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Preface

Scope of Manual

Thismanual consists of three parts. Theinformation in Part 1 is directed towards real-time
users. Part 2 is directed towards system administrators. Part 3 consists of backmatter:
appendixes, glossary and index. An overview of the contents of the manual follows.

Structure of Manual

This guide consists of the following sections:
Part 1 - Real-Time User

* Chapter 1, Introduction to RedHawk Linux, provides an introduction to the
RedHawk Linux operating system and gives an overview of the real-time
features included.

*  Chapter 2, Real-Time Performance, discusses issuesinvolved with achieving
real-time performance including interrupt response, process dispatch latency
and deterministic program execution. The shielded CPU model is described.

* Chapter 3, Real-Time Inter process Communication, discusses procedures for
using the POSIX® and System V message-passing and shared memory
facilities.

*  Chapter 4, Process Scheduling, provides an overview of process scheduling
and describes POSIX scheduling policies and priorities.

* Chapter 5, Interprocess Synchronization, describes the interfaces provided
by RedHawk Linux for cooperating processes to synchronize access to
shared resources. Included are: POSIX counting semaphores, System V
semaphores, rescheduling control tools and condition synchronization tools.

*  Chapter 6, Programmable Clocks and Timers, provides an overview of some
of the RCIM and POSIX timing facilities that are available under RedHawk
Linux.

*  Chapter 7, System Clocks and Timers, describes the per-CPU local timer and
the system global timer.

* Chapter 8, File Systems and Disk I/O, explains the xfsjournaling file system
and procedures for performing direct disk 1/0 on the RedHawk Linux
operating system.

* Chapter 9, Memory Mapping, describes the methods provided by RedHawk
Linux for a process to access the contents of another process' address space.

*  Chapter 10, Non-Uniform Memory Access (NUMA), describes the NUMA
support available on certain systems.
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Part 2 - Administrator

Chapter 11, Configuring and Building the Kernel, provides information on
how to configure and build a RedHawk Linux kernel.

Chapter 12, Linux Kernel Crash Dump (LKCD), provides guidelines for
saving, restoring and analyzing the kernel memory image using LKCD.

Chapter 13, Pluggable Authentication Modules (PAM), describes the PAM
authentication capabilities of RedHawk Linux.

Chapter 14, Device Drivers, describes RedHawk functionality and real-time
issues involved with writing device drivers.

Chapter 15, PCI-to-VME Support, describes RedHawk’s support for a PCI-
to-VME bridge.

Part 3- Common Material

Appendix A, Example Message Queue Programs, contains example
programsillustrating the POSI X and System V message queue facilities.

Appendix B, Kernel Tunables for RedHawk Linux Features, contains a
listing of the kernel tunables that control unique featuresin RedHawk Linux
and their default valuesin pre-built RedHawk kernels.

Appendix C, Capabilities in RedHawk Linux, lists the capabilities included
in RedHawk Linux and the permissions provided by each.

Appendix D, Kernel Trace Events, lists pre-defined kernel trace points and
methods for defining and logging custom events within kernel modules.

Appendix E, Migrating 32-bit Code to 64-bit Code, provides information
needed to migrate 32-bit code to 64-bit processing on the AMD Opteron
processor.

Appendix F, Kernel-level Daemons on Shielded CPUs, describes how
kernel-level daemons execute on shielded CPUs and provides methods for
improving performance.

Appendix G, Cross Processor Interrupts on Shielded CPUs, describes how
cross-processor interrupts execute on shielded CPUs and provides methods
for improving performance.

Appendix H, Serial Console Setup, provides instructions for configuring a
serial console.

The Glossary provides definitions for terms used throughout this Guide.

The Index contains an alphabetical reference to key terms and concepts and
the pages where they occur in the text.



Syntax Notation

Preface

The following notation is used throughout this manual:

italic

list bold

list

hypertext links

Related Publications

Books, reference cards, and items that the user must specify appear in
italic type. Special terms may also appear initalic.

User input appearsin 1ist bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in 1ist bold type.

Operating system and program output such as prompts, messages and
listings of files and programs appearsin 1ist type.

Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify these options or
arguments.

When viewing this document online, clicking on chapter, section, fig-
ure, table and page number references will display the corresponding
text. Clicking on Internet URLS provided in blue type will launch
your web browser and display the web site. Clicking on publication
names and numbersin red type will display the corresponding manual
PDF, if accessible.

RedHawk Linux Operating System Documentation Pub No.
RedHawk Linux Release Notes Version Xx.x 0898003
RedHawk Linux Fregquency-Based Scheduler (FBS) User’s Guide 0898005
Real-Time Clock and Interrupt Module (RCIM) 0898007
PCI Form Factor User’s Guide

iHawk Optimization Guide 0898011
RedHawk Linux FAQ N/A
Partner Documentation

BS Technologies 1003 Linux Support Software 85221990
BS Technol ogies Model 618-3 Adapter Hardware 85851150
Guide to SNARE for Linux N/A

where x.X = release version
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1
Introduction to RedHawk Linux

This chapter provides an introduction to the RedHawk Linux operating system and gives
an overview of the real-time features included.

Concurrent Computer Corporation's RedHawk™ Linux® is a real-time version of the
open source Linux operating system. Modifications are made to standard Linux version
2.6 to support the functionality and the performance required by complex time-critical
applications. RedHawk uses a single kernel design to support a single programming
environment that directly controls all system operation. This design allows deterministic
program execution and response to interrupts while simultaneously providing high 1/0
throughput and deterministic file, networking, and graphics 1/O operations. RedHawk is
theideal Linux environment for the deterministic applications found in simulation, data
acquisition, industrial control and medical imaging systems.

Included with RedHawk is the popular Red Hat® Enterprise Linux distribution. The
RedHawk installation CDs provide additional real-time kernels and libraries for accessing
RedHawk specific kernel features. Except for the kernel, all Red Hat components operate
in their standard fashion. These include Linux utilities, libraries, compilers, tools and
installer unmodified from Red Hat. Optionally, the NightStar™ development tool set is
available for developing time-critical applications, and the Frequency-Based Scheduler
and Performance Monitor can be used to schedule processesin cyclical execution patterns
and monitor performance.

The RedHawk kernel integrates both open source patches and Concurrent developed
features to provide a state of the art real-time kernel. Many of these features have been
derived from the real-time UNIX® implementations that Concurrent has supported in its
over 35 years experience developing real-time operating systems. These features are
described briefly in the section “Real-Time Features in RedHawk Linux” later in this
chapter with references to more detailed information.

RedHawk is included with each Concurrent iHawk system. iHawks are symmetric multi-
processor (SMP) systems available in avariety of architectures and configurations. Either
32-bit or 64-bit versions of RedHawk and its supporting software products are installed,
depending upon the iHawk architecture type and the support included in RedHawk for that
architecture.

Support for SMPsis highly optimized. A unique concept known as shielded CPUs allows
a subset of processors to be dedicated to tasks that require the most deterministic
performance. Individual CPUs can be shielded from interrupt processing, kernel daemons,
interrupt bottom halves, and other Linux tasks. Processor shielding provides a highly
deterministic execution environment where interrupt response of less than 30
microseconds is guaranteed.

1-1
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RedHawk Linux has at least the same level of POSIX conformance as other Linux
distributions based on the 2.6 series of kernels. Concurrent has added additional POSIX
compliance by adding some of the POSIX real-time extensions that are not present in
standard Linux. Linux on the Intel x86 architecture has defined a defacto binary standard
of its own which allows shrink-wrapped applications that are designed to run on the
Linux/Intel x86 platform to run on Concurrent’s iHawk platform.

NightStar is Concurrent's powerful tool set that provides a robust graphic interface for
non-intrusive control, monitoring, analysis, and debugging of time-critical
multiprocessing applications. The RedHawk kernel contains enhancements that allow
these tools to efficiently perform their operations with a minimum of interference to the
application’s execution. All tools can be run natively on the same system as the
application or remotely for less intrusive application control.

The NightStar tools include the following. Refer to the individual User’s Guides for
complete information.

* NightView™ source-level debugger — dlows multi-language, muilti-
processor, multi-program and multi-thread monitoring and debugging from a
single graphical interface. NightView has the capability to hot patch running
programs to modify execution, retrieve or modify data and insert conditional
breakpoints, monitor points and watch points that execute at full application
Speed.

* NightTrace™ run-time analyzer — used to analyze the dynamic behavior of a
running application. User and system activities are logged and marked with
high-resolution time stamps. These events are then graphically displayed to
provide adetailed view of system activity that occurs while the applicationis
running. NightTrace is ideal for viewing interactions between multiple
processes, activity on multiple processors, applications that execute on
distributed systems and user/kernel interactions. Its powerful capabilities
allow searching for specific events or summarizing kernel or user states.

* NightSim™ periodic scheduler — alows the user to easily schedule
applications that require periodic execution. A developer can dynamically
control the execution of multiple coordinated processes, their priorities and
CPU assignments. NightSim provides detailed, highly accurate performance
statistics and allows various actions when frame overruns occur.

¢ NightProbe™ data monitor — used to sample, record or modify program data
in multiple running programs. Program data is located with a symbol table
browser. Application pages are shared at the physical page level to minimize
the impact on the application’s execution. NightProbe can be used for
debugging, analysis, fault injection or in a production environment to create
a GUI control pand for program input and output.

* NightTune™ performance tuner — a graphical tool for analyzing system and
application performance including CPU usage, context switches, interrupts,
virtual memory usage, network activity, process attributes, and CPU
shielding. NightTune allows you to change the priority, scheduling policy,
and CPU affinity of individual or groups of processes using pop-up dialogs
or drag-and-drop actions. It also allows you to set the shielding and hyper-
threading attributes of CPUs and change the CPU assignment of individual
interrupts.
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RedHawk Linux Kernels

There are three flavors of RedHawk Linux kernels. The system administrator can select
which version of the RedHawk Linux kernel is loaded via the GRUB boot loader. The
three flavors of RedHawk Linux kernels available are:

Kernel Name Kernel Description
vmlinuz-kernelversion-RedHawk-x.x-trace | Default kernel with trace points but no
debug checks
vmlinuz-kernelversion-RedHawk-x.x-debug | Kernel with both debug checks and kernel
trace points
vmlinuz-kernelversion-RedHawk-x.x Optimized kernel with no trace points and
no debug checks

kernelversion isthe official version of Linux kernel source code upon which the RedHawk
kernel is based.

x.X indicates the RedHawk Linux version number; for example, “2.0".

The default RedHawk Linux trace kernel has been built with kernel trace points enabled.
The kernel trace points allow the NightTrace™ tool to trace kernel activity.

The debug kernel has been built with both debugging checks and kernel trace points
enabled. The debugging checks are extra sanity checks that allow kernel problemsto be
detected earlier than they might otherwise be detected. However, these checks do produce
extra overhead. If you are measuring performance metrics, this activity would be best
performed using a non-debug version of the kernel.

System Updates

RedHawk Linux updates can be downloaded from Concurrent’s RedHawk Updates
website. Refer to the RedHawk Linux Release Notes for details.

NOTE

Concurrent does not recommend downloading Red Hat updates.

The RedHawk Linux kernel replaces the standard Red Hat kernel
and islikely to work with any version of the Red Hat distribution.
However, installing upgrades, especially to gcc and glibc, from
sources other than Concurrent may destabilize the system and is
not recommended. Security updates from outside sources may be
installed if desired.
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Real-Time Features in RedHawk Linux

This section provides a brief description of the features included in the RedHawk Linux
operating system for real-time processing and performance. More detailed information
about the functionality described below is provided in subsequent chapters of this guide.
Online readers can display the information immediately by clicking on the chapter
references.

Processor Shielding

Concurrent has developed a method of shielding selected CPUs from the unpredictable
processing associated with interrupts and system daemons. By binding critical, high-
priority tasks to particular CPUs and directing most interrupts and system daemons to
other CPUs, the best process dispatch latency possible on a particular CPU in a
multiprocessor system can be achieved. Chapter 2 presents a model for shielding CPUs
and describes techniques for improving response time and increasing determinism.

Processor Affinity

In areal-time application where multiple processes execute on multiple CPUs, it is
desirable to have explicit control over the CPU assignments of all processes in the system.
This capability is provided by Concurrent through thempadvise (3) library routine and
the run (1) command. See Chapter 2 and the man pages for additional information.

User-level Preemption Control

When an application has multiple processes that can run on multiple CPUs and those
processes operate on data shared between them, access to the shared data must be
protected to prevent corruption from simultaneous access by more than one process. The
most efficient mechanism for protecting shared data is a spin lock; however, spin locks
cannot be effectively used by an application if thereisa possibility that the application can
be preempted while holding the spin lock. To remain effective, RedHawk provides a
mechanism that allows the application to quickly disable preemption. See Chapter 5 and
the resched cntl (2) man page for more information about user-level preemption
control.

Fast Block/Wake Services
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Many real-time applications are composed of multiple cooperating processes. These
applications require efficient means for doing inter-process synchronization. The fast
block/wake services developed by Concurrent allow a process to quickly suspend itself
awaiting a wakeup notification from another cooperating process. See Chapter 2,
Chapter 5andthepostwait (2) and server block (2) man pagesfor more details.
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RCIM Driver

A driver has been added for support of the Real-Time Clock and Interrupt Module
(RCIM). This multi-purpose PCI card has the following functionality:

* connection of up to twelve external device interrupts
* upto eight real time clocks that can interrupt the system

¢ up to twelve programmable interrupt generators which allow generation of
an interrupt from an application program

These functions can all generate local interrupts on the system where the RCIM card is
installed. Multiple RedHawk Linux systems can be chained together, allowing up to
twelve of the local interrupts to be distributed to other RCIM-connected systems. This
allows one timer or one external interrupt or one application program to interrupt multiple
RedHawk Linux systems almost simultaneously to create synchronized actions. In
addition, the RCIM contains a synchronized high-resolution clock so that multiple
systems can share a common time base. See Chapter 6 of this guide and the Real-Time
Clock & Interrupt Module (RCIM) PCI Form Factor User’s Guide for additional
information.

Frequency-Based Scheduler

The Frequency-Based Scheduler (FBS) is a mechanism added to RedHawk Linux for
scheduling applications that run according to a predetermined cyclic execution pattern.
The FBS aso provides a very fast mechanism for waking a process when it istime for that
process to execute. In addition, the performance of cyclical applications can be tracked,
with various options available to the programmer when deadlines are not being met. The
FBSis the kernel mechanism that underlies the NightSim™ GUI for scheduling cyclical
applications. See the Frequency-Based Scheduler (FBS) User’s Guide and NightSim
User’s Guide for additional information.

/proc Modifications

Modifications have been made to the process address space support in /proc to alow a
privileged process to read or write the valuesin another process' address space. Thisisfor
support of the NightProbe™ data monitoring tool and the NightView™ debugger.

Kernel Trace Facility

Support was added to RedHawk Linux to allow kernel activity to be traced. Thisincludes
mechanisms for inserting and enabling kernel trace points, reading trace memory buffers
from the kernel, and managing trace buffers. The kernel trace facility is used by the
NightTrace™ tool. See Appendix D for information about kernel tracing.
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ptrace Extensions

The ptrace debugging interface in Linux has been extended to support the capabilities of
the NightView debugger. Features added include:

* the capability for a debugger process to read and write memory in a process
not currently in the stopped state

* the capability for adebugger to trace only a subset of the signalsin a process
being debugged

¢ the capability for a debugger to efficiently resume execution at a new
address within a process being debugged

¢ the capability for a debugger process to automatically attach to all children
of aprocess being debugged

Kernel Preemption

The ability for a high priority process to preempt a lower priority process that is currently
executing inside the kernel is provided in RedHawk Linux. Under standard Linux the
lower priority process would continue running until it exited from the kernel, creating
longer worst case process dispatch latency. Data structure protection mechanisms are built
into the kernel to support symmetric multiprocessing.

Real-Time Scheduler

The real-time scheduler provides fixed-length context switch times regardless of how
many processes are active in the system. It also provides a true real-time scheduling class
that operates on a symmetric multiprocessor.

Low Latency Enhancements

In order to protect shared data structures used by the kernel, the kernel protects code paths
that access these shared data structures with spin locks and semaphores. The locking of a
spin lock requires that preemption, and sometimes interrupts, be disabled while the spin
lock is held. A study was made which identified the worst-case preemption off times. The
low latency enhancements applied to RedHawk Linux modify the algorithms in the
identified worst-case preemption off scenarios to provide better interrupt response times.

Priority Inheritance
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Semaphores used as sleepy-wait mutual exclusion mechanisms can introduce the problem
of priority inversion. Priority inversion occurs when one or more low-priority processes
executing in acritical section prevent the progress of one or more high-priority processes.
Priority inheritance involves temporarily raising the priority of the low priority processes
executing in the critical section to that of the highest priority waiting process. This ensures
that the processes executing in the critical section have sufficient priority to continue
execution until they leave the critical section.
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Semaphore support for kernel servicesis configured in each of the pre-built RedHawk
Linux kernels. It can be disabled if an individual system is set up to handle only non-
critical tasks and any overhead associated with priority inheritance is unnecessary. Refer
to Appendix B for the kernel tunables used with priority inheritance. Support for pthread
mutexes that provide priority inheritance within a multithreaded application isincluded in
an adternate glibc. Refer to Chapter 5 for details.

High Resolution Process Accounting

In the standard Linux kernel, the system accounts for a process CPU execution times
using avery coarse-grained mechanism. This means that the amount of CPU time charged
to a particular process can be very inaccurate. The high resolution process accounting
facility provides a mechanism for very accurate CPU execution time accounting, allowing
better performance monitoring of applications. Thisfacility isincorporated in the “debug”
and “trace” kernels supplied by Concurrent and used by standard Linux CPU accounting
services and the Performance Monitor on those kernels. See Chapter 7 for information
about CPU accounting methods.

Capabilities Support

The Pluggable Authentication Module (PAM) provides a mechanism to assign privileges
to users and set authentication policy without having to recompile authentication
programs. Under this scheme, a non-root user can be configured to run applications that
reguire privileges only root would normally be allowed. For example, the ability to lock
pages in memory is provided by one predefined privilege that can be assigned to
individual users or groups.

Privileges are granted through roles defined in a configuration file. A roleisaset of valid
Linux capabilities. Defined roles can be used as a building block in subsequent roles, with
the new role inheriting the capabilities of the previously defined role. Roles are assigned
to users and groups, defining their capabilities on the system.

See Chapter 13 for information about the PAM functionality.

Kernel Debuggers

Two open source kernel debuggers, kdb and kgdb, are supported on RedHawk Linux
“debug” kernels.

kdb is the default debugger. Information about using kdb can be found in the kernel
source directory under Documentation/kdb. Note that to use kdb on a system with a
USB keyboard, a serial console must be configured. Refer to Appendix H for instructions
for setting up a serial console.

kgdb allowsthe kernel to be debugged with gdb as if it were a user application. gdb runs
on a separate system containing a copy of the vml inux file and the matching source, and
communicates with the kernel being debugged through the console’s serial port. More
information about kgdb can be found on the web at kgdb.sourceforge.net.
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Methods for specifying kgdb instead of kdb as the active debugger on these systems
include:

¢ specifying the gdb option at boot
¢ gspecifying thegdb vmlinux command to connect to the kgdb serial port
¢ using the Alt+SysRg+G key combination

Note that some modifications have been made to gdb for use with RedHawk Linux on
Opteron systems:

* A modification has been made to avoid an error check in stack backtrace,
which expects that the stack grew in a consistent direction. Because the
x86_64 kernel uses an interrupt stack in addition to the normal process stack,
setting this option triggers this error check when tracing back from the
interrupt to the process stack. Set this option with the command:

gdb> set backtrace switch-stacks on
* Another modification allows a list of functions to be specified which should

be skipped over when picking a frame to display in an “info thread”
command. Set this option with the command:

gdb> set skip-frame thread return,schedule timeout

Kernel Core Dumps/Crash Analysis

This open source patch provides the support for dumping physical memory contents to a
file as well as support for utilities that do a postmortem analysis of a kernel core dump.
See Chapter 12 and the 1ecrash (1) man page for more information about crash dump
analysis.

User-level Spin Locks

RedHawk Linux busy-wait mutual exclusion tools include a low-overhead busy-wait
mutual exclusion variable (a spin lock) and a corresponding set of macros that allow you
to initialize, lock, unlock and query spin locks. To be effective, user-level spin locks must
be used with user-level preemption control. Refer to Chapter 5 for details.

usermap and /proc mmap
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The usermap (3) library routine, which residesin the 1ibeccur rt library, provides
applications with away to efficiently monitor and modify locationsin currently executing
programs through the use of simple CPU reads and writes.

The /proc file system mmap (2) isthe underlying kernel support for usermap (3),
which lets a process map portions of another process address space into its own address
space. Thus, monitoring and modifying other executing programs becomes simple CPU
reads and writes within the application’s own address space, without incurring the
overhead of /proc file system read (2) and write (2) system service calls. Refer to
Chapter 9 for more information.



Introduction to RedHawk Linux

Hyper-threading

Hyper-threading is a feature of the Intel Pentium Xeon processor. It allows for asingle
physical processor to appear to the operating system as two logical processors. Two
program counters run simultaneously within each CPU chip so that in effect, each chipisa
dual-CPU SMP. With hyper-threading, physical CPUs can run multiple tasks “in parallel”
by utilizing fast hardware-based context-switching between the two register sets upon
things like cache-misses or special instructions. RedHawk Linux includes support for
hyper-threading. Refer to Chapter 2 for more information on how to effectively use this
feature in areal-time environment.

XFS Journaling File System

The XFS journaling file system from SGI isimplemented in RedHawk Linux. Journaling
file systems use a journal (log) to record transactions. In the event of a system crash, the
background process is run on reboot and finishes copying updates from the journal to the
file system. This drastically cuts the complexity of afile system check, reducing recovery
time. The SGI implementation is a multithreaded, 64-bit file system capable of large files
and file systems, extended attributes, variable block sizes, is extent based and makes
extensive use of Btrees to aid both performance and scalability. Refer to Chapter 8 for
more information.

POSIX Real-Time Extensions

RedHawk Linux supports most of the interfaces defined by the POSIX real-time
extensions as set forth in ISO/IEC 9945-1. The following functional areas are supported:

* user priority scheduling

* process memory locking

* memory mapped files

¢ shared memory

* message queues

¢ counting semaphores

* rea-timesignal behavior

¢ asynchronous I/O

* synchronized I/O

* timers (high resolution version is supported)

User Priority Scheduling

RedHawk Linux accommodates user priority scheduling—that is, processes scheduled
under the fixed-priority POSIX scheduling policies do not have their priorities changed by
the operating system in response to their run-time behavior. The resulting benefits are
reduced kernel overhead and increased user control. Process scheduling facilities are fully
described in Chapter 4.
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Memory Resident Processes

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping,
RedHawk Linux allows you to make certain portions of a process’ virtual address space
resident. Themlockall (2), munlockall (2), mlock(2), and munlock(2)
POSIX system calls allow locking all or a portion of a process’ virtual address space in
physical memory. See the man pages for details.

Memory Mapping and Data Sharing

RedHawk Linux supports shared memory and memory-mapping facilities based on |[EEE
Standard 1003.1b-1993, as well as System V IPC mechanisms. The POSIX facilities allow
processes to share data through the use of memory objects, named regions of storage that
can be mapped to the address space of one or more processes to allow them to share the
associated memory. The term memory object includes POSIX shared memory objects,
regular files, and some devices, but not all file system objects (terminals and network
devices, for example). Processes can access the data in a memory object directly by
mapping portions of their address spaces onto the objects. This is generally more efficient
than using the read (2) and write (2) system calls because it eliminates copying the
data between the kernel and the application.

Process Synchronization

RedHawk Linux provides a variety of tools that cooperating processes can use to
synchronize access to shared resources.

Counting semaphores based on |EEE Standard 1003.1b-1993 allow multiple threadsin a
multithreaded process to synchronize their access to the same set of resources. A counting
semaphore has a value associated with it that determines when resources are available for
use and allocated. System V 1PC semaphore sets, which support interprocess semaphores,
are also available under RedHawk Linux.

In addition to semaphores, a set of real-time process synchronization tools developed by
Concurrent provides the ability to control a process’ vulnerability to rescheduling,
serialize processes’ access to critical sections with busy-wait mutual exclusion
mechanisms, and coordinate client—server interaction among processes. With these tools, a
mechanism for providing sleepy-wait mutual exclusion with bounded priority inversion
can be constructed.

Descriptions of the synchronization tools and procedures for using them are provided in
Chapter 5.

Asynchronous Input/Output
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Being able to perform 1/0O operations asynchronously means that you can set up for an 1/0
operation and return without blocking on I/O completion. RedHawk Linux accommodates
asynchronous 1/0 with a group of library routines based on | EEE Standard 1003.1b-1993.
These interfaces allow a process to perform asynchronous read and write operations,
initiate multiple asynchronous 1/0 operations with a single call, wait for completion of an
asynchronous /O operation, cancel a pending asynchronous I/O operation, and perform
asynchronous file synchronization. The “aio” functions are documented in info pages
(‘infolibc™) on the system.
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Synchronized Input/Output

RedHawk Linux also supports the synchronized 1/0 facilities based on |EEE Standard
1003.1b-1993. POSI X synchronized 1/0O provides the means for ensuring the integrity of
an application’s data and files. A synchronized output operation ensures the recording of
data written to an output device. A synchronized input operation ensures that the data read
from a device mirrors the data currently residing on disk. Refer to the man pages for more
information.

Real-Time Signal Behavior

Clocks and Timers

Message Queues

Real-time signal behavior specified by IEEE Standard 1003.1b-1993 includes
specification of a range of real-time signal numbers, support for queuing of multiple
occurrences of a particular signal, and support for specification of an application-defined
value when a signal is generated to differentiate among multiple occurrences of signals of
the same type. The POSIX signal-management facilities include the
sigtimedwait (2), sigwaitinfo (2), and sigqueue (2) system calls, which
allow a process to wait for receipt of a signal and queue a signal and an application-
defined value to a process. Refer to the man pages for more information.

Support for high-resolution POSIX clocks and timers is included in RedHawk Linux.
System-wide POSIX clocks can be used for such purposes as time stamping or measuring
the length of code segments. POSIX timers allow applications to use relative or absolute
time based on a high resolution clock and to schedule events on a one-shot or periodic
basis. Applications can create multiple timers for each process. In addition, high-
resol ution sleep mechanisms are provided which can be used to put a processto sleep for a
very short time quantum and specify which clock should be used for measuring the
duration of the sleep. See Chapter 6 for additional information.

POSIX message passing facilities based on IEEE Standard 1003.1b-1993 are included in
RedHawk Linux, implemented as a file system. POSIX message queue library routines
allow a process to create, open, query and destroy a message queue, send and receive
messages from a message queue, associate a priority with a message to be sent, and
request asynchronous notification when a message arrives. POSIX message queues
operate independently of System V IPC messaging, which is also available under
RedHawk Linux. See Chapter 3 for details.
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2
Real-Time Performance

This chapter discusses some of the issues involved with achieving real-time performance
under RedHawk Linux. The primary focus of the chapter is on the Shielded CPU Model,
which isamodel for assigning processes and interrupts to a subset of CPUs in the system
to attain the best real-time performance.

Key areas of real-time performance are discussed: interrupt response, process dispatch
latency and deterministic program execution. The impact of various system activities on
these metricsis discussed and techniques are given for optimum real-time performance.

Overview of the Shielded CPU Model

The shielded CPU model is an approach for obtaining the best real-time performance in a
symmetric multiprocessor system. The shielded CPU model allows for both deterministic
execution of areal-time application as well as deterministic response to interrupts.

A task has deterministic execution when the amount of time it takes to execute a code
segment within that task is predictable and constant. Likewise the response to an interrupt
is deterministic when the amount of time it takes to respond to an interrupt is predictable
and constant. When the worst-case time measured for either executing a code segment or
responding to an interrupt is significantly different than the typical case, the application’s
performance is said to be experiencing jitter. Because of computer architecture features
like memory caches and contention for shared resources, there will always be some
amount of jitter in measurements of execution times. Each real-time application must
define the amount of jitter that is acceptable to that application.

In the shielded CPU model, tasks and interrupts are assigned to CPUs in a way that
guarantees a high grade of service to certain important real-time functions. In particular, a
high-priority task is bound to one or more shielded CPUs, while most interrupts and low
priority tasks are bound to other CPUs. The CPUs responsible for running the high-
priority tasks are shielded from the unpredictable processing associated with interrupts
and the other activity of lower priority processesthat enter the kernel viasystem calls, thus
these CPUs are called shielded CPUs.

Some exampl es of the types of tasks that should be run on shielded CPUs are:
* tasksthat require guaranteed interrupt response time
* tasksthat require the fastest interrupt response time
* tasksthat must be run at very high frequencies

* tasksthat require deterministic execution in order to meet their deadlines

tasks that have no tolerance for being interrupted by the operating system

2-1
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There are several levels of CPU shielding that provide different degrees of determinism
for the tasks that must respond to high-priority interrupts or that require deterministic
execution. Before discussing the levels of shielding that can be enabled on a shielded
CPU, it is necessary to understand how the system responds to external events and how
some of the normal operations of a computer system impact system response time and
determinism.

Overview of Determinism

Determinism refers to a computer system’s ability to execute a particular code path (a set
of instructions executed in sequence) in a fixed amount of time. The extent to which the
execution time for the code path varies from one instance to another indicates the degree
of determinism in the system.

Determinism applies not only to the amount of time required to execute a time-critical
portion of a user’s application but also to the amount of time required to execute system
code in the kernel. The determinism of the process dispatch latency, for example, depends
upon the code path that must be executed to handle an interrupt, wake the target process,
perform a context switch, and allow the target process to exit from the kernel. (The section
“Process Dispatch Latency” defines the term process dispatch latency and presents a
model for obtaining the best process dispatch latency possible on a particular CPU in a
multiprocessor system.)

The largest impact on the determinism of a program’s execution is the receipt of
interrupts. Thisis because interrupts are always the highest priority activity in the system
and the receipt of an interrupt is unpredictable — it can happen at any point in time while a
program is executing. Shielding from non-critical interrupts will have the largest impact
on creating better determinism during the execution of high priority tasks.

Other techniques for improving the determinism of a program’s execution are discussed in
the section called “ Procedures for Increasing Determinism.”

Process Dispatch Latency
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Real -time applications must be able to respond to a real-world event and complete the
processing required to handle that real-world event within a given deadline.
Computations required to respond to the real-world event must be complete before the
deadline or the results are considered incorrect. A single instance of having an unusually
long response to an interrupt can cause a deadline to be missed.

The term process dispatch latency denotes the time that elapses from the occurrence of an
external event, which issignified by an interrupt, until the process waiting for that external
event executes its first instruction in user mode. For real-time applications, the worst-case
process dispatch latency is a key metric, since it is the worst-case response time that will
determine the ability of the real-time application to guarantee that it can meet its
deadlines.
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Process dispatch latency comprises the time that it takes for the following sequence of
events to occur:

1

5.

The interrupt controller notices the interrupt and generates the interrupt
exception to the CPU.

Theinterrupt routine is executed, and the process waiting for the interrupt
(target process) is awakened.

The currently executing process is suspended, and a context switchis
performed so that the target process can run.

The target process must exit from the kernel, where it was blocked waiting
for the interrupt.

The target process runsin user mode.

This sequence of events represents the ideal case for process dispatch latency; it is
illustrated by Figure 2-1. Note that events 1-5 described above, are marked in Figure 2-1.

Figure 2-1 Normal Process Dispatch Latency

Priority

N - User mode execution

m Kernel mode execution

interrupt

v

Elapsed Time

The process dispatch latency is a very important metric for event—driven real-time
applications because it represents the speed with which the application can respond to an
external event. Most developers of real—time applications are interested in the worst-case
process dispatch latency because their applications must meet certain timing constraints.

Process dispatch latency is affected by some of the normal operations of the operating
system, device drivers and computer hardware. The following sections examine some of
the causes of jitter in process dispatch latency.
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Effect of Disabling Interrupts
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An operating system must protect access to shared data structuresin order to prevent those
data structures from being corrupted. When a data structure can be accessed at interrupt
level, it is necessary to disable interrupts whenever that data structure is accessed. This
preventsinterrupt code from corrupting a shared data structure should it interrupt program
level code in the midst of an update to the same shared data structure. Thisis the primary
reason that the kernel will disable interrupts for short periods of time.

When interrupts are disabled, process dispatch latency is affected because the interrupt
that we are trying to respond to cannot become active until interrupts are again enabled. In
this case, the process dispatch latency for the task awaiting the interrupt is extended by the
amount of time that interrupts remain disabled. Thisisillustrated in Figure 2-2. In this
diagram, the low priority process has made a system call which has disabled interrupts.
When the high priority interrupt occurs it cannot be acted on because interrupts are
currently disabled. When the low priority process has completed its critical section, it
enables interrupts, the interrupt becomes active and the interrupt service routine is called.
The normal steps of interrupt response then complete in the usual fashion. Note that the
numbers 1-5 marked in Figure 2-2 represent the steps of normal process dispatch latency
as described earlier on page 2-3.

Obvioudly, critical sections in the operating system where interrupts are disabled must be
minimized to attain good worst-case process dispatch latency.

Figure 2-2 Effect of Disabling Interrupts on Process Dispatch Latency

& - User mode execution
m Kernel mode execution
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interrupt
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Effect of Interrupts

The receipt of an interrupt affects process dispatch latency in much the same way that
disabling interrupts does. When a hardware interrupt is received, the system will block
interrupts of the same or lesser priority than the current interrupt. The simple case is
illustrated in Figure 2-3, where a higher priority interrupt occurs before the target
interrupt, causing the target interrupt to be held off until the higher priority interrupt
occurs. Note that the numbers 1-5 marked in Figure 2-3 represent the steps of normal
process dispatch latency as described earlier on page 2-3.

Figure 2-3 Effect of High Priority Interrupt on Process Dispatch Latency
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m High priority interrupt

= Target interrupt
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The relative priority of an interrupt does not affect process dispatch latency. Even when a
low priority interrupt becomes active, the impact of that interrupt on the process dispatch
latency for a high-priority interrupt is the same. This is because interrupts always run at a
higher priority than user-level code. Therefore, even though we might service the interrupt
routine for a high-priority interrupt, that interrupt routine cannot get the user-level context
running until all interrupts have completed their execution. Thisimpact of a low priority
interrupt on process dispatch latency isillustrated in Figure 2-4. Note that the ordering of
how things are handled is different than the case of the high-priority interrupt in
Figure 2-3, but the impact on process dispatch latency is the same. Note that the numbers
1-5 marked in Figure 2-4 represent the steps of normal process dispatch latency as
described earlier on page 2-3.

Figure 2-4 Effect of Low Priority Interrupt on Process Dispatch Latency
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One of the biggest differences between the effect of disabling interrupts and receipt of an
interrupt in terms of the impact on process dispatch latency is the fact that interrupts occur
asynchronously to the execution of an application and at unpredictable times. Thisis
important to understanding the various levels of shielding that are available.

When multiple interrupts can be received on a given CPU, the impact on worst-case
process dispatch latency can be severe. This is because interrupts can stack up, such that
more than one interrupt service routine must be processed before the process dispatch
latency for a high priority interrupt can be completed. Figure 2-5 shows a case of two
interrupts becoming active while trying to respond to a high priority interrupt. Note that
the numbers 1-5 marked in Figure 2-5 represent the steps of normal process dispatch
latency as described earlier on page 2-3. When a CPU receives an interrupt, that CPU will
disable interrupts of lower priority from being able to interrupt the CPU. If a second
interrupt of lower-priority becomes active during this time, it is blocked as long as the
original interrupt is active. When servicing of the first interrupt is complete, the second
interrupt becomes active and is serviced. If the second interrupt is of higher priority than
the initial interrupt, it will immediately become active. When the second interrupt
completes its processing, the first interrupt will again become active. In both cases, user
processes are prevented from running until all of the pending interrupts have been
serviced.

Conceivably, it would be possible for a pathological case where interrupts continued to
become active, never allowing the system to respond to the high-priority interrupt. When
multiple interrupts are assigned to a particular CPU, process dispatch latency is less
predictable on that CPU because of the way in which the interrupts can be stacked.

Figure 2-5 Effect of Multiple Interrupts on Process Dispatch Latency
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Effect of Disabling Preemption

There are critical sections in RedHawk Linux that protect a shared resource that is never
locked at interrupt level. In this case, there is no reason to block interrupts while in this
critical section. However, a preemption that occurs during this critical section could cause
corruption to the shared resourceif the new process were to enter the same critical section.
Therefore, preemption is disabled while a process executes in this type of critical section.
Blocking preemption will not delay the receipt of an interrupt. However, if that interrupt
wakes a high priority process, it will not be possible to switch to that process until
preemption has again been enabled. Assuming the same CPU is required, the actual effect
on worst-case process dispatch latency is the same as if interrupts had been disabled. The
effect of disabling preemption on process dispatch latency isillustrated in Figure 2-6.
Note that the numbers 1-5 marked in Figure 2-6 represent the steps of normal process
dispatch latency as described earlier on page 2-3.

Figure 2-6 Effect of Disabling Preemption on Process Dispatch Latency
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Effect of Open Source Device Drivers

Device drivers are a part of the Linux kernel, because they run in supervisor mode. This
means that device drivers are free to call Linux functions that disable interrupts or disable
preemption. Device drivers also handle interrupts, therefore they control the amount of
time that might be spent at interrupt level. As shown in previous sections of this chapter,
these actions have the potential to impact worst-case interrupt response and process
dispatch latency.

Device drivers enabled in RedHawk Linux have been tested to be sure they do not
adversely impact real-time performance. While open source device driver writers are
encouraged to minimize the time spent at interrupt level and the time interrupts are
disabled, in reality open source device drivers are written with very varied levels of care.
If additional open source device drivers are enabled they may have a negative impact upon
the guaranteed worst-case process dispatch latency that RedHawk Linux provides.

Refer to the “Device Drivers’ chapter for more information about real-time issues with
device drivers.

How Shielding Improves Real-Time Performance

This section will examine how the different attributes of CPU shielding improve both the
ability for a user process to respond to an interrupt (process dispatch latency) and
determinism in execution of auser process.

When enabling shielding, all shielding attributes are enabled by default. This providesthe
most deterministic execution environment on a shielded CPU. Each of these shielding
attributes is described in more detail below. The user should fully understand the impact of
each of the possible shielding attributes, as some of these attributes do have side effectsto
normal system functions. There are three categories of shielding attributes currently
supported:

¢ shielding from background processes
¢ shielding from interrupts
* shielding from the local interrupt

Each of these attributes is individually selectable on a per-CPU basis. Each of the
shielding attributesis described bel ow.

Shielding From Background Processes

This shielding attribute allows a CPU to be reserved for a subset of processes in the
system. This shielding attribute should be enabled on a CPU when you want that CPU to
have the fastest, most predictable response to an interrupt. The best guarantee on process
dispatch latency is achieved when only the task that responds to an interrupt is allowed to
execute on the CPU where that interrupt is directed.
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When a CPU is allowed to run background processes, it can affect the process dispatch
latency of a high-priority task that desires very deterministic response to an interrupt
directed to that CPU. Thisis because background processes will potentially make system
calls that can disable interrupts or preemption. These operations will impact process
dispatch latency as explained in the sections “Effect of Disabling Interrupts’ and “ Effect
of Disabling Preemption.”

When a CPU is allowed to run background processes, there is no impact on the
determinism in the execution of high priority processes. This assumes the background
processes have lower priority than the high-priority processes. Note that background
processes could affect the time it takes to wake a process via other kernel mechanisms
such as signals or the server wakel (3) interface.

Each process or thread in the system has a CPU affinity mask. The CPU affinity mask
determines on which CPUs the process or thread is allowed to execute. The CPU affinity
mask isinherited from the parent and can be set viathempadvise (3) library routine or
the sched setaffinity (2) system call. When a CPU is shielded from processes,
that CPU will only run processes and threads that have explicitly set their CPU affinity to
a set of CPUs that only includes shielded CPUs. In other words, if a process has a non-
shielded CPU inits CPU affinity mask, then the process will only run on those CPUs that
are not shielded. To run a process or thread on a CPU shielded from background
processes, it must have a CPU affinity mask that specifies ONLY shielded CPUs.

Certain kernel daemons created by Linux are replicated on every CPU in the system.
Shielding a CPU from processes will not remove one of these “per-CPU” daemons from
the shielded CPU. The impact of these daemons can be avoided through kernel
configuration or careful control of application behavior. The kernel daemons, their
functionality and methods to avoid jitter from per-CPU kernel daemons are described in
Appendix F.

Shielding From Interrupts
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This shielding attribute allows a CPU to be reserved for processing only a subset of
interrupts received by the system. This shielding attribute should be enabled when it is
desirable to have the fastest, most predictable process dispatch latency or when it is
desirable to have determinism in the execution time of an application.

Because interrupts are always the highest priority activity on a CPU, the handling of an
interrupt can affect both process dispatch latency and the time it takes to execute a normal
code path in ahigh priority task. Thisis described in the section, “ Effect of Interrupts’.

Each device interrupt is associated with an IRQ. These IRQs have an associated CPU
affinity that determines which CPUs are allowed to receive the interrupt. When interrupts
are not routed to a specific CPU, the interrupt controller will select a CPU for handling an
interrupt at the time the interrupt is generated from the set of CPUs in the IRQ affinity
mask. IRQ affinities are modified by the shield (1) command or through
/proc/irq/N/smp affinity.

On the 1386 architecture, the kirgd daemon periodically adjusts IRQ affinitiesin an
attempt to balance interrupt load across CPUs. This daemon conflicts with interrupt-
shielding and has been disabled by default in all RedHawk Linux kernel configurations
through the IRQBALANCE kernel configuration option. It can be enabled with the kernel
boot parameter “noirgbalance” or by enabling the IRQBALANCE kernel parameter.
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Note that if it is desirable to disable all interrupts on all CPUs, the recommended
procedure is to shield all CPUs from interrupts except one, then make a call to
local irqg disable(2) onthe unshielded CPU. Seethe man page for details.

Certain activities can cause interrupts to be sent to shielded CPUs. These cross processor
interrupts are used as a method for forcing another CPU to handle some per-CPU specific
task. Cross processor interrupts can potentially cause noticeable jitter for shielded CPUs.
Refer to Appendix G for afull discussion.

Shielding From Local Interrupt

The local interrupt is a special interrupt for a private timer associated with each CPU.
Under RedHawk Linux, thistimer is used for various timeout mechanisms in the kernel
and at user level. This functionality is described in Chapter 7. By default, thisinterrupt is
enabled on all CPUs in the system.

This interrupt fires every ten milliseconds, making the local interrupt one of the most
frequently executed interrupt routines in the system. Therefore, the local interrupt is a
large source of jitter to real-time applications.

When a CPU is shielded from the local timer, the local interrupt is effectively disabled and
the functions provided by the local timer associated with that CPU are no longer
performed; however, they continue to run on other CPUs where the local timer has not
been shielded. Some of these functions will be lost, while others can be provided via other
means.

One of the functions that is lost when the local interrupt is disabled on a particular CPU is
the low resolution mechanism for CPU execution time accounting. This is the mechanism
that measures how much CPU time is used by each process that executes on this CPU.
Whenever the local interrupt fires, the last clock tick’s worth of time is charged to the
process that was interrupted. If high resolution process accounting is configured, then
CPU time will be accurately accounted for regardless of whether or not the local interrupt
is enabled. High resolution process accounting is discussed in Chapter 7, “ System Clocks
and Timers.”

When a CPU is shielded from the local timer, the local interrupt will continue to be used
for POSIX timers and nanosleep functionality by processes biased to the shielded CPU.
For this reason, if it is critical to totally eliminate local timer interrupts for optimum
performance on a specific shielded CPU, applications utilizing POSIX timers or nanosleep
functionality should not be biased to that CPU. If a processis not alowed to run on the
shielded CPU, itstimerswill be migrated to a CPU where the processis allowed to run.

Refer to Chapter 7, “System Clocks and Timers’ for a complete discussion on the effects
of disabling the local timer and alternatives that are available for some of the features.

Interfaces to CPU Shielding

This section describes both the command level and programming interfaces that can be
used for setting up a shielded CPU. There is also an example that describes the common
case for setting up a shielded CPU.

2-11
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Shield Command
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The shield (1) command sets specified shielding attributes for selected CPUs. The
shield command can be used to mark CPUs as shielded CPUs. A shielded CPU is
protected from some set of system activity in order to provide better determinism in the
time it takes to execute application code.

Thelist of logical CPUs affected by an invocation of the shield command is given asa
comma-separated list of CPU numbers or ranges.

The format for executing the shield command is:
shield [OPTIONS|
Options are described in Table 2-1.

In the options listed below, crpuList isalist of comma separated values or arange of values
representing logical CPUs. For example, the list of CPUs “0-4,7" specifies the following
logical CPU numbers: 0,1,2,3,4,7.

Table 2-1 Options to the shield(1) Command

Option Description

--irg=CPULIST, -i CPULIST Shields all CPUs in cpuLIsT from interrupts.
The only interrupts that will execute on the
specified CPUs are those that have been
assigned a CPU affinity that would prevent
them from executing on any other CPU.

--loc=CPULIST, -1 CPULIST The specified list of CPUs is shielded from the
local timer. The local timer provides time-
based services for a CPU. Disabling the local
timer may cause some system functionality
such as user/system time accounting and
round-robin quantum expiration to be disabled.
Refer to Chapter 7 for more a compl ete discus-
sion.

- -proc=CPULIST, -p CPULIST The specified list of CPUs is shielded from
extraneous processes. Processes that have an
affinity mask that allows them to run on anon-
shielded CPU only run on non-shielded CPUs.
Processes that would be precluded from exe-
cuting on any CPU other than a shielded CPU
are allowed to execute on that shielded CPU.

--all=CPULIST, -a CPULIST The specified list of CPUs will have all
available shielding attributes set. See the
descriptions of theindividual shielding options
above to understand the implications of each
shielding attribute.

--help, -h Describes avail able options and usage.
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Table 2-1 Options to the shield(1) Command (Continued)

Option Description

--version, -V Prints out current version of the command.

--reset, -r Resets shielding attributes for all CPUs. No
CPUs are shielded.

--current, -c Displays current settings for all active CPUs.

Shield Command Examples

Exit Status

The following command first resets al shielding attributes, then shields CPUs 0,1 and 2
from interrupts, then shields CPU 1 from local timer, shields CPU 2 from extraneous
processes, and finally, displays al new settings after the changes:

shield -r -i 0-2 -1 1 -p 2 -c

The following command shields CPUs 1,2 and 3 from interrupts, local timer, and
extraneous processes. CPU 0 is left as a “general purpose” CPU that will service all
interrupts and processes not targeted to a shielded CPU. All shielding attributes are set for
thelist of CPUs.

shield --all=1-3

Normally, the exit status is zero. However, if an error occurred while trying to modify
shielded CPU attributes, a diagnostic message isissued and an exit status of 1 isreturned.

Shield Command Advanced Features

It is recommended that the advanced features described below should only be used by
experienced users.

CPUs specified in the cpuLIST can be preceded by a'+' or a'-' sign in which case the CPUs
inthelist are added to ('+') or taken out of (-') thelist of already shielded CPUs.

Options can be used multiple times. For example, “shield -i O -c -i +1 -¢” shows current

settings after CPU 0 has been shielded from interrupts and then displays current settings
again after CPU 1 has been added to the list of CPUs shielded from interrupts.

2-13
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/proc Interface to CPU Shielding

The kernel interface to CPU shielding is through the /proc file system using the
following files:

/proc/shield/procs process shielding
/proc/shield/irqgs irq shielding
/proc/shield/ltmrs local timer shielding

All users can read these files, but only root or users with the CAP_SYS_NICE capability and
file permissions may write to them.

When read, an 8 digit ASCII hexadecimal value is returned. This value is a bitmask of
shielded CPUs. Set bits identify the set of shielded CPUs. The radix position of each set
bit is the number of the logical CPU being shielded by that bit.

For example:

00000001 - hitOisset so CPU #0 is shielded
00000002 - hit 1lisset so CPU #1 is shielded
00000004 - hit2isset so CPU #2 is shielded
00000006 - hits1land 2 are set so CPUs#1 and #2 are shielded

When written to, an 8 digit ASCII hexadecimal value is expected. Thisvalueis abitmask
of shielded CPUsin aform identical to that listed above. The value then becomes the new
set of shielded CPUs.

Seethe shield (5) man page for additional information.

Assigning Processes to CPUs
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This section describes the methods available for assigning a process or thread to a set of
CPUs. The set of CPUs where aprocessis allowed to run is known as its CPU affinity.

By default, a process or thread can execute on any CPU in the system. Every process or
thread has a bit mask, or CPU affinity, that determines the CPU or CPUs on which it can
be scheduled. A process or thread inherits its CPU affinity from its creator during a
fork (2) oraclone (2) but may changeit thereafter.

You can set the CPU affinity for one or more processes or threads by specifying the
MPA_PRC_SETBIAS command on a call to mpadvise (3), or the -b bias option to the
run (1) command. sched setaffinity(2) canalsobeusedto set CPU affinity.

To set the CPU affinity, the following conditions must be met:

* The real or effective user 1D of the calling process must match the real or
saved user ID of the process for which the CPU affinity is being set, or

¢ the calling process must have the CAP_SYS NICE capability or be root.

To add a CPU to a process' or thread’s CPU affinity, the calling process must have the
CAP_SYS NICE capability or be root.
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A CPU affinity can be assigned to the init (8) process. All general processes are a
descendant from init. Asaresult, most general processes would have the same CPU
affinity as init or a subset of the CPUs in the init CPU affinity. Only privileged
processes (as described above) are able to add a CPU to their CPU affinity. Assigning a
restricted CPU affinity to init restricts all general processesto the same subset of CPUs
asinit. The exception is selected processes that have the appropriate capability who
explicitly modify their CPU affinity. If you wish to change the CPU &ffinity of init, see
the section “ Assigning CPU Affinity to init” below for instructions.

Thempadvise library routine is documented in the section “Multiprocessor Control
Using mpadvise” below and the mpadvise (3) man page. The run command is
documented in the section “The run Command” in Chapter 4 and the run (1) man page.
For information on sched _setaffinity(2) and sched getaffinity(2), see
thesched affinity (2) man page.

Multiprocessor Control Using mpadvise

mpadvise (3) performsavariety of multiprocessor functions. CPUs are identified by
specifying a pointer to a cpuset_t object, which specifies a set of one or more CPUs.
For more information on CPU sets, seethe cpuset (3) man page.

Synopsis
#include <mpadvise.h>
int mpadvise (int cmd, int which, int who, cpuset t *sep)
gcc [options] file -lccur rt ...

Infor mational Commands

The following commands get or set information about the CPUs in the system. The which
and who parameters are ignored.

MPA_CPU_PRESENT Returns a mask indicating which CPUs are physically
present in the system. CPUs brought down with the
cpu (1) command are still included.

MPA_CPU_ACTIVE Returns a mask indicating which CPUs are active, that is,
initialized and accepting work, regardless of how many
exist in the backplane. If a CPU has been brought down
using the ecpu (1) command, it is not included.

MPA_CPU_BOOT Returns a mask indicating the CPU that booted the system.
The boot CPU has some responsihilities not shared with the
other CPUs.

MPA_CPU_LMEM Returns a mask indicating which CPUs have local memory

on a system with NUMA support. CPUs brought down with
the epu (1) command are still included.

Control Commands

The following commands provide control over the use of CPUs by a process, a thread, a
Process group, or a User.

2-15
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MPA_PRC_GETBIAS

MPA_PRC_SETBIAS

MPA_PRC_GETRUN

Using which and who

which
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Returns the CPU set for the CPU affinity of all threads in
the specified process (MPA_PID) or the exact unique bias for
the specified thread (Mpa_TID).

Sets the CPU affinity of all threads in the specified pro-
cesses (MPA_PID) or the unique CPU affinity for the speci-
fied thread (MPA_TID) to the specified cpuset. To change the
CPU affinity of a process, the real or effective user ID must
match the real or the saved (from exec (2)) user ID of the
process, unless the current user has the CAP_SYS_NICE
capability.

Returns a CPU set with exactly one CPU in it that
corresponds to the CPU where the specified thread is
currently running (or waiting to run) (MPA_TID). When
MPA_PID is specified, returns one CPU for non-threaded pro-
grams and the set of CPUs in use by all threads of a multi-
threaded program. Note that it is possible that the CPU
assignment may have already changed by the time the value
isreturned.

Used to specify the selection criteria. Can be one of the
following:

MPA_PID  aspecific processand al itsthreads

MPA_TID a specific thread

MPA_PGID  aprocess group

MPA_UID  auser

MPA_LWPID Same as MPA_TID (compatible with Powermax)

Interpreted relative to which:

aprocess identifier
athread identifier
aprocess group identifier
user identifier

A who vaue of 0 causes the process identifier, process
group identifier, or user identifier of the caller to be used.

Using MPa_PID with a reference to a single subordinate
(non-primordial) thread applies to the containing process as
it does when a primordial thread is supplied.

When using MmPA_TID, who must be the numeric thread 1D
(as returned by gettid), not a pthread identifier associated
with the POSIX Threads library.



Real-Time Performance

Assigning CPU Affinity to init

All general processes are a descendant of init (8). By default, init has a mask that
includes all CPUs in the system and only selected processes with appropriate capabilities
can modify their CPU affinity. If it is desired that by default al processes are restricted to
a subset of CPUs, a CPU affinity can be assigned by a privileged user to the init
process. To achieve this goal, the run (1) command can be invoked early during the
system initialization process.

For example, to bias init and all its descendants to CPUs 1, 2 and 3, the following
command may be added at the end of the system’s /etc/rc.sysinit script, whichis
called early during system initialization (see inittab (5)). The init processis
specified in this command by its process ID which is always 1.

/usr/bin/run -b 1-3 -p 1

The same effect can be achieved by using the shield (1) command. The advantage of
using this command is that it can be done from the command line at any run level. The
shield command will take care of migrating processes aready running in the CPU to be
shielded. In addition, with the shield command you can also specify different levels of
shielding. See the section “Shield Command” or the shield (1) man page for more
information on this command.

For example, to shield CPU 0 from running processes, you would issue the following
command.

S shield -p 0

After shielding a CPU, you can always specify selected processes to run in the shielded
CPU using the run command.

For example, to run mycommand on CPU 0 which was previously shielded from
processes, you would issue the following command:

$ run -b 0 ./mycommand

Example of Setting Up a Shielded CPU

The following example shows how to use a shielded CPU to guarantee the best possible
interrupt response to an edge-triggered interrupt from the RCIM. In other words, the intent
is to optimize the time it takes to wake up a user-level process when the edge-triggered
interrupt on an RCIM occurs and to provide a deterministic execution environment for
that process when it is awakened. In this case the shielded CPU should be set up to handle
just the RCIM interrupt and the program responding to that interrupt.

The first step is to direct interrupts away from the shielded processor through the
shield (1) command. The local timer interrupt will also be disabled and background
processes will be precluded to achieve the best possible interrupt response. The shield
command that would accomplish these resultsfor CPU 1is:

S shield-a 1

At this point, there are no interrupts and no processes that are allowed to execute on
shielded CPU 1. The shielding status of the CPUs can be checked using the following
methods:

2-17



RedHawk Linux User’s Guide

2-18

viathe shield (1) command:

S shield -c

CPUID irgs ltmrs procs
0 no no no
1 yes yes yes
2 no no no
3 no no no

viathe cpu (1) command:

$ cpu
log id
(phys id) state shielding

0 (0) up none
1 (0) up proc irg ltmr
2 (1) up none
3 (1) up none

or viathe /proc file system:

$ cat /proc/shield/irqgs
00000002

Thisindicates that al interrupts are precluded from executing on CPU 1. In this example,
the goal is to respond to a particular interrupt on the shielded CPU, so it is necessary to
direct the RCIM interrupt to CPU 1 and to allow the program that will be responding to
thisinterrupt to run on CPU 1.

Thefirst step isto determine the IRQ to which the RCIM interrupt has been assigned. The
assignment between interrupt and IRQ will be constant for devices on the motherboard
and for aPCI devicein aparticular PCI slot. If aPCl board is moved to anew dot, its IRQ
assignment may change. To find the IRQ for your device, perform the following
command:

$ cat /proc/interrupts

CPUO CPU1 CPU2 CPU3

0 665386907 0 0 0 IO-APIC-edge timer

4: 2720 0 0 0 IO-APIC-edge serial

8 1 0 0 0 IO-APIC-edge rtc

9: 0 0 0 0 IO-APIC-level acpi

14: 9649783 1 2 3 IO-APIC-edge 1ideO

15: 31 0 0 0 IO-APIC-edge idel

16: 384130515 0 0 0 IO-APIC-level ethoO

17: 0 0 0 0 IO-APIC-level rcim,Intel..
18: 11152391 0 0 0 IO-APIC-level aic7xxXX, ...
19: 0 0 0 0 IO-APIC-level wuhci_hcd
23: 0 0 0 0 IO-APIC-level wuhci_hcd
NMI : 102723410 116948412 0 0 Non-maskable interrupts
LOC: 665262103 665259524 665264914 665262848 Local interrupts
RES: 36855410 86489991 94417799 80848546 Rescheduling interrupts
CAL: 2072 2074 2186 2119 function call interrupts
TLB: 32804 28195 21833 37493 TLB shootdowns
TRM: 0 0 0 0 Thermal event interrupts
SPU: 0 0 0 0 Spurious interrupts
ERR: 0 0 0 0 Error interrupts
MIS 0 0 0 0 APIC errata fixups
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The RCIM isassigned to IRQ 17 in the list above. Now that its IRQ number is known, the
interrupt for the RCIM can be assigned to the shielded processor viathe /proc file that
represents the affinity mask for IRQ 17. The affinity mask for an IRQ isan 8 digit ASCI|
hexadecimal value. The valueis abit mask of CPUs. Each bit set in the mask represents a
CPU where the interrupt routine for this interrupt may be handled. The radix position of
each set hit is the number of alogical CPU that can handle the interrupt. The following
command sets the CPU affinity mask for IRQ 17 to CPU 1.

$ echo 2 > /proc/irq/17/smp affinity

Note that the “smp_affinity” filefor IRQsisinstaled by default with permissions
such that only the root user can change the interrupt assignment of an IRQ. The /proc
file for IRQ affinity can also be read to be sure that the change has taken effect:

$ cat /proc/irq/17/smp affinity
00000002 user 00000002 actual

Note that the value returned for “user” is the bit mask that was specified by the user for the
IRQ's CPU éffinity. The value returned for “actual” will be the resulting affinity after any
non-existent CPUs and shielded CPUs have been removed from the mask. Note that
shielded CPUs will only be stripped from an IRQ's affinity mask if the user set an affinity
mask that contained both shielded and non-shielded CPUs. This is because a CPU
shielded from interrupts will only handle an interrupt if there are no unshielded CPUs in
the IRQ's affinity mask that could handle the interrupt. In this example, CPU 1 is shielded
from interrupts, but CPU 1 will handle IRQ 17 because its affinity mask specifiesthat only
CPU 1 isalowed to handle the interrupt.

The next step is to be sure that the program responding to the RCIM edge-triggered
interrupt will run on the shielded processor. Each process in the system has an assigned
CPU affinity mask. For a CPU shielded from background processes, only a process that
has a CPU affinity mask which specifies ONLY shielded CPUs will be allowed to run on a
shielded processor. Note that if there are any non-shielded CPUs in a process’ affinity
mask, then the process will only execute on the non-shielded CPUs.

The following command will execute the user program “edge-handler” at a real-time
priority and forceit to run on CPU 1:

S run -s fifo -P 50 -b 1 edge-handler

Note that the program could also set its own CPU affinity by calling the library routine
mpadvise (3) asdescribed in the section “Multiprocessor Control Using mpadvise.”

The run (1) command can be used to check the program’s affinity:

S run -i -n edge-handler
Pid Tid Bias Actual Policy Pri Nice Name
9326 9326 0x2 0x2 fifo 50 0 edge-handler

Note that the value returned for “Bias’ is the bit mask that was specified by the user for
the process’ CPU affinity. The value returned for “actual” will be the resulting affinity
after any non-existent CPUs and shielded CPUs have been removed from the mask. Note
that shielded CPUs will only be stripped from a process’ affinity mask if the user set an
affinity mask that contained both shielded and non-shielded CPUs. Thisis because a CPU
shielded from background processes will only handle a process if there are no unshielded
CPUs in the process’ affinity mask that could run the program. In this example, CPU 1is
shielded from background processes, but CPU 1 will run the “edge-handler” program
because its affinity mask specifiesthat only CPU 1 is allowed to run this program.
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Procedures for Increasing Determinism

The following sections explain various ways in which you can improve performance using
the following techniques:

¢ |ocking aprocess pagesin memory

* using favorable static priority assignments

* removing non-critical processing from interrupt level

¢ gspeedy wakeup of processes

¢ controlling cache access

* inaNUMA system, binding a program to local memory
* judicious use of hyper-threading

¢ avoiding alow memory state

Locking Pages in Memory

You can avoid the overhead associated with paging and swapping by using
mlockall (2), munlockall (2),mlock(2), and munlock (2). These system
calls allow you to lock and unlock al or a portion of a process' virtual address space in
physical memory. These interfaces are based on |EEE Standard 1003.1b-1993.

With each of these calls, pages that are not resident at the time of the call are faulted into
memory and locked. To usethemlockall (2), munlockall (2),mlock(2), and
munlock (2) system calls you must have the CAP_IPC_LOCK and CAP_SYS RAWIO
capabilities (for additional information on capabilities, refer to Chapter 13 and the
pam_capability (8) man page.

Procedures for using these system calls are fully explained in the corresponding man
pages.

Setting the Program Priority
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The RedHawk Linux kernel accommodates static priority scheduling—that is, processes
scheduled under certain POSIX scheduling policies do not have their priorities changed by
the operating system in response to their run-time behavior.

Processes that are scheduled under one of the POSI X real-time scheduling policies always
have static priorities. (The real-time scheduling policies are SCHED_RR and SCHED_FIFO;
they are explained Chapter 4.) To change a process scheduling priority, you may use the
sched setscheduler (2) andthe sched setparam(2) system calls. Note that
to use these system calls to change the priority of a process to a higher (more favorable)
value, you must have the CAP_Sys NICE capability (for complete information on capability
requirements for using these routines, refer to the corresponding man pages).

The highest priority process running on a particular CPU will have the best process
dispatch latency. If a processis hot assigned a higher priority than other processes running
on a CPU, its process dispatch latency will be affected by the time that the higher priority
processes spend running. Asaresult, if you have more than one process that requires good
process dispatch latency, it is recommended that you distribute those processes among
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several CPUs. Refer to the section “ Assigning Processes to CPUs,” for the procedures for
assigning processes to particular CPUs.

Process scheduling is fully described in Chapter 4. Procedures for using the
sched setscheduler and sched setparam system calls to change a process
priority are also explained.

Setting the Priority of Deferred Interrupt Processing

Linux supports several mechanisms that are used by interrupt routines in order to defer
processing that would otherwise have been done at interrupt level. The processing
required to handle a device interrupt is split into two parts. The first part executes at
interrupt level and handles only the most critical aspects of interrupt completion
processing. The second part is deferred to run at program level. By removing non-critical
processing from interrupt level, the system can achieve better interrupt response time as
described earlier in this chapter in the section “ Effect of Interrupts.”

The second part of an interrupt routine can be handled by kernel daemons, depending on
which deferred interrupt technique is used by the device driver. There are kernel tunables
that allow a system administrator to set the priority of the kernel daemons that handle
deferred interrupt processing. When a real-time task executes on a CPU that is handling
deferred interrupts, it is possible to set the priority of the deferred interrupt kernel daemon
so that a high-priority user process has a more favorable priority than the deferred
interrupt kernel daemon. This allows more deterministic response time for this real-time
process.

For more information on deferred interrupt processing, including the daemons used and
kernel tunables for setting their priorities, see the chapter “Device Drivers.”

Waking Another Process

In multiprocess applications, you often need to wake a process to perform a particular
task. One measure of the system’s responsiveness is the speed with which one process can
wake another process. The fastest method you can use to perform this switch to another
task isto use the postwait (2) system call. For compatibility with legacy code, the
server block (2) and server wakel (2) functions are provided in RedHawk
Linux.

Procedures for using these functions are explained in Chapter 5 of this guide.

Avoiding Cache Thrashing

Application writers trying to approach ‘ constant runtime determinism’ must pay attention
to how their program’s variables will be mapped into the CPU’s caches. For example, if a
program has a variable i and a variable j and both are heavily used, and the memory
locations assigned to them result in both i and j being in the same cache line, every
referenceto i will gect j from the cache and vice versa. This is called thrashing the cache
and its occurrence is devastating to performance.

To avoid this, place all heavily accessed data close to one another in memory. If that range
issmaller than the cache size, all the datawill be guaranteed different cache lines. To view
how large the CPU’s cache is, execute ** grep cache /proc/cpuinfo’.
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Make sure that your system has cache that is larger than the data set of heavily accessed
variables. For example, if you have 600,000 bytes of variables and you have a system with
only .5 MB of cache, cache thrashing will be unavoidable.

If you have less than one page (4096 bytes) of critical variables, then you can force them
to be in separate cache lines by forcing al the data to be in one physical page:

struct mydata{
int 1i;
int j;
float fp[200];
floag £gq[200]; }  attribute (( aligned (4096)));

struct mydata mydata;

Binding to NUMA Nodes

On a system with non-uniform memory access (NUMA), such as an iHawk Opteron
system, it takes longer to access some regions of memory than others. The memory on a
NUMA system is divided into nodes, where a node is defined to be a region of memory
and all CPUs that reside on the same physical bus as the memory region of the NUMA
node. If a program running on this type of system is not NUMA-aware, it can perform
poorly.

By default, pages are allocated from the node where the local CPU (from which the
program is executed) resides, but the task or virtual areas within the task can be specified
to allocate pages from certain nodes for better determinism and control. Refer to
Chapter 10 for information about NUMA.

Understanding Hyper-threading
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Hyper-threading is a feature of the Intel Pentium Xeon processor in iHawk 860 systems. It
allows for a single physical processor to run multiple threads of software applications
simultaneously. This is achieved by having two sets of architectural state on each
processor while sharing one set of processor execution resources. The architectural state
tracks the flow of a program or thread, and the execution resources are the units on the
processor that do the work: add, multiply, load, etc. Each of the two sets of architectural
state in a hyper-threaded physical CPU can be thought of as a“logical” CPU. The term
“sibling CPU” refers to the other CPU in a pair of logical CPUs that reside on the same
physical CPU.

When scheduling threads, the operating system treats the two logical CPUs on a physical
CPU asif they were separate processors. Commandslikeps (1) or shield (1) identify
each logical CPU. This allows multiprocessor-capable software to run unmodified on
twice as many logical processors. While hyper-threading technology does not provide the
level of performance scaling achieved by adding a second physical processor, some
benchmark tests show that parallel applications can experience as much as a 30 percent
gain in performance. See the section “Recommended CPU Configurations’ for ideas on
how to best utilize hyper-threading for real-time applications.
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The performance gain from hyper-threading occurs because one processor with two
logical CPUs can more efficiently utilize execution resources. During normal program
operation on a non-hyper-threaded CPU, execution resources on the chip often sit idle
awaiting input. Because the two logical CPUs share one set of execution resources, the
thread executing on the second logical CPU can use resources that are otherwise idle with
only one thread executing. For example while one logical CPU is stalled waiting for a
fetch from memory to complete, its sibling can continue processing its instruction stream.
Because the speeds of the processor and the memory bus are very unequal, a processor can
spend asignificant portion of itstime waiting for data to be delivered from memory. Thus,
for certain parallel applications hyper-threading provides a significant performance
improvement. Another example of parallelism is one logical processor executing a
floating-point operation while the other executes an addition and a load operation. These
operations execute in parallel because they utilize different processor execution units on
the chip.

While hyper-threading will generally provide faster execution for a multi-thread
workload, it can be problematic for real-time applications. This is because of the impact
on the determinism of execution of athread. Because a hyper-threaded CPU shares the
execution unit of the processor with another thread, the execution unit itself becomes
another level of resource contention when a thread executes on a hyper-threaded CPU.
Because the execution unit will not always be available when a high priority process on a
hyper-threaded CPU attempts to execute an instruction, the amount of time it takes to
execute a code segment on a hyper-threaded CPU is not as predictable as on a non-hyper-
threaded CPU.

The designer of a parallel real-time application should decide whether hyper-threading
makes sense for his application. Will the application benefit from its tasks running in
parallel on a hyper-threaded CPU as compared to running sequentially? If so, the
developer can make measurements to determine how much jitter is introduced into the
execution speeds of important high-priority threads by running them on a hyper-threaded
CPU.

The level of jitter that is acceptable is highly application dependent. If an unacceptable
amount of jitter isintroduced into areal-time application because of hyper-threading, then
the affected task should be run on a shielded CPU with its sibling CPU marked down via
the epu (1) command. An example of a system with a CPU marked down is given later
in this chapter. It should be noted that certain cross processor interrupts will still be
handled on a downed CPU (see the epu (1) man page for more information). If desired,
hyper-threading can be disabled on a system-wide basis. See the section “ System
Configuration” below for details.

Hyper-threading technology is complementary to multiprocessing by offering greater
parallelism within each processor in the system, but is not a replacement for dual or
multiprocessing. There are twice as many logical processors available to the system,
however, they are still sharing the same amount of execution resources. So the
performance benefit of another physical processor with its own set of dedicated execution
resources will offer greater performance levels. This can be especially true for
applications that are using shielded CPUs for obtaining a deterministic execution
environment.

As mentioned above, each logical CPU maintains a complete set of the architecture state.
The architecture state (which is not shared by the sibling CPUs) consists of general-
purpose registers, control registers, advanced programmable interrupt controller (APIC)
registers and some machine state registers. Logical processors share nearly all other
resources on the physical processor such as caches, execution units, branch predictors,
control logic, and buses. Each logical processor has its own interrupt controller or APIC.
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Interrupts sent to a specific logical CPU are handled only by that logical CPU, regardless
of whether hyper-threading is enabled or disabled.

System Configuration

The following items affect system-wide hyper-thread availability:

* The system must contain Intel Pentium Xeon processors.

* The kernel must be configured with hyper-threading enabled through the
x86_HT kernel tunable accessible under Processor Type and Features onthe
Kernel Configuration GUI. Hyper-threading is enabled by default on all
RedHawk 1386 pre-defined kernels.

¢ Hyper-threading must be enabled in the BIOS to be available for use. Refer
to your hardware documentation to determine which BIOS setting is
involved, if needed.

Hyper-threading can be disabled on a per-CPU basis using the ecpu (1) command to mark
one of the siblings down. Refer to the epu (1) man page for more details.

Note that with hyper-threading enabled, commands like top (1) and run (1) report
twice as many CPUs as were previously present on systems running a version of
RedHawk Linux prior to release 1.3 that did not have hyper-threading support. When
hyper-threading is disabled on a system-wide basis, the logical CPU numbers are
equivalent to the physical CPU numbers.

Recommended CPU Configurations

Hyper-threading technology offers the possibility of better performance for parallel
applications. However, because of the manner in which CPU resources are shared between
the logical CPUs on a single physical CPU, different application mixes will have varied
performance results. This is especially true when an application has real-time
reguirements requiring deterministic execution times for the application. Therefore, it is
important to test the performance of the application under various CPU configurations to
determine optimal performance. For example, if there are two tasks that could be runin
paralel on apair of sibling CPUs, be sure to compare the time it takes to execute these
tasks in parallel using both siblings versus the time it takes to execute these tasks serially
with one of the siblings down. This will determine whether these two tasks can take
advantage of the unique kind of parallelism provided by hyper-threading.

Below are suggested ways of configuring an SMP system that contains hyper-threaded
CPUs for real-time applications. These examples contain hints about configurations that
might work best for applications with various performance characteristics.

Standard Shielded CPU Model
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This model would be used by applications having very strict requirements for determinism
in program execution. A shielded CPU provides the most deterministic environment for
these types of tasks (see the section “How Shielding Improves Real-Time Performance”
for more information on shielded CPUSs). In order to maximize the determinism of a
shielded CPU, hyper-threading on that physical CPU is disabled. This is accomplished by
marking down the shielded CPU’s sibling logical CPU using the epu (1) command.
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In the Standard Shielded CPU Model, the non-shielded CPUs have hyper-threading
enabled. These CPUs are used for a non-critical workload because in general hyper-
threading allows more CPU resources to be applied.

Figure 2-7 illustrates the Standard Shielded CPU Model on a system that has two physical
CPUs (four logical CPUSs). In this example, CPU 3 has been taken down and CPU 2 is
shielded from interrupts, processes and hyper-threading. A high priority interrupt and the
program responding to that interrupt would be assigned to CPU 2 for the most
deterministic response to that interrupt.

Figure 2-7 The Standard Shielded CPU Model

CPU1 Unshielded CPU

CPUD

Shielded CPU

Down CPU .

The commands to set up this configuration are:

S shield -a 2
S cpu -d 3

Shielding with Interrupt Isolation

Thismodel is very similar to the Standard Shielded CPU Model. However, in this case all
logical CPUs are used, none are taken down. Like the Standard Shielded CPU Model, a
subset of the logical CPUs is shielded. But rather than taking down the siblings of the
shielded CPUs, those CPUs are also shielded and are dedicated to handling high priority
interrupts that require deterministic interrupt response. Thisis accomplished by shielding
the sibling CPUs from processes and interrupts and then setting the CPU affinity of a
particular interrupt to that sibling CPU. Shielding with interrupt isolation isillustrated in
Figure 2-8.
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Figure 2-8 Shielding with Interrupt Isolation

h 4

CPU1 CPU 3 Unshielded CPU

CPUOD CPU 2

Shielded CPU

High Priority Interrupt ¥

The benefit of this approach is that it provides a small amount of parallelism between the
interrupt routine (which runs on CPU 3) and execution of high priority tasks on the sibling
CPU (the program awaiting the interrupt runs on CPU 2). Because the interrupt routineis
the only code executing on CPU 3, this interrupt routine will generally be held inthe L1
cache in its entirety, and the code will stay in the cache, providing optimum execution
times for the interrupt routine. There is a small penalty to pay however, because the
interrupt routine must send a cross processor interrupt in order to wake the task that is
awaiting thisinterrupt on the sibling CPU. This additional overhead has been measured at
less than two microseconds.

Another potential use of using shielding with interrupt isolation is to improve I/O
throughput for a device. Because we are dedicating a CPU to handling a device interrupt,
this interrupt will always complete as quickly as possible when an 1/O operation has
completed. Thisallows the interrupt routine to immediately initiate the next I/O operation,
providing better 1/O throughpui.

Hyper-thread Shielding
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This configuration is another variation of the Standard Shielded CPU Model. In this case,
one sibling is shielded while the other sibling is alowed to run general tasks. The shielded
CPU will have its determinism impacted by the activity on its sibling CPU. However, the
advantage is that much more of the CPU power of this physical CPU can be utilized by the
application. Figure 2-9 illustrates a Hyper-thread Shielding configuration.



Real-Time Performance

Figure 2-9 Hyper-thread Shielding

CPU1 CPU 3 Unshielded CPTJ I:l

CPUO CPU2
Shielded CPU I:l

High Priority Interrupt *

In this example, CPU 3isshielded and allowed to run only ahigh priority interrupt and the
program that responds to that interrupt. CPU 2 is either not shielded and therefore
available for general use or is set up to run a specific set of tasks. The tasks that run on
CPU 2 will not directly impact interrupt response time, because when they disable
preemption or block interrupts there is no effect on the high priority interrupt or task
running on CPU 3. However, at the chip resource level there is contention that will impact
the determinism of execution on CPU 3. The amount of impact is very application
dependent.

Floating-point / Integer Sharing

Shared Data Cache

This configuration can be used when the application has some programs that primarily
perform floating-point operations and some programs that primarily perform integer
arithmetic operations. Both siblings of a hyper-threaded CPU are used to run specific
tasks. Programs that are floating-point intensive are assigned to one sibling CPU and
programs that primarily execute integer operations are assigned to the other sibling CPU.
The benefit of this configuration is that floating-point operations and integer operations
use different chip resources. This alows the application to make good use of hyper-thread
style parallelism because there is more parallelism that can be exploited at the chip level.
It should also be noted that applications on the CPU that are only performing integer
operations would see faster context switch times because there won't be save/restore of
the floating-point registers during the context switch.

This configuration can be used when the application is a producer/consumer style of
application. In other words, one process (the consumer) is operating on data that has been
passed from another process (the producer). In this case, the producer and consumer
threads should be assigned to the siblings of a hyper-threaded CPU. Because the two
sibling CPUs share the data cache, it is likely that the data produced by the producer
processis still in the data cache when the consumer process accesses the data that has been
passed from the producer task. Using two sibling CPUs in this manner allows the producer
and consumer tasks to operate in parallel, and the data passed between them is essentially
passed viathe high-speed cache memory. This offers significant opportunity for exploiting
hyper-thread style parallelism.

Another potential use of this model isfor the process on one sibling CPU to pre-fetch data
into the data cache for a process running on the other sibling on a hyper-threaded CPU.
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Shielded Uniprocessor

This configuration is a variation of the Hyper-thread Shielding configuration. The only
difference is that we are applying this technique to a uniprocessor rather than to one
physical CPU in an SMP system. Because a physical CPU now contains two logical
CPUs, a uniprocessor can now be used to create a shielded CPU. In this case, one of the
CPUs is marked shielded while the other CPU is used to run background activity.
Determinism on this type of shielded CPU will not be as solid as using CPU shielding on a
distinct physical CPU, but it will be significantly better than with no shielding at all.

Avoiding a Low Memory State

Ensure that your system has adequate physical RAM. Concurrent’s real-time guarantees
assume a properly configured system with adequate RAM for real-time application usage.
In low-memory situations, real-time deadlines may be sacrificed to better ensure system
integrity and maintain proper system behavior. When Linux runs out of memory, it
randomly selects processes to kill in an attempt to free up memory so that other processes
can proceed.

Memory usage can be monitored using a number of tools including /proc/meminfo,
free (1) and vmstat (8).

Known Issues with Linux Determinism
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The following are issues with standard Linux that are known to have a negative impact on
real-time performance. These actions are generally administrative in nature and should not
be performed while the system is executing a real-time application.

* The hdparm (1) utility is a command line interface for enabling special
parameters for IDE and SCSI disks. This utility is known to disable
interrupts for very lengthy periods of time.

* The blkdev close(2) interface is used by BootL oaders to write to the
raw block device. This is known to disable interrupts for very lengthy
periods of time.

¢ Avoid scrolling the frame-buffer (fb) console. This is known to disable
interrupts for very lengthy periods of time.

* When using virtual consoles, don’t switch consoles. Thisis known to disable
interrupts for very lengthy periods of time.

¢ Avoid mounting and unmounting CDs and unmounting file systems. These
actions produce long latencies.

* Turn off auto-mount of CDs. Thisisa polling interface and the periodic poll
introduces long latencies.
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¢ By default the Linux kernel locks the Big Kernel Lock (BKL) before calling
adevicedriver's ioctl () routine. This can cause delays when the
ioctl () routineis caled by areal-time process or is called on a shielded
CPU. See the “Device Drivers’ chapter for more information on how to
correct this problem.

¢ Avoid unloading kernel modules. This action creates and destroys a number
of per-CPU kmodule daemons that can add unnecessary jitter on the CPU.

* There may be possible real-time issues when starting and stopping the X
server while running time-critical applications on shielded CPU(s).
Depending upon the type of graphics cards your system uses, this may result
in numerous cross-processor interrupts that slow performance. If you are
experiencing this, refer to Appendix G for methods to reduce these
interrupts.
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Overview

3
Real-Time Interprocess Communication

This chapter describes RedHawk Linux support for real-time interprocess communication
through POSIX and System V message passing and shared memory facilities.

Appendix A contains example programsthat illustrate the use of the POSIX and System V
message queue facilities.

RedHawk Linux provides several mechanisms that allow processes to exchange data.
These mechanisms include message queues, shared memory and semaphores based on the
|[EEE Standard 1003.1b-1993 as well as those included in the System V Interprocess
Communication (1PC) package. Message queues and shared memory are discussed in this
chapter; semaphores are discussed in Chapter 5, Interprocess Synchronization.

Message queues allow one or more processes to write messages to be read by one or more
reading processes. Facilities are provided to create, open, query and destroy a message
gueue, send and receive messages from a message queue, associate a priority with a
message to be sent, and request asynchronous notification when a message arrives.

POSIX and System V messaging functionality operate independent of each other. The
recommended message-passing mechanism is the POSIX message queue facility because
of its efficiency and portability. The sections “POSIX Message Queues’ and “ System V
Messages’ in this chapter describe these facilities.

Shared memory allows cooperating processes to share data through a common area of
memory. One or more processes can attach a segment of memory and as a consequence
can share whatever datais placed there.

As with messaging, POSIX and System V shared memory functionality operate indepen-
dent of each other. It is recommended that you use a System V shared memory areain an
application in which data placed in shared memory are temporary and do not need to exist
following areboot of the system. Datain a System V shared memory area are kept only in
memory. No disk file is associated with that memory and therefore no disk traffic is gener-
ated by the sync (2) system call. Also, System V shared memory alows you to bind a
shared memory segment to a section of physical 1/0 memory. Refer to the section “ System
V Shared Memory” for information about this facility.

An aternative to using System V shared memory is to use the mmap (2) system call to
map a portion of the /dev/mem file. For information on the mmap system call, refer to
Chapter 9, “Memory Mapping.” For information on the /dev/menmn file, refer to the
mem (4) man page.

POSIX shared memory interfaces are mapped to adisk filein the /var/tmp directory. If
thisdirectory is mounted on amemf s file system, then no extra disk traffic is generated to
flush the shared data during the sync system call. If thisdirectory is mounted on aregular
disk partition, then disk traffic will be generated during the sync system call to keep the
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shared data updated in the mapped disk file. Whether the data that are written to POSIX
shared memory are saved in afile or not, those data do not persist following areboot of the
system. The POSI X shared memory functionality is described in the “POSIX Shared
Memory” section of this chapter.

POSIX Message Queues

Basic Concepts

3-2

An application may consist of multiple cooperating processes, possibly running on
separate processors. These processes may use system-wide POSIX message queues to
efficiently communicate and coordinate their activities.

The primary use of POSIX message queues is for passing data between processes. In
contrast, thereis little need for functions that pass data between cooperating threads in the
same process because threads within the same process already share the entire address
space. However, nothing prevents an application from using message queues to pass data
between threads in one or more processes.

“Basic Concepts’ presents basic concepts related to the use of POSIX message queues.
“Advanced Concepts’ presents advanced concepts. A sample program is provided in
Appendix A.

POSIX message queues are implemented asfilesin the mqueue file system.

RedHawk mounts the mqueue file system on /dev/mqueue, although it can be mounted
on any mount point. If an entry for /dev/mqueue isadded to /etc/fstab by the
system administrator, it is mounted at boot time per the entry; otherwise, the /etc/
init.d/ccur script performsthe mount.

To manually mount the mqueue file system on /dev/mqueue, issue the command:

#mkdir -p /dev/mqueue (if the mount point does not exist)
#mount -t mqueue none /dev/mqueue

The ‘none’ argument reflects that this is a mount point and not a device file. The magjor
number O (reserved as null device number) is used by the kernel for unnamed devices (e.g.
non-device mounts).

When mounted, a message queue appears as afile in the directory /dev/mqueue; for
example:

/dev/mqueue/my queue

The current implementation does not require that the mqueue file system be mounted;
programs will run whether it is mounted or not. However when not mounted, mqueues are
not visible and cannot be manipulated from the command line.
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One cannot create adirectory under /dev/mqueue because the mqueue file system does
not support directories. One might use the system calls close (2), open(2), and
unlink (2) for operating on POSIX message queues within source code, but full access
to POSIX message queue features can only be achieved through library routines provided
by the RedHawk Linux real-time library interface. See “Message Queue Library
Routines” for further discussion on using the interface.

It is possible to have multiple instances of mount points active simultaneously. These will
be mirror images; what happens under one path is seen under all paths. This means that
mgueues with the same name seen under different paths refer to the same mqueus; i.e.,
/dev/mqueue/my queue and /mnt/mqueue/my queue refer to the same mqueue.
Thisis not the intended method of operation but it illustrates that an mqueue is a system-
wide global data structure.

Cat (1), stat(1l),1s(1), chmod (1), chown(1l), rm(1l), touch (1), and
umask (2) al work on mqueue files as on other files. File permissions and modes also
work the same as with other files.

Other common file manipulation commands like copy may work to some degree, but
mqueue files, although reported as regular files by the VFS, are not designed to be used in
this manner. One may find some utility with some commands, however; notably cat and
touch:

* touch will create aqueue with limitsset to ‘0’.
* cat will produce some information in four fields:

QSIZE number of bytesin memory occupied by the entire queue
NOTIFY notification marker (seemg_notify (2))

SIGNO the signal to be generated during notification
NOTIFY_PID which process should be notified

The following system limits apply to POSIX message queues:

DFLT_QUEUESMAX 64 max number of message queues
DFLT_MSGMAX 40 max number of messagesin each queue
DFLT_MSGSIZEMAX 16384 max message size

HARD_MSGMAX (131072/sizeof(void*)) max sizethat all queues can have together
MQ_PRIO_MAX 32768 max message priority

A message queue consists of message slots. To optimize message sending and receiving,
all message slots within one message queue are the same size. A message slot can hold
one message. The message size may differ from the message slot size, but it must not
exceed the message slot size. Messages are not padded or null-terminated; message length
is determined by byte count. Message queues may differ by their message sot sizes and
the maximum number of messages they hold. Figure 3-1 illustrates some of these facts.
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Figure 3-1 Example of Two Message Queues and Their Messages
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POSIX message queue library routines allow a process to:

* create, open, query, close, and destroy a message queue

* send messages to and receive messages from a message queue (may be
timed)

* associate a priority with a message to be sent

* request asynchronous notification via a user-specified signal when a
message arrives at a specific empty message queue

Processes communicate with message queues via message queue descriptors. A child
process created by a fork (2) system call inherits all of the parent process’ open
message queue descriptors. The exec (2) and exit (2) system calls close al open
message queue descriptors.

When one thread within a process opens a message queue, all threads within that process
can use the message queueif they have access to the message queue descriptor.

A process attempting to send messages to or receive messages from a message queue may
have to wait. Waiting is a so known as being blocked.

Two different types of priority play arole in message sending and receiving: message
priority and process-scheduling priority. Every message has a message priority. The
oldest, highest-priority message is received first by a process.

Every process has a scheduling priority. Assume that multiple processes are blocked to
send a message to a full message queue. When space becomes free in that message queue,
the system wakes the highest-priority process; this process sends the next message. When
there are multiple processes having the highest priority, the one that has been blocked the
longest is awakened. Assume that multiple processes are blocked to receive a message
from an empty message queue. When a message arrives at that message queue, the same
criteriais used to determine the process that receives the message.
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Advanced Concepts

Spin locks synchronize access to the message queue, protecting message queue structures.
While a spin lock is locked, most signals are blocked to prevent the application from
aborting. However, certain signals cannot be blocked.

Assume that an application uses message queues and has a lock. If asignal aborts this
application, the message queue becomes unusable by any process; all processes
attempting to access the message queue hang attempting to gain access to the lock. For
successful accesses to be possible again, a process must destroy the message queue via
mg unlink (2) and re-create the message queue viamg open (2). For more
information on these routines, see “ The mg_unlink Routine” and “The mg_open Routine,”
respectively.

Message Queue Library Routines

The POSIX library routines that support message queues depend on a message queue
attribute structure. “ The Message Queue Attribute Structure” describes this structure.
“Using the Library Routines’ presents the library routines.

All applications that call message queue library routines must link in the Concurrent real-
time library. You may link this library either statically or dynamically. The following
exampl e shows the typical command-line format:

gcc [options..] file -lecur rt ..

The Message Queue Attribute Structure

The message queue attribute structure mg_attr holds status and attribute information
about a specific message queue. When a process creates a message queue, it automatically
creates and initializes this structure. Every attempt to send messages to or receive
messages from this message queue updates the information in this structure. Processes can
query the values in this structure.

You supply a pointer to an mg_attr structure when you invokemg _getattr (2) and
optionally when you invokemg_open (2) . Refer to “ The mq_getattr Routine” and “The
mq_open Routine,” respectively, for information about these routines.

Themg attr structure is defined in <mqueue . h> asfollows:

struct mg attr (
long mg flags;
long mg maxmsg;
long mg msgsize;
long mg curmsgs;

}i
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The fields in the structure are described as follows.

mg_flags

mg_maxmsg

mg msgsize

mg_Ccurmsgs

Using the Library Routines

3-6

aflag that indicates whether or not the operations associated
with this message queue are in nonblocking mode

the maximum number of messages this message queue can
hold

the maximum size in bytes of a message in this message
queue

the number of messages currently in this message queue

The POSIX library routines that support message queues are briefly described as follows:

mg_open

mg close
mg unlink
mg send

mg timedsend

mg_receive

mg timedreceive

mg notify

mg_setattr

mg getattr

create and open a new message gqueue or open an existing
message queue

close an open message queue
remove a message queue and any messagesin it
write a message to an open message queue

write a message to an open message queue with timeout
value

read the oldest, highest-priority message from an open
message queue

read the oldest, highest-priority message from an open
message queue with timeout value

register for notification of the arrival of a message at an
empty message queue such that when a message arrives, the
calling process is sent a user-specified signal

set the attributes associated with a message queue

obtain status and attribute information about an open
message queue

Procedures for using each of the routines are presented in the sections that follow.
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Themg open (2) library routine establishes a connection between a calling process and
amessage queue. Depending on flag settings, mg_open may create a message queue. The
mg_open routine always creates and opens a new message queue descriptor. Most other
library routines that support message queues use this message queue descriptor to refer to

amessage queue.

Synopsis

#include <mqueue.h>

mgd_t mg_open (const char name, int oflag, /*
mode t mode, struct mg_attr *attr */..);

The arguments are defined as follows:

name

oflag

is concatenated with the mountpoint /dev/mqueue to form an
absolute path naming the mqueue file. For example, if name is
/my _queue, the path becomes /dev/mqueue/my queue. This path
must be within the limits of PATH_MAX.

Processes calling mg_open with the same value of name refer to the
same message queue. If the name argument is not the name of an
existing message queue and you did not request creation, mg_open
fails and returns an error.

an integer value that shows whether the calling process has send and
receive access to the message queue; this flag also shows whether the
calling process is creating a message queue or establishing a connection
to an existing one.

The mode a process supplies when it creates a message queue may limit
the oflag settings for the same message queue. For example, assume that
at creation, the message queue mode permits processes with the same
effective group 1D to read but not write to the message queue. If a
process in this group attempts to open the message queue with oflag set
to write access (O_WRONLY), mg_open returns an error.

The only way to change the oflag settings for a message queue is to call
mg _close andmg_open to respectively close and reopen the message
queue descriptor returned by mq_open.

Processes may have a message queue open multiple times for sending,
receiving, or both. The value of oflag must include exactly one of the
three following access modes:

O_RDONLY Open a message queue for receiving messages. The
calling process can use the returned message queue
descriptor withmg receive but not mg send.

O_WRONLY Open a message queue for sending messages. The
calling process can use the returned message queue
descriptor withmg_send but not mq_receive.

3-7
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mode

attr

O_RDWR Open a message queue for both receiving and sending
messages. The calling process can use the returned
message queue descriptor with mq_send and
mg receive.

The value of oflag may also include any combination of the remaining flags:

O_CREAT Create and open an empty message queue if it does
not already exist. If message queue name is not cur-
rently open, this flag causesmg_open to create an
empty message queue. If message queue name is
already open on the system, the effect of thisflagisas
noted under 0_ExcL. When you set the 0_CREAT flag,
you must also specify the mode and attr arguments.

A newly-created message queue hasits user 1D set to
the calling process’ effective user ID and its group 1D
set to the calling process’ effective group ID.

O_EXCL Return an error if the calling process attempts to cre-
ate an existing message queue. Themq_open routine
fails if 0_EXCL and O_CREAT are set and message
queue name already exists. Themg open routine
succeeds if O_ExXCL and O_CREAT are set and message
queue name does not already exist. Themg_open
routine ignores the setting of o_ExcL if 0_EXcCL is set
but O_CREAT is not set.

O_NONBLOCK On anmg_send, return an error rather than wait for
space to become free in afull message queue. On an
mg_receive, return an error rather than wait for a
message to arrive at an empty message queue.

an integer value that sets the read, write, and execute/search permission
for amessage queueif thisisthemg_open call that creates the message
gueue. Themg open routine ignores all other mode bits (for example,
setuid). The setting of the file-creation mode mask, umask, modifies
the value of mode. For more information on mode settings, see the
chmod (1) and umask (2) man pages.

When you set the 0_CREAT flag, you must specify the mode argument to
mg_open.

the null pointer constant or a pointer to a structure that sets message
gueue attributes--for example, the maximum number of messagesin a
message queue and the maximum message size. For more information
on the mg_attr structure, see “The Message Queue Attribute
Structure.”

If attr isNULL, the system creates a message queue with system limits.
If attr is not NULL, the system creates the message queue with the
attributes specified in this field. If attr is specified, it takes effect only
when the message queue is actually created.
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If attr is not NULL, the following attributes must be set to a value
greater than zero:

attr.mg maxmsg
attr.mg msgsize

A return value of a message queue descriptor shows that the message queue has been
successfully opened. A return value of ((mqgd_t) -1) shows that an error has occurred;
errno IS set to show the error. Refer to themg _open (2) man page for alisting of the
types of errors that may occur.

The mq_close Routine

Themg close (2) library routine breaks a connection between a calling process and a
message queue. Themg close routine does this by removing the message queue
descriptor that the calling process uses to access a message queue. Themg _close routine
does not affect a message queue itself or the messages in a message queue.

Note

If a process requests notification about a message queue and later
closes its connection to the message queue, this request is
removed; the message queue is available for another process to
request notification. For information on notification requests via
mg_notify, see “The mg_notify Routine.”

Synopsis
#include <mqueue.h>
int mg_close(mgd_t mqdes) ;
The argument is defined as follows:
mades amessage queue descriptor obtained from anmg_open.

A return value of 0 shows that the message queue has been successfully closed. A return
value of -1 shows that an error has occurred; errno is set to show the error. Refer to the
mg_close (2) man page for alisting of the types of errors that may occur.
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The mg_unlink Routine

Themg unlink (2) library routine preventsfurther mq open callsto a message queue.
When there are no other connections to this message queue, mg_unlink removes the
message queue and the messagesiin it.

Synopsis

#include <mqueue.h>

int mg unlink (const char *name) ;
The argument is defined as follows:

name is concatenated with the mountpoint /dev/mqueue to form an
absolute path naming the mqueue file. For example, if name is
/my _queue, the path becomes /dev/mqueue/my queue. This path
must be within the limits of PATH_MAX.

If aprocess has message queue name open whenmg unlink iscalled,
mg unlink immediately returns; destruction of message queue name
is postponed until all references to the message queue have been closed.
A process can successfully remove message queue name only if the
mqg_open that created this message queue had a mode argument that
granted the process both read and write permission.

A return value of 0 shows that a message queue has been successfully removed. A return
value of -1 shows that an error has occurred; errno is set to show the error. Refer to the
mg_unlink (2) man page for alisting of the types of errors that may occur.

The mq_send and mqg_timedsend Routines

3-10

Themg send(2) library routine adds a message to the specified message queue. The
mg_send routine is an async-safe operation; that is, you can call it within a signal-
handling routine.

A successful mg_send to an empty message queue causes the system to wake the highest
priority process that is blocked to receive from that message queue. If a message queue
has a notification request attached and no processes blocked to receive, a successful
mqg_send to that message queue causes the system to send a signal to the process that
attached the notification request. For more information, read about mq_receivein“The
mqg_receive and mq_timedreceive Routines” and mg_notify in “The mq_notify
Routine.”

Themg timedsend library routine can be used to specify atimeout value so that if the
specified message queue is full, the wait for sufficient room in the queue is terminated
when the timeout expires.

Synopsis

#include <mqueue.h>
#include <time.h>

int mg send(mgd _t mgdes, const char *msg ptr, size t msg_len,
unsigned int msg _prio) ;
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int mg_timedsend(mgd_t mqdes, const char *msg_ptr, size t
msg len, unsigned int msg prio, const struct timespec
*abs timeout) ;

The arguments are defined as follows:

mades

msg_ptr

msg_len

msg_prio

amessage queue descriptor obtained from anmqg_open. If the specified
message queue is full and 0_NONBLOCK is set in mqdes, the message is
not queued, and mg_send returns an error. If the specified message
queue is full and O_NONBLOCK is not set in mgdes, mg_send blocks
until space becomes available to queue the message or until mg_send
isinterrupted by asignal.

Assume that multiple processes are blocked to send a message to a full
message queue. When space becomes free in that message queue
(because of an mg_receive), the system wakes the highest-priority
process that has been blocked the longest. This process sends the next

message.

For mg_send to succeed, themg open call for this message queue
descriptor must have had 0_wWRONLY or O_RDWR set in oflag. For
information onmg_open, see “The mg_open Routine.”

a string that specifies the message to be sent to the message queue
represented by mgdes.

an integer value that shows the size in bytes of the message pointed to
by msg_ptr. The mg_send routine fails if msg_len exceeds the
mg msgsize message size attribute of the message queue set on the
creating mg_open. Otherwise, the mg send routine copies the
message pointed to by the msg_ptr argument to the message queue.

an unsigned integer value that shows the message priority. The system
keeps messages in a message queue in order by message priority. A
newer message is queued before an older one only if the newer message
has a higher message priority. The value for msg_prio ranges from 0O
through MQ_PRIO_MAX, where O represents the least favorable priority.
For correct usage, the message priority of an urgent message should
exceed that of an ordinary message. Note that message priorities give
you some ability to define the message receipt order but not the message
recipient.

abs_timeout

atimeout value in nanoseconds. The range is 0 to 1000 million. If the
specified message queue is full and O_NONBLOCK is not set in the
message queue description associated with mqdes, the wait for
sufficient room in the queue is terminated when the timeout expires.

Figure 3-2 illustrates message priorities within a message queue and situations where
processes are either blocked or are free to send a message to a message queue.
Specifically, the following facts are depicted:

* The operating system keeps messages in each message queue in order by
message priority.
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* Several messages within the same message queue may have the same
message priority.

* By default, a process trying to send a message to a full message queue is
blocked.

Figure 3-2 The Result of Two mq_sends
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A return value of 0 shows that the message has been successfully sent to the designated
message queue. A return value of -1 shows that an error has occurred; errno is set to
show the error. Refer to themg send (2) man page for alisting of the types of errors
that may occur.

The mqg_receive and mq_timedreceive Routines

312

Themg receive (2) library routine reads the oldest of the highest-priority messages
from a specific message queue, thus freeing space in the message queue. The
mg_receive routine is an async-safe operation; that is, you can call it within a signal-
handling routine.

A successful mqg receive from afull message queue causes the system to wake the
highest-priority process that is blocked to send to that message queue. For more
information, read about mq_send in “The mg_send and mq_timedsend Routines.”

Themg timedreceive library routine can be used to specify atimeout value so that if
no message exists on the queue to satisfy the receive, the wait for such a message is
terminated when the timeout expires.

Synopsis

#include <mqueue.h>
#include <time.h>

ssize t mg receive (mgd t mqgdes, char *msg_ptr, size t
msg_len, unsigned int msg_prio) ;
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ssize t mg_timedreceive (mgd t mgdes, char *msg ptr, size t
msg len, unsigned int msg prio, const struct timespec
*abs timeout) ;

The arguments are defined as follows:

mades

a message queue descriptor obtained from an mg open. If
O_NONBLOCK is set in mgdes and the referenced message queue is
empty, nothing is read, and mg_receive returns an error. If
O_NONBLOCK is not set in mgdes and the specified message queue is
empty, mq_receive blocks until amessage becomes available or until
mg_receive isinterrupted by asignal.

Assume that multiple processes are blocked to receive a message from
an empty message queue. When a message arrives at that message
queue (because of anmg_send), the system wakes the highest-priority
process that has been blocked the longest. This process receives the

message.

For mg_receive to succeed, the process’ mg open call for this
message queue must have had 0_RDONLY or O_RDWR set in oflag. For
information onmg_open, see “The mg_open Routine.”

Figure 3-3 shows two processes without O_NONBLOCK set in mqdes.
Although both processes are attempting to receive messages, one
process is blocked because it is accessing an empty message queue. In
the figure, the arrows indicate the flow of data.

Figure 3-3 The Result of Two mq_receives
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msg_ptr

msg_len

a pointer to a character array (message buffer) that will receive the
message from the message queue represented by mgdes. The return
value of asuccessful mg receive isabyte count.

an integer value that shows the size in bytes of the array pointed to by
msg_ptr. Themg receive routine fails if msg_len is less than the
mg msgsize message-size attribute of the message queue set on the
creating mg_open. Otherwise, the mg_receive routine removes the
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message from the message queue and copiesit to the array pointed to by
the msg_ptr argument.

msg_prio  thenull pointer constant or a pointer to an unsigned integer variable that
will receive the priority of the received message. If msg_priois NULL,
themg receive routine discards the message priority. If msg_priois
not NULL, themg receiwve routine stores the priority of the received
message in the location referenced by msg_prio. The received message
isthe oldest, highest-priority message in the message queue.

abs_timeout
a timeout value in nanoseconds. The range is 0 to 1000 million. If
O_NONBLOCK is not specified when the message queue was opened via
mg_open (2), and no message exists on the queue to satisfy the
receive, the wait for such a message is terminated when the timeout
expires.

A return value of -1 shows that an error has occurred; errno is set to show the error and
the contents of the message queue are unchanged. A non-negative return value shows the
length of the successfully-received message; the received message is removed from the
message queue. Refer to themg receive (2) man page for alisting of the types of
errors that may occur.

The mqg_notify Routine

314

Themg notify (2) library routine allowsthe calling process to register for notification
of the arrival of a message at an empty message queue. This functionality permits a
process to continue processing rather than blocking on acall to mg receive (2) to
receive a message from a message queue (see “ The mq_receive and mq_timedreceive
Routines” for an explanation of this routine). Note that for a multithreaded program, a
more efficient means of attaining this functionality is to spawn a separate thread that
issues anmg_receive call.

At any time, only one process can be registered for notification by a message queue.
However, a process can register for notification by each mgdes it has open except an
mades for which it or another process has already registered. Assume that a process has
already registered for notification of the arrival of a message at a particular message
gueue. All future attempts to register for notification by that message queue will fail until
notification is sent to the registered process or the registered process removes its
registration. When notification is sent, the registration is removed for that process. The
message queue is again available for registration by any process.

Assume that one process blocks on mqg_receive and another process registers for
notification of message arrival at the same message queue. When a message arrives at the
message queue, the blocked process receives the message, and the other process’
registration remains pending.

Synopsis
#include <mqueue.h>

int mg notify(mgd t mqdes, const struct sigevent
*notification) ;
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The arguments are defined as follows:
mades amessage queue descriptor obtained from anmg_open.

notification
the null pointer constant or a pointer to a structure that specifies the way
in which the calling process is to be notified of the arrival of a message
at the specified message queue. If notification is not NULL and neither
the calling process nor any other process has already registered for
notification by the specified message queue, mq notify registers the
calling process to be notified of the arrival of a message at the message
gueue. When a message arrives at the empty message queue (because of
anmg_send), the system sends the signal specified by the notification
argument to the process that has registered for notification. Usually the
calling process reacts to this signal by issuing anmg_receive on the

message queue.

When notification is sent to the registered process, its registration is
removed. The message queue is then available for registration by any
process.

If notification is NULL and the calling process has previously registered
for notification by the specified message queue, the existing registration
isremoved.

If the value of natification is not NULL, the only meaningful value that
notification->sigevent.sigev_notify can specify is SIGEV_SIGNAL. With
this value set, a process can specify a signal to be delivered upon the
arrival of amessage at an empty message queue.

If you specify SIGEV_SIGNAL, notification->sigevent.sigev_signal must
specify the number of the signal that is to be generated, and notification-
>sigevent.sigev_value must specify an application-defined value that is
to be passed to a signal-handling routine defined by the receiving
process. A set of symbolic constants has been defined to assist you in
specifying signal numbers. These constants are defined in the file
<signal.h>. The application-defined value may be a pointer or an
integer value. If the process catching the signal has invoked the
sigaction (2) system call with the sa_siGINFO flag set prior to the
time that the signal is generated, the signal and the application-defined
value are queued to the process when a message arrives at the message
gueue. The siginfo_t structure may be examined in the signal
handler when the routine is entered. The following values should be
expected (see siginfo.h):

si value specified sigevent.sigev_value to be sent on notification

si code SI_MESGQ (real time message queue state change value: -3)
si_ signo specified sigevent.sigev_signal to be generated
si_errno associated errno value with this signal

A return value of 0 shows that the calling process has successfully registered for
notification of the arrival of a message at the specified message queue. A return value of
-1 shows that an error has occurred; errno is set to show the error. Refer to the
mg_notify (2) man page for alisting of the types of errors that may occur.
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The mqg_setattr Routine
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Themg setattr (2) library routine allows the calling process to set the attributes
associated with a specific message queue.

Synopsis

#include <mqueue.h>

int mg_setattr(mgd t mqdes, const struct mg attr *mgstat,
struct mg attr *omgdat) ;

The arguments are defined as follows:

mades

mastat

omgstat

a message queue descriptor obtained from an mg open. The
mg_setattr routine sets the message queue attributes for the message
gueue associated with mades.

a pointer to a structure that specifies the flag attribute of the message
gueue referenced by mqgdes. The value of this flag may be zero or
O_NONBLOCK. O_NONBLOCK causesthemqg send and mg receive
operations associated with the message queue to operate in nonblocking
mode.

The values of mg_maxmsg, mg _msgsize, and mg curmsgs are
ignored by mq_setattr.

For information on the mg_attr structure, see “The Message Queue
Attribute Structure.” For information on the mqg_send and
mg_receive routines, see “The mg_send and mg_timedsend Rou-
tines” and “The mq_receive and mq_timedreceive Routines,” respec-
tively.

the null pointer constant or a pointer to a structure to which information
about the previous attributes and the current status of the message queue
referenced by mqdes is returned. For information on themg _attr
structure, see “ The Message Queue Attribute Structure.”

A return value of 0 shows that the message queue attributes have been successfully set as
specified. A return value of -1 shows that an error has occurred; errno is set to show the
error. Refer to themg setattr (2) man page for alisting of the types of errors that

may Ooccur.
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The mqg_getattr Routine

Themg getattr (2) library routine obtains status and attribute information associated
with a specific message queue.

Synopsis

#include <mqueue.h>

int mg_getattr(mgd t mgdes, struct mg attr *mgdat) ;
The arguments are defined as follows:

mades a message queue descriptor obtained from an mg open. The
mg _getattr routine provides information about the status and
attributes of the message queue associated with mgdes.

mastat apointer to a structure that receives current information about the status
and attributes of the message queue referenced by mqgdes. For
information on the mg_attr structure, see “The Message Queue
Attribute Structure.”

A return value of 0 shows that the message queue attributes have been successfully
attained. A return value of -1 shows that an error has occurred; errno is set to show the
error. Refer to the mg _getattr (2) man page for alisting of the types of errors that
may OCCuUI.

System V Messages

The System V message type of interprocess communication (IPC) allows processes
(executing programs) to communicate through the exchange of data stored in buffers. This
datais transmitted between processes in discrete portions called messages. Processes
using thistype of IPC can send and receive messages.

Before a process can send or receive a message, it must have the operating system
generate the necessary software mechanisms to handle these operations. A process does
this using the msgget (2) system call. In doing this, the process becomes the
owner/creator of a message queue and specifies the initial operation permissions for all
processes, including itself. Subsequently, the owner/creator can relinquish ownership or
change the operation permissions using the msgetl (2) system call. However, the
creator remains the creator as long as the facility exists. Other processes with permission
can usemsgctl to perform various other control functions.

Processes which have permission and are attempting to send or receive a message can
suspend execution if they are unsuccessful at performing their operation. That is, a process
which is attempting to send a message can wait until it becomes possible to post the
message to the specified message queue; the receiving process isn’t involved (except
indirectly; for example, if the consumer isn’t consuming, the queue space will eventually
be exhausted) and vice versa. A process which specifies that execution is to be suspended
is performing a blocking message operation. A process which does not allow its execution
to be suspended is performing a nonbl ocking message operation.
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A process performing a blocking message operation can be suspended until one of three
conditions occurs:

* the operation is successful
* the process receives asignal
* the message queueis removed from the system

System calls make these message capabilities available to processes. The calling process
passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs its
function and returns applicable information. Otherwise, -1 is returned to the process, and
errno is set accordingly.

Using Messages

3-18

Before a message can be sent or received, a uniquely identified message queue and data
structure must be created. The unique identifier is called the message queue identifier
(msgid); it is used to identify or refer to the associated message queue and data structure.
This identifier is accessible by any process in the system, subject to normal access
restrictions.

A message queue's corresponding kernel data structures are used to maintain information
about each message being sent or received. This information, which is used internally by
the system, includes the following for each message:

* message type
* message text size
* message text address

There is one associated data structure for the uniquely identified message queue,
msgid_ds. Thisdata structure contains the following information related to the message
queue:

® operation permissions data (operation permission structure)
¢ current number of byteson the queue

* number of messages on the queue

* maximum number of bytes on the queue

* processidentification (PID) of last message sender

* PID of last message receiver

* |ast message send time

* |ast message receivetime

¢ |ast changetime

NOTE

All C header files discussed in this chapter are located in the
/usr/include subdirectories.
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The definition of the associated message queue data structure msgid_ds includes the
members shown in Figure 3-4.

Figure 3-4 Definition of msqid_ds Structure

- N

struct ipc_perm msg perm;/* structure describing operation permission */

__time t msg stime; /* time of last msgsnd command */

__time_t msg _rtime; /* time of last msgrcv command */

__time t msg ctime; /* time of last change */

unsigned long int _ msg_cbytes; /* current number of bytes on queue */
msggnum_t msg_gnum; /* number of messages currently on queue */
msglen t msg gbytes;/* max number of bytes allowed on queue */

__pid t msg lspid; /* pid of last msgsnd() */

__pid t msg lrpid; /* pid of last msgrcv() */

\_ /

The C programming language data structure definition for msgid_ds should be obtained
by including the <sys/msg.h> header file, even though this structure is actually defined
in<bits/msq.h>.

The definition of the interprocess communication permissions data structure, ipc_perm,
includes the members shown in Figure 3-5:

Figure 3-5 Definition of ipc_perm Structure

4 N

__key t _ key; /* Key. */

__uid t uid; /* Owner's user ID. */
__gid t gid; /* Owner's group ID. */
__uid t cuid; /* Creator's user ID. */
__gid t cgid; /* Creator's group ID. */
unsigned short int mode; /* Read/write permission. */
unsigned short int _ seq; /* Sequence number. */

o /

The C programming language data structure definition of ipc_perm should be obtained
by including the <sys/ipc.h> header file, even though the actual definition for this
structureis located in <bits/ipc.h>. Note that <sys/ipc.h> iscommonly used for
al IPC facilities.

Themsgget (2) system call performs one of two tasks:

* creates a new message queue identifier and creates an associated message
gueue and data structure for it

* |ocates an existing message queue identifier that already has an associated
message queue and data structure

Both tasks require a key argument passed to themsgget system call. If key is not already
in use for an existing message queue identifier, a new identifier is returned with an
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associated message queue and data structure created for the key, provided no system
tunable parameter would be exceeded.

Thereis also a provision for specifying a key of value zero (0), known as the private key
(1pc_PRIVATE). When this key is specified, a new identifier is always returned with an
associated message queue and data structure created for it, unless a system limit for the
maximum number of message queues (MSGMNI) would be exceeded. The ipcs (8)

command will show the key field for the msgid as all zeros.

If a message queue identifier exists for the key specified, the value of the existing
identifier is returned. If you do not want to have an existing message queue identifier
returned, a control command (IPC_EXCL) can be specified (set) in the msgflg argument
passed to the system call (see “ The msgget System Call” for details of this system call).

When a message queue is created, the process that calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly. Remember,
ownership can be changed but the creating process always remains the creator. The
message queue creator also determines theinitial operation permissions for it.

Once a uniquely identified message queue has been created or an existing one is found,
msgop (2) (message operations) andmsgetl (2) (message control) can be used.

M essage operations, as mentioned before, consist of sending and receiving messages. The
msgsnd and msgrev system calls are provided for each of these operations (see “The
msgsnd and msgrcv System Calls” for details of these calls).

Themsgctl system call permits you to control the message facility in the following
ways:

* by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

* by changing operation permissions for a message queue (1PC_SET)

* by changing the size (msg_gbytes) of the message queue for a particular
message queue identifier (IPC_SET)

* by removing a particular message queue identifier from the RedHawk

Linux operating system along with its associated message queue and data
structure (IPC_RMID)

See the section “The msgctl System Call” for details of themsgetl system call.

Refer to Appendix A for a sample program using System V message queues. Additional
sample programs can be found online that illustrate in depth use of each of the System V
system calls. These are referenced within the section in this chapter that explains the
system call.



Real-Time Interprocess Communication

The msgget System Call

msgget (2) creates anew message queue or identifies an existing one.

This section describes the msgget system call. For more detailed information, see the
msgget (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/msgget.c with extensive comments provided
in README .msgget . txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key t key, int msgflg) ;

All of the #include filesarelocated in the /usr/include subdirectories of the
RedHawk Linux operating system.

key tisdefined by atypedef inthe <bits/types.h> header file to be an integral
type (this header fileisincluded internally by <sys/types.h>). The integer returned
from this function upon successful completion is the unique message queue identifier,
msqid. (The msgid is discussed in the “Using Messages® section earlier in this chapter.)
Upon failure, the external variable errno is set to indicate the reason for failureand -1 is
returned.

A new msqgid with an associated message queue and data structure is created if one of the
following conditionsistrue:

* keyisegual to IPC_PRIVATE
* key does not already have a msgid associated with it and (msgflg and
IPC_CREAT) is“true’ (not zero).

The value of msgflg is acombination of:

¢ control commands (flags)
® operation permissions

Control commands are predefined constants. The following control commands apply to
themsgget system call and are defined in the <bits/ipc.h> header file, which is
internally included by the <sys/ipc.h> header file:

IPC_CREAT used to create a new segment. If not used, msgget will find the
message queue associated with key, verify access permissions and
ensure the segment is not marked for destruction.

IPC_EXCL used with IPC_CREAT to cause the system call to return an error if a
message queue identifier already exists for the specified key. Thisis
necessary to prevent the process from thinking it has received a new
(unique) identifier when it has not.

Operation permissions determine the operations that processes are permitted to perform
on the associated message queue. “Read” permission is necessary for receiving messages
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or for determining queue status by means of amsgctl IPC_STAT operation. “Write”
permission is necessary for sending messages.

Table 3-1 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

Table 3-1 Message Queue Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions desired. That is, if “read by user” and “read/write by others’ is desired, the
code value would be 00406 (00400 plus 00006).

The msgflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value; for example:

msgid = msgget (key, (IPC_CREAT | 0400));
msgid = msgget (key, (IPC_CREAT | IPC _EXCL | 0400));

The system call will always be attempted. Exceeding the MSGMNI limit always causes a
failure. The MSGMNI limit value determines the system-wide humber of unique message
gueues that may be in use at any given time. This limit value is a fixed define value
located in <linux/msg.h>.

A list of message queue limit values may be obtained with the ipes (8) command by
using the following options. See the man page for further details.

ipecs -q -1

Refer to themsgget (2) man page for specific associated data structure initialization as
well as the specific error conditions.
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The msgctl System Call

msgctl (2) isused to perform control operations on message queues.

This section describes themsgetl (2) system call. For more detailed information, see
the msgctl (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/msgctl.c with extensive comments provided
in README .msgctl. txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgetl (int msgid, int cmd, struct msgid ds *buf) ;

All of the #include files are located in the /usr/include subdirectories of the
RedHawk Linux operating system.

Themsgctl system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The msgid variable must be a valid, non-negative integer value that has already been
created using themsgget system call.

The cmd argument can be any one of the following values:

IPC_STAT returns the status information contained in the associated data
structure for the specified message queue identifier, and placesit in
the data structure pointed to by the buf pointer in the user memory
area. Read permission is required.

IPC_SET writes the effective user and group identification, operation
permissions, and the number of bytes for the message queue to the
values contained in the data structure pointed to by the buf pointer in
the user memory area

IPC_RMID removes the specified message queue along with its associated data
structure

NOTE

Themsgetl (2) service also supports the IPC_INFO, MSG_STAT
and MSG_INFO commands. However, since these commands are
only intended for use by the ipes (8) utility, these commands
are not discussed.
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To perform an IPC_SET or IPC_RMID control command, a process must meet one or more of
the following conditions:

* have an effective user id of OWNER

* have an effective user id of CREATOR
* be the super-user

* havethe CAP_SYS ADMIN capability

Additionally, when performing an 1Pc_SeT control command that increases the size of the
msg_gbytes value beyond the value of MSGMNB (defined in <1inux/msg.h>), the
process must have the CAP_SYS_RESOURCE capability.

Note that a message queue can also be removed by using the ipcrm (8) command by
specifying the -q msgid or the -Q msgkey option, where msgid specifies the identifier for
the message queue and msgkey specifies the key associated with the message queue. To
use this command, the user must have the same effective user id or capability that is
required for performing an IPC_RMID control command. See the ipcrm (8) man page for
additional information on the use of this command.

The msgsnd and msgrcv System Calls

The message operations system calls, msgsnd and msgrev, are used to send and receive
messages.

This section describes the msgsnd and msgrcv system calls. For more detailed
information, see themsgop (2) man page. A program illustrating use of these calls can
be found at /usr/share/doc/ccur/examples/msgop.c With extensive
comments provided in README . msgop . txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (int msgid, void *msgp, size t msgsz, int msgflg) ;

int msgrev (int msgid, void *msgp, size t msgsz, long msgtyp,
int msgflg) ;

All of the #include files are located in the /usr/include subdirectories of the
RedHawk Linux operating system.

Sending a Message
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Themsgsnd system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The msgid argument must be a valid, non-negative integer value that has already been
created using themsgget system call.
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The msgp argument is a pointer to a structure in the user memory area that contains the
type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data structure pointed
to by the msgp argument. This is the length of the message. The maximum size of this
array is determined by the MsGMAX define, which islocated in <1inux/msg.h>.

The msgflg argument allows the blocking message operation to be performed if the
IPC_NOWAIT flag isnot set ((msgflg & 1PCc_NOwAIT)= = Q); the operation blocks if the total
number of bytes allowed on the specified message queue are in use (msg_gbytes). If the
IPC_NOWAIT flag is set, the system call fails and returns -1.

Receiving a Message

When themsgrev system call is successful, it returns the number of bytes received; when
unsuccessful it returns -1.

The msgid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using themsgget system call.

The msgp argument is a pointer to a structure in the user memory areathat will receive the
message type and the message text.

The msgsz argument specifies the length of the message to be received. If itsvalueisless
than the message in the array, an error can be returned if desired (see the msgflg argument
below).

The msgtyp argument is used to pick the first message on the message queue of the
particular type specified:

* |If msgtyp is equa to zero, the first message on the queueis received.

* |If msgtyp is greater than zero and the MsG_EXCEPT msgflg is not set, the
first message of the sametypeis received.

* |If msgtyp is greater than zero and the MsG_ExcePT msgflg is set, the first
message on the message queue that is not equal to msgtyp is received.

¢ |f msgtyp islessthan zero, the lowest message type that is less than or equal
to the absolute value of msgtyp is received.

The msgflg argument allows the blocking message operation to be performed if the
IPC_NOWAIT flag isnot set ((msgflg & 1Pc_NOwAIT) == Q); the operation blocks if the total
number of bytes allowed on the specified message queue are in use (msg_gbytes). If the
IPC_NOWAIT flag is set, the system call fails and returns a -1. And, as mentioned in the
previous paragraph, when the MmsG_EXCEPT flag is set in the msgflg argument and the
msgtyp argument is greater than 0, the first message in the queue that has a message type
that is different from the msgtyp argument is received.

If theipCc_NOWAIT flag is set, the system call failsimmediately when there is not a message
of the desired type on the queue. msgflg can also specify that the system call fail if the
message is longer than the size to be received; this is done by not setting the
MSG_NOERROR flag in the msgflg argument ((msgflg & MSG_NOERROR)) == 0). If the
MSG_NOERROR flag is set, the message is truncated to the length specified by the msgsz
argument of msgrev.
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POSIX Shared Memory
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The POSIX shared memory interfaces allow cooperating processes to share data and more
efficiently communicate through the use of a shared memory object. A shared memory
object is defined as a named region of storage that is independent of the file system and
can be mapped to the address space of one or more processes to allow them to share the
associated memory.

Theinterfaces are briefly described as follows:

shm open create a shared memory object and establish a connection
between the shared memory object and afile descriptor

shm unlink remove the name of a shared memory object

Procedures for using the shm_open routine are presented in “Using the shm_open
Routine.” Procedures for using the shm_unlink routine are presented in “Using the
shm_unlink Routine.”

In order for cooperating processes to use these interfaces to share data, one process
completes the following steps. Note that the order in which the steps are presented is
typical, but it is not the only order that you can use.

STEP 1. Create a shared memory object and establish a connection
between that object and a file descriptor by invoking the
shm_open library routine, specifying a unique name, and
setting the 0_CREAT and the 0_RDWR bit to open the shared
memory object for reading and writing.

STEP2: Set the size of the shared memory object by invoking the
ftruncate (2) system call and specifying the file
descriptor obtained in Step 1. This system call reguires that
the memory object be open for writing. For additional
information on ftruncate (2), refer to the corresponding
man page.

STEP3: Map a portion of the process's virtual address space to the
shared memory object by invoking the mmap (2) system
call and specifying the file descriptor obtained in Step 1 (see
the “Memory Mapping” chapter for an explanation of this
system call).

To use the shared memory object, any other cooperating process compl etes the following
steps. Note that the order in which the steps are presented is typical, but it is not the only
order that you can use.

STEP 1. Establish a connection between the shared memory object
created by the first process and afile descriptor by invoking
the shm_open library routine and specifying the same
name that was used to create the object.

STEP 2; If the size of the shared memory object is not known, obtain
the size of the shared memory object by invoking the
fstat (2) system call and specifying the file descriptor
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obtained in Step 1 and a pointer to a stat structure (this
structure is defined in <sys/stat.h>). The size of the
object isreturned in the st _size field of the stat
structure. Access permissions associated with the object are
returned in the st_modes field. For additional information
on £stat (2), refer to the corresponding system manual

page.

STEP3: Map a portion of the process's virtual address space to the
shared memory object by invoking mmap and specifying the
file descriptor obtained in Step 1 (see the “Memory
Mapping” chapter for an explanation of this system call).

Using the shm_open Routine

The shm_open (3) routine allows the calling process to create a POSIX shared memory
object and establish a connection between that object and a file descriptor. A process
subsequently uses the file descriptor that is returned by shm open to refer to the shared
memory object on callstoftruncate (2), fstat (2), and mmap (2) . After a process
creates a shared memory object, other processes can establish a connection between the
shared memory object and a file descriptor by invoking shm open and specifying the
same name.

After a shared memory object is created, all datain the shared memory object remain until
every process removes the mapping between its address space and the shared memory
object by invoking munmap (2), exec (2), or exit (2) and one process removes the
name of the shared memory object by invoking shm unlink (3). Neither the shared
memory object nor its name is valid after your system is rebooted.

Synopsis

#include <sys/types.h>
#include <sys/mman.h>

int shm open(const char *name, int oflag, mode t mode) ;

The arguments are defined as follows:

name a pointer to a null-terminated string that specifies the name of the
shared memory object. Note that this string may contain a maximum of
255 characters. It may contain aleading slash (/) character, but it may
not contain embedded slash characters. Note that this name is not a part
of thefile system; neither aleading slash character nor the current work-
ing directory affects interpretation of it (/shared obj and
shared obj areinterpreted as the same name). If you wish to write
code that can be ported to any system that supports POSIX interfaces,
however, it is recommended that name begin with a dash character.

oflag an integer value that sets one or more of the following hits:

Note that 0 RDONLY and O_RDWR are mutually exclusive hits; one of
them must be set.
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O_RDONLY

O_RDWR

O_CREAT

0_EXCL

O_TRUNC

causes the shared memory object to be opened for
reading only

causes the shared memory object to be opened for
reading and writing. Note that the process that creates
the shared memory object must open it for writing in
order to be able to set its size by invoking
ftruncate(2).

causes the shared memory object specified by nameto
be created if it does not exist. The memory object’s
user ID is set to the effective user ID of the calling
process; itsgroup ID is set to the effective group ID of
the calling process; and its permission bits are set as
specified by the mode argument.

If the shared memory object specified by name exists,
setting 0_CREAT has no effect except as noted for
O_EXCL.

causes shm_open to fail if O_CREAT is set and the
shared memory object specified by name exists. If
O_CREAT is not set, this bit isignored.

causes the length of the shared memory object
specified by name to be truncated to zero if the object
exists and has been opened for reading and writing.
The owner and the mode of the specified shared
memory object are unchanged.

mode an integer value that sets the permission bits of the shared memory
object specified by name with the following exception: bits set in the
process's file mode creation mask are cleared in the shared memory
object’s mode (refer to the umask (2) and chmod (2) man pages for
additional information). If bits other than the permission bits are set in
mode, they are ignored. A process specifies the mode argument only
when it is creating a shared memory object.

If the call is successful, shm _open creates a shared memory object of size zero and
returns a file descriptor that is the lowest file descriptor not open for the calling process.
The FD_cLOEXEC file descriptor flag is set for the new file descriptor; this flag indicates
that the file descriptor identifying the shared memory object will be closed upon execution
of the exec (2) system call (refer to the fentl (2) system manual page for additional

information).

A return value of —1 indicates that an error has occurred; errno is set to indicate the
error. Refer to the shm_open (3) man page for alisting of the types of errors that may

occur.
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Using the shm_unlink Routine

The shm unlink (3) routine alows the calling process to remove the name of a shared
memory object. If one or more processes have a portion of their address space mapped to
the shared memory object at the time of the call, the name is removed before
shm_unlink returns, but datain the shared memory object are not removed until the last
process removes its mapping to the object. The mapping is removed if a process invokes
munmap (2), exec (2),0r exit (2).

Synopsis

#include <sys/types.h>
#include <sys/mman.h>

int shm unlink (const char *name) ;
The argument is defined as follows:

name a pointer to a nullterminated string that specifies the shared memory
object name that is to be removed. Note that this string may contain a
maximum of 255 characters. It may contain aleading slash (/) character,
but it may not contain embedded slash characters. Note that this nameis
not a part of the file system; neither a leading slash character nor the
current working directory affects interpretation of it (/shared obj
and shared_obj areinterpreted as the same name). If you wish to
write code that can be ported to any system that supports POSIX inter-
faces, however, it is recommended that name begin with a dlash charac-
ter.

A return value of O indicates that the call to shm _unlink has been successful. A return
value of —1 indicates that an error has occurred; errno isset to indicate the error. Refer to
the shm_unlink (3) man page for alisting of the types of errors that may occur. If an
error occurs, the call to shm_unlink does not change the named shared memory object.

System V Shared Memory

Shared memory allows two or more processes to share memory and, consequently, the
data contained therein. Thisis done by allowing processes to set up access to acommon
virtual memory address space. This sharing occurs on a segment basis, which is memory
management hardware-dependent.

A process initially creates a shared memory segment using the shmget (2) system call.
Upon creation, this process sets the overall operation permissions for the shared memory
segment, setsits size in bytes, and can specify that the shared memory segment is for
reference only (read-only) upon attachment.

If the memory segment is not specified to be for reference only, all other processes with
appropriate operation permissions can read from or write to the memory segment.

The shared memory segments on the system are visible viathe /proc/sysvipc/shm
fileand ipcs (8) using the -m option.
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Shared memory operations, shmat (2) (shared memory attach) and shmdt (2) (shared
memory detach), can be performed on a shared memory segment. shmat allows
processes to associate themselves with the shared memory segment if they have
permission. They can then read or write as allowed. shmdt allows processes to
disassociate themselves from a shared memory segment. Therefore, they lose the ability to
read from or write to the shared memory segment.

The original owner/creator of a shared memory segment can relinquish ownership to
another process using the shmetl (2) system call. However, the creating process
remains the creator until the facility is removed or the system is reinitialized. Other
processes with permission can perform other functions on the shared memory segment
using the shmectl system call.

A process can bind a shared memory segment to a section of I/O memory by using the
shmbind (2) system call. See the section “Binding a Shared Memory Segment to 1/O
Space” for details of the shmbind system call.

To facilitate use of shared memory by cooperating programs, a utility called
shmdefine (1) isprovided. Procedures for using this utility are explained in “The
shmdefine Utility”. To assist you in creating a shared memory segment and binding it to a
section of physical memory, a utility called shmconfig (1) isaso provided. Procedures
for using this utility are explained in “ The shmconfig Command”.

Using Shared Memory
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Sharing memory between processes occurs on a virtual segment basis. There is only one
copy of each individual shared memory segment existing in the operating system at any
time.

Before sharing of memory can be realized, a uniquely identified shared memory segment
and data structure must be created. The unique identifier created is called the shared
memory identifier (shmid); it is used to identify or refer to the associated data structure.
This identifier is available to any process in the system, subject to normal access
restrictions.

The data structure includes the following for each shared memory segment:

* Operation permissions

* Segment size

* Segment descriptor (for internal system use only)
* PID performing last operation

* PID of creator

¢ Current number of processes attached

* Last attach time

* Last detachtime

¢ |ast changetime
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The definition of the associated shared memory segment data structure shmid_ds
includes the members shown in Figure 3-6.

Figure 3-6 Definition of shmid_ds Structure

~

struct shmid ds

struct ipc_perm shm_perm; /* operation perms */
int shm segsz; /* size of segment (bytes) */
time t shm atime; /* last attach time */
time t shm dtime; /* last detach time */
time_t shm_ctime; /* last change time */

unsigned short shm cpid; /* pid of creator */
unsigned short shm lpid; /* pid of last operator */
short shm_nattch; /* no. of current attaches */

N Y,

The C programming language data structure definition for the shared memory segment
datastructure shmid_ds islocated in the <sys/shm. h> header file.

Note that the shm perm member of this structure uses ipc_perm as a template. The
ipc_perm data structure is the same for all IPC facilities; it is located in the
<sys/ipc.h> header file.

The shmget (2) system call performs two tasks:

* |t gets a new shared memory identifier and creates an associated shared
memory segment data structure.

* |t returns an existing shared memory identifier that already has an associ-
ated shared memory segment data structure.

The task performed is determined by the value of the key argument passed to the shmget
system call.

The key can be an integer that you select, or it can be an integer that you have generated by
using the £tok subroutine. The £ tok subroutine generates a key that is based upon a path
name and identifier that you supply. By using £tok, you can obtain a unique key and
control users’ access to the key by limiting access to the file associated with the path
name. If you wish to ensure that a key can be used only by cooperating processes, it is
recommended that you use £tok. This subroutine is specified as follows:

key t ftok( path_name, id )

The path_name argument specifies a pointer to the path name of an existing file that
should be accessible to the calling process. The id argument specifies a character that
uniquely identifies a group of cooperating processes. Ftok returns a key that is based on
the specified path_name and id. Additional information on the use of £tok is provided in
the £tok (3) man page.

If the key is not aready in use for an existing shared memory identifier and the IPC_CREAT
flag is set in shmflg, a new identifier is returned with an associated shared memory
segment data structure created for it provided no system-tunable parameters would be
exceeded.
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There is also a provision for specifying a key of value zero which is known as the private
key (IPc_PRIVATE); when specified, a new shmid is always returned with an associated
shared memory segment data structure created for it unless a system-tunable parameter
would be exceeded. The ipes (8) command will show the key field for the shmid as all
zeros.

If ashmid existsfor the key specified, the value of the existing shmid is returned. If it isnot
desired to have an existing shmid returned, a control command (1PC_EXCL) can be
specified (set) in the shmflg argument passed to the system call.

When a new shared memory segment is created, the process that calls shmget becomes
the owner/creator, and the associated data structure is initialized accordingly. Remember,
ownership can be changed, but the creating process always remains the creator (see “The
shmctl System Call”). The creator of the shared memory segment also determines the
initial operation permissionsfor it.

Once a uniquely identified shared memory segment data structure is created, shmbind,
shmctl, and shared memory operations (shmop) can be used.

The shmbind system call allows you to bind a shared memory segment to a section of
I/0 memory. See the section “Binding a Shared Memory Segment to I/O Space” for
details of the shmbind system call.

The shmetl (2) system call permits you to control the shared memory facility in the
following ways.

* Dy retrieving the data structure associated with a shared memory segment
(1PC_STAT)

* by changing operation permissions for a shared memory segment (IPC_SET)

* by removing a particular shared memory segment from the operating sys-
tem along with its associated shared memory segment data structure
(IPC_RMID)

* by locking a shared memory segment in memory (SHM_LOCK)

¢ by unlocking a shared memory segment (SHM_UNLOCK)
See the section “The shmctl System Call” for details of the shmet1 system call.

Shared memory segment operations (shmop) consist of attaching and detaching shared
memory segments. shmat and shmdt are provided for each of these operations (see“ The
shmat and shmdt System Calls” for details of the shmat and shmdt system calls).

[t isimportant to note that the shmdefine (1) and shmconfig (1) utilities also allow
you to create shared memory segments. See the section “ Shared Memory Utilities” for
information about these utilities.
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The shmget System Call

shmget (2) creates anew shared memory segment or identifies an existing one.

This section describes the shmget system call. For more detailed information, see the
shmget (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/shmget. c with extensive comments provided
in README . shmget . txt.

Synopsis

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key t key, size t size, int shnflg) ;

All of these #include filesarelocated inthe /usr/include subdirectories of the
RedHawk Linux operating system.

key t isdefined by atypedef inthe <bits/sys/types.h> header file to be an
integral type (this header fileisincluded internaly by <sys/types.h>). The integer
returned from this system call upon successful completion is the shared memory segment
identifier (shmid) associated to the value of key. (The shmid is discussed in the section
“Using Shared Memory” earlier in this chapter.) Upon failure, the external variable
errno is set to indicate the reason for failure, and -1 is returned.

A new shmid with an associated shared memory data structure is created if one of the
following conditionsis true:

* keyisegual to IPC_PRIVATE.

* key does not aready have a shmid associated with it and (shmflg and
IPC_CREAT) is“true’ (not zero).

The value of shimflg is a combination of:

¢ control commands (flags)
® Qoperation permissions

Control commands are predefined constants. The following control commands apply to
the shmget system call and are defined in the <bits/ipc.h> header file, which is
internally included by the <sys/ipc.h> header file:

IPC_CREAT used to create a new segment. If not used, shmget will find the
segment associ ated with key, verify access permissions and ensure the
segment is not marked for destruction.

IPC_EXCL used with IPC_CREAT to cause the system call to return an error if a
shared memory identifier already exists for the specified key. Thisis
necessary to prevent the process from thinking it has received a new
(unique) identifier when it has not.
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Operation permissions define the read/write attributes for users, groups, and others.
Table 3-2 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

Table 3-2 Shared Memory Operation Permissions Codes

Operation Permissions Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions desired. That is, if “read by user” and “read/write by others’ is desired, the
code value would be 00406 (00400 plus 00006). The sHM_R and sHM_W constants |ocated
in <sys/shm.h> can be used to define read and write permission for the owner.

The shmflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value; for example:

shmid = shmget (key, size, (IPC_CREAT | 0400));
shmid = shmget (key, size, (IPC CREAT | IPC EXCL | 0400));

The following values are defined in <sys/shm.h>. Exceeding these values always
causes afailure.

SHMMNI determines the maximum number of unique shared memory segments
(shmids) that can be in use at any given time

SHMMIN determines the minimum shared memory segment size
SHMMAX determines the maximum shared memory segment size
SHMALL determines the maximum shared memory pages

A list of shared memory limit values can be obtained with the ipcs (8) command by
using the following options. See the man page for further details.

ipecs -m -1

Refer to the shmget (2) man page for specific associated data structure initialization as
well as specific error conditions.
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The shmctl System Call

shmctl (2) isused to perform control operations on shared memory segments.

This section describes the shmetl system call. For more detailed information, see the
shmctl (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/shmctl. c with extensive comments provided
in README . shmctl. txt.

Synopsis

#include <sys/ipc.h>
#include <sys/shm.h>

int shmetl (int shmid, int cmd, struct shmid ds *buf) ;

All of these #include filesarelocated inthe /usr/include subdirectories of the
RedHawk Linux operating system.

The shmet1 system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The shmid variable must be a valid, non-negative integer value that has already been
created using the shmget system call.

The cmd argument can be any one of following values:

IPC_STAT returns the status information contained in the associated data
structure for the specified shmid and places it in the data structure
pointed to by the buf pointer in the user memory area. Read
permission is required.

IPC_SET sets the effective user and group identification and operation
permissions for the specified shmid

IPC_RMID removes the specified shmid along with its associated data
structure
SHM_LOCK prevents swapping of a shared memory segment. The user must

fault in any pages that are required to be present after locking is
enabled. The process must have superuser or CAP_IPC_LOCK
privileges to perform this operation.

SHM_UNLOCK unlocks the shared memory segment from memory. The process
must have superuser or CAP_IPC_LOCK privileges to perform this
operation.

NOTE
The shmetl (2) service also supports the IPC_INFO, SHM_STAT
and sHM_INFO commands. However, since these commands are

only intended for use by the ipes (8) utility, these commands
are not discussed.
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To perform an IPC_SET or IPC_RMID control command, a process must meet one or more of
the following conditions:

* have an effective user id of OWNER

* have an effective user id of CREATOR
* be the super-user

* havethe cAP_SYs ADMIN capability

Note that a shared memory segment can also be removed by using the ipcrm (1)

command and specifying the -m shmid or the -M shmkey option, where shmid specifies the
identifier for the shared memory segment and shimkey specifies the key associated with the
segment. To use this command, a process must have the same privileges as those required
for performing an IPC_RMID control command. See the ipcrm (1) man page for
additional information on the use of this command.

Binding a Shared Memory Segment to I/O Space

Using shmget
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RedHawk Linux allows you to bind a shared memory segment to aregion of 1/O space.
The procedures for doing so are as follows.

1. Create ashared memory segment (shmget (2)).

2. Obtain the physical address of the 1/0O region using the PCI BAR scan
routines.

3. Bind the segment to I/O memory (shmbind (2) ).

4. Attach the segment to the user’s virtual address space (shmat (2)).

At command level, the shmconfig (1) utility can be used to create a shared memory
segment and bind it to a physical memory region. Refer to the section “ Shared Memory
Utilities” for detalls.

You can attach a shared memory segment to and detach it from the user’s virtual address
space by using the shmat and shmdt system calls. Procedures for using these system
calls are explained in “ The shmat and shmdt System Calls.”

The shmget (2) system call isinvoked first to create a shared memory segment. Upon
successful completion of the call, a shared memory segment of size bytesis created, and
an identifier for the segment is returned.

When binding to I/O space, the size of the region can be obtained using the PCl BAR scan
routines (seebar scan open(3)).

Complete information on the use of shmget isprovided in “The shmget System Call.”
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After you have created a shared memory segment, you can bind it to aregion of 1/0 space
by using the shmbind (2) system call. Note that to use this call, you must be root or have
the CAP_SYS_RAWIO privilege.

shmbind must be called before the first process attaches to the segment. Thereafter,
attaching to the segment via shmat () effectively creates a mapping in the calling
process’ virtual address space to the region of the physical address space.

The region of 1/O space is defined by its starting address and the size of the shared
memory segment to which it is being bound. The starting address must be aligned with a
page boundary. The size of the shared memory segment has been established by
specifying the size argument on the call to shmget. If you have created a shared memory
segment of 1024 bytes, for example, and you wish to bind it to a section of physical
memory that starts at location 0x2000000 (hexadecimal representation), the bound section
of physical memory will include memory locations 0x2000000 through 0x2000BFF-.

Be aware that the physical address for a device may change due to hardware changes in
the system. To reliably reference a device, the physical address should be obtained using
the PCI BAR scan routines; refer to thebar _scan_open (3) man page.

The specifications required for making the call to shmbind are asfollows:
int shmbind (int shmid, unsigned long paddr)
Arguments are defined as follows:

shmid the identifier for the shared memory segment that you wish to bind to a
section of physical memory

paddr the starting physical address of the section of memory to which you
wish to bind the specified shared memory segment

The shmat and shmdt System Calls

The shared memory operations system calls, shmat and shmdt, are used to attach and
detach shared memory segments to/from the address space of the calling process.

This section describes the shmat and shmdt system calls. For more detailed information,
see the shmop (2) man page. A program illustrating use of these calls can be found at
/usr/share/doc/ccur/examples/shmop . c With extensive comments provided
in README . shmop . txt.
Synopsis

#include <sys/types.h>

#include <sys/shm.h>

void *shmat (int shmid, const void *shmaddr, int shmflg) ;
int shmdt (const wvoid *shmaddr) ;

All of these #include filesarelocated inthe /usr/include subdirectories of the
RedHawk Linux operating system.
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Attaching a Shared Memory Segment

The shmat system call attaches the shared memory segment identified by shmid to the
address space of the calling process. It returns a character pointer value. Upon successful
completion, this value will be the address in memory where the process is attached to the
shared memory segment; when unsuccessful, the value will be -1.

The shmid argument must be a valid, non-negative, integer value. It must have been
created previously using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the shmat system
call. If it is zero, the operating system selects the address where the shared memory
segment will be attached. If it is user-supplied, the address must be a valid page-aligned
address within the program’s address space. The following illustrates some typical address
ranges:

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

Allowing the operating system to select addresses improves portability.

The shmflg argument is used to pass the sHM_RND (round down) and SHM_RDONLY (read
only) flagsto the shmat system call.

Detaching Shared Memory Segments
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The shmdt system call detaches the shared memory segment located at the address
specified by shmaddr from the address space of the calling process. It returns an integer
value, which is zero for successful completion or -1 otherwise.
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Shared Memory Utilities

Redhawk Linux provides two utilities that facilitate use of shared memory segments. The
shmdefine (1) utility allows you to create one or more shared memory segments that
are to be used by cooperating programs. The shmconfig (1) command allows you to
create a shared memory segment and bind it to a section of physical memory. These
utilities are discussed in the sections that follow.

The shmdefine Utility

The shmdefine utility is designed to facilitate the use of shared memory by a set of
cooperating programs. Although you may have a number of programs that will cooperate
in using one or more shared memory segments, it is necessary to invoke the utility only
once. Because shmdefine produces object files that must be linked to the source object
file, you must invoke it prior to linking.

shmdefine currently operates with the GNU C, Fortran and Ada compilers (gcc, g77
GNAT) for programs that execute on RedHawk Linux systems.

Refer to the Quick Reference for shmdefine (publication number 0898010) and the
shmdefine (1) man page for details on using this utility.

The shmconfig Command

The shmconfig (1) command assists in creating a shared memory segment associated
with a certain key and optionally binding it to a particular section of 1/0 memory.

The command syntax is.

/usr/bin/shmconfig -i DEVSIR

/usr/bin/shmconfig -b BARSTR[-s SZE][-g GROUP] [-m MODE] [-u USER]
{key| -t FNAME}

/usr/bin/shmconfig -s SZE[-p ADDR][-g GROUP] [-m MODE] [-u USER]
{key| -t FNAME}

For information about assigning NUMA memory policiesto shared memory areas, refer to
Chapter 10 or the shmconfig (1) man page.

Options are described in Table 3-3.

Table 3-3 Options to the shmconfig(l) Command

Option Description

--info=DEVSIR, -i DEVSIR Printsinformation about each memory region on each
device matching DEVSTR, which consists of ;
vendor_id:device id
Helpful whenusing - -bind. See --bind for
information on DEVSTR.
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Table 3-3 Options to the shmconfig(l) Command (Continued)

Option

Description

--bind=BARSIR, -b BARSIR

--size=9ZE, -s SZE

--physical=ADDR, -p ADDR

--user=USER, -u USER

--group=GROUP, -g GROUP

- -mode=MODE, -m MODE

--help, -h

--version, -v

Identifiesan 1/0O region in memory to be bound to the
shared segment. BARSTR consists of':
vendor_id:device id:bar_no[:dev_no]

vendor_id and device id identify the hardware
device; usually expressed astwo hex values separated
by acolon (e.g., 8086:100f). Can be obtained from
thevendor’s manual, /usr/share/hwdata/
pci.ids or 1spci -ns. Requiresa“0x” base
prefix when specifying these IDs; e.g.,
0x8086:0x100f. See “Examples’ below.

bar_no identifies the memory region to be bound.
Use - i option to obtain this value (output displays
“Region bar_no: Memory at ..."”). Only the memory
regions can be bound.

dev_no is optional and needed only to differentiate
between multiple boards with matching vendor and
devicelDs. Use -1i option to obtain this value (output
displays “Logical device: dev_no:”).

The user must have the CAP_SYS RAWIO privilegeto
use this option.

Specifies the size of the segment in bytes. Not
required for --bind, where the default isthe
complete memory region.

Specifies ADDR as the starting address of the section
of physical 1/0 memory to which the segment isto be
bound. This option is being deprecated; use - -bind.
The user must have the CAP_SYS RAWIO privilegeto
use this option.

Specifies the login name of the owner of the shared
memory segment.

Specifies the name of the group to which group
access to the segment is applicable.

Specifies mode as the set of permissions governing
access to the shared memory segment. You must use
the octal method to specify the permissions.

Describes avail able options and usage.

Prints out current version of the command.

The /proc and /sys file systems must be mounted in order to use this command.

It isimportant to note that the size of a segment as specified by the -s argument must
match the size of the data that will be placed there. If shmdefine isbeing used, the size
of the segment must match the size of the variables that are declared to be a part of the
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shared segment. Specifying alarger size will work. (For information on shmdefine, see
“The shmdefine Utility.”)

It is recommended that you specify the -u, -g, and -m options to identify the user and
group associated with the segment and to set the permissions controlling accessto it. If not
specified, the default user 1D and group ID of the segment are those of the owner; the
default mode is 0644.

The key argument represents a user-chosen identifier for a shared memory segment. This
identifier can be either an integer or a standard path name that refers to an existing file.
When apathnameis supplied, an £tok (key, 0) will be used asthe key parameter for the
shmget (2) call.

--tmpfs=FNAME / -t FNAME can be used to specify atmpfs filesystem filename instead
of akey. The -u, -g and -m options can be used to set or change the file attributes of this
segment.

When shmconfig isexecuted, an internal data structure and shared memory segment are
created for the specified key; if the -p option is used, the shared memory segment is
bound to a contiguous section of 1/0 memory.

To access the shared memory segment that has been created by shmconfig, processes
must first call shmget (2) to obtain the identifier for the segment. This identifier is
required by other system calls for manipulating shared memory segments. The
specification for shmget is:

int shmget (key, Sze, 0)

The value of key is determined by the value of key specified with shmconfig. If the
value of key was an integer, that integer must be specified as key on the call to shmget. If
the value of key was a path name, you must first call the £tok subroutine to obtain an
integer value based on the path name to specify as key on the call to shmget. It is
important to note that the value of the id argument on the call to £tok must be zero
because shmconfig calls £tok with an id of zero when it converts the path name to a
key. The value of size must be equal to the number of bytes specified by the - s argument
to shmconfig. A value of 0is specified as the flag argument because the shared memory
segment has already been created.

For complete information about shmget, see “ The shmget System Call.” For assistance
in using £tok, see “Using Shared Memory” and the £tok (3) man page. When creating
areas of mapped memory to be treated as global system resources, you may find it helpful
to invoke shmcon£fig by adding aline to the shmconfig script inthe /etc/init.d
directory. Doing so allows you to reserve the IPC key before noncooperating processes
have an opportunity to use it, and it enables you to establish the binding between the
shared memory segment and physical memory before cooperating processes need to use
the segment. Add aline similar to the following example:

/usr/bin/shmconfig -p 0xf00000 -s 0x10000 -u root -g sys -m 0666 key

Examples

In this example, a physical memory region on the RCIM device is identified using
lspci(8) and bound to a shared memory region. Note that you must be root to use
lspci. If you don’t have root privileges you can view /usr/share/hwdata/
pci.ids and search for the device name (RCIM); id values are listed to the left of the
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vendor/device description. When two or more device ids are listed for the same device,
use shmconfig -i oneach device id listed to determine which one to use.

1. Find the bus:dot.func identifier for the RCIM board:

# 1lspci -v | grep -i rcim
0d:06.0 System peripheral: Concurrent Computer Corp RCIM II
Realtime Clock ...

2. Usethercimidentifier to get the vendor_id:device id numbers:

# lspci -ns 0d4:06.0
0d:06.0 Class 0880: 1542:9260 (rev 01)

3. Find the memory regions for this device. Note that 1spci prints the
vendor_id:device id values in hex format but without a Ox prefix
(1542:9260), however shmconfig requires a base identifier
(0x1542:0%x9260).

# shmconfig -i 0x1542:0x9260

Region 0: Memory at £8d04000 (non-prefetchable) [size=256]
/proc/bus/pci0/busl3/dev6e/fn0/bar0

Region 1: I/O ports at 7c00 [size=256]
/proc/bus/pci0/busl3/deve/fn0/barl

Region 2: Memory at £8d00000 (non-prefetchable) [size=16384]
/proc/bus/pci0/busl3/dev6e/fn0/bar2

4. Bind to rcim memory region #2:
# shmconfig -b 0x1542:0x9260:2 -m 0644 -u me -g mygroup 42

5. Verify the IPC shared memory regions on the system. Note that physaddr
represents the physical address we have bound and matches the address
reported by the shmconfig -i command in step 3 above.

# cat /proc/sysvipc/shm

key shmid perms size «c¢pid 1lpid nattch uid
gid cuid cgid atime dtime ctime physaddr

42 0 644 16384 1734 0 0 5388
100 0 0 0 0 1087227538 £8d00000
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4
Process Scheduling

This chapter provides an overview of process scheduling on RedHawk Linux systems. It
explains how the process scheduler decides which process to execute next and describes
POSIX scheduling policies and priorities. It explains the procedures for using the program
interfaces and commands that support process scheduling and discusses performance
issues.

In the RedHawk Linux OS, the schedulable entity is always a process. Scheduling
priorities and scheduling policies are attributes of processes. The system scheduler
determines when processes run. It maintains priorities based on configuration parameters,
process behavior and user requests; it uses these priorities as well as the CPU affinity to
assign processesto a CPU.

The scheduler offers three different scheduling policies, one for normal non-critical
processes (SCHED_OTHER), and two fixed-priority policies for real-time applications
(SCHED_FIFO and SCHED_RR). These policies are explained in detail in the section
“Scheduling Policies’ on page 4-3.

By default, the scheduler uses the SCHED_OTHER time-sharing scheduling policy. For
processes in the SCHED_OTHER policy, the scheduler manipulates the priority of runnable
processes dynamically in an attempt to provide good response time to interactive
processes and good throughput to CPU-intensive processes.

Fixed-priority scheduling allows users to set static priorities on a per-process basis. The
scheduler never modifies the priority of a process that uses one of the fixed priority
scheduling policies. The highest fixed-priority process always getsthe CPU as soon asit is
runnable, even if other processes are runnable. An application can therefore specify the
exact order in which processes run by setting process priority accordingly.

For system environments in which real-time performance is not required, the default
scheduler configuration works well, and no fixed-priority processes are needed. However,
for real-time applications or applications with strict timing constraints, fixed-priority
processes are the only way to guarantee that the critical application's requirements are met.
When certain programs require very deterministic response times, fixed priority
scheduling policies should be used and tasks that require the most deterministic response
should be assigned the most favorable priorities.

A set of system calls based on IEEE Standard 1003.1b provides direct access to a process
scheduling policy and priority. Included in the set are system calls that allow processes to
obtain or set aprocess scheduling policy and priority; obtain the minimum and maximum
priorities associated with a particular scheduling policy; and obtain the time quantum
associated with a process scheduled under the round robin (SCHED_RR) scheduling policy.
You may alter the scheduling policy and priority for a process at the command level by
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usingthe run (1) command. The system calls and the run command are detailed later in
this chapter along with procedures and hints for effective use.

How the Process Scheduler Works

4-2

Figure 4-1 illustrates how the scheduler operates.

Figure 4-1 The RedHawk Linux Scheduler
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When a process is created, it inherits its scheduling parameters, including scheduling
policy and a priority within that policy. Under the default configuration, a process begins
as a time-sharing process scheduled with the SCHED_OTHER policy. In order for a process
to be scheduled under afixed-priority policy, a user-request must be made viasystem calls
or therun (1) command.

When the user sets the priority of a process, he is setting the “user priority.” Thisis also
the priority that will be reported by the sched getparam(2) call when auser retrieves
the current priority. A portable application should use the
sched get priority min() and sched get priority max() interfacesto
determine the range of valid priorities for a particular scheduling policy. A user priority
value (sched priority) isassigned to each process. SCHED_OTHER processes can only
be assigned a user priority of 0. SCHED_FIFO and SCHED_RR processes have a user priority
in the range 1 to 99.

The scheduler converts scheduling policy-specific priorities into global priorities. The
global priority is the scheduling policy value used internally by the RedHawk Linux
kernel. The scheduler maintains a list of runnable processes for each possible global
priority value. There are 40 global scheduling priorities associated with the SCHED_OTHER
scheduling policy; there are 99 global scheduling priorities associated with the fixed
priority scheduling policies (SCHED_RR and SCHED_FIFO). The scheduler looks for the non-
empty list with the highest global priority and selects the process at the head of thislist for
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execution on the current CPU. The scheduling policy determines for each process where it
will be inserted into the list of processes with equal user priority and the process' relative
position in this list when processesin the list are blocked or made runnable.

Aslong as afixed-priority process is ready-to-run for a particular CPU, no time-sharing
process will run on that CPU.

Once the scheduler assigns a process to the CPU, the process runs until it uses up its time
guantum, sleeps, blocks or is preempted by a higher-priority process.

Note that the priorities displayed by ps (1) and top (1) areinternally computed values
and only indirectly reflect the priority set by the user.

Scheduling Policies

POSIX defines three types of scheduling policies that control the way a process is

scheduled:
SCHED_FIFO first-in-first-out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER default time-sharing scheduling policy

First-In-First-Out Scheduling (SCHED_FIFO)

SCHED_FIFO can only be used with user priorities higher than 0. That means when a
SCHED_FIFO process becomes runnable, it will aways immediately preempt any currently
running SCHED_OTHER process. SCHED_FIFO is a simple scheduling algorithm without time
slicing. For processes scheduled under the SCHED_FIFO poalicy, the following rules are
applied: A sCHED_FIFO process that has been preempted by another process of higher
priority will stay at the head of the list for its priority and will resume execution as soon as
all processes of higher priority are blocked again. When a SCHED_FIFO process becomes
runnable, it will be inserted at the end of the list for its priority. A call to
sched setscheduler (2) or sched setparam(2) will put the SCHED_FIFO
process identified by pid at the end of the list if it was runnable. A process calling
sched yield(2) will beput at the end of its priority list. No other events will move a
process scheduled under the SCHED_FIFO policy in the wait list of runnable processes with
equal user priority. A SCHED_FIFO process runs until either it is blocked by an 1/0 request,
it is preempted by a higher priority process, or it calls sched_yield.
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Round-Robin Scheduling (SCHED_RR)

SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for
SCHED_FIFO also appliesto SCHED_RR, except that each processisonly allowed to run for a
maximum time quantum. If a SCHED_RR process has been running for atime period equal
to or longer than the time quantum, it will be put at the end of the list for its priority. A
SCHED_RR process that has been preempted by a higher priority process and subsequently
resumes execution as a running process will complete the unexpired portion of its round
robin time quantum. The length of the time quantum can be retrieved by
sched rr get interval (2). Thelength of the time quantum is affected by the nice
value associated with a process scheduled under the SCHED_RR scheduling policy. Higher
nice values are assigned larger time quantums.

Time-Sharing Scheduling (SCHED_OTHER)

SCHED_OTHER can only be used at user priority 0. SCHED_OTHER is the default universal
time-sharing scheduler policy that isintended for all processes that do not require special
user priority real-time mechanisms. The process to run is chosen from the user priority O
list based on a dynamic priority that is determined only inside this list. The dynamic
priority is based on the nice level (set by the nice(2) or setpriority (2) system
call) and increased for each time quantum the process is ready to run, but denied to run by
the scheduler. This ensuresfair progress among all SCHED_OTHER processes. Other factors,
such as the number of times a process voluntarily blocks itself by performing an 1/0
operation, also come into consideration.

Procedures for Enhanced Performance

How to Set Priorities

4-4

The following code segment will place the current process into the SCHED_RR fixed-
priority scheduling policy at afixed priority of 60. See the section “Process Scheduling
Interfaces’ later in this chapter for information about the POSIX scheduling routines.

#include <sched.h>
struct sched param sparms;

sparms.sched priority = 60;
if (sched setscheduler (0, SCHED RR, &sparms) < O0)
{
perror ("sched setsched") ;
exit (1) ;
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Interrupt Routines

Processes scheduled in one of the fixed-priority scheduling policies will be assigned a
higher priority than the processing associated with softirgs and tasklets. These interrupt
routines perform work on behalf of interrupt routines that have executed on a given CPU.
The real interrupt routine runs at a hardware interrupt level and preempts all activity on a
CPU (including processes scheduled under one of the fixed-priority scheduling policies).
Device driver writers under Linux are encouraged to perform the minimum amount of
work required to interact with a device to make the device believe that the interrupt has
been handled. The device driver can then raise one of the interrupt mechanisms to handle
the remainder of the work associated with the device interrupt routine. Because fixed-
priority processes run at apriority above these interrupt routines, thisinterrupt architecture
allows fixed-priority processes to experience the minimum amount of jitter possible from
interrupt routines. For more information about interrupt routines in device drivers, see the
“Device Drivers’ chapter.

SCHED_FIFO vs SCHED_RR

The two fixed priority scheduling policies are very similar in their nature, and under most
conditions they will behave in an identical manner. It isimportant to remember that while
SCHED_RR has a time quantum associated with the process, when that time quantum
expires the process will only yield the CPU if there currently is a ready-to-run process of
equal priority in one of the fixed priority scheduling policies. If there is no ready-to-run
process of equal priority, the scheduler will determine that the original SCHED_RR process
is still the highest priority process ready to run on this CPU and the same process will
again be selected for execution.

This means that the only time there is a difference between processes scheduled under
SCHED_FIFO and SCHED_RR is when there are multiple processes running under one of the
fixed-priority scheduling policies scheduled at the exact same scheduling priority. In this
case, SCHED_RR will allow these processes to share a CPU according to the time quantum
that has been assigned to the process. Note that a process' time quantum is affected by the
nice (2) system call. Processes with higher nice values will be assigned a larger time
guantum. A process time quantum can also be changed via the run (1) command (see
“The run Command” later in this chapter for details).

Fixed Priority Processes Locking Up a CPU

A non-blocking endless loop in a process scheduled under the SCHED_FIFO and SCHED_RR
scheduling policies will block all processes with lower priority indefinitely. As this
scenario can starve the CPU of other processes completely, precautions should be taken to
avoid this.

During software development, a programmer can break such an endless loop by keeping
available on the console a shell scheduled under a higher user priority than the tested
application. Thiswill allow an emergency kill of tested real-time applications that do not
block or terminate as expected. As SCHED_FIFO and SCHED_RR processes can preempt
other processes forever, only root processes or processes with the CAP_Sy s _NICE capability
are allowed to activate these policies.
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Memory Locking

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping, use
themlockall (2), munlockall (2),mlock(2) and munlock (2) system callsto
lock all or aportion of aprocess virtual address space in physical memory.

CPU Affinity and Shielded Processors

Each process in the system has a CPU affinity mask. The CPU affinity mask determines
on which CPUs the process is allowed to execute. When a CPU is shielded from
processes, that CPU will only run processes that have explicitly set their CPU affinity to a
set of CPUs that only includes shielded CPUs. Utilizing these techniques adds additional
control to where and how a process executes. See the “ Real-Time Performance” chapter of
this guide for more information.

Process Scheduling Interfaces

A set of system calls based on |EEE Standard 1003.1b provides direct access to a process
scheduling policy and priority. You may alter the scheduling policy and priority for a
process at the command level by using the run (1) command. The system calls are
detailed below. The run command is detailed on page 4-13.

POSIX Scheduling Routines
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The sections that follow explain the procedures for using the POSIX scheduling system
cals. These system calls are briefly described as follows:

Scheduling Poalicy:
sched setscheduler set aprocess scheduling policy and priority
sched getscheduler obtain aprocess’ scheduling policy

Scheduling Priority:

sched setparam change aprocess scheduling priority

sched getparam obtain aprocess’ scheduling priority
Relinquish CPU:

sched yield relinquish the CPU
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Low/High Priority:

sched get priority min obtain the lowest priority associated with a
scheduling policy

sched get priority max obtain the highest priority associated with a
scheduling policy

Round-Raobin Policy:

sched rr get interval obtain the time quantum associated with a process
scheduled under the scHED_RR scheduling policy

The sched_setscheduler Routine

The sched_setscheduler (2) system call allows you to set the scheduling policy
and the associated parameters for the process.

It is important to note that to use the sched setscheduler call to (1) change a
process scheduling policy to the SCHED_FIFO or the SCHED_RR policy or (2) change the
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, one of the
following conditions must be met:

* The calling process must have root capability.

* The effective user ID (uid) of the calling process must match the effective
user 1D of the target process (the process for which the scheduling policy
and priority are being set), or the calling process must have superuser or
CAP_SYS_NICE capability.

Synopsis
#include <sched.hs>
int sched setscheduler (pid t pid, int policy, const struct sched param *p);
struct sched param {
1nt sched_priority;

}i

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the
scheduling policy and priority are being set. To specify the current process, set
the value of pid to zero.

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy
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p a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of
priorities defined for the scheduler class associated with the specified policy.
You can determine the range of priorities associated with that policy by
invoking one of the following system calls: sched get priority min
or sched get priority max (for an explanation of these system calls,
see page 4-11).

If the scheduling policy and priority of the specified process are successfully set, the
sched setscheduler system call returns the process' previous scheduling policy. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched setscheduler (2) man page for alisting of the types of errors
that may occur. If an error occurs, the process scheduling policy and priority are not
changed.

It isimportant to note that when you change a process scheduling policy, you aso change
its time quantum to the default time quantum that is defined for the scheduler associated
with the new policy and the priority. You can change the time quantum for a process
scheduled under the scHED_RR scheduling policy at the command level by using the
run (1) command (see p. 4-13 for information on this command).

The sched_getscheduler Routine
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The sched getscheduler (2) system call allows you to obtain the scheduling
policy for a specified process. Scheduling policies are defined in the file <sched.h> as
follows:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy

Synopsis

#include <sched.h>
int sched getscheduler (pid t pid) ;
The argument is defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling policy. To specify the current process, set the value of
pid to zero.

If the call is successful, sched getscheduler returns the scheduling policy of the
specified process. A return value of -1 indicates that an error has occurred; errno isset to
indicate the error. Refer to the sched _getscheduler (2) man page for alisting of
the types of errors that may occur.
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The sched_setparam Routine

The sched setparam(2) system call allows you to set the scheduling parameters
associated with the scheduling policy of a specified process.

It is important to note that to use the sched setparam call to change the scheduling
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, one of the
following conditions must be met:

* The calling process must have the root capability.

* The effective user ID (euid) of the calling process must match the effective
user ID of the target process (the process for which the scheduling policy
and priority are being set), or the calling process must have superuser or
CAP_SYS NICE capability.

Synopsis
#include <sched.h>
int sched setparam(pid t pid, const struct sched param *p) ;
struct sched param {
mt sched _priority;
y -
The arguments are defined as follows:

pid the process identification number (PID) of the process for which the
scheduling priority is being changed. To specify the current process, set the
value of pid to zero.

p a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of
priorities associated with the process’ current scheduling policy. High
numbers represent more favorable priorities and scheduling.

You can obtain a process’ scheduling policy by invoking the
sched getscheduler (2) system call (see p. 4-7 for an explanation of this system
call). You can determine the range of priorities associated with that policy by invoking the
sched get priority min(2) and sched get priority max(2) system
calls (see page 4-11 for explanations of these system calls).

A return value of 0 indicates that the scheduling priority of the specified process has been
successfully changed. A return value of -1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sched setparam(2) man page for alisting of
the types of errors that may occur. If an error occurs, the process scheduling priority is
not changed.
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The sched_getparam Routine

The sched getparam(2) system call allows you to obtain the scheduling parameters
of a specified process.

Synopsis
#include <sched.h>
int sched getparam(pid t pid, struct sched param *p);
struct sched param {
mt sched _priority;
. ce

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling priority. To specify the current process, set the value of
pid to zero.

p a pointer to a structure to which the scheduling priority of the process

identified by pid will be returned.

A return value of O indicates that the call to sched getparam has been successful. The
scheduling priority of the specified processisreturned in the structure to which p points. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched _getparam(2) man page for alisting of the types of errors that
may OCCuI.

The sched_yield Routine
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The sched _yield(2) system call allows the calling process to relinquish the CPU
until it again becomes the highest priority process that is ready to run. Note that a call to
sched_yield iseffective only if a process whose priority is egual to that of the calling
process is ready to run. This system call cannot be used to allow a process whose priority
islower than that of the calling process to execute.

Synopsis
#include <sched.h>
int sched yield(void) ;

A return value of O indicates that the call to sched_yield hasbeen successful. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error.
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The sched_get_priority_min Routine

The sched get priority min(2) system call allows you to obtain the lowest
(least favorable) priority associated with a specified scheduling policy.

Synopsis

#include <sched.h>

int sched get priority min (int policy);
The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first—in—first—out (FIFO) scheduling policy
SCHED_RR round—robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. The valuereturned by sched get priority max
will be greater than the value returned by sched _get priority min.

RedHawk Linux allows the user priority value range 1 to 99 for SCHED_FIFO and
SCHED_RR and the priority O for SCHED_OTHER.

If the call is successful, sched get priority min returns the lowest priority
associated with the specified scheduling policy. A return value of -1 indicates that an error
has occurred; errno is set to indicate the error. Refer to the man page for
sched get priority max(2) toobtainalisting of the errors that may occur.

The sched_get_priority_max Routine

The sched get priority max(2) system call allows you to obtain the highest
(most favorable) priority associated with a specified scheduling policy.

Synopsis

#include <sched.h>

int sched get priority max(int policy) ;
The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first—in—first—out (FIFO) scheduling policy
SCHED_RR round—robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. Thevaluereturned by sched get priority max
will be greater than the value returned by sched get priority min.

4-11
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RedHawk Linux allows the user priority value range 1 to 99 for scHeD_FIFO and
SCHED_RR and the priority O for SCHED_OTHER.

If the call is successful, sched get priority max returns the highest priority
associated with the specified scheduling policy. A return value of -1 indicates that an error
has occurred; errno is set to indicate the error. For alisting of the types of errors that
may occur, refer to the sched get priority max (2) man page.

The sched_rr_get_interval Routine
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The sched_rr get interval (2) system call allows you to obtain the time
quantum for a process that is scheduled under the SCHED_RR scheduling policy. The time
guantum is the fixed period of time for which the kernel allocates the CPU to a process.
When the process to which the CPU has been allocated has been running for its time
quantum, a scheduling decision is made. If another process of the same priority isready to
run, that process will be scheduled. If not, the other process will continue to run.

Synopsis
include <sched.h>
int sched rr get interval (pid t pid, struct timespec *tp);
struct timespec {
time t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

}i

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the time quantum. To specify the current process, set the value of pidto
zero.

tp apointer to a timespec structure to which the round robin time quantum of the

process identified by pid will be returned. The identified process should be
running under the SCHED_RR scheduling policy.

A return value of O indicates that the call to sched rr get interwval has been
successful. The time quantum of the specified processis returned in the structure to which
tp points. A return value of -1 indicates that an error has occurred; errno is set to indicate
the error. Refer to the sched _rr get interwval (2) man page for alisting of the
types of errors that may occur.
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The run Command

The run (1) command can be used to control process scheduler attributes and CPU
affinity. The command syntax is.

run [OPTIONS| { COMMAND [ARGS| | PROCESSTHREAD_SPECIFIER}

The run command executes the specified command in the environment described by the
list of options and exits with the command's exit value. If a specifier is given, run
modifies the environment of the set of processes/threads selected by the specifier. The
specifiers are defined below. A command may not be combined with a specifier on the
same command line invocation.

The run command allows you to run a program under a specified POSIX scheduling
policy and at a specified priority (see p. 4-3 for a complete explanation of POSIX
scheduling policies). It also allows you to set the time quantum for a program scheduled
under the SCHED_RR policy.

To set a program’s scheduling policy and priority, invoke the run command from the
shell, and specify either the - -policy=policy or —s policy option and the
--priority=priority or -P priority option. Valid keywords for policy are:

SCHED_FIFO or fifo for first-in-first-out scheduling
SCHED_RR OF It for round robin scheduling, and
SCHED_OTHER or other for timeshare scheduling.

The value of priority must be an integer value that is valid for the specified scheduling
policy (or the current scheduling policy if the -s option is not used). Higher numerical
values represent more favorable scheduling priorities.

To set the time quantum for a program being scheduled under the scHED_RR scheduling
policy, also specify the - -quantum=quantum or -q quantum option. quantumis
specified as a nice value between -20 and 19 inclusive, with -20 being the longest dice of
time and 19 being the shortest, or as a millisecond val ue corresponding to a nice value.
--quantum=1ist displays the nice valuesand their equivalent millisecond values.

You can set the CPU affinity using the --bias=list or -b list option. list is a comma-
separated list of logical CPU numbers or ranges, for example: “0,2-4,6”. list may also be
specified as the string “active” or “boot” to specify all active processors or the boot
processor, respectively. The CAP_SYS_NICE capability is required to add additional CPUs
to an affinity.

The - -negate or -N option negates the CPU bias list. A bias list option must also be
specified when the negate option is specified. The bias used will contain all CPUs on the
system except those specified in the bias list.

The - -copies=count or -c count option enables the user to run the specified number of
identical copies of the command.

Other options are available for displaying information and running the command in the
background. Options for setting NUMA memory policies are documented in Chapter 10.
Seethe run (1) man page for more information.
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PROCESS/'THREAD_SPECIFIER

This parameter is used to specify the processes or threads to be acted upon. Only one of
the following may be specified. Multiple comma separated values can be specified for all
lists and ranges are allowed where appropriate.

--all, -a Specify all existing processes and threads.

--pid=ligt, -plist  Specify alist of existing PIDsto modify. All scheduler operations
are specific to the complete set of processes listed, including all
sub-threads.

--tid=ligt, -t list  Specify alist of existing TIDs to modify. All scheduler operations
are specific to only the listed threads and not unspecified sibling
threadsin the process. - list can be used for PowerMAX compati-
bility.

--group=list, -g list Specify alist of process groups to modify; all existing processes
in the process groups listed will be modified.

--user=list, -ulist Specify alist of users to modify; al existing processes owned by
the users listed will be modified. Each user in the list may either
be avalid numeric user ID or character login ID.

--name=list, -nlist Specify alist of existing process names to modify.

Examples

1. The following command runs make (1) in the background on any of
CPUs 0-3 under the default SCHED_OTHER scheduling policy with default
priority.

run --bias=0-3 make &

2. Thefollowing command runsdate (1) with apriority of 10 in the
SCHED_RR (i.e. Round Robin) scheduling policy.

run -s SCHED RR -P 10 date

3. Thefollowing command changes the scheduling priority of process|D 987
to level 32.

run --priority=32 -p 987

4. The following command moves all processes in process group 1456 to
CPU 3.

run -b 3 -g 1456

5. Thefollowing command sets all processes whose nameis “pilot” to runin
the scHED_FIFO scheduling policy with a priority of 21.

run -s fifo -P 21 -n pilot

Refer to the run (1) man page for additional information.
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5
Interprocess Synchronization

This chapter describes the tools that RedHawk Linux provides to meet a variety of
interprocess synchronization needs. All of the interfaces described here provide the means
for cooperating processes to synchronize access to shared resources.

The most efficient mechanism for synchronizing access to shared data by multiple
programs in a multiprocessor system is by using spin locks. However, it is not safe to use
a spin lock from user level without also using a rescheduling variable to protect against
preemption while holding a spin lock.

If portability is alarger concern than efficiency, then POSIX counting semaphores and
mutexes are the next best choice for synchronizing access to shared data. System V
semaphores are also provided, which allow processes to communicate through the
exchange of semaphore values. Since many applications require the use of more than one
semaphore, this facility allows you to create sets or arrays of semaphores.

Problems associated with synchronizing cooperating processes access to data in shared
memory are discussed as well as the tools that have been developed by Concurrent to
provide solutions to these problems.

Understanding Interprocess Synchronization

Multiprocess real -time applications require synchronization mechanisms that allow
cooperating processes to coordinate access to the same set of resources—for example, a
number of 1/O buffers, units of a hardware device, or acritical section of code.

RedHawk Linux supplies a variety of interprocess synchronization tools. These include
tools for controlling a process’ vulnerability to rescheduling, serializing processes’ access
to critical sections with busy-wait mutual exclusion mechanisms, semaphores for mutual
exclusion to critical sections and coordinating interaction among processes.

Application programs that consist of two or more processes sharing portions of their
virtual address space through use of shared memory need to be able to coordinate their
access to shared memory efficiently. Two fundamental forms of synchronization are used
to coordinate processes’ access to shared memory: mutual exclusion and condition
synchronization. Mutual exclusion mechanisms serialize cooperating processes access to
shared resources. Condition synchronization mechanisms delay a process progress until
an application-defined condition is met.

Mutual exclusion mechanisms ensure that only one of the cooperating processes can be
executing in a critical section at atime. Three types of mechanisms are typically used to
provide mutual exclusion—those that involve busy waiting, those that involve sleepy
waiting, and those that involve a combination of the two when a process attempts to enter
alocked critical section. Busy-wait mechanisms, also known as spin locks, use a locking
technique that obtains a lock using a hardware supported test and set operation. If a
process attempts to obtain a busy-wait lock that is currently in alocked state, the locking
process continues to retry the test and set operation until the process that currently holds
the lock has cleared it and the test and set operation succeeds. In contrast, a sleepy-wait
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mechanism, such as a semaphore, will put a process to sleep if it attempts to obtain alock
that is currently in alocked state.

Busy-wait mechanisms are highly efficient when most attempts to obtain the lock will
succeed. Thisis because a simple test and set operation is all that is required to obtain a
busy-wait lock. Busy-wait mechanisms are appropriate for protecting resources when the
amount of time that the lock is held is short. There are two reasons for this: 1) when lock
hold times are short, it is likely that alocking process will find the lock in an unlocked
state and therefore the overhead of the lock mechanism will also be minimal and 2) when
the lock hold time is short, the delay in obtaining the lock is also expected to be short. It is
important when using busy-wait mutual exclusion that delays in obtaining alock be kept
short, since the busy-wait mechanism is going to waste CPU resources while waiting for a
lock to become unlocked. Asageneral rule, if thelock hold times are all less than thetime
it takes to execute two context switches, then a busy-wait mechanism is appropriate. Tools
for implementing busy-wait mutual exclusion are explained in the section “Busy-Wait
Mutual Exclusion.”

Critical sections are often very short. To keep the cost of synchronization comparatively
small, synchronizing operations performed on entry/exit to/from a critical section cannot
enter the kernel. It is undesirable for the execution overhead associated with entering and
leaving the critical section to be longer than the length of the critical section itself.

In order for spin locks to be used as an effective mutual exclusion tool, the expected time
that a process will spin waiting for another process to release the lock must be not only
brief but also predictable. Such unpredictable events as page faults, signals, and the
preemption of a process holding the lock cause thereal elapsed timein acritical section to
significantly exceed the expected execution time. At best, these unexpected delays inside
acritical section may cause other CPUs to delay longer than anticipated; at worst, they
may cause deadlock. Locking pages in memory can be accomplished during program
initialization so as not to have an impact on the time to enter a critical section. The
mechanisms for rescheduling control provide alow-overhead means of controlling signals
and process preemption. Tools for providing rescheduling control are described in
“Rescheduling Control.”

Semaphores are another mechanism for providing mutual exclusion. Semaphores are a
form of sleepy-wait mutual exclusion because a process that attempts to lock a semaphore
that is already locked will be blocked or put to sleep. POSIX counting semaphores provide
a portable means of controlling access to shared resources. A counting semaphore is an
object that has an integer value and a limited set of operations defined for it. Counting
semaphores provide a simple interface that is implemented to achieve the fastest
performance for lock and unlock operations. POSIX counting semaphores are described in
the section “POSIX Counting Semaphores.” System V semaphores are a complex data
type that allows many additional functions (for example the ability to find out how many
waliters there are on a semaphore or the ability to operate on a set of semaphores). System
V semaphores are described in the section “ System V Semaphores.”

Mutexes allow multiple threads in a program to share the same resource but not
simultaneously. A mutex is created and any thread that needs the resource must lock the
mutex from other threads while using the resource and unlock it when it is no longer
needed. In addition to the standard POSIX pthread mutexes, RedHawk includes
extensions through an alternative glibec that provides robust mutexes and priority
inheritance. Robustness gives applications a chance to recover if one of the application’s
threads dies while holding a mutex. Applications using a priority inheritance mutex can
find the priority of the mutex’s owner boosted from time to time. These are explained in
the section “ Extensions to POSI X Mutexes.”



Interprocess Synchronization

Rescheduling Control

Multiprocess, real-time applications frequently wish to defer CPU rescheduling for brief
periods of time. To use busy-wait mutual exclusion effectively, spinlock hold times must
be small and predictable.

CPU rescheduling and signal handling are major sources of unpredictability. A process
would like to make itself immune to rescheduling when it acquires a spinlock, and
vulnerable again when it releases the lock. A system call could raise the caller’s priority to
the highest in the system, but the overhead of doing so is prohibitive.

A rescheduling variable provides control for rescheduling and signal handling. You
register the variable in your application and manipulate it directly from your application.
While rescheduling is disabled, quantum expirations, preemptions, and certain types of
signals are held.

A system call and a set of macros accommodate use of the rescheduling variable. In the
sections that follow, the variable, the system call, and the macros are described, and the
procedures for using them are explained.

The primitives described here provide low overhead control of CPU rescheduling and
signal delivery.

Understanding Rescheduling Variables

A rescheduling variableis a data structure, defined in <sys/rescntl . h> that controlsa
single process' vulnerability to rescheduling:

struct resched var {
pid t rv pid;

volatile int rv_nlocks;

}i

It is alocated on a per-process or per-thread basis by the application, not by the kernel.
The resched entl (2) system cal registers the variable, and the kernel examines the
variable before making rescheduling decisions.

Use of the resched _cntl system call is explained in “Using resched_cntl System
Call.” A set of rescheduling control macros enables you to manipulate the variable from
your application. Use of these macros is explained in “Using the Rescheduling Control
Macros.”

Each thread must register its own rescheduling variable. A rescheduling variable is valid
only for the process or thread that registers the location of the rescheduling variable.
Under the current implementation, it is recommended that rescheduling variables be used
only by single-threaded processes. Forking in a multi-threaded program that uses
rescheduling variables should be avoided.
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Using resched_cntl System Call
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Theresched cntl system call enablesyou to perform avariety of rescheduling control
operations. These include registering and initializing arescheduling variable, obtaining its
location, and setting alimit on the length of time that rescheduling can be deferred.

Synopsis

#include <sys/rescntl.h>

int resched cntl (cmd, arg)

int omd;
char *arg;

gcc [options] file -lccur rt ...

Arguments are defined as follows:

cmd the operation to be performed

arg a pointer to an argument whose value depends upon the value of cmd

cmd can be one of the following. The values of arg that are associated with each command

are indicated.

RESCHED_SET_VARIABLE

This command registers the caller’'s rescheduling variable. The
rescheduling variable must be located in a process private page,
which excludes pages in shared memory segments or files that
have been mapped MAP_SHARED.

Two threads of the same process should not register the same
address as their rescheduling variable. If argis not NULL, the
struct resched var itpointstoisinitialized and locked into
physical memory. If argis NULL, the caller is disassociated from
any existing variable, and the appropriate pages are unlocked.

After a fork(2), the child process inherits rescheduling
variables from its parent. The rv_pid field of the child’'s
rescheduling variable is updated to the process ID of the child.

If a child process has inherited a rescheduling variable and it, in
turn, forks one or more child processes, those child processes
inherit the rescheduling variable with the rv_pid field updated.

If a rescheduling variable is locked in the parent process at the
time of the call to fork, vEfork(2) or clone (2), the
rescheduling variable aborts.

Use of this command requires root capability or CAP_IPC_LOCK
and CAP_SYS RAWIO privileges.
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This command is a debugging tool. If arg isnot NULL, it pointsto
astruct timeval specifying the maximum length of time the
caller expects to defer rescheduling. The SIGABRT signal is sent to
the caller when thislimit is exceeded if the local timer of the CPU
isenabled. If argisNuLL, any previous limit is forgotten.

RESCHED_GET_VARIABLE

RESCHED_SERVE

This command returns the location of the caller’s rescheduling
variable. arg must point to a rescheduling variable pointer. The
pointer referenced by arg is set to NULL if the caller has no
rescheduling variable, and is set to the location of the
rescheduling variable otherwise.

This command is used by resched unlock to service pending
signals and context switches. Applications should not need to use
this command directly. arg must be 0.

Using the Rescheduling Control Macros

resched_lock

A set of rescheduling control macros enables you to lock and unlock rescheduling
variables and to determine the number of rescheduling locks in effect. These macros are
briefly described asfollows:

resched lock

resched unlock

resched nlocks

Synopsis

increments the number of rescheduling locks held by the calling
process

decrements the number of rescheduling locks held by the calling
process

returns the number of rescheduling locks currently in effect

#include <sys/rescntl.h>

void resched lock(r) ;

struct resched var *r;

The argument is defined as follows:

r apointer to the calling process' rescheduling variable

Resched lock does not return avalue; it increments the number of rescheduling locks
held by the calling process. Aslong as the process does not enter the kernel, quantum
expirations, preemptions, and some signal deliveries are deferred until all rescheduling

locks are rel eased.

However, if the process generates an exception (e.g., a page fault) or makes a system call,
it may receive signals or otherwise context switch regardless of the number of
rescheduling locks it holds. The following signals represent error conditions and are NOT
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resched _unlock

resched_nlocks
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affected by rescheduling locks: SIGILL, SIGTRAP, SIGFPE, SIGKILL, SIGBUS, SIGSEGYV,
SIGABRT, SIGSYS, SIGPIPE, SIGXCPU, and SIGXFSZ.

Making system calls while a rescheduling variable is locked is possible but not
recommended. However, it is not valid to make any system call that results in putting the
calling process to sleep while a rescheduling variable islocked.

Synopsis

#include <sys/rescntl.h>
void resched unlock(r) ;

struct resched var *r;
The argument is defined as follows:
r apointer to the calling process' rescheduling variable

Resched unlock does not return avalue. If there are no outstanding locks after the
decrement and a context switch or signal are pending, they are serviced immediately.

NOTE

The rv_nlocks field must be a positive integer for the lock to
be considered active. Thus, if the field is zero or negative, it is
considered to be unlocked.

Synopsis

#include <sys/rescntl.h>
int resched nlocks(r);

struct resched var *r;
The argument is defined as follows:

r apointer to the calling process' rescheduling variable
Resched nlocks returnsthe number of rescheduling locks currently in effect.

For additional information on the use of these macros, refer to the resched _cntl (2)
man page.
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Applying Rescheduling Control Tools

The following C program segment illustrates the procedures for controlling rescheduling
by using the tools described in the preceding sections. This program segment defines a
rescheduling variable (rv) as aglobal variable; registers and initializes the variable with a
cal to resched cntl; and locks and unlocks the rescheduling variables with calls to
resched lock and resched unlock, respectively.

static struct resched var rv;

int main (int argc, char *argvl[])

{

resched cntl (RESCHED SET VARIABLE, (char *)&rv);
resched lock (&rv) ;

/* nonpreemptible code */

resched unlock (&rv);
return O;

Busy-Wait Mutual Exclusion

Busy-wait mutual exclusion is achieved by associating a synchronizing variable with a
shared resource. When a process or thread wishes to gain access to the resource, it locks
the synchronizing variable. When it completes its use of the resource, it unlocks the
synchronizing variable. If another process or thread attempts to gain access to the resource
while the first process or thread has the resource locked, that process or thread must delay
by repeatedly testing the state of the lock. This form of synchronization requires that the
synchronizing variable be accessible directly from user mode and that the lock and unlock
operations have very low overhead.

RedHawk Linux provides two types of low-overhead busy-wait mutual exclusion
variables: spin_mutex and nopreempt spin mutex. A nopreempt spin_
mutex automatically uses rescheduling variables to make threads or processes non-
preemptible while holding the mutex; a spin_mutex does not.

In the sections that follow, the variables and interfaces are defined, and the procedures for
using them are explained.

Understanding the spin_mutex Variable

The busy-wait mutual exclusion variable is a data structure known as a spin lock. The
spin_mutex variableis defined in <spin.h> asfollows:

typedef struct spin mutex {
volatile int count;
} spin mutex t;
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The spin lock has two states: locked and unlocked. When initialized, the spinlock isin the
unlocked state.

If you wish to use spin locks to coordinate access to shared resources, you must allocate
them in your application program and locate them in memory that is shared by the
processes or threads that you wish to synchronize. You can manipulate them by using the
interfaces described in “Using the spin_mutex Interfaces.”

Using the spin_mutex Interfaces
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This set of busy-wait mutual exclusion interfaces allowsyou to initialize, lock, and unlock
spin locks and determine whether or not a particular spin lock islocked. These are briefly
described as follows:

spin_init initialize a spin lock to the unlocked state

spin lock spin until the spin lock can be locked

spin trylock attempt to lock a specified spin lock

spin islock determine whether or not a specified spin lock islocked
spin unlock unlock a specified spin lock

It is important to note that none of these interfaces enables you to lock a spin lock
unconditionally. You can construct this capability by using the tools that are provided.

CAUTION

Operations on spin locks are not recursive; a process or thread can
deadlock if it attempts to relock a spin lock that it has already
locked.

You must initialize spin locks before you use them by calling spin_init. You call
spin_init only once for each spin lock. If the specified spin lock is locked,
spin_init effectively unlocksit; it does not return avalue. The spin_init interface
is specified as follows:

#include <spin.h>
void spin init (spin mutex t *m);

The argument is defined as follows:
m the starting address of the spin lock

spin_lock spins until the spin lock can be locked. It does not return avalue. The
interface is specified as follows:

#include <spin.h>
void spin lock (spin mutex t *m);



Interprocess Synchronization

spin_trylock returnstrue if the calling process or thread has succeeded in locking the
spin lock; false if it has not succeeded. spin_trylock does not block the calling
process or thread. The interface is specified as follows:

#include <spin.h>
int spin trylock(spin mutex_t *m);

spin_islock returnstrueif the specified spin lock islocked; falseif it is unlocked. It
does not attempt to lock the spin lock. The interface is specified as follows:

#include <spin.h>
int spin islock(spin mutex t *m);

spin_unlock unlocksthe spin lock. It does not return avalue. Theinterface is specified
asfollows:

#include <spin.h>
void spin unlock (spin mutex t *m);

Notethat spin_ lock, spin_trylock and spin_unlock can log trace eventsto be
monitored by NightTrace. An application can enable these trace events by defining
SPIN_TRACE prior to including <spin.hs. For example:

#define SPIN TRACE
#include <spin.h>

The application must also be linked with -1ntrace, or -1ntrace_thr if also linked
with -1pthread

For additional information on the use of these interfaces, refer to the spin_init (3)
man page.

Applying spin_mutex Tools

Procedures for using the spin_mutex tools for busy-wait mutual exclusion are illustrated
by the following code segments. The first segment shows how to use these tools along
with rescheduling control to acquire a spin lock; the second shows how to release a spin
lock. Note that these segments contain no system calls or procedure calls.

The m argument points to a spin lock, and the _r argument points to the calling process’
or thread' s rescheduling variable. It is assumed that the spin lock islocated in shared
memory. To avoid the overhead associated with paging and swapping, it is recommended
that the pages that will be referenced inside the critical section be locked in physical
memory (seethemlock (2) and shmetl (2) system calls).

#define spin acquire( m, r) \
{\
resched lock( r); \
while (!spin _trylock( m)) { \
resched unlock( r); \
while (spin_islock( m)); \
resched lock (_r); \
FA
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#define spin release( m, r) \
{\
spin unlock ( m); \
resched unlock( r); \
}

In the first segment, note the use of the spin_trylock and spin_islock interfaces.
If a process or thread attempting to lock the spin lock finds it locked, it waits for the lock
to be released by calling spin_islock. This sequence is more efficient than polling
directly with spin_trylock. The spin_trylock interface contains special
instructions to perform test-and-set atomically on the spin lock. These instructions are less
efficient than the simple memory read performed in spin_islock.

Note also the use of the rescheduling control interfaces. To prevent deadlock, a process or
thread disables rescheduling prior to locking the spin lock and re-enables it after
unlocking the spin lock. A process or thread also re-enables rescheduling just prior to the
call to spin_islock so that rescheduling is not deferred any longer than necessary.

Understanding the nopreempt_spin_mutex Variable

The nopreempt_spin_mutex is a busy-wait mutex that allows multiple threads or
processes to synchronize access to a shared resource. A rescheduling variable is used to
make threads or processes non-preemptible while holding the mutex locked. A thread or
process may safely nest the locking of multiple mutexes. The nopreempt_spin_mutex is
defined in <nopreempt spin.h> asfollows:

typedef struct nopreempt spin mutex {
spin _mutex t spr mux;
} nopreempt spin mutex t;

The spin lock has two states: locked and unlocked. When initialized, the spin lock isin the
unlocked state.

If you wish to use non-preemptible spin locks to coordinate access to shared resources,
you must allocate them in your application program and locate them in memory that is
shared by the processes or threads that you wish to synchronize. You can manipulate them
by using the interfaces described in “ Using the nopreempt_spin_mutex Interfaces.”

Using the nopreempt_spin_mutex Interfaces
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This set of busy-wait mutual exclusion interfaces allowsyou toinitialize, lock, and unlock
non-preemptible spin locks. A rescheduling variable is used to make threads or processes
non-preemptible while holding the mutex locked. These are briefly described as follows:

nopreempt spin init initialize a spin lock to the unlocked
state

nopreempt spin_init thread guarantee that preemption can be
blocked

nopreempt spin_lock spin until the spin lock can be locked
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nopreempt spin_trylock attempt to lock a specified spin lock

nopreempt spin_ islock determine whether or not a specified
spin lock islocked

nopreempt spin unlock unlock a specified spin lock

You must initialize spin locks before you use them by calling nopreempt_spin init.
You cal thisinterface only once for each spin lock. If the specified spin lock is locked,
nopreempt_spin_init effectively unlocksit; it does not return avalue. The interface
is specified as follows:

#include <nopreempt spin.hs>
void nopreempt spin init (nopreempt spin mutex t *m);

The argument is defined as follows:
m the starting address of the spin lock

nopreempt spin_init thread guaranteesthat preemption can be blocked when
nopreempt spin_ lock and nopreempt spin_ trylock arecalled. When a
nopreempt_spin_mutex is used in a multi-threaded process, the process must be linked
with -1pthread and each thread must call nopreempt spin init threadatlesst
once. If aprocessis not multi-threaded, it must call this routine at least once. This routine
need only be called once regardless of how many mutexes the process or thread uses. It
returns zero (0) if preemption blocking can be guaranteed; otherwise it returns -1 with
errno set. Theinterfaceis specified asfollows:

#include <nopreempt spin.h>
int nopreempt spin init thread(void)

nopreempt spin_lock spins until the spin lock can be locked. It does not return a
value. It is specified as follows:

#include <nopreempt spin.hs>
void nopreempt spin lock (nopreempt spin mutex t *m);

nopreempt spin_trylock returnstrueif the calling process or thread has succeeded
in locking the spin lock; falseif it has not succeeded. nopreempt spin_trylock
does not block the calling process or thread. The interface is specified as follows:

#include <nopreempt spin.h>
int nopreempt spin trylock (nopreempt spin mutex t *m);

nopreempt spin_islock returnstrueif the specified spin lock islocked; falseif itis
unlocked. It does not attempt to lock the spin lock. The interface is specified as follows:

#include <nopreempt spin.h>
int nopreempt spin islock (nopreempt spin mutex t *m);

nopreempt spin_unlock unlocks the spin lock. It does not return a value. The
interface is specified as follows:

#include <nopreempt spin.h>
void nopreempt spin unlock (nopreempt spin mutex_t *m);

5-11
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Note that nopreempt spin_ lock, nopreempt spin_ trylock and
nopreempt spin_unlock can log trace events to be monitored by NightTrace. An
application can enable these trace events by defining SPIN_TRACE prior to including
<nopreempt_spin.hs>. For example:

#define SPIN TRACE
#include <nopreempt spin.h>

The application must also be linked with -1ntrace, or -1ntrace_thr if also linked
with -1pthread.

For additional information on the use of these interfaces, refer to the
nopreempt spin_ init (3) man page.

POSIX Counting Semaphores

Overview
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Counting semaphores provide a simple interface that can be implemented to achieve the
fastest performance for lock and unlock operations. A counting semaphore is an object
that has an integer value and a limited set of operations defined for it. These operations
and the corresponding POSI X interfaces include the following:

* An initialization operation that sets the semaphore to zero or a positive
value—sem init Or sem open

* A lock operation that decrements the value of the semaphore—sem wait
or sem_timedwait. If the resulting value is negative, the task performing
the operation blocks.

* An unlock operation that increments the value of the semaphore—
sem_post. If the resulting value is less than or equal to zero, one of the
tasks blocked on the semaphore is awakened. If the resulting valueis greater
than zero, no tasks were blocked on the semaphore.

* A conditional lock operation that decrements the value of the semaphore
only if the value is positive—sem trywait. If the valueis zero or
negative, the operation fails.

* A query operation that provides a snapshot of the value of the semaphore—
sem getvalue

The lock, unlock, and conditional lock operations are atomic (the set of operations are
performed at the same time and only if they can all be performed simultaneoudly).

A counting semaphore may be used to control access to any resource that can be used by
multiple cooperating threads. A counting semaphore can be named or unnamed.

A thread creates and initializes an unnamed semaphore through a call to the
sem_init (3) routine. The semaphoreisinitialized to a value that is specified on the
call. All threads within the application have access to the unnamed semaphore once it has
been created with the sem_init routine call.



Interfaces

Interprocess Synchronization

A thread creates a named semaphore by invoking the sem open routine and specifying a
unique namethat is simply anull-terminated string. The semaphoreisinitialized to avalue
that is supplied on the call to sem open to create the semaphore. No space is allocated
by the process for a named semaphore because the sem open routine will include the
semaphore in the process's virtual address space. Other processes can gain access to the
named semaphore by invoking sem_open and specifying the same name.

When an unnamed or named semaphoreisinitialized, its value should be set to the number
of available resources. To use a counting semaphore to provide mutual exclusion, the
semaphore value should be set to one.

A cooperating task that wants access to a critical resource must lock the semaphore that
protects that resource. When the task locks the semaphore, it knows that it can use the
resource without interference from any other cooperating task in the system. An
application must be written so that the resource is accessed only after the semaphore that
protects it has been acquired.

As long as the semaphore value is positive, resources are available for use; one of the
resources is alocated to the next task that triesto acquire it. When the semaphore valueis
zero, then none of the resources are available; atask trying to acquire a resource must wait
until one becomes available. If the semaphore value is negative, then there may be one or
more tasks that are blocked and waiting to acquire one of the resources. When a task
completes use of aresource, it unlocks the semaphore, indicating that the resource is
available for use by another task.

The concept of ownership does not apply to a counting semaphore. One task can lock a
semaphore; another task can unlock it.

The semaphore unlock operation is async-signal safe; that is, a task can unlock a
semaphore from a signal-handling routine without causing deadlock.

The absence of ownership precludes priority inheritance. Because a task does not become
the owner of a semaphore when it locks the semaphore, it cannot temporarily inherit the
priority of ahigher-priority task that blockstrying to lock the same semaphore. Asaresullt,
unbounded priority inversion can occur.

The sections that follow explain the procedures for using the POSIX counting semaphore
interfaces. These interfaces are briefly described as follows:

sem init initializes an unnamed counting semaphore

sem destroy removes an unnamed counting semaphore

sem_open creates, initializes and establishes a connection to a named
counting semaphore

sem close relinquishes access to a named counting semaphore

sem unlink removes the name of a named counting semaphore

sem wait locks a counting semaphore

sem trywait locks a counting semaphore only if it is currently unlocked

sem timedwait locks a counting semaphore with timeout

sem post unlocks a counting semaphore

sem getvalue obtains the value of a counting semaphore

5-13
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Note that to use these interfaces, you must link your application with the pthreads library.
The following example shows the command line invocation when linking dynamically
with shared libraries. The Native POSIX Threads Library (NPTL) is used by default.

gcec [options] file.c -lpthread

The same application can be built statically with the following invocation line. This uses
the LinuxThreads library.

gcc [options] -static file.c -lpthread

Note that there is no support for process shared semaphores in the LinuxThreads library.

The sem_init Routine
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The sem_init (3) library routine allows the calling process to initialize an unnamed
counting semaphore by setting the semaphore value to the number of available resources
being protected by the semaphore. To use a counting semaphore for mutual exclusion, the
process sets the value to one.

Dynamically linked programs, which use the NPTL threads library, can share a semaphore
across processes when the pshared parameter is set to a non-zero value. If pshared is set to
zero, the semaphore is shared only among threads within the same process.

Statically linked programs, which use the LinuxThreads library, can only have counting
semaphores shared among threads within the same process (pshared must be set to 0).
After onethread in aprocess creates and initializes a semaphore, other cooperating threads
within that same process can operate on the semaphore. A child process created by a
fork (2) system call does not inherit access to a semaphore that has already been
initialized by the parent. A process also loses access to a semaphore after invoking the
exec (3) or exit (2) systemcals.

The sem wait, sem timedwait, sem trywait, sem post and sem getvalue
library routines are used to operate on the semaphores. An unnamed counting semaphore
is removed by invoking the sem destroy routine. These routines are described in the
sections that follow.

CAUTION

The IEEE 1003.1b-1993 standard does not indicate what happens when
multiple processes invoke sem_init for the same semaphore.
Currently, the RedHawk Linux implementation simply reinitializes the
semaphore to the value specified on sem _init callsthat are made after
theinitial sem init call.

To be certain that application code can be ported to any system that
supports POSIX interfaces (including future Concurrent systems),
cooperating processes that use sem_init should ensure that a single
process initializes a particular semaphore and that it does so only once.

If sem init iscalled after it has aready been initialized with a prior
sem_init call, and there are currently threads that are waiting on this
same semaphore, then these threads will never return from their
sem_ wait calls, and they will need to be explicitly terminated.
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#include <semaphore.h>

int sem init(sem_t *sem, int pshared, unsigned int value) ;

The arguments are defined as follows:

sem

pshared

value

a pointer to a sem_t structure that represents the unnamed counting
semaphore to beinitialized

an integer value that indicates whether or not the semaphore is to be
shared by other processes. If pshared is set to a non-zero value, then the
semaphore is shared among processes. If pshared is set to zero, then the
semaphore is shared only among threads within the same process. Stati-
cally linked programs, which use the LinuxThreads library, cannot use
semaphores shared between processes and must have pshared set to
zero; if not set to zero, sem_init returnswith -1 and errno is set to
ENOSYS.

zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot
exceed the value of SEM_VALUE_MAX (see thefile <semaphore.h> to
determine this value).

A return value of O indicates that the call to sem _init has been successful. A return
value of —1 indicatesthat an error has occurred; errno is set to indicate the error. Refer to
thesem init (3) man pagefor alisting of the types of errors that may occur.

The sem_destroy Routine

CAUTION

An unnamed counting semaphore should not be removed until
there is no longer a need for any process to operate on the
semaphore and there are no processes currently blocked on the
semaphore.

Synopsis

#include <semaphore.h>

int sem destroy(sem t *sam);

The argument is defined as follows:

sem

a pointer to the unnamed counting semaphore to be removed. Only a
counting semaphore created with a call to sem _init (3) may be
removed by invoking sem destroy.

A return value of O indicates that the call to sem destroy has been successful. A return
value of —1 indicates that an error has occurred; errno isset to indicate the error. Refer to
the sem_destroy (3) man pagefor alisting of the types of errors that may occur.
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The sem_open Routine
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The sem_open (3) library routine allows the calling process to create, initialize, and
establish a connection to a named counting semaphore. When a process creates a named
counting semaphore, it associates a unique name with the semaphore. It also sets the
semaphore value to the number of available resources being protected by the semaphore.
To use a named counting semaphore for mutual exclusion, the process sets the value to
one.

After a process creates a named semaphore, other processes can establish a connection to
that semaphore by invoking sem open and specifying the same name. Upon successful
completion, the sem_open routine returns the address of the named counting semaphore.
A process subsequently uses that address to refer to the semaphore on callsto sem wait,
sem trywait, and sem post. A process may continue to operate on the named sema-
phore until it invokes the sem close routine or the exec (2) or _exit (2) system
calls. On acall to exec or exit, a named semaphore is closed as if by a call to
sem_close. A child process created by a fork (2) system call inherits access to a
named semaphore to which the parent process has established a connection.

If asingle process makes multiple callsto sem open and specifies the same name, the
same address will be returned on each call unless (1) the process itself has closed the
semaphore through intervening callsto sem close or (2) some process has removed the
name through intervening callsto sem unlink.

If multiple processes make callsto sem open and specify the same name, the address of
the same semaphore object will be returned on each call unless some process has removed
the name through intervening callsto sem unlink. (Note that the same address will not
necessarily be returned on each call.) If a process has removed the name through an inter-
vening call to sem unlink, the address of a new instance of the semaphore object will
be returned.

Synopsis

#include <semaphore.h>

sem_t *sem open(const char *name int oflag[, mode t mode,
unsigned int value]) ;

The arguments are defined as follows:

name anull-terminated string that specifies the name of a semaphore. The pre-
fix “sem.” is prepended to name and the semaphore will appear as adata
filein /dev/shm. A leading slash (/) character is allowed (recom-
mended for portable applications) but no embedded slashes. Neither a
leading slash character nor the current working directory affects inter-
pretations of it; e.g., /mysem and mysem are both interpreted as
/dev/shm/sem.mysem. Note that this string, including the 4-char-
acter prefix, must consist of less than { NAME_MAX}, defined in
/usr/include/limits.h.

oflag an integer value that indicates whether the calling process is creating a
named counting semaphore or establishing a connection to an existing
one. The following bits may be set:
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O_CREAT  causes the counting semaphore specified by name to be cre-
ated if it does not exist. The semaphore’s user ID is set to
the effective user ID of the calling process; its group ID is
set to the effective group ID of the calling process; and its
permission hits are set as specified by the mode argument.
The semaphore’ sinitial valueis set as specified by the value
argument. Note that you must specify both the mode and the
value arguments when you set this bit.

If the counting semaphore specified by name exists, setting
O_CREAT has no effect except as noted for 0_ExcCL.

O_EXCL  causes sem_open to fail if O_CREAT is set and the counting
semaphore specified by name exists. If O_CREAT is not set,
this bit isignored.

Note that the sem open routine returns an error if flag bits
other than 0_CREAT and 0_EXCL are set in the oflag argu-
ment.

mode an integer value that sets the permission bits of the counting semaphore
specified by name with the following exception: bits set in the process's
file mode creation mask are cleared in the counting semaphore’ s mode
(refer to the umask (2) and chmod (2) man pages for additional
information). If bits other than the permission bits are set in mode, they
areignored. A process specifies the mode argument only when it is cre-
ating a named counting semaphore.

value zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot exceed
the value of SEM_VALUE_MAX defined in the file <limits.h>. A pro-
cess specifies the value argument only when it is creating a named
counting semaphore.

If the call issuccessful, sem open returns the address of the named counting semaphore.
A return value of SEM_FAILED indicates that an error has occurred; errno isset to indicate
the error. Refer to the sem_open (3) man page for alisting of the types of errors that
may OCCuI.

The sem_close Routine

The sem_close (3) library routine allows the calling process to relinquish access to a
named counting semaphore. The sem _close routine frees the system resources that have
been allocated for the process use of the semaphore. Subsequent attempts by the process
to operate on the semaphore may result in delivery of a SIGSEGV signal.

The count associated with the semaphore is not affected by a process’ call to
sem close.

Synopsis

#include <semaphore.h>

int sem_close(sem_t *sem);
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The argument is defined as follows:

sem a pointer to the named counting semaphore to which access is to
be relinquished. Only a counting semaphore to which a connec-
tion has been established through acall to sem open (3) may be
specified.

A return value of O indicates that the call to sem close has been successful. A return
value of —1 indicatesthat an error has occurred; errno is set to indicate the error. Refer to
the sem close (3) man page for alisting of the types of errors that may occur.

The sem_unlink Routine
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The sem unlink (3) library routine allows the calling process to remove the name of a
counting semaphore. A process that subsequently attempts to establish a connection to the
semaphore by using the same name will establish a connection to a different instance of
the semaphore. A process that has a reference to the semaphore at the time of the call may
continue to use the semaphore until it invokes sem close (3) or the exec (2) or
exit (2) system call.

Synopsis

#include <semaphore.h>

int sem unlink (const char *name) ;
The argument is defined as follows:

name anull-terminated string that specifies the name of a semaphore. The pre-
fix “sem.” is prepended to name and the semaphore will appear as adata
filein /dev/shm. A leading slash (/) character is allowed (recom-
mended for portable applications) but no embedded slashes. Neither a
leading slash character nor the current working directory affects inter-
pretations of it; e.g., /mysem and mysem are both interpreted as
/dev/shm/sem.mysem. Note that this string, including the 4-char-
acter prefix, must consist of less than { NAME_MAX}, defined in
/usr/include/limits.h.

A return value of O indicates that the call to sem unlink has been successful. A return
value of —1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem unlink (3) man page for alisting of the types of errors that may occur.
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The sem_wait Routine

The sem _wait (3) library routine allows the calling process to lock an unnamed
counting semaphore. If the semaphore value is equal to zero, the semaphore is already
locked. In this case, the process blocks until it is interrupted by a signal or the semaphore
is unlocked. If the semaphore value is greater than zero, the process locks the semaphore
and proceeds. In either case, the semaphore value is decremented.

Synopsis
#include <semaphore.h>

int sem wait (sem_t *sem);
The argument is defined as follows:
sem a pointer to the unnamed counting semaphore to be locked

A return value of 0 indicates that the process has succeeded in locking the specified
semaphore. A return value of —1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sem _wait (3) man page for alisting of the types of
errors that may occur.

The sem_timedwait Routine

The sem timedwait (3) library routine allows the calling process to lock an unnamed
counting semaphore; however, if the semaphore cannot be locked without waiting for
another process or thread to unlock it via sem_post, the wait is terminated when the
specified timeout expires.

When the program is linked to the 1ibeccur_rt library, the timeout is based on the
CLOCK_REALTIME clock (see “POSIX Clocks and Timers” in Chapter 6 for more
information).

Synopsis
#include <semaphore.h>
#include <time.h>

int sem timedwait (sem_t *sem, const struct timespec *ts);
The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore to be locked

ts a pointer to a timespec structure defined in <time.h> which specifies a
single time value in seconds and nanoseconds when the wait is terminated.
For example:

ts.tv_sec = (NULL)+2
ts.tv_nsec = 0

establishes a two second timeout. For more information on POSIX time
structures, see “Understanding the POSIX Time Structures” in Chapter 6.

A return value of 0 indicates that the process has succeeded in locking the specified
semaphore. A return value of —1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sem_wait (3) man page for alisting of the types of
errors that may occur.
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The sem_trywait Routine

The sem trywait (3) library routine allows the calling process to lock a counting
semaphore only if the semaphore value is greater than zero, indicating that the semaphore
is unlocked. If the semaphore value is equal to zero, the semaphoreis already locked, and
the call to sem trywait fails. If a process succeeds in locking the semaphore, the
semaphore value is decremented; otherwise, it does not change.

Synopsis

#include <semaphore.h>

int sem trywait (sem t *sem);
The argument is defined as follows:

sem a pointer to the unnamed counting semaphore that the calling processis
attempting to lock

A return value of 0 indicates that the calling process has succeeded in locking the
specified semaphore. A return value of —1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sem trywait (3) man page for alisting of the
types of errors that may occur.

The sem_post Routine
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The sem_post (3) library routine allows the calling process to unlock a counting
semaphore. If one or more processes are blocked waiting for the semaphore, the waiting
process with the highest priority is awakened when the semaphore is unlocked.

Synopsis
#include <semaphore.h>
int sem post (sem_t *sem);
The argument is defined as follows:
sem a pointer to the unnamed counting semaphore to be unlocked

A return value of 0 indicates that the call to sem post has been successful. If a bad
semaphore descriptor has been supplied, a segmentation fault results. A return value of —1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sem_post (3) man page for alisting of the types of errors that may occur.
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The sem_getvalue Routine

The sem getvalue (3) library routine allows the calling process to obtain the value of
an unnamed counting semaphore.

Synopsis

#include <semaphore.h>

int sem getvalue(sem t *sem, int *sval) ;
The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore for which you wish to
obtain the value

sval a pointer to a location where the value of the specified unnamed count-
ing semaphoreisto be returned. The value that is returned represents the
actual value of the semaphore at some unspecified time during the call.
It is important to note, however, that this value may not be the actual
value of the semaphore at the time of the return from the call.

A return value of O indicates that the call to sem getwvalue has been successful. A
return value of —1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sem getvalue (3) man page for alisting of the types of errors that may
occur.

Extensions to POSIX Mutexes

A mutex is a mutual exclusion device useful for protecting shared data structures from
concurrent modifications and implementing critical sections. A mutex has two possible
states: unlocked (not owned by any thread) and locked (owned by one thread). A thread
attempting to lock a mutex that is already locked by another thread is suspended until the
owning thread unlocks the mutex first.

The standard POSI X pthread mutex functionality available in RedHawk includes the
following services. For full information about these services refer to the man pages.

pthread mutex init(3) initializes the mutex

pthread mutex lock(3) locks the mutex
pthread mutex trylock(3) tries to lock the mutex
pthread mutex unlock(3) unlocks the mutex

pthread mutex destroy(3) destroys the mutex

pthread mutexattr init(3) initializes the mutex attribute object
pthread mutexattr destroy(3) destroys the mutex attribute object
pthread mutexattr settype(3) sets the mutex attribute type
pthread mutexattr gettype (3) retrieves the mutex attribute type
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Robust Mutexes
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In addition to those services, RedHawk includes the following POSIX pthread extensions
that provide robustness and priority inheritance. Robustness gives applications a chance to
recover if one of the application’s threads dies while holding a mutex. Priority inheritance
is the automatic boosting of the scheduling priority of athread to the priority of the highest
priority thread that is sleeping, directly or indirectly, on any of the mutexes owned by that
thread. These conditions are discussed in more detail below.

These pthread extensions are accessible through an alternative glibe, which is discussed
in the section “Alternative glibc” below. The services are described in the sections that
follow and in the man pages.

pthread mutex consistent np(3) makes an inconsistent mutex consistent
pthread mutex getunlock np (3) returns the unlocking policy of the mutex
pthread mutex setconsistency np(3) setsthe consistency state of the mutex
pthread mutex setunlock np(3) sets the unlocking policy of the mutex
pthread mutexattr getfast np(3) returns the operating mode

pthread mutexattr getprotocol(3) returns the protocol

pthread mutexattr getrobust np(3) returnstherobust level

pthread mutexattr getunlock np(3) returnsthe unlocking policy

pthread mutexattr setfast np(3) sets the operating mode

pthread mutexattr setprotocol(3) sets the protocol

pthread mutexattr setrobust np(3) setstherobust level

pthread mutexattr setunlock np(3)  setstheunlocking policy

Applications using a robust mutex can detect whether the previous owner of the mutex
terminated while holding the mutex. The new owner can then attempt to clean up the state
protected by the mutex, and if able to do so, mark the mutex as again healthy. If cleanup of
the state can’t be done, the mutex can be marked unrecoverable so that any future attempts
tolock it will get a status indicating that it is unrecoverable.

To implement this, two new errno codes, EOWNERDEAD and ENOTRECOVERABLE, are
available. When athread dies while holding a mutex, the mutex is automatically unlocked
and marked dead. A dead lock operates like anormal lock except that each successful lock
on adead mutex returns an EOWNERDEAD error rather than success.

Therefore an application that is interested in robustness must examine the return status of
every lock request. When EOWNERDEAD is seen, the application can ignore it, repair
whatever iswrong in the application due to the death of the owner and mark it consistent
(healthy), or if it cannot be repaired, mark it unrecoverable.

A mutex marked unrecoverable rejects all future operations on that mutex with an
ENOTRECOVERABLE error. The only exception is the service which re-initializes the mutex
and the services that inquire about the mutex state. Threads that were sleeping on a mutex
that becomes unrecoverable wake up immediately with an ENOTRECOVERABLE error.
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Priority Inheritance

User Interface

An application using a priority inheritance mutex can find its priority temporarily boosted
from time to time. The boosting happens to those threads that have acquired a mutex and
other higher priority threads go to sleep waiting for that mutex. In this case, the priority of
the sleeper istemporarily transferred to the lock owner for as long as that owner holds the
lock.

As these sleeping threads in turn could own other mutexes, and thus themselves have
boosted priorities, the max function takes care to use the sleeper’s boosted, not base,
priorities in making its decision on what priority to boost to.

The services listed in this section are available by compiling and linking applications with
ccur-gee, which is described in the section “ Alternative glibc” below. Full descriptions
of these services are provided in the sections that follow and on the corresponding online
man page.

The following services operate on the state of the mutex:

pthread mutex consistent np(3) makes an inconsistent mutex consistent
pthread mutex getunlock np(3) returns the unlocking policy of the mutex
pthread mutex setconsistency np(3) setsthe consistency state of the mutex
pthread mutex setunlock np(3) sets the unlocking policy of the mutex

The services listed below modify or make inquires about attributes stored in mutex
attribute objects. A mutex attribute object is a data structure that defines which mutex
features are to be available in mutexes created with that attribute object. Since mutexes
have alot of features, a mutex attribute object makes it convenient for an application to
define all the desired attributes in one mutex attribute object, then create all the mutexes
that are to have that set of attributes with that object.

In addition, those attributes which must be fixed for the life of the mutex are definable
only through a mutex attribute object. Likewise, attributes which can be changed during
the life of amutex can be given an initial definition through the mutex attribute object,
then can be changed later via an equivalent attribute operation on the mutex itself.

To return an attribute:
pthread mutexattr getfast np(3) returns the operating mode
pthread mutexattr getprotocol(3) returns the protocol
pthread mutexattr getrobust np(3) returnstherobust level
pthread mutexattr getunlock np(3) returnsthe unlocking policy
To set an attribute:
pthread mutexattr setfast np(3) sets the operating mode
pthread mutexattr setprotocol (3) sets the protocol
pthread mutexattr setrobust np(3) setstherobust level
pthread mutexattr setunlock np(3)  setstheunlocking policy
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pthread_mutex_consistent_np

This service makes an inconsistent mutex consistent.

Synopsis
int pthread mutex consistent np (pthread mutex t *Mmutex)

A consistent mutex becomes inconsistent if its owner dies while holding it. In addition, on
detection of the death of the owner, the mutex becomes unlocked, much as if a
pthread mutex unlock wasexecuted onit. The lock continuesto operate as normal,
except that subsequent owners receive an EOWNERDEAD error return from the
pthread mutex lock that gave it ownership. Thisindicatesto the new owner that the
acquired mutex isinconsistent.

This service can only be called by the owner of the inconsistent mutex.

pthread_mutex_getunlock _np

This service returns the unlocking policy of this mutex.

int pthread mutex getunlock np (const pthread mutex t *Mmutex,
int *policy)

The unlocking policy is returned in * policy, which may be set to:

PTHREAD_MUTEX_UNLOCK_SERIAL_NP
pthread mutex unlock iSto passthelock directly from the
owner to the highest priority thread waiting for the lock.

PTHREAD_MUTEX_UNLOCK_PARALLEL_NP
The lock is unlocked and, if there are waiters, the most important
of them is awakened. The awakened thread contends for the lock
asit would if trying to acquire the lock for the first time.

PTHREAD_MUTEX_UNLOCK_AUTO_NP
Select between the above two policies based on the POSI X
scheduling policy of the to-be-awakened thread. If the thread is
SCHED_OTHER, use the parallel policy; otherwise use the serial

policy.

pthread_mutex_setconsistency_np

This service sets the consistency state of the given mutex.

int pthread mutex setconsistency np (pthread mutex t *mutex,
int date)

state may be any one of the following:

PTHREAD_MUTEX_ROBUST_CONSISTENT_NP
Make an inconsistent mutex consistent. An application should do
this only if it has been able to fix the problems that caused the
mutex to be marked inconsistent.
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PTHREAD_MUTEX_ROBUST_NOTRECOVERABLE_NP
Mark an inconsistent mutex as unrecoverable. An application
should do thisif it is not able to fix the problems that caused the
mutex to be marked inconsistent.

The mutex must originally be in an inconsistent state or this service returns an error. Only
the owner of the mutex can change its consistency state.

pthread_mutex_setunlock_np

This service sets the unlocking policy of this mutex.
Synopsis
int pthread mutex setunlock np (pthread mutex t *mutex, int policy)

policy may be PTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_UNLOCK _
PARALLEL_NP Or PTHREAD_MUTEX_UNLOCK_AUTO_NP. Refer to the section
“pthread_mutex_getunlock _np” above for definitions.

pthread _mutexattr_getfast_np

This service returns whether mutexes initialized with the set of attributesin attr will runin
fast or in slow mode.

Synopsis

int pthread mutexattr getfast np (const pthread mutexattr t *attr,
int *mode)

The answer is returned in * mode, which will be set to:

PTHREAD_MUTEX_FASTPATH_NP
Mutexes initialized with attr will run in fast mode. In this mode,
uncontended locks and unlocks do not enter the kernel.

PTHREAD_MUTEX_SLOWPATH_NP
Mutexes initialized with attr will run in slow mode. In this mode,
the kernel is entered for every pthread mutex lock and
pthread mutex unlock.

pthread _mutexattr_getprotocol

This services returns the protocol for mutexes initialized with this set of attributes.
Synopsis

int pthread mutexattr getprotocol (pthread mutexattr t *aftr,
int *protocol)

The available protocols are:

PTHREAD_PRIO_NONE A thread’s scheduling priority is not affected by operations on this
mutex.
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PTHREAD_PRIO_INHERIT
A thread’s scheduling priority is changed according to the rules of
the priority inheritance protocol: aslong as the thread is the owner
of the mutex, it will inherit the priority of the highest priority
waiter that is directly or indirectly waiting to acquire the mutex.

pthread _mutexattr_getrobust_np

This service returns the robust level for mutexes initialized with this set of attributes.

Synopsis

int pthread mutexattr getrobust np(const pthread mutexattr t
*aftr, int +*robustness)

The available levels are:
PTHREAD_MUTEX_ROBUST_NP Mutexes created with this attribute object will be robust.

PTHREAD_MUTEX_STALLED_NP Mutexes created with this attribute object will not be
robust.

A robust mutex is one that detects when its owner dies and transitions to the inconsistent
state. See “pthread_mutex_consistent_np” for the definition of the inconsistent state.

A nonrobust mutex does not detect when its owner dies and so remains locked indefinitely
(that is, until it isinterrupted by a signal or some other thread unlocks the mutex on behalf
of the dead process).

pthread _mutexattr_getunlock_np

This service returns the unlocking policy for mutexes initialized with this set of attributes.

int pthread mutexattr getunlock np(const phtread mutexattr t

*attr, int *mode)

The available policies are PTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_
UNLOCK_PARALLEL_NP and PTHREAD_MUTEX_UNLOCK_AUTO_NP. See the section
“pthread_mutex_getunlock_np” for their definitions.

pthread_mutexattr_setfast_np
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This service sets the operating mode for mutexes created with this set of attributes.

Synopsis

int pthread mutexattr setfast np(pthread mutexattr t =*aftr,
int mode)

mode may be PTHREAD_MUTEX_FASTPATH_NP OFf PTHREAD_MUTEX_SLOWPATH_NP. See the
section “pthread_mutexattr_getfast_np” for their definitions.
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pthread _mutexattr_setprotocol

This service sets the protocol of any mutex that is created from this set of mutex attributes.

Synopsis

int pthread mutexattr setprotocol (pthread mutexattr t =attr,
int protocol)

protocol may be PTHREAD_PRIO_NONE Or PTHREAD_PRIO_INHERIT. See the section
“pthread_mutexattr_getprotocol” for their definitions.

pthread_mutexattr_setrobust_np

This service sets the robust level for mutexes that are created with this mutex attribute
object.

Synopsis

int pthread mutexattr setrobust np (pthread mutexattr t =attr,
int robustness)

robustness may be PTHREAD_MUTEX_ROBUST_NP Or PTHREAD_MUTEX_STALLED_NP. See
“pthread_mutexattr_getrobust_np” for definitions.

pthread_mutexattr_setunlock_np

This service sets the unlocking mode for mutexes that are created with this mutex attribute
object.

int pthread mutexattr setunlock np (pthread mutexattr t =attr,
int mode)

mode may be PTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_UNLOCK _
PARALLEL_NP, Or PTHREAD_MUTEX_UNLOCK_AUTO_NP. See the section
“pthread_mutex_getunlock _np” for their definitions.

Alternative glibc

The additional pthread mutex services described above are available to applications that
use Concurrent’s alternative glibe. In general, these mutexes support the additional
features of robustness and priority inheritance that extend above and beyond the POSIX
1003.1-2001 standard.

Thealternative glibe is based upon the fusyn-2.3.1 and rtnptl-2.3 open source patches. It
is accessed by compiling and linking applications with ccur-gce.

Due to the experimental nature of this library, applications are not allowed to statically
link against the pthreads portion of thislibrary.

Special System Administration Considerations

The aternative library requiresthat any time the system administrator makes anew library
known to standard glibec viaacal to /sbin/ldconfig, an equivalent call must be
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made to /1ib/ccur/sbin/ldconfig, with the same arguments but with a
/usr/1lib appended to the end. This makes the same information available to the
alternative library.

For example, if the administrator needs to execute the following:
$ /sbin/ldconfig
then he/she should & so execute:

$ /lib/ccur/sbin/ldconfig /usr/1lib

System V Semaphores

Overview

5-28

The System V semaphore is an interprocess communication (IPC) mechanism that allows
processes to synchronize via the exchange of semaphore values. Since many applications
require the use of more than one semaphore, the operating system has the ability to create
sets or arrays of semaphores. A semaphore set can contain one or more semaphores, up to
alimit of sEMmsL (asdefinedin <1inux/sem.h>). Semaphore sets are created using the
semget (2) system call.

When only a simple semaphore is needed, a counting semaphore is more efficient (see the
section “POSIX Counting Semaphores”).

The process performing the semget system call becomes the owner/creator, determines
how many semaphores are in the set, and sets the initial operation permissions for all
processes, including itself. This process can subsequently relinquish ownership of the set
or change the operation permissions using the semectl (2) system call. The creating
process always remains the creator as long as the facility exists. Other processes with
permission can use semctl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore grants
permission. Each semaphore within a set can be incremented and decremented with the
semop (2) system call (see the section “ The semop System Call” later in this chapter).

To increment a semaphore, an integer value of the desired magnitude is passed to the
semop system call. To decrement a semaphore, a minus (-) value of the desired
magnitude is passed.

The operating system ensures that only one process can manipulate a semaphore set at any
given time. Simultaneous requests are performed sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by attempting
to decrement the semaphore by one more than that value. If the process is successful, the
semaphore value is greater than that certain value. Otherwise, the semaphore value is not.
While doing this, the process can have its execution suspended (IPc_NOWAIT flag not set)
until the semaphore value would permit the operation (other processes increment the
semaphore), or the semaphore facility is removed.
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The ability to suspend execution is called a blocking semaphore operation. This ability is
also available for a process which is testing for a semaphore equal to zero; only read
permission is required for this test; it is accomplished by passing a value of zero to the
semop System call.

On the other hand, if the process is not successful and did not request to have its execution
suspended, it is called a nonblocking semaphore operation. In this case, the process is
returned -1 and the external errno variableis set accordingly.

The blocking semaphore operation allows processes to synchronize via the values of
semaphores at different points in time. Remember also that I1PC facilities remain in the
operating system until removed by a permitted process or until the system is reinitialized.

When a set of semaphores is created, the first semaphore in the set is semaphore number
zero. The last semaphore number in the set is numbered one less than the total in the set.

A single system call can be used to perform a sequence of these blocking/nonblocking
operations on a set of semaphores. When performing a sequence of operations, the
bl ocking/nonblocking operations can be applied to any or all of the semaphores in the set.
Also, the operations can be applied in any order of semaphore number. However, no
operations are done until they can al be done successfully. For example, if the first three
of six operations on a set of ten semaphores could be completed successfully, but the
fourth operation would be blocked, no changes are made to the set until all six operations
can be performed without blocking. Either all of the operations are successful and the
semaphores are changed, or one or more (nonblocking) operation is unsuccessful and none
are changed. In short, the operations are performed atomically.

Remember, any unsuccessful nonblocking operation for a single semaphore or a set of
semaphores causes immediate return with no operations performed at all. When this
occurs, -1 isreturned to the process, and the external variable errno is set accordingly.

System calls make these semaphore capabilities available to processes. The calling
process passes arguments to a system call, and the system call either successfully or
unsuccessfully performsits function. If the system call is successful, it performs its
function and returns the appropriate information. Otherwise, -1 is returned to the process,
and the external variable errno is set accordingly.

Using System V Semaphores

Before semaphores can be used (operated on or controlled) a uniquely identified data
structure and semaphore set (array) must be created. The unique identifier is called the
semaphore set identifier (semid); it is used to identify or refer to a particular data structure
and semaphore set. This identifier is accessible by any process in the system, subject to
normal access restrictions.

The semaphore set contains a predefined number of structuresin an array, one structure
for each semaphore in the set. The number of semaphores (nsems) in a semaphore set is
user selectable.

5-29



RedHawk Linux User’s Guide

5-30

The sembuf structure, which is used on semop (2) system cals, is shown in Figure 5-1.

Figure 5-1 Definition of sembuf Structure

struct sembuf
unsigned short int sem num; /* semaphore number */
short int sem op; /* semaphore operation */
short int sem flg; /* operation flag */

I

The sembuf structureisdefined inthe <sys/sem.h> header file.

The struct semid_ds structure, which is used on certain semctl (2) service cals, is
shown in Figure 5-2.

Figure 5-2 Definition of semid_ds Structure

//;;ruct semid ds { i\\\

struct ipc_perm sem_perm; /* operation permission struct */

__time_t sem otime; /* last semop () time */

unsigned long int _ unusedl;

_ _time_t sem ctime; /* last time changed by semctl () */
unsigned long int _ unused2;

unsigned long int sem nsems; /* number of semaphores in set */
unsigned long int _ unused3;

unsigned long int _ unused4;

N /

Though the semid ds data structure islocated in <bits/sem.h>, user applications
should include the <sys/sem.h> header file, which internally includes the
<bits/sem.h> header file.

Note that the sem_perm member of this structure is of type ipc_perm. This data
structure isthe same for all IPC facilities; it islocated inthe <bits/ipc.h> header file,
but user applications should include the <sys/ipc . h> file, which internally includes the
<bits/ipc.h> header file. The details of the ipc_perm data structure are given in the
section entitled “ System V Messages’ in Chapter 3.

A semget (2) system call performs one of two tasks:

* creates a new semaphore set identifier and creates an associated data
structure and semaphore set for it

* |ocates an existing semaphore set identifier that already has an associated
data structure and semaphore set

The task performed is determined by the value of the key argument passed to the semget
system call. If key is not already in use for an existing semid and the IPC_CREAT flag is set,
anew semid is returned with an associated data structure and semaphore set created for it,
provided no system tunable parameter would be exceeded.
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There is also a provision for specifying a key of value zero (0), which is known as the
private key (1PC_PRIVATE). When this key is specified, a new identifier is always returned
with an associated data structure and semaphore set created for it, unless a system-tunable
parameter would be exceeded. The ipes (8) command will show the key field for the
semid asall zeros.

When a semaphore set is created, the process which calls semget becomes the
owner/creator and the associated data structure is initialized accordingly. Remember,
ownership can be changed, but the creating process always remains the creator (see the
“The semctl System Call” section). The creator of the semaphore set also determines the
initial operation permissions for the facility.

If asemaphore set identifier exists for the key specified, the value of the existing identifier
is returned. If you do not want to have an existing semaphore set identifier returned, a
control command (IPC_EXCL) can be specified (set) in the semflg argument passed to the
system call. The system call will fail if it is passed a value for the number of semaphores
(nsems) that is greater than the number actually in the set; if you do not know how many
semaphores are in the set, use 0 for nsems (see “The semget System Call” for more
information).

Once a uniquely identified semaphore set and data structure are created or an existing one
isfound, semop (2) and semctl (2) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for zero. The
semop system call is used to perform these operations (see “The semop System Call” for
details of the semop system call).

The semct1 system call permits you to control the semaphore facility in the following
ways:

* by returning the value of a semaphore (GETVAL)

* hy setting the value of a semaphore (SETVAL)

* by returning the PID of the last process performing an operation on a
semaphore set (GETPID)

* by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

* by returning the number of processes waiting for a semaphore value to equal
zero (GETZCNT)

* by getting all semaphore values in a set and placing them in an array in user
memory (GETALL)

* by setting all semaphore values in a semaphore set from an array of valuesin
user memory (SETALL)

* by retrieving the data structure associated with a semaphore set (IPC_STAT)

* by changing operation permissions for a semaphore set (IPC_SET)

* by removing a particular semaphore set identifier from the operating system
along with its associated data structure and semaphore set (1IPC_RMID)

See the section “The semctl System Call” for details of the semet1 system call.
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The semget System Call
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semget (2) createsanew semaphore set or identifies an existing one.

This section describes how to use the semget system call. For more detailed information,
see the semget (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/semget. c With extensive comments provided
in README . semget . txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key t key, int nsams, int sentlg) ;

All of the #include files are located in the /usr/include subdirectories of the
RedHawk Linux operating system.

key t isdefined by atypedef inthe <bits/sys/types.h> header file to be an
integral type (this header fileisincluded internaly by <sys/types.h>). The integer
returned from this system call upon successful completion is the semaphore set identifier
(semid) . The semid is discussed in the section “Using System V Semaphores” earlier in
this chapter.

A new semid with an associated semaphore set and data structure is created if one of the
following conditionsis true:

* keyisegual to IPC_PRIVATE
* key does not already have a semid associated with it and (semflg and
IPC_CREAT) is“true”’ (not zero).

The value of semflg is a combination of:

¢ control commands (flags)

® Qoperation permissions

Control commands are predefined constants. The following control commands apply to
the semget system call and are defined in the <bits/ipc.h> header file, which is
internally included by the <sys/ipc.h> header file:

IPC_CREAT used to create a new semaphore set. If not used, semget will find the
semaphore set associated with key and verify access permissions.

IPC_EXCL used with IPC_CREAT to cause the system call to return an error if a
semaphore set identifier already exists for the specified key. Thisis
necessary to prevent the process from thinking it has received a new
(unique) identifier when it has not.

Operation permissions define the read/alter attributes for users, groups and others.
Table 5-1 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.



Interprocess Synchronization

Table 5-1 Semaphore Operation Permissions Codes

Operation Permissions Octal Value
Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

A specific value is derived by adding or bitwise ORing the octal values for the operation
permissions desired. That is, if “read by user” and “read/alter by others” is desired, the
code value would be 00406 (00400 plus 00006).

The semflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value; for example:

semid = semget (key, nsems, (IPC_CREAT | 0400) ) ;
semid = semget (key, nsems, (IPC_CREAT | IPC EXCL | 0400));

The following values are defined in <1inux/sem.h>. Exceeding these values always
causes afailure.

SEMMNI  determines the maximum number of unique semaphore sets (semids) that can
bein use at any given time

SEMMSL  determines the maximum number of semaphoresin each semaphore set

SEMMNS  determines the maximum number of semaphoresin al semaphore sets system
wide

A list of semaphore limit values may be obtained with the ipcs (8) command by using
the following options. See the man page for further details.

ipcs -s -1

Refer to the semget (2) man page for specific associated data structure initialization as
well as the specific error conditions.
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The semctl System Call
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semctl (2) isused to perform control operations on semaphore sets.

This section describes the semctl system call. For more detailed information, see the
semctl (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/semctl. c with extensive comments provided
in README . semctl. txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd, int arg) ;

union semun
int val;
struct semid ds *buf;
ushort *array;

} arg;

All of the #include files are located in the /usr/include subdirectories of the
RedHawk Linux operating system.

The semid argument must be a valid, non-negative, integer value that has already been
created using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates to
sequences of operations (atomically performed) on the set. When a set of semaphoresis
created, the first semaphore is number 0, and the last semaphore is numbered one less than
thetotal in the set.

The cmd argument can be any one of the following values:

GETVAL returns the value of a single semaphore within a semaphore set
SETVAL sets the value of a single semaphore within a semaphore set
GETPID returns the PID of the process that performed the last operation on

the semaphore within a semaphore set

GETNCNT returns the number of processes waiting for the value of a
particular semaphore to become greater than its current value

GETZCNT returns the number of processes waiting for the value of a
particular semaphore to be equal to zero

GETALL returns the value for all semaphores in a semaphore set

SETALL sets all semaphore values in a semaphore set
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IPC_STAT returns the status information contained in the associated data
structure for the specified semid, and places it in the data structure
pointed to by arg.buf

IPC_SET sets the effective user/group identification and operation
permissions for the specified semaphore set (semid)

IPC_RMID removes the specified semaphore set (semid) along with its
associated data structure

NOTE

The semctl (2) service also supports the IPC_INFO, SEM_STAT
and SEM_INFO commands. However, since these commands are
only intended for use by the ipes (8) utility, these commands
are not discussed.

To perform an IPC_SET or IPC_RMID control command, a process must meet one or more of
the following conditions;

¢ have an effective user id of OWNER

* have an effective user id of CREATOR
* be the super-user

* havethe CAP_SYS_ADMIN capability

Note that a semaphore set can also be removed by using the iperm (1) command and
specifying the -s semid or the - S semkey option, where semid specifies the identifier for
the semaphore set and semkey specifies the key associated with the semaphore set. To use
this command, a process must have the same capabilities as those required for performing
an IPC_RMID control command. See the ipcrm (1) man page for additional information
on the use of this command.

The remaining control commands require either read or write permission, as appropriate.

The arg argument is used to pass the system call the appropriate union member for the
control command to be performed. For some of the control commands, the arg argument
isnot required and is simply ignored.

* arg.val required: SETVAL

® arg.buf required: IPC_STAT, IPC_SET

* arg.array required: GETALL, SETALL

* argignored: GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID
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semop (2) isused to perform operations on selected members of the semaphore set.

This section describes the semop system call. For more detailed information, see the
semop (2) man page. A program illustrating use of this call can be found at
/usr/share/doc/ccur/examples/semop . c With extensive comments provided
in README . semop . txt.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semid, struct sembuf *sSOops, unsigned nsOpS) ;

All of the #include files are located in the /usr/include subdirectories of the
RedHawk Linux operating system.

The semop system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other words, it must
have already been returned from aprior semget (2) system call.

The sops argument points to an array of structures in the user memory area that contains
the following for each semaphore to be changed:

* the semaphore number (sem_num)

* the operation to be performed (sem_op)

* the controal flags (sem flg)
The *sops declaration means that either an array name (which is the address of the first
element of the array) or a pointer to the array can be used. sembuf isthe tag name of the

data structure used as the template for the structure members in the array; it is located in
the <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of structuresin the
array). The maximum size of this array is determined by the SEmopPm system-tunable
parameter. Therefore, a maximum of SEmopPM operations can be performed for each
semop System call.

The semaphore number (sem_num) determines the particular semaphore within the set on
which the operation is to be performed.

The operation to be performed is determined by the following:
* |f sem _op is positive, the semaphore value is incremented by the value of
sem_op.

* |f sem_op is negative, the semaphore value is decremented by the absolute
value of sem op.

* If sem opis zero, the semaphore value is tested for equality to zero.
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The following operation commands (flags) can be used:

IPC_NOWAIT can be set for any operations in the array. The system call returns
unsuccessfully without changing any semaphore values at all if
any operation for which IPC_NOWAIT is set cannot be performed
successfully. The system call is unsuccessful when trying to
decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not.

SEM_UNDO tells the system to undo the process semaphore changes
automatically when the process exits; it allows processes to avoid
deadlock problems. To implement this feature, the system
maintains a table with an entry for every process in the system.
Each entry points to a set of undo structures, one for each
semaphore used by the process. The system records the net
change.

Condition Synchronization

The following sections describe the postwait (2) and server block/
server wake (2) system callsthat can be used to manipulate cooperating processes.

The postwait System Call

The postwait (2) function is afast, efficient, sleep/wakeup/timer mechanism used
between a cooperating group of threads. The threads need not be members of the same
process.

Synopsis

#include <sys/time.h>
#include <sys/rescntl.h>
#include <sys/pw.h>

int pw_getukid(ukid t *ukid) ;

int pw wait (struct timespec *t, struct resched var *r);
int pw_post (ukid t ukid, struct resched var *r);

int pw _postv(int count, ukid t targets[], int erors[], struct
resched var *r );

int pw_getvmax (void) ;

gcc [options] file -lccur rt ..
To go to sleep, athread callspw_wait () . The thread will wake up when:

¢ thetimer expires

* the thread is posted to by another thread by calling pw _post() or
pw_postv () withthe ukid(s) of the pw_wai ting thread(s)

¢ thecal isinterrupted
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Threads using postwait (2) services areidentified by their ukid. A thread should call
pw_getukid () to obtain its ukid. The ukid maps to the caller’s unique, global thread id.
This value can be shared with the other cooperating threads that may wish to post to this
thread.

For each thread, postwait (2) remembers at most one unconsumed post. Posting to a
thread that has an unconsumed post has no effect.

For all postwait (2) servicesthat have arescheduling variable argument pointer, if that
pointer is non-NULL, the lock-count of the associated rescheduling variable is
decremented.

pw_wait () isused to consume apost. It is called with an optional timeout value and an
optional rescheduling variable. It returns avalue of 1 if it consumes a post or 0 if timed-
out waiting for a post to consume.

If the time specified for the timeout value is greater than 0, the thread sleeps at most for
that amount of time waiting for a post to consume. 0 is returned if this period expires
without encountering a post. If the call is interrupted, EINTR is returned and the timeout
value is updated to reflect the amount of time remaining. If posted to during this interval,
or a previous unconsumed post is encountered, the post is consumed and 1 is returned.

If thetimeout valueis O, pw_wait () will returnimmediately. It returnsalif it consumes
a previously unconsumed post or it returns EAGAIN if there was no post available to
consume.

If the pointer to the timeout value is NULL, the behavior is the same except that the thread
will never timeout. If interrupted, EINTR is returned but the timeout value, which by
definition is not specified, is not updated.

pw_post () sends a post to the thread identified by ukid. If that thread is waiting for a
post, the thread wakes up and consumes the post. If that thread was not waiting for a post,
the unconsumed post is remembered so that the next time that thread tries to wait for a
post, it will consume the saved post and return without warning. At most, one unconsumed
post can be remembered per thread.

pw_postv () can be used to post to multiple threads at once. These postings will be
atomic in the sense that none will be alowed to preempt the thread doing the posting until
all the postings are complete.

The ukids of the target threads must be put into the targets array. Errors for respective
targets are returned in the errors array. The number of entries used in the targets and
errors arrays must be passed in through the count argument.

pw_postv () returnsaO if al succeed, or the error value of the last target to cause an
error if there are any errors.

pw_getvmax () returns the maximum number of targets that can be posted to with one
pw_postv () cal. Thisvalueis determined by the Pw_vMAX kernel tunable.

Refer to the postwait (2) man page for alisting of the types of errors that may occur.
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The Server System Calls

server_block

This set of system calls enables you to manipulate processes acting as servers using an
interface compatible with the PowerM A X operating system. These system calls are briefly
described as follows:

server block blocks the calling process only if no wake-up request has occurred
since the last return from server block. If a wake-up has
occurred, server block returnsimmediately.

server wakel wakes server if it is blocked in the server block system call;
if the specified server is not blocked in this call, the wake-up
request is applied to the server’s next call to server block.

server wakevec  Servesthe same purpose as server wakel, except that a vector
of processes may be specified rather than one process.

CAUTION

These system calls should be used only by single-threaded
processes. The glabal process ID of a multiplexed thread changes
according to the process on which the thread is currently
scheduled. Therefore, it is possible that the wrong thread will be
awakened or blocked when these interfaces are used by
multiplexed threads.

server_block blocks the calling process only if no wake-up request has occurred
since the last return from server block.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server block (options, r, timeout)
int options;

struct resched var *r;

struct timeval *timeout;

gcc [options] file -lccur rt ...
Arguments are defined as follows:

options the value of this argument must be zero

r a pointer to the calling process rescheduling variable. This argument is
optional: its value can be NULL.

timeout a pointer to a timeval structure that contains the maximum length of
time the calling process will be blocked. This argument is optional: its
value can be NULL. If itsvalueisNULL, there is no time out.
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The server block system cal returnsimmediately if the calling process has a pending
wake-up request; otherwise, it returns when the calling process receives the next wake-up
request. A return of O indicates that the call has been successful. A return of —1 indicates
that an error has occurred; errno is set to indicate the error. Note that upon return, the
calling process should retest the condition that caused it to block; there is no guarantee
that the condition has changed because the process could have been prematurely
awakened by asignal.

Server wakel isinvoked to wake aserver that is blocked in the server blockcall.
Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server wakel (Sserver,r)
global lwpid t server;
struct resched var *r;

gcc [options] file -lccur rt ...
Arguments are defined as follows:

server the global process ID of the server process to be awakened

r apointer to the calling process' rescheduling variable. This argument is
optional; its value can be NULL.

It isimportant to note that to use the server wakel call, thereal or effective user ID of
the calling process must match the real or saved [from exec] user ID of the process
specified by server.

Server wakel wakes the specified server if it is blocked in the server block cdl.
If the server is not blocked in this call, the wake-up request is held for the server’s next
call to server_block. Server_ wakel aso decrements the number of rescheduling
locks associated with the rescheduling variable specified by r.

A return of O indicates that the call has been successful. A return of —1 indicates that an
error has occurred; errno is set to indicate the error.
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server_wakevec

The server wakevec system call isinvoked to wake a group of servers blocked in the
server block cal.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server wakevec (SErvers, nservers,r)
global lwpid t *servers;

int nservers;

struct resched var *r;

gcc [options] file -lccur rt
Arguments are defined as follows:
servers a pointer to an array of the global process IDs of the server processes to
be awakened
nservers  aninteger value specifying the number of elementsin the array
r a pointer to the calling process rescheduling variable. This argument is

optional; its value can be NULL.

It isimportant to note that to use the server wakevec call, therea or effective user ID
of the calling process must match the real or saved [from exec] user IDs of the processes
specified by servers.

Server_ wakevec wakes the specified servers if they are blocked in the
server block cal. If aserverisnot blocked in thiscall, the wake-up request is applied
to the server’s next call to server block. Server wakevec also decrements the
number of rescheduling locks associated with a rescheduling variable specified by r.

A return of O indicates that the call has been successful. A return of —1 indicates that an
error has occurred; errno is set to indicate the error.

For additional information on the use of these calls, refer to the server block (2)
man page.
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Applying Condition Synchronization Tools

5-42

The rescheduling variable, spin lock, and server system calls can be used to design
functions that enable a producer and a consumer process to exchange data through use of a
mailbox in a shared memory region. When the consumer finds the mailbox empty, it
blocks until new data arrives. After the producer deposits new data in the mailbox, it
wakes the waiting consumer. An anal ogous situation occurs when the producer generates
data faster than the consumer can processit. When the producer finds the mailbox full, it
blocks until the data is removed. After the consumer removes the data, it wakes the
waiting producer.

A mailbox can be represented as follows:

struct mailbox {
struct spin mutex mx;/* serializes access to mailbox */
queue of consumers: /* waiting consumers */
queue_of data; /* the data, type varies */

}i

The mx field is used to serialize access to the mailbox. The data field represents the
information that is being passed from the producer to the consumer. The full field is
used to indicate whether the mailbox is full or empty. The producer field identifies the
process that is waiting for the mailbox to be empty. The consumer field identifies the
process that is waiting for the arrival of data.

Using the spin acquire and the spin_release functions, afunction to enable the
consumer to extract data from the mailbox can be defined as follows:

void

consume (box, data)
struct mailbox *box;
any_t *data;

spin acquire (&box->mx, &rv);
while (box->data == empty) {
enqueue (box->consumers, rv.rv_glwpid) ;
spin unlock (&box->mx) ;
server block (0, &rv, 0);
spin acquire (&box->mx, &rv);
}
*data = dequeue (box->data;
spin release (&box->mx, &rv);

}

Note that in this function, the consumer process locks the mailbox prior to checking for
and removing data. If it finds the mailbox empty, it unlocks the mailbox to permit the
producer to deposit data, and it calls server block towait for the arrival of data. When
the consumer is awakened, it must again lock the mailbox and check for data; there is no
guarantee that the mailbox will contain data—the consumer may have been awakened
prematurely by asignal.



Interprocess Synchronization

A similar function that will enable the producer to place data in the mailbox can be
defined as follows:

void

produce (box, data)
struct mailbox *box;
any t data;

spin_acquire (&box->mx, &rv) ;
enqueue (box->data, data);
if (box->consumer == empty)
spin release (&box->mx, &rv) ;
else {
global lwpid t id = dequeue (box->consumers) ;
spin _unlock (&box->mx) ;
server wakel (id, &rv);

}

In this function, the producer process waits for the mailbox to empty before depositing
new data. The producer signalsthe arrival of dataonly when the consumer iswaiting; note
that it does so after unlocking the mailbox. The producer must unlock the mailbox first so
that the awakened consumer can lock it to check for and remove data. Unlocking the
mailbox prior to thecall to server wakel also ensures that the mutex is held for a short
time. To prevent unnecessary context switching, rescheduling is disabled until the
consumer is awakened.
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6
Programmable Clocks and Timers

This chapter provides an overview of some of the facilities that can be used for timing.
The POSIX clocks and timers interfaces are based on |EEE Standard 1003.1b-1993. The
clock interfaces provide a high-resolution clock, which can be used for such purposes as
time stamping or measuring the length of code segments. The timer interfaces provide a
means of receiving a signal or process wakeup asynchronously at some future time. In
addition, high-resolution system calls are provided which can be used to put a process to
sleep for avery short time quantum and specify which clock should be used for measuring
the duration of the sleep. Additional clocks and timers are provided by the RCIM PCI
card.

Understanding Clocks and Timers

Real-time applications must be able to operate on data within strict timing constraints in
order to schedule application or system events. High resolution clocks and timers allow
applications to use relative or absolute time based on a high resolution clock and to
schedule events on a one-shot or periodic basis. Applications can create multiple timers
for each process.

Several timing facilities are available on the iHawk system. These include POSIX clocks
and timers under RedHawk Linux as well as non-interrupting clocks and real-time clock
timers provided by the Real-Time Clock and Interrupt Module (RCIM) PCI card. These
clocks and timers and their interfaces are explained in the sections that follow.

See Chapter 7 for information about system clocks and timers.

RCIM Clocks and Timers

The Real-Time Clock and Interrupt Module (RCIM) provides two non-interrupting clocks.
These clocks can be synchronized with other RCIMs when the RCIMs are chained
together. The RCIM clocks are:

tick clock a 64-bit non-interrupting clock that increments by one on each tick
of the common 400ns clock signal. This clock can be reset to zero
and synchronized across the RCIM chain providing a common time
stamp.

The tick clock can be read on any system, master or slave, using
direct reads when the device file /dev/rcim/sclk is mapped
into the address space of a program.

POSIX clock a 64-bit non-interrupting counter encoded in POSI X 1003.1 format.
The upper 32 bits contain seconds and the lower 32 bits contain
nanoseconds. This clock is incremented by 400 on each tick of the
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common 400ns clock signal. Primarily used as a high-resolution
local clock.

The RCIM POSIX clock is accessed in a manner similar to the tick
clock inthat the same utilities and devicefiles are used. The POSI X
clock can be loaded with any desired time; however, the value
loaded is not synchronized with other clocks in an RCIM chain.
Only the POSIX clock of the RCIM attached to the host is updated.

The RCIM aso provides up to eight real-time clock (RTC) timers. Each of these counters
is accessible using a special device file and each can be used for almost any timing or
frequency control function. They are programmable to several different resolutions which,
when combined with a clock count value, provide a variety of timing intervals. This
makes them ideal for running processes at a given frequency (e.g., 100Hz) or for timing
code segments. In addition to being able to generate an interrupt on the host system, the
output of an RTC can be distributed to other RCIM boards for delivery to their
corresponding host systems, or delivered to external equipment attached to one of the
RCIM’s external output interrupt lines. The RTC timers are controlled by open (2),
close(2) andioctl (2) systemcalls.

For complete information about the RCIM clocks and timers, refer to the Real-Time Clock
and Interrupt Module (RCIM) PCI Form Factor User’s Guide.

POSIX Clocks and Timers
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The POSIX clocks provide a high-resolution mechanism for measuring and indicating
time. The following system-wide POSIX clocks are available:

CLOCK_REALTIME the system time-of-day clock definedinthe file <time.h>.

CLOCK_REALTIME_HR This clock supplies the time used for file system creation and
modification, accounting and auditing records, and I1PC
message queues and semaphores. CLOCK_REALTIME_HR iS
obsoleted by the fact that both clocks have 1 microsecond
resolution, share the same characteristics and are operated on
simultaneously. In addition to the POSIX clock routines
described in this chapter, the following commands and system
callsread and set thisclock: date (1), gettimeofday (2),
settimeofday (2), stime(2), time(1l) and
adjtimex (2).

CLOCK_MONOTONIC the system uptime clock measuring the time in seconds and

CLOCK_MONOTONIC_HR hanoseconds since the system was booted. The monotonic
clocks cannot be set. CLOCK_MONOTONIC_HR is obsoleted by
the fact that both clocks have 1 microsecond resolution, share
the same characteristics and are operated on simultaneously.

There are two types of timers: one-shot and periodic. They are defined in terms of an
initial expiration time and a repetition interval. The initial expiration time indicates when
the timer will first expire. It may be absolute (for example, at 8:30 am.) or relative to the
current time (for example, in 30 seconds). The repetition interval indicates the amount of
time that will elapse between one expiration of the timer and the next. The clock to be
used for timing is specified when the timer is created.
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A one-shot timer is armed with either an absolute or arelative initial expiration time and a
repetition interval of zero. It expires only once--at the initial expiration time--and then is
disarmed.

A periodic timer is armed with either an absolute or arelative initial expiration time and a
repetition interval that is greater than zero. The repetition interval is always relative to the
time at the point of the last timer expiration. When the initial expiration time occurs, the
timer is reloaded with the value of the repetition interval and continues counting. The
timer may be disarmed by setting itsinitial expiration time to zero.

The local timer is used as the interrupt source for scheduling POSIX timer expiries. See
Chapter 7 for information about the local timer.

NOTE

Access to high resolution clocks and timersis provided by a set of
related POSIX system calls located within /usr/1ib/
libeccur_ rt with the HR_POSIX_TIMERS kernel parameter
enabled (it is enabled by default in all RedHawk Linux kernels). If
this feature is disabled, low resolution POSIX timers are used.
Some of the timer functions are also provided as low-resolution
by the standard gnu libc 1ibrt library.

Understanding the POSIX Time Structures

The POSIX routines related to clocks and timers use two structures for time
specifications: the t imespec structure and the it imerspec structure. These structures
aredefined in thefile <time .h>.

The timespec structure specifies a single time value in seconds and nanoseconds. You
supply a pointer to a t imespec structure when you invoke routines to set the time of a
clock or obtain the time or resolution of a clock (for information on these routines, see
“Using the POSIX Clock Routines’). The structure is defined as follows:

struct timespec {
time t tv_sec;
long tv_nsec;

}i
Thefieldsin the structure are described as follows:
tv_sec specifies the number of seconds in the time value

tv_nsec specifies the number of additional nanoseconds in the time value.
The value of this field must be in the range zero to 999,999,999.

The itimerspec structure specifiestheinitial expiration time and the repetition interval
for atimer. You supply a pointer to an it imerspec structure when you invoke routines
to set the time at which atimer expires or obtain information about a timer’s expiration
time (for information on these routines, see “Using the POSIX Timer Routines’). The
structure is defined as follows:
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struct itimerspec {
struct timespec it_interval;
struct timespec it_value;

}i

The fieldsin the structure are described as follows.
it _interval specifies the repetition interval of atimer
it _value specifiesthe timer’sinitial expiration

Using the POSIX Clock Routines

The POSIX routines that allow you to perform a variety of functions related to clocks are
briefly described as follows:

clock settime sets the time of a specified clock
clock gettime obtains the time from a specified clock
clock getres obtains the resolution in nanoseconds of a specified clock

Procedures for using each of these routines are explained in the sections that follow.

Using the clock_settime Routine

The clock_settime (2) system call allows you to set the time of the system time-of-
day clock, cLock _REALTIME. The calling process must have root or the CAP_SYS NICE
capability. By definition, the cLock_MONOTONIC clocks cannot be set.

It should be noted that if you set CLOCK_REALTIME after system start-up, the following
times may not be accurate:

* file system creation and modification times
¢ timesin accounting and auditing records

* theexpiration times for kernel timer queue entries
Setting the system clock does not affect queued POSIX timers.
Synopsis
#include <time.h>

int clock settime (clockid_t which clock,
const struct timespec *setting) ;

gcc [options] file -lccur rt ..
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The arguments are defined as follows:

which_clock the identifier for the clock for which the time will be set. Only
CLOCK_REALTIME can be set.

Setting a pointer to a structure that specifies the time to which
which_clock is to be set. When which_clock is CLOCK_REALTIME,
the time-of-day clock is set to a new value. Time values that are
not integer multiples of the clock resolution are truncated down.

A return value of O indicates that the specified clock has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the clock settime (2) man page for alisting of the types of errorsthat may occur.

Using the clock _gettime Routine

The clock_gettime (2) system call allows you to obtain the time from a specified
clock. This call always returns the best available resolution for the clock, usually better
than one microsecond.

Synopsis

#include <time.h>

int clock gettime (clockid t which clock, struct timespec
*getting) ;

gcc [options] file -lccur rt ..

The arguments are defined as follows:

which_clock the identifier for the clock from which to obtain the time. The
value of which_clock may be CLOCK_REALTIME Or CLOCK_
MONOTONIC.

setting apointer to a structure where the time of which_clock is returned.

A return value of 0 indicates that the call to clock_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is Set to indicate the error.
Refer tothe clock gettime (2) man page for alisting of the types of errors that may
occur.
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Using the clock _getres Routine

Theclock getres (2) system call allows you to obtain the resolution in nanoseconds
of a specified clock. This resolution determines the rounding accuracy of timing expiries
set with clock_settime (2) andtheprecision used by clock nanosleep (2) and
nanosleep (2) callsusing the same clock.

The clock resolutions are system dependent and cannot be set by the user.

Synopsis

#include <time.h>

int clock getres(clockid t which clock, struct timespec
*resolution) ;

gcc [options] file -lccur rt ..

The arguments are defined as follows:

which_clock the identifier for the clock for which you wish to obtain the
resolution. which_clock may be CLOCK_REALTIME Or CLOCK _
MONOTONIC.

resolution a pointer to a structure where the resolution of which _clock is
returned

A return value of O indicates that the call to clock_getres has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_getres (2) man page for alisting of the types of errors that may
occur.

Using the POSIX Timer Routines
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Processes can create, remove, set, and query timers and may receive notification when a
timer expires.

The POSIX system calls that allow you to perform a variety of functions related to timers
are briefly described as follows:

timer create creates atimer using a specified clock
timer delete removes a specified timer
timer settime arms or disarms a specified timer by setting

the expiration time

timer gettime obtains the repetition interval for a specified
timer and the time remaining until the timer
expires
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timer getoverrun obtains the overrun count for a specified
periodic timer

nanosleep pauses execution for a specified time

clock_nanosleep provides a higher resolution pause based on
a specified clock

Procedures for using each of these system calls are explained in the sections that follow.

Using the timer_create Routine

The timer create (2) system call allows the calling process to create atimer using a
specified clock as the timing source.

A timer is disarmed when it is created. It is armed when the process invokes the
timer settime (2) System call (see “Using the timer_settime Routine” for an
explanation of this system call).

It isimportant to note the following:

* When a process invokes the fork system call, the timers that it has created
are not inherited by the child process.

* When a process invokes the exec system call, the timers that it has created
are disarmed and deleted.

Linux threads in the same thread group can share timers. The thread which calls
timer create will receive al of the signals, but other threads in the same threads
group can manipulate the timer through callsto timer settime(2).

Synopsis

#include <time.h>
#include <signal.h>

int timer create (clockid t which clock, struct sigevent
*timer_event_spec, timer t created_timer_id) ;

gcec [options] file -lccur rt ..

The arguments are defined as follows:

which_clock the identifier for the clock to be used for the timer. The vaue of
which_clock must be CLOCK_REALTIME.

timer_event_spec
the null pointer constant or a pointer to a structure that specifies the
way in which the calling process is to be asynchronoudy notified of
the expiration of the timer:

NULL  SIGALRM issent to the process when the timer expires.
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sigev_nhotify=SIGEV_SIGNAL
asignal specified by sigev_signo is sent to the process when
the timer expires.

sigev_notify=SIGEV_THREAD
the specified sigev_notify function is called in a new thread
with sigev_value as the argument when the timer expires.

sigev_notify=SIGEV_THREAD_ID
the sigev_notify _thread_id number should contain the
pthread_t id of the thread that is to receive the signal
sigev_signo when the timer expires.
sigev_notify=SIGEV_NONE
no netification is delivered when the timer expires

NOTE

The signal denoting expiration of the timer may cause the process
to terminate unless it has specified a signal-handling system call.
To determine the default action for a particular signal, refer to the
signal (2) man page.

created timer_id

apointer to the location where the timer 1D is stored. Thisidentifier is
required by the other POSIX timer system calls and is unique within
the calling process until the timer is deleted by the
timer delete(2) systemcal.

A return value of 0 indicates that the call to timer create has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer create (2) man page for alisting of the types of errors that may

Ooccur.

Using the timer_delete Routine
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The timer delete (2) system call alows the calling process to remove a specified
timer. If the selected timer is already started, it will be disabled and no signals or actions
assigned to the timer will be delivered or executed. A pending signal from an expired
timer, however, will not be removed.

Synopsis

#include <time.h>

int timer delete (timer t timer_id) ;

gcc [options] file -lccur rt ..

The argument is defined as follows:

timer_id

the identifier for the timer to be removed. This identifier comes
from a previous call to timer create(2) (see“Using the
timer_create Routine” for an explanation of this system call).
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A return value of O indicates that the specified timer has been successfully removed. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer delete (2) man page for alisting of the types of errors that may

Ooccur.

Using the timer_settime Routine

The timer settime (2) system call allows the calling process to arm a specified
timer by setting the time at which it will expire. The time to expire is defined as absolute
or relative. A calling process can use this system call on an armed timer to (1) disarm the
timer or (2) reset the time until the next expiration of the timer.

Synopsis

#include <time.h>

int timer settime (timer t timer_id, int flags const struct
itimerspec *new_setting, const struct itimerspec *old setting) ;

gcc [options] file -lccur rt ..

The arguments are defined as follows:

timer_id

flags

new_setting

the identifier for the timer to be set. This identifier comes from a
previous call to timer create (2) (see“Using the timer_create
Routine” for an explanation of this system call).

an integer value that specifies one of the following:

TIMER_ABSTIME causes the selected timer to be armed with an
absolute expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified by it_value. If this
time has already passed, timer settime
succeeds, and the timer-expiration notification
ismade.

0 causes the selected timer to be armed with a
relative expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified by it_value.

a pointer to a structure that contains the repetition interval and the
initial expiration time of the timer.

If you wish to have a one-shot timer, specify a repetition interval
(it_interval) of zero. In this case, the timer expires once, when the
initial expiration time occurs, and then is disarmed.

If you wish to have a periodic timer, specify a repetition interval
(it_interval) that is not equal to zero. In this case, when the initial
expiration time occurs, the timer is reloaded with the value of the
repetition interval and continuesto count.
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old_setting

In either case, you may set theinitial expiration timeto avaluethatis
absolute (for example, at 3:00 p.m.) or relative to the current time (for
example, in 30 seconds). To set the initial expiration time to an
absolute time, you must have set the TIMER_ABSTIME bit in the flags
argument. Any signal that is already pending due to a previous timer
expiration for the specified timer will still be delivered to the process.

To disarm the timer, set theinitial expiration timeto zero. Any signal
that is already pending due to a previous timer expiration for this
timer will still be delivered to the process.

the null pointer constant or a pointer to a structure to which the
previous repetition interval and initial expiration time of the timer are
returned. If the timer has been disarmed, the value of the initial
expiration time is zero. The members of old_setting are subject to the
resolution of the timer and are the same values that would be returned
by atimer gettime (2) call at that point in time,

A return value of O indicates that the specified timer has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the timer settime (2) man page for alisting of the types of errors that may occur.

Using the timer_gettime Routine
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Thetimer gettime (2) system call allowsthe calling process to obtain the repetition
interval for a specified timer and the amount of time remaining until the timer expires.

Synopsis

#include <time.h>

int timer gettime (timer t timer_id, struct itimerspec

*getting) ;

gcc [options] file -lccur rt ..

The arguments are defined as follows:

timer_id

setting

the identifier for the timer whose repetition interval and time
remaining are requested. This identifier comes from a previous
call to timer create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

a pointer to a structure to which the repetition interval and the
amount of time remaining on the timer are returned. The amount
of time remaining is relative to the current time. If the timer is
disarmed, the value is zero.

A return value of O indicates that the call to timer gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer gettime (2) man page for alisting of the types of errors that may

occur.
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Using the timer_getoverrun Routine

The timer getoverrun (2) system call allows the calling process to obtain the
overrun count for a particular periodic timer. A timer may expire faster than the system
can deliver signals to the application. If asignal is still pending from a previous timer
expiration rather than queuing another signal, a count of missed expirations is maintained
with the pending signal. Thisis the overrun count.

Timers may overrun because the signal was blocked by the application or because the
timer was over-committed.

Assume that asignal is already queued or pending for a process with a timer using timer-
expiration notification SIGEV_SIGNAL. If this timer expires while the signal is queued or
pending, atimer overrun occurs, and no additional signal is sent.

NOTE

You must invoke this system call from the timer-expiration signal-
handling. If you invoke it outside this system call, the overrun
count that is returned is not valid for the timer-expiration signal
last taken.

Synopsis

#include <time.h>
int timer getoverrun (timer t timer_id) ;

gcc [options] file -lccur rt ..

The argument is defined as follows:

timer_id the identifier for the periodic timer for which you wish to obtain
the overrun count. This identifier comes from a previous call to
timer create(2) (See“Using the timer_create Routine” for
an explanation of this system call).

If the call issuccessful, timer getoverrun returnsthe overrun count for the specified
timer. This count cannot exceed DELAYTIMER_MAX in the file <1imits.h>. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the timer getoverrun (2) man page for alisting of the types of errors that may
occur.
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Using the POSIX Sleep Routines

Using the nanosleep Routine

6-12

Thenanosleep (2) and the clock nanosleep (2) POSIX system calls provide a
high-resolution sleep mechanism that causes execution of the calling process or thread to
be suspended until (1) aspecified period of time elapses or (2) asignal is received and the
associated action is to execute a signal-handling system call or terminate the process.

The clock_nanosleep (2) system call provides a high-resolution sleep with a
specified clock. It suspends execution of the currently running thread until the time
specified by rqtp has elapsed or until the thread receives a signal.

The use of these system calls has no effect on the action or blockage of any signal.

Synopsis

#include <time.h>

int nanosleep (const struct timespec *reg, struct timespec

*rem) ;

gcec [options] file -lccur rt ..

Arguments are defined as follows:

req

rem

apointer to at imespec structure that contains the length of time
that the process is to sleep. The suspension time may be longer
than requested because the req value is rounded up to an integer
multiple of the sleep resolution or because of the scheduling of
other activity by the system. Except for the case of being
interrupted by a signal, the suspension time will not be less than
the time specified by req, as measured by CLOCK_REALTIME. You
will obtain a resolution of one microsecond on the blocking
request.

the null pointer constant or a pointer to a timespec structure to
which the amount of time remaining in the sleep interval is
returned if nanosleep isinterrupted by asignal. If remisNuLL
and nanosleep isinterrupted by asignal, the time remaining is
not returned.

A return value of 0 indicates that the requested period of time has elapsed. A return value
of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
nanosleep (2) man page for alisting of the types of errors that may occur.
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Using the clock_nanosleep Routine

Synopsis

#include <time.h>

int clock nanosleep(clockid t which clock, int flags,
const struct timespec *rgtp, struct timespec *rmtp) ;

gcc [options] file -lccur rt ..

The arguments are defined as follows:

which_clock the identifier for the clock to be used. The value of which_clock may
be CLOCK_REALTIME Or CLOCK_MONOTONIC.

flags an integer value that specifies one of the following:

TIMER_ABSTIME interprets the time specified by rqgtp to be
absolute with respect to the clock value
specified by which_clock.

0 interprets the time specified by rqgtp to be
relative to the current time.

rgtp a pointer to a timespec structure that contains the length of time
that the processisto sleep. If the TIMER_ABSTIMEflag is specified and
the time value specified by rqtp is less than or equal to the current
time value of the specified clock (or the clock's value is changed to
such atime), the function will return immediately. Further, the time
slept is affected by any changes to the clock after the call to
clock nanosleep (2). That is, the call will complete when the
actual time is equal to or greater than the requested time no matter
how the clock reaches that time, via setting or actual passage of time
or some combination of these.

The time slept may be longer than requested as the specified time
value is rounded up to an integer multiple of the clock resolution, or
due to scheduling and other system activity. Except for the case of
interruption by a signal, the suspension time is never less than
requested.

rmtp If TIMER_ABSTIME is not specified, the t imespec structure pointed
to by rmtp is updated to contain the amount of time remaining in the
interval (i.e., the requested time minus the time actually slept). If
rmtp is NULL, the remaining time is not set. The rmtp value is not set
in the case of an absolute time value.

On success, clock nanosleep returnsavalue of O after at least the specified time has
elapsed. On failure, clock _nanosleep returnsthe value -1 and errno is Set to
indicate the error. Refer to the clock _nanosleep (2) man page for alisting of the
types of errors that may occur.

6-13
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/proc Interface to POSIX Timers
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For most applications, the default resolution for the POSIX timers and nanosleep
functionality should be acceptable. If an application has problems with the way the timing
occurs and it is prohibitive to change the application, or when it is desirable to group
expiries together, adjustments may be appropriate. The kernel interface to POSIX timersis
through the /proc file system. The files listed below control the resolution of POSIX
timers and nanosleep functionality and can be used to limit the rate at which timers expire.
Thefilesarein thedirectory /proc/sys/kernel/posix-timers:

max expiries

recovery time

min delay

nanosleep res

resolution

The maximum number of expiries to process from a single
interrupt. The default is 20.

The time in nanoseconds to delay before processing more
timer expiries if themax expiries limitis hit. The
default is 200000.

The minimum time between timer interrupts in nanosec-
onds. This ensures that the timer interrupts do not consume
all of the CPU time. The default is 10000.

The resolution of nanosleep (2) in nanoseconds. The
default is 1000.

The resolution of other POSIX timer functions including
clock_nanosleep (2). Thedefault is 1000.
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Local Timer

Functionality

7
System Clocks and Timers

This chapter describes the local timer and global timer. It also discusses the effect of
disabling the local timer on system functions.

On Concurrent’s iHawk systems, each CPU has alocal (private) timer which is used as a
source of periodic interrupts local to that CPU. By default these interrupts occur 100 times
per second and are staggered in time so that only one CPU is processing a local timer
interrupt at atime.

The local timer interrupt routine performs the following local timing functions, which are
explained in more detail in the sections that follow:

¢ gathers CPU utilization statistics, used by top (1) and other utilities

¢ causes the process running on the CPU to periodically consume its time
quantum

* causes the running process to release the CPU in favor of another running
process when its time quantum is used up

* periodically balances the load of runnable processes across CPUs
¢ implements process and system profiling

¢ implements system time-of-day (wall) clock and execution time quota limits
for those processes that have this feature enabled

* providestheinterrupt source for POSIX timers

The local timer can be disabled on a per CPU basis. This improves both the worst-case
interrupt response time and the determinism of program execution on the CPU as
described in the “ Real-Time Performance” chapter. However, disabling the local timer has
an effect on some functionality normally provided by RedHawk Linux. These effects are
described below.

The local timer performs the functions described in the sections below. The effect of
disabling the local timer is discussed as well asviable alternatives for some of the features.

7-1
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CPU Accounting

Per process user and system execution times are reported by the following system
features: ps (1), top (1), times (2),wait4 (2), sigaction(2), uptime (1),
w(1l), getrusage(2),mpstat(1l), clock(3), acct(2) and /proc/pid/stat.
On the generic pre-built RedHawk Linux kernel, the local timer is used to obtain these
values. When the CPU is shielded from the local timer using this kernel, no CPU
accounting is performed. However, on kernels where the high resolution process
accounting facility is configured, it is used for CPU accounting instead of the local timer,
and shielding the CPU from the local timer does not affect CPU accounting.

High resolution process accounting samples the time stamp counter (TSC) register during
context switching, system calls and interrupt processing. Because the TSC sampling rate
is the clock-speed of the processor, this accounting method yields very high resolution
with minimal overhead. It maintains system, user, interrupted system and interrupted user
time for each process in the system. Support for high resolution process accounting is
provided by the /proc file system and several “hracct” library routines. The Performance
Monitor uses this timing facility for its measurements when used to analyze system
performance. The pre-built “debug” and “trace” kernels have this facility configured; it
can be configured on other kernels if desired via the HRACCT kernel tunable accessible
under General Setup on the Kernel Configuration GUI. Refer to the hracet (3) and
hracct (7) man pagesfor complete information about this facility.

Process Execution Time Quanta and Limits

Thelocal timer is used to expire the quantum of processes scheduled in the SCHED_OTHER
and scHED_RR scheduling policies. This allows processes of equal scheduling priority to
share the CPU in around-robin fashion. If the local timer is disabled on a CPU, processes
on that CPU will no longer have their quantum expired. This means that a process
executing on this CPU will run until it either blocks, or until a higher priority process
becomes ready to run. In other words, on a CPU where the local timer interrupt is
disabled, a process scheduled in the SCHED_RR scheduling policy will behave asif it were
scheduled in the scHED_FIFO scheduling policy. Note that processes scheduled on CPUs
where the local timer is still enabled are unaffected. For more information about process
scheduling policies, see Chapter 4, “Process Scheduling”.

The setrlimit (2) and getrlimit (2) system calls alow aprocessto set and get a
limit on the amount of CPU time that a process can consume. When this time period has
expired, the processis sent the signal sigxcpu. The accumulation of CPU time isdonein
thelocal timer interrupt routine. Thereforeif the local timer is disabled on a CPU, thetime
that a process executes on the CPU will not be accounted for. If thisisthe only CPU where
the process executes, it will never receive a SIGXCPU signdl.

Interval Timer Decrementing

7-2

The setitimer (2) and getitimer (2) system calls allow a process to set up a
“virtual timer” and obtain the value of the timer, respectively. A virtual timer is
decremented only when the process is executing. There are two types of virtual timers:
one that decrements only when the process is executing at user level, and one that is
decremented when the process is executing at either user level or kernel level. When a
virtual timer expires, asignal is sent to the process. Decrementing virtual timersisdonein
the local timer routine. Therefore when the local timer is disabled on a CPU, none of the



System Profiling

System Clocks and Timers

time used will be decremented from the virtual timer. If thisis the only CPU where the
process executes, then its virtual timer will never expire.

The local timer drives system profiling. The sample that the profiler records is triggered
by the firing of the local timer interrupt. If the local timer is disabled on a given CPU, the
gprof (1) command and pro£il (2) system service will not function correctly for
processes that run on that CPU.

CPU Load Balancing

CPU Rescheduling

POSIX Timers

Miscellaneous

Thelocal timer interrupt routine will periodically call the load balancer to be sure that the
number of runnable processes on this CPU is not significantly lower than the number of
runnable processes on other CPUs in the system. If thisis the case, the load balancer will
steal processes from other CPUs to balance the load across all CPUs. On a CPU wherethe
local timer interrupt has been disabled, the load bal ancer will only be called when the CPU
has no processes to execute. The loss of this functionality is generally not a problem for a
shielded CPU because it is generally not desirable to run background processes on a
shielded CPU.

The RESCHED_SET_LIMIT function of the resched cntl (2) system call allows a user
to set an upper limit on the amount of time that a rescheduling variable can remain locked.
The SIGABRT signal is sent to the process when the time limit is exceeded. This feature is
provided to debug problems during application development. When a process with a
locked rescheduling variable is run on a CPU on which the local timer is disabled, thetime
limit is not decremented and therefore the signal may not be sent when the process
overruns the specified time limit.

The local timer provides the timing source for POSIX timers. If a CPU is shielded from
local timer interrupts, the local timer interrupts will still occur on the shielded CPU if a
process on that CPU has an active POSI X timer or nanosleep (2) function. If aprocess
is not allowed to run on the shielded CPU, its timers will be migrated to a CPU where the
processis allowed to run.

In addition to the functionality listed above, some of the functions provided by some
standard Linux commands and utilities may not function correctly on a CPU if its local
timer is disabled. These include:
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bash (1)
sh (1)
strace (1)

For more information about these commands and utilities, refer to the corresponding man
pages.

Disabling the Local Timer

Global Timer

7-4

The local timer can be disabled for any mix of CPUsviathe shield (1) command or by
assigning a hexadecimal value to /proc/shield/ltmrs. This hexadecimal vaueisa
bitmask of CPUSs; the radix position of each bit identifies one CPU and the value of that bit
specifies whether or not that CPU's local timer isto be disabled (=1) or enabled (=0). See
Chapter 2, “Real-Time Performance” and the shield (1) man page for more
information.

The Programmable Interrupt Timer (PIT) functions as a global system-wide timer on the
iHawk system. This interrupt is called IRQ 0 and by default each occurrence of the
interrupt will be delivered to any CPU not currently processing an interrupt.

This global timer is used to perform the following system-wide timer functions:

¢ updates the system time-of-day (wall) clock and ticks-since-boot times

¢ dispatches events off the system timer list. This includes driver watchdog
timers and process timer functionssuch asalarm(2).

The global timer interrupt cannot be disabled. However, it can be directed to some desired
subset of CPUs viathe shield (1) command or via assignment of a bitmask of alowed
CPUs, in hexadecimal form, to /proc/irq/0/smp_affinity. See Chapter 2, “Real-
Time Performance” for more information about CPU shielding.
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File Systems and Disk 1/O

This chapter describes the xfs journaling file system and the procedures for performing
direct disk 1/O on the RedHawk Linux operating system.

Journaling File System

Traditional file systems must perform special file system checks after an interruption,
which can take many hours to complete depending upon how large the file system is. A
journaling file system is a fault-resilient file system, ensuring data integrity by
maintaining a special log file caled ajournal. When afile is updated, the file's metadata
are written to the journal on disk before the original disk blocks are updated. If a system
crash occurs before the journal entry is committed, the original datais still on the disk and
only new changes are lost. If the crash occurs during the disk update, the journal entry
shows what was supposed to have happened. On reboot, the journal entries are replayed
and the update that was interrupted is completed. This drastically cuts the complexity of a
file system check, reducing recovery time.

Support for the XFS journaling file system from SGlI is enabled by default in RedHawk
Linux. XFSis a multithreaded, 64-hit file system capable of handling files as large as a
million terabytes. In addition to large files and large file systems, XFS can support
extended attributes, variable block sizes, is extent based and makes extensive use of
Btrees (directories, extents, free space) to aid both performance and scalability. Both user
and group quotas are supported.

The journaling structures and algorithms log read and write data transactions rapidly,
minimizing the performance impact of journaling. XFSis capable of delivering near-raw
I/O performance.

Extended attributes are name/value pairs associated with afile. Attributes can be attached
to regular files, directories, symbolic links, device nodes and all other types of inodes.
Attribute values can contain up to 64KB of arbitrary binary data. Two attribute
namespaces are available: a user namespace available to all users protected by the normal
file permissions, and a system namespace accessible only to privileged users. The system
namespace can be used for protected file system metadata such as access control lists
(ACLs) and hierarchical storage manage (HSM) file migration status.

NFS Version 3 can be used to export 64-hit file systems to other systems that support that
protocol. NFS V2 systems have a 32-bit limit imposed by the protocol.

Backup and restore of XFS file systems to local and remote SCSI tapes or filesis done
using xfsdump and xfsrestore. Dumping of extended attributes and quota
information is supported.

81
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The Data Management APl (DMAPI/XDSM) allows implementation of hierarchical
storage management software as well as high-performance dump programs without
requiring raw access to the disk and knowledge of file system structures.

A full set of toolsis provided with XFS. Extensive documentation for the XFS file system
can be found at:

http://oss.sgi.com/projectsy/xfs/

Creating an XFS File System

To create an XFSfile system, the following is required:

* |dentify a partition on which to create the XFS file system. It may be from a
new disk, unpartitioned space on an existing disk, or by overwriting an
existing partition. Refer to the £disk (1) man page if creating a new
partition.

* Usemkfs.xfs (8) to create the XFS file system on the partition. If the
target disk partition is currently formatted for a file system, use the - £
(force) option.

mkfs.xfs [-f] /dev/defile

where devfile is the partition where you wish to create the file system; e.g.,
sdb3. Note that thiswill destroy any data currently on that partition.

Mounting an XFS File System

Usethemount (8) command to mount an XFSfile system:
mount -t xfs /dev/devfile /mountpoint

Refer to themount (8) man page for options available when mounting an XFS file
system.

Because XFSisajournaling file system, before it mounts the file system it will check the
transaction log for any unfinished transactions and bring the file system up to date.

Data Management API (DMAPI)

8-2

DMAPI is the mechanism within the XFS file system for passing file management
requests between the kernel and a hierarchical storage management system (HSM).

To build DMAPI, set the XFS_DMAPI system parameter accessible under File Systems on
the Kernel Configuration GUI as part of your build.
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Direct Disk I/0O

File Systems and Disk I/O

For more information about building DMAPI, refer to

http://0ss.sgi.com/projects/xfs/dmapi.html

Normally, all reads and writes to a file pass through a file system cache buffer. Some
applications, such as database programs, may need to do their own caching. Direct I/O is
an unbuffered form of /O that bypasses the kernel’s buffering of data. With direct I/O, the
file system transfers data directly between the disk and the user-supplied buffer.

RedHawk Linux enables a user process to both read directly from--and write directly to--
disk into its virtual address space, bypassing intermediate operating system buffering and
increasing disk 1/0 speed. Direct disk I/O also reduces system overhead by eliminating
copying of the transferred data.

To set up adisk file for direct I/O use the open (2) or fentl (2) system call. Use one
of the following procedures:

* Invoke the open system call from a program; specify the path name of a
disk file; and set the 0_DIRECT hit in the oflag argument.

* For an open file, invoke the fentl system call; specify an open file
descriptor; specify the F_SETFL command, and set the 0_DIRECT bit inthe arg
argument.

Direct disk /0O transfers must meet all of the following requirements:

* The user buffer must be aligned on a byte boundary that is an integral
multiple of the _PC_REC_XFER_ALIGN pathconf (2) variable.

* The current setting of the file pointer locates the offset in the file at which to
start the next 1/0O operation. This setting must be an integral multiple of the
value returned for the _PC_REC _XFER_ALIGN pathconf (2) variable.

* The number of bytes transferred in an I/O operation must be an integral
multiple of the value returned for the _PC_REC_XFER_ALIGN pathconf (2)
variable.

Enabling direct 1/O for files on file systems not supporting direct I/O returns an error.
Trying to enable direct disk 1/O on afilein afile system mounted with the file system-
specific soft option also causes an error. The soft option specifies that the file system
need not write data from cache to the physical disk until just before unmounting.

Although not recommended, you can open afile in both direct and cached (nondirect)
modes simultaneously, at the cost of degrading the performance of both modes.

Using direct 1/0 does not ensure that a file can be recovered after a system failure. You
must set the POSIX synchronized 1/0 flags to do so.

You cannot open afilein direct mode if a process currently maps any part of it with the
mmap (2) system call. Similarly, acall to mmap failsif the file descriptor used in the call
isfor afile opened in direct mode.
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Whether direct 1/0 provides better 1/0 throughput for atask depends on the application:

e All direct 1/O requests are synchronous, so I/O and processing by the
application cannot overlap.

¢ Since the operating system cannot cache direct 1/O, no read-ahead or write-
behind algorithm improves throughput.

However, direct 1/0O always reduces system-wide overhead because data moves directly
from user memory to the device with no other copying of the data. Savings in system
overhead is especially pronounced when doing direct disk I/O between an embedded SCSI
disk controller (adisk controller on the processor board) and local memory on the same
processor board.
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Memory Mapping

This chapter describes the methods provided by RedHawk Linux for a process to access
the contents of another process address space.

User Space Address Layout

The traditional organization of the virtual address space on 1386 systems has the lower 3
GB reserved for the user application and the upper 1 GB for the kernel.

The 3GB user application portion isitself broken down into various sections: the stack
starts at 0xc0000000 and grows down, unpinned mmaps start finding space at 0x40000000
and grow up, (by link edit convention), the application text, data and bss regions are made
contiguous and are loaded in near address zero (0x08000000). The sbrk (2) area, used
by malloc (3) to acquire the memory it needs to hand out, starts growing up where the
text/data/bss region |eaves off.

The problem with this approach is that unpinned mmaps (which most are) are restricted
only to the 2GB range 0x40000000 - 0xc00000000. If this proves insufficient then
mmap (2) calswill start to fail when in fact there is enough address space available if the
kernel searchesfor it outside of the traditional range.

The 386 version of RedHawk introduces a new configurable, LARGE_MMAP_SPACE. When
it is off, unpinned mmaps behave traditionally as described above. When it is on, unpinned
mmaps will allocate their space from the traditional range for as long as possible. At the
mmap call where the first allocation failure would have occurred, however, rather than
failing, the mmap will search for sufficient space outside of the traditional range.

This feature is enabled by default in all the pre-built i386 RedHawk kernels. The
LARGE_MMAP_SPACE kernel tunable is accessible under the Processor Type and
Features option of the Kernel Configuration GUI.

Establishing Mappings to a Target Process’ Address Space

For each running process, the /proc file system provides afile that represents the
address space of the process. The name of thisfileis /proc/pid/mem, where pid denotes
the ID of the process whose address space is represented. A process can open (2) a
/proc/pid/mem file and use the read (2) and write (2) sSystem callsto read and
modify the contents of another process address space.

Theusermap (3) library routine, which resides in the 1ibccur_rt library, provides
applications with away to efficiently monitor and modify locationsin currently executing
programs through the use of simple CPU reads and writes.

9-1
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Using mmap(2)
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The underlying kernel support for thisroutineisthe /proc file system mmap (2) system
service cal, which lets a process map portions of another process’ address space into its
own address space. Thus, monitoring and modifying other executing programs becomes
simple CPU reads and writes within the application’s own address space, without
incurring the overhead of /proc filesystem read (2) andwrite (2) cadls.

The sections below describe these interfaces and lists considerations when deciding
whether to usemmap (2) or usermap (3) within your application.

A process can usemmap (2) to map a portion of its address spaceto a /proc/pid/mem
file, and thus directly access the contents of another process address space. A process that
establishes amapping to a /proc/pid/mem file is hereinafter referred to as a monitoring
process. A process whose address space is being mapped is referred to as a target process.

To establish a mapping to a /proc/pid/men file, the following requirements must be
met:

* The file must be opened with at least read permission. If you intend to
modify the target process address space, then the file must also be opened
with write permission.

¢ On the cal to mmap to establish the mapping, the flags argument should
specify the MAP_SHARED option, so that reads and writes to the target
process’ address space are shared between the target process and the
monitoring process.

* The target mappings must be to real memory pages and not within a
HUGETLB area. The current implementation does not support the creation of
mappings to HUGETLB areas.

It is important to note that a monitoring process' resulting mmap Mmapping is to the target
process’ physical memory pages that are currently mapped in the range [offset, offset +
length). As aresult, amonitoring process’ mapping to atarget process’ address space can
become invalid if the target’s mapping changes after the mmap call is made. In such
circumstances, the monitoring process retains a mapping to the underlying physical pages,
but the mapping is no longer shared with the target process. Because a monitoring process
cannot detect that a mapping is no longer valid, you must make provisions in your
application for controlling the relationship between the monitoring process and the target.
(The notation [start, end) denotes the interval from start to end, including start but
excluding end.)

Circumstances in which a monitoring process mapping to atarget process address space
becomesinvalid are:

* Thetarget process terminates.

* The target process unmaps a page in the range [offset, offset + length) with
either munmap (2) Or mremap (2) .

* The target process maps a page in the range [offset, offset + length) to a
different object with mmap (2) .
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* The target process invokes fork (2) and writes into an unlocked, private,
writable page in the range [offset, offset + length) before the child process
does. In this case, the target process receives a private copy of the page, and
its mapping and write operation are redirected to the copied page. The
monitoring process retains a mapping to the original page.

* The target process invokes fork (2) and then locks into memory a private,
writable page in the range [offset, offset + length), where this page is still
being shared with the child process (the page is marked copy-on-write). In
this case, the process that performsthe lock operation receives a private copy
of the page (as though it performed the first write to the page). If it is the
target (parent) process that locks the page, then the monitoring process’
mapping is no longer valid.

* The target process invokesmprotect (2) to enable write permission on a
locked, private, read-only page in the range [offset, offset + length) that is
still being shared with the child process (the page is marked copy-on-write).
In this case, the target process receives a private copy of the page. The
monitoring process retains a mapping to the original memory object.

If your application is expected to be the target of a monitoring process address space
mapping, you are advised to:

¢ Perform memory-locking operations in the target process before its address
space is mapped by the monitoring process.

* Prior to invoking fork(2), lock into memory any pages for which
mappings by the parent and the monitoring process need to be retained.

If your application is not expected to be the target of address space mapping, you may
wish to postpone locking pages in memory until after invoking fork.

Please refer to themmap (2) man page for additional details.

Using usermap(3)

In addition to the /proc file system mmap (2) system service call support, RedHawk
Linux also provides the usermap (3) library routine as an alternative method for
mapping portions of atarget process address space into the virtual address space of the
monitoring process. Thisroutineresidesin the libeccur rt library.

While the usermap library routine internally uses the underlying /proc mmap system
service call interface to create the target address space mappings, usermap does provide
the following additional features:

* The caller only has to specify the virtual address and length of the virtual
area of interest in the target process address space. The usermap routine
will deal with the details of converting this request into a page aligned
starting address and a length value that is a multiple of the page size before
calling mmap.

* The usermap routine is intended to be used for mapping multiple target
process data items, and therefore it has been written to avoid the creation of
redundant mmap mappings. usermap maintains internal mmap information
about all existing mappings, and when a requested data item mapping falls
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within the range of an already existing mapping, then this existing mapping
isre-used, instead of creating a redundant, new mapping.

* When invoking mmap, you must supply an already opened file descriptor. It
isyour responsibility to open (2) and close (2) the target process file
descriptor at the appropriate times.

When using usermap, the caller only needs to specify the process ID
(pid_t) of thetarget process. The usermap routine will deal with opening
the correct /proc/pid/mem file. It will also keep this file descriptor open,
so that additional usermap (3) callsfor this same target process ID will
not require re-opening this /proc file descriptor.

Note that |eaving the file descriptor open may not be appropriate in all cases.
However, it is possible to explicitly close the file descriptor(s) and flush the
internal mapping information that usermap is using by calling the routine
with a“len” parameter value of 0. It is recommended that the monitoring
process use this close-and-flush feature only after all target mappings have
been created, so that callers may still take advantage of the optimizations
that are built into usermap. Please see the usermap (3) man page for
more details on this feature.

Note that the same limitations discussed under “Using mmap(2)” about a monitoring
process mappings becoming no longer valid also apply to usermap mappings, since the
usermap library routine also internally uses the same underlying /proc/pid/mem
mmap (2) system call support.

For more information on the use of the usermap (3) routine, refer to theusermap (3)
man page.

Considerations

In addition to the previously mentioned usermap features, it is recommended that you
also consider the following remaining points when deciding whether to use the
usermap (3) library routine or the mmap (2) system service call within your
application:

* The mmap (2) system cal is a standard System V interface, although the
capability of using it to establish mappingsto /proc/pid/mem filesis a
Concurrent RedHawk Linux extension. The usermap (3) routineis
entirely a Concurrent RedHawk Linux extension.

* Mmap (2) provides direct control over the page protections and location of
mappings within the monitoring process. usermap (3) does not.

94
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Kernel Configuration Parameters

There are two Concurrent RedHawk Linux kernel configuration parameters that directly
affect the behavior of the /proc file system mmap (2) calls. Because usermap (3)
also usesthe /proc filesystemmmap (2) support, usermap (3) isequally affected by
these configuration parameters.

The kernel configuration parameters are accessible under Pseudo File Systems on the
Kernel Configuration GUI:

PROCMEM_MMAP If this kernel configuration parameter is enabled, the /proc
file system mmap (2) support will be built into the kernel.

If this kernel configuration parameter is disabled, no /proc
file system mmap (2) support is built into the kernel. In this
case, usermap (3) and /proc mmap (2) callswill return
an errno vaue of ENODEV.

Thiskernel configuration parameter is enabled by default in all
Concurrent RedHawk Linux kernel configuration files.

PROCMEM_ANY ONE
If this kernel configuration parameter is enabled, any
/proc/pid/memn file that the monitoring process is able to
successfully open (2) with read or read/write access may be
used as the target processfor a /proc mmap (2) Or user-
map (3) cal.

If this kernel configuration parameter is disabled, the monitor-
ing process may only /proc mmap (2) Or usermap (3) a
target process that is currently being ptraced by the monitoring
process. Furthermore, the ptraced target process must also be
in a stopped state at the time the /proc mmap (2) System
service call ismade. (Seethe ptrace (2) man page for more
information on ptracing other processes.)

Thiskernel configuration parameter is enabled by default in all
Concurrent RedHawk Linux kernel configuration files.
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Non-Uniform Memory Access (NUMA)

NUMA support, available on Opteron systems, allows you to influence the memory
location from which a program’s pages are to be allocated.

On a system with non-uniform memory access (NUMA), it takes longer to access some
regions of memory than others. A multiprocessor Opteron system is a NUMA
architecture. Thisis because each CPU chip is associated with its own memory resources.
The CPU and its associated memory are located on a unique physical bus. A CPU may
quickly access the memory region that is on itslocal memory bus, but other CPUs must
traverse one or more additional physical bus connections to access memory which is not
local to that CPU. The relationship between CPUs and busesis shown in Figure 10-1.

Figure 10-1 CPU/Bus Relationship on a NUMA System

CPU1 CPU 2
local memory local memory

|

CPU1 cpuzl
u

CPU 3 CPU4I
——

cpu 3 UUUL to I/O devices UUUL cpu 4
local memory v local memory

This means that the time to access memory on an Opteron system is going to be dependent
upon the CPU where a program runs and the memory region where the program’s pages
are allocated.

A NUMA node is defined to be one region of memory and all CPUs that reside on the
same physical bus as the memory region of the NUMA node. During system boot the
kernel determines the NUMA memory-to-CPU layout, creating structures that define the
association of CPUs and NUMA nodes. On current Opteron systems, the physical bus
where amemory region resides is directly connected to only one CPU.

To get optimal performance, a program must run on a CPU that is local to the memory
pages being utilized by that program. The NUMA interfaces described in this chapter
allow a program to specify the node from which a program’s pages are allocated. When
coupled with the mechanisms for setting a process' CPU affinity, these interfaces allow a
program to obtain very deterministic memory access times.

10-1
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NUMA support isavailable only on iHawk systems with Opteron processors. It is possible
to configure an Opteron system so that some CPUs do not have any memory that islocal.
In this case the CPUs with no memory will be assigned to a NUMA node, but all of the
memory accesses from this CPU will be remote memory accesses. This affects the
memory performance of processes that run on both the CPU with no memory and
processes on the CPU that is in the same NUMA node which does have memory. Thisis
not an optimal configuration for deterministic program execution.

Refer to the section “Configuration” later in this chapter for configuration details. Refer to
the section “ Performance Guidelines” for more information on how to optimize memory
performance and to obtain deterministic memory access time. Note that deterministic
memory accessis crucial for obtaining deterministic program execution times.

Memory Policies

NUMA support implements the concept of memory policies. These memory policies are
applied task-wide on a per-user-task basis. Ranges of virtual address space within a given
task may also have their own separate memory policy, which takes precedence over the
task-wide memory policy for those pages. Memory policies, both task-wide and for virtual
address areas, are inherited by the child task during afork/clone operation.

The NUMA memory policies are:

MPOL_DEFAULT This is the default where memory pages are allocated from
memory local to the current CPU, provided that memory is
available. Thisisthe policy that is used whenever atask or its
children have not specified a specific memory policy. You can
explicitly set the MPOL_DEFAULT policy as the task-wide memory
policy or for a virtual memory area within a task that is set to a
different task-wide memory policy.

MPOL_BIND Thisis astrict policy that restricts memory alocation to only the
nodes specified in a nodemask at the time this policy is set. Pages
are dlocated only from the specified node(s) and page allocations
can fail even when memory is available in other nodes not in the
bind nodemask. This policy provides more certainty as to which
node(s) pages are alocated from than the other memory policies.

Note that the only way to guarantee that all future memory
allocations for a process will be to local memory is to set both the
CPU affinity and mpOL_BIND policy to asingle CPU.

MPOL_PREFERRED This policy sets a preferred (single) node for allocation. The
kernel will try to alocate pages from this node first and use other
nodes when the preferred node is low on free memory.

MPOL_INTERLEAVE This policy interleaves (in a round-robin fashion) allocations to
the nodes specified in the nodemask. This optimizes for
bandwidth instead of latency. To be effective, the memory area
should be fairly large.
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In addition to user-space page alocations, many of the kernel memory allocation requests
are also determined by the currently executing task’s task-wide memory policy. However,
not all kernel page allocations are controlled by the current task’s memory policy. For
example, most device drivers that allocate memory for DMA purposes will instead
allocate memory from the node where the device's I/O bus resides, or the from the node
that is closest to that 1/0 bus.

Page allocations that have already been made are not affected by changes to atask’s
memory policies. As an example, assume that there is a 1-to-1 CPU to node
correspondence on a system with two CPUs:

If atask has been executing for awhile on CPU 0 with a CPU affinity of Ox1 and a
memory policy of MPOL_DEFAULT, and it then changesits CPU affinity to Ox2 and its
memory policy to MPOL_BIND with a nodemask value of 0x2, there will most likely
be pages in its address space that will be non-local to the task once that task begins
execution on CPU 1.

The following sections describe the system services, library functions and utilities
available for NUMA management.

NUMA User Interface

The run (1) command can be used to establish or change memory policies for atask at
run time. shmconfig (1) can be used for shared memory areas.

Library functions, system services and other utilities and files are also available for
NUMA control.

Details of this support are given in the sections below.

NUMA Support for Processes using run(l)
The “mempolicy” optionto run (1) can be used to establish atask-wide NUMA memory
policy for the process about to be executed as well as display related information.
The synopsisis:
run [OPTIONS] COMMAND [ARGS]
“mempolicy” is one of the avail able opTIONS and has the following forms:

- -mempolicy=MEMPOLICY_SPECIFIER
-M MEMPOLICY_SPECIFIER

Note that a PROCESSTHREAD_SPECIFIER, Which identifies the existing process or thread that
run acts upon, cannot be used with the mempolicy option, which affects only the
process(es) about to be created.

MEMPOLICY_SPECIFIER includes only one of the following. Each can be abbreviated to its
initial unique character. list is acomma-separated list or range of CPUs; e.g., “0,2-4,6".
“active” or “boot” can be used to specify all active processors or the boot processor,
respectively. An optional tilde [~] negates the list, although “active” cannot be negated.
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[~1list

b[ind]=list
Executes the specified program using the MPOL_BIND memory policy using
the memory local to the CPUsin list.

b[ind] Executes the specified program using the MPOL_BIND memory policy using
memory local to the CPUs specified with the - -bias option. The --bias
option defines the CPUs on which the program is to run and must also be
specified with this choice.

i[nterleave]=[~]list
Executes the specified program using the MPOL_INTERLEAVE memory policy
using the memory local to the CPUs in list.

plreferred]=cpu
Executes the specified program using the MPOL_PREFERRED memory policy,
preferring to use memory local to the single specified CPU.

dlefault]
Executes the specified program using the MPOL_DEFAULT memory policy. This
isthe default memory policy.

n[odes] Displays the CPUs included in each NUMA node along with total memory
and currently free memory on each node. No other options or programs are
specified with thisinvocation of run.

v[iew] Displays the memory policy setting of the current process. No other options or
programs are specified with this invocation of run.

When a system contains one or more CPUs without local memory, these CPUs are
assigned to a node in round-robin fashion during system initialization. Although assigned
to a node, they do not actually have local memory and will always make non-local
memory accesses, including memory accesses to their own assigned node. Under this type
of configuration, v[iew] output will include an additional “NoMemCpus’ column which
will indicate the CPUs on each NUMA node that contain no local memory. It is
recommended that hardware be configured so that each CPU has a memory module
installed when using aNUMA-enabled kernel.

Refer to the run (1) man page or the section “The run Command” in Chapter 4 for other
optionsto run.

If numactl (8) isavailable on your system, it can also be used to set NUMA memory
policies.
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NUMA Support for Shared Memory Areas using shmconfig(1)

NUMA policies can be assigned to new shared memory areas or modified for existing
shared memory areas using shmconfig (1) with the “mempolicy” option.

The synopsisis:

/usr/bin/shmconfig -M MEMPOLICY [-s SIZE] [-g GROUP] [-m MODE] [-u USER]
[-o offset] [-8] [-T] {key | - £ FNAME}

The “mempolicy” option has the following forms:

- -mempolicy=MEMPOLICY
-M MEMPOLICY

MEMPOLICY includes only one of the following. Each can be abbreviated to its initial
unique character. LIST isacomma-separated list or range of CPUs; e.g., “0,2-4,6". “active”
or “boot” can be used to specify all active processors or the boot processor, respectively.
An optional tilde [~] negates the list, although “active’ cannot be negated.

To view the CPUs that are included in each node, and total and available free memory for
each node, use run -M nodes.

[~]LIST

b[ind]=LIST
Sets the specified segment to the MPOL_BIND memory policy using the
memory local to the CPUsin LIST.

i[nterleave]=[~]LIST
Sets the specified segment to the MPOL_INTERLEAVE memory policy using the
memory local to the CPUs in LIST.

plreferred]=CPU
Sets the specified segment to the MPOL_PREFERRED memory policy, preferring
to use memory local to the single specified CPU.

dlefault]

Sets the specified segment to the MPOL_DEFAULT memory policy. Thisisthe
default.

v[iew] Displays the current memory policy setting for the specified segment.
Additional optionsthat can be used with the mempolicy option include:

--size=9ZE
-s 9z  Specifiesthe size of the segment in bytes.

--offset OFFSET

-0 OFFSET
Specifies an offset in bytes from the start of an existing segment. Thisvalueis
rounded up to a pagesize multiple. If the -s option is also specified, the sum
of the values of offset+size must be less than or equal to the total size of the
segment.
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--user=USER
-u USER Specifiesthe login name of the owner of the shared memory segment.

- -group=GROUP

-g GROUP
Specifies the name of the group to which group access to the segment is
applicable.

- -mode=MODE

-m MODE Specifies the set of permissions governing access to the shared memory
segment. You must use the octal method to specify the permissions; the
default mode is 0644.

--strict
-s Outputs an error if any pages in the segment range do not conform to the
specified memory policy currently being applied.

--touch

-T Causes a touch (read) to each page in the specified range, enforcing the
memory policy early. By default, the policy is applied as applications access
these areas and fault in/all ocate the pages.

The key argument represents a user-chosen identifier for a shared memory segment. This
identifier can be either an integer or a standard path name that refers to an existing file.
When apathnameis supplied, an £tok (key, 0) will be used as the key parameter for the
shmget (2) call.

--tmpfs=FNAME / -t FNAME can be used to specify atmpfs filesystem filename instead
of akey. The -u, -g and -m options can be used to set or change the file attributes of this
segment.

Refer to the man page or the section “ The shmconfig Command” in Chapter 3 for other
optionsto shmconfig.

If numactl (8) isavailable on your system, it can also be used to set NUMA memory
policies.

The following system service calls are available. Note that the numai £ . h header file
should be included when making any of these calls. Refer to the man pages for details.

set mempolicy(2) Sets a task-wide memory policy for the current process.

get mempolicy(2) Gets the memory policy of the current process or memory
address.

mbind (2) Sets a policy for a specific range of address space,

including shared memory.
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Thelibrary, /usr/1ib64/libnuma. so, offers a simple programming interface to the
NUMA support. It contains various types of NUMA memory policy and node support
routines and alternative interfaces for using the underlying NUMA system service calls.
Refer to the numa (3) man page for details.

Informational Files

When NUMA is enabled in the kernel, each node has a set of information files in the
subdirectory /sys/devices/system/node/node#, where# is the node number (0,
1, 2 etc.). Thesefilesarelisted below.

cpumap

numastat

meminfo

cpu#

Displays a hexadecimal bitmap of the CPUs in this node; e.g.

>cat /sys/devices/system/node/node3/cpumap
08

Displays hit/miss statistics for the node. See the next section for
explanations of the fields that are displayed.

Displays various memory statistics for the node, including totals
for free, used, high, low and al memory.

These are the CPU device files associated with the node; e.g.
$ 1s -1 /sys/devices/system/node/node3/cpu3

lrwxrwxrwx 1 root root 0 jan 21 03:01 cpu3

->../../../../devices/system/cpu/cpu3

NUMA Hit/Miss Statistics Using numastat

numastat is a script that combines the information from all the nodes’ /sys/
devices/system/node/node#/numastat files:

$ numastat

numa_hit
numa_miss
numa_foreign
interleave hit
local node
other node

numa_hit

numa_miss

numa_foreign

node 3 node 2 node 1 node 0
43674 64884 79038 81643
0 0 0 0

0 0 0 0

7840 5885 4975 7015
37923 59861 75202 76404
5751 5023 3836 5239

the number of successful memory allocations made from the node

the number of memory alocations that could not be made from
the node but were instead allocated for another node

the number of alocations that failed to allocate memory from a
node but were instead allocated from this node
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interleave hit

local node

other node

the number of successful interleaved memory allocations made
from this node

the number of memory alocations that were made from the local
node

the number of memory allocations that were made to a non-local
node

The following kdb commands have been added or modified to support NUMA. Note that
this additional support is only present when the kernel is configured with NUMA support

enabled.

memmap [node_id]

task

mempolicy addr

pgdat [node id]

vmp -v

Performance Guidelines

Task-Wide NUMA Mempolicy

10-8

outputs information for al pages in the system, or for only the
specified node

additionally outputs the mempolicy and i1 _next task structure
fields

outputs information for the specified mempolicy structure

decodes the specified node’s zonelists, or if node id is not
specified, zone 0

additionally outputs mempolicy information for virtual memory
areas

Through CPU shielding, CPU biasing and binding an application to specific NUMA
nodes, page allocations can be made in the most efficient manner on NUMA systems.
Guidelines for working with tasks and shared memory areas are given below.

The mpoL_BIND poalicy isusually the most useful policy for time-critical applications. It is
the only policy that lets you deterministically specify the node(s) for page allocations. If
the memory allocation cannot be made from the specified node or set of specified nodes,
the program will be terminated with asiGkILL signal.

By combining CPU shielding and CPU biasing with the MmPoL_BIND memory policy, a
shielded CPU can be created and the application executed on the shielded CPU where the
pages for that application will be allocated only from the shielded CPU’s NUMA node.
Note that pre-existing shared text page sand copy on write data pages may not be local,
although copy on write data pages will become local once they are written to.
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The run (1) command can be used to start up an application on a shielded CPU with the
MPOL_BIND memory policy. Alternatively, since pages that are already present in an
application’s address space are not affected by any subsequent change of NUMA memory
policy, the application can set its CPU affinity and NUMA memory policy as soon as
possible after it has begun executing withmpadvise (3) and set_mempolicy (2) or
NUMA library function calls.

The following example shows how to use the run (1) command bias and mempolicy
options to start up an application on a shielded CPU with the MPOL_BIND memory policy
with memory allocations coming only from the NUMA node where CPU 2 resides:

S shield -a 2
S run -b 2 -M b my-app

For more information about shielded CPUs and the shield (1) command, see Chapter 2
and the shield (1) man page.

Shared Memory Segments

It is also generally recommended that the MPOL_BIND memory policy be used for shared
memory segments. A shared segment’s NUMA memory policy can be specified with the
mbind (2) system servicecall or with the shmconfig (1) utility.

If a shared memory segment is to be referenced from multiple CPUs, it is possible to
specify different MPOL_BIND mempolicy attributes for different portions of a shared
memory areain order to maximize memory access performance.

As an example, consider a “low” application that mainly writes to the lower half of a
shared memory segment, and a“high” application that mainly writes to the upper half of
the same shared memory segment.

1. Create a shared memory segment with a key value of ‘123'. Change the
lower half of the segment to use the MPOL_BIND memory policy with CPU
2'sNUMA node for page allocations, and the upper half to use MPOL_BIND
with CPU 3's node for page allocations.

S shmconfig -s 0x2000 123
S shmconfig -s 0x1000 -M b=2 123
S shmconfig -o 0x1000 -M b=3 123

2. Shield both CPUs 2 and 3.
S shield -a 1,2

3. Start up the“low” application on CPU 2 with aMPOL_BIND mempolicy
using CPU 2's NUMA node for memory allocations, and start up the
“high” application on CPU 3 with ampPoL_BIND mempolicy using CPU 3's
NUMA node for memory allocations.

S run -b 2 -M b low
S run -b 3 -M b high
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Only the Opteron processors have NUMA architecture. The Kk8_NUMA kernel parameter
must be enabled for NUMA kernel support. This tunable is accessible under the
Processor Type and Features selection in the Kernel Configuration GUI and is
enabled by default in al pre-built RedHawk x86_64 kernels.

Note that there is a boot option, numa=off, that can be specified at boot time that will
disable NUMA kernel support on aNUMA system. Thiswill create asystem with asingle
node, with all CPUs belonging to that node. It differs from NUMA support not being built
into the kernel, in which case there is a flat memory system with no nodes and where the
NUMA user interfaces will return errors when called.

When using a k8 NUMA enabled kernel on an Opteron system, the following hardware
recommendations are made:

* |t ishighly recommended that a memory module be installed for each CPU
in the system. Otherwise, CPUs without a local memory module must
remotely access other memory modules for every memory access, thus
degrading system performance.

* Any BIOS-supported memory module interleaving hardware support should
be disabled in the BIOS. If not disabled, NUMA support in a K8_NUMA
enabled kernel will be disabled, resulting in asingle NUMA node containing
al the CPUs in the system.
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Configuring and Building the Kernel

This chapter provides information on how to configure and build a RedHawk Linux
kernel.

The RedHawk kernels are located in the /boot directory. The actua kernel file names
change from release to rel ease, however, they generally have the following form:

vmlinuz-kernelverson-RedHawk-x.X[ -flavor]

kernelversion is the official version of Linux kernel source code upon which
the RedHawk kernel is based (may contain suffixes such as -rcl
or -prev)

XX is the version number of the RedHawk kernel release

flavor is an optional keyword that specifies an additional kernel feature

that is provided by the specific kernel

The kernel is loaded into memory each time the system is booted. It is a nucleus of
essential code that carries out the basic functions of the system. The kernel remains in
physical memory during the entire time that the system is running (it is not swapped in and
out like most user programs).

The exact configuration of the kernel depends upon:

¢ alarge number of tunable parameters that define the run-time behavior of the
system

* anumber of optional device drivers and loadable modules

Kernel configuration, or reconfiguration, is the process of redefining one or more of these
kernel variables and then creating a new kernel according to the new definition.

In general, the supplied kernels are created with tunable parameters and device drivers that
are suitable for most systems. However, you may choose to reconfigure the kernel if you
want to alter any of the tunable parameters to optimize kernel performance for your
specific needs.

After you change atunable parameter or modify the hardware configuration, the kernel
will need to be rebuilt, installed and rebooted.
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The RedHawk Linux product includes three pre-built kernels. The kernels are
distinguished from each other by their “ -flavor” suffix. The following flavors are defined:

(no suffix) The generic kernel. This kernel is the most optimized and will
provide the best overall performance, however it lacks certain
features required to take full advantage of the NightStar tools.

trace Thetrace kernel. This kernel isrecommended for most usersasit
supports al of the features of the generic kernel and in addition
provides support for the kernel tracing feature of the NightTrace
performance analysis tool.

debug The debug kernel. This kernel supports al of the features of the
trace kernel and in addition provides support for kernel-level
debugging. This kernel is recommended for users who are
developing drivers or trying to debug system problems.

Each pre-built RedHawk kernel has an associated configuration file that captures all of the
details of the kernel's configuration. These files are located in the configs directory of
the kernel source tree. For the three pre-built kernels, the configuration files are named as
follows:

On an iHawk 386 architecture (32-bit):

generickernel  static.config
trace kernel trace-static.config
debug kernel debug-static.config

On an iHawk Opteron architecture (64-hit):

generickernel  static-x86 64.config
trace kernel trace-static-x86 64.config
debug kernel debug-static-x86 64.config

In order to configure and build akernel that matches one of the three pre-built kernels, you
must cd to the top of the kernel sourcetree and run the ccur-config(8) tool.

NOTE

The ccur-config script must be run as root. If kernel
modifications are to be made, the system must be in graphical
mode (i.e. run-level 5) or avalid DISPLAY variable must be set.

The following example configures the kernel source tree for building a new kernel based
on the RedHawk Linux 2.1 trace kernel's configuration. Note that it is not necessary to
specify the“ . config” suffix of the configuration file asthat is automatically appended.

# ed /usr/src/linux-2.6.3RedHawk2.1
#./ccur-config trace-static

ccur-config can also be used for customized kernels by specifying the appropriate
custom config file residing in the configs directory. The -k name option can be used to
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name a new flavor, and the -s option saves the configuration file in the configs
directory. For example:

# ./ccur-config -s -k test debug-static

configures a kernel with -test as the flavor suffix that is based on the RedHawk 1386
debug-static kernel and saves the resulting configuration as configs/
test.config.

During the execution of ccur-config you will be presented with a graphical
configuration interface (GUI) in which you can customize many different aspects of the
RedHawk Linux kernel. See Screen 11-1 for an example of the Kernel Configuration GUI.

The Save selection from the File menu must be selected to save your changes and exit
the program. Note that even if you do not change any configuration parameters, it is still
necessary to select Save in order to properly update the kernel's configuration files.

An exhaustive list of the settings and configuration options that are available via the
graphical configuration window is beyond the scope of this document, however many
tunable parameters related to unique RedHawk features and real -time performance are
discussed throughout this manual and listed in Appendix B. In addition, when the
parameter is selected, information about that parameter is displayed in a separate window
of the GUI.

If you do not wish to change kernel parameters, specify the -n option to ccur-config
and the GUI will not appear.

Screen 11-1 Kernel Configuration GUI

File Option Help

)

EERe

S | Il E

Option

4] | option 4]

- |SDN subsystem
- |nput device support

i~Serial drivers
=--12C support

- Mice
- IPMI -
-Watchdog Cards

- Ftape, the floppy tape device driver
- PCMCIA character devices

- Misc devices

~-Multimedia devices

- Digital Video Broadcasting Devices
--File systems

[ 13dlabs GMX 2000
-CJATI Rage 128
ATI Radeon
-OMatrox g200/g400
~[SiS video cards
--CJACP Modem (Mwave) support
- CIRAW driver (/dev/raw/rawN)
~[JHangcheck timer 3

cter devices

~12C Algorithms
#12C Hardware Bus support
“-|2C Hardware Sensors Chip suppt

RCIM Realtime Clock and Interrupt Module (RCIM)

The Realtime Clocks and Interrupts Module is a custom PCI/PMC board
manufactured by Concurrent Computer Corp. RCIM boards in adjacent
systems can be cabled together and programmed such that interrupts
generated in one RCIM board are delivered synchronously to all systems.
The board is able to handle incoming and outgoing external interrupts,
software generated interrupts, and internally generated interrupts

i CD-ROM/DVD Filesystems
DOS/FAT/NT Filesystems
Pseudo filesystems
Miscellaneous filesystems
Network File Systems
~Partition Types

‘- Native Language Support
--Graphics support

: “..Consale display driver support
—. Sannd

ﬂlél |

from the board's high resclution programmable clocks. Access to board
services is via ioctl's on special devices. For details, see rcim(4),
rcim_eti(4), rcim_pigi4), and rcim_rtc(4), rcim_distrib_intr(4), and
rcim_sync_clocki{4).
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Regardless of which kernel configuration is used, the resulting kernel will be named with
a“vmlinuz” prefix followed by the current kernel version string asiit is defined in the top-
level Makefile, followed with a“-custom” suffix added. For example:

vmlinuz-2.6.3-RedHawk-2.l-custom

Thefinal suffix can be changed by specifying the -k name optionto ccur-config. This
defines name as the REDHAWKFLAVOR variable in the top-level Makefile, which
remains in effect until changed again with -k or by editing Makefile. When building
multiple kernels from the same kernel source tree, it is important to change the suffix to
avoid overwriting existing kernels accidentally.

NOTES

The pre-built kernels supplied by Concurrent have suffixes that
are reserved for use by Concurrent. Therefore, you should not set
the suffix to “-trace”, “-debug” or “ " (empty string).

Use the ccur-config -c option if you need to build driver
modules for a kernel (see the section “Building Driver Modules’
later in this chapter).

Once kernel configuration has completed, a kernel can be built by issuing the appropriate
make (1) commands. There are many targets in the top-level Makefile, however the
following are of special interest:

make bzlmage Build a standalone kernel.

make modules Build any kernel modules that are specified in the kernel
configuration.

makemodules_install Install modules into the module directory associated with the
currently configured kernel. Note that the name of this directory
is derived from the kernel version string as defined in the top-
level Makefile. For example, if the REDHAWKFLAVOR is
defined as “-custom” then the resulting modules directory will be
“/1lib/modules/kerngdverson-RedHawk-X.X-custom”.

make install Install the kerndl into the /boot directory aong with an
associated System.map file.

NOTE

To completely build and install a new kernel, all of these
Makefile targets must beissued in the order shown above.

For an example of a complete kernel configuration and build session, refer to Figure 11-1.



Configuring and Building the Kernel

Figure 11-1 Example of Complete Kernel Configuration and Build Session

//’ # cd /usr/src/linux-2.6.3RedHawk2.1 i\\
# ./ccur-config -k test debug-static

Configuring version: 2.6.3-RedHawk-2.1-test
Cleaning source tree...
Starting graphical configuration tool...

[ configure kernel parameters as desired ]
Configuration complete.

make bzImage
make modules
make modules install
make install

edit /etc/grub.conf to reference new kernel and reboot ]

N /

— H HF H H

Building Driver Modules

It is often necessary to build driver modules for use with either one of the pre-existing
kernels supplied by Concurrent or a custom kernel.

To build driver modules for akernel, the following conditions must be met:

* The desired kernel must be the currently running kernel.

* The kernel source directory must be configured properly for the currently
running kernel viaccur-config.

Note that if a custom kernel was built using the procedure outlined in the section
“Building a Kernel,” then the kernel source directory is already configured properly and
running ccur config isnot necessary.

The -c option to ccur-config can be used to ensure that the kernel source directory is
properly configured. This option automatically detects the running kernel and configures
the source tree to properly match the running kernel. Driver modules can then be properly
compiled for use with the running kernel.

NOTE

The -c option to ccur _config is only intended for
configuring the kernel source tree to build driver modules and
should not be used when building a new kernel.

The -n optionto ccur_config can also be specified when it is not necessary to change
configuration parameters. With -n, the configuration GUI does not appear and no
configuration customization is performed.

See Figure 11-2 for an example of building a kernel module for a pre-built RedHawk
Linux kernel.
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Figure 11-2 Example of Building a Kernel Module for a
Pre-built RedHawk Kernel

4 N

# cd /usr/src/linux-2.6.3RedHawk2.1
# ./ccur-config -c

[ Enable the desired driver modules in GUI]
# make REDHAWKFLAVOR=-flavor modules

[ See make output to locate newly built kernel modul €]

N /

Additional Information
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There are many resources available that provide information to help understand and
demystify Linux kernel configuration and building. A good first step is to read the
README file located in the top-level of the installed RedHawk kernel source tree. In
addition, the following HOWTO document is available via The Linux Documentation
Project web site: http://www.tldp.org/HOWTO/K ernel-HOWTO.html


http://www.tldp.org/HOWTO/Kernel-HOWTO.html
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Linux Kernel Crash Dump (LKCD)

This chapter discusses the Linux Kernel Crash Dump facility, how it is configured and
some examples of its use.

WARNING

Crash dumps are disruptive. It is recommended that crash dumps
be activated only during testing/debugging. When LKCD is
active, any kernel “Oops” causes the system to halt, dump the
memory image to swap and reboot. When LKCD is not active, the
system may continue running.

The Linux Kernel Crash Dump (LKCD) facility contains kernel and user level code
designed to:

* save the kernel memory image when the system dies due to a software
failure

¢ recover the kernel memory image when the system is rebooted

¢ analyze the memory image to determine what happened when the failure
occurred

When a crash dump is regquested (a kernel Oops or panic occurs or a user forces a crash
dump), the memory image s stored into a dump device, which isrepresented by one of the
swap partitions on the system. After the operating system is rebooted, the memory image
is moved to /var/log/dump/n, where n is a number that increments with each
successive crash dump. The files within that directory are used when analyzing the crash
dumpusing lcrash(1).

RedHawk Linux contains an updated version of the LKCD currently available at
http://Ikcd.sourceforge.net/. For general information about this feature, including
documentation, refer to this web site.
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The 1kedutils rpm is automatically installed as part of the RedHawk Linux
installation. The default RedHawk Linux kernel configurations include the Ikcd kernel
patch. Concurrent has added scripts to automatically patch the /ete/rc.d/
rc.sysinit fileto configure LKCD to take dumps and to save dumps at boot time.
LKCD will automatically self-configure to use the swap partition as the dump device. This
is done by creating the file /dev/vmdump as a symbolic link to the swap partition.

WARNING

Dumping to a partition other than a swap partition will destroy the
filesystem.

The /etc/sysconfig/dump configuration file contains parameters that control the
configuration of LKCD. Thisfile may be edited, if needed, to make certain specifications;
for example, to modify the method of compressing dumps or to change the directory
where dumps are saved. After making modifications to the LKCD configuration file, the
user must execute the command 1kecd config for those changes to take effect.

The bumP_ACTIVE parameter in the LKCD configuration file enables or disables system
dumps. When this variable setting is buMP_ACTIVE=1, LKCD will cause a dump to be
generated when a panic or Oops occurs. To deactivate LKCD, set DUMP_ACTIVE=0.

The type of dump to be performed is set via the DUMP_FLAGS setting. Disruptive disk
dump is the default setting (DUMP_FLAGS=0x80000000). This setting saves dumps to the
swap partition with an automatic reboot. During the reboot, the image is saved to
/var/log/dump.

The compression setting for dumps is set via the DuMP_COMPRESS setting. The memory
image uses gzip compression by default (DUMP_COMPRESS=2).

To see the configuration of Ikcd at any time, execute the command:

lkcd query
[root@opteron2 root]l# lkcd query

Configured dump device: 0x803

Configured dump flags:

Configured dump level:
KL _DUMP_LEVEL_ HEADER |KL_ DUMP LEVEL KERN|KL DUMP LEVEL USED
Configured dump compression method: KL DUMP COMPRESS GZIP
[root@opteron2 root]#
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Forcing a Crash Dump on a Hung System

LKCD contains a Magic System Request (SysRq) option to force a dump. By default,
Concurrent has configured the kernel with this option. To use SysRq, the user must enable
it through the /proc file system as follows:

Sechol > /proc/sys/kernel/sysrq
The configuration file /etc/sysctl.conf setsthe default value.

Two methods to force a dump are described below. Use the method applicable to your
configuration:

Using PC keyboard: Alt+SysRq+D
Using seria console: Break followed by D

An example of how you can send a Break using a serial consoleisillustrated below:
Using minicom as terminal emulator: Ctrl+A+F to send a Break, followed by D

In addition to the SysRq request method to force a crash dump, there is a new “manual
dump” feature in this version of LKCD. This looks very similar to a dump forced by a
SysRq request. Below is an example of a successful disruptive manual dump. To force a
system dump, the 1ked command is used as shown here:

[root@opteron2 root]# lkcd dump
Dumping to block device (8,3) on CPU 1 ...

42274 dump pages saved of 4096 each in pass 0

./
10780 dump pages saved of 4096 each in pass 1

1355880 dump pages skipped of 4096 each in pass 2
0 dump pages skipped of 4096 each in pass 3
Rebooting in 5 seconds ...

The above output goes to the console, and will be the last thing you see until the system
comes back from reboot in the case of disruptive dumps.

Below shows excerpts of the system rebooting and saving the crash dump before
activating the swap drive (disruptive dump):

Crash dump driver initialized.
block device driver for LKCD registered

Your system appears to have shut down uncleanly

Press Y within 1 seconds to force file system integrity check...
Checking root filesystem

/: clean, 251051/2052288 files, 1441830/4096575 blocks
[/sbin/fsck.ext3 (1) -- /] fsck.ext3 -a /dev/sda2

[ oK ]

Remounting root filesystem in read-write mode: [ OK 1]

Finding module dependencies: [ OK ]

Checking filesystems

/boot: recovering journal
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/boot: clean, 61/128520 files, 61214/514048 blocks
/home: recovering journal

/home: clean, 26/960992 files, 38390/1919759 blocks
/tmp: recovering journal

/tmp: clean, 1571/640000 files, 97607/1279167 blocks
Checking all file systems.

[/sbin/fsck.ext3 (1) -- /boot] fsck.ext3 -a /dev/sdal
[/sbin/fsck.ext3 (1) -- /home] fsck.ext3 -a /dev/sdaé
[/sbin/fsck.ext3 (1) -- /tmp] fsck.ext3 -a /dev/sda5
[ OK 1

Mounting local filesystems: [ OK 1]

Configuring system for crash dumps [ OK ]

Saving crash dump (if one exists) [ OK ]

Activating swap partitions: [ OK 1]

Enabling local filesystem quotas: [ OK ]

Enabling swap space: [ OK 1]

Note that it has been observed that the autoreboot feature for disruptive dumps will hang
on occasion. If this occurs, a powercycle is necessary. The system should be able to boot
up and save the dump correctly after the powercycle, as long as the hang did not occur in
the middle of the dump.

Below is an example of the output when a kernel oops occurs.

[root@ercoml rootl# ./crashme
test: no version magic, tainting kernel.
Loading the test driver
Unable to handle kernel NULL pointer dereference at virtual address 00000000
printing eip:
f8afc025
*pde = 00000000
Oops: 0002 [#1]
CPU: 0
EIP: 0060: [<f8afc025>] Tainted: PF
EFLAGS: 00010282
EIP is at test _module init+0x25/0x2e [test]
eax: f8afcO5f ebx: 0804b018 ecx: 00000002 edx: 00000000
esi: f8afc400 edi: 00000000 ebp: f659dfal esp: £659df98
ds: 007b es: 007b ss: 0068
Process insmod (pid: 1435, threadinfo=f659c000 task=£7608810)
Stack: 00000286 00000000 £659c000 c0l44ba9 c0606ac0O0 00000001 £8afc400
0804b018
080486dd 00000000 c010b3cl 0804b018 00007532 0804b008 080486dd
00000000
bfffecc8 00000080 0000007b 0000007b 00000080 ffffe410 00000073
00000246
Call Trace:
[<c0144ba9>] sys_init module+0x192/0x37b
[<c010b3cl>] sysenter no_trace 1+0xlc/0x33

Code: 88 02 b8 00 00 00 00 c9 c3 55 89 e5 83 ec 08 83 ec Oc 68 77
Dumping to block device (8,3) on CPU 0

10900 dump pages saved of 4096 each in pass 0

A
10372 dump pages saved of 4096 each in pass 1
240751 dump pages skipped of 4096 each in pass 2

0 dump pages skipped of 4096 each in pass 3

Rebooting in 5 seconds



Using Icrash

Example 1

Linux Kernel Crash Dump (LKCD)

lcrash has several functions. It is the utility used to save core dumps and to examine
either core files or live memory.

When saving a crash dump, 1crash relies on the files /boot /Kerntypes and
/boot/System.map matching the running kernel. Normally, several kernels are
installed with version extended names, and the Kerntypes and System.map files are
symbolic links to files that match the running kernel. If you boot a different kernel after
the system takes a crash dump, it may copy the wrong System.map and Kerntypes
files. In general, the core file will be saved successfully and the correct System.map and
Kerntypes files can be copied manually or specified on the Lerash command line
when examining the dump.

Notice the difference between Example 1 and Example 2 below. In Example 1, 1crashis
used to read in acorefile for analysis. In Example 2, 1ecrash isused to read /dev/mem,
which provides the capability to examine a still running system.

Thisexampleillustratesusing 1crash to analyze acorefile. Youfirst need to changeinto
the directory where the dump to be examined is saved: /var/log/dump/n, wherenis
the number of the dump. This example uses adump saved in /var/log/dump/1. Then
execute the command 1lcrash -nl.

[root@ercoml 1]# pwd

/var/log/dump/1

[root@ercoml 1]# 1s

analysis.l dump.l index.l kerntypes.l lcrash.l map.1l

[root@ercoml 1]# lcrash -nl

lcrash 0.9.2 (xlcrash) build at Jul 14 2004 02:36:01

Lecrash is free software. It is covered by the GNU General Public License.
You are welcome to change it and/or distribute copies of it under certain
conditions. Type “help -C” to see the conditions. Absolutely no warranty
is given for Lcrash. Type “help -W” for warranty details.

map = map.1l
dump = dump.l
kerntypes = kerntypes.1l

Please wait...
Check dump architecture:
Dump arch set.

Init host arch specific data ... Done.
Init dump arch specific data ... Done.
Loading system map ... Done.

Set dump specific data ... Done.
Loading type info (Kerntypes) ... Done.

Version of map,dump and types:
broccoli Wed Jul 14 02 19 10 EDT 2004
Loading ksyms from dump .... Done.

12-5



RedHawk Linux User’s Guide

Example 2

12-6

DUMP INFORMATION:

architecture: i386
byte order: little
pointer size: 32
bytes per word: 4

kernel release: 2.6.6

memory size: 939524096 (0G 896M OK OByte)
num phys pages: 262103
number of cpus: 4

>>

This exampleillustrates using 1crash to analyze a running system. Executing the
lcrash command with no arguments starts 1erash using the files that match the
running kernel (symlinks /boot/System.map and /boot/Kerntypes), and
/dev/mem instead of acorefile (Qump . n).

[root@ercoml root]# lcrash

lcrash 0.9.2 (xlcrash) build at Jul 14 2004 02:36:01

Lecrash is free software. It is covered by the GNU General Public License.
You are welcome to change it and/or distribute copies of it under certain
conditions. Type “help -C” to see the conditions. Absolutely no warranty
is given for Lcrash. Type “help -W” for warranty details.

map = /boot/System.map
dump = /dev/mem
kerntypes = /boot/Kerntypes

Please wait...
Check dump architecture:
Warning: Unknown magic number in dump header.
Warning: Unknown dump arch. Setting dump arch to host arch.

Init host arch specific data ... Done.
Init dump arch specific data ... Done.
Loading system map ... Done.

Set dump specific data ... Done.
Loading type info (Kerntypes) ... Done.

Version of map,dump and types:
broccoli_Wed Jul_14_02_19_10_EDT_ 2004
Loading ksyms from dump .... Done.

DUMP INFORMATION:

architecture: i386
byte order: little
pointer size: 32
bytes per word: 4

kernel release: 2.6.6

memory size: 939524096 (0G 896M OK OByte)
num phys pages: 262103
number of cpus: 4

>>



Example 3

Linux Kernel Crash Dump (LKCD)

Available 1erash commands can be listed using the ? command.

>> ?

? info pb strace
addtypes ldcmds pd symbol
base load po symtab
bt main print t
defcpu md ps task
deftask mktrace px trace
dis mmap q unload
dt module q! version
dump mt quit vi
findsym namelist rd vtop
fsym nmlist report walk

h od savedump whatis
help offset set

history p sizeof

id page stat

>>

Typing ? followed by the command name will give help on that command.

>> ? mmap
COMMAND: mmap [-f] [-n] [-w outfile] mmap_ list

Display relevant information for each entry in mmap_list.

>> ? deftask
COMMAND: deftask [-w outfile] [task]

Set the default task if one is indicated. Otherwise, display the
current value of deftask. When ‘lcrash’ is run on a system core

dump, deftask gets set automatically to the task that was active when
the system PANIC occurred.When ‘lcrash’ is run on a live

system, deftask is not set by default.

The deftask value is used by ‘lcrash’ in a number of ways. The trace
command will display a trace for the default task if one is set.

Also, the translation of certain virtual addresses (user space) depends
upon deftask being set.

>> ? quit
COMMAND: quit

Exit lcrash. ©Note that g will prompt for confirmation unless a ‘!’ is
appended to the command line.
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This example shows the output of the stat command. The stat command displays the
kernel’s log buffer at the time of the system crash, which may contain clues as to what
went wrong. It's also away to determine if you have a good dump.

>> stat

(last 24 lines of output shown only)

<4>test: no version magic, tainting kernel.

<4>Loading the test driver

<1l>Unable to handle kernel NULL pointer dereference at virtual address
00000000

<4> printing eip:

<4>f8afc025

<l>*pde = 00000000

<4>00ps: 0002 [#1]

<4>CPU: 0

<4>EIP: 0060: [«<f8afc025>] Tainted: PF

<4>EFLAGS: 00010282

<4>EIP is at test _module init+0x25/0x2e [test]

<4>eax: f8afcO5f ebx: 0804b018 ecx: 00000002 edx: 00000000

<4>esi: f8afc400 edi: 00000000 ebp: f659dfal esp: f£659df9s8

<4>ds: 007b es: 007b ss: 0068

<4>Process insmod (pid: 1435, threadinfo=£659c000 task=£7608810)

<4>Stack: 00000286 00000000 £659c000 c01l44ba9 c0606acO 00000001 f8afc400

0804b018

<4> 080486dd 00000000 c010b3cl 0804b018 00007532 0804b008 080486dd
00000000

<4> bfffecc8 00000080 0000007b 0000007b 00000080 ffffe410 00000073
00000246

<4>Call Trace:

<4> [<c0144ba9>] sys_init _module+0x192/0x37b

<4> [<c010b3cl>] sysenter no_trace_ 1+0xlc/0x33

<4>

<4>Code: 88 02 b8 00 00 00 00 c9 c3 55 89 e5 83 ec 08 83 ec 0Oc 68 77
<4>Dumping to block device (8,3) on CPU 0

<4>

This example shows use of the ps and trace commands.

>> ps

Address Uid pid PPid Stat Flags SIZE:RSS Command
c05e59a0 0 0 0 0x00 0x00000000 0:0 swapper
£7£a1380 0 1 0 0x01 0x00000100 376:127 init

(first two and last three lines shown only)

e8b95500 0 2016 1416 0x01 0x00000140 1711:544 sshd
e8b941b0 0 2022 2016 0x01 0x00000100 1066:344 bash
efd70c20 0 2072 2022 0x00 0x00000100 1830:1440 lcrash

77 processes found



>> trace e8b941Db0

Linux Kernel Crash Dump (LKCD)

STACK TRACE FOR TASK:

schedule+995
sys_wait4+524 [0xc012368f]
sys_waitpid+34 [0xc01237c0]
syscall call [0xc01042b0]

[0xc0546299]

ebx: ffffffff ecx: bfffe848 edx:
edi: 00000000 ebp: bfffe858 eax:
es: 007b eip: 400dafoOe cs:

0xe8b941b0 (bash)

00000002
00000007
0073

esi: 00000002
ds: 007b
eflags: 00000246

12-9



RedHawk Linux User’s Guide

12-10



13
Pluggable Authentication Modules (PAM)

INtrOdUCHION . . . o e 13-1
PAM MOAUIES . . ..o e e e e e 13-1
S VI OB . ottt e 13-2
Role-Based AccessControl . .. ...t 13-2

EXaMPIES o 13-3
Defining Capabilities. . .. ... 13-3

EXaMPIES o 13-4

Implementation DetailS . . .. ...t 13-5



RedHawk Linux User’s Guide



13
Pluggable Authentication Modules (PAM)

This chapter discusses the PAM facility that provides a secure and appropriate
authentication scheme accomplished through alibrary of functions that an application
may use to request that a user be authenticated.

Introduction

PAM, which stands for Pluggable Authentication Modules, is a way of alowing the
system administrator to set authentication policy without having to recompile
authentication programs. With PAM, you control how the modules are plugged into the
programs by editing a configuration file.

Most users will never need to touch this configuration file. When you use rpm (8) to
install programs that require authentication, they automatically make the changes that are
needed to do normal password authentication. However, you may want to customize your
configuration, in which case you must understand the configuration file.

PAM Modules

There are four types of modules defined by the PAM standard. These are:

auth provides the actual authentication, perhaps asking for and
checking a password, and they set “credentials’ such as
group membership

account checks to make sure that the authentication is alowed (the
account has not expired, the user is allowed to log in at this
time of day, and so on)

password used to set passwords

session used once a user has been authenticated to allow them to use
their account, perhaps mounting the user's home directory
or making their mailbox available

These modules may be stacked, so that multiple modules are used. For instance, rlogin
normally makes use of at least two authentication methods: if rhosts authentication
succeeds, it is sufficient to allow the connection; if it fails, then standard password
authentication is done.

New modules can be added at any time, and PAM-aware applications can then be made to
use them.
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Services

Each program using PAM defines its own “service” name. The Login program defines
the service type login, £tpd defines the service type ftp, and so on. In general, the service
type is the name of the program used to access the service, not (if thereis a difference) the
program used to provide the service.

Role-Based Access Control

13-2

Role-Based Access Control for RedHawk Linux is implemented using PAM. In the Role-
Based Access Control scheme, you set up a series of roles in the
capability.conf (5) file. A roleis defined as a set of valid Linux capabilities. The
current set of all valid Linux capabilities can be found in the /usr/include/
linux/capability.h kernel header file or by using the cap names[] string
array. They are described in greater detail in Appendix C.

Roles can act as building blocks in that once you have defined arole, it can be used as one
of the capabilities of a subsequent role. In this way the newly defined role inherits the
capabilities of the previously defined role. Examples of this feature are given below. See
the capability.conf (5) man page for moreinformation.

Once you have defined a role, it can be assigned to a user or a group in the
capability.conf (5) file. A useris astandard Linux user login name that
corresponds to a valid user with alogin on the current system. A group is a standard
Linux group name that corresponds to avalid group defined on the current system.

Filesin /etc/pam.d correspond to a service that a user can use to log into the system.
These files may be modified to include a pam capability session line (examples of
adding pam capability session linesto service files are given in the “ Examples”
section below). For example: the /etc/pam.d/login fileisagood candidate as it
covers login via telnet. If a user logs into the system using a service that has not been
modified, no specia capability assignment takes place.

NOTE: If capabilities are used, the /etc/pam.d/su file should be modified as a
security precaution to ensure that an invocation such as su -1 nobody daemon will
impart to daemon only the capabilities listed for user nobody, and will not impart any
extra capabilities from the invoking user.

The following options can be specified when supplying apam capability sessionline
toafilein /etc/pam.d:

conf=conf_file specify the location of the configuration file. If this option is not
specified then the default location will be
/etc/security/capability.cont.

debug Log debug information via syslog. The debug information is
logged in the syslog authpriv class. Generally, this log
information is collected inthe /var/log/secure file.
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Examples

The following examples illustrate adding session linesto /etc/pam.d/login.

NOTE: The path to the PAM fileson i386 systemsis /1ib/security.
The path on Opteron systemsis /1ib64/security.

1. Toalowtherolesdefinedinthe /etc/security/capability.conf
file to be assigned to users who login to the system via telnet (1)
append the following lineto /etc/pam.d/login:

session required /lib/security/pam capability.so

2. Toalowtherolesdefinedinthe /ete/security/capability.conf
fileto be assigned to userswho login to the system via ssh (1) append the
following lineto /etc/pam.d/sshd:

session required /lib/security/pam capability.so

3. Toalow rolesdefinedinthe /ete/security/capability.conf
file to be assigned to substituted usersviasu (1) , and to ensure that those
substituted users do not inherit inappropriate capabilities from the invoker
of su (1), append thefollowing lineto /etc/pam.d/su:

session required /lib/security/pam capability.so

4. To have ssh users get their role definitions from a different
capability.conf filethantheonelocated in /etc/security
append the following linesto /etc/pam.d/sshd:

session required /lib/security/pam capability.so \
conf=/root/ssh-capability.conf

Thus, the roles defined in the /root/ssh-capability.conf file will be
applied to userslogging in via ssh.

Defining Capabilities

The capability.conf file provides information about the roles that can be defined
and assigned to users and groups. The file has three types of entries: Roles, Users and
Groups.

Roles A roleis adefined set of valid Linux capabilities. The current set
of all valid Linux capabilities can be found in the
/usr/include/linux/capability.h kernel header file or
by using the cap names [] string array described in the
cap from text (3) man page. The capabilities are also
described in full detail in Appendix C. In addition, the following
capability keywords are pre-defined:
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Users

Groups

all all capabilities (except cap setcap)
cap fs mask allfilesystem-related capabilities
none no capabilities whatsoever

As the name implies, it is expected that different roles will be
defined, based on the duties that various system users and groups
need to perform.

The format of aroleentry inthe capability.conf fileis:
role rolename capability list

Entries in the capability list can reference previously defined
roles. For example, you can define arole called basicin the file
and then add this role as one of your capabilities in the capability
list of a subsequent role. Note that the capability list isa
whitespace or comma separated list of capabilities that will be
turned on in the user's inheritable set.

A user is a standard Linux user login name that corresponds to a
valid user with alogin on the current system. User entries that do
not correspond to valid users on the current system (verified by
getpwnam (3) ) areignored.

The format of auser entry inthe capability.conf fileis:
user username rolename

The specia username ™' can be used to assign a default role for
users that do not match any listed users or have membership in a
listed group:

user * default_rolename

A group is a standard Linux group name that corresponds to a
valid group defined on the current system. Group entries that do
not correspond to valid groups on the current system (verified by
getgrnam(3)) areignored.

The format of agroup entry inthe capability.conf fileis:

group  groupname rolename

1. The following example sets up an administrative role (admin) that is
roughly equivalent to root:

role

admin all

2. Thefollowing example sets up a desktop user role that adds sys_boot and
sys timeto the inheritable capability set:

role

desktopuser cap_sys_boot \
cap sys_time
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3. Thefollowing example sets up a poweruser user role, using the desktop
user role created previously:

role poweruser desktopuser\
cap_sys_ptrace\
cap_sys_nice\
cap net admin

4. Toassignthe desktopuser roleto auser, enter the following in the
USERS section of the capability.conf file

user joe desktopuser

5. Toassignthe poweruser roleto agroup, enter the following in the
GROUPS section of the capability.conf file

group hackers poweruser

Implementation Details

The following items address requirements for full implementation of the PAM
functionality:

* Pam capability requires that the running kernel be modified to inherit
capabilities across the exec () system call. Kernels that have been patched
with the kernel patch shipped with this module can enable capability
inheritance using the INHERIT_CAPS_ACROSS_EXEC configuration option
accessible under General Setup on the Kernel Configuration GUI (refer to
the “Configuring and Building the Kernel” chapter of this guide). All
RedHawk Linux kernels have this option enabled by default.

* In order to use the pam capability feature with ssh, the
/etc/ssh/sshd _config file must have the following option set:

UsePrivilegeSeparation no
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Device Drivers

This chapter addresses issues relating to user-level and kernel-level device drivers under
RedHawk Linux. It includes information about functionality added to RedHawk Linux
that facilitates writing device drivers as well as real-time performance issues. Prior
knowledge of how to write Linux-based device driversis assumed.

Information about RedHawk support for a PCI-to-VME bridge device can be found in
Chapter 15, “PCI-to-VME Support.”

Understanding Device Driver Types

Itis possible to write simple user-level device drivers under RedHawk Linux. A user-level
driver can access 1/O space to read and write device registers, thus initiating a
programmed I/O operation. With the assistance of a skeletal kernel driver, a user-level
driver can also initiate actions upon receipt of an interrupt. This is accomplished by
supporting functions which allow a signal handler in the user-level driver to be attached to
the interrupt routine. Refer to the section “Kernel Skeleton Driver” later in this chapter for
the location of a sample kernel driver template for handling an interrupt and sending a
signal to a user-level process.

Itisnot practical to write a user-level driver which does DMA 1/O operations under Linux.
There are several problems that prohibit DMA operations from user-level; for example,
there is currently no supported method for determining the physical address of a user
space buffer. Kernel-level device drivers should be used for devices that utilize DMA for
1/O operations.

Developing User-level Device Drivers

The sections that follow describe particulars of the RedHawk Linux operating system that
affect writing user-level device drivers under RedHawk Linux.

Accessing PCIl Resources

During the boot process, devices on the PCI bus are automatically configured, have their
interrupts assigned and have their registers mapped into memory regions where the device
registers can be accessed via memory-mapped /O operations. These memory regions are
known as base address registers (BARS). A device can have up to six BARs. The content
of the BARs vary depending upon the device. Consult the device’s manual for this
information.

RedHawk Linux supports a PCI resource file system located in /proc/bus that
simplifies the code needed to map the registers of a PCI device. Thisfile system provides
BAR files representing memory regions that can be mapped into the address space of a
program, providing access to the device without having to know the physical address
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associated with the device. The PCI BAR file system also provides a config-space file
which can be used to read and write to the device's PCI config space. The first 64 bytes of
the config-space file are defined by the PCI specification. The remaining 192 bytes are
device vendor-specific.

Each PCI hardware device has associated with it a Vendor ID and Device ID. These are
fixed values that do not change over time or between systems. Because of the dynamic
configuration of PCI devices at boot time, the domain, bus, slot and function numbers
remain fixed once the system is booted, but may vary between systems depending on the
underlying hardware, even for boards that appear to be plugged into the same PCI bus slot
in each system. Paths within the /proc/bus/pci and BAR file systems are derived
from the domain, bus, sot and function numbers assigned by the kernel, and are affected
by the physical hardware layout of the host system. Changes, such as physically plugging
aboard into a different slot, adding a device to the system or modifications to the system
BIOS can change the bus and/or slot number assigned to a particular device.

The PCI BAR scan interfaces described below offer a method for finding the bar file
associated with a particular device. Without these interfaces, the hardware-dependent
nature of these BAR file paths makes the task of programming user-level device drivers
somewhat inconvenient, because the driver hasto locate the slot address of the appropriate
devicein order to obtain accessto its BAR files.

Using the library interface for the BAR file system and the fixed vendor ID and device ID
values, the other values currently associated with the PCI devices can be obtained. These
include the BAR file directory path for the device as well as information about each BAR
filein that directory. It also returns | Ds for vendor, device, class, subclass, IRQ number (if
assigned), and domain, bus, dot and function numbers related to each device.

PCI BAR Interfaces
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The sections that follow explain the PCI BAR interfaces.

The library scan functions are iterative. If the system has more than one instance of the
desired device type, these library functions must be called multiple times. One function is
provided that returns the count of all matching devices in the system. Other functions will
iteratively return information for devices that match the search criteria. Device
information is returned in the bar context type defined in /usr/include/
pcibar.h. Thisstructureiscreated with acall tobar scan_ open. Multiple scans can
be active concurrently, each having aunique bar context.

The interfaces are briefly described as follows:

bar scan open starts a new scan of PCl devices

bar scan_next obtains the next matching PCI device

bar device count returns the number of matching devices remaining in the
active scan

bar scan rewind restarts a scan

bar scan close closes the active scan and frees associated memory

free pci device frees &l allocated memory associated with alocated device

bar mmap mmap’s the BAR file with proper page alignment

bar munmap munmap’'Sthebar mmap’'d BAR file



bar_scan_open(3)

bar_scan_next(3)
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Note that to use these interfaces, you must link your application with the 1ibeccur rt
library:

gcc [options] file -lccur rt ..

An example illustrating the use of these functions is provided as /usr/share/doc/
ccur/examples/pci barscan.c.

Thisfunction is used to create the initial context for a search of PCI devices. The returned
bar_ context isan opaque pointer type defined in /usr/include/pecibar.h that
designates state data for the iterator interfaces. Its value must be provided to subsequent
callsto bar scan next, bar_device count, bar scan_rewind and
bar scan close.

Synopsis

#include <linux/pci ids.hs>
#include <pcibar.hs>

bar context bar scan open(int vendor_id, int device id) ;
Arguments are defined as follows:

vendor_id a vendor identification value defined in /usr/include/
linux/pci_ids.h. or the special value ANY_VENDOR.
ANY_VENDOR matches all vendor_id values for all devices on the
host system.

device id a device identification value defined in /usr/include/
linux/pci_ids.h. or the special value ANY_DEVICE.
ANY_DEVICE matches all device id values for all devices on the
host system.

Refer to the man page for error conditions.

This function returns a pointer to a struct pci_device object for the next matching
PCI device found.

Synopsis

#include <linux/pci_ ids.h>
#include <pcibar.h>

struct pci_device * bar scan next (bar context cix) ;
The argument is defined as follows:
ctx an activebar context returned by bar scan open.

When no further matching devices are available, this function returns NiL_PCI_DEVICE and
sets errno to zero. Refer to the man page for error conditions.
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bar_device_count(3)

bar_scan_rewind(3)

bar_scan_close(3)
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This function returns the number of unprocessed devices remaining in an active scan.
When called immediately after acall tobar scan_open Or bar scan rewind, this
is the total number of matching devices for the specified vendor_id and device_id. This
valueisreduced by 1 upon each call tobar scan next.

Synopsis

#include <linux/pci ids.h>
#include <pcibar.h>

int bar device count (bar context ctX) ;
The argument is defined as follows:
ctx an activebar context returned by bar scan open.

On success, this function returns a non-negative count of the number of unreported
devices that would be returned by subseguent callsto bar scan_next. Refer to the
man page for error conditions.

This function resets the specified bar context to the state it was in immediately after
theinitial call tobar scan open.

Synopsis

#include <linux/pci ids.h>
#include <pcibar.h>

void bar scan rewind(bar context ciX) ;
The argument is defined as follows:

ctx an active bar context returned by bar scan open. If the value is
NIL_BAR_CONTEXT or does not designate avalid bar context object, this
call has no effect.

This function frees all allocated memory associated with the designated bar context.
The value NIL_BAR_CONTEXT is assigned to the bar context object and may no longer
be used after this call.

Synopsis

#include <linux/pci_ ids.h>
#include <pcibar.h>

void bar scan close(bar context ctX) ;
The argument is defined as follows:

ctx an activebar context returned by bar scan open.



free_pci_device(3)

bar_mmap(3)

bar_munmap(3)
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This function releases all allocated memory associated with the designated struct
pci device object.

Synopsis

#include <linux/pci_ ids.h>
#include <pcibar.h>

void free pci_device (struct pci_device * dev);
The argument is defined as follows:

dev avalid struct pci_device obtained frombar scan next.

This function can be used to map the specified BAR file into memory. It is a wrapper
around mmap (2) that aligns small BAR files at the start of the mmap’ ed BAR data rather
than the beginning of the areathat is mmap’ed. Use bar munmap (3) to unmap files
mapped using this function.

Synopsis

#include <linux/pci_ ids.h>
#include <pcibar.h>

void * bar mmap (char * barfilepath, void * dart, size t length, int
prot, int flags, int fd, off t offsat);

The arguments are defined as follows:
barfilepath the path of the BAR file to be mmap’ed

Refer tommap (2) for adescription of the other parameters.

This function must be used to unmap files that are mapped using bar mmap (3) .

Synopsis

#include <linux/pci ids.hs>
#include <pcibar.hs>

int bar munmap (void * dart, size t length) ;

Refer to munmap (2) for adescription of the parameters.
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Kernel Skeleton Driver

When a device issues interrupts that must be handled by the device driver, it is not
possible to build the device driver completely at user level because Linux has no method
for attaching a user-level routine to an interrupt. It is however possible to build asimple
kernel device driver that handles the device interrupt and issues a signal to the user-level
application that is running a user-level driver. Because signals are delivered
asynchronously to the execution of a program and because signals can be blocked during
critical sections of code — a signal acts much like a user-level interrupt.

The following example of askeletal kernel-level driver shows how to attach asignal to the
occurrence of a device interrupt and the code for the interrupt service routine which will
then trigger the signal. The full code for this skeletal driver can be found on a RedHawk
installed system in the directory /usr/share/doc/ccur/examples/driver. You
can use the sample driver, sample mod, as atemplate for writing a simple kernel-level
driver that handles an interrupt and sends a signal to a user-level process.

Understanding the Sample Driver Functionality
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The sample driver usesreal time clock (rtc) O as the hardware device that will generate the
interrupts. Rtc 0 is one of the real-time clocks on Concurrent’s Real-Time Clock and
Interrupt Module (RCIM). The clock counts down to O at a predefined resolution and then
starts over. Each time the count reaches 0, an interrupt is generated. Some of the setup for
real time clock O is performed in the module's“init” routine where the device registers are
mapped into memory space so that the driver may access those registers. The last section
of code shown for the module’s “init” routine is the code that attaches the interrupt routine
to an interrupt vector.

kkhkhkkhhkhkhhkhkhhkhhhkhkhhkhhhkhhhkdkhhdhkhdhhkhhhhhhdkhhdhhhhdhhdhhdbhhdhhhrdhhdhhdkhrdhhrdrkrhhdk

int sample _mod_init_module (void)

{

// find rcim board (look for RCIM II, RCIM I, and finally RCIM I old rev)
dev = pci_find device (PCI_VENDOR_ID_ CONCURRENT, PCI_DEVICE_ID_RCIM II,dev);
if (dev == NULL) { //try another id
dev = pci_find device (PCI_VENDOR_ID_ CONCURRENT OLD, PCI_DEVICE_ID_RCIM, dev);

if (dev == NULL) { //try another id
dev = pci_ find device (PCI_VENDOR ID CONCURRENT OLD, PCI_DEVICE ID RCIM OLD, dev);

if (dev == NULL) { //no rcim board, just clean up and exit
unregister chrdev(major num, "sample_mod") ;
return -ENODEV;

if ((bd_regs = ioremap_nocache (plx_mem base, plx mem size)) == NULL)
return -ENOMEM;

if ((bd_rcim regs = ioremap_nocache (rcim mem base, rcim mem size)) == NULL)
return -ENOMEM;

sample mod_irg = dev->irgqg;
res = request_irqg(sample mod_irqg, rcim intr, SA_SHIRQ, "sample mod", &rtc_info);
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The complete initialization of the rtc O device is performed in the module’s “open”
method. For this example, the device is automatically set up so that interrupts will be
generated by the device. When the device is opened, interrupts associated with rtc 0 are
enabled, the device is programmed to count from 10000 to O with aresolution of 1
microsecond, and the clock starts counting. It generates an interrupt when the count
reaches 0.
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int rcim rtc_open(struct inode *inode, struct file *filep)

{

u_int32_t val;

if (rtc_info.nopens > 0) {
printk (KERN_ERR “You can only open the device once.\n”);
return -ENXIO;
}
rtc_info.nopens++;
if (!rtc_info.flag)
return -ENXIO;
0, &bd_rcim regs->request);
ALL_INT MASK, &bd_rcim regs->clear);
writel (RCIM_REG_RTCO, &bd rcim regs->arm) ;
writel (RCIM_REG_RTCO, &bd_rcim regs->enable) ;
writel (RTC_TESTVAL, &bd rcim regs->rtcO_timer);//rtc data reg
val = RCIM RTC_IMICRO | RCIM_RTC_START|RCIM_RTC_ REPEAT;
writel(val, &bd_rcim regs->rtcO_control) ;

writel
writel

return O;

}
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The user-level driver must specify which signal should be sent when the kernel-level
driver receives an interrupt. The user-level driver makes an ioctl () call, whichis
handled by the kernel-level driver’sioctl method. When the user-level driver calls this
ioctl () function, it indicates to the kernel-level driver that the user-level process has
already set up a signal handler for the specified signal and the user-level driver is now
ready to receive asignal.

The calling user-space process specifies the signal number it wishes to receive from the
module. The driver remembers the process ID associated with the requested signal number
by using the “current” structure. The “signal/process id” pair is stored in the module’s
rtc_info structure and will later be used by the “notification” mechanism described
bel ow.
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int rcim rtc_ioctl (struct inode *inode, struct file *filep, unsigned int cmd,
unsigned long arg)

{
if (!rtc_info.flag)
return (-ENXIO) ;
switch (cmd)
{
// Attach signal to the specified rtc interrupt
case RCIM ATTACH_SIGNAL:
rtc_info.signal num = (int)arg;
rtc_info.signal_pid = current->tgid;
break;
default:
return (-EINVAL);
}
return (0);
}

R
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The actual notification is implemented in the module’s interrupt handler. When an
interrupt is received from rtc O, this interrupt service routine determines whether to send a
signal to a process that has requested it. If thereis aregistered “ process id/signal number”
pair inthe rtc_info structure, the specified signal is sent to the corresponding process
using thefunctionkill proc ().
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int rcim_intr(int irg, void *dev_id, struct pt_regs *regs)

{

u_int32_t isr;

isr = readl (&bd_rcim_regs->request) ;
writel (0, &bd_rcim regs->request) ;
writel (ALL INT MASK, &bd_rcim regs->clear);

/* Use isr to determine whether the interrupt was generated by rtc 0 only if
“rcim” module is not built into the kernel. If “rcim” is active, its
interrupt handler would have cleared “request” register by the time we
get here. */

// if (isr & RCIM REG RTCO) ({
// Send signal to user process if requested
if (rtc_info.signal num && rtc_info.signal pid &&
(kill_proc(rtc_info.signal pid, rtc_info.signal num, 1) == -ESRCH))

{
}

rtc_info.signal pid = 0;
// }

return IRQ HANDLED;

}
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When the deviceis closed, rtc 0 isshut down. The count valueisreset to 0 and theclock is
stopped. The interrupt/signal attachment is cleared so that no further signal will be sent if
further interrupts are received.

B s

int rcim rtc_close(struct inode *inode,struct file *filep)

{
if (!rtc_info.flag)
return (-ENXIO);
rtc_info.nopens--;
if (rtc_info.nopens == 0) {
writel (~RCIM_RTC_START, &bd rcim regs->rtc0_control) ;
writel (0, &bd_rcim regs->rtcO_timer);
rtc_info.signal num = 0;
rtc_info.signal_pid = 0;
}
return 0;
}

B R s
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The best way to test the sample kernel module is to build the kernel without the RCIM
driver and then load the sample driver. However, this module is designed to work with or
without the RCIM driver aready built into the kernel.

The RCIM kernel module and the sample kernel module share the same interrupt line.
When an interrupt occurs, RCIM’s interrupt handler isinvoked first and the hardware
interrupt register on the RCIM board is cleared. Then the sample modul€’s interrupt
handler isinvoked.

If both modules are loaded, the second handler will find the interrupt register cleared and
if acheck for “interrupt source” is performed, the handler will assume that the interrupt
came from a device different from rtc 0. To overcome this obstacle, the following line in
the sample modul€e's interrupt handler has been commented out when both RCIM and the
sample module are loaded:

// if (isr & RCIM REG RTCO)

The code that follows is a simple user-level program which demonstrates how a user-level
driver would attach a routine such that this routine is called whenever the RCIM skeletal
driver’sinterrupt fires. The routine “interrupt_handler” isthe routine which is called when
the RCIM’s rtc O interrupt fires. This program is terminated by typing Ctrl-C at the
terminal where the program is run. Note that this sample code is also available in
/usr/share/doc/ccur/examples/driver/usersample.

In order to load the sample module and successfully run the user sample program, all
applications that use the RCIM driver should be aborted.

Below istheusersample program.
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#include <stdio.h>
#include <fentl.hs
#include <signal.h>
#include <errno.h>

#include "sample mod.h"
static const char *devname

static int nr_interrupts = 0;
static int quit = 0;

void interrupt_handler (int signum)

{

nr_interrupts++;

"/dev/sample mod";

if ((nr_interrupts % 100) 0) {
printf (".");
fflush (stdout) ;
}
if ((nr_interrupts % 1000) == 0)
printf (" %d interrupts\n", nr_ interrupts);

void ctrl_c_handler (int signum)

{

quit++;
}
int main()
{

int fd;

struct sigaction intr_sig
struct sigaction ctrl_c_sig

{

.sa_handler

{ .sa_handler

sigaction (SIGUSR1, &intr sig, NULL) ;
sigaction (SIGINT, &ctrl_c_sig, NULL);

interrupt handler };
= ctrl_c_handler };

if ((fd = open (devname, O RDWR)) == -1 ) ({
perror ("open");
exit (1) ;

}

if (ioctl (fd, RCIM ATTACH SIGNAL, SIGUSR1) == -1) {
perror ("ioctl");
exit (1) ;

}

printf ("waiting for signals...\n");

while (! quit)
pause () ;

printf ("\nhandled %d interrupts\n", nr_interrupts);

close (fd) ;
exit (0);
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Developing Kernel-level Device Drivers

The sections that follow describe particulars of the RedHawk Linux operating system that
affect writing and testing kernel-level device drivers under RedHawk Linux.

Building Driver Modules

Instructions for building driver modules for use with either a pre-existing kernel supplied
by Concurrent or a custom kernel are provided in Chapter 10, Configuring and Building
theKernel.

Kernel Virtual Address Space

There are some cases when the amount of kernel virtual address space reserved for
dynamic mappings of the kernel support routines vmalloc () and ioremap () ishot
enough to accommodate the requirements of a device. The default value, 128 MB, is
enough for all systems except those with I/O boards that have very large onboard
memories which are to be ioremap’ ed. An example is the VMIC reflective memory board
installed on an iHawk system when it is populated with 128 MB of memory.

When 128 MB of reserved kernel virtual address space is not enough, this value can be
increased viathe VMALLOC_RESERVE tunable, which islocated under General Setup on
the Kernel Configuration GUI.

Real-Time Performance Issues

Interrupt Routines

A kernel-level device driver runsin kernel mode and is an extension of the kernel itself.
Device drivers therefore have the ability to influence the real-time performance of the
system in the same way that any kernel code can affect real-time performance. The
sections that follow provide a high-level overview of some of the issues related to device
drivers and real-time.

It should be noted that while there are many open source device drivers that are available
for Linux, these drivers have a wide range of quality associated with them, especially in
regardsto their suitability for a real-time system.

The duration of an interrupt routine is very important in a real-time system because an
interrupt routine cannot be preempted to execute a high-priority task. Lengthy interrupt
routines directly affect the process dispatch latency of the processes running on the CPU
to which the interrupt is assigned. The term process dispatch latency denotes the time that
elapses from the occurrence of an external event, which is signified by an interrupt, until
the process waiting for that external event executes its first instruction in user mode. For
more information on how interrupts affect process dispatch latency, see the “Real-Time
Performance” chapter.
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If you are using a device driver in a real-time production environment, you should
minimize the amount of work performed at interrupt level. RedHawk Linux supports
several different mechanisms for deferring processing that should not be performed at
interrupt level. These mechanisms alow an interrupt routine to trigger processing that will
be performed in the context of akernel daemon at program level. Because the priority of
these kernel daemonsis configurable, it is possible to run high-priority real-time processes
at apriority level higher than the deferred interrupt processing. This allows areal-time
process to have higher priority than some activity that might normally be run at interrupt
level. Using this mechanism, the execution of real-time tasks is not delayed by any
deferred interrupt activity. See the “Deferred Interrupt Functions (Bottom Halves)”
section for more information about deferring interrupts.

Generally, a device's interrupt routine can interact with the device to perform the
following types of tasks:

* acknowledge the interrupt
* save datareceived from the device for subsequent transfer to a user

* initiate a device operation that was waiting for completion of the previous
operation

A device'sinterrupt routine should not perform the following types of tasks:

* copy datafrom oneinternal buffer to another
¢ alocate or replenish internal buffers for the device

* replenish other resources used by the device

These types of tasks should be performed at program level via one of the deferred
interrupt mechanisms. You can, for example, design a device driver so that buffers for the
device are alocated at program level and maintained on afreelist that is interna to the
driver. When a process performs read or write operations, the driver checks the free list to
determine whether or not the number of buffers available is sufficient for incoming
interrupt traffic. The interrupt routine can thus avoid making calls to kernel buffer
allocation routines, which are very expensive in terms of execution time. Should a device
run out of resources and only notice this at interrupt level, new resources should be
allocated as part of the deferred interrupt routine rather than at interrupt level.

Deferred Interrupt Functions (Bottom Halves)
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Linux supports several methods by which the execution of a function can be deferred.
Instead of invoking the function directly, a“trigger” is set that causes the function to be
invoked at a later time. These mechanisms, called bottom halves, are used by interrupt
routines under Linux in order to defer processing that would otherwise have been done at
interrupt level. By removing this processing from interrupt level, the system can achieve
better interrupt response time as described above.

There are three choices for deferring interrupts: softirgs, tasklets and work queues.
Tasklets are built on softirgs and therefore they are similar in how they operate. Work
gueues operate differently and are built on kernel threads. The decision over which bottom
half to useisimportant. Table 14-1 summarizes the types, which are explained at length in
the sections below.



Softirgs and Tasklets

Work Queues
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Table 14-1 Types of Bottom Halves

Bottom Half Type Context Serialization

Softirg Interrupt None

Tasklet Interrupt Against the same tasklet

Work queues Process None (scheduled as process context)

Two mechanisms for deferring interrupt processing have different requirements in terms
of whether or not the code that is deferred must be reentrant or not. These types of
deferrable functions are softirgs and tasklets. A softirqg must be completely reentrant
because a single instance of a softirq can execute on multiple CPUs at the same time.
Tasklets are implemented as a special type of softirg. The difference is that a given tasklet
function will always be serialized with respect to itself. In other words, no two CPUs will
ever execute the same tasklet code at the sametime. This property allows asimpler coding
style in adevice driver, since the code in a tasklet does not have to be reentrant with
respect to itself.

In standard Linux, softirqs and tasklets are usually executed from interrupt context
immediately after interrupt handlers transition from interrupt to program level.
Occasionally, standard Linux will defer softirq and tasklets to a kernel daemon. Both
methods allow softirgs and tasklets to execute with interrupts enabled; however, because
they are usually executed from interrupt context, softirgs and tasklets cannot sleep.

RedHawk has been enhanced with an option (that is on by default) to guarantee that
softirgs and tasklets are only executed in the context of a kernel daemon. The priority and
scheduling policy of these kernel daemons can be set via kernel configuration parameters.
This allows the system to be configured such that a high-priority real-time task can
preempt the activity of deferred interrupt functions.

Softirgs and tasklets are both run by the ksoftirqgd daemon. Thereis one ksoftirqd
daemon per logical CPU. A softirq or tasklet will run on the CPU that triggered its
execution. Therefore, if a hard interrupt has its affinity set to a specific CPU, the
corresponding softirq or tasklet will also run onthat CPU. The priority of the ksoftirqgd
is determined by the SOFTIRQ_PRI kernel tunable, which islocated under General Setup on
the Kernel Configuration GUI. By default the value of thistunable is set to zero, which
indicates that the ksoftirqgd daemon will run as under the scCHED_FIFO scheduling
policy at a priority of one less than the highest real-time priority. Setting this tunable to a
positive value specifies the real-time priority value that will be assigned to all
ksoftirqgd daemons.

Work queues are another deferred execution mechanism. Unlike softirgs and tasklets,
standard Linux always processes work queues in the process context of kernel daemons
and therefore the code in awork queue is allowed to sleep.

The kernel daemons that process work queues are called worker threads. Worker threads
are always created as a gang of threads, one per CPU, with each thread bound to a single
CPU. Work on the work queue is maintained per CPU and is processed by the worker
thread on that CPU.
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The kernel provides a default work queue that drivers may use. The worker threads that
process the default work queue are called events/cpu, where cpu is the CPU that the
thread is bound to.

Optionally, drivers may create private work queues and worker threads. Thisis
advantageous to the driver if the queued work is processor-intensive or performance
critical. It also lightens the load on the default worker threads and prevents starving the
rest of the work on the default work queue.

Worker threads execute on a CPU when work is placed on the work queue. Therefore, if a
hard interrupt has its affinity set to a specific CPU, and the interrupt handler queues work,
the corresponding worker thread will also run on that CPU. Worker threads are always
created with a nice value of -10 but their priority may be modified with the run (1)

command.

Understanding Priorities

When configuring a system where real-time processes can run at a higher priority than the
deferred interrupt daemons, it is important to understand whether those real-time
processes depend upon the services offered by the daemon. If a high-priority real-time
task is CPU bound at a level higher than a deferred interrupt daemon, it is possible to
starve the daemon so it is hot receiving any CPU execution time. If the real-time process
al so depends upon the deferred interrupt daemon, a deadlock can result.

Multi-threading Issues

RedHawk Linux is built to support multiple CPUs in a single system. This means that all
kernel code and device drivers must be written to protect their data structures from being
modified simultaneously on more than one CPU. The process of multi-threading a device
driver involves protecting accesses to data structures so that all modifications to them are
serialized. In general thisis accomplished in Linux by using spin locks to protect these
kinds of data structure accesses.

Locking a spin lock will cause preemption and/or interrupts to be disabled. In either case,
the worst case process dispatch latency for a process executing on the CPU where these
features are disabled is directly impacted by how long they are disabled. It is therefore
important when writing a device driver to minimize the length of time that spin locks are
held, which will affect the amount of time that preemption and/or interrupts are disabled.
Remember that locking a spin lock will implicitly cause preemption or interrupts to be
disabled (depending upon which spin lock interface is used). For more information about
this topic, see the “Real-Time Performance” chapter.

The Big Kernel Lock (BKL) and ioctl

14-14

The Big Kernel Lock (BKL) isaspinlock in the Linux kernel, which is used when a piece
of kernel source code has not been fine-grain multi-threaded. While much use of the BKL
has been removed by systematically multi-threading the Linux kernel, the BKL is still the
most highly contended and longest held lock in the Linux kernel.

By default, the Linux kernel will lock the BKL before calling the ioctl (2) function
associated with adevice driver. If adevice driver is multi-threaded, then it is not necessary
to lock the BKL before calling ioctl. RedHawk Linux alows a device driver to specify
that the BKL should not be locked before calling ioctl. When a device is used to
support real-time functions or when an application makes calls to a device’'s ioctl
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routine on a shielded CPU, it is very important that the device driver be modified so the
BKL isnot locked. Otherwise, a process could stall spinning on the BKL spin lock for an
extended period of time causing jitter to the programs and interrupts that are assigned to
the same CPU.

The mechanism for specifying that the BKL should not be locked on entry to a device's
ioctl routineisto set the FOPS 10CTL_NOBKL flaginthe file operations structure
in the device driver source code. Below is an example of how the RCIM device sets this

flag:

static struct file operations rcim fops = {
owner: THIS MODULE,
open: rcim master open,
release: rcim master release,
ioctl: rcim master ioctl,
mmap : rcim master mmap,
flags: FOPS IOCTL NOBKL,

¥

After making this change, the device driver must be rebuilt. For a static driver this means
rebuilding the entire kernel. For a dynamically loadable module, only that module must be
rebuilt. See the “ Configuring and Building the Kernel” chapter for more information.

Analyzing Performance

NightTrace, a graphical analysis tool supplied by Concurrent, allows you to graphically
display information about important events in your application and in the kernel, and can
be used for identifying patterns and anomalies in your application’s behavior. The ability
to interactively analyze the code under varying conditions isinvaluable toward fine-tuning
the real-time performance of your device driver.

The process of supplying trace points in user-level code, capturing trace data and
displaying the results is fully described in the NightTrace User’s Guide, publication
number 0890398. User and kernel trace events can be logged and displayed for analysis.

Kernel tracing utilizes pre-defined kernel trace events included in the RedHawk Linux
trace and debug kernels. User-defined events can be logged using the pre-defined custom
trace event or created dynamically. All are displayed by NightTrace for analysis. Refer to
Appendix D for details about kernel trace events.
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PCIl-to-VME Support

This chapter describes RedHawk Linux support for a PCl-to-VMEbus bridge.

A PCI-to-VMEbus adapter can be used to connect the iHawk PCI-based system with a
VMEDbus system. This allows transparent access to all VME memory space and interrupt
levels to control and respond to the VME card as though it were plugged directly into the
iHawk PCI backplane.

RedHawk Linux includes support for the Model 618-3 PCI-to-V M Ebus adapter from SBS
Technologies. Using the adapter, memory is shared between the two systems. Two
methods are utilized: memory mapping and Direct Memory Access (DMA). Memory
mapping supports bi-directional random access bus mastering from either system. This
allows programmed 1/0 access to VMEbus RAM, dual-port memory and VMEbus I/0.
On each system, a bus master can access memory in the other system from awindow inits
own address space. Mapping registers allow PCI devices to access up to 32 MB of
VM Ebus address space and VM Ebus devices to access up to 16 MB of PCI space.

Two DMA techniques are supported: Controller Mode DMA and Slave Mode DMA.
Controller mode DMA provides high-speed data transfers from one system’s memory
directly into the other system’s memory. Data transfers can be initiated in both directions
by either processor at rates up to 35 MB per second and up to 16 MB per transfer.

VMEDbus devices that have their own DMA controllers can use Slave Mode DMA instead
of Controller Mode DMA. This allows a VMEbus DMA device to transfer data directly
into PCI memory at datarates in excess of 15 MB per second.

The Model 618-3 adapter consists of three parts: the PCI adapter card, the VMEbus
adapter card and afiber optic cable.

The PCI adapter card self-configures at boot time. It responds to and generates A32
memory and 1/0 accesses and supports D32, D16 and D8 data widths.

The VMEDbus adapter card is configured via jumpers. The VMEbus adapter card responds
to and generates A32, A24, and A 16 accesses and supports D32, D16, and D8 datawidths.

Software support for the adapter includes the SBS Linux Model 1003 PCI Adapter
Support Software Version 2.2, with modifications for execution and optimization under
RedHawk Linux. The software includes a device driver that can access dual-port and/or
remote memory space from an application, and example programs to help applications
programmers with adapter and system configuration.
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Documentation

This chapter provides the information you will need to configure and use this support
under RedHawk Linux.

For information beyond the scope of this chapter, refer to the following documents that are
included with the RedHawk Linux documentation:

* SBS Technologies Model 618-3, 618-9U & 620-3 Adapters Hardware
Manual (sbs_hardwar e.pdf)

¢ SBS Technologies 946 Solaris, 965 IRIX 6.5, 983 Windows NT/2000, 993
VxWMbrks & 1003 Linux Support Software Manual (sbs_software.pdf)

Installing the Hardware

Unpacking
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The Model 618-3 adapter consists of three parts: the PCI adapter card, the VMEbus
adapter card and afiber optic cable. Instructions for installing these are given bel ow.

Normally, installation and configuration of the hardware is done by Concurrent Computer
Corporation. This information is provided for those cases where a PCI-to-VME bridge is
added to a system in a post-manufacturing environment.

When unpacking the equipment from the shipping container, refer to the packing list and
verify that all items are present. Save the packing material for storing and reshipping the
equipment.

NOTE

If the shipping container is damaged upon receipt, request that the
carrier’s agent be present during unpacking and inspection of the
equipment.

Before attempting to install the cards in your system, read the following:

CAUTION

Avoid touching areas of integrated circuitry as static discharge can
damage circuits.

Concurrent Computer Corporation strongly recommends that you
use an antistatic wrist strap and a conductive foam pad when
installing and removing printed circuit boards.



PCI-to-VME Support

Configuring the Adapter Cards

There are no jumpers to configure on the PCI adapter card.

VME adapter card jumper configuration should take place before the VME adapter card is
installed, or when the current settings of the VM EDbus attributes that are controlled by the
VME adapter card jumpers need to be changed.

Refer to Chapter 10 of the SBS Technologies Hardware Manual for information about
configuring the VMEbus adapter card. The following additional information may prove
useful:

* The System Jumpers must be set appropriately, based on whether this VME
adapter card is used as the system controller in slot 1, or as a non-system
controller in some other VME dlot.

* To make use of the bt_bind() buffer support or the local memory device
support (BT_DEV_LM) that lets devices on the VMEbus access memory on
the iHawk system through VME slave windows, the Remote REM-RAM HI
and LO jumpers must be set up to indicate the VM Ebus base address and
range of the VME slave windows out on the VMEDbus.

The base address should be placed on a 16 MB boundary, and the size of this
area should typically be set to (but not exceed) 16 MB in order to make use
of the total amount of area supported by the SBS hardware; for example, to
set up an A32 address range of 0xC0000000 to 0xC1000000, the jumpers
should be configured to the settings below:

To set an A32 address range, the jumpers at the bottom of the REM-RAM
should be set to:

A32 jumper IN
A24 jumper OUT

To specify a starting address of 0xC0000000, the row of LO address REM-
RAM jumpers should be set to:

31 and 30 jumpers OUT
All other LO jumpers IN (29 through 16)

To specify an ending address of 0xC1000000, the row of HI address REM-
RAM jumpers should be set to:

31, 30 and 24 jumpers OUT
All other HI jumpersIN (29-25, and 23-16)
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Installing the PCI Adapter Card

Use the following procedureto install the PCI adapter in your iHawk system:

1. Ensurethat the iHawk system is powered down.

2. Locate avacant PCI card dlot in the chassis that supports a bus master.

3. Removethe metal plate that covers the cable exit at the rear of the chassis.
4. Insert the PCI adapter card into the connector.

5. Fasten the adapter card in place with the mounting screw.

6

. Replace the cover.

Installing the VMEbus Adapter Card

NOTE

VMEbus backplanes have jumpers to connect the daisy-chained,
bus grant and interrupt acknowledge signals around unused card
locations. Make sure these jumpers are removed from the slot in
which the adapter card will be installed.

1. Ensurethat the VMEbus chassisis powered down.

2. Decide whether the VMEDbus adapter card is the system controller. If the
VMEbus adapter card isthe system controller, it must beinstalled in slot 1.

If the adapter card is not the system controller, locate an unoccupied 6U slot in the
VMEDbus card cage for the adapter.

3. Insert the card into the connector of the selected dot.

Connecting the Adapter Cable

NOTE

Keep the ends of the fiber-optic cable clean. Use alcohol-based
fiber-optic wipes to remove minor contaminants such as dust and
dirt.

Fiber-optic cables are made of glass: therefore, they may break if
crushed or bent in aloop with less than a 2-inch radius.

1. Ensure that the iHawk computer system and the VMEbus chassis are
powered off.

2. Remove the rubber boots on the fiber-optic transceivers as well as the ones
on the fiber-optic cables. Be sure to replace these boots when cables are not
inuse.
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3. Plug one end of the fiber-optic cable into the PCl adapter card's
transceiver.

4. Plug the other end of the fiber-optic cable into the VMEbus adapter card’s
transceiver.

5. Turn power on to both PCI and VMEDbus systems.

6. Ensurethat the READY LEDs on both adapter cards are lit. They must be
on for the adapter to operate.

Installing the Software

The softwareis contained on an optional product CD delivered with RedHawk Linux. It is
installed using the install-sbsvme installation script.

To install the software, perform the following steps:

1. With RedHawk Linux Version 2.1 or later running on the iHawk system,
log in as root and take the system down to single-user mode:

a. Right click on the desktop and select New Terminal.
b. Atthe system prompt, type init 1.

2. Locate the disc labeled “ RedHawk Linux PCI-to-VME Bridge
Software Library” and insert it into the CD-ROM drive.

3. To mount the cdrom device, execute the following command:
mount /mnt/cdrom

4. Toinstal, execute the following commands:

cd /mnt/cdrom
./install-sbsvme

Follow the on-screen instructions until the installation script completes.
5. When the installation completes, execute the following commands:

cd /
umount /mnt/cdrom
eject

6. Remove the disc from the CD-ROM drive and store. Exit single-user mode
(Ctrl-D).
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Configuration

The btp Module

The sections below discuss configuration of the module under RedHawk Linux and other
attributes that can be established at system initialization.

The pre-defined RedHawk kernels have the SBS Technologies Model 618-3 PCI-to-
VMEbus bridge configured as amodule by default. This can be disabled if desired through
the sBsVME option under SBS VMEbus-to-PCIl Support onthe Kernel Configuration
GUI. The moduleiscalled “btp.”

Device Files and Module Parameter Specifications
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The /dev/btp* devicefiles are created at initidlization via /etc/init.d/sbsvme.
The attributes for those files are defined in /etc/sysconfig/sbsvme. In addition, the
following module parameter specifications can be made in this file. The default is no

parameters.

btp major=num

icbr g size=Sze

lm size=szel, sze2, ..

trace=flag bits

Specifies the major device number (num). By default, it is O (zero)
which allows the kernel to make the selection. If you supply a
nonzero device number, it must not already be in use. The
/proc/devices file can be examined to determine which
devices are currently in use.

Specifies the number of ICBR entries (size) to be allocated for the
interrupt queue. Once set, this value cannot be changed without
unloading and reloading the btp driver. The default valueis 1 KB
of interrupt queue space.

Specifies an array of local memory (BT_DEV_LM) sizes in bytes
with one for each SBS PCI-to-VME controller (unit) present in
the system. If this value is set to O (zero), local memory is
disabled for that specific unit only. The default value is 64 KB of
local memory and the maximum value is 4 MB. Refer to the
“Local Memory” section of this chapter for more information.

Specifies the device driver tracing level. This is used to control
which trace messages the btp driver displays. The possible bits to
use are the BT_TRC_xxx values located in /usr/include/
btp/btngpci.h. Because tracing has an impact on
performance, this feature should be used only for debugging btp
driver problems. The default value is 0 (zero) for no trace

messages.

The following are examples of btp module parameter specifications:

BTP_MOD_PARAMS='bt major=200 trace=0xff Im size=0’'
BTP_MOD_PARAMS='icbr g size=0x1000 lm size=0x8000,0x4000’
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VMEbus Mappings

Support for automatically creating and removing PCI-to-VMEbus mappingsisincluded in
the /ete/init.d/sbsvme initialization script. When mappings are defined in
/etc/sysconfig/sbsvme-mappings, they are created during “/etc/init.d/sbsvme
start” processing and removed during the “stop” processing.

The /etc/sysconfig/sbsvme-mappings file contains help information and
commented-out templates for creating VM Ebus mappings. The template examples can be
used to create customized VMEbus mappings, if desired. The mappings are created by
writing values to the /proc/driver/btp/unit/vme-mappings file, whichis
explained as comments within the sbsvme -mappings file and in the section “The /proc
File System Interface” later in this chapter.

By making use of the sbsvme -mappings file to create PCl-to-V M Ebus mappings
during system initialization, you may place additional linesin the /fetc/rc.d/
rc.local script toinvoke shmeconfig (1) to create globally-visible shared memory
areas that are bound to VMEbus space. A sample script is provided that illustrates this.
Refer to the “Example Applications’ section for details.

User Interface

Some modifications to the standard support software have been made for RedHawk
Linux. In addition to installation modifications, the following have been added:

e Support for binding multiple buffers of various sizes. In a system with
multiple user-level device drivers, this capability allows each driver to
allocate its own bind buffer instead of having to share a single bind buffer
between multiple devices. This capability also means that by allocating
multiple large bind buffers, the total 16 MB area of hardware-supported
VMEDbus slave window space may be utilized. See the “Bind Buffer
Implementation” section for more information. Example programs have
been added that demonstrate how to allocate and bind multiple buffers to
VMEDbus space (see the “ Example Applications’ section).

* Support for creating and removing VMEbus space mappings that are not
associated with a specific process, and obtaining the starting PCI bus address
location of that mapping to allow shared memory binding. This can be
accomplished in one of two ways:

- using the bt_hw_map vme/bt_hw_unmap_vme library functions
- writing to the /proc/driver/btp file system

See the “Mapping and Binding to VMEbus Space” section for more details.
Example programs demonstrate how to create, display and remove VMEbus
mappings using both methods (see the “ Example Applications’ section).
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API Functions
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Table 15-1 liststhe API functionsincluded in the 1ibbtp library. The functionsthat have
been modified or added to RedHawk Linux are noted and described in the sections that
follow. The remaining functions are described in the SBS Technologies Software Manual

included with the RedHawk Linux documentation.

Table 15-1 PCI-to-VME Library Functions

Function Description

bt_str2dev Convert from string to logical device.

bt_gen name Generate the device name.

bp_open Open alogical device for access.

bt close Closethelogical device.

bt _chkerr Check for errors on a unit.

bt clrerr Clear errors on a unit.

bt_perror Print error message to stderr.

bt_strerror Create a string error message.

bt_init Initialize a unit.

bt read Read data from alogical device.

bt write Write datato alogical device.

bt get info Get device configuration settings. See Note 1 below.

bt set _info Set device configuration settings. See Note 1 below.

bt_icbr_instal Install aninterrupt call back routine.

bt_icbr_remove Remove an interrupt call back routine.

bt lock Lock aunit.

bt_unlock Unlock a previously locked unit.

bt_mmap Create a memory mapped pointer into alogical device.

bt_unmmap Unmap a memory mapped location.

bt_dev2str Convert from alogical device type to a string.

bt_ctrl Call directly into the driver 1/O control function.

bt_bind Bind application supplied buffers. See Note 1 below.

bt_unbind Unbind bound buffers. See Note 1 below.

bt_reg2str Convert register to string.

bt _cas Compare and swap atomic transactions.

(continued on next page)

Notes:

1 Multiple buffers of various sizes are supported under RedHawk through these
functions; see the “Bind Buffer Implementation “section.

2 PCl-to-VME mapping/binding support is unique to RedHawk; see the
“Mapping and Binding to VM Ebus Space’ section.
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Table 15-1 PCI-to-VME Library Functions (Continued)

Function Description

bt_tas Test and set atomic transaction.

bt get io Read an adapter CSR register.

bt put_io Write an adapter CSR register.

bt or io One shot aregister.

bt reset Remotely reset the VMEDbus.

bt send irq Send an interrupt to the remote VMEbus.

bt_status Return device status.

bt hw_map_vme Create a PCI-to-V M Ebus mapping. See Note 2 below.

bt_hw_unmap_vme Remove a PCl-to-VMEbus mapping. See Note 2 below.

Notes:

1 Multiple buffers of various sizes are supported under RedHawk through these
functions; see the “Bind Buffer Implementation “ section.

2 PCIl-to-VME mapping/binding support is unique to RedHawk; see the
“Mapping and Binding to VM Ebus Space’ section.

Bind Buffer Implementation

The RedHawk sbsvme bind buffer support allows for multiple, different sized kernel bind
buffersto be allocated, bt_mmap()ed and bt_bound() to VMEbus space at the same time.
This section provides information about this bind buffer support, including how this
support differs from the documentation on bind buffers in the SBS Technol ogies Software
Manual.

Note that the only user interface difference between the SBS documentation and the
RedHawk bind buffer implementation is in the use of the ‘value’ parameter on the
bt_set info() BT_INFO_KFREE_BUF call, which is discussed below. All other user interfaces
are the same as shown in the SBS Technol ogies Software Manual.

bt_get_info BT_INFO_KMALLOC_BUF

Synopsis

bt error t bt get info(bt desc t btd, BT INFO KMALLOC BUF,
bt devdata t *value p)

Multiple bt_get_info() BT_INFO_KMALLOC_BUF command calls can be made to allocate
multiple kernel buffers, where each returned buffer address, which is stored at the value_p
parameter location, may then be used on subsequent bt_mmap() and bt_bind() callsin
order to mmap and bind this buffer to alocation on the VMEbus.

BT_INFO_KMALLOC_BUF calls allocate a kernel bind buffer with a size equal to the last
value set on the last successful bt_set info() BT_INFO_KMALLOC_SIz call. (If no such calls
have been made when the BT_INFO_KMALLOC_BUF call is made, then the default size of 64
KB isused.)
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Up to BT_KMALLOC_NBUFS (16) kernel buffers can be allocated at the same time with the
BT_INFO_KMALLOC_BUF command. If there are already 16 bind buffers allocated, this
BT_INFO_KMALLOC_BUF call fails and returns an error value of BT_EINVAL.

Notethat if abt_set_info() BT_INFO_KMALLOC_SIZ call isused to set the bind buffer sizeto
zero, al subsequent BT_INFO_KMALLOC_BUF calls return with an error value of BT_EINVAL
until a new bind buffer size is set to a non-zero value via a bt_set_info()
BT_INFO_KMALLOC_Siz call.

If the kernel is unable to allocate enough space for a new kernel bind buffer, this
BT_INFO_KMALLOC_BUF call fails and returns an error value of BT_EINVAL.

bt_set_info BT_INFO_KMALLOC_SIZ

Synopsis

bt error t bt set info(bt desc t btd, BT INFO KMALLOC SIZ,
bt devdata t value)

When the bt_set_info() BT_INFO_KMALLOC_SIz command is used to set a new bind buffer
size, the command only affects future bt_get_info() BT_INFO_KMALLOC_BUF command
calls. Any kernel bind buffers that have already been allocated with different bind buffer
sizes are NOT affected by the new BT_INFO_KMALLOC_SIZ call.

In this way, different sized kernel bind buffers can be allocated by using a different
BT_INFO_KMALLOC_SIZ 'value' parameter after making one or more bt_get_info()
BT_INFO_KMALLOC_BUF calls.

It is encouraged, but not required, to use bind buffer sizes for the 'value' parameter that
are a power of 2. Since the kernel bind buffer allocation is rounded up to a power of 2,
specifying and using a power of 2 'value' parameter value eliminates unused sections of
the allocated kernel bind buffers. Note that the initial default value for the kernel bind
buffer sizeis 64 KB.

Typically, the maximum size kernel bind buffer that can be successfully allocated on a
subsequent bt_get_info() BT_INFO_KMALLOC_BUF call is4 MB. However, depending upon
the amount of physical memory on the system and the other uses of system memory, it
may not always be possible to successfully allocate a4 MB kernel bind buffer. In this
case, multiples of smaller sized bind buffers can be allocated, or alternatively, 4 MB
kernel bind buffers can be allocated before other uses of system memory use up the
MEemory resources.

bt_set_info BT_INFO_KFREE_BUF
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Synopsis

bt error t bt set info(bt desc t btd, BT INFO KFREE BUF,
bt devdata t value)

The interface for the bt_set_info() BT_INFO_KFREE_BUF command is slightly different
under RedHawk than what is documented in the SBS Technol ogies Software Manual.
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Specifically, the 'value' parameter is not used in the SBS implementation but the
RedHawk implementation uses this parameter in the following ways:

When the ’value' parameter is zero:

This call unbinds and frees all kernel bind buffers that are not currently
bt_mmap()ed from user space. If at least one bind buffer is unbound and freed, a
successful status (BT_SUCCESS) is returned.

If no bind buffers are found that can be unbound and freed, this call fails and
BT_EINVAL isreturned to the caler.

When the 'value’ parameter is not equal to zero:

This call isfor unbinding and freeing up just one specific kernel bind buffer. In this
case, the caller’s 'value' parameter should be equal to the kernel buffer address that
was returned at the 'value_p’ parameter location on the previous bt_get_info()
BT_INFO_KMALLOC_BUF call.

If the buffer address specified in the ’value' parameter on this call does not corre-
spond to a valid kernel bind buffer, this call fails and returns an error value of
BT_EINVAL.

If the’value’ parameter on this call corresponds to a valid kernel bind buffer, but
that buffer is currently bt_mmap()ed from user space, this call fails and a value of
BT_EFAIL isreturned. In this case, the buffer must first be bt_unmmap()ed before this
call can succeed.

Additional Bind Buffer Information

The following sections describe additional areas where bind buffer support is affected
under RedHawk.

The Bigphysarea Patch

The bigphysarea patch discussed in the SBS Technologies Software Manual is not
supported or needed in the RedHawk sbsvme btp device driver. By using multiple large
bind buffers, it is possible to support the full 16MB of VMEbus slave window space for
accessing iHawk memory from the VMEDbus.

Unloading the btp Module

The sbsvme 'btp’ kernel module can not be unloaded while there are any kernel bind
buffers currently bt_mmap()ed in a process’ address space. Processes must first remove
their mappings to kernel bind buffers with bt_unmmap() call(s) before the kernel driver
module is unloaded.

When there are no bind buffers currently bt_mmap()ed from user space, the btp kernel
module can be unloaded with a “/etc/init.d/sbsvme stop” command, and any kernel bind
buffers currently allocated are implicitly unbound (if currently bound) from the hardware
VMEbus slave window area and freed up for other future kernel memory allocations.
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bt_bind rem_addr_p Parameter

Local Memory
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The 'rem_addr_p’ parameter on bt_bind() calls specifies an offset within the remote
VM Ebus slave window where the caller wishes to bind akernel bind buffer. Note that this
value is an offset, and not an absolute VM Ebus physical address. This offset value is from
the base VMEbus address defined by the REM-RAM LO jumper setting located on the
SBS VME adapter card.

The user can either specify an actual 'rem_addr_p’ offset value, or let the btp driver find
an appropriate bind address location by using the BT_BIND_NO_CARE value for the
‘rem_addr_p’ parameter. When this value is used, upon successful return from the
bt_bind() call the’rem_addr_p’ memory location contains the offset value where the
kernel btp driver bound the bind buffer.

As an example, if the REM-RAM LO jumper settings are set to a value of 0xC0000000
and the offset value is 0x10000, the actual bind address where this buffer can be accessed
from the VM Ebus would be 0xC0010000.

In addition to the kernel bind buffer support, the btp driver also supports the concept of
local memory. This feature is made available through use of the BT_DEV_LM device type,
instead of the BT_DEV_A32, BT_DEV_A24, and other VM Ebus device types typically used
for the bind buffer feature.

The local memory buffer consists of local iHawk memory that is allocated and bound to
the VMEDbus slave window area when the btp driver is loaded. This memory allocation
and binding remains in effect as long as the btp driver is loaded. If the btp driver is
unloaded with a “/etc/init.d/sbsvme stop” command, this local memory buffer is unbound
from VMEbus space and freed up for other kernel uses.

The local memory buffer is always bound to the bottom area of the VM Ebus dave window
as defined by the REM-RAM LO jumper settings on the VME adapter card. For example,
if the local memory size is 64 KB, and the REM-RAM LO jumper settings are set to a
value of 0xC0000000, the local memory buffer is bound to the VMEbus at physical
VM Ebus addresses 0xC0000000 through OxCOO00FFF.

Note that since the local memory buffer always occupies the bottom area of the VMEbus
remote slave window, the kernel bind buffers may not be bound to this area whenever
local memory support is enabled. By default, the local memory support is enabled with a
local memory buffer size of 64 KB, which leaves 16 MB - 64 KB of VMEbus slave
window space for bind buffers (assuming that the REM-RAM LO jumper settings are set
to arange that covers 16 MB).

The size of the local memory buffer can be increased by modifying the 'Im_size’
parameter in the /fetc/sysconfig/sbsvme configuration file (see the
“Configuration” section earlier in this chapter. Note that the maximum supported
'Im_size' valueis 4 MB. If alarger value is specified, the btp driver’s buffer allocation
does not succeed, and the local memory feature is disabled at btp driver load time.

The local memory support can be disabled by setting the 'Im_size' btp module parameter
to zero. When set to zero, the btp driver does not allocate alocal memory buffer, and the
entire VMEbus slave window areais free for kernel bind buffer use.



PCI-to-VME Support

The local memory support is very similar to the bind buffer support:

¢ Both local memory and bind buffers are accessible from the VMEbus
through the slave window area.

¢ Both the local memory and bind buffer buffer areas can be accessed by
specifying the appropriate device type when using the bt_read(), bt_write()
and bt_mmap() functions.

The main differences between the local memory and bind buffer support are:

* There may be only one local memory buffer area. This buffer is set up at btp
driver load time and remains allocated and bound until the btp driver is
unloaded.

Contrastingly, multiple bind buffers of different sizes can be dynamically
alocated and bound, and dynamically unbound and freed.

* Thelocal memory buffer aways occupies the bottom of the VMEbus slave
window area.

Contrastingly, for bind buffers the user can either specify the location/offset
where each bind buffer is to be bound to VMEDbus space, or let the kernel
dynamically find the next free location/offset to use.

Mapping and Binding to VMEbus Space

RedHawk provides a method of creating VM Ebus space mappings that are not associated
with a specific process and remain intact after the process that created the mapping exits.
These mappings can be created and removed independently, either through the
bt hw_map vme and bt_hw_unmap_vme library functions or by writing to a /proc file
system interface.

The unique PCI bus starting address that corresponds to an active VM Ebus space area
mapping can be obtained and used with shmbind (2) or shmconfig (1) to bind this
segment to aregion of 1/0 space.

Thisfunctionality is described in the sections that follow.

bt hw_map_vme
This function creates a new PCI-to-V M Ebus mapping.

Synopsis

bt error t bt hw map vme (bt desc_t btd, void **phys addr p,
bt devaddr t vme addr, size t map len, bt swap t swapping)

Arguments

btd the device descriptor that was returned from a successful
bt_open() function call.

phys addr p the user space location where the local PCI bus starting/base

address for this mapping is returned

15-13



RedHawk Linux User’s Guide

vme _addr the starting/base target VMEbus physical address. This address
must be aligned on a4 KB boundary.

map_len the size of hardware mapping to be created. This value is rounded
up to amultiple of 4 KB.

swapping the byte swapping method to use for hardware mapping. The
BT_SWAP_xxx defines included in the /usr/include/btp/
btngpci.h header file can be used.

Return Values

When successful, a value of BT_SUCCESS is returned. The PCI bus address returned at the
phys addr p location can be used with shmbind (2) or shmconfig (1) to createa
shared memory areathat may be used to access this range of remote VM Ebus addresses.

When unsuccessful, an appropriate bt _error_t vaueisreturned indicating the reason
for thefailure:

BT_EDESC Aninvalid btd descriptor was specified. The descriptor must be a
descriptor returned from a bt_open() call of a BT_DEV_A32,
BT_DEV_A24 Or BT_DEV_A16 device type.

BT_EINVAL An invaid vme addr, map len, phys addr p or
swapping parameter was specified.

BT_ENXIO The shsvme hardware is not online or not connected properly.

BT_ENOMEM The required number of sbhsvme hardware mapping registers could
not be allocated.

BT_ENOMEM The memory for the kernel data structures that are used for
tracking this mapping could not be allocated.

bt hw_unmap_vme
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This function removes a PCl-to-VMEbus mapping previously created with the
bt _hw_map_vme function or by writing to the /proc/driver/btp/unit/vme-
mappings file.

Synopsis

bt error t bt hw unmap vme (bt desc t btd, void *phys addr)

Parameters

btd the device descriptor that was returned from a successful
bt_open() function call.

phys_addr the PCI bus starting address for the VMEbus mapping to be

removed
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Return Values
When successful, avalue of BT _SUCCESS is returned.

When unsuccessful, an appropriate bt _error_t vaueisreturned indicating the reason
for thefailure:

BT_EDESC Aninvalid btd descriptor was specified. The descriptor must be a
descriptor that was returned from a bt_open() call of a
BT_DEV_A32, BT_DEV_A24 Or BT_DEV_A16 device type.

BT_ENOT_FOUND The mapping specified by the phys addr parameter does not
exist.

The /proc File System Interface

When the shsvme btp kernel module is loaded, the following /proc file(s) are created:
/proc/driver/btp/unit/vme-mappings

where unit is the unit number of the shsvme PCI bridge card. The first card is unit number
0. On systems with multiple bridges, the second card is unit number 1, etc.

Existing PCI-to-VMEbus mappings can be viewed by reading the file. Mappings can be
created and removed by writing to the file. These techniques are described bel ow.

Displaying VMEbus Mappings

Reading the vme -mappings file using cat (1) displays all currently established
VM Ebus mappings. The following output shows two PCI-to-V MEbus mappings:

$ cat /proc/driver/btp/0/vme-mappings
pci=0x£8019000 vme=0x00008000 size=0x0001000 space=Al6 admod=0x2d swap=5
pci=0x£8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

pci= indicates the local PCI bus address where the mapping begins
vme= indicates the starting VM Ebus address
size= indicates the size/length of the mapping

space= indicatesthe VMEbus address space type for the mapping

admod= indicatesthe VMEbus address modifier described by the BT_AMOD_xxx defines
in /usr/include/btp/btdef.h.

swap= indicates the bit swapping method described by the BT_SWAP xxx defines in
/usr/include/btp/btngpci.h.

Creating VMEbus Mappings

Mappings to VMEbus space can be created by writing to the vime -mappings file. Note
that you must have cAP_SYs ADMIN privileges to write to this file. To create a mapping,
the following three parameters must be specified in the order given here:

vme= specifies the starting, page-aligned VMEbus address to be mapped (e.g.,
Oxfffff000).
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size= specifies the size of the mapping, which should be a multiple of a page (e.g.,
0x1000). Note that the sbsvme hardware is limited to mapping atotal of
32 MB of VMEDbus space.

space=  specifiesthe VMEbus address space type for the mapping: A32, A24 or A16.

The following optional parameters may also be supplied, in any order, following the
required parameters listed above:

admod=  specifies the VM Ebus address modifier described by the BT_AMOD_xxx defines
in /usr/include/btp/btdef.h. If not specified, the following default
values are used:

BT_AMOD_32 oxod
BT_AMOD_24 0x3d
BT_AMOD_16 ox2d

swap= specifies the bit swapping method described by the BT_swAP_xxx defines in
/usr/include/btp/btngpci.h. If not specified, the default
BT_SWAP DEFAULT valueis used.

The following example shows creating two V M Ebus mappings by writing to the vme -
mappings file.

$ echo “vme=0xel000000 size=0x10000 space=A32” > /proc/driver/btp/0/vme-mappings
$ echo “vme=0xc0000000 size=0x1000 space=A32 swap=7 admod=0x9” > /proc/driver/btp/0/vme-mappings

Note that when the sbsvme btp kernel driver is unloaded with “/etc/init.d/sbsvme stop”
(see “VMEbus Mappings’), al current VM Ebus mappings are removed before the driver
is unloaded. If mappings exist and “modprobe -r btp” is used to unload the driver, the
unload will fail until al VMEbus mappings are removed.

Removing VMEbus Mappings
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A mapping to VMEbus space can be removed by writing the local PCI bus location of the
mapping to the vime -mappings file. Note that you must have cAP_Sys ADMIN privileges
to write to this file. The PCI bus location is returned by bt_hw_map_vme() and by
cat’ing the vime -mappings file. For example:

$ cat /proc/driver/btp/0/vme-mappings
pci=0x£8019000 vme=0x00008000 size=0x0001000 space=Al6 admod=0x2d swap=5
pci=0x£8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

$ echo “pci=0x£f8019000” > /proc/driver/btp/0/vme-mappings

$ cat /proc/driver/btp/0/vme-mappings
pci=0x£8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0
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Example Applications

Example programs are supplied that demonstrate features of the shsvme btp device driver
and facilitate its use. They can be found in /usr/share/doc/ccur/examples/
sbsvme. The programs are useful toolsfor:

¢ debugging

* uploading and downloading binary data

* receiving and counting programmed interrupts

* testing hardware

¢ creating VMEbus mappings and bindings to shared memory areas

Table 15-2 lists the example programs. An asterisk (*) indicates the program was added to
RedHawk Linux and is described in the following sections. Other programs are described
in the SBS Technologies Software Manual.

Table 15-2 PCI-to-VME Example Programs

Name Description Functions Used
bt bind Bindsalocal buffer to the remote VMEbus, waits for user input, | bt_bind()
and then prints the first 256 bytes of the bound buffer. bt_unbind()
bt _bind _mult * | Shows how to bind multiple local buffersto the remote bt_bind()
VMEbus. Optionally writes values to the local buffers before bt_unbind()
waiting for user input. After user input occurs, it prints out the
first 16 bytes of each page of each of the local buffers.
bt bind multsz  * | Shows how to create multiple bind buffers with different sizes. | bt_bind()
bt_unbind()
bt cat Similar to the ‘cat' program. Allows reading from the remote bt _read()
VMEbus to stdout, or writing data to the remote VMEbus from | bt_write()
stdin.
bt datachk Reads and writes from a device using a specific pattern and then | bt_read()
verifiesthat no data or status errors occurred. bt_write()
bt_dumpmem Reads and prints to stdout 256 bytes of remote VMEbus data. | bt_mmap()
bt getinfo A script that gets al the driver parameters and displays their n/a
values to stdout.
bt_hwmap * | Creates a VM Ebus mapping. bt_hw_map vme()
bt_hwunmap * | Removes a VM Ebus mapping. bt_hw_unmap_vme()
bt _icbr Registers for and receives interrupts for a given interrupt type. | bt_icbr_install()
bt _icbr_remove()
bt info Gets or sets driver parameters. bt_get info()
bt set info()
bt readmem Reads and prints to stdout 256 bytes of remote VM Ebus data. bt read()
bt reset Resets the remote VMEDus. bt reset()

(continued on next page)
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Table 15-2 PCI-to-VME Example Programs (Continued)

Name Description Functions Used
bt revs Outputs the software driver version and hardware firmware bt_open()
version information to stdout.
bt sendi Sends an interrupt to the remote bus. bt send irq()
readdma * | Same as readmem, except this program reads larger amounts of | bt_read()

data, which resultsin the DMA hardware being used in the
kernel driver instead of cpu copying the data.

shmat * | Takes ashared memory key parameter to attach and read from a | shmconfig(1)
shared memory area. Used by the shmconfig-script program. shmat(2)
shmbind * | Creates and attaches to a shared memory areathat is mapped to | shmget(2)
a PCI-to-VMEbus mapping and reads or writesto it. shmbind(2)
shmat(2)

shmconfig-script  * | A script that creates a PCl-to-VMEbus mapping viathe /proc | shmconfig(1)
file system and creates a shared memory areathat is bound to
the VMEDbus area.

vme-mappings * | A script that shows how to create, display and remove PCI-to- | n/a
VMEbus mappings viathe /proc file system.

writemem * | Writes out 256 bytes of datato the remote VMEDus, readsthe | bt_read()
256 bytes of data back from the remote VM Ebus and then bt_write()
outputs this data to stdout.

writedma * | Same as writemem, except this program writes larger amounts | bt_write()

of data, which resultsin the DMA hardware being used in the
kernel driver instead of cpu copying the data. This example only
writes the data to the remote VMEDbus; it does not read the data
back from the remote VMEbus.

bt _bind_mult

The bt_bind_mult example application uses the bt_bind() function to bind multiple
equally-sized buffersto the remote bus. It waits for user input, then prints the first 4 words
of each page of each bound buffer. It also optionally writes data to buffer before waiting.

Usage: bt_bind_mult -[natulws]

OPTION FUNCTION
-n <nbufs> Number of buffers to allocate and bind. Default is 2.

-a<vmeaddr> | VME address to bind buffer. Defaultsto BT_BIND_NO_CARE.

-t <logdev> Logical device. (BT_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT, €fC.)
Default isto BT_DEV_DEFAULT.

-u <unit> Unit number to open. Default is unit O.

-I <len> Length of the buffer to bind. Default is one page.

-w <value> Initially write this value to the first 4 words of each page in the buffer.

-s<swaphits> | Sets the swap bits value for the call to bt_bind(). Note that the symbolic
names are not recognized.
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bt _hwunmap
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The bt_bind_multsz example application uses the bt_bind() function to bind multiple
buffers of various sizes to the remote bus. It waits for user input, then prints the first 4
words of each page of each bound buffer. It also optionally writes data to buffer before

waiting.

Usage: bt_bind _multsz -[atuws]

OPTION FUNCTION

-a<vmeaddr> | VME address to bind buffer. Defaultsto BT_BIND_NO_CARE.

-t <logdev> Logica device. (BT_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT, €fcC.)
Default isto BT_DEV_DEFAULT.

-u <unit> Unit number to open. Default is unit O.

-w <value> Initially write this value to the first 4 words of each page in the buffer.

-s<swaphits> | Sets the swap bits value for the call to bt_bind(). Note that the symbolic

names are not recognized.

The bt_hwmap example application uses the bt_hw_map_vme function to create a
hardware mapping to an area of VMEbus space.

Usage: bt_hwmap -g[ltus]

OPTION FUNCTION

-a<addr> VM Ebus physical address. This argument is required.

-l <len> Length of VMEbus area to map onto the PCI bus. Default is one page
(0x1000).

-t <logdev> |Logical deviceto access. (BT_DEV_A32, BT_DEV_A24, BT_DEV_A16,
BT_DEV_IO, BT_DEV_RR). Default isto BT_DEV_A32.

-u <unit> Unit number to open. Default is unit O.

-s<swaphits> | Setsthe swap bits value for the call to bt_bind(). Note that the symbolic

names are not recognized. Default isBT_SWAP_DEFAULT.

The bt_hwmap example application uses the bt_hw_unmap_vme function to remove a
hardware mapping from an area of VMEbus space.

Usage: bt_hwunmap -p[tu]

OPTION FUNCTION

-p <pciaddr> |Local PCI bus physical address of the mapping to be removed. This
argument is required.

-t <logdev> |Logical device. (BT_DEV_A32, BT_DEV_A24, BT_DEV_A16, BT_DEV_IO,
BT_DEV_RR). Default isto BT_DEV_A32.

-u <unit> Unit number to open. Default is unit O.
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readdma

shmat

shmbind
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This example program is the same as bt_readmem, except it reads larger amounts of data,
which resultsin the DMA hardware being used in the kernel driver instead of cpu copying
the data.

Usage: readdma -[atul o]

OPTION FUNCTION
-a<addr> Address at which to start data transfer. Default = 0x00000000.
-t<logdev> |Logical deviceto access. Default isto BT_DEV_A32.

-u <unit> Unit number to open. Default is unit O.

-| <length> Bytes to read. Round down to pagesize. Default is 0x1000.

-o<outlen> | Number of bytes output at the start of each page boundary. Default is 16
bytes. This value must be <= 409.

This example program is invoked by the shmconfig-script script. It takes the shared
memory 'key' value and attaches to and reads from the shared memory area that is bound
to VMEDbus space.

Usage: shmat -k shmkey -s size [-o0 outlen]

OPTION FUNCTION

-k <shmkey> Shared memory key value, in decimal, or in hex with aleading '0x' or
'0X".

-s<size> Sizein bytes of the shared memory area.

-0 <outlen> Number of bytes at the start of each shared memory page to output to
stdout, in hex. Default is 32 bytes.

This example program uses shmget (2), shmbind (2) and shmat (2) to attach a
shared memory area to a PCl-to-V M Ebus mapping. You can read or write to the VMEbus
space using the shared memory attached area. The PCI-to-VME hardware mapping needs
to already be created.

Usage: shmbind -p pci_addr -ssize [-r | -w value] [-o len]

OPTION FUNCTION

-p <pci_addr> Local PCI bus address where VME mapping is located, in hex.

-s<size> Sizein bytes of the shared memory areato create, in hex.

-r Read from the shared memory area. (Default.)

-w <value> Write to the shared memory area, using the specified value, in hex.

-0 <len> Number of bytes at the start of each shared memory page to output to
stdout, in hex. Default is 32 bytes.




shmconfig-script

vme-mappings

writemem

writedma
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Thisis an example script of how to use shmconfig (1) to create a shared memory area
that is bound to a specific VMEbus area with a PCI-to-VMEbus mapping. This script
invokes the shmat example program after the shared memory areais created.

Thisis an example script that shows how to create, examine and remove PCl-to-VMEbus
mappings using the /proc/driver/btp/unit/vme-mappings file.

This example program uses the bt_write() Bit 3 Mirror API function to write to any of the
Bit 3 logical devices.

Usage: writemem -[atud]

OPTION FUNCTION
-a<addr> Address at which to start data transfer. Default = 0x00000000.
-t <logdev> Logica deviceto access (BT_DEV_RDP, BT_DEV_A32, €tc.)

-u <unit> Unit number to open. Default is unit O.

-d <value> Starting data value to write. Default is 0.

All numeric values use C radix notation.

Example: Write the first 256 bytes of data from BT_DEV_RDP starting at address
0x00001000:

./writemem -a 0x00001000

This example program is the same as writemem, except it writes larger amounts of data,
which resultsin the DMA hardware being used in the kernel driver instead of cpu copying
the data. This example only writes the data to the remote VMEDbus; it does not read the
data back from the remote VMEDbus.

Usage: writedma -[atuld]

OPTION FUNCTION
-a<addr> Starting VME address. Default = 0x00000000.

-t <logdev> Logica deviceto access. Default isto BT_DEV_A32.

-u <unit> Unit number to open. Default is unit O.

-| <length> Number of bytesto write. Round down to pagesize. Default is 0x1000.
-d <value> Starting data value to write. Default is 0.
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A
Example Message Queue Programs

This appendix contains example programs that illustrate the use of the POSIX and
System V message queue facilities. Additional example programs are provided onlinein /
usr/share/doc/ccur/examples.

POSIX Message Queue Example

The example program given hereiswritten in C. In this program, a parent process opens a
POSIX message queue and registers to be notified via a real-time signal when the queue
transitions from empty to non-empty. The parent spawns a child and waits on the child
until the child sends a message to the empty queue. The child sends the message, closes
it's descriptor and exits.

The parent receives the real-time signal and capturesthe sigev_value (si_value) as
delivered by the siginfo_t structureinthe signa handler. The parent also tests delivery
of the si_code (SI_MESGQ) before receiving the child's test message. The parent verifies
that delivery of the si_value (which isaunion) was correct as previously registered by
the sigev_value. The signal handler also displays the real-time signal value received
(SIGRTMAX) using psignal. The psignal function doesn’t know how to name SIGRTMAX, SO
it callsit an unknown signal, prints the value and exits.

To build this program, specify the following:

gcc mg notify rtsig.c -Wall -g -1 ccur rt -o mg notify rtsig

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <unistd.h>
#include <mgueue.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.hs>
#include <time.h>
#include <sched.h>
#include <signal.h>
#include <bits/siginfo.h>

#define MSGSIZE 40

#define MAXMSGS 5
#define VAL 1234
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void handlr (int signo, siginfo t *info, void *ignored) ;
int val, code;

int main(int argc, char **argv)

{

struct sigaction act;

struct sigevent notify;

struct mg_attr attr;

sigset t set;

char *mgname = "/mg notify rtsig";
char rcv_buf [MSGSIZE] ;

mgd t mgdesl, mgdes2;

pid _t pid, cpid;

int status;

memset (&attr, 0, sizeof ( attr));

attr.mg maxmsg = MAXMSGS;
attr.mg msgsize = MSGSIZE;

mg_unlink (mgname) ;

mgdesl = mg open (mgname, O_CREAT\O_RDWR, 0600, &attr);
sigemptyset (&set) ;

act.sa_flags = SA SIGINFO;

act.sa mask = set;

act.sa_sigaction = handlr;

sigaction (SIGRTMAX, &act, 0);

notify.sigev _notify = SIGEV_SIGNAL;

notify.sigev_signo = SIGRTMAX;
notify.sigev_value.sival int = VAL;

mg notify(mgdesl, &notify);

printf ("\nmg notify rtsig:\tTesting notification sigev value\n\n");
printf ("mg notify rtsig:\tsigev value=%d\n",\

notify.sigev_value.sival_int);

if ( (pid = fork()) < 0) {
printf ("fork: Error\n") ;
printf ("mg notify rtsig: Test FAILED\n");
exit (-1) ;
}
if (pid == 0) { /* child */
cpid = getpid() ;
mgdes2 = mg_open (mgname, O CREAT|O RDWR, 0600, &attr);

printf ("child:\t\t\tsending message to empty queue\n");

mg_send (mgdes2, "child-test-message", MSGSIZE, 30);



}

{
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mg_close (mgdes2) ;
exit (0) ;
1
else { /* parent */
waitpid( cpid, &status, 0); /* keep child status from init */
printf ("parent:\t\t\twaiting for notification\n") ;

while(code != SI_MESGQ)
sleep (1) ;

mg_receive (mgdesl, rcv_buf, MSGSIZE, 0);

printf ("parent:\t\t\tqueue transition - received %s\n",rcv _buf) ;

}

printf ("mg notify rtsig:\tsi code=%d\n", code) ;
printf ("mg notify rtsig:\tsi value=%d\n",val);

if (code != -3 || val != VAL) {
printf ("\nmg notify rtsig:\tTest FAILED\n\n");

return(-1) ;

}

mg close(mgdesl) ;
mg_unlink (mgname) ;

printf ("\nmg notify rtsig:\tTest passed\n\n");

return(0) ;

void handlr (int signo, siginfo t *info, void *ignored)

psignal (signo, "handlr:\t\t\t");
val = info->si value.sival_ int;
code = info->si_code;

return;
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System V Message Queue Example

The example program given here iswritten in C. In this program, a parent process spawns
achild process to off load some of its work. The parent process also creates a message

queue for itself and the child process to use.

When the child process completes its work, it sends the results to the parent process via
the message queue and then sends the parent a signal. When the parent process receives

the signal, it reads the message from the message queue.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <signal.h>
#include <errno.h>

#define MSGSIZE 40/* maximum message size */
#define MSGTYPE 10/* message type to be sent and received */

/* Use a signal value between SIGRTMIN and SIGRTMAX */
#define SIGRT1 (SIGRTMIN+1)

/* The message buffer structure */
struct my msgbuf {

long mtype;

char mtext [MSGSIZE] ;
}i

struct my msgbuf msg buffer;

/* The message queue id */
int msqid;

/* SA SIGINFO signal handler */
void sighandler (int, siginfo t *, void *);

/* Set after SIGRT1 signal is received */
volatile int done = 0;

pid_t parent pid;
pid t child pid;

main ()
int retval;
sigset t set;
struct sigaction sa;

/* Save off the parent PID for the child process to use.

parent pid = getpid();

/* Create a private message queue. */
msgid = msgget (IPC_PRIVATE, IPC_CREAT | 0600);
if (msgid == -1) {

perror (“msgget”) ;

exit (-1);

*/



Example Message Queue Programs

/* Create a child process. */
child pid = fork();

if (child pid == (pid_t)-1) {
/* The fork(2) call returned an error. */
perror (“fork”) ;

/* Remove the message queue. */
(void) msgctl (msgid, IPC RMID, (struct msgid ds *)NULL) ;

exit (-1);

if (child pid == 0) {
/* Child process */

/* Set the message type. */
msg_buffer.mtype = MSGTYPE;

/* Perform some work for parent. */
sleep (1) ;

VAR ¥

/* Copy a message into the message buffer structure. */
strcpy (msg_buffer.mtext, “Results of work”);

/* Send the message to the parent using the message

* queue that was inherited at fork(2) time.

*/

retval = msgsnd(msgid, (const void *)s&msg buffer,
strlen(msg buffer.mtext) + 1, 0);

if (retval) {
perror (“*msgsnd (child) ") ;

/* Remove the message queue. */
(void) msgctl (msgid, IPC_RMID, (struct msgid ds *)NULL) ;

exit (-1);

/* Send the parent a SIGRT signal. */
retval = kill (parent pid, SIGRT1);
if (retval) {

perror (“*kill SIGRT”) ;

/* Remove the message queue. */
(void) msgctl (msgid, IPC RMID, (struct msgid ds *)NULL) ;
exit (-1);

1

exit (0) ;

/* Parent */

/* Setup to catch the SIGRT signal. The child process
* will send a SIGRT signal to the parent after sending
* the parent the message.

*/

sigemptyset (&set) ;

sa.sa_mask = set;

sa.sa_sigaction = sighandler;
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/*

sa.sa_flags = SA SIGINFO;
sigaction (SIGRT1, &sa, NULL) ;

/* Do not attempt to receive a message from the child
* process until the SIGRT signal arrives. Perform parent
* workload while waiting for results.
*/
while (!done) {
VA

/* Remove the message queue.
(void) msgctl (msgid, IPC RMID, (struct msgid ds *)NULL) ;
*/

/* All done.
*/
exit (0) ;

* This routine reacts to a SIGRT1 user-selected notification
* gignal by receiving the child process’ message.

*/

void

sighandler (int sig, siginfo_ t *sip, void *arg)

{

int retval;
struct ucontext *ucp = (struct ucontext *)arg;

/* Check that the sender of this signal was the child process.
*/
if (sip-»>si_pid != child pid) {
/* Ignore SIGRT from other processes.
*/
printf (*ERROR: signal received from pid %d\n”, sip-s>si pid);
return;

/* Read the message that was sent to us.

*/

retval = msgrcv(msgid, (void*)&msg buffer,
MSGSIZE, MSGTYPE, IPC NOWAIT) ;

done++;

if (retval == -1) {
perror ("mg_receive (parent)");
return;

1

if (msg buffer.mtype != MSGTYPE) ({

printf ("ERROR: unexpected message type %d received.\n”,
msg_buffer.mtype) ;
return;

printf (“message type %d received: %s\n”,
msg_buffer.mtype, msg buffer.mtext) ;
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Kernel Tunables for
RedHawk Linux Features

Table B-1 contains a list of unique features in RedHawk Linux and the kernel
configuration settings that support them. These include features developed by Concurrent

for real-time operation, optional package support and features incorporated from open
source patches.

For each function, the Kernel Configuration GUI option and the tunable name are given to
help you view and modify the settings as needed. Additionally, the default settings for
each feature in each of the RedHawk Linux pre-built kernels are provided. For more
information about configuring and building a kernel, see Chapter 11.

Information about individual features is available in various locations. In Table B-1, the
following references are provided:

¢ Page numbers (active hypertext links) where information included in this
RedHawk Linux User’s Guide is provided.

* Names and publication numbers of other appropriate Concurrent documents.
Other sources where information may be obtained include:

¢ |nformation provided in a separate help window of the Kernel Configuration
GUI that displays when the parameter is selected.

¢ Textfilesinthe Documentation directory of the kernel source tree.

¢ Linux documentation sites on the Internet.
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Table B-1 Kernel Tunables for RedHawk Linux Features

Kernel . Concurrent
Functionality Configuration Tunable Name ggi'u;,vieggiséls Documentation
GUI Option Reference
Shielded CPUs General Setup SHIELD Y /all page 2-1
Rescheduling Variables General Setup RESCHED_VAR Y /dl page 5-3
High Resolution Process Y / debug, trace :
Accounting General Setup HRACCT N / generic page 7-2
H.|gh Resolution POSIX General Setup HR_POSIX_TIMERS Y /dl page 6-2
Timers
Frequency Based Scheduler (FBS)
Enable FBS FBSCHED M/ all
Max number of
schedulers FBSMNI 10/ Al
FBS User's
Max number of Frequency-Based FBSUNSCHEDMAX 1/4dl Guide
unschedul ed processes Scheduling (0898005)
Max number of
simultaneously queried FBSQUERYMAX 100/ Al
tasks
Per for mance Monitor Frequency-Based FBSCHED P Y / debug, trace FBSLL"JSZI"S
RCIM User's
RCIM Support Device Drivers RCIM Y /Al Guide
(0898007)
Priority Inheritance
Enable for kernel
PRIO_INHERIT
semaphores as mutexes
General Setup Y /all page 1-6
Enable for kernel R/W RWSEM_PRIO_INHERIT
semaphores
POSI X M essage Queues General Setup POSIX_MQUEUE Y /adl page 3-2
Post/Wait Support General Setup POST_WAIT Y /all page 5-37
I nherit Capabilities General Setup INHERIT_CAPS ACROSS EXEC Y /al page 13-5
Acr0ss exec
* Y=sa, N=notset, M =tunableenabled when kernel moduleisloaded
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Table B-1 Kernel Tunables for RedHawk Linux Features (Continued)

Kernel Default Settinas*/ Concurrent
Functionality Configuration Tunable Name 9 Documentation
. RedHawk Kernels
GUI Option Reference
Memory Mapping
Process space PROCMEM_MMAP Y /all
mmap/usermap support
File permission accessto
another process address . PROCMEM_ANYONE Y /Al
File Systems page 9-1
space
Enable writes into
another process address PROCMEM_WRITE Y /al
space
Enlarge mmap address Processor Type Y /4dl .
range and Features LARGE_MMAP_SPACE (1386 only) page 9-1
sy Processor Type K8_NUMA Y / al x86_64 only o1
NUMA ort page 1U-
PP and Features SCHED_SMT N/ all x86_64 only
Interrupt Processing
Softirq daemon priority SOFTIRQ_PRI 0/l
i : General Setup page 14-12
Soft rq preemption SOFTIRQ_PREEMPT_BLOCK Y /4dl
blocking
Kernel Virtual Address
Space for Dynamic General Setup VMALLOC_RESERVE 128/ dll page 14-11
Allocation
Cross Processor Interrupt Reduction
. VMALLOC_TLBFLUSH_
TLB flush reduction REDUCTION Y /all page G-4
Reserve for small 46/ al 1386
vmallocs/ioremaps VMALLOC SMALL RESERVE " 260144/ all xg6 64 P9€ G4
. threshold T General Setup
arge threshold for VMALLOC_LARGE_THRESHOLD )
vmallocs/ioremaps _SIZE alall page G-4
Preload vmalloc page Y / generic )
tables at boot VMALLOC_PGTABLE_PRELOAD (386 only) page G-4
Graphic Page Device Drivers PREALLOC_GRAPHICS PAGES 10240/ al page G-3
Preallocation - -

* Y=set, N=notset, M =tunableenabled when kernel moduleisloaded
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Table B-1 Kernel Tunables for RedHawk Linux Features (Continued)

Kernel Default Settinas*/ Concurrent
Functionality Configuration Tunable Name 9 Documentation
. RedHawk Kernels
GUI Option Reference
XFS Filesystem
Enable XFS XFS_FS Y /Al
i File Systems page 8-1
Real-time subvolume XFS.RT v /4l
support
. Processor Type )
Kernel Preemption and Features PREEMPT Y /dl page 1-6
Ptrace Extensions General Setup PTRACE_EXT Y /all page 1-6
Kernel Debug
. Y / debug
Include kgdb Kernel Hacking KGDB N / trace, generic page 1-7
Kernel Tracing
Enable kernel tracing TRACE Y 1\Itr/ace, dgbug
Kernel Tracing generic page D-1
Enable BKL trace events TRACE_BKL N/ all
System Dumps
Enable system dumps CRASH_DUMP Y [ trace, generic
- N / debug
Enable RLE . Y / trace, generic
compression Kernel Hacking CRASH_DUMP_COMPRESS RLE N / debug page 12-1
EnabIeG_ZIP CRASH_DUMP_COMPRESS_GZIP Y /trace, generic
compression - - - N / debug
. RedHawk
nVIDIA Graphics nVIDIA Kernel NVIDIA M/ al Release Notes
Support Support (0898003)
SBSVMEbus-to-PCI SBSVMEbus-to-PCl
Support Support SBSVME M /al page 15-1
Hyper-threading Processor Type i
(i386 kernelsonly) and Features X8oHT v/al page 2-22
Guideto
SNARE Audit Support General Setup SNARE_AUDIT N/ all SNARE for
Linux

* Y =sa, N-=notset,

M = tunable enabled when kernel moduleisloaded
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Capabilities

C
Capabilities in RedHawk Linux

This appendix lists the capabilities included in RedHawk Linux and the permissions that
each capability provides.

Capabilities is a method in Linux where the privileges traditionally associated with
superuser are divided into distinct units that can be independently enabled and disabled.
An unscrupulous user can use some of the permissions provided by capabilities to defeat
the security mechanisms provided by Linux; therefore, this functionality should be used
with due caution. Capabilities are defined in /usr/include/linux/
capability.h.

For more information about how capabilities work in Linux, refer to the
capabilities (7) man page. For information about the PAM facility that provides an
authentication scheme utilizing capabilities, refer to Chapter 13.

This section describes the permissions provided by each of the capabilities defined under
RedHawk Linux. Features from standard Linux as well as features unique to RedHawk
Linux areincluded in this discussion.

CAP_CHOWN This capability overrides the restriction of changing user or group file
ownership when the current effective user ID, group ID, or one of the
supplemental group IDs do not match the file's UID/GID attributes.

CAP_DAC_OVERRIDE

Except for the file access restrictions enforced by files marked as
immutable or append-only (see chattr (1)), this capability overrides
any file discretionary access control (DAC) restrictions that would
normally be enforced with the owner/group/world read/write/execute
filesystem permission attributes and Access Control List (ACL)
restrictions, if ACL support is configured into the kernel for that
filesystem (see acl (5) for more details).

Read and write access DAC restrictions may always be overridden with
this capability. Execute DAC restrictions may be overridden with the
capability aslong as at |east one owner/group/world execute bit is set.

This capability also overrides permission access restrictions when using
the fbsintrpt (3) and £bsresume (3) commands.
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CAP_DAC_READ_SEARCH
This capability overrides any file discretionary access control (DAC)
restrictions that would normally be enforced with the owner/group/
world read/execute filesystem permission attributes and Access Control
List (ACL) restrictionsif ACL support is configured into the kernel for
that filesystem (see acl (5) for more details).

This capability always allows read access to files and directories, and
search (execute) access to directories.

This capability also overrides permission access restrictions when using
the £bsintrpt (3) and £bsresume (3) commands.

CAP_FOWNER  This capability:

- overrides all Discretionary Access Control (DAC) restrictions
regarding file attribute changes where the file owner ID must
be equal to the user ID.

- dlows the FBS RMID and FBS SET fbsctl (2) commands
when the fbs creator user ID and user ID do not match the
caler’s effective user ID

This capability does not override Data Access Control (DAC)
restrictions.

CAP_FSETID This capability overrides the restriction that the effective group ID (or
one of the supplementary group IDs) shall match the file group ID when
setting the s_I1SGID bit on that file.

CAP_IPC_LOCK This capability allows for the locking of memory through the
mlock (2) andmlockall (2) system service calls.

It also allows locking and unlocking of shared memory segments
through the shmet1 (2) SHM_LOCK and SHM_UNLOCK commands.

CAP_IPC_OWNER
This capability overrides the IPC permission set that is associated with
an IPC shared memory segment, message queue or semaphore array.
The IPC permissions have the same format and meaning as the
read/write owner, group and world permissions associated with files.
Note that execute permissions are not used. The ipes (1) command
may be used to view the owner and permissions of the current |PC
resources.

CAP_KILL This capability overrides the restriction that the real or effective user ID
of a process sending a signal must match the real or effective user ID of
the process receiving the signal.

This capability aso overrides the restriction on KDSIGACCEPT
ioctl (2) callsthat requiresthe calling process to be the owner of the
tty or have the CAP_SYS_TTY_CONFIG capability.

CAP_LEASE This capability lets a user take out alease on afile, with the f£entl (2)
F_SETLEASE command, even when the process user ID does not match
thefile system user ID value.
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CAP_LINUX_IMMUTABLE

CAP_MKNOD

CAP_NET_ADMIN

This capability allows the modification of the s IMMUTABLE and
S _APPEND file attributes. See the chattr (1) man page for more
information on these file attributes.

This capability allows the user to make use of the privileged aspects of
mknod (1) /mknod (2). It also allows use of the
XFS |OC_FSSETDM_BY_HANDLE xfsfilesystem ioctl (2) command.

This capability allows for the following network administration
activities:

- setting debug and priority options on sockets

- administration of IP firewall, masquerading and accounting
- interface configuration

- multicasting

- reading and writing of network device hardware registers

- adding/deleting tunnels

- modification of routing tables

- setting TOS (type of service)

- activation of ATM control sockets

CAP_NET_BIND_SERVICE

This capability alows binding to TCP/UDP and Stream Control
Transmission Protocol (SCTP) sockets below 1024, and to ATM VCls
below 32.

This capability also causes a reserved port to be used when creating an
RPC client transport.

CAP_NET_BROADCAST

CAP_NET_RAW

CAP_SETGID

CAP_SETPCAP

This capability is not currently used.

This capability allows the creation of SOCK_RAW and SOCK_PACKET
sockets, and the use of the SO BINDTODEVICE setsockopt (2) socket
option.

This capability overrides the restrictions placed on non-root process
group ID value for the setregid(2), setgid(2),
setresgid(2), setfsgid(2) and setgroups (2) system
Services.

This capability also alows a process to send a socket level credential
control message that contains a group ID value that does not match the
current process current, effective or saved group ID. (Additionally, the
credential control message process ID must match the process' thread
group 1D or the process must also have the cCAP_SYS_ADMIN capability,
and the credential control message user ID must match the process
saved, effective or current user 1D, or have the CAP_SETUID capability.)

This capability allows a processto transfer any capability in the process
permitted set to any process ID (PID), and to remove any capability in
the process' permitted set from any PID.
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CAP_SETUID

CAP_SYS ADMIN

This capability allows setting the current user ID to any user ID,
including the user ID of superuser. Extreme caution should be used in
granting this capability.

This capability also alows a process to send a socket level credential
control message that contains a user 1D value that does not match the
current process’ current, effective or saved user ID. (Additionally, the
credential control message process |D must match the process' thread
group 1D or the process must also have the cAP_SYS_ADMIN capability,
and the credential control message group ID must match the process’
saved, effective or current group ID, or have the cAP_SETGID capability.)

This capability also overrides the limitation that processes that are
ptraced by this process may not inherit the user or group ID of a “set
user or group 1D on execution” executable that the ptraced process
executes.

This capability provides the following system administration activities:

- alowsuseof bdflush(2)

- overrides the open file limit

- allows examination and configuration of disk quotas

- allows examination and configuration of disk usage on a per
user or per group basis under the xfsfilesystem (if XFS_QUOTA
is enabled)

- dlowsumount () andmount ()

- allows copying of a process namespace during fork (2)/
clone (2) cdls

- dlowsmsgctl (2), semctl (2) and shmectl (2) IPC_SET
and IPC_RMID commands for message queues, semaphores and
shared memory areas that do not have a user ID or creator user
ID value that matches the process’ effective user ID

- dlows shmetl (2) SHM_PHYSBIND commands for shared
memory areas where the user ID or creator user ID of the
shared memory area does not match the process' effective
user ID

- overrides the limit on the maximum number of processes per
process on fork (2)/clone (2) calls when the non-root
user does not have the CAP_SYS RESOURCE capability

- dlows wakeups on pw post(2), pw postv(2),
server wakel (2) and server wakevec (2)calls
when the process(es) to be awakened do not have the same
user ID or saved user ID as the calling process effective user
ID or user ID value

- dlows use of the RCIM_WRITE_EEPROM and RCIM_TESTIRQ
ioctl (2) RCIM driver commands

- alows use of the system dump ioctl (2) commands, and
the setting of the sysctl (2) kernel.dump.device variable

- allows configuration of serial ports
- dlowssethostname (2) and setdomainname (2) calls
- alowstheuse of swapon (8) and swapof£ (8) cals
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allows the open of raw volume zero and the CCISS_SETINTINFO
and CCISS SETNODENAME ioctl (2) commandsin the Disk
Array driver for HP SA 5xxx and 6xxx Controllers

allows ioctl (2) commands in the Mylex DAC960 PCI
RAID Controller driver

allows the open of raw volume zero in the Compaq SMART2
Controller Disk Array driver

allows the use of floppy root-only ioctl (2) commands
(those commands with bit 0x80 set), and also the FDSETPRM
and FDDEFPRM set geometry commands

adlows use of the following block device ioctl (2)
commands. BLKPG add/delete partition, BLKRRPART re-read
partition, BLKRASET set read-ahead for block device,
BLKFRASET set filesystem read-ahead, BLKBSZSET set logical
block size, BLKFLSBUF flush buffer cache, BLKROSET set
device read-only

allows setting the encryption key on loopback filesystems
allows network block device ioctl (2) commands

allows modification of the memory type range registers
(MTRR)

allows use of ioctl (2) commands for power management
when APM is enabled in the kernel

alows use of some ioctl (2) commands for certain BIOS
settings
allows use of the vM86_REQUEST_IRQ vm86 (2) support

dlows use of the CDROMRESET, CDROM_LOCKDOOR and
CDROM_DEBUG ioctl (2) CDROM commands

allows DDlocsDBG DDI debug ioctl(2) on sbpcd
CDROM driver

allows use of the root-only Direct Rendering Manager (DRM)
ioctl (2) commands and the DRM mmap (2) DMA
memory command

alows use of the root-only ioctl (2) commands in the
Specialix RIO smart serial card driver

allows reading the first 16 bytes of the VAIO EEProm
hardware Sensors chip on the | 2C serial bus

adlows writes to the /proc/ide/iden/config file,
modification of the IDE drive settings, and the following IDE
ioctl (2) commands; HDIO_DRIVE_TASKFILE (execute raw
taskfile), HDIO_SET_NICE (set nice flags), HDIO_DRIVE_RESET
(execute a device reset), HDIO_GET_BUSSTATE (get the bus
state of the hardware interface), HDIO_SET_BUSSTATE (set the
bus state of the hardware interface)

dlows use of the SNDRV_CTL_IOCTL_POWER sound
ioectl(2) command

allowsthe use of variousroot-only ioctl (2) commandsfor
various PCl-based sound cards, such as Live! and Sound
Blaster 512

allows use of the experimental networking SIOCGIFDIVERT and
SIOCSIFDIVERT Frame Diverter ioctl (2) commands
alows the sending of the SCM_CREDENTIALS socket level
control message, when the user ID of the credentials do not
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match the current process' effective, saved or current user 1D
value

allows administration of md devices (Multiple Devices -
RAID and LVM)

allows adding and removing a Digital Video Broadcasting
interface

adlows the VIDIOC S FBUF ioctl(2) command for the
Philips saa7134-based TV card video4linux device driver, if
the CAP_SYS_RAWIO capability is not enabled

dlows the use of the VvIDIOCSFBUF and VIDIOC S FBUF
ioct (2) commands in the bttv and Zoran video device
drivers, if the cAP_Sys RAWIO capability is not enabled
allows the use of the vIDIOCSFBUF ioctl (2) command in
the planb video device driver if the CAP_SYS_RAWIO capability
is not enabled

allows the use of the VIDIOCSFBUF ioctl (2) command in
the stradis 4:2:2 mpeg decoder driver

allows the use of the Intelligent Input/Output (120)
ioectl (2) commands

allows manufacturer commandsin ISDN CAPI support driver
allows reading up to 256 bytes (non-standardized portions) of
PCI bus configuration space, and also allows use of the
pciconfig read(2) and pciconfig write(2)
system service calls

allows use of the root-only pcmciaioctl (2) commands
dlows use of the FSACTL_SEND RAW SRB ioctl (2)
command in the aacraid Adaptec RAID driver

allows read and write to the QLogic | SP2x00 nvram

allows access to the MegaRAID ioctl (2) commands
allows use of the MTSETDRVBUFFER SCSI tape driver
ioetl (2) command

allows write access to the /proc SCSl debug file, if
SCSI_DEBUG is enabled in the kernel (also requires the
CAP_SYS_RAWIO capability)

allows the sending of arbitrary SCSI commands via the scsi_
IOCTL_SEND_COMMAND ioctl (2) command (also requires
the CAP_SYS_RAWIO capability)

adlows use of the SCSI scatter-gather SG_SCSI_RESET
ioctl (2) command, /proc/sg/allow_dio and
/proc/sg/def reserved sizewrite(2), (also
requires the CAP_SYS_ADMIN capability)

alows use of the IXJCTL_TESTRAM and IXJCTL_HZ ioct (2)
commands for the Quicknet Technologies Telephony card
driver

allows some autofs root-only ioctls

allows getting and setting the extended attributes of filesystem
objects (getfattr (1), setfattr(1))

allows root-only ioct(2) commands for NetWare Core
Protocol (NCP) filesystems

allows setting up a new smb filesystem connection
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- dlows the UDF_RELOCATE BLOCKS ioctl (2) command on
udf filesystems (used on some CD-ROMs and DV Ds)

- dlowsadministration of the random device

- dlows binding of a raw character device (/dev/raw/rawn)
to ablock device

- alows configuring the kernel’s syslog (printk behavior)

- alows writes to the /proc/driver/btp/unit#/vme-
mappings file, if SBSVME is enabled in the kernel, to create
and remove PCI-to-V M Ebus mappings

- dlows writes to /proc/driver/graphics-memory to
modify size of the pre-allocated graphics memory pool

This capability allows use of the reboot (2) system service cal.

CAP_SYS CHROOT

This capability allows use of the chroot (2) system service call.

CAP_SYS MODULE

CAP_SYS NICE

CAP_SYS PACCT

CAP_SYS PTRACE

This capability allows the insertion and deletion of kernel modules
using sys _delete module(2), init module(2), rmmod (8)
and insmod (8).

This capability also lets you maodify the kernel capabilities bounding set
value, cap_bset, where this value is accessible via the sysctl (2)
kernel .cap-bound parameter.

This capability allows:

- raising the scheduling priority on processes with the same
user ID

- setting the priority on other processes with a different user ID

- setting the sScCHED_FIFO and SCHED_RR scheduling policies for
processes that have the same user 1D

- changing the scheduling policy of processes with a different
user ID

- changing the cpu affinity for processes with a different user
ID viathe sched setaffinity(2) or /proc/pid/
affinityfile

- dlowstheuseof fbsconfigure (3)

This capability alows configuration of process accounting through the
acct (2) system servicecall.
This capability letsaprocessptrace (2) any other process.

This capability also alows the process to ptrace(2) setuid
executables, regardless of the CAP_SETUID setting.

CAP_SYS RAWIO This capability allowsthe following raw /O activities:

- theshmectl (2) SHM_PHYSBIND command
- theresched cntl (2) RESCHED_SET_VARIABLE command

- mmap (2) of PCl Bus space and access to the PCI Base
Address Registers (BAR)
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open (2) of /dev/port and /proc/kcore

use of the ioperm(2) and iopl (2) system servicecalls
thefilesystem ioctl (2) FIBMAP command

open(2) of the /dev/cpu/microcode file, if
MICROCODE is enabled in the kernel

the following Disk Array driver for HP SA 5xxx and 6xxx
Controllers ioctl (2) commands: CCISS_PASSTHRU,
CCISS BIG_PASSTHRU, CCISS DEREGDISK, CCISS REGNEWD

the open (2) of Disk Array driver for Compag SMART2
Controllers, and the IDAPASSTHRU ioctl (2) command

the configuration of IDE controllers, and the following IDE
ioctl (2) commands: HDIO_DRIVE_TASKFILE, HDIO_DRIVE_
CMD, HDIO_DRIVE_TASK, HDIO_SCAN_HWIF, HDIO_
UNREGISTER_HWIF

the Fibre Channel Host Bus Adapter CPQFCTS_SCSI_PASSTHRU
ioetl (2) command

write access to the /proc SCSI debug file, if sSCSI_DEBUG is
enabled in the kernel (CAP_SYS_ADMIN is also required)
sending of arbitrary SCSI commands via the scsi_1oCTL_
SEND_COMMAND ioctl (2) command (CAP_SYS ADMIN is
also required)

use of the SCSI scatter-gather sG_SCSI_RESET ioctl (2)
command, /proc/sg/allow _dio and /proc/sg
/def reserved size write(2) (also requiresthe
CAP_SYS ADMIN capability)

the ATMSIGD_CTRL ioctl (2) command

use of the VIDIOCSFBUF and VIDIOC S FBUF ioctl (2)
commands in the bttv and Zoran video device drivers, if the
CAP_SYS _ADMIN capability is not enabled

use of the VIDIOCSFBUF ioctl (2) command in the planb
video device driver if the CAP_SYS ADMIN capability is not
enabled

use of the HDLCDRVCTL_SETMODEMPAR and HDLCDRVCTL_
CALIBRATE ioctl (2) commands in the baycom epp radio
and HDL C packet radio network device drivers

the SIOCSCCCFG, SIOCSCCINI, SIOCSCCSMEM, and SIOCSCCCAL
ioctl (2) commands in the Z8530 based HDLC cards for
AX.25 device driver

the SIOCYAMSCFG ioctl (2) command in the AM radio
modem device driver

the COSAIOSTRT, COSAIODOWNLD, COSAIORMEM and
COSAIOBMSET ioctl (2) commands for the SRP and COSA
synchronous serial card device driver

the FBIO_ALLOC and FBIO_FREE ioctl (2) commandsfor the
SiS frame buffer device driver

the vIDIOC_S FBUF ioctl(2) command for the Philips
saa’134-based TV card video4dlinux device driver, if the
CAP_SYS_ADMIN capability is not enabled



CAP_SYS RESOURCE

Capabilitiesin RedHawk Linux

This capability lets the user:

override disk quota limits

override the IPC message queue size limit on amsgectl (2)
IPC_SET command

override the number of processes per process on fork (2)/
clone (2) calls, when the non-root user does not have the
CAP_SYS ADMIN capability

increase this user’s resource limits with the setrlimit (2)
system service

set the real-time clock (rtc) periodic IRQ rate, or enable the
periodic IRQ interrupts for a frequency that is greater than
64Hz

override the limit on the number of console terminal
openg/alocations

override the limit on the number of console keyboard
keymaps

when alocating additional space on ufs, ext2 and ext3
filesystems, override the limit on the amount of reserved
space. Note: the ext2 filesystem also honors the files system
user ID when checking for resource overrides, allowing
overrideusing setfsuid (2) aso.

on ext3 filesystems, modify data journaling mode

CAP_SYS TIME This capability allows:

setting or adjusting the time via clock_settime (2),
stime (2), settimeofday(2) and adjtimex(2)

use of the RTC_SET TIME and RTC_EPOCH_SET ioctl (2)
commands for the /dev/rtec rea-time clock device

CAP_SYS TTY_CONFIG
This capability allows:

use of the vhangup (2) system service

use of al the console terminal and keyboard ioctl (2)
commands, including cases when the user is not the owner of
the console terminal

Note that the use of the KDKBDREP, KDSETKEY CODE,
VT_LOCKSWITCH and VT_UNLOCKSWITCH console terminal
and keyboard ioctl (2) commands require this capability
even when the user is the owner of the console terminal.
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D
Kernel Trace Events

This appendix lists the pre-defined kernel trace events that are included in the RedHawk
Linux trace and debug kernels as well as methods for defining and logging custom events
within kernel modules.

Refer to the NightTrace User’s Guide, publication number 0890398, for a complete
description of how to supply trace pointsin user-level code, capture trace data and display
the results.

Pre-defined Kernel Trace Events

Table D-1 provides a list of all the kernel trace events that are pre-defined within the
RedHawk Linux trace and debug kernels.

Table D-1 Pre-defined RedHawk Linux Kernel Trace Events

Type of
Trace Event Trace Event Name Description

System Calls SYSCALL_ENTRY A system call was entered.
(i386 systems only)

SYSCALL_EXIT A system call exited.
(1386 systems only)

SYSCALL32_ENTRY A 32-bit system call was entered.
(Opteron systems only)

SYSCALL32 EXIT A 32-bit system call exited.
(Opteron systems only)

SYSCALL64_ENTRY A 64-bit system call was entered.
(Opteron systems only)

SYSCALL64_EXIT A 64-bit system call exited.
(Opteron systems only)

FBS FBS SYSCALL An FBS system call was made. Possible types
include:

0 - fbsop
fhsctl
- fhbsget
- pmctl
pmop
- fbswait
- fbstrig
- fbsavail
8 - fbsdir

[EnY
'

~NOoO O WN
'

FBS OVERRUN A process scheduled on FBS incurred an overrun.
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Table D-1 Pre-defined RedHawk Linux Kernel Trace Events (Continued)

Type of
Trace Event Trace Event Name Description
Traps TRAP_ENTRY A trap was entered.
TRAP_EXIT A trap exited.
Interrupts IRQ_ENTRY An IRQ handler was entered.
IRQ_EXIT An IRQ exited.
SMP_CALL_FUNCTION | A function call was made via cross processor
interrupt.
REQUEST_IRQ A dynamic IRQ assignment was made.
SOFT_IRQ_ENTRY A softirg handler was entered.
Possible types include:
1 - conventional bottom-half
2 - real softirq
3 - tasklet action
4 - tasklet hi-action
SOFT_IRQ EXIT A softirg handler exited.
KERNEL_TIMER The kernel timer interrupt routine was called.
GLOBAL_CLI Linux 2.4 _ globa_cli() wascalled.
(prior to Redhawk 2.0 only)
GLOBAL_STI Linux 2.4 __global_sti() was called.
(prior to Redhawk 2.0 only)
Process SCHEDCHANGE The scheduler made a context switch.
Management -
PROCESS A process management function was performed.
Possible types include:
1 - kernel thread created
2 - fork or clone
3 - exit
4 - wait
5 - signa sent
6 - wakeup
PROCESS NAME This event associates a process |D with a process
name prior to afork, clone, or exec.
File System FILE_SYSTEM A file system function was performed. Possible

types include:

wait for data buffer started
- wait for data buffer finished
- exec

- open

close

- read

- write

- seek

- ioctl

select

poll

[EnY
'
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Table D-1 Pre-defined RedHawk Linux Kernel Trace Events (Continued)

Type of
Trace Event

Trace Event Name

Description

Timers

TIMER

A timer function was performed. Possible types
include:

1 - timer expired
2 - set_itimer() system cal
3 - schedule_timeout() kerndl routine

Work Queues

WORKQUEUE_THREAD

A work queue thread was created.

WORKQUEUE_WORK

A work queue handler was executed.

Memory
Management

MEMORY

A memory management function was performed.
Possible types include:

- page allocation

- pagefreeing

- pages swapped in
pages swapped out

- wait for page started
- wait for page finished

o0 WNBE
'

GRAPHICS_PGALLOC

An additional graphicsbind pagewas dynamically
allocated.

Sockets

SOCKET

A socket function was performed. Possible types
include:

1 - generic socket system call
2 - socket created

3 - datasent on socket

4 - dataread from socket

A System V |PC function was performed.
Possible types include:

1 - generic SystemV IPC call

2 - message queue created

3 - semaphore created

4 - shared memory segment created

Networking

NETWORK

A network function was performed. Possibletypes
include:

1 - packet received

2 - packet transmitted

Big Kernel Lock
(BKL)

BKL_LOCK

The Linux big kernel lock was locked.

BKL_UNLOCK

The Linux big kernel lock was unlocked.

BKL_CONTEND

The Linux big kernel lock is being contended for.

Custom Event

CUSTOM

Thisisauser-defined event.

Note: For information on logging this event and
dynamically creating other custom kernel trace
events, refer to the section “ User-defined Kernel
Trace Events” below.
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Table D-1 Pre-defined RedHawk Linux Kernel Trace Events (Continued)

Type of
Trace Event Trace Event Name Description
Kernel Trace BUFFER_START This event marks the beginning of atrace buffer.
Management BUFFER_END This event marks the end of atrace buffer.
PAUSE Tracing was paused.
RESUME Tracing was resumed.
EVENT_MASK The tracing event mask was changed.

EVENT_CREATED

A new trace event was dynamically created.

EVENT_DESTROYED

A dynamically created trace event was destroyed.

User-defined Kernel Trace Events

There is a pre-defined “custom” kernel trace event that can be used for any user-defined
purpose. The description for using this CUSTOM kernel trace event is described in the
next section. Other user-defined events can be created dynamically using the calls
described in the section “Dynamic Kernel Tracing” below.

Pre-defined CUSTOM Trace Event

D-4

TRACE_CUSTOM may be used to log the pre-defined custom trace event. The caller
provides an integer identifier (sub_id) to differentiate multiple uses of the custom event.
The caller may also provide any arbitrary string of datato be logged with the event.

Synopsis

#include <linux/trace.h>

void TRACE CUSTOM (int sub_id, const void* ptr, int Size);

Arguments are defined as follows:

sub_id auser-supplied ID

ptr apointer to arbitrary datato be logged with the event
size the size of the data




Kernel Trace Events

Dynamic Kernel Tracing

trace_create_event

trace_destroy_event

In addition to the pre-defined custom kernel trace event described above, user-defined
kernel trace events can be dynamically created. All are displayed by NightTrace for
anaysis.

For dynamic kernel tracing, the following calls are used, which are described below:

* trace create event — dlocates an unused trace event ID and
associates it with a given name

* trace destroy event —deallocatestheevent ID

* TRACE EVENT — a generic trace point function that may be used to log a
dynamic event

This call allocates an unused trace event |D and associates it with the given name.

Synopsis

#include <linux/trace.h>

int trace create event (const char* name) ;
The argument is defined as follows:

name is a unique, user-defined name for the trace event. This name is truncated to
31 characters.

The event ID is returned. An attempt is made to return an ID that was not used (created
and destroyed) recently. An EVENT_CREATED trace event islogged with this call.

On failure, one of the following is returned:

-ENOsPC  All dynamic event IDs arein use.
-EINVAL  The given name pointer is NULL or pointsto a NULL string.
-EEXIST  The given nameis non-unique.

-ENOMEM Memory allocation error.

This call deallocates the trace event ID that was allocated with create trace event.

Synopsis

#include <linux/trace.h>

void trace destroy event (int id);
The argument is defined as follows:
id the event ID that was allocated with create trace event.

An EVENT_DESTROYED trace event is logged with this call.
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TRACE_EVENT
Thismay be used to log a trace point for the newly-created dynamic trace event.
Synopsis

#include <linux/trace.h>

void TRACE EVENT (int id, const void* ptr, int Size);

Arguments are defined as follows:

id the event ID
ptr apointer to arbitrary datato be logged with the event
size the size of the data
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E
Migrating 32-bit Code to 64-bit Code

This appendix provides information needed to migrate 32-bit code to 64-bit processing on
the AMD Opteron processor.

RedHawk Linux Version 2.X can execute on the 64-bit AMD Opteron processor in iHawk
870 Series systems as well as on the 32-bit Intel Pentium Xeon processors in iHawk 860
Series systems. The Opteron version of RedHawk Linux is afull 64-bit operating system
that executes both 32-bit and 64-bit applicationsin native mode on the Opteron processor.

The Opteron processor utilizes the AMD64 I nstruction Set Architecture (ISA), which isan
extension to the x86 instruction set of the iHawk 860 system. The “long” execution mode
of the Opteron processor has two submodes: “64-bit” and “ compatibility.” Existing 32-bit
application binaries can run without recompilation in compatibility mode under RedHawk
Linux, or the applications can be recompiled to run in 64-bit mode.

32-hit applications run natively with no “emulation mode” to degrade performance. For
this reason, many applications do not need to be ported to 64-hits.

Software optimized for Opteron can make use of the large addressable memory and 64-bit
architectural enhancements required by the most demanding applications, such as
scientific computing, database access, simulations, CAD tools, etc. If an application
would benefit from the larger virtual and physical address space afforded by 64-bit
processing, information in this section will help you migrate your code.

Porting existing 32-bit applications to 64-bits involves the following areas, which are
discussed in detail in the sections that follow:

¢ Source code written for 32-bits will likely require modifications to execute
in 64-bit mode.

* Binariesthat have been compiled for 32-bit operation need to be recompiled
for 64-bit before running in 64-hit mode.

¢ The build process (makefiles, project files, etc.) may need to be updated to
build 64-bit executables and add portability checking options for
compilation.

* Only 64-bit device drivers can be used with 64-bit operating systems.
Applications that install device drivers may not work correctly if thereis no
64-bit version of the required driver. All drivers supplied with RedHawk
Linux are 64-bit compatible.

In addition, the following are discussed:

* Hintsto get the most performance from your applications

¢ RedHawk Linux functionality differences between 32-bit and 64-bit
The AM D64 Developer Resource Kit isa complete resource for programmers porting or
developing applications and drivers for the Opteron processor. The AMD64 DRK contains

technical information including documentation, white papers, detailed presentations and
reference guides. ThisKit is available from the www.amd.com web site.
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Procedures

In order to systematically address modifying your code for porting to 64-hits, follow the
guidelines below. All source files should be reviewed and modified accordingly, including
header/include files, resource files and makefiles. Specifics regarding these steps are
provided in the sections that follow.

* Use#if defined _ x86 64  for code specificto AMD64
architecture.

* Convert al inline assembly code to use intrinsic functions or native
assembly subroutines.

* Modify calling conventions in existing assembly code as needed.
* Review use of any pointer arithmetic and confirm results.

* Review references to pointers, integers and physical addresses and use the
variable size data types to accommodate the differences between 32 and 64-
bit architectures.

¢ Examine makefiles to build 64-bit executables and add portability checking
options.

Coding Requirements

Data Type Sizes

The main issue with 32-bit and 64-bit portability is that there should be no presumption
about the size of an address or its relationship to the size of an int, 1ong, €tc.

Table E-1 shows the sizes of the various ANSI data types under RedHawk Linux on

AMDG64 systems.
Table E-1 Sizes of Data Types
ANSI Data Type Sizein Bytes

char 1
short 2
int 4
long 8
long long 8
intptr t, uintptr t 8
float 4
double 8
long double 16

You can usethe sizeof operator to get the size of the various data types; for example, if
you have avariable int x you can get the size of x with sizeof (x). This usage works
even for structs or arrays. For example, if you have a variable of a struct type with the
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Pointers

Arrays

Declarations

Migrating 32-bit Code to 64-bit Code

name a_struct, you can use sizeof (a_struct) tofind out how much memory itis
taking up.

Longs become 64-hit, therefore, you need to examine all direct or implied assignments or
comparisons between 1ong and int values. Examine all casts that allow the compiler to
accept assignment and comparison between longs and integers to ensure validity. Use the
value of the BITS PER_LONG macro to determine the size of longs.

If ints and longs must remain different sizes (for example, due to existing public API
definitions), implement an assertion that ascertains that the value of the 64-bit item does
not exceed the maximum value of the 32-bit item and generate an exception condition to
handle the caseif it does occur.

Pointers become 64-bit, therefore, you also need to examine all direct or implied
assignments or comparisons between pointers and int values. Remove all casts that
allow the compiler to accept assignment and comparison between pointers and integers.
Change the type to a type of variable size (equal to pointer size). Table E-2 shows the
variable size data types.

Table E-2 Variable Size Data Types

ANSI Data Type Definition

intptr t Signed integral type to hold a pointer

uintptr t Unsigned integral type to hold a pointer

ptrdiff t Signed type to hold the signed difference of
two pointer values

size t Unsigned value indicating the maximum
number of bytes to which a pointer can refer

ssize t Signed value indicating the maximum num-

ber of bytesto which a pointer can refer

Under 32-bit code, int and 1ong could be used to hold the size of arrays. Under 64-bit,
arrays can be longer than 4 GB. Instead of int or long, usethe size t datatype for
portability. It will become 64-bit signed integral type when compiled for 64-bit targets, or
32-bit for 32-bit targets. The return values from both sizeof () and strlen () areboth
of typesize t.

You also need to alter any declarations of variables, parameters or function/method return
types that must be changed to 64-bit to use one of the size variant types shown in
Table E-2.
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Explicit Data Sizes

When it is necessary to explicitly address data size, use the data typesin Table E-3. There
are no ANSI| data types that specifically address data size; these types are specific to
Linux.

Table E-3 Fixed Precision Data Types

Data Type Definition
int64_t 64-bit signed integer
uinté4 t 64-bit unsigned integer
int32 t 32-bit signed integer
uint32 t 32-bit unsigned integer
intl6_t 16-bit signed integer
uintlé t 16-bit unsigned integer
int8 t 8-hit signed integer
uint8 t 8-bit unsigned integer

Constants
Constants, especially hex or binary values, are likely to be 32-bit specific. For example, a
32-bit constant 0x80000000 becomes 0x0000000080000000 in 64-bit. Depending upon
how it is being used, the results may be undesirable. Make good use of the ~ operator and
type suffixes to avoid this problem; for example, the 0x80000000 constant might be better
as ~Ox 7ffffffful instead.

APIs

Code might need to be changed to use 64-bit APIs. Some APIs use data types which the
compiler will interpret as 64-bit in conflict with explicit 32-bit data types.

Calling Conventions

Calling conventions specify how processor registers are used by function callers and
callees. This applies when porting hand coded assembly code that interoperates with C
code and for in-line assembly statements. The Linux calling conventions for the Opteron
aregivenin Table E-4.
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Table E-4 Calling Conventions

Register Satus Use

$rax Volatile Temporary register; with variable
arguments passes information about the
number of SSE registers used; first return
register

$rbx Non-volatile Optionally used as base pointer, must be
preserved by callee

$rdi, %rsi, %rdx, Volaile Used to pass integer arguments 1,2,3,4,5,6

$rcx, %r8, %r9

$rsp Non-volatile Stack pointer

$rbp Non-volatile Optionally used as frame pointer, must be
preserved by callee

$rlo0 Volatile Temporary register, used for passing a
function’s static chain pointer

$rll Volatile Temporary register

$rl12-%rl5 Non-volatile Must be preserved by callee

$xmm0 - $xmml Volatile Used to pass and return floating point
arguments

xmm2 - $xmm?7 Volatile Used to pass floating point arguments

$xmm8 - $xmml5 Volatile Temporary registers

$mmx0 - $mmx 7 Volatile Temporary registers

$st0 Volatile Temporary register; used to return long
double arguments

$stl-%st7 Volatile Temporary registers

$fs Volatile Reserved for system use as thread-specific

dataregister

Conditional Compilation

In cases where there is the need to supply conditional code for 32-bit vs. 64-bit execution,
the macrosin Table E-5 can be used.

Table E-5 Macros for Conditional Compilation

Macro

Definition

__amdée4_

_i386

Compiler will generate code for AMD64

Compiler will generate code for x86
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Miscellaneous

A variety of other issues can arise from sign extension, memory allocation sizes, shift
counts, and array offsets. Be especially careful about any code that makes assumptions
about the semantics of integer overflow.

Compiling

Existing makefiles should build native 64-bit executables on the Opteron processor with
little or no modifications.

The following gec switches can be used to catch portability issues. Refer to the gee (1)
man page for details.

-Werror -Wall -W -Wstrict-prototypes -Wmissing-prototypes
-Wpointer-arith -Wreturn-type -Wcast-qual -Wwrite-strings
-Wswitch -Wshadow -Wcast-align -Wuninitialized -ansi

-pedantic -Wbad-function-cast -Wchar-subscripts -Winline
-Wnested-externs -Wredundant-decl

Testing/Debugging

Follow standard RedHawk Linux testing and debugging techniques for 64-bit code.

Performance Issues

The information in this section discusses how to get the best performance from your 64-bit
application.

Memory Alignment and Structure Padding

Alignment issues won't cause exceptions but can cause a performance hit. Misalignment
ishandled at runtime at the expense of several clock cycles. The performance side-effects
of poorly aligned operands can be large.

Data within structures will be aligned on natural boundaries which can lead to inefficient

code due to wasted space. Natural alignment means that 2-byte objects are stored on 2-
byte boundaries, 4-byte objects on 4-byte boundaries, etc.
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For example, the following structure definition will consume 24 bytes when generating
64-bit code:

typedef struct s {
int x;
int *p;
int z;

} s, *ps;

The pointer p will be aligned on an 8-byte boundary which will cause 4 bytes of padding
to be added after the x member. In addition, there will be an additional 4 bytes of padding
after the z member to pad the structure out to an even eight byte boundary.

The most efficient structure packing will be achieved by placing the members from largest
to smallest in the structure. The following declaration ismore efficient. It will take only 16
bytes and does not require any padding:

typedef struct s }
int *p;
int x;
int z;

} s;

Because of potential padding, the safest way to find the constant offset of fields within a
structure isto use the of £setof () macro, whichisdefined in stddef . h.
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Kernel-level Daemons on Shielded CPUs

The Linux kernel uses many kernel daemons to perform system functions. Some of these
daemons are replicated on every CPU in the system. Shielding a CPU from processes will
not remove one of these “per-CPU” daemons.

The following daemons can create serious jitter problems on process-shielded CPUs.
Fortunately, these daemons can be avoided by configuring and using the system carefully.

kmodule cpu

migration/cpu

kswapd node

These daemons are created and executed each time a kernel
module is unloaded. It is highly recommended that kernel
modul es are not unloaded while real-time applications are running
on the system.

These are the task migration daemons responsible for migrating
tasks off a particular CPU. These daemons will run on a process-
shielded CPU if a process running on that CPU is forced to
migrate off that processor. Forced migration may happen when
any of the following interfaces are used:

/proc/pid/affinity
sched setaffinity(2)
/proc/shield/procs
cpucntl (2)

delete module(2)

Applications that are running on shielded CPUs should use these
interfaces only when background process jitter can be tolerated.

Forced migration is also done by various kernel features, which
can be enabled with the cPu_FREQ and NUMA kernel configuration
options. These options have been disabled by default in all
RedHawk Linux kernel configurations.

These are the page swap-out daemons that swap pages out to a
swap device to reclaim pages when memory runs low.

When the kernel is built with the NUMA configuration option
enabled, there may be several of these daemons, each biased to a
single CPU. When a CPU is process-shielded or downed (using
cpu (1)), the daemon is moved to a non-shielded active CPU.
When the CPU is no longer shielded or down, the daemon is
moved back.

When NUMA is disabled, there is one system-wide daemon that is
not biased to any particular CPUs; therefore, kewapd will not run
on CPUs shielded from processes and is only a problem on a non-
shielded CPU.

NUMA is enabled by default only on prebuilt RedHawk x86_64
kernels.
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kapmd

This is the Advanced Power Management (APM) daemon that
processes power management requests. It is always biased to CPU
0. APM may be disabled with the kernel boot parameter
“apm=off” or may be completely eliminated by disabling the
APM kernel configuration option. APM has been disabled by
default in all RedHawk Linux kernel configurations. Because this
daemon is not a per-CPU daemon, it will not run on CPUs
shielded from processes and is therefore a problem only on a non-
shielded CPU.

The following daemons may execute on process-shielded CPUs. However, because they
perform necessary functions on behalf of processes or interrupts that have been biased to
that CPU, and because these daemons are only activated as aresult of actions initiated by
the processes or interrupts that are biased to a shielded CPU, these daemons are
considered less problematic in terms of their impact on determinism.

ksoftirgd/cpu

events/cpu

aio/cpu

reiserfs/cpu

xfsdatad/cpu
xfslogd/cpu

F-2

These are the softirqg daemons that execute softirq routines for a
particular CPU. One of these daemons will run on a process-
shielded CPU if a device driver interrupt handler biased to that
CPU uses softirgs either directly or indirectly viatasklets. Softirgs
are used directly by the local timer, SCSI, and networking
interrupt handlers. Tasklets are used by many device drivers.

The priority of the ksoftirqgd isdetermined by the SOFTIRQ_PRI
kernel tunable, which is located under General Setup on the
Kernel Configuration GUI. By default the value of thistunableis
set to zero, which indicates that the ksoftirgd daemon will run
as under the scHED_FIFO scheduling policy at a priority of oneless
than the highest real-time priority. Setting this tunable to a
positive value specifies the real-time priority value that will be
assigned to al ksoftirqgd daemons.

These are the default work queue threads that perform work on
behalf of various kernel services initiated by processes on a
particular CPU. They also may perform work that has been
deferred by device driver interrupt routines that have been biased
to the same CPU. These daemons execute with a nice value of
-10.

These are work queue threads that complete asynchronous 1/0
requests initiated with the io_submit (2) system call by
processes on a particular CPU. These daemons execute with a
nice value of -10.

These are work queue threads used by the Reiser File System.

These daemons execute with a nice value of -10.

These are work queue threads used by the IRIX Journaling File
System (XFS). These daemons execute with a nice val ue of -10.
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cio/cpu

kblockd/cpu

wanpipe wg/cpu  These are work queue threads used by various device drivers.
These threads perform work on behalf of various kernel services
initiated by processes on a particular CPU. They also perform
work that has been deferred by device driver interrupt routines
that have been biased to the same CPU. These daemons execute
with anice value of -10.

Note also that any third-party driver may create private work queues and work queue
threads that are triggered by processes or interrupt handlers biased to a shielded CPU.
These daemons are always hamed name/ cpu and execute with a nice value of -10.
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G
Cross Processor Interrupts
on Shielded CPUs

This appendix discusses the impact of cross processor interrupts on shielded CPUs and
methods to reduce or eliminate these interrupts for best performance.

On a RedHawk platform configured with one or more shielded CPUs, certain activities on
the other CPUs can cause interrupts to be sent to the shielded CPUs. These cross processor
interrupts are used as a method for forcing another CPU to handle some per-CPU specific
task, such as flushing its own data cache or flushing its own translation look-aside buffer
(TLB) cache.

Since cross processor interrupts can potentially cause noticeable jitter for shielded CPUs,
it is useful to understand the activities that cause these interrupts to occur, and also how to
configure your system so that some of these interrupts can be eliminated.

Memory Type Range Register (MTRR) Interrupts

On Intel P6 family processors (Pentium Pro, Pentium Il and later) the Memory Type
Range Registers (MTRRS) can be used to control processor access to memory ranges. This
is most useful when you have avideo (VGA) card on a PCI or AGP bus. Enabling write-
combining allows bus write transfers to be combined into alarger transfer before bursting
over the PCI/AGP bus. This can increase performance of image write operations by 2.5
times or more.

While the MTRRs provide a useful performance benefit, whenever anew MTRR rangeis
set up or removed, a cross processor interrupt will be sent to all the other CPUs in order to
have each CPU modify their per-CPU MTRR registers accordingly. The time that it takes
to process this particular interrupt can be quite lengthy, since al the CPUs in the system
must first sync-up/handshake before they modify their respective MTRR registers, and
they must handshake yet again before they exit their respective interrupt routines. This
class of cross processor interrupt can have a severe effect on determinism having been
measured at up to three milliseconds per interrupt.

When the X server isfirst started up after system boot, aMTRR rangeis set up, and one of
these MTRR cross processor interrupts is sent to al other CPUs in the system. Similarly,
when the X server exits, this MTRR range is removed, and all other CPUs in the system
receive yet another MTRR interrupt.

G-1
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Three methods can be used to eliminate MTRR related cross processor interrupts during
time-critical application execution on shielded CPUs:

1. Reconfigure the kernel so that the MTRR kernel configuration option is
disabled. When using the Kernel Configuration GUI, this option is located
under the Processor Type and Features section and is referred to as
“MTRR (Memory Type Range Register) support”. This eliminates MTRR
Cross processor interrupts since the kernel support for this feature is no
longer present. Note that this option has a potentially severe performance
penalty for graphic /O operations.

2. Start up the X server before running the time-critical applications on the
shielded CPU(s), and keep the X server running until the time-critical
activity has completed. The MTRR interrupts will still occur, but not
during time-critical activities.

3. The MTRR range can be preconfigured so that no cross processor interrupts
occur. Use the following procedure for preconfiguration of the MTRRs
used by the X server:

a. After the system is booted, but before the X server has started up,
examine the current MTRR settings. You need to be in either init
state1 or 3.

cat /proc/mtrr
reg00: base=0x00000000 ( OMB), size=1024MB: write-back, count=1
reg0l: base=0xe8000000 (3712MB), size= 128MB: write-combining, count=1

b. After the X server is started up, re-examine the MTRR register
settings:
cat /proc/mtrr
reg00: base=0x00000000 ( OMB), size=1024MB: write-back, count=1

reg0l: base=0xe8000000 (3712MB), size= 128MB: write-combining, count=2
reg02: base=0xf0000000 (3840MB), size= 128MB: write-combining, count=1

c. Inthis example, the new X server entry is the last entry, “reg02”. If
your system has multiple graphics cards, or shows more than one
new entry, then these additional entries should also be
accommodated with additional rc.local script entries.

d. Now add additional ling(s) to your /ete/rc.d/rc.local script
to account for the X server MTRR entries. In our example we have
just one X server entry to account for:

echo “base=0xf0000000 size=0x8000000 type=write-combining” > /proc/mtrr

e. Whenever the hardware configuration is modified on the system, it is
a good idea to check that the MTRR entriesin /etc/rc.d/
rc.local arestill correct by starting up the X server and using:

cat /proc/mtrr

to examine the MTRR output and check for differences from the
previous MTRR settings.
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Graphics Interrupts

A number of cross processor interrupts are issued while running graphics applications.
These include the following operations:

Accessing Video RAM — Whenever the X server is started on a system containing an
AGP, PCI or PCI Express NVIDIA graphics card, two TLB flush cross processor
interrupts are issued when the Video RAM areais accessed.

AGP bindings — On an AGP system, akernel graphics driver such asthe NVIDIA driver
will alocate a kernel memory buffer and then create an AGP memory binding to that
buffer. Whenever these bindings are added or removed during graphics execution, two
Ccross processor interrupts are normally sent to each of the other CPUs in the system in
order to first flush their data caches and then flush their kernel TLB translations. This class
of cross processor interrupt can have a fairly severe impact that has been measured to be
50 to 250 microseconds per interrupt. These bindings occur when:

¢ dtarting up or exiting the X server

* running graphics applications

¢ switching from a non-graphics tty back to the graphics screen with a
Ctrl Alt F# keyboard sequence

DMA buffer allocation — Jitter is also caused by the NVIDIA driver when allocating and
releasing physical pages for DMA buffer use.

These types of cross processor interrupts are eliminated or reduced when a pool of cache-
inhibited pages is pre-allocated. As graphics buffer allocations and AGP memory bind
requests are made, the pages needed to satisfy these requests are taken from the freelist of
pages. Since these pages are already cache-inhibited, there is no need to issue additional
flush operations when these pages are used. When an allocation or binding is removed, the
pages are placed back onto the page freelist, remaining cache-inhibit-clean. Should the
pool of pre-allocated pages be empty when a request is made, pages will be dynamically
allocated and cross processor interrupts will be issued in the normal fashion. Therefore, it
is usually best to pre-allocate enough pages so that the pool of available pages never
becomes empty.

To enable this support, the PREALLOC_GRAPHICS PAGES kernel parameter must have a
positive value representing the number of pre-allocated pages in the pool. A value of
10240 is configured by default in al pre-defined RedHawk Linux kernels. If avalue of 0
(zero) is supplied for the kernel parameter, this feature is disabled. The PREALLOC_
GRAPHICS PAGES option is located under the Device Drivers -> Character Devices
subsection of the Kernel Configuration GUI. This option is valid on systems with
supported AGP hardware or with one or more NVIDIA PCI/PCI Express cards. Note that
with this feature enabled, the TLB flush cross processor interrupts that normally occur
when the Video RAM area is accessed are reduced to a single TLB flush cross processor
interrupt at system bootup only.

The /proc/driver/graphics-memory file can be examined while running graphics
applications to observe the maximum amount of graphics memory pages actually in use at
any time to determineif the value should be adjusted. For example:

$ cat /proc/driver/graphics-memory

Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 42 pages
Maximum graphics memory used: 42 pages
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You may write to the file to increase or decrease the number of pages in the pool. This
allows you to test your system with various values before changing the kernel
configuration parameter. The following example lowers the number of pre-allocated pages
in the pool to 5120:

$ echo 5120 > /proc/driver/graphics-memory

The user must have CAP_SYS ADMIN capability to write to this file. Note that the page
value written to the file must be larger than or equal to the current value of the “Graphics
memory inuse” field. If the number of currently allocated pages needs to be lowered, exit
the X server.

Specifying an unrealistically large value will result in page allocation failures and the
allocation will be backed out. After writing to the file, read the file to verify that the page
allocation change was successful.

Note that when the NVIDIA driver isloaded or unloaded, a Page Attribute Table (PAT)
Cross processor interrupt is sent to each CPU. To minimize the jitter involved, avoid
loading or unloading the NVIDIA module during time-critical applications. You may pre-
load the NVIDIA driver before running time-critical applications, or during system boot
with the following command:

$ modprobe nvidia

Kernel TLB Flush Interrupts
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Kernel TLB flush cross processor interrupts occur when various types of kernel virtual
space translations are added or removed. For some types of kernel translations, the
interrupt is sent when a new translation is created; for other types, the interrupt is sent
when the translation is removed. This class of cross processor interrupt has minimal
impact that has been measured at |ess than 10 microseconds per interrupt.

M odifications have been made in RedHawk that reduce the number of timesvmalloc ()
and ioremap () kernel TLB flush cross processor interrupts occur. A modified algorithm
starts a new search for available kernel virtual space at the end of the last allocated virtual
address. TLB flushes occur only when the search wraps to the beginning of the virtual
space area. Provisions have been made that prevent an area that is about to be freed from
being reall ocated before being flushed.

Repeatedly allocating and freeing up kernel virtual space can fragment the virtual area
over time. To provide more contiguous allocation space and reduce fragmentation, the
virtual areais conceptually divided into two parts. an area where smaller allocations are
made, and an area where larger allocations are made. Control over these two sections is
provided through two kernel configuration parameters. Allocations to these two separate
areas are handled independently. When the end of one of these sections is reached,
alocations wrap around to the beginning of that section. When either section wraps, both
sections wrap to take advantage of the system-wide TLB flush that occurs.
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The following kernel configuration parameters enable and control this functionality. They
are accessible under the General Setup option of the Kernel Configuration GUI.

VMALLOC_TLBFLUSH_REDUCTION
Enables the algorithms for reducing vmalloc TLB flushes.

VMALLOC_SMALL_RESERVE
Defines the amount of space, in megabytes, to be set aside for small
alocations. The value specified as the default is approximately half of
the default size of the total vmalloc virtual space area (VMALLOC_
RESERVE).

The large allocation area size is equal to the total vmalloc virtual space
minus the small reserve size. If the small reserve value needs to be
significantly decreased in order to obtain a larger contiguous vmalloc
large allocation area, increasing the value of VMALLOC_RESERVE is
recommended since decreasing the small reserve size will cause the
number of vmalloc-generated kernel TLB flush interrupts to increase.
(Note that x86_64 platforms have afixed 512 GB vmalloc virtual space
size and the VMALLOC_RESERVE parameter is not used.) If large
contiguous vmalloc requests are not required, specifying alarger small
reserve value will slightly decrease the number of vmalloc-generated
kernel TLB flush interrupts.

Note that when either the small or large vmalloc allocation areas
become full or fragmented and there is not enough free space to satisfy a
vmalloc or ioremap request, a message will appear at the console and be
logged to the /var/log/messages file indicating an allocation
failure has occurred and noting which vmalloc virtual area (small or
large) was depleted.

Boot parameters can be used to change the size of the total
(vmalloc=size) and the small (vmalloc sm=size) areas during
system boot. Increasing the total vmalloc area also increases the large
vmalloc allocation area, unless the small allocation area size is also
increased. These two boot parameters may be used either together or
independently.

VMALLOC_LARGE_THRESHOLD_SIZE
Defines the size, in megabytes, for determining when an allocation
should be made in the large vmalloc virtual area.

VMALLOC_PGTABLE_PRELOAD
Preloads vmalloc page tables at boot, eliminating kernel page faults that
occur when vmalloc space is referenced. Only applicable to 1386
generic kernels; on by default.

The /proc/vmalloc-reserve-info file can be read to view the current values,
including the total and used vmalloc allocations, largest contiguous vmalloc area that is
free (chunk) for the small and large areas separately and the large threshold value. The
output from /proc/meminfo displays the total and used amounts for the entire (small
and large) virtual space areas and the larger of the two small/large chunk values.

If this feature is disabled, the following types of activities can cause quite a few of these
TLB flush interrupts, and should therefore be avoided or limited while time-critical
applications are executing on shielded CPUs:
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1. Starting and stopping graphics applications.
2. Starting and stopping the X server.

3. Switching between the graphics terminal screen and other non-graphics
terminals with the Ctrl Alt F# keyboard sequence.

4. Changing the screen resolution with the Ctrl Alt - or Ctrl Alt + keyboard
sequences.

User Address Space TLB Flush Interrupts
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Processes that are biased to execute on a shielded CPU and that share their address space
with processes that execute on other CPUs may receive user-space TLB flush cross
processor interrupts. Processes that make use of shared memory areas but which are
sharing their address space only with processes on the same CPU will not observe any
Cross processor interrupts due to any shared memory activity.

Multithreaded applications that use the pthreads library and Ada applications are
examples of shared memory applications — even though the programmer has not explicitly
made calls to create shared memory. In these types of programs, the pthreads library and
the Ada run time are creating shared memory regions for the user. Therefore, these
applications are subject to this type of cross processor interrupt when threads from the
same thread group or same Ada program execute on separate CPUs in the system.

A user address TLB flush cross processor interrupt is generated when another process that
is sharing the same address space is executing on a different CPU and causes a
modification to that address space’s attributes. Activities such as memory references that
cause page faults, page swapping, mprotect () cals, creating or destroying shared
memory regions, etc., are examples of address space attribute modifications that can cause
this type of cross processor interrupt. This class of cross processor interrupt has minimal
impact that has been measured at less than 10 microseconds per interrupt. When large
amounts of memory are shared, the impact can be more severe.

In order to eliminate these types of cross processor interrupts, users are encouraged to use
and write their applications such that time-critical processes executing on shielded CPUs
avoid operations which would affect a shared memory region during the time-critical
portion of their application. This can be accomplished by locking pages in memory, not
changing the memory protection viamprotect () and not creating new shared memory
regions or destroying existing shared memory regions.
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This appendix provides the steps needed to configure a serial console under RedHawk.

Note that a serial console is needed if you wish to use the kdb kernel debugger on a
system with a USB keyboard.

1. Modify the GRUB boot command line to include the following kernel
option:

console=tty#, baud#

wheretty# istheserial port to usefor the console and baud# isthe serial baud rate
to use. Generally, this almost always looks like:

console=ttyS0,115200
2. Changethe /etc/inittab fileto include the following line:
S0:2345:respawn:/sbin/agetty 115200 ttySO0 vtl100

Thebaud# and tty# must match the samevaluesthat were givenintheboot option
instep 1. Thefinal keyword specifiestheterminal type, whichisamost awaysvt100
but can be customized if necessary. See the agetty (8) man page for more
information.

Thisline can be added anywherein thefile, although it is generally added at the end.
The purpose of thislineisto get alogin on the serial console after the system boots
into multi-user mode.

3. If root loginis desired on the serial console (generally it is) you must
change or removethe /etc/securetty file. Seethe securetty (5)
man page for more details.

4. Connect a suitable dataterminal device to the serial port and ensure that it
is configured to communicate at the chosen baud rate. Depending on the
specific device being used, a null-modem may be required.

Notethat an inexpensive Linux PC is an excellent choice for adataterminal device.
Seetheminicom (1) man page for more information about creating a serial
communication session.

A Windows PC can also be used, but the explanation of that is beyond the scope of
this documentation.
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affinity

AGP

async-safe

atomic

authentication

Glossary

This glossary defines terms used in RedHawk Linux. Terms in italics are also defined
here.

An association between processes or interrupts and the CPUs on which they are allowed to
execute. They are prohibited from executing on CPUs not included in their affinity mask.
If more than one CPU isincluded in the affinity mask, the kernel is free to migrate the
process or interrupt based on load and other considerations, but only to another CPU in the
affinity mask. The default condition is affinity to execute on all CPUs in the system;
however, specifications can be made through mpadvise (3), shield (1),
sched setaffinity(2) andthe /proc file system. Using affinity with shielded
CPUs can provide better determinism in application code.

A bus specification by Intel which giveslow-cost 3D graphics cards faster access to main
memory on personal computers than the usual PCI bus.

When alibrary routine can be safely called from within signal handlers. A thread that is
executing some async-safe code will not deadlock if it isinterrupted by asignal. Thisis
accomplished by blocking signals before obtaining locks.

All in a set of operations are performed at the same time and only if they can all be
performed simultaneously.

Verification of the identity of a username, password, process, or computer system for
security purposes. PAM provides an authentication method on RedHawk Linux.

blocking message operation

Suspending execution if an attempt to send or receive a message is unsuccessful.

blocking semaphore operation

breakpoint

Suspending execution while testing for a semaphore value.

A location in a program at which execution is to be stopped and control of the processor
switched to the debugger.

Glossary-1
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busy-wait

capabilities

A method of mutual exclusion that obtains alock using a hardware-supported test and set
operation. If a process attempts to obtain a busy-wait lock that is currently in alocked
state, the locking process continues to retry the test and set operation until the process that
currently holds the lock has cleared it and the test and set operation succeeds. Also known
asaspin lock.

A division of the privileges traditionally associated with superuser into distinct units that
can be independently enabled and disabled. The current set of all valid Linux capabilities
canbefoundin /usr/include/linux/capability.h and detailed in Appendix C.
Through PAM, a non-root user can be configured to run applications that require privileges
only root would normally be allowed.

condition synchronization

context switch

critical section

deadlock

Utilizing sleep/wakeup/timer mechanisms to delay a process’ progress until an
application-defined condition is met. In RedHawk Linux, the postwait (2) and
server block (2)/server wake (2) system calsare provided for this purpose.

When a multitasking operating system stops running one process and starts running
another.

A sequence of instructions that must be executed in sequence and without interruption to
guarantee correct operation of the software.

Any of a number of situations where two or more processes cannot proceed because they
are both waiting for the other to rel ease some resource.

deferred interrupt handling

determinism

Glossary-2

A method by which an interrupt routine defers processing that would otherwise have been
done at interrupt level. RedHawk Linux supports softirgs, tasklets and work queues, which
execute in the context of a kernel daemon. The priority and scheduling policy of these
daemons can be configured so that a high-priority real-time task can preempt the activity
of deferred interrupt functions.

A computer system’s ability to execute a particular code path (a set of instructions
executed in sequence) in afixed amount of time. The extent to which the execution time
for the code path varies from one instance to another indicates the degree of determinism
in the system. Determinism applies to both the amount of time required to execute atime-
critical portion of a user’s application and to the amount of time required to execute
system code in the kernel.



deterministic system

device driver

direct I/O

Glossary

A system inwhich it is possible to control the factors that impact determinism. Techniques
available under RedHawk Linux for maximizing determinism include shielded CPUs,
fixed priority scheduling policy, deferred interrupt handling, load balancing and unit
control of hyper-threading.

Software that communicates directly with a computer hardware component or peripheral,
allowing it to be used by the operating system. Also referred to as device module or driver.

An unbuffered form of 1/0 that bypassesthe kernel’s buffering of data. With direct 1/0, the
file system transfers data directly between the disk and the user-supplied buffer.

discretionary access control

execution time

FBS

M echanisms based on usernames, passwords or file access permissions that check the
validity of the credentials given them at the discretion of the user. This differs from
mandatory controls, which are based on items over which the user has no control, such as
the IP address.

The amount of time it takes to complete a task. Using the high resolution process
accounting facility in RedHawk Linux, execution time measurements for each process are
broken down into system, user, interrupted system and interrupted user times measured
with the high resolution time stamp counter (TSC).

See Frequency-Based Scheduler (FBS).

fixed priority scheduling policy

flavor

A scheduling policy that allows users to set static priorities on a per-process basis. The
scheduler never modifies the priority of a process that uses one of the fixed priority
scheduling policies. The highest fixed-priority process always getsthe CPU assoon asitis
runnable, even if other processes are runnable. There are two fixed priority scheduling
policies. SCHED_FIFO and SCHED_RR.

A variation of asingle entity. RedHawk Linux has three flavors of pre-built kernels, each
containing different characteristics and configurations. A customized kernel would
constitute another flavor. The flavor designation is defined in the top level Makefile and
appended as a suffix to the kernel name when the kernel is built; e.g, <kernelname>-
trace.

Glossary-3
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Frequency-Based Scheduler (FBS)

GRUB

hyper-threading

info page

A task synchronization mechanism used to initiate processes at specified frequencies
based on a variety of sources, which include high-resolution clocks provided by the Real-
Time Clock and Interrupt Module (RCIM), an external interrupt source, or the completion
of acycle. The processes are then scheduled using a priority-based scheduler. When used
in conjunction with the Performance Monitor (PM), FBS can be used to determine the
best way of allocating processors to various tasks for a particular application.

The NightSim tool is a graphical interface to the Frequency-Based Scheduler and
Performance Monitor.

GRand Unified Bootloader. A small software utility that loads and manages multiple
operating systems (and their variants). GRUB is the default bootloader for RedHawk
Linux.

A feature of the Intel Pentium Xeon processor that allows for a single physical processor
to run multiple threads of software applications simultaneously. Each processor has two
sets of architecture state while sharing one set of processor execution resources. Each
architecture state can be thought of as alogical CPU resulting in twice as many logical
CPUs in asystem. A uniprocessor system with hyper-threading enabled has two logical
CPUs, making it possible to shield one of them from interrupts and background processes.
Hyper-threading is enabled by default in all RedHawk Linux i386 pre-built kernels.

Info pages give detailed information about a command or file. Its companion, man pages,
tend to be brief and provide less explanation than info pages. Info pages are interactive
with a navigable menu system. An info page is accessed using the info (1) command.

interprocess communication (IPC)

A capability that allows one process to communicate with another process. The processes
can be running on the same computer or on different computers connected through a
network. IPC enables one application to control another application, and for several
applications to share the same data without interfering with one another. |PC methods
include pipes, message queues, semaphores, shared memory and sockets.

interprocess synchronization

Glossary-4

Mechanisms that allow cooperating processes to coordinate access to the same set of
resources. RedHawk Linux supplies a variety of interprocess synchronization tools
including rescheduling variables, busy-wait and sleepy-wait mutual exclusion
mechanisms and condition synchronization tools.



jitter

journaling file system

kernel

Glossary

The size of the variation in the arrival or departure times of a periodic action. When the
worst-case time measured for either executing a code segment or responding to an
interrupt is significantly different than the typical case, the application’s performance is
said to be experiencing jitter. Jitter normally causes no problems as long as the actions all
stay within the correct period, but real-time tasks generally require that jitter be minimized
as much as possible.

A file system whereby disk transactions are written sequentially to an area of disk called a
journal or log before being written to their final locations within the filesystem. If a crash
occurs before the journal entry is committed, the original datais still on the disk and only
new changes are lost. When the system reboots, the journal entries are replayed and the
update that was interrupted is completed, greatly simplifying recovery time. Journaling
file systemsin RedHawk Linux include ext3, xfs and reiserfs.

The critical piece of an operating system which performs the basic functions on which
more advanced functions depend. Linux is based on the kernel developed by Linus
Torvalds and a group of core developers. Concurrent has modified the Linux kernel
distributed by Red Hat to provide enhancements for deterministic real-time processing.
RedHawk Linux supplies three pre-built kernels with the following flavors: generic,
debug and trace. They reside as files named vmlinuz-<kernelversion>-RedHawk-
<revision.level>-<flavor> in the /boot directory.

Kernel Configuration GUI

load balancing

man page

memory object

The graphical interface from which selections are made for configuring a kernel. In
RedHawk Linux, running the ccur-config script displays the GUI where selections
can be made.

Moving processes from some CPUs to balance the load across all CPUs.

A brief and concise online document that explains a command or file. A man page is
displayed by typing man followed by a space and then the term you want to read about at
the shell prompt. Man pages in RedHawk Linux include those provided with the Red Hat
Linux distribution as well as those describing functionality developed by Concurrent.

Named regions of storage that can be mapped to the address space of one or more
processes to alow them to share the associated memory. Memory objects include POS X
shared memory objects, regular files, and some devices, but not al file system objects
(terminals and network devices, for example). Processes can access the data in a memory
object directly by mapping portions of their address spaces onto the objects, which
eliminates copying the data between the kernel and the application.
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message queues

module

mutex

mutual exclusion

NightProbe

NightSim

NightStar Tools

NightTrace

Glossary-6

An interprocess communication (IPC) mechanism that allows one or more processes to
write messages which will be read by one or more reading processes. RedHawk Linux
includes support for POS X and System V message queue facilities.

A collection of routines that perform a system-level function. A module may be |oaded
and unloaded from the running kernel as required.

A mutual exclusion device useful for protecting shared data structures from concurrent
modifications and implementing critical sections. A mutex has two possible states:
unlocked (not owned by any thread) and locked (owned by one thread). A thread
attempting to lock a mutex that is already locked by another thread is suspended until the
owning thread unlocks the mutex first.

A mechanism that ensures that only one of a set of cooperating processes can be executing
in acritical section at atime by serializing access to shared resources. Three types of
mechanisms are typically used to provide mutual exclusion—those that involve busy-
waiting, those that involve sleepy-waiting, and a combination of the two.

A graphical user interface (GUI) developed by Concurrent that permits real-time
recording, viewing, and modification of program data within one or more executing
programs. It can be used during development and operation of applications, including
simulations, data acquisition, and system control.

A graphical user interface (GUI) to the Frequency-Based Scheduler (FBS) and
Performance Monitor (PM) facilities.

A collection of development tools supplied by Concurrent that provide a graphical
interface for scheduling, monitoring, debugging and analyzing run time behavior of real-
time applications. The toolset includes the NightSm periodic scheduler, NightProbe data
monitor, NightTrace event analyzer and NightView debugger.

A graphical tool developed by Concurrent used for analyzing the dynamic behavior of
multiprocess and/or multiprocessor user applications and operating system activity. The
NightTrace toolset consists of an interactive debugging and performance analysis tool,
trace data collection daemons, and an Application Programming Interface (API).
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NightView
A general-purpose, graphical source-level debugging and monitoring tool designed by
Concurrent for real-time applications written in C, C++, and Fortran. NightView can

monitor, debug, and patch multiple real-time processes running on multiple processors on
the local system or on different targets with minimal intrusion.

nonblocking message operation

Not suspending execution if an attempt to send or receive a message is unsuccessful.

nonblocking semaphore operation

Not suspending execution while testing for a semaphore value.

PAM
Pluggable Authentication Module. A method that allows a system administrator to set
access and authentication policies without having to separately recompile individual
programs for such features. Under this scheme, a non-root user can be configured to run
applications that require privileges only root would normally be allowed.

PCI

(Peripheral Component Interface). A peripheral bus that provides a high-speed data path
between the processor and peripheral devices like video cards, sound cards, network
interface cards and modems. PCI provides “plug and play” capability, runs at 33MHz and
66 MHz and supports 32-hit and 64-bit data paths.

Performance Monitor (PM)

A facility that makes it possible to monitor use of the CPU by processes that are scheduled
on a frequency-based scheduler. Values obtained assist in determining how to redistribute
processes among processors for improved load balancing and processing efficiency.
NightSmis a graphical interface to the Performance Monitor.

Pluggable Authentication Module (PAM)

See PAM.

POSIX
A standard specifying semantics and interfaces for a UNIX-like kernel interface, along
with standards for user-space facilities. There is a core POSIX definition which must be
supported by all POSIX-conforming operating systems, and several optional standards for
specific facilities; e.g., POSIX message queues.

preemption

When a process that was running on a CPU is replaced by a process with a higher priority.
Kernel preemption included in RedHawk Linux allows a lower priority process to be
preempted, even if operating in kernel space, resulting in improved system response.
Process preemption can be controlled through the use of rescheduling variables.
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priority inheritance

priority inversion

privilege

process

A mechanism that momentarily passes along the priority of one process to another as
needed to avoid priority inversion.

When a higher-priority process is forced to wait for the execution of alower-priority
process.

A mechanism through which users or processes are allowed to perform sensitive
operations or override system restrictions. Superuser possesses all (root) privileges.
Through capabilities, privileges can be enabled or disabled for individual users and
processes.

An instance of a program that is being executed. Each process has a unique PID, which is
that process' entry in the kernel's process table.

process dispatch latency

RCIM

real-time

rescheduling variable

robust mutex
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The time that elapses from the occurrence of an external event, which is signified by an
interrupt, until the process waiting for that external event executes its first instruction in
user mode.

Real-Time Clock and Interrupt Module. A multifunction PCI card designed by Concurrent
for fully deterministic event synchronization in multiple CPU applications. The RCIM
includes a synchronized clock, multiple programmable real-time clocks, and multiple
input and output external interrupt lines. Interrupts can be shared (distributed) across
interconnected systems using an RCIM chain.

Responding to a real-world event and completing the processing required to handle that
event within a given deadline. Computations required to respond to the real-world event
must be complete before the deadline or the results are considered incorrect. RedHawk
Linux is atrue real-time operating system (RTOS) because it can guarantee a certain
capability within a specified time constraint.

A data structure, allocated on a per-process basis by the application, that controls asingle
process’ vulnerability to rescheduling.

A mutex that gives applications a chance to recover if one of the application’s threads dies
while holding the mutex.
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Glossary

RPM Package Manager. A management system of tools, databases and libraries used for
installing, uninstalling, verifying, querying, and updating computer software packages.
Seethe rpm (8) man page for complete information.

A location in memory whose value can be tested and set by more than one process. A
semaphore is a form of sleepy-wait mutual exclusion because a process that attempts to
lock a semaphore that is already locked will be blocked or put to sleep. RedHawk Linux
provides POS X counting semaphores that provide a simple interface to achieve the fastest
performance, and System V semaphores that provide many additional functions (for
examplethe ability to find out how many waiters there are on a semaphore or the ability to
operate on a set of semaphores).

Memory accessible through more than one process' virtual address map. Using shared
memory, processes can exchange data more quickly than by reading and writing using the
regular operating system services. RedHawk Linux includes standardized shared memory
interfaces derived from System V aswell as POS X.

A CPU that is responsible for running high-priority tasks that are protected from the
unpredictable processing associated with interrupts and system daemons. Each CPU in a
RedHawk Linux system can be individually shielded from background processes,
interrupts and/or the local timer interrupt.

A model whereby tasks and interrupts are assigned to CPUs in away that guarantees a
high grade of serviceto certain important real-time functions. In particular, a high-priority
task is bound to one or more shielded CPUs, while most interrupts and low priority tasks
are bound to other CPUs. The CPUs responsible for running the high-priority tasks are
shielded from the unpredictable processing associated with interrupts and the other
activity of lower priority processes that enter the kernel via system calls.

See shielded CPU.

A method of mutual exclusion such as a semaphore that puts a process to sleep if it
attemptsto obtain alock that is currently in alocked state

Symmetric multi-processing. A method of computing which uses two or more processors
managed by one operating system, often sharing the same memory and having equal
access to input/output devices. Application programs may run on any or all processorsin a
system.
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softirg

spin lock

System V

tasklet

TLB

trace event

work queues

Glossary-10

A method by which the execution of a function can be delayed until the next available
“safe point.” Instead of invoking the function, a “trigger” that causes it to be invoked at
the next safe point is used instead. A safe point is any time the kernel is not servicing a
hardware or software interrupt and is not running with interrupts blocked.

A busy-wait method of ensuring mutual exclusion for a resource. Tasks waiting on a spin
lock sit in abusy loop until the spin lock becomes available.

A standard for interprocess communication (IPC) objects supported by many UNIX-like
systems, including Linux and System V systems. System V |PC objects are of three kinds:
System V message queues, semaphore sets, and shared memory segments.

A software interrupt routine running when the software interrupt is received at a return to
user space or after a hardware interrupt. Tasklets do not run concurrently on multiple
CPUs, but are dynamically allocatable.

Translation Look-aside Buffer. A table used in a virtual memory system, that lists the
physical address page number associated with each virtual address page number. A TLB is
used in conjunction with a cache whose tags are based on virtual addresses. The virtual
address is presented simultaneously to the TLB and to the cache so that cache access and
the virtual-to-physical address trandation can proceed in parallel

Logged information for a point of interest (trace point) in an application’s source code or
in the kernel that can be examined by the NightTrace tool for debugging and performance
anaysis.

A method of deferred execution in addition to softirgs and tasklets, but unlike those forms,
Linux processes work queues in the process context of kernel daemons and therefore are
capable of sleeping.
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