
1.3

 KVM-RT ™ Userís Guide

0898604-1.3
October 2021

Copyright 2021 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for
use with Concurrent Real-Time products by Concurrent Real-Time personnel, customers, and end–users. It may not
be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Real-Time makes no warranties, expressed or implied, concerning the information con-
tained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Real-Time, 800 NW 33
Street, Pompano Beach, FL 33064. Mark the envelope “Attention: Publications Department.” This publication
may not be reproduced for any other reason in any form without written permission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent
Real-Time product names are trademarks of Concurrent Real-Time while all other product names are trademarks or
registered trademarks of their respective owners. Linux® is used pursuant to a sublicense from the Linux Mark
Institute.

Printed in U. S. A.

Revision History: Level: Effective With:

July 2019 1.0 RedHawk Linux 7.5

January 2020 1.1 RedHawk Linux 8.0

February 2021 1.2 RedHawk Linux 8.2

October 2021 1.3 RedHawk Linux 8.4

iii

Preface

Scope of Manual

This manual provides information and instructions for using Concurrent Real-Time’s
RedHawk KVM-RTTM.

Structure of Manual

This manual consists of:

• Chapter 1 introduces you to KVM-RT.

• Chapter 2 explains the steps in setting up and booting virtual machines in
KVM-RT.

• Chapter 3 covers how to configure KVM-RT.

• Chapter 4 summarizes all the KVM-RT tools.

• Chapter 5 discusses time synchronization.

• Chapter 6 discusses ways to analyze and debug guest VMs in KVM-RT.

Syntax Notation

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify appear in
italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in list bold type.

list Operating system and program output such as prompts, messages and
listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify these options or
arguments.

hypertext links When viewing this document online, clicking on chapter, section,
figure, table and page number references will display the
corresponding text. Clicking on Internet URLs provided in blue type
will launch your web browser and display the web site. Clicking on
publication names and numbers in red type will display the
corresponding manual PDF, if accessible.

RedHawk KVM-RT User’s Guide

iv

Related Publications

The following table lists Concurrent Real-Time documentation. Depending upon the
document, they are available online on RedHawk Linux systems or from Concurrent Real-
Time’s documentation web site at http://redhawk.concurrent-rt.com/docs.

RedHawk KVM-RT Pub. Number

RedHawk KVM-RT Release Notes 0898603

RedHawk KVM-RT User’s Guide 0898604

RedHawk Architect

RedHawk Architect Release Notes 0898600

RedHawk Architect User’s Guide 0898601

RedHawk Linux

RedHawk Linux Release Notes 0898003

RedHawk Linux User’s Guide 0898004

RedHawk Linux Cluster Manager User’s Guide 0898016

RedHawk Linux FAQ N/A

NightStar RT Development Tools

NightView User’s Guide 0898395

NightTrace User’s Guide 0898398

NightProbe User’s Guide 0898465

NightTune User’s Guide 0898515

http://redhawk.concurrent-rt.com/docs

v

Chapter 0Contents

Preface . iii

Chapter 1 Introduction to KVM-RT

Introduction. 1-1
Host System Requirements and Installation . 1-1

Host Kernel Configuration . 1-1
Kernel Boot Parameters . 1-1
Migrating Managed IRQs. 1-2

Chapter 2 Getting Started

Building Virtual Machines . 2-1
Using Virtual Machine Manager to Create a Virtual Machine 2-1
Using RedHawk Architect to Create a Virtual Machine 2-1
Cloning a Virtual Machine Image . 2-2

Importing Virtual Machines into KVM-RT . 2-2
Booting and Shutting Down Virtual Machines. 2-2
Understanding QEMU/KVM Threads . 2-3

Chapter 3 Configuring Virtual Machines

The KVM-RT Configuration File. 3-1
Configuration Tools . 3-4
Advanced Libvirt Configuration. 3-4
Understanding the cpuset Configuration Attribute . 3-5
Understanding KVM-RT Use of RedHawk Real-Time Features 3-5

KVM-RT Use of Threaded CPUs . 3-6
Configuring Real-Time Virtual Machines . 3-6

Chapter 4 KVM-RT Tools

KVM-RT System Commands. 4-1
KVM-RT Start-Up Commands. 4-1
KVM-RT Configuration Commands: . 4-2
KVM-RT Boot/Shutdown Commands . 4-2

Chapter 5 Time Synchronization

Instructions to run chrony . 5-1

Chapter 6 Analysis and Debugging

KVM Trace Events . 6-2
Kernel Tracing with xtrace . 6-2

Example: multi-merge Tracing with xtrace. 6-3

RedHawk KVM-RT User’s Guide

vi

KVM-RT Guest Services . 6-4
KVM-RT Guest Services Library Interface . 6-5
KVM-RT Guest Services Command Line Interface . 6-7
KVM-RT Guest Services Trace Events. 6-7
KVM-RT Guest Services Kernel Boot Parameters . 6-8

1-1

1
Chapter 1Introduction to KVM-RT

1
1

This chapter provides a general overview and requirements for using RedHawk KVM-RT.

Introduction 1

RedHawk KVM-RT is a Real-Time Hypervisor solution that utilizes QEMU/KVM and
RedHawk real-time features to extend RedHawk's real-time determinism to guest
RedHawk virtual machines.

It supports multiple guests, both real-time and non-real-time, running in virtual machines
on a single host system.

Host System Requirements and Installation 1

Refer to the RedHawk KVM-RT Release Notes for hardware host system requirements and
software installation instructions.

Though not a requirement, it is highly recommended that the entire host system be
dedicated to running the Real-Time Hypervisor. Administrators of the KVM-RT host
system must be careful not to disturb CPU shielding or CPU affinities on the system, or
else real-time performance of virtual machines may be compromised.

Once KVM-RT is installed, the following command can be run to test the suitability of the
host system.

$ sudo kvmrt-validate-host

Host Kernel Configuration 1

KVM-RT requires that a RedHawk kernel is booted on the host system while KVM-RT is
being used. Additional system configuration may be required.

Kernel Boot Parameters 1

These parameters are also documented in the file kernel-parameters.txt under the
/usr/src/linux-<kernel-name>/Documentation in 7.x releases and under a
subdirectory admin-guide under that path in the 8.x releases.

RedHawk KVM-RT User’s Guide

1-2

These parameters may be added to the RedHawk system's boot time parameters with the
command blscfg(1) in RedHawk Linux versions 8.0 and later, and ccur-grub2(1)
in Ubuntu releases and RedHawk Linux versions 7.x. Note that a reboot is necessary for
the parameters to take effect and, as noted, some parameters are not available in all
releases.

intel_iommu = on | amd_iommu = on

This parameter enables device-level remapping of memory regions used for
DMA in virtual machines. This parameter is required if any virtual machines
will use PCI passthrough of physical PCI devices.

workqueue.pri = 3

Virtual machines that are enabled as real-time virtual machines will effec-
tively "own" physical CPUs. This parameter allows host daemons and pro-
cesses to run at a higher priority to allow the host to maintain control of the
virtual machines.This parameter is required to guarantee real-time perfor-
mance to real-time VMs.

Some PCI-e cards are not compatible with intel_iommu. If a user has a device that fails to
work properly when IOMMU is enabled, the following two options may help. Note that
these options are available on RedHawk releases 7.5 or later. Also note that in RedHawk
release 7.5 the boot parameter intel_iommu.exception_ids listed below went by
the name intel_iommu.blacklist_ids. It was renamed in 8.0 and later releases.

intel_iommu = plx_off

Enable this to prevent IOMMU from remapping all devices behind PLX
bridges. These devices will not be useable for PCI passthrough.

intel_iommu.exception_ids = [vendor:device, ...]

Comma separated list of devices that will be excluded from IOMMU remap-
ping. These devices will not be useable for PCI passthrough. Vendor and
device are specified as hex numbers without the 0x prefix.

Users may wish to have duplicate devices in a system with only some of the devices
dedicated to virtual machines. Use this option to reserve individual devices for the VFIO
driver at boot time. This will prevent other dynamic modules from claiming devices early
during the boot. This option is supported in RedHawk releases 8.0 and later.

vfio-pci.addrs = [BUS:SLOT.FUNCTION,…]

Comma separated list of pci devices that will be assigned to the VFIO driver.

Migrating Managed IRQs 1

Per CPU interrupts can be classified as managed interrupts. Most modern NIC, RAID, and
NVME devices generate managed interrupts. In the RedHawk release version 8.2 changes
were made to allow managed interrupts to migrate to another CPU. This change has been
backported to releases 7.5 and later. If you have the latest release updates, you will have
this change. Note that managed interrupts did not exist in releases prior to 7.5.

RedHawk KVM-RT User’s Guide

1-3

Migration of managed interrupts is necessary in KVM-RT because they can impact the
real-time performance of VMs. Also KVM-RT attempts to take down hyperthreaded
CPUs. CPUS cannot be taken down if there are IRQs still associated with a CPU. The goal
is to migrate all IRQs away from CPUs responsible for vCPUs and move them to CPUs
responsible for emulation and VirtIO operations.

The KVM-RT tools, irq-affinity and task-affinity, display the CPU affinities
of IRQs and tasks respectively and are very useful in finding IRQs and tasks bound to
specific CPUs. Use the --help option for more information and usage of these
commands.

The shield(1) command cannot be used to migrate managed interrupts as they only
have one CPU in their cpu affinity mask. Below are some of the ways to migrate managed
IRQS off CPUs.

1. Reseting the affinity mask for an IRQ by writing to the /proc/irq/<irq-
no>/smp_affinity_list file. Note that the change is not persistent
over boots so it is recommended that you also set the kernel boot parameter
msi_affinity_mask mentioned below. In the following example IRQ
number 11 will be set to run in cpus 0-11 and 15-25:
echo "0-11,15-25" > /proc/irq/11/smp_affinity_list

2. Setting the kernel boot parameter msi_affinity_mask will set the
affinity mask for all MSI(X) managed interrupts at boot time. Note that
currently the parameter irqaffinity must also be set to the same
value, but in future releases only msi_affinity_mask will need to be
set. Also note that this feature is only available in RedHawk 8.x releases.

msi_affinity_mask = [cpulist]
irqaffinity = [cpulist]

cpulist must be set to a list of CPUs that must include CPU 0. The list can
include a range i.e. 0-5, or a comma separated list i.e. 0,3,4,5.

3. The systemd shield service may be used to set shielding attributes for
selected CPUs. Modifications are made to the file:
/etc/sysconfig/shield.

For example, you can assign the enp4s0f0 interrupt to CPUs 0 through 4 or
assign interrupts number 55, 60 and 61 to cpus 0 and 2 by adding these
lines to the shield service configuration file.

IRQ_ASSIGN+="0-4:enp4s0f0;"
IRQ_ASSIGN+="0,2:55; 0,2:60; 0,2:61;"
After editing the file you can restart the service with the command:
systemctl restart shield
And you can check the status of the command with:
systemctl status shield

RedHawk KVM-RT User’s Guide

1-4

2-1

2
Chapter 2Getting Started

1
2 This

2

This chapter explains the steps in setting up and booting virtual machines in KVM-RT.
Also discussed are the various QEMU/KVM threads that run on the host for each virtual
machine.

Building Virtual Machines 2

KVM-RT works with virtual machines that have been created and configured within the
libvirt framework. A virtual machine may be created and configured within libvirt in
several ways, including:

• with Virtual Machine Manager

• with RedHawk Architect

• by cloning another virtual machine

Detailed instructions on how to build virtual machines are beyond the scope of this book
but are well documented. General instructions and references to documentation are given
in the following sections.

Real-time virtual machines must contain a guest OS of RedHawk Linux 7.0 or later. The
guest CPU architecture must match that of the host.

Using Virtual Machine Manager to Create a Virtual Machine 2

The Virtual Machine Manager is a GUI tool that can be used to create, configure, and
manage virtual machines within the libvirt framework.

Start Virtual Machine Manager by running:

$ sudo run virt-manager
See the virt-manager(1) man page for more information.

Using RedHawk Architect to Create a Virtual Machine 2

RedHawk Architect is an optional product offered by Concurrent Real-Time that
specializes in creating, customizing and deploying RedHawk Linux disk images.

RedHawk KVM-RT User’s Guide

2-2

Architect can be used to create a RedHawk virtual machine and to export it to the Virtual
Machine Manager. Detailed instructions can be found in the documentation that comes
with RedHawk Architect. Below are the general steps required:

• run Architect

• create a new session and configure the image as desired

• build the image

• deploy the image to a virtual machine

• export the virtual machine to Virtual Machine Manager

Cloning a Virtual Machine Image 2

Any existing virtual machine within the libvirt framework can be cloned by using the virt-
clone command. For example:

 $ sudo virt-clone -o old_vm -n new_vm
See the virt-clone(1) man page for more information.

Importing Virtual Machines into KVM-RT 2

Once virtual machines have been created within the libvirt framework, they can be
imported into KVM-RT.

All libvirt virtual machines can be imported into KVM-RT with the following command:

 $ sudo kvmrt-import
This command may be run at any time new VMs are created. Run kvmrt-import
--help for more information and options.

When a VM is imported into KVM-RT it inherits the VM configuration settings from
libvirt. Once this is done a VM may be further configured with KVM-RT as needed. See
“Configuring Virtual Machines” in Chapter 3 for more information.

Booting and Shutting Down Virtual Machines 2

Once virtual machines have been imported into KVM-RT, the following KVM-RT tools
can be used to boot, shutdown, and view the status of VMs.

Run the following command to start up all configured VMs:

$ sudo kvmrt-boot

RedHawk KVM-RT User’s Guide

2-3

Run the following command to shutdown all configured VMs:

$ sudo kvmrt-shutdown
Run the following command to query the state of all VMs:

$ sudo kvmrt-stat
Individual VMs can be booted or shutdown with the kvmrt-boot and kvmrt-
shutdown commands. For example:

$ sudo kvmrt-boot RedHawk-8.4
$ sudo kvmrt-shutdown RedHawk-8.4

Run any of the above commands with the --help option for more information and
options.

Understanding QEMU/KVM Threads 2

QEMU/KVM runs multiple threads for each virtual machine. The names and purpose of
these threads are as follows:

qemu-kvm

These are emulator threads. There may be two or more of these.

qemu-system-x86

This is an alternate name for qemu-kvm in some distributions.

worker

These are dynamically created threads for long I/O operations being per-
formed by the emulator.

SPICE Worker

This is a thread for a virtual console.

IO mon_ioth

This is an optional thread used for some I/O.

CPU n/KVM

These are virtual CPU (vCPU) threads. There will be one per virtual CPU,
where n is the vCPU ID.

Use the kvmrt-stat -t command to display information about all currently running
VM threads.

RedHawk KVM-RT User’s Guide

2-4

3-1

3
Chapter 3Configuring Virtual Machines

2
3

3 F

Virtual machines that are configured within the libvirt framework have an XML
configuration file that controls all attributes of the virtual machine.

This file usually exists as "/etc/libvirt/qemu/{DOMAIN}.xml" for the given VM
domain name and is created when the VM is created or imported into the libvirt
framework. This file gets updated when VM configuration changes are made in the Virtual
Machine Manager.

KVM-RT uses a simplified configuration file, explained below, to manage multiple VMs.
KVM-RT updates libvirt XML configuration files as needed to keep the two files in sync.

The KVM-RT Configuration File 3

The default location of the KVM-RT configuration file is /etc/kvmrt.cfg, but all
kvmrt-* tools that use a configuration file accept a -f option that allows the user to
specify an alternate configuration file.

The KVM-RT configuration file uses the INI file format, where each section describes a
VM. The first line of each section is the UUID, a unique VM identification number
generated by libvrt. An example configuration is shown below:

[aeec46cc-0638-4949-ac04-146b233194a9]
name = RedHawk-8.4
title = RedHawk 8.4
description = A RedHawk 8.4 VM.
nr_vcpus = 2
cpu_topology = auto
cpuset =
rt = False
rt_memory = auto
numatune = auto
hide_kvm = False
autostart = True
comments = This VM tends to run out of memory;

remember to clean up

[fde74e84-0e1b-404e-90e7-72101e79c48a]
name = RedHawk-8.4-RT
title = Real-Time RedHawk 8.4
description = A RedHawk 8.4 VM configured real-time.
nr_vcpus = 4
cpu_topology = auto
cpuset = 1-5
rt = True

RedHawk KVM-RT User’s Guide

3-2

rt_memory = auto
numatune = auto
hide_kvm = False
autostart = True
comments = remember to change back autostart = False

after testing

Defined below are the field types used in the attribute description that follows:

{string}: any string

{int}: any integer

{bool}: true | false | on | off | yes | no | 1 | 0
(case-insensitive)

{ID-set}: a string that describes a set of ranges of integers in a
human-readable form such as "0,2,4-7,12-15"

Each VM may be configured with the following attributes. Note that if an attribute is not
set or it is missing from the file, the default value is used.

name = { string }

This attribute sets the VM name. This is an arbitrary, user specified name that
must be unique to libvrt.
There is no default value, this attribute must be set but it can be changed.

title = {string}

This attribute sets the VM title.
The default value is "".

description = {string}

This attribute sets the VM description.
The default value is "".

nr_vcpus = {int}

This attribute defines the number of virtual CPUs in the VM.
The default value is 1.

cpu_topology = {int}, {int}, {int} | auto
This attribute defines the CPU topology that is seen by the VM.

If not auto, the value must be a string of three positive integers separated by
commas ("sockets, cores, threads"), to describe the CPU topology. sockets is
the number of CPU sockets, cores is the number of cores per socket, and
threads is the number of threads per core.

When the value is auto, the topology is set to one socket, nr_vcpus cores
per socket, and one thread per core.

The default value is auto.

RedHawk KVM-RT User’s Guide

3-3

NOTE

If the guest virtual machine is running a Windows operating sys-
tem, the cpu_topology attribute may have been set to a
default value that will not work well in KVM-RT. It is best to
change this setting to auto. See the item labeleled “VMs running
the Windows operating system” in the Known Issues section of
the KVM-RT Release Notes document.

cpuset = {ID-set}

This attribute defines host CPUs IDs to which all VM threads are biased.
The default value is "" (no CPU biasing). See the section “Understanding the
cpuset Configuration Attribute” later in this chapter for more information.

rt_memory = {bool} | auto
This attribute enables memory locking of all pages used by the VM.

When the value is auto, this option is enabled if the rt attribute is enabled
and disabled if rt is disabled.

The default value is auto.

numatune = {ID-set} | auto
This attribute sets the host NUMA node(s) to be used for memory allocation
to the VM.

If not auto, the value must describe a set of host NUMA node IDs. The set
may be empty, in which case memory will not be restricted to any host NUMA
nodes. If cpuset is empty then memory will not be restricted to any host
NUMA nodes.

When the value is auto, all NUMA nodes used by cpuset will be used.

The default value is auto.

hide_kvm = {bool}

This attribute hides KVM from the view of the guest OS in the VM.
The default value is false (disabled).

rt = {bool}

This attribute configures the VM for real-time.
The default value is false (disabled).

The cpuset and rt_memory attributes must be configured (enabled)
when this attribute is enabled. It is also recommended to configure and enable
numatune when this attribute is enabled.

autostart = {bool}

This attribute enables auto-starting of the VM with kvmrt-boot.
The default value is true (enabled).

RedHawk KVM-RT User’s Guide

3-4

comments = { string }

A place for user comments. For multiple lines of comments, indent the addi-
tional line(s) with a space or TAB.

Configuration Tools 3

A KVM-RT configuration can be edited by running the command:

 $ sudo kvmrt-edit-config
Note that KVM-RT configuration files should not be edited directly. kvmrt-edit-
config validates and also synchronizes the configuration with libvirt.

A KVM-RT configuration, as interpreted by KVM-RT, can be displayed by running the
command:

 $ sudo kvmrt-show-config
The kvmrt-validate-config and kvmrt-sync-config commands can be run to
validate and synchronize, respectively, a configuration. Users do not normally need to run
these commands directly when using kvmrt-edit-config.

Run any of the above commands with the --help option for more information and
options.

Advanced Libvirt Configuration 3

Advanced configuration that is beyond the scope of the KVM-RT configuration file may
be made to the libvirt XML files, using Virtual Machine Manager or 'virsh edit', but
additional synchronization and validation steps are required for KVM-RT. This is also true
when you remove a VM from libvrt.

Note that some combinations of configuration may be invalid and users are encouraged to
make configuration changes by editing the KVM-RT configuration file with kvmrt-
edit-config whenever possible.

If libvirt XML files are modified by the user outside of KVM-RT, then it is necessary to
run kvmrt-sync-config -r and kvmrt-validate-config, like so:

$ sudo kvmrt-sync-config -r
$ sudo kvmrt-validate-config

Also note that kvmrt-import -u may be used instead of kvmrt-sync-config -r,
as in:

$ sudo kvmrt-import -u
$ sudo kvmrt-validate-config

RedHawk KVM-RT User’s Guide

3-5

The kvmrt-validate-config command will display appropriate errors or warnings
for any invalid configuration.

Run any of the above commands with the --help option for more information and
options.

Understanding the cpuset Configuration Attribute 3

The cpuset attribute controls host-CPU-biasing of the QEMU/KVM threads of a virtual
machine.

The cpuset attribute may be used for both real-time and non-real-time VMs. If cpuset
is empty then the VM will not be bound to any particular host CPUs.

The first CPU in cpuset will be allocated to all non-vCPU threads. The remaining CPUs
in cpuset will be used by the vCPU threads as follows:

• The CPU placement policy for all virtual CPU threads is round-robin on
the host CPUs defined by cpuset (after one CPU is allocated to all non-
vCPU VM threads).

• Over-provisioning of host CPUs (more CPUs in cpuset than nr_vcpus
+ 1) results in each virtual CPU being biased to more than one host CPU.

• Under-provisioning of host CPUs (less CPUs in cpuset than nr_vcpus
+1) results in more than one virtual CPU being biased to each host CPU.

Understanding KVM-RT Use of RedHawk Real-Time Features3

When the rt configuration attribute is enabled in the configuration file, the following
RedHawk real-time system features are performed:

• All the CPUs in cpuset are shielded. See shield(1).
• Hyperthreaded siblings are downed. See cpu(1) and “KVM-RT Use of

Threaded CPUs” in the section below.

• Memory Locking is enabled. See the -L option of run(1).

It is recommended that when the rt configuration attribute is enabled, that numatune
also be enabled. When numatune is enabled:

• NUMA nodes specified are to be used for memory allocation to the real-
time VM. See NUMA(7).

• Memory shielding is attempted. See memory_shielding(7).

In order to take advantage of the NUMA memory shielding support, all CPUs in a NUMA
node must be shielded. CPUs are shielded when they are allocated to a real-time VM.

RedHawk KVM-RT User’s Guide

3-6

KVM-RT Use of Threaded CPUs 3

On host systems having a threaded-CPU architecture such as Intel's Hyper-Threading,
KVM-RT gives special treatment to multi-threaded CPU cores when a real-time VM is in
use.

Real-time demands that only one threaded sibling CPU be in use to avoid contention of
CPU core resources (e.g. caches, etc.). To ensure this, KVM-RT shuts down all but one
threaded sibling CPU for each CPU core allocated to a real-time VM. This requires some
consideration when assigning VM cpusets.

A real-time VM will be given ownership of all threaded sibling CPUs that are related to
the CPUs specified in its cpuset. This may result in the VM consuming but not using
more CPUs than it has specified in it's cpuset. Only one CPU per threaded core will be
used for real-time and the others will be shutdown.

No special treatment is given to threaded cores hosting non-real-time VMs.

Configuring Real-Time Virtual Machines 3

Perform the following steps to configure a VM for real-time:

• enable the rt configuration attribute

• enable the rt_memory attribute (auto is recommended)

• consider enabling the numatume attribute (auto is recommended)

• configure the cpuset attribute as described below

• consider disabling memory ballooning; see instructions below

Configuring the cpuset attribute for a real-time VM requires some understanding of
the host system's CPU topology. Use the cpu-topology command to see a display of
the host system's CPU topology:

 $ cpu-topology
Run cpu-topology --help for more information and options.

cpu-topology displays the layout of CPU sockets, NUMA nodes, CPU cores, and
logical CPUs. Example output follows:

NUMA Node 0:
 Core 0: [Socket 0]

CPU 0
Core 1: [Socket 0]

CPU 1
Core 2: [Socket 0]

CPU 2
Core 3: [Socket 0]

CPU 3

RedHawk KVM-RT User’s Guide

3-7

If the system has a threaded-CPU architecture such as Intel's Hyper-Threading then the
output may look something like this:

NUMA Node 0:
Core 0: [Socket 0]

CPU 0
CPU 4

Core 1: [Socket 0]
CPU 1
CPU 5

Core 2: [Socket 0]
CPU 2
CPU 6

Core 3: [Socket 0]
CPU 3
CPU 7

NUMA systems may have more than one NUMA node, for example:

NUMA Node 0:
Core 0: [Socket 0]

CPU 0
CPU 16

Core 1: [Socket 0]
CPU 1
CPU 17

Core 2: [Socket 0]
CPU 2
CPU 18

...

NUMA Node 1:
Core 8: [Socket 1]

CPU 8
CPU 24

Core 9: [Socket 1]
CPU 9
CPU 25

Core 10: [Socket 1]
CPU 10
CPU 26

...

The following rules should be observed when configuring a real-time VM for optimal
performance. The KVM-RT tools will display appropriate errors or warnings when any of
the rules are violated. Errors must be corrected to continue, but warnings serve as
reminders that your configuration may not be optimal.

• The cpuset of a real-time VM cannot overlap the cpuset of any other
VM.

• The cpuset of a real-time VM must not be under-provisioned for the
number of CPUs configured in the nr_vcpus attribute.

• Careful consideration should be given if the cpuset of a real-time VM
spans multiple NUMA nodes.

RedHawk KVM-RT User’s Guide

3-8

• Careful consideration should be given if the cpuset of any other VM
shares NUMA nodes with a real-time VM.

• Careful consideration should be given if numatune is not enabled for a
real-time VM, or if the numatune node set is not contained within the
NUMA nodes used by the cpuset.

• Careful consideration should be given if the numatune node set of any
other VM overlaps with the NUMA nodes used by a real-time VM's
cpuset.

• The cpusets of all real-time VMs must not consume all host CPUs.
This is because some CPUs must be available for the KVM-RT host OS.

Adhering to the following recommendations will help simplify real-time VM
configuration:

• Always configure cpuset with a least nr_vcpus + 1 host CPUs.

• Do not configure the cpuset of any other VM to conflict with this VM's
cpuset, or to use any other CPUs in a NUMA node used by this VM.

• Do not let the cpuset span multiple NUMA nodes.

• Set numatune to auto.

• Do not configure the numatune of any other VM to include the NUMA
node used by this VM.

• Use the kvmrt-show-config command to view the real-time policy
configured for all VMs.

• Use the kvmrt-stat -t command to display the CPU-biasing of all
currently running VM threads.

VirtIO provides memory ballooning by which the host can reclaim memory from virtual
machines. This affects the real-time performance of virtual machines and it is
recommended that it is disabled. kvmrt will disable it from libvirt but the following
steps must be taken for each real-time VM. On each of the real-time VMs you must:

1. Append the blacklist configuration file as follows:

echo "blacklist virtio_balloon" >> \
/etc/modprobe/blacklist.conf

2. Regenerate new initramfs images, also called initrd:

On CentOS systems:
run dracut --regenerate-all

On Ubuntu systems:
update-initramfs -u -k all

4-1

4
Chapter 4KVM-RT Tools

3
4

4 F

The KVM-RT tools are self-documented. Use the --help option of the command for
more information. Following is a quick description of each tool arranged by function.

KVM-RT System Commands 4

cpu-topology:

Displays the CPU topology of the current system in terms of CPU sock-
ets, NUMA nodes, and CPU cores.

irq-affinity:

Displays the CPU affinity of IRQs on the current system. Several
options are available to narrow the search. For example with the -c
option, you can limit the search to a specific CPU or CPU set.

task-affinity:

Displays the task affinity of tasks running on the current system. Several
options are available to narrow the search. For example with the -c
option, you can limit the search to a specific CPU or CPU set.

KVM-RT Start-Up Commands 4

kvmrt-validate-host:
Verifies that the current system configuration is valid for a KVM-RT
host. It will provide suggestions on changes to be made if not.

kvmrt-import:
Imports libvirt virtual machines into a KVM-RT configuration file.
By default, all libvirt VMs on the current system will be imported, but
individual VMs may be specified instead. Any VMs already listed in the
KVM-RT configuration file will be skipped.

RedHawk KVM-RT User’s Guide

4-2

KVM-RT Configuration Commands: 4

kvmrt-edit-config:
Allows a user to edit, validate, and synchronize a KVM-RT configura-
tion file. Several options are available including the -f option by which
you can specify a configuration file other than the default.

kvmrt-show-config:
Displays the configuration of virtual machines in a KVM-RT configura-
tion. Several options are available including the -f option by which
you can specify a configuration file other than the default.

kvmrt-sync-config:
Synchronizes libvirt VM configuration XML files with a KVM-RT
file. By default, all VMs in the KVM-RT configuration file are synchro-
nized, but individual VMs may be specified instead.

kvmrt-validate-config:
Validates a KVM-RT configuration file. The -f option is available to
specify a config file other than the default.

KVM-RT Boot/Shutdown Commands 4

kvmrt-boot:
 Boots virtual machines in a KVM-RT configuration, after validating the
configuration. By default, all VMs in the configuration with the “auto-
start” configuration parameter enabled are booted, but individual VMs
may be specified instead.

kvmrt-shutdown:
Shuts down virtual machines and removes any real-time policy used by
those VMs. By default, all VMs in the configuration are shutdown, but
individual VMs may be specified instead.

kvmrt-stat:
Displays the status of virtual machines in a KVM-RT configuration. By
default, all VMs are shown, but individual VMs may be specified
instead.

5-1

5
Chapter 5Time Synchronization

4
5
5

Chrony is a versatile time synchronization implementation of NTP. It is designed to
perform well in a wide range of conditions and can be run on virtual machines. Specific
instructions are included here on how to configure and start the chrony system. See
chronyd(1), chrony.conf(5) and on-line documentation for more information.

NOTE

chronyd is supported by RedHawk releases 8.0 and later only.
For earlier releases use chrony/ntp synchronized to a local,
remote or public time server.

Complex applications may depend on the time of day to be synchronized between two or
more VMs or with the host. It is also required that the time of day on the virtual guests be
synchronized with the host when using RedHawk tracing to analyze performance issues or
debug system problems with real-time VMs.

Instructions to run chrony 5

There are various techniques to synchronize the time of day clock on the virtual guests but
we recommend kvm_clock synchronized with chrony via the ptp_kvm module.

The process of configuring chronyd to use ptp_kvm differs slightly depending on the
base distribution.

If you are using Ubuntu as your base distro, use these settings:

service=chrony
conf=/etc/chrony/chrony.conf
drift=/var/lib/chrony/chrony.drift

If you are using a CentOS-compatible distro, use these settings:

service=chronyd
conf=/etc/chrony.conf
drift=/var/lib/chrony/drift

The following instructions should help in configuring chrony on a virtual guest. Substitute
the variable settings below for the appropriate distro settings above.

1. If not already installed, install chrony.

dnf install chrony

RedHawk KVM-RT User’s Guide

5-2

2. Stop and disable chrony.

systemctl stop $service
systemctl disable $service

3. Load the ptp_kvm module on boots.

echo ptp_kvm > /etc/modules-load.d/ptp_kvm.conf

4. Edit the appropriate chrony configuration file and comment out (place a #
sign in front) any lines that reference ‘refclock’ 'server’ ‘pool’ or ‘peer'.

grep 'refclock|server|pool|peer' $conf && vi $conf

5. Configure ‘refclock”.

echo "refclock PHC /dev/ptp0 poll 3 dpoll -2 \
offset 0" >> $conf

Note

Step 6. only applies to CentOS-compatible distros. Skip to Step 7.
if you are using the Ubuntu distribution.

6. Comment (place a # at the front) any lines with PEERNTP and append
PEERNTP=no to the /etc/sysconfig/network file.

grep PEERNTP /etc/sysconfig/network && \
vi /etc/sysconfig/network

echo "PEERNTP=no" >> /etc/sysconfig/network

7. Remove the appropriate $drift file.

rm -f $drift

8. Enable the appropriate chronyd service but do not start it.

systemctl enable $service

9. Reboot for a clean start with the new configuration.

reboot

6-1

6
Chapter 6Analysis and Debugging

5

This chapter covers the system tools that can be used to analyze performance issues or
debug system problems in virtualized environments.

A new multi-merge tracing feature is included in the latest release of the RedHawk
operating system. It allows the merging of multiple system trace dumps into one view
organized by timestamp. This new feature is crucial to debugging virtualized
environments that often produce cross-VM and host interactions that can impact the
performance of real-time applications.

In order to take advantage of the multi-merge tracing feature, all the guest VMs to be
traced must be synchronized using the time of day clock (TOD). See the section
“Instructions to run chrony” on page 5-1 to start-up chrony on each of the guest VMs to be
traced.

NOTE

The time stamp counter (TSC) cannot be synchronized, therefore,
only the TOD timestamp type should be used when tracing multi-
ple systems. Be sure to select the TOD timestamp clock option in
the trace tools.

In this chapter, the following information is presented:

• the KVM trace events supported in RedHawk.

• a brief description of the RedHawk tracing tools collectively known as
xtrace. These tools use a simple command line interface. An example of
tracing the host and one guest VM using xtrace and the new multi-merge
feature is included.

• a new service named KVM-RT Guest Services. KVM-RT Guest Services is
a collection of application programmer interfaces which give guest
userspace applications access to functions exposed by the host hypervisor.

NightTrace is an optional product offered by Concurrent Real-Time. NightTrace is part of
the NightStar family and consists of an interactive debugging and performance analysis
tool, trace data collection daemons, and two Application Programming Interfaces (APIs)
allowing user applications to log data values as well as analyze data collected from user or
kernel.

For information on how to use NightTrace with KVM-RT see the "Kernel Tracing with
KVM-RT" section in the NightTrace User's Guide.

RedHawk KVM-RT User’s Guide

6-2

KVM Trace Events 6

Following are the KVM traceable events supported by the RedHawk operating system.

KVM_ENTER_VM_PID

This is a generic catch-all event which will be triggered any time
execution/control is transferred from the host kernel to the guest VM. It is
produced by the KVM module on the host system, right before the host-
guest transition.

KVM_EXIT_VM_PID

This is a generic catch-all event which will be triggered any time
execution/control is transferred from guest VM to host kernel. It is
produced by the KVM module on the host system, right after the guest-host
transition.

KVM_GUEST_HC_START

This event is logged by the guest VM right before it makes a hypercall to
the host.

KVM_GUEST_HC_END

This event is logged by the guest VM right after control returns from a
hypercall.

KVM_HOST_HC_ENTER

This event is logged by the host system right after execution reached the
generic hypercall handler.

KVM_HOST_HC_EXIT

This event is logged by the host system right before execution exits the
generic hypercall handler.

Kernel Tracing with xtrace 6

xtrace is a command line interface used in the tracing and analysis of dumps.

xtrace comes with the RedHawk Operating system in the ccur-xtrace package and
contains several tools named xtrace-<function>. To see all the commands and libraries
provided by this package, on a RedHawk system execute:

rpm -ql ccur-xtrace

The following are the tools directly called in the example that follows. A brief description
and only a few options are mentioned below. For more information and to see more
options, use the --help option:

RedHawk KVM-RT User’s Guide

6-3

xtrace-run:
captures xtrace data during the execution of a shell command. The command
must be specified in the command line. When the command exits xtrace-
run stops. The -o option specifies the output directory name where the
xtrace data will be saved. The -m overwrite option may be used when the trac-
ing will go for long periods of time and the xtrace data will grow very large.

xtrace-multi-merge:
merges into one multi-merge directory the xtrace-data directories specified in
the command line. These are the directories created when xtrace-run was
invoked. In the command line specify one directory for the host and one for
each guest VM traced. The -o option lets you specify the directory name of
the multi-merge directory to be created. The -t option sets the xtrace time-
stamp clock to be used. Note that only the time of day clock (TOD) can be
synchronized.

xtrace-view:
merges and displays xtrace data in a user-readable format. The xtrace data
directory must be specified.

xtrace-ctl:
provides control of the kernel xtrace module on one or more CPUs. In the non-
interactive mode, commands such as FLUSH, PAUSE, RESUME are speci-
fied in the command line.

Example: multi-merge Tracing with xtrace 6

This example captures a trace dump on the host system and a guest VM simultaneously,
and then merges the two trace dumps into one. The example assumes that the user
application is known to fail within the first five minutes.

NOTE

Time of day synchronization must be configured and running
before guest VMs are traced. Refer to the section “Instructions to
run chrony” on page 5-1 to start-up chrony on each of the VMs to
be traced.

In step 1 below, the host system is traced in the background and sleeps for a span of time
greater than it takes the user application to fail.

In step 2 the tracing of the guest VM is started remotely from the host. When the user
application fails on the guest VM, the trace buffer is flushed.

In step 3 the trace buffer is flushed and tracing is stopped on the host.

RedHawk KVM-RT User’s Guide

6-4

In step 4 the trace data directory on the guest VM is copied to the host system. In step 5
the two trace directories are merged into one and in step 6 the merged trace is arranged
according to time stamp and viewed.

1. rm -rf xtrace-host
xtrace-run -m overwrite -t tod -o xtrace-host \

sleep 600 &
2. ssh guest_vm "rm -rf xtrace-vm;

xtrace-run -m overwrite -t tod -o xtrace-vm \
bash -c '(userapp || xtrace-ctl flush)' "

3. xtrace-ctl flush stop
4. scp -r guest-vm:xtrace-vm .
5. xtrace-multi-merge -o xtrace-merged xtrace-host xtrace-vm

6. xtrace-view xtrace-merged

The fields displayed are controlled by options to xtrace-view. The fields in the
following example output are: timestamp (TOD), hostname, CPU and event.

Note that CPUs are local to each host so in the excerpt that follows, "vm1 0" denotes
virtual CPU 0 in the guest VM whose hostname is "vm1".

23.404455270 host 3 INTERRUPT_ENTER [apic_timer]
23.404455720 host 3 HRTIMER_CANCEL [0xffffffff8e8f84e0]
23.404455898 host 3 HRTIMER_EXPIRE [0xffffffff8e8f84e0]
23.404456627 host 3 SCHED_WAKEUP [740216]
23.404456854 host 3 HRTIMER_EXPIRE_DONE[0xffffffff8e8f84e0]
23.404456971 host 3 HRTIMER_START [0xffffffff8e8f84e0]
23.407646071 vm1 0 SYSCALL_EXIT [openat]
23.407646321 vm1 0 SYSCALL_ENTER [read]
23.407646512 vm1 0 FILE_READ [3]
23.407647171 vm1 0 SYSCALL_EXIT [read]

KVM-RT Guest Services 6

Virtualized environments can produce complex cross-VM and host interactions which can
have detrimental effects on the performance of hard real-time applications running on the
VMs. Some of these interactions might be infrequent and/or hard to reproduce. In these
cases the standard approach of tracing may not suffice.

KVM-RT Guest Services is a collection of application programmer interfaces which give
guest userspace applications access to functions exposed by the host hypervisor.

One of the ways to reduce complexity is to leverage the implied domain knowledge
contained within each of the applications. Applications know the state the application
should be in at any particular time and when any timing or state violations occur. In that
context, KVM-RT Guest Services gives the application developer the ability to:

RedHawk KVM-RT User’s Guide

6-5

1. log relevant events/data from an application running on a guest-VM
directly to a central logging/tracing facility (i.e. syslog, NightTrace, xtrace)
on the host.

2. flush xtrace buffers on the host. This can be combined with local flushing
of xtrace buffers on the guest to flush both guest and host buffers at about
the same time.

3. log explicit pre-defined sequence of events, in the context of the host’s
clock, to establish ordering of events; "bracketing”. For example the fol-
lowing was logged by two different guest VMs on the host:

On VM1:

host: "VM1 is about to start A"
...
host: "VM1 just finished A"
...

On VM2:

host: "VM2 is about to start B"
...
host: "VM2 just finished B”

On the host, you will be able to see the order of events in the context of the
host’s clock:

host: "VM1 is about to start A"
...
host: "VM2 is about to start B"
...
host: "VM2 just finished B"
...
host: "VM1 just finished A

The KVM-RT Guest Services functions provided in the command line interface kvmrt-
gs and the library libccur_kvmrt_gs are briefly discussed in the sections that
follow.

Also discussed below are the traceable KVM-RT Guest Services events and the kernel
boot parameters that must be enabled in the host and guest VMs.

KVM-RT Guest Services Library Interface 6

The following functions are provided via the library libccur_kvmrt_gs. See the
libccur_kvmrt_gs(3) man page for more information on options and usage.

Note that the man page can be invoked using the names of any of the functions listed
below. For example: man kvmrt_gs_available.

bool kvmrt_gs_available(void);
bool kvmrt_gs_ping_available(void);
bool kvmrt_gs_log_msg_available(void);

RedHawk KVM-RT User’s Guide

6-6

bool kvmrt_gs_xtrace_flush_available(void);
bool kvmrt_gs_xtrace_log_data_available(void);

long kvmrt_gs_ping(unsigned long cookie);
long kvmrt_gs_log_msg(char * msg);
long kvmrt_gs_xtrace_flush(unsigned long scope);
long kvmrt_gs_xtrace_log_data(void * data, long size);

kvmrt_gs_available

Returns true if the KVMRT_GS interface is present, enabled, and
permitted. Smilarly, kvmrt_gs_<function>_available returns true if each
individual KVMRT_GS function is present, enabled, and permitted.

Note that availability of the interface does not imply availability of any
function. Further, an invocation of a function which is available may still
fail due to variety of reasons.

kvmrt_gs_ping

Ping a hypervisor with a cookie. The purpose of this function is to
provide a guest with a simple light-weight mechanism with no copying or
allocation to explicitly cause a VMEXIT event on a hypervisor in a way
which can easily be traced and matched from guest and host sides. This
interface produces corresponding xtrace events, when xtrace is available.

kvmrt_gs_log_msg

Log a short ASCII text message via the standard kernel logging mechanism
on a hypervisor side. msg is a pointer to a standard Zero-terminated C
string. The hypervisor and any of the intermediate layers may restrict the
maximum length of the string, and/or truncate the message. See also
kvmrt_gs_xtrace_log_data below.

kvmrt_gs_xtrace_flush

Trigger FLUSH xtrace event on host OS.

scope controls which CPUs are affected by the FLUSH:
KVMRT_GS_XTRACE_CPU_CURRENT
KVMRT_GS_XTRACE_CPU_VM
KVMRT_GS_XTRACE_CPU_ALL

issue FLUSH to the current CPU, all the CPUs servicing current VM, and
all the CPUs active on the host system respectively.

kvmrt_gs_xtrace_log_data

Log arbitrary binary data buffer containing size bytes as two matching
xtrace events on guest and host sides. The hypervisor and any of the
intermediate layers may restrict the maximum size of, and/or truncate the
data logged. See also kvmrt_gs_log_msg above.

RedHawk KVM-RT User’s Guide

6-7

KVM-RT Guest Services Command Line Interface 6

The following commands are provided via the kvmrt-gs command line interface. See
the kvmrt-gs(1) man page for more information on options and usage.

kvmrt-gs [OPTIONS] [COMMAND [ARGUMENTS] ...] ...

available

Return SUCCESS if KVM-RT Guest Services are available.

ping_available

Return SUCCESS if 'ping' command is available.

ping COOKIE

ping a hypervisor with a COOKIE - an arbitrary user-selected integer
(unsigned long int).

log_msg_available

Return SUCCESS if the 'log_msg' command is available.

log_msg MESSAGE

Log a message on hypervisor. MESSAGE can be either a regular quoted
ASCII string or a hex-encoded byte sequence.

xtrace_flush_available

Return SUCCESS if the 'xtrace_flush' command is available.

xtrace_flush SCOPE

Flush xtrace buffers on host OS. SCOPE can be one of the following: {0:
the current CPU; 1: all the VM CPUs; 2: all host CPUs}

xtrace_log_data_available

Return SUCCESS if the 'xtrace_log_data' command is available.

xtrace_log_data DATA

Log xtrace event with binary data. DATA can be either a regular quoted
ASCII string or a hex-encoded byte sequence.

KVM-RT Guest Services Trace Events 6

KVM-RT Guest Services logs various trace events. Every event type comes as a pair,
where the *_GUEST part is logged on the guest side and the *_HOST is logged on the
host.

RedHawk KVM-RT User’s Guide

6-8

The purpose behind such double-logging is to provide predictable reference points within
the trace logs for cases where the host and the guest VM clocks might not be synchronized
or have drifted in relation to each other.

KVMRT_GS_PING_GUEST
KVMRT_GS_PING_HOST

These are produced by the "ping" function of KVM-RT Guest Services.
See kvmrt_gs_ping(3) for details.

KVMRT_GS_FLUSH_GUEST
KVMRT_GS_FLUSH_HOST

These are produced by the "xtrace_flush" function of KVM-RT Guest
Services. See kvmrt_gs_xtrace_flush(3) for details.

KVMRT_GS_LOG_DATA_GUEST
KVMRT_GS_LOG_DATA_HOST

These are produced by the "xtrace_log_data" function of KVM-RT Guest
S e r v i c e s a n d i s s i m i l a r t o XTRACE_EV_CUSTOM . See
kvmrt_gs_xtrace_log_data(3) for details.

KVM-RT Guest Services Kernel Boot Parameters 6

KVM-RT Guest Services requires that the following kernel parameters must be enabled at
boot time. Note that one is specific to the host system and the others to the guest VMs.

kvm.kvmrt_gs_hc_host_enabled=

[KVM,x86] Enable KVM-RT Guest Services Hypercall on KVM Host.
Setting this to 1 (Enabled) permits host to advertise KVMRT_GS hypercall
and related GS functions to the guests. This is a host-side parameter for
KVM module. Default is 0 (Disabled).

kvmrt_gs_hc_guest_enabled=

[KVM_GUEST,x86] Enable KVM-RT Guest Services Hypercall on KVM
Guest. Setting this option to 1 (Enabled) permits guest kernel to discover
and use KVMRT_GS Hypercall and its functions if such is offered by the
Host. This is a guest-side kernel parameter. Default is 0 (Disabled).

kvmrt_gs_syscall_enabled=

[KVM_GUEST,x86] Enable KVM-RT Guest Services Syscall on KVM
Guest. Setting this option to 1 (Enable) permits guest kernel to advertise
KVMRT_GS syscall and its functions to the userspace applications running
on the Guest. This is a guest-side kernel parameter. Default is 0 (Disabled).

	Preface
	Contents
	Introduction to KVM-RT
	Introduction
	Host System Requirements and Installation
	Host Kernel Configuration
	Kernel Boot Parameters
	Migrating Managed IRQs

	Getting Started
	Building Virtual Machines
	Using Virtual Machine Manager to Create a Virtual Machine
	Using RedHawk Architect to Create a Virtual Machine
	Cloning a Virtual Machine Image

	Importing Virtual Machines into KVM-RT
	Booting and Shutting Down Virtual Machines
	Understanding QEMU/KVM Threads

	Configuring Virtual Machines
	The KVM-RT Configuration File
	Configuration Tools
	Advanced Libvirt Configuration
	Understanding the cpuset Configuration Attribute
	Understanding KVM-RT Use of RedHawk Real-Time Features
	KVM-RT Use of Threaded CPUs

	Configuring Real-Time Virtual Machines

	KVM-RT Tools
	KVM-RT System Commands
	KVM-RT Start-Up Commands
	KVM-RT Configuration Commands:
	KVM-RT Boot/Shutdown Commands

	Time Synchronization
	Instructions to run chrony

	Analysis and Debugging
	KVM Trace Events
	Kernel Tracing with xtrace
	Example: multi-merge Tracing with xtrace

	KVM-RT Guest Services
	KVM-RT Guest Services Library Interface
	KVM-RT Guest Services Command Line Interface
	KVM-RT Guest Services Trace Events
	KVM-RT Guest Services Kernel Boot Parameters

