PCI slot. If a PCI board is moved to a new slot, its IRQ
assignment may change. To find the IRQ for your device, perform the following
command:

$ cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

0: 665386907 0 0 0 IO-APIC-edge timer
4: 2720 0 0 0 IO-APIC-edge serial
8: 1 0 0 0 IO-APIC-edge rtc
9: 0 0 0 0 IO-APIC-level acpi
14: 9649783 1 2 3 IO-APIC-edge ide0
15: 31 0 0 0 IO-APIC-edge ide1
16: 384130515 0 0 0 IO-APIC-level eth0
17: 0 0 0 0 IO-APIC-level rcim,Intel..
18: 11152391 0 0 0 IO-APIC-level aic7xxx,...
19: 0 0 0 0 IO-APIC-level uhci_hcd
23: 0 0 0 0 IO-APIC-level uhci_hcd

Real-Time Performance

2-19

NMI: 102723410 116948412 0 0 Non-maskable interrupts
LOC: 665262103 665259524 665264914 665262848 Local interrupts
RES: 36855410 86489991 94417799 80848546 Rescheduling interrupts
CAL: 2072 2074 2186 2119 function call interrupts
TLB: 32804 28195 21833 37493 TLB shootdowns
TRM: 0 0 0 0 Thermal event interrupts
SPU: 0 0 0 0 Spurious interrupts
ERR: 0 0 0 0 Error interrupts
MIS: 0 0 0 0 APIC errata fixups

The RCIM is assigned to IRQ 17 in the list above. Now that its IRQ number is known, the
interrupt for the RCIM can be assigned to the shielded processor via the /proc file that
represents the affinity mask for IRQ 17. The affinity mask for an IRQ is an 8 digit ASCII
hexadecimal value. The value is a bit mask of CPUs. Each bit set in the mask represents a
CPU where the interrupt routine for this interrupt may be handled. The radix position of
each set bit is the number of a logical CPU that can handle the interrupt. The following
command sets the CPU affinity mask for IRQ 17 to CPU 1:

$ echo 2 > /proc/irq/17/smp_affinity

Note that the “smp_affinity” file for IRQs is installed by default with permissions
such that only the root user can change the interrupt assignment of an IRQ. The /proc
file for IRQ affinity can also be read to be sure that the change has taken effect:

$ cat /proc/irq/17/smp_affinity
00000002 user 00000002 actual

Note that the value returned for “user” is the bit mask that was specified by the user for the
IRQ's CPU affinity. The value returned for “actual” will be the resulting affinity after any
non-existent CPUs and shielded CPUs have been removed from the mask. Note that
shielded CPUs will only be stripped from an IRQ's affinity mask if the user set an affinity
mask that contained both shielded and non-shielded CPUs. This is because a CPU
shielded from interrupts will only handle an interrupt if there are no unshielded CPUs in
the IRQ's affinity mask that could handle the interrupt. In this example, CPU 1 is shielded
from interrupts, but CPU 1 will handle IRQ 17 because its affinity mask specifies that only
CPU 1 is allowed to handle the interrupt.

The next step is to be sure that the program responding to the RCIM edge-triggered
interrupt will run on the shielded processor. Each process in the system has an assigned
CPU affinity mask. For a CPU shielded from background processes, only a process that
has a CPU affinity mask which specifies ONLY shielded CPUs will be allowed to run on a
shielded processor. Note that if there are any non-shielded CPUs in a process’ affinity
mask, then the process will only execute on the non-shielded CPUs.

The following command will execute the user program “edge-handler” at a real-time
priority and force it to run on CPU 1:

$ run -s fifo -P 50 -b 1 edge-handler

Note that the program could also set its own CPU affinity by calling the library routine
mpadvise(3) as described in the section “Multiprocessor Control Using mpadvise.”

The run(1) command can be used to check the program’s affinity:

$ run -i -n edge-handler
Pid Tid Bias Actual Policy Pri Nice Name
9326 9326 0x2 0x2 fifo 50 0 edge-handler

RedHawk Linux User’s Guide

2-20

Note that the value returned for “Bias” is the bit mask that was specified by the user for the
process’ CPU affinity. The value returned for “actual” will be the resulting affinity after
any non-existent CPUs and shielded CPUs have been removed from the mask. Note that
shielded CPUs will only be stripped from a process’ affinity mask if the user set an affinity
mask that contained both shielded and non-shielded CPUs. This is because a CPU
shielded from background processes will only handle a process if there are no unshielded
CPUs in the process’ affinity mask that could run the program. In this example, CPU 1 is
shielded from background processes, but CPU 1 will run the “edge-handler” program
because its affinity mask specifies that only CPU 1 is allowed to run this program.

Procedures for Increasing Determinism 2

The following sections explain various ways in which you can improve performance using
the following techniques:

• locking a process’ pages in memory

• using favorable static priority assignments

• removing non-critical processing from interrupt level

• speedy wakeup of processes

• controlling cache access

• reserving physical memory

• in a NUMA system, binding a program to local memory

• judicious use of hyper-threading

• avoiding a low memory state

Locking Pages in Memory 2

You can avoid the overhead associated with paging and swapping by using
mlockall(2), mlockall_pid(2), munlockall(2), munlockall_pid(2),
mlock(2), and munlock(2). These system calls allow you to lock and unlock all or a
portion of a process’ virtual address space in physical memory. These interfaces are based
on IEEE Standard 1003.1b-1993.

With each of these calls, pages that are not resident at the time of the call are faulted into
memory and locked . To use the mlockall(2) , mlockall_pid(2) ,
munlockall(2), munlockall_pid(2), mlock(2), and munlock(2) system
calls you must have the CAP_IPC_LOCK capability. For mlockall_pid(2) you may
also need CAP_SYS_NICE if the user ID of the calling process does not match the user ID of
the target process. For additional information on capabilities, refer to Chapter 13 and the
pam_capability(8) man page.

While the memory locking system service calls provide a way for a process to lock or
unlock its own address space, the run command additionally provides the ability to
memory lock or unlock other process's address space with the --lock option.

Procedures for using the various page locking system calls are fully explained in their
corresponding man pages. The --lock option is explained in the run(1) man page.

Real-Time Performance

2-21

Setting the Program Priority 2

The RedHawk Linux kernel accommodates static priority scheduling––that is, processes
scheduled under certain POSIX scheduling policies do not have their priorities changed by
the operating system in response to their run-time behavior.

Processes that are scheduled under one of the POSIX real-time scheduling policies always
have static priorities. (The real-time scheduling policies are SCHED_RR and SCHED_FIFO;
they are explained Chapter 4.) To change a process’ scheduling priority, you may use the
sched_setscheduler(2) and the sched_setparam(2) system calls. Note that
to use these system calls to change the priority of a process to a higher (more favorable)
value, you must have the CAP_SYS_NICE capability (for complete information on capability
requirements for using these routines, refer to the corresponding man pages).

The highest priority process running on a particular CPU will have the best process
dispatch latency. If a process is not assigned a higher priority than other processes running
on a CPU, its process dispatch latency will be affected by the time that the higher priority
processes spend running. As a result, if you have more than one process that requires good
process dispatch latency, it is recommended that you distribute those processes among
several CPUs. Refer to the section “Assigning Processes to CPUs,” for the procedures for
assigning processes to particular CPUs.

Process scheduling is fully described in Chapter 4. Procedures for using the
sched_setscheduler and sched_setparam system calls to change a process’
priority are also explained.

Setting the Priority of Deferred Interrupt Processing 2

Linux supports several mechanisms that are used by interrupt routines in order to defer
processing that would otherwise have been done at interrupt level. The processing
required to handle a device interrupt is split into two parts. The first part executes at
interrupt level and handles only the most critical aspects of interrupt completion
processing. The second part is deferred to run at program level. By removing non-critical
processing from interrupt level, the system can achieve better interrupt response time as
described earlier in this chapter in the section “Effect of Interrupts.”

The second part of an interrupt routine can be handled by kernel daemons, depending on
which deferred interrupt technique is used by the device driver. There are kernel tunables
that allow a system administrator to set the priority of the kernel daemons that handle
deferred interrupt processing. When a real-time task executes on a CPU that is handling
deferred interrupts, it is possible to set the priority of the deferred interrupt kernel daemon
so that a high-priority user process has a more favorable priority than the deferred
interrupt kernel daemon. This allows more deterministic response time for this real-time
process.

For more information on deferred interrupt processing, including the daemons used and
kernel tunables for setting their priorities, see the chapter “Device Drivers.”

Waking Another Process 2

In multiprocess applications, you often need to wake a process to perform a particular
task. One measure of the system’s responsiveness is the speed with which one process can
wake another process. The fastest method you can use to perform this switch to another
task is to use the postwait(2) system call. For compatibility with legacy code, the

RedHawk Linux User’s Guide

2-22

server_block(2) and server_wake1(2) functions are provided in RedHawk
Linux.

Procedures for using these functions are explained in Chapter 5 of this guide.

Avoiding Cache Thrashing 2

If an application has a portion of its address space shared amoung multiple threads of
execution on different CPUs, it is important to ensure that any variable (e.g. i) heavily used
by one thread, and another variable (e.g. j) heavily used by another thread, are not located
too closely together in memory such that they are placed in the same cache line. If i and j
are located in the same cache line, then that cache line will bounce between the two CPUs
as references to i and j are made by their respective threads, and cache performance will
degrade.

Conversely, if a thread heavily uses multiple variables (e.g. i, j and k) it is preferable to
attempt to locate i, j and k in the same cache line. If i, j and k are located in the same cache
line, then when either i, j or k is referenced all three variables will become available with
no additional performance penalty.

Applications using arrays have additional constraints and it is important to understand
how the size of an array compares to the system's cache size. For example, if an array
requires 1.2 megabytes of memory but the system only provides 1 megabyte of cache,
array operations will completely exclude any other variables from utilizing the cache,
without even getting the advantage of having the array run completely in cache. In this
case the only solution is to purchase a system with a larger cache, or to redesign the
algorithms using the arrays such that smaller arrays can be used.

Note that most systems today are NUMA systems. On NUMA systems CPUs are
organized into groups, with each group having some (normal, noncache) local memory
available to it. It is important to ensure that any threads of execution that share large
amounts of data run on CPUs in the same NUMA node group so that when data is not in
cache and must be read from memory, the memory operations will be the fastest and most
deterministic.

Another important aspect of NUMA systems is that each NUMA node generally has a
local IO bus. Typically, system devices (e.g. disk, cdrom, network card, etc.) are local to
specific NUMA nodes and therefore remote to threads executing on CPUs in other NUMA
nodes. For any given system it is useful to determine which NUMA nodes are associated
with which IO devices. Threads that are disk intensive will run with the highest
performance on CPUs in the NUMA node attached to the disk controller. Threads that are
network intensive will run with the highest performance on CPUs in the NUMA node
attached to the network controller.

When buying or configuring a system, it is important to understand which NUMA nodes
are attached to which devices on the hardware. It is also important to understand your
application’s resource usage patterns. For example, if you have an application that is both
disk and network intensive, choose hardware that has a NUMA node attached to both the
network controller and the disk controller for optimal performance.

Real-Time Performance

2-23

Reserving Physical Memory 2

Physical memory can be reserved though the use of command line arguments in the
/etc/grub.conf file.

This type of allocation may be used for a DMA buffer required by a local device or for a
device on a foreign host that is mapped to iHawk memory, such as through a PCI-to-VME
adapter. It can also be used to provide a data space that does not have the randomness of
page allocations from dynamic virtual memory allocations. This could enhance
application performance by making cache collisions of large data arrays more constant,
thus reducing variance in execution times from sequential invocations of a process.

By custom mapping memory in the grub.conf file, a “reserved” section of RAM can be
obtained. The System V shmop(2) function can be used to access this region of physical
memory. Shmconfig(1) or shmbind(2), and shmop(2) functions can be used to
create and attach to this memory partition.

The amount of physical RAM available can be viewed by examining the contents of
/proc/iomem, as shown below on an i386 system.

The regions marked “System RAM” represent the available physical memory for
allocation.

An example of /etc/grub.conf that illustrates how to reserve physical RAM is shown
below in hexadecimal (an example in decimal follows). The commands placed in
grub.conf are processed at boot time to create the memory mapping.

The “memmap=exactmap” entry specifies that the exact BIOS map is used.

The remaining entries specify regions to be defined. The command format is:

memmap=size<op>address

where <op> is ‘@’ for System RAM, ‘$’ for Reserve or “#” for ACPI.

The following example reserves 32MB just below the address of 1G:

default=0
timeout=10
splashimage=(hd0,0)/grub/ccur.xpm.gz

$ cat /proc/iomem

00000000-0009ffff : System RAM

00000000-00000000 : Crash kernel

000a0000-000bffff : Video RAM area

000c0000-000cefff : Video ROM

000d0800-000d3fff : Adapter ROM

000f0000-000fffff : System ROM

00100000-7fe8abff : System RAM

00100000-004f58a5 : Kernel code

004f58a6-00698577 : Kernel data

7fe8ac00-7fe8cbff : ACPI Non-volatile Storage

7fe8cc00-7fe8ebff : ACPI Tables

7fe8ec00-7fffffff : reserved
.
.

(I/O entries removed from example)

RedHawk Linux User’s Guide

2-24

title RedHawk Linux 6.3.3 (Trace=Yes, Debug=No)
root (hd0,0)
kernel /vmlinuz-3.5.7-RedHawk-6.3.3-trace ro root=/dev/sda2 vmalloc=256M \
memmap=exactmap \
memmap=0xa0000@0x0 \
memmap=0x3df00000@0x100000 \
memmap=0x2000000$0x3e000000 \
memmap=0x3fe8ac00@0x40000000 \
memmap=0x2000#0x7fe8cc00

The entries shown above are obtained using the memexact(1) utility and subsequently
copied to the /etc/grub.conf command line. Memexact processes command options
and produces appropriate memory reservation commands based on the contents of
/proc/iomem or a file specified on the command line.

/usr/bin/memexact -x -MS=32M,U=1G
memmap=exactmap memmap=0xa0000@0 memmap=0x3df00000@0x100000 memmap=0xa0000@0
memmap=0x3df00000@0x100000 memmap=0x2000000$0x3e000000
memmap=0x3fe8ac00@0x40000000 memmap=0x2000#0x7fe8cc00

where:

-x specifies hexadecimal output
-M multiple entries may follow
-S specifies the reservation size
-U specifies the upper limit of the reservation

This reserved region can be arbitrarily selected as long as the location is from memory
identified as “System RAM” in the /proc/iomem listing and does not include the kernel
addresses. The regions “Adapter ROM,” “System ROM,” “ACP,” and “reserved” must not
be re-mapped using these commands. Memexact(1) selects the appropriate locations to
reserve based on the contents of /proc/iomem and the command line options presented.

CAUTION

Errors made in these entries, such as overlapping previously
reserved regions (e.g. System ROM, etc.), can cause fatal errors
booting the kernel.

The following example uses decimal address. It is identical in function to the example in
hexadecimal above and produces identical results.

memexact -MS=32M,U=1G
memmap=exactmap memmap=640K@0 memmap=991M@1M memmap=32M$992M
memmap=1047083K@1G memmap=8K#2095667K

Below is the corresponding grub.conf file with these added decimal entries:

default=0
timeout=10
splashimage=(hd0,0)/grub/ccur.xpm.gz
title RedHawk Linux 2.3(Trace=Yes, Debug=No)

root (hd0,0)
kernel /vmlinuz-2.6.9-RedHawk-2.3-trace ro root=/dev/sda2 vmalloc=256M \
memmap=exactmap \
memmap=640K@0 \
memmap=991M@1M \

Real-Time Performance

2-25

memmap=32M$992M \
memmap=1047083K@1G \
memmap=8K#2095667K

Below is a comparison of memory before and after the reservation made in the examples
above. The “after reservation” region at 0x3e000000 marked “reserved” is the newly-
reserved 32 MB region.

The next example illustrates the commands placed in grub.conf to reserve a memory
region between two system RAM regions beyond 4 GB on an x86_64 system. The
/proc/iomem output before this reservation is shown on the next page.

Note that “mm” is an alias for “memmap” and “ex” is an alias for “exactmap.” These
shorter alias names should be used in order to reduce the number of characters required to
set up a reserved area, since there is a limit of approximately 1500 characters per grub
command line.

mm=ex \
mm=0x9fc00@0x0 \
mm=0x400@0x9fc00 \
mm=0x20000$0xe0000 \
mm=0xcfef0000@0x100000 \
mm=0x10000#0xcfff0000 \
mm=0x840000$0xff7c0000 \
mm=512M@0x100000000 \
mm=512M$4608M \
mm=1G@5G

Below is a comparison of memory before and after the reservation made in the example
above. The “after reservation” region at 0x0000000120000000 marked “reserved” is the
newly-reserved region.

/proc/iomem before reservation /proc/iomem after reservation

00000000-0009ffff : System RAM 00000000-0009ffff : System RAM

00000000-00000000 : Crash kernel 00000000-00000000 : Crash kernel

000a0000-000bffff : Video RAM area 000a0000-000bffff : Video RAM area

000c0000-000cefff : Video ROM 000c0000-000cefff : Video ROM

000d0800-000d3fff : Adapter ROM 000d0800-000d3fff : Adapter ROM

000f0000-000fffff : System ROM 000f0000-000fffff : System ROM

00100000-7fe8abff : System RAM 00100000-3dffffff : System RAM

00100000-004f58a5 : Kernel code 00100000-004f58a5 : Kernel code

004f58a6-00698577 : Kernel data 004f58a6-00698577 : Kernel data

7fe8ac00-7fe8cbff : ACPI Non-volatile Storage 3e000000-3fffffff : reserved

7fe8cc00-7fe8ebff : ACPI Tables 40000000-7fe8abff : System RAM

7fe8ec00-7fffffff : reserved 7fe8cc00-7fe8ebff : ACPI Tables
. .
. .

(I/O entries removed from example)

/proc/iomem before reservation /proc/iomem after reservation

0000000000000000-000000000009fbff : System RAM 0000000000000000-000000000009fbff : System RAM

000000000009fc00-000000000009ffff : reserved 000000000009fc00-000000000009ffff : System RAM

00000000000a0000-00000000000bffff : Video RAM area 00000000000a0000-00000000000bffff : Video RAM area

00000000000c0000-00000000000c7fff : Video ROM 00000000000c0000-00000000000c7fff : Video ROM

00000000000c8000-00000000000cbfff : Adapter ROM 00000000000c8000-00000000000cbfff : Adapter ROM

RedHawk Linux User’s Guide

2-26

Shmconfig(1) or shmbind(2) can be used to create a partition at the reserved
physical address. The System V shared memory operations shmop(2) can be used by an
application to gain access to the region.

The following example, based on the first example given in this section on an i386 system,
creates a System V memory partition of 32MB at physical address 0x3e000000 with
unrestricted access and a key of 6602:

usr/bin/shmconfig -s 0x2000000 -p 0x3e000000 -m 0777 6602

This command may be placed in /etc/rc.local to automate the creation of the shared
memory partition. While this example uses a hard coded key of 6602, use of a pathname
such as /dev/MyDevice as a key allows applications to obtain the key to be used for
attachment using the ftok(3) function.

The following code fragment could also be used to dynamically create the shared memory
partition.

.

.
paddr = 0x3e000000 ;
shmkey = ftok(pathname) ;
shmid = shmget (shmkey, sizeof (<shared_region>) ,

SHM_R | SHM_W | IPC_CREAT) ;
shmstat = shmbind (shmid , paddr) ;
pstart = shmat (shmid , NULL , SHM_RND) ;
.
.

The shared memory segments on the system are visible using ipcs(8) (-m option) or
via the /proc/sysvipc/shm file.

cat /proc/sysvipc/shm
key shmid perms size cpid lpid nattch uid gid cuid cgid

atime dtime ctime physaddr
6602 0 777 33554432 4349 0 0 0 0 0 0

0 0 1153750799 3e000000

00000000000f0000-00000000000fffff : System ROM 00000000000f0000-00000000000fffff : System ROM

0000000000100000-00000000d7feffff : System RAM 0000000000100000-00000000cffeffff : System RAM

0000000000100000-00000000005c9521 : Kernel code 0000000000100000-00000000005c9521 : Kernel code

00000000005c9522-0000000000954137 : Kernel data 00000000005c9522-0000000000954137 : Kernel data

00000000d7ff0000-00000000d7ffefff : ACPI Tables 00000000cfff0000-00000000cfffffff : ACPI Tables

00000000d7fff000-00000000d7ffffff : ACPI Non-volatile Storage 00000000ff7c0000-00000000ffffffff : reserved

00000000ff7c0000-00000000ffffffff : reserved 0000000100000000-000000011fffffff : System RAM

0000000100000000-000000017fffffff : System RAM 0000000120000000-000000013fffffff : reserved

. 0000000140000000-000000017fffffff : System RAM

. .

. .

(I/O entries removed from example)

/proc/iomem before reservation /proc/iomem after reservation

Real-Time Performance

2-27

ipcs -m
------ Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x000019ca 0 root 777 33554432 0

Refer to the man pages or Chapter 3 for more information about using these functions and
utilities.

Binding to NUMA Nodes 2

On a system with non-uniform memory access (NUMA), such as an iHawk Opteron
system, it takes longer to access some regions of memory than others. The memory on a
NUMA system is divided into nodes, where a node is defined to be a region of memory
and all CPUs that reside on the same physical bus as the memory region of the NUMA
node. If a program running on this type of system is not NUMA-aware, it can perform
poorly.

By default, pages are allocated from the node where the local CPU (from which the
program is executed) resides, but the task or virtual areas within the task can be specified
to allocate pages from certain nodes for better determinism and control. Refer to
Chapter 10 for information about NUMA.

I/O Throughput on Quad Opteron Systems 2

In a quad Opteron symmetric multiprocessor system, every processor has a unique bank of
memory attached directly to the processor. All memory in the system can be accessed
from any processor via the HyperTransport™, but the memory that is directly attached to a
processor is the memory that will have the fastest access time for that thread of execution
running on that processor. This layout is illustrated in Figure 2-7.

RedHawk Linux User’s Guide

2-28

Figure 2-7 Quad Opteron I/O Throughput Layout

Access to I/O devices in an Opteron system is likewise not completely symmetrical. The
I/O hub and the PCI tunnel are directly attached to a specific node in the system. In
Figure 2-7, the I/O hub is attached to Node 0 and the PCI tunnel is attached to Node 1.
Testing has shown that programmed I/O times are both faster and more deterministic when
the program performing the programmed I/O is running on the node attached to the I/O
bus where the device resides. The effect on I/O performance is especially noticeable when
there is contention for the HyperTransport interconnects because other programs are
performing I/O or non-local memory operations.

This means that if an application demands high speed deterministic programmed I/O, the
program performing such I/O should be bound to run on the processor closest to the I/O
bus where the device resides.

The node that is tied to the I/O bridge can be determined either by looking at system
schematics or by testing.

Understanding Hyper-threading 2

Hyper-threading is a feature of the Intel Pentium Xeon processor in iHawk 860 systems. It
allows for a single physical processor to run multiple threads of software applications
simultaneously. This is achieved by having two sets of architectural state on each
processor while sharing one set of processor execution resources. The architectural state
tracks the flow of a program or thread, and the execution resources are the units on the

Node 2 Node 3

Node 0 Node 1

HyperTransport

I/O Hub
(Disk)

PCI Tunnel
(RCIM)

Real-Time Performance

2-29

processor that do the work: add, multiply, load, etc. Each of the two sets of architectural
state in a hyper-threaded physical CPU can be thought of as a “logical” CPU. The term
“sibling CPU” refers to the other CPU in a pair of logical CPUs that reside on the same
physical CPU.

When scheduling threads, the operating system treats the two logical CPUs on a physical
CPU as if they were separate processors. Commands like ps(1) or shield(1) identify
each logical CPU. This allows multiprocessor-capable software to run unmodified on
twice as many logical processors. While hyper-threading technology does not provide the
level of performance scaling achieved by adding a second physical processor, some
benchmark tests show that parallel applications can experience as much as a 30 percent
gain in performance. See the section “Recommended CPU Configurations” for ideas on
how to best utilize hyper-threading for real-time applications.

The performance gain from hyper-threading occurs because one processor with two
logical CPUs can more efficiently utilize execution resources. During normal program
operation on a non-hyper-threaded CPU, execution resources on the chip often sit idle
awaiting input. Because the two logical CPUs share one set of execution resources, the
thread executing on the second logical CPU can use resources that are otherwise idle with
only one thread executing. For example while one logical CPU is stalled waiting for a
fetch from memory to complete, its sibling can continue processing its instruction stream.
Because the speeds of the processor and the memory bus are very unequal, a processor can
spend a significant portion of its time waiting for data to be delivered from memory. Thus,
for certain parallel applications hyper-threading provides a significant performance
improvement. Another example of parallelism is one logical processor executing a
floating-point operation while the other executes an addition and a load operation. These
operations execute in parallel because they utilize different processor execution units on
the chip.

While hyper-threading will generally provide faster execution for a multi-thread workload,
it can be problematic for real-time applications. This is because of the impact on the
determinism of execution of a thread. Because a hyper-threaded CPU shares the execution
unit of the processor with another thread, the execution unit itself becomes another level of
resource contention when a thread executes on a hyper-threaded CPU. Because the
execution unit will not always be available when a high priority process on a hyper-
threaded CPU attempts to execute an instruction, the amount of time it takes to execute a
code segment on a hyper-threaded CPU is not as predictable as on a non-hyper-threaded
CPU.

The designer of a parallel real-time application should decide whether hyper-threading
makes sense for his application. Will the application benefit from its tasks running in
parallel on a hyper-threaded CPU as compared to running sequentially? If so, the
developer can make measurements to determine how much jitter is introduced into the
execution speeds of important high-priority threads by running them on a hyper-threaded
CPU.

The level of jitter that is acceptable is highly application dependent. If an unacceptable
amount of jitter is introduced into a real-time application because of hyper-threading, then
the affected task should be run on a shielded CPU with its sibling CPU marked down
(idled) via the cpu(1) command. An example of a system with a CPU marked down is
given later in this chapter. It should be noted that certain cross processor interrupts will
still be handled on a downed CPU (see the cpu(1) man page for more information). If
desired, hyper-threading can be disabled on a system-wide basis. See the section “System
Configuration” below for details.

RedHawk Linux User’s Guide

2-30

Hyper-threading technology is complementary to multiprocessing by offering greater
parallelism within each processor in the system, but is not a replacement for dual or
multiprocessing. There are twice as many logical processors available to the system,
however, they are still sharing the same amount of execution resources. So the
performance benefit of another physical processor with its own set of dedicated execution
resources will offer greater performance levels. This can be especially true for applications
that are using shielded CPUs for obtaining a deterministic execution environment.

As mentioned above, each logical CPU maintains a complete set of the architecture state.
The architecture state (which is not shared by the sibling CPUs) consists of general-
purpose registers, control registers, advanced programmable interrupt controller (APIC)
registers and some machine state registers. Logical processors share nearly all other
resources on the physical processor such as caches, execution units, branch predictors,
control logic, and buses. Each logical processor has its own interrupt controller or APIC.
Interrupts sent to a specific logical CPU are handled only by that logical CPU, regardless
of whether hyper-threading is enabled or disabled.

System Configuration 2

The following items affect system-wide hyper-thread availability:

• The system must contain Intel Pentium Xeon processors.

• The kernel must be configured with hyper-threading enabled through the
X86_HT kernel tunable accessible under Processor Type and Features
on the Kernel Configuration GUI. Hyper-threading is enabled by default on
all RedHawk i386 pre-defined kernels.

• Hyper-threading must be enabled in the BIOS to be available for use. Refer
to your hardware documentation to determine which BIOS setting is
involved, if needed.

Hyper-threading can be disabled on a per-CPU basis using the cpu(1) command to mark
one of the siblings down. Refer to the cpu(1) man page for more details.

Note that with hyper-threading enabled, commands like top(1) and run(1) report
twice as many CPUs as were previously present on systems running a version of RedHawk
Linux prior to release 1.3 that did not have hyper-threading support. When hyper-
threading is disabled on a system-wide basis, the logical CPU numbers are equivalent to
the physical CPU numbers.

Recommended CPU Configurations 2

Hyper-threading technology offers the possibility of better performance for parallel
applications. However, because of the manner in which CPU resources are shared between
the logical CPUs on a single physical CPU, different application mixes will have varied
performance results. This is especially true when an application has real-time
requirements requiring deterministic execution times for the application. Therefore, it is
important to test the performance of the application under various CPU configurations to
determine optimal performance. For example, if there are two tasks that could be run in
parallel on a pair of sibling CPUs, be sure to compare the time it takes to execute these
tasks in parallel using both siblings versus the time it takes to execute these tasks serially
with one of the siblings down. This will determine whether these two tasks can take
advantage of the unique kind of parallelism provided by hyper-threading.

Real-Time Performance

2-31

Below are suggested ways of configuring an SMP system that contains hyper-threaded
CPUs for real-time applications. These examples contain hints about configurations that
might work best for applications with various performance characteristics.

Standard Shielded CPU Model 2

This model would be used by applications having very strict requirements for determinism
in program execution. A shielded CPU provides the most deterministic environment for
these types of tasks (see the section “How Shielding Improves Real-Time Performance”
for more information on shielded CPUs). In order to maximize the determinism of a
shielded CPU, hyper-threading on that physical CPU is disabled. This is accomplished by
marking down the shielded CPU’s sibling logical CPU using the cpu(1) command.

In the Standard Shielded CPU Model, the non-shielded CPUs have hyper-threading
enabled. These CPUs are used for a non-critical workload because in general hyper-
threading allows more CPU resources to be applied.

Figure 2-8 illustrates the Standard Shielded CPU Model on a system that has two physical
CPUs (four logical CPUs). In this example, CPU 3 has been taken down and CPU 2 is
shielded from interrupts, processes and hyper-threading. A high priority interrupt and the
program responding to that interrupt would be assigned to CPU 2 for the most
deterministic response to that interrupt.

Figure 2-8 The Standard Shielded CPU Model

The commands to set up this configuration are:

$ shield -a 2
$ cpu -d 3

Shielding with Interrupt Isolation 2

This model is very similar to the Standard Shielded CPU Model. However, in this case all
logical CPUs are used, none are taken down. Like the Standard Shielded CPU Model, a
subset of the logical CPUs is shielded. But rather than taking down the siblings of the
shielded CPUs, those CPUs are also shielded and are dedicated to handling high priority
interrupts that require deterministic interrupt response. This is accomplished by shielding
the sibling CPUs from processes and interrupts and then setting the CPU affinity of a

RedHawk Linux User’s Guide

2-32

particular interrupt to that sibling CPU. Shielding with interrupt isolation is illustrated in
Figure 2-9.

Figure 2-9 Shielding with Interrupt Isolation

The benefit of this approach is that it provides a small amount of parallelism between the
interrupt routine (which runs on CPU 3) and execution of high priority tasks on the sibling
CPU (the program awaiting the interrupt runs on CPU 2). Because the interrupt routine is
the only code executing on CPU 3, this interrupt routine will generally be held in the L1
cache in its entirety, and the code will stay in the cache, providing optimum execution
times for the interrupt routine. There is a small penalty to pay however, because the
interrupt routine must send a cross processor interrupt in order to wake the task that is
awaiting this interrupt on the sibling CPU. This additional overhead has been measured at
less than two microseconds.

Another potential use of using shielding with interrupt isolation is to improve I/O
throughput for a device. Because we are dedicating a CPU to handling a device interrupt,
this interrupt will always complete as quickly as possible when an I/O operation has
completed. This allows the interrupt routine to immediately initiate the next I/O operation,
providing better I/O throughput.

Hyper-thread Shielding 2

This configuration is another variation of the Standard Shielded CPU Model. In this case,
one sibling is shielded while the other sibling is allowed to run general tasks. The shielded
CPU will have its determinism impacted by the activity on its sibling CPU. However, the
advantage is that much more of the CPU power of this physical CPU can be utilized by the
application. Figure 2-10 illustrates a Hyper-thread Shielding configuration.

Real-Time Performance

2-33

Figure 2-10 Hyper-thread Shielding

In this example, CPU 3 is shielded and allowed to run only a high priority interrupt and the
program that responds to that interrupt. CPU 2 is either not shielded and therefore
available for general use or is set up to run a specific set of tasks. The tasks that run on
CPU 2 will not directly impact interrupt response time, because when they disable
preemption or block interrupts there is no effect on the high priority interrupt or task
running on CPU 3. However, at the chip resource level there is contention that will impact
the determinism of execution on CPU 3. The amount of impact is very application
dependent.

Floating-point / Integer Sharing 2

This configuration can be used when the application has some programs that primarily
perform floating-point operations and some programs that primarily perform integer
arithmetic operations. Both siblings of a hyper-threaded CPU are used to run specific
tasks. Programs that are floating-point intensive are assigned to one sibling CPU and
programs that primarily execute integer operations are assigned to the other sibling CPU.
The benefit of this configuration is that floating-point operations and integer operations
use different chip resources. This allows the application to make good use of hyper-thread
style parallelism because there is more parallelism that can be exploited at the chip level. It
should also be noted that applications on the CPU that are only performing integer
operations would see faster context switch times because there won’t be save/restore of the
floating-point registers during the context switch.

Shared Data Cache 2

This configuration can be used when the application is a producer/consumer style of
application. In other words, one process (the consumer) is operating on data that has been
passed from another process (the producer). In this case, the producer and consumer
threads should be assigned to the siblings of a hyper-threaded CPU. Because the two
sibling CPUs share the data cache, it is likely that the data produced by the producer
process is still in the data cache when the consumer process accesses the data that has been
passed from the producer task. Using two sibling CPUs in this manner allows the producer
and consumer tasks to operate in parallel, and the data passed between them is essentially
passed via the high-speed cache memory. This offers significant opportunity for exploiting
hyper-thread style parallelism.

Another potential use of this model is for the process on one sibling CPU to pre-fetch data
into the data cache for a process running on the other sibling on a hyper-threaded CPU.

RedHawk Linux User’s Guide

2-34

Shielded Uniprocessor 2

This configuration is a variation of the Hyper-thread Shielding configuration. The only
difference is that we are applying this technique to a uniprocessor rather than to one
physical CPU in an SMP system. Because a physical CPU now contains two logical
CPUs, a uniprocessor can now be used to create a shielded CPU. In this case, one of the
CPUs is marked shielded while the other CPU is used to run background activity.
Determinism on this type of shielded CPU will not be as solid as using CPU shielding on a
distinct physical CPU, but it will be significantly better than with no shielding at all.

Avoiding a Low Memory State 2

Ensure that your system has adequate physical RAM. Concurrent’s real-time guarantees
assume a properly configured system with adequate RAM for real-time application usage.
In low-memory situations, real-time deadlines may be sacrificed to better ensure system
integrity and maintain proper system behavior. When Linux runs out of memory, it
randomly selects processes to kill in an attempt to free up memory so that other processes
can proceed.

Memory usage can be monitored using a number of tools including /proc/meminfo,
free(1) and vmstat(8).

Known Issues with Linux Determinism 2

The following are issues with standard Linux that are known to have a negative impact on
real-time performance. These actions are generally administrative in nature and should not
be performed while the system is executing a real-time application.

• The hdparm(1) utility is a command line interface for enabling special
parameters for IDE and SCSI disks. This utility is known to disable
interrupts for very lengthy periods of time.

• The blkdev_close(2) interface is used by BootLoaders to write to the
raw block device. This is known to disable interrupts for very lengthy
periods of time.

• Avoid scrolling the frame-buffer (fb) console. This is known to disable
interrupts for very lengthy periods of time.

• When using virtual consoles, don’t switch consoles. This is known to disable
interrupts for very lengthy periods of time.

• Avoid mounting and unmounting CDs and unmounting file systems. These
actions produce long latencies.

• Turn off auto-mount of CDs. This is a polling interface and the periodic poll
introduces long latencies.

• The haldaemon service has been shown to interfere with real-time
performance and is turned off by default. However, it must be running in

Real-Time Performance

2-35

order to burn a file (e.g. iso) onto a CD or DVD from the context menu of the
file. To burn a file onto disc, first start the haldaemon service:

$ service haldaemon start

After the copying process is complete, stop the service:

$ service haldaemon stop

• By default the Linux kernel locks the Big Kernel Lock (BKL) before calling
a device driver’s ioctl() routine. This can cause delays when the
ioctl() routine is called by a real-time process or is called on a shielded
CPU. See the “Device Drivers” chapter for more information on how to
correct this problem.

• Avoid unloading kernel modules. This action creates and destroys a number
of per-CPU kmodule daemons that can add unnecessary jitter on the CPU.

• The IP route cache table, which is flushed periodically by the ksoftirqd
kernel daemon, is sized dynamically based on the amount of available
memory; for example, 128K entries for a system with 4 GB of memory. The
time required for the flush can be problematic if network determinism is at
issue, especially in a single CPU system. To reduce excessive ksoftirqd runs,
the IP route cache table can be set to a fixed size using the grub command
rhash_entries=n, where n is the number of table entries; i.e.,
rhash_entries=4096 for 4K entries.

• There may be possible real-time issues when starting and stopping the X
server while running time-critical applications on shielded CPU(s).
Depending upon the type of graphics cards your system uses, this may result
in numerous cross-processor interrupts that slow performance. If you are
experiencing this, refer to Appendix G for methods to reduce these
interrupts.

• Ensure that DETECT_SOFTLOCKUP is not present in the kernel. This option
interferes with CPU shielding by firing excessive per-CPU daemons on all
CPUs, and with rescheduling variables since holding a rescheduling variable
is erroneously interpreted by the softlockup machinery as a soft lockup.

• Ensure that SCHED_SMT_IDLE is not set in the kernel. This parameter prevents
forcing idle one thread of an SMT CPU pair if it is scheduled to run a
SCHED_OTHER task while the other thread is running a SCHED_RR or
SCHED_FIFO task.

• It is recommended that the mount(1) option noatime be specified in
/etc/fstab to eliminate unnecessary updates to inode access time each
time the file system is accessed.

RedHawk Linux User’s Guide

2-36

3-1

3
Chapter 3Real-Time Interprocess Communication

3
3

This chapter describes RedHawk Linux support for real-time interprocess communication
through POSIX and System V message passing and shared memory facilities.

Appendix A contains example programs that illustrate the use of the POSIX and System V
message queue facilities.

Overview 3

RedHawk Linux provides several mechanisms that allow processes to exchange data.
These mechanisms include message queues, shared memory and semaphores based on the
IEEE Standard 1003.1b-1993 as well as those included in the System V Interprocess
Communication (IPC) package. Message queues and shared memory are discussed in this
chapter; semaphores are discussed in Chapter 5, Interprocess Synchronization.

Message queues allow one or more processes to write messages to be read by one or more
reading processes. Facilities are provided to create, open, query and destroy a message
queue, send and receive messages from a message queue, associate a priority with a
message to be sent, and request asynchronous notification when a message arrives.

POSIX and System V messaging functionality operate independent of each other. The
recommended message-passing mechanism is the POSIX message queue facility because
of its efficiency and portability. The sections “POSIX Message Queues” and “System V
Messages” in this chapter describe these facilities.

Shared memory allows cooperating processes to share data through a common area of
memory. One or more processes can attach a segment of memory and as a consequence
can share whatever data is placed there.

As with messaging, POSIX and System V shared memory functionality operate indepen-
dent of each other. It is recommended that you use a System V shared memory area in an
application in which data placed in shared memory are temporary and do not need to exist
following a reboot of the system. Data in a System V shared memory area are kept only in
memory. No disk file is associated with that memory and therefore no disk traffic is gener-
ated by the sync(2) system call. Also, System V shared memory allows you to bind a
shared memory segment to a section of physical I/O memory. Refer to the section “System
V Shared Memory” for information about this facility.

An alternative to using System V shared memory is to use the mmap(2) system call to
map a portion of the /dev/mem file. For information on the mmap system call, refer to
Chapter 9, “Memory Mapping.” For information on the /dev/mem file, refer to the
mem(4) man page.

POSIX shared memory interfaces are mapped to a disk file in the /var/tmp directory. If
this directory is mounted on a memfs file system, then no extra disk traffic is generated to
flush the shared data during the sync system call. If this directory is mounted on a regular
disk partition, then disk traffic will be generated during the sync system call to keep the

RedHawk Linux User’s Guide

3-2

shared data updated in the mapped disk file. Whether the data that are written to POSIX
shared memory are saved in a file or not, those data do not persist following a reboot of the
system. The POSIX shared memory functionality is described in the “POSIX Shared
Memory” section of this chapter.

POSIX Message Queues 3

An application may consist of multiple cooperating processes, possibly running on
separate processors. These processes may use system-wide POSIX message queues to
efficiently communicate and coordinate their activities.

The primary use of POSIX message queues is for passing data between processes. In
contrast, there is little need for functions that pass data between cooperating threads in the
same process because threads within the same process already share the entire address
space. However, nothing prevents an application from using message queues to pass data
between threads in one or more processes.

Message queues are created and opened using mq_open(3). This function returns a
message queue descriptor (mqd_t), which is used to refer to the open message queue in
later calls. Each message queue is identified by a name of the form /somename. Two
processes can operate on the same queue by passing the same name to mq_open.

Messages a re t rans fe r red to and f rom a queue us ing mq_send(3) and
mq_receive(3). When a process has finished using the queue, it closes it using
mq_close(3), and when the queue is no longer required, it can be deleted using
mq_unlink(3). Queue attributes can be retrieved and (in some cases) modified using
mq_getattr(3) and mq_setattr(3). A process can request asynchronous
notification of the arrival of a message on a previously empty queue using
mq_notify(3).

A message queue descriptor is a reference to an open message queue description (see
open(2)). After a fork(2), a child inherits copies of its parent’s message queue
descriptors, and these descriptors refer to the same open message queue descriptions as the
corresponding descriptors in the parent. Corresponding descriptors in the two processes
share the flags (mq_flags) that are associated with the open message queue description.

Each message has an associated priority, and messages are always delivered to the
receiving process highest priority first.

Message queues are created in a virtual file system. This file system can be mounted using
the following commands:

$ mkdir /dev/mqueue
$ mount -t mqueue none /dev/mqueue

After the file system has been mounted, the message queues on the system can be viewed
and manipulated using the commands usually used for files (e.g., ls(1) and rm(1)).

Support for POSIX message queues is configurable via the POSIX_MQUEUE kernel
configuration parameter. This option is enabled by default. A sample program is provided
in Appendix A.

Real-Time Interprocess Communication

3-3

All applications that call message queue library routines must link in the real-time library,
either statically or dynamically. The following example shows the typical command-line
format:

gcc [options...] file -lrt ...

System V Messages 3

The System V message type of interprocess communication (IPC) allows processes
(executing programs) to communicate through the exchange of data stored in buffers. This
data is transmitted between processes in discrete portions called messages. Processes
using this type of IPC can send and receive messages.

Before a process can send or receive a message, it must have the operating system
generate the necessary software mechanisms to handle these operations. A process does
this using the msgget(2) system call. In doing this, the process becomes the
owner/creator of a message queue and specifies the initial operation permissions for all
processes, including itself. Subsequently, the owner/creator can relinquish ownership or
change the operation permissions using the msgctl(2) system call. However, the
creator remains the creator as long as the facility exists. Other processes with permission
can use msgctl to perform various other control functions.

Processes which have permission and are attempting to send or receive a message can
suspend execution if they are unsuccessful at performing their operation. That is, a process
which is attempting to send a message can wait until it becomes possible to post the
message to the specified message queue; the receiving process isn’t involved (except
indirectly; for example, if the consumer isn’t consuming, the queue space will eventually
be exhausted) and vice versa. A process which specifies that execution is to be suspended
is performing a blocking message operation. A process which does not allow its execution
to be suspended is performing a nonblocking message operation.

RedHawk Linux User’s Guide

3-4

A process performing a blocking message operation can be suspended until one of three
conditions occurs:

• the operation is successful
• the process receives a signal
• the message queue is removed from the system

System calls make these message capabilities available to processes. The calling process
passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs its
function and returns applicable information. Otherwise, -1 is returned to the process, and
errno is set accordingly.

Using Messages 3

Before a message can be sent or received, a uniquely identified message queue and data
structure must be created. The unique identifier is called the message queue identifier
(msqid); it is used to identify or refer to the associated message queue and data structure.
This identifier is accessible by any process in the system, subject to normal access
restrictions.

A message queue's corresponding kernel data structures are used to maintain information
about each message being sent or received. This information, which is used internally by
the system, includes the following for each message:

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message queue,
msqid_ds. This data structure contains the following information related to the message
queue:

• operation permissions data (operation permission structure)

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

NOTE

All C header files discussed in this chapter are located in the
/usr/include subdirectories.

Real-Time Interprocess Communication

3-5

The definition of the associated message queue data structure msqid_ds includes the
members shown in Figure 3-1.

Figure 3-1 Definition of msqid_ds Structure

The C programming language data structure definition for msqid_ds should be obtained
by including the <sys/msg.h> header file, even though this structure is actually defined
in <bits/msq.h>.

The definition of the interprocess communication permissions data structure, ipc_perm,
includes the members shown in Figure 3-2:

Figure 3-2 Definition of ipc_perm Structure

The C programming language data structure definition of ipc_perm should be obtained
by including the <sys/ipc.h> header file, even though the actual definition for this
structure is located in <bits/ipc.h>. Note that <sys/ipc.h> is commonly used for
all IPC facilities.

The msgget(2) system call performs one of two tasks:

• creates a new message queue identifier and creates an associated message
queue and data structure for it

• locates an existing message queue identifier that already has an associated
message queue and data structure

Both tasks require a key argument passed to the msgget system call. If key is not already
in use for an existing message queue identifier, a new identifier is returned with an

struct ipc_perm msg_perm;/* structure describing operation permission */
__time_t msg_stime; /* time of last msgsnd command */
__time_t msg_rtime; /* time of last msgrcv command */
__time_t msg_ctime; /* time of last change */
unsigned long int __msg_cbytes; /* current number of bytes on queue */
msgqnum_t msg_qnum; /* number of messages currently on queue */
msglen_t msg_qbytes;/* max number of bytes allowed on queue */
__pid_t msg_lspid; /* pid of last msgsnd() */
__pid_t msg_lrpid; /* pid of last msgrcv() */

__key_t __key; /* Key. */
__uid_t uid; /* Owner's user ID. */
__gid_t gid; /* Owner's group ID. */
__uid_t cuid; /* Creator's user ID. */
__gid_t cgid; /* Creator's group ID. */
unsigned short int mode; /* Read/write permission. */
unsigned short int __seq; /* Sequence number. */

RedHawk Linux User’s Guide

3-6

associated message queue and data structure created for the key, provided no system
tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), known as the private key
(IPC_PRIVATE). When this key is specified, a new identifier is always returned with an
associated message queue and data structure created for it, unless a system limit for the
maximum number of message queues (MSGMNI) would be exceeded. The ipcs(8)
command will show the key field for the msqid as all zeros.

If a message queue identifier exists for the key specified, the value of the existing
identifier is returned. If you do not want to have an existing message queue identifier
returned, a control command (IPC_EXCL) can be specified (set) in the msgflg argument
passed to the system call (see “The msgget System Call” for details of this system call).

When a message queue is created, the process that calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly. Remember,
ownership can be changed but the creating process always remains the creator. The
message queue creator also determines the initial operation permissions for it.

Once a uniquely identified message queue has been created or an existing one is found,
msgop(2) (message operations) and msgctl(2) (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving messages. The
msgsnd and msgrcv system calls are provided for each of these operations (see “The
msgsnd and msgrcv System Calls” for details of these calls).

The msgctl system call permits you to control the message facility in the following
ways:

• by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

• by changing operation permissions for a message queue (IPC_SET)

• by changing the size (msg_qbytes) of the message queue for a particular
message queue identifier (IPC_SET)

• by removing a particular message queue identifier from the operating
system along with its associated message queue and data structure
(IPC_RMID)

See the section “The msgctl System Call” for details of the msgctl system call.

Refer to Appendix A for a sample program using System V message queues. Additional
sample programs can be found online that illustrate in depth use of each of the System V
system calls. These are referenced within the section in this chapter that explains the
system call.

Real-Time Interprocess Communication

3-7

The msgget System Call 3

msgget(2) creates a new message queue or identifies an existing one.

This section describes the msgget system call. For more detailed information, see the
msgget(2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/msgget.c with extensive comments provided
in README.msgget.txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);

All of the #include files are located in the /usr/include subdirectories of the
operating system.

key_t is defined by a typedef in the <bits/types.h> header file to be an integral
type (this header file is included internally by <sys/types.h>). The integer returned
from this function upon successful completion is the unique message queue identifier,
msqid. (The msqid is discussed in the “Using Messages” section earlier in this chapter.)
Upon failure, the external variable errno is set to indicate the reason for failure and -1 is
returned.

A new msqid with an associated message queue and data structure is created if one of the
following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a msqid associated with it and (msgflg and
IPC_CREAT) is “true” (not zero).

The value of msgflg is a combination of:

• control commands (flags)

• operation permissions

Control commands are predefined constants. The following control commands apply to
the msgget system call and are defined in the <bits/ipc.h> header file, which is
internally included by the <sys/ipc.h> header file:

IPC_CREAT used to create a new segment. If not used, msgget will find the
message queue associated with key, verify access permissions and
ensure the segment is not marked for destruction.

IPC_EXCL used with IPC_CREAT to cause the system call to return an error if a
message queue identifier already exists for the specified key. This is
necessary to prevent the process from thinking it has received a new
(unique) identifier when it has not.

Operation permissions determine the operations that processes are permitted to perform
on the associated message queue. “Read” permission is necessary for receiving messages

RedHawk Linux User’s Guide

3-8

or for determining queue status by means of a msgctl IPC_STAT operation. “Write”
permission is necessary for sending messages.

Table 3-1 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions desired. That is, if “read by user” and “read/write by others” is desired, the
code value would be 00406 (00400 plus 00006).

The msgflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value; for example:

msqid = msgget (key, (IPC_CREAT | 0400));
msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

The system call will always be attempted. Exceeding the MSGMNI limit always causes a
failure. The MSGMNI limit value determines the system-wide number of unique message
queues that may be in use at any given time. This limit value is a fixed define value
located in <linux/msg.h>.

A list of message queue limit values may be obtained with the ipcs(8) command by
using the following options. See the man page for further details.

ipcs -q -l

Refer to the msgget(2) man page for specific associated data structure initialization as
well as the specific error conditions.

Table 3-1 Message Queue Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Write by User 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

Real-Time Interprocess Communication

3-9

The msgctl System Call 3

msgctl(2) is used to perform control operations on message queues.

This section describes the msgctl(2) system call. For more detailed information, see
the msgctl(2)man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/msgctl.c with extensive comments provided
in README.msgctl.txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (int msqid, int cmd, struct msqid_ds *buf);

All of the #include files are located in the /usr/include subdirectories of the
operating system.

The msgctl system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The msqid variable must be a valid, non-negative integer value that has already been
created using the msgget system call.

The cmd argument can be any one of the following values:

IPC_STAT returns the status information contained in the associated data
structure for the specified message queue identifier, and places it in
the data structure pointed to by the buf pointer in the user memory
area. Read permission is required.

IPC_SET writes the effective user and group identification, operation
permissions, and the number of bytes for the message queue to the
values contained in the data structure pointed to by the buf pointer in
the user memory area

IPC_RMID removes the specified message queue along with its associated data
structure

NOTE

The msgctl(2) service also supports the IPC_INFO, MSG_STAT

and MSG_INFO commands. However, since these commands are
only intended for use by the ipcs(8) utility, these commands
are not discussed.

RedHawk Linux User’s Guide

3-10

To perform an IPC_SET or IPC_RMID control command, a process must meet one or more of
the following conditions:

• have an effective user id of OWNER

• have an effective user id of CREATOR

• be the super-user
• have the CAP_SYS_ADMIN capability

Additionally, when performing an IPC_SET control command that increases the size of the
msg_qbytes value beyond the value of MSGMNB (defined in <linux/msg.h>), the
process must have the CAP_SYS_RESOURCE capability.

Note that a message queue can also be removed by using the ipcrm(8) command by
specifying the -q msgid or the -Q msgkey option, where msgid specifies the identifier for
the message queue and msgkey specifies the key associated with the message queue. To
use this command, the user must have the same effective user id or capability that is
required for performing an IPC_RMID control command. See the ipcrm(8) man page for
additional information on the use of this command.

The msgsnd and msgrcv System Calls 3

The message operations system calls, msgsnd and msgrcv, are used to send and receive
messages.

This section describes the msgsnd and msgrcv system calls. For more detailed
information, see the msgop(2) man page. A program illustrating use of these calls can
be found at /usr/share/doc/ccur/examples/msgop.c with extensive
comments provided in README.msgop.txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (int msqid, void *msgp, size_t msgsz, int msgflg);

int msgrcv (int msqid, void *msgp, size_t msgsz, long msgtyp,
int msgflg);

All of the #include files are located in the /usr/include subdirectories of the
operating system.

Sending a Message 3

The msgsnd system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The msqid argument must be a valid, non-negative integer value that has already been
created using the msgget system call.

Real-Time Interprocess Communication

3-11

The msgp argument is a pointer to a structure in the user memory area that contains the
type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data structure pointed
to by the msgp argument. This is the length of the message. The maximum size of this
array is determined by the MSGMAX define, which is located in <linux/msg.h>.

The msgflg argument allows the blocking message operation to be performed if the
IPC_NOWAIT flag is not set ((msgflg & IPC_NOWAIT)= = 0); the operation blocks if the total
number of bytes allowed on the specified message queue are in use (msg_qbytes). If the
IPC_NOWAIT flag is set, the system call fails and returns -1.

Receiving a Message 3

When the msgrcv system call is successful, it returns the number of bytes received; when
unsuccessful it returns -1.

The msqid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that will receive the
message type and the message text.

The msgsz argument specifies the length of the message to be received. If its value is less
than the message in the array, an error can be returned if desired (see the msgflg argument
below).

The msgtyp argument is used to pick the first message on the message queue of the
particular type specified:

• If msgtyp is equal to zero, the first message on the queue is received.

• If msgtyp is greater than zero and the MSG_EXCEPT msgflg is not set, the
first message of the same type is received.

• If msgtyp is greater than zero and the MSG_EXCEPT msgflg is set, the first
message on the message queue that is not equal to msgtyp is received.

• If msgtyp is less than zero, the lowest message type that is less than or equal
to the absolute value of msgtyp is received.

The msgflg argument allows the blocking message operation to be performed if the
IPC_NOWAIT flag is not set ((msgflg & IPC_NOWAIT) == 0); the operation blocks if the total
number of bytes allowed on the specified message queue are in use (msg_qbytes). If the
IPC_NOWAIT flag is set, the system call fails and returns a -1. And, as mentioned in the
previous paragraph, when the MSG_EXCEPT flag is set in the msgflg argument and the
msgtyp argument is greater than 0, the first message in the queue that has a message type
that is different from the msgtyp argument is received.

If the IPC_NOWAIT flag is set, the system call fails immediately when there is not a message
of the desired type on the queue. msgflg can also specify that the system call fail if the
message is longer than the size to be received; this is done by not setting the
MSG_NOERROR flag in the msgflg argument ((msgflg & MSG_NOERROR)) == 0). If the
MSG_NOERROR flag is set, the message is truncated to the length specified by the msgsz
argument of msgrcv.

RedHawk Linux User’s Guide

3-12

POSIX Shared Memory 3

The POSIX shared memory interfaces allow cooperating processes to share data and more
efficiently communicate through the use of a shared memory object. A shared memory
object is defined as a named region of storage that is independent of the file system and
can be mapped to the address space of one or more processes to allow them to share the
associated memory.

The interfaces are briefly described as follows:

shm_open create a shared memory object and establish a connection
between the shared memory object and a file descriptor

shm_unlink remove the name of a shared memory object

Procedures for using the shm_open routine are presented in “Using the shm_open
Routine.” Procedures for using the shm_unlink routine are presented in “Using the
shm_unlink Routine.”

In order for cooperating processes to use these interfaces to share data, one process
completes the following steps. Note that the order in which the steps are presented is
typical, but it is not the only order that you can use.

STEP 1: Create a shared memory object and establish a connection
between that object and a file descriptor by invoking the
shm_open library routine, specifying a unique name, and
setting the O_CREAT and the O_RDWR bit to open the shared
memory object for reading and writing.

STEP 2: Set the size of the shared memory object by invoking the
ftruncate(2) system call and specifying the file
descriptor obtained in Step 1. This system call requires that
the memory object be open for writing. For additional
information on ftruncate(2), refer to the corresponding
man page.

STEP 3: Map a portion of the process’s virtual address space to the
shared memory object by invoking the mmap(2) system
call and specifying the file descriptor obtained in Step 1 (see
the “Memory Mapping” chapter for an explanation of this
system call).

To use the shared memory object, any other cooperating process completes the following
steps. Note that the order in which the steps are presented is typical, but it is not the only
order that you can use.

STEP 1: Establish a connection between the shared memory object
created by the first process and a file descriptor by invoking
the shm_open library routine and specifying the same
name that was used to create the object.

STEP 2: If the size of the shared memory object is not known, obtain
the size of the shared memory object by invoking the
fstat(2) system call and specifying the file descriptor

Real-Time Interprocess Communication

3-13

obtained in Step 1 and a pointer to a stat structure (this
structure is defined in <sys/stat.h>). The size of the
object is returned in the st_size field of the stat
structure. Access permissions associated with the object are
returned in the st_modes field. For additional information
on fstat(2), refer to the corresponding system manual
page.

STEP 3: Map a portion of the process’s virtual address space to the
shared memory object by invoking mmap and specifying the
file descriptor obtained in Step 1 (see the “Memory
Mapping” chapter for an explanation of this system call).

Using the shm_open Routine 3

The shm_open(3) routine allows the calling process to create a POSIX shared memory
object and establish a connection between that object and a file descriptor. A process
subsequently uses the file descriptor that is returned by shm_open to refer to the shared
memory object on calls toftruncate(2), fstat(2), and mmap(2). After a process
creates a shared memory object, other processes can establish a connection between the
shared memory object and a file descriptor by invoking shm_open and specifying the
same name.

After a shared memory object is created, all data in the shared memory object remain until
every process removes the mapping between its address space and the shared memory
object by invoking munmap(2), exec(2), or exit(2) and one process removes the
name of the shared memory object by invoking shm_unlink(3). Neither the shared
memory object nor its name is valid after your system is rebooted.

Synopsis

#include <sys/types.h>
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

The arguments are defined as follows:

name a pointer to a null–terminated string that specifies the name of the
shared memory object. Note that this string may contain a maximum of
255 characters. It may contain a leading slash (/) character, but it may
not contain embedded slash characters. Note that this name is not a part
of the file system; neither a leading slash character nor the current work-
ing directory affects interpretation of it (/shared_obj and
shared_obj are interpreted as the same name). If you wish to write
code that can be ported to any system that supports POSIX interfaces,
however, it is recommended that name begin with a slash character.

oflag an integer value that sets one or more of the following bits:

Note that O_RDONLY and O_RDWR are mutually exclusive bits; one of
them must be set.

RedHawk Linux User’s Guide

3-14

O_RDONLY causes the shared memory object to be opened for
reading only

O_RDWR causes the shared memory object to be opened for
reading and writing. Note that the process that creates
the shared memory object must open it for writing in
order to be ab le to se t i t s s i ze by invoking
ftruncate(2).

O_CREAT causes the shared memory object specified by name to
be created if it does not exist. The memory object’s
user ID is set to the effective user ID of the calling
process; its group ID is set to the effective group ID of
the calling process; and its permission bits are set as
specified by the mode argument.

If the shared memory object specified by name exists,
setting O_CREAT has no effect except as noted for
O_EXCL.

O_EXCL causes shm_open to fail if O_CREAT is set and the
shared memory object specified by name exists. If
O_CREAT is not set, this bit is ignored.

O_TRUNC causes the length of the shared memory object
specified by name to be truncated to zero if the object
exists and has been opened for reading and writing.
The owner and the mode of the specified shared
memory object are unchanged.

mode an integer value that sets the permission bits of the shared memory
object specified by name with the following exception: bits set in the
process’s file mode creation mask are cleared in the shared memory
object’s mode (refer to the umask(2) and chmod(2) man pages for
additional information). If bits other than the permission bits are set in
mode, they are ignored. A process specifies the mode argument only
when it is creating a shared memory object.

If the call is successful, shm_open creates a shared memory object of size zero and
returns a file descriptor that is the lowest file descriptor not open for the calling process.
The FD_CLOEXEC file descriptor flag is set for the new file descriptor; this flag indicates
that the file descriptor identifying the shared memory object will be closed upon execution
of the exec(2) system call (refer to the fcntl(2) system manual page for additional
information).

A return value of –1 indicates that an error has occurred; errno is set to indicate the
error. Refer to the shm_open(3) man page for a listing of the types of errors that may
occur.

Real-Time Interprocess Communication

3-15

Using the shm_unlink Routine 3

The shm_unlink(3) routine allows the calling process to remove the name of a shared
memory object. If one or more processes have a portion of their address space mapped to
the shared memory object at the time of the call, the name is removed before
shm_unlink returns, but data in the shared memory object are not removed until the last
process removes its mapping to the object. The mapping is removed if a process invokes
munmap(2), exec(2), or exit(2).

Synopsis

#include <sys/types.h>
#include <sys/mman.h>

int shm_unlink(const char *name);

The argument is defined as follows:

name a pointer to a null–terminated string that specifies the shared memory
object name that is to be removed. Note that this string may contain a
maximum of 255 characters. It may contain a leading slash (/) character,
but it may not contain embedded slash characters. Note that this name is
not a part of the file system; neither a leading slash character nor the
current working directory affects interpretation of it (/shared_obj
and shared_obj are interpreted as the same name). If you wish to
write code that can be ported to any system that supports POSIX inter-
faces, however, it is recommended that name begin with a slash charac-
ter.

A return value of 0 indicates that the call to shm_unlink has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the shm_unlink(3) man page for a listing of the types of errors that may occur. If an
error occurs, the call to shm_unlink does not change the named shared memory object.

System V Shared Memory 3

Shared memory allows two or more processes to share memory and, consequently, the
data contained therein. This is done by allowing processes to set up access to a common
virtual memory address space. This sharing occurs on a segment basis, which is memory
management hardware-dependent.

A process initially creates a shared memory segment using the shmget(2) system call.
Upon creation, this process sets the overall operation permissions for the shared memory
segment, sets its size in bytes, and can specify that the shared memory segment is for
reference only (read-only) upon attachment.

If the memory segment is not specified to be for reference only, all other processes with
appropriate operation permissions can read from or write to the memory segment.

The shared memory segments on the system are visible via the /proc/sysvipc/shm
file and ipcs(8) using the -m option.

RedHawk Linux User’s Guide

3-16

Shared memory operations, shmat(2) (shared memory attach) and shmdt(2) (shared
memory detach), can be performed on a shared memory segment. shmat allows
processes to associate themselves with the shared memory segment if they have
permission. They can then read or write as allowed. shmdt allows processes to
disassociate themselves from a shared memory segment. Therefore, they lose the ability to
read from or write to the shared memory segment.

The original owner/creator of a shared memory segment can relinquish ownership to
another process using the shmctl(2) system call. However, the creating process
remains the creator until the facility is removed or the system is reinitialized. Other
processes with permission can perform other functions on the shared memory segment
using the shmctl system call.

A process can bind a shared memory segment to a section of I/O memory by using the
shmbind(2) system call. See the section “Binding a Shared Memory Segment to I/O
Space” for details of the shmbind system call.

To facilitate use of shared memory by cooperating programs, a utility called
shmdefine(1) is provided. Procedures for using this utility are explained in “The
shmdefine Utility”. To assist you in creating a shared memory segment and binding it to a
section of physical memory, a utility called shmconfig(1) is also provided. Procedures
for using this utility are explained in “The shmconfig Command”.

Using Shared Memory 3

Sharing memory between processes occurs on a virtual segment basis. There is only one
copy of each individual shared memory segment existing in the operating system at any
time.

Before sharing of memory can be realized, a uniquely identified shared memory segment
and data structure must be created. The unique identifier created is called the shared
memory identifier (shmid); it is used to identify or refer to the associated data structure.
This identifier is available to any process in the system, subject to normal access
restrictions.

The data structure includes the following for each shared memory segment:

• Operation permissions

• Segment size

• Segment descriptor (for internal system use only)

• PID performing last operation

• PID of creator

• Current number of processes attached

• Last attach time

• Last detach time

• Last change time

Real-Time Interprocess Communication

3-17

The definition of the associated shared memory segment data structure shmid_ds
includes the members shown in Figure 3-3.

Figure 3-3 Definition of shmid_ds Structure

The C programming language data structure definition for the shared memory segment
data structure shmid_ds is located in the <sys/shm.h> header file.

Note that the shm_perm member of this structure uses ipc_perm as a template. The
ipc_perm data structure is the same for all IPC facilities; it is located in the
<sys/ipc.h> header file.

The shmget(2) system call performs two tasks:

• It gets a new shared memory identifier and creates an associated shared
memory segment data structure.

• It returns an existing shared memory identifier that already has an associ-
ated shared memory segment data structure.

The task performed is determined by the value of the key argument passed to the shmget
system call.

The key can be an integer that you select, or it can be an integer that you have generated by
using the ftok subroutine. The ftok subroutine generates a key that is based upon a path
name and identifier that you supply. By using ftok, you can obtain a unique key and
control users’ access to the key by limiting access to the file associated with the path
name. If you wish to ensure that a key can be used only by cooperating processes, it is
recommended that you use ftok. This subroutine is specified as follows:

key_t ftok(path_name, id)

The path_name argument specifies a pointer to the path name of an existing file that
should be accessible to the calling process. The id argument specifies a character that
uniquely identifies a group of cooperating processes. Ftok returns a key that is based on
the specified path_name and id. Additional information on the use of ftok is provided in
the ftok(3) man page.

If the key is not already in use for an existing shared memory identifier and the IPC_CREAT

flag is set in shmflg, a new identifier is returned with an associated shared memory
segment data structure created for it provided no system-tunable parameters would be
exceeded.

struct shmid_ds {
struct ipc_perm shm_perm; /* operation perms */
int shm_segsz; /* size of segment (bytes) */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */
unsigned short shm_cpid; /* pid of creator */
unsigned short shm_lpid; /* pid of last operator */
short shm_nattch; /* no. of current attaches */

};

RedHawk Linux User’s Guide

3-18

There is also a provision for specifying a key of value zero which is known as the private
key (IPC_PRIVATE); when specified, a new shmid is always returned with an associated
shared memory segment data structure created for it unless a system-tunable parameter
would be exceeded. The ipcs(8) command will show the key field for the shmid as all
zeros.

If a shmid exists for the key specified, the value of the existing shmid is returned. If it is not
desired to have an existing shmid returned, a control command (IPC_EXCL) can be
specified (set) in the shmflg argument passed to the system call.

When a new shared memory segment is created, the process that calls shmget becomes
the owner/creator, and the associated data structure is initialized accordingly. Remember,
ownership can be changed, but the creating process always remains the creator (see “The
shmctl System Call”). The creator of the shared memory segment also determines the
initial operation permissions for it.

Once a uniquely identified shared memory segment data structure is created, shmbind,
shmctl, and shared memory operations (shmop) can be used.

The shmbind system call allows you to bind a shared memory segment to a section of
I/O memory. See the section “Binding a Shared Memory Segment to I/O Space” for
details of the shmbind system call.

The shmctl(2) system call permits you to control the shared memory facility in the
following ways:

• by retrieving the data structure associated with a shared memory segment
(IPC_STAT)

• by changing operation permissions for a shared memory segment (IPC_SET)

• by removing a particular shared memory segment from the operating sys-
tem along with its associated shared memory segment data structure
(IPC_RMID)

• by locking a shared memory segment in memory (SHM_LOCK)

• by unlocking a shared memory segment (SHM_UNLOCK)

See the section “The shmctl System Call” for details of the shmctl system call.

Shared memory segment operations (shmop) consist of attaching and detaching shared
memory segments. shmat and shmdt are provided for each of these operations (see “The
shmat and shmdt System Calls” for details of the shmat and shmdt system calls).

It is important to note that the shmdefine(1) and shmconfig(1) utilities also allow
you to create shared memory segments. See the section “Shared Memory Utilities” for
information about these utilities.

Real-Time Interprocess Communication

3-19

The shmget System Call 3

shmget(2) creates a new shared memory segment or identifies an existing one.

This section describes the shmget system call. For more detailed information, see the
shmget(2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/shmget.c with extensive comments provided
in README.shmget.txt.

Synopsis

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key_t key, size_t size, int shmflg);

All of these #include files are located in the /usr/include subdirectories of the
operating system.

key_t is defined by a typedef in the <bits/sys/types.h> header file to be an
integral type (this header file is included internally by <sys/types.h>). The integer
returned from this system call upon successful completion is the shared memory segment
identifier (shmid) associated to the value of key. (The shmid is discussed in the section
“Using Shared Memory” earlier in this chapter.) Upon failure, the external variable
errno is set to indicate the reason for failure, and -1 is returned.

A new shmid with an associated shared memory data structure is created if one of the
following conditions is true:

• key is equal to IPC_PRIVATE.

• key does not already have a shmid associated with it and (shmflg and
IPC_CREAT) is “true” (not zero).

The value of shmflg is a combination of:

• control commands (flags)

• operation permissions

Control commands are predefined constants. The following control commands apply to
the shmget system call and are defined in the <bits/ipc.h> header file, which is
internally included by the <sys/ipc.h> header file:

IPC_CREAT used to create a new segment. If not used, shmget will find the
segment associated with key, verify access permissions and ensure the
segment is not marked for destruction.

IPC_EXCL used with IPC_CREAT to cause the system call to return an error if a
shared memory identifier already exists for the specified key. This is
necessary to prevent the process from thinking it has received a new
(unique) identifier when it has not.

RedHawk Linux User’s Guide

3-20

Operation permissions define the read/write attributes for users, groups, and others.
Table 3-2 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions desired. That is, if “read by user” and “read/write by others” is desired, the
code value would be 00406 (00400 plus 00006). The SHM_R and SHM_W constants located
in <sys/shm.h> can be used to define read and write permission for the owner.

The shmflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value; for example:

shmid = shmget (key, size, (IPC_CREAT | 0400));
shmid = shmget (key, size, (IPC_CREAT | IPC_EXCL | 0400));

The following values are defined in <sys/shm.h>. Exceeding these values always
causes a failure.

SHMMNI determines the maximum number of unique shared memory segments
(shmids) that can be in use at any given time

SHMMIN determines the minimum shared memory segment size

SHMMAX determines the maximum shared memory segment size

SHMALL determines the maximum shared memory pages

A list of shared memory limit values can be obtained with the ipcs(8) command by
using the following options. See the man page for further details.

ipcs -m -l

Refer to the shmget(2) man page for specific associated data structure initialization as
well as specific error conditions.

Table 3-2 Shared Memory Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Write by User 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

Real-Time Interprocess Communication

3-21

The shmctl System Call 3

shmctl(2) is used to perform control operations on shared memory segments.

This section describes the shmctl system call. For more detailed information, see the
shmctl(2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/shmctl.c with extensive comments provided
in README.shmctl.txt.

Synopsis

#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

All of these #include files are located in the /usr/include subdirectories of the
operating system.

The shmctl system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The shmid variable must be a valid, non-negative integer value that has already been
created using the shmget system call.

The cmd argument can be any one of following values:

IPC_STAT returns the status information contained in the associated data
structure for the specified shmid and places it in the data structure
pointed to by the buf pointer in the user memory area. Read
permission is required.

IPC_SET sets the effective user and group identification and operation
permissions for the specified shmid

IPC_RMID removes the specified shmid along with its associated data
structure

SHM_LOCK prevents swapping of a shared memory segment. The user must
fault in any pages that are required to be present after locking is
enabled. The process must have superuser or CAP_IPC_LOCK

privileges to perform this operation.

SHM_UNLOCK unlocks the shared memory segment from memory. The process
must have superuser or CAP_IPC_LOCK privileges to perform this
operation.

NOTE

The shmctl(2) service also supports the IPC_INFO, SHM_STAT

and SHM_INFO commands. However, since these commands are
only intended for use by the ipcs(8) utility, these commands
are not discussed.

RedHawk Linux User’s Guide

3-22

To perform an IPC_SET or IPC_RMID control command, a process must meet one or more of
the following conditions:

• have an effective user id of OWNER

• have an effective user id of CREATOR

• be the super-user

• have the CAP_SYS_ADMIN capability

Note that a shared memory segment can also be removed by using the ipcrm(1)
command and specifying the -m shmid or the -M shmkey option, where shmid specifies the
identifier for the shared memory segment and shmkey specifies the key associated with the
segment. To use this command, a process must have the same privileges as those required
for performing an IPC_RMID control command. See the ipcrm(1) man page for
additional information on the use of this command.

Binding a Shared Memory Segment to I/O Space 3

RedHawk Linux allows you to bind a shared memory segment to a region of I/O space.
The procedures for doing so are as follows.

1. Create a shared memory segment (shmget(2)).

2. Obtain the physical address of the I/O region using the PCI BAR scan
routines.

3. Bind the segment to I/O memory (shmbind(2)).

4. Attach the segment to the user’s virtual address space (shmat(2)).

At command level, the shmconfig(1) utility can be used to create a shared memory
segment and bind it to a physical memory region. Refer to the section “Shared Memory
Utilities” for details.

You can attach a shared memory segment to and detach it from the user’s virtual address
space by using the shmat and shmdt system calls. Procedures for using these system
calls are explained in “The shmat and shmdt System Calls.”

Using shmget 3

The shmget(2) system call is invoked first to create a shared memory segment. Upon
successful completion of the call, a shared memory segment of size bytes is created, and
an identifier for the segment is returned.

When binding to I/O space, the size of the region can be obtained using the PCI BAR scan
routines (see bar_scan_open(3)).

Complete information on the use of shmget is provided in “The shmget System Call.”

Real-Time Interprocess Communication

3-23

Using shmbind 3

After you have created a shared memory segment, you can bind it to a region of I/O space
by using the shmbind(2) system call. Note that to use this call, you must be root or have
the CAP_SYS_RAWIO privilege.

shmbind must be called before the first process attaches to the segment. Thereafter,
attaching to the segment via shmat() effectively creates a mapping in the calling
process’ virtual address space to the region of the physical address space.

The region of I/O space is defined by its starting address and the size of the shared
memory segment to which it is being bound. The starting address must be aligned with a
page boundary. The size of the shared memory segment has been established by
specifying the size argument on the call to shmget. If you have created a shared memory
segment of 1024 bytes, for example, and you wish to bind it to a section of physical
memory that starts at location 0x2000000 (hexadecimal representation), the bound section
of physical memory will include memory locations 0x2000000 through 0x2000BFF.

Be aware that the physical address for a device may change due to hardware changes in
the system. To reliably reference a device, the physical address should be obtained using
the PCI BAR scan routines; refer to the bar_scan_open(3) man page.

The specifications required for making the call to shmbind are as follows:

int shmbind(int shmid, unsigned long paddr)

Arguments are defined as follows:

shmid the identifier for the shared memory segment that you wish to bind to a
section of physical memory

paddr the starting physical address of the section of memory to which you
wish to bind the specified shared memory segment

The shmat and shmdt System Calls 3

The shared memory operations system calls, shmat and shmdt, are used to attach and
detach shared memory segments to/from the address space of the calling process.

This section describes the shmat and shmdt system calls. For more detailed information,
see the shmop(2) man page. A program illustrating use of these calls can be found at
/usr/share/doc/ccur/examples/shmop.c with extensive comments provided
in README.shmop.txt.

Synopsis

#include <sys/types.h>
#include <sys/shm.h>

void *shmat (int shmid, const void *shmaddr, int shmflg);

int shmdt (const void *shmaddr);

All of these #include files are located in the /usr/include subdirectories of the
operating system.

RedHawk Linux User’s Guide

3-24

Attaching a Shared Memory Segment 3

The shmat system call attaches the shared memory segment identified by shmid to the
address space of the calling process. It returns a character pointer value. Upon successful
completion, this value will be the address in memory where the process is attached to the
shared memory segment; when unsuccessful, the value will be -1.

The shmid argument must be a valid, non-negative, integer value. It must have been
created previously using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the shmat system
call. If it is zero, the operating system selects the address where the shared memory
segment will be attached. If it is user-supplied, the address must be a valid page-aligned
address within the program’s address space. The following illustrates some typical address
ranges:

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

Allowing the operating system to select addresses improves portability.

The shmflg argument is used to pass the SHM_RND (round down) and SHM_RDONLY (read
only) flags to the shmat system call.

Detaching Shared Memory Segments 3

The shmdt system call detaches the shared memory segment located at the address
specified by shmaddr from the address space of the calling process. It returns an integer
value, which is zero for successful completion or -1 otherwise.

Real-Time Interprocess Communication

3-25

Shared Memory Utilities 3

Redhawk Linux provides two utilities that facilitate use of shared memory segments. The
shmdefine(1) utility allows you to create one or more shared memory segments that
are to be used by cooperating programs. The shmconfig(1) command allows you to
create a shared memory segment and bind it to a section of physical memory. These
utilities are discussed in the sections that follow.

The shmdefine Utility 3

The shmdefine utility is designed to facilitate the use of shared memory by a set of
cooperating programs. Although you may have a number of programs that will cooperate
in using one or more shared memory segments, it is necessary to invoke the utility only
once. Because shmdefine produces object files that must be linked to the source object
file, you must invoke it prior to linking.

shmdefine currently operates with the GNU C, Fortran and Ada compilers (gcc, g77
GNAT) for programs that execute on RedHawk Linux systems.

Refer to the Quick Reference for shmdefine (publication number 0898010) and the
shmdefine(1) man page for details on using this utility.

The shmconfig Command 3

The shmconfig(1) command assists in creating a shared memory segment associated
with a certain key and optionally binding it to a particular section of I/O memory.

The command syntax is:

/usr/bin/shmconfig -i DEVSTR
/usr/bin/shmconfig -b BARSTR [-s SIZE] [-g GROUP] [-m MODE] [-u USER]

{key | -t FNAME}
/usr/bin/shmconfig -s SIZE [-p ADDR] [-g GROUP] [-m MODE] [-u USER]

{key | -t FNAME}

For information about assigning NUMA memory policies to shared memory areas, refer to
Chapter 10 or the shmconfig(1) man page.

Options are described in Table 3-3.

RedHawk Linux User’s Guide

3-26

Table 3-3 Options to the shmconfig(1) Command

Option Description

--info=DEVSTR, -i DEVSTR Prints information about each memory region on each
device matching DEVSTR, which consists of:

vendor_id:device_id
Helpful when using --bind. See --bind for
information on DEVSTR.

--bind=BARSTR, -b BARSTR Identifies an I/O region in memory to be bound to the
shared segment. BARSTR consists of:

vendor_id:device_id:bar_no[:dev_no]

vendor_id and device_id identify the hardware
device; usually expressed as two hex values separated
by a colon (e.g., 8086:100f). Can be obtained from
the vendor’s manual, /usr/share/hwdata/
pci.ids or lspci -ns. Requires a “0x” base
prefix when specifying these IDs; e.g.,
0x8086:0x100f. See “Examples” below.

bar_no identifies the memory region to be bound.
Use -i option to obtain this value (output displays
“Region bar_no: Memory at ...”). Only the memory
regions can be bound.

dev_no is optional and needed only to differentiate
between multiple boards with matching vendor and
device IDs. Use -i option to obtain this value (output
displays “Logical device: dev_no:”).

The user must have the CAP_SYS_RAWIO privilege to
use this option.

--size=SIZE, -s SIZE Specifies the size of the segment in bytes. Not
required for --bind, where the default is the
complete memory region.

--physical=ADDR, -p ADDR Specifies ADDR as the starting address of the section
of physical I/O memory to which the segment is to be
bound. This option is being deprecated; use --bind.
The user must have the CAP_SYS_RAWIO privilege to
use this option.

--user=USER, -u USER Specifies the login name of the owner of the shared
memory segment.

--group=GROUP, -g GROUP Specifies the name of the group to which group
access to the segment is applicable.

--mode=MODE, -m MODE Specifies mode as the set of permissions governing
access to the shared memory segment. You must use
the octal method to specify the permissions.

--help, -h Describes available options and usage.

--version, -v Prints out current version of the command.

Real-Time Interprocess Communication

3-27

The /proc and /sys file systems must be mounted in order to use this command.

It is important to note that the size of a segment as specified by the -s argument must
match the size of the data that will be placed there. If shmdefine is being used, the size
of the segment must match the size of the variables that are declared to be a part of the
shared segment. Specifying a larger size will work. (For information on shmdefine, see
“The shmdefine Utility.”)

It is recommended that you specify the -u, -g, and -m options to identify the user and
group associated with the segment and to set the permissions controlling access to it. If not
specified, the default user ID and group ID of the segment are those of the owner; the
default mode is 0644.

The key argument represents a user-chosen identifier for a shared memory segment. This
identifier can be either an integer or a standard path name that refers to an existing file.
When a pathname is supplied, an ftok(key,0) will be used as the key parameter for the
shmget(2) call.

--tmpfs=FNAME / -t FNAME can be used to specify a tmpfs filesystem filename instead
of a key. The -u, -g and -m options can be used to set or change the file attributes of this
segment.

When shmconfig is executed, an internal data structure and shared memory segment are
created for the specified key; if the -p option is used, the shared memory segment is
bound to a contiguous section of I/O memory.

To access the shared memory segment that has been created by shmconfig, processes
must first call shmget(2) to obtain the identifier for the segment. This identifier is
required by other system calls for manipulating shared memory segments. The
specification for shmget is:

int shmget(key, size, 0)

The value of key is determined by the value of key specified with shmconfig. If the
value of key was an integer, that integer must be specified as key on the call to shmget. If
the value of key was a path name, you must first call the ftok subroutine to obtain an
integer value based on the path name to specify as key on the call to shmget. It is
important to note that the value of the id argument on the call to ftok must be zero
because shmconfig calls ftok with an id of zero when it converts the path name to a
key. The value of size must be equal to the number of bytes specified by the -s argument
to shmconfig. A value of 0 is specified as the flag argument because the shared memory
segment has already been created.

For complete information about shmget, see “The shmget System Call.” For assistance
in using ftok, see “Using Shared Memory” and the ftok(3) man page. When creating
areas of mapped memory to be treated as global system resources, you may find it helpful
to invoke shmconfig by adding a line to the shmconfig script in the /etc/init.d
directory. Doing so allows you to reserve the IPC key before noncooperating processes
have an opportunity to use it, and it enables you to establish the binding between the
shared memory segment and physical memory before cooperating processes need to use
the segment. Add a line similar to the following example:

/usr/bin/shmconfig -p 0xf00000 -s 0x10000 -u root -g sys -m 0666 key

RedHawk Linux User’s Guide

3-28

Examples

In this example, a physical memory region on the RCIM is identified using lspci(8)
and bound to a shared memory region. Note that you must be root to use lspci. If you
don’t have root privileges you can view /usr/share/hwdata/ pci.ids and search
for the device name (RCIM); id values are listed to the left of the vendor/device
description. When two or more device ids are listed for the same device, use shmconfig
-i on each device_id listed to determine which one to use.

1. Find the bus:slot.func identifier for the RCIM board:

lspci -v | grep -i rcim
0d:06.0 System peripheral: Concurrent Computer Corp RCIM II
Realtime Clock ...

2. Use the rcim identifier to get the vendor_id:device_id numbers:

lspci -ns 0d:06.0
0d:06.0 Class 0880: 1542:9260 (rev 01)

3. Find the memory regions for this device. Note that lspci prints the
vendor_id:device_id values in hex format but without a 0x prefix
(1542:9260), however shmconfig requires a base identifier
(0x1542:0x9260).

shmconfig -i 0x1542:0x9260
Region 0: Memory at f8d04000 (non-prefetchable) [size=256]

 /proc/bus/pci0/bus13/dev6/fn0/bar0
Region 1: I/O ports at 7c00 [size=256]

 /proc/bus/pci0/bus13/dev6/fn0/bar1
Region 2: Memory at f8d00000 (non-prefetchable) [size=16384]

 /proc/bus/pci0/bus13/dev6/fn0/bar2

4. Bind to rcim memory region #2:

shmconfig -b 0x1542:0x9260:2 -m 0644 -u me -g mygroup 42

5. Verify the IPC shared memory regions on the system. Note that physaddr
represents the physical address we have bound and matches the address
reported by the shmconfig -i command in step 3 above.

cat /proc/sysvipc/shm
key shmid perms size cpid lpid nattch uid

gid cuid cgid atime dtime ctime physaddr
 42 0 644 16384 1734 0 0 5388

100 0 0 0 0 1087227538 f8d00000

4-1

4
Chapter 4Process Scheduling

4
2
4

This chapter provides an overview of process scheduling on RedHawk Linux systems. It
explains how the process scheduler decides which process to execute next and describes
POSIX scheduling policies and priorities. It explains the procedures for using the program
interfaces and commands that support process scheduling and discusses performance
issues.

Overview 4

In the RedHawk Linux OS, the schedulable entity is always a process. Scheduling
priorities and scheduling policies are attributes of processes. The system scheduler
determines when processes run. It maintains priorities based on configuration parameters,
process behavior and user requests; it uses these priorities as well as the CPU affinity to
assign processes to a CPU.

The scheduler offers three different scheduling policies, one for normal non-critical
processes (SCHED_OTHER), and two fixed-priority policies for real-time applications
(SCHED_FIFO and SCHED_RR). These policies are explained in detail in the section
“Scheduling Policies” on page 4-3.

By default, the scheduler uses the SCHED_OTHER time-sharing scheduling policy. For
processes in the SCHED_OTHER policy, the scheduler manipulates the priority of runnable
processes dynamically in an attempt to provide good response time to interactive
processes and good throughput to CPU-intensive processes. .

Fixed-priority scheduling allows users to set static priorities on a per-process basis. The
scheduler never modifies the priority of a process that uses one of the fixed priority
scheduling policies. The highest real-time fixed-priority process always gets the CPU as
soon as it is runnable, even if other processes are runnable. An application can therefore
specify the exact order in which processes run by setting process priority accordingly.

For system environments in which real-time performance is not required, the default
scheduler configuration works well, and no fixed-priority processes are needed. However,
for real-time applications or applications with strict timing constraints, fixed-priority
processes are the only way to guarantee that the critical application's requirements are met.
When certain programs require very deterministic response times, fixed priority
scheduling policies should be used and tasks that require the most deterministic response
should be assigned the most favorable priorities.

A set of system calls based on IEEE Standard 1003.1b provides direct access to a process’
scheduling policy and priority. Included in the set are system calls that allow processes to
obtain or set a process’ scheduling policy and priority; obtain the minimum and maximum
priorities associated with a particular scheduling policy; and obtain the time quantum
associated with a process scheduled under the round robin (SCHED_RR) scheduling policy.
You may alter the scheduling policy and priority for a process at the command level by

RedHawk Linux User’s Guide

4-2

using the run(1) command. The system calls and the run command are detailed later in
this chapter along with procedures and hints for effective use.

How the Process Scheduler Works 4

Figure 4-1 illustrates how the scheduler operates.

Figure 4-1 The Scheduler

When a process is created, it inherits its scheduling parameters, including scheduling
policy and a priority within that policy. Under the default configuration, a process begins
as a time-sharing process scheduled with the SCHED_OTHER policy. In order for a process
to be scheduled under a fixed-priority policy, a user-request must be made via system calls
or the run(1) command.

When the user sets the priority of a process, he is setting the “user priority.” This is also
the priority that will be reported by the sched_getparam(2) call when a user retrieves
t h e c u r r e n t p r i o r i t y. A p o r t ab l e a p p l i c a t i o n s h o u l d u s e t h e
sched_get_priority_min() and sched_get_priority_max() interfaces to
determine the range of valid priorities for a particular scheduling policy. A user priority
value (sched_priority) is assigned to each process. SCHED_OTHER processes can only
be assigned a user priority of 0. SCHED_FIFO and SCHED_RR processes have a user priority
in the range 1 to 99.

The scheduler converts scheduling policy-specific priorities into global priorities. The
global priority is the scheduling policy value used internally by the kernel. The scheduler
maintains a list of runnable processes for each possible global priority value. There are 40
global scheduling priorities associated with the SCHED_OTHER scheduling policy; there are
99 global scheduling priorities associated with the fixed priority scheduling policies
(SCHED_RR and SCHED_FIFO). The scheduler looks for the non-empty list with the highest
global priority and selects the process at the head of this list for execution on the current

Global

Priority

Highest First

Scheduling

Order

Scheduler

Policies

Process

Queues

Policy-Specific

Priorities

Fixed

Priorities

Fixed Priority

Processes

•

•

•

•
•
•

Time-Sharing

LastLowest

Processes

Time-Sharing
Priorities

 User
Priority

99

 1

 0
 .
 .
 .
 .
 .

 0

 .
 .
 .
 .

99

100

1

139

SCHED_FIFO
and

SCHED_RR

SCHED_OTHER

Process Scheduling

4-3

CPU. The scheduling policy determines for each process where it will be inserted into the
list of processes with equal user priority and the process’ relative position in this list when
processes in the list are blocked or made runnable.

As long as a fixed-priority process is ready-to-run for a particular CPU, no time-sharing
process will run on that CPU.

Once the scheduler assigns a process to the CPU, the process runs until it uses up its time
quantum, sleeps, blocks or is preempted by a higher-priority process.

Note that the priorities displayed by ps(1) and top(1) are internally computed values
and only indirectly reflect the priority set by the user.

Scheduling Policies 4

POSIX defines three types of scheduling policies that control the way a process is
scheduled:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy

SCHED_RR round-robin (RR) scheduling policy

SCHED_OTHER default time-sharing scheduling policy

First-In-First-Out Scheduling (SCHED_FIFO) 4

SCHED_FIFO can only be used with user priorities higher than 0. That means when a
SCHED_FIFO process becomes runnable, it will always immediately preempt any currently
running SCHED_OTHER process. SCHED_FIFO is a simple scheduling algorithm without time
slicing. For processes scheduled under the SCHED_FIFO policy, the following rules are
applied: A SCHED_FIFO process that has been preempted by another process of higher
priority will stay at the head of the list for its priority and will resume execution as soon as
all processes of higher priority are blocked again. When a SCHED_FIFO process becomes
runnable, i t will be inserted at the end of the l ist for its priority. A call to
sched_setscheduler(2) or sched_setparam(2) will put the SCHED_FIFO

process identified by pid at the end of the list if it was runnable. A process calling
sched_yield(2) will be put at the end of its priority list. No other events will move a
process scheduled under the SCHED_FIFO policy in the wait list of runnable processes with
equal user priority. A SCHED_FIFO process runs until either it is blocked by an I/O request,
it is preempted by a higher priority process, or it calls sched_yield.

RedHawk Linux User’s Guide

4-4

Round-Robin Scheduling (SCHED_RR) 4

SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for
SCHED_FIFO also applies to SCHED_RR, except that each process is only allowed to run for a
maximum time quantum. If a SCHED_RR process has been running for a time period equal
to or longer than the time quantum, it will be put at the end of the list for its priority. A
SCHED_RR process that has been preempted by a higher priority process and subsequently
resumes execution as a running process will complete the unexpired portion of its round
robin t ime quantum. The length of the t ime quantum can be re t r ieved by
sched_rr_get_interval(2). The length of the time quantum is affected by the nice
value associated with a process scheduled under the SCHED_RR scheduling policy. Higher
nice values are assigned larger time quantums.

Time-Sharing Scheduling (SCHED_OTHER) 4

SCHED_OTHER can only be used at user priority 0. SCHED_OTHER is the default universal
time-sharing scheduler policy that is intended for all processes that do not require special
user priority real-time mechanisms. The process to run is chosen from the user priority 0
list based on a dynamic priority that is determined only inside this list. The dynamic
priority is based on the nice level (set by the nice(2) or setpriority(2) system
call) and increased for each time quantum the process is ready to run, but denied to run by
the scheduler. This ensures fair progress among all SCHED_OTHER processes. Other factors,
such as the number of times a process voluntarily blocks itself by performing an I/O
operation, also come into consideration.

Procedures for Enhanced Performance 4

How to Set Priorities 4

The following code segment will place the current process into the SCHED_RR fixed-
priority scheduling policy at a fixed priority of 60. See the section “Process Scheduling
Interfaces” later in this chapter for information about the POSIX scheduling routines.

#include <sched.h>
...
struct sched_param sparms;

sparms.sched_priority = 60;
if (sched_setscheduler(0, SCHED_RR, &sparms) < 0)
{

perror("sched_setsched");
exit(1);

}

Process Scheduling

4-5

Interrupt Routines 4

Processes scheduled in one of the fixed-priority scheduling policies will be assigned a
higher priority than the processing associated with softirqs and tasklets. These interrupt
routines perform work on behalf of interrupt routines that have executed on a given CPU.
The real interrupt routine runs at a hardware interrupt level and preempts all activity on a
CPU (including processes scheduled under one of the fixed-priority scheduling policies).
Device driver writers under Linux are encouraged to perform the minimum amount of
work required to interact with a device to make the device believe that the interrupt has
been handled. The device driver can then raise one of the interrupt mechanisms to handle
the remainder of the work associated with the device interrupt routine. Because fixed-
priority processes run at a priority above these interrupt routines, this interrupt architecture
allows fixed-priority processes to experience the minimum amount of jitter possible from
interrupt routines. For more information about interrupt routines in device drivers, see the
“Device Drivers” chapter.

SCHED_FIFO vs SCHED_RR 4

The two fixed priority scheduling policies are very similar in their nature, and under most
conditions they will behave in an identical manner. It is important to remember that while
SCHED_RR has a time quantum associated with the process, when that time quantum
expires the process will only yield the CPU if there currently is a ready-to-run process of
equal priority in one of the fixed priority scheduling policies. If there is no ready-to-run
process of equal priority, the scheduler will determine that the original SCHED_RR process
is still the highest priority process ready to run on this CPU and the same process will
again be selected for execution.

This means that the only time there is a difference between processes scheduled under
SCHED_FIFO and SCHED_RR is when there are multiple processes running under one of the
fixed-priority scheduling policies scheduled at the exact same scheduling priority. In this
case, SCHED_RR will allow these processes to share a CPU according to the time quantum
that has been assigned to the process. Note that a process’ time quantum is affected by the
nice(2) system call. Processes with higher nice values will be assigned a larger time
quantum. A process’ time quantum can also be changed via the run(1) command (see
“The run Command” later in this chapter for details).

Fixed Priority Processes Locking Up a CPU 4

A non-blocking endless loop in a process scheduled under the SCHED_FIFO and SCHED_RR

scheduling policies will block all processes with lower priority indefinitely. As this
scenario can starve the CPU of other processes completely, precautions should be taken to
avoid this.

During software development, a programmer can break such an endless loop by keeping
available on the console a shell scheduled under a higher user priority than the tested
application. This will allow an emergency kill of tested real-time applications that do not
block or terminate as expected. As SCHED_FIFO and SCHED_RR processes can preempt
other processes forever, only root processes or processes with the CAP_SYS_NICE capability
are allowed to activate these policies.

RedHawk Linux User’s Guide

4-6

Memory Locking 4

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping, use
the mlockall(2), munlockall(2), mlock(2) and munlock(2) system calls to
lock all or a portion of a process’ virtual address space in physical memory.

CPU Affinity and Shielded Processors 4

Each process in the system has a CPU affinity mask. The CPU affinity mask determines
on which CPUs the process is allowed to execute. When a CPU is shielded from
processes, that CPU will only run processes that have explicitly set their CPU affinity to a
set of CPUs that only includes shielded CPUs. Utilizing these techniques adds additional
control to where and how a process executes. See the “Real-Time Performance” chapter of
this guide for more information.

Process Scheduling Interfaces 4

A set of system calls based on IEEE Standard 1003.1b provides direct access to a process’
scheduling policy and priority. You may alter the scheduling policy and priority for a
process at the command level by using the run(1) command. The system calls are
detailed below. The run command is detailed on page 4-13.

POSIX Scheduling Routines 4

The sections that follow explain the procedures for using the POSIX scheduling system
calls. These system calls are briefly described as follows:

Scheduling Policy:

sched_setscheduler set a process’ scheduling policy and priority

sched_getscheduler obtain a process’ scheduling policy

Scheduling Priority:

sched_setparam change a process’ scheduling priority

sched_getparam obtain a process’ scheduling priority

Relinquish CPU:

sched_yield relinquish the CPU

Process Scheduling

4-7

Low/High Priority:

sched_get_priority_min obtain the lowest priority associated with a
scheduling policy

sched_get_priority_max obtain the highest priority associated with a
scheduling policy

Round-Robin Policy:

sched_rr_get_interval obtain the time quantum associated with a process
scheduled under the SCHED_RR scheduling policy

The sched_setscheduler Routine 4

The sched_setscheduler(2) system call allows you to set the scheduling policy
and the associated parameters for the process.

It is important to note that to use the sched_setscheduler call to (1) change a
process’ scheduling policy to the SCHED_FIFO or the SCHED_RR policy or (2) change the
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, one of the
following conditions must be met:

• The calling process must have root capability.

• The effective user ID (uid) of the calling process must match the effective
user ID of the target process (the process for which the scheduling policy
and priority are being set), or the calling process must have superuser or
CAP_SYS_NICE capability.

Synopsis

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);

 struct sched_param {
 ...
 int sched_priority;
 ...
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the
scheduling policy and priority are being set. To specify the current process, set
the value of pid to zero.

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy

SCHED_RR round-robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

RedHawk Linux User’s Guide

4-8

p a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of
priorities defined for the scheduler class associated with the specified policy.
You can determine the range of priorities associated with that policy by
invoking one of the following system calls: sched_get_priority_min
or sched_get_priority_max (for an explanation of these system calls,
see page 4-11).

If the scheduling policy and priority of the specified process are successfully set, the
sched_setscheduler system call returns the process’ previous scheduling policy. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched_setscheduler(2) man page for a listing of the types of errors
that may occur. If an error occurs, the process’ scheduling policy and priority are not
changed.

It is important to note that when you change a process’ scheduling policy, you also change
its time quantum to the default time quantum that is defined for the scheduler associated
with the new policy and the priority. You can change the time quantum for a process
scheduled under the SCHED_RR scheduling policy at the command level by using the
run(1) command (see p. 4-13 for information on this command).

The sched_getscheduler Routine 4

The sched_getscheduler(2) system call allows you to obtain the scheduling
policy for a specified process. Scheduling policies are defined in the file <sched.h> as
follows:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy

SCHED_RR round-robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

Synopsis

#include <sched.h>

int sched_getscheduler(pid_t pid);

The argument is defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling policy. To specify the current process, set the value of
pid to zero.

If the call is successful, sched_getscheduler returns the scheduling policy of the
specified process. A return value of -1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sched_getscheduler(2) man page for a listing of
the types of errors that may occur.

Process Scheduling

4-9

The sched_setparam Routine 4

The sched_setparam(2) system call allows you to set the scheduling parameters
associated with the scheduling policy of a specified process.

It is important to note that to use the sched_setparam call to change the scheduling
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, one of the
following conditions must be met:

• The calling process must have the root capability.

• The effective user ID (euid) of the calling process must match the effective
user ID of the target process (the process for which the scheduling policy
and priority are being set), or the calling process must have superuser or
CAP_SYS_NICE capability.

Synopsis

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *p);

struct sched_param {
 ...
 int sched_priority;
 ...
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the
scheduling priority is being changed. To specify the current process, set the
value of pid to zero.

p a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of
priorities associated with the process’ current scheduling policy. High
numbers represent more favorable priorities and scheduling.

Yo u c a n o b t a i n a p r o ce s s ’ s c h e d u l i n g p o l i cy b y i nvo k i n g t h e
sched_getscheduler(2) system call (see p. 4-7 for an explanation of this system
call). You can determine the range of priorities associated with that policy by invoking the
sched_get_priority_min(2) and sched_get_priority_max(2) system
calls (see page 4-11 for explanations of these system calls).

A return value of 0 indicates that the scheduling priority of the specified process has been
successfully changed. A return value of -1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sched_setparam(2) man page for a listing of
the types of errors that may occur. If an error occurs, the process’ scheduling priority is
not changed.

RedHawk Linux User’s Guide

4-10

The sched_getparam Routine 4

The sched_getparam(2) system call allows you to obtain the scheduling parameters
of a specified process.

Synopsis

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *p);

struct sched_param {
 ...
 int sched_priority;
 ...
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling priority. To specify the current process, set the value of
pid to zero.

p a pointer to a structure to which the scheduling priority of the process
identified by pid will be returned.

A return value of 0 indicates that the call to sched_getparam has been successful. The
scheduling priority of the specified process is returned in the structure to which p points. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched_getparam(2) man page for a listing of the types of errors that
may occur.

The sched_yield Routine 4

The sched_yield(2) system call allows the calling process to relinquish the CPU
until it again becomes the highest priority process that is ready to run. Note that a call to
sched_yield is effective only if a process whose priority is equal to that of the calling
process is ready to run. This system call cannot be used to allow a process whose priority
is lower than that of the calling process to execute.

Synopsis

#include <sched.h>

int sched_yield(void);

A return value of 0 indicates that the call to sched_yield has been successful. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error.

Process Scheduling

4-11

The sched_get_priority_min Routine 4

The sched_get_priority_min(2) system call allows you to obtain the lowest
(least favorable) priority associated with a specified scheduling policy.

Synopsis

#include <sched.h>

int sched_get_priority_min(int policy);

The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. The value returned by sched_get_priority_max
will be greater than the value returned by sched_get_priority_min.

RedHawk Linux allows the user priority value range 1 to 99 for SCHED_FIFO and
SCHED_RR and the priority 0 for SCHED_OTHER.

If the call is successful, sched_get_priority_min returns the lowest priority
associated with the specified scheduling policy. A return value of -1 indicates that an error
has occurred; errno is set to indicate the error. Refer to the man page for
sched_get_priority_max(2) to obtain a listing of the errors that may occur.

The sched_get_priority_max Routine 4

The sched_get_priority_max(2) system call allows you to obtain the highest
(most favorable) priority associated with a specified scheduling policy.

Synopsis

#include <sched.h>

int sched_get_priority_max(int policy);

The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. The value returned by sched_get_priority_max
will be greater than the value returned by sched_get_priority_min.

RedHawk Linux User’s Guide

4-12

RedHawk Linux allows the user priority value range 1 to 99 for SCHED_FIFO and
SCHED_RR and the priority 0 for SCHED_OTHER.

If the call is successful, sched_get_priority_max returns the highest priority
associated with the specified scheduling policy. A return value of -1 indicates that an error
has occurred; errno is set to indicate the error. For a listing of the types of errors that
may occur, refer to the sched_get_priority_max(2) man page.

The sched_rr_get_interval Routine 4

The sched_rr_get_interval(2) system call allows you to obtain the time
quantum for a process that is scheduled under the SCHED_RR scheduling policy. The time
quantum is the fixed period of time for which the kernel allocates the CPU to a process.
When the process to which the CPU has been allocated has been running for its time
quantum, a scheduling decision is made. If another process of the same priority is ready to
run, that process will be scheduled. If not, the other process will continue to run.

Synopsis

include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *tp);

struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the time quantum. To specify the current process, set the value of pid to
zero.

tp a pointer to a timespec structure to which the round robin time quantum of the
process identified by pid will be returned. The identified process should be
running under the SCHED_RR scheduling policy.

A return value of 0 indicates that the call to sched_rr_get_interval has been
successful. The time quantum of the specified process is returned in the structure to which
tp points. A return value of -1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the sched_rr_get_interval(2) man page for a listing of the
types of errors that may occur.

Process Scheduling

4-13

The run Command 4

The run(1) command can be used to control process scheduler attributes and CPU
affinity. The command syntax is:

run [OPTIONS] {COMMAND [ARGS] | PROCESS/THREAD_SPECIFIER}

The run command executes the specified command in the environment described by the
list of options and exits with the command's exit value. If a specifier is given, run
modifies the environment of the set of processes/threads selected by the specifier. The
specifiers are defined below. A command may not be combined with a specifier on the
same command line invocation.

The run command allows you to run a program under a specified POSIX scheduling
policy and at a specified priority (see p. 4-3 for a complete explanation of POSIX
scheduling policies). It also allows you to set the time quantum for a program scheduled
under the SCHED_RR policy.

To set a program’s scheduling policy and priority, invoke the run command from the
shell, and specify either the --policy=policy or –s policy option and the
--priority=priority or -P priority option. Valid keywords for policy are:

SCHED_FIFO or fifo for first-in-first-out scheduling

SCHED_RR or rr for round robin scheduling

SCHED_OTHER or other for timeshare scheduling

SCHED_BATCH or batch for longer running less interactive jobs

SCHED_IDLE or idle for execution when CPU would otherwise be idle

The value of priority must be an integer value that is valid for the specified scheduling
policy (or the current scheduling policy if the -s option is not used). Higher numerical
values represent more favorable scheduling priorities.

To set the time quantum for a program being scheduled under the SCHED_RR scheduling
policy, also specify the --quantum=quantum or -q quantum option. quantum is
specified as a nice value between -20 and 19 inclusive, with -20 being the longest slice of
time and 19 being the shortest, or as a millisecond value corresponding to a nice value.
--quantum=list displays the nice values and their equivalent millisecond values.

To apply the SCHED_RESET_ON_FORK attribute when setting the scheduling policy, use the
--resetonfork or -r option. When this option is used with the --policy option,
and the policy is either SCHED_FIFO or SCHED_RR, then children subsequently created by
the specified process(es) or command will not inherit the parent's real-time scheduling
policy; they will instead be assigned to the SCHED_OTHER scheduling policy. Also, when
the --resetonfork option is used, child processes will be assigned a nice value of 0 if
the parent process's nice value is less than 0, regardless of the parent's scheduling policy.
The --resetonfork option is only valid when used with the --policy option.

You can set the CPU affinity using the --bias=list or -b list option. list is a comma-
separated list of logical CPU numbers or ranges, for example: “0,2-4,6”. list may also be
specified as the string “active” or “boot” to specify all active processors or the boot
processor, respectively. The CAP_SYS_NICE capability is required to add additional CPUs
to an affinity.

RedHawk Linux User’s Guide

4-14

The --negate or -N option negates the CPU bias list. A bias list option must also be
specified when the negate option is specified. The bias used will contain all CPUs on the
system except those specified in the bias list.

The --copies=count or -c count option enables the user to run the specified number of
identical copies of the command.

Other options are available for displaying information and running the command in the
background. Options for setting NUMA memory policies are documented in Chapter 10.
See the run(1) man page for more information.

Process Scheduling

4-15

PROCESS/THREAD_SPECIFIER

This parameter is used to specify the processes or threads to be acted upon. Only one of
the following may be specified. Multiple comma separated values can be specified for all
lists and ranges are allowed where appropriate.

--all, -a Specify all existing processes and threads.

--pid=list, -p list Specify a list of existing PIDs to modify. All scheduler operations
are specific to the complete set of processes listed, including all
sub-threads.

--tid=list, -t list Specify a list of existing TIDs to modify. All scheduler operations
are specific to only the listed threads and not unspecified sibling
threads in the process. -l list can be used for PowerMAX compati-
bility.

--group=list, -g list Specify a list of process groups to modify; all existing processes
in the process groups listed will be modified.

--user=list, -u list Specify a list of users to modify; all existing processes owned by
the users listed will be modified. Each user in the list may either
be a valid numeric user ID or character login ID.

--name=list, -n list Specify a list of existing process names to modify.

Examples

1. The following command runs make(1) in the background on any of
CPUs 0-3 under the default SCHED_OTHER scheduling policy with default
priority.

run --bias=0-3 make &

2. The following command runs date(1) with a priority of 10 in the
SCHED_RR (i.e. Round Robin) scheduling policy.

run -s SCHED_RR -P 10 date

3. The following command changes the scheduling priority of process ID 987
to level 32.

run --priority=32 -p 987

4. The following command moves all processes in process group 1456 to
CPU 3.

run -b 3 -g 1456

5. The following command sets all processes whose name is “pilot” to run in
the SCHED_FIFO scheduling policy with a priority of 21.

run -s fifo -P 21 -n pilot

Refer to the run(1) man page for additional information.

RedHawk Linux User’s Guide

4-16

5-1

5
Chapter 5Interprocess Synchronization

5
3
5

This chapter describes the tools that RedHawk Linux provides to meet a variety of
interprocess synchronization needs. All of the interfaces described here provide the means
for cooperating processes to synchronize access to shared resources.

The most efficient mechanism for synchronizing access to shared data by multiple
programs in a multiprocessor system is by using spin locks. However, it is not safe to use
a spin lock from user level without also using a rescheduling variable to protect against
preemption while holding a spin lock.

If portability is a larger concern than efficiency, then POSIX counting semaphores and
mutexes are the next best choice for synchronizing access to shared data. System V
semaphores are also provided, which allow processes to communicate through the
exchange of semaphore values. Since many applications require the use of more than one
semaphore, this facility allows you to create sets or arrays of semaphores.

Problems associated with synchronizing cooperating processes’ access to data in shared
memory are discussed as well as the tools that have been developed by Concurrent to
provide solutions to these problems.

Understanding Interprocess Synchronization 5

Multiprocess real-time applications require synchronization mechanisms that allow
cooperating processes to coordinate access to the same set of resources—for example, a
number of I/O buffers, units of a hardware device, or a critical section of code.

RedHawk Linux supplies a variety of interprocess synchronization tools. These include
tools for controlling a process’ vulnerability to rescheduling, serializing processes’ access
to critical sections with busy-wait mutual exclusion mechanisms, semaphores for mutual
exclusion to critical sections and coordinating interaction among processes.

Application programs that consist of two or more processes sharing portions of their
virtual address space through use of shared memory need to be able to coordinate their
access to shared memory efficiently. Two fundamental forms of synchronization are used
to coordinate processes’ access to shared memory: mutual exclusion and condition
synchronization. Mutual exclusion mechanisms serialize cooperating processes’ access to
shared resources. Condition synchronization mechanisms delay a process’ progress until
an application-defined condition is met.

Mutual exclusion mechanisms ensure that only one of the cooperating processes can be
executing in a critical section at a time. Three types of mechanisms are typically used to
provide mutual exclusion—those that involve busy waiting, those that involve sleepy
waiting, and those that involve a combination of the two when a process attempts to enter
a locked critical section. Busy-wait mechanisms, also known as spin locks, use a locking
technique that obtains a lock using a hardware supported test and set operation. If a
process attempts to obtain a busy-wait lock that is currently in a locked state, the locking

RedHawk Linux User’s Guide

5-2

process continues to retry the test and set operation until the process that currently holds
the lock has cleared it and the test and set operation succeeds. In contrast, a sleepy-wait
mechanism, such as a semaphore, will put a process to sleep if it attempts to obtain a lock
that is currently in a locked state.

Busy-wait mechanisms are highly efficient when most attempts to obtain the lock will
succeed. This is because a simple test and set operation is all that is required to obtain a
busy-wait lock. Busy-wait mechanisms are appropriate for protecting resources when the
amount of time that the lock is held is short. There are two reasons for this: 1) when lock
hold times are short, it is likely that a locking process will find the lock in an unlocked
state and therefore the overhead of the lock mechanism will also be minimal and 2) when
the lock hold time is short, the delay in obtaining the lock is also expected to be short. It is
important when using busy-wait mutual exclusion that delays in obtaining a lock be kept
short, since the busy-wait mechanism is going to waste CPU resources while waiting for a
lock to become unlocked. As a general rule, if the lock hold times are all less than the time
it takes to execute two context switches, then a busy-wait mechanism is appropriate. Tools
for implementing busy-wait mutual exclusion are explained in the section “Busy-Wait
Mutual Exclusion.”

Critical sections are often very short. To keep the cost of synchronization comparatively
small, synchronizing operations performed on entry/exit to/from a critical section cannot
enter the kernel. It is undesirable for the execution overhead associated with entering and
leaving the critical section to be longer than the length of the critical section itself.

In order for spin locks to be used as an effective mutual exclusion tool, the expected time
that a process will spin waiting for another process to release the lock must be not only
brief but also predictable. Such unpredictable events as page faults, signals, and the
preemption of a process holding the lock cause the real elapsed time in a critical section to
significantly exceed the expected execution time. At best, these unexpected delays inside
a critical section may cause other CPUs to delay longer than anticipated; at worst, they
may cause deadlock. Locking pages in memory can be accomplished during program
initialization so as not to have an impact on the time to enter a critical section. The
mechanisms for rescheduling control provide a low-overhead means of controlling signals
and process preemption. Tools for providing rescheduling control are described in
“Rescheduling Control.”

Semaphores are another mechanism for providing mutual exclusion. Semaphores are a
form of sleepy-wait mutual exclusion because a process that attempts to lock a semaphore
that is already locked will be blocked or put to sleep. POSIX counting semaphores provide
a portable means of controlling access to shared resources. A counting semaphore is an
object that has an integer value and a limited set of operations defined for it. Counting
semaphores provide a simple interface that is implemented to achieve the fastest
performance for lock and unlock operations. POSIX counting semaphores are described in
the section “POSIX Counting Semaphores.” System V semaphores are a complex data
type that allows many additional functions (for example the ability to find out how many
waiters there are on a semaphore or the ability to operate on a set of semaphores). System
V semaphores are described in the section “System V Semaphores.”

Mutexes allow multiple threads in a program to share the same resource but not
simultaneously. A mutex is created and any thread that needs the resource must lock the
mutex from other threads while using the resource and unlock it when it is no longer
needed. POSIX mutexes have two features, individually configurable on a per-mutex
basis, which are especially useful for real-time applications: robust mutexes and priority
inheritance mutexes. Robustness gives applications a chance to recover if one of the
application’s threads dies while holding a mutex. Applications using a priority inheritance

Interprocess Synchronization

5-3

mutex can find the priority of the mutex’s owner boosted from time to time. These are
explained in the section “Extensions to POSIX Mutexes.”

Rescheduling Control 5

Multiprocess, real-time applications frequently wish to defer CPU rescheduling for brief
periods of time. To use busy-wait mutual exclusion effectively, spinlock hold times must
be small and predictable.

CPU rescheduling and signal handling are major sources of unpredictability. A process
would like to make itself immune to rescheduling when it acquires a spinlock, and
vulnerable again when it releases the lock. A system call could raise the caller’s priority to
the highest in the system, but the overhead of doing so is prohibitive.

A rescheduling variable provides control for rescheduling and signal handling. You
register the variable in your application and manipulate it directly from your application.
While rescheduling is disabled, quantum expirations, preemptions, and certain types of
signals are held.

A system call and a set of macros accommodate use of the rescheduling variable. In the
sections that follow, the variable, the system call, and the macros are described, and the
procedures for using them are explained.

The primitives described here provide low overhead control of CPU rescheduling and
signal delivery.

Understanding Rescheduling Variables 5

A rescheduling variable is a data structure, defined in <sys/rescntl.h> that controls a
single process’ vulnerability to rescheduling:

struct resched_var {
 pid_t rv_pid;

...
 volatile int rv_nlocks;

 ...
};

It is allocated on a per-process or per-thread basis by the application, not by the kernel.
The resched_cntl(2) system call registers the variable, and the kernel examines the
variable before making rescheduling decisions.

Use of the resched_cntl system call is explained in “Using resched_cntl System
Call.” A set of rescheduling control macros enables you to manipulate the variable from
your application. Use of these macros is explained in “Using the Rescheduling Control
Macros.”

Each thread must register its own rescheduling variable. A rescheduling variable is valid
only for the process or thread that registers the location of the rescheduling variable.
Under the current implementation, it is recommended that rescheduling variables be used

RedHawk Linux User’s Guide

5-4

only by single-threaded processes. Forking in a multi-threaded program that uses
rescheduling variables should be avoided.

Using resched_cntl System Call 5

The resched_cntl system call enables you to perform a variety of rescheduling control
operations. These include registering and initializing a rescheduling variable, obtaining its
location, and setting a limit on the length of time that rescheduling can be deferred.

Synopsis

#include <sys/rescntl.h>

int resched_cntl(cmd, arg)

int cmd;
char *arg;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

cmd the operation to be performed

arg a pointer to an argument whose value depends upon the value of cmd

cmd can be one of the following. The values of arg that are associated with each command
are indicated.

RESCHED_SET_VARIABLE
This command registers the caller’s rescheduling variable. The
rescheduling variable must be located in a process private page,
which excludes pages in shared memory segments or files that
have been mapped MAP_SHARED.

Two threads of the same process should not register the same
address as their rescheduling variable. If arg is not NULL, the
struct resched_var it points to is initialized and locked into
physical memory. If arg is NULL, the caller is disassociated from
any existing variable, and the appropriate pages are unlocked.

After a fork(2), the child process inherits rescheduling
variables from its parent. The rv_pid field of the child’s
rescheduling variable is updated to the process ID of the child.

If a child process has inherited a rescheduling variable and it, in
turn, forks one or more child processes, those child processes
inherit the rescheduling variable with the rv_pid field updated.

If a rescheduling variable is locked in the parent process at the
time of the call to fork, vfork(2) or clone(2), the
rescheduling variable aborts.

Interprocess Synchronization

5-5

Use of this command requires root capability or CAP_IPC_LOCK

and CAP_SYS_RAWIO privileges.

RESCHED_SET_LIMIT This command is a debugging tool. If arg is not NULL, it points to
a struct timeval specifying the maximum length of time the
caller expects to defer rescheduling. The SIGABRT signal is sent to
the caller when this limit is exceeded if the local timer of the CPU
is enabled. If arg is NULL, any previous limit is forgotten.

RESCHED_GET_VARIABLE

This command returns the location of the caller’s rescheduling
variable. arg must point to a rescheduling variable pointer. The
pointer referenced by arg is set to NULL if the caller has no
rescheduling variable, and is set to the location of the
rescheduling variable otherwise.

RESCHED_SERVE This command is used by resched_unlock to service pending
signals and context switches. Applications should not need to use
this command directly. arg must be 0.

Using the Rescheduling Control Macros 5

A set of rescheduling control macros enables you to lock and unlock rescheduling
variables and to determine the number of rescheduling locks in effect. These macros are
briefly described as follows:

resched_lock increments the number of rescheduling locks held by the calling
process

resched_unlock decrements the number of rescheduling locks held by the calling
process

resched_nlocks returns the number of rescheduling locks currently in effect

 resched_lock 5

Synopsis

#include <sys/rescntl.h>

void resched_lock(r);

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling process’ rescheduling variable

Resched_lock does not return a value; it increments the number of rescheduling locks
held by the calling process. As long as the process does not enter the kernel, quantum
expirations, preemptions, and some signal deliveries are deferred until all rescheduling
locks are released.

RedHawk Linux User’s Guide

5-6

However, if the process generates an exception (e.g., a page fault) or makes a system call,
it may receive signals or otherwise context switch regardless of the number of
rescheduling locks it holds. The following signals represent error conditions and are NOT
affected by rescheduling locks: SIGILL, SIGTRAP, SIGFPE, SIGKILL, SIGBUS, SIGSEGV,
SIGABRT, SIGSYS, SIGPIPE, SIGXCPU, and SIGXFSZ.

Making system calls while a rescheduling variable is locked is possible but not
recommended. However, it is not valid to make any system call that results in putting the
calling process to sleep while a rescheduling variable is locked.

 resched_unlock 5

Synopsis

#include <sys/rescntl.h>

void resched_unlock(r);

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling process’ rescheduling variable

Resched_unlock does not return a value. If there are no outstanding locks after the
decrement and a context switch or signal are pending, they are serviced immediately.

NOTE

The rv_nlocks field must be a positive integer for the lock to
be considered active. Thus, if the field is zero or negative, it is
considered to be unlocked.

 resched_nlocks 5

Synopsis

#include <sys/rescntl.h>

int resched_nlocks(r);

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling process’ rescheduling variable

Resched_nlocks returns the number of rescheduling locks currently in effect.

For additional information on the use of these macros, refer to the resched_cntl(2)
man page.

Interprocess Synchronization

5-7

Applying Rescheduling Control Tools 5

The following C program segment illustrates the procedures for controlling rescheduling
by using the tools described in the preceding sections. This program segment defines a
rescheduling variable (rv) as a global variable; registers and initializes the variable with a
call to resched_cntl; and locks and unlocks the rescheduling variables with calls to
resched_lock and resched_unlock, respectively.

 static struct resched_var rv;

 int main (int argc, char *argv[])
 {
 resched_cntl (RESCHED_SET_VARIABLE, (char *)&rv);

 resched_lock (&rv);

 /* nonpreemptible code */
 ...

 resched_unlock (&rv);
 return 0;
 }

Busy-Wait Mutual Exclusion 5

Busy-wait mutual exclusion is achieved by associating a synchronizing variable with a
shared resource. When a process or thread wishes to gain access to the resource, it locks
the synchronizing variable. When it completes its use of the resource, it unlocks the
synchronizing variable. If another process or thread attempts to gain access to the resource
while the first process or thread has the resource locked, that process or thread must delay
by repeatedly testing the state of the lock. This form of synchronization requires that the
synchronizing variable be accessible directly from user mode and that the lock and unlock
operations have very low overhead.

RedHawk Linux provides two types of low-overhead busy-wait mutual exclusion
variables: spin_mutex and nopreempt_spin_mutex. A nopreempt_spin_
mutex automatically uses rescheduling variables to make threads or processes non-
preemptible while holding the mutex; a spin_mutex does not.

In the sections that follow, the variables and interfaces are defined, and the procedures for
using them are explained.

Understanding the spin_mutex Variable 5

The busy-wait mutual exclusion variable is a data structure known as a spin lock. The
spin_mutex variable is defined in <spin.h> as follows:

typedef struct spin_mutex {
volatile int count;

} spin_mutex_t;

RedHawk Linux User’s Guide

5-8

The spin lock has two states: locked and unlocked. When initialized, the spin lock is in the
unlocked state.

If you wish to use spin locks to coordinate access to shared resources, you must allocate
them in your application program and locate them in memory that is shared by the
processes or threads that you wish to synchronize. You can manipulate them by using the
interfaces described in “Using the spin_mutex Interfaces.”

Using the spin_mutex Interfaces 5

This set of busy-wait mutual exclusion interfaces allows you to initialize, lock, and unlock
spin locks and determine whether or not a particular spin lock is locked. These are briefly
described as follows:

spin_init initialize a spin lock to the unlocked state

spin_lock spin until the spin lock can be locked

spin_trylock attempt to lock a specified spin lock

spin_islock determine whether or not a specified spin lock is locked

spin_unlock unlock a specified spin lock

It is important to note that none of these interfaces enables you to lock a spin lock
unconditionally. You can construct this capability by using the tools that are provided.

CAUTION

Operations on spin locks are not recursive; a process or thread can
deadlock if it attempts to relock a spin lock that it has already
locked.

You must initialize spin locks before you use them by calling spin_init. You call
spin_init only once for each spin lock. If the specified spin lock is locked,
spin_init effectively unlocks it; it does not return a value. The spin_init interface
is specified as follows:

#include <spin.h>
void spin_init(spin_mutex_t *m);

The argument is defined as follows:

m the starting address of the spin lock

spin_lock spins until the spin lock can be locked. It does not return a value. The
interface is specified as follows:

#include <spin.h>
void spin_lock(spin_mutex_t *m);

Interprocess Synchronization

5-9

spin_trylock returns true if the calling process or thread has succeeded in locking the
spin lock; false if it has not succeeded. spin_trylock does not block the calling
process or thread. The interface is specified as follows:

#include <spin.h>
int spin_trylock(spin_mutex_t *m);

spin_islock returns true if the specified spin lock is locked; false if it is unlocked. It
does not attempt to lock the spin lock. The interface is specified as follows:

#include <spin.h>
int spin_islock(spin_mutex_t *m);

spin_unlock unlocks the spin lock. It does not return a value. The interface is specified
as follows:

#include <spin.h>
void spin_unlock(spin_mutex_t *m);

Note that spin_lock, spin_trylock and spin_unlock can log trace events to be
monitored by NightTrace RT. An application can enable these trace events by defining
SPIN_TRACE prior to including <spin.h>. For example:

#define SPIN_TRACE
#include <spin.h>

The application must also be linked with -lntrace, or -lntrace_thr if also linked
with -lpthread.

For additional information on the use of these interfaces, refer to the spin_init(3)
man page.

Applying spin_mutex Tools 5

Procedures for using the spin_mutex tools for busy-wait mutual exclusion are illustrated
by the following code segments. The first segment shows how to use these tools along
with rescheduling control to acquire a spin lock; the second shows how to release a spin
lock. Note that these segments contain no system calls or procedure calls.

The _m argument points to a spin lock, and the _r argument points to the calling process’
or thread’s rescheduling variable. It is assumed that the spin lock is located in shared
memory. To avoid the overhead associated with paging and swapping, it is recommended
that the pages that will be referenced inside the critical section be locked in physical
memory (see the mlock(2) and shmctl(2) system calls).

#define spin_acquire(_m,_r) \
{ \
 resched_lock(_r); \
 while (!spin_trylock(_m)) { \

 resched_unlock(_r); \
 while (spin_islock(_m)); \
 resched_lock(_r); \

 } \
}

RedHawk Linux User’s Guide

5-10

#define spin_release(_m,_r) \
{ \
 spin_unlock(_m); \
 resched_unlock(_r); \
}

In the first segment, note the use of the spin_trylock and spin_islock interfaces.
If a process or thread attempting to lock the spin lock finds it locked, it waits for the lock
to be released by calling spin_islock. This sequence is more efficient than polling
directly with spin_trylock. The spin_trylock interface contains special
instructions to perform test-and-set atomically on the spin lock. These instructions are less
efficient than the simple memory read performed in spin_islock.

Note also the use of the rescheduling control interfaces. To prevent deadlock, a process or
thread disables rescheduling prior to locking the spin lock and re-enables it after
unlocking the spin lock. A process or thread also re-enables rescheduling just prior to the
call to spin_islock so that rescheduling is not deferred any longer than necessary.

Understanding the nopreempt_spin_mutex Variable 5

The nopreempt_spin_mutex is a busy-wait mutex that allows multiple threads or
processes to synchronize access to a shared resource. A rescheduling variable is used to
make threads or processes non-preemptible while holding the mutex locked. A thread or
process may safely nest the locking of multiple mutexes. The nopreempt_spin_mutex is
defined in <nopreempt_spin.h> as follows:

typedef struct nopreempt_spin_mutex {
spin_mutex_t spr_mux;

} nopreempt_spin_mutex_t;

The spin lock has two states: locked and unlocked. When initialized, the spin lock is in the
unlocked state.

If you wish to use non-preemptible spin locks to coordinate access to shared resources,
you must allocate them in your application program and locate them in memory that is
shared by the processes or threads that you wish to synchronize. You can manipulate them
by using the interfaces described in “Using the nopreempt_spin_mutex Interfaces.”

Using the nopreempt_spin_mutex Interfaces 5

This set of busy-wait mutual exclusion interfaces allows you to initialize, lock, and unlock
non-preemptible spin locks. A rescheduling variable is used to make threads or processes
non-preemptible while holding the mutex locked. These are briefly described as follows:

nopreempt_spin_init initialize a spin lock to the unlocked
state

nopreempt_spin_init_thread guarantee that preemption can be
blocked

nopreempt_spin_lock spin until the spin lock can be locked

Interprocess Synchronization

5-11

nopreempt_spin_trylock attempt to lock a specified spin lock

nopreempt_spin_islock determine whether or not a specified
spin lock is locked

nopreempt_spin_unlock unlock a specified spin lock

You must initialize spin locks before you use them by calling nopreempt_spin_init.
You call this interface only once for each spin lock. If the specified spin lock is locked,
nopreempt_spin_init effectively unlocks it; it does not return a value. The interface
is specified as follows:

#include <nopreempt_spin.h>
void nopreempt_spin_init(nopreempt_spin_mutex_t *m);

The argument is defined as follows:

m the starting address of the spin lock

nopreempt_spin_init_thread guarantees that preemption can be blocked when
nopreempt_spin_lock and nopreempt_spin_trylock are called. When a
nopreempt_spin_mutex is used in a multi-threaded process, the process must be linked
with -lpthread and each thread must call nopreempt_spin_init_thread at least
once. If a process is not multi-threaded, it must call this routine at least once. This routine
need only be called once regardless of how many mutexes the process or thread uses. It
returns zero (0) if preemption blocking can be guaranteed; otherwise it returns -1 with
errno set. The interface is specified as follows:

#include <nopreempt_spin.h>
int nopreempt_spin_init_thread(void)

nopreempt_spin_lock spins until the spin lock can be locked. It does not return a
value. It is specified as follows:

#include <nopreempt_spin.h>
void nopreempt_spin_lock(nopreempt_spin_mutex_t *m);

nopreempt_spin_trylock returns true if the calling process or thread has succeeded
in locking the spin lock; false if it has not succeeded. nopreempt_spin_trylock
does not block the calling process or thread. The interface is specified as follows:

#include <nopreempt_spin.h>
int nopreempt_spin_trylock(nopreempt_spin_mutex_t *m);

nopreempt_spin_islock returns true if the specified spin lock is locked; false if it is
unlocked. It does not attempt to lock the spin lock. The interface is specified as follows:

#include <nopreempt_spin.h>
int nopreempt_spin_islock(nopreempt_spin_mutex_t *m);

nopreempt_spin_unlock unlocks the spin lock. It does not return a value. The
interface is specified as follows:

#include <nopreempt_spin.h>
void nopreempt_spin_unlock(nopreempt_spin_mutex_t *m);

RedHawk Linux User’s Guide

5-12

Note that nopreempt_spin_lock , nopreempt_spin_trylock and
nopreempt_spin_unlock can log trace events to be monitored by NightTrace RT. An
application can enable these trace events by defining SPIN_TRACE prior to including
<nopreempt_spin.h>. For example:

#define SPIN_TRACE
#include <nopreempt_spin.h>

The application must also be linked with -lntrace, or -lntrace_thr if also linked
with -lpthread.

Fo r add i t i ona l i n fo rma t ion on the use o f t hese i n t e r faces , r e f e r t o t he
nopreempt_spin_init(3) man page.

POSIX Counting Semaphores 5

Overview 5

Counting semaphores provide a simple interface that can be implemented to achieve the
fastest performance for lock and unlock operations. A counting semaphore is an object
that has an integer value and a limited set of operations defined for it. These operations
and the corresponding POSIX interfaces include the following:

• An initialization operation that sets the semaphore to zero or a positive
value—sem_init or sem_open

• A lock operation that decrements the value of the semaphore—sem_wait
or sem_timedwait. If the resulting value is negative, the task performing
the operation blocks.

• An unlock operation that increments the value of the semaphore—
sem_post. If the resulting value is less than or equal to zero, one of the
tasks blocked on the semaphore is awakened. If the resulting value is greater
than zero, no tasks were blocked on the semaphore.

• A conditional lock operation that decrements the value of the semaphore
only if the value is positive—sem_trywait. If the value is zero or
negative, the operation fails.

• A query operation that provides a snapshot of the value of the semaphore—
sem_getvalue

The lock, unlock, and conditional lock operations are atomic (the set of operations are
performed at the same time and only if they can all be performed simultaneously).

A counting semaphore may be used to control access to any resource that can be used by
multiple cooperating threads. A counting semaphore can be named or unnamed.

A thread creates and initializes an unnamed semaphore through a call to the
sem_init(3) routine. The semaphore is initialized to a value that is specified on the
call. All threads within the application have access to the unnamed semaphore once it has
been created with the sem_init routine call.

Interprocess Synchronization

5-13

A thread creates a named semaphore by invoking the sem_open routine and specifying a
unique name that is simply a null-terminated string. The semaphore is initialized to a value
that is supplied on the call to sem_open to create the semaphore. No space is allocated
by the process for a named semaphore because the sem_open routine will include the
semaphore in the process’s virtual address space. Other processes can gain access to the
named semaphore by invoking sem_open and specifying the same name.

When an unnamed or named semaphore is initialized, its value should be set to the number
of available resources. To use a counting semaphore to provide mutual exclusion, the
semaphore value should be set to one.

A cooperating task that wants access to a critical resource must lock the semaphore that
protects that resource. When the task locks the semaphore, it knows that it can use the
resource without interference from any other cooperating task in the system. An
application must be written so that the resource is accessed only after the semaphore that
protects it has been acquired.

As long as the semaphore value is positive, resources are available for use; one of the
resources is allocated to the next task that tries to acquire it. When the semaphore value is
zero, then none of the resources are available; a task trying to acquire a resource must wait
until one becomes available. If the semaphore value is negative, then there may be one or
more tasks that are blocked and waiting to acquire one of the resources. When a task
completes use of a resource, it unlocks the semaphore, indicating that the resource is
available for use by another task.

The concept of ownership does not apply to a counting semaphore. One task can lock a
semaphore; another task can unlock it.

The semaphore unlock operation is async-signal safe; that is, a task can unlock a
semaphore from a signal-handling routine without causing deadlock.

The absence of ownership precludes priority inheritance. Because a task does not become
the owner of a semaphore when it locks the semaphore, it cannot temporarily inherit the
priority of a higher-priority task that blocks trying to lock the same semaphore. As a result,
unbounded priority inversion can occur.

Interfaces 5

The sections that follow explain the procedures for using the POSIX counting semaphore
interfaces. These interfaces are briefly described as follows:

sem_init initializes an unnamed counting semaphore

sem_destroy removes an unnamed counting semaphore

sem_open creates, initializes and establishes a connection to a named
counting semaphore

sem_close relinquishes access to a named counting semaphore

sem_unlink removes the name of a named counting semaphore

sem_wait locks a counting semaphore

sem_trywait locks a counting semaphore only if it is currently unlocked

sem_timedwait locks a counting semaphore with timeout

sem_post unlocks a counting semaphore

sem_getvalue obtains the value of a counting semaphore

RedHawk Linux User’s Guide

5-14

Note that to use these interfaces, you must link your application with the pthreads library.
The following example shows the command line invocation when linking dynamically
with shared libraries. The Native POSIX Threads Library (NPTL) is used by default.

gcc [options] file.c -lpthread

The same application can be built statically with the following invocation line. This uses
the LinuxThreads library.

gcc [options] -static file.c -lpthread

Note that there is no support for process shared semaphores in the LinuxThreads library.

The sem_init Routine 5

The sem_init(3) library routine allows the calling process to initialize an unnamed
counting semaphore by setting the semaphore value to the number of available resources
being protected by the semaphore. To use a counting semaphore for mutual exclusion, the
process sets the value to one.

Dynamically linked programs, which use the NPTL threads library, can share a semaphore
across processes when the pshared parameter is set to a non-zero value. If pshared is set to
zero, the semaphore is shared only among threads within the same process.

Statically linked programs, which use the LinuxThreads library, can only have counting
semaphores shared among threads within the same process (pshared must be set to 0).
After one thread in a process creates and initializes a semaphore, other cooperating threads
within that same process can operate on the semaphore. A child process created by a
fork(2) system call does not inherit access to a semaphore that has already been
initialized by the parent. A process also loses access to a semaphore after invoking the
exec(3) or exit(2) system calls.

The sem_wait, sem_timedwait, sem_trywait, sem_post and sem_getvalue
library routines are used to operate on the semaphores. An unnamed counting semaphore
is removed by invoking the sem_destroy routine. These routines are described in the
sections that follow.

CAUTION

The IEEE 1003.1b-1993 standard does not indicate what happens when
multiple processes invoke sem_init for the same semaphore.
Currently, the RedHawk Linux implementation simply reinitializes the
semaphore to the value specified on sem_init calls that are made after
the initial sem_init call.

To be certain that application code can be ported to any system that
supports POSIX interfaces (including future Concurrent systems),
cooperating processes that use sem_init should ensure that a single
process initializes a particular semaphore and that it does so only once.

If sem_init is called after it has already been initialized with a prior
sem_init call, and there are currently threads that are waiting on this
same semaphore, then these threads will never return from their
sem_wait calls, and they will need to be explicitly terminated.

Interprocess Synchronization

5-15

Synopsis

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

The arguments are defined as follows:

sem a pointer to a sem_t structure that represents the unnamed counting
semaphore to be initialized

pshared an integer value that indicates whether or not the semaphore is to be
shared by other processes. If pshared is set to a non-zero value, then the
semaphore is shared among processes. If pshared is set to zero, then the
semaphore is shared only among threads within the same process. Stati-
cally linked programs, which use the LinuxThreads library, cannot use
semaphores shared between processes and must have pshared set to
zero; if not set to zero, sem_init returns with -1 and errno is set to
ENOSYS.

value zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot
exceed the value of SEM_VALUE_MAX (see the file <semaphore.h> to
determine this value).

A return value of 0 indicates that the call to sem_init has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_init(3) man page for a listing of the types of errors that may occur.

The sem_destroy Routine 5

CAUTION

An unnamed counting semaphore should not be removed until
there is no longer a need for any process to operate on the
semaphore and there are no processes currently blocked on the
semaphore.

Synopsis

#include <semaphore.h>

int sem_destroy(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore to be removed. Only a
counting semaphore created with a call to sem_init(3) may be
removed by invoking sem_destroy.

A return value of 0 indicates that the call to sem_destroy has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_destroy(3) man page for a listing of the types of errors that may occur.

RedHawk Linux User’s Guide

5-16

The sem_open Routine 5

The sem_open(3) library routine allows the calling process to create, initialize, and
establish a connection to a named counting semaphore. When a process creates a named
counting semaphore, it associates a unique name with the semaphore. It also sets the
semaphore value to the number of available resources being protected by the semaphore.
To use a named counting semaphore for mutual exclusion, the process sets the value to
one.

After a process creates a named semaphore, other processes can establish a connection to
that semaphore by invoking sem_open and specifying the same name. Upon successful
completion, the sem_open routine returns the address of the named counting semaphore.
A process subsequently uses that address to refer to the semaphore on calls to sem_wait,
sem_trywait, and sem_post. A process may continue to operate on the named sema-
phore until it invokes the sem_close routine or the exec(2) or _exit(2) system
calls. On a call to exec or exit, a named semaphore is closed as if by a call to
sem_close. A child process created by a fork(2) system call inherits access to a
named semaphore to which the parent process has established a connection.

If a single process makes multiple calls to sem_open and specifies the same name, the
same address will be returned on each call unless (1) the process itself has closed the
semaphore through intervening calls to sem_close or (2) some process has removed the
name through intervening calls to sem_unlink.

If multiple processes make calls to sem_open and specify the same name, the address of
the same semaphore object will be returned on each call unless some process has removed
the name through intervening calls to sem_unlink. (Note that the same address will not
necessarily be returned on each call.) If a process has removed the name through an inter-
vening call to sem_unlink, the address of a new instance of the semaphore object will
be returned.

Synopsis

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag[, mode_t mode,
unsigned int value]);

The arguments are defined as follows:

name a null-terminated string that specifies the name of a semaphore. The pre-
fix “sem.” is prepended to name and the semaphore will appear as a data
file in /dev/shm. A leading slash (/) character is allowed (recom-
mended for portable applications) but no embedded slashes. Neither a
leading slash character nor the current working directory affects inter-
pretations of it; e.g., /mysem and mysem are both interpreted as
/dev/shm/sem.mysem. Note that this string, including the 4-char-
acter prefix, must consist of less than {NAME_MAX}, defined in
/usr/include/limits.h.

oflag an integer value that indicates whether the calling process is creating a
named counting semaphore or establishing a connection to an existing
one. The following bits may be set:

Interprocess Synchronization

5-17

O_CREAT causes the counting semaphore specified by name to be cre-
ated if it does not exist. The semaphore’s user ID is set to
the effective user ID of the calling process; its group ID is
set to the effective group ID of the calling process; and its
permission bits are set as specified by the mode argument.
The semaphore’s initial value is set as specified by the value
argument. Note that you must specify both the mode and the
value arguments when you set this bit.

If the counting semaphore specified by name exists, setting
O_CREAT has no effect except as noted for O_EXCL.

O_EXCL causes sem_open to fail if O_CREAT is set and the counting
semaphore specified by name exists. If O_CREAT is not set,
this bit is ignored.

Note that the sem_open routine returns an error if flag bits
other than O_CREAT and O_EXCL are set in the oflag argu-
ment.

mode an integer value that sets the permission bits of the counting semaphore
specified by name with the following exception: bits set in the process’s
file mode creation mask are cleared in the counting semaphore’s mode
(refer to the umask(2) and chmod(2) man pages for additional
information). If bits other than the permission bits are set in mode, they
are ignored. A process specifies the mode argument only when it is cre-
ating a named counting semaphore.

value zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot exceed
the value of SEM_VALUE_MAX defined in the file <limits.h>. A pro-
cess specifies the value argument only when it is creating a named
counting semaphore.

If the call is successful, sem_open returns the address of the named counting semaphore.
A return value of SEM_FAILED indicates that an error has occurred; errno is set to indicate
the error. Refer to the sem_open(3) man page for a listing of the types of errors that
may occur.

The sem_close Routine 5

The sem_close(3) library routine allows the calling process to relinquish access to a
named counting semaphore. The sem_close routine frees the system resources that have
been allocated for the process’ use of the semaphore. Subsequent attempts by the process
to operate on the semaphore may result in delivery of a SIGSEGV signal.

The count associated with the semaphore is not affected by a process’ call to
sem_close.

Synopsis

#include <semaphore.h>

int sem_close(sem_t *sem);

RedHawk Linux User’s Guide

5-18

The argument is defined as follows:

sem a pointer to the named counting semaphore to which access is to
be relinquished. Only a counting semaphore to which a connec-
tion has been established through a call to sem_open(3) may be
specified.

A return value of 0 indicates that the call to sem_close has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_close(3) man page for a listing of the types of errors that may occur.

The sem_unlink Routine 5

The sem_unlink(3) library routine allows the calling process to remove the name of a
counting semaphore. A process that subsequently attempts to establish a connection to the
semaphore by using the same name will establish a connection to a different instance of
the semaphore. A process that has a reference to the semaphore at the time of the call may
continue to use the semaphore until it invokes sem_close(3) or the exec(2) or
exit(2) system call.

Synopsis

#include <semaphore.h>

int sem_unlink(const char *name);

The argument is defined as follows:

name a null-terminated string that specifies the name of a semaphore. The pre-
fix “sem.” is prepended to name and the semaphore will appear as a data
file in /dev/shm. A leading slash (/) character is allowed (recom-
mended for portable applications) but no embedded slashes. Neither a
leading slash character nor the current working directory affects inter-
pretations of it; e.g., /mysem and mysem are both interpreted as
/dev/shm/sem.mysem. Note that this string, including the 4-char-
acter prefix, must consist of less than {NAME_MAX}, defined in
/usr/include/limits.h.

A return value of 0 indicates that the call to sem_unlink has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_unlink(3) man page for a listing of the types of errors that may occur.

Interprocess Synchronization

5-19

The sem_wait Routine 5

The sem_wait(3) library routine allows the calling process to lock an unnamed
counting semaphore. If the semaphore value is equal to zero, the semaphore is already
locked. In this case, the process blocks until it is interrupted by a signal or the semaphore
is unlocked. If the semaphore value is greater than zero, the process locks the semaphore
and proceeds. In either case, the semaphore value is decremented.

Synopsis

#include <semaphore.h>

int sem_wait(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore to be locked

A return value of 0 indicates that the process has succeeded in locking the specified
semaphore. A return value of –1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sem_wait(3) man page for a listing of the types of
errors that may occur.

The sem_timedwait Routine 5

The sem_timedwait(3) library routine allows the calling process to lock an unnamed
counting semaphore; however, if the semaphore cannot be locked without waiting for
another process or thread to unlock it via sem_post, the wait is terminated when the
specified timeout expires.

Synopsis

#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *sem, const struct timespec *ts);

The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore to be locked

ts a pointer to a timespec structure defined in <time.h> which specifies a
single time value in seconds and nanoseconds when the wait is terminated.
For example:

ts.tv_sec = (NULL)+2
ts.tv_nsec = 0

establishes a two second timeout. For more information on POSIX time
structures, see “Understanding the POSIX Time Structures” in Chapter 6.

A return value of 0 indicates that the process has succeeded in locking the specified
semaphore. A return value of –1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sem_wait(3) man page for a listing of the types of
errors that may occur.

RedHawk Linux User’s Guide

5-20

The sem_trywait Routine 5

The sem_trywait(3) library routine allows the calling process to lock a counting
semaphore only if the semaphore value is greater than zero, indicating that the semaphore
is unlocked. If the semaphore value is equal to zero, the semaphore is already locked, and
the call to sem_trywait fails. If a process succeeds in locking the semaphore, the
semaphore value is decremented; otherwise, it does not change.

Synopsis

#include <semaphore.h>

int sem_trywait(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore that the calling process is
attempting to lock

A return value of 0 indicates that the calling process has succeeded in locking the
specified semaphore. A return value of –1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sem_trywait(3) man page for a listing of the
types of errors that may occur.

The sem_post Routine 5

The sem_post(3) library routine allows the calling process to unlock a counting
semaphore. If one or more processes are blocked waiting for the semaphore, the waiting
process with the highest priority is awakened when the semaphore is unlocked.

Synopsis

#include <semaphore.h>

int sem_post(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore to be unlocked

A return value of 0 indicates that the call to sem_post has been successful. If a bad
semaphore descriptor has been supplied, a segmentation fault results. A return value of –1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sem_post(3) man page for a listing of the types of errors that may occur.

Interprocess Synchronization

5-21

The sem_getvalue Routine 5

The sem_getvalue(3) library routine allows the calling process to obtain the value of
an unnamed counting semaphore.

Synopsis

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore for which you wish to
obtain the value

sval a pointer to a location where the value of the specified unnamed count-
ing semaphore is to be returned. The value that is returned represents the
actual value of the semaphore at some unspecified time during the call.
It is important to note, however, that this value may not be the actual
value of the semaphore at the time of the return from the call.

A return value of 0 indicates that the call to sem_getvalue has been successful. A
return value of –1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sem_getvalue(3) man page for a listing of the types of errors that may
occur.

Extensions to POSIX Mutexes 5

A mutex is a mutual exclusion device useful for protecting shared data structures from
concurrent modifications and implementing critical sections. A mutex has two possible
states: unlocked (not owned by any thread) and locked (owned by one thread). A thread
attempting to lock a mutex that is already locked by another thread is suspended until the
owning thread unlocks the mutex first.

The standard POSIX pthread mutex functionality available in RedHawk includes the
following services. For full information about these services refer to the man pages.

pthread_mutex_init(3) initializes the mutex

pthread_mutex_lock(3) locks the mutex

pthread_mutex_trylock(3) tries to lock the mutex

pthread_mutex_unlock(3) unlocks the mutex

pthread_mutex_destroy(3) destroys the mutex

pthread_mutexattr_init(3) initializes the mutex attribute object

pthread_mutexattr_destroy(3) destroys the mutex attribute object

pthread_mutexattr_settype(3) sets the mutex attribute type

pthread_mutexattr_gettype(3) retrieves the mutex attribute type

RedHawk Linux User’s Guide

5-22

In addition to those services, RedHawk includes the following POSIX pthread extensions
that provide robustness and priority inheritance. Robustness gives applications a chance to
recover if one of the application’s threads dies while holding a mutex. Priority inheritance
is the automatic boosting of the scheduling priority of a thread to the priority of the highest
priority thread that is sleeping, directly or indirectly, on any of the mutexes owned by that
thread. These conditions are discussed in more detail below.

The services are described in the sections that follow and in the man pages.

pthread_mutex_consistent_np(3) makes an inconsistent mutex consistent

pthread_mutex_getunlock_np(3) returns the unlocking policy of the mutex

pthread_mutex_setconsistency_np(3) sets the consistency state of the mutex

pthread_mutex_setunlock_np(3) sets the unlocking policy of the mutex

pthread_mutexattr_getfast_np(3) returns the operating mode

pthread_mutexattr_getprotocol(3) returns the protocol

pthread_mutexattr_getrobust_np(3) returns the robust level

pthread_mutexattr_getunlock_np(3) returns the unlocking policy

pthread_mutexattr_setfast_np(3) sets the operating mode

pthread_mutexattr_setprotocol(3) sets the protocol

pthread_mutexattr_setrobust_np(3) sets the robust level

pthread_mutexattr_setunlock_np(3) sets the unlocking policy

Robust Mutexes 5

Applications using a robust mutex can detect whether the previous owner of the mutex
terminated while holding the mutex. The new owner can then attempt to clean up the state
protected by the mutex, and if able to do so, mark the mutex as again healthy. If cleanup of
the state can’t be done, the mutex can be marked unrecoverable so that any future attempts
to lock it will get a status indicating that it is unrecoverable.

To implement this, two new errno codes, EOWNERDEAD and ENOTRECOVERABLE, are
available. When a thread dies while holding a mutex, the mutex is automatically unlocked
and marked dead. A dead lock operates like a normal lock except that each successful lock
on a dead mutex returns an EOWNERDEAD error rather than success.

Therefore an application that is interested in robustness must examine the return status of
every lock request. When EOWNERDEAD is seen, the application can ignore it, repair
whatever is wrong in the application due to the death of the owner and mark it consistent
(healthy), or if it cannot be repaired, mark it unrecoverable.

A mutex marked unrecoverable rejects all future operations on that mutex with an
ENOTRECOVERABLE error. The only exception is the service which re-initializes the mutex
and the services that inquire about the mutex state. Threads that were sleeping on a mutex
that becomes unrecoverable wake up immediately with an ENOTRECOVERABLE error.

Interprocess Synchronization

5-23

Priority Inheritance 5

An application using a priority inheritance mutex can find its priority temporarily boosted
from time to time. The boosting happens to those threads that have acquired a mutex and
other higher priority threads go to sleep waiting for that mutex. In this case, the priority of
the sleeper is temporarily transferred to the lock owner for as long as that owner holds the
lock.

As these sleeping threads in turn could own other mutexes, and thus themselves have
boosted priorities, the max function takes care to use the sleeper’s boosted, not base,
priorities in making its decision on what priority to boost to.

User Interface 5

Full descriptions of the services listed here are provided in the sections that follow and on
the corresponding online man page.

The following services operate on the state of the mutex:

pthread_mutex_consistent_np(3) makes an inconsistent mutex consistent

pthread_mutex_getunlock_np(3) returns the unlocking policy of the mutex

pthread_mutex_setconsistency_np(3) sets the consistency state of the mutex

pthread_mutex_setunlock_np(3) sets the unlocking policy of the mutex

The services listed below modify or make inquires about attributes stored in mutex
attribute objects. A mutex attribute object is a data structure that defines which mutex
features are to be available in mutexes created with that attribute object. Since mutexes
have a lot of features, a mutex attribute object makes it convenient for an application to
define all the desired attributes in one mutex attribute object, then create all the mutexes
that are to have that set of attributes with that object.

In addition, those attributes which must be fixed for the life of the mutex are definable
only through a mutex attribute object. Likewise, attributes which can be changed during
the life of a mutex can be given an initial definition through the mutex attribute object,
then can be changed later via an equivalent attribute operation on the mutex itself.

To return an attribute:

pthread_mutexattr_getfast_np(3) returns the operating mode

pthread_mutexattr_getprotocol(3) returns the protocol

pthread_mutexattr_getrobust_np(3) returns the robust level

pthread_mutexattr_getunlock_np(3) returns the unlocking policy

To set an attribute:

pthread_mutexattr_setfast_np(3) sets the operating mode

pthread_mutexattr_setprotocol(3) sets the protocol

pthread_mutexattr_setrobust_np(3) sets the robust level

pthread_mutexattr_setunlock_np(3) sets the unlocking policy

RedHawk Linux User’s Guide

5-24

pthread_mutex_consistent_np 5

This service makes an inconsistent mutex consistent.

Synopsis

int pthread_mutex_consistent_np (pthread_mutex_t *mutex)

A consistent mutex becomes inconsistent if its owner dies while holding it. In addition, on
detection of the death of the owner, the mutex becomes unlocked, much as if a
pthread_mutex_unlock was executed on it. The lock continues to operate as normal,
except that subsequent owners receive an EOWNERDEAD error return from the
pthread_mutex_lock that gave it ownership. This indicates to the new owner that the
acquired mutex is inconsistent.

This service can only be called by the owner of the inconsistent mutex.

pthread_mutex_getunlock_np 5

This service returns the unlocking policy of this mutex.

int pthread_mutex_getunlock_np(const pthread_mutex_t *mutex,
int *policy)

The unlocking policy is returned in *policy, which may be set to:

PTHREAD_MUTEX_UNLOCK_SERIAL_NP

pthread_mutex_unlock is to pass the lock directly from the
owner to the highest priority thread waiting for the lock.

PTHREAD_MUTEX_UNLOCK_PARALLEL_NP

The lock is unlocked and, if there are waiters, the most important
of them is awakened. The awakened thread contends for the lock
as it would if trying to acquire the lock for the first time.

PTHREAD_MUTEX_UNLOCK_AUTO_NP

Select between the above two policies based on the POSIX
scheduling policy of the to-be-awakened thread. If the thread is
SCHED_OTHER, use the parallel policy; otherwise use the serial
policy.

pthread_mutex_setconsistency_np 5

This service sets the consistency state of the given mutex.

int pthread_mutex_setconsistency_np(pthread_mutex_t *mutex,
int state)

state may be any one of the following:

PTHREAD_MUTEX_ROBUST_CONSISTENT_NP

Make an inconsistent mutex consistent. An application should do
this only if it has been able to fix the problems that caused the
mutex to be marked inconsistent.

Interprocess Synchronization

5-25

PTHREAD_MUTEX_ROBUST_NOTRECOVERABLE_NP

Mark an inconsistent mutex as unrecoverable. An application
should do this if it is not able to fix the problems that caused the
mutex to be marked inconsistent.

The mutex must originally be in an inconsistent state or this service returns an error. Only
the owner of the mutex can change its consistency state.

pthread_mutex_setunlock_np 5

This service sets the unlocking policy of this mutex.

Synopsis

int pthread_mutex_setunlock_np(pthread_mutex_t *mutex, int policy)

policy may be PTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_UNLOCK_

PAR AL L EL _ NP or P TH RE AD _ MU T EX _ UN LO CK _AUTO _ NP. Refer to the sect ion
“pthread_mutex_getunlock_np” above for definitions.

pthread_mutexattr_getfast_np 5

This service returns whether mutexes initialized with the set of attributes in attr will run in
fast or in slow mode.

Synopsis

int pthread_mutexattr_getfast_np(const pthread_mutexattr_t *attr,
int *mode)

The answer is returned in *mode, which will be set to:

PTHREAD_MUTEX_FASTPATH_NP

Mutexes initialized with attr will run in fast mode. In this mode,
uncontended locks and unlocks do not enter the kernel.

PTHREAD_MUTEX_SLOWPATH_NP

Mutexes initialized with attr will run in slow mode. In this mode,
the kernel is entered for every pthread_mutex_lock and
pthread_mutex_unlock.

pthread_mutexattr_getprotocol 5

This services returns the protocol for mutexes initialized with this set of attributes.

Synopsis

int pthread_mutexattr_getprotocol(pthread_mutexattr_t *attr,
int *protocol)

The available protocols are:

PTHREAD_PRIO_NONE A thread’s scheduling priority is not affected by operations on this
mutex.

RedHawk Linux User’s Guide

5-26

PTHREAD_PRIO_INHERIT
A thread’s scheduling priority is changed according to the rules of
the priority inheritance protocol: as long as the thread is the owner
of the mutex, it will inherit the priority of the highest priority
waiter that is directly or indirectly waiting to acquire the mutex.

pthread_mutexattr_getrobust_np 5

This service returns the robust level for mutexes initialized with this set of attributes.

Synopsis

int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t
*attr, int *robustness)

The available levels are:

PTHREAD_MUTEX_ROBUST_NP Mutexes created with this attribute object will be robust.

PTHREAD_MUTEX_STALLED_NP Mutexes created with this attribute object will not be
robust.

A robust mutex is one that detects when its owner dies and transitions to the inconsistent
state. See “pthread_mutex_consistent_np” for the definition of the inconsistent state.

A nonrobust mutex does not detect when its owner dies and so remains locked indefinitely
(that is, until it is interrupted by a signal or some other thread unlocks the mutex on behalf
of the dead process).

pthread_mutexattr_getunlock_np 5

This service returns the unlocking policy for mutexes initialized with this set of attributes.

 int pthread_mutexattr_getunlock_np(const phtread_mutexattr_t
*attr, int *mode)

The available policies are PTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_

UNLOCK_PARALLEL_NP and PTHREAD_MUTEX_UNLOCK_AUTO_NP. See the section
“pthread_mutex_getunlock_np” for their definitions.

pthread_mutexattr_setfast_np 5

This service sets the operating mode for mutexes created with this set of attributes.

Synopsis

int pthread_mutexattr_setfast_np(pthread_mutexattr_t *attr,
int mode)

mode may be PTHREAD_MUTEX_FASTPATH_NP or PTHREAD_MUTEX_SLOWPATH_NP. See the
section “pthread_mutexattr_getfast_np” for their definitions.

Interprocess Synchronization

5-27

pthread_mutexattr_setprotocol 5

This service sets the protocol of any mutex that is created from this set of mutex attributes.

Synopsis

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol)

protocol may be PTHREAD_PRIO_NONE or PTHREAD_PRIO_INHERIT. See the section
“pthread_mutexattr_getprotocol” for their definitions.

pthread_mutexattr_setrobust_np 5

This service sets the robust level for mutexes that are created with this mutex attribute
object.

Synopsis

int pthread_mutexattr_setrobust_np(pthread_mutexattr_t *attr,
int robustness)

robustness may be PTHREAD_MUTEX_ROBUST_NP or PTHREAD_MUTEX_STALLED_NP. See
“pthread_mutexattr_getrobust_np” for definitions.

pthread_mutexattr_setunlock_np 5

This service sets the unlocking mode for mutexes that are created with this mutex attribute
object.

int pthread_mutexattr_setunlock_np(pthread_mutexattr_t *attr,
int mode)

mode may be PTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_UNLOCK_

PA R A L L E L _ N P, o r P T H R E A D _ M U T E X _ U N L O C K _ AU T O _ N P. S e e t he s e c t i on
“pthread_mutex_getunlock_np” for their definitions.

Compiling Programs with POSIX Mutexes 5

Programs that use priority inheritance and/or robust mutexes described above are
compiled with the standard cc(1), gcc(1) and g++(1) tools.

Note that previous versions of RedHawk included an alternative glibc that provided
extensions for these mutexes, accessed by compiling and linking applications with
ccur-gcc or ccur-g++. This functionality is now included in standard glibc; the
alternative glibc and the ccur-* compilation scripts are no longer available.

The standard glibc additions are completely binary compatible with the extensions
provided through the alternative glibc. Existing binaries that were compiled with
ccur-gcc and ccur-g++ on previous versions of RedHawk will continue to work
unmodified on the current RedHawk version. Existing programs that use priority
inheritance and/or robust mutexes can be compiled with the standard tools; no source
changes are required. However, note that Makefiles that specify ccur-* need to be
changed to use the standard tools. Alternatively, symbolic links can be created in
/usr/bin to point the names ccur-gcc and ccur-g++ to gcc and g++, respectively.

RedHawk Linux User’s Guide

5-28

System V Semaphores 5

Overview 5

The System V semaphore is an interprocess communication (IPC) mechanism that allows
processes to synchronize via the exchange of semaphore values. Since many applications
require the use of more than one semaphore, the operating system has the ability to create
sets or arrays of semaphores. A semaphore set can contain one or more semaphores, up to
a limit of SEMMSL (as defined in <linux/sem.h>). Semaphore sets are created using the
semget(2) system call.

When only a simple semaphore is needed, a counting semaphore is more efficient (see the
section “POSIX Counting Semaphores”).

The process performing the semget system call becomes the owner/creator, determines
how many semaphores are in the set, and sets the initial operation permissions for all
processes, including itself. This process can subsequently relinquish ownership of the set
or change the operation permissions using the semctl(2) system call. The creating
process always remains the creator as long as the facility exists. Other processes with
permission can use semctl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore grants
permission. Each semaphore within a set can be incremented and decremented with the
semop(2) system call (see the section “The semop System Call” later in this chapter).

To increment a semaphore, an integer value of the desired magnitude is passed to the
semop system call. To decrement a semaphore, a minus (-) value of the desired
magnitude is passed.

The operating system ensures that only one process can manipulate a semaphore set at any
given time. Simultaneous requests are performed sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by attempting
to decrement the semaphore by one more than that value. If the process is successful, the
semaphore value is greater than that certain value. Otherwise, the semaphore value is not.
While doing this, the process can have its execution suspended (IPC_NOWAIT flag not set)
until the semaphore value would permit the operation (other processes increment the
semaphore), or the semaphore facility is removed.

The ability to suspend execution is called a blocking semaphore operation. This ability is
also available for a process which is testing for a semaphore equal to zero; only read
permission is required for this test; it is accomplished by passing a value of zero to the
semop system call.

On the other hand, if the process is not successful and did not request to have its execution
suspended, it is called a nonblocking semaphore operation. In this case, the process is
returned -1 and the external errno variable is set accordingly.

The blocking semaphore operation allows processes to synchronize via the values of
semaphores at different points in time. Remember also that IPC facilities remain in the
operating system until removed by a permitted process or until the system is reinitialized.

When a set of semaphores is created, the first semaphore in the set is semaphore number
zero. The last semaphore number in the set is numbered one less than the total in the set.

Interprocess Synchronization

5-29

A single system call can be used to perform a sequence of these blocking/nonblocking
operations on a set of semaphores. When performing a sequence of operations, the
blocking/nonblocking operations can be applied to any or all of the semaphores in the set.
Also, the operations can be applied in any order of semaphore number. However, no
operations are done until they can all be done successfully. For example, if the first three
of six operations on a set of ten semaphores could be completed successfully, but the
fourth operation would be blocked, no changes are made to the set until all six operations
can be performed without blocking. Either all of the operations are successful and the
semaphores are changed, or one or more (nonblocking) operation is unsuccessful and none
are changed. In short, the operations are performed atomically.

Remember, any unsuccessful nonblocking operation for a single semaphore or a set of
semaphores causes immediate return with no operations performed at all. When this
occurs, -1 is returned to the process, and the external variable errno is set accordingly.

System calls make these semaphore capabilities available to processes. The calling
process passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs its
function and returns the appropriate information. Otherwise, -1 is returned to the process,
and the external variable errno is set accordingly.

Using System V Semaphores 5

Before semaphores can be used (operated on or controlled) a uniquely identified data
structure and semaphore set (array) must be created. The unique identifier is called the
semaphore set identifier (semid); it is used to identify or refer to a particular data structure
and semaphore set. This identifier is accessible by any process in the system, subject to
normal access restrictions.

The semaphore set contains a predefined number of structures in an array, one structure
for each semaphore in the set. The number of semaphores (nsems) in a semaphore set is
user selectable.

The sembuf structure, which is used on semop(2) system calls, is shown in Figure 5-1.

Figure 5-1 Definition of sembuf Structure

The sembuf structure is defined in the <sys/sem.h> header file.

struct sembuf {
 unsigned short int sem_num; /* semaphore number */
 short int sem_op; /* semaphore operation */
 short int sem_flg; /* operation flag */
};

RedHawk Linux User’s Guide

5-30

The struct semid_ds structure, which is used on certain semctl(2) service calls, is
shown in Figure 5-2.

Figure 5-2 Definition of semid_ds Structure

Though the semid_ds data structure is located in <bits/sem.h>, user applications
should include the <sys/sem.h> header file, which internally includes the
<bits/sem.h> header file.

Note that the sem_perm member of this structure is of type ipc_perm. This data
structure is the same for all IPC facilities; it is located in the <bits/ipc.h> header file,
but user applications should include the <sys/ipc.h> file, which internally includes the
<bits/ipc.h> header file. The details of the ipc_perm data structure are given in the
section entitled “System V Messages” in Chapter 3.

A semget(2) system call performs one of two tasks:

• creates a new semaphore set identifier and creates an associated data
structure and semaphore set for it

• locates an existing semaphore set identifier that already has an associated
data structure and semaphore set

The task performed is determined by the value of the key argument passed to the semget
system call. If key is not already in use for an existing semid and the IPC_CREAT flag is set,
a new semid is returned with an associated data structure and semaphore set created for it,
provided no system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), which is known as the
private key (IPC_PRIVATE). When this key is specified, a new identifier is always returned
with an associated data structure and semaphore set created for it, unless a system-tunable
parameter would be exceeded. The ipcs(8) command will show the key field for the
semid as all zeros.

When a semaphore set is created, the process which calls semget becomes the
owner/creator and the associated data structure is initialized accordingly. Remember,
ownership can be changed, but the creating process always remains the creator (see the
“The semctl System Call” section). The creator of the semaphore set also determines the
initial operation permissions for the facility.

struct semid_ds {

struct ipc_perm sem_perm; /* operation permission struct */

__time_t sem_otime; /* last semop() time */

unsigned long int __unused1;

__time_t sem_ctime; /* last time changed by semctl() */

unsigned long int __unused2;

unsigned long int sem_nsems; /* number of semaphores in set */

unsigned long int __unused3;

unsigned long int __unused4;

};

Interprocess Synchronization

5-31

If a semaphore set identifier exists for the key specified, the value of the existing identifier
is returned. If you do not want to have an existing semaphore set identifier returned, a
control command (IPC_EXCL) can be specified (set) in the semflg argument passed to the
system call. The system call will fail if it is passed a value for the number of semaphores
(nsems) that is greater than the number actually in the set; if you do not know how many
semaphores are in the set, use 0 for nsems (see “The semget System Call” for more
information).

Once a uniquely identified semaphore set and data structure are created or an existing one
is found, semop(2) and semctl(2) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for zero. The
semop system call is used to perform these operations (see “The semop System Call” for
details of the semop system call).

The semctl system call permits you to control the semaphore facility in the following
ways:

• by returning the value of a semaphore (GETVAL)

• by setting the value of a semaphore (SETVAL)

• by returning the PID of the last process performing an operation on a
semaphore set (GETPID)

• by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

• by returning the number of processes waiting for a semaphore value to equal
zero (GETZCNT)

• by getting all semaphore values in a set and placing them in an array in user
memory (GETALL)

• by setting all semaphore values in a semaphore set from an array of values in
user memory (SETALL)

• by retrieving the data structure associated with a semaphore set (IPC_STAT)

• by changing operation permissions for a semaphore set (IPC_SET)

• by removing a particular semaphore set identifier from the operating system
along with its associated data structure and semaphore set (IPC_RMID)

See the section “The semctl System Call” for details of the semctl system call.

The semget System Call 5

semget(2) creates a new semaphore set or identifies an existing one.

This section describes how to use the semget system call. For more detailed information,
see the semget(2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/semget.c with extensive comments provided
in README.semget.txt.

RedHawk Linux User’s Guide

5-32

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key_t key, int nsems, int semflg);

All of the #include files are located in the /usr/include subdirectories of the
operating system.

key_t is defined by a typedef in the <bits/sys/types.h> header file to be an
integral type (this header file is included internally by <sys/types.h>). The integer
returned from this system call upon successful completion is the semaphore set identifier
(semid). The semid is discussed in the section “Using System V Semaphores” earlier in
this chapter.

A new semid with an associated semaphore set and data structure is created if one of the
following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a semid associated with it and (semflg and
IPC_CREAT) is “true” (not zero).

The value of semflg is a combination of:

• control commands (flags)

• operation permissions

Control commands are predefined constants. The following control commands apply to
the semget system call and are defined in the <bits/ipc.h> header file, which is
internally included by the <sys/ipc.h> header file:

IPC_CREAT used to create a new semaphore set. If not used, semget will find the
semaphore set associated with key and verify access permissions.

IPC_EXCL used with IPC_CREAT to cause the system call to return an error if a
semaphore set identifier already exists for the specified key. This is
necessary to prevent the process from thinking it has received a new
(unique) identifier when it has not.

Operation permissions define the read/alter attributes for users, groups and others.
Table 5-1 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

Interprocess Synchronization

5-33

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions desired. That is, if “read by user” and “read/alter by others” is desired, the
code value would be 00406 (00400 plus 00006).

The semflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value; for example:

semid = semget (key, nsems, (IPC_CREAT | 0400));
semid = semget (key, nsems, (IPC_CREAT | IPC_EXCL | 0400));

The following values are defined in <linux/sem.h>. Exceeding these values always
causes a failure.

SEMMNI determines the maximum number of unique semaphore sets (semids) that can
be in use at any given time

SEMMSL determines the maximum number of semaphores in each semaphore set

SEMMNS determines the maximum number of semaphores in all semaphore sets system
wide

A list of semaphore limit values may be obtained with the ipcs(8) command by using
the following options. See the man page for further details.

ipcs -s -l

Refer to the semget(2) man page for specific associated data structure initialization as
well as the specific error conditions.

Table 5-1 Semaphore Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Alter by User 00200

Read by Group 00040

Alter by Group 00020

Read by Others 00004

Alter by Others 00002

RedHawk Linux User’s Guide

5-34

The semctl System Call 5

semctl(2) is used to perform control operations on semaphore sets.

This section describes the semctl system call. For more detailed information, see the
semctl(2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/semctl.c with extensive comments provided
in README.semctl.txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd, int arg);

union semun
{
 int val;
 struct semid_ds *buf;
 ushort *array;
} arg;

All of the #include files are located in the /usr/include subdirectories of the
operating system.

The semid argument must be a valid, non-negative, integer value that has already been
created using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates to
sequences of operations (atomically performed) on the set. When a set of semaphores is
created, the first semaphore is number 0, and the last semaphore is numbered one less than
the total in the set.

The cmd argument can be any one of the following values:

GETVAL returns the value of a single semaphore within a semaphore set

SETVAL sets the value of a single semaphore within a semaphore set

GETPID returns the PID of the process that performed the last operation on
the semaphore within a semaphore set

GETNCNT returns the number of processes waiting for the value of a
particular semaphore to become greater than its current value

GETZCNT returns the number of processes waiting for the value of a
particular semaphore to be equal to zero

GETALL returns the value for all semaphores in a semaphore set

SETALL sets all semaphore values in a semaphore set

Interprocess Synchronization

5-35

IPC_STAT returns the status information contained in the associated data
structure for the specified semid, and places it in the data structure
pointed to by arg.buf

IPC_SET sets the effective user/group identification and operation
permissions for the specified semaphore set (semid)

IPC_RMID removes the specified semaphore set (semid) along with its
associated data structure

NOTE

The semctl(2) service also supports the IPC_INFO, SEM_STAT

and SEM_INFO commands. However, since these commands are
only intended for use by the ipcs(8) utility, these commands
are not discussed.

To perform an IPC_SET or IPC_RMID control command, a process must meet one or more of
the following conditions:

• have an effective user id of OWNER

• have an effective user id of CREATOR

• be the super-user

• have the CAP_SYS_ADMIN capability

Note that a semaphore set can also be removed by using the ipcrm(1) command and
specifying the -s semid or the -S semkey option, where semid specifies the identifier for
the semaphore set and semkey specifies the key associated with the semaphore set. To use
this command, a process must have the same capabilities as those required for performing
an IPC_RMID control command. See the ipcrm(1) man page for additional information
on the use of this command.

The remaining control commands require either read or write permission, as appropriate.

The arg argument is used to pass the system call the appropriate union member for the
control command to be performed. For some of the control commands, the arg argument
is not required and is simply ignored.

• arg.val required: SETVAL

• arg.buf required: IPC_STAT, IPC_SET

• arg.array required: GETALL, SETALL

• arg ignored: GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

RedHawk Linux User’s Guide

5-36

The semop System Call 5

semop(2) is used to perform operations on selected members of the semaphore set.

This section describes the semop system call. For more detailed information, see the
semop(2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/semop.c with extensive comments provided
in README.semop.txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semid, struct sembuf *sops, unsigned nsops);

All of the #include files are located in the /usr/include subdirectories of the
operating system.

The semop system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other words, it must
have already been returned from a prior semget(2) system call.

The sops argument points to an array of structures in the user memory area that contains
the following for each semaphore to be changed:

• the semaphore number (sem_num)

• the operation to be performed (sem_op)

• the control flags (sem_flg)

The *sops declaration means that either an array name (which is the address of the first
element of the array) or a pointer to the array can be used. sembuf is the tag name of the
data structure used as the template for the structure members in the array; it is located in
the <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of structures in the
array). The maximum size of this array is determined by the SEMOPM system-tunable
parameter. Therefore, a maximum of SEMOPM operations can be performed for each
semop system call.

The semaphore number (sem_num) determines the particular semaphore within the set on
which the operation is to be performed.

The operation to be performed is determined by the following:

• If sem_op is positive, the semaphore value is incremented by the value of
sem_op.

• If sem_op is negative, the semaphore value is decremented by the absolute
value of sem_op.

• If sem_op is zero, the semaphore value is tested for equality to zero.

Interprocess Synchronization

5-37

The following operation commands (flags) can be used:

IPC_NOWAIT can be set for any operations in the array. The system call returns
unsuccessfully without changing any semaphore values at all if
any operation for which IPC_NOWAIT is set cannot be performed
successfully. The system call is unsuccessful when trying to
decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not.

SEM_UNDO tells the system to undo the process' semaphore changes
automatically when the process exits; it allows processes to avoid
deadlock problems. To implement this feature, the system
maintains a table with an entry for every process in the system.
Each entry points to a set of undo structures, one for each
semaphore used by the process. The system records the net
change.

Condition Synchronization 5

The following sections describe the postwait(2) and server_block /
server_wake(2) system calls that can be used to manipulate cooperating processes.

The postwait System Call 5

The postwait(2) function is a fast, efficient, sleep/wakeup/timer mechanism used
between a cooperating group of threads. The threads need not be members of the same
process.

Synopsis

#include <sys/time.h>
#include <sys/rescntl.h>
#include <sys/pw.h>

int pw_getukid(ukid_t *ukid);
int pw_wait(struct timespec *t, struct resched_var *r);
int pw_post(ukid_t ukid, struct resched_var *r);
int pw_postv(int count, ukid_t targets[], int errors[], struct
resched_var *r);
int pw_getvmax(void);

gcc [options] file -lccur_rt ...

To go to sleep, a thread calls pw_wait(). The thread will wake up when:

• the timer expires

• the thread is posted to by another thread by calling pw_post() or
pw_postv() with the ukid(s) of the pw_waiting thread(s)

• the call is interrupted

RedHawk Linux User’s Guide

5-38

Threads using postwait(2) services are identified by their ukid. A thread should call
pw_getukid() to obtain its ukid. The ukid maps to the caller’s unique, global thread id.
This value can be shared with the other cooperating threads that may wish to post to this
thread.

For each thread, postwait(2) remembers at most one unconsumed post. Posting to a
thread that has an unconsumed post has no effect.

For all postwait(2) services that have a rescheduling variable argument pointer, if that
pointer is non-NULL, the lock-count of the associated rescheduling variable is
decremented.

pw_wait() is used to consume a post. It is called with an optional timeout value and an
optional rescheduling variable. It returns a value of 1 if it consumes a post or 0 if timed-
out waiting for a post to consume.

If the time specified for the timeout value is greater than 0, the thread sleeps at most for
that amount of time waiting for a post to consume. 0 is returned if this period expires
without encountering a post. If the call is interrupted, EINTR is returned and the timeout
value is updated to reflect the amount of time remaining. If posted to during this interval,
or a previous unconsumed post is encountered, the post is consumed and 1 is returned.

If the timeout value is 0, pw_wait() will return immediately. It returns a 1 if it consumes
a previously unconsumed post or it returns EAGAIN if there was no post available to
consume.

If the pointer to the timeout value is NULL, the behavior is the same except that the thread
will never timeout. If interrupted, EINTR is returned but the timeout value, which by
definition is not specified, is not updated.

pw_post() sends a post to the thread identified by ukid. If that thread is waiting for a
post, the thread wakes up and consumes the post. If that thread was not waiting for a post,
the unconsumed post is remembered so that the next time that thread tries to wait for a
post, it will consume the saved post and return without warning. At most, one unconsumed
post can be remembered per thread.

pw_postv() can be used to post to multiple threads at once. These postings will be
atomic in the sense that none will be allowed to preempt the thread doing the posting until
all the postings are complete.

The ukids of the target threads must be put into the targets array. Errors for respective
targets are returned in the errors array. The number of entries used in the targets and
errors arrays must be passed in through the count argument.

pw_postv() returns a 0 if all succeed, or the error value of the last target to cause an
error if there are any errors.

pw_getvmax() returns the maximum number of targets that can be posted to with one
pw_postv() call. This value is determined by the PW_VMAX kernel tunable.

Refer to the postwait(2) man page for a listing of the types of errors that may occur.

Interprocess Synchronization

5-39

The Server System Calls 5

This set of system calls enables you to manipulate processes acting as servers using an
interface compatible with the PowerMAX operating system. These system calls are briefly
described as follows:

server_block blocks the calling process only if no wake-up request has occurred
since the last return from server_block. If a wake-up has
occurred, server_block returns immediately.

server_wake1 wakes server if it is blocked in the server_block system call;
if the specified server is not blocked in this call, the wake-up
request is applied to the server’s next call to server_block.

server_wakevec serves the same purpose as server_wake1, except that a vector
of processes may be specified rather than one process.

CAUTION

These system calls should be used only by single-threaded
processes. The global process ID of a multiplexed thread changes
according to the process on which the thread is currently
scheduled. Therefore, it is possible that the wrong thread will be
awakened or blocked when these interfaces are used by
multiplexed threads.

server_block 5

server_block blocks the calling process only if no wake-up request has occurred
since the last return from server_block.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_block(options, r, timeout)
int options;
struct resched_var *r;
struct timeval *timeout;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

options the value of this argument must be zero

r a pointer to the calling process’ rescheduling variable. This argument is
optional: its value can be NULL.

timeout a pointer to a timeval structure that contains the maximum length of
time the calling process will be blocked. This argument is optional: its
value can be NULL. If its value is NULL, there is no time out.

RedHawk Linux User’s Guide

5-40

The server_block system call returns immediately if the calling process has a pending
wake-up request; otherwise, it returns when the calling process receives the next wake-up
request. A return of 0 indicates that the call has been successful. A return of –1 indicates
that an error has occurred; errno is set to indicate the error. Note that upon return, the
calling process should retest the condition that caused it to block; there is no guarantee
that the condition has changed because the process could have been prematurely
awakened by a signal.

server_wake1 5

Server_wake1 is invoked to wake a server that is blocked in the server_block call.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wake1(server, r)
global_lwpid_t server;
struct resched_var *r;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

server the global process ID of the server process to be awakened

r a pointer to the calling process’ rescheduling variable. This argument is
optional; its value can be NULL.

It is important to note that to use the server_wake1 call, the real or effective user ID of
the calling process must match the real or saved [from exec] user ID of the process
specified by server.

Server_wake1 wakes the specified server if it is blocked in the server_block call.
If the server is not blocked in this call, the wake-up request is held for the server’s next
call to server_block. Server_wake1 also decrements the number of rescheduling
locks associated with the rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

Interprocess Synchronization

5-41

server_wakevec 5

The server_wakevec system call is invoked to wake a group of servers blocked in the
server_block call.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wakevec(servers, nservers, r)
global_lwpid_t *servers;
int nservers;
struct resched_var *r;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

servers a pointer to an array of the global process IDs of the server processes to
be awakened

nservers an integer value specifying the number of elements in the array

r a pointer to the calling process’ rescheduling variable. This argument is
optional; its value can be NULL.

It is important to note that to use the server_wakevec call, the real or effective user ID
of the calling process must match the real or saved [from exec] user IDs of the processes
specified by servers.

Server_wakevec wakes the specified servers if they are blocked in the
server_block call. If a server is not blocked in this call, the wake-up request is applied
to the server’s next call to server_block. Server_wakevec also decrements the
number of rescheduling locks associated with a rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

For additional information on the use of these calls, refer to the server_block(2)
man page.

RedHawk Linux User’s Guide

5-42

Applying Condition Synchronization Tools 5

The rescheduling variable, spin lock, and server system calls can be used to design
functions that enable a producer and a consumer process to exchange data through use of a
mailbox in a shared memory region. When the consumer finds the mailbox empty, it
blocks until new data arrives. After the producer deposits new data in the mailbox, it
wakes the waiting consumer. An analogous situation occurs when the producer generates
data faster than the consumer can process it. When the producer finds the mailbox full, it
blocks until the data is removed. After the consumer removes the data, it wakes the
waiting producer.

A mailbox can be represented as follows:

struct mailbox {
struct spin_mutex mx;/* serializes access to mailbox */
queue_of consumers: /* waiting consumers */
queue_of data; /* the data, type varies */

};

The mx field is used to serialize access to the mailbox. The data field represents the
information that is being passed from the producer to the consumer. The full field is
used to indicate whether the mailbox is full or empty. The producer field identifies the
process that is waiting for the mailbox to be empty. The consumer field identifies the
process that is waiting for the arrival of data.

Using the spin_acquire and the spin_release functions, a function to enable the
consumer to extract data from the mailbox can be defined as follows:

void
consume (box, data)

struct mailbox *box;
any_t *data;

{
spin_acquire (&box–>mx, &rv);
while (box–>data == empty) {

enqueue (box–>consumers, rv.rv_glwpid);
spin_unlock (&box–>mx);
server_block (0, &rv, 0);
spin_acquire (&box–>mx, &rv);

}
*data = dequeue (box–>data;
spin_release (&box–>mx, &rv);

}

Note that in this function, the consumer process locks the mailbox prior to checking for
and removing data. If it finds the mailbox empty, it unlocks the mailbox to permit the
producer to deposit data, and it calls server_block to wait for the arrival of data. When
the consumer is awakened, it must again lock the mailbox and check for data; there is no
guarantee that the mailbox will contain data—the consumer may have been awakened
prematurely by a signal.

Interprocess Synchronization

5-43

A similar function that will enable the producer to place data in the mailbox can be
defined as follows:

void
produce (box, data)

struct mailbox *box;
any_t data;

{
spin_acquire (&box–>mx, &rv);
enqueue (box–>data, data);
if (box–>consumer == empty)

spin_release (&box–>mx, &rv);
else {

global_lwpid_t id = dequeue (box–>consumers);
spin_unlock (&box->mx);
server_wake1 (id, &rv);

}
}

In this function, the producer process waits for the mailbox to empty before depositing
new data. The producer signals the arrival of data only when the consumer is waiting; note
that it does so after unlocking the mailbox. The producer must unlock the mailbox first so
that the awakened consumer can lock it to check for and remove data. Unlocking the
mailbox prior to the call to server_wake1 also ensures that the mutex is held for a short
time. To prevent unnecessary context switching, rescheduling is disabled until the
consumer is awakened.

RedHawk Linux User’s Guide

5-44

6-1

6
Chapter 6Programmable Clocks and Timers

6
4
6

This chapter provides an overview of some of the facilities that can be used for timing.
The POSIX clocks and timers interfaces are based on IEEE Standard 1003.1b-1993. The
clock interfaces provide a high-resolution clock, which can be used for such purposes as
time stamping or measuring the length of code segments. The timer interfaces provide a
means of receiving a signal or process wakeup asynchronously at some future time. In
addition, high-resolution system calls are provided which can be used to put a process to
sleep for a very short time quantum and specify which clock should be used for measuring
the duration of the sleep. Additional clocks and timers are provided by the RCIM PCI
card.

Understanding Clocks and Timers 6

Real-time applications must be able to operate on data within strict timing constraints in
order to schedule application or system events. High resolution clocks and timers allow
applications to use relative or absolute time based on a high resolution clock and to
schedule events on a one-shot or periodic basis. Applications can create multiple timers
for each process.

Several timing facilities are available on the iHawk system. These include POSIX clocks
and timers as well as non-interrupting clocks and real-time clock timers provided by the
Real-Time Clock and Interrupt Module (RCIM) PCI card. These clocks and timers and
their interfaces are explained in the sections that follow.

See Chapter 7 for information about system clocks and timers.

RCIM Clocks and Timers 6

The Real-Time Clock and Interrupt Module (RCIM) provides two non-interrupting clocks.
These clocks can be synchronized with other RCIMs when the RCIMs are chained
together. The RCIM clocks are:

tick clock a 64-bit non-interrupting clock that increments by one on each tick
of the common 400ns clock signal. This clock can be reset to zero
and synchronized across the RCIM chain providing a common time
stamp.

The tick clock can be read on any system, master or slave, using
direct reads when the device file /dev/rcim/sclk is mapped
into the address space of a program.

POSIX clock a 64-bit non-interrupting counter encoded in POSIX 1003.1 format.
The upper 32 bits contain seconds and the lower 32 bits contain
nanoseconds. This clock is incremented by 400 on each tick of the

RedHawk Linux User’s Guide

6-2

common 400ns clock signal. Primarily used as a high-resolution
local clock.

The RCIM POSIX clock is accessed in a manner similar to the tick
clock in that the same utilities and device files are used. The POSIX
clock can be loaded with any desired time; however, the value
loaded is not synchronized with other clocks in an RCIM chain.
Only the POSIX clock of the RCIM attached to the host is updated.

The RCIM also provides up to eight real-time clock (RTC) timers. Each of these counters
is accessible using a special device file and each can be used for almost any timing or
frequency control function. They are programmable to several different resolutions which,
when combined with a clock count value, provide a variety of timing intervals. This
makes them ideal for running processes at a given frequency (e.g., 100Hz) or for timing
code segments. In addition to being able to generate an interrupt on the host system, the
output of an RTC can be distributed to other RCIM boards for delivery to their
corresponding host systems, or delivered to external equipment attached to one of the
RCIM’s external output interrupt lines. The RTC timers are controlled by open(2),
close(2) and ioctl(2) system calls.

For complete information about the RCIM clocks and timers, refer to the Real-Time Clock
and Interrupt Module (RCIM) User’s Guide.

POSIX Clocks and Timers 6

The POSIX clocks provide a high-resolution mechanism for measuring and indicating
time.

There are two types of timers: one-shot and periodic. They are defined in terms of an
initial expiration time and a repetition interval. The initial expiration time indicates when
the timer will first expire. It may be absolute (for example, at 8:30 a.m.) or relative to the
current time (for example, in 30 seconds). The repetition interval indicates the amount of
time that will elapse between one expiration of the timer and the next. The clock to be
used for timing is specified when the timer is created.

A one-shot timer is armed with either an absolute or a relative initial expiration time and a
repetition interval of zero. It expires only once--at the initial expiration time--and then is
disarmed.

A periodic timer is armed with either an absolute or a relative initial expiration time and a
repetition interval that is greater than zero. The repetition interval is always relative to the
time at the point of the last timer expiration. When the initial expiration time occurs, the
timer is reloaded with the value of the repetition interval and continues counting. The
timer may be disarmed by setting its initial expiration time to zero.

The local timer is used as the interrupt source for scheduling POSIX timer expiries. See
Chapter 7 for information about the local timer.

Programmable Clocks and Timers

6-3

NOTE

Access to high resolution clocks and timers is provided by system
cal ls in both libccur_rt and librt ; however, the
libcurr_rt routines are being deprecated. It is suggested that
you use the routines in librt by always linking with ‘rt’ before
‘ccur_rt’; for example:

gcc [options] file -lrt -lccur_rt ...

Understanding the POSIX Time Structures 6

The POSIX routines related to clocks and timers use two structures for time
specifications: the timespec structure and the itimerspec structure. These structures
are defined in the file <time.h>.

The timespec structure specifies a single time value in seconds and nanoseconds. You
supply a pointer to a timespec structure when you invoke routines to set the time of a
clock or obtain the time or resolution of a clock (for information on these routines, see
“Using the POSIX Clock Routines”). The structure is defined as follows:

struct timespec {
 time_t tv_sec;
 long tv_nsec;
};

The fields in the structure are described as follows:

tv_sec specifies the number of seconds in the time value

tv_nsec specifies the number of additional nanoseconds in the time value.
The value of this field must be in the range zero to 999,999,999.

The itimerspec structure specifies the initial expiration time and the repetition interval
for a timer. You supply a pointer to an itimerspec structure when you invoke routines
to set the time at which a timer expires or obtain information about a timer’s expiration
time (for information on these routines, see “Using the POSIX Timer Routines”). The
structure is defined as follows:

struct itimerspec {
 struct timespec it_interval;
 struct timespec it_value;
};

The fields in the structure are described as follows.

it_interval specifies the repetition interval of a timer

it_value specifies the timer’s initial expiration

RedHawk Linux User’s Guide

6-4

Using the POSIX Clock Routines 6

The POSIX routines that allow you to perform a variety of functions related to clocks are
briefly described as follows:

clock_settime sets the time of a specified clock

clock_gettime obtains the time from a specified clock

clock_getres obtains the resolution in nanoseconds of a specified clock

Procedures for using each of these routines are explained in the sections that follow.

Using the clock_settime Routine 6

The clock_settime(2) system call allows you to set the time of the system time-of-
day clock, CLOCK_REALTIME. The calling process must have root or the CAP_SYS_NICE

capability. By definition, the CLOCK_MONOTONIC clocks cannot be set.

It should be noted that if you set CLOCK_REALTIME after system start-up, the following
times may not be accurate:

• file system creation and modification times

• times in accounting and auditing records

• the expiration times for kernel timer queue entries

Setting the system clock does not affect queued POSIX timers.

Synopsis

#include <time.h>

int clock_settime(clockid_t which_clock,
const struct timespec *setting);

The arguments are defined as follows:

which_clock the identifier for the clock for which the time will be set. Only
CLOCK_REALTIME can be set.

setting a pointer to a structure that specifies the time to which
which_clock is to be set. When which_clock is CLOCK_REALTIME,
the time-of-day clock is set to a new value. Time values that are
not integer multiples of the clock resolution are truncated down.

A return value of 0 indicates that the specified clock has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the clock_settime(2) man page for a listing of the types of errors that may occur.

Programmable Clocks and Timers

6-5

Using the clock_gettime Routine 6

The clock_gettime(2) system call allows you to obtain the time from a specified
clock. This call always returns the best available resolution for the clock, usually better
than one microsecond.

Synopsis

#include <time.h>

int clock_gettime(clockid_t which_clock, struct timespec
*setting);

The arguments are defined as follows:

which_clock the identifier for the clock from which to obtain the time. The
value of which_clock may be CLOCK_REALTIME or CLOCK_

MONOTONIC.

setting a pointer to a structure where the time of which_clock is returned.

A return value of 0 indicates that the call to clock_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_gettime(2) man page for a listing of the types of errors that may
occur.

Using the clock_getres Routine 6

The clock_getres(2) system call allows you to obtain the resolution in nanoseconds
of a specified clock. This resolution determines the rounding accuracy of timing expiries
set with clock_settime(2) and the precision used by clock_nanosleep(2) and
nanosleep(2) calls using the same clock.

The clock resolutions are system dependent and cannot be set by the user.

Synopsis

#include <time.h>

int clock_getres(clockid_t which_clock, struct timespec
*resolution);

The arguments are defined as follows:

which_clock the identifier for the clock for which you wish to obtain the
resolution. which_clock may be CLOCK_REALTIME or CLOCK_

MONOTONIC.

resolution a pointer to a structure where the resolution of which_clock is
returned

RedHawk Linux User’s Guide

6-6

A return value of 0 indicates that the call to clock_getres has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_getres(2) man page for a listing of the types of errors that may
occur.

Using the POSIX Timer Routines 6

Processes can create, remove, set, and query timers and may receive notification when a
timer expires.

The POSIX system calls that allow you to perform a variety of functions related to timers
are briefly described as follows:

timer_create creates a timer using a specified clock

timer_delete removes a specified timer

timer_settime arms or disarms a specified timer by setting
the expiration time

timer_gettime obtains the repetition interval for a specified
timer and the time remaining until the timer
expires

timer_getoverrun obtains the overrun count for a specified
periodic timer

nanosleep pauses execution for a specified time

clock_nanosleep provides a higher resolution pause based on
a specified clock

Procedures for using each of these system calls are explained in the sections that follow.

Using the timer_create Routine 6

The timer_create(2) system call allows the calling process to create a timer using a
specified clock as the timing source.

A timer is disarmed when it is created. It is armed when the process invokes the
timer_settime(2) system call (see “Using the timer_settime Routine” for an
explanation of this system call).

It is important to note the following:

• When a process invokes the fork system call, the timers that it has created
are not inherited by the child process.

• When a process invokes the exec system call, the timers that it has created
are disarmed and deleted.

Programmable Clocks and Timers

6-7

Linux threads in the same thread group can share timers. The thread which calls
timer_create will receive all of the signals, but other threads in the same threads
group can manipulate the timer through calls to timer_settime(2).

Synopsis

#include <time.h>
#include <signal.h>

int timer_create(clockid_t which_clock, struct sigevent
*timer_event_spec, timer_t created_timer_id);

The arguments are defined as follows:

which_clock the identifier for the clock to be used for the timer. The value of
which_clock must be CLOCK_REALTIME.

timer_event_spec
the null pointer constant or a pointer to a structure that specifies the
way in which the calling process is to be asynchronously notified of
the expiration of the timer:

NULL SIGALRM is sent to the process when the timer expires.

sigev_notify=SIGEV_SIGNAL

a signal specified by sigev_signo is sent to the process when
the timer expires.

sigev_notify=SIGEV_THREAD

the specified sigev_notify function is called in a new thread
with sigev_value as the argument when the timer expires.
Currently not supported in -lccur_rt; to use, link first to
-lrt.

sigev_notify=SIGEV_THREAD_ID

the sigev_notify_thread_id number should contain the
pthread_t id of the thread that is to receive the signal
sigev_signo when the timer expires.

sigev_notify=SIGEV_NONE

no notification is delivered when the timer expires

NOTE

The signal denoting expiration of the timer may cause the process
to terminate unless it has specified a signal-handling system call.
To determine the default action for a particular signal, refer to the
signal(2) man page.

created_timer_id
a pointer to the location where the timer ID is stored. This identifier is
required by the other POSIX timer system calls and is unique within
t h e c a l l i n g p r o c e s s u n t i l t h e t i m e r i s d e l e t e d b y t h e
timer_delete(2) system call.

A return value of 0 indicates that the call to timer_create has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_create(2) man page for a listing of the types of errors that may
occur.

RedHawk Linux User’s Guide

6-8

Using the timer_delete Routine 6

The timer_delete(2) system call allows the calling process to remove a specified
timer. If the selected timer is already started, it will be disabled and no signals or actions
assigned to the timer will be delivered or executed. A pending signal from an expired
timer, however, will not be removed.

Synopsis

#include <time.h>

int timer_delete(timer_t timer_id);

The argument is defined as follows:

timer_id the identifier for the timer to be removed. This identifier comes
from a previous call to timer_create(2) (see “Using the
timer_create Routine” for an explanation of this system call).

A return value of 0 indicates that the specified timer has been successfully removed. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_delete(2) man page for a listing of the types of errors that may
occur.

Using the timer_settime Routine 6

The timer_settime(2) system call allows the calling process to arm a specified
timer by setting the time at which it will expire. The time to expire is defined as absolute
or relative. A calling process can use this system call on an armed timer to (1) disarm the
timer or (2) reset the time until the next expiration of the timer.

Synopsis

#include <time.h>

int timer_settime(timer_t timer_id, int flags, const struct
itimerspec *new_setting, const struct itimerspec *old_setting);

The arguments are defined as follows:

timer_id the identifier for the timer to be set. This identifier comes from a
previous call to timer_create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

flags an integer value that specifies one of the following:

TIMER_ABSTIME causes the selected timer to be armed with an
absolute expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified by it_value. If this
time has already passed, timer_settime

Programmable Clocks and Timers

6-9

succeeds, and the timer-expiration notification
is made.

0 causes the selected timer to be armed with a
relative expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified by it_value.

new_setting a pointer to a structure that contains the repetition interval and the
initial expiration time of the timer.

If you wish to have a one-shot timer, specify a repetition interval
(it_interval) of zero. In this case, the timer expires once, when the
initial expiration time occurs, and then is disarmed.

If you wish to have a periodic timer, specify a repetition interval
(it_interval) that is not equal to zero. In this case, when the initial
expiration time occurs, the timer is reloaded with the value of the
repetition interval and continues to count.

In either case, you may set the initial expiration time to a value that is
absolute (for example, at 3:00 p.m.) or relative to the current time (for
example, in 30 seconds). To set the initial expiration time to an
absolute time, you must have set the TIMER_ABSTIME bit in the flags
argument. Any signal that is already pending due to a previous timer
expiration for the specified timer will still be delivered to the process.

To disarm the timer, set the initial expiration time to zero. Any signal
that is already pending due to a previous timer expiration for this
timer will still be delivered to the process.

old_setting the null pointer constant or a pointer to a structure to which the
previous repetition interval and initial expiration time of the timer are
returned. If the timer has been disarmed, the value of the initial
expiration time is zero. The members of old_setting are subject to the
resolution of the timer and are the same values that would be returned
by a timer_gettime(2) call at that point in time.

A return value of 0 indicates that the specified timer has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the timer_settime(2) man page for a listing of the types of errors that may occur.

Using the timer_gettime Routine 6

The timer_gettime(2) system call allows the calling process to obtain the repetition
interval for a specified timer and the amount of time remaining until the timer expires.

Synopsis

#include <time.h>

int timer_gettime(timer_t timer_id, struct itimerspec
*setting);

RedHawk Linux User’s Guide

6-10

The arguments are defined as follows:

timer_id the identifier for the timer whose repetition interval and time
remaining are requested. This identifier comes from a previous
call to timer_create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

setting a pointer to a structure to which the repetition interval and the
amount of time remaining on the timer are returned. The amount
of time remaining is relative to the current time. If the timer is
disarmed, the value is zero.

A return value of 0 indicates that the call to timer_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_gettime(2) man page for a listing of the types of errors that may
occur.

Using the timer_getoverrun Routine 6

The timer_getoverrun(2) system call allows the calling process to obtain the
overrun count for a particular periodic timer. A timer may expire faster than the system
can deliver signals to the application. If a signal is still pending from a previous timer
expiration rather than queuing another signal, a count of missed expirations is maintained
with the pending signal. This is the overrun count.

Timers may overrun because the signal was blocked by the application or because the
timer was over-committed.

Assume that a signal is already queued or pending for a process with a timer using timer-
expiration notification SIGEV_SIGNAL. If this timer expires while the signal is queued or
pending, a timer overrun occurs, and no additional signal is sent.

NOTE

You must invoke this system call from the timer-expiration signal-
handling. If you invoke it outside this system call, the overrun
count that is returned is not valid for the timer-expiration signal
last taken.

Synopsis

#include <time.h>

int timer_getoverrun(timer_t timer_id);

The argument is defined as follows:

timer_id the identifier for the periodic timer for which you wish to obtain
the overrun count. This identifier comes from a previous call to
timer_create(2) (see “Using the timer_create Routine” for
an explanation of this system call).

Programmable Clocks and Timers

6-11

If the call is successful, timer_getoverrun returns the overrun count for the specified
timer. This count cannot exceed DELAYTIMER_MAX in the file <limits.h>. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the timer_getoverrun(2) man page for a listing of the types of errors that may
occur.

Using the POSIX Sleep Routines 6

The nanosleep(2) and the clock_nanosleep(2) POSIX system calls provide a
high-resolution sleep mechanism that causes execution of the calling process or thread to
be suspended until (1) a specified period of time elapses or (2) a signal is received and the
associated action is to execute a signal-handling system call or terminate the process.

The clock_nanosleep(2) system call provides a high-resolution sleep with a
specified clock. It suspends execution of the currently running thread until the time
specified by rqtp has elapsed or until the thread receives a signal.

The use of these system calls has no effect on the action or blockage of any signal.

Using the nanosleep Routine 6

Synopsis

#include <time.h>

int nanosleep(const struct timespec *req, struct timespec
*rem);

Arguments are defined as follows:

req a pointer to a timespec structure that contains the length of time
that the process is to sleep. The suspension time may be longer
than requested because the req value is rounded up to an integer
multiple of the sleep resolution or because of the scheduling of
other activity by the system. Except for the case of being
interrupted by a signal, the suspension time will not be less than
the time specified by req, as measured by CLOCK_REALTIME. You
will obtain a resolution of one microsecond on the blocking
request.

rem the null pointer constant or a pointer to a timespec structure to
which the amount of time remaining in the sleep interval is
returned if nanosleep is interrupted by a signal. If rem is NULL

and nanosleep is interrupted by a signal, the time remaining is
not returned.

A return value of 0 indicates that the requested period of time has elapsed. A return value
of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
nanosleep(2) man page for a listing of the types of errors that may occur.

RedHawk Linux User’s Guide

6-12

Using the clock_nanosleep Routine 6

Synopsis

#include <time.h>

int clock_nanosleep(clockid_t which_clock, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

The arguments are defined as follows:

which_clock the identifier for the clock to be used. The value of which_clock may
be CLOCK_REALTIME or CLOCK_MONOTONIC.

flags an integer value that specifies one of the following:

TIMER_ABSTIME interprets the time specified by rqtp to be
absolute with respect to the clock value
specified by which_clock.

0 interprets the time specified by rqtp to be
relative to the current time.

rqtp a pointer to a timespec structure that contains the length of time
that the process is to sleep. If the TIMER_ABSTIME flag is specified and
the time value specified by rqtp is less than or equal to the current
time value of the specified clock (or the clock's value is changed to
such a time), the function will return immediately. Further, the time
slept is affected by any changes to the clock after the call to
clock_nanosleep(2). That is, the call will complete when the
actual time is equal to or greater than the requested time no matter
how the clock reaches that time, via setting or actual passage of time
or some combination of these.

The time slept may be longer than requested as the specified time
value is rounded up to an integer multiple of the clock resolution, or
due to scheduling and other system activity. Except for the case of
interruption by a signal, the suspension time is never less than
requested.

rmtp If TIMER_ABSTIME is not specified, the timespec structure pointed
to by rmtp is updated to contain the amount of time remaining in the
interval (i.e., the requested time minus the time actually slept). If
rmtp is NULL, the remaining time is not set. The rmtp value is not set
in the case of an absolute time value.

On success, clock_nanosleep returns a value of 0 after at least the specified time has
elapsed. On failure, clock_nanosleep returns the value -1 and errno is set to
indicate the error. Refer to the clock_nanosleep(2) man page for a listing of the
types of errors that may occur.

7-1

7
Chapter 7System Clocks and Timers

7
5
7

This chapter describes system timekeeping, the local timer and the effect of disabling the
local timer on system functions.

System Timekeeping 7

Standard Linux system timekeeping uses a “clocksource” mechanism that includes
separate architecture drivers that consist of a routine to read the value of the timer and
calibration values to convert timer counts to nanoseconds.

In RedHawk, a TSC based clock is used to satisfy most timekeeping requests. Kernel
tunables REQUIRE_TSC and REQUIRE_RELIABLE_TSC, accessible under Processor Type &
Features on the Kernel Configuration GUI, are enabled in the pre-built kernels by default
to ensure that aspects of power management that are known to damage the reliability of
the TSC are not configured in the kernel.

In addition, the TSC is disciplined to a second clocksource to improve the stability of the
clock. When an RCIM is present in the system, the RCIM is used as the second
clocksource; otherwise, the HPET or PM timer is used.

R e a d i n g t h e f i l e /sys/devices/system/clocksource/clocksource0/
current_clocksource displays the current secondary clocksource. Writing the name of
another clocksource to this file using echo(1) will change the assignment.

Boot command line options are available to check the BIOS for proper TSC
synchronization and if the TSCs are not synced correctly resync them at the end of the
boot (tsc_sync=auto [this is the default]), force resynchronization (tsc_sync=force), and
check the BIOS and if not synced correctly disable the TSCs as a possible clocksource
(tsc_sync=check). Note that hotplugged CPUs do not have an opportunity to be re-synced
by the operating system. For them, only TSC sync checking is available.

See the txt files in the /kernel-source/Documentation/hrtimers to learn more
about these timekeeping features.

Local Timer 7

On Concurrent’s iHawk systems, each CPU has a local (private) timer which is used as a
source of periodic interrupts local to that CPU. By default these interrupts occur 100 times
per second and are staggered in time so that only one CPU is processing a local timer
interrupt at a time.

The local timer interrupt routine performs the following local timing functions, which are
explained in more detail in the sections that follow:

RedHawk Linux User’s Guide

7-2

• gathers CPU utilization statistics, used by top(1) and other utilities

• causes the process running on the CPU to periodically consume its time
quantum

• causes the running process to release the CPU in favor of another running
process when its time quantum is used up

• periodically balances the load of runnable processes across CPUs

• implements process and system profiling

• implements system time-of-day (wall) clock and execution time quota limits
for those processes that have this feature enabled

• provides the interrupt source for POSIX timers

• polls for a quiescent state on each CPU to free data structures during read
copy update (RCU) processing

• updates the system time-of-day (wall) clock and ticks-since-boot times

• dispatches events off the system timer list. This includes driver watchdog
timers and process timer functions such as alarm(2)

Shielding local timers limits the use of the local timer to scheduling events which are
requested by processes that have affinity to the local CPU. Local timer shielding works
with process shielding by moving less important work to an unshielded CPU. This
improves both the worst-case interrupt response time and the determinism of program
execution on the CPU as described in the “Real-Time Performance” chapter. However,
disabling the local timer has an effect on some functionality normally provided by
RedHawk Linux. These effects are described below.

Functionality 7

The local timer performs the functions described in the sections below. The effect of
disabling the local timer is discussed as well as viable alternatives for some of the features.

CPU Accounting 7

Per-process CPU utilization is reported by utilities such as top(1) and ps(1). These
utilities gather CPU utilization statistics from system services such as times(2),
wait4(2), sigaction(2), and acct(2).

On standard non-RedHawk Linux kernels, these services are dependent on the local timer
to determine process cpu utilization. However, RedHawk kernels use the high resolution
process accounting facility instead of the local timer to accomplish this. High resolution
process accounting continues to function even when the local timer is disabled.

High resolution process accounting is enabled in all pre-built RedHawk kernels via the
HRACCT kernel tunable accessible under General Setup on the Kernel Configuration
GUI. Refer to the hracct(3) and hracct(7) man pages for complete information
about this facility.

System Clocks and Timers

7-3

Process Execution Time Quanta and Limits 7

The local timer is used to expire the quantum of processes scheduled in the SCHED_OTHER

and SCHED_RR scheduling policies. This allows processes of equal scheduling priority to
share the CPU in a round-robin fashion. If the local timer is disabled on a CPU, processes
on that CPU will no longer have their quantum expired. This means that a process
executing on this CPU will run until it either blocks, or until a higher priority process
becomes ready to run. In other words, on a CPU where the local timer interrupt is
disabled, a process scheduled in the SCHED_RR scheduling policy will behave as if it were
scheduled in the SCHED_FIFO scheduling policy. Note that processes scheduled on CPUs
where the local timer is still enabled are unaffected. For more information about process
scheduling policies, see Chapter 4, “Process Scheduling”.

The setrlimit(2) and getrlimit(2) system calls allow a process to set and get a
limit on the amount of CPU time that a process can consume. When this time period has
expired, the process is sent the signal SIGXCPU. The accumulation of CPU time is done in
the local timer interrupt routine. Therefore if the local timer is disabled on a CPU, the time
that a process executes on the CPU will not be accounted for. If this is the only CPU where
the process executes, it will never receive a SIGXCPU signal.

Interval Timer Decrementing 7

The setitimer(2) and getitimer(2) system calls allow a process to set up a
“virtual timer” and obtain the value of the timer, respectively. A virtual timer is
decremented only when the process is executing. There are two types of virtual timers:
one that decrements only when the process is executing at user level, and one that is
decremented when the process is executing at either user level or kernel level. When a
virtual timer expires, a signal is sent to the process. Decrementing virtual timers is done in
the local timer routine. Therefore when the local timer is disabled on a CPU, none of the
time used will be decremented from the virtual timer. If this is the only CPU where the
process executes, then its virtual timer will never expire.

System Profiling 7

The local timer drives system profiling. The sample that the profiler records is triggered
by the firing of the local timer interrupt. If the local timer is disabled on a given CPU, the
gprof(1) command and profil(2) system service will not function correctly for
processes that run on that CPU.

CPU Load Balancing 7

The local timer interrupt routine will periodically call the load balancer to be sure that the
number of runnable processes on this CPU is not significantly lower than the number of
runnable processes on other CPUs in the system. If this is the case, the load balancer will
steal processes from other CPUs to balance the load across all CPUs. On a CPU where the
local timer interrupt has been disabled, the load balancer will only be called when the CPU
has no processes to execute. The loss of this functionality is generally not a problem for a
shielded CPU because it is generally not desirable to run background processes on a
shielded CPU.

RedHawk Linux User’s Guide

7-4

CPU Rescheduling 7

The RESCHED_SET_LIMIT function of the resched_cntl(2) system call allows a user
to set an upper limit on the amount of time that a rescheduling variable can remain locked.
The SIGABRT signal is sent to the process when the time limit is exceeded. This feature is
provided to debug problems during application development. When a process with a
locked rescheduling variable is run on a CPU on which the local timer is disabled, the time
limit is not decremented and therefore the signal may not be sent when the process
overruns the specified time limit.

POSIX Timers 7

The local timer provides the timing source for POSIX timers. If a CPU is shielded from
local timer interrupts, the local timer interrupts will still occur on the shielded CPU if a
process on that CPU has an active POSIX timer or nanosleep(2) function. If a process
is not allowed to run on the shielded CPU, its timers will be migrated to a CPU where the
process is allowed to run.

RCU Processing 7

The kernel read copy update (RCU) code traditionally relies on the local timer to poll for a
quiescent state on each CPU to free data structures. When a CPU is shielded from local
timer interrupts, that CPU can no longer perform the needed RCU processing. A
synchronization mechanism launches RCU processing at an arbitrary point and completes
without waiting for a timer driven poll, eliminating the local timer’s participation in RCU
processing. This synchronization occurs when the RCU_ALTERNATIVE kernel parameter is
set in conjuction with the SHIELD parameter, which is the default in all pre-built kernels.
When RCU_ALTERNATIVE is not set in the kernel, the RCU code uses the local timer.

Miscellaneous 7

In addition to the functionality listed above, some of the functions provided by some
standard Linux commands and utilities may not function correctly on a CPU if its local
timer is disabled. These include:

bash(1)
sh(1)
strace(1)

For more information about these commands and utilities, refer to the corresponding man
pages.

Disabling the Local Timer 7

By shielding local timers, the local timer is disabled for any mix of CPUs. Shielding is
done via the shield(1) command or by assigning a hexadecimal value to
/proc/shield/ltmrs. This hexadecimal value is a bitmask of CPUs; the radix
position of each bit identifies one CPU and the value of that bit specifies whether or not

System Clocks and Timers

7-5

that CPU’s local timer is to be disabled (=1) or enabled (=0). See Chapter 2, “Real-Time
Performance” and the shield(1) man page for more information.

RedHawk Linux User’s Guide

7-6

8-1

8
Chapter 8File Systems and Disk I/O

This chapter describes the xfs journaling file system and the procedures for performing
direct disk I/O on the RedHawk Linux operating system.

Journaling File System 8

Traditional file systems must perform special file system checks after an interruption,
which can take many hours to complete depending upon how large the file system is. A
journaling file system is a fault-resilient file system, ensuring data integrity by
maintaining a special log file called a journal. When a file is updated, the file’s metadata
are written to the journal on disk before the original disk blocks are updated. If a system
crash occurs before the journal entry is committed, the original data is still on the disk and
only new changes are lost. If the crash occurs during the disk update, the journal entry
shows what was supposed to have happened. On reboot, the journal entries are replayed
and the update that was interrupted is completed. This drastically cuts the complexity of a
file system check, reducing recovery time.

Support for the XFS journaling file system from SGI is enabled by default in RedHawk
Linux. XFS is a multithreaded, 64-bit file system capable of handling files as large as a
million terabytes. In addition to large files and large file systems, XFS can support
extended attributes, variable block sizes, is extent based and makes extensive use of
Btrees (directories, extents, free space) to aid both performance and scalability. Both user
and group quotas are supported.

The journaling structures and algorithms log read and write data transactions rapidly,
minimizing the performance impact of journaling. XFS is capable of delivering near-raw
I/O performance.

Extended attributes are name/value pairs associated with a file. Attributes can be attached
to regular files, directories, symbolic links, device nodes and all other types of inodes.
Attribute values can contain up to 64KB of arbitrary binary data. Two attribute
namespaces are available: a user namespace available to all users protected by the normal
file permissions, and a system namespace accessible only to privileged users. The system
namespace can be used for protected file system metadata such as access control lists
(ACLs) and hierarchical storage manage (HSM) file migration status.

NFS Version 3 can be used to export 64-bit file systems to other systems that support that
protocol. NFS V2 systems have a 32-bit limit imposed by the protocol.

Backup and restore of XFS file systems to local and remote SCSI tapes or files is done
using xfsdump and xfsrestore. Dumping of extended attributes and quota
information is supported.

RedHawk Linux User’s Guide

8-2

The Data Management API (DMAPI/XDSM) allows implementation of hierarchical
storage management software as well as high-performance dump programs without
requiring raw access to the disk and knowledge of file system structures.

A full set of tools is provided with XFS. Extensive documentation for the XFS file system
can be found at:

http://oss.sgi.com/projects/xfs/

Creating an XFS File System 8

To create an XFS file system, the following is required:

• Identify a partition on which to create the XFS file system. It may be from a
new disk, unpartitioned space on an existing disk, or by overwriting an
existing partition. Refer to the fdisk(1) man page if creating a new
partition.

• Use mkfs.xfs(8) to create the XFS file system on the partition. If the
target disk partition is currently formatted for a file system, use the -f
(force) option.

mkfs.xfs [-f] /dev/devfile

where devfile is the partition where you wish to create the file system; e.g.,
sdb3. Note that this will destroy any data currently on that partition.

Mounting an XFS File System 8

Use the mount(8) command to mount an XFS file system:

mount -t xfs /dev/devfile /mountpoint

Refer to the mount(8) man page for options available when mounting an XFS file
system.

Because XFS is a journaling file system, before it mounts the file system it will check the
transaction log for any unfinished transactions and bring the file system up to date.

Data Management API (DMAPI) 8

DMAPI is the mechanism within the XFS file system for passing file management
requests between the kernel and a hierarchical storage management system (HSM).

To build DMAPI, set the XFS_DMAPI system parameter accessible under File Systems on
the Kernel Configuration GUI as part of your build.

http://oss.sgi.com/projects/xfs/

File Systems and Disk I/O

8-3

For more information about building DMAPI, refer to

http://oss.sgi.com/projects/xfs/dmapi.html

Direct Disk I/O 8

Normally, all reads and writes to a file pass through a file system cache buffer. Some
applications, such as database programs, may need to do their own caching. Direct I/O is
an unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct I/O, the
file system transfers data directly between the disk and the user-supplied buffer.

RedHawk Linux enables a user process to both read directly from--and write directly to--
disk into its virtual address space, bypassing intermediate operating system buffering and
increasing disk I/O speed. Direct disk I/O also reduces system overhead by eliminating
copying of the transferred data.

To set up a disk file for direct I/O use the open(2) or fcntl(2) system call. Use one
of the following procedures:

• Invoke the open system call from a program; specify the path name of a
disk file; and set the O_DIRECT bit in the oflag argument.

• For an open file, invoke the fcntl system call; specify an open file
descriptor; specify the F_SETFL command, and set the O_DIRECT bit in the arg
argument.

Direct disk I/O transfers must meet all of the following requirements:

• The user buffer must be aligned on a byte boundary that is an integral
multiple of the _PC_REC_XFER_ALIGN pathconf(2) variable.

• The current setting of the file pointer locates the offset in the file at which to
start the next I/O operation. This setting must be an integral multiple of the
value returned for the _PC_REC_XFER_ALIGN pathconf(2) variable.

• The number of bytes transferred in an I/O operation must be an integral
multiple of the value returned for the _PC_REC_XFER_ALIGN pathconf(2)
variable.

Enabling direct I/O for files on file systems not supporting direct I/O returns an error.
Trying to enable direct disk I/O on a file in a file system mounted with the file system-
specific soft option also causes an error. The soft option specifies that the file system
need not write data from cache to the physical disk until just before unmounting.

Although not recommended, you can open a file in both direct and cached (nondirect)
modes simultaneously, at the cost of degrading the performance of both modes.

Using direct I/O does not ensure that a file can be recovered after a system failure. You
must set the POSIX synchronized I/O flags to do so.

You cannot open a file in direct mode if a process currently maps any part of it with the
mmap(2) system call. Similarly, a call to mmap fails if the file descriptor used in the call
is for a file opened in direct mode.

http://oss.sgi.com/projects/xfs/dmapi.html

RedHawk Linux User’s Guide

8-4

Whether direct I/O provides better I/O throughput for a task depends on the application:

• All direct I/O requests are synchronous, so I/O and processing by the
application cannot overlap.

• Since the operating system cannot cache direct I/O, no read-ahead or write-
behind algorithm improves throughput.

However, direct I/O always reduces system-wide overhead because data moves directly
from user memory to the device with no other copying of the data. Savings in system
overhead is especially pronounced when doing direct disk I/O between an embedded SCSI
disk controller (a disk controller on the processor board) and local memory on the same
processor board.

9-1

9
Chapter 9Memory Mapping

This chapter describes the methods provided by RedHawk Linux for a process to access
the contents of another process’ address space.

Establishing Mappings to a Target Process’ Address Space 9

For each running process, the /proc file system provides a file that represents the
address space of the process. The name of this file is /proc/pid/mem, where pid denotes
the ID of the process whose address space is represented. A process can open(2) a
/proc/pid/mem file and use the read(2) and write(2) system calls to read and
modify the contents of another process’ address space.

The usermap(3) library routine, which resides in the libccur_rt library, provides
applications with a way to efficiently monitor and modify locations in currently executing
programs through the use of simple CPU reads and writes.

The underlying kernel support for this routine is the /proc file system mmap(2) system
service call, which lets a process map portions of another process’ address space into its
own address space. Thus, monitoring and modifying other executing programs becomes
simple CPU reads and writes within the application’s own address space, without
incurring the overhead of /proc file system read(2) and write(2) calls.

The sections below describe these interfaces and lists considerations when deciding
whether to use mmap(2) or usermap(3) within your application.

Using mmap(2) 9

A process can use mmap(2) to map a portion of its address space to a /proc/pid/mem
file, and thus directly access the contents of another process’ address space. A process that
establishes a mapping to a /proc/pid/mem file is hereinafter referred to as a monitoring
process. A process whose address space is being mapped is referred to as a target process.

To establish a mapping to a /proc/pid/mem file, the following requirements must be
met:

• The file must be opened with at least read permission. If you intend to
modify the target process’ address space, then the file must also be opened
with write permission.

• On the call to mmap to establish the mapping, the flags argument should
specify the MAP_SHARED option, so that reads and writes to the target
process’ address space are shared between the target process and the
monitoring process.

RedHawk Linux User’s Guide

9-2

• The target mappings must be to real memory pages and not within a
HUGETLB area. The current implementation does not support the creation of
mappings to HUGETLB areas.

It is important to note that a monitoring process’ resulting mmap mapping is to the target
process’ physical memory pages that are currently mapped in the range [offset, offset +
length). As a result, a monitoring process’ mapping to a target process’ address space can
become invalid if the target’s mapping changes after the mmap call is made. In such
circumstances, the monitoring process retains a mapping to the underlying physical pages,
but the mapping is no longer shared with the target process. Because a monitoring process
cannot detect that a mapping is no longer valid, you must make provisions in your
application for controlling the relationship between the monitoring process and the target.
(The notation [start, end) denotes the interval from start to end, including start but
excluding end.)

Circumstances in which a monitoring process’ mapping to a target process’ address space
becomes invalid are:

• The target process terminates.

• The target process unmaps a page in the range [offset, offset + length) with
either munmap(2) or mremap(2).

• The target process maps a page in the range [offset, offset + length) to a
different object with mmap(2).

• The target process invokes fork(2) and writes into an unlocked, private,
writable page in the range [offset, offset + length) before the child process
does. In this case, the target process receives a private copy of the page, and
its mapping and write operation are redirected to the copied page. The
monitoring process retains a mapping to the original page.

• The target process invokes fork(2) and then locks into memory a private,
writable page in the range [offset, offset + length), where this page is still
being shared with the child process (the page is marked copy-on-write). In
this case, the process that performs the lock operation receives a private copy
of the page (as though it performed the first write to the page). If it is the
target (parent) process that locks the page, then the monitoring process’
mapping is no longer valid.

• The target process invokes mprotect(2) to enable write permission on a
locked, private, read-only page in the range [offset, offset + length) that is
still being shared with the child process (the page is marked copy-on-write).
In this case, the target process receives a private copy of the page. The
monitoring process retains a mapping to the original memory object.

If your application is expected to be the target of a monitoring process’ address space
mapping, you are advised to:

• Perform memory-locking operations in the target process before its address
space is mapped by the monitoring process.

• Prior to invoking fork(2), lock into memory any pages for which
mappings by the parent and the monitoring process need to be retained.

If your application is not expected to be the target of address space mapping, you may
wish to postpone locking pages in memory until after invoking fork.

Please refer to the mmap(2) man page for additional details.

Memory Mapping

9-3

Using usermap(3) 9

In addition to the /proc file system mmap(2) system service call support, RedHawk
Linux also provides the usermap(3) library routine as an alternative method for
mapping portions of a target process’ address space into the virtual address space of the
monitoring process. This routine resides in the libccur_rt library.

While the usermap library routine internally uses the underlying /proc mmap system
service call interface to create the target address space mappings, usermap does provide
the following additional features:

• The caller only has to specify the virtual address and length of the virtual
area of interest in the target process’ address space. The usermap routine
will deal with the details of converting this request into a page aligned
starting address and a length value that is a multiple of the page size before
calling mmap.

• The usermap routine is intended to be used for mapping multiple target
process data items, and therefore it has been written to avoid the creation of
redundant mmap mappings. usermap maintains internal mmap information
about all existing mappings, and when a requested data item mapping falls
within the range of an already existing mapping, then this existing mapping
is re-used, instead of creating a redundant, new mapping.

• When invoking mmap, you must supply an already opened file descriptor. It
is your responsibility to open(2) and close(2) the target process’ file
descriptor at the appropriate times.

When using usermap, the caller only needs to specify the process ID
(pid_t) of the target process. The usermap routine will deal with opening
the correct /proc/pid/mem file. It will also keep this file descriptor open,
so that additional usermap(3) calls for this same target process ID will
not require re-opening this /proc file descriptor.

Note that leaving the file descriptor open may not be appropriate in all cases.
However, it is possible to explicitly close the file descriptor(s) and flush the
internal mapping information that usermap is using by calling the routine
with a “len” parameter value of 0. It is recommended that the monitoring
process use this close-and-flush feature only after all target mappings have
been created, so that callers may still take advantage of the optimizations
that are built into usermap. Please see the usermap(3) man page for
more details on this feature.

Note that the same limitations discussed under “Using mmap(2)” about a monitoring
process’ mappings becoming no longer valid also apply to usermap mappings, since the
usermap library routine also internally uses the same underlying /proc/pid/mem
mmap(2) system call support.

For more information on the use of the usermap(3) routine, refer to the usermap(3)
man page.

RedHawk Linux User’s Guide

9-4

Considerations 9

In addition to the previously mentioned usermap features, it is recommended that you
also consider the following remaining points when deciding whether to use the
usermap(3) library routine or the mmap(2) system service call within your
application:

• The mmap(2) system call is a standard System V interface, although the
capability of using it to establish mappings to /proc/pid/mem files is a
Concurrent RedHawk Linux extension. The usermap(3) routine is
entirely a Concurrent RedHawk Linux extension.

• Mmap(2) provides direct control over the page protections and location of
mappings within the monitoring process. usermap(3) does not.

Kernel Configuration Parameters 9

There are two Concurrent RedHawk Linux kernel configuration parameters that directly
affect the behavior of the /proc file system mmap(2) calls. Because usermap(3)
also uses the /proc file system mmap(2) support, usermap(3) is equally affected by
these configuration parameters.

The kernel configuration parameters are accessible under Pseudo File Systems on the
Kernel Configuration GUI:

PROCMEM_MMAP If this kernel configuration parameter is enabled, the /proc
file system mmap(2) support will be built into the kernel.

If this kernel configuration parameter is disabled, no /proc
file system mmap(2) support is built into the kernel. In this
case, usermap(3) and /proc mmap(2) calls will return
an errno value of ENODEV.

This kernel configuration parameter is enabled by default in all
Concurrent RedHawk Linux kernel configuration files.

PROCMEM_ANYONE

If this kernel configuration parameter is enabled, any
/proc/pid/mem file that the monitoring process is able to
successfully open(2) with read or read/write access may be
used as the target process for a /proc mmap(2) or user-
map(3) call.

If this kernel configuration parameter is disabled, the monitor-
ing process may only /proc mmap(2) or usermap(3) a
target process that is currently being ptraced by the monitoring
process. Furthermore, the ptraced target process must also be
in a stopped state at the time the /proc mmap(2) system
service call is made. (See the ptrace(2) man page for more
information on ptracing other processes.)

This kernel configuration parameter is enabled by default in all
Concurrent RedHawk Linux kernel configuration files.

10-1

10
Chapter 10Non-Uniform Memory Access (NUMA)

NUMA support, available on AMD Opteron systems and modern Intel systems (including
Nehalem, Sandy Bridge, Ivy Bridge, etc.), allows you to influence the memory location
from which a program’s pages are to be allocated.

Overview 10

On a system with non-uniform memory access (NUMA), it takes longer to access some
regions of memory than others. A multiprocessor AMD Opteron (or modern Intel) system
is a NUMA architecture. This is because each CPU chip is associated with its own
memory resources. The CPU and its associated memory are located on a unique physical
bus. A CPU may quickly access the memory region that is on its local memory bus, but
other CPUs must traverse one or more additional physical bus connections to access
memory which is not local to that CPU. The relationship between CPUs and buses is
shown in Figure 10-1.

Figure 10-1 CPU/Bus Relationship on a NUMA System

This means that the time to access memory on an AMD Opteron (or modern Intel) system
is going to be dependent upon the CPU where a program runs and the memory region
where the program’s pages are allocated.

A NUMA node is defined to be one region of memory and all CPUs that reside on the
same physical bus as the memory region of the NUMA node. During system boot the
kernel determines the NUMA memory-to-CPU layout, creating structures that define the
association of CPUs and NUMA nodes. On current NUMA systems, the physical bus
where a memory region resides is directly connected to only one CPU.

To get optimal performance, a program must run on a CPU that is local to the memory
pages being utilized by that program. The NUMA interfaces described in this chapter
allow a program to specify the node from which a program’s pages are allocated, and to
shield NUMA node(s) so that user pages are migrated to/from the shielded nodes’

CPU 1 CPU 2

CPU 3 CPU 4

to I/O devices

CPU 1
local memory

CPU 2
local memory

CPU 3
local memory

CPU 4
local memory

RedHawk Linux User’s Guide

10-2

memory to reduce the amount of remote memory accesses for real-time applications.
When coupled with the mechanisms for setting a process’ CPU affinity, these interfaces
allow a program to obtain very deterministic memory access times.

NUMA support is available only on iHawk systems with AMD Opteron and modern Intel
processors. It is possible to configure a NUMA system so that some CPUs do not have any
memory that is local. In this situation the CPUs with no memory will either be assigned to
a NUMA node with no memory resources (32-bit mode) or be artifically assigned to a
NUMA node with the memory (64-bit mode). In either case, all of the memory accesses
from the CPU will be remote memory accesses. This affects the memory performance of
processes executing on CPUs with no local memory as well as those processes executing
on NUMA nodes where the remote access requests are occurring. This is not an optimal
configuration for deterministic program execution.

Refer to the section “Configuration” later in this chapter for configuration details. Refer to
the section “Performance Guidelines” for more information on how to optimize memory
performance and to obtain deterministic memory access time. Note that deterministic
memory access is crucial for obtaining deterministic program execution times.

Memory Policies 10

NUMA support implements the concept of memory policies. These memory policies are
applied task-wide on a per-user-task basis. Ranges of virtual address space within a given
task may also have their own separate memory policy, which takes precedence over the
task-wide memory policy for those pages. Memory policies, both task-wide and for virtual
address areas, are inherited by the child task during a fork/clone operation.

The NUMA memory policies are:

MPOL_DEFAULT This is the default where memory pages are allocated from
memory local to the current CPU, provided that memory is
available. This is the policy that is used whenever a task or its
children have not specified a specific memory policy. You can
explicitly set the MPOL_DEFAULT policy as the task-wide memory
policy or for a virtual memory area within a task that is set to a
different task-wide memory policy.

MPOL_BIND This is a strict policy that restricts memory allocation to only the
nodes specified in a nodemask at the time this policy is set. Pages
are allocated only from the specified node(s) and page allocations
can fail even when memory is available in other nodes not in the
bind nodemask. When this type of page allocation failure occurs,
the process, all of its children and all threads that share the same
address space will be terminated by the kernel with SIGKILL

signal(s). This policy provides more certainty as to which node(s)
pages are allocated from than the other memory policies.

Note that the only way to guarantee that all future memory
allocations for a process will be to local memory is to set both the
CPU affinity and MPOL_BIND policy to a single CPU or to a set of
CPUs that all reside in the same NUMA node.

Non-Uniform Memory Access (NUMA)

10-3

MPOL_PREFERRED This policy sets a preferred (single) node for allocation. The
kernel will try to allocate pages from this node first and use other
nodes when the preferred node is low on free memory.

MPOL_INTERLEAVE This policy interleaves (in a round-robin fashion) allocations to
the nodes specified in the nodemask. This optimizes for
bandwidth instead of latency. To be effective, the memory area
should be fairly large.

In addition to user-space page allocations, many of the kernel memory allocation requests
are also determined by the currently executing task’s task-wide memory policy. However,
not all kernel page allocations are controlled by the current task’s memory policy. For
example, most device drivers that allocate memory for DMA purposes will instead
allocate memory from the node where the device’s I/O bus resides, or the from the node
that is closest to that I/O bus.

Page allocations that have already been made are not affected by changes to a task’s
memory policies. As an example, assume that there is a 1-to-1 CPU to node
correspondence on a system with two CPUs:

If a task has been executing for a while on CPU 0 with a CPU affinity of 0x1 and a
memory policy of MPOL_DEFAULT, and it then changes its CPU affinity to 0x2 and its
memory policy to MPOL_BIND with a nodemask value of 0x2, there will most likely
be pages in its address space that will be non-local to the task once that task begins
execution on CPU 1.

The following sections describe the system services, library functions and utilities
available for NUMA management.

NUMA User Interface 10

The shield(1) command can be used to control and query NUMA node memory
shielding. The run(1) command can be used to establish or change memory policies for
a task at run time, and to view user page counts of the pages in each NUMA node for
specified process(es) or thread(s). shmconfig(1) can be used for shared memory areas.

Library functions, system services and other utilities and files are also available for
NUMA control.

Details of this support are given in the sections below.

Memory-shielded Nodes 10

The shield(1) command can be used to create memory-shielded NUMA nodes.

When a NUMA node’s memory is shielded, the amount of remote memory accesses are
reduced because user pages that belong to applications that are not biased to execute on
the shielded node are moved out of the shielded node’s memory. In the same manner, user
pages that belong to applications that are biased to the shielded node are moved into the
shielded node’s memory. This page migration is automatically performed when a NUMA
node is initially memory-shielded, and whenever the scheduler CPU affinity for that task
is modified and there are currently one or more memory-shielded NUMA nodes

RedHawk Linux User’s Guide

10-4

configured in the system. For more deta i l s about memory sh ie lding , see
memory_shielding(7).

The following option to shield is used to enable, disable and query memory shielding
support:

--mem=MEMSHIELD, -m MEMSHIELD

MEMSHIELD may be either 0, 1 or q to disable, enable or query memory
shielding support, respectively.

Shield used on multi-node NUMA systems with no options or with the -c option
displays which CPUs are memory-shielded. The cpu(1) command also shows memory-
shielded CPUs.

There are two separate attributes that cause a NUMA node to become memory-shielded:

• Memory shielding support must be enabled with the shield -m1
command.

• All CPUs residing on the same NUMA node must be process-shielded with
either shield -p or shield -a. The run(1) command -Mn option
can be used to view the CPUs on each NUMA node in the system.

These two steps can be used together or in separate invocations of shield. Refer to the
shield(1) man page for details.

For best performance, it is recommended that the following sequence be followed:

• First, create the shielded memory NUMA node, then

• Start up the real-time application on that node.

The following example shows the correct sequence on a four-CPU dual-core system:

shield -m1 -p 2,3
run -b 2,3 rt-app &

Because shared read-only pages, such as system library text and read-only data pages, can
be mapped and accessed by many tasks, these pages are replicated (have their contents
copied while keeping the same identity) in the local NUMA node’s memory if the page
resides in a node different than the node on which the requesting CPU or process resides.
This further reduces the number of remote memory accesses in the system.

numapgs(1) and /proc/pid/numa_maps can be used to view a process’s currently
replicated pages, when present.

This support can be built into the kernel to be active always or activated manually. See
“Configuration” on page 10-17 for details. For more details about how page replication is
performed, see page_replication(7).

Non-Uniform Memory Access (NUMA)

10-5

Memory-shielding and Preallocated Graphics Pages 10

For an overview of the preallocated graphics pages support, please refer to the “Graphics
Interrupts” section in Appendix G.

On NUMA systems with NVIDIA graphics cards, you may optionally set up the
preallocated graphics pages on specific NUMA nodes as part of the system memory
shielding configuration. Note that preallocated graphics pages are not automatically re-
allocated in non-memory-shielded nodes when a node becomes memory-shielded.

Pre-allocated graphics pages are initially allocated in an interleaved fashion across all
NUMA nodes that have their memory located at addresses below the 4 GB boundary.
Graphics applications, such as X and Xorg, map these graphics pages into their address
space and thus have graphics mappings that are typically spread across the various NUMA
nodes in the system. Since these mappings are locked down for I/O when a graphics
application is executing, these pages may not be unmapped or freed by the memory-
shielding support in the kernel, thus preventing any automatic page migration of these
mappings.

To optionally place the preallocated graphics pages into a specific set of NUMA nodes as
part of a memory-shielded NUMA node configuration, the following steps may be taken:

1. Stop all graphics (X/Xorg) activity. The system should be in at most init
state 3 with no X activity.

2. Memory-shield one or more NUMA nodes with the shield(1)
command.

3. Free all graphics pages by writing a zero to the /proc/driver/
graphics-memory file. You may verify that all graphics pages have
been freed by reading the /proc/driver/graphics-memory file at
this point. Note that attempting to write a value of zero to this file will fail
with an error if there are any graphics applications still making use of
preallocated graphics pages. These applications need to be terminated
before all pages can be successfully freed.

4. Create a shell (bash, ksh, etc.) with a interleave mempolicy that contains
at least one CPU belonging to each of the NUMA nodes where you want
the graphics pages to be allocated.

5. Re-allocate the graphics pages in the desired nodes by writing the new
page count value to /proc/driver/graphics-memory.

You may validate that the pages were allocated in the desired NUMA nodes by
reading the /proc/driver/graphics-memory file. The output from this read
will provide per-node page allocation counts.

6. Return to init state 5 or restart the desired X activity.

Example

The following example creates a memory shielded node in the first node of a four NUMA
node, quad-core, 16 CPU system. The graphics pages in this example are spread across all
of the non-memory-shielded NUMA nodes: nodes 1 and 2. Note that in this example, the
memory in node 3 is located above the 4 GB boundary, and thus no preallocated graphics
pages reside in node 3.

RedHawk Linux User’s Guide

10-6

1. Stop all graphics activity. Kill off or exit all X applications, X, Xorg, etc.
For example, enter init state 3, when logged in as root:

init 3

2. Memory shield the first node and check the configuration:

/usr/bin/shield -m1 -a 0-3 -c

CPUID irqs ltmrs procs mem

0 yes yes yes yes
1 yes yes yes yes
2 yes yes yes yes
3 yes yes yes yes
4 no no no no
5 no no no no
6 no no no no
7 no no no no
8 no no no no
9 no no no no
10 no no no no
11 no no no no
12 no no no no
13 no no no no
14 no no no no
15 no no no no

3. Free up all the preallocated graphics pages. Verify that all pages have been
freed by reading the graphics-memory file:

/bin/cat /proc/driver/graphics-memory
Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 0 pages
Maximum graphics memory used: 0 pages

Node 0 Node 1 Node 2 Node 3
Preal: 5121 2712 2407 0
Total: 5121 2712 2407 0
InUse: 0 0 0 0
Max: 0 0 0 0

/bin/echo 0 > /proc/driver/graphics-memory

/bin/cat /proc/driver/graphics-memory
Pre-allocated graphics memory: 0 pages
Total allocated graphics memory: 0 pages
Graphics memory in use: 0 pages
Maximum graphics memory used: 0 pages

Node 0 Node 1 Node 2 Node 3
Preal: 0 0 0 0
Total: 0 0 0 0

Non-Uniform Memory Access (NUMA)

10-7

InUse: 0 0 0 0
Max: 0 0 0 0

4. Create a bash shell with an interleaved mempolicy that includes at least one
CPU from both NUMA nodes 1 and 2. This will cause the page allocations
to be spread out across the non-memshielded nodes. Check the new bash
shell with the run(1) command’s --mempolicy view option.

/usr/bin/run --mempolicy interleave=4,8 bash
/usr/bin/run --mempolicy view
Mempolicy NextCpu Cpus Name
interleave 0x00f0 0x0ff0 run

5. Reallocate the graphics pages using the mempolicy bash shell. Verify the
node locations of these allocations by reading the graphics-memory file:

/bin/echo 10240 > /proc/driver/graphics-memory

/bin/cat /proc/driver/graphics-memory
Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 0 pages
Maximum graphics memory used: 0 pages

Node 0 Node 1 Node 2 Node 3
Preal: 0 5120 5120 0
Total: 0 5120 5120 0
InUse: 0 0 0 0
Max: 0 0 0 0

6. Exit the interleave mempolicy bash shell:

exit

7. Restart X, or return to init state 5:

init 5

In the above example, you may change the nodes where the graphics pages are allocated
by modifying the CPUs in the interleaved mempolicy in step 4 where the bash shell is
invoked.

Note that the RedHawk kernel can be booted with the no_pregraph_pgs boot
parameter to disable all preallocated graphics pages support.

NUMA Support for Processes using run(1) 10

The “mempolicy” option to run(1) can be used to establish a task-wide NUMA memory
policy for the process about to be executed as well as display related information.

The synopsis is:

run [OPTIONS] COMMAND [ARGS]

“mempolicy” is one of the available OPTIONS and has the following forms:

RedHawk Linux User’s Guide

10-8

--mempolicy=MEMPOLICY_SPECIFIER

-M MEMPOLICY_SPECIFIER

Note that a PROCESS/THREAD_SPECIFIER, which identifies the existing process or thread that
run acts upon, cannot be used with the mempolicy option, which affects only the
process(es) about to be created.

MEMPOLICY_SPECIFIER includes only one of the following. Each can be abbreviated to its
initial unique character. list is a comma-separated list or range of CPUs; e.g., “0,2-4,6”.
“active” or “boot” can be used to specify all active processors or the boot processor,
respectively. An optional tilde [~] negates the list, although “active” cannot be negated.

[~]list
b[ind]=list

Executes the specified program using the MPOL_BIND memory policy using
the memory local to the CPUs in list.

b[ind] Executes the specified program using the MPOL_BIND memory policy using
memory local to the CPUs specified with the --bias option. The --bias
option defines the CPUs on which the program is to run and must also be
specified with this choice.

i[nterleave]=[~]list
Executes the specified program using the MPOL_INTERLEAVE memory policy
using the memory local to the CPUs in list.

p[referred]=cpu
Executes the specified program using the MPOL_PREFERRED memory policy,
preferring to use memory local to the single specified CPU.

p[referred]
Executes the specified program with the MPOL_PREFERRED task-wide NUMA
memory policy, where the preferred memory is located on the node containing
the CPU where the allocation takes place (a ’local’ allocation policy).

d[efault]
Executes the specified program using the MPOL_DEFAULT memory policy. This
is the default memory policy.

n[odes] Displays the CPUs included in each NUMA node along with total memory
and currently free memory on each node. No other options or programs are
specified with this invocation of run.

v[iew] Displays the memory policy setting of the current process. No other options or
programs are specified with this invocation of run.

When a system contains one or more CPUs without local memory, these CPUs are
assigned to a node in round-robin fashion during system initialization. Although assigned
to a node, they do not actually have local memory and will always make non-local
memory accesses, including memory accesses to their own assigned node. Under this type
of configuration, v[iew] output will include an additional “NoMemCpus” column which
will indicate the CPUs on each NUMA node that contain no local memory. It is
recommended that hardware be configured so that each CPU has a memory module
installed when using a NUMA-enabled kernel.

Non-Uniform Memory Access (NUMA)

10-9

Specifying run with the --mappings/-m option on multi-node systems displays the
number of user-mapped pages in each NUMA node for the processes or threads specified
with the PROCESS/THREAD_SPECIFIER argument. This option cannot be used with a
‘command’ parameter at invocation.

Refer to the run(1) man page or the section “The run Command” in Chapter 4 for other
options to run.

If numactl(8) is available on your system, it can also be used to set NUMA memory
policies.

NUMA Support for Shared Memory Areas using shmconfig(1) 10

NUMA policies can be assigned to new shared memory areas or modified for existing
shared memory areas using shmconfig(1) with the “mempolicy” option.

The synopsis is:

/usr/bin/shmconfig -M MEMPOLICY [-s SIZE] [-g GROUP] [-m MODE] [-u USER]
[-o offset] [-S] [-T] {key | -t FNAME}

The “mempolicy” option has the following forms:

--mempolicy=MEMPOLICY

-M MEMPOLICY

MEMPOLICY includes only one of the following. Each can be abbreviated to its initial
unique character. LIST is a comma-separated list or range of CPUs; e.g., “0,2-4,6”. “active”
or “boot” can be used to specify all active processors or the boot processor, respectively.
An optional tilde [~] negates the list, although “active” cannot be negated.

To view the CPUs that are included in each node, and total and available free memory for
each node, use run -M nodes.

[~]LIST

b[ind]=LIST

Sets the specified segment to the MPOL_BIND memory policy using the
memory local to the CPUs in LIST.

i[nterleave]=[~]LIST

Sets the specified segment to the MPOL_INTERLEAVE memory policy using the
memory local to the CPUs in LIST.

p[referred]=CPU

Sets the specified segment to the MPOL_PREFERRED memory policy, preferring
to use memory local to the single specified CPU.

p[referred]
Sets the specified segment to the MPOL_PREFERRED NUMA memory policy,
where the preferred memory is located on the node containing the CPU where
the allocation takes place (a ’local’ allocation policy).

d[efault]
Sets the specified segment to the MPOL_DEFAULT memory policy. This is the
default.

RedHawk Linux User’s Guide

10-10

v[iew] Displays the current memory policy setting for the specified segment.

Additional options that can be used with the mempolicy option include:

--size=SIZE

-s SIZE Specifies the size of the segment in bytes.

--offset OFFSET

-o OFFSET

Specifies an offset in bytes from the start of an existing segment. This value is
rounded up to a pagesize multiple. If the -s option is also specified, the sum
of the values of offset+size must be less than or equal to the total size of the
segment.

--user=USER

-u USER Specifies the login name of the owner of the shared memory segment.

--group=GROUP

-g GROUP

Specifies the name of the group to which group access to the segment is
applicable.

--mode=MODE

-m MODE Specifies the set of permissions governing access to the shared memory
segment. You must use the octal method to specify the permissions; the
default mode is 0644.

--strict
-S Outputs an error if any pages in the segment range do not conform to the

specified memory policy currently being applied.

--touch
-T Causes a touch (read) to each page in the specified range, enforcing the

memory policy early. By default, the policy is applied as applications access
these areas and fault in/allocate the pages.

The key argument represents a user-chosen identifier for a shared memory segment. This
identifier can be either an integer or a standard path name that refers to an existing file.
When a pathname is supplied, an ftok(key,0) will be used as the key parameter for the
shmget(2) call.

--tmpfs=FNAME / -t FNAME can be used to specify a tmpfs filesystem filename instead
of a key. The -u, -g and -m options can be used to set or change the file attributes of this
segment.

Refer to the man page or the section “The shmconfig Command” in Chapter 3 for other
options to shmconfig.

If numactl(8) is available on your system, it can also be used to set NUMA memory
policies.

Non-Uniform Memory Access (NUMA)

10-11

System Calls 10

The following system service calls are available. Note that the numaif.h header file
should be included when making any of these calls. Refer to the man pages for details.

set_mempolicy(2) Sets a task-wide memory policy for the current process.

get_mempolicy(2) Gets the memory policy of the current process or memory
address.

mbind(2) Sets a policy for a specific range of address space,
including shared memory.

move_pages(2) Move a set of pages of a process to a different NUMA
node.

Library Functions 10

The library, /usr/lib64/libnuma.so, offers a simple programming interface to the
NUMA support. It contains various types of NUMA memory policy and node support
routines and alternative interfaces for using the underlying NUMA system service calls.
Refer to the numa(3) man page for details.

Informational Files and Utilities 10

The following sections describe files and utilities that can be used to display information
relative to NUMA nodes.

Node Statistics 10

When NUMA is enabled in the kernel, each node has a set of information files in the
subdirectory /sys/devices/system/node/node#, where # is the node number (0,
1, 2 etc.). These files are listed below.

cpumap Displays a hexadecimal bitmap of the CPUs in this node; e.g.

> cat /sys/devices/system/node/node3/cpumap
08

cpulist Displays a list of CPUs in this node; e.g.,

> cat cpulist
4-7

numastat Displays hit/miss statistics for the node. See the next section for
explanations of the fields that are displayed.

meminfo Displays various memory statistics for the node, including totals
for free, used, high, low and all memory.

RedHawk Linux User’s Guide

10-12

distance Displays the distance of each node’s memory from the local node.
A value of “10” indicates that the memory is local, and a value of
“20” indicates that the memory is one hyperchannel connection
away, for example.

cpu# These are the CPU device files associated with the node; e.g.

$ ls -l /sys/devices/system/node/node3/cpu3
lrwxrwxrwx 1 root root 0 jan 21 03:01 cpu3

->../../../../devices/system/cpu/cpu3

Node IDs for Mapped Pages 10

numapgs(1) displays the location by NUMA node ID of each page currently mapped
into a specified process or thread. Only locations that have mappings to physical memory
pages are output, unless the -a option is specified.

Syntax:

numapgs [OPTIONS]

OPTIONS include:

--pid=pid, -p pid
The process ID or thread ID whose address space is to be displayed.

--start=saddr, -s saddr
To limit the range of mappings to be displayed, no node IDs for mappings
below this saddr hexadecimal virtual address value will be displayed. If
--end is not specified, all node ID entries from saddr to the end of the
address space are displayed.

--end=eaddr, -e eaddr
To limit the range of mappings to be displayed, no node IDs for mappings at
or above this eaddr hexadecimal virtual address value will be displayed. If
--start is not specified, all node ID entries from the beginning of the
address space up to eaddr-1 are displayed.

--all, -a
Display all virtual address page locations in the process’ address instead of
only those locations containing valid mappings to physical memory. A period
(.) in the output represents locations with no mappings or mappings to non-
memory objects (such as I/O space mappings). This option can be used with
--start or --end to display all page locations within the specified range.

--version, -v
Display the current version of numapgs, then exit.

--help, -h
Display available options, then exit.

Each output line contains up to eight decimal node ID values.

Non-Uniform Memory Access (NUMA)

10-13

If the page is currently locked (through mlock(2) or mlockall(2)), an “L” will
appear to the right of the NUMA node ID value. If the page is currently replicated (see
“Memory-shielded Nodes”), an “R” will appear to the right of the NUMA node ID value.

Below is a sample extract of numapgs output for a process that has all its pages locked
using mlockall(2) as shown by the L beside each node ID value. Replicated pages are
represented by the R next to their node ID value.

3a9b000000-3a9b12b000 r-xp /lib64/tls/libc-2.3.4.so
3a9b000000: 0L 0L 0L 0L 0L 0L 0L 0L
3a9b008000: 0L 0L 0L 0L 0L 0L 0L 0LR
3a9b010000: 0L 0L 0L 0L 0L 0L 0L 0L

NUMA Hit/Miss Statistics Using numastat 10

numastat is a script that combines the information from all the nodes’ /sys/
devices/system/node/node#/numastat files:

$ numastat
node 3 node 2 node 1 node 0

numa_hit 43674 64884 79038 81643
numa_miss 0 0 0 0
numa_foreign 0 0 0 0
interleave_hit 7840 5885 4975 7015
local_node 37923 59861 75202 76404
other_node 5751 5023 3836 5239

numa_hit the number of successful memory allocations made from the node

numa_miss the number of memory allocations that could not be made from
the node but were instead allocated for another node

numa_foreign the number of allocations that failed to allocate memory from a
node but were instead allocated from this node

interleave_hit the number of successful interleaved memory allocations made
from this node

local_node the number of memory allocations that were made from the local
node

other_node the number of memory allocations that were made to a non-local
node

kdb Support 10

The following kdb commands have been added or modified to support NUMA. Note that
this additional support is only present when the kernel is configured with NUMA support
enabled.

memmap [node_id] outputs information for all pages in the system, or for only the
specified node

task additionally outputs the mempolicy and il_next task structure
fields

RedHawk Linux User’s Guide

10-14

mempolicy addr outputs information for the specified mempolicy structure

pgdat [node_id] decodes the specified node’s zonelists, or if node_id is not
specified, zone 0

vmp -v additionally outputs mempolicy information for virtual memory
areas

Kernel Text Page Replication 10

RedHawk Linux kernels support the replication of kernel text and read-only data pages in
each NUMA node. This replication helps to reduce the total system inter-node memory
traffic by keeping kernel instruction and read-only data accesses local to each NUMA
node.

Both resident kernel text and dynamically loaded kernel module text are automatically
replicated on multi-node NUMA systems when using pre-built RedHawk Linux kernels.

T h e r e a r e t wo ke r n e l c o n f i g u r a t i o n o p t i o n s t h a t c o n t r o l t h i s s u p p o r t :
CONFIG_KTEXT_REPLICATION enables and disables all kernel text replication, and
CONFIG_KMOD_REPLICATION may be used to only disable kernel module text replication,
leaving kernel resident text replication support still enabled. Two grub options have been
added for disabling kernel text replication support at boot time. See “Configuration” on
page 10-17 below for more details.

The ktrinfo(1) utillity is available for displaying kernel text replication information
and statistics.

When ktrinfo is invoked with no options, it will display the replication information for
all NUMA node in the system. A -n option may be used to limit the output to a single
node. An example that shows node 1 information is shown below:

> ktrinfo -n1
Node 1 Text Translations
virtual_address physical_address size
ffffffff81000000-ffffffff811fffff 0000000236a00000-0000000236bfffff 2048 kB
ffffffff81200000-ffffffff813fffff 0000000236400000-00000002365fffff 2048 kB
ffffffff81400000-ffffffff81469fff 0000000236600000-0000000236669fff 424 kB
Node 1 Read-only Data Translations
virtual_address physical_address size
ffffffff81600000-ffffffff817fffff 0000000236000000-00000002361fffff 2048 kB
ffffffff81800000-ffffffff81852fff 0000000236200000-0000000236252fff 332 kB
Node 1 statistics
total_repli_pages 17676 kB
repli_resident_pages 6900 kB
repli_module_pages 10740 kB
repli_module_pgtbls 36 kB
page_alloc_failures 0
pagetbl_alloc_failures 0

The above output shows the resident kernel virtual address to physical memory address
translations for both kernel text and kernel read-only data for node 1, followed by the
amount of memory used for resident and module replications on node 1. The last two
allocation failure page counters will only be non-zero if pages could not be successfully
allocated on node 1 when kernel modules are loaded.

Non-Uniform Memory Access (NUMA)

10-15

The ktrinfo(1) utility may also be used to view the amount of replicated module
space on each node on a per-module basis with the -m option. A snippet of the -m option
output is shown below:

> ktrinfo -m
Module Text_RO_sz Node0 Node1 Node2 Node3
sr_mod 16384 16384 16384 16384 -
cdrom 28672 28672 28672 28672 -
sd_mod 32768 32768 32768 - 32768
crc_t10dif 8192 8192 8192 - 8192
crc32c_intel 8192 8192 8192 8192 -
aesni_intel 36864 36864 36864 36864 -
cryptd 8192 8192 8192 8192 -
aes_x86_64 12288 12288 12288 12288 -
aes_generic 32768 32768 32768 32768 -
ahci 20480 20480 20480 20480 -
igb 102400 102400 102400 - 102400
dca 8192 8192 8192 - 8192
megaraid_sas 49152 49152 - 49152 49152
button 8192 8192 8192 - 8192
dm_mirror 16384 16384 - 16384 16384
dm_region_hash 8192 8192 - 8192 8192
dm_log 8192 8192 - 8192 8192
dm_mod 49152 49152 49152 49152 -

The second column (Text_RO_sz) lists the total size in Kbytes of text and read-only
data within each module. The node# columns show the amount of Kbytes that were
actually replicated in each node for each currently loaded module. If a node's Kbyte size is
less than the Text_RO_sz value, then this indicates that not all pages could be
successfully allocated in that node when that module was loaded.

Note that a “–” dash indicates the the kernel module was originally dynamically loaded on
that node before being replicated into the other nodes in the system.

Kernel Module Page Allocations 10

Kernel modules are usually loaded and replicated into all NUMA nodes without any
issues. However, when the amount of free memory in a node is low, page allocations
within that node for setting up the replicated module text and read-only data may fail.
While this can happen during system bootup, it is more likely to occur after the system has
booted and a kernel module is loaded after various system activity has already become
active and less free memory is available.

When one or more pages cannot be allocated in a node for page replication, then the pages
on the node where the module was originally loaded will be used for the virtual address
translations on that low memory node.

When kernel module page allocation fail, a message will be output to the console and the
/var/log/messages file. For example:

Kernel text replication: nvidia module page alloc
failure(s) in node 1: no space

The above message indicates that all the pages required for replicating the nvidia.ko
kernel module text and read-only data on node 1 could not be accomplished due to lack of
available memory.

RedHawk Linux User’s Guide

10-16

The number of page and page table allocations that failed during kernel module
replications on node 1 may be viewed with the following command:

ktrinfo -n1 | grep failures
page_alloc_failures 68
pagetbl_alloc_failures 4

The actual amount of replicated space on node 1 versus the total amount of text and read-
only data (Text_RO_sz) in the nvidia.ko module may be viewed with the following
commands, where the values shown are in Kbytes:

ktrinfo -m | grep Module ; ktrinfo -m | grep nvidia
Module Text_RO_sz Node0 Node1
nvidia 8581120 - 331776

Lastly, the following command may be used to quickly view the amount of available and
free memory on each NUMA node:

run -Mc
Node MemSize MemFree Cpulist

0 4094 MB 3709 MB 0-3
1 4096 MB 55 MB 4-7

Performance Guidelines 10

Through CPU shielding, CPU biasing and binding an application to specific NUMA
nodes, page allocations can be made in the most efficient manner on NUMA systems.
Guidelines for working with tasks and shared memory areas are given below.

Task-Wide NUMA Mempolicy 10

The MPOL_BIND policy is usually the most useful policy for time-critical applications. It is
the only policy that lets you deterministically specify the node(s) for page allocations. If
the memory allocation cannot be made from the specified node or set of specified nodes,
the program will be terminated with a SIGKILL signal.

By combining CPU shielding and CPU biasing with the MPOL_BIND memory policy, a
shielded CPU can be created and the application executed on the shielded CPU where the
pages for that application will be allocated only from the shielded CPU’s NUMA node.
Note that pre-existing shared text page sand copy on write data pages may not be local,
although copy on write data pages will become local once they are written to.

The run(1) command can be used to start up an application on a shielded CPU with the
MPOL_BIND memory policy. Alternatively, since pages that are already present in an
application’s address space are not affected by any subsequent change of NUMA memory
policy, the application can set its CPU affinity and NUMA memory policy as soon as
possible after it has begun executing with mpadvise(3) and set_mempolicy(2) or
NUMA library function calls.

Non-Uniform Memory Access (NUMA)

10-17

The following example shows how to use the run(1) command bias and mempolicy
options to start up an application on a shielded CPU with the MPOL_BIND memory policy
with memory allocations coming only from the NUMA node where CPU 2 resides:

$ shield -a 2
$ run -b 2 -M b my-app

For more information about shielded CPUs and the shield(1) command, see Chapter 2
and the shield(1) man page.

Shared Memory Segments 10

It is also generally recommended that the MPOL_BIND memory policy be used for shared
memory segments. A shared segment’s NUMA memory policy can be specified with the
mbind(2) system service call or with the shmconfig(1) utility.

If a shared memory segment is to be referenced from multiple CPUs, it is possible to
specify different MPOL_BIND mempolicy attributes for different portions of a shared
memory area in order to maximize memory access performance.

As an example, consider a “low” application that mainly writes to the lower half of a
shared memory segment, and a “high” application that mainly writes to the upper half of
the same shared memory segment.

1. Create a shared memory segment with a key value of ‘123’. Change the
lower half of the segment to use the MPOL_BIND memory policy with CPU
2’s NUMA node for page allocations, and the upper half to use MPOL_BIND

with CPU 3’s node for page allocations.

$ shmconfig -s 0x2000 123
$ shmconfig -s 0x1000 -M b=2 123
$ shmconfig -o 0x1000 -M b=3 123

2. Shield both CPUs 2 and 3.

$ shield -a 1,2

3. Start up the “low” application on CPU 2 with a MPOL_BIND mempolicy
using CPU 2’s NUMA node for memory allocations, and start up the
“high” application on CPU 3 with a MPOL_BIND mempolicy using CPU 3’s
NUMA node for memory allocations.

$ run -b 2 -M b low
$ run -b 3 -M b high

Configuration 10

Only the AMD Opteron and modern Intel processors have NUMA architecture. The
following kernel parameters affect processing on NUMA nodes. All these parameters are
enabled by default in RedHawk pre-built kernels (though some apply to only 32-bit mode
and some apply to only 64-bit mode).

RedHawk Linux User’s Guide

10-18

NUMA and ACPI_NUMA (all modes), X86_64_ACPI_NUMA and K8_NUMA (64-bit mode only)

These kernel parameters must be enabled for NUMA kernel
support. They are accessible under the Processor Type and
Features selection in the Kernel Configuration GUI and are
enabled by default in all pre-built RedHawk kernels.

Note that there is a boot option, numa=off, that can be specified
at boot time that will disable NUMA kernel support on a NUMA
system. This will create a system with a single node, with all
CPUs belonging to that node. It differs from NUMA support not
being built into the kernel, in which case there is a flat memory
system with no nodes and where the NUMA user interfaces will
return errors when called.

When using a NUMA enabled kernel on an AMD Opteron or
modern Intel system, the following hardware recommendations
are made:

• It is highly recommended that a memory module be installed
for each CPU in the system. Otherwise, CPUs without a local
memory module must remotely access other memory modules
for every memory access, thus degrading system performance.

• Any BIOS-supported memory module interleaving hardware
support should be disabled in the BIOS. If not disabled,
NUMA support in a NUMA enabled kernel will be disabled,
resulting in a single NUMA node containing all the CPUs in
the system.

PAGE_REPLICATION When enabled, pagecache replication support is compiled into the
ke r n e l . D e p e n d i n g u p o n t h e s e t t i n g f o r
PAGE_REPLICATION_DYNAMIC (see below), pagecache replication
is always active on the system from the time the system is booted,
or is inactive until manually activated.

PAGE_REPLICATION_DYNAMIC

When enabled along with PAGE_REPLICATION, pagecache
replication is not active at system boot, but can be manually
ac t iva t e d by wr i t i ng a one (1) t o /proc/sys/vm/
page_replication_enabled or by using shield(1) to
create one or more memory-shielded NUMA nodes.

When disabled and PAGE_REPLICATION is enabled, pagecache
replication is always active on the system from the time the
system is booted.

MEMSHIELD_ZONE_NORMAL (32-bit mode only)
When enabled on 32-bit mode NUMA kernels, setup the zonelists
so that a local node’s normal zone pages (if any) are used before
selecting a remote node’s highmem zone page. The local node’s
highmem zone pages are still used up first. This feature can be
disabled in RedHawk 32-bit mode pre-built kernels with the
“prefer_highmem” grub kenrel boot option.

Non-Uniform Memory Access (NUMA)

10-19

MEMSHIELD_ZONELIST_ORDER

When enabled, NUMA node zonelists will be reordered when one
or more NUMA nodes become memory shielded. These zonelists
control the node search order for available memory when the local
node’s memory resources become low. The zonelists are reordered
such that when a local node cannot satisfy a memory allocation
request, memory from other non-shielded nodes will be used
before resorting to using the memory of a memory shielded
node(s). When there are no more memory shielded nodes in the
system, the original zonelist ordering will be automatically
restored.

CONFIG_KTEXT_REPLICATION (64-bit mode only)
When enabled on 64-bit NUMA kernels, kernel text and read-only
data page replication for the resident portion of the kernel is
enabled. This parameter is enabled in all RedHawk Linux pre-
built 64-bit kernels.

When this parameter is enabled, the grub option "no_ktext_repli"
may be used to disable this support at boot time.

CONFIG_KMOD_REPLICATION (64-bit mode only)
When CONFIG_KTEXT_REPLICATION is enabled, this parameter
may be enabled to additionally replicate kernel module text and
read-only data at module load time. This parameter is enabled in
all RedHawk Linux pre-built 64-bit kernels.

When this parameter is enabled, the grub option "no_kmod_repli"
may be used to disable module replication support at boot time.

RedHawk Linux User’s Guide

10-20

11-1

11
Chapter 11Configuring and Building the Kernel

8

This chapter provides information on how to configure and build a RedHawk Linux
kernel.

6
11

Introduction 11

The RedHawk kernels are located in the /boot directory. The actual kernel file names
change from release to release, however, they generally have the following form:

vmlinuz-kernelversion-RedHawk-x.x[-flavor]

kernelversion is the official version of Linux kernel source code upon which
the RedHawk kernel is based (may contain suffixes such as -rc1
or -pre7)

x.x is the version number of the RedHawk kernel release

flavor is an optional keyword that specifies an additional kernel feature
that is provided by the specific kernel

The kernel is loaded into memory each time the system is booted. It is a nucleus of
essential code that carries out the basic functions of the system. The kernel remains in
physical memory during the entire time that the system is running (it is not swapped in and
out like most user programs).

The exact configuration of the kernel depends upon:

• a large number of tunable parameters that define the run-time behavior of the
system

• a number of optional device drivers and loadable modules

Kernel configuration, or reconfiguration, is the process of redefining one or more of these
kernel variables and then creating a new kernel according to the new definition.

In general, the supplied kernels are created with tunable parameters and device drivers that
are suitable for most systems. However, you may choose to reconfigure the kernel if you
want to alter any of the tunable parameters to optimize kernel performance for your
specific needs.

After you change a tunable parameter or modify the hardware configuration, the kernel
will need to be rebuilt, installed and rebooted.

RedHawk Linux User’s Guide

11-2

Configuring a Kernel Using ccur-config 11

The RedHawk Linux product includes several pre-built kernels. The kernels are
distinguished from each other by their “-flavor” suffix. The following flavors are defined:

generic (no suffix) The generic <=4GB kernel. This kernel is the most optimized
and will provide the best overall performance, however it lacks
certain features required to take full advantage of the
NightStar RT tools.

trace The trace kernel. This kernel is recommended for most users as it
supports all of the features of the generic kernel and in addition
provides support for the kernel t racing feature of the
NightTrace RT performance analysis tool.

debug The debug kernel. This kernel supports all of the features of the
trace kernel and in addition provides support for kernel-level
debugging. This kernel is recommended for users who are
developing drivers or trying to debug system problems.

Each pre-built kernel has an associated configuration file that captures all of the details of
the kernel’s configuration. These files are located in the configs directory of the kernel
source tree. For the pre-built kernels, the configuration files are named as follows:

On an i386 architecture (32-bit):

generic kernel static.config
trace kernel trace-static.config
debug kernel debug-static.config

On an x86_64 architecture (64-bit):

generic kernel static-x86_64.config
trace kernel trace-static-x86_64.config
debug kernel debug-static-x86_64.config

In order to configure and build a kernel that matches one of the pre-built kernels, you must
cd to the top of the kernel source tree and run the ccur-config(8) tool.

NOTE

The ccur-config script must be run as root. If kernel
modifications are to be made, the system must be in graphical
mode (i.e. run-level 5) or a valid DISPLAY variable must be set.

The following example configures the kernel source tree for building a new kernel based
on the RedHawk Linux 5.2 trace kernel’s configuration. Note that it is not necessary to
specify the “.config” suffix of the configuration file as that is automatically appended.

cd /usr/src/linux-2.6.26.6-RedHawk5.2
#./ccur-config trace-static

Configuring and Building the Kernel

11-3

ccur-config can also be used for customized kernels by specifying the appropriate
custom config file residing in the configs directory. The -k name option can be used to
name a new flavor, and the -s option saves the configuration file in the configs
directory. For example:

./ccur-config -s -k test debug-static

configures a kernel with -test as the flavor suffix that is based on the RedHawk i386
debug-static ke r n e l a n d s ave s t h e r e s u l t i n g c o n f i g u r a t i o n a s
configs/test.config.

During the execution of ccur-config you will be presented with a graphical
configuration interface (GUI) in which you can customize many different aspects of the
RedHawk Linux kernel. See Screen 11-1 for an example of the Kernel Configuration GUI.

The Save selection from the File menu must be selected to save your changes and exit
the program. Note that even if you do not change any configuration parameters, it is still
necessary to select Save in order to properly update the kernel's configuration files.

An exhaustive list of the settings and configuration options that are available via the
graphical configuration window is beyond the scope of this document, however many
tunable parameters related to unique RedHawk features and real-time performance are
discussed throughout this manual and listed in Appendix B. In addition, when the
parameter is selected, information about that parameter is displayed in a separate window
of the GUI.

If you do not wish to change kernel parameters, specify the -n option to ccur-config
and the GUI will not appear.

Screen 11-1 Kernel Configuration GUI

RCIM Realtime Clock and Interrupt Module (RCIM)

RedHawk Linux User’s Guide

11-4

Building a Kernel 11

Regardless of which kernel configuration is used, the resulting kernel will be named with
a “vmlinuz” prefix followed by the current kernel version string as it is defined in the top-
level Makefile, followed with a “-custom” suffix added. For example:

 vmlinuz-2.6.25.6-RedHawk-5.2-custom

The final suffix can be changed by specifying the -k name option to ccur-config. This
defines name as the REDHAWKFLAVOR variable in the top-level Makefile, which
remains in effect until changed again with -k or by editing Makefile. When building
multiple kernels from the same kernel source tree, it is important to change the suffix to
avoid overwriting existing kernels accidentally.

NOTES

The pre-built kernels supplied by Concurrent have suffixes that
are reserved for use by Concurrent. Therefore, you should not set
the suffix to: (empty string), “-trace”, or “-debug”.

Use the ccur-config -c option if you need to build driver
modules for a kernel (see the section “Building Driver Modules”
later in this chapter).

Once kernel configuration has completed, a kernel can be built by issuing the appropriate
make(1) commands. There are many targets in the top-level Makefile, however the
following are of special interest:

make bzImage Build a standalone kernel.

make modules Build any kernel modules that are specified in the kernel
configuration.

make modules_install Install modules into the module directory associated with the
currently configured kernel. Note that the name of this directory
is derived from the kernel version string as defined in the top-
level Makefile. For example, if the REDHAWKFLAVOR is
defined as “-custom” then the resulting modules directory will be
“/lib/modules/kernelversion-RedHawk-x.x-custom”.

make install Install the kernel into the /boot directory along with an
associated System.map file.

NOTE

To completely build and install a new kernel, all of these
Makefile targets must be issued in the order shown above.

For an example of a complete kernel configuration and build session, refer to Figure 11-1.

Configuring and Building the Kernel

11-5

Figure 11-1 Example of Complete Kernel Configuration and Build Session

Building Driver Modules 11

It is often necessary to build driver modules for use with either one of the pre-existing
kernels supplied by Concurrent or a custom kernel.

To build driver modules for a kernel, the following conditions must be met:

• The desired kernel must be the currently running kernel.

• The kernel source directory must be configured properly for the currently
running kernel via ccur-config.

Note that if a custom kernel was built using the procedure outlined in the section
“Building a Kernel,” then the kernel source directory is already configured properly and
running ccur_config is not necessary.

The -c option to ccur-config can be used to ensure that the kernel source directory is
properly configured. This option automatically detects the running kernel and configures
the source tree to properly match the running kernel. Driver modules can then be properly
compiled for use with the running kernel.

NOTE

The -c option to ccur_config is only intended for
configuring the kernel source tree to build driver modules and
should not be used when building a new kernel.

The -n option to ccur_config can also be specified when it is not necessary to change
configuration parameters. With -n, the configuration GUI does not appear and no
configuration customization is performed.

See the next section for an example of building a dynamic load module into a pre-built
RedHawk kernel.

cd /usr/src/linux-2.6.26.6-RedHawk-5.2
./ccur-config -k test debug-static
Configuring version: 2.6.26.6-RedHawk-5.2-test
Cleaning source tree...
Starting graphical configuration tool...

[configure kernel parameters as desired]

Configuration complete.

make bzImage
make modules
make modules_install
make install

[edit /etc/grub.conf to reference new kernel and reboot]

RedHawk Linux User’s Guide

11-6

Example–Building a Dynamic Loadable Module in a Pre-built RedHawk
Kernel 11

Adding functionality to a RedHawk system is attained by placing additional hardware
controllers into the system. It is not necessary to make a custom kernel to add support for
new hardware devices, unless there is a requirement for a static kernel driver.

The following example adds a Comtrol RocketPort serial card support to a RedHawk
system. The source for the Comtrol RocketPort driver is contained in the RedHawk kernel
source tree.

The RedHawk trace kernel is the running kernel in this example.

1. Run ccur-config to configure the kernel source tree.
Note that kernelname is the ‘uname -r’ output of the running kernel:

cd /lib/modules/kernelname/build
./ccur-config -c

2. In the GUI window, set Device Drivers ->Character Devices->Non-
standard serial port support->Comtrol RocketPort support to a value of
“M” (module). See Screen 11-2 for an illustration of the GUI (showing the
Show Name, Show Range and Show Data Options selected).

3. Save the configuration, and exit the GUI.

Screen 11-2 Kernel Configuration GUI Adding Serial Card Support

Configuring and Building the Kernel

11-7

4. Run make to build the new kernel module:

make REDHAWKFLAVOR=-trace modules

5. When the make completes, locate the rocket driver in the output; e.g.:

LD [M] drivers/char/rocket.ko

and copy it as follows:

mkdir /lib/modules/kernelname/kernel/extras
cp drivers/char/rocket.ko /lib/modules/kernelname/kernel/extras/

6. Set up the dependency files used by modprobe(8) to load modules.

depmod

7. The file /lib/modules/kernelname/build/Documentation/
rocket.txt contains configuration requirements pertaining to the
Comtrol RocketPort card. Device entries can be created and the driver
loaded automatically by inserting the appropriate commands,
MAKEDEV(8) and modprobe(8), into the file /etc/rc.modules
which will be executed when the kernel initializes.

a. Insert the following alias into /etc/modprobe.conf:

alias char-major-46 rocket

b. If the file /etc/rc.modules does not exist on your system it must
be created. It should have file permissions of 0x755 in order to func-
tion. Include the following in the file:

#!/bin/bash
/sbin/MAKEDEV ttyR
modprobe rocket

For an example of adding a driver that is not in the kernel source tree, see /usr/share/
doc/ccur/examples/driver on your RedHawk system.

Additional Information 11

There are many resources available that provide information to help understand and
demystify Linux kernel configuration and building. A good first step is to read the
README file located in the top-level of the installed RedHawk kernel source tree. In
addition, on-line guides are available at several Linux documentation sites including The
Linux Documentation Project and Linuxtopia. For example:

Linux Kernel in a Nutshell
http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/index.html

http://www.tldp.org/HOWTO/Kernel-HOWTO.html

RedHawk Linux User’s Guide

11-8

12-1

12
Chapter 12Kernel Debugging

This chapter describes the tools provided in RedHawk Linux for kernel debugging and
crash dump analysis.

Overview 12

Several open source patches with Concurrent enhancements are incorporated into
RedHawk for kernel problem analysis.

The enhanced kernel debugger, kdb, is provided in the RedHawk “debug” kernels.

An enhanced linux kernel kexec-based crash dump (kdump) mechanism along with the
crash(8) utility for reading crash dumps are used to take and analyze system crashes.
Crash can also analyze live memory. Note that LKCD and lcrash facilities are no
longer supported.

The sections below describe crash dump and analysis RedHawk systems.

Taking and Analyzing a System Crash 12

RedHawk includes kdump(8), a kexec-based crash dump service that is used to take a
crash dump and the crash(8) utility that can be used to analyze the dump. These are
described in the following sections.

Activating kdump 12

The /etc/sysconfig/kdump configuration file contains definitions that control how
kdump starts and operates.

kdump is activated through the setting ACTIVE=1 in /etc/sysconfig/kdump. This is
the default setting. Editing the file or issuing the command service kdump on sets
ACTIVE=1 in the file. Conversely, kdump can be deactivated by editing the file and setting
ACTIVE=0 or by running service kdump off.

By default, the kdump service starts from rc.sysinit. This is the only way kexec-
based crash dumps can be supported in single user mode and also ensures readiness at the
earliest possible time.

RedHawk Linux User’s Guide

12-2

A LATE startup option can be set for diskless environments such as in a cluster where file
systems/paths needed by kdump are not mounted until after other services have started.

Refer to the section “kdump Options Defined in the Configuration File” for more
information about how to use /etc/sysconfig/kdump.

How a Crash Dump is Created 12

kdump prepares the environment of the running kernel to save a small set of crash files for
analysis in the event of a kernel panic. The crash utility needs debug information in
order to read a crash dump virtual memory image “vmcore” file. The debug information is
contained in the vmlinux image of the running kernel when built with the DEBUG_INFO

option. The vmlinux image is called a namelist.

If the crashkernel=size@16M boot parameter is specified and ACTIVE=1 is defined in the
/etc/sysconfig/kdump configuration file, the kdump service presaves a link to the
matching kernel vmlinux image (namelist) along with the kernel /proc/config.gz
file in the /kdump/kerninfo directory. It then preloads the crash kernel using kexec
-p (see kexec(8)).

The kdump service constructs a string based on the values set in /etc/sysconfig/
kdump which is provided to the kexec -p command. The default string specifies the
installed RedHawk crash kernel, tells the crash kernel to use the current root file system
and console device, and passes along the boot parameters maxcpus=1 irqpoll 1. If no
crashkernel boot parameter is issued, the kdump service skips all setup. You can use
the service kdump echo command to view a dry run of the kexec -p command.

After successfully loading the crash kernel, the system reboots into the crash kernel if a
system crash is triggered. Trigger points are located in panic().

The following conditions will execute a crash trigger point:

• A kernel panic occurs.

• /proc/sys/kernel/panic_on_oops is set and an oops occurs.

• /proc/sys/vm/panic_on_oom is set and an out of memory condition
occurs.

• /proc/sys/kernel/unknown_nmi_panic is set and an unknown
NMI occurs.

• /proc/sys/kernel/unknown_nmi_panic is set and the NMI button
is pressed. Refer to the section “NMI Button” below for more information.

• /proc/sys/kernel/sysrq is set and Alt-Sysrq-c is issued from the
keyboard.

• /proc/sys/kernel/sysrq is set and echo c > /proc/sysrq-
trigger is issued.

• The kdump command is issued form the kdb prompt.

Kernel Debugging

12-3

Installation/Configuration Details 12

The ccur-kexec-tools-kexec-version-kdump rpm installs two binary executable
files, /sbin/kexec and /sbin/kdump, as well as the /etc/init.d/kdump service
and its configuration file, /etc/sysconfig/kdump. The kexec(8) and kdump(8)
man pages are also installed with this rpm.

The following are requirements to enable the system to take and analyze crash dumps. The
kernel configuration parameters are included by default in all pre-built RedHawk kernels.

• The running kernel (the kernel to be debugged) must be built with the KEXEC

and DEBUG_INFO kernel parameters, under Processor Type and
Features in the Kernel Configuration GUI, set to Y.

• The crash kernel must be built with KEXEC and CRASH_DUMP kernel
parameters, under Processor Type and Features in the Kernel
Configuration GUI, set to Y.

• The kernels must be booted with the crashkernel=size@16M boot option.
This specifies the memory reservation and offset where the crash kernel will
be booted upon kernel panic.

• Via /etc/sysconfig/kdump, options define the behavior of the kdump
service. See the section “kdump Options Defined in the Configuration File”
below for information.

A custom kernel based on a pre-built RedHawk 4.2 or later kernel config file using
ccur-config(8) and make install will meet all requirements for using kdump
and crash. If using a separate custom kernel, ensure all the requirements above are met.
See Chapter 11, Configuring and Building the Kernel, for more information about
building a custom kernel.

kdump Options Defined in the Configuration File 12

The actions taken by the kdump service are determined by the options set in the kdump
configuration file /etc/sysconfig/kdump. The file is fully commented with
information describing the options and recommendations for setting values.

Current settings can be viewed using the config argument to kdump (see the section
“kdump Command Line Interface” below).

By default, kdump is not active. To activate kdump, set ACTIVE=1 in the configuration file
or issue the command service kdump on, which sets ACTIVE=1 in the configuration
file.

With kdump active, the following occurs by default:

• The kdump service starts from rc.sysinit.

A LATE startup option can be set for diskless environments such as in a cluster
where file systems/paths needed by kdump are not mounted until after other
services have started. When you set LATE=1, the kdump service starts up with
the following defaults as defined by chkconfig(8): 12345 26 95. This
means that the service is active in runlevels 1, 2, 3, 4 and 5, and that it starts

RedHawk Linux User’s Guide

12-4

with a priority of 26 and stops with a priority of 95. Use the LEVELS, START,
and STOP options in the kdump config file to change these values. DO NOT

DIRECTLY EDIT the kdump service init script as you would with a normal
init script. Use the kdump status command to see the current kdump
startup configuration (see the section “kdump Command Line Interface”
below).

• The namelist setup is performed and the crash kernel is preloaded. If
crashkernel=size@16M is not specified at boot time, no action is
performed.

• By default, a dump is taken on kernel panic, dump on oops
(PANIC_ON_OOPS=1) and out-of-memory (PANIC_ON_OOM=1). Options can be
set to force a dump on unknown NMI (UNKNOWN_NMI_PANIC) also. If
desired, these options can be unset so that a dump is taken only on kernel
panic.

• Kexec is used to start the crash kernel at run level 1 using the current root
file system and console device.

• Crash files are saved to disk using gzip compression.

• A reboot is performed immediately after crash files are saved. An option can
be set for the kernel to remain running and not reboot after the save.

These actions and others can be customized by editing /etc/sysconfig/kdump.
Additional options include:

• specifying a custom crash kernel and custom initrd when needed

• specifying a different root file system, kerninfo directory, console, save
directory, compression or run level

• not saving the crash file, saving via scp or saving across NFS with all
appropriate settings

• providing a script to customize after-panic actions

After making modifications to /etc/sysconfig/kdump, run the following:

service kdump restart

kdump Command Line Interface 12

In addition to starting, stopping, restarting and reloading the kdump service, other kdump
commands query the system and facilitate debugging configuration problems.

The kdump service takes arguments in the following form:

service kdump arg

where arg includes:

help displays a brief description of the arguments

start reloads the crash kernel if configured properly, otherwise executes
the configured crashkernel routine if the crash kernel is running

stop cleans up and unloads the crash kernel

Kernel Debugging

12-5

restart or calls stop then start
reload

config displays the current valid kdump configuration values set in
/etc/sysconfig/kdump after initialization

on enables the start/stop/restart/reload actions

off disables the start/stop/restart/reload actions

echo displays a “dry run” echo of the crash kernel kexec string

stat displays the readiness of the kernel for kdump start/stop/
restart/reload actions plus system information that includes archi-
tecture, kernel name, uptime, current runlevel, system RAM,
parsed /proc/cmdline, kexec build options, the readiness of
the system to kexec the crashkernel, nmi button dump response
and active sysrq and panic triggers.

status displays the on/off status of kdump and when it starts during boot.
For example:

With ACTIVE=1 and LATE=0 (starts from rc.sysinit):

service kdump status
kdump rc:on 0:off 1:off 2:off 3:off

4:off 5:off 6:off 26 95

With ACTIVE=1 and LATE=1 (starts as a normal service):

service kdump status
kdump rc:off 0:off 1:on 2:on 3:on

4:on 5:on 6:off 26 95

Note that the two numbers at the end of the status line indicate the
start and stop priorities as used by chkconfig(8). The start
priority is “26” and the stop priority is “95”.

files displays the crash file save directory location, file system, total
size, size of individual dumps and statistics on local file system
usage.

setup set up scp server for password free scp save option

Using crash to Analyze the Dump 12

Crash can be run on a dump file or on a live system. Crash(8) commands consist of
common kernel core analysis tools such as kernel stack back traces of all processes, source
code disassembly, formatted kernel structure and variable displays, virtual memory data,
dumps of linked-lists, etc., along with several commands that delve deeper into specific
kernel subsystems. Relevant gdb commands may also be entered, which in turn are
passed on to the gdb module for execution.

Analyzing a Dump File 12

To run crash on a dump file, at least two arguments are required:

• The kernel object filename, referred to as the kernel namelist. This file is
named vmlinux and is copied to the /kdump/date-time

RedHawk Linux User’s Guide

12-6

• The dump file named vmcore.

In the event of a kernel panic, invoke crash as shown below. The arguments can be
supplied in any order.

cd /kdump/date-time
pwd
/kdump/02-27-08.0711.04
ls
config.gz vmcore.gz vmlinux.gz If the files are compressed,
gunzip * unzip them before using crash
crash vmlinux vmcore

KERNEL: vmlinux
DUMPFILE: vmcore
CPUS: 4
DATE: Tue Feb 27 07:11:04 2008
UPTIME: 00:02:34
LOAD AVERAGE: 0.12, 0.59, 0.46
TASKS: 85
NODENAME: ihawk
RELEASE: 2.6.26.6-RedHawk-5.2-trace
VERSION: #1 SMP PREEMPT Tue Feb 13 14:25:24 EST 2008
MACHINE: i686 (3046 Mhz)
MEMORY: 1 GB
PANIC: "SysRq : Trigger a crashdump"
PID: 4236
COMMAND: "crashme"
TASK: f787acd0 [THREAD_INFO: f5582000]
CPU: SysRq : Trigger a crashdump
STATE: TASK_RUNNING (SYSRQ)

crash>

Kernel Debugging

12-7

Analyzing a Live System 12

To run crash on a live system, specify no arguments. Crash searches for the vmlinux
file and opens /dev/mem as the memory image:

crash

KERNEL: /boot/vmlinux-2.6.26.6-RedHawk-5.2-trace
DUMPFILE: /dev/mem
CPUS: 16
DATE: Tue Feb 27 15:32:45 2008
UPTIME: 1 days, 06:36:30
LOAD AVERAGE: 0.45, 1.06, 0.96
TASKS: 258
NODENAME: ihawk
RELEASE: 2.6.26.6-RedHawk-5.2-trace
VERSION: #1 SMP PREEMPT Tue Feb 20 18:11:17 EST 2008
MACHINE: i686 (2660 Mhz)
MEMORY: 4 GB
PID: 32078
COMMAND: "crash"
TASK: f7aac0b0 [THREAD_INFO: e6e64000]
CPU: 8
STATE: TASK_RUNNING (ACTIVE)

crash>

Getting Help 12

Online help for crash is available through the following actions:

• Specify help at the crash> prompt to display a list of crash commands,
each with a link to display the help page on that command.

• Specify crash -h at the system prompt to display a full help screen listing
all available options.

• Specify crash -h [opt] at the system prompt to view the help page on the
command specified by opt.

More information about crash(8) is available on the man page and at the following web
site: http://people.redhat.com/anderson/crash_whitepaper/index.html.

http://people.redhat.com/anderson/crash_whitepaper/index.html

RedHawk Linux User’s Guide

12-8

Kernel Debuggers 12

The Linux kernel debugger, kdb, is provided in the pre-built RedHawk “debug” kernels.

kdb 12

The kdb debugger allows the programmer to interactively examine kernel memory,
disassemble kernel functions, set breakpoints in the kernel code and display and modify
register contents.

kdb is configured by default in the RedHawk debug kernel. kdb is automatically invoked
upon system panic, if the PAUSE key is pressed or CTRL-A is entered on the serial
console.

While kdb does have some support for USB keyboards, it is found not to be reliable and is
not supported in the RedHawk debug kernel. On systems with a USB keyboard, it is
recommended that a serial console be configured and kdb used over the serial port. See
Appendix H for instructions for setting up the serial console.

On systems having an NMI button, a debug kernel can be configured that allows pressing
the NMI button to enter kdb and take a crash dump when exiting (see the section “NMI
Button” below). The kdump command to kdb can also be used to request a kdump crash
dump.

The kdb=off boot command disables entry into kdb. The kdb=early boot command
makes the kernel enter kdb early in the boot process.

Information about using kdb is beyond the scope of this document. Refer to
documentation at /kernel-source/Documentation/kdb.

NMI Interrupts 12

The Linux NMI watchdog feature generates “watchdog” NMI interrupts. NMIs (non-
maskable interrupts) execute even if the system is locked up hard. By executing periodic
NMI interrupts, the kernel can monitor whether any CPU has locked up and prints out
debugging messages if it has.

Enabling NMI watchdog support is done with the nmi_watchdog=N boot command line
parameter. nmi_watchdog=0 disables NMI watchdog interrupts. When N = 1, each
CPU performs its own NMI timing (currently this setting does not work and is changed to
=2) ; when N = 2 , genera ted NMIs a re sen t to a l l CPUs v ia a broadcas t .
nmi_watchdog=-1 can be used on x86_64 kernels, which lets the kernel select the
mode (1 or 2).

By de fau l t , nm i_watchdog i s t u rned on in the RedHawk debug ke rne l s
(nmi_watchdog=2 for i386; nmi_watchdog=-1 for x86_64) and turned off in all
other RedHawk kernels.

Kernel Debugging

12-9

More information about the NMI watchdog feature can be found at /kernel-source/
Documentation/nmi_watchdog.txt.

NMI Button 12

Some systems have an NMI button. By default, it does not function. The problem lies in
the fact that an NMI cannot be determined to be the result of pressing the NMI button or
the periodic NMI watchdog.

In order to have the NMI button do something useful, the NMI watchdog must be
disabled. This is accomplished via the nmi_watchdog=0 boot command. This will
cause kdb to be entered when the button is pressed. The kdb kdump command can be
used to capture a crash dump if this is desired.

Using the nmi_dump boot command will also trigger a kdump crash dump to be captured
(when the system is properly configured and the kernel has been loaded). See “How a
Crash Dump is Created” on page 12-2.

RedHawk Linux User’s Guide

12-10

13-1

13
Chapter 13Pluggable Authentication Modules (PAM)

9
12

This chapter discusses the PAM facility that provides a secure and appropriate
authentication scheme accomplished through a library of functions that an application
may use to request that a user be authenticated.

Introduction 13

PAM, which stands for Pluggable Authentication Modules, is a way of allowing the
system administrator to set authentication policy without having to recompile
authentication programs. With PAM, you control how the modules are plugged into the
programs by editing a configuration file.

Most users will never need to touch this configuration file. When you use rpm(8) to
install programs that require authentication, they automatically make the changes that are
needed to do normal password authentication. However, you may want to customize your
configuration, in which case you must understand the configuration file.

PAM Modules 13

There are four types of modules defined by the PAM standard. These are:

auth provides the actual authentication, perhaps asking for and
checking a password, and they set “credentials” such as
group membership

account checks to make sure that the authentication is allowed (the
account has not expired, the user is allowed to log in at this
time of day, and so on)

password used to set passwords

session used once a user has been authenticated to allow them to use
their account, perhaps mounting the user's home directory
or making their mailbox available

These modules may be stacked, so that multiple modules are used. For instance, rlogin
normally makes use of at least two authentication methods: if rhosts authentication
succeeds, it is sufficient to allow the connection; if it fails, then standard password
authentication is done.

New modules can be added at any time, and PAM-aware applications can then be made to
use them.

RedHawk Linux User’s Guide

13-2

Services 13

Each program using PAM defines its own “service” name. The login program defines
the service type login, ftpd defines the service type ftp, and so on. In general, the service
type is the name of the program used to access the service, not (if there is a difference) the
program used to provide the service.

Role-Based Access Control 13

Role-Based Access Control for RedHawk Linux is implemented using PAM. In the Role-
B a s e d A c c e s s C o n t r o l s c h e m e , y o u s e t u p a s e r i e s o f r o l e s i n t h e
capability.conf(5) file. A role is defined as a set of valid Linux capabilities. The
current set of all valid Linux capabilities can be found in the /usr/include/
linux/capability.h kernel header file or by using the _cap_names[] string
array. They are described in greater detail in Appendix C.

Roles can act as building blocks in that once you have defined a role, it can be used as one
of the capabilities of a subsequent role. In this way the newly defined role inherits the
capabilities of the previously defined role. Examples of this feature are given below. See
the capability.conf(5) man page for more information.

Once you have defined a role, it can be assigned to a user or a group in the
capability.conf(5) file. A user is a standard Linux user login name that
corresponds to a valid user with a login on the current system. A group is a standard
Linux group name that corresponds to a valid group defined on the current system.

Files in /etc/pam.d correspond to a service that a user can use to log into the system.
These files need to be modified to include a pam_capability session line (examples of
adding pam_capability session lines to service files are given in the “Examples”
section below). For example: the /etc/pam.d/login file (/etc/pam.d/remote if
it exists) is a good candidate as it covers login via telnet. If a user logs into the system
using a service that has not been modified, no special capability assignment takes place.

NOTE: If capabilities are used, the /etc/pam.d/su file should be modified as a
security precaution to ensure that an invocation such as su -l nobody daemon will
impart to daemon only the capabilities listed for user nobody, and will not impart any
extra capabilities from the invoking user.

The following options can be specified when supplying a pam_capability session line
to a file in /etc/pam.d:

conf=conf_file specify the location of the configuration file. If this option is not
s p e c i f i e d t h e n t h e d e fa u l t l o c a t i o n w i l l b e
/etc/security/capability.conf.

debug Log debug information via syslog. The debug information is
logged in the syslog authpriv class. Generally, this log
information is collected in the /var/log/secure file.

Pluggable Authentication Modules (PAM)

13-3

Examples 13

The following examples illustrate adding session lines to /etc/pam.d/login. Also
make these changes to /etc/pam.d/remote if it exists.

NOTE: The path to the PAM files on i386 systems is /lib/security.
The path on x86_64 systems is /lib64/security.

1. To allow the roles defined in the /etc/security/capability.conf
file to be assigned to users who login to the system via telnet(1)
append the following line to /etc/pam.d/login:

session required /lib/security/pam_capability.so

2. To allow the roles defined in the /etc/security/capability.conf
file to be assigned to users who login to the system via ssh(1) append the
following line to /etc/pam.d/sshd:

session required /lib/security/pam_capability.so

3. To allow roles defined in the /etc/security/capability.conf
file to be assigned to substituted users via su(1), and to ensure that those
substituted users do not inherit inappropriate capabilities from the invoker
of su(1), append the following line to /etc/pam.d/su:

session required /lib/security/pam_capability.so

4. To have ssh users get their role definitions from a different
capability.conf file than the one located in /etc/security
append the following lines to /etc/pam.d/sshd:

session required /lib/security/pam_capability.so \
conf=/root/ssh-capability.conf

Thus, the roles defined in the /root/ssh-capability.conf file will be
applied to users logging in via ssh.

Defining Capabilities 13

The capability.conf file provides information about the roles that can be defined
and assigned to users and groups. The file has three types of entries: Roles, Users and
Groups.

Roles A role is a defined set of valid Linux capabilities. The current set
o f a l l va l i d L i n u x c a p a b i l i t i e s c a n b e f o u n d i n t h e
/usr/include/linux/capability.h kernel header file or
by using the _cap_names[] string array described in the
cap_from_text(3) man page. The capabilities are also
described in full detail in Appendix C. In addition, the following
capability keywords are pre-defined:

RedHawk Linux User’s Guide

13-4

all all capabilities (except cap_setcap)
cap_fs_mask all file system-related capabilities
none no capabilities whatsoever

As the name implies, it is expected that different roles will be
defined, based on the duties that various system users and groups
need to perform.

The format of a role entry in the capability.conf file is:

role rolename capability_list

Entries in the capability list can reference previously defined
roles. For example, you can define a role called basic in the file
and then add this role as one of your capabilities in the capability
list of a subsequent role. Note that the capability list is a
whitespace or comma separated list of capabilities that will be
turned on in the user's inheritable set.

Users A user is a standard Linux user login name that corresponds to a
valid user with a login on the current system. User entries that do
not correspond to valid users on the current system (verified by
getpwnam(3)) are ignored.

The format of a user entry in the capability.conf file is:

user username rolename

The special username '*' can be used to assign a default role for
users that do not match any listed users or have membership in a
listed group:

user * default_rolename

Groups A group is a standard Linux group name that corresponds to a
valid group defined on the current system. Group entries that do
not correspond to valid groups on the current system (verified by
getgrnam(3)) are ignored.

The format of a group entry in the capability.conf file is:

group groupname rolename

Examples 13

1. The following example sets up an administrative role (admin) that is
roughly equivalent to root:

role admin all

2. The following example sets up a desktop user role that adds sys_boot and
sys_time to the inheritable capability set:

role desktopuser cap_sys_boot \
 cap_sys_time

Pluggable Authentication Modules (PAM)

13-5

3. The following example sets up a poweruser user role, using the desktop
user role created previously:

role poweruser desktopuser\
cap_sys_ptrace\
cap_sys_nice\
cap_net_admin

4. To assign the desktopuser role to a user, enter the following in the
USERS section of the capability.conf file:

user joe desktopuser

5. To assign the poweruser role to a group, enter the following in the
GROUPS section of the capability.conf file:

group hackers poweruser

Implementation Details 13

The following items address requirements for full implementation of the PAM
functionality:

• Pam_capability requires that the running kernel be modified to inherit
capabilities across the exec() system call. Kernels that have been patched
with the kernel patch shipped with this module can enable capability
inheritance using the INHERIT_CAPS_ACROSS_EXEC configuration option
accessible under General Setup on the Kernel Configuration GUI (refer
to the “Configuring and Building the Kernel” chapter of this guide). All
RedHawk Linux kernels have this option enabled by default.

RedHawk Linux User’s Guide

13-6

14-1

14
Chapter 14Device Drivers

10
13
12

This chapter addresses issues relating to user-level and kernel-level device drivers under
RedHawk Linux. It includes information about added functionality that facilitates writing
device drivers as well as real-time performance issues. Prior knowledge of how to write
Linux-based device drivers is assumed. Userspace I/O (UIO) drivers are also described.

Information about RedHawk support for a PCI-to-VME bridge device can be found in
Chapter 15, “PCI-to-VME Support.”

Understanding Device Driver Types 14

It is possible to write simple user-level device drivers under RedHawk Linux. A user-level
driver can access I/O space to read and write device registers, thus initiating a
programmed I/O operation. With the assistance of a skeletal kernel driver, a user-level
driver can also initiate actions upon receipt of an interrupt. This is accomplished by
supporting functions which allow a signal handler in the user-level driver to be attached to
the interrupt routine. Refer to the section “Kernel Skeleton Driver” later in this chapter for
the location of a sample kernel driver template for handling an interrupt and sending a
signal to a user-level process.

It is not practical to write a user-level driver which does DMA I/O operations under Linux.
There are several problems that prohibit DMA operations from user-level; for example,
there is currently no supported method for determining the physical address of a user
space buffer. Kernel-level device drivers should be used for devices that utilize DMA for
I/O operations.

Userspace I/O (UIO) can be used to write user-level device drivers for any number of I/O
boards. UIO requires a small per-device kernel module, with the main part of the driver
written in user space, utilizing the tools and libraries commonly used for userspace
applications. Refer to “Userspace I/O Drivers (UIO)” on page 14-15.

Developing User-level Device Drivers 14

The sections that follow describe particulars of the RedHawk Linux operating system that
affect writing user-level device drivers.

Accessing PCI Resources 14

During the boot process, devices on the PCI bus are automatically configured, have their
interrupts assigned and have their registers mapped into memory regions where the device
registers can be accessed via memory-mapped I/O operations. These memory regions are
known as base address registers (BARs). A device can have up to six BARs. The content
of the BARs vary depending upon the device. Consult the device’s manual for this
information.

RedHawk Linux User’s Guide

14-2

RedHawk Linux supports a PCI resource file system located in /proc/bus that
simplifies the code needed to map the registers of a PCI device. This file system provides
BAR files representing memory regions that can be mapped into the address space of a
program, providing access to the device without having to know the physical address
associated with the device. The PCI BAR file system also provides a config-space file
which can be used to read and write to the device’s PCI config space. The first 64 bytes of
the config-space file are defined by the PCI specification. The remaining 192 bytes are
device vendor-specific.

Each PCI hardware device has associated with it a Vendor ID and Device ID. These are
fixed values that do not change over time or between systems. Because of the dynamic
configuration of PCI devices at boot time, the domain, bus, slot and function numbers
remain fixed once the system is booted, but may vary between systems depending on the
underlying hardware, even for boards that appear to be plugged into the same PCI bus slot
in each system. Paths within the /proc/bus/pci and BAR file systems are derived
from the domain, bus, slot and function numbers assigned by the kernel, and are affected
by the physical hardware layout of the host system. Changes, such as physically plugging
a board into a different slot, adding a device to the system or modifications to the system
BIOS can change the bus and/or slot number assigned to a particular device.

The PCI BAR scan interfaces described below offer a method for finding the bar file
associated with a particular device. Without these interfaces, the hardware-dependent
nature of these BAR file paths makes the task of programming user-level device drivers
somewhat inconvenient, because the driver has to locate the slot address of the appropriate
device in order to obtain access to its BAR files.

Using the library interface for the BAR file system and the fixed vendor ID and device ID
values, the other values currently associated with the PCI devices can be obtained. These
include the BAR file directory path for the device as well as information about each BAR
file in that directory. It also returns IDs for vendor, device, class, subclass, IRQ number (if
assigned), and domain, bus, slot and function numbers related to each device.

This support is enabled by default in all RedHawk pre-built kernels through the
PROC_PCI_BARMAP kernel parameter, which is located under Bus options on the Kernel
Configuration GUI.

PCI BAR Interfaces 14

The sections that follow explain the PCI BAR interfaces.

The library scan functions are iterative. If the system has more than one instance of the
desired device type, these library functions must be called multiple times. One function is
provided that returns the count of all matching devices in the system. Other functions will
iteratively return information for devices that match the search criteria. Device
information is returned in the bar_context type defined in /usr/include/
pcibar.h. This structure is created with a call to bar_scan_open. Multiple scans can
be active concurrently, each having a unique bar_context.

The interfaces are briefly described as follows:

bar_scan_open starts a new scan of PCI devices

bar_scan_next obtains the next matching PCI device

bar_device_count returns the number of matching devices remaining in the
active scan

Device Drivers

14-3

bar_scan_rewind restarts a scan

bar_scan_close closes the active scan and frees associated memory

free_pci_device frees all allocated memory associated with a located device

bar_mmap mmap’s the BAR file with proper page alignment

bar_munmap munmap’s the bar_mmap’d BAR file

Note that to use these interfaces, you must link your application with the libccur_rt
library:

gcc [options] file -lccur_rt ...

An example illustrating the use of these functions is provided as /usr/share/doc/
ccur/examples/pci_barscan.c.

bar_scan_open(3) 14

This function is used to create the initial context for a search of PCI devices. The returned
bar_context is an opaque pointer type defined in /usr/include/pcibar.h that
designates state data for the iterator interfaces. Its value must be provided to subsequent
calls to bar_scan_next, bar_device_count, bar_scan_rewind and
bar_scan_close.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

bar_context bar_scan_open(int vendor_id, int device_id);

Arguments are defined as follows:

vendor_id a vendor identification value defined in /usr/include/
linux/pci_ids.h. or the special value ANY_VENDOR.
ANY_VENDOR matches all vendor_id values for all devices on the
host system.

device_id a device identification value defined in /usr/include/
linux/pci_ids.h. or the special value ANY_DEVICE.
ANY_DEVICE matches all device_id values for all devices on the
host system.

Refer to the man page for error conditions.

bar_scan_next(3) 14

This function returns a pointer to a struct pci_device object for the next matching
PCI device found.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

struct pci_device * bar_scan_next(bar_context ctx);

The argument is defined as follows:

RedHawk Linux User’s Guide

14-4

ctx an active bar_context returned by bar_scan_open.

When no further matching devices are available, this function returns NIL_PCI_DEVICE and
sets errno to zero. Refer to the man page for error conditions.

bar_device_count(3) 14

This function returns the number of unprocessed devices remaining in an active scan.
When called immediately after a call to bar_scan_open or bar_scan_rewind, this
is the total number of matching devices for the specified vendor_id and device_id. This
value is reduced by 1 upon each call to bar_scan_next.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

int bar_device_count(bar_context ctx);

The argument is defined as follows:

ctx an active bar_context returned by bar_scan_open.

On success, this function returns a non-negative count of the number of unreported
devices that would be returned by subsequent calls to bar_scan_next. Refer to the
man page for error conditions.

bar_scan_rewind(3) 14

This function resets the specified bar_context to the state it was in immediately after
the initial call to bar_scan_open.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void bar_scan_rewind(bar_context ctx);

The argument is defined as follows:

ctx an active bar_context returned by bar_scan_open. If the value is
NIL_BAR_CONTEXT or does not designate a valid bar_context object, this
call has no effect.

bar_scan_close(3) 14

This function frees all allocated memory associated with the designated bar_context.
The value NIL_BAR_CONTEXT is assigned to the bar_context object and may no longer
be used after this call.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void bar_scan_close(bar_context ctx);

Device Drivers

14-5

The argument is defined as follows:

ctx an active bar_context returned by bar_scan_open.

free_pci_device(3) 14

This function releases all allocated memory associated with the designated struct
pci_device object.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void free_pci_device(struct pci_device * dev);

The argument is defined as follows:

dev a valid struct pci_device obtained from bar_scan_next.

bar_mmap(3) 14

This function can be used to map the specified BAR file into memory. It is a wrapper
around mmap(2) that aligns small BAR files at the start of the mmap’ed BAR data rather
than the beginning of the area that is mmap’ed. Use bar_munmap(3) to unmap files
mapped using this function.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void * bar_mmap(char * barfilepath, void * start, size_t length, int
prot, int flags, int fd, off_t offset);

The arguments are defined as follows:

barfilepath the path of the BAR file to be mmap’ed

Refer to mmap(2) for a description of the other parameters.

bar_munmap(3) 14

This function must be used to unmap files that are mapped using bar_mmap(3).

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

int bar_munmap(void * start, size_t length);

Refer to munmap(2) for a description of the parameters.

RedHawk Linux User’s Guide

14-6

Kernel Skeleton Driver 14

When a device issues interrupts that must be handled by the device driver, it is not
possible to build the device driver completely at user level because Linux has no method
for attaching a user-level routine to an interrupt. It is however possible to build a simple
kernel device driver that handles the device interrupt and issues a signal to the user-level
application that is running a user-level driver. Because signals are delivered
asynchronously to the execution of a program and because signals can be blocked during
critical sections of code – a signal acts much like a user-level interrupt.

The following example of a skeletal kernel-level driver shows how to attach a signal to the
occurrence of a device interrupt and the code for the interrupt service routine which will
then trigger the signal. The full code for this skeletal driver can be found on a RedHawk
installed system in the directory /usr/share/doc/ccur/examples/driver. You
can use the sample driver, sample_mod, as a template for writing a simple kernel-level
driver that handles an interrupt and sends a signal to a user-level process.

Understanding the Sample Driver Functionality 14

The sample driver uses real time clock (rtc) 0 as the hardware device that will generate the
interrupts. Rtc 0 is one of the real-time clocks on Concurrent’s Real-Time Clock and
Interrupt Module (RCIM). The clock counts down to 0 at a predefined resolution and then
starts over. Each time the count reaches 0, an interrupt is generated. Some of the setup for
real time clock 0 is performed in the module’s “init” routine where the device registers are
mapped into memory space so that the driver may access those registers. The last section
of code shown for the module’s “init” routine is the code that attaches the interrupt routine
to an interrupt vector.

**
int sample_mod_init_module(void)
{
...
// find rcim board (look for RCIM II, RCIM I, and finally RCIM I old rev)
 dev = pci_find_device(PCI_VENDOR_ID_CONCURRENT, PCI_DEVICE_ID_RCIM_II,dev);
 if (dev == NULL) { //try another id
 dev = pci_find_device(PCI_VENDOR_ID_CONCURRENT_OLD, PCI_DEVICE_ID_RCIM, dev);
 }
 if (dev == NULL) { //try another id
 dev = pci_find_device(PCI_VENDOR_ID_CONCURRENT_OLD, PCI_DEVICE_ID_RCIM_OLD, dev);
 }
 if (dev == NULL) { //no rcim board, just clean up and exit
 unregister_chrdev(major_num,"sample_mod");
 return -ENODEV;
 }

...

if ((bd_regs = ioremap_nocache(plx_mem_base, plx_mem_size)) == NULL)
return -ENOMEM;

...

if ((bd_rcim_regs = ioremap_nocache(rcim_mem_base, rcim_mem_size)) == NULL)
return -ENOMEM;

...
sample_mod_irq = dev->irq;
res = request_irq(sample_mod_irq, rcim_intr, SA_SHIRQ, "sample_mod", &rtc_info);

Device Drivers

14-7

The complete initialization of the rtc 0 device is performed in the module’s “open”
method. For this example, the device is automatically set up so that interrupts will be
generated by the device. When the device is opened, interrupts associated with rtc 0 are
enabled, the device is programmed to count from 10000 to 0 with a resolution of 1
microsecond, and the clock starts counting. It generates an interrupt when the count
reaches 0.

The user-level driver must specify which signal should be sent when the kernel-level
driver receives an interrupt. The user-level driver makes an ioctl() call, which is
handled by the kernel-level driver’s ioctl method. When the user-level driver calls this
ioctl() function, it indicates to the kernel-level driver that the user-level process has
already set up a signal handler for the specified signal and the user-level driver is now
ready to receive a signal.

The calling user-space process specifies the signal number it wishes to receive from the
module. The driver remembers the process ID associated with the requested signal number
by using the “current” structure. The “signal/process id” pair is stored in the module’s
rtc_info structure and will later be used by the “notification” mechanism described
below.

int rcim_rtc_open(struct inode *inode, struct file *filep)
{

u_int32_t val;

if (rtc_info.nopens > 0) {
printk(KERN_ERR “You can only open the device once.\n”);
return -ENXIO;

}
rtc_info.nopens++;
if (!rtc_info.flag)

return -ENXIO;
writel(0, &bd_rcim_regs->request);
writel(ALL_INT_MASK, &bd_rcim_regs->clear);
writel(RCIM_REG_RTC0, &bd_rcim_regs->arm);
writel(RCIM_REG_RTC0, &bd_rcim_regs->enable);
writel(RTC_TESTVAL, &bd_rcim_regs->rtc0_timer);//rtc data reg
val = RCIM_RTC_1MICRO | RCIM_RTC_START|RCIM_RTC_REPEAT;
writel(val, &bd_rcim_regs->rtc0_control);
return 0;

}
**

**
int rcim_rtc_ioctl(struct inode *inode, struct file *filep, unsigned int cmd,
unsigned long arg)
{

if (!rtc_info.flag)
return (-ENXIO);

switch (cmd)
{

// Attach signal to the specified rtc interrupt
case RCIM_ATTACH_SIGNAL:

rtc_info.signal_num = (int)arg;
rtc_info.signal_pid = current->tgid;
break;

default:
return (-EINVAL);

}
return (0);

}
**

RedHawk Linux User’s Guide

14-8

The actual notification is implemented in the module’s interrupt handler. When an
interrupt is received from rtc 0, this interrupt service routine determines whether to send a
signal to a process that has requested it. If there is a registered “process id/signal number”
pair in the rtc_info structure, the specified signal is sent to the corresponding process
using the function kill_proc().

When the device is closed, rtc 0 is shut down. The count value is reset to 0 and the clock is
stopped. The interrupt/signal attachment is cleared so that no further signal will be sent if
further interrupts are received.

**
int rcim_intr(int irq, void *dev_id, struct pt_regs *regs)
{

u_int32_t isr;

isr = readl(&bd_rcim_regs->request);
writel(0, &bd_rcim_regs->request);
writel(ALL_INT_MASK, &bd_rcim_regs->clear);

/* Use isr to determine whether the interrupt was generated by rtc 0 only if
 “rcim” module is not built into the kernel. If “rcim” is active, its
 interrupt handler would have cleared “request” register by the time we
 get here. */

// if (isr & RCIM_REG_RTC0) {
// Send signal to user process if requested
if (rtc_info.signal_num && rtc_info.signal_pid &&

(kill_proc(rtc_info.signal_pid, rtc_info.signal_num, 1) == -ESRCH))
{

rtc_info.signal_pid = 0;
}

// }

return IRQ_HANDLED;
}
**

int rcim_rtc_close(struct inode *inode,struct file *filep)
{
 if (!rtc_info.flag)
 return (-ENXIO);
 rtc_info.nopens--;
 if(rtc_info.nopens == 0) {
 writel(~RCIM_RTC_START, &bd_rcim_regs->rtc0_control);
 writel(0, &bd_rcim_regs->rtc0_timer);
 rtc_info.signal_num = 0;
 rtc_info.signal_pid = 0;
 }
 return 0;
}

Device Drivers

14-9

Testing the Driver 14

The best way to test the sample kernel module is to build the kernel without the RCIM
driver and then load the sample driver. However, this module is designed to work with or
without the RCIM driver already built into the kernel.

The RCIM kernel module and the sample kernel module share the same interrupt line.
When an interrupt occurs, RCIM’s interrupt handler is invoked first and the hardware
interrupt register on the RCIM board is cleared. Then the sample module’s interrupt
handler is invoked.

If both modules are loaded, the second handler will find the interrupt register cleared and
if a check for “interrupt source” is performed, the handler will assume that the interrupt
came from a device different from rtc 0. To overcome this obstacle, the following line in
the sample module’s interrupt handler has been commented out when both RCIM and the
sample module are loaded:

// if (isr & RCIM_REG_RTC0) { .

The code that follows is a simple user-level program which demonstrates how a user-level
driver would attach a routine such that this routine is called whenever the RCIM skeletal
driver’s interrupt fires. The routine “interrupt_handler” is the routine which is called when
the RCIM’s rtc 0 interrupt fires. This program is terminated by typing Ctrl-C at the
terminal where the program is run. Note that this sample code is also available in
/usr/share/doc/ccur/examples/driver/usersample.

In order to load the sample module and successfully run the user sample program, all
applications that use the RCIM driver should be aborted.

Below is the usersample program.

RedHawk Linux User’s Guide

14-10

#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>

#include "sample_mod.h"

static const char *devname = "/dev/sample_mod";
static int nr_interrupts = 0;
static int quit = 0;

void interrupt_handler (int signum)
{

nr_interrupts++;

if ((nr_interrupts % 100) == 0) {
printf (".");
fflush(stdout);

}
if ((nr_interrupts % 1000) == 0)

printf (" %d interrupts\n", nr_interrupts);
}

void ctrl_c_handler (int signum)
{

quit++;
}

int main()
{

int fd;
struct sigaction intr_sig = { .sa_handler = interrupt_handler };
struct sigaction ctrl_c_sig = { .sa_handler = ctrl_c_handler };

sigaction (SIGUSR1, &intr_sig, NULL);
sigaction (SIGINT, &ctrl_c_sig, NULL);

if ((fd = open (devname, O_RDWR)) == -1) {
perror ("open");
exit(1);

}

if (ioctl (fd, RCIM_ATTACH_SIGNAL, SIGUSR1) == -1) {
perror ("ioctl");
exit(1);

}

printf ("waiting for signals...\n");
while (! quit)

pause();

printf ("\nhandled %d interrupts\n", nr_interrupts);
close(fd);
exit(0);

}

Device Drivers

14-11

Developing Kernel-level Device Drivers 14

The sections that follow describe particulars of the RedHawk Linuxoperating system that
affect writing and testing kernel-level device drivers.

Building Driver Modules 14

Instructions for building driver modules for use with either a pre-existing RedHawk kernel
or a custom kernel are provided in Chapter 11, Configuring and Building the Kernel.

Kernel Virtual Address Space 14

There are some cases when the amount of kernel virtual address space reserved for
dynamic mappings of the kernel support routines vmalloc() and ioremap() is not
enough to accommodate the requirements of a device. The default value for 32-bit kernels,
128 MB, is enough for all systems except those with I/O boards that have very large
onboard memories which are to be ioremap’ed. An example is the VMIC reflective
memory board installed on an iHawk system when it is populated with 128 MB of
memory.

When 128 MB of reserved kernel virtual address space is not enough, this value can be
increased by using the vmalloc= kernel boot parameter specified at boot time. See
Appendix I, “Boot Command Line Parameters” for more information about this option.

Real-Time Performance Issues 14

A kernel-level device driver runs in kernel mode and is an extension of the kernel itself.
Device drivers therefore have the ability to influence the real-time performance of the
system in the same way that any kernel code can affect real-time performance. The
sections that follow provide a high-level overview of some of the issues related to device
drivers and real-time.

It should be noted that while there are many open source device drivers that are available
for Linux, these drivers have a wide range of quality associated with them, especially in
regards to their suitability for a real-time system.

Interrupt Routines 14

The duration of an interrupt routine is very important in a real-time system because an
interrupt routine cannot be preempted to execute a high-priority task. Lengthy interrupt
routines directly affect the process dispatch latency of the processes running on the CPU
to which the interrupt is assigned. The term process dispatch latency denotes the time that
elapses from the occurrence of an external event, which is signified by an interrupt, until
the process waiting for that external event executes its first instruction in user mode. For
more information on how interrupts affect process dispatch latency, see the “Real-Time
Performance” chapter.

RedHawk Linux User’s Guide

14-12

If you are using a device driver in a real-time production environment, you should
minimize the amount of work performed at interrupt level. RedHawk Linux supports
several different mechanisms for deferring processing that should not be performed at
interrupt level. These mechanisms allow an interrupt routine to trigger processing that will
be performed in the context of a kernel daemon at program level. Because the priority of
these kernel daemons is configurable, it is possible to run high-priority real-time processes
at a priority level higher than the deferred interrupt processing. This allows a real-time
process to have higher priority than some activity that might normally be run at interrupt
level. Using this mechanism, the execution of real-time tasks is not delayed by any
deferred interrupt activity. See the “Deferred Interrupt Functions (Bottom Halves)”
section for more information about deferring interrupts.

Generally, a device’s interrupt routine can interact with the device to perform the
following types of tasks:

• acknowledge the interrupt

• save data received from the device for subsequent transfer to a user

• initiate a device operation that was waiting for completion of the previous
operation

A device’s interrupt routine should not perform the following types of tasks:

• copy data from one internal buffer to another

• allocate or replenish internal buffers for the device

• replenish other resources used by the device

These types of tasks should be performed at program level via one of the deferred
interrupt mechanisms. You can, for example, design a device driver so that buffers for the
device are allocated at program level and maintained on a free list that is internal to the
driver. When a process performs read or write operations, the driver checks the free list to
determine whether or not the number of buffers available is sufficient for incoming
interrupt traffic. The interrupt routine can thus avoid making calls to kernel buffer
allocation routines, which are very expensive in terms of execution time. Should a device
run out of resources and only notice this at interrupt level, new resources should be
allocated as part of the deferred interrupt routine rather than at interrupt level.

Deferred Interrupt Functions (Bottom Halves) 14

Linux supports several methods by which the execution of a function can be deferred.
Instead of invoking the function directly, a “trigger” is set that causes the function to be
invoked at a later time. These mechanisms, called bottom halves, are used by interrupt
routines under Linux in order to defer processing that would otherwise have been done at
interrupt level. By removing this processing from interrupt level, the system can achieve
better interrupt response time as described above.

There are three choices for deferring interrupts: softirqs, tasklets and work queues.
Tasklets are built on softirqs and therefore they are similar in how they operate. Work
queues operate differently and are built on kernel threads. The decision over which bottom
half to use is important. Table 14-1 summarizes the types, which are explained at length in
the sections below.

Device Drivers

14-13

Table 14-1 Types of Bottom Halves

Softirqs and Tasklets 14

Two mechanisms for deferring interrupt processing have different requirements in terms
of whether or not the code that is deferred must be reentrant or not. These types of
deferrable functions are softirqs and tasklets. A softirq must be completely reentrant
because a single instance of a softirq can execute on multiple CPUs at the same time.
Tasklets are implemented as a special type of softirq. The difference is that a given tasklet
function will always be serialized with respect to itself. In other words, no two CPUs will
ever execute the same tasklet code at the same time. This property allows a simpler coding
style in a device driver, since the code in a tasklet does not have to be reentrant with
respect to itself.

In standard Linux, softirqs and tasklets are usually executed from interrupt context
immediately after interrupt handlers transition from interrupt to program level.
Occasionally, standard Linux will defer softirq and tasklets to a kernel daemon. Both
methods allow softirqs and tasklets to execute with interrupts enabled; however, because
they are usually executed from interrupt context, softirqs and tasklets cannot sleep.

RedHawk has been enhanced with an option (that is on by default) to guarantee that
softirqs and tasklets are only executed in the context of a kernel daemon. The priority and
scheduling policy of these kernel daemons can be set via kernel configuration parameters.
This allows the system to be configured such that a high-priority real-time task can
preempt the activity of deferred interrupt functions.

Softirqs and tasklets are both run by the ksoftirqd daemon. There is one ksoftirqd
daemon per logical CPU. A softirq or tasklet will run on the CPU that triggered its
execution. Therefore, if a hard interrupt has its affinity set to a specific CPU, the
corresponding softirq or tasklet will also run on that CPU. The priority of the ksoftirqd
is determined by the SOFTIRQ_PRI and SOFTIRQ_PREEMPT_BLOCK kernel tunables, which
are located under General Setup on the Kernel Configuration GUI. When SOFTIRQ_PRI is
set to a positive number, that number is the priority at which ksoftirqd will run. By
default, this tunable is set to zero, and the setting of SOFTIRQ_PREEMPT_BLOCK affects the
daemon’s priority. When set to Y, the ksoftirqd daemon will run as under the
SCHED_FIFO scheduling policy at a priority of one less than the highest real-time priority.
When set to N, the ksoftirqd daemon will run at priority zero.

Work Queues 14

Work queues are another deferred execution mechanism. Unlike softirqs and tasklets,
standard Linux always processes work queues in the process context of kernel daemons
and therefore the code in a work queue is allowed to sleep.

The kernel daemons that process work queues are called worker threads. Worker threads
are always created as a gang of threads, one per CPU, with each thread bound to a single
CPU. Work on the work queue is maintained per CPU and is processed by the worker
thread on that CPU.

Bottom Half Type Context Serialization

Softirq Interrupt None

Tasklet Interrupt Against the same tasklet

Work queues Process None (scheduled as process context)

RedHawk Linux User’s Guide

14-14

The kernel provides a default work queue that drivers may use. The worker threads that
process the default work queue are called events/cpu, where cpu is the CPU that the
thread is bound to.

Optionally, drivers may create private work queues and worker threads. This is
advantageous to the driver if the queued work is processor-intensive or performance
critical. It also lightens the load on the default worker threads and prevents starving the
rest of the work on the default work queue.

Worker threads execute on a CPU when work is placed on the work queue. Therefore, if a
hard interrupt has its affinity set to a specific CPU, and the interrupt handler queues work,
the corresponding worker thread will also run on that CPU. Worker threads are always
created with a nice value of -10 but their priority may be modified with the run(1)
command.

Understanding Priorities 14

When configuring a system where real-time processes can run at a higher priority than the
deferred interrupt daemons, it is important to understand whether those real-time
processes depend upon the services offered by the daemon. If a high-priority real-time
task is CPU bound at a level higher than a deferred interrupt daemon, it is possible to
starve the daemon so it is not receiving any CPU execution time. If the real-time process
also depends upon the deferred interrupt daemon, a deadlock can result.

Multi-threading Issues 14

RedHawk Linux is built to support multiple CPUs in a single system. This means that all
kernel code and device drivers must be written to protect their data structures from being
modified simultaneously on more than one CPU. The process of multi-threading a device
driver involves protecting accesses to data structures so that all modifications to them are
serialized. In general this is accomplished in Linux by using spin locks to protect these
kinds of data structure accesses.

Locking a spin lock will cause preemption and/or interrupts to be disabled. In either case,
the worst case process dispatch latency for a process executing on the CPU where these
features are disabled is directly impacted by how long they are disabled. It is therefore
important when writing a device driver to minimize the length of time that spin locks are
held, which will affect the amount of time that preemption and/or interrupts are disabled.
Remember that locking a spin lock will implicitly cause preemption or interrupts to be
disabled (depending upon which spin lock interface is used). For more information about
this topic, see the “Real-Time Performance” chapter.

The Big Kernel Lock (BKL) and ioctl 14

The Big Kernel Lock (BKL) is a spin lock in the Linux kernel, which is used when a piece
of kernel source code has not been fine-grain multi-threaded. While much use of the BKL
has been removed by systematically multi-threading the Linux kernel, the BKL is still the
most highly contended and longest held lock in the Linux kernel.

By default, the Linux kernel will lock the BKL before calling the ioctl(2) function
associated with a device driver. If a device driver is multi-threaded, then it is not necessary
to lock the BKL before calling ioctl. RedHawk Linux allows a device driver to specify
that the BKL should not be locked before calling ioctl. When a device is used to
support real-time functions or when an application makes calls to a device’s ioctl

Device Drivers

14-15

routine on a shielded CPU, it is very important that the device driver be modified so the
BKL is not locked. Otherwise, a process could stall spinning on the BKL spin lock for an
extended period of time causing jitter to the programs and interrupts that are assigned to
the same CPU.

The mechanism for specifying that the BKL should not be locked on entry to a device’s
ioctl routine is to register the drivers ioctl function as the device’s unlocked_ioctl
method rather than as the device’s ioctl method. Below is an example of how the RCIM
device sets this flag:

static struct file_operations rcim_fops = {
owner: THIS_MODULE,
open: rcim_master_open,
release: rcim_master_release,
unlocked_ioctl: rcim_master_ioctl,
mmap: rcim_master_mmap,

};

After making this change, the device driver must be rebuilt. For a static driver this means
rebuilding the entire kernel. For a dynamically loadable module, only that module must be
rebuilt. See the “Configuring and Building the Kernel” chapter for more information.

Userspace I/O Drivers (UIO) 14

UIO is a standardized method for writing user level drivers. This still requires a small per-
driver kernel module; however, the main part of the driver is written in user space, using
the tools and libraries you are familiar with.

Using UIO, you can take any standard PCI card and make a simple userspace driver for
any desired purpose. These drivers are easy to implement and test and they are isolated
from kernel version changes. Bugs in your driver won’t crash the kernel and updates of
your driver can take place without recompiling the kernel.

Currently, UIO drivers can be used for char device drivers only and cannot be used to set
up DMA operations from user space.

The small per-driver kernel module is required to:

• match the device ID and vendor ID of the board

• perform low-level initializations

• acknowledge interrupts

Once you have a working kernel module for your hardware, you can write the userspace
driver using any of the tools and libraries normally used for writing user applications. The
lsuio(1) tool can be used to list UIO devices and their attributes.

Each UIO device is accessed through a device file: /dev/uio0, /dev/uio1, and so on.
D r ive r a t t r i bu t e s u s e d t o r e a d o r w r i t e va r i a b l e s a p p e a r u n d e r t h e
/sys/class/uio/uioX directory. Memory regions are accessed via mmap(1).

Co mpl e t e i n s t ruc t ions fo r wr i t i ng UIO dev i ce d r ive r s can b e fo un d a t
/usr/share/doc/ccur/examples/driver/uio/uio-howto.pdf and are
beyond the scope of this chapter.

RedHawk Linux User’s Guide

14-16

Example UIO kernel and user drivers for both Concurrent’s RCIM board and a PMC-
16AIO board are supplied at /usr/share/doc/ccur/examples/driver/uio.
Both contain comments explaining what functions the drivers perform.

RedHawk has UIO support enabled by default in its pre-built kernels through the UIO

kernel tunable, which is located under Userspace I/O on the Kernel Configuration
GUI.

Analyzing Performance 14

NightTrace RT, a graphical analysis tool supplied by Concurrent, allows you to
graphically display information about important events in your application and in the
kernel, and can be used for identifying patterns and anomalies in your application’s
behavior. The ability to interactively analyze the code under varying conditions is
invaluable toward fine-tuning the real-time performance of your device driver.

The process of supplying trace points in user-level code, capturing trace data and
displaying the results is fully described in the NightTrace RT User’s Guide, publication
number 0890398. User and kernel trace events can be logged and displayed for analysis.

Kernel tracing utilizes pre-defined kernel trace events included in the trace and debug
kernels. User-defined events can be logged using the pre-defined CUSTOM trace event or
created dynamically. All are displayed by NightTrace RT for analysis. Refer to
Appendix D for details about kernel trace events.

15-1

15
Chapter 15PCI-to-VME Support

This chapter describes RedHawk Linux support for a PCI-to-VMEbus bridge.

Overview 15

A PCI-to-VMEbus adapter can be used to connect the iHawk PCI-based system with a
VMEbus system. This allows transparent access to all VME memory space and interrupt
levels to control and respond to the VME card as though it were plugged directly into the
iHawk PCI backplane.

RedHawk Linux includes support for the Model 618-3 and Model 620-3 PCI-to-VMEbus
adapters from SBS Technologies. Using the adapter, memory is shared between the two
systems. Two methods are utilized: memory mapping and Direct Memory Access (DMA).
Memory mapping supports bi-directional random access bus mastering from either
system. This allows programmed I/O access to VMEbus RAM, dual-port memory and
VMEbus I/O. On each system, a bus master can access memory in the other system from a
window in its own address space. Mapping registers allow PCI devices to access up to 32
MB of VMEbus address space and VMEbus devices to access up to 16 MB of PCI space.

Two DMA techniques are supported: Controller Mode DMA and Slave Mode DMA.
Controller mode DMA provides high-speed data transfers from one system’s memory
directly into the other system’s memory. Data transfers can be initiated in both directions
by either processor at rates up to 35 MB per second and up to 16 MB per transfer.

VMEbus devices that have their own DMA controllers can use Slave Mode DMA instead
of Controller Mode DMA. This allows a VMEbus DMA device to transfer data directly
into PCI memory at data rates in excess of 15 MB per second.

The adapter consists of three parts: the PCI adapter card, the VMEbus adapter card and a
fiber optic cable.

The PCI adapter card self-configures at boot time. It responds to and generates A32
memory and I/O accesses and supports D32, D16 and D8 data widths.

The VMEbus adapter card is configured via jumpers. The VMEbus adapter card responds
to and generates A32, A24, and A16 accesses and supports D32, D16, and D8 data widths.

Software support for the adapter includes the SBS Linux Model 1003 PCI Adapter
Support Software Version 2.2, with modifications for execution and optimization under
RedHawk Linux. The software includes a device driver that can access dual-port and/or
remote memory space from an application, and example programs to help applications
programmers with adapter and system configuration.

RedHawk Linux User’s Guide

15-2

Documentation 15

This chapter provides the information you will need to configure and use this support
under RedHawk Linux.

For information beyond the scope of this chapter, refer to the following documents that are
included with the RedHawk Linux documentation:

• SBS Technologies Model 618-3, 618-9U & 620-3 Adapters Hardware
Manual (sbs_hardware.pdf)

• SBS Technologies 946 Solaris, 965 IRIX 6.5, 983 Windows NT/2000, 993
VxWorks & 1003 Linux Support Software Manual (sbs_software.pdf)

Installing the Hardware 15

The adapter consists of three parts: the PCI adapter card, the VMEbus adapter card and a
fiber optic cable. Instructions for installing these are given below.

Normally, installation and configuration of the hardware is done by Concurrent Computer
Corporation. This information is provided for those cases where a PCI-to-VME bridge is
added to a system in a post-manufacturing environment.

Unpacking 15

When unpacking the equipment from the shipping container, refer to the packing list and
verify that all items are present. Save the packing material for storing and reshipping the
equipment.

NOTE

If the shipping container is damaged upon receipt, request that the
carrier’s agent be present during unpacking and inspection of the
equipment.

Before attempting to install the cards in your system, read the following:

CAUTION

Avoid touching areas of integrated circuitry as static discharge can
damage circuits.

It is strongly recommended that you use an antistatic wrist strap
and a conductive foam pad when installing and removing printed
circuit boards.

PCI-to-VME Support

15-3

Configuring the Adapter Cards 15

There are no jumpers to configure on the PCI adapter card.

VME adapter card jumper configuration should take place before the VME adapter card is
installed, or when the current settings of the VMEbus attributes that are controlled by the
VME adapter card jumpers need to be changed.

Refer to Chapter 10 of the SBS Technologies Hardware Manual for information about
configuring the VMEbus adapter card. The following additional information may prove
useful:

• The System Jumpers must be set appropriately, based on whether this VME
adapter card is used as the system controller in slot 1, or as a non-system
controller in some other VME slot.

• To make use of the bt_bind() buffer support or the local memory device
support (BT_DEV_LM) that lets devices on the VMEbus access memory on
the iHawk system through VME slave windows, the Remote REM-RAM HI
and LO jumpers must be set up to indicate the VMEbus base address and
range of the VME slave windows out on the VMEbus.

The base address should be placed on a 16 MB boundary, and the size of this
area should typically be set to (but not exceed) 16 MB in order to make use
of the total amount of area supported by the SBS hardware; for example, to
set up an A32 address range of 0xC0000000 to 0xC1000000, the jumpers
should be configured to the settings below:

To set an A32 address range, the jumpers at the bottom of the REM-RAM
should be set to:

A32 jumper IN
A24 jumper OUT

To specify a starting address of 0xC0000000, the row of LO address REM-
RAM jumpers should be set to:

31 and 30 jumpers OUT
All other LO jumpers IN (29 through 16)

To specify an ending address of 0xC1000000, the row of HI address REM-
RAM jumpers should be set to:

31, 30 and 24 jumpers OUT
All other HI jumpers IN (29-25, and 23-16)

RedHawk Linux User’s Guide

15-4

Installing the PCI Adapter Card 15

Use the following procedure to install the PCI adapter in your iHawk system:

1. Ensure that the iHawk system is powered down.

2. Locate a vacant PCI card slot in the chassis that supports a bus master.

3. Remove the metal plate that covers the cable exit at the rear of the chassis.

4. Insert the PCI adapter card into the connector.

5. Fasten the adapter card in place with the mounting screw.

6. Replace the cover.

Installing the VMEbus Adapter Card 15

NOTE

VMEbus backplanes have jumpers to connect the daisy-chained,
bus grant and interrupt acknowledge signals around unused card
locations. Make sure these jumpers are removed from the slot in
which the adapter card will be installed.

1. Ensure that the VMEbus chassis is powered down.

2. Decide whether the VMEbus adapter card is the system controller. If the
VMEbus adapter card is the system controller, it must be installed in slot 1.

If the adapter card is not the system controller, locate an unoccupied 6U slot in the
VMEbus card cage for the adapter.

3. Insert the card into the connector of the selected slot.

Connecting the Adapter Cable 15

NOTE

Keep the ends of the fiber-optic cable clean. Use alcohol-based
fiber-optic wipes to remove minor contaminants such as dust and
dirt.

Fiber-optic cables are made of glass: therefore, they may break if
crushed or bent in a loop with less than a 2-inch radius.

1. Ensure that the iHawk computer system and the VMEbus chassis are
powered off.

2. Remove the rubber boots on the fiber-optic transceivers as well as the ones
on the fiber-optic cables. Be sure to replace these boots when cables are not
in use.

PCI-to-VME Support

15-5

3. Plug one end of the fiber-optic cable into the PCI adapter card’s
transceiver.

4. Plug the other end of the fiber-optic cable into the VMEbus adapter card’s
transceiver.

5. Turn power on to both PCI and VMEbus systems.

6. Ensure that the READY LEDs on both adapter cards are lit. They must be
on for the adapter to operate.

Installing the Software 15

The software is contained on an optional product CD delivered with RedHawk Linux. It is
installed using the install-sbsvme installation script.

To install the software, perform the following steps:

1. With RedHawk Linux Version 2.1or later running on the iHawk system,
log in as root and take the system down to single-user mode:

a. Right click on the desktop and select New Terminal.

b. At the system prompt, type init 1.

2. Locate the disc labeled “RedHawk Linux PCI-to-VME Bridge Software
Library” and insert it into the CD-ROM drive.

3. To mount the cdrom device, execute the following command:

NOTE: /media/cdrom is used in the examples that follow. Depending on the type
of drive attached to your system, the actual mount point may differ. Check
/etc/fstab for the correct mount point.

mount /media/cdrom

4. To install, execute the following commands:

cd /media/cdrom
./install-sbsvme

Follow the on-screen instructions until the installation script completes.

5. When the installation completes, execute the following commands:

cd /
umount /media/cdrom
eject

6. Remove the disc from the CD-ROM drive and store. Exit single-user mode
(Ctrl-D).

RedHawk Linux User’s Guide

15-6

Configuration 15

The sections below discuss configuration of the module under RedHawk Linux and other
attributes that can be established at system initialization.

The btp Module 15

The pre-defined RedHawk kernels have the SBS Technologies PCI-to-VMEbus bridge
configured as a module by default. This can be disabled if desired through the SBSVME

option under the Device Drivers -> SBS VMEbus-to-PCI Support subsection on
the Kernel Configuration GUI. The module is called “btp.”

Device Files and Module Parameter Specifications 15

The /dev/btp* device files are created at initialization via /etc/init.d/sbsvme.
The attributes for those files are defined in /etc/sysconfig/sbsvme. In addition, the
following module parameter specifications can be made in this file. The default is no
parameters.

btp_major=num Specifies the major device number (num). By default, it is 0 (zero)
which allows the kernel to make the selection. If you supply a
nonzero device number, it must not already be in use. The
/proc/devices file can be examined to determine which
devices are currently in use.

icbr_q_size=size Specifies the number of ICBR entries (size) to be allocated for the
interrupt queue. Once set, this value cannot be changed without
unloading and reloading the btp driver. The default value is 1 KB
of interrupt queue space.

lm_size=size1, size2, ...
Specifies an array of local memory (BT_DEV_LM) sizes in bytes
with one for each SBS PCI-to-VME controller (unit) present in
the system. If this value is set to 0 (zero), local memory is
disabled for that specific unit only. The default value is 64 KB of
local memory and the maximum value is 4 MB. Refer to the
“Local Memory” section of this chapter for more information.

trace=flag_bits Specifies the device driver tracing level. This is used to control
which trace messages the btp driver displays. The possible bits to
use are the BT_TRC_xxx values located in /usr/include/
btp/btngpci.h . Because t rac ing has an impact on
performance, this feature should be used only for debugging btp
driver problems. The default value is 0 (zero) for no trace
messages.

The following are examples of btp module parameter specifications:

BTP_MOD_PARAMS=’bt_major=200 trace=0xff lm_size=0’
BTP_MOD_PARAMS=’icbr_q_size=0x1000 lm_size=0x8000,0x4000’

PCI-to-VME Support

15-7

VMEbus Mappings 15

Support for automatically creating and removing PCI-to-VMEbus mappings is included in
the /etc/init.d/sbsvme initialization script. When mappings are defined in
/etc/sysconfig/sbsvme-mappings, they are created during “/etc/init.d/sbsvme
start” processing and removed during the “stop” processing.

The /etc/sysconfig/sbsvme-mappings file contains help information and
commented-out templates for creating VMEbus mappings. The template examples can be
used to create customized VMEbus mappings, if desired. The mappings are created by
writing values to the /proc/driver/btp/unit/vme-mappings file, which is
explained as comments within the sbsvme-mappings file and in the section “The /proc
File System Interface” later in this chapter.

By making use of the sbsvme-mappings file to create PCI-to-VMEbus mappings
during system initialization, you may place additional lines in the /etc/rc.d/
rc.local script to invoke shmconfig(1) to create globally-visible shared memory
areas that are bound to VMEbus space. A sample script is provided that illustrates this.
Refer to the “Example Applications” section for details.

User Interface 15

Some modifications to the standard support software have been made for RedHawk
Linux. In addition to installation modifications, the following have been added:

• Support for binding multiple buffers of various sizes. In a system with
multiple user-level device drivers, this capability allows each driver to
allocate its own bind buffer instead of having to share a single bind buffer
between multiple devices. This capability also means that by allocating
multiple large bind buffers, the total 16 MB area of hardware-supported
VMEbus slave window space may be utilized. See the “Bind Buffer
Implementation” section for more information. Example programs have
been added that demonstrate how to allocate and bind multiple buffers to
VMEbus space (see the “Example Applications” section).

• Support for creating and removing VMEbus space mappings that are not
associated with a specific process, and obtaining the starting PCI bus address
location of that mapping to allow shared memory binding. This can be
accomplished in one of two ways:

- using the bt_hw_map_vme/bt_hw_unmap_vme library functions

- writing to the /proc/driver/btp file system

See the “Mapping and Binding to VMEbus Space” section for more details.
Example programs demonstrate how to create, display and remove VMEbus
mappings using both methods (see the “Example Applications” section).

RedHawk Linux User’s Guide

15-8

API Functions 15

Table 15-1 lists the API functions included in the libbtp library. The functions that have
been modified or added are noted and described in the sections that follow. The remaining
functions are described in the SBS Technologies Software Manual included with the
RedHawk Linux documentation.

Table 15-1 PCI-to-VME Library Functions

Function Description

bt_str2dev Convert from string to logical device.

bt_gen_name Generate the device name.

bp_open Open a logical device for access.

bt_close Close the logical device.

bt_chkerr Check for errors on a unit.

bt_clrerr Clear errors on a unit.

bt_perror Print error message to stderr.

bt_strerror Create a string error message.

bt_init Initialize a unit.

bt_read Read data from a logical device.

bt_write Write data to a logical device.

bt_get_info Get device configuration settings. See Note 1 below.

bt_set_info Set device configuration settings. See Note 1 below.

bt_icbr_install Install an interrupt call back routine.

bt_icbr_remove Remove an interrupt call back routine.

bt_lock Lock a unit.

bt_unlock Unlock a previously locked unit.

bt_mmap Create a memory mapped pointer into a logical device.

bt_unmmap Unmap a memory mapped location.

bt_dev2str Convert from a logical device type to a string.

bt_ctrl Call directly into the driver I/O control function.

bt_bind Bind application supplied buffers. See Note 1 below.

bt_unbind Unbind bound buffers. See Note 1 below.

bt_reg2str Convert register to string.

bt_cas Compare and swap atomic transactions.

(continued on next page)

Notes:
1 Multiple buffers of various sizes are supported through these

functions; see the “Bind Buffer Implementation “section.
2 This PCI-to-VME mapping/binding support is unique; see the

“Mapping and Binding to VMEbus Space”section in this chapter.

PCI-to-VME Support

15-9

Bind Buffer Implementation 15

The RedHawk sbsvme bind buffer support allows for multiple, different sized kernel bind
buffers to be allocated, bt_mmap()ed and bt_bound() to VMEbus space at the same time.
This section provides information about this bind buffer support, including how this
support differs from the documentation on bind buffers in the SBS Technologies Software
Manual.

Note that the only user interface difference between the SBS documentation and the
RedHawk bind buffer implementation is in the use of the ‘value’ parameter on the
bt_set_info() BT_INFO_KFREE_BUF call, which is discussed below. All other user interfaces
are the same as shown in the SBS Technologies Software Manual.

bt_get_info BT_INFO_KMALLOC_BUF 15

Synopsis

bt_error_t bt_get_info(bt_desc_t btd, BT_INFO_KMALLOC_BUF,
bt_devdata_t *value_p)

Multiple bt_get_info() BT_INFO_KMALLOC_BUF command calls can be made to allocate
multiple kernel buffers, where each returned buffer address, which is stored at the value_p
parameter location, may then be used on subsequent bt_mmap() and bt_bind() calls in
order to mmap and bind this buffer to a location on the VMEbus.

BT_INFO_KMALLOC_BUF calls allocate a kernel bind buffer with a size equal to the last
value set on the last successful bt_set_info() BT_INFO_KMALLOC_SIZ call. (If no such calls
have been made when the BT_INFO_KMALLOC_BUF call is made, then the default size of 64
KB is used.)

bt_tas Test and set atomic transaction.

bt_get_io Read an adapter CSR register.

bt_put_io Write an adapter CSR register.

bt_or_io One shot a register.

bt_reset Remotely reset the VMEbus.

bt_send_irq Send an interrupt to the remote VMEbus.

bt_status Return device status.

bt_hw_map_vme Create a PCI-to-VMEbus mapping. See Note 2 below.

bt_hw_unmap_vme Remove a PCI-to-VMEbus mapping. See Note 2 below.

Table 15-1 PCI-to-VME Library Functions (Continued)

Function Description

Notes:
1 Multiple buffers of various sizes are supported through these

functions; see the “Bind Buffer Implementation “section.
2 This PCI-to-VME mapping/binding support is unique; see the

“Mapping and Binding to VMEbus Space”section in this chapter.

RedHawk Linux User’s Guide

15-10

Up to BT_KMALLOC_NBUFS (16) kernel buffers can be allocated at the same time with the
BT_INFO_KMALLOC_BUF command. If there are already 16 bind buffers allocated, this
BT_INFO_KMALLOC_BUF call fails and returns an error value of BT_EINVAL.

Note that if a bt_set_info() BT_INFO_KMALLOC_SIZ call is used to set the bind buffer size to
zero, all subsequent BT_INFO_KMALLOC_BUF calls return with an error value of BT_EINVAL

unti l a new bind buffer s ize is set to a non-zero value via a bt_set_info()
BT_INFO_KMALLOC_SIZ call.

If the kernel is unable to allocate enough space for a new kernel bind buffer, this
BT_INFO_KMALLOC_BUF call fails and returns an error value of BT_EINVAL.

bt_set_info BT_INFO_KMALLOC_SIZ 15

Synopsis

bt_error_t bt_set_info(bt_desc_t btd, BT_INFO_KMALLOC_SIZ,
bt_devdata_t value)

When the bt_set_info() BT_INFO_KMALLOC_SIZ command is used to set a new bind buffer
size, the command only affects future bt_get_info() BT_INFO_KMALLOC_BUF command
calls. Any kernel bind buffers that have already been allocated with different bind buffer
sizes are NOT affected by the new BT_INFO_KMALLOC_SIZ call.

In this way, different sized kernel bind buffers can be allocated by using a different
BT_INFO_KMALLOC_SIZ ’value’ parameter after making one or more bt_get_info()
BT_INFO_KMALLOC_BUF calls.

It is encouraged, but not required, to use bind buffer sizes for the ’value’ parameter that
are a power of 2. Since the kernel bind buffer allocation is rounded up to a power of 2,
specifying and using a power of 2 ’value’ parameter value eliminates unused sections of
the allocated kernel bind buffers. Note that the initial default value for the kernel bind
buffer size is 64 KB.

Typically, the maximum size kernel bind buffer that can be successfully allocated on a
subsequent bt_get_info() BT_INFO_KMALLOC_BUF call is 4 MB. However, depending upon
the amount of physical memory on the system and the other uses of system memory, it
may not always be possible to successfully allocate a 4 MB kernel bind buffer. In this
case, multiples of smaller sized bind buffers can be allocated, or alternatively, 4 MB
kernel bind buffers can be allocated before other uses of system memory use up the
memory resources.

bt_set_info BT_INFO_KFREE_BUF 15

Synopsis

bt_error_t bt_set_info(bt_desc_t btd, BT_INFO_KFREE_BUF,
bt_devdata_t value)

The interface for the bt_set_info() BT_INFO_KFREE_BUF command is slightly different
under RedHawk than what is documented in the SBS Technologies Software Manual.

PCI-to-VME Support

15-11

Specifically, the ’value’ parameter is not used in the SBS implementation but the
RedHawk implementation uses this parameter in the following ways:

When the ’value’ parameter is zero:

This call unbinds and frees all kernel bind buffers that are not currently
bt_mmap()ed from user space. If at least one bind buffer is unbound and freed, a
successful status (BT_SUCCESS) is returned.

If no bind buffers are found that can be unbound and freed, this call fails and
BT_EINVAL is returned to the caller.

When the ’value’ parameter is not equal to zero:

This call is for unbinding and freeing up just one specific kernel bind buffer. In this
case, the caller’s ’value’ parameter should be equal to the kernel buffer address that
was returned at the ’value_p’ parameter location on the previous bt_get_info()
BT_INFO_KMALLOC_BUF call.

If the buffer address specified in the ’value’ parameter on this call does not corre-
spond to a valid kernel bind buffer, this call fails and returns an error value of
BT_EINVAL.

If the ’value’ parameter on this call corresponds to a valid kernel bind buffer, but
that buffer is currently bt_mmap()ed from user space, this call fails and a value of
BT_EFAIL is returned. In this case, the buffer must first be bt_unmmap()ed before this
call can succeed.

Additional Bind Buffer Information 15

The following sections describe additional areas where bind buffer support is affected
under RedHawk.

The Bigphysarea Patch 15

The bigphysarea patch discussed in the SBS Technologies Software Manual is not
supported or needed in the RedHawk sbsvme btp device driver. By using multiple large
bind buffers, it is possible to support the full 16MB of VMEbus slave window space for
accessing iHawk memory from the VMEbus.

Unloading the btp Module 15

The sbsvme ’btp’ kernel module can not be unloaded while there are any kernel bind
buffers currently bt_mmap()ed in a process’ address space. Processes must first remove
their mappings to kernel bind buffers with bt_unmmap() call(s) before the kernel driver
module is unloaded.

When there are no bind buffers currently bt_mmap()ed from user space, the btp kernel
module can be unloaded with a “/etc/init.d/sbsvme stop” command, and any kernel bind
buffers currently allocated are implicitly unbound (if currently bound) from the hardware
VMEbus slave window area and freed up for other future kernel memory allocations.

RedHawk Linux User’s Guide

15-12

bt_bind rem_addr_p Parameter 15

The ’rem_addr_p’ parameter on bt_bind() calls specifies an offset within the remote
VMEbus slave window where the caller wishes to bind a kernel bind buffer. Note that this
value is an offset, and not an absolute VMEbus physical address. This offset value is from
the base VMEbus address defined by the REM-RAM LO jumper setting located on the
SBS VME adapter card.

The user can either specify an actual ’rem_addr_p’ offset value, or let the btp driver find
an appropriate bind address location by using the BT_BIND_NO_CARE value for the
’rem_addr_p’ parameter. When this value is used, upon successful return from the
bt_bind() call the ’rem_addr_p’ memory location contains the offset value where the
kernel btp driver bound the bind buffer.

As an example, if the REM-RAM LO jumper settings are set to a value of 0xC0000000
and the offset value is 0x10000, the actual bind address where this buffer can be accessed
from the VMEbus would be 0xC0010000.

Local Memory 15

In addition to the kernel bind buffer support, the btp driver also supports the concept of
local memory. This feature is made available through use of the BT_DEV_LM device type,
instead of the BT_DEV_A32, BT_DEV_A24, and other VMEbus device types typically used
for the bind buffer feature.

The local memory buffer consists of local iHawk memory that is allocated and bound to
the VMEbus slave window area when the btp driver is loaded. This memory allocation
and binding remains in effect as long as the btp driver is loaded. If the btp driver is
unloaded with a “/etc/init.d/sbsvme stop” command, this local memory buffer is unbound
from VMEbus space and freed up for other kernel uses.

The local memory buffer is always bound to the bottom area of the VMEbus slave window
as defined by the REM-RAM LO jumper settings on the VME adapter card. For example,
if the local memory size is 64 KB, and the REM-RAM LO jumper settings are set to a
value of 0xC0000000, the local memory buffer is bound to the VMEbus at physical
VMEbus addresses 0xC0000000 through 0xC0000FFF.

Note that since the local memory buffer always occupies the bottom area of the VMEbus
remote slave window, the kernel bind buffers may not be bound to this area whenever
local memory support is enabled. By default, the local memory support is enabled with a
local memory buffer size of 64 KB, which leaves 16 MB - 64 KB of VMEbus slave
window space for bind buffers (assuming that the REM-RAM LO jumper settings are set
to a range that covers 16 MB).

The size of the local memory buffer can be increased by modifying the ’lm_size’
parameter in the /etc/sysconfig/sbsvme configurat ion fi le (see the
“Configuration” section earlier in this chapter. Note that the maximum supported
’lm_size’ value is 4 MB. If a larger value is specified, the btp driver’s buffer allocation
does not succeed, and the local memory feature is disabled at btp driver load time.

The local memory support can be disabled by setting the ’lm_size’ btp module parameter
to zero. When set to zero, the btp driver does not allocate a local memory buffer, and the
entire VMEbus slave window area is free for kernel bind buffer use.

PCI-to-VME Support

15-13

The local memory support is very similar to the bind buffer support:

• Both local memory and bind buffers are accessible from the VMEbus
through the slave window area.

• Both the local memory and bind buffer buffer areas can be accessed by
specifying the appropriate device type when using the bt_read(), bt_write()
and bt_mmap() functions.

The main differences between the local memory and bind buffer support are:

• There may be only one local memory buffer area. This buffer is set up at btp
driver load time and remains allocated and bound until the btp driver is
unloaded.

Contrastingly, multiple bind buffers of different sizes can be dynamically
allocated and bound, and dynamically unbound and freed.

• The local memory buffer always occupies the bottom of the VMEbus slave
window area.

Contrastingly, for bind buffers the user can either specify the location/offset
where each bind buffer is to be bound to VMEbus space, or let the kernel
dynamically find the next free location/offset to use.

Mapping and Binding to VMEbus Space 15

RedHawk provides a method of creating VMEbus space mappings that are not associated
with a specific process and remain intact after the process that created the mapping exits.
These mappings can be created and removed independently, either through the
bt_hw_map_vme and bt_hw_unmap_vme library functions or by writing to a /proc file
system interface.

The unique PCI bus starting address that corresponds to an active VMEbus space area
mapping can be obtained and used with shmbind(2) or shmconfig(1) to bind this
segment to a region of I/O space.

This functionality is described in the sections that follow.

bt_hw_map_vme 15

This function creates a new PCI-to-VMEbus mapping.

Synopsis

bt_error_t bt_hw_map_vme(bt_desc_t btd, void **phys_addr_p,
bt_devaddr_t vme_addr, size_t map_len, bt_swap_t swapping)

Arguments

btd the device descriptor that was returned from a successful
bt_open() function call.

phys_addr_p the user space location where the local PCI bus starting/base
address for this mapping is returned

RedHawk Linux User’s Guide

15-14

vme_addr the starting/base target VMEbus physical address. This address
must be aligned on a 4 KB boundary.

map_len the size of hardware mapping to be created. This value is rounded
up to a multiple of 4 KB.

swapping the byte swapping method to use for hardware mapping. The
BT_SWAP_xxx defines included in the /usr/include/btp/
btngpci.h header file can be used.

Return Values

When successful, a value of BT_SUCCESS is returned. The PCI bus address returned at the
phys_addr_p location can be used with shmbind(2) or shmconfig(1) to create a
shared memory area that may be used to access this range of remote VMEbus addresses.

When unsuccessful, an appropriate bt_error_t value is returned indicating the reason
for the failure:

BT_EDESC An invalid btd descriptor was specified. The descriptor must be a
descriptor returned from a bt_open() call of a BT_DEV_A32,
BT_DEV_A24 or BT_DEV_A16 device type.

BT_EINVAL An invalid vme_addr, map_len, phys_addr_p or
swapping parameter was specified.

BT_ENXIO The sbsvme hardware is not online or not connected properly.

BT_ENOMEM The required number of sbsvme hardware mapping registers could
not be allocated.

BT_ENOMEM The memory for the kernel data structures that are used for
tracking this mapping could not be allocated.

bt_hw_unmap_vme 15

This function removes a PCI-to-VMEbus mapping previously created with the
bt_hw_map_vme function or by writing to the /proc/driver/btp/unit/vme-
mappings file.

Synopsis

bt_error_t bt_hw_unmap_vme(bt_desc_t btd, void *phys_addr)

Parameters

btd the device descriptor that was returned from a successful
bt_open() function call.

phys_addr the PCI bus starting address for the VMEbus mapping to be
removed

PCI-to-VME Support

15-15

Return Values

When successful, a value of BT_SUCCESS is returned.

When unsuccessful, an appropriate bt_error_t value is returned indicating the reason
for the failure:

BT_EDESC An invalid btd descriptor was specified. The descriptor must be a
descriptor that was returned from a bt_open() call of a
BT_DEV_A32, BT_DEV_A24 or BT_DEV_A16 device type.

BT_ENOT_FOUND The mapping specified by the phys_addr parameter does not
exist.

The /proc File System Interface 15

When the sbsvme btp kernel module is loaded, the following /proc file(s) are created:

/proc/driver/btp/unit/vme-mappings

where unit is the unit number of the sbsvme PCI bridge card. The first card is unit number
0. On systems with multiple bridges, the second card is unit number 1, etc.

Existing PCI-to-VMEbus mappings can be viewed by reading the file. Mappings can be
created and removed by writing to the file. These techniques are described below.

Displaying VMEbus Mappings 15

Reading the vme-mappings file using cat(1) displays all currently established
VMEbus mappings. The following output shows two PCI-to-VMEbus mappings:

$ cat /proc/driver/btp/0/vme-mappings
pci=0xf8019000 vme=0x00008000 size=0x0001000 space=A16 admod=0x2d swap=5
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

pci= indicates the local PCI bus address where the mapping begins

vme= indicates the starting VMEbus address

size= indicates the size/length of the mapping

space= indicates the VMEbus address space type for the mapping

admod= indicates the VMEbus address modifier described by the BT_AMOD_xxx defines
in /usr/include/btp/btdef.h.

swap= indicates the bit swapping method described by the BT_SWAP_xxx defines in
/usr/include/btp/btngpci.h.

Creating VMEbus Mappings 15

Mappings to VMEbus space can be created by writing to the vme-mappings file. Note
that you must have CAP_SYS_ADMIN privileges to write to this file. To create a mapping,
the following three parameters must be specified in the order given here:

vme= specifies the starting, page-aligned VMEbus address to be mapped (e.g.,
0xfffff000).

RedHawk Linux User’s Guide

15-16

size= specifies the size of the mapping, which should be a multiple of a page (e.g.,
0x1000). Note that the sbsvme hardware is limited to mapping a total of
32 MB of VMEbus space.

space= specifies the VMEbus address space type for the mapping: A32, A24 or A16.

The following optional parameters may also be supplied, in any order, following the
required parameters listed above:

admod= specifies the VMEbus address modifier described by the BT_AMOD_xxx defines
in /usr/include/btp/btdef.h. If not specified, the following default
values are used:

BT_AMOD_32 0x0d
BT_AMOD_24 0x3d
BT_AMOD_16 0x2d

swap= specifies the bit swapping method described by the BT_SWAP_xxx defines in
/usr/include/btp/btngpci.h. If not specified, the default
BT_SWAP_DEFAULT value is used.

The following example shows creating two VMEbus mappings by writing to the vme-
mappings file.

$ echo “vme=0xe1000000 size=0x10000 space=A32” > /proc/driver/btp/0/vme-mappings
$ echo “vme=0xc0000000 size=0x1000 space=A32 swap=7 admod=0x9” > /proc/driver/btp/0/vme-mappings

Note that when the sbsvme btp kernel driver is unloaded with “/etc/init.d/sbsvme stop”
(see “VMEbus Mappings”), all current VMEbus mappings are removed before the driver
is unloaded. If mappings exist and “modprobe -r btp” is used to unload the driver, the
unload will fail until all VMEbus mappings are removed.

Removing VMEbus Mappings 15

A mapping to VMEbus space can be removed by writing the local PCI bus location of the
mapping to the vme-mappings file. Note that you must have CAP_SYS_ADMIN privileges
to write to this file. The PCI bus location is returned by bt_hw_map_vme() and by
cat’ing the vme-mappings file. For example:

$ cat /proc/driver/btp/0/vme-mappings
pci=0xf8019000 vme=0x00008000 size=0x0001000 space=A16 admod=0x2d swap=5
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

$ echo “pci=0xf8019000” > /proc/driver/btp/0/vme-mappings

$ cat /proc/driver/btp/0/vme-mappings
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

PCI-to-VME Support

15-17

Example Applications 15

Example programs are supplied that demonstrate features of the sbsvme btp device driver
and facilitate its use. They can be found in /usr/share/doc/ccur/examples/
sbsvme. The programs are useful tools for:

• debugging

• uploading and downloading binary data

• receiving and counting programmed interrupts

• testing hardware

• creating VMEbus mappings and bindings to shared memory areas

Table 15-2 lists the example programs. An asterisk (*) indicates the program was added to
RedHawk Linux and is described in the following sections. Other programs are described
in the SBS Technologies Software Manual.

Table 15-2 PCI-to-VME Example Programs

Name Description Functions Used

bt_bind Binds a local buffer to the remote VMEbus, waits for user input,
and then prints the first 256 bytes of the bound buffer.

bt_bind()
bt_unbind()

bt_bind_mult * Shows how to bind multiple local buffers to the remote
VMEbus. Optionally writes values to the local buffers before
waiting for user input. After user input occurs, it prints out the
first 16 bytes of each page of each of the local buffers.

bt_bind()
bt_unbind()

bt_bind_multsz * Shows how to create multiple bind buffers with different sizes. bt_bind()
bt_unbind()

bt_cat Similar to the 'cat' program. Allows reading from the remote
VMEbus to stdout, or writing data to the remote VMEbus from
stdin.

bt_read()
bt_write()

bt_datachk Reads and writes from a device using a specific pattern and then
verifies that no data or status errors occurred.

bt_read()
bt_write()

bt_dumpmem Reads and prints to stdout 256 bytes of remote VMEbus data. bt_mmap()

bt_getinfo A script that gets all the driver parameters and displays their
values to stdout.

n/a

bt_hwmap * Creates a VMEbus mapping. bt_hw_map_vme()

bt_hwunmap * Removes a VMEbus mapping. bt_hw_unmap_vme()

bt_icbr Registers for and receives interrupts for a given interrupt type. bt_icbr_install()
bt_icbr_remove()

bt_info Gets or sets driver parameters. bt_get_info()
bt_set_info()

bt_readmem Reads and prints to stdout 256 bytes of remote VMEbus data. bt_read()

bt_reset Resets the remote VMEbus. bt_reset()

(continued on next page)

RedHawk Linux User’s Guide

15-18

bt_bind_mult 15

The bt_bind_mult example application uses the bt_bind() function to bind multiple
equally-sized buffers to the remote bus. It waits for user input, then prints the first 4 words
of each page of each bound buffer. It also optionally writes data to buffer before waiting.

Usage: bt_bind_mult -[natulws]

bt_revs Outputs the software driver version and hardware firmware
version information to stdout.

bt_open()

bt_sendi Sends an interrupt to the remote bus. bt_send_irq()

readdma * Same as readmem, except this program reads larger amounts of
data, which results in the DMA hardware being used in the
kernel driver instead of cpu copying the data.

bt_read()

shmat * Takes a shared memory key parameter to attach and read from a
shared memory area. Used by the shmconfig-script program.

shmconfig(1)
shmat(2)

shmbind * Creates and attaches to a shared memory area that is mapped to
a PCI-to-VMEbus mapping and reads or writes to it.

shmget(2)
shmbind(2)
shmat(2)

shmconfig-script * A script that creates a PCI-to-VMEbus mapping via the /proc
file system and creates a shared memory area that is bound to
the VMEbus area.

shmconfig(1)

vme-mappings * A script that shows how to create, display and remove PCI-to-
VMEbus mappings via the /proc file system.

n/a

writemem * Writes out 256 bytes of data to the remote VMEbus, reads the
256 bytes of data back from the remote VMEbus and then
outputs this data to stdout.

bt_read()
bt_write()

writedma * Same as writemem, except this program writes larger amounts
of data, which results in the DMA hardware being used in the
kernel driver instead of cpu copying the data. This example only
writes the data to the remote VMEbus; it does not read the data
back from the remote VMEbus.

bt_write()

OPTION FUNCTION

-n <nbufs> Number of buffers to allocate and bind. Default is 2.

-a <vmeaddr> VME address to bind buffer. Defaults to BT_BIND_NO_CARE.

-t <logdev> Logical device. (BT_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT, etc.)
Default is to BT_DEV_DEFAULT.

-u <unit> Unit number to open. Default is unit 0.

-l <len> Length of the buffer to bind. Default is one page.

-w <value> Initially write this value to the first 4 words of each page in the buffer.

-s <swapbits> Sets the swap bits value for the call to bt_bind(). Note that the symbolic
names are not recognized.

Table 15-2 PCI-to-VME Example Programs (Continued)

Name Description Functions Used

PCI-to-VME Support

15-19

bt_bind_multsz 15

The bt_bind_multsz example application uses the bt_bind() function to bind multiple
buffers of various sizes to the remote bus. It waits for user input, then prints the first 4
words of each page of each bound buffer. It also optionally writes data to buffer before
waiting.

Usage: bt_bind_multsz -[atuws]

bt_hwmap 15

The bt_hwmap example application uses the bt_hw_map_vme function to create a
hardware mapping to an area of VMEbus space.

Usage: bt_hwmap -a[ltus]

bt_hwunmap 15

The bt_hwmap example application uses the bt_hw_unmap_vme function to remove a
hardware mapping from an area of VMEbus space.

Usage: bt_hwunmap -p[tu]

OPTION FUNCTION

-a <vmeaddr> VME address to bind buffer. Defaults to BT_BIND_NO_CARE.

-t <logdev> Logical device. (BT_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT, etc.)
Default is to BT_DEV_DEFAULT.

-u <unit> Unit number to open. Default is unit 0.

-w <value> Initially write this value to the first 4 words of each page in the buffer.

-s <swapbits> Sets the swap bits value for the call to bt_bind(). Note that the symbolic
names are not recognized.

OPTION FUNCTION

-a <addr> VMEbus physical address. This argument is required.

-l <len> Length of VMEbus area to map onto the PCI bus. Default is one page
(0x1000).

 -t <logdev> Logical device to access. (BT_DEV_A32, BT_DEV_A24, BT_DEV_A16,
BT_DEV_IO, BT_DEV_RR). Default is to BT_DEV_A32.

-u <unit> Unit number to open. Default is unit 0.

-s <swapbits> Sets the swap bits value for the call to bt_bind(). Note that the symbolic
names are not recognized. Default is BT_SWAP_DEFAULT.

OPTION FUNCTION

-p <pciaddr> Local PCI bus physical address of the mapping to be removed. This
argument is required.

 -t <logdev> Logical device. (BT_DEV_A32, BT_DEV_A24, BT_DEV_A16, BT_DEV_IO,
BT_DEV_RR). Default is to BT_DEV_A32.

-u <unit> Unit number to open. Default is unit 0.

RedHawk Linux User’s Guide

15-20

readdma 15

This example program is the same as bt_readmem, except it reads larger amounts of data,
which results in the DMA hardware being used in the kernel driver instead of cpu copying
the data.

Usage: readdma -[atulo]

shmat 15

This example program is invoked by the shmconfig-script script. It takes the shared
memory 'key' value and attaches to and reads from the shared memory area that is bound
to VMEbus space.

Usage: shmat -k shmkey -s size [-o outlen]

shmbind 15

This example program uses shmget(2), shmbind(2) and shmat(2) to attach a
shared memory area to a PCI-to-VMEbus mapping. You can read or write to the VMEbus
space using the shared memory attached area. The PCI-to-VME hardware mapping needs
to already be created.

Usage: shmbind -p pci_addr -s size [-r | -w value] [-o len]

OPTION FUNCTION

-a <addr> Address at which to start data transfer. Default = 0x00000000.

-t <logdev> Logical device to access. Default is to BT_DEV_A32.

-u <unit> Unit number to open. Default is unit 0.

-l <length> Bytes to read. Round down to pagesize. Default is 0x1000.

-o <outlen> Number of bytes output at the start of each page boundary. Default is 16
bytes. This value must be <= 409.

OPTION FUNCTION

-k <shmkey> Shared memory key value, in decimal, or in hex with a leading '0x' or
'0X'.

-s <size> Size in bytes of the shared memory area.

 -o <outlen> Number of bytes at the start of each shared memory page to output to
stdout, in hex. Default is 32 bytes.

OPTION FUNCTION

-p <pci_addr> Local PCI bus address where VME mapping is located, in hex.

-s <size> Size in bytes of the shared memory area to create, in hex.

 -r Read from the shared memory area. (Default.)

-w <value> Write to the shared memory area, using the specified value, in hex.

-o <len> Number of bytes at the start of each shared memory page to output to
stdout, in hex. Default is 32 bytes.

PCI-to-VME Support

15-21

shmconfig-script 15

This is an example script of how to use shmconfig(1) to create a shared memory area
that is bound to a specific VMEbus area with a PCI-to-VMEbus mapping. This script
invokes the shmat example program after the shared memory area is created.

vme-mappings 15

This is an example script that shows how to create, examine and remove PCI-to-VMEbus
mappings using the /proc/driver/btp/unit/vme-mappings file.

writemem 15

This example program uses the bt_write() Bit 3 Mirror API function to write to any of the
Bit 3 logical devices.

Usage: writemem -[atud]

Example: Write the first 256 bytes of data from BT_DEV_RDP starting at address
0x00001000:

./writemem -a 0x00001000

writedma 15

This example program is the same as writemem, except it writes larger amounts of data,
which results in the DMA hardware being used in the kernel driver instead of cpu copying
the data. This example only writes the data to the remote VMEbus; it does not read the
data back from the remote VMEbus.

Usage: writedma -[atuld]

OPTION FUNCTION

-a <addr> Address at which to start data transfer. Default = 0x00000000.

-t <logdev> Logical device to access (BT_DEV_RDP, BT_DEV_A32, etc.)

-u <unit> Unit number to open. Default is unit 0.

-d <value> Starting data value to write. Default is 0.

All numeric values use C radix notation.

OPTION FUNCTION

-a <addr> Starting VME address. Default = 0x00000000.

-t <logdev> Logical device to access. Default is to BT_DEV_A32.

-u <unit> Unit number to open. Default is unit 0.

-l <length> Number of bytes to write. Round down to pagesize. Default is 0x1000.

-d <value> Starting data value to write. Default is 0.

RedHawk Linux User’s Guide

15-22

A-1

A
Appendix AExample Message Queue Programs

16
14
13

This appendix contains example programs that illustrate the use of the POSIX and
System V message queue facilities. Additional example programs are provided online in
the /usr/share/doc/ccur/examples directory.

POSIX Message Queue Example 1

The example program given here is written in C. In this program, a parent process opens a
POSIX message queue and registers to be notified via a real-time signal when the queue
transitions from empty to non-empty. The parent spawns a child and waits on the child
until the child sends a message to the empty queue. The child sends the message, closes
it’s descriptor and exits.

The parent receives the real-time signal and captures the sigev_value (si_value) as
delivered by the siginfo_t structure in the signal handler. The parent also tests delivery
of the si_code (SI_MESGQ) before receiving the child’s test message. The parent verifies
that delivery of the si_value (which is a union) was correct as previously registered by
the sigev_value. The signal handler also displays the real-time signal value received
(SIGRTMAX) using psignal. The psignal function doesn’t know how to name SIGRTMAX, so
it calls it an unknown signal, prints the value and exits.

To build this program, specify the following:

gcc mq_notify_rtsig.c -Wall -g -l rt -o mq_notify_rtsig

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <unistd.h>
#include <mqueue.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <time.h>
#include <sched.h>
#include <signal.h>
#include <bits/siginfo.h>

#define MSGSIZE 40
#define MAXMSGS 5
#define VAL 1234

RedHawk Linux User’s Guide

A-2

void handlr(int signo, siginfo_t *info, void *ignored);

int val, code;

int main(int argc, char **argv)
{

 struct sigaction act;
 struct sigevent notify;
 struct mq_attr attr;
 sigset_t set;
 char *mqname = "/mq_notify_rtsig";
 char rcv_buf[MSGSIZE];
 mqd_t mqdes1, mqdes2;
 pid_t pid, cpid;
 int status;

 memset(&attr, 0, sizeof(attr));

 attr.mq_maxmsg = MAXMSGS;
 attr.mq_msgsize = MSGSIZE;

 mq_unlink(mqname);

 mqdes1 = mq_open(mqname, O_CREAT|O_RDWR, 0600, &attr);

 sigemptyset(&set);
 act.sa_flags = SA_SIGINFO;
 act.sa_mask = set;
 act.sa_sigaction = handlr;
 sigaction(SIGRTMAX, &act, 0);

 notify.sigev_notify = SIGEV_SIGNAL;
 notify.sigev_signo = SIGRTMAX;
 notify.sigev_value.sival_int = VAL;

 mq_notify(mqdes1, ¬ify);

 printf("\nmq_notify_rtsig:\tTesting notification sigev_value\n\n");

 printf("mq_notify_rtsig:\tsigev_value=%d\n",\

notify.sigev_value.sival_int);

 if((pid = fork()) < 0) {
 printf("fork: Error\n");
 printf("mq_notify_rtsig: Test FAILED\n");
 exit(-1) ;
 }

 if(pid == 0) { /* child */

 cpid = getpid() ;

 mqdes2 = mq_open(mqname, O_CREAT|O_RDWR, 0600, &attr);

 printf("child:\t\t\tsending message to empty queue\n");

 mq_send(mqdes2, "child-test-message", MSGSIZE, 30);

Example Message Queue Programs

A-3

 mq_close(mqdes2);

 exit(0);
 }

 else { /* parent */

 waitpid(cpid, &status, 0); /* keep child status from init */

 printf("parent:\t\t\twaiting for notification\n");

 while(code != SI_MESGQ)
 sleep(1);

 mq_receive(mqdes1, rcv_buf, MSGSIZE, 0);

 printf("parent:\t\t\tqueue transition - received %s\n",rcv_buf);
 }

 printf("mq_notify_rtsig:\tsi_code=%d\n",code);
 printf("mq_notify_rtsig:\tsi_value=%d\n",val);

 if(code != -3 || val != VAL) {
 printf("\nmq_notify_rtsig:\tTest FAILED\n\n");
 return(-1);
 }

 mq_close(mqdes1);
 mq_unlink(mqname);

 printf("\nmq_notify_rtsig:\tTest passed\n\n");

 return(0);

}

void handlr(int signo, siginfo_t *info, void *ignored)
{

 psignal(signo, "handlr:\t\t\t");
 val = info->si_value.sival_int;
 code = info->si_code;

 return;
}

RedHawk Linux User’s Guide

A-4

System V Message Queue Example 1

The example program given here is written in C. In this program, a parent process spawns
a child process to off load some of its work. The parent process also creates a message
queue for itself and the child process to use.

When the child process completes its work, it sends the results to the parent process via
the message queue and then sends the parent a signal. When the parent process receives
the signal, it reads the message from the message queue.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <signal.h>
#include <errno.h>

#define MSGSIZE 40/* maximum message size */
#define MSGTYPE 10/* message type to be sent and received */

/* Use a signal value between SIGRTMIN and SIGRTMAX */
#define SIGRT1(SIGRTMIN+1)

/* The message buffer structure */
struct my_msgbuf {
 long mtype;
 char mtext[MSGSIZE];
};
struct my_msgbuf msg_buffer;

/* The message queue id */
int msqid;

/* SA_SIGINFO signal handler */
void sighandler(int, siginfo_t *, void *);

/* Set after SIGRT1 signal is received */
volatile int done = 0;

pid_t parent_pid;
pid_t child_pid;

main()
{

int retval;
sigset_t set;
struct sigaction sa;

/* Save off the parent PID for the child process to use. */
parent_pid = getpid();

/* Create a private message queue. */
msqid = msgget(IPC_PRIVATE, IPC_CREAT | 0600);
if (msqid == -1) {

perror(“msgget”);
exit(-1);

}

Example Message Queue Programs

A-5

/* Create a child process. */
child_pid = fork();

if (child_pid == (pid_t)-1) {
/* The fork(2) call returned an error. */
perror(“fork”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);
}

if (child_pid == 0) {
/* Child process */

/* Set the message type. */
msg_buffer.mtype = MSGTYPE;

/* Perform some work for parent. */
sleep(1);

/* ... */

/* Copy a message into the message buffer structure. */
strcpy(msg_buffer.mtext, “Results of work”);

/* Send the message to the parent using the message
 * queue that was inherited at fork(2) time.
 */
retval = msgsnd(msqid, (const void *)&msg_buffer,

strlen(msg_buffer.mtext) + 1, 0);

if (retval) {
perror(“msgsnd(child)”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);
}

/* Send the parent a SIGRT signal. */
retval = kill(parent_pid, SIGRT1);
if (retval) {

perror(“kill SIGRT”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
exit(-1);

}
exit(0);

}

/* Parent */

/* Setup to catch the SIGRT signal. The child process
 * will send a SIGRT signal to the parent after sending
 * the parent the message.
 */
sigemptyset(&set);
sa.sa_mask = set;
sa.sa_sigaction = sighandler;

RedHawk Linux User’s Guide

A-6

sa.sa_flags = SA_SIGINFO;
sigaction(SIGRT1, &sa, NULL);

/* Do not attempt to receive a message from the child
 * process until the SIGRT signal arrives. Perform parent
 * workload while waiting for results.
 */
while (!done) {

/* ... */
}

/* Remove the message queue.
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
 */

/* All done.
 */
exit(0);

}

/*
* This routine reacts to a SIGRT1 user-selected notification
* signal by receiving the child process’ message.
*/
void
sighandler(int sig, siginfo_t *sip, void *arg)
{

int retval;
struct ucontext *ucp = (struct ucontext *)arg;

/* Check that the sender of this signal was the child process.
 */
if (sip->si_pid != child_pid) {

/* Ignore SIGRT from other processes.
 */
printf(“ERROR: signal received from pid %d\n”, sip->si_pid);
return;

}

/* Read the message that was sent to us.
 */
retval = msgrcv(msqid, (void*)&msg_buffer,

MSGSIZE, MSGTYPE, IPC_NOWAIT);

done++;

if (retval == -1) {
perror("mq_receive (parent)");
return;

}

if (msg_buffer.mtype != MSGTYPE) {
printf(“ERROR: unexpected message type %d received.\n”,

msg_buffer.mtype);
return;

}

printf(“message type %d received: %s\n”,
msg_buffer.mtype, msg_buffer.mtext);

}

B-1

B
Appendix BKernel Tunables for Real-time Features

Table B-1 contains a list of unique features in RedHawk Linux and the kernel
configuration settings that support them. These include features developed by Concurrent
for real-time operation, optional package support and features incorporated from open
source patches.

For each function, the Kernel Configuration GUI option and the tunable name are given to
help you view and modify the settings as needed. Additionally, the default settings for
each feature in each of the RedHawk Linux pre-built kernels are provided. For more
information about configuring and building a kernel, see Chapter 11.

Information about individual features is available in various locations. In Table B-1, the
following references are provided:

• Page numbers (active hypertext links) where information included in this
RedHawk Linux User’s Guide is provided.

• Names and publication numbers of other appropriate Concurrent documents.

Other sources where information may be obtained include:

• Information provided in a separate help window of the Kernel Configuration
GUI that displays when the parameter is selected.

• Text files in the Documentation directory of the kernel source tree.

• Linux documentation sites on the Internet.

RedHawk Linux User’s Guide

B-2

Table B-1 Kernel Tunables for Real-time Features

Functionality
Kernel

Configuration
GUI Option

Tunable Name
Default Settings*/
Pre-built Kernels

Concurrent
Documentation

Reference

Shielded CPUs

Enable CPU Shielding

General Setup

SHIELD Y / all page 2-1

Enable CPU Downing CPU_IDLING Y / all page 2-28

RCU Processing RCU_ALTERNATIVE Y / all page 7-4

Lock per-CPU daemons
to their CPUs DAEMON_CPU_LOCK Y / all n/a

Rescheduling Variables General Setup RESCHED_VAR Y / all page 5-3

Timekeeping

Enable tickless system
Processor Type and

Features

NO_HZ Y / all

page I-1Enable/disable tickless
system at system boot

NO_HZ_ENABLED Y / all

High Resolution Process
Accounting General Setup HRACCT Y / all page 7-2

TSC Reliability Processor Type and
Features

REQUIRE_TSC Y / all i386
page 7-2

REQUIRE_RELIABLE_TSC Y / all

Enable RCIM as system
clocksource

Device Drivers

RCIM_CLOCKSOURCE Y / all
RCIM User’s

Guide
(0898007)

RCIM PPS support RCIM_PPS Y / all

RCIM User’s
Guide

(0898007)

PPS API support PPSAPI Y / all

PPS API on serial PPSAPI_SERIAL Y / all

NTP Support for PPS Processor Type and
Features

NTP_PPS Y / all

RCIM Support Device Drivers RCIM Y / all
RCIM User’s

Guide
(0898007)

POSIX Message Queues General Setup POSIX_MQUEUE Y / all page 3-2

Post/Wait Support General Setup POST_WAIT Y / all page 5-37

Inherit Capabilities
Across exec

General Setup INHERIT_CAPS_ACROSS_EXEC Y / all page 13-5

* Y = set, N = not set, M = tunable enabled when kernel module is loaded

Kernel Tunables for Real-time Features

B-3

Process Scheduling
Processor Type and

Features

SCHED_SMT Y / all
page 2-34

SCHED_SMT_IDLE N / all

Optional RedHawk Products

Frequency-based
Scheduler (FBS)

Frequency-Based
Scheduling

FBSCHED Y / all
FBS User’s

Guide
(0898005)

Performance Monitor
(PM)

Frequency-Based
Scheduling

FBSCHED_PM Y / all
FBS User’s

Guide
(0898005)

SNARE Audit General Setup AUDIT N / all RedHawk-FAQ

SBS VMEbus-to-PCI Device Drivers SBSVME M / all page 15-1

/proc Filesystem

/proc/ccur Pseudo
File Systems

PROC_CCUR_DIR Y / all n/a

/proc/pid/affinity PROC_PID_AFFINITY Y / all n/a

/proc/pid/resmem PROC_PID_RESMEM Y / all n/a

PCI BAR Access Bus options PROC_PCI_BARMAP Y / all page 14-1

Memory Mapping

Process space mmap/
usermap support

Pseudo File
Systems

PROCMEM_MMAP Y / all

page 9-1

File permission access to
another process’ address
space

PROCMEM_ANYONE Y / all

Enable writes into
another process’ address
space

PROCMEM_WRITE Y / all

Interrupt Processing

Softirq daemon priority

General Setup

SOFTIRQ_PRI 0 / all

page 14-12Softirq preemption
blocking

SOFTIRQ_PREEMPT_BLOCK Y / all

Enable RCIM IRQ
extensions Device Drivers RCIM_IRQ_EXTENSIONS Y / all

RCIM User’s
Guide

(0898007)

Table B-1 Kernel Tunables for Real-time Features (Continued)

Functionality
Kernel

Configuration
GUI Option

Tunable Name
Default Settings*/
Pre-built Kernels

Concurrent
Documentation

Reference

* Y = set, N = not set, M = tunable enabled when kernel module is loaded

RedHawk Linux User’s Guide

B-4

Full 4GB address range
for read(1), write(1)

Pseudo
File Systems

UNSIGNED_OFFSETS Y / all n/a

Enable shmbind call Kernel Tracing SHMBIND Y / all page 3-16

Cross Processor Interrupt Reduction

Preload vmalloc page
tables at boot

General Setup VMALLOC_PGTABLE_PRELOAD

Y / generic
(i386 non-PAE

only)
page G-5

Graphic Page
Preallocation

 Device Drivers PREALLOC_GRAPHICS_PAGES 10240 / all page G-3

Softlockup detection Kernel Hacking DETECT_SOFTLOCKUP N / all page 2-34

Lock break handling General Setup
LOCK_BREAK_THROTTLE Y / all n/a

LOCK_BREAK_THROTTLE_LIMIT 30 / all n/a

XFS Filesystem

Enable XFS

File Systems

XFS_FS Y / all

page 8-1Real-time subvolume
support

XFS_RT Y / all

Kernel Preemption
Processor Type

and Features
PREEMPT Y / all page 1-6

Ptrace Extensions General Setup PTRACE_EXT Y / all page 1-6

NUMA Support
Processor Type
and Features

NUMA Y / all

page 10-1

K8_NUMA Y / all x86_64 only

X86_64_ACPI_NUMA Y / all x86_64 only

PAGE_REPLICATION Y / all

PAGE_REPLICATION_DYNAMIC Y / all

MEMSHIELD_ZONE_NORMAL Y / all x86 only

MEMSHIELD_ZONELIST_ORDER Y / all

CONFIG_KTEXT_REPLICATION Y / all x86_64 only

CONFIG_KMOD_REPLICATION Y / all x86_64 only

Table B-1 Kernel Tunables for Real-time Features (Continued)

Functionality
Kernel

Configuration
GUI Option

Tunable Name
Default Settings*/
Pre-built Kernels

Concurrent
Documentation

Reference

* Y = set, N = not set, M = tunable enabled when kernel module is loaded

Kernel Tunables for Real-time Features

B-5

System Dumps

Enable kdump crash
dumps

Processor Type
and Features

KEXEC Y / all

page 12-1Generate debug symbols DEBUG_INFO Y / all

Enable kernel crash
dumps

CRASH_DUMP Y / kdump only

Kernel Debug

KDB support

Kernel Hacking

KDB Y / debug only

page 12-8

KDB support KDB_OFF N / debug only

Include Concurrent
support

KDB_MODULES Y / debug only

KDB catastrophic error
handling

KDB_CONTINUE_CATASTROPHIC 0 / debug only

Kernel Tracing

Enable kernel tracing

Kernel Tracing

TRACE
Y / trace, debug

N / generic
page D-1

Use RCIM as timestamp
source

TRACE_USE_RCIM
Y / debug, trace

N / generic
n/a

nVIDIA Graphics
Support

Device Drivers NVIDIA M / all Release Notes
(0898003)

Hyper-threading
Processor Type

and Features
X86_HT Y / all page 2-28

UIO Support Userspace I/O UIO Y / all page 14-15

Table B-1 Kernel Tunables for Real-time Features (Continued)

Functionality
Kernel

Configuration
GUI Option

Tunable Name
Default Settings*/
Pre-built Kernels

Concurrent
Documentation

Reference

* Y = set, N = not set, M = tunable enabled when kernel module is loaded

RedHawk Linux User’s Guide

B-6

C-1

C
Appendix CCapabilities

This appendix lists the capabilities included in RedHawk Linux and the permissions that
each capability provides.

Overview 3

Capabilities is a method in Linux where the privileges traditionally associated with
superuser are divided into distinct units that can be independently enabled and disabled.
An unscrupulous user can use some of the permissions provided by capabilities to defeat
the security mechanisms provided by Linux; therefore, this functionality should be used
wi th due caut ion . Capabi l i t ies a re defined in /usr/include/linux/
capability.h.

For more informat ion about how capabi l i t ies work in Linux, refer to the
capabilities(7) man page. For information about the PAM facility that provides an
authentication scheme utilizing capabilities, refer to Chapter 13.

Capabilities 3

This section describes the permissions provided by each of the capabilities defined under
RedHawk Linux. Features from standard Linux as well as features unique to RedHawk
Linux are included in this discussion.

CAP_CHOWN This capability overrides the restriction of changing user or group file
ownership when the current effective user ID, group ID, or one of the
supplemental group IDs do not match the file’s UID/GID attributes.

CAP_DAC_OVERRIDE
Except for the file access restrictions enforced by files marked as
immutable or append-only (see chattr(1)), this capability overrides
any file discretionary access control (DAC) restrictions that would
normally be enforced with the owner/group/world read/write/execute
filesystem permission attributes and Access Control List (ACL)
restrictions, if ACL support is configured into the kernel for that
filesystem (see acl(5) for more details).

Read and write access DAC restrictions may always be overridden with
this capability. Execute DAC restrictions may be overridden with the
capability as long as at least one owner/group/world execute bit is set.

This capability also overrides permission access restrictions when using
the fbsintrpt(3) and fbsresume(3) commands.

RedHawk Linux User’s Guide

C-2

CAP_DAC_READ_SEARCH

This capability overrides any file discretionary access control (DAC)
restrictions that would normally be enforced with the owner/group/
world read/execute filesystem permission attributes and Access Control
List (ACL) restrictions if ACL support is configured into the kernel for
that filesystem (see acl(5) for more details).

This capability always allows read access to files and directories, and
search (execute) access to directories.

This capability also overrides permission access restrictions when using
the fbsintrpt(3) and fbsresume(3) commands.

 CAP_FOWNER This capability:

- overrides all Discretionary Access Control (DAC) restrictions
regarding file attribute changes where the file owner ID must
be equal to the user ID.

- allows the FBS_RMID and FBS_SET fbsctl(2) commands
when the fbs creator user ID and user ID do not match the
caller’s effective user ID

This capability does not override Data Access Control (DAC)
restrictions.

 CAP_FSETID This capability overrides the restriction that the effective group ID (or
one of the supplementary group IDs) shall match the file group ID when
setting the S_ISGID bit on that file.

CAP_IPC_LOCK This capability allows for the locking of memory through the
mlock(2) and mlockall(2) system service calls.

It also allows locking and unlocking of shared memory segments
through the shmctl(2) SHM_LOCK and SHM_UNLOCK commands.

CAP_IPC_OWNER
This capability overrides the IPC permission set that is associated with
an IPC shared memory segment, message queue or semaphore array.
The IPC permissions have the same format and meaning as the read/
write owner, group and world permissions associated with files. Note
that execute permissions are not used. The ipcs(1) command may be
used to view the owner and permissions of the current IPC resources.

CAP_KILL This capability overrides the restriction that the real or effective user ID
of a process sending a signal must match the real or effective user ID of
the process receiving the signal.

This capability also overrides the restriction on KDSIGACCEPT

ioctl(2) calls that requires the calling process to be the owner of the
tty or have the CAP_SYS_TTY_CONFIG capability.

CAP_LEASE This capability lets a user take out a lease on a file, with the fcntl(2)
F_SETLEASE command, even when the process’ user ID does not match
the file system user ID value.

Capabilities

C-3

CAP_LINUX_IMMUTABLE

This capability allows the modification of the S_IMMUTABLE and
S_APPEND file attributes. See the chattr(1) man page for more
information on these file attributes.

CAP_MKNOD This capability allows the user to make use of the privileged aspects of
mknod(1) /mknod(2) . I t a l so a l l o w s u se o f t h e
XFS_IOC_FSSETDM_BY_HANDLE xfs filesystem ioctl(2) command.

CAP_NET_ADMIN
This capability allows for the following network administration
activities:

- setting debug and priority options on sockets
- administration of IP firewall, masquerading and accounting
- interface configuration
- multicasting
- reading and writing of network device hardware registers
- adding/deleting tunnels
- modification of routing tables
- setting TOS (type of service)
- activation of ATM control sockets

CAP_NET_BIND_SERVICE

This capability allows binding to TCP/UDP and Stream Control
Transmission Protocol (SCTP) sockets below 1024, and to ATM VCIs
below 32.

This capability also causes a reserved port to be used when creating an
RPC client transport.

CAP_NET_BROADCAST
This capability is not currently used.

CAP_NET_RAW This capability allows the creation of SOCK_RAW and SOCK_PACKET

sockets, and the use of the SO_BINDTODEVICE setsockopt(2) socket
option.

CAP_SETGID This capability overrides the restrictions placed on non-root process’
g r o u p I D v a l u e f o r t h e setregid(2) , setgid(2) ,
setresgid(2), setfsgid(2) and setgroups(2) system
services.

 This capability also allows a process to send a socket level credential
control message that contains a group ID value that does not match the
current process’ current, effective or saved group ID. (Additionally, the
credential control message process ID must match the process’ thread
group ID or the process must also have the CAP_SYS_ADMIN capability,
and the credential control message user ID must match the process’
saved, effective or current user ID, or have the CAP_SETUID capability.)

CAP_SETPCAP This capability allows a process to transfer any capability in the process’
permitted set to any process ID (PID), and to remove any capability in
the process’ permitted set from any PID.

RedHawk Linux User’s Guide

C-4

CAP_SETUID This capability allows setting the current user ID to any user ID,
including the user ID of superuser. Extreme caution should be used in
granting this capability.

This capability also allows a process to send a socket level credential
control message that contains a user ID value that does not match the
current process’ current, effective or saved user ID. (Additionally, the
credential control message process ID must match the process’ thread
group ID or the process must also have the CAP_SYS_ADMIN capability,
and the credential control message group ID must match the process’
saved, effective or current group ID, or have the CAP_SETGID capability.)

 This capability also overrides the limitation that processes that are
ptraced by this process may not inherit the user or group ID of a “set
user or group ID on execution” executable that the ptraced process
executes.

CAP_SYS_ADMIN This capability provides the following system administration activities:

- allows use of bdflush(2)

- overrides the open file limit

- allows examination and configuration of disk quotas

- allows examination and configuration of disk usage on a per
user or per group basis under the xfs filesystem (if XFS_QUOTA

is enabled)

- allows umount() and mount()

- allows copying of a process’ namespace during fork(2)/
clone(2) calls

- allows msgctl(2), semctl(2) and shmctl(2) IPC_SET

and IPC_RMID commands for message queues, semaphores and
shared memory areas that do not have a user ID or creator user
ID value that matches the process’ effective user ID

- allows shmctl(2) SHM_PHYSBIND commands for shared
memory areas where the user ID or creator user ID of the
shared memory area does not match the process’ effective
user ID

- overrides the limit on the maximum number of processes per
process on fork(2)/clone(2) calls when the non-root
user does not have the CAP_SYS_RESOURCE capability

- allows wakeups on pw_post(2), pw_postv(2),
server_wake1(2) and server_wakevec(2)calls
when the process(es) to be awakened do not have the same
user ID or saved user ID as the calling process’ effective user
ID or user ID value

- allows use of the RCIM_WRITE_EEPROM and RCIM_TESTIRQ

ioctl(2) RCIM driver commands

- allows use of the system dump ioctl(2) commands, and
the setting of the sysctl(2) kernel.dump.device variable

- allows configuration of serial ports

- allows sethostname(2) and setdomainname(2) calls

- allows the use of swapon(8) and swapoff(8) calls

Capabilities

C-5

- allows the open of raw volume zero and the CCISS_SETINTINFO

and CCISS_SETNODENAME ioctl(2) commands in the Disk
Array driver for HP SA 5xxx and 6xxx Controllers

- allows ioctl(2) commands in the Mylex DAC960 PCI
RAID Controller driver

- allows the open of raw volume zero in the Compaq SMART2
Controller Disk Array driver

- allows the use of floppy root-only ioctl(2) commands
(those commands with bit 0x80 set), and also the FDSETPRM

and FDDEFPRM set geometry commands

- allows use of the following block device ioctl(2)
commands: BLKPG add/delete partition, BLKRRPART re-read
partition, BLKRASET set read-ahead for block device,
BLKFRASET set filesystem read-ahead, BLKBSZSET set logical
block size, BLKFLSBUF flush buffer cache, BLKROSET set
device read-only

- allows setting the encryption key on loopback filesystems

- allows network block device ioctl(2) commands

- allows modification of the memory type range registers
(MTRR)

- allows use of ioctl(2) commands for power management
when APM is enabled in the kernel

- allows use of some ioctl(2) commands for certain BIOS
settings

- allows use of the VM86_REQUEST_IRQ vm86(2) support

- allows use of the CDROMRESET, CDROM_LOCKDOOR and
CDROM_DEBUG ioctl(2) CDROM commands

- allows DDIOCSDBG DDI debug ioctl(2) on sbpcd
CDROM driver

- allows use of the root-only Direct Rendering Manager (DRM)
ioctl(2) commands and the DRM mmap(2) DMA
memory command

- allows use of the root-only ioctl(2) commands in the
Specialix RIO smart serial card driver

- allows reading the first 16 bytes of the VAIO EEProm
hardware Sensors chip on the I2C serial bus

- allows writes to the /proc/ide/iden/config file,
modification of the IDE drive settings, and the following IDE
ioctl(2) commands: HDIO_DRIVE_TASKFILE (execute raw
taskfile), HDIO_SET_NICE (set nice flags), HDIO_DRIVE_RESET

(execute a device reset), HDIO_GET_BUSSTATE (get the bus
state of the hardware interface), HDIO_SET_BUSSTATE (set the
bus state of the hardware interface)

- allows use of the SNDRV_CTL_IOCTL_POWER sound
ioctl(2) command

- allows the use of various root-only ioctl(2) commands for
various PCI-based sound cards, such as Live! and Sound
Blaster 512

- allows use of the experimental networking SIOCGIFDIVERT and
SIOCSIFDIVERT Frame Diverter ioctl(2) commands

- allows the sending of the SCM_CREDENTIALS socket level
control message, when the user ID of the credentials do not

RedHawk Linux User’s Guide

C-6

match the current process’ effective, saved or current user ID
value

- allows administration of md devices (Multiple Devices -
RAID and LVM)

- allows adding and removing a Digital Video Broadcasting
interface

- allows the VIDIOC_S_FBUF ioctl(2) command for the
Philips saa7134-based TV card video4linux device driver, if
the CAP_SYS_RAWIO capability is not enabled

- allows the use of the VIDIOCSFBUF and VIDIOC_S_FBUF

ioct(2) commands in the bttv and Zoran video device
drivers, if the CAP_SYS_RAWIO capability is not enabled

- allows the use of the VIDIOCSFBUF ioctl(2) command in
the planb video device driver if the CAP_SYS_RAWIO capability
is not enabled

- allows the use of the VIDIOCSFBUF ioctl(2) command in
the stradis 4:2:2 mpeg decoder driver

- allows the use of the Intelligent Input/Output (I2O)
ioctl(2) commands

- allows manufacturer commands in ISDN CAPI support driver

- allows reading up to 256 bytes (non-standardized portions) of
PCI bus configuration space, and also allows use of the
pciconfig_read(2) and pciconfig_write(2)
system service calls

- allows use of the root-only pcmcia ioctl(2) commands

- allows use of the FSACTL_SEND_RAW_SRB ioctl(2)
command in the aacraid Adaptec RAID driver

- allows read and write to the QLogic ISP2x00 nvram

- allows access to the MegaRAID ioctl(2) commands

- allows use of the MTSETDRVBUFFER SCSI tape driver
ioctl(2) command

- allows write access to the /proc SCSI debug file, if
SCSI_DEBUG is enabled in the kernel (also requires the
CAP_SYS_RAWIO capability)

- allows the sending of arbitrary SCSI commands via the SCSI_

IOCTL_SEND_COMMAND ioctl(2) command (also requires
the CAP_SYS_RAWIO capability)

- allows use of the SCSI scatter-gather SG_SCSI_RESET

ioctl(2) command, /proc/sg/allow_dio and /
proc/sg/def_reserved_size write(2), (also
requires the CAP_SYS_ADMIN capability)

- allows use of the IXJCTL_TESTRAM and IXJCTL_HZ ioct(2)
commands for the Quicknet Technologies Telephony card
driver

- allows some autofs root-only ioctls

- allows getting and setting the extended attributes of filesystem
objects (getfattr(1), setfattr(1))

- allows root-only ioct(2) commands for NetWare Core
Protocol (NCP) filesystems

- allows setting up a new smb filesystem connection

Capabilities

C-7

- allows the UDF_RELOCATE_BLOCKS ioctl(2) command on
udf filesystems (used on some CD-ROMs and DVDs)

- allows administration of the random device

- allows binding of a raw character device (/dev/raw/rawn)
to a block device

- allows configuring the kernel’s syslog (printk behavior)

- allows writes to the /proc/driver/btp/unit#/vme-
mappings file, if SBSVME is enabled in the kernel, to create
and remove PCI-to-VMEbus mappings

- allows writes to /proc/driver/graphics-memory to
modify size of the pre-allocated graphics memory pool

CAP_SYS_BOOT This capability allows use of the reboot(2) system service call.

CAP_SYS_CHROOT
This capability allows use of the chroot(2) system service call.

CAP_SYS_MODULE

This capability allows the insertion and deletion of kernel modules
using sys_delete_module(2), init_module(2), rmmod(8)
and insmod(8).

This capability also lets you modify the kernel capabilities bounding set
value, cap_bset, where this value is accessible via the sysctl(2)
kernel.cap-bound parameter.

CAP_SYS_NICE This capability allows:

- raising the scheduling priority on processes with the same
user ID

- setting the priority on other processes with a different user ID

- setting the SCHED_FIFO and SCHED_RR scheduling policies for
processes that have the same user ID

- changing the scheduling policy of processes with a different
user ID

- changing the cpu affinity for processes with a different user
ID via the sched_setaffinity(2) or /proc/pid/
affinity file

- allows the use of fbsconfigure(3)

CAP_SYS_PACCT This capability allows configuration of process accounting through the
acct(2) system service call.

CAP_SYS_PTRACE

This capability lets a process ptrace(2) any other process.

 This capability also allows the process to ptrace(2) setuid
executables, regardless of the CAP_SETUID setting.

CAP_SYS_RAWIO This capability allows the following raw I/O activities:

- the shmctl(2) SHM_PHYSBIND command

- the resched_cntl(2) RESCHED_SET_VARIABLE command

- mmap(2) of PCI Bus space and access to the PCI Base
Address Registers (BAR)

RedHawk Linux User’s Guide

C-8

- open(2) of /dev/port and /proc/kcore

- use of the ioperm(2) and iopl(2) system service calls

- the filesystem ioctl(2) FIBMAP command

- open(2) of the /dev/cpu/microcode file, if
MICROCODE is enabled in the kernel

- the following Disk Array driver for HP SA 5xxx and 6xxx
Controllers ioctl(2) commands: CCISS_PASSTHRU,
CCISS_BIG_PASSTHRU, CCISS_DEREGDISK, CCISS_REGNEWD

- the open(2) of Disk Array driver for Compaq SMART2
Controllers, and the IDAPASSTHRU ioctl(2) command

- the configuration of IDE controllers, and the following IDE
ioctl(2) commands: HDIO_DRIVE_TASKFILE, HDIO_DRIVE_

C M D , H D I O _ D R I V E _ TA S K , H D I O _ S C A N _ H W I F, H D I O _

UNREGISTER_HWIF

- the Fibre Channel Host Bus Adapter CPQFCTS_SCSI_PASSTHRU

ioctl(2) command

- write access to the /proc SCSI debug file, if SCSI_ DEBUG is
enabled in the kernel (CAP_SYS_ADMIN is also required)

- sending of arbitrary SCSI commands via the SCSI_IOCTL_

SEND_COMMAND ioctl(2) command (CAP_SYS_ADMIN is
also required)

- use of the SCSI scatter-gather SG_SCSI_RESET ioctl(2)
command, /proc/sg/allow_dio and /proc/sg /
def_reserved_size write(2) (also requires the
CAP_SYS_ADMIN capability)

- the ATMSIGD_CTRL ioctl(2) command

- use of the VIDIOCSFBUF and VIDIOC_S_FBUF ioctl(2)
commands in the bttv and Zoran video device drivers, if the
CAP_SYS_ADMIN capability is not enabled

- use of the VIDIOCSFBUF ioctl(2) command in the planb
video device driver if the CAP_SYS_ADMIN capability is not
enabled

- use of the HDLCDRVCTL_SETMODEMPAR and HDLCDRVCTL_

CALIBRATE ioctl(2) commands in the baycom epp radio
and HDLC packet radio network device drivers

- the SIOCSCCCFG, SIOCSCCINI, SIOCSCCSMEM, and SIOCSCCCAL

ioctl(2) commands in the Z8530 based HDLC cards for
AX.25 device driver

- the SIOCYAMSCFG ioctl(2) command in the AM radio
modem device driver

- the COSAIOSTRT, COSAIODOWNLD, COSAIORMEM and
COSAIOBMSET ioctl(2) commands for the SRP and COSA
synchronous serial card device driver

- the FBIO_ALLOC and FBIO_FREE ioctl(2) commands for the
SiS frame buffer device driver

- the VIDIOC_S_FBUF ioctl(2) command for the Philips
saa7134-based TV card video4linux device driver, if the
CAP_SYS_ADMIN capability is not enabled

Capabilities

C-9

CAP_SYS_RESOURCE
This capability lets the user:

- override disk quota limits

- override the IPC message queue size limit on a msgctl(2)
IPC_SET command

- override the number of processes per process on fork(2)/
clone(2) calls, when the non-root user does not have the
CAP_SYS_ADMIN capability

- increase this user’s resource limits with the setrlimit(2)
system service

- set the real-time clock (rtc) periodic IRQ rate, or enable the
periodic IRQ interrupts for a frequency that is greater than
64Hz

- override the limit on the number of console terminal opens/
allocations

- override the limit on the number of console keyboard
keymaps

- when allocating additional space on ufs, ext2 and ext3
filesystems, override the limit on the amount of reserved
space. Note: the ext2 filesystem also honors the files system
user ID when checking for resource overrides, allowing
override using setfsuid(2) also.

- on ext3 filesystems, modify data journaling mode

 CAP_SYS_TIME This capability allows:

- setting or adjusting the time via clock_settime(2),
stime(2), settimeofday(2) and adjtimex(2)

- use of the RTC_SET_TIME and RTC_EPOCH_SET ioctl(2)
commands for the /dev/rtc real-time clock device

CAP_SYS_TTY_CONFIG
This capability allows:

- use of the vhangup(2) system service

- use of all the console terminal and keyboard ioctl(2)
commands, including cases when the user is not the owner of
the console terminal

Note that the use of the KDKBDREP, KDSETKEYCODE,
VT_LOCKSWITCH and VT_UNLOCKSWITCH console terminal
and keyboard ioctl(2) commands require this capability
even when the user is the owner of the console terminal.

RedHawk Linux User’s Guide

C-10

D-1

D
Appendix DKernel Trace Events

This appendix lists the pre-defined kernel trace events that are included in the RedHawk
Linux trace and debug kernels as well as methods for defining and logging custom events
within kernel modules.

Refer to the NightTrace RT User’s Guide, publication number 0890398, for a complete
description of how to supply trace points in user-level code, capture trace data and display
the results.

Pre-defined Kernel Trace Events 4

Table D-1 provides a list of all the kernel trace events that are pre-defined within the
RedHawk Linux trace and debug kernels.

Table D-1 Pre-defined Kernel Trace Events

Type of
Trace Event Trace Event Name Description

System Calls SYSCALL_ENTRY A system call was entered.
(i386 systems only)

SYSCALL_EXIT A system call exited.
(i386 systems only)

SYSCALL32_ENTRY A 32-bit system call was entered.
(x86_64 systems only)

SYSCALL32_EXIT A 32-bit system call exited.
(x86_64 systems only)

SYSCALL64_ENTRY A 64-bit system call was entered.
(x86_64 systems only)

SYSCALL64_EXIT A 64-bit system call exited.
(x86_64 systems only)

FBS FBS_SYSCALL An FBS system call was made. Possible types
include:

0 - fbsop
1 - fbsctl
2 - fbsget
3 - pmctl
4 - pmop
5 - fbswait
6 - fbstrig
7 - fbsavail
8 - fbsdir

FBS_OVERRUN A process scheduled on FBS incurred an overrun.

RedHawk Linux User’s Guide

D-2

Traps TRAP_ENTRY A trap was entered.

TRAP_EXIT A trap exited.

Interrupts IRQ_ENTRY An IRQ handler was entered.

IRQ_EXIT An IRQ exited.

SMP_CALL_FUNCTION A function call was made via cross processor
interrupt.

REQUEST_IRQ A dynamic IRQ assignment was made.

SOFT_IRQ_ENTRY A softirq handler was entered.
Possible types include:

1 - conventional bottom-half
2 - real softirq
3 - tasklet action
4 - tasklet hi-action

SOFT_IRQ_EXIT A softirq handler exited.

Process
Management

SCHEDCHANGE The scheduler made a context switch.

PROCESS A process management function was performed.
Possible types include:

1 - kernel thread created
2 - fork or clone
3 - exit
4 - wait
6 - wakeup

PROCESS_NAME Associates a process ID with a process name prior
to a fork, clone, or exec.

SIGNAL A signal was sent to a task. Possible types include:

1 - signal ignored
2 - signal dropped
3 - signal queued
4 - signal delivered

File System FILE_SYSTEM A file system function was performed. Possible
types include:

1 - wait for data buffer started
2 - wait for data buffer finished
3 - exec
4 - open
5 - close
6 - read
7 - write
8 - seek
9 - ioctl
10 - select
11 - poll

Table D-1 Pre-defined Kernel Trace Events (Continued)

Type of
Trace Event Trace Event Name Description

Kernel Trace Events

D-3

Timers TIMER A timer function was performed. Possible types
include:

1 - timer expired
2 - set_itimer() system call
3 - schedule_timeout() kernel routine

Work Queues WORKQUEUE_THREAD A work queue thread was created.

WORKQUEUE_WORK A work queue handler was executed.

Memory
Management

MEMORY A memory management function was performed.
Possible types include:

1 - page allocation
2 - page freeing
3 - pages swapped in
4 - pages swapped out
5 - wait for page started
6 - wait for page finished

GRAPHICS_PGALLOC An additional graphics bind page was dynamically
allocated.

Sockets SOCKET A socket function was performed. Possible types
include:

1 - generic socket system call
2 - socket created
3 - data sent on socket
4 - data read from socket

IPC IPC A System V IPC function was performed.
Possible types include:

1 - generic System V IPC call
2 - message queue created
3 - semaphore created
4 - shared memory segment created

Networking NETWORK A network function was performed. Possible types
include:

1 - packet received
2 - packet transmitted

Custom Event CUSTOM This is a user-defined event.

Note: For information on logging this event and
dynamically creating other custom kernel trace
events, refer to the section “User-defined Kernel
Trace Events” below.

Table D-1 Pre-defined Kernel Trace Events (Continued)

Type of
Trace Event Trace Event Name Description

RedHawk Linux User’s Guide

D-4

User-defined Kernel Trace Events 4

There is a pre-defined “custom” kernel trace event that can be used for any user-defined
purpose. The description for using this CUSTOM kernel trace event is described in the
next section. Other user-defined events can be created dynamically using the calls
described in the section “Dynamic Kernel Tracing” below.

Pre-defined CUSTOM Trace Event 4

TRACE_CUSTOM may be used to log the pre-defined CUSTOM trace event. The caller
provides an integer identifier (sub_id) to differentiate multiple uses of the CUSTOM event.
The caller may also provide any arbitrary string of data to be logged with the event.

Synopsis

#include <linux/trace.h>

void TRACE_CUSTOM (int sub_id, const void* ptr, int size);

Arguments are defined as follows:

sub_id a user-supplied ID

ptr a pointer to arbitrary data to be logged with the event

size the size of the data

Dynamic Kernel Tracing 4

In addition to the pre-defined CUSTOM kernel trace event described above, user-defined
kernel trace events can be dynamically created. All are displayed by NightTrace RT for
analysis.

Kernel Trace
Management

BUFFER_START This event marks the beginning of a trace buffer.

BUFFER_END This event marks the end of a trace buffer.

PAUSE Tracing was paused.

RESUME Tracing was resumed.

EVENT_MASK The tracing event mask was changed.

EVENT_CREATED A new trace event was dynamically created.

EVENT_DESTROYED A dynamically created trace event was destroyed.

Table D-1 Pre-defined Kernel Trace Events (Continued)

Type of
Trace Event Trace Event Name Description

Kernel Trace Events

D-5

For dynamic kernel tracing, the following calls are used, which are described below:

• trace_create_event – allocates an unused trace event ID and
associates it with a given name

• trace_destroy_event – deallocates the event ID

• TRACE_LOG_EVENT – a generic trace point function that may be used to log a
dynamic event

trace_create_event 4

This call allocates an unused trace event ID and associates it with the given name.

Synopsis

#include <linux/trace.h>

int trace_create_event (const char* name);

The argument is defined as follows:

name is a unique, user-defined name for the trace event. This name is truncated to
31 characters.

The event ID is returned. An attempt is made to return an ID that was not used (created
and destroyed) recently. An EVENT_CREATED trace event is logged with this call.

On failure, one of the following is returned:

-ENOSPC All dynamic event IDs are in use.

-EINVAL The given name pointer is NULL or points to a NULL string.

-EEXIST The given name is non-unique.

-ENOMEM Memory allocation error.

trace_destroy_event 4

This call deallocates the trace event ID that was allocated with create_trace_event.

Synopsis

#include <linux/trace.h>

void trace_destroy_event (int id);

The argument is defined as follows:

id the event ID that was allocated with create_trace_event.

An EVENT_DESTROYED trace event is logged with this call.

TRACE_LOG_EVENT 4

This may be used to log a trace point for the newly-created dynamic trace event.

Synopsis

#include <linux/trace.h>

RedHawk Linux User’s Guide

D-6

void TRACE_LOG_EVENT (int id, const void* ptr, int size);

Arguments are defined as follows:

id the event ID

ptr a pointer to arbitrary data to be logged with the event

size the size of the data

E-1

E
Appendix EMigrating 32-bit Code to 64-bit Code

This appendix provides information needed to migrate 32-bit code to 64-bit processing on
x86_64 architectures.

Introduction 5

RedHawk Linux Version 2.X and later can execute on the 64-bit AMD Opteron and
EM64T processors as well as on the 32-bit Intel Pentium Xeon processors. The x86_64
version of RedHawk Linux is a full 64-bit operating system that executes both 32-bit and
64-bit applications in native mode on the x86_64 processor.

The Opteron processor utilizes the AMD64 Instruction Set Architecture (ISA), which is
nearly identical to recent Intel processors that support the EM64T ISA (e.g. all Intel
Nocona processors). Both AMD64 and EM64T are capable of true 64-bit execution, and
are collectively known as “x86_64” architectures.

The “long” execution mode of x86_64 processors has two submodes: “64-bit” and
“compatibility.” Existing 32-bit application binaries can run without recompilation in
compatibility mode under RedHawk Linux, or the applications can be recompiled to run in
64-bit mode.

32-bit applications run natively with no “emulation mode” to degrade performance. For
this reason, many applications do not need to be ported to 64-bits.

NOTE

Real-time extensions and features are not available to 32-bit
applications running under a 64-bit operating system (i.e.
x86_64). In order to use real-time features, migrate 32-bit
applications to 64-bit or boot a 32-bit operating system instead.

Software optimized for x86_64 can make use of the large addressable memory and 64-bit
architectural enhancements required by the most demanding applications, such as
scientific computing, database access, simulations, CAD tools, etc. If an application
would benefit from the larger virtual and physical address space afforded by 64-bit
processing, information in this section will help you migrate your code.

Porting existing 32-bit applications to 64-bits involves the following areas, which are
discussed in detail in the sections that follow:

• Source code written for 32-bits will likely require modifications to execute
in 64-bit mode.

• Binaries that have been compiled for 32-bit operation need to be recompiled
for 64-bit before running in 64-bit mode.

RedHawk Linux User’s Guide

E-2

• The build process (makefiles, project files, etc.) may need to be updated to
build 64-bit executables and add portability checking options for
compilation.

• Only 64-bit device drivers can be used with 64-bit operating systems.
Applications that install device drivers may not work correctly if there is no
64-bit version of the required driver. All drivers supplied with RedHawk
Linux are 64-bit compatible.

In addition, hints to get the most performance from your applications are provided.

The AMD64 Developer Resource Kit is a complete resource for programmers porting or
developing applications and drivers for the Opteron processor. The AMD64 DRK contains
technical information including documentation, white papers, detailed presentations and
reference guides. This Kit is available from the www.amd.com web site.

Procedures 5

In order to systematically address modifying your code for porting to 64-bits, follow the
guidelines below. All source files should be reviewed and modified accordingly, including
header/include files, resource files and makefiles. Specifics regarding these steps are
provided in the sections that follow.

• Use #if defined __x86_64__ or __amd64__ for code specific to
AMD64 architecture.

• Convert all inline assembly code to use intrinsic functions or native
assembly subroutines.

• Modify calling conventions in existing assembly code as needed.

• Review use of any pointer arithmetic and confirm results.

• Review references to pointers, integers and physical addresses and use the
variable size data types to accommodate the differences between 32 and 64-
bit architectures.

• Examine makefiles to build 64-bit executables and add portability checking
options.

http://www.amd.com

Migrating 32-bit Code to 64-bit Code

E-3

Coding Requirements 5

Data Type Sizes 5

The main issue with 32-bit and 64-bit portability is that there should be no presumption
about the size of an address or its relationship to the size of an int, long, etc.

Table E-1 shows the sizes of the various ANSI data types under RedHawk Linux on
AMD64 systems.

Table E-1 Sizes of Data Types

You can use the sizeof operator to get the size of the various data types; for example, if
you have a variable int x you can get the size of x with sizeof(x). This usage works
even for structs or arrays. For example, if you have a variable of a struct type with the
name a_struct, you can use sizeof(a_struct) to find out how much memory it is
taking up.

Longs 5

Longs become 64-bit, therefore, you need to examine all direct or implied assignments or
comparisons between long and int values. Examine all casts that allow the compiler to
accept assignment and comparison between longs and integers to ensure validity. Use the
value of the BITS_PER_LONG macro to determine the size of longs.

If ints and longs must remain different sizes (for example, due to existing public API
definitions), implement an assertion that ascertains that the value of the 64-bit item does
not exceed the maximum value of the 32-bit item and generate an exception condition to
handle the case if it does occur.

Pointers 5

Pointers become 64-bit, therefore, you also need to examine all direct or implied
assignments or comparisons between pointers and int values. Remove all casts that
allow the compiler to accept assignment and comparison between pointers and integers.
Change the type to a type of variable size (equal to pointer size). Table E-2 shows the
variable size data types.

ANSI Data Type Size in Bytes

char 1

short 2

int 4

long 8

long long 8

intptr_t, uintptr_t 8

float 4

double 8

long double 16

RedHawk Linux User’s Guide

E-4

Table E-2 Variable Size Data Types

Arrays 5

Under 32-bit code, int and long could be used to hold the size of arrays. Under 64-bit,
arrays can be longer than 4 GB. Instead of int or long, use the size_t data type for
portability. It will become 64-bit signed integral type when compiled for 64-bit targets, or
32-bit for 32-bit targets. The return values from both sizeof() and strlen() are both
of type size_t.

Declarations 5

You also need to alter any declarations of variables, parameters or function/method return
types that must be changed to 64-bit to use one of the size variant types shown in
Table E-2.

Explicit Data Sizes 5

When it is necessary to explicitly address data size, use the data types in Table E-3. There
are no ANSI data types that specifically address data size; these types are specific to
Linux.

Table E-3 Fixed Precision Data Types

ANSI Data Type Definition

intptr_t Signed integral type to hold a pointer

uintptr_t Unsigned integral type to hold a pointer

ptrdiff_t Signed type to hold the signed difference of
two pointer values

size_t Unsigned value indicating the maximum
number of bytes to which a pointer can refer

ssize_t Signed value indicating the maximum num-
ber of bytes to which a pointer can refer

Data Type Definition

int64_t 64-bit signed integer

uint64_t 64-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

Migrating 32-bit Code to 64-bit Code

E-5

Constants 5

Constants, especially hex or binary values, are likely to be 32-bit specific. For example, a
32-bit constant 0x80000000 becomes 0x0000000080000000 in 64-bit. Depending upon
how it is being used, the results may be undesirable. Make good use of the ~ operator and
type suffixes to avoid this problem; for example, the 0x80000000 constant might be better
as ~0x7ffffffful instead.

APIs 5

Code might need to be changed to use 64-bit APIs. Some APIs use data types which the
compiler will interpret as 64-bit in conflict with explicit 32-bit data types.

Calling Conventions 5

Calling conventions specify how processor registers are used by function callers and
callees. This applies when porting hand coded assembly code that interoperates with C
code and for in-line assembly statements. The Linux calling conventions for the x86_64
are given in Table E-4.

Table E-4 Calling Conventions

Register Status Use

%rax Volatile Temporary register; with variable arguments passes
information about the number of SSE registers used;
first return register

%rbx Non-volatile Optionally used as base pointer, must be preserved by
callee

%rdi, %rsi, %rdx,
%rcx, %r8, %r9

Volatile Used to pass integer arguments 1,2,3,4,5,6

%rsp Non-volatile Stack pointer

$rbp Non-volatile Optionally used as frame pointer, must be preserved by
callee

%r10 Volatile Temporary register, used for passing a function’s static
chain pointer

%r11 Volatile Temporary register

%r12-%r15 Non-volatile Must be preserved by callee

%xmm0-%xmm1 Volatile Used to pass and return floating point arguments

%xmm2-%xmm7 Volatile Used to pass floating point arguments

%xmm8-%xmm15 Volatile Temporary registers

%mmx0-%mmx7 Volatile Temporary registers

%st0 Volatile Temporary register; used to return long double
arguments

%st1-%st7 Volatile Temporary registers

%fs Volatile Reserved for system use as thread-specific data register

RedHawk Linux User’s Guide

E-6

Conditional Compilation 5

In cases where there is the need to supply conditional code for 32-bit vs. 64-bit execution,
the macros in Table E-5 can be used.

Table E-5 Macros for Conditional Compilation

Miscellaneous 5

A variety of other issues can arise from sign extension, memory allocation sizes, shift
counts, and array offsets. Be especially careful about any code that makes assumptions
about the semantics of integer overflow.

Compiling 5

Existing makefiles should build native 64-bit executables on the x86_64 processor with
little or no modifications.

The following gcc switches can be used to catch portability issues. Refer to the gcc(1)
man page for details.

-Werror -Wall -W -Wstrict-prototypes -Wmissing-prototypes
-Wpointer-arith -Wreturn-type -Wcast-qual -Wwrite-strings
-Wswitch -Wshadow -Wcast-align -Wuninitialized -ansi
-pedantic -Wbad-function-cast -Wchar-subscripts -Winline
-Wnested-externs -Wredundant-decl

Testing/Debugging 5

Follow standard RedHawk Linux testing and debugging techniques for 64-bit code.

Macro Definition

__amd64__ Compiler will generate code for AMD64

_i386 Compiler will generate code for x86

Migrating 32-bit Code to 64-bit Code

E-7

Performance Issues 5

The information in this section discusses how to get the best performance from your 64-bit
application.

Memory Alignment and Structure Padding 5

Alignment issues won’t cause exceptions but can cause a performance hit. Misalignment
is handled at runtime at the expense of several clock cycles. The performance side-effects
of poorly aligned operands can be large.

Data within structures will be aligned on natural boundaries which can lead to inefficient
code due to wasted space. Natural alignment means that 2-byte objects are stored on 2-
byte boundaries, 4-byte objects on 4-byte boundaries, etc.

For example, the following structure definition will consume 24 bytes when generating
64-bit code:

typedef struct _s {
int x;
int *p;
int z;

} s, *ps;

The pointer p will be aligned on an 8-byte boundary which will cause 4 bytes of padding
to be added after the x member. In addition, there will be an additional 4 bytes of padding
after the z member to pad the structure out to an even eight byte boundary.

The most efficient structure packing will be achieved by placing the members from largest
to smallest in the structure. The following declaration is more efficient. It will take only 16
bytes and does not require any padding:

typedef struct _s }
int *p;
int x;
int z;

} s;

Because of potential padding, the safest way to find the constant offset of fields within a
structure is to use the offsetof() macro, which is defined in stddef.h.

RedHawk Linux User’s Guide

E-8

F-1

F
Appendix FKernel-level Daemons on Shielded CPUs

The Linux kernel uses many kernel daemons to perform system functions. Some of these
daemons are replicated on every CPU in the system. Shielding a CPU from processes will
not remove one of these “per-CPU” daemons.

The following daemons can create serious jitter problems on process-shielded CPUs.
Fortunately, these daemons can be avoided by configuring and using the system carefully.

kmodule cpu These daemons are created and executed each time a kernel
module is unloaded. It is highly recommended that kernel
modules are not unloaded while real-time applications are running
on the system.

migration/cpu These are the task migration daemons responsible for migrating
tasks off a particular CPU. These daemons will run on a process-
shielded CPU if a process running on that CPU is forced to
migrate off that processor. Forced migration may happen when
any of the following interfaces are used:

/proc/pid/affinity
sched_setaffinity(2)
/proc/shield/procs
cpucntl(2)
delete_module(2)

Applications that are running on shielded CPUs should use these
interfaces only when background process jitter can be tolerated.

Forced migration is also done by various kernel features, which
can be enabled with the CPU_FREQ and NUMA kernel configuration
options. These options have been disabled by default in all
RedHawk Linux kernel configurations.

kswapdnode These are the page swap-out daemons that swap pages out to a
swap device to reclaim pages when memory runs low.

When the kernel is built with the NUMA configuration option
enabled, there may be several of these daemons, each biased to a
single CPU. When a CPU is process-shielded or downed (using
cpu(1)), the daemon is moved to a non-shielded active CPU.
When the CPU is no longer shielded or down, the daemon is
moved back.

When NUMA is disabled, there is one system-wide daemon that is
not biased to any particular CPUs; therefore, kswapd will not run
on CPUs shielded from processes and is only a problem on a non-
shielded CPU.

NUMA is enabled by default only on prebuilt RedHawk x86_64
kernels.

RedHawk Linux User’s Guide

F-2

kapmd This is the Advanced Power Management (APM) daemon that
processes power management requests. It is always biased to CPU
0. APM may be disabled with the kernel boot parameter
“apm=off” or may be completely eliminated by disabling the
APM kernel configuration option. APM has been disabled by
default in all RedHawk Linux kernel configurations. Because this
daemon is not a per-CPU daemon, it will not run on CPUs
shielded from processes and is therefore a problem only on a non-
shielded CPU.

The following daemons may execute on process-shielded CPUs. However, because they
perform necessary functions on behalf of processes or interrupts that have been biased to
that CPU, and because these daemons are only activated as a result of actions initiated by
the processes or interrupts that are biased to a shielded CPU, these daemons are
considered less problematic in terms of their impact on determinism.

ksoftirqd/cpu These are the softirq daemons that execute softirq routines for a
particular CPU. One of these daemons will run on a process-
shielded CPU if a device driver interrupt handler biased to that
CPU uses softirqs either directly or indirectly via tasklets. Softirqs
are used directly by the local timer, SCSI, and networking
interrupt handlers. Tasklets are used by many device drivers.

The priority of the ksoftirqd is determined by the SOFTIRQ_PRI

kernel tunable, which is located under General Setup on the
Kernel Configuration GUI. When SOFTIRQ_PRI is set to a positive
number, that number is the priority at which ksoftirqd will
run. By default, this tunable is set to zero, and the setting of
SOFTIRQ_PREEMPT_BLOCK affects the daemon’s priority. When set
to Y, the ksoftirqd daemon will run as under the SCHED_FIFO

scheduling policy at a priority of one less than the highest real-
time priority. When set to N, the ksoftirqd daemon will run at
priority zero.

events/cpu These are the default work queue threads that perform work on
behalf of various kernel services initiated by processes on a
particular CPU. They also may perform work that has been
deferred by device driver interrupt routines that have been biased
to the same CPU. These daemons execute with a nice value of
-10.

aio/cpu These are work queue threads that complete asynchronous I/O
requests initiated with the io_submit(2) system call by
processes on a particular CPU. These daemons execute with a
nice value of -10.

reiserfs/cpu These are work queue threads used by the Reiser File System.
These daemons execute with a nice value of -10.

xfsdatad/cpu
xfslogd/cpu These are work queue threads used by the IRIX Journaling File

System (XFS). These daemons execute with a nice value of -10.

Kernel-level Daemons on Shielded CPUs

F-3

cio/cpu
kblockd/cpu
wanpipe_wq/cpu These are work queue threads used by various device drivers.

These threads perform work on behalf of various kernel services
initiated by processes on a particular CPU. They also perform
work that has been deferred by device driver interrupt routines
that have been biased to the same CPU. These daemons execute
with a nice value of -10.

Note also that any third-party driver may create private work queues and work queue
threads that are triggered by processes or interrupt handlers biased to a shielded CPU.
These daemons are always named name/cpu and execute with a nice value of -10.

RedHawk Linux User’s Guide

F-4

G-1

G
Appendix GCross Processor Interrupts

on Shielded CPUs

This appendix discusses the impact of cross processor interrupts on shielded CPUs and
methods to reduce or eliminate these interrupts for best performance.

Overview 7

On a RedHawk platform configured with one or more shielded CPUs, certain activities on
the other CPUs can cause interrupts to be sent to the shielded CPUs. These cross processor
interrupts are used as a method for forcing another CPU to handle some per-CPU specific
task, such as flushing its own data cache or flushing its own translation look-aside buffer
(TLB) cache.

Since cross processor interrupts can potentially cause noticeable jitter for shielded CPUs,
it is useful to understand the activities that cause these interrupts to occur, and also how to
configure your system so that some of these interrupts can be eliminated.

Memory Type Range Register (MTRR) Interrupts 7

On Intel P6 family processors (Pentium Pro, Pentium II and later) the Memory Type
Range Registers (MTRRs) can be used to control processor access to memory ranges. This
is most useful when you have a video (VGA) card on a PCI or AGP bus. Enabling write-
combining allows bus write transfers to be combined into a larger transfer before bursting
over the PCI/AGP bus. This can increase performance of image write operations by 2.5
times or more.

The NVIDIA device driver contained in RedHawk kernels will make use of the CPU’s
Page Attribute Table (PAT) registers instead of the MTRR registers if the PAT registers are
supported by the processors in the system. Only when the system’s processors do not
contain PAT support will the NVIDIA driver fall back to using the MTRR registers.
Therefore, for most systems, the issues described below concerning MTRR related cross
processor interrupt do not apply.

While the MTRRs provide a useful performance benefit, whenever a new MTRR range is
set up or removed, a cross processor interrupt will be sent to all the other CPUs in order to
have each CPU modify their per-CPU MTRR registers accordingly. The time that it takes
to process this particular interrupt can be quite lengthy, since all the CPUs in the system
must first sync-up/handshake before they modify their respective MTRR registers, and
they must handshake yet again before they exit their respective interrupt routines. This

RedHawk Linux User’s Guide

G-2

class of cross processor interrupt can have a severe effect on determinism having been
measured at up to three milliseconds per interrupt.

When the X server is first started up after system boot, a MTRR range is set up, and one of
these MTRR cross processor interrupts is sent to all other CPUs in the system. Similarly,
when the X server exits, this MTRR range is removed, and all other CPUs in the system
receive yet another MTRR interrupt.

Three methods can be used to eliminate MTRR related cross processor interrupts during
time-critical application execution on shielded CPUs:

1. Reconfigure the kernel so that the MTRR kernel configuration option is
disabled. When using the Kernel Configuration GUI, this option is located
under the Processor Type and Features section and is referred to as
“MTRR (Memory Type Range Register) support”. This eliminates MTRR
cross processor interrupts since the kernel support for this feature is no
longer present. Note that this option has a potentially severe performance
penalty for graphic I/O operations.

2. Start up the X server before running the time-critical applications on the
shielded CPU(s), and keep the X server running until the time-critical
activity has completed. The MTRR interrupts will still occur, but not
during time-critical activities.

3. The MTRR range can be preconfigured so that no cross processor interrupts
occur. Use the following procedure for preconfiguration of the MTRRs
used by the X server:

a. After the system is booted, but before the X server has started up,
examine the current MTRR settings. You need to be in either init
state 1 or 3.

cat /proc/mtrr
reg00: base=0x00000000 (0MB), size=1024MB: write-back, count=1
reg01: base=0xe8000000 (3712MB), size= 128MB: write-combining, count=1

b. After the X server is started up, re-examine the MTRR register
settings:

cat /proc/mtrr
reg00: base=0x00000000 (0MB), size=1024MB: write-back, count=1
reg01: base=0xe8000000 (3712MB), size= 128MB: write-combining, count=2
reg02: base=0xf0000000 (3840MB), size= 128MB: write-combining, count=1

c. In this example, the new X server entry is the last entry, “reg02”. If
your system has multiple graphics cards, or shows more than one
new ent ry, then these addi t iona l en t r ies should a l so be
accommodated with additional rc.local script entries.

d. Now add additional line(s) to your /etc/rc.d/rc.local script
to account for the X server MTRR entries. In our example we have
just one X server entry to account for:

 echo “base=0xf0000000 size=0x8000000 type=write-combining” > /proc/mtrr

e. Whenever the hardware configuration is modified on the system, it is
a good idea to check that the MTRR entries in /etc/rc.d/
rc.local are still correct by starting up the X server and using:

Cross Processor Interrupts on Shielded CPUs

G-3

cat /proc/mtrr

to examine the MTRR output and check for differences from the
previous MTRR settings.

Graphics Interrupts 7

A number of cross processor interrupts are issued while running graphics applications.

A kernel graphics driver such as the NVIDIA driver will allocate and setup various cache-
inhibited graphics memory buffers for writing and reading data to and from the NVIDIA
graphics processing unit (GPU).

Whenever these buffers are added or removed during graphics execution, cross processor
interrupts are sent to each of the other CPUs in the system in order to have them flush their
data and translation lookaside buffer (TLB) caches for these types of buffer cache-mode
transitions. These types of cross processor interrupts can have a fairly severe impact that
has been measured to be from 50 to 250 microseconds per interrupt. Cache-inhibited
kernel graphics buffer allocations and deallocations occur when:

• starting up or exiting the X server

• running graphics applications

• switching from a non-graphics tty back to the graphics screen with a
Ctrl Alt F# keyboard sequence

For systems with NVIDIA PCIe and/or PCI graphics card(s), these types of cross
processor interrupts may be eliminated or reduced when a pool of cache-inhibited buffer
pages is pre-allocated. As graphics buffer allocations are made, the pages needed to satisfy
these requests are taken from the pre-allocated freelist of pages. Since these pages are
already cache-inhibited, there is no need to issue additional flush operations when these
pages are used. When a buffer allocation is removed, the pages are placed back onto the
page freelist, thus remaining cache-inhibit clean. Should the pool of pre-allocated pages
be empty when a request is made, pages will be dynamically allocated and cross processor
interrupts will be issued in the normal fashion. Therefore, it is usually best to pre-allocate
enough pages so that the pool of available pages never becomes empty.

To enable this support, the PREALLOC_GRAPHICS_PAGES kernel parameter must have a
positive value representing the number of pre-allocated pages in the pool. A value of
10240 is configured into all pre-built RedHawk Linux kernels.

To disable this support, you may use a pre-built RedHawk Linux kernel and specify the
“no_pregraph_pgs” grub line kernel parameter, or you may build a custom kernel and
specify a a value of 0 (zero) for the PREALLOC_GRAPHICS_PAGES kernel parameter. This
support is always disabled on systems where no NVIDIA PCI/PCIe graphics cards are
present, regardless of the PREALLOC_GRAPHICS_PAGES parameter value.

The PREALLOC_GRAPHICS_PAGES option is located under the Device Drivers ->
Graphics Support subsection of the Kernel Configuration GUI.

The /proc/driver/graphics-memory file can be examined while running graphics
applications to observe the maximum amount of graphics memory pages actually in use at
any time. For example:

RedHawk Linux User’s Guide

G-4

$ cat /proc/driver/graphics-memory
Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 42 pages
Maximum graphics memory used: 42 pages

You may write to the file to increase or decrease the number of pages in the pool. This
allows you to test your system with various values before changing the kernel
configuration parameter. The following example lowers the number of pre-allocated pages
in the pool to 5120:

$ echo 5120 > /proc/driver/graphics-memory

The user must have CAP_SYS_ADMIN capability to write to this file. Note that the page
value written to the file must be larger than or equal to the current value of the “Graphics
memory in use” field. If the number of currently allocated pages needs to be lowered, exit
the X server.

Specifying an unrealistically large value will result in page allocation failures and the
allocation will be backed out. After writing to the file, read the file to verify that the page
allocation change was successful.

Note that on some systems, when the NVIDIA driver is loaded or unloaded, a Page
Attribute Table (PAT) cross processor interrupt is sent to each CPU. To minimize the jitter
involved, avoid loading or unloading the NVIDIA module during time-critical
applications. You may pre-load the NVIDIA driver before running time-critical
applications, or during system boot with the following command:

$ modprobe nvidia

NVIDIA CUDA Interrupts 7

NVIDIA CUDA is a general purpose parallel computing architecture that makes use of the
parallel compute engine that is present in NVIDIA graphics processing units (GPUs) to
solve many complex computational problems in a fraction of the time required on a CPU.

Since CUDA applications make use of cache-inhibited buffers to interface with the
NVIDIA GPU(s), the same preallocated graphics buffer support mentioned in the previous
section will also help to greatly reduce jitter on shielded CPUs in a system where CUDA
applications are being executed.

Use of the preallocated graphics buffers by CUDA applications will automatically occur
as long as there are free preallocated buffers in the pool; no special CUDA application
coding or configuration is required.

Cross Processor Interrupts on Shielded CPUs

G-5

User Address Space TLB Flush Interrupts 7

Processes that are biased to execute on a shielded CPU and that share their address space
with processes that execute on other CPUs may receive user-space TLB flush cross
processor interrupts. Processes that make use of shared memory areas but which are
sharing their address space only with processes on the same CPU will not observe any
cross processor interrupts due to any shared memory activity.

Multithreaded applications that use the pthreads library and Ada applications are
examples of shared memory applications – even though the programmer has not explicitly
made calls to create shared memory. In these types of programs, the pthreads library and
the Ada run time are creating shared memory regions for the user. Therefore, these
applications are subject to this type of cross processor interrupt when threads from the
same thread group or same Ada program execute on separate CPUs in the system.

A user address TLB flush cross processor interrupt is generated when another process that
is sharing the same address space is executing on a different CPU and causes a
modification to that address space’s attributes. Activities such as memory references that
cause page faults, page swapping, mprotect() calls, creating or destroying shared
memory regions, etc., are examples of address space attribute modifications that can cause
this type of cross processor interrupt. This class of cross processor interrupt has minimal
impact that has been measured at less than 10 microseconds per interrupt. When large
amounts of memory are shared, the impact can be more severe.

In order to eliminate these types of cross processor interrupts, users are encouraged to use
and write their applications such that time-critical processes executing on shielded CPUs
avoid operations which would affect a shared memory region during the time-critical
portion of their application. This can be accomplished by locking pages in memory, not
changing the memory protection via mprotect() and not creating new shared memory
regions or destroying existing shared memory regions.

RedHawk Linux User’s Guide

G-6

H-1

H
Appendix HSerial Console Setup

1
1
1

This appendix provides the steps needed to configure a serial console under RedHawk
Linux.

Note that a serial console is needed if you wish to use the kdb kernel debugger on a
system with a USB keyboard.

1. Modify the boot command line to include the following kernel option:

 console=tty#,baud#

where tty# is the serial port to use for the console and baud# is the serial baud rate
to use. Generally, this almost always looks like:

 console=ttyS0,115200

2. Change the /etc/inittab file to include the following line:

 S0:2345:respawn:/sbin/agetty 115200 ttyS0 vt100

The baud# and tty# must match the same values that were given in the boot option
in step 1. The final keyword specifies the terminal type, which is almost always vt100
but can be customized if necessary. See the agetty(8) man page for more
information.

This line can be added anywhere in the file, although it is generally added at the end.
The purpose of this line is to get a login on the serial console after the system boots
into multi-user mode.

3. If root login is desired on the serial console (generally it is) you must
change or remove the /etc/securetty file. See the securetty(5)
man page for more details.

4. Connect a suitable data terminal device to the serial port and ensure that it
is configured to communicate at the chosen baud rate. Depending on the
specific device being used, a null-modem may be required.

Note that an inexpensive Linux PC is an excellent choice for a data terminal device.
See the minicom(1) man page for more information about creating a serial
communication session.

A Windows PC can also be used, but the explanation of that is beyond the scope of
this documentation.

Another use for a serial console is to configure a real time shell to examine a system that is
likely to hang. This procedure should be completed on the configured serial console
before starting any application load that is experiencing problems.

1. Configure a serial console on a system that is likely to hang. For example:

• Add this string to your grub boot command line:
console=ttyS0,115200

RedHawk Linux User’s Guide

H-2

• Add this line to your /etc/inittab file:
S0:2345:respawn:/sbin/agetty 115200 ttyS0 vt100

• Add a “ttyS0” entry to the /etc/securetty file.

• Connect a serial cable to your lowest numbered serial port and to the
serial port of another computer or laptop.

2. If the other computer is Linux:

• Open a shell.

• # minicom –s.

• Use <CR>’s to get to the Serial Port Setup.

• Change device to /dev/ttyS0.

• Change baud to 115200.

• Exit (Do not ”Exit Minicom”).

• From the login prompt, login as root.

If the other computer is Windows:

• Bring up the Hyperterm application.

• Connect using COM 1.

• Set the baud rate to 115200.

• From the login prompt, login as root.

3. From the root login, run the RTConsole.sh script shown below. As an
argument, give it a higher real time priority than any of your tasks. For
example:

./RTConsole.sh 90

This procedure provides a login shell which should remain active during a ‘hang’ and give
you access and visibility into the system for debugging. A good start would be to run
top(1) to determine which process is dominating the system.

When debugging is finished the system should be rebooted:

reboot

RTConsole.sh

#!/bin/bash

if [$UID -ne 0]
then

echo "Must be root to execute."
exit

fi

if [$# -eq 0]
then
 echo "Usage: RTConsole <Login shell priority>"
 exit
fi

for i in $(ps -e -o pid,cmd | fgrep /0 | fgrep -v fgrep | awk '{print $1}');
do
 run -s fifo -P $1 -p $i
done
run -s fifo -P $1 -p $PPID

I-1

I
Appendix IBoot Command Line Parameters

Table I-1 lists boot command line parameters that operate uniquely to RedHawk. It does
not include all boot command line parameters available under Linux. For that list, refer to
the file Documentation/kernel-parameters.txt in your kernel source directory
or type info grub.

Boot parameters define functionality that is built into a kernel. The boot commands can be
added to /etc/grub.conf for automatic inclusion when the kernel boots, or specified
on the boot command line when booting the kernel.

Information about individual features is available in various locations. In Table I-1, the
following references are provided:

• Page numbers (active hypertext links) where information included in this
RedHawk Linux User’s Guide is provided

• Names and publication numbers of other appropriate Concurrent documents

Other sources where information may be obtained include:

• Files under the Documentation directory of the kernel source tree

• Linux documentation sites on the Internet

RedHawk Linux User’s Guide

I-2

Table I-1 Boot Command Line Parameters

Parameter Options Description
Concurrent

Documentation
Reference

crashkernel =size@16M Reserves memory and non-default
location for loading a “crash” kernel
containing the core image of a corrupt
kernel for purposes of saving and
analyzing a crash dump.

size is the size of reserved memory:
32M, 64M (default) or 128M
16M is the offset address

page 12-1

kdb =on Enables entry to the kdb kernel
debugger.

page 12-8

/kernel-source/
Documentation/kdb

=off Disables entry to kdb.

=early Makes the kernel enter kdb early in the
boot process.

memmap =size<delimiter>address Defines memory regions to be reserved.
<delimiter> is ‘@’ for System RAM,
‘$’ for Reserve or “#” for ACPI.

page 2-23

=exactmap Specifies that the exact BIOS map is
used.

mm =size<delimiter>address Alias for memmap (x86_64 only).
Defines memory regions to be reserved.

page 2-23

=ex Alias for exactmap (x86_64 only).
Specifies that the exact BIOS map is
used.

nmi_dump Enables pressing the system NMI
button to enter the debugger. Exiting the
debugger loads the crash kernel and
takes a dump, unless nmi_watchdog=0.

page 12-9

Boot Command Line Parameters

I-3

nmi_watchdog =0 Turns the NMI watchdog feature off.
Default setting on RedHawk kernels.

page 12-9
/kernel-source/
Documentation/
nmi_watchdog.txt

=1 Each CPU performs its own NMI
timing. Requires APIC support in the
kernel. Currently this setting does not
work and is changed to =2.

=2 Uses external NMI timer; generated
interrupts are sent to all CPUs via
broadcast. Default setting for i386
debug kernel.

=-1 Kernel selects values 1 or 2. x86_64
only. Default setting for x86_64 debug
kernel.

no-hz =yes Includes the NO_HZ kernel code if
NO_HZ and NO_HZ_ENABLED are
configured in the kernel.

page B-1

=no Disables the NO_HZ kernel code if
NO_HZ and NO_HZ_ENABLED are
configured in the kernel.

noirqbalance n/a Can be used to turn IRQ balancing off if
the kernel tunable IRQBALANCE is
enabled in the kernel. The default is not
enabled (recommended for shielded
CPUs). Not enabled/off prevents
periodic adjustments of IRQ affinities
for balancing the interrupt load across
CPUs.

page 2-10

no_ktext_repli n/a Disables all kernel text page replication
support.

page 10-14

no_kmod_repli n/a Disables kernel module text page
replication support, but leaves resident
kernel text page replication enabled.

page 10-14

no_pregraph_pgs n/a Disables all of the preallocated graphics
pages support, which is used to
minimize cross processor interrupts.

page 10-5

Table I-1 Boot Command Line Parameters (Continued)

Parameter Options Description
Concurrent

Documentation
Reference

RedHawk Linux User’s Guide

I-4

numa =off Disables NUMA support on an x86_64
system with the kernel turnable NUMA
enabled in the kernel. This will create a
system with a single NUMA node, with
all CPUs belonging to that node. This
differs from not having NUMA support
built into the kernel, in which there is a
flat memory system with no nodes and
NUMA user interfaces return errors
when called.

page 10-1

prefer_highmem n/a Disables the use of the local NUMA
node’s “normal zone” pages before
selecting a remote NUMA node’s
“highmem zone” pages (when the local
NUMA node’s highmem zone pages
have already been fully allocated).

page 10-17

rcim =rcimoptions Defines configuration options for the
RCIM, such as interrupt characteristics
and associations, timing sources and
RCIM master hostname.

RCIM User’s Guide
(0898007)

rhash_entries =n Sizes the IP route cache table, flushed
periodically by ksoftirqd, to a fixed
number of entries. By default, the size is
based dynamically on the amount of
available memory. Use this entry to
define a smaller size to reduce excessive
ksoftirqd runs.

page 2-34

tsc_sync =auto Check if the BIOS synced the TSCs
correctly. If not, re-sync the TSCs. This
is the default.

page 7-1

=check Only check if the BIOS synced the
TSCs correctly. If the BIOS failed,
disable TSCs as a possible clocksource.

=force Re-sync all the TSCs at the end of boot
unconditionally.

vmalloc =nn[KMG] Force the vmalloc area to have an exact
size of nn. This can be used to increase
the minimum size (128M for 32-bit
kernels). It can also be used to decrease
the size and leave more room for
directly mapped kernel RAM. K, M or
G should be used to specify the size
unit: kilobytes, megabytes or gigabytes,
respectively.

page 14-11

Table I-1 Boot Command Line Parameters (Continued)

Parameter Options Description
Concurrent

Documentation
Reference

Boot Command Line Parameters

I-5

RedHawk Linux User’s Guide

I-6

Glossary-1

Glossary

This glossary defines terms used in RedHawk Linux. Terms in italics are also defined
here.

affinity

An association between processes or interrupts and the CPUs on which they are allowed to
execute. They are prohibited from executing on CPUs not included in their affinity mask.
If more than one CPU is included in the affinity mask, the kernel is free to migrate the
process or interrupt based on load and other considerations, but only to another CPU in the
affinity mask. The default condition is affinity to execute on all CPUs in the system;
however, specifications can be made through mpadvise(3), shield(1) ,
sched_setaffinity(2) and the /proc file system. Using affinity with shielded
CPUs can provide better determinism in application code.

AGP

A bus specification by Intel which gives low-cost 3D graphics cards faster access to main
memory on personal computers than the usual PCI bus.

async-safe

When a library routine can be safely called from within signal handlers. A thread that is
executing some async-safe code will not deadlock if it is interrupted by a signal. This is
accomplished by blocking signals before obtaining locks.

atomic

All in a set of operations are performed at the same time and only if they can all be
performed simultaneously.

authentication

Verification of the identity of a username, password, process, or computer system for
security purposes. PAM provides an authentication method on RedHawk Linux.

blocking message operation

Suspending execution if an attempt to send or receive a message is unsuccessful.

blocking semaphore operation

Suspending execution while testing for a semaphore value.

breakpoint

A location in a program at which execution is to be stopped and control of the processor
switched to the debugger.

RedHawk Linux User’s Guide

Glossary-2

busy-wait

A method of mutual exclusion that obtains a lock using a hardware-supported test and set
operation. If a process attempts to obtain a busy-wait lock that is currently in a locked
state, the locking process continues to retry the test and set operation until the process that
currently holds the lock has cleared it and the test and set operation succeeds. Also known
as a spin lock.

capabilities

A division of the privileges traditionally associated with superuser into distinct units that
can be independently enabled and disabled. The current set of all valid Linux capabilities
can be found in /usr/include/linux/capability.h and detailed in Appendix C.
Through PAM, a non-root user can be configured to run applications that require privileges
only root would normally be allowed.

condition synchronization

Utilizing sleep/wakeup/timer mechanisms to delay a process’ progress until an
application-defined condition is met. In RedHawk Linux, the postwait(2) and
server_block(2)/server_wake(2) system calls are provided for this purpose.

context switch

When a multitasking operating system stops running one process and starts running
another.

critical section

A sequence of instructions that must be executed in sequence and without interruption to
guarantee correct operation of the software.

deadlock

Any of a number of situations where two or more processes cannot proceed because they
are both waiting for the other to release some resource.

deferred interrupt handling

A method by which an interrupt routine defers processing that would otherwise have been
done at interrupt level. RedHawk Linux supports softirqs, tasklets and work queues, which
execute in the context of a kernel daemon. The priority and scheduling policy of these
daemons can be configured so that a high-priority real-time task can preempt the activity
of deferred interrupt functions.

determinism

A computer system’s ability to execute a particular code path (a set of instructions
executed in sequence) in a fixed amount of time. The extent to which the execution time
for the code path varies from one instance to another indicates the degree of determinism
in the system. Determinism applies to both the amount of time required to execute a time-
critical portion of a user’s application and to the amount of time required to execute
system code in the kernel.

Glossary

Glossary-3

deterministic system

A system in which it is possible to control the factors that impact determinism. Techniques
available under RedHawk Linux for maximizing determinism include shielded CPUs,
fixed priority scheduling policy, deferred interrupt handling, load balancing and unit
control of hyper-threading.

device driver

Software that communicates directly with a computer hardware component or peripheral,
allowing it to be used by the operating system. Also referred to as device module or driver.

direct I/O

An unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct I/O, the
file system transfers data directly between the disk and the user-supplied buffer.

discretionary access control

Mechanisms based on usernames, passwords or file access permissions that check the
validity of the credentials given them at the discretion of the user. This differs from
mandatory controls, which are based on items over which the user has no control, such as
the IP address.

execution time

The amount of time it takes to complete a task. Using the high resolution process
accounting facility in RedHawk Linux, execution time measurements for each process are
broken down into system, user, interrupted system and interrupted user times measured
with the high resolution time stamp counter (TSC).

FBS

See Frequency-Based Scheduler (FBS).

fixed priority scheduling policy

A scheduling policy that allows users to set static priorities on a per-process basis. The
scheduler never modifies the priority of a process that uses one of the fixed priority
scheduling policies. The highest fixed-priority process always gets the CPU as soon as it is
runnable, even if other processes are runnable. There are two fixed priority scheduling
policies: SCHED_FIFO and SCHED_RR.

flavor

A variation of a single entity. RedHawk Linux has three flavors of pre-built kernels, each
containing different characteristics and configurations. A customized kernel would
constitute another flavor. The flavor designation is defined in the top level Makefile and
appended as a suffix to the kernel name when the kernel is built; e.g, <kernelname>-
trace.

RedHawk Linux User’s Guide

Glossary-4

Frequency-Based Scheduler (FBS)

A task synchronization mechanism used to initiate processes at specified frequencies
based on a variety of timing sources, which include high-resolution clocks provided by the
Real-Time Clock and Interrupt Module (RCIM), an external interrupt source, or the
completion of a cycle. The processes are then scheduled using a priority-based scheduler.
When used in conjunction with the Performance Monitor (PM), FBS can be used to
determine the best way of allocating processors to various tasks for a particular
application.

The NightSim tool is a graphical interface to the Frequency-Based Scheduler and
Performance Monitor.

GRUB

GRand Unified Bootloader. A small software utility that loads and manages multiple
operating systems (and their variants). GRUB is the default bootloader for RedHawk
Linux.

hyper-threading

A feature of the Intel Pentium Xeon processor that allows for a single physical processor
to run multiple threads of software applications simultaneously. Each processor has two
sets of architecture state while sharing one set of processor execution resources. Each
architecture state can be thought of as a logical CPU resulting in twice as many logical
CPUs in a system. A uniprocessor system with hyper-threading enabled has two logical
CPUs, making it possible to shield one of them from interrupts and background processes.
Hyper-threading is enabled by default in all RedHawk Linux i386 pre-built kernels.

info page

Info pages give detailed information about a command or file. Its companion, man pages,
tend to be brief and provide less explanation than info pages. Info pages are interactive
with a navigable menu system. An info page is accessed using the info(1) command.

interprocess communication (IPC)

A capability that allows one process to communicate with another process. The processes
can be running on the same computer or on different computers connected through a
network. IPC enables one application to control another application, and for several
applications to share the same data without interfering with one another. IPC methods
include pipes, message queues, semaphores, shared memory and sockets.

interprocess synchronization

Mechanisms that allow cooperating processes to coordinate access to the same set of
resources. RedHawk Linux supplies a variety of interprocess synchronization tools
including rescheduling variables, busy-wait and sleepy-wait mutual exclusion
mechanisms and condition synchronization tools.

Glossary

Glossary-5

jitter

The size of the variation in the arrival or departure times of a periodic action. When the
worst-case time measured for either executing a code segment or responding to an
interrupt is significantly different than the typical case, the application’s performance is
said to be experiencing jitter. Jitter normally causes no problems as long as the actions all
stay within the correct period, but real-time tasks generally require that jitter be minimized
as much as possible.

journaling file system

A file system whereby disk transactions are written sequentially to an area of disk called a
journal or log before being written to their final locations within the filesystem. If a crash
occurs before the journal entry is committed, the original data is still on the disk and only
new changes are lost. When the system reboots, the journal entries are replayed and the
update that was interrupted is completed, greatly simplifying recovery time. Journaling
file systems in RedHawk Linux include ext3, xfs and reiserfs.

kernel

The critical piece of an operating system which performs the basic functions on which
more advanced functions depend. Linux is based on the kernel developed by Linus
Torvalds and a group of core developers. Concurrent has modified the Linux kernel
distributed by Red Hatto provide enhancements for deterministic real-time processing.
RedHawk Linux supplies three pre-built kernels with the following flavors: generic,
debug and trace. They reside as files named vmlinuz-<kernelversion>-RedHawk-
<revision.level>-<flavor> in the /boot directory.

Kernel Configuration GUI

The graphical interface from which selections are made for configuring a kernel. In
RedHawk Linux, running the ccur-config script displays the GUI where selections
can be made.

load balancing

Moving processes from some CPUs to balance the load across all CPUs.

man page

A brief and concise online document that explains a command or file. A man page is
displayed by typing man at the shell prompt followed by a space and then the term you
want to read about. Man pages in RedHawk Linux include those provided with the Red
Hat Linux distribution as well as those describing functionality developed by Concurrent .

memory object

Named regions of storage that can be mapped to the address space of one or more
processes to allow them to share the associated memory. Memory objects include POSIX
shared memory objects, regular files, and some devices, but not all file system objects
(terminals and network devices, for example). Processes can access the data in a memory
object directly by mapping portions of their address spaces onto the objects, which
eliminates copying the data between the kernel and the application.

RedHawk Linux User’s Guide

Glossary-6

message queues

An interprocess communication (IPC) mechanism that allows one or more processes to
write messages which will be read by one or more reading processes. RedHawk Linux
includes support for POSIX and System V message queue facilities.

module

A collection of routines that perform a system-level function. A module may be loaded
and unloaded from the running kernel as required.

mutex

A mutual exclusion device useful for protecting shared data structures from concurrent
modifications and implementing critical sections. A mutex has two possible states:
unlocked (not owned by any thread) and locked (owned by one thread). A thread
attempting to lock a mutex that is already locked by another thread is suspended until the
owning thread unlocks the mutex first.

mutual exclusion

A mechanism that ensures that only one of a set of cooperating processes can be executing
in a critical section at a time by serializing access to shared resources. Three types of
mechanisms are typically used to provide mutual exclusion—those that involve busy-
waiting, those that involve sleepy-waiting, and a combination of the two.

NightProbe

A graphical user interface (GUI) developed by Concurrent that permits real-time
recording, viewing, and modification of program data within one or more executing
programs. It can be used during development and operation of applications, including
simulations, data acquisition, and system control.

NightSim

A graphical user interface (GUI) to the Frequency-Based Scheduler (FBS) and
Performance Monitor (PM) facilities.

NightStar RT Tools

A collection of development tools supplied by Concurrent that provide a graphical
interface for scheduling, monitoring, debugging and analyzing run time behavior of real-
time applications. The toolset includes the NightSim periodic scheduler, NightProbe data
monitor, NightTrace event analyzer, NightTune tuner and NightView debugger.

NightTrace

A graphical tool developed by Concurrent used for analyzing the dynamic behavior of
multiprocess and/or multiprocessor user applications and operating system activity. The
NightTrace RT toolset consists of an interactive debugging and performance analysis tool,
trace data collection daemons, and an Application Programming Interface (API).

Glossary

Glossary-7

NightTune

A graphical tool developed by Concurrent for analyzing system and application
performance including CPU usage, context switches, interrupts, virtual memory usage,
network activity, process attributes, and CPU shielding. NightTune allows you to change
the priority, scheduling policy, and CPU affinity of individual or groups of processes using
pop-up dialogs or drag-and-drop actions. It also allows you to set the shielding and hyper-
threading attributes of CPUs and change the CPU assignment of individual interrupts.

NightView

A general-purpose, graphical source-level debugging and monitoring tool designed by
Concurrent for real-time applications written in C, C++, and Fortran. NightView RT can
monitor, debug, and patch multiple real-time processes running on multiple processors on
the local system or on different targets with minimal intrusion.

nonblocking message operation

Not suspending execution if an attempt to send or receive a message is unsuccessful.

nonblocking semaphore operation

Not suspending execution while testing for a semaphore value.

NUMA

Non-Uniform Memory Architecture. A memory architecture used in some
multiprocessors where access to different classes of memory takes significantly different
amounts of time. A processor can access its own local memory faster than non-local
memory (memory which is local to another processor or shared between processors).

PAM

Pluggable Authentication Module. A method that allows a system administrator to set
access and authentication policies without having to separately recompile individual
programs for such features. Under this scheme, a non-root user can be configured to run
applications that require privileges only root would normally be allowed.

PCI

Peripheral Component Interface. A peripheral bus that provides a high-speed data path
between the processor and peripheral devices like video cards, sound cards, network
interface cards and modems. PCI provides “plug and play” capability, runs at 33MHz and
66 MHz and supports 32-bit and 64-bit data paths.

Performance Monitor (PM)

A facility that makes it possible to monitor use of the CPU by processes that are scheduled
on a frequency-based scheduler. Values obtained assist in determining how to redistribute
processes among processors for improved load balancing and processing efficiency.
NightSim is a graphical interface to the Performance Monitor.

RedHawk Linux User’s Guide

Glossary-8

Pluggable Authentication Module (PAM)

See PAM.

POSIX

A standard specifying semantics and interfaces for a UNIX-like kernel interface, along
with standards for user-space facilities. There is a core POSIX definition which must be
supported by all POSIX-conforming operating systems, and several optional standards for
specific facilities; e.g., POSIX message queues.

preemption

When a process that was running on a CPU is replaced by a process with a higher priority.
Kernel preemption included in RedHawk Linux allows a lower priority process to be
preempted, even if operating in kernel space, resulting in improved system response.
Process preemption can be controlled through the use of rescheduling variables.

priority inheritance

A mechanism that momentarily passes along the priority of one process to another as
needed to avoid priority inversion.

priority inversion

When a higher-priority process is forced to wait for the execution of a lower-priority
process.

privilege

A mechanism through which users or processes are allowed to perform sensitive
operations or override system restrictions. Superuser possesses all (root) privileges.
Through capabilities, privileges can be enabled or disabled for individual users and
processes.

process

An instance of a program that is being executed. Each process has a unique PID, which is
that process' entry in the kernel's process table.

process dispatch latency

The time that elapses from the occurrence of an external event, which is signified by an
interrupt, until the process waiting for that external event executes its first instruction in
user mode.

RCIM

Real-Time Clock and Interrupt Module. A multifunction PCI card designed by Concurrent
for fully deterministic event synchronization in multiple CPU applications. The RCIM
includes a synchronized clock, multiple programmable real-time clocks, and multiple
input and output external interrupt lines. Interrupts can be shared (distributed) across
interconnected systems using an RCIM chain.

Glossary

Glossary-9

real-time

Responding to a real-world event and completing the processing required to handle that
event within a given deadline. Computations required to respond to the real-world event
must be complete before the deadline or the results are considered incorrect. RedHawk
Linux is a true real-time operating system (RTOS) because it can guarantee a certain
capability within a specified time constraint.

rescheduling variable

A data structure, allocated on a per-process basis by the application, that controls a single
process’ vulnerability to rescheduling.

robust mutex

A mutex that gives applications a chance to recover if one of the application’s threads dies
while holding the mutex.

RPM

RPM Package Manager. A management system of tools, databases and libraries used for
installing, uninstalling, verifying, querying, and updating computer software packages.
See the rpm(8) man page for complete information.

semaphore

A location in memory whose value can be tested and set by more than one process. A
semaphore is a form of sleepy-wait mutual exclusion because a process that attempts to
lock a semaphore that is already locked will be blocked or put to sleep. RedHawk Linux
provides POSIX counting semaphores that provide a simple interface to achieve the fastest
performance, and System V semaphores that provide many additional functions (for
example the ability to find out how many waiters there are on a semaphore or the ability to
operate on a set of semaphores).

shared memory

Memory accessible through more than one process’ virtual address map. Using shared
memory, processes can exchange data more quickly than by reading and writing using the
regular operating system services. RedHawk Linux includes standardized shared memory
interfaces derived from System V as well as POSIX.

shielded CPU

A CPU that is responsible for running high-priority tasks that are protected from the
unpredictable processing associated with interrupts and system daemons. Each CPU in a
RedHawk Linux system can be individually shielded from background processes,
interrupts and/or the local timer interrupt.

shielded CPU model

A model whereby tasks and interrupts are assigned to CPUs in a way that guarantees a
high grade of service to certain important real-time functions. In particular, a high-priority
task is bound to one or more shielded CPUs, while most interrupts and low priority tasks
are bound to other CPUs. The CPUs responsible for running the high-priority tasks are

RedHawk Linux User’s Guide

Glossary-10

shielded from the unpredictable processing associated with interrupts and the other
activity of lower priority processes that enter the kernel via system calls.

shielded processor

See shielded CPU.

sleepy-wait

A method of mutual exclusion such as a semaphore that puts a process to sleep if it
attempts to obtain a lock that is currently in a locked state

SMP

Symmetric multi-processing. A method of computing which uses two or more processors
managed by one operating system, often sharing the same memory and having equal
access to input/output devices. Application programs may run on any or all processors in a
system.

softirq

A method by which the execution of a function can be delayed until the next available
“safe point.” Instead of invoking the function, a “trigger” that causes it to be invoked at
the next safe point is used instead. A safe point is any time the kernel is not servicing a
hardware or software interrupt and is not running with interrupts blocked.

spin lock

A busy-wait method of ensuring mutual exclusion for a resource. Tasks waiting on a spin
lock sit in a busy loop until the spin lock becomes available.

System V

A standard for interprocess communication (IPC) objects supported by many UNIX-like
systems, including Linux and System V systems. System V IPC objects are of three kinds:
System V message queues, semaphore sets, and shared memory segments.

tasklet

A software interrupt routine running when the software interrupt is received at a return to
user space or after a hardware interrupt. Tasklets do not run concurrently on multiple
CPUs, but are dynamically allocatable.

TLB

Translation Look-aside Buffer. A table used in a virtual memory system, that lists the
physical address page number associated with each virtual address page number. A TLB is
used in conjunction with a cache whose tags are based on virtual addresses. The virtual
address is presented simultaneously to the TLB and to the cache so that cache access and
the virtual-to-physical address translation can proceed in parallel

Glossary

Glossary-11

trace event

Logged information for a point of interest (trace point) in an application’s source code or
in the kernel that can be examined by the NightTrace tool for debugging and performance
analysis.

work queues

A method of deferred execution in addition to softirqs and tasklets, but unlike those forms,
Linux processes work queues in the process context of kernel daemons and therefore are
capable of sleeping.

RedHawk Linux User’s Guide

Glossary-12

Index-1

Paths

/boot directory 11-1
/dev/mqueue 3-2
/etc/pam.d 13-2
/etc/rc.sysinit 2-17
/etc/security/capability.conf 13-2, 13-3
/etc/sysconfig/kdump 12-3
/etc/sysconfig/sbsvme 15-6
/etc/sysconfig/sbsvme-mappings 15-7
/proc file system 1-6
/proc/bus/pci 3-28, 14-1
/proc/ccur B-3
/proc/driver/btp 15-7, 15-15, 15-16
/proc/driver/graphics-memory G-4
/proc/interrupts 2-18
/proc/irq/n/smp_affinity 2-10, 2-19
/proc/mtrr G-2
/proc/pid/affinity B-3
/proc/pid/mem 9-1–9-4
/proc/pid/resmem B-3
/proc/shield/irqs 2-14, 2-18
/proc/shield/ltmrs 2-14, 7-4
/proc/shield/procs 2-14
/proc/sysvipc/shm 3-15, 3-28
/proc/vmcore 12-2
/usr/lib/libccur_rt 9-3, 14-3
/usr/lib64/libnuma.so 10-11

Numerics

32-bit 1-1, 11-2
64-bit

code migration E-1
kernels 1-1, 11-2, E-1

A

affinity 2-10, 2-14–2-19, 4-6, 4-13
alternative glibc 5-27
AMD Opteron processor E-1
asynchronous I/O 1-10
AUDIT B-3

authentication 13-1

B

bar_device_count 14-4
bar_mmap 14-5
bar_munmap 14-5
bar_scan_close 14-4
bar_scan_next 14-3
bar_scan_open 14-3
bar_scan_rewind 14-4
base address registers (BARs) 3-26, 14-1, B-3
bash command 7-4
Big Kernel Lock (BKL) 14-14, B-5
bind shared memory to I/O space 3-22, 3-23, 3-25
block a process 5-37–5-41
boot command line parameters I-1
bottom halves 14-12
btp module 15-6
building a kernel 11-4
busy-wait mutual exclusion 5-2, 5-7–5-12

C

cache thrashing 2-22
capabilities 13-3, B-2, C-1
ccur-config 11-2
ccur-g++ 5-27
ccur-gcc 5-27
CD/DVD burning 2-34
clock_getres 6-5
clock_gettime 6-5
clock_nanosleep 6-11, 6-12
clock_settime 6-4
clocks

POSIX 1-11, 6-1, 6-2, 6-4–6-5
RCIM 1-5, 6-1, 7-1
system time-of-day (wall) 6-4, 7-1
TSC 7-1

clocksource 7-1
condition synchronization 5-1, 5-37
configuring a kernel 11-2, B-1
console, serial setup H-1

Index

RedHawk Linux User’s Guide

Index-2

counting semaphores 1-10, 5-2, 5-12–5-21
CPU

accounting 1-7, 2-11, 7-2, B-2
affinity 2-10, 2-14–2-19, 4-6, 4-13
identification 2-29
idling 2-29–2-31, B-2
load balancing 7-3
logical/physical 2-29
rescheduling 7-4
shielding, see shielded CPUs

cpu command 2-18, 2-29–2-31
CPU_IDLING B-2
crash dump 12-1, B-5
crash utility 12-5
CRASH_DUMP 12-3, B-5
crashkernel I-2
cross processor interrupts B-4, G-1

D

daemon control 14-13, 14-14, F-1
DAEMON_CPU_LOCK B-2
Data Management API (DMAPI) 8-2
data sharing 1-10
debug kernel 1-3, 11-2
DEBUG_INFO 12-3, B-5
debugger 1-6, 1-8, 12-8, B-5
deferred interrupt functions 14-12
DETECT_SOFTLOCKUP 2-35, B-4
determinism 2-2, 2-20, 2-34
device drivers 2-9, 11-5, 14-1
direct I/O 8-1
disk I/O 8-1
DMAPI 8-2
documentation v
dump 12-1, B-5
DVD/CD burning 2-34

E

EM64T processor E-1
examples

add module to kernel 11-6
authentication 13-3, 13-4
busy-wait mutual exclusion 5-9
condition synchronization 5-42
CPU affinity for init 2-17
CPU shielding 2-13, 2-17, 2-31–2-34
crash dumps 12-6, 12-7
device driver 14-6, 14-9
kernel configuration and build 11-5
messaging 3-7, 3-9, 3-10, A-1

NUMA 10-16
PCI BAR scan 14-3
PCI-to-VME 15-17
POSIX message queues A-1
rescheduling control 5-7
reserving physical memory 2-23, 2-25
run command 4-15
semaphores 5-34, 5-36
set process priorities 4-4
shared memory 3-19, 3-21, 3-23
shielded CPU 2-13, 2-17, 2-31–2-34
System V message queues A-4

F

FBSCHED B-3
FBSCHED_PM B-3
FIFO scheduling 4-1, 4-3
file systems 8-1
floating point operations 2-33
free_pci_device 14-5
Frequency-Based Scheduler (FBS) 1-1, 1-5, B-3
fstat 3-12
ftok 3-27
ftruncate 3-12–3-14

G

get_mempolicy 10-11
glibc 5-27
glossary Glossary-1
graphics

interrupts G-3
support 10-5, B-5

H

haldaemon 2-34
high resolution process accounting 1-7, 2-11, 7-2, B-2
HRACCT 7-2, B-2
hyper-threading 1-8, 2-28–2-34, B-5
HyperTransport 2-27

I

I/O
asynchronous 1-10
direct 8-3
disk 8-1
synchronized 1-10

Index

Index-3

throughput on quad Opterons 2-27
userspace (UIO) 14-15, B-5

iHawk systems 1-1, 11-2
INHERIT_CAPS_ACROSS_EXEC 13-5, B-2
init 2-15–2-17
interprocess communications, see System V IPC
interprocess synchronization 5-1
interrupts

/proc interface 2-18, 2-19
cross processor B-4, G-1
deferred functions 2-21, 14-12
disabling 2-10–2-14, 7-2, 7-4
effect of disabling 2-4
effect of receiving 2-5–2-7
graphics G-3
local timer, see local timer
MTRR G-1
NMI 12-8, I-3
NVIDIA CUDA G-4
RCIM 1-5
response time improvements 1-7
routines in device drivers 14-11
shield CPU from 2-10–2-14, 2-31
softirqs 4-5, 14-12, B-3
tasklets 4-5, 14-12
TLB flush G-5
work queues 14-12, 14-13

interval timer 7-3
ioremap 14-11
IP route cache table 2-35, I-4
IPC, see System V IPC
IRQ 2-10, 2-12, 2-14, 2-19, I-3

J

journaling file system 1-9, 8-1

K

K8_NUMA B-4
KDB B-5
kdb 1-8, 10-13, 12-8, I-2
KDB_CONTINUE_CATASTROPHIC B-5
KDB_MODULES B-5
KDB_OFF B-5
kdump 12-1, 12-2
kernel

add module example 11-6
boot 1-3
build 11-1
configuration 11-1, B-1
crash dump 12-2, B-5

daemon control 14-13, 14-14, F-1
debug 1-3, 11-2
debugger 1-6, 1-8, 12-8, B-5
debugging 12-1
flavors 1-3, 11-1, 11-2
generic/optimized 1-3, 11-2
preemption 1-6, B-4
reserve space 14-11
trace 1-3, 11-2
trace events 14-16, D-1
tracing 1-6, B-5
tunable parameters 11-1, 11-3, B-1
updates 1-4
virtual address space reserves 14-11

KEXEC 12-3, B-5
kexec 12-2
ksoftirqd 2-35, 14-13, B-3, I-4

L

LARGE_MMAP_SPACE B-3
libraries 3-3, 5-2, 5-14, 5-27, 10-11
load balancing 7-3
local timer

disabling 2-11–2-14, 7-4
functionality 7-1

LOCK_BREAK_THROTTLE B-4
LOCK_BREAK_THROTTLE_LIMIT B-4
low latency patches 1-7
low memory 2-34

M

mailbox 5-42
mbind 10-11
memmap 2-23, I-2
memory access, non-uniform (NUMA) 2-27, 10-1
memory locking 4-6, 5-2
memory mapping 1-10, 9-1, B-3
memory policies (NUMA) 10-2
memory resident processes 1-9
memory shielding (NUMA) 10-3
memory, low 2-34
memory, reserving physical 2-23
MEMSHIELD_ZONE_NORMAL 10-18
MEMSHIELD_ZONELIST_ORDER 10-19, B-4
message queue structures

POSIX 3-2
System V 3-4, 3-5

messaging 3-1, A-1, B-2
mlock 1-9, 2-20, 4-6
mlockall 1-9, 2-20, 4-6

RedHawk Linux User’s Guide

Index-4

mmap 1-8, 9-1, 9-4, 14-5, B-3
mpadvise 2-15
mq_close 3-2
mq_getattr 3-2
mq_notify 3-2
mq_open 3-2
mq_receive 3-2
mq_send 3-2
mq_setattr 3-2
mq_unlink 3-2
mqueue 3-2
msgctl 3-3, 3-6, 3-9
msgget 3-3, 3-5, 3-7
msgop 3-6
msgrcv 3-10
msgsnd 3-10
munlock 1-9, 2-20, 4-6
munlockall 1-9, 2-20, 4-6
mutex 5-2, 5-27

attribute objects 5-23
compiling 5-27
nopreempt spin 5-10
priority inheritance 5-23
pthread 5-21, 5-23
robust 5-22
spin 5-7
state 5-23

mutual exclusion 5-1, 5-14

N

nanosleep 2-11, 6-11, 7-4
NightProbe 1-2, 1-6
NightSim 1-2, 1-5
NightStar RT tools 1-1, 1-2, 11-2
NightTrace 1-2, 1-3, 1-6, 11-2, 14-16, D-1
NightTune 1-2
NightView 1-2, 1-6
NMI interrupts 12-8, I-3
nmi_dump 12-8, I-2
nmi_watchdog 12-8, I-3
NO_HZ B-2, I-3
NO_HZ_ENABLED B-2, I-3
no_pregraph_pgs 10-7, I-3
noatime 2-35
noirqbalance I-3
non-uniform memory access (NUMA) 2-27, 10-1
nopreempt_spin_init 5-11
nopreempt_spin_init_thread 5-11
nopreempt_spin_islock 5-11
nopreempt_spin_lock 5-11
nopreempt_spin_mutex 5-10
nopreempt_spin_trylock 5-11

nopreempt_spin_unlock 5-11
NTP_PPS B-2
NUMA 2-27, 10-1, B-4
NUMA 10-18, B-4
numa I-4
numapgs utility 10-12
NVIDIA B-5
NVIDIA graphics support B-5, G-3

O

one-shot timer 6-2
Opteron

processor E-1
quad I/O throughput 2-27

optimized kernel 1-3, 11-2

P

PAGE_REPLICATION 10-18, B-4
PAGE_REPLICATION_DYNAMIC 10-18, B-4
paging 1-9
PAM 1-7, 13-1, B-2
pam_capability 13-2
PCI resource access 14-1, B-3
PCI-to-VME support

bind buffers 15-9
configuration 15-6, B-3
documentation 15-2
examples 15-17
installation 15-2, 15-5
overview 15-1
user interface 15-7
VMEbus mappings 15-7, 15-13

performance issues
cache thrashing 2-22
cross processor interrupts G-1
deferred interrupts 2-21, 14-12
device drivers 14-11
direct I/O 8-4
disabling local timer 7-2
hyper-threading 2-30
I/O throughput on quad Opterons 2-27
kernel daemons F-1
kernel tracing 14-16
locking pages in memory 2-20, 4-6
negative impacts 2-34
NUMA programming 2-27, 10-16
optimized kernel 1-3, 11-2
priority scheduling 2-21, 4-4, 4-5
reserving physical memory 2-23
shielding CPUs 2-9–2-11, 4-6, F-1, G-1

Index

Index-5

softirqs 4-5, 14-13, F-1
tasklets 4-5, 14-13, F-1
waking a process 2-21, 5-37–5-41
work queues F-1

Performance Monitor 1-1, 1-7, B-3
periodic timer 6-2
physical memory reservation 2-23
Pluggable Authentication Modules (PAM) 1-7, 13-1,

B-2
POSIX conformance 1-2
POSIX facilities

asynchronous I/O 1-10
clock routines 6-4–6-5
clocks 1-11, 6-1, 6-2
counting semaphores 1-10, 5-2, 5-12–5-21
memory locking 1-9, 2-20, 4-6
memory mapping 1-10
message queues 3-2, A-1, B-2
pthread mutexes 5-21
real-time extensions 1-9
real-time signals 1-11
scheduling policies 4-1, 4-3
semaphores 1-10, 5-2, 5-12–5-21
shared memory 1-10, 3-12–3-15
sleep routines 6-11, 6-12
timers 1-11, 2-11, 6-2, 6-6–6-10, 7-4

POSIX routines
clock_getres 6-5
clock_gettime 6-5
clock_settime 6-4
mlock 1-9, 2-20, 4-6
mlockall 1-9, 2-20, 4-6
mq_close 3-2
mq_getattr 3-2
mq_notify 3-2
mq_open 3-2
mq_receive 3-2
mq_send 3-2
mq_setattr 3-2
mq_unlink 3-2
munlock 1-9, 2-20, 4-6
munlockall 1-9, 2-20, 4-6
pthread_mutex_consistent_np 5-24
pthread_mutex_destroy 5-21
pthread_mutex_getunlock_np 5-24
pthread_mutex_init 5-21
pthread_mutex_lock 5-21
pthread_mutex_setconsistency_np 5-24
pthread_mutex_setunlock_np 5-25
pthread_mutex_trylock 5-21
pthread_mutex_unlock 5-21
pthread_mutexattr_destroy 5-21
pthread_mutexattr_getfast_np 5-25
pthread_mutexattr_gettype 5-21

pthread_mutexattr_init 5-21
pthread_mutexattr_setfast_np 5-26
pthread_mutexattr_setprotocol 5-27
pthread_mutexattr_setrobust_np 5-27
pthread_mutexattr_settype 5-21
pthread_mutexattr_setunlock_np 5-27
sched_get_priority_max 4-11, 4-12
sched_get_priority_min 4-11
sched_getparam 4-10
sched_getscheduler 4-8
sched_rr_get_interval 4-12
sched_setparam 4-9
sched_setscheduler 4-7
sched_yield 4-10
sem_destroy 5-15
sem_getvalue 5-21
sem_init 5-12, 5-14
sem_open 5-16
sem_post 5-20
sem_timedwait 5-19
sem_trywait 5-20
sem_unlink 5-18
sem_wait 5-19
shm_open 3-12, 3-13
shm_unlink 3-12, 3-15
sigqueue 1-11
sigtimedwait 1-11
sigwaitinfo 1-11
timer_create 6-6
timer_delete 6-8
timer_getoverrun 6-10
timer_gettime 6-9
timer_settime 6-8

POSIX_MQUEUE B-2
POST_WAIT B-2
post/wait 5-37, B-2
PPSAPI B-2
PPSAPI_SERIAL B-2
PREALLOC_GRAPHICS_PAGES B-4
preallocated graphics pages 10-5
PREEMPT B-4
preemption 1-5, 1-6, 2-8, 5-3, B-4
prefer_highmem I-4
priorities

kernel daemon 14-13, 14-14
process 4-1, 4-2

priority inheritance 1-7, 5-23
priority inversion 1-7
PROC_CCUR_DIR B-3
PROC_PCI_BARMAP B-3
PROC_PID_AFFINITY B-3
PROC_PID_RESMEM B-3
process

assign to CPU(s) 2-14–2-17

RedHawk Linux User’s Guide

Index-6

block 5-37–5-41
cooperating 5-37
dispatch latency 2-2, 2-3
execution time quantum 4-4–4-5, 4-8, 4-12, 4-13,

7-3
memory resident 1-9
priorities 4-1, 4-2
scheduling 4-1, 7-3
synchronization 1-10, 5-1
wake 2-21, 5-37–5-41

Process Scheduler 4-2
PROCMEM_ANYONE 9-4, B-3
PROCMEM_MMAP 9-4, B-3
PROCMEM_WRITE B-3
profiling 7-3
programmed I/O on quad Opterons 2-28
ps command 4-3, 7-2
pthread_mutex_consistent_np 5-24
pthread_mutex_destroy 5-21
pthread_mutex_getunlock_np 5-24
pthread_mutex_init 5-21
pthread_mutex_lock 5-21
pthread_mutex_setconsistency_np 5-24
pthread_mutex_setunlock_np 5-25
pthread_mutex_trylock 5-21
pthread_mutex_unlock 5-21
pthread_mutexattr_destroy 5-21
pthread_mutexattr_getfast_np 5-25
pthread_mutexattr_gettype 5-21
pthread_mutexattr_init 5-21
pthread_mutexattr_setfast_np 5-26
pthread_mutexattr_setprotocol 5-27
pthread_mutexattr_setrobust_np 5-27
pthread_mutexattr_settype 5-21
pthread_mutexattr_setunlock_np 5-27
ptrace 1-6, B-4
PTRACE_EXT B-4
publications, related v

R

rcim I-4
RCIM_CLOCKSOURCE B-2
RCIM_IRQ_EXTENSIONS B-3
RCIM_PPS B-2
RCU 7-4, B-2
RCU_ALTERNATIVE 7-4, B-2
read copy update (RCU) 7-4, B-2
Real-Time Clock and Interrupt Module (RCIM) 1-5,

6-1, B-2, B-3, I-4
real-time clock timers 6-2
real-time features 1-4
real-time process scheduling 4-1

real-time scheduler 1-7
real-time signals 1-11
Red Hat distribution 1-1
RedHawk Linux

capabilities C-1
documentation set v
kernel parameters 11-1, 11-3, B-1
kernels 1-3, 11-1, 11-2
POSIX conformance 1-2
real-time features 1-4
scheduler 4-2
updates 1-4

related publications v
REQUIRE_RELIABLE_TSC B-2
REQUIRE_TSC B-2
resched_cntl 5-4
resched_lock 5-5
resched_nlocks 5-6
resched_unlock 5-6
RESCHED_VAR B-2
rescheduling control 5-3–5-7, 7-4
rescheduling variables 5-3, B-2
reserving physical memory 2-23
rhash_entries 2-35, I-4
robust mutex 5-22
Role-Based Access Control 1-7, 13-2
round-robin scheduling 4-1, 4-4
RTC timers 6-2
run command 2-15–2-17, 4-2, 4-13, 10-7

S

SBS Technologies 15-1
SBSVME 15-6, B-3
SCHED_FIFO 4-1, 4-3
sched_get_priority_max 4-11, 4-12
sched_get_priority_min 4-11
sched_getparam 4-10
sched_getscheduler 4-8
SCHED_OTHER 4-1, 4-4
SCHED_RR 4-1, 4-4
sched_rr_get_interval 4-12
sched_setaffinity 2-15
sched_setparam 2-21, 4-9
sched_setscheduler 2-21, 4-7
SCHED_SMT B-3
SCHED_SMT_IDLE 2-35, B-3
sched_yield 4-10
scheduler, real-time 1-7
scheduling policies 4-1, 4-3
scheduling priorities 4-2
sem_destroy 5-15
sem_getvalue 5-21

Index

Index-7

sem_init 5-12, 5-14
sem_open 5-16
sem_post 5-20
sem_timedwait 5-19
sem_trywait 5-20
sem_unlink 5-18
sem_wait 5-19
semaphores

data structures 5-29
POSIX counting 5-2, 5-12–5-21
System V 5-2, 5-28–5-37

semctl 5-28, 5-34
semget 5-28, 5-30, 5-31
semop 5-28, 5-29, 5-36
serial console configuration H-1
server_block 5-39
server_wake1 5-40
server_wakevec 5-41
set_mempolicy 10-11
sh command 7-4
shared memory 1-10

NUMA 10-9
overview 3-1
POSIX 3-12–3-15
System V 3-15–3-28

shared resources 5-1
SHIELD B-2
shield command 2-12–2-14, 2-17, 7-4
shielded CPUs

cross processor interrupts G-1
examples 2-13, 2-17, 2-31–2-34, 10-16
interfaces 2-12
kernel daemons F-1
kernel parameters B-2
NUMA interface 10-3
overview 1-4, 2-1
performance 2-9–2-11, 4-6
uniprocessor 2-34

shm_open 3-12, 3-13
shm_unlink 3-12, 3-15
shmat 3-16, 3-23, 15-20
SHMBIND B-4
shmbind 3-22, 15-13, 15-20
shmconfig 3-16, 3-25, 10-9, 15-13, 15-21
shmctl 3-16, 3-21
shmdefine 3-16, 3-25
shmdt 3-16, 3-23
shmget 3-15, 3-19, 3-22, 3-27
sigqueue 1-11
sigtimedwait 1-11
sigwaitinfo 1-11
sleep routines 5-37, 6-11, 6-12
sleep/wakeup/timer mechanism 5-37
sleepy-wait mutual exclusion 5-2

SOFTIRQ_PREEMPT_BLOCK B-3
SOFTIRQ_PRI 14-13, B-3
softirqs 4-5, 14-12, 14-13, B-3, F-2
spin lock

BKL 14-14
busy-wait mutual exclusion 1-8, 5-1, 5-2, 5-7–5-12
condition synchronization 5-42
multithread device driver 14-14
nopreempt 5-10
preemption 1-5, 1-7

spin_init 5-8
spin_islock 5-9
spin_lock 5-8
spin_mutex 5-7
spin_trylock 5-9
spin_unlock 5-9
ssh 13-5
strace command 7-4
swapping 1-9
synchronized I/O 1-10
syntax notation iv
system profiling 7-3
system security 13-1
system updates 1-4
System V IPC

message queues 3-1, 3-3–3-11, A-4
semaphores 5-2, 5-28–5-37
shared memory 3-1, 3-15–3-28

System.map file 11-4

T

tasklets 4-5, 14-13
threads library 5-14
tickless kernel B-2, I-3
Time Stamp Counter (TSC) 7-1
time structures 6-3
time-of-day clock 6-4, 7-1
timer_create 6-6
timer_delete 6-8
timer_getoverrun 6-10
timer_gettime 6-9
timer_settime 6-8
timers

local 2-14, 7-1, 7-4
POSIX 1-11, 2-11, 6-2, 6-6–6-10, 7-4
RCIM RTC 6-2
system 7-1

time-share scheduling 4-1, 4-4
top command 4-3, 7-2
TRACE B-5
trace events, kernel 14-16, D-1
trace kernel 1-3, 11-2

RedHawk Linux User’s Guide

Index-8

trace points 1-6, 14-16
TSC 7-1

U

UIO 14-15, B-5
uniprocessor 2-34
UNSIGNED_OFFSETS B-4
updates, system 1-4
user authentication 13-1
user-level spin locks 1-8
usermap 1-8, 9-3, 9-4, B-3

V

virtual address space reserves 14-11
vmalloc 14-11, I-4
VMALLOC_PGTABLE_PRELOAD B-4
VMALLOC_RESERVE 14-11
vmcore 12-2, 12-5
VME-to-PCI support, see PCI-to-VME support
vmlinux 12-2, 12-5

W

wake a process 2-21, 5-37–5-41
wall clock 6-4, 7-1
work queues 14-12, 14-13

X

X86_64_ACPI_NUMA B-4
X86_HT 2-30, B-5
xfs 1-9, 8-1, B-4
XFS_DMAPI 8-2
XFS_FS B-4
XFS_RT B-4

	Preface
	Contents
	Introduction
	Overview
	RedHawk Linux Kernels
	System Updates
	Real-Time Features
	Processor Shielding
	Processor Affinity
	User-level Preemption Control
	Fast Block/Wake Services
	RCIM Driver
	Frequency-Based Scheduler
	/proc Modifications
	Kernel Trace Facility
	ptrace Extensions
	Kernel Preemption
	Real-Time Scheduler
	Low Latency Enhancements
	Priority Inheritance
	High Resolution Process Accounting
	Capabilities Support
	Kernel Debuggers
	Kernel Core Dumps/Crash Analysis
	User-level Spin Locks
	usermap and /proc mmap
	Hyper-threading
	XFS Journaling File System
	POSIX Real-Time Extensions
	User Priority Scheduling
	Memory Resident Processes
	Memory Mapping and Data Sharing
	Process Synchronization
	Asynchronous Input/Output
	Synchronized Input/Output
	Real-Time Signal Behavior
	Clocks and Timers
	Message Queues

	Real-Time Performance
	Overview of the Shielded CPU Model
	Overview of Determinism
	Process Dispatch Latency
	Effect of Disabling Interrupts
	Effect of Interrupts
	Effect of Disabling Preemption
	Effect of Open Source Device Drivers

	How Shielding Improves Real-Time Performance
	Shielding From Background Processes
	Shielding From Interrupts
	Shielding From Local Interrupt

	Interfaces to CPU Shielding
	Shield Command
	Shield Command Examples
	Exit Status
	Shield Command Advanced Features

	/proc Interface to CPU Shielding
	Assigning Processes to CPUs
	Multiprocessor Control Using mpadvise
	Assigning CPU Affinity to init

	Example of Setting Up a Shielded CPU

	Procedures for Increasing Determinism
	Locking Pages in Memory
	Setting the Program Priority
	Setting the Priority of Deferred Interrupt Processing
	Waking Another Process
	Avoiding Cache Thrashing
	Reserving Physical Memory
	Binding to NUMA Nodes
	I/O Throughput on Quad Opteron Systems
	Understanding Hyper-threading
	System Configuration
	Recommended CPU Configurations

	Avoiding a Low Memory State

	Known Issues with Linux Determinism

	Real-Time Interprocess Communication
	Overview
	POSIX Message Queues
	System V Messages
	Using Messages
	The msgget System Call
	The msgctl System Call
	The msgsnd and msgrcv System Calls
	Sending a Message
	Receiving a Message

	POSIX Shared Memory
	Using the shm_open Routine
	Using the shm_unlink Routine

	System V Shared Memory
	Using Shared Memory
	The shmget System Call
	The shmctl System Call
	Binding a Shared Memory Segment to I/O Space
	Using shmget
	Using shmbind

	The shmat and shmdt System Calls
	Attaching a Shared Memory Segment
	Detaching Shared Memory Segments

	Shared Memory Utilities
	The shmdefine Utility
	The shmconfig Command

	Process Scheduling
	Overview
	How the Process Scheduler Works
	Scheduling Policies
	First-In-First-Out Scheduling (SCHED_FIFO)
	Round-Robin Scheduling (SCHED_RR)
	Time-Sharing Scheduling (SCHED_OTHER)

	Procedures for Enhanced Performance
	How to Set Priorities
	Interrupt Routines
	SCHED_FIFO vs SCHED_RR
	Fixed Priority Processes Locking Up a CPU
	Memory Locking
	CPU Affinity and Shielded Processors

	Process Scheduling Interfaces
	POSIX Scheduling Routines
	The sched_setscheduler Routine
	The sched_getscheduler Routine
	The sched_setparam Routine
	The sched_getparam Routine
	The sched_yield Routine
	The sched_get_priority_min Routine
	The sched_get_priority_max Routine
	The sched_rr_get_interval Routine

	The run Command

	Interprocess Synchronization
	Understanding Interprocess Synchronization
	Rescheduling Control
	Understanding Rescheduling Variables
	Using resched_cntl System Call
	Using the Rescheduling Control Macros
	resched_lock
	resched_unlock
	resched_nlocks

	Applying Rescheduling Control Tools

	Busy-Wait Mutual Exclusion
	Understanding the spin_mutex Variable
	Using the spin_mutex Interfaces
	Applying spin_mutex Tools
	Understanding the nopreempt_spin_mutex Variable
	Using the nopreempt_spin_mutex Interfaces

	POSIX Counting Semaphores
	Overview
	Interfaces
	The sem_init Routine
	The sem_destroy Routine
	The sem_open Routine
	The sem_close Routine
	The sem_unlink Routine
	The sem_wait Routine
	The sem_timedwait Routine
	The sem_trywait Routine
	The sem_post Routine
	The sem_getvalue Routine

	Extensions to POSIX Mutexes
	Robust Mutexes
	Priority Inheritance
	User Interface
	pthread_mutex_consistent_np
	pthread_mutex_getunlock_np
	pthread_mutex_setconsistency_np
	pthread_mutex_setunlock_np
	pthread_mutexattr_getfast_np
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getrobust_np
	pthread_mutexattr_getunlock_np
	pthread_mutexattr_setfast_np
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setrobust_np
	pthread_mutexattr_setunlock_np

	Compiling Programs with POSIX Mutexes

	System V Semaphores
	Overview
	Using System V Semaphores
	The semget System Call
	The semctl System Call
	The semop System Call

	Condition Synchronization
	The postwait System Call
	The Server System Calls
	server_block
	server_wake1
	server_wakevec

	Applying Condition Synchronization Tools

	Programmable Clocks and Timers
	Understanding Clocks and Timers
	RCIM Clocks and Timers
	POSIX Clocks and Timers

	Understanding the POSIX Time Structures
	Using the POSIX Clock Routines
	Using the clock_settime Routine
	Using the clock_gettime Routine
	Using the clock_getres Routine

	Using the POSIX Timer Routines
	Using the timer_create Routine
	Using the timer_delete Routine
	Using the timer_settime Routine
	Using the timer_gettime Routine
	Using the timer_getoverrun Routine

	Using the POSIX Sleep Routines
	Using the nanosleep Routine
	Using the clock_nanosleep Routine

	System Clocks and Timers
	System Timekeeping
	Local Timer
	Functionality
	CPU Accounting
	Process Execution Time Quanta and Limits
	Interval Timer Decrementing
	System Profiling
	CPU Load Balancing
	CPU Rescheduling
	POSIX Timers
	RCU Processing
	Miscellaneous

	Disabling the Local Timer

	File Systems and Disk I/O
	Journaling File System
	Creating an XFS File System
	Mounting an XFS File System
	Data Management API (DMAPI)

	Direct Disk I/O

	Memory Mapping
	Establishing Mappings to a Target Process’ Address Space
	Using mmap(2)
	Using usermap(3)
	Considerations
	Kernel Configuration Parameters

	Non-Uniform Memory Access (NUMA)
	Overview
	Memory Policies
	NUMA User Interface
	Memory-shielded Nodes
	Memory-shielding and Preallocated Graphics Pages
	NUMA Support for Processes using run(1)
	NUMA Support for Shared Memory Areas using shmconfig(1)
	System Calls
	Library Functions
	Informational Files and Utilities
	Node Statistics
	Node IDs for Mapped Pages

	NUMA Hit/Miss Statistics Using numastat
	kdb Support

	Kernel Text Page Replication
	Kernel Module Page Allocations

	Performance Guidelines
	Task-Wide NUMA Mempolicy
	Shared Memory Segments

	Configuration

	Configuring and Building the Kernel
	Introduction
	Configuring a Kernel Using ccur-config
	Building a Kernel
	Building Driver Modules
	Example–Building a Dynamic Loadable Module in a Pre-built RedHawk Kernel

	Additional Information

	Kernel Debugging
	Overview
	Taking and Analyzing a System Crash
	Activating kdump
	How a Crash Dump is Created
	Installation/Configuration Details
	kdump Options Defined in the Configuration File
	kdump Command Line Interface
	Using crash to Analyze the Dump
	Analyzing a Dump File
	Analyzing a Live System
	Getting Help

	Kernel Debuggers
	kdb

	NMI Interrupts
	NMI Button

	Pluggable Authentication Modules (PAM)
	Introduction
	PAM Modules
	Services
	Role-Based Access Control
	Examples

	Defining Capabilities
	Examples

	Implementation Details

	Device Drivers
	Understanding Device Driver Types
	Developing User-level Device Drivers
	Accessing PCI Resources
	PCI BAR Interfaces

	Kernel Skeleton Driver
	Understanding the Sample Driver Functionality
	Testing the Driver

	Developing Kernel-level Device Drivers
	Building Driver Modules
	Kernel Virtual Address Space
	Real-Time Performance Issues
	Interrupt Routines
	Deferred Interrupt Functions (Bottom Halves)
	Multi-threading Issues
	The Big Kernel Lock (BKL) and ioctl

	Userspace I/O Drivers (UIO)
	Analyzing Performance

	PCI-to-VME Support
	Overview
	Documentation
	Installing the Hardware
	Unpacking
	Configuring the Adapter Cards
	Installing the PCI Adapter Card
	Installing the VMEbus Adapter Card
	Connecting the Adapter Cable

	Installing the Software
	Configuration
	The btp Module
	Device Files and Module Parameter Specifications
	VMEbus Mappings

	User Interface
	API Functions
	Bind Buffer Implementation
	bt_get_info BT_INFO_KMALLOC_BUF
	bt_set_info BT_INFO_KMALLOC_SIZ
	bt_set_info BT_INFO_KFREE_BUF
	Additional Bind Buffer Information

	Mapping and Binding to VMEbus Space
	bt_hw_map_vme
	bt_hw_unmap_vme
	The /proc File System Interface

	Example Applications
	bt_bind_mult
	bt_bind_multsz
	bt_hwmap
	bt_hwunmap
	readdma
	shmat
	shmbind
	shmconfig-script
	vme-mappings
	writemem
	writedma

	Example Message Queue Programs
	POSIX Message Queue Example
	System V Message Queue Example

	Kernel Tunables for Real-time Features
	Capabilities
	Overview
	Capabilities

	Kernel Trace Events
	Pre-defined Kernel Trace Events
	User-defined Kernel Trace Events
	Pre-defined CUSTOM Trace Event
	Dynamic Kernel Tracing

	Migrating 32-bit Code to 64-bit Code
	Introduction
	Procedures
	Coding Requirements
	Data Type Sizes
	Longs
	Pointers
	Arrays
	Declarations
	Explicit Data Sizes
	Constants

	APIs
	Calling Conventions
	Conditional Compilation
	Miscellaneous

	Compiling
	Testing/Debugging
	Performance Issues
	Memory Alignment and Structure Padding

	Kernel-level Daemons on Shielded CPUs
	Cross Processor Interrupts on Shielded CPUs
	Overview
	Memory Type Range Register (MTRR) Interrupts
	Graphics Interrupts
	NVIDIA CUDA Interrupts
	User Address Space TLB Flush Interrupts

	Serial Console Setup
	Boot Command Line Parameters
	Glossary
	Index

