RED .
=P\ X< Linux ® User’s Guide

&
concurremt
December 2009

Copyright 2009 by Concurrent Computer Corporatiést rights reserved. This publication or any pdreteof is
intended for use with Concurrent products by Corenitr personnel, customers, and end-users. It mapao
reproduced in any form without the written pernossof the publisher.

The information contained in this document is badbto be correct at the time of publication. Isibject to change
without notice. Concurrent makes no warrantiesyesged or implied, concerning the information ciorgd in this
document.

To report an error or comment on a specific porobmhe manual, photocopy the page in questionraatk the
correction or comment on the copy. Mail the copgdany additional comments) to Concurrent Computer
Corporation, 2881 Gateway Drive, Pompano Beachjddp 33069. Mark the envelogAttention: Publications
Department.” This publication may not be reproduced for atlyen reason in any form without written permission
of the publisher.

Concurrent Computer Corporation and its logo agestered trademarks of Concurrent Computer Corjorafll
other Concurrent product names are trademarks at@oent while all other product names are tradé&sar
registered trademarks of their respective owneirsux® is used pursuant to a sublicense from thaukimMark
Institute.

Printed in U. S. A.

Revision History:

Date Level Effective With

August 2002 000 RedHawk Linux Release 1.1
September 2002 100 RedHawk Linux Release 1.1
December 2002 200 RedHawk Linux Release 1.2
April 2003 300 RedHawk Linux Release 1.3, 1.4
December 2003 400 RedHawk Linux Release 2.0
March 2004 410 RedHawk Linux Release 2.1
July 2004 420 RedHawk Linux Release 2.2
May 2005 430 RedHawk Linux Release 2.3
March 2006 500 RedHawk Linux Release 4.1
May 2006 510 RedHawk Linux Release 4.1
May 2007 520 RedHawk Linux Release 4.2
April 2008 600 RedHawk Linux Release 5.1
June 2008 610 RedHawk Linux Release 5.1
October 2008 620 RedHawk Linux Release 5.2

December 2009 630 RedHawk Linux Release 5.4

Preface

Scope of Manual

This manual consists of three parts. The infornmeitioPart 1 is directed towards real-time
users. Part 2 is directed towards system admingaPart 3 consists of backmatter:
appendixes, glossary and index. An overview ofcihr@ents of the manual follows.

Structure of Manual

This guide consists of the following sections:
Part 1 - Real-Time User

* Chapter 1,Introduction provides an introduction to the RedHawk Linux
operating system and an overview of the real-tieadures included.

* Chapter 2Real-Time Performanceliscusses issues involved with achieving
real-time performance including interrupt respomsecess dispatch latency
and deterministic program execution. The shieldBt) @odel is described.

¢ Chapter 3Real-Time Interprocess Communicatidiscusses procedures for
using the POSIX and System V message-passing and shared memory
facilities.

* Chapter 4Process Schedulingrovides an overview of process scheduling
and describes POSIX scheduling policies and pieésrit

* Chapter 5,Interprocess Synchronizatipaescribes the interfaces provided
by RedHawk Linux for cooperating processes to syocize access to
shared resources. Included are: POSIX counting phoras, System V
semaphores, rescheduling control tools and comdsiymchronization tools.

¢ Chapter 6Programmable Clocks and Timeggovides an overview of some
of the RCIM and POSIX timing facilities availablader RedHawk Linux.

* Chapter 7System Clocks and Timedescribes system timekeeping and the
per-CPU local timer.

* Chapter 8File Systems and Disk l/@xplains the xfs journaling file system
and procedures for performing direct disk I/O oe fRedHawk Linux
operating system.

¢ Chapter 9Memory Mappingdescribes the methods provided by RedHawk
Linux for a process to access the contents of angttocess’ address space.

* Chapter 10Non-Uniform Memory Access (NUMAJescribes the NUMA
support available on certain systems.

Part 2 - Administrator

* Chapter 11 Configuring and Building the Kerneprovides information on
how to configure and build a RedHawk Linux kernel.

RedHawk Linux User's Guide

Syntax Notation

* Chapter 12Kernel Debuggingprovides guidelines for saving, restoring and
analyzing the kernel memory image uskaymp andcrash and basic use
of thekdb kernel debugger.

* Chapter 13Pluggable Authentication Modules (PAMJescribes the PAM
authentication capabilities of RedHawk Linux.

* Chapter 14Device Drivers describes RedHawk functionality and real-time
issues involved with writing device drivers.

* Chapter 15PClI-to-VME Supportdescribes RedHawk’s support for a PCI-
to-VME bridge.

Part 3 - Common Material

* Appendix A, Example Message Queue Programeontains example
programs illustrating the POSIX and System V messpgeue facilities.

* Appendix B Kernel Tunables for Real-time Featuresntains a listing of
the kernel tunables that control unique featurdReédHawk Linux and their
default values in pre-built kernels.

* Appendix G Capabilities lists the capabilities included in RedHawk Linux
and the permissions provided by each.

* Appendix D Kernel Trace Eventdists pre-defined kernel trace points and
methods for defining and logging custom events iwikernel modules.

* Appendix E Migrating 32-bit Code to 64-bit Cod@rovides information
needed to migrate 32-bit code to 64-bit processingn x86_64 processor.

* Appendix FE Kernel-level Daemons on Shielded CPUescribes how
kernel-level daemons execute on shielded CPUs emddes methods for
improving performance.

* Appendix G Cross Processor Interrupts on Shielded CPdéscribes how
cross-processor interrupts execute on shielded GRdgprovides methods
for improving performance.

* Appendix H Serial Console Setuprovides instructions for configuring a
serial console.

¢ Appendix | Boot Command Line Parametediscusses the boot parameters
unique to RedHawk.

* TheGlossaryprovides definitions for terms used throughous tBuide.

* Thelndexcontains an alphabetical reference to key termdscancepts and
the pages where they occur in the text.

The following notation is used throughout this malnu

italic Books, reference cards, and items that the user spesify appear in
italic type. Special terms may also appeadtditic.

list bold

list

hypertext links

Related Publications

Preface

User input appears iist bold type and must be entered exactly
as shown. Names of directories, files, commandtpg and man
page references also appealish bold type.

Operating system and program output such as promgtssages and
listings of files and programs appeardish type.

Brackets enclose command options and argumentatbaatptional.
You do not type the brackets if you choose to dpebese options or
arguments.

When viewing this document onlinkcking on chapter, section, fig-
ure, table and page number references will dispilaycorresponding
text. Clicking on Internet URLs provided biue type will launch
your web browser and display the web site. Clickimgpublication
names and numbersiiadtype will display the corresponding manual
PDF, if accessible.

The following table lists RedHawk Linux documentati Click on the red entry to display
the document PDF (optional product documentaticawmlable for viewing only if the
optional product has been installed). These doctsreme also available by clicking on
the “Documents” icon on the desktop and from Corentts web site alvww.ccur.com

RedHawk Linux Operating System Documentation Pub. Number
RedHawk Linux Online Documentation Roadmap 0898002
RedHawk Linux Release Notes 0898003
RedHawk Linux User’s Guide 0898004
Real-Time Clock & Interrupt Module (RCIM) User’s iGe 0898007
iHawk Optimization Guide 0898011
RedHawk Linux FAQ N/A
Optional RedHawk Product Documentation

RedHawk Linux Frequency-Based Scheduler (FBS) $)&aride 0898005

RedHawk Linux User's Guide

Vi

Contents

Preface . . .o e e e iii

Chapter 1 Introduction

Chapter 2 Real-Time Performance

OV BTV W, . e e e e 1-1
RedHawk Linux Kernels 1-3
System Updates. 1-4
Real-Time Features.o e e e e e 1-4
Processor Shielding uuui i .. 144
Processor Affinity 1-4
User-level Preemption Controlttt 1-5
Fast Block/Wake Services. e, 15
RCIM DIIVEI . . o e e e e e e 1-5
Frequency-Based Scheduler 1-5
/proc Modifications e 1-6
Kernel Trace Facility 1-6
ptrace EXteNsions. e ... 146
Kernel Preemption. i 1-6
Real-Time Scheduler. i 1-7
Low Latency Enhancements i 1-7
Priority Inheritance e 1-7
High Resolution Process ACCOUNtiNG . . . o voees oo i i e e 71-
Capabilities SUPpOrt 1-7
Kernel Debuggers 1-8
Kernel Core Dumps/Crash Analysis« coee oo 81-
User-level SpIn LOCKSo 1-8
usermap and /proC MmMap.ot vmimneeeiieeeieeene. 1-8
Hyper-threading. e 1-8
XFS Journaling File System oo 1-9
POSIX Real-Time EXteNSIONSottt e 1-9
User Priority Scheduling uuu 1-9
Memory Resident Processes.o oo oot 1-9
Memory Mapping and Data Sharingo .. 1-10
Process Synchronization. oo 1-10
Asynchronous Input/Output. 1-10
Synchronized Input/Output 0-1
Real-Time Signal Behavior i ... 1-1
Clocksand TImers e e e 1-11
Message QUEBUES.ottt e e e e 1-11
Overview of the Shielded CPUModel it 2-1
Overview of DeterminisSm e e e 2-2
Process Dispatch Latency. i e 272
Effect of Disabling Interruptso ., 244
Effect of Interrupts. o 2-5
Effect of Disabling Preemption. i 2-8

Vi

RedHawk Linux User's Guide

Effect of Open Source Device Drivers, 92-
How Shielding Improves Real-Time Performance........................... 29
Shielding From Background Processes., 2-9
Shielding From Interrupts o 2-10
Shielding From Local Interrupt. i e, 2-11
Interfaces to CPU Shielding 2-12
Shield Command i 2-12
Shield Command Examples. o 2-13
EXit Status. e 2-13
Shield Command Advanced Features 2-14
/proc Interface to CPU Shielding. i, 2-14
Assigning Processesto CPUS oo e, 2-14
Multiprocessor Control Using mpadvise 2-15
Assigning CPU Affinity toinit. oo 2-1
Example of Setting Up a Shielded CPUo oo 2-17
Procedures for Increasing Determinismcoceo oo oo i 2220
Locking Pages in Memory.t e e s 2-20
Setting the Program Priority 2-20
Setting the Priority of Deferred Interrupt Procegsi 2-21
Waking Another Process 2521
Avoiding Cache Thrashing i, 2-22
Reserving Physical Memory 2-22
Binding to NUMA NOESo e, 2-27
I/O Throughput on Quad Opteron Systems. . .« ew ot vt 2-27
Understanding Hyper-threadingccou. v, .. .2-28
System Configuration.o 2-30
Recommended CPU Configurations, 2-30
Avoiding a Low Memory State e 2-34
Known Issues with Linux Determinism.o oo 2-34

Chapter 3 Real-Time Interprocess Communication

OVEIVIBW. . . .t e e e e e e 3-1
POSIX Message QUEBUES. . . .o v vttt c e et e e e e e e 3-2
SYStEM V MESSAQES . . . ottt i e 3-3
USING MEBSSaAQESottt e 3-4
The msgget System Callo i, 37
The msgctl System Call. 39
The msgsnd and msgrcv System Calls 3-10
Sending aMesSSage.ttt 3-10
Receiving aMeSSageot i e 3-11
POSIX Shared Memory i 3-12
Using the shm_open Routine. oo oo, 3913
Using the shm_unlink Routine 3-15
SystemV SharedMemory couue i, 315
Using Shared Memory. i i e, 3-16
TheshmgetSystem Callo e 3719
The shmctl System Call. 3-21
Binding a Shared Memory Segmentto I/O Space. 3-22
Using shmget e e, 3-22
Usingshmbindo 3-23
The shmat and shmdt System Calls. -23
Attaching a Shared Memory Segment, 324
Detaching Shared Memory Segments 3-24

viii

Contents

Shared Memory Utilities 3-25
The shmdefine Utility. 3-25
The shmconfig Commandccoui .. 3-25

Chapter 4 Process Scheduling

OV IV W, . o it e e e e e 4-1
How the Process Scheduler Works oo ... -24
Scheduling Policies e 4-3

First-In-First-Out Scheduling (SCHED _FIFO) . .o ..o n L 4-3

Round-Robin Scheduling (SCHED RR). 44
Time-Sharing Scheduling (SCHED_OTHER). . . e oo, 44
Procedures for Enhanced Performance. . . .o oo oo oo i i, 44

How to Set Prioritieso 4-4
Interrupt ROULINESo o e 4-5
SCHED_FIFOVS SCHED_RR e e e 4-5
Fixed Priority Processes LockingUpaCPU.o viie.. 45
Memory LOCKINGo i e e 4-6
CPU Affinity and Shielded Processors oo, 64-
Process Scheduling Interfacesccoe i 4-6
POSIX Scheduling Routines s 4-6
The sched_setscheduler Routine 4-7
The sched_getschedulerRoutine 4-8
The sched_setparam Routine 4-9
The sched_getparam Routine. 4-10
The sched yield Routine umu .. -10
The sched_get_priority_ min Routine. 4-11
The sched_get_priority_max Routine 4-11
The sched_rr_get interval Routine 4-12
TherunCommand. 4-13

Chapter 5 Interprocess Synchronization

Understanding Interprocess Synchronization. 51

Rescheduling Control e 5-3
Understanding Rescheduling Variables. 5-3
Using resched_cntl SystemCall 54
Using the Rescheduling Control Macros. . . .coooeee oo oo 5-5

resched loCK i 5-5

resched_unlock oo 5-6

resched nlocks cccu. it b6
Applying Rescheduling Control TooIS cu oo 5-7

Busy-Wait Mutual EXCIUSION 5-7
Understanding the spin_mutex Variable 5-7
Using the spin_mutex Interfaceso oo oo i i e i e . 58
Applying spin_mutex TOOIS.t e 5-9
Understanding the nopreempt_spin_mutex Variahle. 5-10
Using the nopreempt_spin_mutex Interfaces 5-10

POSIX Counting Semaphores oo . 512
OVEIVIBW . . e e e e e e 5-12
Interfaces 5-13

Thesem_initRoutine. i, 5-14
The sem_destroy Routine. e oo 15-
The sem_open RoULiNe. e -16
The sem _close Routing. i 5-17

RedHawk Linux User's Guide

The sem_unlink Routine 1B-
The sem wait Routine oot 5-19
The sem_timedwait Routine. oo i, 5-19
The sem_trywait Routine. 26-
The sem_postRoutine i e 5-20
The sem_getvalue Routine.o oo e 5-2
Extensions to POSIX MUtexXes ieuu it i i e i . D221
RODUSE MULEXES o e 5-22
Priority Inheritance e 5-23
Userinterface e 5-23
pthread_mutex_consistent Np wooe o 5-24
pthread_mutex_getunlock_nNpo 5-24
pthread_mutex_setconsistency Np.. ..., 5-24
pthread_mutex_setunlock_np.o 5-25
pthread_mutexattr_getfast npo 5-25
pthread_mutexattr_getprotocol.ot 5-25
pthread_mutexattr_getrobust np e oo 5-26
pthread_mutexattr_getunlock_nNp. oo oo 5-26
pthread_mutexattr_setfast_np. ... o 6-2
pthread_mutexattr_setprotocol.o 5-27
pthread_mutexattr_setrobust np« couu . 5-27
pthread_mutexattr_setunlock_np....... ... 5-27
Compiling Programs with POSIX Mutexesccovv.... 5-27
System V Semaphorest e e ... D-28
OV IV W . . e e e e e 5-28
Using System V Semaphores 5-29
The semgetSystemCallccceo oot 531
The semctl System Call. oo e 5-34
Thesemop SystemCall............ccccciiiiiiii i iiiii et 5-36
Condition Synchronization.« cuu i 5-37
The postwait System Call et 5-37
The ServerSystem Callsccooee oo e . 5239
server_block. 5-39
server_Wakel e 5-40
SEIVEI _WAKEBVEC . . .ottt e s e e e 5-41
Applying Condition Synchronization Toolsot 5-42

Chapter 6 Programmable Clocks and Timers

Understanding Clocksand Timers cccccee o oo i e . 641

RCIM Clocks and TIMEerSo e i e s 6-1
POSIX Clocks and Timers.ttt e e e s 6-2
Understanding the POSIX Time Structures . . ooo oo it i e . 6-3
Using the POSIX Clock Routines.t e 6-4
Using the clock_settime Routine. 6-4
Using the clock_gettime Routine 6-5
Using the clock_getresRoutine., i, 6-5
Using the POSIX Timer Routines. it 6-6

Using the timer_create Routine.cccee.o oot ittt i, 6-6
Using the timer_delete Routine. 6-8

Using the timer_settime Routine. 6-8
Using the timer_gettime Routine. 6-9
Using the timer_getoverrun Routineo i -16

Using the POSIX Sleep Routines ccees oo oo . 6411

Contents

Using the nanosleep Routine. oo e oo i i 6-11
Using the clock_nanosleep Routine oo oo -18

Chapter 7 System Clocks and Timers

System Timekeeping.o e 7-1
Local TIMer. . .. 7-1
Functionality 7-2
CPU ACCOUNtING.t s e ettt e e 7-2
Process Execution Time Quanta and Limits. 7-3
Interval Timer Decrementing o ettt 7-3
System Profiling. 7-3
CPULoad Balancing 7-3
CPURescheduling oo i 7-4
POSIX TIMEIS . . e e e e 7-4
RCU ProCessingo ae e e e, 7-4
Miscellaneous. 7-4
Disablingthe Local Timer.o e e e 7-4

Chapter 8 File Systems and Disk 1/0

Journaling File System 8-1
Creatingan XFS File System oo, 82
Mountingan XFS File System 8-2
Data Management API (DMAPI) e 8-2

Direct Disk 1/Oo e 8-3

Chapter 9 Memory Mapping

Establishing Mappings to a Target Process’ Add&s®sce 9-1
USINg MMAP(2) . . et e e e e e 9-1
USING USEIMAP(3) . . oottt e e e 9-3
Considerationsot e 9-4

Kernel Configuration Parameterso, 94

Chapter 10 Non-Uniform Memory Access (NUMA)

OVEIVIBW. . . .t e i e e e e e 10-1
Memory POlICIES. 10-2
NUMA User Interface e i e 10-3
Memory-shielded Nodes e e, 10-3
Memory-shielding and Preallocated Graphics Pages 10-5
NUMA Support for Processes using run(1) . . . K0 B 4
NUMA Support for Shared Memory Areas usmg shmqg(ﬂj) 10-9
System Calls 10-11
Library FUNCLIONS 10-11
Informational Files and Utilities 1011
Node StatiSticso 10-11
Node IDs for Mapped Pages.« oo 1P-1
NUMA Hit/Miss Statistics Usinghumastat.ovvi. ... 10-13
kdb Support 10-13
Performance Guidelines . e e e ... 10-14
Task-Wide NUMA Mempollcy 10-

Shared Memory Segments. couu 10-14

Xi

RedHawk Linux User's Guide

Configuration 10-15

Chapter 11 Configuring and Building the Kernel

INtrodUCHION.o e e 11-1
Configuring a Kernel Using ccur-configcoc. ... oo oo, 1122
Buildinga Kernel 11-4
Building Driver Modules oo 11-5
Example—Building a Dynamic Loadable Module in a-Budt RedHawk Kernel 11-6
Additional Information. 11-7

Chapter 12 Kernel Debugging

OVEIVIBW. . . .t e e e e e e 12-1
Taking and Analyzinga SystemCrash.c.c. oo, 1241
Activating KAumpo e 12-1
How a Crash Dumpis Createdo 12-2
Installation/Configuration Details . - e e, 12-3
kdump Options Defined in the Conflguratlon Flle 12-3
kdump Command Line Interface.coui i 2-4
Using crash to Analyze the DUMp.o oo 12-5
AnalyzingaDump File 2-5
AnalyzingaLive System cuu . 2-T
Getting Helpo 12-7
Kernel DebUggers . . . oo 12-8
KAb . . 12-8
NMIINEEITUPLES . . . e e e e e e e e e e e e 12-8
NMIBULION . . o e e e 12-9

Chapter 13 Pluggable Authentication Modules (PAM)

INtrOdUCHION. . . o i e 13-1
PAM MOAUIESo e e 13-1
SBIVICES . . it 13-2
Role-Based Access Controlcoi it . 1322

EXamples . .. 13-3
Defining Capabilities e 13-3

EXamples . .. 13-4
Implementation Details. e e 13-5

Chapter 14 Device Drivers

Understanding Device Driver TYpes.o et 1441

Developing User-level Device Drivers. oo oot e 14-1

Accessing PCIRESOUICES it et 1441

PCIBAR INterfaces e e 14-2

Kernel Skeleton Driver e 14-6
Understanding the Sample Driver Functionality 14-6

Testing the Driver. e e e 14-9

Developing Kernel-level Device Drivers o oo i i oo e 14211

Building Driver Modules. oui i 14-11

Kernel Virtual Address Space oo 14-11

Real-Time Performance ISSues couu e, 21411

Contents

Interrupt ROULINES. e 14-11
Deferred Interrupt Functions (Bottom Halves) 14-12
Multi-threading ISSUESt m o 14-14
The Big Kernel Lock (BKL) andioctl 14-14
Userspace /O Drivers (UIO)o e e e e 14-15
Analyzing Performance 14-16

Chapter 15 PCI-to-VME Support

OVEIVIBW. . . .t e e e e e e e 15-1
Documentation e e 15-2
Installing the Hardware. e e 15-2
UNPacKing . . .o oot e e 15-2
Configuring the Adapter Cardst 15-3
Installing the PCl Adapter Card i 154
Installing the VMEbus Adapter Card -45
Connecting the AdapterCable. o oo oo 1544
Installing the Software o 15-5
Configuration 15-6
ThebtpModule 15-6
Device Files and Module Parameter Specifications. 15-6
VMEDUS Mappingso o i e 15-7
UseriInterface e 15-7
APILFUNCLIONS . . .o e 15-8
Bind Buffer Implementationo 15-9
bt_get_info BT_INFO_KMALLOC_BUF. 15-9
bt_set_info BT_INFO_KMALLOC _SIZ........ 15-10
bt_set_info BT_INFO_KFREE_BUF 15-10
Additional Bind Buffer Information. 15-11
Mapping and Binding to VMEbus Space 15-13
bt hw_map_vme 15-13
bt_hw_unmap_vme 5-14
The /proc File System Interfaceo i 15-1
Example Applications e e 15-17
bt bind mult 15-18
bt bind multsz. cee. . 15-19
bt_ hwmap. 15-19
bt_hwunmap. 15-19
readdma 15-20
Shmat . .. 15-20
shmbind 15-20
shmceonfig-SCript. e 15-21
VME-MAPPINGS -« o oot ettt e e et e e e e 15-21
1V 1= 0 1 T=T oo 15-21
WHEEAMA. e e e e e e 15-21
Appendix A Example Message QUeUe Programsttt e A-1
POSIX Message Queue Example., A-1

System V Message Queue Example. e A4

Xiii

RedHawk Linux User's Guide

Appendix B

Appendix C

Appendix D

Appendix E

on Shielded CPUs

Kernel Tunables for Real-time Features i B-1
Capabilities e C-1
OVEIVIBW. . . .t e i e e e e e C-1
Capabilities C-1
Kernel Trace EVENtS e e e e e e D-1
Pre-defined Kernel Trace Eventscccccoee oo oo i i i i e e .. DAL
User-defined Kernel Trace Eventso oo e i o i ii i i e e . D4
Pre-defined CUSTOM Trace Event.o D-4
Dynamic Kernel TraCingt e et et e D-4
Migrating 32-bit Code to 64-bit Code E-1
INtrOdUCHION.t i e e E-1
PrOCEAUIES. . . . E-2
Coding Requirements iumue i o E-3
Data TYPE SIZES . . . oottt e E-3
LONgS . .o E-3
POINterS. . . E-3
ATTAY S . . o E-4
Declarations e e E-4
Explicit Data Sizes.ot e, E-4
CONStANES . . . E-5
APIS . o e E-5
Calling Conventionst E-5
Conditional Compilation. i E-6
MisCellaneous E-6
CompPIliNG . . o o e E-6
Testing/Debuggingo E-6
Performance ISSUESo i E-7
Memory Alignment and Structure Padding. E-7
Appendix F Kernel-level Daemons on Shielded CPUs e F-1
Appendix G Cross Processor Interrupts
... G-1
OV IV W, . et e e e G-1
Memory Type Range Register (MTRR) Interrupts.......o, G-1
Graphics INterruptso G-3
NVIDIA CUDA INteITUPLS . . . oot e e e e e e e G4
User Address Space TLB Flush Interrupts . « oo . oo oo oo oo ot G5B

Xiv

Contents

Appendix H Serial Console Setup e e H-1
Appendix | Boot Command Line Parameters e -1
Gl OSSNyt e e e lo8sary-1
OEX . .ot e e e Index-1
Screens
Screen 11-1 Kernel Configuration GUI. 11-3
Screen 11-2 Kernel Configuration GUI Adding Sefalrd Support. 11-6
lllustrations
Figure 2-1 Normal Process Dispatch Latency 2-3
Figure 2-2 Effect of Disabling Interrupts on Preg®ispatch Latency 2-4
Figure 2-3 Effect of High Priority Interrupt ond®ess Dispatch Latency 2-5
Figure 2-4 Effect of Low Priority Interrupt on Ress Dispatch Latency 2-6
Figure 2-5 Effect of Multiple Interrupts on ProsdBispatch Latency 2-7
Figure 2-6 Effect of Disabling Preemption on PexBispatch Latency 2-8
Figure 2-7 Quad Opteron I/O Throughput Layout 2-28
Figure 2-8 The Standard Shielded CPU Model 32-
Figure 2-9 Shielding with Interrupt Isolation 2-32
Figure 2-10 Hyper-thread Shielding it 2-33
Figure 3-1 Definition of msqid_ds Structure 3-5
Figure 3-2 Definition of ipc_perm Structure 3b
Figure 3-3 Definition of shmid_ds Structure 3-17
Figure 4-1 The Scheduler 4-2
Figure 5-1 Definition of sembuf Structure P %4
Figure 5-2 Definition of semid_ds Structure 5-30
Figure 10-1 CPU/Bus Relationship ona NUMA System. 10-1
Figure 11-1 Example of Complete Kernel Configumatand Build Session 11-5
Tables
Table 1-1 Pre-builtKernels 1-3
Table 2-1 Options to the shield(1) Command . ce 2-12
Table 3-1 Message Queue Operation Perm|SS|onssCode 3-8
Table 3-2 Shared Memory Operation Permissions€ode. 3-20
Table 3-3 Options to the shmconfig(1) Command..... 3-26
Table 5-1 Semaphore Operation Permissions Codes 5-33
Table 14-1 Typesof BottomHalves14-13
Table 15-1 PCI-to-VME Library Functions. e 15-8
Table 15-2 PCI-to-VME Example Programs. -1%
Table B-1 Kernel Tunables for Real-time Features.. B-
Table D-1 Pre-defined Kernel Trace EventsD-1
Table E-1 Sizesof DataTypes. e eiiiie i iiiieee s .. E-3
Table E-2 Variable Size Data Types. . . . coceceee e e e o e o i i e e e i i . E-4
Table E-3 Fixed Precision Data Types. . . ccccoce v v e v i e i i i i iiii e v . E-4
Table E-4 Calling Conventionsttt E-5
Table E-5 Macros for Conditional Compilation -6E
Table I-1 Boot Command Line Parameters., I-2

XV

RedHawk Linux User's Guide

XVi

Overview

1
Introduction

This chapter provides an introduction to RedHawkux and gives an overview of the
real-time features included in this operating syste

Concurrent Computer Corporation’s RedHawk™ LinuxsRaireal-time version of the

open source Linux operating system. Modifications made to the standard Linux
version 2.6 kernel to support the functionality d@ne performance required by complex
time-critical applications. RedHawk uses a singéenel design to support a single
programming environment that directly controlssglétem operation. This design allows
deterministic program execution and response teriupts while simultaneously

providing high 1/0 throughput and deterministicefilnetworking, and graphics I/O

operations. RedHawk is the ideal Linux environnmientthe deterministic applications

found in simulation, data acquisition, industriahtrol and medical imaging systems.

Included with RedHawk is the popular Red Hat® Eptiese Linux distribution.The
installation discs provide additional real-time ikelis and libraries for accessing specific
kernel features. Except for the kernel, all Red etahponents operate in their standard
fashion. These include Linux utilities, librarie@mpilers, tools and installer unmodified
from Red Hat. Optionally, the NightStar™ RT deveilmgnt tool set is available for
developing time-critical applications, and the Fueqcy-Based Scheduler and
Performance Monitor can be used to schedule presas<syclical execution patterns and
monitor performance.

The RedHawk kernel integrates both open sourcehpatand Concurrent developed
features to provide a state of the art real-timeé&e Many of these features have been
derived from the real-time UNIX® implementationsattConcurrent has supported in its
over 40 years experience developing real-time dpegaystems. These features are
described briefly in the section “Real-Time Feaslidater in this chapter with references
to more detailed information.

RedHawk is included with each Concurrent iHawk egstiHawks are symmetric multi-
processor (SMP) systems available in a varietydfitectures and configurations. Either
32-bit or 64-bit versions of the operating systerd @s supporting software products are
installed, depending upon the iHawk architectungetyand the support included in
RedHawk for that architecture.

Support for SMPs is highly optimized. A unique ceptcknown ashielded CPUsllows

a subset of processors to be dedicated to taskgehaire the most deterministic

performance. Individual CPUs can be shielded frotarrupt processing, kernel daemons,
interrupt bottom halves, and other Linux tasks.dessor shielding provides a highly
deterministic execution environment where interrupsponse of less than 30
microseconds is guaranteed.

1-1

RedHawk Linux User's Guide

1-2

RedHawk Linux has at least the same level of PO&Kformance as other Linux
distributions based on the 2.6 series of kernetsicQrrent has added additional POSIX
compliance by adding some of the POSIX real-timeesions that are not present in
standard Linux. Linux on the Intel x86 architecttiges defined a defacto binary standard
of its own which allows shrink-wrapped applicatiathat are designed to run on the
Linux/Intel x86 platform to run on Concurrent’s il platform.

NightStar RT is Concurrent’'s powerful tool set tpatvides a robust graphic interface for
non-intrusive control, monitoring, analysis, andbdigging of time-critical
multiprocessing applications. The RedHawk kerneitams enhancements that allow
these tools to efficiently perform their operatiamish a minimum of interference to the
application’s execution. All tools can be run natiy on the same system as the
application or remotely for less intrusive applioatcontrol.

The NightStar RT tools include the following. Referthe individual User’s Guides for
complete information.

* NightView™ source-level debugger — allows multigalmage, multi-
processor, multi-program and multi-thread monitgramd debugging from a
single graphical interface. NightView has the calitgtio hot patch running
programs to modify execution, retrieve or modifyadand insert conditional
breakpoints, monitor points and watch points thxaicate at full application
speed.

* NightTrace™ run-time analyzer — used to analyzedgreamic behavior of a
running application. User and system activitieslagged and marked with
high-resolution time stamps. These events are ghaphically displayed to
provide a detailed view of system activity thaturscwhile the application is
running. NightTrace is ideal for viewing interaat®between multiple
processes, activity on multiple processors, appibes that execute on
distributed systems and user/kernel interactiotsspbdwerful capabilities
allow searching for specific events or summarizemel or user states.

* NightSim™ periodic scheduler — allows the user ftasily schedule
applications that require periodic execution. A@eper can dynamically
control the execution of multiple coordinated preses, their priorities and
CPU assignments. NightSim provides detailed, higltgurate performance
statistics and allows various actions when fram&rns occur.

* NightProbe™ data monitor — used to sample, recordadlify program data
in multiple running programs. Program data is ledawith a symbol table
browser. Application pages are shared at the palypage level to minimize
the impact on the application’s execution. Nightfe@an be used for
debugging, analysis, fault injection or in a pratitut environment to create
a GUI control panel for program input and output.

* NightTune™ performance tuner — a graphical tooldiealyzing system and
application performance including CPU usage, cdndestches, interrupts,
virtual memory usage, network activity, procesgihtites, and CPU
shielding. NightTune allows you to change the ptigrscheduling policy,
and CPU affinity of individual or groups of procesausing pop-up dialogs
or drag-and-drop actions. It also allows you toteetshielding and hyper-
threading attributes of CPUs and change the CPIgrasgnt of individual
interrupts.

RedHawk Linux Kernels

Introduction

There are three flavors of RedHawk Linux kernelse Bystem administrator can select
which version of the kernel is loaded via the bloaider. Table 1-1 provides a complete
description of each pre-built kernel.

Table 1-1 Pre-built Kernels

Kernel Type

Generic

Trace

Debug

Kernel Name *

vmlinuz-kernelversion
RedHawk-x.x

vmlinuz-kernelversion
RedHawk-x.xtrace

vmlinuz-kernelversion
RedHawk-x.x-debug

Recommended Use

Running time-critical
applications

Using NightStar RT tools to
evaluate performance

Developing new applications
or drivers

Description The generic kernel is the The trace kernel is The debug kernel supports all
most optimized and will recommended for most usersof the features of the trace
provide the best overall as it supports all of the kernel and in addition
performance, however it features of the generic kernel provides support for kernel-
lacks certain features and provides support for the| level debugging. This kernel
required to take full kernel tracing feature of the | is recommended for
advantage of the NightStar | NightTrace performance developing drivers or trying
RT tools. analysis tool. This kernel is | to debug system problems.

loaded at system boot by
default.

Features

Kernel Debuggers disabled disabled enabled

System Dumps enabled enabled enabled

Kernel Tracing (used | disabled enabled enabled

by NightTrace)

High Resolution enabled enabled enabled

Process Accounting

NMI Watchdog disabled disabled enabled

Frequency Based
Scheduler (FBS)

enabled when module is
loaded

enabled when module is
loaded

enabled when module is
loaded

Performance Monitor
(PM)

disabled

enabled

enabled

* kernelversioris the official version of Linux kernel source caggon which the kernel is based.

x.Xindicates the version number.
Example: vmlinuz-2.6.26.6-RedHawk-5.2.

RedHawk Linux User's Guide

System Updates

RedHawk Linux updates can be downloaded from Comcuis RedHawk Updates
website. Refer to thRedHawk Linux Release Nofes details.

NOTE

Concurrent does not recommend downloading Red pizates.

The RedHawk Linux kernel replaces the standard iRadkernel
and is likely to work with any version of the RedtHlistribution.
However, installing upgrades, especiallygze andglibc, from

sources other than Concurrent may destabilize b and is
not recommended. Security updates from outsidecesunay be
installed if desired.

Real-Time Features

This section provides a brief description of thatfees included in the operating system
for real-time processing and performance. More dethinformation about the
functionality described below is provided in subsewt chapters of this guide. Online
readers can display the information immediatelgligking on the chapter references.

Processor Shielding

Concurrent has developed a method of shieldingcs=leCPUs from the unpredictable
processing associated with interrupts and systeemdas. By binding critical, high-
priority tasks to particular CPUs and directing miogerrupts and system daemons to
other CPUs, the best process dispatch latency ptessin a particular CPU in a
multiprocessor system can be achieved. Chaptersepte a model for shielding CPUs
and describes techniques for improving response &nd increasing determinism.

Processor Affinity

1-4

In a real-time application where multiple processgscute on multiple CPUs, it is
desirable to have explicit control over the CPUgrssents of all processes in the system.
This capability is provided by Concurrent througbinpadvise(3) library routine and
therun(l) command. See Chaptead the man pages for additional information.

Introduction

User-level Preemption Control

When an application has multiple processes thatrearon multiple CPUs and those
processes operate on data shared between thengsaitcehe shared data must be
protected to prevent corruption from simultaneotrseas by more than one process. The
most efficient mechanism for protecting shared data spin lock; however, spin locks
cannot be effectively used by an application iféhie a possibility that the application can
be preempted while holding the spin lock. To remefiiective, RedHawk provides a
mechanism that allows the application to quicklyatile preemption. See Chapter 5 and
theresched_cntl(2) man page for more information about user-levekprption
control.

Fast Block/Wake Services

RCIM Driver

Many real-time applications are composed of muétippboperating processes. These
applications require efficient means for doing rapeocess synchronization. The fast
block/wake services developed by Concurrent allqwwazess to quickly suspend itself
awaiting a wakeup notification from another cooparg process. See Chapter 2,
Chapter 5 and thgostwait(2) andserver_block(2) man pages for more details.

A driver has been added for support of the Reale€lidock and Interrupt Module
(RCIM). This multi-purpose PCI card has the follagifunctionality:

* connection of up to twelve external device intetsup
* up to eight real time clocks that can interruptshistem

* up to twelve programmable interrupt generators tisbow generation of
an interrupt from an application program

These functions can all generate local interruptshe system where the RCIM card is
installed. Multiple RedHawk Linux systems can beaicied together, allowing up to
twelve of the local interrupts to be distributedather RCIM-connected systems. This
allows one timer or one external interrupt or oppli@ation program to interrupt multiple
RedHawk Linux systems almost simultaneously to tgesynchronized actions. In
addition, the RCIM contains a synchronized highetaton clock so that multiple
systems can share a common time base. See Chagft¢hi6 guide and th&eal-Time
Clock & Interrupt Module (RCIM) User’s Guider additional information.

Frequency-Based Scheduler

The Frequency-Based Scheduler (FBS) is a mechdoisetheduling applications that

run according to a predetermined cyclic executiatign. The FBS also provides a very
fast mechanism for waking a process when it is tforethat process to execute. In
addition, the performance of cyclical applicatiara be tracked, with various options
available to the programmer when deadlines arebaotg met. The FBS is the kernel

RedHawk Linux User's Guide

mechanism that underlies the NightSim GUI for sctied cyclical applications. See the
Frequency-Based Scheduler (FBS) User’'s GuaddNightSim RT User’s Guidfor
additional information.

/proc Modifications

Modifications have been made to the process addpes=e support ifproc to allow a
privileged process to read or write the valuesiotler process’ address space. This is for
support of the NightProbe data monitoring tool gmeNightView debugger.

Kernel Trace Facility

Support was added to allow kernel activity to eeéd. This includes mechanisms for
inserting and enabling kernel trace points, reatiiage memory buffers from the kernel,
and managing trace buffers. The kernel trace fgddiused by the NightTrace tool. See
Appendix D for information about kernel tracing.

ptrace Extensions

The ptrace debugging interface in Linux has bee¢arsled to support the capabilities of
the NightView debugger. Features added include:

¢ the capability for a debugger process to read aiiteé wiemory in a process
not currently in the stopped state

* the capability for a debugger to trace only a stibthe signals in a process
being debugged

* the capability for a debugger to efficiently resumeecution at a new
address within a process being debugged

* the capability for a debugger process to automitiedtach to all children
of a process being debugged

Kernel Preemption

The ability for a high priority process to preenagbwer priority process that is currently
executing inside the kernel is provided. Under d#ad Linux the lower priority process
would continue running until it exited from the ket, creating longer worst case process
dispatch latency. Data structure protection mecmsiare built into the kernel to support
symmetric multiprocessing.

1-6

Introduction

Real-Time Scheduler

The real-time scheduler provides fixed-length cahtvitch times regardless of how
many processes are active in the system. It atsad®s a true real-time scheduling class
that operates on a symmetric multiprocessor.

Low Latency Enhancements

In order to protect shared data structures useléiernel, the kernel protects code paths
that access these shared data structures withogis and semaphores. The locking of a
spin lock requires that preemption, and sometimesiiupts, be disabled while the spin
lock is held. A study was made which identified terst-case preemption off times. The
low latency enhancements modify the algorithmdmitlentified worst-case preemption
off scenarios to provide better interrupt respdirses.

Priority Inheritance

Semaphores used as sleepy-wait mutual exclusiohanesns can introduce the problem
of priority inversion. Priority inversion occurs wh one or more low-priority processes
executing in a critical section prevent the progreisone or more high-priority processes.
Priority inheritance involves temporarily raisirtgetpriority of the low priority processes
executing in the critical section to that of thghwest priority waiting process. This ensures
that the processes executing in the critical sachiave sufficient priority to continue
execution until they leave the critical sectione &hapter 5 for details.

High Resolution Process Accounting

In the standard Linux kernel, the system accouatsafprocess’ CPU execution times
using a very coarse-grained mechanism. This méatshe amount of CPU time charged
to a particular process can be very inaccurate.higle resolution process accounting
facility provides a mechanism for very accurate G#dcution time accounting, allowing
better performance monitoring of applications. Thlity is incorporated in the “debug”

and “trace” kernels supplied by Concurrent and usedtandard Linux CPU accounting
services and the Performance Monitor on those kersee Chapter 7 for information
about CPU accounting methods.

Capabilities Support

The Pluggable Authentication Module (PAM) providgemechanism to assign privileges
to users and set authentication policy without hgvio recompile authentication
programs. Under this scheme, a non-root user camibiggured to run applications that
require privileges only root would normally be aled. For example, the ability to lock
pages in memory is provided by one predefined pege that can be assigned to
individual users or groups.

Privileges are granted through roles defined inrdiguration file. A role is a set of valid
Linux capabilities. Defined roles can be used bsiltling block in subsequent roles, with

RedHawk Linux User's Guide

the new role inheriting the capabilities of thevpoeisly defined role. Roles are assigned
to users and groups, defining their capabilitieshensystem.

See Chapter 13 for information about the PAM funcidy.

Kernel Debuggers

The open source kernel debuggdb is supported on RedHawk Linux “debug” kernels.

More information can be found in Chapter 12.

Kernel Core Dumps/Crash Analysis

Thekexec andkdump open source patches enable another kernel todlodatapture a
crash dump, and thezash utility is provided for analyzing the dump. Seeapter 12 for
more information about crash dump analysis.

User-level Spin Locks

RedHawk Linux busy-wait mutual exclusion tools imdé¢ a low-overhead busy-wait
mutual exclusion variable (a spin lock) and a csponding set of macros that allow you
to initialize, lock, unlock and query spin lock® e effective, user-level spin locks must
be used with user-level preemption control. Rede€hapter 5 for details.

usermap and /proc mmap

Theusermap(3) library routine, which resides in thibccur_rt library, provides
applications with a way to efficiently monitor ambdify locations in currently executing
programs through the use of simple CPU reads artdswr

The/proc file systemmmap(2) is the underlying kernel support fasermap(3) ,
which lets a process map portions of another p@ekiress space into its own address
space. Thus, monitoring and modifying other exewuprograms becomes simple CPU
reads and writes within the application’s own addrepace, without incurring the
overhead ofproc file systemread(2) andwrite(2) system service calls. Refer to
Chapter 9 for more information.

Hyper-threading

Hyper-threading is a feature of the Intel PentiuspK processor. It allows for a single
physical processor to appear to the operating syste two logical processors. Two
program counters run simultaneously within each €Rig so that in effect, each chip is a
dual-CPU SMP. With hyper-threading, physical CPEs mun multiple tasks “in parallel”
by utilizing fast hardware-based context-switchbeween the two register sets upon
things like cache-misses or special instructionsdiRawk Linux includes support for
hyper-threading. Refer to Chapter 2 for more infaiioraon how to effectively use this
feature in a real-time environment.

1-8

Introduction

XFS Journaling File System

The XFS journaling file system from SGI is implertethin RedHawk Linux. Journaling
file systems use a journal (log) to record trarisast In the event of a system crash, the
background process is run on reboot and finishpging updates from the journal to the
file system. This drastically cuts the complexifyadile system check, reducing recovery
time. The SGI implementation is a multithreadedb@4ile system capable of large files
and file systems, extended attributes, variablelbkizes, is extent based and makes
extensive use of Btrees to aid both performancesaathbility. Refer to Chapter 8 for
more information.

POSIX Real-Time Extensions

RedHawk Linux supports most of the interfaces dedirby the POSIX real-time
extensions as set forth in ISO/IEC 9945-1. Theofeihg functional areas are supported:

* user priority scheduling

* process memory locking

* memory mapped files

¢ shared memory

* message queues

* counting semaphores

* real-time signal behavior

¢ asynchronous I/O

¢ synchronized I/O

¢ timers (high resolution version is supported)

User Priority Scheduling

RedHawk Linux accommodates user priority schedulifiat is, processes scheduled
under the fixed-priority POSIX scheduling polic#s not have their priorities changed by
the operating system in response to their run-timleavior. The resulting benefits are
reduced kernel overhead and increased user coRtamess scheduling facilities are fully
described in Chapter 4.

Memory Resident Processes

Paging and swapping often add an unpredictable aimafusystem overhead time to
application programs. To eliminate performance éssdue to paging and swapping,
RedHawk Linux allows you to make certain portiofi@grocess’ virtual address space
resident. Thanlockall(2) , munlockall(2) , mlock(2) , andmunlock(2)
POSIX system calls allow locking all or a portiohaoprocess’ virtual address space in
physical memory. See the man pages for details.

RedHawk Linux User's Guide

Memory Mapping and Data Sharing

RedHawk Linux supports shared memory and memorypingdacilities based on IEEE
Standard 1003.1b-1993, as well as System V IPC amésims. The POSIX facilities allow
processes to share data through the useenfory objectshamed regions of storage that
can be mapped to the address space of one or mmresges to allow them to share the
associated memory. The tememory objecincludes POSIX shared memory objects,
regular files, and some devices, but not all fifstem objects (terminals and network
devices, for example). Processes can access thardatmemory object directly by
mapping portions of their address spaces ontolifects. This is generally more efficient
than using theead(2) andwrite(2) system calls because it eliminates copying the
data between the kernel and the application.

Process Synchronization

RedHawk Linux provides a variety of tools that ceogting processes can use to
synchronize access to shared resources.

Counting semaphores based on IEEE Standard 10039bd-allow multiple threads in a
multithreaded process to synchronize their acaeizetsame set of resources. A counting
semaphore has a value associated with it thatrdetes when resources are available for
use and allocated. System V IPC semaphore setshwhpport interprocess semaphores,
are also available.

In addition to semaphores, a set of real-time m®&ynchronization tools developed by
Concurrent provides the ability to control a prag€esulnerability to rescheduling,
serialize processes’ access to critical section$ wusy-wait mutual exclusion
mechanisms, and coordinate client—server intenaetinong processes. With these tools, a
mechanism for providing sleepy-wait mutual exclaswith bounded priority inversion
can be constructed.

Descriptions of the synchronization tools and pdugces for using them are provided in
Chapter 5.

Asynchronous Input/Output

Being able to perform I/O operations asynchronousians that you can set up for an 1/0
operation and return without blocking on 1/O contigle. RedHawk Linux accommodates
asynchronous 1/0O with a group of library routineséd on IEEE Standard 1003.1b-1993.
These interfaces allow a process to perform asymaius read and write operations,
initiate multiple asynchronous I/O operations watkingle call, wait for completion of an
asynchronous I/O operation, cancel a pending asgnolis I/O operation, and perform
asynchronous file synchronization. The “aio” fultts are documented in info pages
(‘info libc”) on the system.

Synchronized Input/Output

1-10

RedHawk Linux also supports the synchronized 1/€litees based on IEEE Standard
1003.1b-1993. POSIX synchronized I/O provides tleans for ensuring the integrity of
an application’s data and files. A synchronizedpbatibperation ensures the recording of
data written to an output device. A synchronizgaliroperation ensures that the data read
from a device mirrors the data currently residingdisk. Refer to the man pages for more
information.

Introduction

Real-Time Signal Behavior

Clocks and Timers

Message Queues

Real-time signal behavior specified by IEEE Stardda003.1b-1993 includes
specification of a range of real-time signal nunsheupport for queuing of multiple
occurrences of a particular signal, and supporspacification of an application-defined
value when a signal is generated to differentiatersg multiple occurrences of signals of
the same type. The POSIX signal-management faaktinclude the
sigtimedwait(2) , Sigwaitinfo(2) , andsigqueue(2) system calls, which
allow a process to wait for receipt of a signal ajeue a signal and an application-
defined value to a process. Refer to the man pagesore information.

Support for high-resolution POSIX clocks and timisréncluded in RedHawk. System-
wide POSIX clocks can be used for such purposesresLinuxstamping or measuring
the length of code segments. POSIX timers allowiegions to use relative or absolute
time based on a high resolution clock and to scleeduents on a one-shot or periodic
basis. Applications can create multiple timers éach process. In addition, high-
resolution sleep mechanisms are provided whictbeamsed to put a process to sleep for a
very short time quantum and specify which clockddabe used for measuring the
duration of the sleep. See Chapter 6 for additiorfakmation.

POSIX message passing facilities based on IEEEd8tdn1003.1b-1993 are included in
RedHawk Linux, implemented as a file system. POBIéssage queue library routines
allow a process to create, open, query and destnogssage queue, send and receive
messages from a message queue, associate a priattityy message to be sent, and
request asynchronous notification when a messageear POSIX message queues
operate independently of System V IPC messaging;hwh also available. See Chapter 3
for details.

1-11

RedHawk Linux User's Guide

1-12

2
Real-Time Performance

This chapter discusses some of the issues invalitbdachieving real-time performance
under RedHawk Linux. The primary focus of the cleajig on theShielded CPU Modegl
which is a model for assigning processes and imi¢srto a subset of CPUs in the system
to attain the best real-time performance.

Key areas of real-time performance are discussedrriipt response, process dispatch
latency and deterministic program execution. Thpdot of various system activities on
these metrics is discussed and techniques are fiveptimum real-time performance.

Overview of the Shielded CPU Model

The shielded CPU model is an approach for obtaitliegoest real-time performance in a
symmetric multiprocessor system. The shielded CRIdahallows for both deterministic
execution of a real-time application as well aedainistic response to interrupts.

A task has deterministic execution when the amafinime it takes to execute a code
segment within that task is predictable and constakewise the response to an interrupt
is deterministic when the amount of time it takesdspond to an interrupt is predictable
and constant. When the worst-case time measuresltfmr executing a code segment or
responding to an interrupt is significantly diffatehan the typical case, the application’s
performance is said to be experiencjitigr. Because of computer architecture features
like memory caches and contention for shared ressyrthere will always be some
amount of jitter in measurements of execution tintesch real-time application must
define the amount of jitter that is acceptablentat application.

In the shielded CPU model, tasks and interruptsaastgned to CPUs in a way that
guarantees a high grade of service to certain itapbreal-time functions. In particular, a
high-priority task is bound to one or more shiel@Us, while most interrupts and low
priority tasks are bound tother CPUs. The CPUs responsible for running the high-
priority tasks are shielded from the unpredictgirecessing associated with interrupts
and the other activity of lower priority processest enter the kernel via system calls, thus
these CPUs are callsttielded CPUs

Some examples of the types of tasks that shoutdren shielded CPUs are:

¢ tasks that require guaranteed interrupt respormnse ti
¢ tasks that require the fastest interrupt respanse t

¢ tasks that must be run at very high frequencies

tasks that require deterministic execution in otdeneet their deadlines

tasks that have no tolerance for being interruptethe operating system

2-1

RedHawk Linux User's Guide

There are several levels of CPU shielding that jplewdifferent degrees of determinism
for the tasks that must respond to high-prioritieinupts or that require deterministic
execution. Before discussing the levels of shigjdhat can be enabled on a shielded
CPU, it is necessary to understand how the sysésmonds to external events and how
some of the normal operations of a computer systepact system response time and
determinism.

Overview of Determinism

Determinisnrefers to a computer system’s ability to execupasicular code path (a set
of instructions executed in sequence) in a fixedam of time. The extent to which the
execution time for the code path varies from orgaince to another indicates the degree
of determinism in the system.

Determinism applies not only to the amount of tirmquired to execute a time-critical
portion of a user’s application but also to the antoof time required to execute system
code in the kernel. The determinism of ghecess dispatch latency, for example, depends
upon the code path that must be executed to hamdieterrupt, wake the target process,
perform a context switch, and allow the target pescto exit from the kernel. (The section
“Process Dispatch Latency” defines the tggrmacess dispatch laten@nd presents a
model for obtaining the best process dispatch Btgrossible on a particular CPU in a
multiprocessor system.)

The largest impact on the determinism of a progsaexXecution is the receipt of
interrupts. This is because interrupts are alwhgshighest priority activity in the system
and the receipt of an interrupt is unpredictabiecan happen at any point in time while a
program is executing. Shielding from non-criticatlerrupts will have the largest impact
on creating better determinism during the executioinigh priority tasks.

Other techniques for improving the determinism pfagram’s execution are discussed in
the section called “Procedures for Increasing Deit@sm.”

Process Dispatch Latency

2-2

Real-time applications must be able to respondr@a&world event and complete the
processing required to handle that real-world ewsithin a given deadline.
Computations required to respond to the real-wexlednt must be complete before the
deadline or the results are considered incorrAcsingle instance of having an unusually
long response to an interrupt can cause a deadlipe missed.

The termprocess dispatch latendenotes the time that elapses from the occurrehar
external event, which is signified by an interrupttil the process waiting for that external
event executes its first instruction in user mdet®. real-time applications, the worst-case
process dispatch latency is a key metric, sincethie worst-case response time that will
determine the ability of the real-time applicatitmguarantee that it can meet its
deadlines.

Real-Time Performance

Process dispatch latency comprises the time thakés for the following sequence of
events to occur:

1.

5.

The interrupt controller notices the interruptlagenerates the interrupt
exception to the CPU.

The interrupt routine is executed, and the proweesting for the interrupt
(target process) is awakened.

The currently executing process is suspendedaamhtext switch is
performed so that the target process can run.

The target process must exit from the kernel revitavas blocked waiting
for the interrupt.

The target process runs in user mode.

This sequence of events represents the ideal cagerdcess dispatch latency; it is
illustrated by Figure 2-1. Note that events 1-5 dbesd above, are marked in Figure 2-1.

Figure 2-1 Normal Process Dispatch Latency

Priority

N - User mode execution

m Kernel mode execution

interrupt

v

Elapsed Time

The process dispatch latency is a very importantriméor event—driven real-time
applications because it represents the speed wiibhvihe application can respond to an
external event. Most developers of real-time apgibois are interested in the worst-case
process dispatch latency because their applicatiust meet certain timing constraints.

Process dispatch latency is affected by some ohtlimal operations of the operating
system, device drivers and computer hardware. fallmving sections examine some of
the causes of jitter in process dispatch latency.

2-3

RedHawk Linux User's Guide

Effect of Disabling Interrupts

2-4

An operating system must protect access to shatedsttuctures in order to prevent those
data structures from being corrupted. When a siatecture can be accessed at interrupt
level, it is necessary to disable interrupts whenekiat data structure is accessed. This
prevents interrupt code from corrupting a shardd gaucture should it interrupt program
level code in the midst of an update to the samesshdata structure. This is the primary
reason that the kernel will disable interruptsdbort periods of time.

When interrupts are disabled, process dispatcindstes affected because the interrupt
that we are trying to respond to cannot becomeeciitil interrupts are again enabled. In
this case, the process dispatch latency for theaasiting the interrupt is extended by the
amount of time that interrupts remain disabled.sTikiillustrated in Figure 2-2. In this
diagram, the low priority process has made a sys@linwhich has disabled interrupts.
When the high priority interrupt occurs it cann@ &cted on because interrupts are
currently disabled. When the low priority process ltompleted its critical section, it
enables interrupts, the interrupt becomes actidktlaa interrupt service routine is called.
The normal steps of interrupt response then comptethe usual fashion. Note that the
numbers 1-5 marked in Figure 2-2 represent the stepermal process dispatch latency
as described earlier on page 2-3.

Obviously, critical sections in the operating systehere interrupts are disabled must be
minimized to attain good worst-case process dispatency.

Figure 2-2 Effect of Disabling Interrupts on Proce ss Dispatch Latency

& - User mode execution
m Kernel mode execution

Interrupts disabled

Priority

interrupt

Elapsed Time

Real-Time Performance

Effect of Interrupts

The receipt of an interrupt affects process didpddtency in much the same way that
disabling interrupts does. When a hardware intérizipeceived, the system will block
interrupts of the same or lesser priority than ¢herent interrupt. The simple case is
illustrated in Figure 2-3, where a higher prioritptérrupt occurs before the target
interrupt, causing the target interrupt to be h&fiduntil the higher priority interrupt
occurs. Note that the numbers 1-5 marked in FigeBer@present the steps of normal
process dispatch latency as described earlier ga p.

Figure 2-3 Effect of High Priority Interrupt on Pr ocess Dispatch Latency

& - User mode execution
m High priority interrupt

Target interrupt

Priority

high priority target
interrupt interrupt

¥

Elapsed Time

RedHawk Linux User's Guide

2-6

The relative priority of an interrupt does not affprocess dispatch latency. Even when a
low priority interrupt becomes active, the impatthat interrupt on the process dispatch
latency for a high-priority interrupt is the saniéiis is because interrupts always run at a
higher priority than user-level code. Thereforesrethough we might service the interrupt
routine for a high-priority interrupt, that intepuroutine cannot get the user-level context
running until all interrupts have completed theieeution. This impact of a low priority
interrupt on process dispatch latency is illusttdteFigure 2-4. Note that the ordering of
how things are handled is different than the cafsthe high-priority interrupt in
Figure 2-3, but the impact on process dispatch tgténthe same. Note that the numbers
1-5 marked in Figure 2-4 represent the steps of mbpnocess dispatch latency as

described earlier on page 2-3.

Figure 2-4 Effect of Low Priority Interrupt on Pro

cess Dispatch Latency

Priority

- User mode execution

Low priority interrupt

Target interrupt

low priority target
interrupt interrupt

Elapsed Time

Real-Time Performance

One of the biggest differences between the effedisabling interrupts and receipt of an
interrupt in terms of the impact on process didp#tency is the fact that interrupts occur
asynchronously to the execution of an applicatiod at unpredictable times. This is
important to understanding the various levels @lding that are available.

When multiple interrupts can be received on a gi@#tJ, the impact on worst-case
process dispatch latency can be severe. This mulsednterrupts can stack up, such that
more than one interrupt service routine must be@seed before the process dispatch
latency for a high priority interrupt can be contpld Figure 2-5 shows a case of two
interrupts becoming active while trying to respaad high priority interrupt. Note that
the numbers 1-5 marked in Figure 2-5 represent tigssof normal process dispatch
latency as described earlier on page 2-3. When a1@PBgives an interrupt, that CPU will
disable interrupts of lower priority from being altb interrupt the CPU. If a second
interrupt of lower-priority becomes active durirtgg time, it is blocked as long as the
original interrupt is active. When servicing of thiest interrupt is complete, the second
interrupt becomes active and is serviced. If treogd interrupt is of higher priority than
the initial interrupt, it will immediately becomective. When the second interrupt
completes its processing, the first interrupt &ilain become active. In both cases, user
processes are prevented from running until allhef pending interrupts have been
serviced.

Conceivably, it would be possible for a pathologicase where interrupts continued to
become active, never allowing the system to responie high-priority interrupt. When
multiple interrupts are assigned to a particulatJCProcess dispatch latency is less
predictable on that CPU because of the way in wihiehinterrupts can be stacked.

Figure 2-5 Effect of Multiple Interrupts on Proces s Dispatch Latency

- User mode execution

= Target interrupt

"""""" N o

Priority

lows priority high priority target
interrupt interrupt interrupt

v

Elapsed Time

2-7

RedHawk Linux User’'s Guide

Effect of Disabling Preemption

2-8

There are critical sections in RedHawk Linux thadtpct a shared resource that is never
locked at interrupt level. In this case, thereasreason to block interrupts while in this
critical section. However, a preemption that ocausng this critical section could cause
corruption to the shared resource if the new pmeese to enter the same critical section.
Therefore, preemption is disabled while a process@es in this type of critical section.
Blocking preemption will not delay the receipt of mterrupt. However, if that interrupt
wakes a high priority process, it will not be pddeito switch to that process until
preemption has again been enabled. Assuming the €& is required, the actual effect
on worst-case process dispatch latency is the sanfaénterrupts had been disabled. The
effect of disabling preemption on process dispdaténcy is illustrated in Figure 2-6.
Note that the numbers 1-5 marked in Figure 2-6 regmethe steps of normal process
dispatch latency as described earlier on page 2-3.

Figure 2-6 Effect of Disabling Preemption on Proce ss Dispatch Latency

Y - User mode execution
m Kernel mode execution

disabled

Priority

L

Elapsed Time

Real-Time Performance

Effect of Open Source Device Drivers

How Shielding

Device drivers are a part of the Linux kernel, hessathey run in supervisor mode. This

means that device drivers are free to call Linucfions that disable interrupts or disable
preemption. Device drivers also handle interrugiterefore they control the amount of

time that might be spent at interrupt level. Aswvghan previous sections of this chapter,

these actions have the potential to impact worsedaterrupt response and process
dispatch latency.

Device drivers enabled in RedHawk Linux have besstdd to be sure they do not
adversely impact real-time performance. While opearce device driver writers are
encouraged to minimize the time spent at intertapél and the time interrupts are
disabled, in reality open source device driversvanigen with very varied levels of care.
If additional open source device drivers are erchtiley may have a negative impact upon
the guaranteed worst-case process dispatch lateaciRedHawk Linux provides.

Refer to the “Device Drivers” chapter for more infaation about real-time issues with
device drivers.

Improves Real-Time Performance

This section will examine how the different attriési of CPU shielding improve both the
ability for a user process to respond to an intetrrprocess dispatch latency) and
determinism in execution of a user process.

When enabling shielding, all shielding attributes anabled by default. This provides the
most deterministic execution environment on a sleidlCPU. Each of these shielding
attributes is described in more detail below. Teershould fully understand the impact of
each of the possible shielding attributes, as soitieese attributes do have side effects to
normal system functions. There are three categafieshielding attributes currently
supported:

¢ shielding from background processes
* shielding from interrupts

* shielding from the local interrupt

Each of these attributes is individually selectabhea per-CPU basis. Each of the
shielding attributes is described below.

Shielding From Background Processes

This shielding attribute allows a CPU to be resdri@ a subset of processes in the
system. This shielding attribute should be enabled CPU when you want that CPU to
have the fastest, most predictable response totarrupt. The best guarantee on process
dispatch latency is achieved when only the taskréfsponds to an interrupt is allowed to
execute on the CPU where that interrupt is directed

RedHawk Linux User's Guide

When a CPU is allowed to run background processean affect the process dispatch
latency of a high-priority task that desires vestatministic response to an interrupt
directed to that CPU. This is because backgroundgsses will potentially make system
calls that can disable interrupts or preemptioneséhoperations will impact process
dispatch latency as explained in the sections tEffé Disabling Interrupts” and “Effect
of Disabling Preemption.”

When a CPU is allowed to run background procestese is no impact on the
determinism in the execution of high priority preses. This assumes the background
processes have lower priority than the high-prjoptocesses. Note that background
processes could affect the time it takes to wakeoaess via other kernel mechanisms
such as signals or tleerver_wakel(3) interface.

Each process or thread in the system has a CPhltgffnask. The CPU affinity mask
determines on which CPUs the process or threaltbised to execute. The CPU affinity
mask is inherited from the parent and can be sethempadvise(3) library routine or
the sched_setaffinity(2) system call. When a CPU is shielded from processes
that CPU will only run processes and threads thaetexplicitly set their CPU affinity to

a set of CPUs that only includes shielded CPUsther words, if a process has a non-
shielded CPU in its CPU affinity mask, then theqarss will only run on those CPUs that
are not shielded. To run a process or thread ofPd €hielded from background
processes, it must have a CPU affinity mask thatifips ONLY shielded CPUs.

Certain kernel daemons created by Linux are refdit@an every CPU in the system.
Shielding a CPU from processes will not remove ohthese “per-CPU” daemons from
the shielded CPU. The impact of these daemons eaavieided through kernel
configuration or careful control of application tetior. The kernel daemons, their
functionality and methods to avoid jitter from peRU kernel daemons are described in
Appendix F.

Shielding From Interrupts

2-10

This shielding attribute allows a CPU to be resdri@ processing only a subset of
interrupts received by the system. This shielditigbaite should be enabled when it is
desirable to have the fastest, most predictablegqs® dispatch latency or when it is
desirable to have determinism in the execution tifn@n application.

Because interrupts are always the highest priadtwity on a CPU, the handling of an
interrupt can affect both process dispatch latemzythe time it takes to execute a normal
code path in a high priority task. This is desaliethe section, “Effect of Interrupts”.

Each device interrupt is associated with an IRQesEhIRQs have an associated CPU
affinity that determines which CPUs are allowedédoeive the interrupt. When interrupts
are not routed to a specific CPU, the interruptiaier will select a CPU for handling an
interrupt at the time the interrupt is generatexhfrthe set of CPUs in the IRQ affinity
mask. IRQ affinities are modified by thshield(1) command or through
Iprocfirg/ N/smp_affinity

On the i386 architecture, thiérqd daemon periodically adjusts IRQ affinities in an
attempt to balance interrupt load across CPUs. @aamon conflicts with interrupt-
shielding and has been disabled by default in alfRawk Linux kernel configurations
through tharQBALANCE kernel configuration option. It can be enabledelyabling the

Real-Time Performance

IRQBALANCE kernel parameter, which is only available whengheLD tunable is turned
off.

Note that if it is desirable to disable all intepta on all CPUs, the recommended
procedure is to shield all CPUs from interrupts epicone, then make a call to
local_irq_disable(2) on the unshielded CPU. See the man page for sletail

Certain activities can cause interrupts to be geshielded CPUs. These cross processor
interrupts are used as a method for forcing andifidy to handle some per-CPU specific
task. Cross processor interrupts can potentialigeanoticeable jitter for shielded CPUs.
Refer to Appendix G for a full discussion.

Shielding From Local Interrupt

The local interrupt is a special interrupt for & pte timer associated with each CPU.
Under RedHawk Linux, this timer is used for variduseout mechanisms in the kernel
and at user level. This functionality is descrilire@hapter 7. By default, this interrupt is
enabled on all CPUs in the system.

This interrupt fires every ten milliseconds, makihg local interrupt one of the most
frequently executed interrupt routines in the syst&@herefore, the local interrupt is a
large source of jitter to real-time applications.

When a CPU is shielded from the local timer, thelanterrupt is effectively disabled and
the functions provided by the local timer assoadiatdth that CPU are no longer

performed; however, they continue to run on othBtJE where the local timer has not
been shielded. Some of these functions will be lektle others can be provided via other
means.

One of the functions that is lost when the loctiirupt is disabled on a particular CPU is
the low resolution mechanism for CPU execution tameounting. This is the mechanism
that measures how much CPU time is used by eaatepsahat executes on this CPU.
Whenever the local interrupt fires, the last cltick’s worth of time is charged to the

process that was interrupted. If high resolutioocgsss accounting is configured, then
CPU time will be accurately accounted for regarsli@iswhether or not the local interrupt
is enabled. High resolution process accountingssusgsed in Chapter 7, “System Clocks
and Timers.”

When a CPU is shielded from the local timer, thmalanterrupt will continue to be used
for POSIX timers and nanosleep functionality bygasses biased to the shielded CPU.
For this reason, if it is critical to totally elimate local timer interrupts for optimum
performance on a specific shielded CPU, applicatigilizing POSIX timers or nanosleep
functionality should not be biased to that CPUa lrocess is not allowed to run on the
shielded CPU, its timers will be migrated to a CRkkre the process is allowed to run.

Refer to Chapter 7, “System Clocks and Timers” faomplete discussion on the effects
of disabling the local timer and alternatives tiag available for some of the features.

2-11

RedHawk Linux User's Guide

Interfaces to CPU Shielding

Shield Command

2-12

This section describes both the command level aogrpmming interfaces that can be
used for setting up a shielded CPU. There is alsexample that describes the common
case for setting up a shielded CPU.

Theshield(1) command sets specified shielding attributes ftected CPUs. The

shield command can be used to mark CPUs as shiglddds. A shielded CPU is
protected from some set of system activity in ortdeprovide better determinism in the
time it takes to execute application code.

The list of logical CPUs affected by an invocatafrtheshield command is given as a
comma-separated list of CPU numbers or ranges.

The format for executing thehield command is:
shield [oPTIONg
Options are described in Table 2-1.

In the options listed belowpuLisTis a list of comma separated values or a rangalogs
representing logical CPUs. For example, the liSEBUs ‘0-4,7" specifies the following
logical CPU number$,1,2,3,4,7

Table 2-1 Options to the shield(1) Command

Option Description

--irg= CPULIST, -i CPULIST Shields all CPUs ipPuLISTfrom interrupts.
The only interrupts that will execute on the
specified CPUs are those that have been
assigned a CPU affinity that would prevent
them from executing on any other CPU.

--loc= cpuLIST, - cPuLIST The specified list of CPUs is shielded from the
local timer. The local timer provides time-
based services for a CPU. Disabling the local
timer may cause some system functionality
such as user/system time accounting and
round-robin quantum expiration to be disabled.
Refer to Chapter 7 for more a complete discus-
sion.

Real-Time Performance

Table 2-1 Options to the shield(1) Command (Conti nued)

Option Description

--proc= CPULIST, -p CPULIST The specified list of CPUs is shielded from
extraneous processes. Processes that have an
affinity mask that allows them to run on a non-
shielded CPU only run on non-shielded CPUs.
Processes that would be precluded from exe-
cuting on any CPU other than a shielded CPU
are allowed to execute on that shielded CPU.

--all= CPULIST -a CPULIST The specified list of CPUs will have all
available shielding attributes set. See the
descriptions of the individual shielding options
above to understand the implications of each
shielding attribute.

--help ,-h Describes available options and usage.
--version , -V Prints out current version of the command.
--reset , -r Resets shielding attributes for all CPUs. No

CPUs are shielded.

--current , -C Displays current settings for all active CPUs.

Refer to Chapter 10, “Non-Uniform Memory Access (NBM, for options to
shield(1) that control NUMA node memory shielding.

Shield Command Examples

Exit Status

The following command first resets all shieldintriatites, then shields CPUs 0,1 and 2
from interrupts, then shields CPU 1 from local tinghields CPU 2 from extraneous
processes, and finally, displays all new settirfter ghe changes:

shield -r-i0-2-11-p2-c

The following command shields CPUs 1,2 and 3 froneirupts, local timer, and

extraneous processes. CPU 0 is left as a “generploge” CPU that will service all

interrupts and processes not targeted to a shi€ékdl All shielding attributes are set for
the list of CPUs.

shield --all=1-3

Normally, the exit status is zero. However, if anoe occurred while trying to modify
shielded CPU attributes, a diagnostic messagsugisand an exit status of 1 is returned.

2-13

RedHawk Linux User's Guide

Shield Command Advanced Features

It is recommended that the advanced features desthelow should only be used by
experienced users.

CPUs specified in thepuLisTcan be preceded by a '+' or a '-' sign in whicet¢he CPUs
in the list are added to ('+') or taken out of {he list of already shielded CPUs.

Options can be used multiple times. For exampleietd -i O -c -i +1 -c” shows current
settings after CPU 0 has been shielded from inp¢srand then displays current settings
again after CPU 1 has been added to the list of <CiPlielded from interrupts.

/proc Interface to CPU Shielding

The kernel interface to CPU shielding is through Abroc file system using the
following files:

/proc/shield/procs process shielding
/proc/shield/irgs irg shielding
/proc/shield/Itmrs local timer shielding

All users can read these files, but only root @rasvith thecAp_sys_NICE capability and
file permissions may write to them.

When read, an 8 digit ASCII hexadecimal value tsimeed. This value is a bitmask of
shielded CPUs. Set bits identify the set of shigél@®Us. The radix position of each set
bit is the number of the logical CPU being shieltdgdhat bit.

For example:

00000001 - hit O is set so CPU #0 is shielded
00000002 - hit 1 is set so CPU #1 is shielded
00000004 - hit 2 is set so CPU #2 is shielded
00000006 - hits 1 and 2 are set so CPUs #1 and #2 are shielded

When written to, an 8 digit ASCIl hexadecimal vals@xpected. This value is a bitmask
of shielded CPUs in a form identical to that lisedmbve. The value then becomes the new
set of shielded CPUs.

See theshield(5) man page for additional information.

Assigning Processes to CPUs

2-14

This section describes the methods available feigasg a process or thread to a set of
CPUs. The set of CPUs where a process is allowadhtes known as its CPU affinity.

By default, a process or thread can execute orCaty in the system. Every process or
thread has a bit mask, or CPU affinity, that deteas the CPU or CPUs on which it can
be scheduled. A process or thread inherits its @Fliity from its creator during a
fork(2) oraclone(2) but may change it thereafter.

Real-Time Performance

You can set the CPU affinity for one or more prasssor threads by specifying the
MPA_PRC_SETBIAScOmmand on a call tmpadvise(3) , or the-b biasoption to the
run(l) commandsched_setaffinity(2) can also be used to set CPU affinity.

To set the CPU affinity, the following conditionsust be met:

* The real or effective user ID of the calling proeesust match the real or
saved user ID of the process for which the CPUhiffis being set, or

* the calling process must have ttvee_sys_NICEcapability or be root.

To add a CPU to a process’ or thread’s CPU affjritig calling process must have the
CAP_SYS_NICEcapability or be root.

A CPU affinity can be assigned to thet(8) process. All general processes are a
descendant frormit . As a result, most general processes would hazzedme CPU
affinity asinit or a subset of the CPUs in thBt CPU affinity. Only privileged
processes (as described above) are able to adtUadReir CPU affinity. Assigning a
restricted CPU affinity tanit restricts all general processes to the same sab&RUs
asinit . The exception is selected processes that havappepriate capability who
explicitly modify their CPU affinity. If you wisha change the CPU affinity afit , see
the section “Assigning CPU Affinity to init” belofor instructions.

Thempadvise library routine is documented in the section “Mutbcessor Control
Using mpadvise” below and thapadvise(3) man page. Theun command is
documented in the section “The run Command” in @&ra$ and theun(1) man page.
For information orsched_setaffinity(2) andsched_getaffinity(2) , see
thesched_affinity(2) man page.

Multiprocessor Control Using mpadvise

mpadvise(3) performs a variety of multiprocessor functions.UsRare identified by
specifying a pointer to epuset t object, which specifies a set of one or more CPUs.
For more information on CPU sets, seedpaset(3) man page.

Synopsis
#include <mpadvise.h>
int mpadvise (int cmd int which, int whg, cpuset t *setp
gcc [optiong file -lccur_rt

Informational Commands

The following commands get or set information abtbet CPUs in the system. Thdich
andwhoparameters are ignored.

MPA_CPU_PRESENT Returns a mask indicating which CPUs are physically
present in the system. CPUs brought down with the
cpu(l) command are still included.

MPA_CPU_ACTIVE Returns a mask indicating which CPUs are activat ik
initialized and accepting work, regardless of hoany
exist in the backplane. If a CPU has been broughtrd
using thecpu(1l) command, it is not included.

2-15

RedHawk Linux User's Guide

MPA_CPU_BOOT Returns a mask indicating the CPU that booted ystes.
The boot CPU has some responsibilities not shartdtie
other CPUs.

MPA_CPU_LMEM Returns a mask indicating which CPUs have local orgm

on a system with NUMA support. CPUs brought dowthwi
thecpu(l) command are still included.

Control Commands

The following commands provide control over the a6€PUs by a process, a thread, a
process group, Or a user.

MPA_PRC_GETBIAS Returns the CPU set for the CPU affinity of alletads in
the specified processiéa_PID) or the exact unique bias for
the specified threadipa_TID).

MPA_PRC_SETBIAS Sets the CPU affinity of all threads in the spedfipro-
cessesnPA_PID) or the unique CPU affinity for the speci-
fied thread iPA_TID) to the specified cpuset. To change the
CPU affinity of a process, the real or effectiveud must
match the real or the saved (fraxec(2)) user ID of the
process, unless the current user hasdk®e SYS_NICE
capability.

MPA_PRC_GETRUN Returns a CPU set with exactly one CPU in it that
corresponds to the CPU where the specified thread i
currently running (or waiting to runMPA_TID). When
MPA_PID is specified, returns one CPU for non-threaded pro
grams and the set of CPUs in use by all threadsrofilti-
threaded program. Note that it is possible thatGlrJ
assignment may have already changed by the timeathe

is returned.
Using which and who
which Used to specify the selection criteria. Can be oh¢he
following:

MPA_PID a specific process and all its threads
MPA_TID a specific thread

MPA_PGID a process group

MPA_UID auser

MPA_LWPID same asPA_TID (compatible with Powerax)

who Interpreted relative tavhich

a process identifier

a thread identifier

a process group identifier
user identifier

A who value of 0 causes the process identifier, process
group identifier, or user identifier of the calterbe used.

2-16

Real-Time Performance

Using mMpPA_PID with a reference to a single subordinate
(non-primordial) thread applies to the containimggess as
it does when a primordial thread is supplied.

When usingvPA_TID, who must be the numeric thread ID
(as returned by gettid), not a pthread identifissariated
with the POSIX Threads library.

Assigning CPU Affinity to init

All general processes are a descendamitfB) . By default,init has a mask that
includes all CPUs in the system and only selectedgsses with appropriate capabilities
can modify their CPU affinity. If it is desired thiay default all processes are restricted to
a subset of CPUs, a CPU affinity can be assigned pyivileged user to thimit
process. To achieve this goal, the(1) command can be invoked early during the
system initialization process.

For example, to biamit and all its descendants to CPUs 1, 2 and 3, thewing
command may be added at the end of the systetekc.sysinit script, which is
called early during system initialization (segttab(5)). Theinit process is
specified in this command by its process ID whichlivays 1.

fusr/bin/frun -b 1-3-p 1

The same effect can be achieved by usingsttield(1) command. The advantage of
using this command is that it can be done fromcttramand line at any run level. The
shield command will take care of migrating processesaalyeunning in the CPU to be
shielded. In addition, with thehield command you can also specify different levels of
shielding. See the section “Shield Command” orshield(1) man page for more
information on this command.

For example, to shield CPU 0 from running procesges would issue the following
command.

$ shield-p0

After shielding a CPU, you can always specify sieddqrocesses to run in the shielded
CPU using theun command.

For example, to rumycommandon CPU 0 which was previously shielded from
processes, you would issue the following command:

$ run-b 0 ./mycommand

Example of Setting Up a Shielded CPU

The following example shows how to use a shield®tl@o guarantee the best possible
interrupt response to an edge-triggered intermgoh fthe RCIM. In other words, the intent
is to optimize the time it takes to wake up a useel process when the edge-triggered
interrupt on an RCIM occurs and to provide a detrigstic execution environment for
that process when it is awakened. In this casshietded CPU should be set up to handle
just the RCIM interrupt and the program respondmthat interrupt.

The first step is to direct interrupts away frone tbhielded processor through the
shield(1) command. The local timer interrupt will also beabled and background

2-17

RedHawk Linux User's Guide

2-18

processes will be precluded to achieve the bestiplesinterrupt response. The shield
command that would accomplish these results for TRLJ

$ shield -a1l

At this point, there are no interrupts and no peses that are allowed to execute on
shielded CPU 1. The shielding status of the CPUWsbmachecked using the following
methods:

via theshield(1) command:

$ shield -c

CPUID irgs Itmrs procs
0 no no no
1 yes yes yes
2 no no no
3 no no no

via thecpu(l) command:

$ cpu

cpu chip core ht ht-siblings state shielding

0O O - 0 2 up none

1 3 - 0 3 up proc irg Itmr
2 0 - 1 0 up none

3 3 - 1 1 up none

or via the/proc file system:

$ cat /proc/shield/irgs
00000002

This indicates that all interrupts are precludedrfrexecuting on CPU 1. In this example,
the goal is to respond to a particular interruptlos shielded CPU, so it is necessary to
direct the RCIM interrupt to CPU 1 and to allow fw®gram that will be responding to
this interrupt to run on CPU 1.

The first step is to determine the IRQ to whichR@IM interrupt has been assigned. The
assignment between interrupt and IRQ will be cardtar devices on the motherboard
and for a PCI device in a particular PCI slot. R@l board is moved to a new slot, its IRQ
assignment may change. To find the IRQ for youiiak\perform the following
command:

$cat /proc/interrupts

CPUO CPU1 CPU2 CPU3

0: 665386907 0 0 0 10-APIC-edge timer

4: 2720 0 0 0 I0-APIC-edge serial

8: 1 0 0 0 I0-APIC-edge rtc

9: 0 0 0 0 I0-APIC-level acpi

14: 9649783 1 2 3 I0-APIC-edge ide0

15: 31 0 0 0 I0-APIC-edge idel

16: 384130515 0 0 0 I0-APIC-level ethO

17: 0 0 0 0 10-APIC-level rcim,Intel..
18: 11152391 0 0 0 I0-APIC-level aic7xxXx,...
19: 0 0 0 0 10-APIC-level uhci_hcd
23: 0 0 0 0 10-APIC-level uhci_hcd

Real-Time Performance

NMI: 102723410 116948412 0 0 Non-maskable interrupts

LOC: 665262103 665259524 665264914 665262848 Local inter rupts

RES: 36855410 86489991 94417799 80848546 Rescheduling in terrupts
CAL: 2072 2074 2186 2119 function call interrupts

TLB: 32804 28195 21833 37493 TLB shootdowns

TRM: Thermal event interrupts

0 0 0 0
SPU: 0 0 0 0 Spurious interrupts
ERR: 0 0 0 0 Error interrupts
MIS: 0 0 0 0 APIC errata fixups

The RCIM is assigned to IRQ 17 in the list abovewNhat its IRQ number is known, the
interrupt for the RCIM can be assigned to the sleiélprocessor via thproc file that
represents the affinity mask for IRQ 17. The affimhask for an IRQ is an 8 digit ASCII
hexadecimal value. The value is a bit mask of CHHash bit set in the mask represents a
CPU where the interrupt routine for this interromy be handled. The radix position of
each set bit is the number of a logical CPU thatltandle the interrupt. The following
command sets the CPU affinity mask for IRQ 17 tdJAP

$echo2> /proclirg/17/smp_affinity

Note that the Smp_affinity " file for IRQs is installed by default with pernsi®ns
such that only the root user can change the imieassignment of an IRQ. Tlhgroc
file for IRQ affinity can also be read to be sunattthe change has taken effect:

$ cat /procfirg/17/smp_affinity
00000002 user 00000002 actual

Note that the value returned for “user” is therb@sk that was specified by the user for the
IRQ's CPU affinity. The value returned for “actualill be the resulting affinity after any
non-existent CPUs and shielded CPUs have been rednfvom the mask. Note that
shielded CPUs will only be stripped from an IRGfindy mask if the user set an affinity
mask that contained both shielded and non-shiel@dds. This is because a CPU
shielded from interrupts will only handle an intgst if there are no unshielded CPUs in
the IRQ's affinity mask that could handle the inipt. In this example, CPU 1 is shielded
from interrupts, but CPU 1 will handle IRQ 17 besaits affinity mask specifies that only
CPU 1 is allowed to handle the interrupt.

The next step is to be sure that the program redipgnto the RCIM edge-triggered
interrupt will run on the shielded processor. Epobcess in the system has an assigned
CPU affinity mask. For a CPU shielded from backgbprocesses, only a process that
has a CPU affinity mask which specifies ONLY shésldCPUs will be allowed to run on a
shielded processor. Note that if there are any stoalded CPUs in a process’ affinity
mask, then the process will only execute on thestoelded CPUs.

The following command will execute the user progradge-handler” at a real-time
priority and force it to run on CPU 1:

$ run -sfifo -P 50 -b 1 edge-handler

Note that the program could also set its own CHiigf by calling the library routine
mpadvise(3) as described in the section “Multiprocessor Cdntising mpadvise.”

Therun(1) command can be used to check the program’s affinit

$ run -i -n edge-handler
Pid Tid Bias Actual Policy Pri Nice Name
9326 9326 0x2 0x2 fifo 50 O edge-h andler

2-19

RedHawk Linux User's Guide

Note that the value returned for “Bias” is the miask that was specified by the user for
the process’ CPU affinity. The value returned factual” will be the resulting affinity
after any non-existent CPUs and shielded CPUs haga removed from the mask. Note
that shielded CPUs will only be stripped from aqass’ affinity mask if the user set an
affinity mask that contained both shielded and sbiglded CPUs. This is because a CPU
shielded from background processes will only hamadigocess if there are no unshielded
CPUs in the process’ affinity mask that could riha program. In this example, CPU 1 is
shielded from background processes, but CPU lrwillthe “edge-handler” program
because its affinity mask specifies that only CPild dllowed to run this program.

Procedures for Increasing Determinism

The following sections explain various ways in whi®u can improve performance using
the following techniques:

* |locking a process’ pages in memory

¢ using favorable static priority assignments

* removing non-critical processing from interruptdév

¢ speedy wakeup of processes

¢ controlling cache access

* reserving physical memory

* in a NUMA system, binding a program to local memory
* judicious use of hyper-threading

¢ avoiding a low memory state

Locking Pages in Memory

You can avoid the overhead associated with pagind swapping by using
mlockall(2) , munlockall(2) , mlock(2) , andmunlock(2) . These system
calls allow you to lock and unlock all or a portioha process’ virtual address space in
physical memory. These interfaces are based on E&B&dard 1003.1b-1993.

With each of these calls, pages that are not resatethe time of the call are faulted into
memory and locked. To use thdockall(2) , munlockall(2) , mlock(2) , and
munlock(2) system calls you must have thep_IPC_LOCK andCAP_SYS_RAWIO
capabilities (for additional information on capatds, refer to Chapter 13 and the
pam_capability(8) man page.

Procedures for using these system calls are fudplagned in the corresponding man
pages.

Setting the Program Priority

2-20

The RedHawk Linux kernel accommodates static ggicstheduling—that is, processes
scheduled under certain POSIX scheduling policesat have their priorities changed by
the operating system in response to their run-bisteavior.

Processes that are scheduled under one of the P@&k¥me scheduling policies always
have static priorities. (The real-time scheduliniges areSCHED_RRandSCHED_FIFQ
they are explained Chapter 4.) To change a prosebgduling priority, you may use the

Real-Time Performance

sched_setscheduler(2) and thesched_setparam(2) system calls. Note that
to use these system calls to change the priority mfocess to a higher (more favorable)
value, you must have tleap_sys_Nicecapability (for complete information on capability
requirements for using these routines, refer tactireesponding man pages).

The highest priority process running on a partic@@®U will have the best process
dispatch latency. If a process is not assignedlaenipriority than other processes running
on a CPU, its process dispatch latency will becsdfé by the time that the higher priority
processes spend running. As a result, if you hawe itihan one process that requires good
process dispatch latency, it is recommended thatdystribute those processes among
several CPUs. Refer to the section “Assigning Psses to CPUSs,” for the procedures for
assigning processes to particular CPUs.

Process scheduling is fully described in ChaptePdocedures for using the
sched_setscheduler andsched_setparam system calls to change a process’
priority are also explained.

Setting the Priority of Deferred Interrupt Processi ng

Linux supports several mechanisms that are usedtbgrupt routines in order to defer
processing that would otherwise have been donatatrupt level. The processing
required to handle a device interrupt is split ibkm parts. The first part executes at
interrupt level and handles only the most critieapects of interrupt completion
processing. The second part is deferred to rumogfram level. By removing non-critical
processing from interrupt level, the system carieaghbetter interrupt response time as
described earlier in this chapter in the sectioffie of Interrupts.”

The second part of an interrupt routine can be leahly kernel daemons, depending on
which deferred interrupt technique is used by theick driver. There are kernel tunables
that allow a system administrator to set the ptyooif the kernel daemons that handle
deferred interrupt processing. When a real-timk ta®cutes on a CPU that is handling
deferred interrupts, it is possible to set thenisicof the deferred interrupt kernel daemon
so that a high-priority user process has a morerale priority than the deferred

interrupt kernel daemon. This allows more deterstiairesponse time for this real-time
process.

For more information on deferred interrupt procegsincluding the daemons used and
kernel tunables for setting their priorities, see thapter “Device Drivers.”

Waking Another Process

In multiprocess applications, you often need to vakprocess to perform a particular
task. One measure of the system’s responsivendss gpeed with which one process can
wake another process. The fastest method you @toyserform this switch to another
task is to use thpostwait(2) system call. For compatibility with legacy codeet
server_block(2) andserver_wakel(2) functions are provided in RedHawk
Linux.

Procedures for using these functions are explamé&hapter 5 of this guide.

2-21

RedHawk Linux User's Guide

Avoiding Cache Thrashing

Application writers trying to approach ‘constannhtimme determinism’ must pay attention

to how their program’s variables will be mappedaitite CPU’s caches. For example, if a
program has a variable i and a variable j and lawthheavily used, and the memory
locations assigned to them result in both i anéipg in the same cache line, every
reference to i will eject j from the cache and weesa. This is called thrashing the cache
and its occurrence is devastating to performance.

To avoid this, place all heavily accessed dateeclo®ne another in memory. If that range
is smaller than the cache size, all the data wiljbaranteed different cache lines. To view
how large the CPU'’s cache is, execute “grep cdphar/cpuinfo”.

Make sure that your system has cache that is laingerthe data set of heavily accessed
variables. For example, if you have 600,000 byfasdables and you have a system with
only .5 MB of cache, cache thrashing will be unaadbie.

If you have less than one page (4096 bytes) dtativariables, then you can force them
to be in separate cache lines by forcing all thta ttabe in one physical page:

struct mydata{
inti;
int j;
float fp[200];
float fq[200]; } __ attribute_ ((__aligned__ (4096)))

struct mydata mydata;

Reserving Physical Memory

2-22

Physical memory can be reserved though the usemfiand line arguments in the
letc/grub.conf file.

This type of allocation may be used for a DMA buffequired by a local device or for a
device on a foreign host that is mapped to iHawkowy, such as through a PCI-to-VME
adapter. It can also be used to provide a dateegbat does not have the randomness of
page allocations from dynamic virtual memory alltoas. This could enhance
application performance by making cache collisiohfarge data arrays more constant,
thus reducing variance in execution times from setjal invocations of a process.

By custom mapping memory in tigeub.conf file, a “reserved” section of RAM can be
obtained. The System 8hmop(2) function can be used to access this region ofipalys
memory.Shmconfig(1) orshmbind(2) , andshmop(2) functions can be used to
create and attach to this memory partition.

Real-Time Performance

The amount of physical RAM available can be vievbgdexamining the contents of
/procfiomem , as shown below on an i386 system.

$ cat /proc/iomem
00000000-0009ffff : System RAM
00000000-00000000 : Crash kernel
000a0000-000bffff : Video RAM area
000c0000-000cefff : Video ROM
000d0800-000d3fff : Adapter ROM
000f0000-000fffff : System ROM
00100000-7fe8abff : System RAM
00100000-004f58a5 : Kernel code
004f58a6-00698577 : Kernel data
7fe8ac00-7fe8cbff : ACPI Non-volatile Storage
7fe8cc00-7fe8ebff : ACPI Tables
7fe8ec00-Tfffffff : reserved

(I/O entries removed from example)

The regions marked “System RAM” represent the ata@ physical memory for
allocation.

An example ofetc/grub.conf that illustrates how to reserve physical RAM iswh
below in hexadecimal (an example in decimal follpwEhe commands placed in
grub.conf are processed at boot time to create the memopypimz

The “memmap=exactmap” entry specifies that the eBH0S map is used.

The remaining entries specify regions to be defifiéd command format is:
memmapsize<op>address

where<op> is ‘@’ for System RAM, ‘$’ for Reserve or “#” fokCPI.

The following example reserves 32MB just below dderess of 1G:

default=0

timeout=10

splashimage=(hd0,0)/grub/ccur.xpm.gz

title RedHawk Linux 2.3 (Trace=Yes, Debug=No)
root (hd0,0)
kernel /vmlinuz-2.6.9-RedHawk-2.3-trace ro root=/de v/sda2 vmalloc=256M \
memmap=exactmap \
memmap=0xa0000@0x0 \
memmap=0x3df00000@0x100000 \
memmap=0x2000000$0x3e000000 \
memmap=0x3fe8ac00@0x40000000 \
memmap=0x2000#0x7fe8cc00

It should be noted that the grub command linenstéd to 256 bytes. The addition of
parameters to the grub command line must not exiteedmit.

The entries shown above are obtained usingrimexact(1) utility and subsequently
copied to théetc/grub.conf command lineMemexact processes command options
and produces appropriate memory reservation commaaded on the contents of
/proc/iomem or a file specified on the command line.

2-23

RedHawk Linux User's Guide

[usr/bin/memexact -x -MS=32M,U=1G

memmap=exactmap memmap=0xa0000@0 memmap=0x3df00000@0x100000 memmap=0xa0000@0
memmap=0x3df00000@0x100000 memmap=0x2000000$0x3e000 000
memmap=0x3fe8ac00@0x40000000 memmap=0x2000#0x7fe8cc 00

where:
-X specifies hexadecimal output
-M multiple entries may follow
-S specifies the reservation size
-U specifies the upper limit of the reservation

This reserved region can be arbitrarily selectetbag as the location is from memory
identified as “System RAM” in thgroc/iomem listing and does not include the kernel
addresses. The regions “Adapter ROM,” “System ROMICP,” and “reserved” must not
be re-mapped using these commandemexact(1) selects the appropriate locations to
reserve based on the contentgpoébc/iomem and the command line options presented.

CAUTION

Errors made in these entries, such as overlappiagipusly
reserved regions (e.g. System ROM, etc.), can ctatakerrors
booting the kernel.

The following example uses decimal address. Idéniical in function to the example in
hexadecimal above and produces identical results.

memexact -MS=32M,U=1G
memmap=exactmap memmap=640K@0 memmap=991M@1M memm3pM$992M
memmap=1047083K@1G memmap=8K#2095667K

Below is the correspondingyub.conf file with these added decimal entries:

default=0

timeout=10

splashimage=(hd0,0)/grub/ccur.xpm.gz

titte RedHawk Linux 2.3(Trace=Yes, Debug=No)
root (hd0,0)
kernel /vmlinuz-2.6.9-RedHawk-2.3-trace ro root=/de v/sda2 vmalloc=256M \
memmap=exactmap \
memmap=640K@0 \
memmap=991M@1M \
memmap=32M$992M \
memmap=1047083K@1G \
memmap=8K#2095667K

2-24

Real-Time Performance

Below is a comparison of memory before and afterrservation made in the examples
above. The “after reservation” region at 0x3e0006Gked “reserved” is the newly-
reserved 32 MB region.

/proc/iomem before reservation /proc/iomem after reservation

00000000-0009ffff : System RAM 00000000-0009ffff : S ystem RAM

00000000-00000000 : Crash kernel 00000000-00000000 : Crash kernel
000a0000-000bffff : Video RAM area 000a0000-000bffff : Video RAM area
000c0000-000cefff : Video ROM 000cP000-000cefff : Vi deo ROM
000d0800-000d3fff : Adapter ROM 000d(800-000d3fff : Adapter ROM
000f0000-000fffff : System ROM 000f0Q00-000fffff : S ystem ROM
00100000-7fe8abff : System RAM 00100000-3dffffff : S ystem RAM

00100000-004f58a5 : Kernel code 00100000-004f58a5 : Kernel code

004f58a6-00698577 : Kernel data 004f58a6-00698577 : Kernel data
7fe8ac00-7fe8cbff : ACPI Non-volatile Storage 3e0000 00-3fffffff : reserved
7fe8cc00-7fe8ebff : ACPI Tables 40000000-7fe8abff : System RAM
7fe8ec00-7fffffff : reserved 7fe8cc00-7fe8ebff : ACPI Tables

(I/O entries removed from example)

The next example illustrates the commands placeplub.conf to reserve a memory
region between two system RAM regions beyond 4 GBap x86_64 system. The
/procfiomem output before this reservation is shown on the pege.

Note that on x86_64 systems, “mm” is an alias fmetnmap” and “ex” is an alias for
“exactmap.” These shorter alias names should be imserder to reduce the number of
characters required to set up a reserved area tiece is a limit of 256 characters per
grub command line.

mm=ex \

mm=0x9fc00@0x0 \
mm=0x400@0x9fc00 \
mMmm=0x20000$0xe0000 \
mm=0xcfef0000@0x100000 \
mMmm=0x10000#0xcfff0000 \
mMmm=0x840000%$0xff7c0000 \
mMm=512M@0x100000000 \
mm=512M$4608M \
mm=1G@5G

Below is a comparison of memory before and afterréservation made in the example
above. The “after reservation” region at 0Ox0000@IXD0000 marked “reserved” is the
newly-reserved region.

/proc/iomem before reservation /proc/iomem after reservation
0000000000000000-000000000009fbff : System RAM 0000000000000000-000000000009fbff : System RAM
000000000009fc00-000000000009ffff : reserved 000000000009fc00-000000000009ffff : System RAM
00000000000a0000-00000000000bffff : Video RAM area 00000000000a0000-00000000000bffff : Video RAM area
00000000000c0000-00000000000c7fff : Video ROM 00000000000c0000-00000000000c7fff : Video ROM
00000000000c8000-00000000000cbfff : Adapter ROM 00000000000c8000-00000000000cbfff : Adapter ROM
00000000000f0000-00000000000fffff : System ROM 00000000000f0000-00000000000fffff : System ROM
0000000000100000-00000000d 7feffff : System RAM 0000000000100000-00000000cffeffff : System RAM

2-25

RedHawk Linux User's Guide

/procfiomem before reservation /procfiomem after reservation
0000000000100000-00000000005¢9521 : Kernel code 0000000000100000-00000000005¢9521 : Kernel code
00000000005c9522-0000000000954137 : Kernel data 00000000005c9522-0000000000954137 : Kernel data

00000000d7ff0000-00000000d7ffefff : ACPI Tables 00000000cfff0000-00000000cfffffff : ACPI Tables
00000000d7fff000-00000000d 7ffffff : ACPI Non-volati le Storage 00000000ff7c0000-00000000ffffffff : reserved
00000000ff7c0000-00000000ffffffff : reserved 0000000100000000-00000001 1fffffff : System RAM
0000000100000000-00000001 7fffffff : System RAM 0000000120000000-00000001 3ffffff : reserved
0000000140000000-00000001 7fffffff : System RAM

(I/O entries removed from example)

Shmconfig(l) orshmbind(2) can be used to create a partition at the reserved
physical address. The System V shared memory opesahmop(2) can be used by an
application to gain access to the region.

The following example, based on the first examleg in this section on an i386 system,
creates a System V memory partition of 32MB at jidgisaddress 0x3e000000 with
unrestricted access and a key of 6602:

usr/bin/shmconfig -s 0x2000000 -p 0x3e000000 -m 077 7 6602

This command may be placed/aic/rc.local to automate the creation of the shared
memory partition. While this example uses a hardedokey of 6602, use of a pathname
such addev/ MyDeviceas a key allows applications to obtain the kepeaused for
attachment using théok(3) function.

The following code fragment could also be usedytwathnically create the shared memory
partition.

paddr = 0x3e000000 ;

shmkey = ftok(pathname) ;

shmid = shmget (shmkey, sizeof (<shared_region>) ,
SHM_R | SHM_W | IPC_CREAT) ;

shmstat = shmbind (shmid , paddr) ;

pstart = shmat (shmid , NULL, SHM_RND) ;

The shared memory segments on the system areevisbigipcs(8) (-m option) or
via the/proc/sysvipc/shm file.

cat /proc/sysvipc/shm

key shmid perms size cpid Ipid nattch uid gid cuid cgid
atime dtime ctime physaddr
6602 0 777 33554432 4349 0 0 0 0 0 0
0 0 1153750799 3e000000
ipcs-m

2-26

Real-Time Performance

—————— Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x000019ca 0 root 777 33554432 0

Refer to the man pages or Chapter 3 for more infoaomabout using these functions and
utilities.

Binding to NUMA Nodes

On a system with non-uniform memory access (NUMsaAlch as an iHawk Opteron
system, it takes longer to access some regionsafary than others. The memory on a
NUMA system is divided into nodes, where a noddefned to be a region of memory
and all CPUs that reside on the same physical buseamemory region of the NUMA
node. If a program running on this type of systemat NUMA-aware, it can perform
poorly.

By default, pages are allocated from the node whieedocal CPU (from which the
program is executed) resides, but the task oralidveas within the task can be specified
to allocate pages from certain nodes for betteedeinism and control. Refer to
Chapter 10 for information about NUMA.

I/O Throughput on Quad Opteron Systems

In a quad Opteron symmetric multiprocessor sysemty processor has a unique bank of
memory attached directly to the processor. All mgnio the system can be accessed
from any processor via the HyperTransport™, buntieenory that is directly attached to a
processor is the memory that will have the fastesess time for that thread of execution
running on that processor. This layout is illustthin Figure 2-7.

2-27

RedHawk Linux User's Guide

Figure 2-7 Quad Opteron I/O Throughput Layout

HyperTransport
Node 2 M Node 3

Node 0 [(r— NOdE 1

1/0 Hub PCI Tunnel
(Disk) (RCIM)

Access to I/O devices in an Opteron system is likewot completely symmetrical. The

I/0 hub and the PCI tunnel are directly attached &pecific node in the system. In

Figure 2-7, the 1/0O hub is attached to Node O ardR&I tunnel is attached to Node 1.

Testing has shown that programmed 1/O times are faster and more deterministic when

the program performing the programmed 1/O is rugron the node attached to the 1/O

bus where the device resides. The effect on I/@peaance is especially noticeable when
there is contention for the HyperTransport intemects because other programs are
performing I/O or non-local memory operations.

This means that if an application demands high dple¢erministic programmed 1/O, the
program performing such 1/0O should be bound toonrthe processor closest to the 1/0
bus where the device resides.

The node that is tied to the 1/O bridge can be mheiteed either by looking at system
schematics or by testing.

Understanding Hyper-threading

2-28

Hyper-threading is a feature of the Intel PentiugoX processor in iHawk 860 systems. It
allows for a single physical processor to run nplétithreads of software applications
simultaneously. This is achieved by having two s#tarchitectural state on each
processor while sharing one set of processor eikactgsources. The architectural state
tracks the flow of a program or thread, and thecakien resources are the units on the

Real-Time Performance

processor that do the work: add, multiply, load, &ach of the two sets of architectural
state in a hyper-threaded physical CPU can be titonfgas a “logical” CPU. The term
“sibling CPU" refers to the other CPU in a pairlofical CPUs that reside on the same
physical CPU.

When scheduling threads, the operating systemnstthattwo logical CPUs on a physical
CPU as if they were separate processors. Commikedss(1) or shield(1) identify
each logical CPU. This allows multiprocessor-capaftware to run unmodified on
twice as many logical processors. While hyper-ttirsg technology does not provide the
level of performance scaling achieved by addingeosd physical processor, some
benchmark tests show that parallel applicationseogrerience as much as a 30 percent
gain in performance. See the section “Recommend8d Configurations” for ideas on
how to best utilize hyper-threading for real-tinpgphcations.

The performance gain from hyper-threading occursabse one processor with two
logical CPUs can more efficiently utilize executimgsources. During normal program
operation on a non-hyper-threaded CPU, executieaurees on the chip often sit idle
awaiting input. Because the two logical CPUs sloare set of execution resources, the
thread executing on the second logical CPU camassgirces that are otherwise idle with
only one thread executing. For example while orggclal CPU is stalled waiting for a
fetch from memory to complete, its sibling can @mmé processing its instruction stream.
Because the speeds of the processor and the méu®ere very unequal, a processor can
spend a significant portion of its time waiting ftata to be delivered from memory. Thus,
for certain parallel applications hyper-threadirrgyides a significant performance
improvement. Another example of parallelism is dogical processor executing a
floating-point operation while the other executasaddition and a load operation. These
operations execute in parallel because they utdliferent processor execution units on
the chip.

While hyper-threading will generally provide fastexecution for a multi-thread
workload, it can be problematic for real-time apations. This is because of the impact
on the determinism of execution of a thread. Beeaubkyper-threaded CPU shares the
execution unit of the processor with another threhd execution unit itself becomes
another level of resource contention when a theeatutes on a hyper-threaded CPU.
Because the execution unit will not always be adéd when a high priority process on a
hyper-threaded CPU attempts to execute an instnucthe amount of time it takes to
execute a code segment on a hyper-threaded CRil &smpredictable as on a non-hyper-
threaded CPU.

The designer of a parallel real-time applicationudtd decide whether hyper-threading
makes sense for his application. Will the appli@atbenefit from its tasks running in
parallel on a hyper-threaded CPU as compared taingnsequentially? If so, the
developer can make measurements to determine hah fitter is introduced into the
execution speeds of important high-priority threBgsunning them on a hyper-threaded
CPU.

The level of jitter that is acceptable is highlyplpation dependent. If an unacceptable
amount of jitter is introduced into a real-time Bggtion because of hyper-threading, then
the affected task should be run on a shielded CRb it¢ sibling CPU marked down
(idled) via thecpu(1) command. An example of a system with a CPU madauh is
given later in this chapter. It should be noted ttextain cross processor interrupts will
still be handled on a downed CPU (seedphe(1l) man page for more information). If
desired, hyper-threading can be disabled on amysiiele basis. See the section “System
Configuration” below for details.

2-29

RedHawk Linux User's Guide

Hyper-threading technology is complementary to ipudicessing by offering greater
parallelism within each processor in the systent,ibunot a replacement for dual or
multiprocessing. There are twice as many logicakpssors available to the system,
however, they are still sharing the same amoungafcution resources. So the
performance benefit of another physical processthr it own set of dedicated execution
resources will offer greater performance levelsisTtan be especially true for
applications that are using shielded CPUs for obitey a deterministic execution
environment.

As mentioned above, each logical CPU maintainsnaptete set of the architecture state.
The architecture state (which et shared by the sibling CPUs) consists of general-
purpose registers, control registers, advancedranoigiable interrupt controller (APIC)
registers and some machine state registers. Logroalessors share nearly all other
resources on the physical processor such as caskesytion units, branch predictors,
control logic, and buses. Each logical processeritsaown interrupt controller or APIC.
Interrupts sent to a specific logical CPU are haddinly by that logical CPU, regardless
of whether hyper-threading is enabled or disabled.

System Configuration

The following items affect system-wide hyper-threagilability:

* The system must contain Intel Pentium Xeon proassso

* The kernel must be configured with hyper-threadamgbled through the
x86_HT kernel tunable accessible un@eocessor Type and Features on the
Kernel Configuration GUI. Hyper-threading is enabley default on all
RedHawk i386 pre-defined kernels.

* Hyper-threading must be enabled in the BIOS touaglable for use. Refer
to your hardware documentation to determine whid®® setting is
involved, if needed.

Hyper-threading can be disabled on a per-CPU h&sig thecpu(l) command to mark
one of the siblings down. Refer to thgu(1) man page for more details.

Note that with hyper-threading enabled, commanidstihp(1) andrun(l) report
twice as many CPUs as were previously present atesys running a version of
RedHawk Linux prior to release 1.3 that did not ddyper-threading support. When
hyper-threading is disabled on a system-wide bakis,logical CPU numbers are
equivalent to the physical CPU numbers.

Recommended CPU Configurations

2-30

Hyper-threading technology offers the possibilifybetter performance for parallel
applications. However, because of the manner ichv8iPU resources are shared between
the logical CPUs on a single physical CPU, différ@pplication mixes will have varied
performance results. This is especially true whamgaplication has real-time
requirements requiring deterministic execution snfier the application. Therefore, it is
important to test the performance of the applicatioder various CPU configurations to
determine optimal performance. For example, iféhee two tasks that could be run in
parallel on a pair of sibling CPUs, be sure to carepthe time it takes to execute these
tasks in parallel using both siblings versus theetit takes to execute these tasks serially
with one of the siblings down. This will determimdnether these two tasks can take
advantage of the unique kind of parallelism proditdg hyper-threading.

Real-Time Performance

Below are suggested ways of configuring an SMPesgghat contains hyper-threaded
CPUs for real-time applications. These examplesatorhints about configurations that
might work best for applications with various penf@nce characteristics.

Standard Shielded CPU Model

This model would be used by applications having &ict requirements for determinism
in program execution. A shielded CPU provides tlesthadeterministic environment for
these types of tasks (see the section “How Shigltiinproves Real-Time Performance”
for more information on shielded CPUSs). In ordemiaximize the determinism of a
shielded CPU, hyper-threading on that physical @Ptlisabled. This is accomplished by
marking down the shielded CPU's sibling logical C&ding thecpu(l) command.

In the Standard Shielded CPU Model, the non-shizl@®Us have hyper-threading
enabled. These CPUs are used for a non-criticaklwad because in general hyper-
threading allows more CPU resources to be applied.

Figure 2-8 illustrates the Standard Shielded CPU éllod a system that has two physical
CPUs (four logical CPUSs). In this example, CPU 3 baen taken down and CPU 2 is
shielded from interrupts, processes and hyper-ttimgaA high priority interrupt and the
program responding to that interrupt would be assdjto CPU 2 for the most
deterministic response to that interrupt.

Figure 2-8 The Standard Shielded CPU Model

Unshielded CPU

CPU1
CPUD

Shielded CPU

Down CPU .

The commands to set up this configuration are:

$ shield -a 2
$ cpu-d3

Shielding with Interrupt Isolation

This model is very similar to the Standard Shiel@&l) Model. However, in this case all
logical CPUs are used, none are taken down. LikeStiandard Shielded CPU Model, a
subset of the logical CPUs is shielded. But rathan taking down the siblings of the
shielded CPUs, those CPUs are also shielded andkdieated to handling high priority
interrupts that require deterministic interruptp@sse. This is accomplished by shielding
the sibling CPUs from processes and interruptsthed setting the CPU affinity of a

2-31

RedHawk Linux User's Guide

Hyper-thread Shielding

2-32

particular interrupt to that sibling CPU. Shieldinith interrupt isolation is illustrated in
Figure 2-9.

Figure 2-9 Shielding with Interrupt Isolation

A 4

CPU 1 CPU 3 Unshielded CPU

CPUD CPU 2

Shielded CPU

High Priority Interrupt ¥

The benefit of this approach is that it providesraall amount of parallelism between the
interrupt routine (which runs on CPU 3) and exemutif high priority tasks on the sibling
CPU (the program awaiting the interrupt runs on CRlBecause the interrupt routine is
the only code executing on CPU 3, this interrupttiree will generally be held in the L1
cache in its entirety, and the code will stay ia ttache, providing optimum execution
times for the interrupt routine. There is a smahglty to pay however, because the
interrupt routine must send a cross processorrinpein order to wake the task that is
awaiting this interrupt on the sibling CPU. Thiddtbnal overhead has been measured at
less than two microseconds.

Another potential use of using shielding with imgpt isolation is to improve 1/O
throughput for a device. Because we are dedicati@fU to handling a device interrupt,
this interrupt will always complete as quickly assgible when an |/O operation has
completed. This allows the interrupt routine to iediately initiate the next I/O operation,
providing better I/O throughput.

This configuration is another variation of the Stard Shielded CPU Model. In this case,
one sibling is shielded while the other siblinglil®wed to run general tasks. The shielded
CPU will have its determinism impacted by the dttion its sibling CPU. However, the
advantage is that much more of the CPU power sfgthysical CPU can be utilized by the
application. Figure 2-10 illustrates a Hyper-thr&hdelding configuration.

Real-Time Performance

Figure 2-10 Hyper-thread Shielding

CPU1 CPU 3 Unshielded CPTT I:l

CPUO CPU2
Shielded CPU I:l

High Priority Interrupt *

In this example, CPU 3 is shielded and alloweditoanly a high priority interrupt and the
program that responds to that interrupt. CPU 2itisee not shielded and therefore
available for general use or is set up to run ifipeset of tasks. The tasks that run on
CPU 2 will not directly impact interrupt response¢, because when they disable
preemption or block interrupts there is no effesttbe high priority interrupt or task
running on CPU 3. However, at the chip resourcellthere is contention that will impact
the determinism of execution on CPU 3. The amodritnpact is very application
dependent.

Floating-point / Integer Sharing

Shared Data Cache

This configuration can be used when the applicatias some programs that primarily
perform floating-point operations and some prograha primarily perform integer
arithmetic operations. Both siblings of a hyperetided CPU are used to run specific
tasks. Programs that are floating-point intensire assigned to one sibling CPU and
programs that primarily execute integer operatamsassigned to the other sibling CPU.
The benefit of this configuration is that floatipgint operations and integer operations
use different chip resources. This allows the a@afilbn to make good use of hyper-thread
style parallelism because there is more parallettsh can be exploited at the chip level.
It should also be noted that applications on thé&J@fat are only performing integer
operations would see faster context switch timesbse there won't be save/restore of
the floating-point registers during the contexttstvi

This configuration can be used when the applicaisoa producer/consumer style of
application. In other words, one process (the coresyis operating on data that has been
passed from another process (the producer). Inctdg, the producer and consumer
threads should be assigned to the siblings of &htreaded CPU. Because the two
sibling CPUs share the data cache, it is likelyt tha data produced by the producer
process is still in the data cache when the conspnoeess accesses the data that has been
passed from the producer task. Using two sibling € this manner allows the producer
and consumer tasks to operate in parallel, anddke passed between them is essentially
passed via the high-speed cache memory. This dfign#ficant opportunity for exploiting
hyper-thread style parallelism.

Another potential use of this model is for the & on one sibling CPU to pre-fetch data
into the data cache for a process running on theraibling on a hyper-threaded CPU.

2-33

RedHawk Linux User's Guide

Shielded Uniprocessor

This configuration is a variation of the Hyper-thdeShielding configuration. The only
difference is that we are applying this technigo@tuniprocessor rather than to one
physical CPU in an SMP system. Because a physiP&) @ow contains two logical
CPUs, a uniprocessor can now be used to createldeth CPU. In this case, one of the
CPUs is marked shielded while the other CPU is usedin background activity.
Determinism on this type of shielded CPU will netds solid as using CPU shielding on a
distinct physical CPU, but it will be significantbetter than with no shielding at all.

Avoiding a Low Memory State

Ensure that your system has adequate physical RFdcurrent’s real-time guarantees
assume a properly configured system with adequaid fr real-time application usage.
In low-memory situations, real-time deadlines mayshcrificed to better ensure system
integrity and maintain proper system behavior. Whérux runs out of memory, it
randomly selects processes to kill in an attempitet® up memory so that other processes
can proceed.

Memory usage can be monitored using a number &$ iooluding/proc/meminfo
free(1) andvmstat(8)

Known Issues with Linux Determinism

2-34

The following are issues with standard Linux that lkenown to have a negative impact on
real-time performance. These actions are geneadHhyinistrative in nature and should not
be performed while the system is executing a liead-gpplication.

* The hdparm(1) utility is a command line interface for enablingesial
parameters for IDE and SCSI disks. This utilitykisown to disable
interrupts for very lengthy periods of time.

* Theblkdev_close(2) interface is used by BootLoaders to write to the
raw block device. This is known to disable intetsufor very lengthy
periods of time.

¢ Avoid scrolling the frame-buffer (fb) console. This known to disable
interrupts for very lengthy periods of time.

* When using virtual consoles, don’t switch consoléss is known to disable
interrupts for very lengthy periods of time.

¢ Avoid mounting and unmounting CDs and unmounting $iystems. These
actions produce long latencies.

* Turn off auto-mount of CDs. This is a polling irfeeze and the periodic poll
introduces long latencies.

* The haldaemon service has been shown to interfere with real-time
performance and is turned off by default. Howewemust be running in

Real-Time Performance

order to burn afile (e.g. iso) onto a CD or DVDrir the context menu of the
file. To burn a file onto disc, first start thaldaemon service:

$ service haldaemon start
After the copying process is complete, stop theicer
$ service haldaemon stop

By default the Linux kernel locks the Big Kerneldko(BKL) before calling

a device driver’doctl() routine. This can cause delays when the
ioctl() routine is called by a real-time process or isechbn a shielded
CPU. See the “Device Drivers” chapter for more mfation on how to
correct this problem.

Avoid unloading kernel modules. This action created destroys a number
of per-CPUkmodule daemons that can add unnecessary jitter on the CPU

The IP route cache table, which is flushed per@altlicby theksoftirqd
kernel daemon, is sized dynamically based on theuwsrhof available
memory; for example, 128K entries for a system wWit&B of memory. The
time required for the flush can be problematicafwork determinism is at
issue, especially in a single CPU system. To re@vcessive ksoftirqd runs,
the IP route cache table can be set to a fixedusirgg the grub command
rhash_entries= n, wheren is the number of table entries; i.e.,
rhash_entries=4096 for 4K entries.

There may be possible real-time issues when stadird stopping the X
server while running time-critical applications shielded CPU(s).

Depending upon the type of graphics cards youesysises, this may result
in numerous cross-processor interrupts that sloopmance. If you are

experiencing this, refer to Appendix G for methodsréduce these

interrupts.

Ensure thaDETECT_SOFTLOCKUPIS not present in the kernel. This option
interferes with CPU shielding by firing excessiver4€PU daemons on all
CPUs, and with rescheduling variables since holdingscheduling variable
is erroneously interpreted by the softlockup maehjiras a soft lockup.

Ensure thasCHED_SMT_IDLEIS not set in the kernel. This parameter prevents
forcing idle one thread of an SMT CPU pair if itdsheduled to run a
SCHED_OTHERtask while the other thread is runnings@HED_RROr
SCHED_FIFotask.

It is recommended that thmount(1) option noatime be specified in
/etc/fstab to eliminate unnecessary updates to inode acoassetach
time the file system is accessed.

2-35

RedHawk Linux User's Guide

2-36

Overview

Real-Time Interprocess Communication

This chapter describes RedHawk Linux support fal-tiene interprocess communication
through POSIX and System V message passing anddshamory facilities.

Appendix Acontains example programs that illustrate the fisleeoPOSIX and System V
message queue facilities.

RedHawk Linux provides several mechanisms thamajpoocesses to exchange data.
These mechanisms include message queues, shareatyraard semaphores based on the
IEEE Standard 1003.1b-1993 as well as those indudéhe System V Interprocess

Communication (IPC) package. Message queues ameldsireemory are discussed in this
chapter; semaphores are discussed in Chapter fprotess Synchronization.

Message queueslow one or more processes to write messages tedd by one or more
reading processes. Facilities are provided to eregien, query and destroy a message
gueue, send and receive messages from a message, @ssociate a priority with a
message to be sent, and request asynchronousatbdifi when a message arrives.

POSIX and System V messaging functionality openatependent of each other. The
recommended message-passing mechanism is the RO&¥age queue facility because
of its efficiency and portability. The sections “BIX Message Queues” and “System V
Messages” in this chapter describe these facilities

Shared memorgllows cooperating processes to share data thraugimmon area of
memory. One or more processes can attach a segiher@mory and as a consequence
can share whatever data is placed there.

As with messaging, POSIX and System V shared merumistionality operate indepen-
dent of each other. It is recommended that youauSgstem V shared memory area in an
application in which data placed in shared memogytemporary and do not need to exist
following a reboot of the system. Data in a Sysiéshared memory area are kept only in
memory. No disk file is associated with that memamg therefore no disk traffic is gener-
ated by thesync(2) system call. Also, System V shared memory alloms o bind a
shared memory segment to a section of physicatlé@ory. Refer to the section “System
V Shared Memory” for information about this faailit

An alternative to using System V shared memory igge thenmap(2) system call to
map a portion of thédev/mem file. For information on thenmapsystem call, refer to
Chapter 9, “Memory Mapping.” For information on thdeev/imem file, refer to the

mem(4) man page.

POSIX shared memory interfaces are mapped to dfitksk the/var/tmp directory. If
this directory is mounted onraemfs file system, then no extra disk traffic is genedato
flush the shared data during thenc system call. If this directory is mounted on auag
disk partition, then disk traffic will be generatddring thesync system call to keep the

3-1

RedHawk Linux User's Guide

shared data updated in the mapped disk file. Wheligedata that are written to POSIX
shared memory are saved in a file or not, those diahot persist following a reboot of the
system. The POSIX shared memory functionality isatided in the “POSIX Shared
Memory” section of this chapter.

POSIX Message Queues

3-2

An application may consist of multiple cooperatimgcesses, possibly running on
separate processors. These processes may use syisterROSIX message queues to
efficiently communicate and coordinate their atiga.

The primary use of POSIX message queues is foripgskata between processes. In
contrast, there is little need for functions thaspdata between cooperating threads in the
same process because threads within the same pralkceady share the entire address
space. However, nothing prevents an applicatiom fusing message queues to pass data
between threads in one or more processes.

Message queues are created and opened osingpen(3) . This function returns a
message queue descriptorgd_t), which is used to refer to the open message gireue
later calls. Each message queue is identified bgrae of the formt somenameTwo
processes can operate on the same queue by pHesisgme name taq_open.

Messages are transferred to and from a queue ugiggsend(3) and
mqg_receive(3) . When a process has finished using the queudgses it using
mg_close(3) , and when the queue is no longer required, itlmameleted using
mqg_unlink(3) . Queue attributes can be retrieved and (in sorsesganodified using
mq_getattr(3) andmgq_setattr(3) . A process can request asynchronous
notification of the arrival of a message on a piwsly empty queue using

mq_hotify(3)

A message queue descriptor is a reference to am m@ssage queue description (see
open(2)). After afork(2) , a child inherits copies of its parent’s messageug
descriptors, and these descriptors refer to theggran message queue descriptions as the
corresponding descriptors in the parent. Corresipgndescriptors in the two processes
share the flagaviq_flags) that are associated with the open message qeseeution.

Each message has an associated priority, and messag always delivered to the
receiving process highest priority first.

Message queues are created in a virtual file systéis file system can be mounted using
the following commands:

$ mkdir /dev/imqueue
$ mount -t mqueue none /dev/imqueue

After the file system has been mounted, the mesgagees on the system can be viewed
and manipulated using the commands usually usefilder(e.g.Is(1) and rnfl)).

Support for POSIX message queues is configurakdetivéPosix_MQUEUEKernel
configuration parameter. This option is enabledibfault. A sample program is provided
in Appendix A.

Real-Time Interprocess Communication

All applications that call message queue libramtirees must link in the real-time library,
either statically or dynamically. The following erple shows the typical command-line
format:

gcc [options.] file -Irt

System V Messages

The System V message type of interprocess commtioicdPC) allows processes
(executing programs) to communicate through théamge of data stored in buffers. This
data is transmitted between processes in discatéops called messages. Processes
using this type of IPC can send and receive message

Before a process can send or receive a messageisit have the operating system
generate the necessary software mechanisms toehtdradle operations. A process does
this using themsgget(2) system call. In doing this, the process becomes th
owner/creator of a message queue and specifigsitred operation permissions for all
processes, including itself. Subsequently, the elgneator can relinquish ownership or
change the operation permissions usingrttsgctl(2) system call. However, the
creator remains the creator as long as the faabtgts. Other processes with permission
can usensgctl to perform various other control functions.

Processes which have permission and are attemgatingnd or receive a message can
suspend execution if they are unsuccessful at paifig their operation. That is, a process
which is attempting to send a message can wait itriiecomes possible to post the
message to the specified message queue; the neggivdcess isn’t involved (except
indirectly; for example, if the consumer isn’t cansing, the queue space will eventually
be exhausted) and vice versa. A process whichfggethat execution is to be suspended
is performing alocking message operatioA process which does not allow its execution
to be suspended is performing@nblocking message operation

3-3

RedHawk Linux User's Guide

Using Messages

3-4

A process performing a blocking message operationbe suspended until one of three
conditions occurs:

* the operation is successful
* the process receives a signal
* the message queue is removed from the system

System calls make these message capabilities bleatla processes. The calling process
passes arguments to a system call, and the sys#dineither successfully or
unsuccessfully performs its function. If the systeall is successful, it performs its
function and returns applicable information. Othisay-1 is returned to the process, and
errno is set accordingly.

Before a message can be sent or received, a upiglezitified message queue and data
structure must be created. The unique identifieraided the message queue identifier
(msqig; it is used to identify or refer to the assoadiaeessage queue and data structure.
This identifier is accessible by any process in $fietem, subject to normal access
restrictions.

A message queue's corresponding kernel data stesciwe used to maintain information
about each message being sent or received. Tloigriafion, which is used internally by
the system, includes the following for each message

* message type
* message text size
* message text address

There is one associated data structure for theuetjgidentified message queue,
msqid_ds . This data structure contains the following infatian related to the message
queue:

* operation permissions data (operation permissiactsire)
¢ current number of bytes on the queue

* number of messages on the queue

* maximum number of bytes on the queue

* process identification (PID) of last message sender

* PID of last message receiver

* |ast message send time

* last message receive time

¢ |ast change time

NOTE

All C header files discussed in this chapter amated in the
Jusr/include subdirectories.

Real-Time Interprocess Communication

The definition of the associated message queuestiateturemsqid_ds includes the
members shown in Figure 3-1.

Figure 3-1 Definition of msqid_ds Structure

- N

struct ipc_perm msg_perm;/* structure describing op
__time_t msg_stime; /* time of last msgsnd command
__time_t msg_rtime; /* time of last msgrcv command

eration permission */
*
*

__time_t msg_ctime; /* time of last change */

unsigned long int __msg_cbytes; /* current number o
msggnum_t msg_gnum; /* number of messages currently
msglen_t msg_gbytes;/* max number of bytes allowed
__pid_t msg_lspid; /* pid of last msgsnd() */

__pid_t msg_lIrpid; /* pid of last msgrcv() */

\ /

The C programming language data structure defmiiboo msqgid_ds should be obtained
by including the<sys/msg.h > header file, even though this structure is acpudsifined
in <bits/msq.h >.

f bytes on queue */
on queue */
on queue */

The definition of the interprocess communicatiomigsions data structurgc_perm
includes the members shown in Figure 3-2:

Figure 3-2 Definition of ipc_perm Structure

4 N

unsigned short int mode;
unsigned short int __seq;

__key t_ key; /* Key. */

__uid_t uid; /* Owner's user ID. */
__gid_tgid; /* Owner's group ID. */
__uid_t cuid; [* Creator's user ID. */
__gid_t cgid; [* Creator's group ID. */

[* Read/write permission. */
[* Sequence number. */

o /

The C programming language data structure defmitiipc_perm should be obtained
by including the sys/ipc.h > header file, even though the actual definitiontfas
structure is located inbits/ipc.h >. Note that sys/ipc.h > is commonly used for
all IPC facilities.

Themsgget(2) system call performs one of two tasks:

* creates a new message queue identifier and craatassociated message
gueue and data structure for it

* |ocates an existing message queue identifier thedidy has an associated
message queue and data structure

Both tasks require kkeyargument passed to thesgget system call. Ikeyis not already
in use for an existing message queue identifierew identifier is returned with an

3-5

RedHawk Linux User's Guide

3-6

associated message queue and data structure cfeati@ key, provided no system
tunable parameter would be exceeded.

There is also a provision for specifyinkey of value zero (0), known as the private key
(irc_PRIVATE). When this key is specified, a new identifiemlsvays returned with an
associated message queue and data structure cfeatedinless a system limit for the
maximum number of message queuesgMNI) would be exceeded. Thpcs(8)
command will show th&eyfield for themsgidas all zeros.

If a message queue identifier exists for the kegcsiped, the value of the existing
identifier is returned. If you do not want to haae existing message queue identifier
returned, a control commangP¢_eEXcL) can be specified (set) in tmesgflgargument
passed to the system call (see “The msgget Sys&dhf@ details of this system call).

When a message queue is created, the processdhattsgget becomes the

owner/creator, and the associated data structurstialized accordingly. Remember,
ownership can be changed but the creating prodess/a remains the creator. The
message queue creator also determines the inighton permissions for it.

Once a uniquely identified message queue has lreated or an existing one is found,
msgop(2) (message operations) amdgctl(2) (message control) can be used.

Message operations, as mentioned before, conss&inofing and receiving messages. The
msgsnd andmsgrcv system calls are provided for each of these opraisee “The
msgsnd and msgrcv System Calls” for details ofelezdls).

Themsgctl system call permits you to control the messagditiaén the following
ways:

* Dby retrieving the data structure associated withessage queue identifier
(IPC_STA)

* by changing operation permissions for a messageeq(rec_SE?)

* by changing the sizersg_gbytes) of the message queue for a particular
message queue identifiep¢_SET)

* by removing a particular message queue identifiemfthe operating
system along with its associated message queueaatadstructure
(IPC_RMID)

See the section “The msgctl System Call” for dstaflthemsgctl system call.

Refer to Appendix A for a sample program using Systémessage queues. Additional
sample programs can be found online that illustiratiepth use of each of the System V
system calls. These are referenced within the @edti this chapter that explains the
system call.

Real-Time Interprocess Communication

The msgget System Call

msgget(2) creates a new message queue or identifies afnexasie.

This section describes tmesgget system call. For more detailed information, see th
msgget(2) man page. A program illustrating use of this azdh be found at
/usr/share/doc/ccur/examples/msgget.c with extensive comments provided
in README.msgget.txt

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key _t key, int msgflg;

All of the #include files are located in thaisr/include subdirectories of the
operating system.

key t is defined by daypedef in the<bits/types.h> header file to be an integral
type (this header file is included internally &gys/types.h>). The integer returned
from this function upon successful completion is thique message queue identifier,
msqid (Themsgidis discussed in the “Using Messages” section emiti this chapter.)
Upon failure, the external variabderno is set to indicate the reason for failure ahds
returned.

A newmsgidwith an associated message queue and data s&rusttneated if one of the
following conditions is true:

* Kkeyis equal taPC_PRIVATE

* key does not already have rasgid associated with it andmsgflg and
IPC_CREA) is “true” (not zero).

The value ofmsgflgis a combination of:

¢ control commands (flags)

* operation permissions

Control commands are predefined constants. Theviilg control commands apply to
themsgget system call and are defined in thbits/ipc.h> header file, which is
internally included by thesys/ipc.h> header file:

IPC_CREAT used to create a new segment. If not usesgget will find the
message queue associated viidly verify access permissions and
ensure the segment is not marked for destruction.

IPC_EXCL used withipc_CREATto cause the system call to return an error if a
message queue identifier already exists for theipd key This is
necessary to prevent the process from thinkingstdfeceived a new
(unique) identifier when it has not.

Operation permissions determine the operationspitatesses are permitted to perform
on the associated message queue. “Read” permissi@tessary for receiving messages

RedHawk Linux User's Guide

3-8

or for determining queue status by means afsgctl 1PC_STAT operation. “Write”
permission is necessary for sending messages.

Table 3-1 shows the numeric values (expressed ai aotation) for the valid operation
permissions codes.

Table 3-1 Message Queue Operation Permissions Code s

Operation Permissions Octal Value

Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific value is derived by adding or bitwise i@dRthe octal values for the operation
permissions desired. That is, if “read by user” améd/write by others” is desired, the
code value would be 00406 (00400 plus 00006).

Themsgflgvalue can easily be set by using the flag name®smjunction with the octal
operation permissions value; for example:

msgid = msgget (key, (IPC_CREAT| 0400));
msgid = msgget (key, (IPC_CREAT| IPC_EXCL | 0400));

The system call will always be attempted. ExceedirggvsGMNI limit always causes a
failure. ThemsGmnI limit value determines the system-wide numberrmifjue message
gueues that may be in use at any given time. Tilig Value is a fixed define value
located in<linux/msg.h>

A list of message queue limit values may be obthivéh theipcs(8) command by
using the following options. See the man pagedahgr details.

ipcs -q -l

Refer to themsgget(2) man page for specific associated data structutialination as
well as the specific error conditions.

Real-Time Interprocess Communication

The msgctl System Call

msgctl(2) is used to perform control operations on messageeg.

This section describes tmesgctl(2) system call. For more detailed information, see
the msgctl(2) man page. A program illustrating use of this calhde found at
/usr/share/doc/ccur/examples/msgctl.c with extensive comments provided
in README.msgctl.txt

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (int msqid int cmd struct msqid_ds * buf);

All of the #include files are located in thaisr/include subdirectories of the
operating system.

Themsgctl system call returns an integer value, which i Zer successful completion
or -1 otherwise.

The msgidvariable must be a valid, non-negative integeugahat has already been
created using thesgget system call.

Thecmdargument can be any one of the following values:

IPC_STAT returns the status information contained in theociased data
structure for the specified message queue identdied places it in
the data structure pointed to by tef pointer in the user memory
area. Read permission is required.

IPC_SET writes the effective user and group identificationperation
permissions, and the number of bytes for the mesgague to the
values contained in the data structure pointedytthbbuf pointer in
the user memory area

IPC_RMID removes the specified message queue along witisgigciated data
structure

NOTE

Themsgctl(2) service also supports theC_INFO, MSG_STAT
andMsG_INFOcommands. However, since these commands are
only intended for use by thpcs(8) utility, these commands
are not discussed.

3-9

RedHawk Linux User's Guide

To perform anPC_SETOr IPC_RMID control command, a process must meet one or nfore o
the following conditions:

* have an effective user id of¥NER
* have an effective user id OREATOR
* be the super-user

* have thecAP_SYS_ADMIN capability

Additionally, when performing arpc_seTcontrol command that increases the size of the
msg_gbytes value beyond the value efscMNB (defined in<linux/msg.h>), the
process must have tlleP_sys_RESOURCEapability.

Note that a message queue can also be removedrgytheipcrm(8) command by
specifying theq msgidor the-Q msgkeyoption, wheransgidspecifies the identifier for
the message queue amdgkeyspecifies the key associated with the messageequeu
use this command, the user must have the sametigfacser id or capability that is
required for performing amwc_RMID control command. See tigcrm(8) man page for
additional information on the use of this command.

The msgsnd and msgrcv System Calls

The message operations system cailsgsnd andmsgrcv , are used to send and receive
messages.

This section describes thesgsnd andmsgrcv system calls. For more detailed
information, see thensgop(2) man page. A program illustrating use of thesesoa
be found atusr/share/doc/ccur/examples/msgop.c with extensive
comments provided iREADME.msgop.txt .

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (int msqid void *msgp size_t msgszint msgfiQ;
int msgrev (int msqid void *msgp size_t msgszlong msgtyp
int msgflg;
All of the #include files are located in th&isr/include subdirectories of the

operating system.

Sending a Message

Themsgsnd system call returns an integer value, which i Zer successful completion
or -1 otherwise.

The msgidargument must be a valid, non-negative integenevéthat has already been
created using thesgget system call.

3-10

Real-Time Interprocess Communication

The msgpargument is a pointer to a structure in the usemory area that contains the
type of the message and the message to be sent.

Themsgsargument specifies the length of the charactayarrthe data structure pointed
to by themsgpargument. This is the length of the message. Themum size of this
array is determined by thescmax define, which is located ilinux/msg.h>

The msgflgargument allows the blocking message operatiobetperformed if the
IPC_NOWAIT flag is not set (asgflg& 1Pc_NowaiT)= = 0); the operation blocks if the total
number of bytes allowed on the specified messagaeaare in user(sg_gbytes). If the
IPC_NOWAIT flag is set, the system call fails and returns -1.

Receiving a Message

When themsgrcv system call is successful, it returns the numibeytes received; when
unsuccessful it returns -1.

The msgidargument must be a valid, non-negative, integkrevdn other words, it must
have already been created by usingntisgget system call.

Themsgpargument is a pointer to a structure in the usemory area that will receive the
message type and the message text.

The msgszargument specifies the length of the message ted®ved. If its value is less
than the message in the array, an error can baeetif desired (see thmasgflgargument
below).

The msgtypargument is used to pick the first message omthesage queue of the
particular type specified:

* If msgtypis equal to zero, the first message on the quetexeived.

* If msgtypis greater than zero and thesG_ExcerPTmsgflgis not set the
first message of the same type is received.

* If msgtypis greater than zero and tlesG_EXCEPTMSs(flgis set the first
message on the message queue thaitiequal tomsgtypis received.

* |f msgtypis less than zero, the lowest message type thlegdghan or equal
to the absolute value afisgtypis received.

The msgflgargument allows the blocking message operatiobetperformed if the
IPC_NOWAIT flag is not set (asgflg& 1Pc_NowaIT) == 0); the operation blocks if the total
number of bytes allowed on the specified messagaeajare in user(sg_gbytes). If the
IPC_NOWAIT flag is set, the system call fails and return4.aAnd, as mentioned in the
previous paragraph, when tsc_exceptflag is set in thensgflgargument and the
msgtypargument is greater than 0, the first messageemtieue that has a message type
that is_differenfrom themsgtypargument is received.

If the iPc_NOwAIT flag is set, the system call fails immediately whigere is not a message
of the desired type on the quemesgflgcan also specify that the system call fail if the
message is longer than the size to be received;ithdone by not setting the
MSG_NOERRORflag in themsgflgargument (fhsgflg& MsG_NOERROR) == 0). If the
MSG_NOERRORflag is set, the message is truncated to the teggecified by thensgsz
argument ofnsgrcv .

3-11

RedHawk Linux User's Guide

POSIX Shared Memory

3-12

The POSIX shared memory interfaces allow coopegginocesses to share data and more
efficiently communicate through the use of a sharegnory object. Ashared memory
objectis defined as a hamed region of storage thatdegandent of the file system and
can be mapped to the address space of one or mmresges to allow them to share the
associated memory.

The interfaces are briefly described as follows:

shm_open create a shared memory object and establish aectian
between the shared memory object and a file descrip

shm_unlink remove the name of a shared memory object

Procedures for using ttehm_open routine are presented in “Using the shm_open
Routine.” Procedures for using teem_unlink routine are presented in “Using the
shm_unlink Routine.”

In order for cooperating processes to use thesefattes to share data, one process
completes the following steps. Note that the oidewhich the steps are presented is
typical, but it is not the only order that you azse.

STEP 1: Create a shared memory object and establesinnection
between that object and a file descriptor by inwngkihe
shm_open library routine, specifying a unique name, and
setting theo_cReATand theo_RDWR bit to open the shared
memory object for reading and writing.

STEP 2: Set the size of the shared memory objedtinyking the
ftruncate(2) system call and specifying the file
descriptor obtained in Step 1. This system callireg that
the memory object be open for writing. For additibn

information orftruncate(2) , refer to the corresponding
man page.
STEP 3: Map a portion of the process’s virtual addrspace to the

shared memory object by invoking themap(2) system
call and specifying the file descriptor obtainedstep 1 (see
the “Memory Mapping” chapter for an explanationtloifs
system call).

To use the shared memory object, any other codpgratocess completes the following
steps. Note that the order in which the steps srsemted is typical, but it is not the only
order that you can use.

STEP 1: Establish a connection between the shamdany object
created by the first process and a file descripyoinvoking
the shm_open library routine and specifying the same
name that was used to create the object.

STEP 2: If the size of the shared memory objenbisknown, obtain
the size of the shared memory object by invoking th
fstat(2) system call and specifying the file descriptor

Real-Time Interprocess Communication

obtained in Step 1 and a pointer tetat structure (this
structure is defined ingys/stat.h >). The size of the
object is returned in thst_size field of thestat

structure. Access permissions associated with bfecbare
returned in thest_modes field. For additional information

onfstat(2) , refer to the corresponding system manual
page.
STEP 3: Map a portion of the process’s virtual addrspace to the

shared memory object by invokimgmapand specifying the
file descriptor obtained in Step 1 (see the “Memory
Mapping” chapter for an explanation of this sysieat).

Using the shm_open Routine

Theshm_open(3) routine allows the calling process to create alXG&ared memory
object and establish a connection between thatcblajed a file descriptor. A process
subsequently uses the file descriptor that is neibyshm_open to refer to the shared
memory object on calls tiouncate(2) , fstat(2) , andmmap(2) . After a process
creates a shared memory object, other processesstallish a connection between the
shared memory object and a file descriptor by imwvglshm_open and specifying the
same name.

After a shared memory object is created, all dathé shared memory object remain until
every process removes the mapping between its ssidmace and the shared memory
object by invokingmunmap(2) , exec(2) , orexit(2) and one process removes the
name of the shared memory object by invokégn_unlink(3) . Neither the shared
memory object nor its name is valid after your sgsis rebooted.

Synopsis

#include <sys/types.h>
#include <sys/mman.h>

int shm_open(const char * name int oflag mode_t mode;

The arguments are defined as follows:

name a pointer to a null-terminated string that spesifthe name of the
shared memory object. Note that this string maytaiara maximum of
255 characters. It may contain a leading sldsbh@racter, but it may
not contain embedded slash characters. Note thaméime is not a part
of the file system; neither a leading slash charawbr the current work-
ing directory affects interpretation of itshared_obj and
shared_obj are interpreted as the same name). If you wishrie
code that can be ported to any system that supp@g&IX interfaces,
however, it is recommended thmebegin with a slash character.

oflag an integer value that sets one or more of thevieiig bits:

Note thato_RDONLY ando_RDWR are mutually exclusive bits; orod
them must be set.

3-13

RedHawk Linux User's Guide

3-14

O_RDONLY causes the shared memory object to be opened for
reading only
O_RDWR causes the shared memory object to be opened for

reading and writing. Note that the process thatee
the shared memory object must open it for writing i
order to be able to set its size by invoking
ftruncate(2)

O_CREAT causes the shared memory object specifiedbinyeto
be created if it does not exist. The memory obgect’
user ID is set to the effective user ID of the icaj!
process; its group ID is set to the effective grtidiof
the calling process; and its permission bits atese
specified by thenodeargument.

If the shared memory object specifiedimmeexists,
settingo_CREAT has no effect except as noted for
O_EXCL.

O_EXCL causesshm_open to fail if 0_CREAT is set and the
shared memory object specified bgmeexists. If
O_CREATIs not set, this bit is ignored.

O_TRUNC causes the length of the shared memory object
specified bynameto be truncated to zero if the object
exists and has been opened for reading and writing.
The owner and the mode of the specified shared
memory object are unchanged.

mode an integer value that sets the permission bitshefshared memory
object specified bypamewith the following exception: bits set in the
process’s file mode creation mask are cleared énstitared memory
object’'s mode (refer to themask(2) andchmod(2) man pages for
additional information). If bits other than the pession bits are set in
mode they are ignored. A process specifies tti@deargument only
when it is creating a shared memory object.

If the call is successfukhm_open creates a shared memory object of size zero and
returns a file descriptor that is the lowest filsdriptor not open for the calling process.
The Fb_cLoexecfile descriptor flag is set for the new file ddptor; this flag indicates
that the file descriptor identifying the shared noeynobject will be closed upon execution
of theexec(2) system call (refer to thientl(2) system manual page for additional
information).

A return value of —1 indicates that an error hasuoed;errno is set to indicate the
error. Refer to thehm_open(3) man page for a listing of the types of errors thay
occur.

Real-Time Interprocess Communication

Using the shm_unlink Routine

Theshm_unlink(3) routine allows the calling process to remove tamea of a shared
memory object. If one or more processes have @opoof their address space mapped to
the shared memory object at the time of the cdle hame is removed before
shm_unlink returns, but data in the shared memory objechareemoved until the last
process removes its mapping to the object. The mgpp removed if a process invokes
munmap(2) , exec(2) , orexit(2)

Synopsis

#include <sys/types.h>
#include <sys/mman.h>

int shm_unlink(const char * name;
The argument is defined as follows:

name a pointer to a null-terminated string that spesifihe shared memory
object name that is to be removed. Note that ttnisgsmay contain a
maximum of 255 characters. It may contain a leadiagh {) character,
but it may_nottontain embedded slash characters. Note thatanie is
not a part of the file system; neither a leadiragbklcharacter nor the
current working directory affects interpretationib{/shared_obj
andshared_obj are interpreted as the same name). If you wish to
write code that can be ported to any system thapaus POSIX inter-
faces, however, it is recommended thamnebegin with a slash charac-
ter.

A return value of 0 indicates that the callsttm_unlink has been successful. A return
value of —1 indicates that an error has occurethp is set to indicate the error. Refer to
theshm_unlink(3) man page for a listing of the types of errors thay occur. If an
error occurs, the call shm_unlink does not change the named shared memory object.

System V Shared Memory

Shared memory allows two or more processes to sharmeory and, consequently, the
data contained therein. This is done by allowingcpsses to set up access to a common
virtual memory address space. This sharing ocaura segment basis, which is memory
management hardware-dependent.

A process initially creates a shared memory segmging theshmget(2) system call.
Upon creation, this process sets the overall ojpergermissions for the shared memory
segment, sets its size in bytes, and can spedifyttle shared memory segment is for
reference only (read-only) upon attachment.

If the memory segment is not specified to be fdenence only, all other processes with
appropriate operation permissions can read fromrite to the memory segment.

The shared memory segments on the system areevisidbthe/proc/sysvipc/shm
file andipcs(8) using them option.

3-15

RedHawk Linux User's Guide

Shared memory operatiorsymat(2) (shared memory attach) asdmdt(2) (shared
memory detach), can be performed on a shared mesmgmentshmat allows
processes to associate themselves with the shaesdony segment if they have
permission. They can then read or write as allowstundt allows processes to
disassociate themselves from a shared memory seghiemefore, they lose the ability to
read from or write to the shared memory segment.

The original owner/creator of a shared memory segman relinquish ownership to
another process using tisamctl(2) system call. However, the creating process
remains the creator until the facility is removedtloe system is reinitialized. Other
processes with permission can perform other funstion the shared memory segment
using theshmctl system call.

A process can bind a shared memory segment totmisexd /O memory by using the
shmbind(2) system call. See the section “Binding a Shared btgnSegment to I/O
Space” for details of thehmbind system call.

To facilitate use of shared memory by cooperatimggrams, a utility called
shmdefine(1) is provided. Procedures for using this utility @elained in “The
shmdefine Utility”. To assist you in creating a sthmemory segment and binding it to a
section of physical memory, a utility callsimconfig(1) is also provided. Procedures
for using this utility are explained in “The shméignCommand”.

Using Shared Memory

3-16

Sharing memory between processes occurs on al&gganent basis. There is only one
copy of each individual shared memory segment iegjsh the operating system at any
time.

Before sharing of memory can be realized, a unigigentified shared memory segment
and data structure must be created. The uniqudiftrcreated is called the shared
memory identifier §hmid; it is used to identify or refer to the assocdiatiata structure.
This identifier is available to any process in thetem, subject to normal access
restrictions.

The data structure includes the following for ealbhred memory segment:

* Operation permissions

* Segment size

* Segment descriptor (for internal system use only)
* PID performing last operation

* PID of creator

¢ Current number of processes attached

* Last attach time

* Last detach time

¢ Last change time

Real-Time Interprocess Communication

The definition of the associated shared memory ssgrdata structurshmid_ds
includes the members shown in Figure 3-3.

Figure 3-3 Definition of shmid_ds Structure

struct shmid_ds {

~

struct ipc_perm shm_perm; /* operation perms */

int shm_segsz; [* size of segment (bytes) */
time_t shm_atime; /* last attach time * /
time_t shm_dtime; /* last detach time * /
time_t shm_ctime; /* last change time * /

unsigned short shm_cpid; /* pid of creator */
unsigned short shm_Ipid; /* pid of last operator */
short shm_nattch; /* no. of current att aches */

/

The C programming language data structure defimitay the shared memory segment
data structurehmid_ds is located in thesys/shm.h> header file.

Note that theshm_perm member of this structure usge_perm as a template. The
ipc_perm data structure is the same for all IPC facilitiésis located in the
<sys/ipc.h> header file.

Theshmget(2) system call performs two tasks:

* |t gets a new shared memory identifier and createsissociated shared
memory segment data structure.

* |t returns an existing shared memory identifiert tleeady has an associ-
ated shared memory segment data structure.

The task performed is determined by the value @kéyargument passed to tekmget
system call.

Thekeycan be an integer that you select, or it can hatager that you have generated by
using theftok subroutine. Thitok subroutine generates a key that is based upotha pa
name and identifier that you supply. By usit@k , you can obtain a unique key and
control users’ access to the key by limiting acdesthe file associated with the path
name. If you wish to ensure that a key can be asdylby cooperating processes, it is
recommended that you uek . This subroutine is specified as follows:

key t ftok(path_name id)

The path_nameargument specifies a pointer to the path namenadxasting file that
should be accessible to the calling process.i@itegument specifies a character that
uniquely identifies a group of cooperating procesE®k returns a key that is based on
the specifie¢path_namendid. Additional information on the use &bk is provided in
theftok(3) man page.

If the keyis not already in use for an existing shared mgridmntifier and thePC_CREAT
flag is set inshmflg a new identifier is returned with an associatedred memory
segment data structure created for it providedystesn-tunable parameters would be
exceeded.

3-17

RedHawk Linux User's Guide

3-18

There is also a provision for specifyindgeyof value zero which is known as the private
key (Pc_PRIVATE); when specified, a neshmidis always returned with an associated
shared memory segment data structure created fimiéss a system-tunable parameter
would be exceeded. Thiecs(8) command will show th&eyfield for theshmidas all
zeros.

If a shmidexists for thekeyspecified, the value of the existisgmidis returned. If it is not
desired to have an existirghmidreturned, a control commant¢_EXCL) can be
specified (set) in thehmflgargument passed to the system call.

When a new shared memory segment is created, tioegs that callshmget becomes
the owner/creator, and the associated data steuidunitialized accordingly. Remember,
ownership can be changed, but the creating pradess/'s remains the creator (see “The
shmctl System Call”). The creator of the shared mgnsegment also determines the
initial operation permissions for it.

Once a uniquely identified shared memory segmetat skaucture is createdhmbind |,
shmctl , and shared memory operatioslrfiop) can be used.

Theshmbind system call allows you to bind a shared memoryrseg to a section of
/0O memory. See the section “Binding a Shared Mgnf&egment to I/O Space” for
details of theshmbind system call.

Theshmctl(2) system call permits you to control the shared mgnfacility in the
following ways:

* Dby retrieving the data structure associated witih@aed memory segment
(IPC_STAT)

* by changing operation permissions for a shared mgsegmentipC_sel)

* by removing a particular shared memory segment fiteenoperating sys-
tem along with its associated shared memory segmatat structure
(IPC_RMID)

* Dby locking a shared memory segment in memsnmM(_LOCK)
* by unlocking a shared memory segmesmny_UNLOCK)

See the section “The shmctl System Call” for dstafltheshmctl system call.

Shared memory segment operatiosisnfop) consist of attaching and detaching shared
memory segmentshmat andshmdt are provided for each of these operations (see “Th
shmat and shmdt System Calls” for details ofshmat andshmdt system calls).

It is important to note that trehmdefine(1) andshmconfig(1) utilities also allow
you to create shared memory segments. See themséBthared Memory Utilities” for
information about these utilities.

Real-Time Interprocess Communication

The shmget System Call

shmget(2) creates a new shared memory segment or iderdifi€xisting one.

This section describes tishmget system call. For more detailed information, see th
shmget(2) man page. A program illustrating use of this cadh be found at
/usr/share/doc/ccur/examples/shmget.c with extensive comments provided
in README.shmget.txt

Synopsis

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key t key, size t size int shmflg;

All of these#include files are located in th&isr/include subdirectories of the
operating system.

key t is defined by dypedef in the<bits/sys/types.h> header file to be an
integral type (this header file is included intdnéy <sys/types.h>). The integer
returned from this system call upon successful detigm is the shared memory segment
identifier (shmig associated to the value kéy (Theshmidis discussed in the section
“Using Shared Memory” earlier in this chapter.) Upfailure, the external variable
errno is set to indicate the reason for failure, ang+kturned.

A new shmidwith an associated shared memory data structureeited if one of the
following conditions is true:

* Kkeyis equal taPC_PRIVATE

* key does not already have shhmid associated with it andsiimflg and
IPC_CREA) is “true” (not zero).

The value oshmflgis a combination of:

¢ control commands (flags)
* operation permissions

Control commands are predefined constants. Theviilg control commands apply to
theshmget system call and are defined in thbits/ipc.h> header file, which is
internally included by thesys/ipc.h> header file:

IPC_CREAT used to create a new segment. If not usbdyget will find the
segment associated witley verify access permissions and ensure the
segment is not marked for destruction.

IPC_EXCL used withiPC_CREATto cause the system call to return an error if a
shared memory identifier already exists for thecfjgel key This is
necessary to prevent the process from thinkingst feceived a new
(unigue) identifier when it has not.

3-19

RedHawk Linux User's Guide

3-20

Operation permissions define the read/write attesuor users, groups, and others.
Table 3-2 shows the numeric values (expressed &l aotation) for the valid operation
permissions codes.

Table 3-2 Shared Memory Operation Permissions Code s

Operation Permissions Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific value is derived by adding or bitwise i@dRthe octal values for the operation
permissions desired. That is, if “read by user” am@d/write by others” is desired, the
code value would be 00406 (00400 plus 00006).SHe R andsHM_w constants located
in <sys/shm.h> can be used to define read and write permissiothéowner.

The shmflgvalue can easily be set by using the flag namesijunction with the octal
operation permissions value; for example:

shmid = shmget (key, size, (IPC_CREAT| 0400));
shmid = shmget (key, size, (IPC_CREAT| IPC_EXCL | 0400));

The following values are defined #sys/shm.h> . Exceeding these values always
causes a failure.

SHMMNI determines the maximum number of unique shared mesagments
(shmid) that can be in use at any given time

SHMMIN determines the minimum shared memory segment size
SHMMAX determines the maximum shared memory segment size
SHMALL determines the maximum shared memory pages

A list of shared memory limit values can be obtdinégth theipcs(8) command by
using the following options. See the man pagedahgr details.

ipcs -m -l

Refer to theshmget(2) man page for specific associated data structutialination as
well as specific error conditions.

Real-Time Interprocess Communication

The shmctl System Call

shmctl(2) is used to perform control operations on sharechomg segments.

This section describes tisbmctl system call. For more detailed information, see th
shmctl(2) man page. A program illustrating use of this cadh be found at
/usr/share/doc/ccur/examples/shmctl.c with extensive comments provided
in README.shmctl.txt

Synopsis

#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid int cmd struct shmid_ds * buf);

All of these#include files are located in th&isr/include subdirectories of the
operating system.

Theshmctl system call returns an integer value, which i Zer successful completion
or -1 otherwise.

The shmidvariable must be a valid, non-negative integeugahat has already been
created using thehmget system call.

Thecmdargument can be any one of following values:

IPC_STAT returns the status information contained in theo@iased data
structure for the specifieshmidand places it in the data structure
pointed to by théuf pointer in the user memory area. Read
permission is required.

IPC_SET sets the effective user and group identificatiorl aperation
permissions for the specifiethmid

IPC_RMID removes the specifiedhmid along with its associated data
structure
SHM_LOCK prevents swapping of a shared memory segment. $&emust

fault in any pages that are required to be preaftat locking is
enabled. The process must have superuse@npriPC_LOCK
privileges to perform this operation.

SHM_UNLOCK unlocks the shared memory segment from memory.prbeess
must have superuser oAP_IPC_LOCKprivileges to perform this
operation.

NOTE

Theshmctl(2) service also supports thec_INFO, SHM_STAT
andsHM_INFO commands. However, since these commands are
only intended for use by thpcs(8) utility, these commands
are not discussed.

3-21

RedHawk Linux User's Guide

To perform anPC_SETOr IPC_RMID control command, a process must meet one or nfore o
the following conditions:

* have an effective user id of¥NER
* have an effective user id OREATOR
* be the super-user

* have thecAP_SYS_ADMIN capability

Note that a shared memory segment can also be regnby using theépcrm(1)
command and specifying thm shmidor the-M shmkeyoption, whereshmidspecifies the
identifier for the shared memory segment ahohkeyspecifies the key associated with the
segment. To use this command, a process must hawsame privileges as those required
for performing anpPc_RMID control command. See thpcrm(1) man page for
additional information on the use of this command.

Binding a Shared Memory Segment to 1/O Space

RedHawk Linux allows you to bind a shared memomgnsent to a region of 1/0O space.
The procedures for doing so are as follows.

1. Create a shared memory segmshtr(get(2)).

2. Obtain the physical address of the 1/0 regiomgighe PCI BAR scan
routines.

3. Bind the segment to /O memoghfmbind(2)).

4. Attach the segment to the user’s virtual addspsse ghmat(2)).

At command level, thehmconfig(1) utility can be used to create a shared memory
segment and bind it to a physical memory regiorfeR® the section “Shared Memory
Utilities” for details.

You can attach a shared memory segment to andhdigtiiom the user’s virtual address
space by using thehmat andshmdt system calls. Procedures for using these system
calls are explained in “The shmat and shmdt Sy<eits.”

Using shmget

Theshmget(2) system call is invoked first to create a sharednory segment. Upon
successful completion of the call, a shared memsegment oEizebytes is created, and
an identifier for the segment is returned.

When binding to 1/O space, the size of the regiamlze obtained using the PCI BAR scan
routines (sebar_scan_open(3)).

Complete information on the usesifmget is provided in “The shmget System Call.”

3-22

Using shmbind

Real-Time Interprocess Communication

After you have created a shared memory segmentcagoind it to a region of I/O space
by using theshmbind(2) system call. Note that to use this call, you ningstoot or have
thecAP_SYs_RAwIOprivilege.

shmbind must be called before the first process attacbhehd segment. Thereafter,
attaching to the segment véamat() effectively creates a mapping in the calling
process’ virtual address space to the region opttysical address space.

The region of I/O space is defined by its startadyiress and the size of the shared
memory segment to which it is being bound. Thetistguaddress must be aligned with a
page boundary. The size of the shared memory segheenbeen established by
specifying thesizeargument on the call ®hmget . If you have created a shared memory
segment of 1024 bytes, for example, and you wishind it to a section of physical
memory that starts at location 0x2000000 (hexadalciepresentation), the bound section
of physical memory will include memory locations2@00000_througl®dx2000BFF.

Be aware that the physical address for a device chapge due to hardware changes in
the system. To reliably reference a device, thesiglay address should be obtained using
the PCI BAR scan routines; refer to ther_scan_open(3) man page.

The specifications required for making the calsbhmbind are as follows:
int shmbind(int shmid unsigned long paddi)
Arguments are defined as follows:

shmid the identifier for the shared memory segment yoat wish to bind to a
section of physical memory

paddr the starting physical address of the section oforg to which you
wish to bind the specified shared memory segment

The shmat and shmdt System Calls

The shared memory operations system calimat andshmdt, are used to attach and
detach shared memory segments to/from the addvass sf the calling process.

This section describes tshmat andshmdt system calls. For more detailed information,
see theshmop(2) man page. A program illustrating use of thesesozdin be found at
/usr/share/doc/ccur/examples/shmop.c with extensive comments provided
in README.shmop.txt .

Synopsis

#include <sys/types.h>
#include <sys/shm.h>

void *shmat (int shmid const void * shmaddrint shmflg;
int shmdt (const void * shmadd;
All of these#include files are located in thaisr/include subdirectories of the

operating system.

3-23

RedHawk Linux User's Guide

Attaching a Shared Memory Segment

Theshmat system call attaches the shared memory segmentifidd by shmidto the
address space of the calling process. It retunissgacter pointer value. Upon successful
completion, this value will be the address in mgmehere the process is attached to the
shared memory segment; when unsuccessful, the walluee -1.

The shmidargument must be a valid, non-negative, integéue/alt must have been
created previously using tlsbmget system call.

The shmaddrargument can be zero or user supplied when pdesheéshmat system
call. If it is zero, the operating system seletts address where the shared memory
segment will be attached. If it is user-supplidet address must be a valid page-aligned
address within the program’s address space. Theniolg illustrates some typical address
ranges:

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

Allowing the operating system to select addressgsadves portability.

The shmflgargument is used to pass #@v_RND (round down) angHM_RDONLY (read
only) flags to theshmat system call.

Detaching Shared Memory Segments

Theshmdt system call detaches the shared memory segmeateld@t the address
specified byshmaddrfrom the address space of the calling processtiirns an integer
value, which is zero for successful completionlootherwise.

3-24

Real-Time Interprocess Communication

Shared Memory Utilities

Redhawk Linux provides two utilities that faciligatise of shared memory segments. The
shmdefine(1) utility allows you to create one or more sharednog/ segments that
are to be used by cooperating programs. §iiraconfig(1) command allows you to
create a shared memory segment and bind it to tioseaf physical memory. These
utilities are discussed in the sections that follow

The shmdefine Utility

The shmdefine utility is designed to facilitate the use of stthreemory by a set of
cooperating programs. Although you may have a nurabprograms that will cooperate
in using one or more shared memory segmentsngégssary to invoke the utility only
once. Becausshmdefine produces object files that must be linked to terse object
file, you must invoke it prior to linking.

shmdefine currently operates with the GNU C, Fortran and Admpilers gcc, g77
GNAT for programs that execute on RedHawk Linux system

Refer to theQuick Reference for shmdefifeublication number 0898010) and the
shmdefine(1) man page for details on using this utility.

The shmconfig Command

Theshmconfig(l) = command assists in creating a shared memory seégresociated
with a certain key and optionally binding it to arficular section of I/O memory.

The command syntax is:

Jusr/bin/shmconfig -i DEVSTR

lusr/bin/shmconfig -b BARSTR-s SIZH[-g GROUR [-m MODE] [-u USER
{key |-t FNAME

Jusr/bin/shmconfig -s SIZE[-p ADDR [-g GROUR [-m MODE] [-u USER

{key |-t FNAME

For information about assigning NUMA memory polite shared memory areas, refer to
Chapter 10 or thehmconfig(1l) man page.

Options are described in Table 3-3.

3-25

RedHawk Linux User's Guide

Table 3-3 Options to the shmconfig(1) Command

Option

Description

--info= DEVSTR-i DEVSTR

--bind= BARSTR-b BARSTR

--Sizeé= SIZE -S SIZE

--physical=

--user= USER-U USER

--group= GROUR -g GROUP
--mode= MODE, -m MODE

--help ,-h

--version , -v

ADDR, -p ADDR

Prints information about each memory region on each
device matchin@evsTrwhich consists of:
vendor_iddevice_id
Helpful when using-bind
information ONDEVSTR

. See--bind for

Identifies an 1/0 region in memory to be boundhe t
shared segmergARSTReonNsists of:
vendor_iddevice_idbar_nd:dev_nd

vendor_id ad device_iddentify the hardware

device; usually expressed as two hex values sehrat
by a colon (e.g., 8086:100f). Can be obtained from
the vendor’'s manualysr/share/hwdata/

pciids orlspci -ns . Requires a “Ox” base
prefix when specifying these IDs; e.g.,
0x8086:0x100f. See “Examples” below.

bar_noidentifies the memory region to be bound.
Use-i option to obtain this value (output displays
“Regionbar_na Memory at ...”). Only the memory
regions can be bound.

dev_nais optional and needed only to differentiate
between multiple boards with matching vendor and
device IDs. Usel option to obtain this value (output
displays “Logical devicedev_no?).

The user must have tlmapr_sys_rawioprivilege to
use this option.

Specifies the size of the segment in bytes. Not
required for--bind , where the default is the
complete memory region.

SpecifiesADDR as the starting address of the section
of physical /O memory to which the segment is¢o b
bound. This option is being deprecated;ubmd

The user must have tlmapr_sys_rawioprivilege to

use this option.

Specifies the login name of the owner of the shared
memory segment.

Specifies the name of the group to which group
access to the segment is applicable.

Specifiesmodeas the set of permissions governing
access to the shared memory segment. You must use
the octal method to specify the permissions.

Describes available options and usage.

Prints out current version of the command.

3-26

Real-Time Interprocess Communication

The/proc and/sys file systems must be mounted in order to useatismand.

It is important to note that the size of a segnanspecified by thes argument must
match the size of the data that will be placedghdishmdefine is being used, the size
of the segment must match the size of the variahiasare declared to be a part of the
shared segment. Specifying a larger size will w@fkr information orshmdefine , see
“The shmdefine Utility.”)

It is recommended that you specify the, -g , and-m options to identify the user and
group associated with the segment and to set timeiggons controlling access to it. If not
specified, the default user ID and group ID of segment are those of the owner; the
default mode is 0644.

Thekeyargument represents a user-chosen identifier ftvased memory segment. This
identifier can be either an integer or a standatth mame that refers to an existing file.
When a pathname is supplied,faok(key,0) will be used as the key parameter for the
shmget(2) call.

-tmpfs= FNAME/-t FNAME can be used to specify a tmpfs filesystem filenamtead
of akey. Theu, -g and-m options can be used to set or change the filibbatts of this
segment.

Whenshmconfig is executed, an internal data structure and shaesdory segment are
created for the specified key; if thp option is used, the shared memory segment is
bound to a contiguous section of I/O memory.

To access the shared memory segment that has bested byshmconfig , processes
must first callshmget(2) to obtain the identifier for the segment. Thisntger is
required by other system calls for manipulating reltamemory segments. The
specification foshmget is:

int shmget(key, size 0)

The value okeyis determined by the value kéyspecified withshmconfig . If the
value ofkeywas an integer, that integer must be specifiddegen the call tashmget . If

the value okeywas a path name, you must first call ftak subroutine to obtain an
integer value based on the path name to specif§egsn the call teshmget . It is
important to note that the value of tllekargument on the call tiiok must be zero
becausshmconfig callsftok with anid of zero when it converts the path name to a
key. The value ofizemust be equal to the number of bytes specifiethbys argument

to shmconfig . A value of0 is specified as thifag argument because the shared memory
segment has already been created.

For complete information aboshmget , see “The shmget System Call.” For assistance
in usingftok , see “Using Shared Memory” and thek(3) man page. When creating
areas of mapped memory to be treated as globamystsources, you may find it helpful
to invokeshmconfig by adding a line to thehmconfig script in theletc/init.d

directory. Doing so allows you to reserve the IRy before noncooperating processes
have an opportunity to use it, and it enables yoadtablish the binding between the
shared memory segment and physical memory befarpetating processes need to use
the segment. Add a line similar to the followingample:

Jusr/bin/shmconfig -p 0xf00000 -s 0x10000 -u root - g sys -m 0666 key

3-27

RedHawk Linux User's Guide

Examples

In this example, a physical memory region on thdNR@ identified usingspci(8)

and bound to a shared memory region. Note thatyast be root to uskspci . If you
don’t have root privileges you can vigusr/share/hwdata/ pci.ids and search
for the device name (RCIM); id values are listedcthe left of the vendor/device
description. When two or more device ids are listedhe same device, usamconfig

-i on eacltdevice_idisted to determine which one to use.

1. Find thebus:slot.funddentifier for the RCIM board:

Ispci-v | grep -i rcim
0d:06.0 System peripheral: Concurrent Computer Corp RCIM Il
Realtime Clock ...

2. Use the rcim identifier to get tivendor_id:device_ithumbers:

Ispci -ns 0d:06.0
0d:06.0 Class 0880: 1542:9260 (rev 01)

3. Find the memory regions for this device. Notettlspci prints the
vendor_id:device_idralues in hex format but without a 0Ox prefix
(1542:9260), howeveshmconfig requires a base identifier
(0x1542:0x9260).

shmconfig -i 0x1542:0x9260

Region 0: Memory at f8d04000 (non-prefetchable) [s ize=256]
Iproc/bus/pci0/bus13/dev6/fn0/bar0

Region 1: I/O ports at 7c00 [size=256]
/proc/bus/pci0/bus13/dev6/in0/barl

Region 2: Memory at f8d00000 (non-prefetchable) [s ize=16384]
/proc/bus/pci0/bus13/dev6/in0/bar2

4. Bind to rcim memory region #2:
shmconfig -b 0x1542:0x9260:2 -m 0644 -u me -g mygro up 42

5. Verify the IPC shared memory regions on the systdote thaphysaddr
represents the physical address we have bound atches the address

reported by thehmconfig -i command in step 3 above.
cat /proc/sysvipc/shm

key shmid perms size cpid Ipid nattch uid
gid cuid cgid atime dtime ctime ph ysaddr

42 0 644 16384 1734 0 O 5388
100 0 O 0 01087227538 f8 do00o00

3-28

Overview

4
Process Scheduling

This chapter provides an overview of process sdirgglon RedHawk Linux systems. It
explains how the process scheduler decides whiotegs to execute next and describes
POSIX scheduling policies and priorities. It expkathe procedures for using the program
interfaces and commands that support process stthgdand discusses performance
issues.

In the RedHawk Linux OS, the schedulable entitpliways a process. Scheduling
priorities and scheduling policies are attributépmcesses. The system scheduler
determines when processes run. It maintains gaeritased on configuration parameters,
process behavior and user requests; it uses thiesgigs as well as the CPU affinity to
assign processes to a CPU

The scheduler offers three different schedulinggies, one for normal non-critical
processesSCHED_OTHER) and two fixed-priority policies for real-time algations
(scHED_FIFoand sSCHED_RR. These policies are explained in detail in thetsm
“Scheduling Policies” on page 4-3.

By default, the scheduler uses theHED_OTHERtime-sharing scheduling policy. For
processes in theCHED_OTHERpolicy, the scheduler manipulates the priorityurinable
processes dynamically in an attempt to provide geesponse time to interactive
processes and good throughput to CPU-intensiveepsas. .

Fixed-priority scheduling allows users to set statiiorities on a per-process basis. The
scheduler never modifies the priority of a proctss uses one of the fixed priority
scheduling policies. The highest real-time fixetbpty process always gets the CPU as
soon as it is runnable, even if other processesusmgable. An application can therefore
specify the exact order in which processes runettiyng) process priority accordingly.

For system environments in which real-time perfomg®is not required, the default
scheduler configuration works well, and no fixeibpty processes are needed. However,
for real-time applications or applications withistrtiming constraints, fixed-priority
processes are the only way to guarantee thatiti@tapplication's requirements are met.
When certain programs require very deterministispanse times, fixed priority
scheduling policies should be used and tasks #uatite the most deterministic response
should be assigned the most favorable priorities.

A set of system calls based on IEEE Standard 18Q8dvides direct access to a process’
scheduling policy and priority. Included in the ae¢ system calls that allow processes to
obtain or set a process’ scheduling policy andrftyicobtain the minimum and maximum
priorities associated with a particular schedulpadicy; and obtain the time quantum
associated with a process scheduled under the malird SCHED_RR scheduling policy.
You may alter the scheduling policy and priority foprocess at the command level by

4-1

RedHawk Linux User's Guide

using therun(1) command. The system calls andthe command are detailed later in
this chapter along with procedures and hints ffaotifre use.

How the Process Scheduler Works

Figure 4-1 illustrates how the scheduler operates.

Figure 4-1 The Scheduler

User Global Scheduling Policy-Specific Scheduler Process
Priority Priority Order Priorities Policies Queues
Highest First .
99 1 Fixed
A Priorities O——O
SCHED_FIFO ‘ Fixed Priority
and) Processes
‘ SCHED_RR .
; Ol—o0-0-0
Time-Sharing
Priorities .
* Time-Sharing
SCHED_OTHER .
Processes
: 139 ' O1+—0-0
Lowest Last

4-2

When a process is created, it inherits its schaduparameters, including scheduling
policy and a priority within that policy. Under tliefault configuration, a process begins
as a time-sharing process scheduled withsttieeD_OTHERpOlicy. In order for a process
to be scheduled under a fixed-priority policy, amgequest must be made via system calls
or therun(l) command.

When the user sets the priority of a process, Isetisng the “user priority.” This is also
the priority that will be reported by tlsehed_getparam(2) call when a user retrieves
the current priority. A portable application shouldise the
sched_get_priority_min() andsched_get_priority_max() interfaces to
determine the range of valid priorities for a partar scheduling policy. A user priority
value 6ched_priority) is assigned to each procesSHED_OTHERprocesses can only
be assigned a user priority of SCHED_FIFOandSCHED_RRprocesses have a user priority
in the range 1 to 99.

The scheduler converts scheduling policy-specifiorties into global priorities. The
global priority is the scheduling policy value usaternally by the kernel. The scheduler
maintains a list of runnable processes for eachiplasglobal priority value. There are 40
global scheduling priorities associated with $aeiED_OTHERScheduling policy; there are
99 global scheduling priorities associated with tixed priority scheduling policies
(scHED_RRandscHED_FIFQ. The scheduler looks for the non-empty list witib highest
global priority and selects the process at the lddbis list for execution on the current

Process Scheduling

CPU. The scheduling policy determines for each ggsavhere it will be inserted into the
list of processes with equal user priority andphecess’ relative position in this list when
processes in the list are blocked or made runnable.

As long as a fixed-priority process is ready-to-fana particular CPU, no time-sharing
process will run on that CPU.

Once the scheduler assigns a process to the CPldrdkess runs until it uses up its time
guantum, sleeps, blocks or is preempted by a higherity process.

Note that the priorities displayed pg(1) andtop(l) are internally computed values
and only indirectly reflect the priority set by thser.

Scheduling Policies

POSIX defines three types of scheduling policiest ttontrol the way a process is

scheduled:
SCHED_FIFO first-in-first-out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER default time-sharing scheduling policy

First-In-First-Out Scheduling (SCHED_FIFO)

SCHED_FIFOcan only be used with user priorities higher tiBamhat means when a
SCHED_FIFOprocess becomes runnable, it will always immetigieeempt any currently
runningSCHED_OTHERProCcesSSCHED_FIFOIs a simple scheduling algorithm without time
slicing. For processes scheduled undergbieep_riFopolicy, the following rules are
applied: AscHED_FIFoprocess that has been preempted by another protésgher
priority will stay at the head of the list for fsiority and will resume execution as soon as
all processes of higher priority are blocked ags¥hen ascHED_FIFOprocess becomes
runnable, it will be inserted at the end of thetlfer its priority. A call to
sched_setscheduler(2) or sched_setparam(2) will put the SCHED_FIFO
process identified by pid at the end of the lisitifvas runnable. A process calling
sched_yield(2) will be put at the end of its priority list. Nolar events will move a
process scheduled under $®HED_FIFOpolicy in the wait list of runnable processes with
equal user priority. AACHED_FIFOprocess runs until either it is blocked by an léQuest,

it is preempted by a higher priority process, amaifssched_yield

RedHawk Linux User's Guide

Round-Robin Scheduling (SCHED_RR)

SCHED_RRIs a simple enhancement ®€HED_FIFQ Everything described above for
SCHED_FIFOalso applies teCHED_RR except that each process is only allowed to onmf
maximum time quantum. If &CHED_RRprocess has been running for a time period equal
to or longer than the time quantum, it will be piithe end of the list for its priority. A
SCHED_RRprocess that has been preempted by a highertpryncess and subsequently
resumes execution as a running process will comphes unexpired portion of its round
robin time quantum. The length of the time quantaem be retrieved by
sched_rr_get_interval(2) . The length of the time quantum is affected byrtice
value associated with a process scheduled undeccted_RRscheduling policy. Higher
nice values are assigned larger time quantums.

Time-Sharing Scheduling (SCHED_OTHER)

SCHED_OTHERcan only be used at user priorityd&HED_OTHERIs the default universal
time-sharing scheduler policy that is intendeddibiprocesses that do not require special
user priority real-time mechanisms. The processitois chosen from the user priority 0
list based on a dynamic priority that is determimadly inside this list. The dynamic
priority is based on the nice level (set by tiiee(2) or setpriority(2) system
call) and increased for each time quantum the gieready to run, but denied to run by
the scheduler. This ensures fair progress amorsgaftpb_oTHERprocesses. Other factors,
such as the number of times a process voluntaldgks itself by performing an 1/O
operation, also come into consideration.

Procedures for Enhanced Performance

How to Set Priorities

4-4

The following code segment will place the curremiqess into thscHED_RRfixed-
priority scheduling policy at a fixed priority 006 See the section “Process Scheduling
Interfaces” later in this chapter for informatioooait the POSIX scheduling routines.

#include <sched.h>
struct sched_param sparms;

sparms.sched_priority = 60;
if (sched_setscheduler(0, SCHED_ RR, &sparms) < 0)
{
perror("sched_setsched");
exit(1);

Process Scheduling

Interrupt Routines

Processes scheduled in one of the fixed-priorityedaling policies will be assigned a
higher priority than the processing associated witflirqs and tasklets. These interrupt
routines perform work on behalf of interrupt roetinthat have executed on a given CPU.
The real interrupt routine runs at a hardware mifgrlevel and preempts all activity on a
CPU (including processes scheduled under one dixbd-priority scheduling policies).
Device driver writers under Linux are encouragegéoform the minimum amount of
work required to interact with a device to make dle@ice believe that the interrupt has
been handled. The device driver can then raiseobtiee interrupt mechanisms to handle
the remainder of the work associated with the deiterrupt routine. Because fixed-
priority processes run at a priority above theseriapt routines, this interrupt architecture
allows fixed-priority processes to experience theimum amount of jitter possible from
interrupt routines. For more information about i@t routines in device drivers, see the
“Device Drivers” chapter.

SCHED_FIFO vs SCHED_RR

The two fixed priority scheduling policies are vesiynilar in their nature, and under most
conditions they will behave in an identical manrteis important to remember that while
SCHED_RRhas a time quantum associated with the processnfat time quantum
expires the process will only yield the CPU if theurrently is a ready-to-run process of
equal priority in one of the fixed priority schethg policies. If there is no ready-to-run
process of equal priority, the scheduler will detiere that the originadCHED_RRprocess

is still the highest priority process ready to mmthis CPU and the same process will
again be selected for execution.

This means that the only time there is a differelnesveen processes scheduled under
SCHED_FIFOandSCHED_RRis when there are multiple processes running uaderof the
fixed-priority scheduling policies scheduled at thect same scheduling priority. In this
case SCHED_RRwiIll allow these processes to share a CPU accgrdirthe time quantum
that has been assigned to the process. Note ghratass’ time quantum is affected by the
nice(2) system call. Processes with higher nice valuekhgilassigned a larger time
guantum. A process’ time quantum can also be chhmgetherun(l) command (see
“The run Command” later in this chapter for details

Fixed Priority Processes Locking Up a CPU

A non-blocking endless loop in a process scheduleter thescCHED_FIFOaNndSCHED_RR
scheduling policies will block all processes witiwler priority indefinitely. As this
scenario can starve the CPU of other processesletatyp precautions should be taken to
avoid this.

During software development, a programmer can bseak an endless loop by keeping
available on the console a shell scheduled undeglzer user priority than the tested
application. This will allow an emergency kill afdted real-time applications that do not
block or terminate as expected. 86HED_FIFOandSCHED_RRprocesses can preempt
other processes forever, only root processes cepsas with theap_sys_Nicecapability
are allowed to activate these policies.

4-5

RedHawk Linux User's Guide

Memory Locking

Paging and swapping often add an unpredictable aimafusystem overhead time to
application programs. To eliminate performancedssgue to paging and swapping, use
themlockall(2) , munlockall(2) , mlock(2) andmunlock(2) system calls to
lock all or a portion of a process’ virtual addrspsce in physical memory.

CPU Affinity and Shielded Processors

Each process in the system has a CPU affinity niEis&.CPU affinity mask determines
on which CPUs the process is allowed to executeefV CPU is shielded from
processes, that CPU will only run processes tha kaplicitly set their CPU affinity to a
set of CPUs that only includes shielded CPUs. titifj these techniques adds additional
control to where and how a process executes. 8&¢®tual-Time Performance” chapter of
this guide for more information.

Process Scheduling Interfaces

A set of system calls based on IEEE Standard 18Q8dvides direct access to a process’
scheduling policy and priority. You may alter theheduling policy and priority for a
process at the command level by usingring(l) command. The system calls are
detailed below. Theun command is detailed on page 4-13.

POSIX Scheduling Routines

4-6

The sections that follow explain the proceduresufging the POSIX scheduling system
calls. These system calls are briefly describefwlsys:

Scheduling Policy:
sched_setscheduler set a process’ scheduling policy and priority
sched_getscheduler obtain a process’ scheduling policy
Scheduling Priority:
sched_setparam change a process’ scheduling priority
sched_getparam obtain a process’ scheduling priority
Relinquish CPU:

sched_yield relinquish the CPU

Process Scheduling

Low/High Priority:

sched_get_priority_min obtain the lowest priority associated with a
scheduling policy

sched_get_priority_max obtain the highest priority associated with a
scheduling policy

Round-Robin Policy:

sched_rr_get_interval obtain the time quantum associated with a process
scheduled under theeHED_RRscheduling policy

The sched_setscheduler Routine

Thesched_setscheduler(2) system call allows you to set the scheduling polic
and the associated parameters for the process.

It is important to note that to use teehed_setscheduler call to (1) change a
process’ scheduling policy to tlseHED_FIFOor thesCHED_RRpolicy or (2) change the
priority of a process scheduled under #ueiED_FIFOOr thesCHED_RRpolicy, one of the
following conditions must be met:

* The calling process must have root capability.

* The effective user ID (uid) of the calling procesast match the effective
user ID of the target process (the process for wthe scheduling policy
and priority are being set), or the calling processst have superuser or
CAP_SYS_NICEcapability.

Synopsis

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param * p);
struct sched_param {

int sched_priority

The arguments are defined as follows:

pid the process identification number (PID) of the s for which the
scheduling policy and priority are being set. Tedfy the current process, set
the value opid to zero.

policy a scheduling policy as defined in the filscked.h >. The value ofpolicy
must be one of the following:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy

RedHawk Linux User's Guide

p a pointer to a structure that specifies the sclveglyriority of the process
identified bypid. The priority is an integer value that lies in ttage of
priorities defined for the scheduler class assediatith the specified policy.
You can determine the range of priorities assodiatéh that policy by
invoking one of the following system callsched_get_priority_min
or sched_get_priority_max (for an explanation of these system calls,
see page 4-11).

If the scheduling policy and priority of the speed process are successfully set, the
sched_setscheduler system call returns the process’ previous schedydblicy. A
return value of -1 indicates that an error has mecljerrno is set to indicate the error.
Refer to thesched_setscheduler(2) man page for a listing of the types of errors
that may occur. If an error occurs, the proceshesaling policy and priority are not
changed.

It is important to note that when you change a @sstscheduling policy, you also change
its time quantum to the default time quantum teadéfined for the scheduler associated
with the new policy and the priority. You can charnfe time quantum for a process
scheduled under th&cHED_RRscheduling policy at the command level by using th
run(l) command (see p. 4-13 for information on this comd)a

The sched_getscheduler Routine

4-8

The sched_getscheduler(2) system call allows you to obtain the scheduling
policy for a specified process. Scheduling polices defined in the filesched.h > as
follows:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy
Synopsis

#include <sched.h>

int sched_getscheduler(pid_t pid);
The argument is defined as follows:

pid the process identification number (PID) of the gsscfor which you wish to
obtain the scheduling policy. To specify the cutrerocess, set the value of
pid to zero.

If the call is successfukched_getscheduler returns the scheduling policy of the
specified process. A return value of -1 indicakest &in error has occurreglyno is set to
indicate the error. Refer to tlsehed_getscheduler(2) man page for a listing of
the types of errors that may occur.

Process Scheduling

The sched_setparam Routine

The sched_setparam(2) system call allows you to set the scheduling patens
associated with the scheduling policy of a spedifieocess.

It is important to note that to use thehed_setparam call to change the scheduling
priority of a process scheduled under #eeiED_FIFOor thesSCHED_RRpolicy, one of the
following conditions must be met:

* The calling process must have the root capability.

* The effective user ID (euid) of the calling processst match the effective
user ID of the target process (the process for wthe scheduling policy
and priority are being set), or the calling processst have superuser or
CAP_SYS_NICEcapability.

Synopsis
#include <sched.h>
int sched_setparam(pid_t pid, const struct sched_param * p);
struct sched_param {
|nt sched_priority
%
The arguments are defined as follows:

pid the process identification number (PID) of the gass for which the
scheduling priority is being changed. To specify turrent process, set the
value ofpid to zero.

p a pointer to a structure that specifies the sclveglyriority of the process
identified bypid. The priority is an integer value that lies in ttaage of
priorities associated with the process’ currenteshiiing policy. High
numbers represent mof@vorable priorities and scheduling.

You can obtain a process’ scheduling policy by ikvog the

sched_getscheduler(2) system call (see p. 4-7 for an explanation of yistem
call). You can determine the range of prioritiescm$ated with that policy by invoking the
sched_get_priority_min(2) andsched_get_priority_max(2) system

calls (see page 4-11 for explanations of thesesystlls).

A return value of 0 indicates that the schedulinigry of the specified process has been
successfully changed. A return value of -1 indisdtet an error has occurredrno is
set to indicate the error. Refer to thehed_setparam(2) man page for a listing of
the types of errors that may occur. If an errorusscthe process’ scheduling priority is
not changed.

RedHawk Linux User's Guide

The sched_getparam Routine

The sched_getparam(2) system call allows you to obtain the schedulingapeeters
of a specified process.

Synopsis

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *n);
struct sched_param {

int sched_priority

h

The arguments are defined as follows:

pid the process identification number (PID) of thegass for which you wish to
obtain the scheduling priority. To specify the emtrprocess, set the value of
pid to zero.

p a pointer to a structure to which the schedulimprity of the process

identified bypid will be returned.

A return value of 0 indicates that the calkthed_getparam has been successful. The
scheduling priority of the specified process isine¢d in the structure to whighpoints. A
return value of -1 indicates that an error has mecljerrno is set to indicate the error.
Refer to thesched_getparam(2) man page for a listing of the types of errors that
may occur.

The sched_yield Routine

4-10

The sched_yield(2) system call allows the calling process to relisguihe CPU
until it again becomes the highest priority proceh is ready to run. Note that a call to
sched_vyield s effective only if a process whose priority cual to that of the calling
process is ready to run. This system call cabeatised to allow a process whose priority
is lower than that of the calling process to execut

Synopsis
#include <sched.h>
int sched_yield(void);

A return value of 0 indicates that the calstthed_yield has been successful. A return
value of -lindicates that an error has occurredno is set to indicate the error.

Process Scheduling

The sched_get_priority_min Routine

Thesched_get_priority_min(2) system call allows you to obtain the lowest
(least favorable) priority associated with a sgedischeduling policy.

Synopsis

#include <sched.h>

int sched_get_priority_min(int policy);
The argument is defined as follows:

policy a scheduling policy as defined in the filscked.h >. The value ofpolicy
must be one of the following:

SCHED_FIFO first—in—first—out (FIFO) scheduling policy
SCHED_RR round-robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values scheduled before processes with
numerically lower priority values. The value retednbysched_get_priority_max
will be greater than the value returneddayed get priority_min

RedHawk Linux allows the user priority value ranbe¢o 99 forscHED_FIFoand
SCHED_RRand the priority O foBCHED_OTHER

If the call is successfukched_get_priority_min returns the lowest priority
associated with the specified scheduling policyeturn value of -1 indicates that an error
has occurredgerrno is set to indicate the error. Refer to the man e &ar
sched_get_priority_max(2) to obtain a listing of the errors that may occur.

The sched_get_priority_max Routine

The sched_get_priority_max(2) system call allows you to obtain the highest
(most favorable) priority associated with a spedfscheduling policy.

Synopsis

#include <sched.h>

int sched_get_priority_max(int policy);
The argument is defined as follows:

policy a scheduling policy as defined in the filscked.h >. The value ofolicy
must be one of the following:

SCHED_FIFO first-in—first—out (FIFO) scheduling policy
SCHED_RR round—robin (RR) scheduling policy
SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values scheduled before processes with
numerically lower priority values. The value retednbysched_get_priority_max
will be greater than the value returneddeyned_get_priority_min

4-11

RedHawk Linux User's Guide

RedHawk Linux allows the user priority value rane¢o 99 forscHED_FIFOand
SCHED_RRand the priority O fosCHED_OTHER

If the call is successfukched_get_priority_max returns the highest priority
associated with the specified scheduling policyeturn value of -1 indicates that an error
has occurrederrno is set to indicate the error. For a listing of thipes of errors that
may occur, refer to theched_get_priority_max(2) man page.

The sched_rr_get_interval Routine

4-12

Thesched_rr_get_interval(2) system call allows you to obtain the time
guantum for a process that is scheduled undes¢heb_RrRrRscheduling policy. The time
guantum is the fixed period of time for which thertel allocates the CPU to a process.
When the process to which the CPU has been allddas been running for its time
guantum, a scheduling decision is made. If angthaeress of the same priority is ready to
run, that process will be scheduled. If not, tHeeoprocess will continue to run.

Synopsis
include <sched.h>
int sched_rr_get_interval(pid_t pid, struct timespec *tp);
struct timespec {
time_t tv_sec; /*seconds */

long tv_nsec; /[*nanoseconds */

3

The arguments are defined as follows:

pid the process identification number (PID) of thegass for which you wish to
obtain the time quantum. To specify the currentpss, set the value pidto
zero.

tp a pointer to a timespec structure to which thendoobin time quantum of the

process identified bpid will be returned. The identified process should be
running under thecHeD_RRscheduling policy.

A return value of 0 indicates that the callstched_rr_get_interval has been
successful. The time quantum of the specified ®cereturned in the structure to which
tp points. A return value of -1 indicates that amehas occurrederrno is set to indicate
the error. Refer to theched_rr_get_interval(2) man page for a listing of the
types of errors that may occur.

Process Scheduling

The run Command

Therun(l) command can be used to control process schedtitdruges and CPU
affinity. The command syntax is:

run [OPTIONg { COMMAND [ARGS | PROCESS/THREAD_SPECIFIER

Therun command executes the specified command in thea@mient described by the
list of options and exits with the command's exatue. If a specifier is giverrun
modifies the environment of the set of processesditis selected by the specifier. The
specifiers are defined below. A command may notdrabined with a specifier on the
same command line invocation.

Therun command allows you to run a program under a sjgeLRPOSIX scheduling
policy and at a specified priority (see p. 4-3 éocomplete explanation of POSIX
scheduling policies). It also allows you to set tinee quantum for a program scheduled
under thescHED_RRpolicy.

To set a program’s scheduling policy and prioritygoke therun command from the
shell, and specify either thepolicy= policy or —s policy option and the
--priority= priority or-P priority option. Valid keywords fopolicy are:

SCHED_FIFoor fifo for first-in-first-out scheduling
SCHED_RROT IT for round robin scheduling, and
SCHED_OTHEROTr other for timeshare scheduling.

The value ofpriority must be an integer value that is valid for thec#jed scheduling
policy (or the current scheduling policy if thg option is not used). Higher numerical
values represent more favorable scheduling présriti

To set the time quantum for a program being scletluhder thescHED_RRscheduling
policy, also specify the-quantum= quantumor -q quantumoption.quantumis
specified as a nice value between -20 and 19 iivepwith -20 being the longest slice of
time and 19 being the shortest, or as a milliseaide corresponding to a nice value.
--quantums=list displays the nice values and their equivalent sgtond values.

You can set the CPU affinity using thdias= list or -b list option.list is a comma-
separated list of logical CPU numbers or rangasekxample: “0,2-4,6”list may also be
specified as the string “active” or “boot” to spicall active processors or the boot
processor, respectively. Tloapr_sys_NiCEcapability is required to add additional CPUs
to an affinity.

The--negate or-N option negates the CPU bias list. A bias list @ptnust also be
specified when the negate option is specified. Aias used will contain all CPUs on the
system except those specified in the bias list.

The--copies= countor-c countoption enables the user to run the specified nuraber
identical copies of the command.

Other options are available for displaying inforinatand running the command in the
background. Options for setting NUMA memory polg&re documented in Chapter 10.
See theun(1) man page for more information.

4-13

RedHawk Linux User's Guide

PROCESS/THREAD_SPECIFIER

This parameter is used to specify the processdz®ads to be acted upon. Only one of
the following may be specified. Multiple comma segted values can be specified for all
lists and ranges are allowed where appropriate.

-all ,-a Specify all existing processes and threads.

--pid=list, -p list Specify a list of existing PIDs to modify. All sathaler operations
are specific to the complete set of processedlisteluding all
sub-threads.

-tid= list,-t list Specify a list of existing TIDs to modify. All sctieler operations
are specific to only the listed threads and nopensied sibling
threads in the processlist can be used for PowerMAX compati-
bility.

--group=_list, -g list Specify a list of process groups to modify; allstixig processes
in the process groups listed will be modified.

--user=list, -u list Specify a list of users to modify; all existing pesses owned by
the users listed will be modified. Each user inlteemay either
be a valid numeric user ID or character login ID.

--name= list, -n list Specify a list of existing process names to modify.

Examples

1. The following command runmake(l) in the background on any of
CPUs 0-3 under the defadltHED_OTHERScheduling policy with default
priority.

run --bias=0-3 make &

2. The following command rurdate(1) with a priority of 10 in the
SCHED_RR(i.e. Round Robin) scheduling policy.

run -s SCHED_RR -P 10 date

3. The following command changes the schedulingyiof process ID 987
to level 32.

run --priority=32 -p 987

4. The following command moves all processes inggsgroup 1456 to
CPU 3.

run -b 3 -g 1456

5. The following command sets all processes whoseeria “pilot” to run in
the SCHED_FIFoscheduling policy with a priority of 21.

run -s fifo -P 21 -n pilot

Refer to theun(1) man page for additional information.

4-14

Understanding

Interprocess Synchronization

This chapter describes the tools that RedHawk Liptovides to meet a variety of
interprocess synchronization needs. All of therfatees described here provide the means
for cooperating processes to synchronize accestzai@d resources.

The most efficient mechanism for synchronizing asct shared data by multiple
programs in a multiprocessor system is by using kuiks. However, it is not safe to use
a spin lock from user level without also using screeduling variable to protect against
preemption while holding a spin lock.

If portability is a larger concern than efficienglien POSIX counting semaphores and
mutexes are the next best choice for synchroniaiogess to shared data. System V
semaphores are also provided, which allow processe®smmunicate through the
exchange of semaphore values. Since many apphsatéguire the use of more than one
semaphore, this facility allows you to create setarrays of semaphores.

Problems associated with synchronizing coopergtingesses’ access to data in shared
memory are discussed as well as the tools that haea developed by Concurrent to
provide solutions to these problems.

Interprocess Synchronization

Multiprocess real-time applications require syngtization mechanisms that allow
cooperating processes to coordinate access tathe set of resources—for example, a
number of I/O buffers, units of a hardware devarea critical section of code.

RedHawk Linux supplies a variety of interprocessctyonization tools. These include
tools for controlling a process’ vulnerability tescheduling, serializing processes’ access
to critical sections with busy-wait mutual exclusimechanisms, semaphores for mutual
exclusion to critical sections and coordinatingrattion among processes.

Application programs that consist of two or moregesses sharing portions of their
virtual address space through use of shared mememg to be able to coordinate their
access to shared memory efficiently. Two fundamdotans of synchronization are used
to coordinate processes’ access to shared memuutual exclusiorandcondition
synchronizationMutual exclusion mechanisms serialize coopergirngesses’ access to
shared resources. Condition synchronization meshandelay a process’ progress until
an application-defined condition is met.

Mutual exclusion mechanisms ensure that only onhefcooperating processes can be
executing in a critical section at a time. Thregety of mechanisms are typically used to
provide mutual exclusion—those that involve busyting, those that involve sleepy
waiting, and those that involve a combination @& tiwvo when a process attempts to enter
a locked critical section. Busy-wait mechanismspanown aspin locks use a locking
technique that obtains a lock using a hardware supd test and set operation. If a
process attempts to obtain a busy-wait lock thatiisently in a locked state, the locking

5-1

RedHawk Linux User's Guide

5-2

process continues to retry the test and set operatitil the process that currently holds
the lock has cleared it and the test and set dparaticceeds. In contrast, a sleepy-wait
mechanism, such as a semaphore, will put a pracedsep if it attempts to obtain a lock

that is currently in a locked state.

Busy-wait mechanisms are highly efficient when mats¢ mpts to obtain the lock will
succeed. This is because a simple test and sedtapers all that is required to obtain a
busy-wait lock. Busy-wait mechanisms are approeriat protecting resources when the
amount of time that the lock is held is short. Ehare two reasons for this: 1) when lock
hold times are short, it is likely that a lockingppess will find the lock in an unlocked
state and therefore the overhead of the lock méstmawill also be minimal and 2) when
the lock hold time is short, the delay in obtainthg lock is also expected to be short. It is
important when using busy-wait mutual exclusiort thelays in obtaining a lock be kept
short, since the busy-wait mechanism is going tetev&PU resources while waiting for a
lock to become unlocked. As a general rule, ifittoi hold times are all less than the time
it takes to execute two context switches, thensytwait mechanism is appropriate. Tools
for implementing busy-wait mutual exclusion are laped in the section “Busy-Wait
Mutual Exclusion.”

Critical sections are often very short. To keepdbst of synchronization comparatively
small, synchronizing operations performed on eatig/fto/from a critical section cannot
enter the kernel. It is undesirable for the exerutiverhead associated with entering and
leaving the critical section to be longer thanldregth of the critical section itself.

In order for spin locks to be used as an effeativgual exclusion tool, the expected time
that a process will spin waiting for another practsrelease the lock must be not only
brief but also predictable. Such unpredictable ¢vas page faults, signals, and the
preemption of a process holding the lock causeghkelapsed time in a critical section to
significantly exceed the expected execution timebést, these unexpected delays inside
a critical section may cause other CPUs to delagéo than anticipated; at worst, they
may cause deadlock. Locking pages in memory caacbemplished during program
initialization so as not to have an impact on timeetto enter a critical section. The
mechanisms for rescheduling control provide a laswrbead means of controlling signals
and process preemption. Tools for providing rescii@g control are described in
“Rescheduling Control.”

Semaphores are another mechanism for providing ahetclusion. Semaphores are a
form of sleepy-wait mutual exclusion because a@sschat attempts to lock a semaphore
that is already locked will be blocked or put teeg). POSIX counting semaphores provide
a portable means of controlling access to shareaurees. A counting semaphore is an
object that has an integer value and a limitecb§etperations defined for it. Counting
semaphores provide a simple interface that is imgleted to achieve the fastest
performance for lock and unlock operations. POSIXnting semaphores are described in
the section “POSIX Counting Semaphores.” SysteneMaphores are a complex data
type that allows many additional functions (for exde the ability to find out how many
waiters there are on a semaphore or the abilibptyate on a set of semaphores). System
V semaphores are described in the section “Syst&edaphores.”

Mutexes allow multiple threads in a program to €htre same resource but not
simultaneously. A mutex is created and any thread teeds the resource must lock the
mutex from other threads while using the resoume @nlock it when it is no longer
needed. POSIX mutexes have two features, indivigwanfigurable on a per-mutex
basis, which are especially useful for real-timpleations:robust mutexeandpriority
inheritance mutexeRobustness gives applications a chance to redbeere of the
application’s threads dies while holding a mutepplcations using a priority inheritance

Interprocess Synchronization

mutex can find the priority of the mutex’s ownerolsted from time to time. These are
explained in the section “Extensions to POSIX Metek

Rescheduling Control

Multiprocess, real-time applications frequently vt defer CPU rescheduling for brief
periods of time. To use busy-wait mutual exclusdfiectively, spinlock hold times must
be small and predictable.

CPU rescheduling and signal handling are majorcasuof unpredictability. A process
would like to make itself immune to reschedulingemhit acquires a spinlock, and
vulnerable again when it releases the lock. A systell could raise the caller’s priority to
the highest in the system, but the overhead ofgdsinis prohibitive.

A rescheduling variable provides control for resthieng and signal handling. You
register the variable in your application and matdfe it directly from your application.
While rescheduling is disabled, quantum expiratigmeemptions, and certain types of
signals are held.

A system call and a set of macros accommodate futbe2 sescheduling variable. In the
sections that follow, the variable, the system,calld the macros are described, and the
procedures for using them are explained.

The primitives described here provide low overheadtrol of CPU rescheduling and
signal delivery.

Understanding Rescheduling Variables

A rescheduling variable is a data structure, definecsys/rescntl.h> that controls a
single process’ vulnerability to rescheduling:

struct resched_var {
pid_trv_pid;

volatile int rv_nlocks;

3
It is allocated on a per-process or per-threadshagithe application, not by the kernel.
Theresched_cntl(2) system call registers the variable, and the kezrainines the

variable before making rescheduling decisions.

Use of theresched_cntl system call is explained in “Using resched_cntt8yn
Call.” A set of rescheduling control macros enalyles to manipulate the variable from
your application. Use of these macros is explainedUsing the Rescheduling Control
Macros.”

Each thread must register its own reschedulingabéei A rescheduling variable is valid
only for the process or thread that registers toation of the rescheduling variable.
Under the current implementation, it is recommenithed rescheduling variables be used

RedHawk Linux User's Guide

only by single-threaded processes. Forking in atirthteaded program that uses
rescheduling variables should be avoided.

Using resched_cntl System Call

Theresched_cntl system call enables you to perform a variety s€heduling control
operations. These include registering and initiadjza rescheduling variable, obtaining its
location, and setting a limit on the length of tithat rescheduling can be deferred.

Synopsis
#include <sys/rescntl.h>
int resched_cntl(cmd, arg

int cmd
char *arg;

gcc [option§ file -lccur rt...
Arguments are defined as follows:
cmd the operation to be performed
arg a pointer to an argument whose value depends tingovalue otmd

cmdcan be one of the following. The valuesad] that are associated with each command
are indicated.

RESCHED_SET_VARIABLE
This command registers the caller’s reschedulingatbe. The
rescheduling variable must be located in a propeissite page,
which excludes pages in shared memory segmentsesrthat
have been mappedaP_SHARED.

Two threads of the same process should not regikeesame
address as their rescheduling variablearlf is notNuLL, the
struct resched_var it points to is initialized and locked into
physical memory. Ifrg is NULL, the caller is disassociated from
any existing variable, and the appropriate pagesialocked.

After a fork(2) , the child process inherits rescheduling
variables from its parent. The_pid field of the child’s
rescheduling variable is updated to the processf tfhe child.

If a child process has inherited a reschedulingabée and it, in
turn, forks one or more child processes, thosedchibcesses
inherit the rescheduling variable with the pid field updated.

If a rescheduling variable is locked in the parprdcess at the
time of the call tofork , vfork(2) or clone(2) , the
rescheduling variable aborts.

5-4

Interprocess Synchronization

Use of this command requires root capabilitycap_ipc_LOCK
andcAP_syYs_RAwIOprivileges.

RESCHED_SET_LIMIT This command is a debugging toolaly is notNULL, it points to
astruct timeval specifying the maximum length of time the
caller expects to defer rescheduling. BneaBRT signal is sent to
the caller when this limit is exceeded if the lotiader of the CPU
is enabled. larg isNULL, any previous limit is forgotten.

RESCHED_GET_VARIABLE
This command returns the location of the calleescheduling
variable.arg must point to a rescheduling variable pointer. The
pointer referenced bgrg is set toNnuLL if the caller has no
rescheduling variable, and is set to the locatidrthe
rescheduling variable otherwise.

RESCHED_SERVE This command is used bgsched _unlock to service pending
signals and context switches. Applications shouldneed to use
this command directharg must be 0.

Using the Rescheduling Control Macros

resched_lock

A set of rescheduling control macros enables yoloté& and unlock rescheduling
variables and to determine the number of reschiegliticks in effect. These macros are
briefly described as follows:

resched_lock increments the number of rescheduling locks hglthke calling
process

resched_unlock decrements the number of rescheduling locks helithd calling
process

resched_nlocks returns the number of rescheduling locks curreintigffect

Synopsis

#include <sys/rescntl.h>
void resched_lock(rn;

struct resched_var *r;
The argument is defined as follows:
r a pointer to the calling process’ reschedulingalde

Resched_lock does not return a value; it increments the nurobeescheduling locks
held by the calling process. As long as the prodegs not enter the kernel, quantum
expirations, preemptions, and some signal deligeasire deferred until all rescheduling
locks are released.

5-5

RedHawk Linux User's Guide

However, if the process generates an exception @emage fault) or makes a system call,
it may receive signals or otherwise context switelgardless of the number of
rescheduling locks it holds. The following signedpresent error conditions and are NOT
affected by rescheduling locksIGILL, SIGTRAR SIGFPE SIGKILL, SIGBUS, SIGSEGY
SIGABRT, SIGSYS SIGPIPE SIGXCPU, andSIGXFSZ

Making system calls while a rescheduling varialdddcked is possible but not
recommended. However, it is not valid to make arstesn call that results in putting the
calling process to sleep while a rescheduling éeiss locked.

resched_unlock

Synopsis
#include <sys/rescntl.h>
void resched_unlock(r;
struct resched_var *r;

The argument is defined as follows:
r a pointer to the calling process’ reschedulingalde

Resched_unlock does not return a value. If there are no outstaptbcks after the
decrement and a context switch or signal are pentlirey are serviced immediately.

NOTE

Therv_nlocks field must be a positive integer for the lock to
be considered active. Thus, if the field is zermegative, it is
considered to be unlocked.

resched_nlocks
Synopsis

#include <sys/rescntl.h>
int resched_nlocks(r);
struct resched_var *r;

The argument is defined as follows:
r a pointer to the calling process’ reschedulingalde
Resched_nlocks returns the number of rescheduling locks curreintigffect.

For additional information on the use of these magcrefer to theesched_cntl(2)
man page.

5-6

Interprocess Synchronization

Applying Rescheduling Control Tools

The following C program segment illustrates thecpaures for controlling rescheduling
by using the tools described in the preceding eastiThis program segment defines a
rescheduling variable\() as a global variable; registers and initializes tariable with a
call toresched_cntl ; and locks and unlocks the rescheduling variabi¢is calls to
resched_lock andresched_unlock , respectively.

static struct resched_var rv;

int main (int argc, char *argv[])
resched _cntl (RESCHED_SET_VARIABLE, (char *)&rv)
resched_lock (&rv);

I* nonpreemptible code */

resched_unlock (&rv);
return O;

}

Busy-Wait Mutual Exclusion

Busy-wait mutual exclusion is achieved by assoegé synchronizing variable with a
shared resource. When a process or thread wishgsrt@ccess to the resource, it locks
the synchronizing variable. When it completes &g of the resource, it unlocks the
synchronizing variable. If another process or traempts to gain access to the resource
while the first process or thread has the resolaaleed, that process or thread must delay
by repeatedly testing the state of the lock. Thienf of synchronization requires that the
synchronizing variable be accessible directly fniear mode and that the lock and unlock
operations have very low overhead.

RedHawk Linux provides two types of low-overheadsywait mutual exclusion
variables:spin_mutex andnopreempt_spin_mutex . A nopreempt_spin_
mutex automatically uses rescheduling variables to nthkeads or processes non-
preemptible while holding the mutexspin_mutex does not.

In the sections that follow, the variables andrifiaiees are defined, and the procedures for
using them are explained.

Understanding the spin_mutex Variable

The busy-wait mutual exclusion variable is a dataciure known as a spin lock. The
spin_mutex variable is defined #spin.h> as follows:

typedef struct spin_mutex {
volatile int count;
} spin_mutex _t;

RedHawk Linux User's Guide

The spin lock has two states: locked and unlocWéuen initialized, the spin lock is in the
unlocked state.

If you wish to use spin locks to coordinate acdesshared resources, you must allocate
them in your application program and locate thermi@mory that is shared by the

processes or threads that you wish to synchroime can manipulate them by using the
interfaces described in “Using the spin_mutex faieszs.”

Using the spin_mutex Interfaces

5-8

This set of busy-wait mutual exclusion interfacksves you to initialize, lock, and unlock
spin locks and determine whether or not a particgpin lock is locked. These are briefly
described as follows:

spin_init initialize a spin lock to the unlocked state

spin_lock spin until the spin lock can be locked

spin_trylock attempt to lock a specified spin lock

spin_islock determine whether or not a specified spin lodkdéged
spin_unlock unlock a specified spin lock

It is important to note that none of these inteefmenables you to lock a spin lock
unconditionally. You can construct this capabibity using the tools that are provided.

CAUTION

Operations on spin locks are not recursive; a ®oe thread can
deadlock if it attempts to relock a spin lock titahas already

locked.
You must initialize spin locks before you use thbyncallingspin_init . You call
spin_init only once for each spin lock. If the specifiedspock is locked,
spin_init effectively unlocks it; it does not return a valUé&espin_init interface

is specified as follows:

#include <spin.h>
void spin_init(spin_mutex_t * m);

The argument is defined as follows:
m the starting address of the spin lock

spin_lock spins until the spin lock can be locked. It does meturn a value. The
interface is specified as follows:

#include <spin.h>
void spin_lock(spin_mutex_t *m);

Interprocess Synchronization

spin_trylock returns true if the calling process or thread$waxeeded in locking the
spin lock; false if it has not succeedagin_trylock does_notblock the calling
process or thread. The interface is specified kone:

#include <spin.h>
int spin_trylock(spin_mutex_t *m);

spin_islock returns true if the specified spin lock is lockéalse if it is unlocked. It
does not attempt to lock the spin lock. The inteefes specified as follows:

#include <spin.h>
int spin_islock(spin_mutex_t *m);

spin_unlock unlocks the spin lock. It does not return a valilee interface is specified
as follows:

#include <spin.h>
void spin_unlock(spin_mutex_t *m);

Note thatspin_lock , spin_trylock andspin_unlock can log trace events to be
monitored by NightTrace RT. An application can erathlese trace events by defining
SPIN_TRACEprior to including<spin.h> . For example:

#define SPIN_TRACE
#include <spin.h>

The application must also be linked withtrace , or -Intrace_thr if also linked
with -Ipthread

For additional information on the use of theseriiatees, refer to thepin_init(3)
man page.

Applying spin_mutex Tools

Procedures for using the spin_mutex tools for buait-mutual exclusion are illustrated
by the following code segments. The first segméots how to use these tools along
with rescheduling control to acquire a spin lodle second shows how to release a spin
lock. Note that these segments contain no systédmargorocedure calls.

The_margument points to a spin lock, and tlieargument points to the calling process’
or thread’s rescheduling variable. It is assumed the spin lock is located in shared
memory. To avoid the overhead associated with pggivd swapping, it is recommended
that the pages that will be referenced inside tiitecal section be locked in physical
memory (see thmlock(2) andshmctl(2) system calls).

#define spin_acquire(_m,_r) \
{\
resched_lock(_n);\
while (Ispin_trylock(_m)) {\
resched_unlock(_r); \
while (spin_islock(_m)); \
resched_lock(_r); \
ja
}

RedHawk Linux User's Guide

#define spin_release(_ m,)\
{\
spin_unlock(_m); \
resched_unlock(_n);\

}

In the first segment, note the use of spé_trylock andspin_islock interfaces.

If a process or thread attempting to lock the $pik finds it locked, it waits for the lock
to be released by callimgpin_islock . This sequence is more efficient than polling
directly with spin_trylock . Thespin_trylock interface contains special
instructions to perform test-and-set atomicallytloa spin lock. These instructions are less
efficient than the simple memory read performedgim_islock

Note also the use of the rescheduling control fatess. To prevent deadlock, a process or
thread disables rescheduling prior to locking thendock and re-enables it after
unlocking the spin lock. A process or thread atsemables rescheduling just prior to the
call tospin_islock so that rescheduling is not deferred any longen thecessary.

Understanding the nopreempt_spin_mutex Variable

The nopreempt_spin_mutex is a busy-wait mutex #ibiws multiple threads or
processes to synchronize access to a shared resdurescheduling variable is used to
make threads or processes non-preemptible whitinrgpthe mutex locked. A thread or
process may safely nest the locking of multiple ewas. The nopreempt_spin_mutex is
defined in<nopreempt_spin.h> as follows:

typedef struct nopreempt_spin_mutex {
spin_mutex_t spr_mux;
} nopreempt_spin_mutex_t;

The spin lock has two states: locked and unlocWékn initialized, the spin lock is in the
unlocked state.

If you wish to use non-preemptible spin locks torhnate access to shared resources,
you must allocate them in your application programa locate them in memory that is
shared by the processes or threads that you wisjntthronize. You can manipulate them
by using the interfaces described in “Using theraempt_spin_mutex Interfaces.”

Using the nopreempt_spin_mutex Interfaces

5-10

This set of busy-wait mutual exclusion interfacksves you to initialize, lock, and unlock
non-preemptible spin locks. A rescheduling variablased to make threads or processes
non-preemptible while holding the mutex locked. dare briefly described as follows:

nopreempt_spin_init initialize a spin lock to the unlocked
state

nopreempt_spin_init_thread guarantee that preemption can be
blocked

nopreempt_spin_lock spin until the spin lock can be locked

Interprocess Synchronization

nopreempt_spin_trylock attempt to lock a specified spin lock

nopreempt_spin_islock determine whether or not a specified
spin lock is locked

nopreempt_spin_unlock unlock a specified spin lock

You must initialize spin locks before you use theyrcallingnopreempt _spin_init

You call this interface only once for each spinkiolf the specified spin lock is locked,
nopreempt _spin_init effectively unlocks it; it does not return a valiée interface
is specified as follows:

#include <nopreempt_spin.h>
void nopreempt_spin_init(nopreempt_spin_mutex_t *m);

The argument is defined as follows:
m the starting address of the spin lock

nopreempt_spin_init_thread guarantees that preemption can be blocked when
nopreempt_spin_lock andnopreempt_spin_trylock are called. When a
nopreempt_spin_mutex is used in a multi-threadedgss, the process must be linked
with -lpthread ~ and each thread must catipreempt_spin_init_thread at least
once. If a process is not multi-threaded, it maditthis routine at least once. This routine
need only be called once regardless of how mangxesgtthe process or thread uses. It
returns zero (0) if preemption blocking can be guéeed; otherwise it returns -1 with
errno set. The interface is specified as follows:

#include <nopreempt_spin.h>
int nopreempt_spin_init_thread(void)

nopreempt_spin_lock spins until the spin lock can be locked. It doesneturn a
value. It is specified as follows:

#include <nopreempt_spin.h>
void nopreempt_spin_lock(nopreempt_spin_mutex_t *m);

nopreempt_spin_trylock returns true if the calling process or threadhaxeeded
in locking the spin lock; false if it has not sueded.nopreempt_spin_trylock
does noblock the calling process or thread. The interfacgecified as follows:

#include <nopreempt_spin.h>
int nopreempt_spin_trylock(nopreempt_spin_mutex_t *m);

nopreempt_spin_islock returns true if the specified spin lock is lockéadse if it is
unlocked. It does not attempt to lock the spin Ididhe interface is specified as follows:

#include <nopreempt_spin.h>
int nopreempt_spin_islock(nopreempt_spin_mutex_t *m);

nopreempt_spin_unlock unlocks the spin lock. It does not return a valliee
interface is specified as follows:

#include <nopreempt_spin.h>
void nopreempt_spin_unlock(nopreempt_spin_mutex_t *m);

5-11

RedHawk Linux User's Guide

Note thatnopreempt_spin_lock , hopreempt_spin_trylock and
nopreempt_spin_unlock can log trace events to be monitored by NightTRIEeANn
application can enable these trace events by defis@IN_TRACEprior to including
<nopreempt_spin.h> . For example:

#define SPIN_TRACE
#include <nopreempt_spin.h>

The application must also be linked withtrace , or -Intrace_thr if also linked
with -Ipthread

For additional information on the use of these irfeces, refer to the
nopreempt_spin_init(3) man page.

POSIX Counting Semaphores

Overview

5-12

Counting semaphores provide a simple interfacedhatbe implemented to achieve the
fastest performance for lock and unlock operatidnsounting semaphore is an object
that has an integer value and a limited set of atpmrs defined for it. These operations
and the corresponding POSIX interfaces includddhewing:

* An initialization operation that sets the semaphmrezero or a positive
value—sem_init orsem_open

* A lock operation that decrements the value of #gmmaphore-sem_wait
or sem_timedwait . If the resulting value is negative, the task periing
the operation blocks.

* An unlock operation that increments the value oé& tfemaphore—
sem_post . If the resulting value is less than or equal&ooz one of the
tasks blocked on the semaphore is awakened. tethdting value is greater
than zero, no tasks were blocked on the semaphore.

* A conditional lock operation that decrements thkueaf the semaphore
only if the value is positive-sem_trywait . If the value is zero or
negative, the operation fails.

* A query operation that provides a snapshot of #igevof the semaphore—
sem_getvalue

The lock, unlock, and conditional lock operatioms @omic(the set of operations are
performed at the same time and only if they cabalperformed simultaneously).

A counting semaphore may be used to control adcessy resource that can be used by
multiple cooperating threads. A counting semaplearebe named or unnamed.

A thread creates and initializes amnamed semaphorghrough a call to the
sem_init(3) routine. The semaphore is initialized to a vahat is specified on the
call. All threads within the application have accésthe unnamed semaphore once it has
been created with treem_init routine call.

Interfaces

Interprocess Synchronization

A thread createsamed semaphotey invoking thesem_open routine and specifying a
unique name that is simply a null-terminated striftge semaphore is initialized to a value
that is supplied on the call s8m_open to create the semaphore. No space is allocated
by the process for a named semaphore becausetieopen routine will include the
semaphore in the process’s virtual address spaber Processes can gain access to the
named semaphore by invokisgm_open and specifying the same name.

When an unnamed or named semaphore is initialiedalue should be set to the number
of available resources. To use a counting semaptoopeovide mutual exclusion, the
semaphore value should be set to one.

A cooperating task that wants access to a critesdurce must lock the semaphore that
protects that resource. When the task locks theapbore, it knows that it can use the
resource without interference from any other coapi@g task in the system. An
application must be written so that the resourcaessed only after the semaphore that
protects it has been acquired.

As long as the semaphore value is positive, ressuate available for use; one of the
resources is allocated to the next task that toieequire it. When the semaphore value is
zero, then none of the resources are availabbslattying to acquire a resource must wait
until one becomes available. If the semaphore vislmegative, then there may be one or
more tasks that are blocked and waiting to acqoire of the resources. When a task
completes use of a resource, it unlocks the semaplrdicating that the resource is

available for use by another task.

The concept of ownership does not apply to a cagrdemaphore. One task can lock a
semaphore; another task can unlock it.

The semaphore unlock operationaisync-signal safethat is, a task can unlock a
semaphore from a signal-handling routine withouisirag deadlock.

The absence of ownership precludes priority inhedé. Because a task does not become
the owner of a semaphore when it locks the semaplitacannot temporarily inherit the
priority of a higher-priority task that blocks tng to lock the same semaphore. As a result,
unbounded priority inversion can occur.

The sections that follow explain the proceduresuiing the POSIX counting semaphore
interfaces. These interfaces are briefly descrasefbllows:

sem_init initializes an unnamed counting semaphore

sem_destroy removes an unnamed counting semaphore

sem_open creates, initializes and establishes a connettian named
counting semaphore

sem_close relinquishes access to a named counting semaphore

sem_unlink removes the name of a named counting semaphore

sem_wait locks a counting semaphore

sem_trywait locks a counting semaphore only if it is currenthjocked

sem_timedwait locks a counting semaphore with timeout

sem_post unlocks a counting semaphore

sem_getvalue obtains the value of a counting semaphore

5-13

RedHawk Linux User's Guide

Note that to use these interfaces, you must link wapplication with the pthreads library.
The following example shows the command line intmeawhen linking dynamically
with shared libraries. The Native POSIX Threads&ip (NPTL) is used by default.

gcc [optiong file.c -Ipthread

The same application can be built statically with following invocation line. This uses
the LinuxThreads library.

gcc [option§ -static file.c -Ipthread

Note that there is no support for process shanetighores in the LinuxThreads library.

The sem_init Routine

The sem_init(3) library routine allows the calling process to iglize an unnamed
counting semaphore by setting the semaphore valtleethumber of available resources
being protected by the semaphore. To use a cous¢imgphore for mutual exclusion, the
process sets the value to one.

Dynamically linked programs, which use the NPTLets library, can share a semaphore
across processes when pgharedparameter is set to a non-zero valu@shareds set to
zero, the semaphore is shared only among threddshe same process.

Statically linked programs, which use the LinuxTduds library, can only have counting
semaphores shared among threads within the samegz@sharedmust be set to 0).
After one thread in a process creates and inidal&Zzsemaphore, other cooperating threads
within that same process can operate on the sem@phAcchild process created by a
fork(2) system call doemot inherit access to a semaphore that has already bee
initialized by the parent. A process also losesasdo a semaphore after invoking the
exec(3) orexit(2) system calls.

Thesem_wait , sem_timedwait , sem_trywait , sem_post andsem_getvalue
library routines are used to operate on the semraphén unnamed counting semaphore
is removed by invoking theem_destroy routine. These routines are described in the
sections that follow.

CAUTION

The IEEE 1003.1b-1993 standard does not indicate Wappens when
multiple processes invokeem_init for the same semaphore.
Currently, the RedHawk Linux implementation simpdynitializes the
semaphore to the value specifiedsem_init calls that are made after
the initialsem_init call.

To be certain that application code can be portedny system that
supports POSIX interfaces (including future Coneuntrsystems),
cooperating processes that seen_init should ensure that a single
process initializes a particular semaphore anditluates so only once.

If sem_init is called after it has already been initializedha prior
sem_init call, and there are currently threads that areingaon this
same semaphore, then these threads will nevermdtom their
sem_wait calls, and they will need to be explicitly termiiea.

5-14

Interprocess Synchronization

Synopsis

#include <semaphore.h>
int sem_init(sem_t * semjnt psharedunsigned int value;

The arguments are defined as follows:

sem a pointer to asem_t structure that represents the unnamed counting
semaphore to be initialized

pshared an integer value that indicates whether or notsmaphore is to be
shared by other processespshareds set to a non-zero value, then the
semaphore is shared among process@shiredis set to zero, then the
semaphore is shared only among threads withinaime process. Stati-
cally linked programs, which use the LinuxThreatsary, cannot use
semaphores shared between processes and musps$tzaredset to
zero; if not set to zer@em_init returns with-1 anderrno is set to
ENOSYS.

value zero or a positive integer value that initializee semaphore value to
the number of resources currently available. Thismber cannot
exceed the value &fEM_VALUE_MAX (see the file semaphore.h >to
determine this value).

A return value of 0 indicates that the callsem_init has been successful. A return
value of —1 indicates that an error has occureethp is set to indicate the error. Refer to
thesem_init(3) man page for a listing of the types of errors thay occur.

The sem_destroy Routine

CAUTION

An unnamed counting semaphore should not be remaowa&t
there is no longer a need for any process to opevatthe
semaphore and there are no processes currentligenlamn the
semaphore.

Synopsis

#include <semaphore.h>
int sem_destroy(sem_t * sen);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore tretmoved. Only a
counting semaphore created with a calk&n_init(3) may be
removed by invokingem_destroy

A return value of 0 indicates that the calsgm_destroy has been successful. A return
value of —1 indicates that an error has occuretp is set to indicate the error. Refer to
thesem_destroy(3) man page for a listing of the types of errors thay occur.

5-15

RedHawk Linux User's Guide

The sem_open Routine

5-16

Thesem_open(3) library routine allows the calling process to d¢eganitialize, and
establish a connection to a named counting semapkidnen a process creates a named
counting semaphore, it associates a unique nanfethat semaphore. It also sets the
semaphore value to the number of available reseuremg protected by the semaphore.
To use a named counting semaphore for mutual erciuthe process sets the value to
one.

After a process creates a named semaphore, otteggzes can establish a connection to
that semaphore by invokirgem_open and specifying the same name. Upon successful
completion, thesem_open routine returns the address of the named cousgngaphore.

A process subsequently uses that address to oetfee semaphore on callstem_wait
sem_trywait , andsem_post . A process may continue to operate on the nanmed-se
phore until it invokes theem_close routine or theexec(2) or exit(2) system
calls. On a call teexec orexit , a named semaphore is closed as if by a call to
sem_close . A child process created byfark(2) system call inherits access to a
named semaphore to which the parent process tadisiséd a connection.

If a single process makes multiple callssean_open and specifies the same name, the
same address will be returned on each call untBsthé process itself has closed the
semaphore through intervening callsém_close or (2) some process has removed the
name through intervening callsgem_unlink

If multiple processes make callssem_open and specify the same name, the address of
the same semaphore object will be returned on eathnless some process has removed
the name through intervening callssiem_unlink . (Note that the same address will not
necessarily be returned on each call.) If a probassemoved the name through an inter-
vening call tosem_unlink , the address of a new instance of the semaphgeetaill

be returned.

Synopsis
#include <semaphore.h>

sem_t *sem_open(const char * namejnt oflag, mode_t mode,
unsigned int valuel);

The arguments are defined as follows:

name a null-terminated string that specifies the narfn@ femaphore. The pre-
fix “sem.” is prepended tnameand the semaphore will appear as a data
file in /dev/shm . A leading slash (/) character is allowed (recom-
mended for portable applications) but no embeddezhes. Neither a
leading slash character nor the current workingaory affects inter-
pretations of it; e.g./mysem andmysemare both interpreted as
/dev/shm/sem.mysem . Note that this string, including the 4-char-
acter prefix, must consist of less thanafjue_max}, defined in
Jusr/include/limits.h

oflag an integer value that indicates whether the aalfirocess is creating a
named counting semaphore or establishing a commetdian existing
one. The following bits may be set:

Interprocess Synchronization

O_CREAT causes the counting semaphore specifieddnyeto be cre-
ated if it does not exist. The semaphore’s useislBet to
the effective user ID of the calling process; iteup ID is
set to the effective group ID of the calling prageand its
permission bits are set as specified byrttaleargument.
The semaphore’s initial value is set as specifiethbvalue
argument. Note that you muspecify both thenodeand the
valuearguments when you set this bit.

If the counting semaphore specified figmeexists, setting
O_CREAThas no effect except as noted doEXCL.

O_EXCL causesem_open to fail if O_CREATIs set and the counting
semaphore specified mameexists. IfO_CREATIs not set,
this bit is ignored.

Note that thesem_open routine returns an error if flag bits
other thano_crREAT ando_EXcCL are set in theflag argu-
ment.

mode an integer value that sets the permission bits@ttounting semaphore
specified bynamewith the following exception: bits set in the pess’s
file mode creation mask are cleared in the courgemgaphore’s mode
(refer to theumask(2) andchmod(2) man pages for additional
information). If bits other than the permissionshétre set irmode they
are ignored. A process specifies thedeargument only when it is cre-
atinga named counting semaphore.

value zero or a positive integer value that initializee semaphore value to
the number of resources currently available. Thizilper cannot exceed
the value oSEM_VALUE_MAX defined in the file tmits.h >. A pro-
cess specifies thealueargument only when it is creatirgnamed
counting semaphore.

If the call is successfusem_open returns the address of the named counting semaphor
A return value oSEM_FAILED indicates that an error has occurredno is set to indicate
the error. Refer to theem_open(3) man page for a listing of the types of errors that
may occur.

The sem_close Routine

Thesem_close(3) library routine allows the calling process to meliish access to a
named counting semaphore. an_close routine frees the system resources that have
been allocated for the process’ use of the semapBubsequent attempts by the process
to operate on the semaphore may result in delioEasIGSEGVsignal.

The count associated with the semaphore is notcaéie by a process’ call to
sem_close .

Synopsis
#include <semaphore.h>

int sem_close(sem_t * sen);

5-17

RedHawk Linux User's Guide

The argument is defined as follows:

sem a pointer to the named counting semaphore to wéidess is to
be relinquished. Only a counting semaphore to whidonnec-
tion has been established through a cadkim_open(3) may be
specified.

A return value of 0 indicates that the callsm_close has been successful. A return
value of —1 indicates that an error has occurethp is set to indicate the error. Refer to
thesem_close(3) man page for a listing of the types of errors thay occur.

The sem_unlink Routine

5-18

Thesem_unlink(3) library routine allows the calling process to remdhe name of a
counting semaphore. A process that subsequendijnpts to establish a connection to the
semaphore by using the same name will establisinaection to a different instance of
the semaphore. A process that has a reference gethaphore at the time of the call may
continue to use the semaphore until it invokem_close(3) or theexec(2) or
exit(2) system call.

Synopsis
#include <semaphore.h>

int sem_unlink(const char * name;
The argument is defined as follows:

name a null-terminated string that specifies the nairfne femaphore. The pre-
fix “sem.” is prepended tnameand the semaphore will appear as a data
file in /dev/shm . A leading slash (/) character is allowed (recom-
mended for portable applications) but no embeddezhes. Neither a
leading slash character nor the current workingaory affects inter-
pretations of it; e.g./mysem andmysemare both interpreted as
/dev/ishm/sem.mysem . Note that this string, including the 4-char-
acter prefix, must consist of less thanajme_max}, defined in
{usrfinclude/limits.h

A return value of 0 indicates that the callstem_unlink has been successful. A return
value of —1 indicates that an error has occurethp is set to indicate the error. Refer to
thesem_unlink(3) man page for a listing of the types of errors thay occur.

Interprocess Synchronization

The sem_wait Routine

Thesem_wait(3) library routine allows the calling process to logk unnamed
counting semaphore. If the semaphore value is etguagro, the semaphore is already
locked. In this case, the process blocks unt# interrupted by a signal or the semaphore
is unlocked. If the semaphore value is greater #ean, the process locks the semaphore
and proceeds. In either case, the semaphore watiecremented.

Synopsis

#include <semaphore.h>

int sem_wait(sem_t * sen);
The argument is defined as follows:
sem a pointer to the unnamed counting semaphore todked

A return value of 0 indicates that the process siaxeeded in locking the specified
semaphore. A return value of —1 indicates thatraorédas occurrederrno is set to
indicate the error. Refer to tleem_wait(3) man page for a listing of the types of
errors that may occur.

The sem_timedwait Routine

The sem_timedwait(3) library routine allows the calling process to lark unnamed
counting semaphore; however, if the semaphore damnéocked without waiting for
another process or thread to unlock it sém_post , the wait is terminated when the
specified timeout expires.

Synopsis

#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t * sem const struct timespec *s);
The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore todked

ts a pointer to a timespec structure defineciime.h> which specifies a
single time value in seconds and nanoseconds wigewdit is terminated.
For example:

ts.tv_sec = (NULL)+2
ts.tv_nsec =0

establishes a two second timeout. For more infaomatn POSIX time
structures, see “Understanding the POSIX Time 8iras” in Chapter 6.

A return value of 0 indicates that the process siaxeeded in locking the specified
semaphore. A return value of —1 indicates thatraorédas occurrederrno is set to
indicate the error. Refer to tlsem_wait(3) man page for a listing of the types of
errors that may occur.

5-19

RedHawk Linux User's Guide

The sem_trywait Routine

The sem_trywait(3) library routine allows the calling process to lozlcounting
semaphore only if the semaphore value is greaser zbro, indicating that the semaphore
is unlocked. If the semaphore value is equal to,zthle semaphore is already locked, and
the call tosem_trywait fails. If a process succeeds in locking the semaphthe
semaphore value is decremented; otherwise, it doeshange.

Synopsis

#include <semaphore.h>

int sem_trywait(sem_t * sen);
The argument is defined as follows:

sem a pointer to the unnamed counting semaphore hieatdlling process is
attempting to lock

A return value of 0 indicates that the calling pges has succeeded in locking the
specified semaphore. A return value of —1 indic#tas an error has occurreglyno is
set to indicate the error. Refer to them_trywait(3) man page for a listing of the
types of errors that may occur.

The sem_post Routine

5-20

Thesem_post(3) library routine allows the calling process to urkaa counting
semaphore. If one or more processes are blockathg/ddr the semaphore, the waiting
process with the highest priority is awakened withensemaphore is unlocked.

Synopsis
#include <semaphore.h>
int sem_post(sem_t * sen);
The argument is defined as follows:
sem a pointer to the unnamed counting semaphore tmloeked

A return value of O indicates that the callseem_post has been successful. If a bad
semaphore descriptor has been supplied, a segiperfetlt results. A return value of -1
indicates that an error has occurredsno is set to indicate the error. Refer to the
sem_post(3) man page for a listing of the types of errors thay occur.

Interprocess Synchronization

The sem_getvalue Routine

Thesem_getvalue(3) library routine allows the calling process to dbtdhe value of
an unnamed counting semaphore.

Synopsis
#include <semaphore.h>

int sem_getvalue(sem_t * semjnt* sval;
The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore fachvpou wish to
obtain the value

sval a pointer to a location where the value of thecgjgel unnamed count-
ing semaphore is to be returned. The value thatisned represents the
actual value of the semaphore at some unspecifrezlduring the call.
It is important to note, however, that this valuaymot be the actual
value of the semaphore at the time of the retuumfthe call.

A return value of 0 indicates that the callssem_getvalue has been successful. A
return value of —1 indicates that an error has wedierrno is set to indicate the error.
Refer to thesem_getvalue(3) man page for a listing of the types of errors that
occur.

Extensions to POSIX Mutexes

A mutex is a mutual exclusion device useful fortpoting shared data structures from
concurrent modifications and implementing critisattions. A mutex has two possible
states: unlocked (not owned by any thread) anddddkwned by one thread). A thread
attempting to lock a mutex that is already lockgdahother thread is suspended until the
owning thread unlocks the mutex first.

The standard POSIX pthread mutex functionality de in RedHawk includes the
following services. For full information about tieeservices refer to the man pages.

pthread_mutex_init(3) initializes the mutex
pthread_mutex_lock(3) locks the mutex
pthread_mutex_trylock(3) tries to lock the mutex
pthread_mutex_unlock(3) unlocks the mutex
pthread_mutex_destroy(3) destroys the mutex
pthread_mutexattr_init(3) initializes the mutex attribute object
pthread_mutexattr_destroy(3) destroys the mutex attribute object
pthread_mutexattr_settype(3) sets the mutex attribute type
pthread_mutexattr_gettype(3) retrieves the mutex attribute type

5-21

RedHawk Linux User's Guide

Robust Mutexes

5-22

In addition to those services, RedHawk includesfoliewing POSIX pthread extensions
that provide robustness and priority inheritarRebustnesgives applications a chance to
recover if one of the application’s threads dieflavholding a mutexPriority inheritance

is the automatic boosting of the scheduling pryooita thread to the priority of the highest
priority thread that is sleeping, directly or irefitly, on any of the mutexes owned by that
thread. These conditions are discussed in mord tetaw.

The services are described in the sections thata@nd in the man pages.

pthread_mutex_consistent_np(3) makes an inconsistent mutex consistent
pthread_mutex_getunlock_np(3) returns the unlocking policy of the mutex
pthread_mutex_setconsistency_np(3) sets the consistency state of the mutex
pthread_mutex_setunlock_np(3) sets the unlocking policy of the mutex
pthread_mutexattr_getfast_np(3) returns the operating mode
pthread_mutexattr_getprotocol(3) returns the protocol
pthread_mutexattr_getrobust_np(3) returns the robust level
pthread_mutexattr_getunlock_np(3) returns the unlocking policy
pthread_mutexattr_setfast_np(3) sets the operating mode
pthread_mutexattr_setprotocol(3) sets the protocol
pthread_mutexattr_setrobust_np(3) sets the robust level
pthread_mutexattr_setunlock_np(3) sets the unlocking policy

Applications using a robust mutex can detect whethe previous owner of the mutex
terminated while holding the mutex. The new owraar then attempt to clean up the state
protected by the mutex, and if able to do so, nfaekmutex as again healthy. If cleanup of
the state can’t be done, the mutex can be markextaverable so that any future attempts
to lock it will get a status indicating that itusrecoverable.

To implement this, two newrrmo codesEOWNERDEAD andENOTRECOVERABLE are
available. When a thread dies while holding a muttes mutex is automatically unlocked
and marked dead. A dead lock operates like a ndoollexcept that each successful lock
on a dead mutex returns ROWNERDEAD error rather than success.

Therefore an application that is interested in stibeiss must examine the return status of
every lock request. WhesOWNERDEAD is seen, the application can ignore it, repair
whatever is wrong in the application due to thetlded the owner and mark it consistent
(healthy), or if it cannot be repaired, mark it ecwverable.

A mutex marked unrecoverable rejects all futureragens on that mutex with an
ENOTRECOVERABLEerror. The only exception is the service whiclinigalizes the mutex
and the services that inquire about the mutex.stéeeads that were sleeping on a mutex
that becomes unrecoverable wake up immediately ariftNOTRECOVERABLEEITOL.

Interprocess Synchronization

Priority Inheritance

User Interface

An application using a priority inheritance muteandind its priority temporarily boosted
from time to time. The boosting happens to thoseaitts that have acquired a mutex and
other higher priority threads go to sleep waitingthat mutex. In this case, the priority of
the sleeper is temporarily transferred to the loeker for as long as that owner holds the
lock.

As these sleeping threads in turn could own othetexes, and thus themselves have
boosted priorities, the max function takes carede the sleeper’s boosted, not base,
priorities in making its decision on what priority boost to.

Full descriptions of the services listed here aowiged in the sections that follow and on
the corresponding online man page.

The following services operate on the state ofntlgex:

pthread_mutex_consistent_np(3) makes an inconsistent mutex consistent
pthread_mutex_getunlock_np(3) returns the unlocking policy of the mutex
pthread_mutex_setconsistency_np(3) sets the consistency state of the mutex
pthread_mutex_setunlock_np(3) sets the unlocking policy of the mutex

The services listed below modify or make inquirbsat attributes stored in mutex
attribute objects. Anutex attribute objeds a data structure that defines which mutex
features are to be available in mutexes createl tvdt attribute object. Since mutexes
have a lot of features, a mutex attribute objeckesdt convenient for an application to
define all the desired attributes in one mutextaite object, then create all the mutexes
that are to have that set of attributes with thgect.

In addition, those attributes which must be fixed the life of the mutex are definable
only through a mutex attribute object. Likewiseriatites which can be changed during
the life of a mutex can be given an initial defimit through the mutex attribute object,
then can be changed later via an equivalent at&ribperation on the mutex itself.

To return an attribute:

pthread_mutexattr_getfast_np(3) returns the operating mode
pthread_mutexattr_getprotocol(3) returns the protocol
pthread_mutexattr_getrobust_np(3) returns the robust level
pthread_mutexattr_getunlock_np(3) returns the unlocking policy
To set an attribute:
pthread_mutexattr_setfast_np(3) sets the operating mode
pthread_mutexattr_setprotocol(3) sets the protocol
pthread_mutexattr_setrobust_np(3) sets the robust level
pthread_mutexattr_setunlock_np(3) sets the unlocking policy

5-23

RedHawk Linux User's Guide

pthread_mutex_consistent_np

This service makes an inconsistent mutex consistent
Synopsis
int pthread_mutex_consistent_np (pthread_mutex_t * mutex

A consistent mutex becomes inconsistent if its avaies while holding it. In addition, on
detection of the death of the owner, the mutex Inee® unlocked, much as if a
pthread_mutex_unlock was executed on it. The lock continues to opexateormal,
except that subsequent owners receiveEaWwNERDEAD error return from the
pthread_mutex_lock that gave it ownership. This indicates to the osmer that the
acquired mutex is inconsistent.

This service can only be called by the owner ofitltensistent mutex.

pthread_mutex_getunlock_np

This service returns the unlocking policy of thiatex.

int pthread_mutex_getunlock_np(const pthread_mutex_ t* mutex
int* policy)

The unlocking policy is returned irpdlicy, which may be set to:

PTHREAD_MUTEX_UNLOCK_SERIAL_NP
pthread_mutex_unlock is to pass the lock directly from the
owner to the highest priority thread waiting foe tlock.
PTHREAD_MUTEX_UNLOCK_PARALLEL_NP
The lock is unlocked and, if there are waiters, tfgest important
of them is awakened. The awakened thread contemdbd lock
as it would if trying to acquire the lock for thiest time.

PTHREAD_MUTEX_UNLOCK_AUTO_NP
Select between the above two policies based orPDEIX
scheduling policy of the to-be-awakened threadhdf thread is
SCHED_OTHER use the parallel policy; otherwise use the serial
policy.

pthread_mutex_setconsistency_np

This service sets the consistency state of thengivatex.

int pthread_mutex_setconsistency_np(pthread_mutex_t * mutex
int statg

statemay be any one of the following:

PTHREAD_MUTEX_ROBUST_CONSISTENT_NP
Make an inconsistent mutex consistent. An appbeashould do
this only if it has been able to fix the problerhatt caused the
mutex to be marked inconsistent.

5-24

Interprocess Synchronization

PTHREAD_MUTEX_ROBUST_NOTRECOVERABLE_NP
Mark an inconsistent mutex as unrecoverable. Ariaggon
should do this if it is not able to fix the problerthat caused the
mutex to be marked inconsistent.

The mutex must originally be in an inconsistentesta this service returns an error. Only
the owner of the mutex can change its consistetadg.s

pthread_mutex_setunlock_np

This service sets the unlocking policy of this nxute
Synopsis
int pthread_mutex_setunlock_np(pthread_mutex_t * mutexint policy)

policy may bePTHREAD_MUTEX_UNLOCK_SERIAL_NP PTHREAD_MUTEX_UNLOCK_
PARALLEL_NP Or PTHREAD_MUTEX_UNLOCK_AUTO_NPR Refer to the section
“pthread_mutex_getunlock _np” above for definitions.

pthread_mutexattr_getfast _np

This service returns whether mutexes initializethwiie set of attributes mitr will run in
fast or in slow mode.

Synopsis

int pthread_mutexattr_getfast_np(const pthread_mute xattr_t * attr,
int * modeé

The answer is returned imtode which will be set to:

PTHREAD_MUTEX_FASTPATH_NP
Mutexes initialized withattr will run in fast mode. In this mode,
uncontended locks and unlocks do not enter thegkern

PTHREAD_MUTEX_SLOWPATH_NP
Mutexes initialized withattr will run in slow mode. In this mode,
the kernel is entered for evepghread_mutex_lock and
pthread_mutex_unlock

pthread_mutexattr_getprotocol

This services returns the protocol for mutexesdlited with this set of attributes.
Synopsis

int pthread_mutexattr_getprotocol(pthread_mutexattr _t* attr,
int* protocol

The available protocols are:

PTHREAD_PRIO_NONE A thread’s scheduling priority is not affected dgyerations on this
mutex.

5-25

RedHawk Linux User's Guide

PTHREAD_PRIO_INHERIT
A thread’s scheduling priority is changed accordimg¢he rules of
the priority inheritance protocol: as long as tead is the owner
of the mutex, it will inherit the priority of theifgghest priority
waiter that is directly or indirectly waiting to @ire the mutex.

pthread_mutexattr_getrobust_np

This service returns the robust level for mutexésalized with this set of attributes.
Synopsis

int pthread_mutexattr_getrobust_np(const pthread_mu texattr_t
attr, int robustness

The available levels are:
PTHREAD_MUTEX_ROBUST_NP Mutexes created with this attribute object willdobust.

PTHREAD_MUTEX_STALLED_NP Mutexes created with this attribute object willt nme
robust.

A robust mutex is one that detects when its owmes dnd transitions to the inconsistent
state. See “pthread_mutex_consistent_np” for tfi@itden of the inconsistent state.

A nonrobust mutex does not detect when its owres dhd so remains locked indefinitely

(that is, until it is interrupted by a signal oms® other thread unlocks the mutex on behalf
of the dead process).

pthread_mutexattr_getunlock np

This service returns the unlocking policy for mgssnitialized with this set of attributes.

int pthread_mutexattr_getunlock_np(const phtread_mu texattr_t
attr, int mode

The available policies ameTHREAD_MUTEX_UNLOCK_SERIAL_NP, PTHREAD_MUTEX_

UNLOCK_PARALLEL_NP andPTHREAD_MUTEX_UNLOCK_AUTO_NP.See the section
“pthread_mutex_getunlock_np” for their definitions.

pthread_mutexattr_setfast_np

This service sets the operating mode for mutexested with this set of attributes.
Synopsis

int pthread_mutexattr_setfast_np(pthread_mutexattr_ t* attr,
int modé

modemay bePTHREAD_MUTEX_FASTPATH_NPOr PTHREAD_MUTEX_SLOWPATH_NPSee the
section “pthread_mutexattr_getfast_np” for theifidgons.

5-26

Interprocess Synchronization

pthread_mutexattr_setprotocol

This service sets the protocol of any mutex thatésted from this set of mutex attributes.
Synopsis

int pthread_mutexattr_setprotocol(pthread_mutexattr _t* attr,
int protoco)

protocol may bePTHREAD_PRIO_NONEOr PTHREAD_PRIO_INHERIT See the section
“pthread_mutexattr_getprotocol” for their definiti&

pthread_mutexattr_setrobust_np

This service sets the robust level for mutexes éhatcreated with this mutex attribute
object.

Synopsis

int pthread_mutexattr_setrobust_np(pthread_mutexatt r_t* attr,
int robustness

robustnessnay bePTHREAD_MUTEX_ROBUST_NFOr PTHREAD_MUTEX_STALLED_NP See
“pthread_mutexattr_getrobust_np” for definitions.

pthread_mutexattr_setunlock np

This service sets the unlocking mode for mutexasdhe created with this mutex attribute
object.

int pthread_mutexattr_setunlock_np(pthread_mutexatt r_t* attr,
int modé

modemay bePTHREAD_MUTEX_UNLOCK_SERIAL_NP PTHREAD_MUTEX_UNLOCK_
PARALLEL_NP, Or PTHREAD_MUTEX_UNLOCK_AUTO_NPR See the section
“pthread_mutex_getunlock _np” for their definitions.

Compiling Programs with POSIX Mutexes

Programs that use priority inheritance and/or rabnatexes described above are
compiled with the standait(1) , gcc(l) andg++(1) tools.

Note that previous versions of RedHawk includecalternativeglibc that provided
extensions for these mutexes, accessed by complinglinking applications with
ccur-gcc or ccur-g++ . This functionality is now included in standagtibc ; the

alternativeglibc and theccur- * compilation scripts are no longer available.

The standardlibc additions are completely binary compatible witle #xtensions
provided through the alternatiygdibc . Existing binaries that were compiled with
ccur-gcc andccur-g++ on previous versions of RedHawk will continue toriw
unmodified on the current RedHawk version. Existprggrams that use priority
inheritance and/or robust mutexes can be compili¢ld the standard tools; no source
changes are required. However, note that MaketHas specifyccur- * need to be
changed to use the standard tools. Alternativefymisolic links can be created in
/usr/bin to point the namescur-gcc andccur-g++ togcc andg++, respectively.

5-27

RedHawk Linux User's Guide

System V Semaphores

Overview

5-28

The System V semaphore is an interprocess comntigniqdP C) mechanism that allows
processes to synchronize via the exchange of seraphlues. Since many applications
require the use of more than one semaphore, thatimgesystem has the ability to create
sets or arrays of semaphores. A semaphore sebosairt one or more semaphores, up to
a limit of SEmmMsL (as defined ixlinux/sem.h>). Semaphore sets are created using the
semget(2) system call.

When only a simple semaphore is needed, a couséingphore is more efficient (see the
section “POSIX Counting Semaphores”).

The process performing tleemget system call becomes the owner/creator, determines
how many semaphores are in the set, and setsitied bperation permissions for all
processes, including itself. This process can subesgly relinquish ownership of the set
or change the operation permissions usingsémactl(2) system call. The creating
process always remains the creator as long asattiéty exists. Other processes with
permission can ussemctl to perform other control functions.

Any process can manipulate the semaphore(s) ibthweer of the semaphore grants
permission. Each semaphore within a set can benmented and decremented with the
semop(2) system call (see the section “The semop Systett I&&r in this chapter).

To increment a semaphore, an integer value of &séred magnitude is passed to the
semop system call. To decrement a semaphore, a minivdlue of the desired
magnitude is passed.

The operating system ensures that only one prasgssanipulate a semaphore set at any
given time. Simultaneous requests are performedesgiglly in an arbitrary manner.

A process can test for a semaphore value to beegrérean a certain value by attempting
to decrement the semaphore by one more than that.J&the process is successful, the
semaphore value is greater than that certain valtrerwise, the semaphore value is not.
While doing this, the process can have its exenwtisspendedrC_NOWAIT flag not set)
until the semaphore value would permit the operafmther processes increment the
semaphore), or the semaphore facility is removed.

The ability to suspend execution is calleblacking semaphore operatiomhis ability is
also available for a process which is testing feeaaphore equal to zero; only read
permission is required for this test; it is accoisipéd by passing a value of zero to the
semop system call.

On the other hand, if the process is not succeasfilildid not request to have its execution
suspended, it is calledreonblocking semaphore operatiolm this case, the process is
returned -1 and the exterreakno variable is set accordingly.

The blocking semaphore operation allows processayichronize via the values of
semaphores at different points in time. Remembsy Hiat IPC facilities remain in the
operating system until removed by a permitted e until the system is reinitialized.

When a set of semaphores is created, the firstgeona in the set is semaphore number
zero. The last semaphore number in the set is nigdlme less than the total in the set.

Interprocess Synchronization

A single system call can be used to perform a secpief these blocking/nonblocking
operations on a set of semaphores. When performisgquence of operations, the
blocking/nonblocking operations can be appliedrtg ar all of the semaphores in the set.
Also, the operations can be applied in any ordeseshaphore number. However, no
operations are done until they can all be doneessfally. For example, if the first three
of six operations on a set of ten semaphores chaeldompleted successfully, but the
fourth operation would be blocked, no changes adeno the set until all six operations
can be performed without blocking. Either all oétbperations are successful and the
semaphores are changed, or one or more (nonblgakiegation is unsuccessful and none
are changed. In short, the operations are perfoatwdically.

Remember, any unsuccessful nonblocking operatioa fingle semaphore or a set of
semaphores causes immediate return with no opesaperformed at all. When this
occurs, -1 is returned to the process, and theredteariableerrno is set accordingly.

System calls make these semaphore capabilitiedadbaito processes. The calling

process passes arguments to a system call, argy/$tem call either successfully or
unsuccessfully performs its function. If the systeall is successful, it performs its

function and returns the appropriate informatiothedwise, -1 is returned to the process,
and the external variabtrno is set accordingly.

Using System V Semaphores

Before semaphores can be used (operated on orotledira uniquely identified data
structure and semaphore set (array) must be cre@bedunique identifier is called the
semaphore set identifies€mid; it is used to identify or refer to a particutiata structure
and semaphore set. This identifier is accessiblartyyprocess in the system, subject to
normal access restrictions.

The semaphore set contains a predefined numberuatres in an array, one structure
for each semaphore in the set. The number of semnaplfisem$in a semaphore set is
user selectable.

Thesembuf structure, which is used @emop(2) system calls, is shown in Figure 5-1.

Figure 5-1 Definition of sembuf Structure

struct sembuf {

unsigned short int sem_num; /* semaphore number */
short int sem_op; /* semaphore operat ion */
short int sem_flg; /* operation flag * /

I3

Thesembuf structure is defined in thesys/sem.h> header file.

5-29

RedHawk Linux User's Guide

5-30

The structsemid_ds structure, which is used on certa@mctl(2) service calls, is
shown in Figure 5-2.

Figure 5-2 Definition of semid_ds Structure

Guct semid_ds { \

struct ipc_perm sem_perm; [* operation permission st ruct */
__time_t sem_otime; /* last semop() time */

unsigned long int __unused1;

__time_t sem_ctime; /* last time changed by semctl() */
unsigned long int __unused2;

unsigned long int sem_nsems; /* number of semaphores in set */
unsigned long int __unused3;

unsigned long int __unused4;

\ /

Though thesemid_ds data structure is located #bits/sem.h> | user applications
should include the<sys/sem.h> header file, which internally includes the
<bits/sem.h> header file.

Note that thesem_perm member of this structure is of tygec_perm . This data
structure is the same for all IPC facilities; itdsated in the<bits/ipc.h> header file,
but user applications should include #tsys/ipc.h> file, which internally includes the
<hits/ipc.h> header file. The details of tiygc_perm data structure are given in the
section entitled “System V Messages” in Chapter 3.

A semget(2) system call performs one of two tasks:

* creates a new semaphore set identifier and cremtesssociated data
structure and semaphore set for it

* |ocates an existing semaphore set identifier thatdy has an associated
data structure and semaphore set

The task performed is determined by the value @kédyargument passed to teemget
system call. Ikeyis not already in use for an existisgmidand therc_cRreATflag is set,

a newsemidis returned with an associated data structuresanthphore set created for it,
provided no system tunable parameter would be ebezbe

There is also a provision for specifyinckey of value zero (0), which is known as the
private key PC_PRIVATE). When this key is specified, a new identifiealways returned
with an associated data structure and semaphooeesged for it, unless a system-tunable
parameter would be exceeded. Thpes(8) command will show th&eyfield for the
semid as all zeros.

When a semaphore set is created, the process whilkkhsemget becomes the
owner/creator and the associated data structuretialized accordingly. Remember,
ownership can be changed, but the creating pradess/s remains the creator (see the
“The semctl System Call” section). The creatorhaf semaphore set also determines the
initial operation permissions for the facility.

Interprocess Synchronization

If a semaphore set identifier exists for the kegcsfed, the value of the existing identifier
is returned. If you do not want to have an existiegnaphore set identifier returned, a
control commandigc_gxcL) can be specified (set) in tkemflgargument passed to the
system call. The system call will fail if it is el a value for the number of semaphores
(nsem}that is greater than the number actually in #te i you do not know how many
semaphores are in the set, Wstor nsemg(see “The semget System Call” for more
information).

Once a uniquely identified semaphore set and daiatsre are created or an existing one
is found,semop(2) andsemctl(2) can be used.

Semaphore operations consist of incrementing, deenéing, and testing for zero. The
semop system call is used to perform these operatioges (Fhe semop System Call” for
details of thesemop system call).

Thesemctl system call permits you to control the semaphacodify in the following
ways:

* by returning the value of a semaphaseTivAL)

* by setting the value of a semaphaoseTvAL)

* by returning the PID of the last process performang operation on a
semaphore seGETPID)

* by returning the number of processes waiting foseaaphore value to
become greater than its current val@eTNCNT)

* by returning the number of processes waiting feemaphore value to equal
zero GETZCNT)

* by getting all semaphore values in a set and pigitiam in an array in user
memory GETALL)

* by setting all semaphore values in a semaphoffessetan array of values in
user memory<ETALL)

* by retrieving the data structure associated wigkrmaphore setPC_STAT)

* by changing operation permissions for a semapheirgrs_SE7)

* by removing a particular semaphore set identifiemfthe operating system
along with its associated data structure and searefdet PC_RMID)

See the section “The semctl System Call” for detailthesemctl system call.

The semget System Call

semget(2) creates a new semaphore set or identifies arirexishe.

This section describes how to use skenget system call. For more detailed information,
see thesemget(2) man page. A program illustrating use of this calh be found at
/usr/share/doc/ccur/examples/semget.c with extensive comments provided
in README.semget.txt

5-31

RedHawk Linux User's Guide

5-32

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key t key, int nsemsint semfig;

All of the #include files are located in thaisr/include subdirectories of the
operating system.

key t is defined by daypedef in the<bits/sys/types.h> header file to be an
integral type (this header file is included intdpéy <sys/types.h>). The integer
returned from this system call upon successful detigm is the semaphore set identifier
(semid . Thesemidis discussed in the section “Using System V Seroggsi earlier in
this chapter.

A newsemidwith an associated semaphore set and data steustareated if one of the
following conditions is true:

* keyis equal taPC_PRIVATE
* key does not already have semid associated with it andsémflg and
IPC_CREA) is “true” (not zero).

The value okemflgis a combination of:

¢ control commands (flags)

* operation permissions

Control commands are predefined constants. Theviiig control commands apply to
thesemget system call and are defined in thits/ipc.h> header file, which is
internally included by thesys/ipc.h> header file:

IPC_CREAT used to create a new semaphore set. If not geeajet will find the
semaphore set associated widyand verify access permissions.

IPC_EXCL used withipc_CREATto cause the system call to return an error if a
semaphore set identifier already exists for theciigel key This is
necessary to prevent the process from thinkingstdieceived a new
(unique) identifier when it has not.

Operation permissions define the read/alter attebudor users, groups and others.
Table 5-1 shows the numeric values (expressed &l aotation) for the valid operation
permissions codes.

Interprocess Synchronization

Table 5-1 Semaphore Operation Permissions Codes

Operation Permissions Octal Value
Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

A specific value is derived by adding or bitwise i@dRthe octal values for the operation
permissions desired. That is, if “read by user” &medd/alter by others” is desired, the
code value would be 00406 (00400 plus 00006).

The semflgvalue can easily be set by using the flag namesmjunction with the octal
operation permissions value; for example:

semid = semget (key, hsems, (IPC_CREAT| 0400));
semid = semget (key, hsems, (IPC_CREAT| IPC_EXCL | 0400));

The following values are defined #linux/sem.h> . Exceeding these values always
causes a failure.

SEMMNI determines the maximum number of unique semapteiegemid) that can
be in use at any given time

SEMMSL determines the maximum number of semaphores insaoaAphore set

SEMMNS determines the maximum number of semaphores seatbphore sets system
wide

A list of semaphore limit values may be obtainethwieipcs(8) command by using
the following options. See the man page for furtfetails.

ipcs -s-l

Refer to thesemget(2) man page for specific associated data structutialimation as
well as the specific error conditions.

5-33

RedHawk Linux User's Guide

The semctl System Call

5-34

semctl(2) is used to perform control operations on semapsete

This section describes tisemctl system call. For more detailed information, se= th
semctl(2) man page. A program illustrating use of this cadh be found at
/usr/share/doc/ccur/examples/semctl.c with extensive comments provided
in README.semctl.txt

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (int semid int semnumint cmd int arg);
union semun
{
int val;
struct semid_ds *buf;
ushort *array;
} arg;
All of the #include files are located in thaisr/include subdirectories of the

operating system.

The semidargument must be a valid, non-negative, integérevthat has already been
created using theemget system call.

The semnumargument is used to select a semaphore by its eunithis relates to
sequences of operations (atomically performedhenset. When a set of semaphores is
created, the first semaphore is number 0, andadtesemaphore is numbered one less than
the total in the set.

Thecmdargument can be any one of the following values:

GETVAL returns the value of a single semaphore withimaagdore set
SETVAL sets the value of a single semaphore within a skaraset
GETPID returns the PID of the process that performeddkedperation on

the semaphore within a semaphore set

GETNCNT returns the number of processes waiting for theuevadf a
particular semaphore to become greater than iteruvalue

GETZCNT returns the number of processes waiting for theuevadf a
particular semaphore to be equal to zero

GETALL returns the value for all semaphores in a semageire

SETALL sets all semaphore values in a semaphore set

Interprocess Synchronization

IPC_STAT returns the status information contained in theoeciased data
structure for the specifiesbmid and places it in the data structure
pointed to byarg.buf

IPC_SET sets the effective user/group identification anderafion
permissions for the specified semaphore seinfd

IPC_RMID removes the specified semaphore ssn{id along with its
associated data structure

NOTE

Thesemctl(2) service also supports tieC_INFO, SEM_STAT
andseM_INFO commands. However, since these commands are
only intended for use by thpcs(8) utility, these commands
are not discussed.

To perform anPc_SETor IPC_RMID control command, a process must meet one or nfore o
the following conditions:

* have an effective user id ofvNER

* have an effective user id OREATOR
* be the super-user

* have thecAP_sys_ADMIN capability

Note that a semaphore set can also be removediby theipcrm(1) command and
specifying thes semidor the-S semkeyoption, wheresemidspecifies the identifier for
the semaphore set asedmkeyspecifies the key associated with the semaphaordseise
this command, a process must have the same caigatdls those required for performing
anIpPC_RMID control command. See tligcrm(1) man page for additional information
on the use of this command.

The remaining control commands require either iadrite permission, as appropriate.

Thearg argument is used to pass the system call the pgpte union member for the
control command to be performed. For some of th#robcommands, tharg argument
is not required and is simply ignored.

* argval required:SETVAL

* arg.buf requirediPC_STAT IPC_SET

* argarray required:GETALL, SETALL

* arg ignored:GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

5-35

RedHawk Linux User's Guide

The semop System Call

5-36

semop(2) is used to perform operations on selected mendfere semaphore set.

This section describes tlsemop system call. For more detailed information, se® th
semop(2) man page. A program illustrating use of this cadh be found at
/usr/share/doc/ccur/examples/semop.c with extensive comments provided
in README.semop.txt .

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semid struct sembuf * sops unsigned nsops;

All of the #include files are located in thaisr/include subdirectories of the
operating system.

The semop system call returns an integer value, which i® Zer successful completion
or -1 otherwise.

The semidargument must be a valid, non-negative, integkrevdn other words, it must
have already been returned from a psemget(2) system call.

The sopsargument points to an array of structures in the&r utnemory area that contains
the following for each semaphore to be changed:

¢ the semaphore numbesefn_num

¢ the operation to be performesken_op

* the control flagsgem_flg
The* sopsdeclaration means that either an array name (wisithe address of the first
element of the array) or a pointer to the arraylmamsedsembuf is the tag name of the

data structure used as the template for the steichiembers in the array; it is located in
the<sys/sem.h> header file.

The nsopsargument specifies the length of the array (thenloer of structures in the
array). The maximum size of this array is deterrdibg thesemoPM system-tunable
parameter. Therefore, a maximums#MoOPM operations can be performed for each
semop system call.

The semaphore numbesefn_nudetermines the particular semaphore within these
which the operation is to be performed.

The operation to be performed is determined bydhewing:
* If sem_opis positive, the semaphore value is incrementethbyvalue of
sem_op.

* |f sem_ops negative, the semaphore value is decrementetidogibsolute
value ofsem_op.

* If sem_oqs zero, the semaphore value is tested for egualizero.

Interprocess Synchronization

The following operation commands (flags) can beduse

IPC_NOWAIT can be set for any operations in the array. Theesysall returns
unsuccessfully without changing any semaphore watiall if
any operation for whiclPC_NOwAIT is set cannot be performed
successfully. The system call is unsuccessful wingimg to
decrement a semaphore more than its current valuahen
testing for a semaphore to be equal to zero whismibt.

SEM_UNDO tells the system to undo the process’ semaphorengeba
automatically when the process exits; it allowscpsses to avoid
deadlock problems. To implement this feature, thgetem
maintains a table with an entry for every procesthe system.
Each entry points to a set of undo structures, fmmesach
semaphore used by the process. The system recloedseit
change.

Condition Synchronization

The following sections describe tlpostwait(2) andserver_block /
server_wake(2) system calls that can be used to manipulate catipgrmprocesses.

The postwait System Call

The postwait(2) function is a fast, efficient, sleep/wakeup/tinmechanism used
between a cooperating group of threads. The threadd not be members of the same
process.

Synopsis

#include <sys/time.h>
#include <sys/rescntl.h>
#include <sys/pw.h>

int pw_getukid(ukid_t *ukid);

int pw_wait(struct timespec * t, struct resched_var *r);
int pw_post(ukid_t ukid, struct resched_var *r);

int pw_postv(int count ukid_t targetd], int errorg[], struct

resched var *r);
int pw_getvmax(void);

gcc [optiong file -lccur_rt
To go to sleep, a thread catie_wait() . The thread will wake up when:

* the timer expires

¢ the thread is posted to by another thread by cplpw_post() or
pw_postv() with theukid(s) of thepw_wait ing thread(s)

¢ the call is interrupted

5-37

RedHawk Linux User's Guide

5-38

Threads usingostwait(2) services are identified by theikid. A thread should call
pw_getukid() to obtain itsukid. Theukid maps to the caller’s unique, global thread id.
This value can be shared with the other cooperatirepds that may wish to post to this
thread.

For each threaghostwait(2) remembers at most one unconsumed post. Postiag to
thread that has an unconsumed post has no effect.

For allpostwait(2) services that have a rescheduling variable argtipwnter, if that
pointer is non-NULL, the lock-count of the assoe@trescheduling variable is
decremented.

pw_wait() is used to consume a post. It is called with aioopl timeout value and an
optional rescheduling variable. It returns a vadfié if it consumes a post or O if timed-
out waiting for a post to consume.

If the time specified for the timeout value is ge¥ahan 0, the thread sleeps at most for
that amount of time waiting for a post to consumés returned if this period expires
without encountering a post. If the call is intgred,EINTR is returned and the timeout
value is updated to reflect the amount of time riemg. If posted to during this interval,
or a previous unconsumed post is encountered,asieipconsumed and 1 is returned.

If the timeout value is Gow_wait() will return immediately. It returns a 1 if it camses
a previously unconsumed post or it retueasAIN if there was no post available to
consume.

If the pointer to the timeout valuensiLL, the behavior is the same except that the thread
will never timeout. If interruptedgINTR is returned but the timeout value, which by
definition is not specified, is not updated.

pw_post() sends a post to the thread identifieduyd. If that thread is waiting for a
post, the thread wakes up and consumes the pdisatlthread was not waiting for a post,
the unconsumed post is remembered so that thetinexthat thread tries to wait for a
post, it will consume the saved post and returhavit warning. At most, one unconsumed
post can be remembered per thread.

pw_postv() can be used to post to multiple threads at onbes@& postings will be
atomic in the sense that none will be allowed &epipt the thread doing the posting until
all the postings are complete.

The ukids of the target threads must be put intotdrgetsarray. Errors for respective
targets are returned in tkeerors array. The number of entries used in tamgetsand
errors arrays must be passed in throughabentargument.

pw_postv() returns a O if all succeed, or the error valu¢heflast target to cause an
error if there are any errors.

pw_getvmax() returns the maximum number of targets that capdsted to with one
pw_postv() call. This value is determined by the_vmax kernel tunable.

Refer to thepostwait(2) man page for a listing of the types of errors thay occur.

Interprocess Synchronization

The Server System Calls

This set of system calls enables you to manipylabeesses acting as servers using an
interface compatible with the PowerMAX operatingteyn. These system calls are briefly
described as follows:

server_block blocks the calling process only if no wake-up egjthas occurred
since the last return frommerver_block . If a wake-up has
occurredserver_block returns immediately.

server_wakel wakes server if it is blocked in tiserver_block system call;
if the specified server is not blocked in this calle wake-up
request is applied to the server’s next cafidover block

server_wakevec serves the same purposesas/er_wakel , except that a vector
of processes may be specified rather than one ggoce

CAUTION

These system calls should be used only by singteatthed
processes. The global process ID of a multiplekeelaid changes
according to the process on which the thread igenity
scheduled. Therefore, it is possible that the writmgad will be
awakened or blocked when these interfaces are byed
multiplexed threads.

server_block

server_block blocks the calling process only if no wake-up resjuwas occurred
since the last return froserver_block

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_block(options, r, timeoQt
int options

struct resched_var *r;

struct timeval *timeout

gcc [optiong file -lccur rt...
Arguments are defined as follows:

options the value of this argument must be zero

r a pointer to the calling process’ reschedulingalde. This argument is
optional: its value can beuLL.

timeout a pointer to dimeval structure that contains the maximum length of
time the calling process will be blocked. This argunt is optional: its
value can beiuLL. If its value isNULL, there is no time out.

5-39

RedHawk Linux User's Guide

server_wakel

5-40

Theserver_block system call returns immediately if the calling g@es has a pending
wake-up request; otherwise, it returns when théngaprocess receives the next wake-up
request. A return of O indicates that the call besn successful. A return of —1 indicates
that an error has occurregkrno is set to indicate the error. Note that upon rettine
calling process should retest the condition thatsed it to block; there is no guarantee
that the condition has changed because the praomds have been prematurely
awakened by a signal.

Server_wakel is invoked to wake a server that is blocked insttrwer_block call.
Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wakel(server,
global_Iwpid_t server
struct resched_var *r;

gcc [optiong file -lccur_rt ...
Arguments are defined as follows:

server the global process ID of the server process tavimkened

r a pointer to the calling process’ reschedulingalde. This argument is
optional; its value can beuLL.

It is important to note that to use therver_wakel call, the real or effective user ID of
the calling process must match the real or savexdrexec] user ID of the process
specified byserver

Server_wakel wakes the specified server if it is blocked in seever_block call.

If the server is not blocked in this call, the wakgrequest is held for the server’s next
call toserver_block . Server_wakel also decrements the number of rescheduling
locks associated with the rescheduling variableifipd byr.

A return of O indicates that the call has been sssful. A return of —1 indicates that an
error has occurre@&rrno is set to indicate the error.

Interprocess Synchronization

server_wakevec

Theserver_wakevec system call is invoked to wake a group of serbdwsked in the
server_block call.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wakevec(servers, nservers) r
global_Ilwpid_t *servers

int nservers

struct resched_var *r;

gcc [optiong file -lccur_rt ...
Arguments are defined as follows:
servers a pointer to an array of the global process IDthefserver processes to
be awakened
nservers an integer value specifying the number of elemantse array
r a pointer to the calling process’ reschedulingalde. This argument is
optional; its value can beuLL.

It is important to note that to use tberver_wakevec call, the real or effective user ID

of the calling process must match the real or s@ifveth exec] user IDs of the processes
specified byservers

Server_wakevec wakes the specified servers if they are blockedhe
server_block call. If a server is not blocked in this call, theke-up request is applied
to the server’s next call teerver_block . Server_wakevec also decrements the
number of rescheduling locks associated with ahealing variable specified by

A return of O indicates that the call has been sssful. A return of —1 indicates that an
error has occurre@rrno is set to indicate the error.

For additional information on the use of theseg;alkfer to theserver_block(2)
man page.

5-41

RedHawk Linux User's Guide

Applying Condition Synchronization Tools

5-42

The rescheduling variable, spin lock, and servestesy calls can be used to design
functions that enable a producer and a consumeepsao exchange data through use of a
mailbox in a shared memory region. When the consuinds the mailbox empty, it
blocks until new data arrives. After the producepdsits new data in the mailbox, it
wakes the waiting consumer. An analogous situaimmurs when the producer generates
data faster than the consumer can process it. \Wigeproducer finds the mailbox full, it
blocks until the data is removed. After the coneumemoves the data, it wakes the
waiting producer.

A mailbox can be represented as follows:

struct mailbox {

struct spin_mutex mx;/* serializes access to mailbo X */
queue_of consumers: /* waiting consumers */
queue_of data; /* the data, type varies */

|3

Themxfield is used to serialize access to the mailbithe data field represents the
information that is being passed from the produodahe consumer. Thiall field is
used to indicate whether the mailbox is full or &mpheproducer field identifies the
process that is waiting for the mailbox to be emptyeconsumer field identifies the
process that is waiting for the arrival of data.

Using thespin_acquire and thespin_release functions, a function to enable the
consumer to extract data from the mailbox can ieeia as follows:

void
consume (box, data)
struct mailbox *box;

any_t *data;
{
spin_acquire (&box—>mx, &rv);
while (box—>data == empty) {
enqueue (box—>consumers, rv.rv_glwpid);
spin_unlock (&box—>mx);
server_block (0, &rv, 0);
spin_acquire (&box—>mx, &rv);
}
*data = dequeue (box—>data;
spin_release (&box—>mx, &rv);
}

Note that in this function, the consumer proces&dahe mailbox prior to checking for
and removing data. If it finds the mailbox emptyunlocks the mailbox to permit the
producer to deposit data, and it caksver_block to wait for the arrival of data. When
the consumer is awakened, it must again lock thébmaand check for data; there is no
guarantee that the mailbox will contain data—thastoner may have been awakened
prematurely by a signal.

Interprocess Synchronization

A similar function that will enable the producerptace data in the mailbox can be
defined as follows:

void

produce (box, data)
struct mailbox *box;
any_t data;

spin_acquire (&box—>mx, &rv);
enqueue (box—>data, data);
if (box—>consumer == empty)
spin_release (&box—>mx, &rv);
else {
global_lwpid_t id = dequeue (box—>consumers);
spin_unlock (&box->mx);
server_wakel (id, &rv);

}

In this function, the producer process waits fa thailbox to empty before depositing
new data. The producer signals the arrival of datg when the consumer is waiting; note
that it does so afternlocking the mailbox. The producer must unloak timailbox first so
that the awakened consumer can lock it to checlafr remove data. Unlocking the
mailbox prior to the call teerver_wakel also ensures that the mutex is held for a short
time. To prevent unnecessary context switchinggcheduling is disabled until the
consumer is awakened.

5-43

RedHawk Linux User's Guide

5-44

6
Programmable Clocks and Timers

This chapter provides an overview of some of thalifees that can be used for timing.
The POSIX clocks and timers interfaces are baseldEBR Standard 1003.1b-1993. The
clock interfaces provide a high-resolution clockieh can be used for such purposes as
time stamping or measuring the length of code segsndhe timer interfaces provide a
means of receiving a signal or process wakeup &sgnously at some future time. In
addition, high-resolution system calls are provigédch can be used to put a process to
sleep for a very short time quantum and specifyctvisiock should be used for measuring
the duration of the sleep. Additional clocks anddrs are provided by the RCIM PCI
card.

Understanding Clocks and Timers

Real-time applications must be able to operateaia @ithin strict timing constraints in
order to schedule application or system eventsh tggolution clocks and timers allow
applications to use relative or absolute time basea high resolution clock and to
schedule events on a one-shot or periodic basiglidgtions can create multiple timers
for each process.

Several timing facilities are available on the iHasystem. These include POSIX clocks
and timers as well as non-interrupting clocks agal-time clock timers provided by the
Real-Time Clock and Interrupt Module (RCIM) PCI dailhese clocks and timers and
their interfaces are explained in the sectionsfibibiw.

See Chapter 7 for information about system clockkstaners.

RCIM Clocks and Timers

The Real-Time Clock and Interrupt Module (RCIM) yides two non-interrupting clocks.
These clocks can be synchronized with other RCINMdenvthe RCIMs are chained
together. The RCIM clocks are:

tick clock a 64-bit non-interrupting clock that iecnents by one on each tick
of the common 400ns clock signal. This clock cands®t to zero
and synchronized across the RCIM chain providiegramon time
stamp.

The tick clock can be read on any system, maststawe, using
direct reads when the device filgev/rcim/sclk is mapped
into the address space of a program.

POSIX clock a 64-bit non-interrupting counter enabde POSIX 1003.1 format.
The upper 32 bits contain seconds and the lowebit32contain
nanoseconds. This clock is incremented by 400 ch gek of the

6-1

RedHawk Linux User's Guide

common 400ns clock signal. Primarily used as a-nagolution
local clock.

The RCIM POSIX clock is accessed in a manner sintdlahe tick
clock in that the same utilities and device files ased. The POSIX
clock can be loaded with any desired time; howethlss, value
loaded is not synchronized with other clocks inR@IM chain.
Only the POSIX clock of the RCIM attached to thethis updated.

The RCIM also provides up to eight real-time cl¢BT C) timers. Each of these counters
is accessible using a special device file and eachbe used for almost any timing or
frequency control function. They are programmabledveral different resolutions which,
when combined with a clock count value, provideaaiety of timing intervals. This
makes them ideal for running processes at a girequéncy (e.g., 100Hz) or for timing
code segments. In addition to being able to geaemtinterrupt on the host system, the
output of an RTC can be distributed to other RCIdakds for delivery to their
corresponding host systems, or delivered to extexgaipment attached to one of the
RCIM’s external output interrupt lines. The RTC &ms are controlled bgpen(2) ,
close(2) andioctl(2) system calls.

For complete information about the RCIM clocks &intkrs, refer to th&eal-Time Clock
and Interrupt Module (RCIM) User’s Guide

POSIX Clocks and Timers

6-2

The POSIX clocks provide a high-resolution mechanfer measuring and indicating
time.

There are two types of timers: one-shot and peciotihey are defined in terms of an

initial expiration time and a repetition interv@he initial expiration time indicates when

the timer will first expire. It may be absolute ((fexample, at 8:30 a.m.) or relative to the
current time (for example, in 30 seconds). The tigpe interval indicates the amount of

time that will elapse between one expiration of tinger and the next. The clock to be
used for timing is specified when the timer is teea

A one-shot timer is armed with either an absoluta relative initial expiration time and a
repetition interval of zero. It expires only onag-the initial expiration time--and then is
disarmed.

A periodic timer is armed with either an absolut@ @elative initial expiration time and a
repetition interval that is greater than zero. Téeetition interval is always relative to the
time at the point of the last timer expiration. Wihtae initial expiration time occurs, the
timer is reloaded with the value of the repetitinterval and continues counting. The
timer may be disarmed by setting its initial expoa time to zero.

The local timer is used as the interrupt sourcestitreduling POSIX timer expiries. See
Chapter 7 for information about the local timer.

Programmable Clocks and Timers

NOTE

Access to high resolution clocks and timers is/joted by system
calls in bothlibccur_rt andlibrt ; however, the
libcurr_rt routines are being deprecated. It is suggestdd tha
you use the routines librt by always linking with ‘rt’ before
‘ccur_rt’; for example:

gcc [optiong file -Irt -lccur_rt

Understanding the POSIX Time Structures

The POSIX routines related to clocks and timers tyge structures for time
specifications: théimespec structure and thiimerspec structure. These structures
are defined in the filetime.h>

Thetimespec structure specifies a single time value in secambnanoseconds. You
supply a pointer to imespec structure when you invoke routines to set the toha
clock or obtain the time or resolution of a clo¢&r(information on these routines, see
“Using the POSIX Clock Routines”). The structurelefined as follows:

struct timespec {
time_t tv_sec;
long tv_nsec;

3
The fields in the structure are described as fatow
tv_sec specifies the number of seconds in the time value
tv_nsec specifies the number of additional nanosecondkértime value.

The value of this field must be in the range zer699,999,999.

Theitimerspec structure specifies the initial expiration timedahe repetition interval
for a timer. You supply a pointer to &gimerspec structure when you invoke routines
to set the time at which a timer expires or obtaformation about a timer’s expiration
time (for information on these routines, see “Usithg POSIX Timer Routines”). The
structure is defined as follows:

struct itimerspec {
struct timespec it_interval;
struct timespec it_value;

I3

The fields in the structure are described as falow
it_interval specifies the repetition interval of a timer
it_value specifies the timer’s initial expiration

6-3

RedHawk Linux User's Guide

Using the POSIX Clock Routines

The POSIX routines that allow you to perform a &gyiof functions related to clocks are
briefly described as follows:

clock_settime sets the time of a specified clock
clock_gettime obtains the time from a specified clock
clock _getres obtains the resolution in nanoseconds of a speatfieck

Procedures for using each of these routines araierg in the sections that follow.

Using the clock_settime Routine

Theclock_settime(2) system call allows you to set the time of the exystime-of-
day clock,cLock_REALTIME. The calling process must have root or th@_SYS_NICE
capability. By definition, theLock_mMoNoTONICcclocks cannot be set.

It should be noted that if you setOCK_REALTIME after system start-up, the following
times may not be accurate:

* file system creation and modification times

* times in accounting and auditing records

* the expiration times for kernel timer queue entries
Setting the system clock does not affect queued R@SBers.
Synopsis

#include <time.h>

int clock_settime(clockid_t which_clock,
const struct timespec * setting;

The arguments are defined as follows:

which_clock the identifier for the clock for which the time liMbe set. Only
CLOCK_REALTIME can be set.

setting a pointer to a structure that specifies the tinee vthich
which_clockis to be set. Whewhich_clockis CLOCK_REALTIME,
the time-of-day clock is set to a new value. Tinadues that are
not integer multiples of the clock resolution anantated down.

A return value of 0 indicates that the specifieackl has been successfully set. A return
value of -1 indicates that an error has occureeaho is set to indicate the error. Refer to
theclock_settime(2) man page for a listing of the types of errors thay occur.

6-4

Programmable Clocks and Timers

Using the clock gettime Routine

Theclock_gettime(2) system call allows you to obtain the time frompadfied
clock. This call always returns the best availaieleolution for the clock, usually better
than one microsecond.

Synopsis
#include <time.h>

int clock_gettime(clockid_t which_clockstruct timespec
* setting;

The arguments are defined as follows:

which_clock the identifier for the clock from which to obtathe time. The
value ofwhich_clockmay beCLOCK_REALTIME Of CLOCK_
MONOTONIC.

setting a pointer to a structure where the timevbich_clockis returned.

A return value of 0 indicates that the calldlock_gettime has been successful. A
return value of -1 indicates that an error has oecljerrno is set to indicate the error.
Refer to theclock gettime(2) man page for a listing of the types of errors thay
occur.

Using the clock getres Routine

Theclock_getres(2) system call allows you to obtain the resolutiom@moseconds
of a specified clock. This resolution determines tbunding accuracy of timing expiries
set withclock_settime(2) and the precision used bipck_nanosleep(2) and

nanosleep(2) calls using the same clock.
The clock resolutions are system dependent andotéerset by the user.
Synopsis

#include <time.h>

int clock_getres(clockid_t which_clockstruct timespec
* resolution;

The arguments are defined as follows:

which_clock the identifier for the clock for which you wish tabtain the
resolution.which_clockmay beCLOCK_REALTIME Or CLOCK_
MONOTONIC.

resolution a pointer to a structure where the resolutionwbfch_clockis
returned

RedHawk Linux User's Guide

A return value of 0 indicates that the calldock_getres has been successful. A
return value of -1 indicates that an error has oecljerrno is set to indicate the error.
Refer to theclock_getres(2) man page for a listing of the types of errors thaty
occur.

Using the POSIX Timer Routines

Processes can create, remove, set, and query tménhay receive notification when a
timer expires.

The POSIX system calls that allow you to perforradety of functions related to timers
are briefly described as follows:

timer_create creates a timer using a specified clock
timer_delete removes a specified timer
timer_settime arms or disarms a specified timer by setting

the expiration time

timer_gettime obtains the repetition interval for a specified
timer and the time remaining until the timer
expires

timer_getoverrun obtains the overrun count for a specified

periodic timer
nanosleep pauses execution for a specified time

clock_nanosleep provides a higher resolution pause based on
a specified clock

Procedures for using each of these system callexglained in the sections that follow.

Using the timer_create Routine

6-6

Thetimer_create(2) system call allows the calling process to credimar using a
specified clock as the timing source.

A timer is disarmed when it is created. It is arnvwelden the process invokes the
timer_settime(2) system call (see “Using the timer_settime Routifm”an
explanation of this system call).

It is important to note the following:

* When a process invokes tieek system call, the timers that it has created
are_naotinherited by the child process.

* When a process invokes threc system call, the timers that it has created
are disarmed and deleted.

Programmable Clocks and Timers

Linux threads in the same thread group can shamers. The thread which calls
timer_create will receive all of the signals, but other threadghe same threads
group can manipulate the timer through callsrteer_settime(2)

Synopsis

#include <time.h>
#include <signal.h>

int timer_create(clockid_t which_clockstruct sigevent
*timer_event_spetimer_t created_timer_ij

The arguments are defined as follows:

which_clock the identifier for the clock to be used for thmer. The value of
which_clockmust beCLOCK_REALTIME.

timer_event_spec
the null pointer constant or a pointer to a streetinat specifies the
way in which the calling process is to be asyncbrsty notified of
the expiration of the timer:

NULL SIGALRM is sent to the process when the timer expires.

sigev_notifgSIGEV_SIGNAL
a signal specified bgigev_signas sent to the process when
the timer expires.

sigev_notifgSIGEV_THREAD
the specifiedsigev_notifyfunction is called in a new thread
with sigev_valueas the argument when the timer expires.
Currently not supported idceur_rt ; to use, link first to
-Irt

sigev_notifgSIGEV_THREAD_ID
the sigev_notify thread_ichumber should contain the
pthread_t id of the thread that is to receive the signal
sigev_signavhen the timer expires.

sigev_notifgSIGEV_NONE
no notification is delivered when the timer expires

NOTE

The signal denoting expiration of the timer mayseathe process
to terminate unless it has specified a signal-hagdlystem call.

To determine the default action for a particulansi, refer to the
signal(2) man page.

created_timer _id
a pointer to the location where the timer ID igstb This identifier is
required by the other POSIX timer system calls ianghique within
the calling process until the timer is deleted blyet
timer_delete(2) system call.

A return value of 0 indicates that the callttmer_create has been successful. A
return value of -1 indicates that an error has mecljerrno is set to indicate the error.
Refer to theimer_create(2) man page for a listing of the types of errors thal
occur.

6-7

RedHawk Linux User's Guide

Using the timer_delete Routine

Thetimer_delete(2) system call allows the calling process to remosgpecified
timer. If the selected timer is already startedilt be disabled and no signals or actions
assigned to the timer will be delivered or executegending signal from an expired
timer, however, will not be removed.

Synopsis

#include <time.h>

int timer_delete(timer_t timer_id);
The argument is defined as follows:

timer_id the identifier for the timer to be removed. Thiemtifier comes
from a previous call téimer_create(2) (see “Using the
timer_create Routine” for an explanation of thisteyn call).

A return value of 0 indicates that the specifieddr has been successfully removed. A
return value of -1 indicates that an error has oecljerrno is set to indicate the error.
Refer to theimer_delete(2) man page for a listing of the types of errors thal
occur.

Using the timer_settime Routine

6-8

Thetimer_settime(2) system call allows the calling process to arm ecdped
timer by setting the time at which it will expif€he time to expire is defined as absolute
or relative. A calling process can use this systaihon an armed timer to (1) disarm the
timer or (2) reset the time until the next expwatbf the timer.

Synopsis
#include <time.h>

int timer_settime(timer_t timer_id,int flags,const struct
itimerspec * new_settinggconst struct itimerspec *old_setting;

The arguments are defined as follows:

timer_id the identifier for the timer to be set. This idéat comes from a
previous call tdimer_create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

flags an integer value that specifies one of the foltayvi

TIMER_ABSTIME causes the selected timer to be armed with an
absolute expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified ibyvalue If this
time has already passetimer_settime

Programmable Clocks and Timers

succeeds, and the timer-expiration notification
is made.

0 causes the selected timer to be armed with a
relative expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified ibyalue

new_setting a pointer to a structure that contains the rdpatiinterval and the
initial expiration time of the timer.

If you wish to have a one-shot timer, specify aetémpon interval
(it_interval) of zero. In this case, the timer expires oncegmthe
initial expiration time occurs, and then is disadne

If you wish to have a periodic timer, specify aedfion interval
(it_interval) that is not equal to zero. In this case, wheniitéal
expiration time occurs, the timer is reloaded vtk value of the
repetition interval and continues to count.

In either case, you may set the initial expiratiome to a value that is
absolute (for example, at 3:00 p.m.) or relativehocurrent time (for
example, in 30 seconds). To set the initial exparatime to an
absolute time, you must have set tineeR_ABSTIME bit in theflags
argument. Any signal that is already pending dua poevious timer
expiration for the specified timer will still be lideered to the process.

To disarm the timer, set the initial expiration ¢ito zero. Any signal
that is already pending due to a previous timerfiratipn for this
timer will still be delivered to the process.

old_setting the null pointer constant or a pointer to a stitetto which the
previous repetition interval and initial expiratibme of the timer are
returned. If the timer has been disarmed, the valuie initial
expiration time is zero. The membersotif_settingare subject to the
resolution of the timer and are the same valuasabald be returned
by atimer_gettime(2) call at that point in time.

A return value of 0 indicates that the specifiedar has been successfully set. A return
value of -1 indicates that an error has occureeaho is set to indicate the error. Refer to
thetimer_settime(2) man page for a listing of the types of errors thay occur.

Using the timer_gettime Routine

Thetimer_gettime(2) system call allows the calling process to obthmrepetition
interval for a specified timer and the amount ofdiremaining until the timer expires.
Synopsis

#include <time.h>

int timer_gettime(timer _t timer_id,struct itimerspec
*setting);

6-9

RedHawk Linux User's Guide

The arguments are defined as follows:

timer_id the identifier for the timer whose repetition i@ and time
remaining are requested. This identifier comes feoprevious
call totimer_create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

setting a pointer to a structure to which the repetitiateival and the
amount of time remaining on the timer are returridte amount
of time remaining is relative to the current timdf the timer is
disarmed, the value is zero.

A return value of 0 indicates that the calltitmer_gettime has been successful. A
return value of -1 indicates that an error has oecljerrno is set to indicate the error.

Refer to theaimer_gettime(2) man page for a listing of the types of errors thay
occur.

Using the timer_getoverrun Routine

6-10

Thetimer_getoverrun(2) system call allows the calling process to obthia t
overrun count for a particular periodic timer. Aneir may expire faster than the system
can deliver signals to the application. If a sigisastill pending from a previous timer
expiration rather than queuing another signal,umtof missed expirations is maintained
with the pending signal. This is the overrun count.

Timers may overrun because the signal was blocketthd application or because the
timer was over-committed.

Assume that a signal is already queued or pending process with a timer using timer-

expiration notificatiorsiIGEV_SIGNAL. If this timer expires while the signal is queuwsd
pending, a timer overrun occurs, and no additisigral is sent.

NOTE

You must invoke this system call from the timer-eagon signal-
handling. If you invoke it outside this system calie overrun
count that is returned is not valid for the timepiation signal
last taken.

Synopsis

#include <time.h>

int timer_getoverrun(timer _t timer_id);

The argument is defined as follows:

timer_id the identifier for the periodic timer for which yavish to obtain
the overrun count. This identifier comes from aviwas call to
timer_create(2) (see “Using the timer_create Routine” for
an explanation of this system call).

Programmable Clocks and Timers

If the call is successfulimer_getoverrun returns the overrun count for the specified
timer. This count cannot excee@LAYTIMER_MAX in the file <limits.h> . A return
value of -1 indicates that an error has occureetho is set to indicate the error. Refer to
thetimer_getoverrun(2) man page for a listing of the types of errors tinaty
occur.

Using the POSIX Sleep Routines

Thenanosleep(2) and theclock_nanosleep(2) POSIX system calls provide a
high-resolution sleep mechanism that causes execafithe calling process or thread to
be suspended until (1) a specified period of tilapses or (2) a signal is received and the
associated action is to execute a signal-handlistgm call or terminate the process.

The clock_nanosleep(2) system call provides a high-resolution sleep véth
specified clock. It suspends execution of the acutlyerunning thread until the time
specified byrgtp has elapsed or until the thread receives a signal.

The use of these system calls has no effect oadtien or blockage of any signal.

Using the nanosleep Routine

Synopsis
#include <time.h>

int nanosleep(const struct timespec *req, struct timespec
*rem);

Arguments are defined as follows:

req a pointer to dimespec structure that contains the length of time
that the process is to sleep. The suspension timeba longer
than requested because thqg value is rounded up to an integer
multiple of the sleep resolution or because ofgbleeduling of
other activity by the system. Except for the casdeing
interrupted by a signal, the suspension time watl e less than
the time specified byeqg, as measured bByLOCK_REALTIME. You
will obtain a resolution of one microsecond on tilecking
request.

rem the null pointer constant or a pointer ttiraespec structure to
which the amount of time remaining in the sleepeintl is
returned ifnanosleep is interrupted by a signal. témis NULL
andnanosleep s interrupted by a signal, the time remaining is
not returned.

A return value of 0 indicates that the requestatbfdeof time has elapsed. A return value
of -1 indicates that an error has occurreino is set to indicate the error. Refer to the
nanosleep(2) man page for a listing of the types of errors thay occur.

6-11

RedHawk Linux User's Guide

Using the clock _nanosleep Routine

Synopsis

#include <time.h>

int clock_nanosleep(clockid_t which_clockint flags
const struct timespec * rgtp, struct timespec * rmtp);

The arguments are defined as follows:

which_clock the identifier for the clock to be used. The vabfievhich_clockmay

flags

rqtp

rmtp

be CLOCK_REALTIME Or CLOCK_MONOTONIC.
an integer value that specifies one of the foltayvi

TIMER_ABSTIME interprets the time specified bygtp to be
absolute with respect to the clock value
specified bywhich_clock

0 interprets the time specified bsgtp to be
relative to the current time.

a pointer to gimespec structure that contains the length of time
that the process is to sleep. If theer_ABSTIME flag is specified and
the time value specified bygtp is less than or equal to the current
time value of the specified clock (or the clock&ue is changed to
such a time), the function will return immediateiurther, the time
slept is affected by any changes to the clock afiter call to
clock_nanosleep(2) . That is, the call will complete when the
actual time is equal to or greater than the recqae8te no matter
how the clock reaches that time, via setting onagbassage of time
or some combination of these.

The time slept may be longer than requested aspheified time
value is rounded up to an integer multiple of tleek resolution, or
due to scheduling and other system activity. Exéepthe case of
interruption by a signal, the suspension time igardess than
requested.

If TIMER_ABSTIME is not specified, thémespec structure pointed
to by rmtpis updated to contain the amount of time remaimintdpe

interval (i.e., the requested time minus the tirowally slept). If

rmtpis NULL, the remaining time is not set. Thetpvalue is not set
in the case of an absolute time value.

On succesg;lock_nanosleep returns a value of O after at least the specifieé has
elapsed. On failureglock_nanosleep returns the value -1 aretrno is set to
indicate the error. Refer to tldbock_nanosleep(2) man page for a listing of the
types of errors that may occur.

6-12

7
System Clocks and Timers

This chapter describes system timekeeping, the tooar and the effect of disabling the
local timer on system functions.

System Timekeeping

Local Timer

Standard Linux system timekeeping uses a “clocks@umechanism that includes
separate architecture drivers that consist of éimeuo read the value of the timer and
calibration values to convert timer counts to naeosds.

In RedHawk, a TSC based clock is used to satisfgtrtimekeeping requests. Kernel
tunablesREQUIRE_TSCandREQUIRE_RELIABLE_TSG accessible undéirocessor Type &
Features on the Kernel Configuration GUI, are enabled inphe-built kernels by default
to ensure that aspects of power management th&naren to damage the reliability of
the TSC are not configured in the kernel.

In addition, the TSC is disciplined to a secondckimurce to improve the stability of the
clock. When an RCIM is present in the system, tl&M is used as the second
clocksource; otherwise, the HPET or PM timer isduse

Reading the file/sys/devices/system/clocksource/clocksource0/
current_clocksource displays the current secondary clocksource. Wgithe name of
another clocksource to this file usiagho(1) will change the assignment.

Boot command line options are available to chec& BIOS for proper TSC
synchronization and if the TSCs are not syncedemtly resync them at the end of the
boot (tsc_sync=auto [this is the default]), foresynchronization (tsc_sync=force), and
check the BIOS and if not synced correctly disabhke TSCs as a possible clocksource
(tsc_sync=check). Note that hotplugged CPUs ddawée an opportunity to be re-synced
by the operating system. For them, only TSC symckimg is available.

See the txt files in thékernel-sourcDocumentation/hrtimers to learn more
about these timekeeping features.

On Concurrent’s iHawk systems, each CPU has a [pcidate) timer which is used as a
source of periodic interrupts local to that CPU.d&fault these interrupts occur 100 times
per second and are staggered in time so that ardyGPU is processing a local timer
interrupt at a time.

The local timer interrupt routine performs the daling local timing functions, which are
explained in more detail in the sections that fotlo

7-1

RedHawk Linux User's Guide

Functionality

CPU Accounting

7-2

¢ gathers CPU utilization statistics, usedtby(1) and other utilities

* causes the process running on the CPU to peridgicahsume its time
guantum

* causes the running process to release the CPWan & another running
process when its time quantum is used up

¢ periodically balances the load of runnable processeoss CPUs
* implements process and system profiling

* implements system time-of-day (wall) clock and ex&am time quota limits
for those processes that have this feature enabled

¢ provides the interrupt source for POSIX timers

* polls for a quiescent state on each CPU to frea satictures during read
copy update (RCU) processing

* updates the system time-of-day (wall) clock ankistisince-boot times

¢ dispatches events off the system timer list. Thidudes driver watchdog
timers and process timer functions suclalasm(2)

Shielding local timers limits the use of the lotater to scheduling events which are
requested by processes that have affinity to thall&PU. Local timer shielding works
with process shielding by moving less important kvto an unshielded CPU. This
improves both the worst-case interrupt response amd the determinism of program
execution on the CPU as described in the “Real-TRedormance” chapter. However,
disabling the local timer has an effect on somecfignality normally provided by
RedHawk Linux. These effects are described below.

The local timer performs the functions describedh@a sections below. The effect of
disabling the local timer is discussed as welliable alternatives for some of the features.

Per-process CPU utilization is reported by utifiteich asop(1) andps(l) . These
utilities gather CPU utilization statistics fromstgm services such aisnes(2)
wait4(2) , sigaction(2) , andacct(2)

On standard non-RedHawk Linux kernels, these sesvéte dependent on the local timer
to determine process cpu utilization. However, Radk kernels use the high resolution

process accounting facility instead of the localdr to accomplish this. High resolution

process accounting continues to function even wheiocal timer is disabled.

High resolution process accounting is enabled lipra-built RedHawk kernels via the
HRACCT kernel tunable accessible undgeneral Setup on the Kernel Configuration

GUI. Refer to thehracct(3) andhracct(7) man pages for complete information
about this facility.

System Clocks and Timers

Process Execution Time Quanta and Limits

The local timer is used to expire the quantum otpsses scheduled in theHED_OTHER
andscHED_RRscheduling policies. This allows processes of eqelaeduling priority to
share the CPU in a round-robin fashion. If the ldicaer is disabled on a CPU, processes
on that CPU will no longer have their quantum ergirThis means that a process
executing on this CPU will run until it either blag; or until a higher priority process
becomes ready to run. In other words, on a CPU wlilee local timer interrupt is
disabled, a process scheduled ingbeieD_RRscheduling policy will behave as if it were
scheduled in thecHED_FIFoscheduling policy. Note that processes schedute@RUs
where the local timer is still enabled are una#ect-or more information about process
scheduling policies, see Chapter 4, “Process Schmeiul

The setrlimit(2) andgetrlimit(2) system calls allow a process to set and get a
limit on the amount of CPU time that a process oamsume. When this time period has
expired, the process is sent the sighakcpu. The accumulation of CPU time is done in
the local timer interrupt routine. Therefore if floeal timer is disabled on a CPU, the time
that a process executes on the CPU will not bewaxted for. If this is the only CPU where
the process executes, it will never receivecxcprusignal.

Interval Timer Decrementing

System Profiling

The setitimer(2) andgetitimer(2) system calls allow a process to set up a
“virtual timer” and obtain the value of the timeagspectively. A virtual timer is
decremented only when the process is executingreTdre two types of virtual timers:
one that decrements only when the process is execat user level, and one that is
decremented when the process is executing at aidesrlevel or kernel level. When a
virtual timer expires, a signal is sent to the ps® Decrementing virtual timers is done in
the local timer routine. Therefore when the loaalet is disabled on a CPU, none of the
time used will be decremented from the virtual tim&this is the only CPU where the
process executes, then its virtual timer will nexxgpire.

The local timer drives system profiling. The samiblat the profiler records is triggered
by the firing of the local timer interrupt. If thecal timer is disabled on a given CPU, the
gprof(1l) command angbrofil(2) system service will not function correctly for
processes that run on that CPU.

CPU Load Balancing

The local timer interrupt routine will periodicalball the load balancer to be sure that the
number of runnable processes on this CPU is noifgigntly lower than the number of
runnable processes on other CPUs in the systetmisifs the case, the load balancer will
steal processes from other CPUs to balance thesloads all CPUs. On a CPU where the
local timer interrupt has been disabled, the loaldricer will only be called when the CPU
has no processes to execute. The loss of thisifumadity is generally not a problem for a
shielded CPU because it is generally not desiredbiein background processes on a
shielded CPU.

7-3

RedHawk Linux User's Guide

CPU Rescheduling

POSIX Timers

RCU Processing

Miscellaneous

TheReSCHED_SET_LIMITfunction of theresched_cntl(2) system call allows a user

to set an upper limit on the amount of time thegscheduling variable can remain locked.
The SIGABRT signal is sent to the process when the time lisnitxceeded. This feature is

provided to debug problems during application depaient. When a process with a
locked rescheduling variable is run on a CPU orctvithie local timer is disabled, the time
limit is not decremented and therefore the signaymot be sent when the process
overruns the specified time limit.

The local timer provides the timing source for PR8mers. If a CPU is shielded from

local timer interrupts, the local timer interruptd! still occur on the shielded CPU if a
process on that CPU has an active POSIX timeaaposleep(2) function. If a process

is not allowed to run on the shielded CPU, its tenaill be migrated to a CPU where the
process is allowed to run.

The kernel read copy update (RCU) code traditignallies on the local timer to poll for a
quiescent state on each CPU to free data structifeen a CPU is shielded from local
timer interrupts, that CPU can no longer perforre tteeded RCU processing. A
synchronization mechanism launches RCU processiag arbitrary point and completes
without waiting for a timer driven poll, eliminatirthe local timer’s participation in RCU
processing. This synchronization occurs wherrtbe_ALTERNATIVE kernel parameter is
set in conjuction with theHIELD parameter, which is the default in all pre-buétikels.
WhenRCU_ALTERNATIVE is not set in the kernel, the RCU code uses thal lioer.

In addition to the functionality listed above, sowfethe functions provided by some
standard Linux commands and utilities may not fiorctorrectly on a CPU if its local
timer is disabled. These include:

bash(1)
sh(1)
strace(1)

For more information about these commands andiesijirefer to the corresponding man
pages.

Disabling the Local Timer

7-4

By shielding local timers, the local timer is dit&bfor any mix of CPUs. Shielding is
done via theshield(1) command or by assigning a hexadecimal value to
/proc/shield/ltmrs . This hexadecimal value is a bitmask of CPUSs; rdmix
position of each bit identifies one CPU and theugabf that bit specifies whether or not

System Clocks and Timers

that CPU’s local timer is to be disabledl] or enabled£0). See Chapter 2, “Real-Time
Performance” and thehield(1) man page for more information.

RedHawk Linux User's Guide

7-6

8
File Systems and Disk 1/O

This chapter describes thés journaling file system and the procedures for paniag
direct disk 1/0 on the RedHawk Linux operating syst

Journaling File System

Traditional file systems must perform special 8lgstem checks after an interruption,
which can take many hours to complete depending tnoov large the file system is. A
journaling file system is a fault-resilient file stem, ensuring data integrity by
maintaining a special log file calledaurnal. When a file is updated, the file’s metadata
are written to the journal on disk before the araidisk blocks are updated. If a system
crash occurs before the journal entry is committieel original data is still on the disk and
only new changes are lost. If the crash occursnduttie disk update, the journal entry
shows what was supposed to have happened. On rebegburnal entries are replayed
and the update that was interrupted is completbid drastically cuts the complexity of a
file system check, reducing recovery time.

Support for the XFS journaling file system from S&knabled by default in RedHawk
Linux. XFS is a multithreaded, 64-bit file systeapable of handling files as large as a
million terabytes. In addition to large files aratde file systems, XFS can support
extended attributes, variable block sizes, is exbased and makes extensive use of
Btrees (directories, extents, free space) to ail performance and scalability. Both user
and group quotas are supported.

The journaling structures and algorithms log read arite data transactions rapidly,
minimizing the performance impact of journaling. Xis capable of delivering near-raw
I/O performance.

Extended attributes are name/value pairs associdthd file. Attributes can be attached
to regular files, directories, symbolic links, deinodes and all other types of inodes.
Attribute values can contain up to 64KB of arbiyydrinary data. Two attribute
namespaces are available: a user namespace awadadil users protected by the normal
file permissions, and a system namespace accessilyl¢o privileged users. The system
namespace can be used for protected file systeradatt such as access control lists
(ACLs) and hierarchical storage manage (HSM) filgration status.

NFS Version 3 can be used to export 64-bit fileeays to other systems that support that
protocol. NFS V2 systems have a 32-bit limit impbbg the protocol.

Backup and restore of XFS file systems to local erdote SCSI tapes or files is done
usingxfsdump andxfsrestore . Dumping of extended attributes and quota
information is supported.

8-1

RedHawk Linux User's Guide

The Data Management API (DMAPI/XDSM) allows implemtation of hierarchical
storage management software as well as high-pedoc@® dump programs without
requiring raw access to the disk and knowledgé@&f/stem structures.

A full set of tools is provided with XFS. Extensidecumentation for the XFS file system
can be found at:

http://oss.sgi.com/projects/xfs/

Creating an XFS File System

To create an XFS file system, the following is reeg:

* |dentify a partition on which to create the XF& filystem. It may be from a
new disk, unpartitioned space on an existing diskhy overwriting an
existing partition. Refer to thigisk(1) man page if creating a new
partition.

¢ Use mkfs.xfs(8) to create the XFS file system on the partitionthi
target disk partition is currently formatted fofiee system, use thef
(force) option.

mkfs.xfs [-f] /dev/ devfile

wheredevfileis the partition where you wish to create the $ystem; e.g.,
sdb3 . Note that this will destroy any data currentlytbat partition.

Mounting an XFS File System

Use themount(8) command to mount an XFS file system:
mount -t xfs /dev/ devfile / mountpoint

Refer to themount(8) man page for options available when mounting ars Xife
system.

Because XFS is a journaling file system, beforadtnts the file system it will check the
transaction log for any unfinished transactions larilg the file system up to date.

Data Management APl (DMAPI)

DMAPI is the mechanism within the XFS file systeor passing file management
requests between the kernel and a hierarchicalggananagement system (HSM).

To build DMAPI, set thexFrs_DMAPI system parameter accessible urfdkr Systems on
the Kernel Configuration GUI as part of your build.

8-2

http://oss.sgi.com/projects/xfs/

File Systems and Disk 1/O

For more information about building DMAPI, refer to

http://oss.sgi.com/projects/xfs/dmapi.html

Direct Disk I/O

Normally, all reads and writes to a file pass tlgbuwa file system cache buffer. Some
applications, such as database programs, may oedmitheir own caching. Direct I/O is
an unbuffered form of I/O that bypasses the kesralffering of data. With direct 1/O, the
file system transfers data directly between thk digd the user-supplied buffer.

RedHawk Linux enables a user process to both rigadtly from--and write directly to--
disk into its virtual address space, bypassingimgliate operating system buffering and
increasing disk I/O speed. Direct disk 1/0 alsoussb system overhead by eliminating
copying of the transferred data.

To set up a disk file for direct 1/0O use thpen(2) orfcntl(2) system call. Use one
of the following procedures:

* Invoke theopen system call from a program; specify the path nafea
disk file; and set the_bIRECTbit in theoflag argument.

* For an open file, invoke thé&ntl system call; specify an open file
descriptor; specify the_SETFLcommand, and set tlee DIRECTbit in thearg
argument.

Direct disk I/O transfers must meet all of the daling requirements:

* The user buffer must be aligned on a byte boundaay is an integral
multiple of the_PC_REC_XFER_ALIGNpathconf(2) variable.

* The current setting of the file pointer locates diffset in the file at which to
start the next I/O operation. This setting mustbeéntegral multiple of the
value returned for theeC_REC_XFER_ALIGNpathconf(2) variable.

* The number of bytes transferred in an 1/0O operatiurst be an integral
multiple of the value returned for thec_REC_XFER_ALIGNpathconf(2)
variable.

Enabling direct 1/O for files on file systems natpporting direct 1/O returns an error.
Trying to enable direct disk I/O on a file in agfibystem mounted with the file system-
specificsoft option also causes an error. T8uft option specifies that the file system
need not write data from cache to the physical digk just before unmounting.

Although not recommended, you can open a file ithkwbrect and cached (nondirect)
modes simultaneously, at the cost of degradingénmformance of both modes.

Using direct 1/0O does not ensure that a file camdm®vered after a system failure. You
must set the POSIX synchronized 1/O flags to do so.

You cannot open a file in direct mode if a processently maps any part of it with the
mmap(2) system call. Similarly, a call tmmapfails if the file descriptor used in the call
is for a file opened in direct mode.

http://oss.sgi.com/projects/xfs/dmapi.html

RedHawk Linux User's Guide

8-4

Whether direct I/O provides better I/O throughputd task depends on the application:

* All direct 1/O requests are synchronous, so I/O gmdcessing by the
application cannot overlap.

¢ Since the operating system cannot cache directniddead-ahead or write-
behind algorithm improves throughput.

However, direct 1/0 always reduces system-wide logad because data moves directly
from user memory to the device with no other cogywrf the data. Savings in system
overhead is especially pronounced when doing ditisktl/O between an embedded SCSI
disk controller (a disk controller on the procesBoard) and local memory on the same
processor board.

9
Memory Mapping

This chapter describes the methods provided by RedH. inux for a process to access
the contents of another process’ address space.

Establishing Mappings to a Target Process’ Address Space

Using mmap(2)

For each running process, tfgoc file system provides a file that represents the
address space of the process. The name of this fijfeoc/ pid/mem, wherepid denotes
the ID of the process whose address space is mepezs A process caypen(2) a
/proc/ pid/mem file and use theead(2) andwrite(2) system calls to read and
modify the contents of another process’ addressespa

Theusermap(3) library routine, which resides in thieccur_rt library, provides
applications with a way to efficiently monitor ambdify locations in currently executing
programs through the use of simple CPU reads aitdswr

The underlying kernel support for this routinehiefproc file systemmmap(2) system
service call, which lets a process map portionarfther process’ address space into its
own address space. Thus, monitoring and modifythgroexecuting programs becomes
simple CPU reads and writes within the applicatsoaivn address space, without
incurring the overhead dfroc file systemread(2) andwrite(2) calls.

The sections below describe these interfaces atsl tionsiderations when deciding
whether to usenmap(2) orusermap(3) within your application.

A process can usemap(2) to map a portion of its address space fprac/ pid/mem

file, and thus directly access the contents oftagrgprocess’ address space. A process that
establishes a mapping tdmoc/ pid/memfile is hereinafter referred to as a monitoring
process. A process whose address space is beingethapreferred to as a target process.

To establish a mapping to/proc/ pid/mem file, the following requirements must be
met:

* The file must be opened with at least read peromssif you intend to
modify the target process’ address space, thefilthmust also be opened
with write permission.

* On the call tommapto establish the mapping, the flags argument shoul
specify theMAP_SHARED option, so that reads and writes to the target
process’ address space are shared between thd pagess and the
monitoring process.

9-1

RedHawk Linux User's Guide

9-2

* The target mappings must be to real memory pagesnab within a
HUGETLB area. The current implementation does not sughertreation of
mappings tHUGETLB areas.

It is important to note that a monitoring procegsultingmmapmapping is to the target
process’ physical memory pages that are currendppad in the rangeffset offset+
length. As a result, a monitoring process’ mapping target process’ address space can
become invalid if the target’s mapping changesrafte mmapcall is made. In such
circumstances, the monitoring process retains gingpo the underlying physical pages,
but the mapping is no longer shared with the tgpgetess. Because a monitoring process
cannot detect that a mapping is no longer validj yaust make provisions in your
application for controlling the relationship betwet@e monitoring process and the target.
(The notation $tart, end denotes the interval fromstart to end includingstart but
excludingend)

Circumstances in which a monitoring process’ magjina target process’ address space
becomes invalid are:

* The target process terminates.

* The target process unmaps a page in the rasfége{ offset+ length with
eithermunmap(2) ormremap(2) .

* The target process maps a page in the raaffsef offset+ length to a
different object withmmap(2) .

* The target process invokéwk(2) and writes into an unlocked, private,
writable page in the rangeffset offset+ length) before the child process
does. In this case, the target process receivesaecopy of the page, and
its mapping and write operation are redirectedht® ¢opied page. The
monitoring process retains a mapping to the origiage.

* The target process invokéxrk(2) and then locks into memory a private,
writable page in the rangeffset offset+ length), where this page is still
being shared with the child process (the page iketbcopy-on-write). In
this case, the process that performs the lock tipargeceives a private copy
of the page (as though it performed the first widtehe page). If it is the
target (parent) process that locks the page, themtonitoring process’
mapping is no longer valid.

* The target process invokegprotect(2) to enable write permission on a
locked, private, read-only page in the rangfdet offset+ length that is
still being shared with the child process (the piagmarked copy-on-write).
In this case, the target process receives a prisapg of the page. The
monitoring process retains a mapping to the origimemory object.

If your application is expected to be the targeaahonitoring process’ address space
mapping, you are advised to:

* Perform memory-locking operations in the targetcpss before its address
space is mapped by the monitoring process.

* Prior to invoking fork(2) , lock into memory any pages for which
mappings by the parent and the monitoring procees ito be retained.

If your application is not expected to be the tamfeaddress space mapping, you may
wish to postpone locking pages in memory untilraftgoking fork .

Please refer to thmmap(2) man page for additional details.

Memory Mapping

Using usermap(3)

In addition to théproc file systemmmap(2) system service call support, RedHawk
Linux also provides thesermap(3) library routine as an alternative method for
mapping portions of a target process’ address sipdoehe virtual address space of the
monitoring process. This routine resides inlthecur_rt library.

While theusermap library routine internally uses the underlyifpgoc mmap system
service call interface to create the target addspase mappingsisermap does provide
the following additional features:

* The caller only has to specify the virtual addraed length of the virtual
area of interest in the target process’ addressespeheusermap routine
will deal with the details of converting this regiénto a page aligned
starting address and a length value that is a pheltf the page size before
calling mmap

* Theusermap routine is intended to be used for mapping mudtirget
process data items, and therefore it has beerewtitt avoid the creation of
redundantnmapmappingsusermap maintains internalnmapinformation
about all existing mappings, and when a requesa¢a itbm mapping falls
within the range of an already existing mappingntithis existing mapping
is re-used, instead of creating a redundant, nepping.

* When invokingmmap you must supply an already opened file descriptor
is your responsibility t@pen(2) andclose(2) the target process’ file
descriptor at the appropriate times.

When usingusermap , the caller only needs to specify the process ID
(pid_t) of the target process. Thsermap routine will deal with opening
the correctproc/ pid/memfile. It will also keep this file descriptor open,
so that additionalisermap(3) calls for this same target process ID will
not require re-opening thiproc file descriptor.

Note that leaving the file descriptor open mayb®appropriate in all cases.
However, it is possible to explicitly close theefilescriptor(s) and flush the
internal mapping information thatsermap is using by calling the routine
with a “len” parameter value of 0. It is recommended thatrtfmitoring
process use this close-and-flush feature only aftéarget mappings have
been created, so that callers may still take acgnbf the optimizations
that are built intausermap . Please see thesermap(3) man page for
more details on this feature.

Note that the same limitations discussed underrigdshmap(2)” about a monitoring
process’ mappings becoming no longer valid alsdyajgpusermap mappings, since the
usermap library routine also internally uses the same ulyiieg /proc/ pid/mem
mmap(2) system call support.

For more information on the use of theermap(3) routine, refer to thasermap(3)
man page.

RedHawk Linux User's Guide

Considerations

In addition to the previously mentionedermap features, it is recommended that you
also consider the following remaining points whescitling whether to use the

usermap(3) library routine or themmap(2) system service call within your

application:

* The mmap(2) system call is a standard System V interfacepaljh the
capability of using it to establish mappings/pooc/ pid/mem files is a
Concurrent RedHawk Linux extension. Theermap(3) routine is
entirely a Concurrent RedHawk Linux extension.

* Mmap(2) provides direct control over the page protectiand location of
mappings within the monitoring processermap(3) does not.

Kernel Configuration Parameters

9-4

There are two Concurrent RedHawk Linux kernel apmfation parameters that directly
affect the behavior of thiproc file systemmmap(2) calls. Becausasermap(3)
also uses thiproc file systemmmap(2) supportusermap(3) is equally affected by
these configuration parameters.

The kernel configuration parameters are accessibderPseudo File Systems on the
Kernel Configuration GUI:

PROCMEM_MMAP If this kernel configuration parameter is enabld /proc
file systemmmap(2) support will be built into the kernel.

If this kernel configuration parameter is disablad,/proc

file systemmmap(2) support is built into the kernel. In this
caseusermap(3) and/proc mmap(2) calls will return
anerrno value ofENODEV.

This kernel configuration parameter is enabled é&fadit in all
Concurrent RedHawk Linux kernel configuration files

PROCMEM_ANYONE
If this kernel configuration parameter is enableahy
/proc/ pid/mem file that the monitoring process is able to
successfullyopen(2) with read or read/write access may be
used as the target process fdpec mmap(2) oruser-
map(3) call.

If this kernel configuration parameter is disabléh monitor-
ing process may onljproc mmap(2) orusermap(3) a
target process that is currently being ptracechbynonitoring
process. Furthermore, the ptraced target process aiao be
in a stopped state at the time fpeoc mmap(2) system
service call is made. (See thigace(2) man page for more
information on ptracing other processes.)

This kernel configuration parameter is enabled é&fadit in all
Concurrent RedHawk Linux kernel configuration files

Overview

10
Non-Uniform Memory Access (NUMA)

NUMA support, available on AMD Opteron and Intelliddem systems, allows you to
influence the memory location from which a programages are to be allocated.

On a system with non-uniform memory access (NUMAjakes longer to access some
regions of memory than others. A multiprocessor Al@pteron (or Intel Nehalem)
system is a NUMA architecture. This is because €3l chip is associated with its own
memory resources. The CPU and its associated meanerypcated on a unique physical
bus. A CPU may quickly access the memory regiohithan its local memory bus, but
other CPUs must traverse one or more additionakjglay bus connections to access
memory which is not local to that CPU. The relasibip between CPUs and buses is
shown in Figure 10-1.

Figure 10-1 CPU/Bus Relationship on a NUMA System

CPU1 CPU 2
local memory local memory

|

CPU1 cpuzl
u

CPU 3 CPU4I
——

cpu 3 UUUL to 1/O devices UUUL cpu 4
local memory v local memory

This means that the time to access memory on an Adpieron (or Intel Nehalem)
system is going to be dependent upon the CPU wd@mgram runs and the memory
region where the program'’s pages are allocated.

A NUMA node is defined to be one region of memong all CPUs that reside on the
same physical bus as the memory region of the NUiMde. During system boot the
kernel determines the NUMA memory-to-CPU layougating structures that define the
association of CPUs and NUMA nodes. On current NUBAtems, the physical bus
where a memory region resides is directly connetteshly one CPU.

To get optimal performance, a program must run @P& that is local to the memory
pages being utilized by that program. The NUMA ifaees described in this chapter
allow a program to specify the node from which agpam’s pages are allocated, and to
shield NUMA node(s) so that user pages are migréaéfdom the shielded nodes’
memory to reduce the amount of remote memory aesefss real-time applications.

10-1

RedHawk Linux User's Guide

When coupled with the mechanisms for setting agescCPU affinity, these interfaces
allow a program to obtain very deterministic memacgess times.

NUMA support is available only on iHawk systems wwiAMD Opteron and Intel
Nehalem processors. It is possible to configurdJ&R system so that some CPUs do not
have any memory that is local. In this situatioa @PUs with no memory will either be
assigned to a NUMA node with no memory resourc@ski® mode) or be artifically
assigned to a NUMA node with the memory (64-bit mpdn either case, all of the
memory accesses from the CPU will be remote memeoegsses. This affects the memory
performance of processes executing on CPUs wittocal memory as well as those
processes executing on NUMA nodes where the reaatess requests are occurring.
This is not an optimal configuration for determtidgprogram execution.

Refer to the section “Configuration” later in tleisapter for configuration details. Refer to
the section “Performance Guidelines” for more infation on how to optimize memory
performance and to obtain deterministic memory asd¢ane. Note that deterministic
memory access is crucial for obtaining determiaiptogram execution times.

Memory Policies

10-2

NUMA support implements the concept of memory gelic These memory policies are
applied task-wide on a per-user-task basis. Raofyeistual address space within a given
task may also have their own separate memory polibich takes precedence over the
task-wide memory policy for those pages. Memorygies, both task-wide and for virtual
address areas, are inherited by the child taskguarifork/clone operation.

The NUMA memory policies are:

MPOL_DEFAULT This is the default where memory pages are alldcditem
memory local to the current CPU, provided that meynis
available. This is the policy that is used wheneaéask or its
children have not specified a specific memory pplitou can
explicitly set thewPoL_DEFAULT policy as the task-wide memory
policy or for a virtual memory area within a tasiat is set to a
different task-wide memory policy.

MPOL_BIND This is a strict policy that restricts memory adtion to only the
nodes specified in a nodemask at the time thixpddi set. Pages
are allocated only from the specified node(s) aagepallocations
can fail even when memory is available in otherawdot in the
bind nodemask. When this type of page allocatidnrfaoccurs,
the process, all of its children and all threads 8hare the same
address space will be terminated by the kernel witdxiLL
signal(s). This policy provides more certainty asvhich node(s)
pages are allocated from than the other memorgipeli

Note that the only way to guarantee that all futoremory
allocations for a process will be to local memayd set both the
CPU affinity andvPoL_BIND policy to a single CPU or to a set of
CPUs that all reside in the same NUMA node.

Non-Uniform Memory Access (NUMA)

MPOL_PREFERRED This policy sets a preferred (single) node for adlion. The
kernel will try to allocate pages from this nodestfiand use other
nodes when the preferred node is low on free memory

MPOL_INTERLEAVE This policy interleaves (in a round-robin fashiailocations to
the nodes specified in the nodemask. This optimitoas
bandwidth instead of latency. To be effective, themory area
should be fairly large.

In addition to user-space page allocations, marthi@kernel memory allocation requests
are also determined by the currently executing'saskk-wide memory policy. However,
not all kernel page allocations are controlled g turrent task’s memory policy. For
example, most device drivers that allocate memorydiMA purposes will instead
allocate memory from the node where the devic€shis resides, or the from the node
that is closest to that I/O bus.

Page allocations that have already been made draffected by changes to a task’s
memory policies. As an example, assume that thera 1-to-1 CPU to node
correspondence on a system with two CPUs:

If a task has been executing for a while on CPUtA & CPU affinity of 0x1 and a
memory policy oiMPOL_DEFAULT, and it then changes its CPU affinity to Ox2 asd i
memory policy tavPOL_BIND with a nodemask value of 0x2, there will most lyke
be pages in its address space that will be noriH4odhe task once that task begins
execution on CPU 1.

The following sections describe the system seryitiesary functions and utilities
available for NUMA management.

NUMA User Interface

The shield(1) command can be used to control and query NUMA rodenory
shielding. Theun(1) command can be used to establish or change mgmbcjes for

a task at run time, and to view user page counta®pages in each NUMA node for
specified process(es) or thread&)mconfig(l) can be used for shared memory areas.

Library functions, system services and other uéifitand files are also available for
NUMA control.

Details of this support are given in the sectioel®w.

Memory-shielded Nodes

Theshield(1) command can be used to create memory-shielded Nudiks.

When a NUMA node’s memory is shielded, the amodemote memory accesses are
reduced because user pages that belong to apptisatiat areot biased to execute on
the shielded node are moved out of the shielded’aademory. In the same manner, user
pages that belong to applications taeg biased to the shielded node are moved into the
shielded node’s memory. Thimge migrationis automatically performed when a NUMA
node is initially memory-shielded, and whenevergsbkeduler CPU affinity for that task
is modified and there are currently one or more memshielded NUMA nodes

10-3

RedHawk Linux User's Guide

10-4

configured in the system. For more details aboutmmey shielding, see
memory_shielding(7)

The following option toshield is used to enable, disable and query memory shield
support:

--mem=MEMSHIELD -m MEMSHIELD

MEMSHIELD may be eithel0, 1 or q to disable, enable or query memory
shielding support, respectively.

Shield used on multi-node NUMA systems with no optionsadth the-c option
displays which CPUs are memory-shielded. The(l) command also shows memory-
shielded CPUs.

There are two separate attributes that cause a Nddtie to become memory-shielded:

* Memory shielding support must be enabled with #fgeld -ml
command.

* All CPUs residing on the same NUMA node must becpss-shielded with
eithershield -p orshield -a . Therun(1) commandM n option
can be used to view the CPUs on each NUMA nodedrsystem.

These two steps can be used together or in sepavatations okhield . Refer to the
shield(1) man page for details.

For best performance, it is recommended that thewmng sequence be followed:

* First, create the shielded memory NUMA node, then

¢ Start up the real-time application on that node.
The following example shows the correct sequenca forur-CPU dual-core system:

shield -m1 -p 2,3
run -b 2,3 rt-app &

Because shared read-only pages, such as systamy libkt and read-only data pages, can
be mapped and accessed by many tasks, these pageplicated (have their contents
copied while keeping the same identity) in the Id0d&IMA node’s memory if the page
resides in a node different than the node on wthiehrequesting CPU or process resides.
This further reduces the number of remote memocgsses in the system.

numapgs(1l) and/proc/ pid/numa_maps can be used to view a process’s currently
replicated pages, when present.

This support can be built into the kernel to bevacalways or activated manually. See
“Configuration” on page 10-15 for details. For maegails about how page replication is
performed, sepage_replication(7)

Non-Uniform Memory Access (NUMA)

Memory-shielding and Preallocated Graphics Pages

For an overview of the preallocated graphics pagegort, please refer to the “Graphics
Interrupts” section in Appendix G.

On NUMA systems with NVIDIA graphics cards, you maptionally set up the
preallocated graphics pages on specific NUMA noatepart of the system memory
shielding configuration. Note that preallocatedpdrias pages are not automatically re-
allocated in non-memory-shielded nodes when a hedemes memory-shielded.

Pre-allocated graphics pages are initially alloddtean interleaved fashion across all
NUMA nodes that have their memory located at adsedelow the 4 GB boundary.
Graphics applications, such as X and Xorg, mapettgeaphics pages into their address
space and thus have graphics mappings that aatlypspread across the various NUMA
nodes in the system. Since these mappings are dod&en for I/O when a graphics
application is executing, these pages may not eapped or freed by the memory-
shielding support in the kernel, thus preventing antomatic page migration of these
mappings.

To optionally place the preallocated graphics paggsa specific set of NUMA nodes as
part of a memory-shielded NUMA node configuratitive following steps may be taken:

1. Stop all graphics (X/Xorg) activity. The systehosld be in at most init
state 3 with no X activity.

2. Memory-shield one or more NUMA nodes with gteeld(1)
command.

3. Free all graphics pages by writing a zero td/pec/driver/
graphics-memory file. You may verify that all graphics pages have
been freed by reading tharoc/driver/graphics-memory file at
this point. Note that attempting to write a valdeero to this file will fail
with an error if there are any graphics applicatistill making use of
preallocated graphics pages. These applicatiort todee terminated
before all pages can be successfully freed.

4. Create a shelbésh, ksh, etc.) with a interleave mempolicy that contains
at least one CPU belonging to each of the NUMA sagleere you want
the graphics pages to be allocated.

5. Re-allocate the graphics pages in the desiredsby writing the new
page count value tproc/driver/graphics-memory

You may validate that the pages were allocatetierdesired NUMA nodes by
reading theéproc/driver/graphics-memory file. The output from this read
will provide per-node page allocation counts.

6. Return to init state 5 or restart the desirecciivay.
Example

The following example creates a memory shieldecerindhe first node of a four NUMA
node, quad-core, 16 CPU system. The graphics padkis example are spread across all
of the non-memory-shielded NUMA nodes: nodes 1 2ndote that in this example, the
memory in node 3 is located above the 4 GB boundany thus no preallocated graphics
pages reside in node 3.

10-5

RedHawk Linux User's Guide

1. Stop all graphics activity. Kill off or exit ak applications, X, Xorg, etc.
For example, enter init state 3, when logged iroas

init3
2. Memory shield the first node and check the carfigion:

[usr/bin/shield -m1 -a 0-3 -c

CPUID irgs Itmrs procs mem
0 yes yes yes yes
1 yes yes yes yes
2 yes yes yes yes
3 yes yes yes yes
4 no no no no
5 no no no no
6 no no no no
7 no no no no
8 no no no no
9 no no no no
10 no no no no
11 no no no no
12 no no no no
13 no no no no
14 no no no no
15 no no no no

3. Free up all the preallocated graphics pagesfyrat all pages have been
freed by reading thgraphics-memory file:

[bin/cat /proc/driver/graphics-memory

Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 0 pages
Maximum graphics memory used: 0 pages

Node O Node 1l Node 2 Node 3

Preal: 5121 2712 2407 0

Total: 5121 2712 2407 0

InUse: 0 0 0 0
Max: 0 0 0 0

[bin/echo 0 > /proc/driver/graphics-memory

[bin/cat /proc/driver/graphics-memory

Pre-allocated graphics memory: 0 pages
Total allocated graphics memory: 0 pages
Graphics memory in use: 0 pages
Maximum graphics memory used: 0 pages

Node O Node1l Node?2 Node 3
Preal: 0 0 0 0
Total: 0 0 0 0

10-6

Non-Uniform Memory Access (NUMA)

InUse: 0 0 0 0
Max: 0 0 0 0

4. Create a bash shell with an interleaved mempttiayincludes at least one
CPU from both NUMA nodes 1 and 2. This will caulse page allocations
to be spread out across the non-memshielded nGtesk the new bash
shell with therun(1) command’s-mempolicy view option.

[usr/bin/run --mempolicy interleave=4,8 bash
[usr/bin/run --mempolicy view

Mempolicy NextCpu Cpus Name
interleave 0x00f0 O0xOff0 run

5. Reallocate the graphics pages using the mempladisk shell. Verify the
node locations of these allocations by readinggtiaphics-memory file:

/bin/echo 10240 > /proc/driver/graphics-memory

[bin/cat /proc/driver/graphics-memory

Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 0 pages
Maximum graphics memory used: 0 pages

Node O Node 1l Node 2 Node 3

Preal: 0 5120 5120 0

Total: 0 5120 5120 0

InUse: 0 0 0 0
Max: 0 0 0 0

6. Exit the interleave mempolicy bash shell:
exit

7. Restart X, or return to init state 5:
init5

In the above example, you may change the nodesawhergraphics pages are allocated
by modifying the CPUs in the interleaved mempoiicystep 4 where the bash shell is
invoked.

Note that the RedHawk kernel can be booted withrtbhepregraph_pgs boot
parameter to disable all preallocated graphics $agpport.

NUMA Support for Processes using run(1)

The “mempolicy” option taun(1) can be used to establish a task-wide NUMA memory
policy for the process about to be executed asasatlisplay related information.
The synopsis is:

run [oPTION§ COMMAND[ARG

“mempolicy” is one of the availablerTionsand has the following forms:

10-7

RedHawk Linux User's Guide

10-8

--mempolicy =MEMPOLICY_SPECIFIER
-M MEMPOLICY_SPECIFIER

Note that @ROCESS/THREAD_SPECIFIER/ich identifies the existing process or threzat t
run acts upon, cannot be used with the mempolicy aptishich affects only the
process(es) about to be created.

MEMPOLICY_SPECIFIERNcIudes only one of the following. Each can berablated to its
initial unique charactefist is a comma-separated list or range of CPUs; ®;4,6".
“active” or “boot” can be used to specify all adiprocessors or the boot processor,
respectively. An optional tilde [~] negates the, lthough “active” cannot be negated.

[~] list

b[ind]=list
Executes the specified program using troL_BIND memory policy using
the memory local to the CPUsliat.

b[ind] Executes the specified program using KmOL_BIND memory policy using
memory local to the CPUs specified with thieias option. The--bias
option defines the CPUs on which the program isuto and must also be
specified with this choice.

i [nterleave]=[~] list
Executes the specified program using Mr®L_INTERLEAVE memory policy
using the memory local to the CPUdist.

p[referred]=cpu
Executes the specified program using MmL_PREFERREDMeMoOry policy,
preferring to use memory local to the single spediCPU.

p[referred]
Executes the specified program with tiveoL_PREFERREOask-wide NUMA
memory policy, where the preferred memory is lodate the node containing
the CPU where the allocation takes place (a ’loaidication policy).

d[efault]
Executes the specified program usingNe®L_DEFAULT memory policy. This
is the default memory policy.

n[odes] Displays the CPUs included in each NUMA node alevith total memory
and currently free memory on each node. No othé&opg or programs are
specified with this invocation afin .

v[iew] Displays the memory policy setting of the currprdcess. No other options or
programs are specified with this invocatiorraf .

When a system contains one or more CPUs withowlloemory, these CPUs are
assigned to a node in round-robin fashion durirgiesy initialization. Although assigned
to a node, they do not actually have local memarg will always make non-local
memory accesses, including memory accesses tootlvaiassigned node. Under this type
of configurationv[iew] output will include an additional “NoMemCpus” cwhn which
will indicate the CPUs on each NUMA node that cantao local memory. It is
recommended that hardware be configured so thdt €&tJ has a memory module
installed when using a NUMA-enabled kernel.

Non-Uniform Memory Access (NUMA)

Specifyingrun with the--mappings /-m option on multi-node systems displays the
number of user-mapped pages in each NUMA nodenhtoptocesses or threads specified
with the PROCESS/THREAD_SPECIFIERrgument. This option cannot be used with a
‘command’ parameter at invocation.

Refer to thaun(1) man page or the section “The run Command” in Gérapfor other
options torun .

If numactl(8) is available on your system, it can also be usestt NUMA memory
policies.

NUMA Support for Shared Memory Areas using shmconfi g(1)

NUMA policies can be assigned to new shared memoeps or modified for existing
shared memory areas usistynconfig(1) with the “mempolicy” option.

The synopsis is:

Jusr/bin/shmconfig -M MEMPOLICY [-s SIZH[-g GROUH [-m MODE] [-u USER
[-0 offsel[-S][-T]1{key|-t FNAME}

The “mempolicy” option has the following forms:

--mempolicy =MEMPOLICY
-M MEMPOLICY

MEMPoOLICY includes only one of the following. Each can béraviated to its initial
unique characterisTis a comma-separated list or range of CPUs; '®©.&-4,6". “active”

or “boot” can be used to specify all active procesr the boot processor, respectively.
An optional tilde [~] negates the list, althouglttise” cannot be negated.

To view the CPUs that are included in each node tatal and available free memory for
each node, usein -M nodes .

[~] uisT

b[ind]=LIST
Sets the specified segment to theoL_BIND memory policy using the
memory local to the CPUs insT.

i [nterleave]=[~] uIST
Sets the specified segment to kmoL_INTERLEAVE memory policy using the
memory local to the CPUs insT.

p[referred]=cpPu
Sets the specified segment to throL_PREFERREDMemory policy, preferring
to use memory local to the single specified CPU.

p[referred]
Sets the specified segment to threoL_PREFERREDNUMA memory policy,
where the preferred memory is located on the nodéming the CPU where
the allocation takes place (a ’local’ allocatioripg).

d[efault]
Sets the specified segment to theoL_DEFAULT memory policy. This is the
default.

10-9

RedHawk Linux User's Guide

10-10

v[iew] Displays the current memory policy setting for 8pecified segment.
Additional options that can be used with the meneyabption include:

--Size= SIZE
-s Size Specifies the size of the segment in bytes.

--offset OFFSET

-0 OFFSET
Specifies an offset in bytes from the start of sisteng segment. This value is
rounded up to a pagesize multiple. If tse option is also specified, the sum
of the values of offset+size must be less thangoakto the total size of the
segment.

--user= USER
-u USER Specifies the login name of the owner of the shamechory segment.

--group=GROUP

-g GROUP
Specifies the name of the group to which group asde the segment is
applicable.

--mode= MODE

-m MODE Specifies the set of permissions governing accesthé shared memory
segment. You must use the octal method to spebiypermissions; the
default mode is 0644.

--strict

-S Outputs an error if any pages in the segment ralmyeot conform to the
specified memaory policy currently being applied.

--touch

-T Causes a touch (read) to each page in the spkcHiege, enforcing the

memory policy early. By default, the policy is ajgol as applications access
these areas and fault in/allocate the pages.

Thekeyargument represents a user-chosen identifier ftvased memory segment. This
identifier can be either an integer or a standatth mame that refers to an existing file.
When a pathname is supplied,faok(key,0) will be used as the key parameter for the
shmget(2) call.

-tmpfs= FNAME/-t FNAME can be used to specify a tmpfs filesystem filenamtead
of akey. Theu, -g and-m options can be used to set or change the filibbatts of this
segment.

Refer to the man page or the section “The shmcabfimmand” in Chapter 3 for other
options toshmconfig

If numactl(8) is available on your system, it can also be useskt NUMA memory
policies.

System Calls

Library Functions

Informational File

Node Statistics

Non-Uniform Memory Access (NUMA)

The following system service calls are availabletd\that thenumaif.h header file
should be included when making any of these dakider to the man pages for details.

set_mempolicy(2) Sets a task-wide memory policy for the current pesc

get_mempolicy(2) Gets the memory policy of the current process amorg
address.

mbind(2) Sets a policy for a specific range of address space
including shared memory.

move_pages(2) Move a set of pages of a process to a different MUM
node.

The library,/ust/lib64/libnuma.so , offers a simple programming interface to the
NUMA support. It contains various types of NUMA mem policy and node support
routines and alternative interfaces for using thdeulying NUMA system service calls.
Refer to thevuma(3) man page for details.

s and Utilities

The following sections describe files and utilitibst can be used to display information
relative to NUMA nodes.

When NUMA is enabled in the kernel, each node hastaf information files in the
subdirectory/sys/devices/system/node/node #, where # is the node number (O,
1, 2 etc.). These files are listed below.

cpumap Displays a hexadecimal bitmap of the CPUs in thiden e.g.

> cat /sys/devices/system/node/node3/cpumap
08

cpulist Displays a list of CPUs in this node; e.g.,

> cat cpulist
4-7

numastat Displays hit/miss statistics for the node. Seertbet section for
explanations of the fields that are displayed.

meminfo Displays various memory statistics for the nodeluding totals
for free, used, high, low and all memory.

10-11

RedHawk Linux User's Guide

distance Displays the distance of each node’s memory froerdbal node.
A value of “10” indicates that the memory is locahd a value of
“20” indicates that the memory is one hypercharooglinection
away, for example.

cpu# These are the CPU device files associated withdke; e.g.

$ Is-I /sys/devices/system/node/node3/ cpu3
Irwxrwxrwx 1 root root O jan 21 03:01 cpu3
->../..1..1..Idevices/system/cpu/cpu3

Node IDs for Mapped Pages

10-12

numapgs(l) displays the location by NUMA node ID of each pagerently mapped
into a specified process or thread. Only locatitras have mappings to physical memory
pages are output, unless the option is specified.

Syntax:
numapgs [OPTIONS

OPTIONSInclude:

--pid=pid, -p pid
The process ID or thread ID whose address spaoédis displayed.

--start= saddr-s saddr
To limit the range of mappings to be displayednode IDs for mappings
below thissaddrhexadecimal virtual address value will be dispthyé
--end is not specified, all node ID entries frasaddrto the end of the
address space are displayed.

--end= eaddr-e eaddr
To limit the range of mappings to be displayednnde 1Ds for mappings at
or above thisaddrhexadecimal virtual address value will be dispthyi¢
--start is not specified, all node ID entries from the eng of the
address space upeaddrl are displayed.

-all ,-a
Display all virtual address page locations in thecess’ address instead of
only those locations containing valid mappings lggical memory. A period
(.) in the output represents locations with no miage or mappings to non-
memory objects (such as I/O space mappings). Tptisrocan be used with
--start or--end to display all page locations within the specifiadge.

--version ,-v
Display the current version oumapgs, then exit.

--help ,-h
Display available options, then exit.

Each output line contains up to eight decimal ndealues.

Non-Uniform Memory Access (NUMA)

If the page is currently locked (throughlock(2) ormlockall(2)), an “L” will
appear to the right of the NUMA node ID value.Hétpage is currently replicated (see
“Memory-shielded Nodes”), an “R” will appear to thight of the NUMA node ID value.

Below is a sample extract afimapgs output for a process that has all its pages locked

usingmlockall(2)

as shown by the beside each node ID value. Replicated pages are

represented by tHe next to their node ID value.

3a9b000000-3a9b12b000 r-xp /lib64/tls/libc-2.3.4.s0

3a9b000000: o oL oL oL oL oL oL oL
3a9b008000: o oL oL oL oL oL oL OLR
3a9b010000: o oL oL oL oL oL oL oL

NUMA Hit/Miss Statistics Using numastat

kdb Support

numastat is a script that combines the information from té nodes/sys/

devices/system/node/node #inumastat files:
$ numastat
node 3 node 2 node 1 node 0
numa_hit 43674 64884 79038 81643
numa_miss 0 0 0 0
numa_foreign 0 0 0 0
interleave_hit 7840 5885 4975 7015
local_node 37923 59861 75202 76404
other_node 5751 5023 3836 5239
numa_hit the number of successful memory allocations maata the node
numa_miss the number of memory allocations that could notntsede from

numa_foreign

interleave_hit

local_node

other_node

the node but were instead allocated for anothee nod

the number of allocations that failed to allocatenmory from a
node but were instead allocated from this node

the number of successful interleaved memory allonatmade
from this node

the number of memory allocations that were madm filoe local
node

the number of memory allocations that were made non-local
node

The followingkdb commands have been added or modified to suppokAlWNote that
this additional support is only present when then&kis configured with NUMA support

enabled.

memmagnode_id

task

outputs information for all pages in the systemfar only the
specified node

additionally outputs the mempolicy aildnext task structure
fields

10-13

RedHawk Linux User's Guide

mempolicy addr outputs information for the specified mempolicyusture

pgdat [node_id decodes the specified node’s zonelists, orndfde_id is not
specified, zone 0

vmp -v additionally outputs mempolicy information for wial memory
areas

Performance Guidelines

Through CPU shielding, CPU biasing and binding pplization to specific NUMA
nodes, page allocations can be made in the mdstegfft manner on NUMA systems.
Guidelines for working with tasks and shared menargas are given below.

Task-Wide NUMA Mempolicy

ThempPoL_BIND policy is usually the most useful policy for tinsgtical applications. It is
the only policy that lets you deterministically sifg the node(s) for page allocations. If
the memory allocation cannot be made from the fipdanode or set of specified nodes,
the program will be terminated withseKiLL signal.

By combining CPU shielding and CPU biasing with thoL_BIND memory policy, a
shielded CPU can be created and the applicatiocuge@ on the shielded CPU where the
pages for that application will be allocated onlgrfi the shielded CPU’s NUMA node.
Note that pre-existing shared text page sand copyrite data pages may not be local,
although copy on write data pages will become locale they are written to.

Therun(1) command can be used to start up an applicatiansinelded CPU with the
MPOL_BIND memory policy. Alternatively, since pages that aheady present in an
application’s address space are not affected bysahgequent change of NUMA memory
policy, the application can set its CPU affinityddNUMA memory policy as soon as
possible after it has begun executing withadvise(3) andset_mempolicy(2) or
NUMA library function calls.

The following example shows how to use th@(l) command bias and mempolicy
options to start up an application on a shieldet! @#th thempPoL_BIND memory policy
with memory allocations coming only from the NUMAde where CPU 2 resides:

$ shield -a 2
$ run-b 2 -M b my-app

For more information about shielded CPUs andsttield(1) command, see Chapter 2
and theshield(1) man page.

Shared Memory Segments

10-14

It is also generally recommended that threoL_BIND memory policy be used for shared
memory segments. A shared segment’'s NUMA memorigypehn be specified with the
mbind(2) system service call or with tlsamconfig(1) utility.

Configuration

Non-Uniform Memory Access (NUMA)

If a shared memory segment is to be referenced frartiple CPUs, it is possible to
specify differentvPoL_BIND mempolicy attributes for different portions of laased
memory area in order to maximize memory acces®paence.

As an example, consider a “low” application thatimtyawrites to the lower half of a
shared memory segment, and a “high” application iginly writes to the upper half of
the same shared memory segment.

1. Create a shared memory segment with a key vdluE28’. Change the
lower half of the segment to use theoL_BIND memory policy with CPU
2's NUMA node for page allocations, and the uppf to usemPOL_BIND
with CPU 3's node for page allocations.

$ shmconfig -s 0x2000 123
$ shmconfig -s 0x1000 -M b=2 123
$ shmconfig -0 0x1000 -M b=3 123

2. Shield both CPUs 2 and 3.
$ shield-a 1,2

3. Start up the “low” application on CPU 2 withmaoL_BIND mempolicy
using CPU 2’'s NUMA node for memory allocations, atakt up the
“high” application on CPU 3 with mpoL_BIND mempolicy using CPU 3’s
NUMA node for memory allocations.

$ run-b2-Mb low
$ run-b 3-M b high

Only the AMD Opteron and Intel Nehalem processargenNUMA architecture. The
following kernel parameters affect processing onMMUnodes. All these parameters are
enabled by default in RedHawk pre-built kernel®yih some apply to only 32-bit mode
and some apply to only 64-bit mode).

NUMA and ACPI_NUMA (all modes), X86_64_ACPI_NUMA and K8_NUMA (6&-tmode only)
These kernel parameters must be enabled for NUM#eke
support. They are accessible underPmecessor Type and
Features selection in the Kernel Configuration GUI and are
enabled by default in all pre-built RedHawk kernels

Note that there is a boot optiamyma=off , that can be specified
at boot time that will disable NUMA kernel support a NUMA
system. This will create a system with a single enodith all
CPUs belonging to that node. It differs from NUMBApport not
being built into the kernel, in which case thera ifat memory
system with no nodes and where the NUMA user iate$ will
return errors when called.

When using aluma enabled kernel on an AMD Opteron or Intel
Nehalem system, the following hardware recommenpdatare
made:

10-15

RedHawk Linux User's Guide

PAGE_REPLICATION

* It is highly recommended that a memory module Istaifed
for each CPU in the system. Otherwise, CPUs witlzolgical
memory module must remotely access other memorytasd
for every memory access, thus degrading systenopesice.

* Any BIOS-supported memory module interleaving haaw
support should be disabled in the BIOS. If not bigal,
NUMA support in aNUMA enabled kernel will be disabled,
resulting in a single NUMA node containing all t6®Us in
the system.

When enabled, pagecache replication support is ibedipto the
kernel. Depending upon the setting for
PAGE_REPLICATION_DYNAMIC (see below), pagecache replication
is always active on the system from the time tteesy is booted,
or is inactive until manually activated.

PAGE_REPLICATION_DYNAMIC

When enabled along withAGE_REPLICATION pagecache
replication is not active at system boot, but cannfianually
activated by writing a one (1) téproc/sys/vm/
page_replication_enabled or by usingshield(1) to
create one or more memory-shielded NUMA nodes.

When disabled andAGE_REPLICATION is enabled, pagecache
replication is always active on the system from timee the
system is booted.

MEMSHIELD_ZONE_NORMAL (32-bit mode only)

When enabled on 32-bit mode NUMA kernels, setupztheelists
so that a local node’s normal zone pages (if ang)uaed before
selecting a remote node’s highmem zone page. Tde tmde’s
highmem zone pages are still used up first. Thaduiee can be
disabled in RedHawk 32-bit mode pre-built kernelshwthe

“prefer_highmem?” grub kenrel boot option.

MEMSHIELD_ZONELIST_ORDER

10-16

When enabled, NUMA node zonelists will be reordeségn one
or more NUMA nodes become memory shielded. Thesel&®bs
control the node search order for available menadrgn the local
node’s memory resources become low. The zonelisgs a
reordered such that when a local node cannot gatisfiemory
allocation request, memory from other non-shieldedes will be
used before resorting to using the memory of a nmgrsloielded
node(s). When there are no more memory shieldeésodthe
system, the original zonelist ordering will be amatically
restored.

Introduction

11
Configuring and Building the Kernel

This chapter provides information on how to configand build a RedHawk Linux
kernel.

The RedHawk kernels are located in theot directory. The actual kernel file names
change from release to release, however, they g@nbave the following form:

vmlinuz- kernelversiorRedHawk- x.q- flavor]

kernelversion is the official version of Linux kernel source edpon which
the RedHawk kernel is based (may contain suffixeh as -rcl
or -pre7)

X.X is the version number of the RedHawk kernel release

flavor is an optional keyword that specifies an additideehel feature

that is provided by the specific kernel

The kernel is loaded into memory each time theeaysis booted. It is a nucleus of
essential code that carries out the basic functidribe system. The kernel remains in
physical memory during the entire time that theéeysis running (it is not swapped in and
out like most user programs).

The exact configuration of the kernel depends upon:

* alarge number of tunable parameters that defimeuth-time behavior of the
system

* a number of optional device drivers and loadabléutes

Kernel configuration, or reconfiguration, is the@pess of redefining one or more of these
kernel variables and then creating a new kernedraatg to the new definition.

In general, the supplied kernels are created withllle parameters and device drivers that
are suitable for most systems. However, you maypsadao reconfigure the kernel if you
want to alter any of the tunable parameters toroize kernel performance for your
specific needs.

After you change a tunable parameter or modifyhthelware configuration, the kernel
will need to be rebuilt, installed and rebooted.

11-1

RedHawk Linux User's Guide

Configuring a Kernel Using ccur-config

The RedHawk Linux product includes several pre-bkérnels. The kernels are
distinguished from each other by theifffavor’ suffix. The following flavors are defined:

generic (no suffix) The generic <=4GB kernel. Therrel is the most optimized
and will provide the best overall performance, heerdt lacks
certain features required to take full advantagehod
NightStar RT tools.

trace The trace kernel. This kernel is recommended fostraeers as it
supports all of the features of the generic keamel in addition
provides support for the kernel tracing featuretbé
NightTrace RT performance analysis tool.

debug The debug kernel. This kernel supports all of #tidres of the
trace kernel and in addition provides support ferrel-level
debugging. This kernel is recommended for users ateo
developing drivers or trying to debug system protde

Each pre-built kernel has an associated configundtie that captures all of the details of
the kernel's configuration. These files are locdtetheconfigs directory of the kernel
source tree. For the pre-built kernels, the coméiian files are named as follows:

On an 386 architecture (32-bit):

generic kernel static.config
trace kernel trace-static.config
debug kernel debug-static.config

On an x86_64 architecture (64-bit):

generic kernel static-x86_64.config
trace kernel trace-static-x86_64.config
debug kernel debug-static-x86_64.config
In order to configure and build a kernel that matchne of the pre-built kernels, you must
cd to the top of the kernel source tree and rurctiue-config(8) tool.
NOTE

The ccur-config script must be run as root. If kernel
modifications are to be made, the system must lggaphical
mode (i.e. run-level 5) or a valilsPLAY variable must be set.

The following example configures the kernel souree for building a new kernel based
on the RedHawk Linux 5.2 trace kernel’'s configuratiNote that it is not necessary to
specify the ‘config " suffix of the configuration file as that is autatically appended.

cd /usr/src/linux-2.6.26.6-RedHawk5.2
#./ccur-config trace-static

11-2

Configuring and Building the Kernel

ccur-config can also be used for customized kernels by spagifthe appropriate
custom config file residing in theonfigs directory. Thek nameoption can be used to
name a new flavor, and the option saves the configuration file in thenfigs
directory. For example:

./ccur-config -s -k test debug-static

configures a kernel witikest as the flavor suffix that is based on the RedH&#@B@86
debug-static kernel and saves the resulting configuration as
configs/test.config

During the execution ofcur-config you will be presented with a graphical
configuration interface (GUI) in which you can custize many different aspects of the
RedHawk Linux kernel. See Screen 11-1 for an exampthe Kernel Configuration GUI.

The Save selection from thé&ile menu must be selected to save your changes ahd exi
the program. Note that even if you do not changecamfiguration parameters, it is still
necessary to seleStave in order to properly update the kernel's configjoreafiles.

An exhaustive list of the settings and configurataptions that are available via the
graphical configuration window is beyond the scop¢his document, however many
tunable parameters related to unique RedHawk featand real-time performance are
discussed throughout this manual and listed in AgipeB. In addition, when the
parameter is selected, information about that patams displayed in a separate window
of the GUI.

If you do not wish to change kernel parametersgi§péhe -n option toccur-config
and the GUI will not appear.

Screen 11-1 Kernel Configuration GUI

' Eile Option Help

o ~d
oiFHE | E
Option {;I
- |SDN subsystem
- [nput device support
B Character devices
i-Serial drivers -OMatrox g200/g400
Le12C support [Si5 video cards
2C Algorithms ----‘I:IACP Modem (Mwave) support
+12C Hardware Bus support Rajtjme Counter and Interrupt Module Support
“-12C Hardware Sensors Chip suppt - CIRAW driver (/dev/raw/rawN)
.- Mice --[JHangcheck timer _ -
- IPMI [7] | RCIM Realtime Clock and Interrupt Module (RCIM)
~Watchdog Cards

- Ftape, the floppy tape device driver
- PCMCIA character devices
- Misc devices
=-Multimedia devices
: - Digital Video Broadcasting Devices
Z-File systems

--CD-ROM/DVD Filesystems
DOS/FAT/NT Filesystems services is via loctl's on special devices. For details, see rcim(4),

Pseudo filesystems rcim_eti(4), reim_pig(4), and rcim_rtc(4), rcim_distrib_intr(4), and
Miscellaneous filesystems rcim_sync_clock(4).

Network File Systems
Partition Types

“Native Language Support
--Graphics support

¢ ‘.Console display driver support

| The Realtime Clocks and Interrupts Module is a custom PCI/PMC board
*| manufactured by Concurrent Computer Corp. RCIM boards in adjacent

| systems can be cabled together and programmed such that interrupts

| generated in one RCIM board are delivered synchronously to all systems.

| The board is able to handle incoming and outgoing extemal interrupts,

| software generated interrupts, and internally generated interrupts

| from the board's high resolution programmable clocks. Access to board

—-Snund
i+

|

11-3

RedHawk Linux User's Guide

Building a Kernel

Regardless of which kernel configuration is uskd,resulting kernel will be named with
a “vmlinuz” prefix followed by the current kerneéssion string as it is defined in the top-
level Makefile , followed with a “-custom” suffix added. For exple:

vmlinuz-2.6.25.6-RedHawk-5.2-custom

The final suffix can be changed by specifyingthenameoption toccur-config . This
definesnameas theREDHAWKFLAVOR Variable in the top-levellakefile , which
remains in effect until changed again wikh or by editingMakefile . When building
multiple kernels from the same kernel source titeis,important to change the suffix to
avoid overwriting existing kernels accidentally.

NOTES

The pre-built kernels supplied by Concurrent haviibes that
are reserved for use by Concurrent. Therefore sjrmuldnot set
the suffix to: (empty string), “-trace”, or “-debtug

Use theccur-config -c option if you need to build driver
modules for a kernel (see the section “Buildingv@riModules”
later in this chapter).

Once kernel configuration has completed, a keraelle built by issuing the appropriate
make(l) commands. There are many targets in the top-Magkfile , however the
following are of special interest:

make bzlmage Build a standalone kernel.

make modules Build any kernel modules that are specified in tkernel
configuration.

make modules_install Install modules into the module directory assodatéth the
currently configured kernel. Note that the naméhd§ directory
is derived from the kernel version string as dedire the top-
level Makefile . For example, if th®@EDHAWKFLAVOR is
defined as “-custom” then the resulting modulesdiory will be
“/lib/modules/ kernelversiorRedHawk- x.xcustom ”

make install Install the kernel into théboot directory along with an
associate®ystem.map file.

NOTE

To completely build and install a new kernel, afltbese
Makefile targets must be issued in the order shown above.

For an example of a complete kernel configuratiod luild session, refer to Figure 11-1.

11-4

Configuring and Building the Kernel

Figure 11-1 Example of Complete Kernel Configurati on and Build Session

/ # cd /usr/src/linux-2.6.26.6-RedHawk-5.2 \
.Iccur-config -k test debug-static

Configuring version: 2.6.26.6-RedHawk-5.2-test
Cleaning source tree...

Starting graphical configuration tool...

[configure kernel parameters as desirgd
Configuration complete.

make bzlmage

make modules

make modules_install
make install

[edit /etc/grub.conf to reference new kernel anbo@t]

N /

Building Driver Modules

It is often necessary to build driver modules fee wvith either one of the pre-existing
kernels supplied by Concurrent or a custom kernel.

To build driver modules for a kernel, the followingnditions must be met:

* The desired kernel must be the currently runningéde

* The kernel source directory must be configured ergpfor the currently
running kernel viacur-config

Note that if a custom kernel was built using thegedure outlined in the section
“Building a Kernel,” then the kernel source diregtis already configured properly and
runningccur_config is not necessary.

The-c option toccur-config can be used to ensure that the kernel sourcetaliyes
properly configured. This option automatically degethe running kernel and configures
the source tree to properly match the running kebréver modules can then be properly
compiled for use with the running kernel.

NOTE

The-c option toccur_config is only intended for
configuring the kernel source tree to build driveodules and
should not be used when building a new kernel.

The-n option toccur_config can also be specified when it is not necessarjiange
configuration parameters. Witim , the configuration GUI does not appear and no
configuration customization is performed.

See the next section for an example of building@athic load module into a pre-built
RedHawk kernel.

11-5

RedHawk Linux User's Guide

Example—Building a Dynamic Loadable Module ina Pre -built RedHawk
Kernel

Adding functionality to a RedHawk system is attair®y placing additional hardware
controllers into the system. It is not necessamn&ke a custom kernel to add support for
new hardware devices, unless there is a requirefoeatstatic kernel driver.

The following example adds a Comtrol RocketPortaderard support to a RedHawk
system. The source for the Comtrol RocketPortadtris contained in the RedHawk kernel
source tree.

The RedHawkrace kernel is the running kernel in this example.

1. Runccur-config to configure the kernel source tree.
Note thatkernelnames the ‘uname -r’ output of the running kernel:

cd /lib/modules/ kernelnam#éouild
.Jccur-config -c

2. In the GUI window, set Device Drivers ->Charadd@vices->Non-
standard serial port support->Comtrol RocketPoppstit to a value of
“M” (module). See Screen 11-2 for an illustratidrttee GUI (showing the
Show Name, Show Range and Show Data Options sé)ecte

3. Save the configuration, and exit the GUI.

Screen 11-2 Kernel Configuration GUI Adding Serial Card Support

File Option Help

g E | Il E
| option =] [option Name [N ™ [y [value |
="BUS oprions (PLI erc.) [-[..
PCCARD (PCMCIA/CardBus) support -Virtual terminal (NEW) VT
“~PCl Hotplug Support) | ~OSupport for binding and unbinding console drivers VT_HW_CONSOLE_BINDING N = N
Execula.ble file formats / Emulations --@Non-standard serial port support SERIAL_NONSTANDARD - Y: X
o Ne“"m"“?] --OComputone IntelliPort Plus serial support (NEW) COMPUTONE N _ _ N
>DevceDivers T - CKETFORT M om
-~ Generic DnverlCl)ptlons -OCyclades async mux support (NEW) CYCLADES N e ow N
-~ Connector - unified userspace <-> kemelspa ~-CIDigiboard Intelligent Async Support (NEW) DIGIEPCA N _ _ N
~Memory Technology Devices (MTD) -OMoxa Intellio support (NEW) MOXA_INTELLIO N _ _ N
Parallel port support ~-CIMoxa SmartlO support (NEW) MOXA_SMARTIO N = N
~Plug and Play support - OMulti-Tech multiport card support (EXPERIMENTAL) (NEW) IS N _ N
~Block devices --OMicrogate SyncLink card support (NEW) SYNCLINK N _ _ N
~DRBD device driver OSyncLink Multiport support (NEW) SYNCLINKMP N _ _ N
,“ATA/ATA‘PIIMFM/RLL support ~OSyncLink GT/AC support (NEW) SYNCLINK_GT N _ _ N
~SCSI device support --OHDLC line discipline support (NEW) N_HDLC N - N
~Multi-device support (RAID and LVM) ~OSpecialix 108+ card support (NEW) SPECIALIX N N
~Fusion MPT device support - OSpecialix SX (and SI) card support (NEW) SX N N
~|EEE 13_94 (FireWire) support --OSpecialix RIO system support (NEW) RIO N o o= N
120 device support Ll - OStallion multiport serial support (NEW) STALDRV N N
=-Nework device support --BlLegacy (BSD) PTY support LEGACY_PTYS - Y Y
i~ ARCnet <_1e\r|ces -(256) M ACY_PTY_COUNT 256
#PHY device support n—
=Ethemet (10 or 100Mbit) Comtrol RocketPort support (ROCKETPORT)
¢ “=Tulip family network device support
Ethernet (1000 Mbit) This driver supports Comtrol RocketPort and RocketModem PCI boards.
- Ethernet (10000 Mbit) These boards provide 2, 4, 8, 16, or 32 high-speed serial ports or
#Token Ring devices modems. For information about the RocketPort/RocketModem boards
i~Wireless LAN (non-hamradio) and this driver read <file:Documentationfrocket.txt>.
“-Wan interfaces
~-ISDN subsystem To compile this driver as a module, choose M here: the
. Telephony Support module will be called rocket.

~Input device support . . sxsesi
Hardware 1/O ports If you want to compile this driver into the kemel, say Y here. If

you don't have a Comtrol RocketPort/RocketModem card installed, say N.

-Serial drivers
IPMI
+Watchdog Cards

Ftape, the flo tape device driver [+]
<] []

11-6

Configuring and Building the Kernel

4. Runmake to build the new kernel module:
make REDHAWKFLAVOR=-trace modules

5. When the make completes, locate the rocket dnivdre output; e.g.:
LD [M] drivers/char/rocket.ko

and copy it as follows:

mkdir /lib/modules/ kernelnaméernel/extras
cp drivers/char/rocket.ko /lib/modules/ kernelnaméernel/extras/

6. Set up the dependency files usedrbgdprobe(8) to load modules.
depmod

7. The file/lib/modules/ kernelnamébuild/Documentation/
rocket.txt contains configuration requirements pertainingh
Comtrol RocketPort card. Device entries can beteteand the driver
loaded automatically by inserting the appropriammands,
MAKEDEV(8) andmodprobe(8) , into the file/etc/rc.modules
which will be executed when the kernel initializes.

a. Insert the following alias inttletc/modprobe.conf
alias char-major-46 rocket

b. If the file/etc/rc.modules does not exist on your system it must
be created. It should have file permissions of Gxifcorder to func-
tion. Include the following in the file:

#!/bin/bash
/sbin/lMAKEDEYV ttyR
modprobe rocket

For an example of adding a driver that is not ekkrnel source tree, sksr/share/
doc/ccur/examples/driver on your RedHawk system.

Additional Information

There are many resources available that providerinétion to help understand and
demystify Linux kernel configuration and building.good first step is to read the
READMEile located in the top-level of the installed R&alvk kernel source tree. In
addition, the following HOWTO document is availabi@ The Linux Documentation

Project web sitehttp://www.tldp.org/HOWTO/Kernel-HOWTO.html

11-7

http://www.tldp.org/HOWTO/Kernel-HOWTO.html

RedHawk Linux User's Guide

11-8

Overview

12
Kernel Debugging

This chapter describes the tools provided in RedHbiwux for kernel debugging and
crash dump analysis.

Several open source patches with Concurrent enmaects are incorporated into
RedHawk for kernel problem analysis.

The enhanced kernel debugdetb , is provided in the RedHawk “debug” kernels.

An enhanced linux kernéexec -based crash dumpdump) mechanism along with the
crash(8) utility for reading crash dumps are used to take analyze system crashes.
Crash can also analyze live memory. Note that LKCD #&rdsh facilities are no
longer supported.

The sections below describe crash dump and and&tgsislawk systems.

Taking and Analyzing a System Crash

Activating kdump

RedHawk includeg&dump(8) , akexec -based crash dump service that is used to take a
crash dump and therash(8) utility that can be used to analyze the dump. €hae
described in the following sections.

The /etc/sysconfig/lkdump configuration file contains definitions that casithow
kdump starts and operates.

kdump is activated through the settingTivE=1 in /etc/sysconfig/lkdump . This is
the default setting. Editing the file or issuinggtbtommandervice kdump on sets
ACTIVE=1 in the file. Converseljkdump can be deactivated by editing the file and setting
ACTIVE=0 or by runningservice kdump off

By default, thekdump service starts fromc.sysinit . This is the only wakexec -
based crash dumps can be supported in single us# and also ensures readiness at the
earliest possible time.

12-1

RedHawk Linux User's Guide

A LATE startup option can be set for diskless environmenth as in a cluster where file
systems/paths needed kump are not mounted until after other services hasdesd.

Refer to the section “kdump Options Defined in thenfiguration File” for more
information about how to ugetc/sysconfig/lkdump

How a Crash Dump is Created

12-2

kdump prepares the environment of the running kernebte a small set of crash files for
analysis in the event of a kernel panic. Tnash utility needs debug information in
order to read a crash dump virtual memory imageca®” file. The debug information is
contained in themlinux image of the running kernel when built with theBuG_INFO
option. Thevmlinux image is called aamelist

If the crashkernel= size@16NMooot parameter is specified andTivE=1 is defined in the
/etc/sysconfig/kdump configuration file, the&kdump service presaves a link to the
matching kernevmlinux image (namelist) along with the kerrptoc/config.gz

file in the /kdump/kerninfo directory. It then preloads the crash kernel ugmgc

-p (seekexec(8)).

The kdump service constructs a string based on the valueis etc/sysconfig/

kdump which is provided to theexec -p command. The default string specifies the
installed RedHawk crash kernel, tells the crasimdédeto use the current root file system
and console device, and passes along the boot ptamaxcpus=1 irgpoll 1 .Ifno
crashkernel boot parameter is issued, thdump service skips all setup. You can use
the service kdump echo command to view a dry run of tlkexec -p. command.

After successfully loading the crash kernel, thstem reboots into the crash kernel if a
system crash is triggered. Trigger points are kxtatpanic()

The following conditions will execute a crash trgggoint:

* A kernel panic occurs.

¢ /proc/sys/kernel/panic_on_oops is set and an oops occurs.

* /proc/sys/vm/panic_on_oom is set and an out of memory condition
occurs.

¢ /proc/sys/kernel/unknown_nmi_panic is set and an unknown
NMI occurs.

¢ /proc/sys/kernel/unknown_nmi_panic is set and the NMI button
is pressed. Refer to the section “NMI Button” belimvmore information.

* /proc/sys/kernel/sysrq is set andAlt-Sysrqg-c is issued from the
keyboard.

* /proc/sys/kernel/sysrq is set andecho ¢ > /proc/sysrg-

trigger s issued.
¢ Thekdump command is issued form tkeb prompt.

Kernel Debugging

Installation/Configuration Details

The ccur-kexec-tools- kexec-versiotkdump rpm installs two binary executable
files, /shin/kexec and/sbin/kdump , as well as théetc/init.d/kdump service
and its configuration fileletc/sysconfig/kdump . Thekexec(8) andkdump(8)
man pages are also installed with this rpm.

The following are requirements to enable the systetake and analyze crash dumps. The
kernel configuration parameters are included byuléfn all pre-built RedHawk kernels.

¢ The running kernel (the kernel to be debugged) edtuilt with thekexec
andDEBUG_INFO kernel parameters, und@rocessor Type and
Features in the Kernel Configuration GUI, setto Y.

* The crash kernel must be built witkExEC and CRASH_DUMP kernel
parameters, unddé?rocessor Type and Features in the Kernel
Configuration GUI, setto Y.

* The kernels must be booted with ttrashkernel= size@16Moot option.
This specifies the memory reservation and offsegrelthe crash kernel will
be booted upon kernel panic.

* Via /etc/sysconfig/lkdump , options define the behavior of tkdump
service. See the section “kdump Options DefinethéenConfiguration File”
below for information.

A custom kernel based on a pre-built RedHawk 4.fatar kernel config file using
ccur-config(8) andmake install will meet all requirements for usidglump
andcrash . If using a separate custom kernel, ensure alteéhairements above are met.
See Chapter 11, Configuring and Building the Kerriet,more information about
building a custom kernel.

kdump Options Defined in the Configuration File

The actions taken by tHe&lump service are determined by the options set irkthanp
configuration file/etc/sysconfig/kdump . The file is fully commented with
information describing the options and recommerdatifor setting values.

Current settings can be viewed using thefig argument tckdump (see the section
“kdump Command Line Interface” below).

By default,kdump is not active. To activatelump, setacTive=1 in the configuration file
or issue the commarskrvice kdump on , which setsrcTIVE=1 in the configuration
file.

With kdump active, the following occurs by default:

* Thekdump service starts fronc.sysinit

A LATE startup option can be set for diskless environmsmth as in a cluster
where file systems/paths needeckdymp are not mounted until after other
services have started. When youLset=1, thekdump service starts up with
the following defaults as defined lokconfig(8) 1234526 95 . This
means that the service is active in runlevels B, 2,and 5, and that it starts

12-3

RedHawk Linux User's Guide

with a priority of 26 and stops with a priority 85. Use the EVELS, START,
andsTopPoptions in thekdump config file to change these valueg NOT
DIRECTLY EDIT thekdump serviceinit script as you would with a normal
init script. Use thé&dump status command to see the curréwatump
startup configuration (see the section “kdump Comanlaine Interface”

below).

* The namelist setup is performed and the crash kesn@reloaded. If
crashkernel= size@16Ms not specified at boot time, no action is
performed.

* By default, a dump is taken on kernel panic, dump oops
(PANIC_ON_oo0Ps=) and out-of-memoryPANIC_ON_OOM=J). Options can be
set to force a dump on unknown NMINKNOWN_NMI_PANIC) also. If
desired, these options can be unset so that a daimagen only on kernel
panic.

* Kexec is used to start the crash kernel at run leveditiguthe current root
file system and console device.

* Crash files are saved to disk using gzip comprassio
* Areboot is performed immediately after crash fies saved. An option can
be set for the kernel to remain running and nobothfter the save.

These actions and others can be customized byngdéic/sysconfig/kdump
Additional options include:

¢ specifying a custom crash kernel and cusitmird ~ when needed

* specifying a different root file system, kerninfarettory, console, save
directory, compression or run level

* not saving the crash file, saving vd@p or saving across NFS with all
appropriate settings

* providing a script to customize after-panic actions
After making modifications téetc/sysconfig/kdump , run the following:

service kdump restart

kdump Command Line Interface
In addition to starting, stopping, restarting aalbading the&kdump service, othekdump
commands query the system and facilitate debugginfjguration problems.
Thekdump service takes arguments in the following form:
service kdump arg
wherearg includes:

help displays a brief description of the arguments

start reloads the crash kernel if configured properliigotvise executes
the configured crashkernel routine if the crasmkkis running

stop cleans up and unloads the crash kernel

12-4

Kernel Debugging

restart or callsstop thenstart

reload

config displays the current valikdump configuration values set in
letc/sysconfig/kdump after initialization

on enables the start/stop/restart/reload actions

off disables the start/stop/restart/reload actions

echo displays a “dry run” echo of the crash kerkekec string

stat displays the readiness of the kernel fkdump start/stop/

restart/reload actions plus system information theltides archi-
tecture, kernel name, uptime, current runlevelteysRAM,
parsedproc/cmdline , kexec build options, the readiness of
the system ti&exec the crashkernel, nmi button dump response
and active sysrq and panic triggers.

status displays the on/off status kflump and when it starts during boot.
For example:

With AcTivE=1 andLATE=0 (starts fronrc.sysinit):

service kdump status
kdump rc.con O.off 1.off 2:.off 3:off
4.0ff 5.off 6:.0ff 2695

With AcTivE=1 andLATE=1 (starts as a hormal service):

service kdump status
kdump rc.off 0:off 1:on 2:on 30n
4:0n 5.on 6.off 2695

Note that the two numbers at the end of the statasndicate the
start and stop priorities as useddhkconfig(8) . The start
priority is “26” and the stop priority is “95”.

files displays the crash file save directory locatiofe 8ystem, total
size, size of individual dumps and statistics oraldile system
usage.

setup set up scp server for password free scp save option

Using crash to Analyze the Dump

Crash can be run on a dump file or on a live syst@rash(8) commands consist of
common kernel core analysis tools such as keraekdtack traces of all processes, source
code disassembly, formatted kernel structure anidbia displays, virtual memory data,
dumps of linked-lists, etc., along with several coamds that delve deeper into specific
kernel subsystems. Relevagdb commands may also be entered, which in turn are
passed on to thgdb module for execution.

Analyzing a Dump File
To runcrash on a dump file, at least two arguments are reduire

* The kernel object filename, referred to as the é&enamelist This file is
namedvmlinux and is copied to thixdump/ date-time

12-5

RedHawk Linux User's Guide

* The dump file namedmcore .

In the event of a kernel panic, invokeash as shown below. The arguments can be
supplied in any order.

cd /kdump/ date-time

pwd

/kdump/02-27-08.0711.04

Is

config.gz vmcore.gz vmlinux.gz If the files are compressed,
gunzip * unzip them before usingash

crash vmlinux vmcore

KERNEL: vmlinux

DUMPFILE: vmcore

CPUS: 4

DATE: Tue Feb 27 07:11:04 2008

UPTIME: 00:02:34

LOAD AVERAGE: 0.12, 0.59, 0.46

TASKS: 85

NODENAME: ihawk

RELEASE: 2.6.26.6-RedHawk-5.2-trace
VERSION: #1 SMP PREEMPT Tue Feb 13 14:25:24 EST 200 8
MACHINE: i686 (3046 Mhz)

MEMORY: 1 GB

PANIC: "SysRq : Trigger a crashdump"

PID: 4236

COMMAND: "crashme"

TASK: f787acd0 [THREAD_INFO: f5582000]
CPU: SysRq : Trigger a crashdump

STATE: TASK_RUNNING (SYSRQ)

crash>

12-6

Analyzing a Live System

Getting Help

Kernel Debugging

To runcrash on a live system, specify no argume@gash searches for themlinux

file and opengdev/imem as the memory image:
crash

KERNEL: /boot/vmlinux-2.6.26.6-RedHawk-5.2-trace
DUMPFILE: /dev/imem

CPUS: 16

DATE: Tue Feb 27 15:32:45 2008

UPTIME: 1 days, 06:36:30

LOAD AVERAGE: 0.45, 1.06, 0.96

TASKS: 258

NODENAME: ihawk

RELEASE: 2.6.26.6-RedHawk-5.2-trace

VERSION: #1 SMP PREEMPT Tue Feb 20 18:11:17 EST 200
MACHINE: i686 (2660 Mhz)

MEMORY: 4 GB

PID: 32078

COMMAND: “crash"

TASK: f7aac0b0 [THREAD_INFO: e6e64000]

CPU: 8

STATE: TASK_RUNNING (ACTIVE)

crash>

Online help forcrash is available through the following actions:

* Specifyhelp at thecrash> prompt to display a list of crash commands,

each with a link to display the help page on tlehmand.

¢ Specifycrash -h at the system prompt to display a full help scriésting

all available options.

¢ Specifycrash -h [opf at the system prompt to view the help page on the

command specified bgpt

More information aboutrash(8) is available on the man page and at the followief

site: http://people.redhat.com/anderson/crash_whitepages.html.

12-7

http://people.redhat.com/anderson/crash_whitepaper/index.html

RedHawk Linux User's Guide

Kernel Debuggers

kdb

NMI Interrupts

12-8

The Linux kernel debuggekdb, is provided in the pre-built RedHawk “debug” kel

Thekdb debugger allows the programmer to interactivelgraine kernel memory,
disassemble kernel functions, set breakpointserk#rnel code and display and modify
register contents.

kdb is configured by default in the RedHawk debug kékdb is automatically invoked
upon system panic, if thRAUSE key is pressed d€TRL-A is entered on the serial
console.

While kdb does have some support for USB keyboards, ituisdoot to be reliable and is
not supported in the RedHawk debug kernel. On systeith a USB keyboard, it is

recommended that a serial console be configurekdbdused over the serial port. See
Appendix H for instructions for setting up the skdansole.

On systems having an NMI button, a debug kernelbeaoconfigured that allows pressing
the NMI button to entekdb and take a crash dump when exiting (see the setitim|
Button” below). Thekdump command tkdb can also be used to requesidamp crash
dump.

Thekdb=off boot command disables entry irkdb . Thekdb=early boot command
makes the kernel entkdb early in the boot process.

Information about usindgdb is beyond the scope of this document. Refer to
documentation atkernel-sourcBbocumentation/kdb

The Linux NMI watchdog feature generates “watchdddVll interrupts. NMlIs (non-
maskable interrupts) execute even if the systelocieed up hard. By executing periodic
NMI interrupts, the kernel can monitor whether &®RU has locked up and prints out
debugging messages if it has.

Enabling NMI watchdog support is done with tirei_watchdog= N boot command line
parameternmi_watchdog=0 disables NMI watchdog interrupts. WhBIn= 1, each
CPU performs its own NMI timing (currently this 8e§ does not work and is changed to
=2); whenN = 2, generated NMIs are sent to all CPUs via a broadca
nmi_watchdog=-1 can be used on x86_64 kernels, which lets theckeselect the
mode (1 or 2).

By default, nmi_watchdog is turned on in the RedHadebug kernels
(nmi_watchdog=2 for i386; nmi_watchdog=-1 for x86_64) and turned off in all
other RedHawk kernels.

NMI Button

Kernel Debugging

More information about the NMI watchdog feature denfound af kernel-sourcé
Documentation/nmi_watchdog.txt

Some systems have an NMI button. By default, itsdo@t function. The problem lies in
the fact that an NMI cannot be determined to beréiselt of pressing the NMI button or
the periodic NMI watchdog.

In order to have the NMI button do something usetieé NMI watchdog must be
disabled. This is accomplished via thmi_watchdog=0 boot command. This will
causekdb to be entered when the button is pressed.Kteekdump command can be
used to capture a crash dump if this is desired.

Using thenmi_dump boot command will also triggerka@ump crash dump to be captured
(when the system is properly configured and then&khas been loaded). See “How a
Crash Dump is Created” on page 12-2.

12-9

RedHawk Linux User's Guide

12-10

13
Pluggable Authentication Modules (PAM)

This chapter discusses the PAM facility that pradda secure and appropriate
authentication scheme accomplished through a lbo&rfunctions that an application
may use to request that a user be authenticated.

Introduction

PAM, which stands for Pluggable Authentication Mzl is a way of allowing the
system administrator to set authentication policdyhwut having to recompile
authentication programs. With PAM, you control httve modules are plugged into the
programs by editing a configuration file.

Most users will never need to touch this configimafile. When you usepm(8) to
install programs that require authentication, taeiomatically make the changes that are
needed to do normal password authentication. Hosvgea may want to customize your
configuration, in which case you must understamdcibnfiguration file.

PAM Modules

There are four types of modules defined by the PAdhdard. These are:

auth provides the actual authentication, perhaps astongnd
checking a password, and they set “credentialshag
group membership

account checks to make sure that the authentication csvelll (the
account has not expired, the user is allowed tdriagt this
time of day, and so on)

password used to set passwords

session used once a user has been authenticated to &éowtb use
their account, perhaps mounting the user's honeeidiry
or making their mailbox available

These modules may be stacked, so that multiple teedare used. For instanetggin
normally makes use of at least two authenticatiathmds: ifrhostsauthentication
succeeds, it is sufficient to allow the connectidnt fails, then standard password
authentication is done.

New modules can be added at any time, and PAM-aagpkcations can then be made to
use them.

13-1

RedHawk Linux User's Guide

Services

Each program using PAM defines its own “serviceinea Thelogin program defines
the service typéogin, ftpd defines the service tygp, and so on. In general, the service
type is the name of the program used to accessetlvice, not (if there is a difference) the
program used to provide the service.

Role-Based Access Control

13-2

Role-Based Access Control for RedHawk Linux is iempénted using PAM. In the Role-
Based Access Control scheme, you set up a seriesobés in the

capability.conf(5) file. A role is defined as a set of valid Linuxpedoilities. The
current set of all valid Linux capabilities can fiund in the/usr/include/
linux/capability.h kernel header file or by using theap_names[] string

array. They are described in greater detail in AylpeC.

Roles can act as building blocks in that once yaxetdefined a role, it can be used as one
of the capabilities of a subsequent role. In thég/sthe newly defined role inherits the
capabilities of the previously defined role. Exaagpbf this feature are given below. See
the capability.conf(5) man page for more information.

Once you have defined a role, it can be assigned tser or a group in the
capability.conf(5) file. A user is a standard Linux user login nathat
corresponds to a valid user with a login on theentr system. A group is a standard
Linux group name that corresponds to a valid grbefined on the current system.

Files in/etc/pam.d correspond to a service that a user can use tmtoghe system.
These files need to be modified to includeean_capability session line (examples of
addingpam_capability session lines to service files are given in thadi@ples”
section below). For example: thetc/pam.d/login file (fetc/pam.d/remote if

it exists) is a good candidate as it covers logimtelnet. If a user logs into the system
using a service that has not been modified, noiabeapability assignment takes place.

NOTE: If capabilities are used, thetc/pam.d/su file should be modified as a
security precaution to ensure that an invocatiarhsassu -l nobody daemonwill
impart todaemononly the capabilities listed for useobody , and will not impart any
extra capabilities from the invoking user.

The following options can be specified when supmy@pam_capability session line
to a file in/etc/pam.d

conf=conf_file specify the location of the configuration file.tHis option is not
specified then the default location will be
[etc/security/capability.conf

debug Log debug information viayslog . The debug information is
logged in thesyslog authprivclass. Generally, this log
information is collected in thivar/log/secure file.

Pluggable Authentication Modules (PAM)

Examples

The following examples illustrate adding sessiare$ to/etc/pam.d/login . Also
make these changes/&ic/pam.d/remote if it exists.

NOTE: The path to the PAM files on i386 systemdigsecurity
The path on x86_64 systemglis64/security

1. To allow the roles defined in tthetc/security/capability.conf
file to be assigned to users who login to the aystéa telnet(1)
append the following line t&etc/pam.d/login

session required /lib/security/pam_capability.so

2. To allow the roles defined in tifetc/security/capability.conf
file to be assigned to users who login to the systessh(l) append the
following line to/etc/pam.d/sshd

session required /lib/security/pam_capability.so

3. To allow roles defined in thietc/security/capability.conf
file to be assigned to substituted userssugl) , and to ensure that those
substituted users do not inherit inappropriate bditias from the invoker
of su(1) , append the following line t@etc/pam.d/su

session required /lib/security/pam_capability.so

4. To havessh users get their role definitions from a different
capability.conf file than the one located iIetc/security
append the following lines tetc/pam.d/sshd

session required /lib/security/pam_capability.so \
conf=/root/ssh-capability.conf

Thus, the roles defined in thHeoot/ssh-capability.conf file will be
applied to users logging in v&sh .

Defining Capabilities

The capability.conf file provides information about the roles that dendefined
and assigned to users and groups. The file hae thipes of entries: Roles, Users and
Groups.

Roles A role is a defined set of valid Linux capabilitidhe current set
of all valid Linux capabilities can be found in the
{usrfinclude/linux/capability.h kernel header file or
by using the cap_names[] string array described in the
cap_from_text(3) man page. The capabilities are also

described in full detail in Appendix C. In additiaime following
capability keywords are pre-defined:

13-3

RedHawk Linux User's Guide

Users

Groups

Examples

all all capabilities (exceptap_setcap)
cap_fs_mask all file system-related capabilities
none no capabilities whatsoever

As the name implies, it is expected that differesles will be
defined, based on the duties that various systearsand groups
need to perform.

The format of a role entry in theapability.conf file is:
role rolename capability_list

Entries in the capability list can reference pregiy defined
roles. For example, you can define a role catlasicin the file
and then add this role as one of your capabilitigke capability
list of a subsequent role. Note that the capéapiist is a
whitespace or comma separated list of capabilthes will be
turned on in the user's inheritable set.

A user is a standard Linux user login name thatesmonds to a
valid user with a login on the current system. Usdries that do
not correspond to valid users on the current sygtarified by
getpwnam(3)) are ignored.

The format of a user entry in tleapability.conf file is:
user username rolename

The special username *' can be used to assigtiaaltleole for
users that do not match any listed users or havebeeship in a
listed group:

user * default_rolename

A group is a standard Linux group name that coordp to a
valid group defined on the current system. Groupienthat do
not correspond to valid groups on the current syteerified by
getgrnam(3)) are ignored.

The format of a group entry in tleapability.conf file is:

group groupname rolename

1. The following example sets up an administratiot r@dmin) that is
roughly equivalent to root:

admin all

2. The following example sets up a desktop usertr@eadds sys_boot and
sys_time to the inheritable capability set:

13-4

desktopuser cap_sys_boot \
cap_sys_time

Pluggable Authentication Modules (PAM)

3. The following example sets up a poweruser uder using the desktop
user role created previously:

role poweruser desktopusen
cap_sys_ptrace\
cap_sys_nice\
cap_net_admin

4. To assign thdesktopuser role to a user, enter the following in the
USERS section of theapability.conf file:

user joe desktopuser

5. To assign thepoweruser role to a group, enter the following in the
GROUPS section of theapability.conf file:

group hackers poweruser

Implementation Details

The following items address requirements for fuliplementation of the PAM
functionality:

¢ Pam_capability requires that the running kernel be modified toekit
capabilities across thexec() system call. Kernels that have been patched
with the kernel patch shipped with this module earable capability
inheritance using theVHERIT_CAPS_ACROSS_EXE@onfiguration option
accessible unddeneral Setup on the Kernel Configuration GUI (refer to
the “Configuring and Building the Kernel” chaptef this guide). All
RedHawk Linux kernels have this option enabled &fadit.

* In order to use thepam_capability feature with ssh, the
letc/ssh/sshd_config file must have the following option set:

UsePrivilegeSeparation no

13-5

RedHawk Linux User's Guide

13-6

14
Device Drivers

This chapter addresses issues relating to uselrdedekernel-level device drivers under
RedHawk Linux. It includes information about addedctionality that facilitates writing
device drivers as well as real-time performancedssPrior knowledge of how to write
Linux-based device drivers is assumed. Usersp&c@JlO) drivers are also described.

Information about RedHawk support for a PCI-to-VMEdge device can be found in
Chapter 15, “PCI-to-VME Support.”

Understanding Device Driver Types

It is possible to write simple user-level devicevdrs under RedHawk Linux. A user-level

driver can access /O space to read and write aexégisters, thus initiating a

programmed 1/O operation. With the assistance sifedetal kernel driver, a user-level

driver can also initiate actions upon receipt ofieterrupt. This is accomplished by

supporting functions which allow a signal handtethie user-level driver to be attached to
the interrupt routine. Refer to the section “Ker8kEleton Driver” later in this chapter for

the location of a sample kernel driver templateHandling an interrupt and sending a
signal to a user-level process.

It is not practical to write a user-level driverian does DMA I/O operations under Linux.
There are several problems that prohibit DMA ogderat from user-level; for example,
there is currently no supported method for detemgrhe physical address of a user
space buffer. Kernel-level device drivers shouldibed for devices that utilize DMA for
I/O operations.

Userspace 1/0 (UIO) can be used to write user-ldegice drivers for any number of I/O
boards. UIO requires a small per-device kernel neduith the main part of the driver
written in user space, utilizing the tools and éiies commonly used for userspace
applications. Refer to “Userspace 1/O Drivers (UIG) page 14-15.

Developing User-level Device Drivers

The sections that follow describe particulars ef RedHawk Linux operating system that
affect writing user-level device drivers.

Accessing PCI Resources

During the boot process, devices on the PCI busuatematically configured, have their
interrupts assigned and have their registers maispednemory regions where the device
registers can be accessed via memory-mapped |/@tapes. These memory regions are
known as base address registers (BARS). A devicdase up to six BARs. The content
of the BARs vary depending upon the device. Conthdtdevice’s manual for this
information.

14-1

RedHawk Linux User's Guide

PCI BAR Interfaces

14-2

RedHawk Linux supports a PCI resource file systeocated in/proc/bus that
simplifies the code needed to map the registeessREI device. This file system provides
BAR files representing memory regions that can lagped into the address space of a
program, providing access to the device withoutilgto know the physical address
associated with the device. The PCI BAR file systdso provides aonfig-spacdile
which can be used to read and write to the devie€kconfig space. The first 64 bytes of
the config-spacdile are defined by the PCI specification. The aéning 192 bytes are
device vendor-specific.

Each PCI hardware device has associated with éraldt ID and Device ID. These are
fixed values that do not change over time or betwggstems. Because of the dynamic
configuration of PCI devices at boot time, the damaus, slot and function numbers
remain fixed once the system is booted, but may Batween systems depending on the
underlying hardware, even for boards that appebetplugged into the same PCI bus slot
in each system. Paths within thgroc/bus/pci and BAR file systems are derived
from the domain, bus, slot and function numbergyassl by the kernel, and are affected
by the physical hardware layout of the host sys&hanges, such as physically plugging
a board into a different slot, adding a deviceh® system or modifications to the system
BIOS can change the bus and/or slot number assigreegarticular device.

The PCI BAR scan interfaces described below offereahod for finding the bar file
associated with a particular device. Without thiederfaces, the hardware-dependent
nature of these BAR file paths makes the task ofjramming user-level device drivers
somewhat inconvenient, because the driver hastaddhe slot address of the appropriate
device in order to obtain access to its BAR files.

Using the library interface for the BAR file systemnd the fixed vendor ID and device ID
values, the other values currently associated thi#hPCI devices can be obtained. These
include the BAR file directory path for the deviag well as information about each BAR
file in that directory. It also returns IDs for \a@or, device, class, subclass, IRQ number (if
assigned), and domain, bus, slot and function nusnte¢ated to each device.

This support is enabled by default in all RedHawk-puilt kernels through the
PROC_PCI_BARMAPKkernel parameter, which is located unBers options on the Kernel
Configuration GUI.

The sections that follow explain the PCI BAR ingaxés.

The library scan functions are iterative. If thest®m has more than one instance of the
desired device type, these library functions mestélled multiple times. One function is
provided that returns the count of all matchingides in the system. Other functions will
iteratively return information for devices that mhtthe search criteria. Device
information is returned in thbar_context type defined inusr/include/

pcibar.h . This structure is created with a calbar_scan_open . Multiple scans can
be active concurrently, each having a uniae _context

The interfaces are briefly described as follows:

bar_scan_open starts a new scan of PCI devices

bar_scan_next obtains the next matching PCI device

bar_device_count returns the number of matching devices remaininghe
active scan

bar_scan_open(3)

bar_scan_next(3)

Device Drivers

bar_scan_rewind restarts a scan

bar_scan_close closes the active scan and frees associated memory
free_pci_device frees all allocated memory associated with a latdtvice
bar_mmap mmays the BAR file with proper page alignment
bar_munmap munmagps thebar_mmap’d BAR file

Note that to use these interfaces, you must link ypplication with thdibccur_rt
library:

gcc [optiong file -lccur_rt

An example illustrating the use of these functiemprovided agusr/share/doc/
ccur/examples/pci_barscan.c

This function is used to create the initial contiexta search of PCI devices. The returned

bar_context is an opaque pointer type definedsr/include/pcibar.h that
designates state data for the iterator interfatesalue must be provided to subsequent
calls tobar_scan_next , bar_device_count , bar_scan_rewind and

bar_scan_close
Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

bar_context bar_scan_open(int vendor _id int device _id;
Arguments are defined as follows:

vendor_id a vendor identification value defined ifusr/include/
linux/pci_ids.h . or the special valueNY_VENDOR.
ANY_VENDOR matches alendor_idvalues for all devices on the
host system.

device_id a device identification value defined ifusr/include/
linux/pci_ids.h . or the special valueNY_DEVICE.
ANY_DEVICE matches alllevice_idvalues for all devices on the
host system.

Refer to the man page for error conditions.

This function returns a pointer tos&ruct pci_device object for the next matching
PCI device found.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

struct pci_device * bar_scan_next(bar_context ctX);

The argument is defined as follows:

14-3

RedHawk Linux User's Guide

bar_device_count(3)

bar_scan_rewind(3)

bar_scan_close(3)

14-4

Cctx an activebar_context returned bybar_scan_open

When no further matching devices are availabls, filmction returnsiiL_pci_beviCE and
setserrnoto zero. Refer to the man page for error condétion

This function returns the number of unprocessedadsvremaining in an active scan.
When called immediately after a callhar_scan_open orbar_scan_rewind , this

is the total number of matching devices for thecsped vendor_idanddevice_id This
value is reduced by 1 upon each calbén_scan_next

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

int bar_device_count(bar_context ctx);
The argument is defined as follows:
ctx an activebar_context returned bybar_scan_open

On success, this function returns a non-negatiwventof the number of unreported
devices that would be returned by subsequent tmlber_scan_next . Refer to the
man page for error conditions.

This function resets the specifibdr_context to the state it was in immediately after
the initial call tobar_scan_open

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void bar_scan_rewind(bar_context ctx);
The argument is defined as follows:

ctx an activebar_context returned bybar_scan_open . If the value is
NIL_BAR_CONTEXT or does not designate a validr_context object, this
call has no effect.

This function frees all allocated memory associatétl the designatebar context
The valueNiL_BAR_CONTEXT is assigned to thigar_context object and may no longer
be used after this call.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void bar_scan_close(bar_context ctx);

free_pci_device(3)

bar_mmap(3)

bar_munmap(3)

Device Drivers

The argument is defined as follows:

ctx an activebar_context returned bybar_scan_open

This function releases all allocated memory asgediavith the designatestruct
pci_device object.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void free_pci_device(struct pci_device * dev);
The argument is defined as follows:

dev a validstruct pci_device obtained fronbar_scan_next

This function can be used to map the specified Bi#dRinto memory. It is a wrapper
aroundmmap(2) that aligns small BAR files at the start of the apted BAR data rather
than the beginning of the area that is mmap’ed. hisemunmap(3) to unmap files

mapped using this function.

Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

void * bar_mmap(char * barfilepath void * start, size t length int
protint flagsint fd, off t offsey;

The arguments are defined as follows:
barfilepath the path of the BAR file to be mmap’ed

Refer tommap(2) for a description of the other parameters.

This function must be used to unmap files thatnaapped usintpar_mmap(3) .
Synopsis

#include <linux/pci_ids.h>
#include <pcibar.h>

int bar_munmap(void * start, size t length;

Refer tomunmap(2) for a description of the parameters.

14-5

RedHawk Linux User's Guide

Kernel Skeleton Driver

When a device issues interrupts that must be haniojethe device driver, it is not
possible to build the device driver completely s¢mulevel because Linux has no method
for attaching a user-level routine to an interrdpis however possible to build a simple
kernel device driver that handles the device iofgrand issues a signal to the user-level
application that is running a user-level driver.ddese signals are delivered
asynchronously to the execution of a program améuee signals can be blocked during
critical sections of code — a signal acts much éikeser-level interrupt.

The following example of a skeletal kernel-levalidr shows how to attach a signal to the
occurrence of a device interrupt and the codeterimterrupt service routine which will
then trigger the signal. The full code for thisIskal driver can be found on a RedHawk
installed system in the directofysr/share/doc/ccur/examples/driver . You
can use the sample driveample_mod , as a template for writing a simple kernel-level
driver that handles an interrupt and sends a sigraluser-level process.

Understanding the Sample Driver Functionality

14-6

The sample driver uses real time clock (rtc) thashiardware device that will generate the
interrupts. Rtc 0 is one of the real-time clocks@mncurrent’s Real-Time Clock and
Interrupt Module (RCIM). The clock counts down tatla predefined resolution and then
starts over. Each time the count reaches 0, arrupteis generated. Some of the setup for
real time clock O is performed in the module’s tinbutine where the device registers are
mapped into memory space so that the driver magsacithose registers. The last section
of code shown for the module’s “init” routine isethode that attaches the interrupt routine
to an interrupt vector.

*

int sample_mod_init_module(void)

{

/I find rcim board (look for RCIM I, RCIM |, and f inally RCIM | old rev)

dev = pci_find_device(PCI_VENDOR_ID_CONCURR ENT, PCI_DEVICE_ID_RCIM_lI,dev);
if (dev == NULL) { [itry another id
dev = pci_find_device(PCI_VENDOR_| D_CONCURRENT_OLD, PCI_DEVICE_ID_RCIM, dev);
}
if (dev == NULL) { [ftry another id
dev = pci_find_device(PCI_VENDOR_| D_CONCURRENT_OLD, PCI_DEVICE_ID_RCIM_OLD, dev);
}
if (dev == NULL) { /Ino rcim bo ard, just clean up and exit
unregister_chrdev(major_num,"sample _mod");

return -ENODEV;

if ((bd_regs = ioremap_nocache(plx_mem_base, plx_me m_size)) == NULL)
return -ENOMEM,;

if ((bd_rcim_regs = ioremap_nocache(rcim_mem_base, rcim_mem_size)) == NULL)
return -ENOMEM,;

sample_mod_irq = dev->irq;
res = request_irq(sample_mod_irqg, rcim_intr, SA_SHI RQ, "sample_mod", &rtc_info);

Device Drivers

The complete initialization of the rtc 0 devicepsrformed in the module’s “open”

method. For this example, the device is automdticsdt up so that interrupts will be
generated by the device. When the device is openttyupts associated with rtc 0 are
enabled, the device is programmed to count from000@ O with a resolution of 1

microsecond, and the clock starts counting. It gates an interrupt when the count
reaches 0.

kkkkkkkkkkkkkkkkkkkkkkkkkk
int rcim_rtc_open(struct inode *inode, struct file *ilep)

{

u_int32_t val;

if (rtc_info.nopens > 0) {
printk(KERN_ERR “You can only open the device once. \n”);
return -ENXIO;
}
rtc_info.nopens++;
if (Irtc_info.flag)
return -ENXIO;
writel(0, &bd_rcim_regs->request);
writel(ALL_INT_MASK, &bd_rcim_regs->clear);
writel RCIM_REG_RTCO, &bd_rcim_regs->arm);
writel RCIM_REG_RTCO, &bd_rcim_regs->enable);
writel RTC_TESTVAL, &bd_rcim_regs->rtcO_timer);//rt c data reg
val = RCIM_RTC_1MICRO | RCIM_RTC_START|RCIM_RTC_REP EAT,;
writel(val, &bd_rcim_regs->rtcO_control);
return O;

Sk ok dkkdkkdkok ok dekokdeok

The user-level driver must specify which signal sldobe sent when the kernel-level
driver receives an interrupt. The user-level drieakes anoctl() call, which is
handled by the kernel-level driver’s ioctl methadhen the user-level driver calls this
ioctl() function, it indicates to the kernel-level drivibat the user-level process has
already set up a signal handler for the specifigdad and the user-level driver is now
ready to receive a signal.

The calling user-space process specifies the sigmaber it wishes to receive from the
module. The driver remembers the process ID assakwith the requested signal number
by using the “current” structure. The “signal/presed” pair is stored in the module’s
rtc_info structure and will later be used by the “notifioat mechanism described
below.

FhEIFFIIFIFFIFFIIFIIHEK

int reim_rtc_ioctl(struct inode *inode, struct file *filep, unsigned int cmd,
unsigned long arg)
{
if (Irtc_info.flag)
return (-ENXIO);

switch (cmd)

/I Attach signal to the specified rtc interrupt

case RCIM_ATTACH_SIGNAL:
rtc_info.signal_num = (int)arg;
rtc_info.signal_pid = current->tgid;
break;

default:
return (-EINVAL);
}

return (0);

R e

14-7

RedHawk Linux User's Guide

14-8

The actual notification is implemented in the maaslinterrupt handler. When an
interrupt is received from rtc 0, this interrupt\dee routine determines whether to send a
signal to a process that has requested it. If tiseseregistered “process id/signal number”
pair in thertc_info structure, the specified signal is sent to theesponding process
using the functiorkill_proc()

int rcim_intr(int irg, void *dev_id, struct pt_regs *regs)

{

u_int32_tisr;

isr = readl(&bd_rcim_regs->request);
writel(0, &bd_rcim_regs->request);
writel(ALL_INT_MASK, &bd_rcim_regs->clear);

/* Use isr to determine whether the interrupt was g enerated by rtc 0 only if
“rcim” module is not built into the kernel. If “ rcim” is active, its
interrupt handler would have cleared “request” r egister by the time we
get here. */

/I if (isr & RCIM_REG_RTCO) {
/I Send signal to user process if requested
if (rtc_info.signal_num && rtc_info.signal_pid &&
(kill_proc(rtc_info.signal_pid, rtc_info.signal_num , 1) == -ESRCH))
{
rtc_info.signal_pid = 0;
}
I}

return IRQ_HANDLED;

When the device is closed, rtc 0 is shut down. dent value is reset to 0 and the clock is
stopped. The interrupt/signal attachment is clearethat no further signal will be sent if
further interrupts are received.

int rcim_rtc_close(struct inode *inode,struct file *ilep)
{
if (Irtc_info.flag)
return (-ENXIO);
rtc_info.nopens--;
if(rtc_info.nopens == 0) {
writel(~RCIM_RTC_START, &bd_rcim_re gs->rtc0_control);
writel(0, &bd_rcim_regs->rtcO_timer);
rtc_info.signal_num = 0;
rtc_info.signal_pid = 0;
}

return 0;

Testing the Driver

Device Drivers

The best way to test the sample kernel module utld the kernel without the RCIM
driver and then load the sample driver. Howevas, todule is designed to work with or
without the RCIM driver already built into the ketn

The RCIM kernel module and the sample kernel modhkre the same interrupt line.
When an interrupt occurs, RCIM’s interrupt handkeimvoked first and the hardware
interrupt register on the RCIM board is clearedeittthe sample module’s interrupt
handler is invoked.

If both modules are loaded, the second handlerfindl the interrupt register cleared and
if a check for “interrupt source” is performed, thaendler will assume that the interrupt
came from a device different from rtc 0. To overeothis obstacle, the following line in

the sample module’s interrupt handler has been camed out when both RCIM and the
sample module are loaded:

/I if (isr & RCIM_REG_RTCO){.

The code that follows is a simple user-level pragrehich demonstrates how a user-level
driver would attach a routine such that this roaitim called whenever the RCIM skeletal
driver’s interrupt fires. The routine “interrupt_rdler” is the routine which is called when
the RCIM’s rtc O interrupt fires. This program Erminated by typing Ctrl-C at the

terminal where the program is run. Note that thaimple code is also available in
Jusr/share/doc/ccur/examples/driver/usersample

In order to load the sample module and successfultythe user sample program, all
applications that use the RCIM driver should bertab

Below is theusersample program.

14-9

RedHawk Linux User's Guide

14-10

#include <stdio.h>
#include <fentl.h>
#include <signal.h>
#include <errno.h>

#include "sample_mod.h"

static const char *devname = "/dev/sample_mod";
static int nr_interrupts = 0;
static int quit = 0;

void interrupt_handler (int signum)

{

nr_interrupts++;

if ((nr_interrupts % 100) == 0) {
printf (".");
fflush(stdout);
}
if ((nr_interrupts % 1000) == 0)
printf (" %d interrupts\n“, nr_interrupts);

}

void ctrl_c_handler (int signum)
{
quit++;

}

int main()

{
int fd;
struct sigaction intr_sig = { .sa_handler = interru
struct sigaction ctrl_c_sig = { .sa_handler = ctrl_

sigaction (SIGUSR1, &intr_sig, NULL);
sigaction (SIGINT, &ctrl_c_sig, NULL);

if ((fd = open (devname, O_RDWR)) ==-1){
perror (“open");
exit(1);

}

if (ioctl (fd, RCIM_ATTACH_SIGNAL, SIGUSR1) == -1)

perror ("ioctl");
exit(1);
}

printf ("waiting for signals...\n");
while (! quit)
pause();

printf ("\nhandled %d interrupts\n", nr_interrupts)
close(fd);
exit(0);

pt_handler };
¢_handler };

Device Drivers

Developing Kernel-level Device Drivers

The sections that follow describe particulars & RedHawk Linuxoperating system that
affect writing and testing kernel-level device @is.

Building Driver Modules

Instructions for building driver modules for usdtweither a pre-existing RedHawk kernel
or a custom kernel are provided in Chapter 11, @aniing and Building the Kernel.

Kernel Virtual Address Space

There are some cases when the amount of kernelavisidddress space reserved for
dynamic mappings of the kernel support routimeslloc() andioremap() is not
enough to accommodate the requirements of a deVioe.default value, 128 MB, is
enough for all systems except those with 1/O boahda have very large onboard
memories which are to be ioremap’ed. An exampthasvMIC reflective memory board
installed on an iHawk system when it is populatétth 28 MB of memaory.

When 128 MB of reserved kernel virtual address spagiot enough, this value can be
increased via themALLOC_RESERVEtunable, which is located und8eneral Setup on
the Kernel Configuration GUI.

Real-Time Performance Issues

Interrupt Routines

A kernel-level device driver runs in kernel model am an extension of the kernel itself.

Device drivers therefore have the ability to infhge the real-time performance of the
system in the same way that any kernel code cactftal-time performance. The

sections that follow provide a high-level overvieivsome of the issues related to device
drivers and real-time.

It should be noted that while there are many opemce device drivers that are available
for Linux, these drivers have a wide range of dyassociated with them, especially in
regards to their suitability for a real-time system

The duration of an interrupt routine is very img@ont in a real-time system because an
interrupt routine cannot be preempted to executgla-priority task. Lengthy interrupt
routines directly affect the process dispatch leyeof the processes running on the CPU
to which the interrupt is assigned. The tqrracess dispatch latendenotes the time that
elapses from the occurrence of an external evdrithais signified by an interrupt, until
the process waiting for that external event execiigefirst instruction in user mode. For
more information on how interrupts affect proceispdtch latency, see the “Real-Time
Performance” chapter.

14-11

RedHawk Linux User's Guide

If you are using a device driver in a real-time gwotion environment, you should
minimize the amount of work performed at interrigtel. RedHawk Linux supports
several different mechanisms for deferring proaggshat should not be performed at
interrupt level. These mechanisms allow an interraptine to trigger processing that will
be performed in the context of a kernel daemon@gnam level. Because the priority of
these kernel daemons is configurable, it is possdolun high-priority real-time processes
at a priority level higher than the deferred intgtrprocessing. This allows a real-time
process to have higher priority than some actithigt might normally be run at interrupt
level. Using this mechanism, the execution of riémle tasks is not delayed by any
deferred interrupt activity. See the “Deferred mtgt Functions (Bottom Halves)”
section for more information about deferring intgts.

Generally, a device’s interrupt routine can intéracth the device to perform the
following types of tasks:

¢ acknowledge the interrupt
* save data received from the device for subsequamgfer to a user

* initiate a device operation that was waiting fomgdetion of the previous
operation

A device’s interrupt routine shouftbt perform the following types of tasks:

* copy data from one internal buffer to another
* allocate or replenish internal buffers for the devi

* replenish other resources used by the device

These types of tasks should be performed at prodeael via one of the deferred
interrupt mechanisms. You can, for example, deaidevice driver so that buffers for the
device are allocated at program level and mainthorea free list that is internal to the
driver. When a process performs read or write dfmrs, the driver checks the free list to
determine whether or not the number of buffers labdé is sufficient for incoming
interrupt traffic. The interrupt routine can thusoéd making calls to kernel buffer
allocation routines, which are very expensive imie of execution time. Should a device
run out of resources and only notice this at intptdevel, new resources should be
allocated as part of the deferred interrupt routatber than at interrupt level.

Deferred Interrupt Functions (Bottom Halves)

14-12

Linux supports several methods by which the executif a function can be deferred.

Instead of invoking the function directly, a “trigd is set that causes the function to be
invoked at a later time. These mechanisms, caltgtbim halves, are used by interrupt
routines under Linux in order to defer processhmg tvould otherwise have been done at
interrupt level. By removing this processing fromeirrupt level, the system can achieve
better interrupt response time as described above.

There are three choices for deferring interruptdtisys, tasklets and work queues.
Tasklets are built on softirgs and therefore theysimilar in how they operate. Work
gueues operate differently and are built on kettmelads. The decision over which bottom
half to use is important. Table 14-1 summarizedypes, which are explained at length in
the sections below.

Softirgs and Tasklets

Work Queues

Device Drivers

Table 14-1 Types of Bottom Halves

Bottom Half Type Context Serialization

Softirg Interrupt None

Tasklet Interrupt Against the same tasklet

Work queues Process None (scheduled as process context

Two mechanisms for deferring interrupt processiagehdifferent requirements in terms
of whether or not the code that is deferred mustdantrant or not. These types of
deferrable functions are softirqs and taskletsoftirg must be completely reentrant
because a single instance of a softirg can exemutaultiple CPUs at the same time.
Taskletsare implemented as a special type of softirg. difference is that a given tasklet
function will always be serialized with respecitself. In other words, no two CPUs will
ever execute the same tasklet code at the sameTtimseproperty allows a simpler coding
style in a device driver, since the code in a taiskbes not have to be reentrant with
respect to itself.

In standard Linux, softirqs and tasklets are ugualecuted from interrupt context
immediately after interrupt handlers transitionrfronterrupt to program level.
Occasionally, standard Linux will defer softirq atatklets to a kernel daemon. Both
methods allow softirgs and tasklets to execute wthrrupts enabled; however, because
they are usually executed from interrupt contesttig)s and tasklets cannot sleep.

RedHawk has been enhanced with an option (thah isyodefault) to guarantee that
softirgs and tasklets are only executed in theeodrdf a kernel daemon. The priority and
scheduling policy of these kernel daemons can beiad&ernel configuration parameters.
This allows the system to be configured such thhigh-priority real-time task can
preempt the activity of deferred interrupt funcson

Softirgs and tasklets are both run by kiseftirqd daemon. There is oneoftirqd
daemon per logical CPU. A softirq or tasklet willnron the CPU that triggered its
execution. Therefore, if a hard interrupt has iffsnéty set to a specific CPU, the
corresponding softirg or tasklet will also run dat CPU. The priority of thksoftirqd

is determined by theoFTIRQ_PRIandSOFTIRQ_PREEMPT_BLOCKernel tunables, which
are located unddseneral Setup on the Kernel Configuration GUI. WheIDFTIRQ_PRIiS
set to a positive number, that number is the gsiaat whichksoftirqd will run. By
default, this tunable is set to zero, and the rsgttif SOFTIRQ_PREEMPT_BLOCHKffects the
daemon’s priority. When set to Y, thesoftirqd daemon will run as under the
SCHED_FIFOoscheduling policy at a priority of one less thaa highest real-time priority.
When set to N, thksoftirqd daemon will run at priority zero.

Work queuesire another deferred execution mechanism. Unlkikgrgs and tasklets,
standard Linux always processes work queues ipiiheess context of kernel daemons
and therefore the code in a work queue is alloweslgep.

The kernel daemons that process work queues desl cabrker threads. Worker threads
are always created as a gang of threads, one péy @i each thread bound to a single
CPU. Work on the work queue is maintained per CRU ia processed by the worker
thread on that CPU.

14-13

RedHawk Linux User's Guide

Understanding Priorities

The kernel provides a default work queue that dswveay use. The worker threads that
process the default work queue are ca#lgdnts/ cpu wherecpuis the CPU that the
thread is bound to.

Optionally, drivers may create private work queaasl worker threads. This is
advantageous to the driver if the queued work pssor-intensive or performance
critical. It also lightens the load on the defautirker threads and prevents starving the
rest of the work on the default work queue.

Worker threads execute on a CPU when work is placettie work queue. Therefore, if a
hard interrupt has its affinity set to a specifielq and the interrupt handler queues work,
the corresponding worker thread will also run oatt@PU. Worker threads are always
created with a nice value of -10 but their prionityay be modified with theun(1)
command.

When configuring a system where real-time procesaagun at a higher priority than the
deferred interrupt daemons, it is important to wstend whether those real-time
processes depend upon the services offered byadmah. If a high-priority real-time

task is CPU bound at a level higher than a defeimetrupt daemon, it is possible to
starve the daemon so it is not receiving any CP&tetion time. If the real-time process
also depends upon the deferred interrupt daemdeadlock can result.

Multi-threading Issues

RedHawk Linux is built to support multiple CPUsdrsingle system. This means that all
kernel code and device drivers must be writtenrttget their data structures from being
modified simultaneously on more than one CPU. Tioegss of multi-threading a device
driver involves protecting accesses to data strastgo that all modifications to them are
serialized. In general this is accomplished in kitny using spin locks to protect these
kinds of data structure accesses.

Locking a spin lock will cause preemption and/deirupts to be disabled. In either case,
the worst case process dispatch latency for a psoerecuting on the CPU where these
features are disabled is directly impacted by homglthey are disabled. It is therefore

important when writing a device driver to minimittee length of time that spin locks are

held, which will affect the amount of time that gneption and/or interrupts are disabled.
Remember that locking a spin lock will implicithagse preemption or interrupts to be
disabled (depending upon which spin lock interfscased). For more information about

this topic, see the “Real-Time Performance” chapter

The Big Kernel Lock (BKL) and ioctl

14-14

The Big Kernel Lock (BKL) is a spin lock in the Lir kernel, which is used when a piece
of kernel source code has not been fine-grain Attuléaded. While much use of the BKL
has been removed by systematically multi-threattiegLinux kernel, the BKL is still the
most highly contended and longest held lock inLtimeix kernel.

By default, the Linux kernel will lock the BKL befe calling theioctl(2) function
associated with a device driver. If a device driganulti-threaded, then it is not necessary
to lock the BKL before callingpctl . RedHawk Linux allows a device driver to specify
that the BKL should not be locked before calliogtl . When a device is used to
support real-time functions or when an applicatinakes calls to a deviceisctl

Device Drivers

routine on a shielded CPU, it is very important tiwee device driver be modified so the
BKL is not locked. Otherwise, a process could stpihning on the BKL spin lock for an
extended period of time causing jitter to the pamgs and interrupts that are assigned to
the same CPU.

The mechanism for specifying that the BKL should loe locked on entry to a device’s

ioctl routine is to set theops_locTL_NoOBKLflag in thefile_operations structure
in the device driver source code. Below is an exarmphow the RCIM device sets this
flag:
static struct file_operations rcim_fops = {

owner: THIS_MODULE,

open: rcim_master_open,

release: rcim_master_release,

ioctl: rcim_master_ioctl,

mmap: rcim_master_mmap,

flags: FOPS_IOCTL_NOBKL,

3

After making this change, the device driver mustédauilt. For a static driver this means
rebuilding the entire kernel. For a dynamicallydable module, only that module must be
rebuilt. See the “Configuring and Building the Kefnchapter for more information.

Userspace 1/O Drivers (UIO)

UIO is a standardized method for writing user ledm@rers. This still requires a small per-
driver kernel module; however, the main part of dneer is written in user space, using
the tools and libraries you are familiar with.

Using UIO, you can take any standard PCI card aaklema simple userspace driver for
any desired purpose. These drivers are easy teimgit and test and they are isolated
from kernel version changes. Bugs in your drivenivarash the kernel and updates of
your driver can take place without recompiling Keenel.

Currently, UIO drivers can be used for char dedideers only and cannot be used to set
up DMA operations from user space.

The small per-driver kernel module is required to:
* match the device ID and vendor ID of the board
¢ perform low-level initializations
¢ acknowledge interrupts

Once you have a working kernel module for your hemek, you can write the userspace
driver using any of the tools and libraries normaled for writing user applications. The
Isuio(1) tool can be used to list UIO devices and theiitattes.

Each UIO device is accessed through a device/@ig/uio0 ,/dev/uiol , and so on.
Driver attributes used to read or write variableppaar under the
/sysl/class/uio/uio X directory. Memory regions are accessedmraap(l) .

Complete instructions for writing UIO device drivercan be found at
/usr/share/doc/ccur/examples/driver/uio/uio-howto.p df and are
beyond the scope of this chapter.

14-15

RedHawk Linux User's Guide

Example UIO kernel and user drivers for both Conent's RCIM board and a PMC-
16AI0 board are supplied atsr/share/doc/ccur/examples/driver/uio .
Both contain comments explaining what functionsdtieers perform.

RedHawk has UIO support enabled by default in ieslpuilt kernels through theio
kernel tunable, which is located undéserspace 1/O on the Kernel Configuration
GUL.

Analyzing Performance

14-16

NightTrace RT, a graphical analysis tool supplied®yncurrent, allows you to
graphically display information about important atein your application and in the
kernel, and can be used for identifying patternd anomalies in your application’s
behavior. The ability to interactively analyze tbede under varying conditions is
invaluable toward fine-tuning the real-time perfamee of your device driver.

The process of supplying trace points in user-leade, capturing trace data and
displaying the results is fully described in tRightTrace RT User’s Guidublication
number 0890398. User and kernel trace events céogbed and displayed for analysis.

Kernel tracing utilizes pre-defined kernel tracerts included in the trace and debug
kernels. User-defined events can be logged usiagitb-defineccusTom trace event or
created dynamically. All are displayed by NightTeaRT for analysis. Refer to
Appendix D for details about kernel trace events.

Overview

15
PCI-to-VME Support

This chapter describes RedHawk Linux support fBC&to-VMEDbus bridge.

A PCI-to-VMEbus adapter can be used to connectHlagvk PCl-based system with a
VMEDbus system. This allows transparent access 8ME memory space and interrupt
levels to control and respond to the VME card asigin it were plugged directly into the
iHawk PCI backplane.

RedHawk Linux includes support for the Model 618fi Model 620-3 PCIl-to-VMEbus
adapters from SBS Technologies. Using the adaptemory is shared between the two
systems. Two methods are utilized: memory mappntgRirect Memory Access (DMA).
Memory mapping supports bi-directional random asdass mastering from either
system. This allows programmed 1/O access to VMBRAM, dual-port memory and
VMEDbus I/O. On each system, a bus master can aooes®ry in the other system from a
window in its own address space. Mapping regisadosv PCI devices to access up to 32
MB of VMEbus address space and VMEbus devices¢eszcup to 16 MB of PCI space.

Two DMA techniques are supported: Controller Modd®and Slave Mode DMA.
Controller mode DMA provides high-speed data trarsfrom one system’s memory
directly into the other system’s memory. Data tfarsscan be initiated in both directions
by either processor at rates up to 35 MB per seaodup to 16 MB per transfer.

VMEDbus devices that have their own DMA controlleas use Slave Mode DMA instead
of Controller Mode DMA.. This allows a VMEbus DMA de to transfer data directly
into PCI memory at data rates in excess of 15 MBspeond.

The adapter consists of three parts: the PCI adaptd, the VMEbus adapter card and a
fiber optic cable.

The PCI adapter card self-configures at boot titheesponds to and generates A32
memory and 1/O accesses and supports D32, D16 8rdhia widths.

The VMEbus adapter card is configured via jump&he VMEbus adapter card responds
to and generates A32, A24, and A16 accesses apoisD32, D16, and D8 data widths.

Software support for the adapter includes the SB&ix Model 1003 PCI Adapter
Support Software Version 2.2, with modifications &xecution and optimization under
RedHawk Linux. The software includes a device drib&at can access dual-port and/or
remote memory space from an application, and examppigrams to help applications
programmers with adapter and system configuration.

15-1

RedHawk Linux User's Guide

Documentation

This chapter provides the information you will ngedconfigure and use this support
under RedHawk Linux.

For information beyond the scope of this chaptdfento the following documents that are
included with the RedHawk Linux documentation:

* SBS Technologies Model 618-3, 618-9U & 620-3 Adapteardware
Manual (sbs_hardware.pdj

* SBS Technologies 946 Solaris, 965 IRIX 6.5, 983ovils NT/2000, 993
VxWorks & 1003 Linux Support Software Man(sdds_software.pdf

Installing the Hardware

Unpacking

15-2

The adapter consists of three parts: the PCI adaptd, the VMEbus adapter card and a
fiber optic cable. Instructions for installing tleeare given below.

Normally, installation and configuration of the tasare is done by Concurrent Computer
Corporation. This information is provided for thaseses where a PCI-to-VME bridge is
added to a system in a post-manufacturing envirohme

When unpacking the equipment from the shipping @oet, refer to the packing list and
verify that all items are present. Save the packiraderial for storing and reshipping the
equipment.

NOTE

If the shipping container is damaged upon recegujiiest that the
carrier’'s agent be present during unpacking angeictson of the
equipment.

Before attempting to install the cards in your egstread the following:

CAUTION

Avoid touching areas of integrated circuitry agistdischarge can
damage circuits.

It is strongly recommended that you use an anitstatist strap
and a conductive foam pad when installing and réngpprinted
circuit boards.

PCI-to-VME Support

Configuring the Adapter Cards

There are no jumpers to configure on the PCI adajptel.

VME adapter card jumper configuration should taleee before the VME adapter card is
installed, or when the current settings of the VMg&hattributes that are controlled by the
VME adapter card jumpers need to be changed.

Refer to Chapter 10 of the SBS Technologies Hardwianual for information about
configuring the VMEbus adapter card. The followendditional information may prove
useful:

* The System Jumpers must be set appropriately, masadether this VME
adapter card is used as the system controlleroinlslor as a non-system
controller in some other VME slot.

* To make use of the bt _bind() buffer support or libeal memory device
support 8T_DEV_LM) that lets devices on the VMEbus access memory on
the iHawk system through VME slave windows, the REnREM-RAM HiI
and LO jumpers must be set up to indicate the VMEbase address and
range of the VME slave windows out on the VMEDbus.

The base address should be placed on a 16 MB boyradtal the size of this
area should typically be set to (but not exceedMB5in order to make use
of the total amount of area supported by the SB8wmre; for example, to
set up an A32 address range of 0OxC0000000 to OX@OM) the jumpers
should be configured to the settings below:

To set an A32 address range, the jumpers at tlierbaif the REM-RAM
should be set to:

A32 jumper IN
A24 jumper OUT

To specify a starting address of 0OxC0000000, tineagbLO address REM-
RAM jumpers should be set to:

31 and 30 jumpers OUT
All other LO jumpers IN (29 through 16)

To specify an ending address of 0xC1000000, theabi#l address REM-
RAM jumpers should be set to:

31, 30 and 24 jumpers OUT
All other HI jumpers IN (29-25, and 23-16)

15-3

RedHawk Linux User's Guide

Installing the PCI Adapter Card

Use the following procedure to install the PCI adajn your iHawk system:
Ensure that the iHawk system is powered down.

Locate a vacant PCI card slot in the chassissthgports a bus master.
Remove the metal plate that covers the cableagxite rear of the chassis.
Insert the PCI adapter card into the connector.

Fasten the adapter card in place with the mogrsiinew.

o g M w0 NP

Replace the cover.

Installing the VMEbus Adapter Card

NOTE

VMEDbus backplanes have jumpers to connect the ddiajned,
bus grant and interrupt acknowledge signals araumgsed card
locations. Make sure these jumpers are removed fhenslot in
which the adapter card will be installed.

1. Ensure that the VMEbus chassis is powered down.

2. Decide whether the VMEbus adapter card is théesyontroller. If the
VMEDbus adapter card is the system controller, istine installed in slot 1.

If the adapter card is not the system controlterate an unoccupied 6U slot in the
VMEDbus card cage for the adapter.

3. Insert the card into the connector of the setestet.

Connecting the Adapter Cable

NOTE

Keep the ends of the fiber-optic cable clean. Usehml-based
fiber-optic wipes to remove minor contaminants sashdust and
dirt.

Fiber-optic cables are made of glass: therefoe, thay break if
crushed or bent in a loop with less than a 2-iractius.

1. Ensure that the iHawk computer system and the bddEchassis are
powered off.

2. Remove the rubber boots on the fiber-optic traivges as well as the ones
on the fiber-optic cables. Be sure to replace thests when cables are not
in use.

15-4

PCI-to-VME Support

3. Plug one end of the fiber-optic cable into thel R&@apter card’s
transceiver.

4. Plug the other end of the fiber-optic cable itite VMEbus adapter card’s
transceiver.

5. Turn power on to both PCI and VMEDbus systems.

6. Ensure that the READY LEDs on both adapter carddit. They must be
on for the adapter to operate.

Installing the Software

The software is contained on an optional productdelvered with RedHawk Linux. It is
installed using thénstall-sbsvme installation script.

To install the software, perform the following ssep

1. With RedHawk Linux Version 2.1or later running tire iHawk system,
log in as root and take the system down to singk-mode:

a. Right click on the desktop and seldetw Terminal.
b. Atthe system prompt, typeit 1

2. Locate the disc labeled “RedHawk Linux PCI-to-VMEdge Software
Library” and insert it into the CD-ROM drive.

3. To mount the cdrom device, execute the followdgogymand:

NOTE: /media/cdrom is used in the examples that follow. Dependinthertype
of drive attached to your system, the actual mgeinit may differ. Check
[etc/fstab for the correct mount point.

mount /media/cdrom

4. To install, execute the following commands:

cd /media/cdrom
Jinstall-sbsvme

Follow the on-screen instructions until the ingtédin script completes.
5. When the installation completes, execute th@¥dlhg commands:

cd /
umount /media/cdrom
eject

6. Remove the disc from the CD-ROM drive and stBpét single-user mode
(Ctrl-D).

15-5

RedHawk Linux User's Guide

Configuration

The btp Module

The sections below discuss configuration of the mednder RedHawk Linux and other
attributes that can be established at systemlinéi#on.

The pre-defined RedHawk kernels have the SBS Tdobires PCI-to-VMEbus bridge
configured as a module by default. This can beh#éshif desired through thessvme
option under th®evice Drivers -> SBS VMEbus-to-PCIl Support subsection on
the Kernel Configuration GUI. The module is caltetp.”

Device Files and Module Parameter Specifications

15-6

The/dev/btp * device files are created at initialization Vc/init.d/sbsvme

The attributes for those files are definedett/sysconfig/sbsvme . In addition, the
following module parameter specifications can balenm this file. The default is no
parameters.

btp_major= num Specifies the major device numbau(i). By default, it is 0 (zero)
which allows the kernel to make the selection.dfiysupply a
nonzero device number, it must not already be ia. Ushe
/proc/devices file can be examined to determine which
devices are currently in use.

icbr_g_size= size Specifies the number of ICBR entriesiz@ to be allocated for the
interrupt queue. Once set, this value cannot bagdr without
unloading and reloading the btp driver. The defaaltue is 1 KB
of interrupt queue space.

Im_size= sizel, size2..
Specifies an array of local memomT(DEV_LM) sizes in bytes
with one for each SBS PCI-to-VME controller (unilesent in
the system. If this value is set to 0 (zero), looemory is
disabled for that specific unit only. The defaudlue is 64 KB of
local memory and the maximum value is 4 MB. Refethe
“Local Memory” section of this chapter for moreadnfation.

trace= flag_bits Specifies the device driver tracing level. Thisuged to control
which trace messages the btp driver displays. Tissiple bits to
use are theT_TRc xxx values located iusr/include/
btp/btngpci.h . Because tracing has an impact on
performance, this feature should be used only &rudging btp
driver problems. The default value is 0 (zero) far trace
messages.

The following are examples of btp module paramspercifications:

BTP_MOD_PARAMS="bt_major=200 trace=0xff Im_size=0’
BTP_MOD_PARAMS='icbr_q_size=0x1000 Im_size=0x8000,0 x4000’

PCI-to-VME Support

VMEbus Mappings

User Interface

Support for automatically creating and removing-REVMEbus mappings is included in
the /etc/init.d/sbsvme initialization script. When mappings are defined i
/etc/sysconfig/sbsvme-mappings , they are created during “/etc/init.d/sbsvme
start” processing and removed during the “stop’tpssing.

The /etc/sysconfig/sbsvme-mappings file contains help information and
commented-out templates for creating VMEbus mappiige template examples can be
used to create customized VMEbus mappings, if ddsifhe mappings are created by
writing values to thédproc/driver/btp/ unit'vme-mappings file, which is
explained as comments within thlesvme-mappings file and in the section “The /proc
File System Interface” later in this chapter.

By making use of thebsvme-mappings file to create PCI-to-VMEbus mappings
during system initialization, you may place addité lines in theletc/rc.d/

rc.local script to invokeshmconfig(1) to create globally-visible shared memory
areas that are bound to VMEbus space. A samplptssrprovided that illustrates this.

Refer to the “Example Applications” section for aiéd.

Some modifications to the standard support softweree been made for RedHawk
Linux. In addition to installation modificationde following have been added:

e Support for binding multiple buffers of various ez In a system with
multiple user-level device drivers, this capabil#hows each driver to
allocate its own bind buffer instead of having baue a single bind buffer
between multiple devices. This capability also nmetirat by allocating
multiple large bind buffers, the total 16 MB arefahardware-supported
VMEDbus slave window space may be utilized. See“Biad Buffer
Implementation” section for more information. Examprograms have
been added that demonstrate how to allocate ardirbirtiple buffers to
VMEDbus space (see the “Example Applications” sejtio

¢ Support for creating and removing VMEbus space nmgspthat are not
associated with a specific process, and obtaitiagtarting PCI bus address
location of that mapping to allow shared memorydbig. This can be
accomplished in one of two ways:

- using the bt_hw_map_vme/bt_hw_unmap_vme librargtions
- writing to the/proc/driver/btp file system

See the “Mapping and Binding to VMEbus Space” secfor more details.
Example programs demonstrate how to create, digpldyremove VMEbus
mappings using both methods (see the “Example Aatitins” section).

15-7

RedHawk Linux User's Guide

API Functions

Table 15-1 lists the API functions included in tiibtp library. The functions that have
been modified or added are noted and describdteisdctions that follow. The remaining
functions are described in the SBS Technologiesvaot Manual included with the
RedHawk Linux documentation.

Table 15-1 PCI-to-VME Library Functions

15-8

Function

Description

bt_str2dev
bt gen_name

bt_icbr_remove

Convert from string to logical device.
Generate the device name.

bp_open Open a logical device for access.

bt close Close the logical device.

bt_chkerr Check for errors on a unit.

bt_clrerr Clear errors on a unit.

bt_perror Print error message to stderr.

bt_strerror Create a string error message.

bt_init Initialize a unit.

bt read Read data from a logical device.

bt_write Write data to a logical device.

bt _get info Get device configuration settingSee Note 1 below
bt_set info Set device configuration setting3ee Note 1 below
bt_icbr_install Install an interrupt call back routine.

Remove an interrupt call back routine.

bt_lock Lock a unit.

bt_unlock Unlock a previously locked unit.

bt_mmap Create a memory mapped pointer into a logical @evic
bt_unmmap Unmap a memory mapped location.

bt_dev2str Convert from a logical device type to a string.

bt_ctrl Call directly into the driver 1/O control function.
bt_bind Bind application supplied bufferSee Note 1 below.
bt_unbind Unbind bound buffersSee Note 1 below.

bt _reg2str Convert register to string.

bt_cas Compare and swap atomic transactions.

(continued on next page)

Notes:

1 Multiple buffers of various sizes are supporteatigh these
functions; see the “Bind Buffer Implementation “sen.

2 This PCI-to-VME mapping/binding support is uniggeg the
“Mapping and Binding to VMEbus Space”section irstbhapter.

PCI-to-VME Support

Table 15-1 PCI-to-VME Library Functions (Continued)

Function Description

bt_tas Test and set atomic transaction.

bt _get io Read an adapter CSR register.

bt_put_io Write an adapter CSR register.

bt_or_io One shot a register.

bt reset Remotely reset the VMEDbus.

bt_send_irq Send an interrupt to the remote VMEDbus.

bt_status Return device status.

bt_hw_map_vme Create a PCI-to-VMEbus mappingee Note 2 below.

bt_hw_unmap_vme Remove a PCl-to-VMEbus mappingee Note 2 below.

Notes:

1 Multiple buffers of various sizes are supporteatigh these
functions; see the “Bind Buffer Implementation “sen.

2 This PCI-to-VME mapping/binding support is uniggeg the
“Mapping and Binding to VMEbus Space”section irstbhapter.

Bind Buffer Implementation

The RedHawk shsvme bind buffer support allows faitiple, different sized kernel bind
buffers to be allocated, bt mmap()ed and bt_bouted()MEbus space at the same time.
This section provides information about this bindfbr support, including how this
support differs from the documentation on bind etsfin the SBS Technologies Software
Manual.

Note that the only user interface difference betwde SBS documentation and the
RedHawk bind buffer implementation is in the usetlod ‘value’ parameter on the
bt_set_info()BT_INFO_KFREE_BUFcall, which is discussed below. All other useeifaces
are the same as shown in the SBS Technologies &eftanual.

bt_get_info BT_INFO_KMALLOC_BUF

Synopsis

bt_error_t bt_get_info(bt_desc_t btd, BT_INFO_KMALL OC_BUF,
bt_devdata_t *value_p)

Multiple bt_get_info()BT_INFO_KMALLOC_BUF command calls can be made to allocate
multiple kernel buffers, where each returned budiddress, which is stored at the value_p
parameter location, may then be used on subsedpiemimap() and bt_bind() calls in
order to mmap and bind this buffer to a locatiorttenVMEDbus.

BT_INFO_KMALLOC_BUF calls allocate a kernel bind buffer with a sizei@lgto the last
value set on the last successful bt_set_irdo()NFO_kmAaLLOC_SIz call. (If no such calls
have been made when tBie INFO_KMALLOC_BUF call is made, then the default size of 64
KB is used.)

15-9

RedHawk Linux User's Guide

Up toBT_KMALLOC_NBUFS (16) kernel buffers can be allocated at the same with the
BT_INFO_KMALLOC_BUF command. If there are already 16 bind bufferscated, this
BT_INFO_KMALLOC_BUF call fails and returns an error valueBsaf EINVAL.

Note that if a bt_set_info@T_INFO_KMALLOC_SIz call is used to set the bind buffer size to
zero, all subsequeBtr_INFO_KMALLOC_BUF calls return with an error value Bf_EINVAL
until a new bind buffer size is set to a non-zemue via a bt_set_info()
BT_INFO_KMALLOC_SIz call.

If the kernel is unable to allocate enough spaaeafoew kernel bind buffer, this
BT_INFO_KMALLOC_BUF call fails and returns an error valuesaf EINVAL.

bt_set_info BT _INFO_KMALLOC_SIZ

Synopsis

bt _error_t bt_set_info(bt_desc_t btd, BT_INFO_KMALL OC _Slz,
bt_devdata_t value)

When the bt_set_info@T_INFO_KMALLOC_SIz command is used to set a new bind buffer
size, the command only affects future bt_get inBx()INFO_KMALLOC_BUF command
calls. Any kernel bind buffers that have alreadgrballocated with different bind buffer
sizes are NOT affected by the new INFO_KMALLOC_Siz call.

In this way, different sized kernel bind buffersndae allocated by using a different
BT_INFO_KMALLOC_SIz 'value’ parameter after making one or more bt_getfo()
BT_INFO_KMALLOC_BUF calls.

It is encouraged, but not required, to use binddnidizes for the 'value’ parameter that
are a power of 2. Since the kernel bind buffercdtmn is rounded up to a power of 2,
specifying and using a power of 2 'value’ parametdue eliminates unused sections of
the allocated kernel bind buffers. Note that théahdefault value for the kernel bind
buffer size is 64 KB.

Typically, the maximum size kernel bind buffer tlzain be successfully allocated on a
subsequent bt_get_infafy_INFO_kMALLOC_BUF call is 4 MB. However, depending upon
the amount of physical memory on the system andther uses of system memory, it
may not always be possible to successfully alloeadeMB kernel bind buffer. In this
case, multiples of smaller sized bind buffers carabocated, or alternatively, 4 MB
kernel bind buffers can be allocated before othesuof system memory use up the
memory resources.

bt_set_info BT_INFO_KFREE_BUF

Synopsis

bt_error_t bt_set_info(bt_desc_t btd, BT_INFO_KFREE _BUF,
bt_devdata_t value)

The interface for the bt_set_info€r_INFO_KFREE_BUFcommand is slightly different
under RedHawk than what is documented in the SB8r@ogies Software Manual.

15-10

PCI-to-VME Support

Specifically, the 'value’ parameter is not usedtlie SBS implementation but the
RedHawk implementation uses this parameter indhewing ways:

When the 'value’ parameter is zero:

This call unbinds and freesll kernel bind buffers that are not currently
bt_mmap()ed from user space. If at least one birftebis unbound and freed, a
successful status{_Succes$ is returned.

If no bind buffers are found that can be unbound &red, this call fails and
BT_EINVAL is returned to the caller.

When the 'value’ parameter is not equal to zero:

This call is for unbinding and freeing up just apecific kernel bind buffer. In this
case, the caller’s 'value’ parameter should be kfqutne kernel buffer address that
was returned at the 'value_p’ parameter locatiorttenprevious bt_get_info()
BT_INFO_KMALLOC_BUF call.

If the buffer address specified in the 'value’ pagder on this call does not corre-
spond to a valid kernel bind buffer, this call &adnd returns an error value of
BT_EINVAL.

If the 'value’ parameter on this call correspondstvalid kernel bind buffer, but
that buffer is currently bt_mmap()ed from user spahis call fails and a value of
BT_EFAIL is returned. In this case, the buffer must fiesbh unmmap()ed before this
call can succeed.

Additional Bind Buffer Information

The following sections describe additional areagrehbind buffer support is affected
under RedHawk.

The Bigphysarea Patch

The bigphysarea patch discussed in the SBS TecgeddSoftware Manual is not
supported or needed in the RedHawk sbsvme btp @ealvieer. By using multiple large
bind buffers, it is possible to support the fullMB of VMEbus slave window space for
accessing iHawk memory from the VMEDbus.

Unloading the btp Module

The sbsvme ’btp’ kernel module can not be unloadade there are any kernel bind
buffers currently bt_mmap()ed in a process’ addspsse. Processes must first remove
their mappings to kernel bind buffers with bt_unnpf)acall(s) before the kernel driver
module is unloaded.

When there are no bind buffers currently bt mmapfjem user space, the btp kernel
module can be unloaded with a “/etc/init.d/sbsviiop’scommand, and any kernel bind
buffers currently allocated are implicitly unbouiicurrently bound) from the hardware
VMEDbus slave window area and freed up for otheuritkernel memory allocations.

15-11

RedHawk Linux User's Guide

bt_bind rem_addr_p Parameter

Local Memory

15-12

The 'rem_addr_p’ parameter on bt_bind() calls sfiegian offset within the remote
VMEDbus slave window where the caller wishes to karicernel bind buffer. Note that this
value is an offset, and not an absolute VMEDbus ighyaddress. This offset value is from
the base VMEbus address defined by the REM-RAM uw@ger setting located on the
SBS VME adapter card.

The user can either specify an actual 'rem_addoffget value, or let the btp driver find
an appropriate bind address location by usingsthesIND_NO_CARE value for the
‘'rem_addr_p’ parameter. When this value is usednuguccessful return from the
bt_bind() call the 'rem_addr_p’ memory location tains the offset value where the
kernel btp driver bound the bind buffer.

As an example, if the REM-RAM LO jumper settinge aet to a value of 0xC0000000
and the offset value is 0x10000, the actual bimttess where this buffer can be accessed
from the VMEbus would be 0xC0010000.

In addition to the kernel bind buffer support, thtp driver also supports the concept of
local memory. This feature is made available thitouge of th&T_DEV_LM device type,
instead of th&T_DEV_A32, BT_DEV_A24, and other VMEDbus device types typically used
for the bind buffer feature.

The local memory buffer consists of local iHawk nueyn that is allocated and bound to
the VMEDbus slave window area when the btp drivdo&led. This memory allocation
and binding remains in effect as long as the bipedris loaded. If the btp driver is
unloaded with a “/etc/init.d/sbsvme stop” commathis local memory buffer is unbound
from VMEbus space and freed up for other kernesuse

The local memory buffer is always bound to the drotarea of the VMEbus slave window
as defined by the REM-RAM LO jumper settings onME adapter card. For example,
if the local memory size is 64 KB, and the REM-RAND jumper settings are set to a
value of 0xC0000000, the local memory buffer is houo the VMEbus at physical

VMEbus addresses 0xC0000000 through OXCOO00OFFF.

Note that since the local memory buffer always péesi the bottom area of the VMEbus
remote slave window, the kernel bind buffers may m®bound to this area whenever
local memory support is enabled. By default, thmlanemory support is enabled with a
local memory buffer size of 64 KB, which leaves I8 - 64 KB of VMEbus slave
window space for bind buffers (assuming that thé/REAM LO jumper settings are set
to a range that covers 16 MB).

The size of the local memory buffer can be increlalsg modifying the 'Im_size’
parameter in thdetc/sysconfig/sbsvme configuration file (see the
“Configuration” section earlier in this chapter. téothat the maximum supported
'Im_size’ value is 4 MB. If a larger value is spkeil, the btp driver’s buffer allocation
does not succeed, and the local memory featureabléd at btp driver load time.

The local memory support can be disabled by settiegim_size’ btp module parameter
to zero. When set to zero, the btp driver doesatiotate a local memory buffer, and the
entire VMEbus slave window area is free for ketriald buffer use.

PCI-to-VME Support

The local memory support is very similar to thecbbuffer support:

* Both local memory and bind buffers are accessibtenfthe VMEbus
through the slave window area.

* Both the local memory and bind buffer buffer areas be accessed by
specifying the appropriate device type when usheghit_read(), bt_write()
and bt_mmap() functions.

The main differences between the local memory amdl buffer support are:

* There may be only one local memory buffer areas Dhiffer is set up at btp
driver load time and remains allocated and bountd tie btp driver is
unloaded.

Contrastingly, multiple bind buffers of differenizes can be dynamically
allocated and bound, and dynamically unbound asebifr

* The local memory buffer always occupies the bottdrthe VMEbus slave
window area.

Contrastingly, for bind buffers the user can eithgecify the location/offset
where each bind buffer is to be bound to VMEbusepar let the kernel
dynamically find the next free location/offset tgeu

Mapping and Binding to VMEbus Space

RedHawk provides a method of creating VMEbus spaappings that are not associated
with a specific process and remain intact aftergiozess that created the mapping exits.
These mappings can be created and removed indep#gdeither through the
bt hw_map_vme and bt_hw_unmap_vme library functmmisy writing to a/proc file
system interface.

The unique PCI bus starting address that corresptimdn active VMEbus space area
mapping can be obtained and used whimbind(2) orshmconfig(1) to bind this
segment to a region of /O space.

This functionality is described in the sections tladlow.

bt hw_map_vme
This function creates a new PCI-to-VMEbus mapping.
Synopsis

bt _error_t bt hw_map_vme(bt_desc_t btd, void **phys _addr_p,
bt_devaddr_t vme_addr, size_t map_len, bt_swap_t sw apping)

Arguments

btd the device descriptor that was returned from a essfal
bt_open() function call.

phys_addr_p the user space location where the local PCl budirgithase
address for this mapping is returned

15-13

RedHawk Linux User's Guide

bt hw_unmap_vme

15-14

vme_addr the starting/base target VMEbus physical addrebss @ddress
must be aligned on a 4 KB boundary.

map_len the size of hardware mapping to be created. THisevia rounded
up to a multiple of 4 KB.

swapping the byte swapping method to use for hardware mappiine
BT_SWAP_ xxx defines included in th&isr/include/btp/
btngpci.h header file can be used.

Return Values

When successful, a value Bf_successs returned. The PCI bus address returned at the
phys_addr_p location can be used wihmbind(2) orshmconfig(l) to create a
shared memory area that may be used to accesatigis of remote VMEbus addresses.

When unsuccessful, an appropribteerror_t value is returned indicating the reason
for the failure:

BT_EDESC Aninvalidbtd descriptor was specified. The descriptor must be a
descriptor returned from a bt_open() call o8& DEV_A32,
BT_DEV_A240r BT_DEV_A16 device type.

BT_EINVAL An invalid vme_addr, map_len, phys_addr p or
swapping parameter was specified.

BT_ENXIO The sbsvme hardware is not online or not conngategerly.

BT_ENOMEM The required number of sbsvme hardware mappingtezgicould
not be allocated.

BT_ENOMEM The memory for the kernel data structures that wsed for
tracking this mapping could not be allocated.

This function removes a PCI-to-VMEbus mapping poasly created with the
bt hw_map_vme function or by writing to tiigroc/driver/btp/ unit’'vme-
mappings file.

Synopsis

bt _error_t bt_hw_unmap_vme(bt_desc_t btd, void *phy S_addr)

Parameters

btd the device descriptor that was returned from a essfol
bt_open() function call.

phys_addr the PCI bus starting address for the VMEbus mappmndpe

removed

PCI-to-VME Support

Return Values
When successful, a value ®f_SUCCESSS returned.

When unsuccessful, an appropribteerror_t value is returned indicating the reason
for the failure:

BT_EDESC Aninvalidbtd descriptor was specified. The descriptor must be a
descriptor that was returned from a bt_open() adll
BT_DEV_A32 BT_DEV_A240r BT_DEV_A16device type.

BT_ENOT_FOUND The mapping specified by thghys_addr parameter does not
exist.

The /proc File System Interface

When the sbsvme btp kernel module is loaded, thefing /proc file(s) are created:
/proc/driver/btp/ unit’vme-mappings

whereunit is the unit number of the sbsvme PCI bridge cahe: first card is unit number
0. On systems with multiple bridges, the second taunit number 1, etc.

Existing PCI-to-VMEbus mappings can be viewed badiag the file. Mappings can be
created and removed by writing to the file. Thesshhiques are described below.

Displaying VMEbus Mappings

Reading therme-mappings file usingcat(1) displays all currently established
VMEbus mappings. The following output shows two R&VMEbus mappings:

$ cat /proc/driver/btp/0O/vme-mappings
pci=0xf8019000 vme=0x00008000 size=0x0001000 space= A16 admod=0x2d swap=5
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space= A24 admod=0x39 swap=0

pci= indicates the local PCI bus address where the mggpgins
vme= indicates the starting VMEbus address

size= indicates the size/length of the mapping

space= indicates the VMEbus address space type for theoingp

admod= indicates the VMEbus address modifier describethbgT_AMOD_xxx defines
in /usrf/include/btp/btdef.h

swap= indicates the bit swapping method described bystheswAP xxx defines in
{usr/include/btp/btngpci.h
Creating VMEbus Mappings

Mappings to VMEbus space can be created by writindpevme-mappings file. Note
that you must haveApr_sys_ADMIN privileges to write to this file. To create a mapp
the following three parameters must be specifietthénorder given here:

vme= specifies the starting, page-aligned VMEbus addtesbe mapped (e.g.,
Oxfffff000).

15-15

RedHawk Linux User's Guide

size= specifies the size of the mapping, which should eultiple of a page (e.g.,
0x1000). Note that the shsvme hardware is limitednapping a total of
32 MB of VMEDbus space.

space= specifies the VMEbus address space type for thepingpA32, A24 or Al16.

The following optional parameters may also be sigahlin any order, following the
required parameters listed above:

admod= specifies the VMEbus address modifier describethbgT_AMOD_xxxdefines
in /usr/include/btp/btdef.h . If not specified, the following default
values are used:

BT_AMOD_32 0Oxod
BT_AMOD_24 0x3d
BT_AMOD_16 Ox2d

swap= specifies the bit swapping method described bysthewap xxx defines in
fusr/include/btp/btngpci.h . If not specified, the default
BT_SWAP_DEFAULTVvalue is used.

The following example shows creating two VMEbus miags by writing to the/me-
mappings file.

$ echo “vme=0xe1000000 size=0x10000 space=A32" > /pro c/driver/btp/0O/vme-mappings
$ echo “vme=0xc0000000 size=0x1000 space=A32 swap=7 a dmod=0x9” > /proc/driver/btp/0/vme-mappings

Note that when the sbsvme btp kernel driver is adéul with “/etc/init.d/sbsvme stop”
(see “YMEbus Mappings”), all current VMEbus mappsrage removed before the driver
is unloaded. If mappings exist and “modprobe -’ lispused to unload the driver, the
unload will fail until all VMEbus mappings are rexe.

Removing VMEbus Mappings

15-16

A mapping to VMEbus space can be removed by writirgglocal PCI bus location of the
mapping to theeme-mappings file. Note that you must haveap_sys_aDMINprivileges
to write to this file. The PCI bus location is reted by bt_hw_map_vme() and by
cat 'ing thevme-mappings file. For example:

$ cat /proc/driver/btp/0O/vme-mappings

pci=0xf8019000 vme=0x00008000 size=0x0001000 space= A16 admod=0x2d swap=5
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space= A24 admod=0x39 swap=0
$ echo “pci=0xf8019000” > /proc/driver/btp/0O/vme-mapp ings

$ cat /proc/driver/btp/0O/vme-mappings
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space= A24 admod=0x39 swap=0

Example Applications

PCI-to-VME Support

Example programs are supplied that demonstratarfsbf the sbsvme btp device driver
and facilitate its use. They can be foundusr/share/doc/ccur/examples/

sbsvme. The programs are useful tools for:

¢ debugging

¢ uploading and downloading binary data

* receiving and counting programmed interrupts
¢ testing hardware

¢ creating VMEbus mappings and bindings to shared ongmreas

Table 15-2 lists the example programs. An astefiskflicates the program was added to
RedHawk Linux and is described in the followingtemts. Other programs are described

in the SBS Technologies Software Manual.

Table 15-2 PCI-to-VME Example Programs

Name Description Functions Used

bt _bind Binds a local buffer to the remote VMEDbus, waitsueer input,| bt_bind()
and then prints the first 256 bytes of the bounifieiou bt _unbind()

bt_bind_mult * | Shows how to bind multiple local buffers to the m#en bt _bind()
VMEDbus. Optionally writes values to the local bufféefore | bt_unbind()
waiting for user input. After user input occurspiiints out the
first 16 bytes of each page of each of the locé#is.

bt bind_multsz * | Shows how to create multiple bind buffers with eli#int sizes.| bt_bind()

bt_unbind()

bt _cat Similar to the 'cat’ program. Allows reading froneremote | bt_read()
VMEDbus to stdout, or writing data to the remote MM from | bt_write()
stdin.

bt datachk Reads and writes from a device using a specifiepaand then bt_read()

verifies that no data or status errors occurred. bt write()
bt_dumpmem Reads and prints to stdout 256 bytes of remote ViMElata. | bt_mmap()
bt _getinfo A script that gets all the driver parameters arspldiys their n/a
values to stdout.
bt _hwmap * | Creates a VMEbus mapping. bt_hw_map_vme()
bt_hwunmap * | Removes a VMEbus mapping. bt_hw_unmap_vme(
bt _icbr Registers for and receives interrupts for a givearrupt type. | bt_icbr_install()
bt _icbr_remove()
bt _info Gets or sets driver parameters. bt get info()
bt set info()
bt readmem Reads and prints to stdout 256 bytes of remote VilMdElata. | bt read()
bt reset Resets the remote VMEDbus. bt_reset()

(continued on next page)

15-17

RedHawk Linux User's Guide

Table 15-2 PCI-to-VME Example Programs (Continued)

Name Description Functions Used
bt revs Outputs the software driver version and hardwaraviiare bt_open()
version information to stdout.
bt_sendi Sends an interrupt to the remote bus. bt_send_irq()
readdma * | Same as readmem, except this program reads largrmas of | bt _read()

data, which results in the DMA hardware being usettie
kernel driver instead of cpu copying the data.

shmat * | Takes a shared memory key parameter to attacheaddom a| shmconfig(1)
shared memory area. Used by the shmconfig-scrggram. shmat(2)

shmbind * | Creates and attaches to a shared memory area thapped tg shmget(2)
a PCI-to-VMEbus mapping and reads or writes to it. shmbind(2)
shmat(2)

shmconfig-script * | A script that creates a PCI-to-VMEbus mapping ti@/proc | shmconfig(1)
file system and creates a shared memory areastbatuind to
the VMEDbus area.

vme-mappings * | A script that shows how to create, display and nemfeCl-to- | n/a
VMEbus mappings via thiproc file system.

writemem * | Writes out 256 bytes of data to the remote VMEbeads the | bt _read()
256 bytes of data back from the remote VMEbus aed t bt write()
outputs this data to stdout.

writedma * | Same as writemem, except this program writes laageunts | bt_write()
of data, which results in the DMA hardware beingdig the

kernel driver instead of cpu copying the data. Exiample only
writes the data to the remote VMEDbus; it does aatirthe data
back from the remote VMEDbus.

bt_bind_mult

The bt_bind_mult example application uses the btdQi function to bind multiple
equally-sized buffers to the remote bus. It waitsuser input, then prints the first 4 words
of each page of each bound buffer. It also optignatites data to buffer before waiting.

Usage: bt_bind_mult -[natulws]

OPTION FUNCTION

-n <nbufs> Number of buffers to allocate and bindfdult is 2.

-a <vmeaddr> VME address to bind buffer. DefaultBtaBIND_NO_CARE

-t <logdev> Logical device Bf_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT, etc.)
Default is toBT_DEV_DEFAULT.

-u <unit> Unit number to open. Default is unit O.

-l <len> Length of the buffer to bind. Default iseopage.

-w <value> Initially write this value to the firstwWords of each page in the buffer

-s <swapbits> Sets the swap bits value for thetodit_bind(). Note that the symbol
names are not recognized.

3]

15-18

bt _bind_multsz

bt_hwmap

bt_hwunmap

PCI-to-VME Suppo

rt

The bt_bind_multsz example application uses théibtd() function to bind multiple
buffers of various sizes to the remote bus. It svéar user input, then prints the first 4
words of each page of each bound buffer. It algmoplly writes data to buffer before

waiting.

Usage: bt_bind_multsz -[atuws]

OPTION FUNCTION

-a <vmeaddr> VME address to bind buffer. DefaultBTtoBIND_NO_CARE

-t <logdev> Logical deviceB_DEV_MEM, BT_DEV_I|O, BT_DEV_DEFAULT, etc.)
Default is toBT_DEV_DEFAULT.

-u <unit> Unit number to open. Default is unit O.

-w <value> Initially write this value to the firstwWlords of each page in the buffer

-s <swapbhits> Sets the swap bits value for thetodit bind(). Note that the symbol
names are not recognized.

[g)

The bt_hwmap example application uses the bt_hw_mae function to create a
hardware mapping to an area of VMEbus space.

Usage: bt_hwmap -a[ltus]

OPTION FUNCTION

-a <addr> VMEDbus physical address. This argumergdsired.

-l <len> Length of VMEDbus area to map onto the B@3. Default is one page
(0x1000).

-t <logdev> | Logical device to accesBT(DEV_A32 BT_DEV_A24, BT_DEV_A16,
BT_DEV_IO, BT_DEV_RR). Default is toBT_DEV_A32.

-u <unit> Unit number to open. Default is unit O.

-s <swapbits>

Sets the swap bits value for thetodit_bind(). Note that the symbol
names are not recognized. DefaulsTsSWAP_DEFAULT

The bt_hwmap example application uses the bt_hw apmwme function to remove a
hardware mapping from an area of VMEDbus space.

Usage: bt_hwunmap -p[tu]

OPTION FUNCTION

-p <pciaddr> | Local PCI bus physical address of tiappmng to be removed. This
argument is required.

-t <logdev> | Logical deviceB{_DEV_A32 BT_DEV_A24 BT_DEV_A16, BT_DEV_IO,
BT_DEV_RR). Default is toBT_DEV_A32

-u <unit> Unit number to open. Default is unit O.

15-19

RedHawk Linux User's Guide

readdma
This example program is the same as bt_readmerapeiaeads larger amounts of data,
which results in the DMA hardware being used inkbmel driver instead of cpu copying
the data.
Usage: readdma -[atulo]
OPTION FUNCTION
-a <addr> Address at which to start data transfefalit = 0x00000000.
-t <logdev> | Logical device to access. Default iBToDEV_A32
-u <unit> Unit number to open. Default is unit O.
-I <length> Bytes to read. Round down to pagesizfalit is 0x1000.
-0 <outlen> | Number of bytes output at the startaafrepage boundary. Default is 16
bytes. This value must be <= 409.
shmat
This example program is invoked by the shmconfigggcscript. It takes the shared
memory 'key' value and attaches to and reads frensthiared memory area that is bound
to VMEDbus space.
Usage: shmat -k shmkey -s size [-0 outlen]
OPTION FUNCTION
-k <shmkey> Shared memory key value, in decimaih) tiex with a leading '0x' or
'0X'.
-s <size> Size in bytes of the shared memory area.
-0 <outlen> Number of bytes at the start of ea@resth memory page to output ffo
stdout, in hex. Default is 32 bytes.
shmbind

This example program ussbmget(2) , shmbind(2) andshmat(2) to attach a
shared memory area to a PCI-to-VMEbus mapping.céauread or write to the VMEbus
space using the shared memory attached area. TH®RME hardware mapping needs
to already be created.

Usage: shmbind -p pci_addr -s size [-r | -w vate]en]

OPTION FUNCTION

-p <pci_addr> | Local PCI bus address where VME mapping is locdtedex.

-s <size> Size in bytes of the shared memory areeetate, in hex.

-r Read from the shared memory area. (Default.)

-w <value> Write to the shared memory area, using the spelcifidue, in hex.

-0 <len> Number of bytes at the start of each shared mepagg to output tq
stdout, in hex. Default is 32 bytes.

15-20

shmconfig-script

vme-mappings

writemem

writedma

PCI-to-VME Support

This is an example script of how to us@nconfig(l) to create a shared memory area
that is bound to a specific VMEbus area with a R&EW¥MEbus mapping. This script
invokes the shmat example program after the shamrdory area is created.

This is an example script that shows how to creatamine and remove PCI-to-VMEbus
mappings using thiproc/driver/btp/ unit'vme-mappings file.

This example program uses the bt_write() Bit 3 BHAPI function to write to any of the
Bit 3 logical devices.

Usage: writemem -[atud]

OPTION FUNCTION

-a <addr> Address at which to start data transfefalit = 0x00000000.
-t <logdev> Logical device to access(DEV_RDP, BT_DEV_A32 etc.)

-u <unit> Unit number to open. Default is unit 0.

-d <value> Starting data value to write. Defauldis

All numeric values use C radix notation.

Example: Write the first 256 bytes of data frosm_DEV_RDP starting at address
0x00001000:

Jwritemem -a 0x00001000

This example program is the same as writemem, jxcepites larger amounts of data,
which results in the DMA hardware being used inkbmel driver instead of cpu copying
the data. This example only writes the data torémeote VMEDbus; it does not read the
data back from the remote VMEDbus.

Usage: writedma -[atuld]

OPTION FUNCTION

-a <addr> Starting VME address. Default = 0x00000000

-t <logdev> Logical device to access. Default i8ToDEV_A32

-u <unit> Unit number to open. Default is unit 0.

-| <length> Number of bytes to write. Round dowrptamgesize. Default is 0x1000

-d <value> Starting data value to write. Defauldis

15-21

RedHawk Linux User's Guide

15-22

A
Example Message Queue Programs

This appendix contains example programs that ithtetthe use of the POSIX and
System V message queue facilities. Additional exanppbgrams are provided online in
the/usr/share/doc/ccur/examples directory.

POSIX Message Queue Example

The example program given here is written in Ghia program, a parent process opens a
POSIX message queue and registers to be notifeed veal-time signal when the queue
transitions from empty to non-empty. The parenwspaa child and waits on the child
until the child sends a message to the empty quehechild sends the message, closes
it's descriptor and exits.

The parent receives the real-time signal and captilmesigev_value (si_value) as
delivered by theiginfo_t structure in the signal handler. The parent aststdelivery
of thesi_code (sI_MESGQ before receiving the child’s test message. Thiemgaverifies
that delivery of thesi_value (which is a union) was correct as previously reged by
thesigev_value . The signal handler also displays the real-tinggai value received
(SIGRTMAX) using psignal. The psignal function doesn’t krfwaw to namesIGRTMAX, SO
it calls it an unknown signal, prints the value &its.

To build this program, specify the following:

gce mq_notify_rtsig.c -Wall -g - rt -o mq_notify_r tsig

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <unistd.h>
#include <mqueue.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <time.h>
#include <sched.h>
#include <signal.h>
#include <bits/siginfo.h>

#define MSGSIZE 40

#define MAXMSGS 5
#define VAL 1234

A-1

RedHawk Linux User's Guide

void handlr(int signo, siginfo_t *info, void *ignored);
int val, code;

int main(int argc, char **argv)

{

struct sigaction act;

struct sigevent notify;

struct mq_attr attr;

sigset_t set;

char *mgname = "/mq_notify_rtsig";
char rcv_buf[MSGSIZE];

mqgd_t mqgdesl, mqdes2;

pid_t pid, cpid,;

int status;

memset(&attr, 0, sizeof(attr));

attr.mg_maxmsg = MAXMSGS;
attr.mg_msgsize = MSGSIZE;

mg_unlink(mgname);

mqgdes1 = mqg_open(mgname, O_CREAT|O_RDWR, 0600, &attr);
sigemptyset(&set);

act.sa_flags = SA_SIGINFO;

act.sa_mask = set;

act.sa_sigaction = handlr;

sigaction(SIGRTMAX, &act, 0);

notify.sigev_notify = SIGEV_SIGNAL;

notify.sigev_signo = SIGRTMAX;

notify.sigev_value.sival_int = VAL;

mq_notify(mgdes1, ¬ify);

printf("\nmqg_notify_rtsig:\tTesting notification sigev_value\n\n");
printf("mq_notify_rtsig:\tsigev_value=%d\n"\

notify.sigev_value.sival_int);

if((pid = fork()) < 0) {
printf(“fork: Error\n");
printf("mq_notify_rtsig: Test FAILED\n");
exit(-1) ;
}
if(pid == 0) { /* child */
cpid = getpid() ;
mgdes2 = mq_open(mgname, O_CREAT|O_RDWR, 0600, &attr);

printf("child:\t\t\tsending message to empty queue\n™);

mg_send(mqgdes2, "child-test-message", MSGSIZE, 30);

Example Message Queue Programs

mg_close(mqgdes2);
exit(0);
}
else { /* parent*/
waitpid(cpid, &status, 0); /* keep child status from init */
printf("parent:\t\t\twaiting for notification\n");

while(code != SI_MESGQ)
sleep(1);

mq_receive(mgdesl, rcv_buf, MSGSIZE, 0);

printf("parent:\t\t\tqueue transition - received %s\n",rcv_buf);

}

printf("mq_notify_rtsig:\tsi_code=%d\n",code);
printf("mq_notify_rtsig:\tsi_value=%d\n",val);

if(code !=-3 || val = VAL) {
printf("\nmq_notify_rtsig:\tTest FAILED\n\n");
return(-1);

}

mg_close(mqdesl);
mg_unlink(mgname);

printf("\nmqg_notify_rtsig:\tTest passed\n\n");

return(0);
}
void handlr(int signo, siginfo_t *info, void *ignored)
{
psignal(signo, "handIr:\t\t\t");
val = info->si_value.sival_int;
code = info->si_code;
return;
}

A-3

RedHawk Linux User's Guide

System V Message Queue Example

The example program given here is written in Ghia program, a parent process spawns
a child process to off load some of its work. Tlaeegmt process also creates a message
gueue for itself and the child process to use.

When the child process completes its work, it sehdsresults to the parent process via
the message queue and then sends the parent & Yifliea the parent process receives
the signal, it reads the message from the messagesq

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/msg.h>
#include <signal.h>
#include <errno.h>

#define MSGSIZE 40/* maximum message size */
#define MSGTYPE 10/* message type to be sent and received */

/* Use a signal value between SIGRTMIN and SIGRTMAX */
#define SIGRTL(SIGRTMIN+1)

/* The message buffer structure */
struct my_msgbuf {

long mtype;

char mtextiMSGSIZE];
k

struct my_msgbuf msg_buffer;

/* The message queue id */
int msqid;

/* SA_SIGINFO signal handler */
void sighandler(int, siginfo_t *, void *);

/* Set after SIGRT1 signal is received */
volatile int done = 0;

pid_t parent_pid,;
pid_t child_pid;

main()
{
int retval;
sigset_t set;
struct sigaction sa;

[* Save off the parent PID for the child process to use. */
parent_pid = getpid();

/* Create a private message queue. */
msgid = msgget(IPC_PRIVATE, IPC_CREAT | 0600);

if (msqid ==-1) {
perror(“msgget”);
exit(-1);

}

Example Message Queue Programs

/* Create a child process. */
child_pid = fork();

if (child_pid == (pid_t)-1) {
/* The fork(2) call returned an error. */
perror(“fork”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);
}

if (child_pid == 0) {
/* Child process */

/* Set the message type. */
msg_buffer.mtype = MSGTYPE;

[* Perform some work for parent. */
sleep(1);

r*.*

/* Copy a message into the message buffer structure. */
strcpy(msg_buffer.mtext, “Results of work™);

/* Send the message to the parent using the message

* queue that was inherited at fork(2) time.

*

retval = msgsnd(msgid, (const void *)&msg_buffer,
strlen(msg_buffer.mtext) + 1, 0);

if (retval) {
perror(“msgsnd(child)”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);
}

/* Send the parent a SIGRT signal. */
retval = kill(parent_pid, SIGRT1);
if (retval) {

perror(“kill SIGRT");

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
exit(-1);
}
exit(0);
}

/* Parent */

/* Setup to catch the SIGRT signal. The child process
* will send a SIGRT signal to the parent after sending
* the parent the message.

*

sigemptyset(&set);

sa.sa_mask = set;

sa.sa_sigaction = sighandler;

A-5

RedHawk Linux User's Guide

sa.sa_flags = SA_SIGINFO;
sigaction(SIGRT1, &sa, NULL);

/* Do not attempt to receive a message from the child
* process until the SIGRT signal arrives. Perform parent
* workload while waiting for results.

*

while (!done) {
[

}

/* Remove the message queue.
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
*

/
/* All done.
*/
exit(0);
}
/*

* This routine reacts to a SIGRT1 user-selected notification
* signal by receiving the child process’ message.
*
void
sighandler(int sig, siginfo_t *sip, void *arg)
{
int retval,
struct ucontext *ucp = (struct ucontext *)arg;

/* Check that the sender of this signal was the child process.
*
if (sip->si_pid != child_pid) {
/* Ignore SIGRT from other processes.
*
printf*ERROR: signal received from pid %d\n”, sip->si_pid);
return;

}

/* Read the message that was sent to us.

*

retval = msgrcv(msqid, (void*)&msg_buffer,
MSGSIZE, MSGTYPE, IPC_NOWAIT);

done++;

if (retval == -1) {
perror("mg_receive (parent)");
return;

}

if (msg_buffer.mtype != MSGTYPE) {
printf*ERROR: unexpected message type %d received.\n”,
msg_buffer.mtype);
return;

}

printf(*message type %d received: %s\n”,
msg_buffer.mtype, msg_buffer.mtext);

B
Kernel Tunables for Real-time Features

Table B-1 contains a list of unique features in Radid Linux and the kernel
configuration settings that support them. Thestde features developed by Concurrent
for real-time operation, optional package suppod geatures incorporated from open
source patches.

For each function, the Kernel Configuration GUlioptand the tunable name are given to
help you view and modify the settings as neededlitahally, the default settings for
each feature in each of the RedHawk Linux pre-bkaiinels are provided. For more
information about configuring and building a kerrsse Chapter 11.

Information about individual features is availablevarious locations. In Table B-1, the
following references are provided:

* Page numbers (active hypertext links) where infdimnaincluded in this
RedHawk Linux User’s Guide provided.

* Names and publication numbers of other approp@atecurrent documents.
Other sources where information may be obtaineldidiec

* Information provided in a separate help windowraf Kernel Configuration
GUI that displays when the parameter is selected.

¢ Text files in theDocumentation directory of the kernel source tree.

¢ Linux documentation sites on the Internet.

B-1

RedHawk Linux User's Guide

Table B-1 Kernel Tunables for Real-time Features

Across exec

Kernel Default Settinas*/ Concurrent
Functionality Configuration Tunable Name . 9 Documentation
. Pre-built Kernels
GUI Option Reference
Shielded CPUs
Enable CPU Shielding SHIELD Y / all page 2-1
Enable CPU Downing CPU_IDLING Y /all page 2-28
RCU Processing General Setup RCU_ALTERNATIVE Y /all page 7-4
Lock per-CPU daemons v/ all n/a
t0 their CPUs DAEMON_CPU_LOCK a
Rescheduling Variables General Setup RESCHED_VAR Y / all page 5-3
Timekeeping
Enable tickless system NO_Hz Y /all
Processor Type and -1
Enable/disable tickless Features page |-
NO_HZ_ENABLED Y / all
system at system boot
High Resolution Process
Ac%ounting General Setup HRACCT Y /all page 7-2
REQUIRE_TSC Y / all i386
TSC Reliability Proce;sorType and page 7-2
eatures REQUIRE_RELIABLE_TSC Y/ all
Enable RCIM as system RCIM User’s
locksource RCIM_CLOCKSOURCE Y / all Guide
¢ (0898007)
RCIM PPS support Device Drivers RCIM_PPS Y /all
PPS API PPSAPI
S support Y /all RCIM User's
; Guide
PPS API on serial PPSAPI_SERIAL Y / all (0898007)
NTP Support for PPS Processor Typeand NTP_PPS Y /all
Features
RCIM User’s
RCIM Support Device Drivers RCIM Y / all Guide
(0898007)
POSIX Message Queues = General Setup POSIX_MQUEUE Y / all page 3-2
Post/Wait Support General Setup POST_WAIT Y / all page 5-37
Inherit Capabilities General Setup INHERIT_CAPS_ACROSS_EXEC Y / all page 13-5

* Y =set, N =notset,

M = tunable enabled when keel module is loaded

B-2

Kernel Tunables for Real-time Features

Table B-1 Kernel Tunables for Real-time Features (Continued)
Kernel .+ | Concurrent
Functionality Configuration Tunable Name g?f&t”tsﬁtg:qgeslsl Documentation
GUI Option Reference
SCHED_SMT Y /all
Process Scheduling Processor Typeand — page 2-34
Features SCHED_SMT_IDLE N / all
Optional RedHawk Products
. FBS User’s
Frequency-based Frequency Based FBSCHED v/ all Guide
Scheduler (FBS) Scheduling (0898005)
; FBS User’s
Performance Monitor Frequency-Based FBSCHED PM v/ all Guide
(PM) Scheduling - (0898005)
SNARE Audit General Setup AUDIT N/ all RedHawk-FAQ
SBS VMEDbus-to-PCI Device Drivers SBSVME M/ all page 15-1
/proc Filesystem
/proc/ccur Pseudo PROC_CCUR_DIR Y / all n/a
Iprochid/affinity File Systems PROC_PID_AFFINITY Y / all n/a
/prochid/resmem PROC_PID_RESMEM Y /all n/a
PCI BAR Access Bus options PROC_PCI_BARMAP Y /all page 14-1
Memory Mapping
Process space mmap/ PROCMEM_MMAP Y /all
usermap support
File permission access to
another process’ address Pseudo File PROCMEM_ANYONE Y /all a0e 9-1
space Systems pag
Enable writes into
another process’ address PROCMEM_WRITE Y /all
space
Interrupt Processing
Softirg daemon priority SOFTIRQ_PRI 0/all
; ; General Setup page 14-12
Sof’urq preemption SOFTIRQ_PREEMPT_BLOCK Y / all
blocking
RCIM User’s
Enablg RCIMIRQ Device Drivers RCIM_IRQ_EXTENSIONS Y /all Guide
extensions (0898007)
* Y=gset, N=notset, M =tunable enabled when keel module is loaded

RedHawk Linux User's Guide

Table B-1 Kernel Tunables for Real-time Features (Continued)
Kernel .+ | Concurrent
Functionality Configuration Tunable Name g?f&t”tsﬁtg:qgeslsl Documentation
GUI Option Reference
Full 4GB address range Pseudo
for read(1), write(1) File Systems UNSIGNED_OFFSETS Y/al na
Enable shmbind call Kernel Tracing SHMBIND Y /all page 3-16
Kernel Virtual Address .
: 128/ all i386
Space for Dynamic General Setup VMALLOC_RESERVE page 14-11
Allocation 4096 / all x86_64
Cross Processor Interrupt Reduction
Preload vmalloc page v / generic
pag General Setup VMALLOC_PGTABLE_PRELOAD (1386 non-PAE page G-5
tables at boot only)
Graphic nge Device Drivers PREALLOC_GRAPHICS_PAGES 10240/ all page G-3
Preallocation
Softlockup detection Kernel Hacking DETECT_SOFTLOCKUP N / all page 2-34
LOCK_BREAK_THROTTLE Y / all n/a
Lock break handling General Setup
LOCK_BREAK_THROTTLE_LIMIT 30/ all n/a
XFS Filesystem
Enable XFS XFS_FS Y /all
Real-time subvolume File Systems page 8-1
XFS_RT Y /all
support -
Kernel Preemption Processor Type PREEMPT Y /all page 1-6
and Features
Ptrace Extensions General Setup PTRACE_EXT Y /all page 1-6
NUMA Y /all
K8_NUMA Y / all x86_64 only
X86_64_ACPI_NUMA Y / all x86_64 only
Processor Type
NUMA Support and Features PAGE_REPLICATION Y / all page 10-1
PAGE_REPLICATION_DYNAMIC Y / all
MEMSHIELD_ZONE_NORMAL Y / all x86 only
MEMSHIELD_ZONELIST_ORDER Y /all
* Y=set, N=notset, M =tunable enabled when keel module is loaded

B-4

Kernel Tunables for Real-time Features

Table B-1 Kernel Tunables for Real-time Features (Continued)
Kernel .+ | Concurrent
Functionality Configuration Tunable Name g?f&t”tsﬁtg:qgeslsl Documentation
GUI Option Reference
System Dumps
Enable kdump crash KEXEC v/ all
dumps
Processor Type
Generate debug symbols and Features DEBUG_INFO Y /all page 12-1
Enable kernel crash CRASH_DUMP Y / kdump only
dumps
Kernel Debug
KDB support KDB Y / debug only
KDB support KDB_OFF N / debug only
Include Concurrent Kernel Hacking KDB_MODULES Y / debug only page 12-8
support
KDB c;atastrophm error KDB_CONTINUE_CATASTROPHIC 0/ debug only
handling
Kernel Tracing
Enable kernel tracing TRACE Y ktrlageeﬁgﬁsug page D-1
: Kernel Tracing
Use RCIM as timestamp TRACE_USE_RCIM Y / debug, trace n/a
source N / generic
nVIDIA Graphics . . Release Noteg
Support Device Drivers NVIDIA M / all (0898003)
. Processor Type
Hyper-threading and Features X86_HT Y /all page 2-28
UIO Support Userspace /0 uIo Y / all page 14-15
* Y=gset, N=notset, M =tunable enabled when keel module is loaded

RedHawk Linux User's Guide

B-6

Overview

Capabilities

C
Capabilities

This appendix lists the capabilities included irdRawk Linux and the permissions that
each capability provides.

Capabilities is a method in Linux where the prigiés traditionally associated with
superuser are divided into distinct units that barindependently enabled and disabled.
An unscrupulous user can use some of the permsgimvided by capabilities to defeat
the security mechanisms provided by Linux; therefdhnis functionality should be used
with due caution. Capabilities are defined /imsr/include/linux/

capability.h

For more information about how capabilities work linnux, refer to the
capabilities(7) man page. For information about the PAM facilltat provides an
authentication scheme utilizing capabilities, reteChapter 13.

This section describes the permissions provideddnh of the capabilities defined under
RedHawk Linux. Features from standard Linux as aelfeatures unique to RedHawk
Linux are included in this discussion.

CAP_CHOWN This capability overrides the restriction of chamgiuser or group file
ownership when the current effective user ID, grtdpor one of the
supplemental group IDs do not match the file's @G attributes.

CAP_DAC_OVERRIDE
Except for the file access restrictions enforcedfilBs marked as
immutable or append-only (sebattr(1)), this capability overrides
any file discretionary access control (DAC) redidos that would
normally be enforced with the owner/group/worldd&eaite/execute
filesystem permission attributes and Access Conitiet (ACL)
restrictions, if ACL support is configured into tlkernel for that
filesystem (seacl(5) for more details).

Read and write access DAC restrictions may alwaysverridden with
this capability. Execute DAC restrictions may besmidden with the
capability as long as at least one owner/groupfivexiecute bit is set.

This capability also overrides permission accessiotions when using
thefbsintrpt(3) andfbsresume(3) commands.

C-1

RedHawk Linux User's Guide

C-2

CAP_DAC_READ_SEARCH
This capability overrides any file discretionarycass control (DAC)
restrictions that would normally be enforced witte towner/group/
world read/execute filesystem permission attribated Access Control
List (ACL) restrictions if ACL support is configudento the kernel for
that filesystem (seacl(5) for more details).

This capability always allows read access to fided directories, and
search (execute) access to directories.

This capability also overrides permission accessiotions when using
thefbsintrpt(3) andfbsresume(3) commands.

CAP_FOWNER This capability:

- overrides all Discretionary Access Control (DAC3trietions
regarding file attribute changes where the file esviD must
be equal to the user ID.

- allows therFBs_RMID and FBS_SET fbsctl(2) commands
when the fbs creator user ID and user ID do notcim#te
caller’s effective user ID

This capability does not override Data Access GbnfDAC)
restrictions.

CAP_FSETID This capability overrides the restriction that #féective group ID (or
one of the supplementary group IDs) shall matcHitegroup ID when
setting thes_isGIDbit on that file.

CAP_IPC_LOCK This capability allows for the locking of memonhrough the
mlock(2) andmlockall(2) system service calls.

It also allows locking and unlocking of shared meynsegments
through theshmctl(2) SHM_LOCK andsHM_UNLOCK commands.

CAP_IPC_OWNER
This capability overrides the IPC permission sat th associated with
an IPC shared memory segment, message queue oplseraarray.
The IPC permissions have the same format and mgasrhe read/
write owner, group and world permissions associatid files. Note
that execute permissions are not used.ipt&1) command may be
used to view the owner and permissions of the atitReC resources.

CAP_KILL This capability overrides the restriction that tkal or effective user ID
of a process sending a signal must match the reffextive user ID of
the process receiving the signal.

This capability also overrides the restriction ODSIGACCEPT
ioctl(2) calls that requires the calling process to beotheer of the
tty or have thecAP_Sys_TTY_CONFIGcapability.

CAP_LEASE This capability lets a user take out a lease file,awvith thefcntl(2)
F_SETLEASEcommand, even when the process’ user ID does atithm
the file system user ID value.

Capabilities

CAP_LINUX_IMMUTABLE

CAP_MKNOD

CAP_NET_ADMIN

This capability allows the modification of thee IMMUTABLE and
s_APPENDfile attributes. See thehattr(1) man page for more
information on these file attributes.

This capability allows the user to make use ofgheileged aspects of
mknod(1) /mknod(2) . It also allows use of the
XFS_IOC_FSSETDM_BY_HANDLEXfs filesystenioctl(2) command.

This capability allows for the following network ednistration
activities:

- setting debug and priority options on sockets

- administration of IP firewall, masquerading andaoting
- interface configuration

- multicasting

- reading and writing of network device hardware stays
- adding/deleting tunnels

- moadification of routing tables

- setting TOS (type of service)

- activation of ATM control sockets

CAP_NET_BIND_SERVICE

This capability allows binding to TCP/UDP and SireaControl
Transmission Protocol (SCTP) sockets below 102d,tarATM VCls
below 32.

This capability also causes a reserved port toseel when creating an
RPC client transport.

CAP_NET_BROADCAST

CAP_NET_RAW

CAP_SETGID

CAP_SETPCAP

This capability is not currently used.

This capability allows the creation &fock_RAW and SOCK_PACKET
sockets, and the use of the_BINDTODEVICESetsockopt(2) socket
option.

This capability overrides the restrictions placad non-root process’
group ID value for thesetregid(2) , setgid(2)
setresgid(2) , setfsgid(2) andsetgroups(2) system
services.

This capability also allows a process to send ckefolevel credential
control message that contains a group ID valuedbas not match the
current process’ current, effective or saved griiup(Additionally, the
credential control message process ID must matlptbcess’ thread
group ID or the process must also havedhe_sys_ADMIN capability,
and the credential control message user ID mustimthte process’
saved, effective or current user ID, or havedhe_seTuiDcapability.)

This capability allows a process to transfer agyyability in the process’

permitted set to any process ID (PID), and to reenany capability in
the process’ permitted set from any PID.

C-3

RedHawk Linux User's Guide

C-4

CAP_SETUID

CAP_SYS_ADMIN

This capability allows setting the current user i® any user ID,
including the user ID of superuser. Extreme causibauld be used in
granting this capability.

This capability also allows a process to send &etolevel credential
control message that contains a user ID valuedbas not match the
current process’ current, effective or saved uBer(Additionally, the
credential control message process ID must matlptbcess’ thread
group ID or the process must also havedhe_sys_ADMIN capability,
and the credential control message group ID musthmtiée process’
saved, effective or current group ID, or havedhe_seTGiDcapability.)

This capability also overrides the limitation thatocesses that are
ptraced by this process may not inherit the usegroup ID of a “set
user or group ID on execution” executable thatph@aced process
executes.

This capability provides the following system adisiration activities:

- allows use obdflush(2)
- overrides the open file limit
- allows examination and configuration of disk quotas

- allows examination and configuration of disk usagea per
user or per group basis under the xfs filesystéxr§_QuoTa
is enabled)

- allowsumount() andmount()

- allows copying of a process’ namespace dufog(2) /
clone(2) calls

- allowsmsgctl(2) ,semctl(2) andshmctl(2) IPC_SET
andipc_RMID commands for message queues, semaphores and
shared memory areas that do not have a user |Ezatar user
ID value that matches the process’ effective uBer |

- allows shmctl(2) sHM_PHYSBIND commands for shared
memory areas where the user ID or creator userflihe
shared memory area does not match the proces<tizke
user ID

- overrides the limit on the maximum number of preessper
process oriork(2) /clone(2) calls when the non-root
user does not have tloapP_sys_RESOURCEapability

- allows wakeups on pw_post(2) , pw_postv(2) |,
server_wakel(2) andserver_wakevec(2) calls
when the process(es) to be awakened do not haveathe
user ID or saved user ID as the calling procedetctte user
ID or user ID value

- allows use of therciIM_WRITE_EEPROM and RCIM_TESTIRQ
ioctl(2) RCIM driver commands

- allows use of the system dunmrtl(2) commands, and
the setting of theysctl(2) kernel.dump.device variable

- allows configuration of serial ports

- allowssethostname(2) andsetdomainname(2) calls

- allows the use afwapon(8) andswapoff(8) calls

Capabilities

allows the open of raw volume zero and tizess_SETINTINFO
andcciss_SETNODENAMEOCtI(2) commands in the Disk
Array driver for HP SA 5xxx and 6xxx Controllers

allows ioctl(2) commands in the Mylex DAC960 PCI
RAID Controller driver

allows the open of raw volume zero in the CompacpRv2
Controller Disk Array driver

allows the use of floppy root-onlioctl(2) commands
(those commands with bit 0x80 set), and alSoFt&ETPRM
andFDDEFPRMSset geometry commands

allows use of the following block devicéoctl(2)
commandsBLKPG add/delete partitiorBLKRRPART re-read
partition, BLKRASET set read-ahead for block device,
BLKFRASET set filesystem read-aheai kBSzSET set logical
block size,BLKFLSBUF flush buffer cacheBLKROSET set
device read-only

allows setting the encryption key on loopback figems
allows network block devicectl(2) commands

allows modification of the memory type range regjist
(MTRR)

allows use ofoctl(2) commands for power management
whenApPM is enabled in the kernel

allows use of somictl(2) commands for certain BIOS
settings

allows use of themss_REQUEST_IRQVmB6(2) support
allows use of theCDROMRESET CDROM_LOCKDOOR and
CDROM_DEBUGIOCtI(2) CDROM commands

allows DDIocsDBG DDI debug ioctl(2) on sbpcd
CDROM driver

allows use of the root-only Direct Rendering Mang@RM)
ioctl(2) commands and the DRdhmap(2) DMA
memory command

allows use of the root-onljoctl(2) commands in the
Specialix RIO smart serial card driver

allows reading the first 16 bytes of the VAIO EERro
hardware Sensors chip on the 12C serial bus

allows writes to the/proc/ide/ide n/config file,
modification of the IDE drive settings, and theldaling IDE
ioctl(2) commandsHDIO_DRIVE_TASKFILE (execute raw
taskfile),HDIO_SET_NICE(set nice flags){DIO_DRIVE_RESET
(execute a device resepiO_GET_BUSSTATE(get the bus
state of the hardware interfacelpio_SET_BUSSTATE(set the
bus state of the hardware interface)

allows use of the SNDRV_CTL_IOCTL_POWER sound
ioctl(2) command

allows the use of various root-orityctl(2) commands for
various PCl-based sound cards, such as Live! anth&o
Blaster 512

allows use of the experimental networksigCcGIFDIVERTand
SIOCSIFDIVERTFrame Diverteroctl(2) commands

allows the sending of theCcM_CREDENTIALS socket level
control message, when the user ID of the credentialnot

C-5

RedHawk Linux User's Guide

C-6

match the current process’ effective, saved oreruruser ID
value

allows administration of md devices (Multiple Dessc -
RAID and LVM)

allows adding and removing a Digital Video Broadires
interface

allows the viploC_s_FBUF ioctl(2) command for the
Philips saa7134-based TV card video4linux devideedy if
thecApP_sys_RAwIOcapability is not enabled

allows the use of thevibiIocsFBUF and VIDIOC S FBUF
ioct(2) commands in the bttv and Zoran video device
drivers, if thecap_sys_rawiocapability is not enabled
allows the use of theibiocsFBUF ioctl(2) command in
the planb video device driver if tleaP_sSys_RAwiOcapability
is not enabled

allows the use of theipioCcsFBUF ioctl(2) command in
the stradis 4:2:2 mpeg decoder driver

allows the use of the Intelligent Input/Output ()20
ioctl(2) commands

allows manufacturer commands in ISDN CAPI suppdvted
allows reading up to 256 bytes (non-standardizetiqs) of
PCI bus configuration space, and also allows usthef

pciconfig_read(2) andpciconfig_write(2)
system service calls
allows use of the root-only pcmadiactl(2) commands

allows use of theFSACTL_SEND_RAW_SRB ioctl(2)
command in the aacraid Adaptec RAID driver

allows read and write to the QLogic ISP2x00 nvram

allows access to the MegaRAIBtl(2) commands
allows use of theMTSETDRVBUFFER SCSI tape driver
ioctl(2) command

allows write access to théproc SCSI debug file, if
SCSI_DEBUGIs enabled in the kernel (also requires the
CAP_SYS_RAWIOcapability)

allows the sending of arbitrary SCSI commands késts|_
IOCTL_SEND_COMMANDIOCtI(2) command (also requires
theCcAP_SYS_RAwIOcapability)

allows use of the SCSI scatter-gathe:_sScSI_RESET
ioctl(2) command/proc/sg/allow_dio and/
proc/sg/def_reserved_size write(2) , (also
requires thecAP_SYS_ADMIN capability)

allows use of thexJCTL_TESTRAM andIXJCTL_HZ ioct(2)
commands for the Quicknet Technologies Telephomny ca
driver

allows some autofs root-onigctl s

allows getting and setting the extended attribofddesystem
objects @etfattr(1) , setfattr(1))

allows root-only ioct(2) commands for NetWare Core
Protocol (NCP) filesystems

allows setting up a new smb filesystem connection

Capabilities

- allows theuDF_RELOCATE_BLOCKSIOCtI(2) command on
udf filesystems (used on some CD-ROMs and DVDs)

- allows administration of the random device

- allows binding of a raw character devidde//raw/raw n)
to a block device

- allows configuring the kernel's syslog (printk betua)

- allows writes to the/proc/driver/btp/ unit#vme-
mappings file, if SBsvMmEis enabled in the kernel, to create
and remove PCI-to-VMEbus mappings

- allows writes to/proc/driver/graphics-memory to
modify size of the pre-allocated graphics memorglpo

CAP_SYS_BOOT This capability allows use of theboot(2) system service call.

CAP_SYS_CHROOT
This capability allows use of the@root(2) system service call.

CAP_SYS_MODULE
This capability allows the insertion and deletidnkernel modules
usingsys_delete_module(2) , init_module(2) , rmmod(8)
andinsmod(8)

This capability also lets you modify the kernel abitities bounding set
value, cap_bset, where this value is accessibleéhgaysctl(2)
kernel.cap-bound parameter.

CAP_SYS_NICE This capability allows:

- raising the scheduling priority on processes wiih same
user ID

- setting the priority on other processes with aedéht user ID

- setting thescHED_FIFOandSCHED_RRscheduling policies for
processes that have the same user ID

- changing the scheduling policy of processes witlifferent

user ID

- changing the cpu affinity for processes with aaliéht user
ID via thesched_setaffinity(2) or/proc/ pid/
affinity file

- allows the use dbsconfigure(3)

CAP_SYS_PACCT This capability allows configuration of processagnting through the
acct(2) system service call.

CAP_SYS_PTRACE
This capability lets a proceptrace(2) any other process.

This capability also allows the process pirace(2) setuid
executables, regardless of theP_SETUIDSetting.

CAP_SYS_RAWIO This capability allows the following raw I/O adiies:

- theshmctl(2) SHM_PHYSBIND cOmmand
- theresched_cntl(2) RESCHED_SET_VARIABLECOMmand

- mmap(2) of PCI Bus space and access to the PCI Base
Address Registers (BAR)

RedHawk Linux User's Guide

- open(2) of/dev/iport and/proc/kcore
- use of thdoperm(2) andiopl(2) system service calls
- the filesystenoctl(2) FIBMAP command

- open(2) of the /dev/cpu/microcode file, if
MICROCODE s enabled in the kernel

- the following Disk Array driver for HP SA 5xxx an@kxx
Controllersioctl(2) commandsCCISS_PASSTHRUY
CCISS_BIG_PASSTHRUCCISS_DEREGDISKCCISS_REGNEWD

- the open(2) of Disk Array driver for Compaq SMART2
Controllers, and thmAPASSTHRuUIOCLI(2) command

- the configuration of IDE controllers, and the foling IDE
ioctl(2) commandsHDIO_DRIVE_TASKFILE, HDIO_DRIVE_
CMD, HDIO_DRIVE_TASK, HDIO_SCAN_HWIF, HDIO_
UNREGISTER_HWIF

- the Fibre Channel Host Bus AdaptarQFCTS_SCSI_PASSTHRU
ioctl(2) command

- write access to thiproc SCSI debug file, iBCSI_ DEBUGIS
enabled in the kernetAP_sys_ADMINis also required)

- sending of arbitrary SCSI commands via thes|_IoCTL_
SEND_COMMAND ioctl(2) command ¢AP_SYS_ADMIN is
also required)

- use of the SCSI scatter-gatheG_scsi_RESETIOCtI(2)
command,/proc/sg/allow_dio and/proc/sg /
def_reserved_size write(2) (also requires the
CAP_SYS_ADMIN capability)

- theATMSIGD_CTRLIioCtl(2) command

- use of theviDIOCSFBUF and VIDIOC_S_FBUF ioctl(2)
commands in the bttv and Zoran video device driviéithe
CAP_SYS_ADMIN capability is not enabled

- use of theviDIOCSFBUF ioctl(2) command in the planb
video device driver if theapP_sys_ADMIN capability is not
enabled

- use of theHDLCDRvVCTL_SETMODEMPAR and HDLCDRVCTL_
CALIBRATE ioctl(2) commands in the baycom epp radio
and HDLC packet radio network device drivers

- the SIOCSCCCFGESIOCSCCING SIOCSCCSMEM andSIOCSCCCAL
ioctl(2) commands in the 28530 based HDLC cards for
AX.25 device driver

- the SIOCYAMSCFG ioctl(2) command in the AM radio
modem device driver

- the COSAIOSTRT COSAIODOWNLD, COSAIORMEM and
COSAIOBMSETIOCtI(2) commands for the SRP and COSA
synchronous serial card device driver

- theFBlo_ALLOC andFBIO_FREEIOCtI(2) commands for the
SiS frame buffer device driver

- the viDIOC_S_FBUF ioctl(2) command for the Philips
saa7134-based TV card video4linux device drivethd
CAP_SYS_ADMIN capability is not enabled

C-8

CAP_SYS_RESOURCE

Capabilities

This capability lets the user:

override disk quota limits

override the IPC message queue size limit omsgctl(2)
IPC_SETCcOmmand

override the number of processes per procesobi?) /
clone(2) calls, when the non-root user does not have the
CAP_SYS_ADMIN capability

increase this user’s resource limits with gedrlimit(2)
system service

set the real-time clock (rtc) periodic IRQ rate,emable the
periodic IRQ interrupts for a frequency that isaper than
64Hz

override the limit on the number of console terrhiopens/
allocations

override the limit on the number of console keyloar
keymaps

when allocating additional space on ufs, ext2 amtB e
filesystems, override the limit on the amount oferved
spaceNote: the ext2 filesystem also honors the files system
user ID when checking for resource overrides, aifaw
override usingetfsuid(2) also.

on ext3 filesystems, modify data journaling mode

CAP_SYS_TIME This capability allows:

setting or adjusting the time vialock settime(2) ,
stime(2) , settimeofday(2) andadijtimex(2)

use of theRTC_SET_TIME and RTC_EPOCH_SETIioctl(2)
commands for thédev/rtc real-time clock device

CAP_SYS_TTY_CONFIG
This capability allows:

use of thevhangup(2) system service

use of all the console terminal and keyboardtl(2)
commands, including cases when the user is natvimer of
the console terminal

Note that the use of theDKBDREP, KDSETKEYCODE,
VT_LOCKSWITCH andVT_UNLOCKSWITCH console terminal
and keyboardoctl(2) commands require this capability
even when the user is the owner of the consoleitatm

C-9

RedHawk Linux User's Guide

C-10

D
Kernel Trace Events

This appendix lists the pre-defined kernel tracengés that are included in the RedHawk
Linux trace and debug kernels as well as methodddfining and logging custom events
within kernel modules.

Refer to theNightTrace RT User’s Guidgublication number 0890398, for a complete
description of how to supply trace points in usael code, capture trace data and display
the results.

Pre-defined Kernel Trace Events

Table D-1 provides a list of all the kernel traceeets that are pre-defined within the
RedHawk Linux trace and debug kernels.

Table D-1 Pre-defined Kernel Trace Events

Type of
Trace Event Trace Event Name Description

System Calls SYSCALL_ENTRY A system call was entered.
(i386 systems only)

SYSCALL_EXIT A system call exited.
(i386 systems only)

SYSCALL32_ENTRY A 32-bit system call was entered.
(x86_64 systems only)

SYSCALL32_EXIT A 32-bit system call exited.
(x86_64 systems only)

SYSCALL64_ENTRY A 64-bit system call was entered.
(x86_64 systems only)

SYSCALL64_EXIT A 64-bit system call exited.
(x86_64 systems only)

FBS FBS_SYSCALL An FBS system call was made. Possible types
include:

0 - fbsop
fbsctl
- fbsget
- pmctl
pmop
- fbswait
- fbstrig
- fbsavail
8 - fbsdir

[EnY
'

~NOoO O WN
'

FBS_OVERRUN A process scheduled on FBS incurred an overiun.

D-1

RedHawk Linux User's Guide

Table D-1 Pre-defined Kernel Trace Events (Continu ed)
Type of
Trace Event Trace Event Name Description
Traps TRAP_ENTRY A trap was entered.
TRAP_EXIT A trap exited.
Interrupts IRQ_ENTRY An IRQ handler was entered.
IRQ_EXIT An IRQ exited.
SMP_CALL_FUNCTION A function call was made via cross processor
interrupt.
REQUEST_IRQ A dynamic IRQ assignment was made.
SOFT_IRQ_ENTRY A softirg handler was entered.
Possible types include:
1 - conventional bottom-half
2 - real softirg
3 - tasklet action
4 - tasklet hi-action
SOFT_IRQ_EXIT A softirg handler exited.
Process SCHEDCHANGE The scheduler made a context switch.
Management .
PROCESS A process management function was performe|
Possible types include:
1 - Kkernel thread created
2 - fork or clone
3 - exit
4 - wait
6 - wakeup
PROCESS_NAME Associates a process ID with a process name g
to a fork, clone, or exec.
SIGNAL A signal was sent to a task. Possible types incl
1 - signal ignored
2 - signal dropped
3 - signal queued
4 - signal delivered
File System FILE_SYSTEM A file system function was performed. Possible
types include:
1 - wait for data buffer started
2 - wait for data buffer finished
3 - exec
4 - open
5 - close
6 - read
7 - write
8 - seek
9 - octl
10- select
11 - poll

rior

ude

D-2

Kernel Trace Events

Table D-1 Pre-defined Kernel Trace Events (Continu ed)

Type of
Trace Event

Trace Event Name

Description

Timers

TIMER

A timer function was performed. Possible types
include:

1 - timer expired
2 - set_itimer() system call
3 - schedule_timeout() kernel routine

Work Queues

WORKQUEUE_THREAD

A work queue thread was created.

WORKQUEUE_WORK

A work queue handler was executed.

y

S

Memory MEMORY A memory management function was performed.
Management Possible types include:
1 - page allocation
2 - page freeing
3 - pages swapped in
4 - pages swapped out
5 - wait for page started
6 - wait for page finished
GRAPHICS_PGALLOC An additional graphics bind page was dynamical
allocated.
Sockets SOCKET A socket function was performed. Possible type
include:
1 - generic socket system call
2 - socket created
3 - data sent on socket
4 - dataread from socket
IPC IPC A System V IPC function was performed.
Possible types include:
1 - generic System V IPC call
2 - message queue created
3 - semaphore created
4 - shared memory segment created
Networking NETWORK A network function was performed. Possible typges
include:
1 - packetreceived
2 - packet transmitted
Custom Event CUSTOM This is a user-defined event.

Note: For information on logging this event and
dynamically creating other custom kernel trace
events, refer to the section “User-defined Kerng
Trace Events” below.

D-3

RedHawk Linux User's Guide

Table D-1 Pre-defined Kernel Trace Events (Continu ed)

Type of
Trace Event Trace Event Name Description

Kernel Trace BUFFER_START This event marks the beginning of a trace buffer.

Management BUFFER_END This event marks the end of a trace buffer.
PAUSE Tracing was paused.
RESUME Tracing was resumed.
EVENT_MASK The tracing event mask was changed.
EVENT_CREATED A new trace event was dynamically created.
EVENT_DESTROYED A dynamically created trace event was destroyged.

User-defined Kernel Trace Events

There is a pre-defined “custom” kernel trace exkat can be used for any user-defined
purpose. The description for using this CUSTOM le¢tnace event is described in the
next section. Other user-defined events can betededynamically using the calls
described in the section “Dynamic Kernel Tracingltdw.

Pre-defined CUSTOM Trace Event

TRACE_cUsTOMmMmay be used to log the pre-definedstom trace event. The caller
provides an integer identifiesib_ig to differentiate multiple uses of tlisTom event.
The caller may also provide any arbitrary stringlafa to be logged with the event.

Synopsis

#include <linux/trace.h>
void TRACE_CUSTOM (int sub_id const void* ptr, int size;

Arguments are defined as follows:

sub_id a user-supplied ID

ptr a pointer to arbitrary data to be logged with thers
size the size of the data

Dynamic Kernel Tracing

In addition to the pre-definedusToM kernel trace event described above, user-defined
kernel trace events can be dynamically createdaddldisplayed by NightTrace RT for
analysis.

D-4

Kernel Trace Events

For dynamic kernel tracing, the following calls aised, which are described below:

* trace_create_event — allocates an unused trace event ID and
associates it with a given name

* trace_destroy event — deallocates the event ID

* TRACE_LOG_EVENT a generic trace point function that may be usddg a
dynamic event

trace_create_event
This call allocates an unused trace event ID aadciates it with the given name.
Synopsis

#include <linux/trace.h>
int trace_create_event (const char* name;

The argument is defined as follows:

name is a unique, user-defined name for the trace evidrit name is truncated to
31 characters.

The event ID is returned. An attempt is made tarrean ID that was not used (created
and destroyed) recently. AAVENT_CREATEDtrace event is logged with this call.

On failure, one of the following is returned:

-ENOsSPC All dynamic event IDs are in use.
-EINVAL The given name pointer is NULL or points to a NU&tring.
-EEXIST The given name is non-unique.

-ENOMEM Memory allocation error.

trace_destroy_event
This call deallocates the trace event ID that Wiasated withcreate_trace_event
Synopsis

#include <linux/trace.h>
void trace_destroy_event (int id);

The argument is defined as follows:

id the event ID that was allocated witteate_trace_event

An EVENT_DESTROYEDtrace event is logged with this call.
TRACE_LOG_EVENT

This may be used to log a trace point for the newated dynamic trace event.

Synopsis

#include <linux/trace.h>

D-5

RedHawk Linux User's Guide

D-6

void TRACE_LOG_EVENT (int id, const void* ptr, int
Arguments are defined as follows:

id the event ID

ptr a pointer to arbitrary data to be logged with thers
size the size of the data

size);

Introduction

E
Migrating 32-bit Code to 64-bit Code

This appendix provides information needed to m&B#-bit code to 64-bit processing on
x86_64 architectures.

RedHawk Linux Version 2.X and later can executetloan 64-bit AMD Opteron and
EMG64T processors as well as on the 32-bit InteltilenXeon processors. The x86_64
version of RedHawk Linux is a full 64-bit operatiagstem that executes both 32-bit and
64-bit applications in native mode on the x86_6dcpssor.

The Opteron processor utilizes the AMD64 Instrutt®et Architecture (ISA), which is
nearly identical to recent Intel processors thatpsut the EM64T ISA (e.g. all Intel
Nocona processors). Both AMD64 and EM64T are capabtrue 64-bit execution, and
are collectively known as “x86_64" architectures.

The “long” execution mode of x86_64 processors tvas submodes: “64-bit” and

“compatibility.” Existing 32-bit application binags can run without recompilation in
compatibility mode under RedHawk Linux, or the apgions can be recompiled to run in
64-bit mode.

32-bit applications run natively with no “emulatiomode” to degrade performance. For
this reason, many applications do not need to ioiegdo 64-bits.

NOTE

Real-time extensions and features ao¢ available to 32-bit
applications running under a 64-bit operating systg.e.

x86_64). In order to use real-time features, migrag-bit

applications to 64-bit or boot a 32-bit operatiggtem instead.

Software optimized for x86_64 can make use of singd addressable memory and 64-bit
architectural enhancements required by the mostashelimg applications, such as
scientific computing, database access, simulati@#d) tools, etc. If an application
would benefit from the larger virtual and physiealdress space afforded by 64-bit
processing, information in this section will helpuymigrate your code.

Porting existing 32-bit applications to 64-bits ahves the following areas, which are
discussed in detail in the sections that follow:

* Source code written for 32-bits will likely requineodifications to execute
in 64-bit mode.

¢ Binaries that have been compiled for 32-bit operatieed to be recompiled
for 64-bit before running in 64-bit mode.

E-1

RedHawk Linux User's Guide

Procedures

E-2

The build process (makefiles, project files, etndy need to be updated to
build 64-bit executables and add portability cheakioptions for
compilation.

Only 64-bit device drivers can be used with 64-tyerating systems.
Applications that install device drivers may notriwaorrectly if there is no
64-bit version of the required driver. All drivessipplied with RedHawk
Linux are 64-bit compatible.

In addition, hints to get the most performance fyguar applications are provided.

The AMD64 Developer Resource Kitis a complete resource for programmers porting or
developing applications and drivers for the Optgymtessor. The AMD64 DRK contains
technical information including documentation, vehjtapers, detailed presentations and
reference guides. This Kit is available from thew.amd.comweb site.

In order to systematically address modifying yoode for porting to 64-bits, follow the
guidelines below. All source files should be revégliand modified accordingly, including
header/include files, resource files and makefifgsecifics regarding these steps are
provided in the sections that follow.

Use#if defined _ x86 64 or __amdeé4__ for code specific to
AMDG64 architecture.

Convert all inline assembly code to use intrinsimdtions or native
assembly subroutines.

Modify calling conventions in existing assembly eaas needed.
Review use of any pointer arithmetic and confirisutts.

Review references to pointers, integers and phlyaiddresses and use the
variable size data types to accommodate the diféere between 32 and 64-
bit architectures.

Examine makefiles to build 64-bit executables add portability checking
options.

http://www.amd.com

Migrating 32-bit Code to 64-bit Code

Coding Requirements

Data Type Sizes

Longs

Pointers

The main issue with 32-bit and 64-bit portabilitythat there should be no presumption
about the size of an address or its relationshthecize of aint , long , etc.

Table E-1 shows the sizes of the various ANSI dgpees under RedHawk Linux on
AMDG64 systems.

Table E-1 Sizes of Data Types

ANSI Data Type Size in Bytes

char 1
short

int

long

long long
intptr_t, uintptr_t
float

double

long double 16

O »~ 00O 00 BN~N

You can use theizeof operator to get the size of the various data tyfeesexample, if
you have a variablet X you can get the size gfwith sizeof(x) . This usage works
even for structs or arrays. For example, if youehawariable of a struct type with the
namea_struct , you can usseizeof(a_struct) to find out how much memory it is
taking up.

Longs become 64-bit, therefore, you need to examlindirect or implied assignments or
comparisons betwedang andint values. Examine all casts that allow the compder
accept assignment and comparison between longmeagers to ensure validity. Use the
value of theBITs_PER_LONGMacro to determine the size of longs.

If ints and longs must remain different sizes @xample, due to existing public API
definitions), implement an assertion that ascest#lirat the value of the 64-bit item does
not exceed the maximum value of the 32-bit item gewlerate an exception condition to
handle the case if it does occur.

Pointers become 64-bit, therefore, you also neeexiamine all direct or implied
assignments or comparisons between pointerdgrandvalues. Remove all casts that
allow the compiler to accept assignment and corsparbetween pointers and integers.
Change the type to a type of variable size (equaldinter size). Table E-2 shows the
variable size data types.

RedHawk Linux User's Guide

Table E-2 Variable Size Data Types

ANSI Data Type Definition

intptr_t Signed integral type to hold a pointer

uintptr_t Unsigned integral type to hold a pointer

ptrdiff_t Signed type to hold the signed difference of
two pointer values

size t Unsigned value indicating the maximum
number of bytes to which a pointer can refer

ssize t Signed value indicating the maximum num-

ber of bytes to which a pointer can refer

Arrays
Under 32-bit codeint andlong could be used to hold the size of arrays. Undebi§4
arrays can be longer than 4 GB. Insteathbf orlong , use thesize_t data type for
portability. It will become 64-bit signed integitgbe when compiled for 64-bit targets, or
32-bit for 32-bit targets. The return values froathsizeof() andstrlen() are both
of typesize_t

Declarations

You also need to alter any declarations of varglp@rameters or function/method return
types that must be changed to 64-bit to use onthefkize variant types shown in
Table E-2.

Explicit Data Sizes

When it is necessary to explicitly address date, sise the data types in Table E-3. There
are no ANSI data types that specifically addreds dé&ze; these types are specific to
Linux.

Table E-3 Fixed Precision Data Types

Data Type Definition
int64 _t 64-bit signed integer
uinté4_t 64-bit unsigned integer
int32_t 32-bit signed integer
uint32_t 32-bit unsigned integer
intle t 16-bit signed integer
uintlé_t 16-bit unsigned integer
int8_t 8-bit signed integer
uint8_t 8-bit unsigned integer

E-4

Constants

APIs

Migrating 32-bit Code to 64-bit Code

Constants, especially hex or binary values, aeiko be 32-bit specific. For example, a
32-bit constant 0x80000000 becomes 0x000000008@IDBD64-bit. Depending upon
how it is being used, the results may be undesirddake good use of the ~ operator and
type suffixes to avoid this problem; for examplee ©x80000000 constant might be better
as ~0xTffffffful instead.

Code might need to be changed to use 64-bit ARINESAPIs use data types which the
compiler will interpret as 64-bit in conflict witkxplicit 32-bit data types.

Calling Conventions

Calling conventions specify how processor registgesused by function callers and
callees. This applies when porting hand coded aslsecode that interoperates with C
code and for in-line assembly statements. The Liralkng conventions for the x86_64
are given in Table E-4.

Table E-4 Calling Conventions

Register Status Use

%rax \olatile Temporary register; with variable arguments passes
information about the number of SSE registers used;
first return register

%rbx Non-volatile Optionally used as base pointer, must be presdryed
callee

%rdi, %rsi, %rdx, \olatile Used to pass integer arguments 1,2,3,4,5,6

%rcX, %r8, %r9

%rsp Non-volatile Stack pointer

$rbp Non-volatile Optionally used as frame pointer, must be preselyed
callee

%r10 \olatile Temporary register, used for passing a functiotaics
chain pointer

%r11 \olatile Temporary register

%r12-%r15 Non-volatile Must be preserved by callee

%xmmO-%xmm1l \olatile Used to pass and return floating point arguments

%xmm2-%xmm?7 \olatile Used to pass floating point arguments

%xmm8-%xmm15 \olatile Temporary registers

%mmx0-%mmx7 \olatile Temporary registers

%st0 \olatile Temporary register; used to return long double
arguments

%st1-%st7 \olatile Temporary registers

%fs \olatile Reserved for system use as thread-specific daisteeg

E-5

RedHawk Linux User's Guide

Conditional Compilation

In cases where there is the need to supply conditicode for 32-bit vs. 64-bit execution,
the macros in Table E-5 can be used.

Table E-5 Macros for Conditional Compilation

Macro Definition
__amd6é4__ Compiler will generate code for AMD64
_i386 Compiler will generate code for x86

Miscellaneous

A variety of other issues can arise from sign egiem, memory allocation sizes, shift
counts, and array offsets. Be especially carefoualany code that makes assumptions
about the semantics of integer overflow.

Compiling

Existing makefiles should build native 64-bit exthles on the x86_64 processor with
little or no modifications.

The followinggcc switches can be used to catch portability issBeger to thegcc(1)
man page for details.

-Werror -Wall -W -Wstrict-prototypes -Wmissing-prot otypes
-Whpointer-arith -Wreturn-type -Wcast-qual -Wwrite-s trings
-Wswitch -Wshadow -Wecast-align -Wuninitialized -ans i
-pedantic -Wbad-function-cast -Wchar-subscripts -Wi nline

-Wnested-externs -Wredundant-decl

Testing/Debugging

Follow standard RedHawk Linux testing and debuggéudniques for 64-bit code.

E-6

Migrating 32-bit Code to 64-bit Code

Performance Issues

The information in this section discusses how ttlge best performance from your 64-bit
application.

Memory Alignment and Structure Padding

Alignment issues won't cause exceptions but caseauperformance hit. Misalignment
is handled at runtime at the expense of severakagcles. The performance side-effects
of poorly aligned operands can be large.

Data within structures will be aligned on naturalbhdaries which can lead to inefficient
code due to wasted space. Natural alignment méat2tbyte objects are stored on 2-
byte boundaries, 4-byte objects on 4-byte bounsaeie.

For example, the following structure definition Wibnsume 24 bytes when generating
64-bit code:

typedef struct _s {
int x;
int *p;
int z;
}s, *ps;
The pointerp will be aligned on an 8-byte boundary which waluse 4 bytes of padding

to be added after themember. In addition, there will be an additionddytes of padding
after thez member to pad the structure out to an even eigietiioundary.

The most efficient structure packing will be acleid\by placing the members from largest
to smallest in the structure. The following dediamis more efficient. It will take only 16
bytes and does not require any padding:

typedef struct _s '}

int *p;
int x;
int z;
}s;
Because of potential padding, the safest way b tfire constant offset of fields within a
structure is to use tradfsetof() macro, which is defined istddef.h

RedHawk Linux User's Guide

E-8

F

Kernel-level Daemons on Shielded CPUs

The Linux kernel uses many kernel daemons to parkystem functions. Some of these
daemons are replicated on every CPU in the sysséielding a CPU from processes will
not remove one of these “per-CPU” daemons.

The following daemons can create serious jittetbpms on process-shielded CPUs.
Fortunately, these daemons can be avoided by eoifigand using the system carefully.

kmodule cpu

migration/ cpu

kswapd node

These daemons are created and executed each tikeenel
module is unloaded. It is highly recommended thatnel
modules are not unloaded while real-time applicetiare running
on the system.

These are the task migration daemons responsiblmifgrating

tasks off a particular CPU. These daemons willeaora process-
shielded CPU if a process running on that CPU isdd to

migrate off that processor. Forced migration maggden when
any of the following interfaces are used:

/proc/ pid/affinity
sched_setaffinity(2)
/proc/shield/procs
cpucntl(2)
delete_module(2)

Applications that are running on shielded CPUs &hage these
interfaces only when background process jittertmatolerated.

Forced migration is also done by various kernetuiess, which
can be enabled with tlPu_FREQandNUMA kernel configuration
options. These options have been disabled by defaudll
RedHawk Linux kernel configurations.

These are the page swap-out daemons that swap pagés a
swap device to reclaim pages when memory runs low.

When the kernel is built with theumA configuration option
enabled, there may be several of these daemorts bésed to a
single CPU. When a CPU is process-shielded or ddwuasing
cpu(l)), the daemon is moved to a non-shielded active .CPU
When the CPU is no longer shielded or down, thentaeis
moved back.

WhenNuMA is disabled, there is one system-wide daemonighat
not biased to any particular CPUs; therefassyapd will not run
on CPUs shielded from processes and is only a @mobih a non-
shielded CPU.

NUMA is enabled by default only on prebuilt RedHaw86 64
kernels.

F-1

RedHawk Linux User's Guide

F-2

kapmd This is the Advanced Power Management (APM) daemhai
processes power management requests. It is alviagedito CPU
0. APM may be disabled with the kernel boot parasmet
“apm=off” or may be completely eliminated by disky the
APM kernel configuration option. APM has been digabby
default in all RedHawk Linux kernel configuratiofi@ecause this
daemon is not a per-CPU daemon, it will not run@mRUs
shielded from processes and is therefore a probldynon a non-
shielded CPU.

The following daemons may execute on process-stie@PUs. However, because they
perform necessary functions on behalf of process@sterrupts that have been biased to
that CPU, and because these daemons are onlytadti@a a result of actions initiated by
the processes or interrupts that are biased taelddd CPU, these daemons are
considered less problematic in terms of their inbjpacdeterminism.

ksoftirgd/ cpu These are the softirg daemons that execute saféirtines for a
particular CPU. One of these daemons will run qre@cess-
shielded CPU if a device driver interrupt handlexsied to that
CPU uses softirgs either directly or indirectly tasklets. Softirgs
are used directly by the local timer, SCSI, andworking
interrupt handlers. Tasklets are used by many datiivers.

The priority of theksoftirqd is determined by theOFTIRQ_PRI
kernel tunable, which is located undggneral Setup on the
Kernel Configuration GUI. WheBsOFTIRQ_PRIis set to a positive
number, that number is the priority at whik$oftirqd will
run. By default, this tunable is set to zero, ahe setting of
SOFTIRQ_PREEMPT_BLOCKffects the daemon’s priority. When set
to Y, theksoftirqd daemon will run as under tEHED_FIFO
scheduling policy at a priority of one less thaa thighest real-
time priority. When set to N, thesoftirqd daemon will run at
priority zero.

events/ cpu These are the default work queue threads that nperfeork on
behalf of various kernel services initiated by pgsses on a
particular CPU. They also may perform work that hagn
deferred by device driver interrupt routines thavérbeen biased
to the same CPU. These daemons execute with avaloe of
-10.

aio/ cpu These are work queue threads that complete asymuigol/O
requests initiated with the_submit(2) system call by
processes on a particular CPU. These daemons exefilt a
nice value of -10.

reiserfs/ cpu These are work queue threads used by the ReikeiSkstem.
These daemons execute with a nice value of -10.

xfsdatad/ cpu
xfslogd/ cpu These are work queue threads used by the IRIXnading File
System (XFS). These daemons execute with a nice wHl-10.

Kernel-level Daemons on Shielded CPUs

cio/ cpu

kblockd/ cpu

wanpipe_wg/ cpu These are work queue threads used by various el@rivers.
These threads perform work on behalf of various&kservices
initiated by processes on a particular CPU. Theyp glerform
work that has been deferred by device driver inf@rroutines
that have been biased to the same CPU. These daereoute
with a nice value of -10.

Note also that any third-party driver may createate work queues and work queue
threads that are triggered by processes or intetrapdlers biased to a shielded CPU.
These daemons are always namanhé cpuand execute with a nice value of -10.

RedHawk Linux User's Guide

F-4

Overview

G
Cross Processor Interrupts
on Shielded CPUs

This appendix discusses the impact of cross procesterrupts on shielded CPUs and
methods to reduce or eliminate these interruptbdést performance.

On a RedHawk platform configured with one or mdrielsled CPUs, certain activities on
the other CPUs can cause interrupts to be sehetsiielded CPUs. These cross processor
interrupts are used as a method for forcing andifidy to handle some per-CPU specific
task, such as flushing its own data cache or fhgslts own translation look-aside buffer
(TLB) cache.

Since cross processor interrupts can potentiallgeaoticeable jitter for shielded CPUs,
it is useful to understand the activities that estirese interrupts to occur, and also how to
configure your system so that some of these inisroan be eliminated.

Memory Type Range Register (MTRR) Interrupts

On Intel P6 family processors (Pentium Pro, Pentluand later) the Memory Type
Range Registers (MTRRs) can be used to controbgemr access to memory ranges. This
is most useful when you have a video (VGA) cardad?Cl or AGP bus. Enabling write-
combining allows bus write transfers to be combiimtd a larger transfer before bursting
over the PCI/AGP bus. This can increase performafdmage write operations by 2.5
times or more.

The NVIDIA device driver contained in RedHawk kelswaill make use of the CPU’s
Page Attribute Table (PAT) registers instead ofMiERR registers if the PAT registers are
supported by the processors in the system. Onlynvthe system’s processors do not
contain PAT support will the NVIDIA driver fall b&cto using the MTRR registers.
Therefore, for most systems, the issues describkavbconcerning MTRR related cross
processor interrupt daot apply.

While the MTRRs provide a useful performance benefienever a new MTRR range is
set up or removed, a cross processor interruptbeitent to all the other CPUs in order to
have each CPU modify their per-CPU MTRR registeroedingly. The time that it takes
to process this particular interrupt can be quétegthy, since all the CPUs in the system
must first sync-up/handshake before they modifyrthespective MTRR registers, and
they must handshake yet again before they exit tespective interrupt routines. This

G-1

RedHawk Linux User's Guide

class of cross processor interrupt can have a safégct on determinism having been
measured at up to three milliseconds per interrupt.

When the X server is first started up after sysbemt, a MTRR range is set up, and one of
these MTRR cross processor interrupts is sentl wtlaér CPUs in the system. Similarly,
when the X server exits, this MTRR range is remoweudl all other CPUs in the system
receive yet another MTRR interrupt.

Three methods can be used to eliminate MTRR relatess processor interrupts during
time-critical application execution on shielded GPU

1.

Reconfigure the kernel so that tkierRR kernel configuration option is
disabled. When using the Kernel Configuration Gttis option is located
under theProcessor Type and Features section and is referred to as
“MTRR (Memory Type Range Register) support”. Thisnénates MTRR
cross processor interrupts since the kernel sugdpothis feature is no
longer present. Note that this option has a paéntsevere performance
penalty for graphic 1/0 operations.

. Start up the X server before running the timéeai applications on the

shielded CPU(s), and keep the X server running thditime-critical
activity has completed. The MTRR interrupts willlsiccur, but not
during time-critical activities.

TheMmTRR range can be preconfigured so that no cross pgocagerrupts
occur. Use the following procedure for preconfigiona of the MTRRs
used by the X server:

a. After the system is booted, but before the X esehas started up,
examine the current MTRR settings. You need torbeither init
State 1 or 3.

cat /proc/mtrr

reg00:
reg01:

base=0x00000000 (OMB), size=1024MB: write-b ack, count=1
base=0xe8000000 (3712MB), size= 128MB: write -combining, count=1

b. After the X server is started up, re-examine MERR register
settings:

cat /proc/mtrr

reg00:
reg01:
reg02:

echo

G-2

base=0x00000000 (OMB), size=1024MB: write-b ack, count=1
base=0xe8000000 (3712MB), size= 128MB: write -combining, count=2
base=0xf0000000 (3840MB), size= 128MB: write -combining, count=1

c. In this example, the new X server entry is trst &ntry, “reg02”. If
your system has multiple graphics cards, or showeernthan one
new entry, then these additional entries shouldoabe
accommodated with additionad.local script entries.

d. Now add additional line(s) to yoietc/rc.d/rc.local script
to account for the X server MTRR entries. In ouamyple we have
just one X server entry to account for:

“base=0xf0000000 size=0x8000000 type=write-co mbining” > /proc/mtrr

e. Whenever the hardware configuration is modifiedre system, it is
a good idea to check that the MTRR entriegddtt/rc.d/
rc.local are still correct by starting up the X server asthg:

Cross Processor Interrupts on Shielded CPUs

cat /proc/mtrr

to examine the MTRR output and check for differenitem the
previous MTRR settings.

Graphics Interrupts

A number of cross processor interrupts are issugdlkwunning graphics applications.

A kernel graphics driver such as the NVIDIA driweiil allocate and setup various cache-
inhibited graphics memory buffers for writing arehding data to and from the NVIDIA
graphics processing unit (GPU).

Whenever these buffers are added or removed dgraqghics execution, cross processor
interrupts are sent to each of the other CPUsdrsytstem in order to have them flush their
data and translation lookaside buffer (TLB) caclueghese types of buffer cache-mode
transitions. These types of cross processor uesrcan have a fairly severe impact that
has been measured to be from 50 to 250 microseqoerdimterrupt. Cache-inhibited
kernel graphics buffer allocations and deallocaioocur when:

* starting up or exiting the X server

* running graphics applications

¢ switching from a non-graphics tty back to the giephscreen with a
Ctrl Alt F# keyboard sequence

For systems with NVIDIA PCle and/or PCI graphicsd®), these types of cross
processor interrupts may be eliminated or reduceeinwa pool of cache-inhibited buffer
pages is pre-allocated. As graphics buffer allocetiare made, the pages needed to satisfy
these requests are taken from the pre-allocatatisteof pages. Since these pages are
already cache-inhibited, there is no need to isslditional flush operations when these
pages are used. When a buffer allocation is remabhedpages are placed back onto the
page freelist, thus remaining cache-inhibit cleégimould the pool of pre-allocated pages
be empty when a request is made, pages will benligadly allocated and cross processor
interrupts will be issued in the normal fashionefidfore, it is usually best to pre-allocate
enough pages so that the pool of available pages hecomes empty.

To enable this support, thRREALLOC_GRAPHICS_PAGEXernel parameter must have a
positive value representing the number of pre-alled pages in the pool. A value of
10240 is configured into all pre-built RedHawk Linkernels.

To disable this support, you may use a pre-buillHRawvk Linux kernel and specify the
“no_pregraph_pgs” grub line kernel parameter, ar yway build a custom kernel and
specify a a value of O (zero) for tRREALLOC_GRAPHICS_PAGE%ernel parameter. This
support is always disabled on systems where no NWIBCI/PCle graphics cards are
present, regardless of tARREALLOC_GRAPHICS_PAGE®arameter value.

The PREALLOC_GRAPHICS_PAGE®ption is located under tHeevice Drivers ->
Graphics Support subsection of the Kernel Configuration GUI.

The/proc/driver/graphics-memory file can be examined while running graphics
applications to observe the maximum amount of gcapimemory pages actually in use at
any time. For example:

RedHawk Linux User's Guide

$ cat /proc/driver/graphics-memory

Pre-allocated graphics memory: 10240 pages
Total allocated graphics memory: 10240 pages
Graphics memory in use: 42 pages
Maximum graphics memory used: 42 pages

You may write to the file to increase or decredse=riumber of pages in the pool. This
allows you to test your system with various vallefore changing the kernel
configuration parameter. The following example losvihe number of pre-allocated pages
in the pool to 5120:

$ echo 5120 > /proc/driver/graphics-memory

The user must haveapr_sys_ADMIN capability to write to this file. Note that thegm
value written to the file must be larger than oua@do the current value of the “Graphics
memory in use” field. If the number of currentljoalated pages needs to be lowered, exit
the X server.

Specifying an unrealistically large value will rdétsin page allocation failures and the
allocation will be backed out. After writing to tfige, read the file to verify that the page
allocation change was successful.

Note that on some systems, when the NVIDIA drivetoaded or unloaded, a Page
Attribute Table (PAT) cross processor interruptest to each CPU. To minimize the jitter
involved, avoid loading or unloading the NVIDIA mobkk during time-critical
applications. You may pre-load the NVIDIA driverfoee running time-critical
applications, or during system boot with the foliogrycommand:

$ modprobe nvidia

NVIDIA CUDA Interrupts

G-4

NVIDIA CUDA is a general purpose parallel computenghitecture that makes use of the
parallel compute engine that is present in NVIDIrghics processing units (GPUSs) to
solve many complex computational problems in atibacof the time required on a CPU.

Since CUDA applications make use of cache-inhibbefers to interface with the
NVIDIA GPU(s), the same preallocated graphics ndfegpport mentioned in the previous
section will also help to greatly reduce jitter sitielded CPUs in a system where CUDA
applications are being executed.

Use of the preallocated graphics buffers by CUDAli@ptions will automatically occur
as long as there are free preallocated buffereaérpbol; no special CUDA application
coding or configuration is required.

Cross Processor Interrupts on Shielded CPUs

User Address Space TLB Flush Interrupts

Processes that are biased to execute on a shigllddand that share their address space
with processes that execute on other CPUs mayveaeer-space TLB flush cross
processor interrupts. Processes that make useaoédghmemory areas but which are
sharing their address space only with processeah@same CPU wilhot observe any
cross processor interrupts due to any shared meautirgjty.

Multithreaded applications that use the pthrealisaliy and Ada applications are
examples of shared memory applications — even thitug programmer has not explicitly
made calls to create shared memory. In these gfpeograms, the pthreads library and
the Ada run time are creating shared memory regfonshe user. Therefore, these
applications are subject to this type of cross essor interrupt when threads from the
same thread group or same Ada program executepanage CPUs in the system.

A user address TLB flush cross processor inteisugénerated when another process that
is sharing the same address space is executingdiffeaent CPU and causes a
modification to that address space’s attributesivikies such as memory references that
cause page faults, page swappimgyrotect() calls, creating or destroying shared
memory regions, etc., are examples of address spiitrite modifications that can cause
this type of cross processor interrupt. This clafssross processor interrupt has minimal
impact that has been measured at less than 10 seimoads per interrupt. When large
amounts of memory are shared, the impact can be savere.

In order to eliminate these types of cross proggsserrupts, users are encouraged to use
and write their applications such that time-critippocesses executing on shielded CPUs
avoid operations which would affect a shared menregion during the time-critical
portion of their application. This can be accomipdid by locking pages in memory, not
changing the memory protection vigorotect() and not creating new shared memory
regions or destroying existing shared memory regjion

G-5

RedHawk Linux User's Guide

G-6

H
Serial Console Setup

This appendix provides the steps needed to cordiguserial console under RedHawk
Linux.

Note that a serial console is needed if you wishge thekdb kernel debugger on a
system with a USB keyboard.

1. Modify the boot command line to include the faling kernel option:
console=tty#,baud#

wheretty# is the serial port to use for the console badd# is the serial baud rate
to use. Generally, this almost always looks like:

console=ttyS0,115200
2. Change théetc/inittab file to include the following line:
S0:2345:respawn:/shin/agetty 115200 ttyS0O vt100

Thebaud# andty# must match the same values that were given indbeoption
in step 1. The final keyword specifies the termigpk, which is almost always vt100
but can be customized if necessary. Seagfetty(8) man page for more
information.

This line can be added anywhere in the file, alghoiiis generally added at the end.
The purpose of this line is to get a login on tégad console after the system boots
into multi-user mode.

3. Ifroot login is desired on the serial consolengrally it is) you must
change or remove thetc/securetty file. See thesecuretty(5)
man page for more detalils.

4. Connect a suitable data terminal device to thialggort and ensure that it
is configured to communicate at the chosen bawd Extpending on the
specific device being used, a null-modem may baired.

Note that an inexpensive Linux PC is an excelléwiae for a data terminal device.
See theninicom(1) man page for more information about creating abker
communication session.

A Windows PC can also be used, but the explanatidhat is beyond the scope of
this documentation.

Another use for a serial console is to configuread time shell to examine a system that is
likely to hang. This procedure should be complaetadhe configured serial console
before starting any application load that is exg&sing problems.

1. Configure a serial console on a system thaké&hlito hang. For example:

¢ Add this string to your grub boot command line:
console=ttyS0,115200

H-1

RedHawk Linux User's Guide

Add this line to youretc/inittab file:
S0:2345:respawn:/sbin/agetty 115200 ttySO vt100
Add a “ttyS0” entry to theéetc/securetty file.

Connect a serial cable to your lowest numberedlspdrt and to the
serial port of another computer or laptop.

If the other computer is Linux:

Open a shell.

minicom —s

Use <CR>’s to get to the Serial Port Setup.
Change device taev/ttySO

Change baud to 115200.

Exit (Do not "Exit Minicom”).

From the login prompt, login as root.

If the other computer is Windows:

Bring up the Hyperterm application.
Connect using COM 1.

Set the baud rate to 115200.

From the login prompt, login as root.

From the root login, run tHeTConsole.sh script shown below. As an
argument, give it a higher real time priority theamy of your tasks. For
example:

./RTConsole.sh 90

This procedure provides a login shell which shaeldain active during a ‘hang’ and give
you access and visibility into the system for dejing. A good start would be to run

top(1)

When debugging is finished the system should beatel:

to determine which process is dominating the syste

reboot

RTConsole.sh

#!/bin/bash
if [$UID -ne 0]

then

fi

echo "Must be root to execute.”
exit

if[$#-eq O]

then

echo "Usage: RTConsole <Login shell priority>"

exit

fi

foriin $(ps -e -o pid,cmd | fgrep /0 | fgrep -v f grep | awk {print $1});

do

run -s fifo -P $1 -p $i

done

run -s fifo -P $1 -p $PPID

H-2

Boot Command Line Parameters

Table I-1 lists boot command line parameters tharage uniquely to RedHawk. It does
not include all boot command line parameters akdlander Linux. For that list, refer to
the file Documentation/kernel-parameters.txt in your kernel source directory
or typeinfo grub .

Boot parameters define functionality that is bimto a kernel. The boot commands can be
added tdetc/grub.conf for automatic inclusion when the kernel bootsspecified
on the boot command line when booting the kernel.

Information about individual features is availablevarious locations. In Table I-1, the
following references are provided:

* Page numbers (active hypertext links) where infdimnaincluded in this
RedHawk Linux User’s Guide provided

* Names and publication numbers of other approp@atecurrent documents
Other sources where information may be obtaineldidiec

¢ Files under th®ocumentation directory of the kernel source tree

¢ Linux documentation sites on the Internet

RedHawk Linux User's Guide

Table I-1 Boot Command Line Parameters

Parameter

Options

Description

Concurrent
Documentation
Reference

crashkernel

=siza@®16M

Reserves memory and non-default
location for loading a “crash” kernel
containing the core image of a corrup
kernel for purposes of saving and
analyzing a crash dump.

sizeis the size of reserved memory:
32M, 64M (default) or 128M
16M is the offset address

page 12-1

kdb

=on

Enables entry to the kdb kernel
debugger.

=off

Disables entry to kdb.

=early

Makes the kernel enter kdb early in th
boot process.

page 12-8

| kernel-sourcé
Documentation/kdb
e

memmap

=size<delimiter>address

Defines memory regions to be reserve
<delimiter> is ‘@’ for System RAM,
‘S’ for Reserve or “#” for ACPI.

=exactmap

Specifies that the exact BIOS map is
used.

page 2-22

mm

=size<delimiter>address

Alias for memmap (x86_64 only).
Defines memory regions to be reservg

=ex

Alias for exactmap (x86_64 only).
Specifies that the exact BIOS map is
used.

page 2-22

nmi_dump

Enables pressing the system NMI
button to enter the debugger. Exiting t
debugger loads the crash kernel and
takes a dump, unless nmi_watchdog=

page 12-9

Boot Command Line Parameters

Table I-1 Boot Command Line Parameters (Continued)

Parameter

Options

Description

Concurrent
Documentation
Reference

nmi_watchdog

Turns the NMI watchdog feature off.
Default setting on RedHawk kernels.

Each CPU performs its own NMI
timing. Requires APIC support in the
kernel. Currently this setting does not
work and is changed to =2.

Uses external NMI timer; generated
interrupts are sent to all CPUs via
broadcast. Default setting for i386
debug kernel.

=1

Kernel selects values 1 or 2. x86_64
only. Default setting for x86_64 debud
kernel.

page 12-9

/ kernel-sourcé
Documentation/
nmi_watchdog.txt

no-hz

=yes

Includes thevo_Hz kernel code if
NO_Hz andNO_HZ_ENABLED are
configured in the kernel.

=Nno

Disables theio_Hz kernel code if
NO_Hz andNO_HZ_ENABLED are
configured in the kernel.

page B-1

noirgbalance

n/a

Can be used to turn IRQ balancing off
the kernel tunabl&RQBALANCE is
enabled in the kernel. The default is n
enabled (recommended for shielded
CPUs). Not enabled/off prevents

periodic adjustments of IRQ affinities
for balancing the interrupt load across
CPUs.

page 2-10

no_pregraph_pg

n/a

Disables all of the preallocated graphi
pages support, which is used to
minimize cross processor interrupts.

page 10-5

numa

=off

Disables NUMA support on an x86_6
system with the kernel turnablema
enabled in the kernel. This will create
system with a single NUMA node, wit
all CPUs belonging to that node. This
differs from not having NUMA suppori
built into the kernel, in which there is
flat memory system with no nodes an
NUMA user interfaces return errors

when called.

page 10-1

RedHawk Linux User's Guide

Table I-1 Boot Command Line Parameters (Continued)

Parameter

Options

Description

Concurrent
Documentation
Reference

prefer_highmem

n/a

Disables the use of the local NUMA
node’s “normal zone” pages before
selecting a remote NUMA node’s
“highmem zone” pages (when the loc
NUMA node’s highmem zone pages
have already been fully allocated).

page 10-15

rcim

=rcimoptions

Defines configuration options for the

RCIM User’s Guide

RCIM, such as interrupt characteristiq (0898007)

and associations, timing sources and
RCIM master hostname.

rhash_entries

Sizes the IP route cache table, flushe
periodically by ksoftirqd, to a fixed
number of entries. By default, the size
based dynamically on the amount of
available memory. Use this entry to
define a smaller size to reduce excess
ksoftirgd runs.

page 2-34

tsc_sync

=auto

Check if the BIOS synced the TSCs
correctly. If not, re-sync the TSCs. Th
is the default.

page 7-1

=check

Only check if the BIOS synced the
TSCs correctly. If the BIOS failed,
disable TSCs as a possible clocksour

ce.

=force

Re-sync all the TSCs at the end of boot

unconditionally.

vmalloc

=nNn[KMG]

The size of the total vmalloc allocatiorl page G-5

area. Increasing this value also increa
the large vmalloc area unless
vmalloc_sm is used to increase the
small vmalloc area. These two boot
parameters may be used either togett
or independently.

K, M or G can be used to specify size
units: kilobytes, megabytes or
gigabytes, respectively.

vmalloc_sm

=nNn[KMG]

The size in bytes of the small vmalloc
allocation area. See vmalloc above.

page G-5

affinity

AGP

async-safe

atomic

authentication

Glossary

This glossary defines terms used in RedHawk Liferms initalics are also defined
here.

An association between processes or interruptsren@PUs on which they are allowed to
execute. They are prohibited from executing on CRatsncluded in their affinity mask.
If more than one CPU is included in the affinity skathe kernel is free to migrate the
process or interrupt based on load and other ceraidns, but only to another CPU in the
affinity mask. The default condition is affinity #xecute on all CPUs in the system,;
however, specifications can be made througpadvise(3) , shield(1)
sched_setaffinity(2) and the/proc file system. Using affinity wittshielded
CPUscan provide better determinism in application code.

A bus specification by Intel which gives low-co® §raphics cards faster access to main
memory on personal computers than the usual PCI bus

When a library routine can be safely called fronthimi signal handlers. A thread that is
executing some async-safe code will deadlockif it is interrupted by a signal. This is
accomplished by blocking signals before obtainoaks.

All in a set of operations are performed at the same and only if they can all be
performed simultaneously.

Verification of the identity of a username, passsygsrocess, or computer system for
security purpose$AM provides an authentication method on RedHawk Linux

blocking message operation

Suspending execution if an attempt to send or vece@imessage is unsuccessful.

blocking semaphore operation

breakpoint

Suspending execution while testing for a semaphaie.

A location in a program at which execution is tosb@pped and control of the processor
switched to the debugger.

Glossary-1

RedHawk Linux User's Guide

busy-wait

capabilities

A method ofmutual exclusiorthat obtains a lock using a hardware-supportedatadiset
operation. If a process attempts to obtain a buai-leck that is currently in a locked
state, the locking process continues to retrydélednd set operation until the process that
currently holds the lock has cleared it and thedad set operation succeeds. Also known
as aspin lock

A division of theprivileges traditionally associated with superuser intoidéstunits that
can be independently enabled and disabled. Therduset of all valid Linux capabilities
can be found ifusr/include/linux/capability.h and detailed in Appendix C.
ThroughPAM, a non-root user can be configured to run apitinatthat require privileges
only root would normally be allowed.

condition synchronization

context switch

critical section

deadlock

Utilizing sleep/wakeup/timer mechanisms to delagracess’ progress until an
application-defined condition is met. In RedHawkuk, thepostwait(2) and
server_block(2) /server_wake(2) system calls are provided for this purpose.

When a multitasking operating system stops runming process and starts running
another.

A sequence of instructions that must be executeggquence and without interruption to
guarantee correct operation of the software.

Any of a number of situations where two or morecesses cannot proceed because they
are both waiting for the other to release someureso

deferred interrupt handling

determinism

Glossary-2

A method by which an interrupt routine defers pesieg that would otherwise have been
done at interrupt level. RedHawk Linux suppaétirgs, taskletandwork queueswhich
execute in the context of a kernel daemon. Theripyiand scheduling policy of these
daemons can be configured so that a high-prioe#y-timetask carpreemptthe activity

of deferred interrupt functions.

A computer system’s ability to execute a particudade path (a set of instructions
executed in sequence) in a fixed amount of time @ktent to which the execution time
for the code path varies from one instance to ardtidicates the degree of determinism
in the system. Determinism applies to both the amhofitime required to execute a time-
critical portion of a user’s application and to theount of time required to execute
system code in the kernel.

deterministic system

device driver

direct I/O

Glossary

A system in which it is possible to control thettas that impactieterminism Techniques
available under RedHawk Linux for maximizing detérism includeshielded CPUs
fixed priority scheduling policydeferred interrupt handlingoad balancingand unit
control ofhyper-threading

Software that communicates directly with a comphmdware component or peripheral,
allowing it to be used by the operating systemokferred to as device module or driver.

An unbuffered form of 1/O that bypasses the kemliffering of data. With direct I/O, the
file system transfers data directly between thk died the user-supplied buffer.

discretionary access control

execution time

FBS

Mechanisms based on usernames, passwords or figsapermissions that check the
validity of the credentials given them at the detan of the user. This differs from
mandatory controls, which are based on items oviectwthe user has no control, such as
the IP address.

The amount of time it takes to complete a task.ngghe high resolution process
accounting facility in RedHawk Linux, execution Brmeasurements for each process are
broken down into system, user, interrupted systachiaterrupted user times measured
with the high resolution time stamp counter (TSC).

SeeFrequency-Based Scheduler (FBS)

fixed priority scheduling policy

flavor

A scheduling policy that allows users to set stptiorities on a per-process basis. The
scheduler never modifies the priority of a proctsst uses one of the fixed priority
scheduling policies. The highest fixed-priority pess always gets the CPU as soon as it is
runnable, even if other processes are runnablereTdre two fixed priority scheduling
policies:SCHED_FIFOandSCHED_RR

A variation of a single entity. RedHawk Linux h#wsee flavors of pre-built kernels, each
containing different characteristics and configioas. A customized kernel would
constitute another flavor. The flavor designatisrdéfined in the top level Makefile and
appended as a suffix to the kernel name when theekés built; e.g, <kernelname>
trace

Glossary-3

RedHawk Linux User's Guide

Frequency-Based Scheduler (FBS)

GRUB

hyper-threading

info page

A task synchronization mechanism used to initiatecpsses at specified frequencies
based on a variety of timing sources, which incloigg-resolution clocks provided by the
Real-Time Clock and Interrupt Modul®CIM), an external interrupt source, or the
completion of a cycle. The processes are then sb@dising a priority-based scheduler.
When used in conjunction with tHeerformance Monitor (PM)FBS can be used to
determine the best way of allocating processorgaous tasks for a particular
application.

The NightSimtool is a graphical interface to the Frequency-@&hScheduler and
Performance Monitor.

GRand Unified Bootloader. A small software utilttyat loads and manages multiple
operating systems (and their variants). GRUB isdafault bootloader for RedHawk
Linux.

A feature of the Intel Pentium Xeon processor Hikws for a single physical processor
to run multiple threads of software applicationaitaneously. Each processor has two
sets of architecture state while sharing one s@rofessor execution resources. Each
architecture state can be thought of as a logi€dl €esulting in twice as many logical
CPUs in a system. A uniprocessor system with hyiperading enabled has two logical
CPUs, making it possible ghieldone of them from interrupts and background preeess
Hyper-threading is enabled by default in all RedK&wux i386 pre-built kernels.

Info pages give detailed information about a comunainfile. Its companiorman pages
tend to be brief and provide less explanation tiném pages. Info pages are interactive
with a navigable menu system. An info page is amesising thanfo(1l) command.

interprocess communication (IPC)

A capability that allows one process to communieeth another process. The processes
can be running on the same computer or on diffecentputers connected through a
network. IPC enables one application to controlthapapplication, and for several
applications to share the same data without intexgewith one another. IPC methods
include pipesmessage queussemaphoreshared memorand sockets.

interprocess synchronization

Glossary-4

Mechanisms that allow cooperating processes todinate access to the same set of
resources. RedHawk Linux supplies a variety ofriptecess synchronization tools
including rescheduling variablg, busy-waitandsleepy-waitmutual exclusion
mechanisms ancbndition synchronizatiotools.

jitter

journaling file system

kernel

Glossary

The size of the variation in the arrival or depegttimes of a periodic action. When the

worst-case time measured for either executing & cmhment or responding to an

interrupt is significantly different than the typiccase, the application’s performance is
said to be experiencing jitter. Jitter normally sasino problems as long as the actions all
stay within the correct period, brgtal-timetasks generally require that jitter be minimized

as much as possible.

A file system whereby disk transactions are wrigequentially to an area of disk called a
journal or log before being written to their fidatations within the filesystem. If a crash
occurs before the journal entry is committed, thigioal data is still on the disk and only
new changes are lost. When the system reboot$ouineal entries are replayed and the
update that was interrupted is completed, greattpbfying recovery time. Journaling
file systems in RedHawk Linux include ext3, xfs aniserfs.

The critical piece of an operating system whichfgmns the basic functions on which
more advanced functions depend. Linux is basedherkernel developed by Linus
Torvalds and a group of core developers. Concurhastmodified the Linux kernel
distributed by Red Hatto provide enhancementsiierministicreal-time processing.
RedHawk Linux supplies three pre-built kernels wtile followingflavors: generic,
debug and trace. They reside as files nanmatinuz-<kernelversion>RedHawk-
<revision.level><flavor> in the/boot directory.

Kernel Configuration GUI

load balancing

man page

memory object

The graphical interface from which selections amredefor configuring a kernel. In
RedHawk Linux, running thecur-config script displays the GUI where selections
can be made.

Moving processes from some CPUs to balance thedoaubs all CPUs.

A brief and concise online document that explaim®mmand or file. A man page is
displayed by typingnan at the shell prompt followed by a space and thentérm you

want to read about. Man pages in RedHawk Linuxudelthose provided with the Red
Hat Linux distribution as well as those describingctionality developed by Concurrent .

Named regions of storage that can be mapped taddeess space of one or more
processes to allow them to share the associatedbrgeMemory objects includBOSIX
shared memorgbjects, regular files, and some devices, butatidile system objects
(terminals and network devices, for example). Psses can access the data in a memory
object directly by mapping portions of their addrespaces onto the objects, which
eliminates copying the data between ltkeneland the application.

Glossary-5

RedHawk Linux User's Guide

message queues

An interprocess communication (IP@echanism that allows one or more processes to
write messages which will be read by one or moaalirey processes. RedHawk Linux
includes support foPOSIXandSystem \fnessage queue facilities.

module

A collection of routines that perform a system-lefumction. A module may be loaded
and unloaded from the runnikgrnelas required.

mutex

A mutual exclusiordevice useful for protecting shared data strustdirem concurrent
modifications and implementingritical sectiors. A mutex has two possible states:
unlocked (not owned by any thread) and locked (cdvhg one thread). A thread
attempting to lock a mutex that is already lockgdabother thread is suspended until the
owning thread unlocks the mutex first.

mutual exclusion

A mechanism that ensures that only one of a sed@berating processes can be executing
in acritical sectionat a time by serializing access to shared ressuiaree types of
mechanisms are typically used to provide mutualwesion—those that involvbusy-
waiting, those that involveleepy-waitingand a combination of the two.

NightProbe
A graphical user interface (GUI) developed by Cament that permitseal-time
recording, viewing, and modification of program aatithin one or more executing
programs. It can be used during development andatipe of applications, including
simulations, data acquisition, and system control.

NightSim

A graphical user interface (GUI) to tHaequency-Based Scheduler (FB&)d
Performance Monitor (PMjacilities.

NightStar RT Tools

A collection of development tools supplied by Corremt that provide a graphical
interface for scheduling, monitoring, debugging amdlyzing run time behavior ofal-
time applications. The toolset includes theghtSimperiodic schedulefightProbedata
monitor, NightTraceevent analyzefNightTunetuner andNightViewdebugger.

NightTrace

A graphical tool developed by Concurrent used foalgzing the dynamic behavior of
multiprocess and/or multiprocessor user applicati@nd operating system activity. The
NightTrace RT toolset consists of an interactiveutgding and performance analysis tool,
trace data collection daemons, and an Applicatimgmming Interface (API).

Glossary-6

NightTune

NightView

Glossary

A graphical tool developed by Concurrent for anamgzsystem and application

performance including CPU usage, context switchesrrupts, virtual memory usage,

network activity, process attributes, and CPU siig). NightTune allows you to change
the priority, scheduling policy, and CPU affinityindividual or groups of processes using
pop-up dialogs or drag-and-drop actions. It alémaad you to set the shielding and hyper-
threading attributes of CPUs and change the CPidrasent of individual interrupts.

A general-purpose, graphical source-level debuggimgd) monitoring tool designed by
Concurrent foreal-time applications written in C, C++, and Fortran. Nidietv RT can
monitor, debug, and patch multiple real-time preessunning on multiple processors on
the local system or on different targets with miafrmtrusion.

nonblocking message operation

Not suspending execution if an attempt to seneceive a message is unsuccessful.

nonblocking semaphore operation

NUMA

PAM

PCI

Not suspending execution while testing fagesmaphorevalue.

Non-Uniform Memory Architecture. A memory architaegt used in some
multiprocessors where access to different clasEegemory takes significantly different
amounts of time. A processor can access its owal lmemory faster than non-local
memory (memory which is local to another process@hared between processors).

Pluggable Authentication Module. A method that akoa system administrator to set
access anduthenticationpolicies without having to separately recompildiudual
programs for such features. Under this schemepaoat user can be configured to run
applications that requingrivileges only root would normally be allowed.

Peripheral Component Interface. A peripheral bad pnovides a high-speed data path
between the processor and peripheral devices li#teovcards, sound cards, network
interface cards and modems. PCI provides “plug@ag’ capability, runs at 33MHz and
66 MHz and supports 32-bit and 64-bit data paths.

Performance Monitor (PM)

A facility that makes it possible to monitor usetloé CPU by processes that are scheduled
on afrequency-based schedul&alues obtained assist in determining how tosteithiute
processes among processors for improled! balancingand processing efficiency.
NightSimis a graphical interface to the Performance Manito

Glossary-7

RedHawk Linux User's Guide

Pluggable Authentication Module (PAM)

POSIX

preemption

priority inheritance

priority inversion

privilege

process

SeePAM.

A standard specifying semantics and interfaceafoiNIX-like kernel interface, along
with standards for user-space facilities. Thera tore POSIX definition which must be
supported by all POSIX-conforming operating systeamsl several optional standards for
specific facilities; e.g., POSIX message queues.

When a process that was running on a CPU is replaga process with a higher priority.
Kernel preemption included in RedHawk Linux alloe$ower priority process to be
preempted, even if operating in kernel space, tiguln improved system response.
Process preemption can be controlled through teefrescheduling variabke

A mechanism that momentarily passes along the ipyiof one process to another as
needed to avoigdriority inversion

When a higher-priority process is forced to wait flle execution of a lower-priority
process.

A mechanism through which users or processes dosvatl to perform sensitive
operations or override system restrictions. Suparpessesses all (root) privileges.
Throughcapabilities privileges can be enabled or disabled for indinadusers and
processes.

An instance of a program that is being executedhfpmocess has a unique PID, which is
that process' entry in the kernel's process table.

process dispatch latency

RCIM

Glossary-8

The time that elapses from the occurrence of aareat event, which is signified by an
interrupt, until the process waiting for that extalrevent executes its first instruction in
user mode.

Real-Time Clock and Interrupt Module. A multifurani PCI card designed by Concurrent
for fully deterministic event synchronization in hiple CPU applications. The RCIM
includes a synchronized clock, multiple programreatglal-time clocks, and multiple
input and output external interrupt lines. Intetsupan be shared (distributed) across
interconnected systems using an RCIM chain.

real-time

rescheduling variable

robust mutex

RPM

semaphore

shared memory

shielded CPU

shielded CPU model

Glossary

Responding to a real-world event and completingptfeeessing required to handle that
event within a given deadline. Computations requierespond to the real-world event
must be complete before the deadline or the reaudtconsidered incorrect. RedHawk
Linux is a true real-time operating system (RTO8g¢duse it can guarantee a certain
capability within a specified time constraint.

A data structure, allocated on a per-process lgsise application, that controls a single
process’ vulnerability to rescheduling.

A mutexthat gives applications a chance to recover ifaftbe application’s threads dies
while holding the mutex.

RPM Package Manager. A management system of tdalabases and libraries used for
installing, uninstalling, verifying, querying, amnghdating computer software packages.
See thepm(8) man page for complete information.

A location in memory whose value can be testedsaidy more than one process. A
semaphore is a form sfeepy-waitmutual exclusiobecause a process that attempts to
lock a semaphore that is already locked will beckéal or put to sleep. RedHawk Linux
providesPOSIXcounting semaphores that provide a simple interfa@chieve the fastest
performance, an®ystem \6emaphores that provide many additional functidas
example the ability to find out how many waitersrinare on a semaphore or the ability to
operate on a set of semaphores).

Memory accessible through more than one procestsialiaddress map. Using shared
memory, processes can exchange data more quiadyti reading and writing using the

regular operating system services. RedHawk Linaluites standardized shared memory
interfaces derived frorBystem \as well aPOSIX

A CPU that is responsible for running high-priortgsks that are protected from the
unpredictable processing associated with interraptssystem daemons. Each CPU in a
RedHawk Linux system can be individually shieldedni background processes,

interrupts and/or the local timer interrupt.

A model whereby tasks and interrupts are assigoé2iPtUs in a way that guarantees a
high grade of service to certain important realetifunctions. In particular, a high-priority
task is bound to one or more shielded CPUs, whdstrimterrupts and low priority tasks
are bound to other CPUs. The CPUs responsibleufuming the high-priority tasks are

Glossary-9

RedHawk Linux User's Guide

shielded processor

sleepy-wait

SMP

softirg

spin lock

System V

tasklet

TLB

Glossary-10

shielded from the unpredictable processing assediatith interrupts and the other
activity of lower priority processes that enter Kegnel via system calls.

Seeshielded CPU

A method ofmutual exclusiorsuch as aemaphorehat puts a process to sleep if it
attempts to obtain a lock that is currently in ekled state

Symmetric multi-processing. A method of computinigielr uses two or more processors
managed by one operating system, often sharingdah®e memory and having equal
access to input/output devices. Application programnay run on any or all processors in a
system.

A method by which the execution of a function candelayed until the next available
“safe point.” Instead of invoking the function, &i¢jger” that causes it to be invoked at
the next safe point is used instead. A safe psiiny time the kernel is not servicing a
hardware or software interrupt and is not runniridp wterrupts blocked.

A busy-waitmethod of ensuringiutual exclusioror a resource. Tasks waiting on a spin
lock sit in a busy loop until the spin lock becoragsilable.

A standard foiinterprocess communication (IP@pjects supported by many UNIX-like
systems, including Linux and System V systems.e&3yst IPC objects are of three kinds:
System Vmessage queuesemaphoresets, anghared memorgegments.

A software interrupt routine running when the sefitevinterrupt is received at a return to
user space or after a hardware interrupt. Taskletsot run concurrently on multiple
CPUs, but are dynamically allocatable.

Translation Look-aside Buffer. A table used in gwal memory system, that lists the
physical address page number associated with edahlhaddress page number. A TLB is
used in conjunction with a cache whose tags arecas virtual addresses. The virtual
address is presented simultaneously to the TLBtanlde cache so that cache access and
the virtual-to-physical address translation carcpeal in parallel

trace event

work queues

Glossary

Logged information for a point of interest (tracam) in an application’s source code or
in the kernel that can be examined by khightTracetool for debugging and performance
analysis.

A method of deferred execution in additiorstaftirgsandtasklets but unlike those forms,
Linux processes work queues in the process confarnel daemons and therefore are
capable of sleeping.

Glossary-11

RedHawk Linux User's Guide

Glossary-12

Paths

/boot directory 11-1

/dev/Imqueue 3-2

/etc/pam.d 13-2

letc/rc.sysinit 2-17
letc/security/capability.conf 13-2, 13-3
letc/sysconfig/kdump 12-3
letc/sysconfig/sbsvme 15-6
/etc/sysconfig/sbsvme-mappings 15-7
/proc file system 1-6

/proc/bus/pci 3-28, 14-1
/proc/ccur B-3

/proc/driver/btp 15-7, 15-15, 15-16
/proc/driver/graphics-memory G-4
/proc/interrupts 2-18
/proc/irgh/smp_affinity 2-10, 2-19
[proc/mtrr G-2

/prochpid/affinity B-3
/procpid/mem 9-1-9-4
/prochid/resmemB-3
/proc/shield/irgs 2-14, 2-18
/proc/shield/ltmrs 2-14, 7-4
/proc/shield/procs 2-14
/proc/sysvipc/shm 3-15, 3-28
/proc/ivmcore 12-2
/usr/lib/libccur_rt 9-3, 14-3
{usr/lib64/libnuma.so 10-11

Numerics

32-bit 1-1, 11-2

64-bit
code migration E-1
kernels 1-1, 11-2, E-1

A

affinity 2-10, 2-14-2-19, 4-6, 4-13
alternative glibc 5-27

AMD Opteron processor E-1
asynchronous I/O 1-10

AUDIT B-3

Index

authentication 13-1

B

bar_device _count 14-4

bar_mmap 14-5

bar_munmap 14-5

bar_scan_close 14-4

bar_scan_next 14-3

bar_scan_open 14-3

bar_scan_rewind 14-4

base address registers (BARs) 3-26, 14-1, B-3
bash command 7-4

Big Kernel Lock (BKL) 14-14, B-5

bind shared memory to I/O space 3-22, 3-23, 3-25
block a process 5-37-5-41

boot command line parameters |-1

bottom halves 14-12

btp module 15-6

building a kernel 11-4

busy-wait mutual exclusion 5-2, 5-7-5-12

C

cache thrashing 2-22
capabilities 13-3, B-2, C-1
ccur-config 11-2
ccur-g++ 5-27
ccur-gcc 5-27
CD/DVD burning 2-34
clock _getres 6-5
clock_gettime 6-5
clock_nanosleep 6-11, 6-12
clock_settime 6-4
clocks
POSIX 1-11, 6-1, 6-2, 6-4—6-5
RCIM 1-5,6-1, 7-1
system time-of-day (wall) 6-4, 7-1
TSC 7-1
clocksource 7-1
condition synchronization 5-1, 5-37
configuring a kernel 11-2, B-1
console, serial setup H-1

Index-1

RedHawk Linux User's Guide

counting semaphores 1-10, 5-2, 5-12-5-21

CPU
accounting 1-7, 2-11, 7-2, B-2
affinity 2-10, 2-14-2-19, 4-6, 4-13
identification 2-29
idling 2-29-2-31, B-2
load balancing 7-3
logical/physical 2-29
rescheduling 7-4
shielding,seeshielded CPUs

cpu command 2-18, 2-29-2-31

CPU_IDLING B-2

crash dump 12-1, B-5

crash utility 12-5

CRASH_DUMP 12-3, B-5

crashkernel 1-2

cross processor interrupts B-4, G-1

D

daemon control 14-13, 14-14, F-1
DAEMON_CPU_LOCK B-2

Data Management APl (DMAPI) 8-2
data sharing 1-10

debug kernel 1-3, 11-2
DEBUG_INFO 12-3, B-5

debugger 1-6, 1-8, 12-8, B-5
deferred interrupt functions 14-12
DETECT_SOFTLOCKUP 2-35, B-4
determinism 2-2, 2-20, 2-34
device drivers 2-9, 11-5, 14-1
direct /O 8-1

disk /10 8-1

DMAPI 8-2

documentation v

dump 12-1, B-5

DVD/CD burning 2-34

E

EM64T processor E-1

examples
add module to kernel 11-6
authentication 13-3, 13-4
busy-wait mutual exclusion 5-9
condition synchronization 5-42
CPU affinity for init 2-17
CPU shielding 2-13, 2-17, 2-31-2-34
crash dumps 12-6, 12-7
device driver 14-6, 14-9
kernel configuration and build 11-5
messaging 3-7, 3-9, 3-10, A-1

Index-2

NUMA 10-14

PCI BAR scan 14-3

PCIl-to-VME 15-17

POSIX message queues A-1
rescheduling control 5-7

reserving physical memory 2-23, 2-25
run command 4-14

semaphores 5-34, 5-36

set process priorities 4-4

shared memory 3-19, 3-21, 3-23
shielded CPU 2-13, 2-17, 2-31-2-34
System V message queues A-4

F

FBSCHED B-3

FBSCHED_PM B-3

FIFO scheduling 4-1, 4-3

file systems 8-1

floating point operations 2-33
free_pci_device 14-5

Frequency-Based Scheduler (FBS) 1-1, 1-5, B-3

fstat 3-12
ftok 3-27
ftruncate 3-12-3-14

G

get_mempolicy 10-11
glibc 5-27
glossary Glossary-1
graphics
interrupts G-3
support 10-5, B-5

H

haldaemon 2-34

high resolution process accounting 1-7, 2-11, B-2,

HRACCT 7-2, B-2
hyper-threading 1-8, 2-28-2-34, B-5
HyperTransport 2-27

I/0
asynchronous 1-10
direct 8-3
disk 8-1
synchronized 1-10

throughput on quad Opterons 2-27
userspace (UIO) 14-15, B-5
iHawk systems 1-1, 11-2
INHERIT_CAPS_ACROSS_EXEC13-5, B-2
init 2-15-2-17
interprocess communicatiorseeSystem V |IPC
interprocess synchronization 5-1
interrupts
/proc interface 2-18, 2-19
cross processor B-4, G-1
deferred functions 2-21, 14-12
disabling 2-10-2-14, 7-2, 7-4
effect of disabling 2-4
effect of receiving 2-5-2-7
graphics G-3
local timer,seelocal timer
MTRR G-1
NMI 12-8, I-3
NVIDIA CUDA G-4
RCIM 1-5
response time improvements 1-7
routines in device drivers 14-11
shield CPU from 2-10-2-14, 2-31
softirgs 4-5, 14-12, B-3
tasklets 4-5, 14-12
TLB flush G-5
work queues 14-12, 14-13
interval timer 7-3
ioremap 14-11
IP route cache table 2-35, I-4
IPC,seeSystem V IPC
IRQ 2-10, 2-12, 2-14, 2-19, I-3

journaling file system 1-9, 8-1

K

K8 NUMA B-4
KDB B-5
kdb 1-8, 10-13, 12-8, I-2
KDB_CONTINUE_CATASTROPHIC B-5
KDB_MODULES B-5
KDB_OFF B-5
kdump 12-1, 12-2
kernel
add module example 11-6
boot 1-3
build 11-1
configuration 11-1, B-1
crash dump 12-2, B-5

daemon control 14-13, 14-14, F-1
debug 1-3, 11-2

debugger 1-6, 1-8, 12-8, B-5
debugging 12-1

flavors 1-3, 11-1, 11-2
generic/optimized 1-3, 11-2
preemption 1-6, B-4

reserve space 14-11, B-4

trace 1-3,11-2

trace events 14-16, D-1

tracing 1-6, B-5

tunable parameters 11-1, 11-3, B-1
updates 1-4

Index

virtual address space reserves 14-11, B-4

KEXEC 12-3, B-5
kexec 12-2
ksoftirgd 2-35, 14-13, B-3, I-4

LARGE_MMAP_SPACE B-3
libraries 3-3, 5-2, 5-14, 5-27, 10-11

Linux Documentation Project web site 11-7

load balancing 7-3
local timer
disabling 2-11-2-14, 7-4
functionality 7-1
LOCK_BREAK_THROTTLE B-4
LOCK_BREAK_THROTTLE_LIMIT B-4
low latency patches 1-7
low memory 2-34

M

mailbox 5-42
mbind 10-11
memmap 2-23, |-2

memory access, non-uniform (NUMA) 2-27, 10-1

memory locking 4-6, 5-2
memory mapping 1-10, 9-1, B-3
memory policies (NUMA) 10-2
memory resident processes 1-9
memory shielding (NUMA) 10-3
memory, low 2-34
memory, reserving physical 2-22
MEMSHIELD_ZONE_NORMAL 10-16
MEMSHIELD_ZONELIST_ORDER 10-16, B-4
message queue structures
POSIX 3-2
System V 3-4, 3-5
messaging 3-1, A-1, B-2
mlock 1-9, 2-20, 4-6

Index-3

RedHawk Linux User's Guide

mlockall 1-9, 2-20, 4-6

mmap 1-8, 9-1, 9-4, 14-5, B-3

mpadvise 2-15

mqg_close 3-2

mqg_getattr 3-2

mq_notify 3-2

mqg_open 3-2

mq_receive 3-2

mg_send 3-2

mqg_setattr 3-2

mq_unlink 3-2

mqueue 3-2

msgctl 3-3, 3-6, 3-9

msgget 3-3, 3-5, 3-7

msgop 3-6

msgrcv 3-10

msgsnd 3-10

munlock 1-9, 2-20, 4-6

munlockall 1-9, 2-20, 4-6

mutex 5-2, 5-27
attribute objects 5-23
compiling 5-27
nopreempt spin 5-10
priority inheritance 5-23
pthread 5-21, 5-23
robust 5-22
spin 5-7
state 5-23

mutual exclusion 5-1, 5-14

N

nanosleep 2-11, 6-11, 7-4
NightProbe 1-2,1-6

NightSim 1-2, 1-5

NightStar RT tools 1-1, 1-2, 11-2
NightTrace 1-2, 1-3, 1-6, 11-2, 14-16, D-1
NightTune 1-2

NightView 1-2, 1-6

NMI interrupts 12-8, I-3
nmi_dump 12-8, I-2
nmi_watchdog 12-8, I-3

NO_Hz B-2,1-3

NO_HZ_ENABLED B-2, I-3
no_pregraph_pgs 10-7, I-3
noatime 2-35

noirgbalance 1-3

non-uniform memory access (NUMA) 2-27, 10-1
nopreempt_spin_init 5-11
nopreempt_spin_init_thread 5-11
nopreempt_spin_islock 5-11
nopreempt_spin_lock 5-11
nopreempt_spin_mutex 5-10

Index-4

nopreempt_spin_trylock 5-11
nopreempt_spin_unlock 5-11
NTP_PPS B-2

NUMA 2-27,10-1, B-4

NUMA 10-15, B-4

numa I-3

numapgs utility 10-12

NVIDIA B-5

NVIDIA graphics support B-5, G-3

0]

one-shot timer 6-2
Opteron

processor E-1

quad I/O throughput 2-27
optimized kernel 1-3, 11-2

P

PAGE_REPLICATION 10-16, B-4
PAGE_REPLICATION_DYNAMIC 10-16, B-4
paging 1-9
PAM 1-7, 13-1, B-2
pam_capability 13-2
PCI resource access 14-1, B-3
PCI-to-VME support
bind buffers 15-9
configuration 15-6, B-3
documentation 15-2
examples 15-17
installation 15-2, 15-5
overview 15-1
user interface 15-7
VMEbus mappings 15-7, 15-13
performance issues
cache thrashing 2-22
cross processor interrupts G-1
deferred interrupts 2-21, 14-12
device drivers 14-11
direct /0 8-4
disabling local timer 7-2
hyper-threading 2-30
I/0O throughput on quad Opterons 2-27
kernel daemons F-1
kernel tracing 14-16
locking pages in memory 2-20, 4-6
negative impacts 2-34
NUMA programming 2-27, 10-14
optimized kernel 1-3, 11-2
priority scheduling 2-20, 4-4, 4-5
reserving physical memory 2-22

shielding CPUs 2-9-2-11, 4-6, F-1, G-1
softirgs 4-5, 14-13, F-1
tasklets 4-5, 14-13, F-1
waking a process 2-21, 5-37-5-41
work queues F-1
Performance Monitor 1-1, 1-7, B-3
periodic timer 6-2
physical memory reservation 2-22
Pluggable Authentication Modules (PAM) 1-7, 13-1,
B-2
POSIX conformance 1-2
POSIX facilities
asynchronous I/O 1-10
clock routines 6-4-6-5
clocks 1-11, 6-1, 6-2
counting semaphores 1-10, 5-2, 5-12-5-21
memory locking 1-9, 2-20, 4-6
memory mapping 1-10
message queues 3-2, A-1, B-2
pthread mutexes 5-21
real-time extensions 1-9
real-time signals 1-11
scheduling policies 4-1, 4-3
semaphores 1-10, 5-2, 5-12-5-21
shared memory 1-10, 3-12-3-15
sleep routines 6-11, 6-12
timers 1-11, 2-11, 6-2, 6-6—6-10, 7-4
POSIX routines
clock_getres 6-5
clock_gettime 6-5
clock_settime 6-4
mlock 1-9, 2-20, 4-6
mlockall 1-9, 2-20, 4-6
mq_close 3-2
mqg_getattr 3-2
mq_notify 3-2
mqg_open 3-2
mq_receive 3-2
mqg_send 3-2
mqg_setattr 3-2
mq_unlink 3-2
munlock 1-9, 2-20, 4-6
munlockall 1-9, 2-20, 4-6
pthread_mutex_consistent_np 5-24
pthread_mutex_destroy 5-21
pthread_mutex_getunlock_np 5-24
pthread_mutex_init 5-21
pthread_mutex_lock 5-21
pthread_mutex_setconsistency np 5-24
pthread_mutex_setunlock_np 5-25
pthread_mutex_trylock 5-21
pthread_mutex_unlock 5-21
pthread_mutexattr_destroy 5-21
pthread_mutexattr_getfast_np 5-25

Index

pthread _mutexattr_gettype 5-21
pthread_mutexattr_init 5-21
pthread_mutexattr_setfast np 5-26
pthread_mutexattr_setprotocol 5-27
pthread_mutexattr_setrobust_np 5-27
pthread _mutexattr_settype 5-21
pthread_mutexattr_setunlock_np 5-27
sched_get_priority_max 4-11, 4-12
sched_get_priority_min 4-11
sched_getparam 4-10
sched_getscheduler 4-8
sched_rr_get_interval 4-12
sched_setparam 4-9
sched_setscheduler 4-7
sched_yield 4-10
sem_destroy 5-15
sem_getvalue 5-21
sem_init 5-12, 5-14
sem_open 5-16
sem_post 5-20
sem_timedwait 5-19
sem_trywait 5-20
sem_unlink 5-18
sem_wait 5-19
shm_open 3-12, 3-13
shm_unlink 3-12, 3-15
sigqueue 1-11
sigtimedwait 1-11
sigwaitinfo 1-11
timer_create 6-6
timer_delete 6-8
timer_getoverrun 6-10
timer_gettime 6-9
timer_settime 6-8
POSIX_MQUEUE B-2
post/wait 5-37, B-2
POST_WAIT B-2
PPSAPI B-2
PPSAPI_SERIAL B-2
PREALLOC_GRAPHICS_PAGESB-4
preallocated graphics pages 10-5
PREEMPT B-4
preemption 1-5, 1-6, 2-8, 5-3, B-4
prefer_highmem 1-4
priorities
kernel daemon 14-13, 14-14
process 4-1, 4-2
priority inheritance 1-7, 5-23
priority inversion 1-7
PROC_CCUR_DIRB-3
PROC_PCI_BARMAP B-3
PROC_PID_AFFINITY B-3
PROC_PID_RESMEMB-3
process

Index-5

RedHawk Linux User's Guide

assign to CPU(s) 2-14-2-17 real-time process scheduling 4-1

block 5-37-5-41 real-time scheduler 1-7

cooperating 5-37 real-time signals 1-11

dispatch latency 2-2, 2-3 Red Hat distribution 1-1

execution time quantum 4-4-4-5, 4-8, 4-12, 4-13, RedHawk Linux

7-3 capabilities C-1

memory resident 1-9 documentation set v

priorities 4-1, 4-2 kernel parameters 11-1, 11-3, B-1

scheduling 4-1, 7-3 kernels 1-3, 11-1, 11-2

synchronization 1-10, 5-1 POSIX conformance 1-2

wake 2-21, 5-37-5-41 real-time features 1-4
Process Scheduler 4-2 scheduler 4-2
PROCMEM_ANYONE 9-4, B-3 updates 1-4
PROCMEM_MMAP 9-4, B-3 related publications v
PROCMEM_WRITE B-3 REQUIRE_RELIABLE_TSC B-2
profiling 7-3 REQUIRE_TSC B-2
programmed 1/O on quad Opterons 2-28 resched_cntl 5-4
ps command 4-3, 7-2 resched_lock 5-5
pthread_mutex_consistent_np 5-24 resched_nlocks 5-6
pthread_mutex_destroy 5-21 resched_unlock 5-6
pthread_mutex_getunlock_np 5-24 RESCHED_VAR B-2
pthread_mutex_init 5-21 rescheduling control 5-3-5-7, 7-4
pthread_mutex_lock 5-21 rescheduling variables 5-3, B-2
pthread_mutex_setconsistency np 5-24 reserving physical memory 2-22
pthread_mutex_setunlock_np 5-25 rhash_entries 2-35, I-4
pthread_mutex_trylock 5-21 robust mutex 5-22
pthread_mutex_unlock 5-21 Role-Based Access Control 1-7, 13-2
pthread_mutexattr_destroy 5-21 round-robin scheduling 4-1, 4-4
pthread_mutexattr_getfast_np 5-25 RTC timers 6-2
pthread_mutexattr_gettype 5-21 run command 2-15-2-17, 4-2, 4-13, 10-7

pthread_mutexattr_init 5-21
pthread_mutexattr_setfast np 5-26

pthread_mutexattr_setprotocol 5-27 S
pthread_mutexattr_setrobust_np 5-27

pthread_mutexattr_settype 5-21 SBS Technologies 15-1
pthread_mutexattr_setunlock_np 5-27 SBSVME 15-6, B-3

ptrace 1-6, B-4 SCHED_FIFO 4-1, 4-3

PTRACE_EXT B-4 sched_get_priority_ max 4-11, 4-12
publications, related v sched_get_priority_min 4-11

sched_getparam 4-10
sched_getscheduler 4-8

R SCHED_OTHER 4-1, 4-4
SCHED_RR 4-1, 4-4
rcim -4 sched_rr_get_interval 4-12
RCIM_CLOCKSOURCE B-2 sched_setaffinity 2-15
RCIM_IRQ_EXTENSIONS B-3 sched_setparam 2-21, 4-9
RCIM_PPS B-2 sched_setscheduler 2-21, 4-7
RCU 7-4,B-2 SCHED_SMT B-3
RCU_ALTERNATIVE 7-4, B-2 SCHED_SMT_IDLE 2-35, B-3
read copy update (RCU) 7-4, B-2 sched_yield 4-10
Real-Time Clock and Interrupt Module (RCIM) 1-5, scheduler, real-time 1-7
6-1, B-2, B-3, I-4 scheduling policies 4-1, 4-3
real-time clock timers 6-2 scheduling priorities 4-2
real-time features 1-4 sem_destroy 5-15

Index-6

Index

sem_getvalue 5-21 sleepy-wait mutual exclusion 5-2
sem_init 5-12, 5-14 SOFTIRQ_PREEMPT_BLOCKB-3
sem_open 5-16 SOFTIRQ_PRI 14-13, B-3
sem_post 5-20 softirgs 4-5, 14-12, 14-13, B-3, F-2
sem_timedwait 5-19 spin lock
sem_trywait 5-20 BKL 14-14
sem_unlink 5-18 busy-wait mutual exclusion 1-8, 5-1, 5-2, 5-7-5-12
sem_wait 5-19 condition synchronization 5-42
semaphores multithread device driver 14-14
data structures 5-29 nopreempt 5-10
POSIX counting 5-2, 5-12-5-21 preemption 1-5, 1-7
System V 5-2, 5-28-5-37 spin_init 5-8
semctl 5-28, 5-34 spin_islock 5-9
semget 5-28, 5-30, 5-31 spin_lock 5-8
semop 5-28, 5-29, 5-36 spin_mutex 5-7
serial console configuration H-1 spin_trylock 5-9
server_block 5-39 spin_unlock 5-9
server_wakel 5-40 ssh 13-5
server_wakevec 5-41 strace command 7-4
set_mempolicy 10-11 swapping 1-9
sh command 7-4 synchronized I/0 1-10
shared memory 1-10 syntax notation iv
NUMA 10-9 system profiling 7-3
overview 3-1 system security 13-1
POSIX 3-12-3-15 system updates 1-4
System V 3-15-3-28 System V IPC
shared resources 5-1 message queues 3-1, 3-3-3-11, A4
SHIELD B-2 semaphores 5-2, 5-28-5-37
shield command 2-12-2-14, 2-17, 7-4 shared memory 3-1, 3-15-3-28
shielded CPUs System.map file 11-4

cross processor interrupts G-1
examples 2-13, 2-17, 2-31-2-34, 10-14

interfaces 2-12 T
kernel daemons F-1
kernel parameters B-2 tasklets 4-5, 14-13
NUMA interface 10-3 threads library 5-14
overview 1-4, 2-1 tickless kernel B-2, I-3
performance 2-9-2-11, 4-6 Time Stamp Counter (TSC) 7-1
uniprocessor 2-34 time structures 6-3
shm_open 3-12, 3-13 time-of-day clock 6-4, 7-1
shm_unlink 3-12, 3-15 timer_create 6-6
shmat 3-16, 3-23, 15-20 timer_delete 6-8
SHMBIND B-4 timer_getoverrun 6-10
shmbind 3-22, 15-13, 15-20 timer_gettime 6-9
shmconfig 3-16, 3-25, 10-9, 15-13, 15-21 timer_settime 6-8
shmctl 3-16, 3-21 timers
shmdefine 3-16, 3-25 local 2-14, 7-1, 7-4
shmdt 3-16, 3-23 POSIX 1-11, 2-11, 6-2, 6-6—6-10, 7-4
shmget 3-15, 3-19, 3-22, 3-27 RCIM RTC 6-2
sigqueue 1-11 system 7-1
sigtimedwait 1-11 time-share scheduling 4-1, 4-4
sigwaitinfo 1-11 top command 4-3, 7-2
sleep routines 5-37, 6-11, 6-12 TRACE B-5
sleep/wakeup/timer mechanism 5-37 trace events, kernel 14-16, D-1

Index-7

RedHawk Linux User's Guide

trace kernel 1-3, 11-2
trace points 1-6, 14-16
TSC 7-1

U

UlO 14-15,B-5
uniprocessor 2-34
UNSIGNED_OFFSETSB-4
updates, system 1-4

user authentication 13-1
user-level spin locks 1-8
usermap 1-8, 9-3, 9-4, B-3

\Y,

virtual address space reserves 14-11, B-4
vmalloc 14-11, B-4, |-4
VMALLOC_PGTABLE_PRELOAD B-4
VMALLOC_RESERVE 14-11, B-4

vmalloc_sm I-4

vmcore 12-2, 12-5

VME-to-PCI supportseePCl-to-VME support
vmlinux 12-2, 12-5

W

wake a process 2-21, 5-37-5-41
wall clock 6-4, 7-1
work queues 14-12, 14-13

X

X86_64_ ACPI_NUMA B-4
X86_HT 2-30, B-5

xfs 1-9, 8-1, B-4
XFS_DMAPI 8-2
XFS_FsS B-4

XFS_RT B-4

Index-8

	Preface
	Contents
	Introduction
	Overview
	RedHawk Linux Kernels
	System Updates
	Real-Time Features
	Processor Shielding
	Processor Affinity
	User-level Preemption Control
	Fast Block/Wake Services
	RCIM Driver
	Frequency-Based Scheduler
	/proc Modifications
	Kernel Trace Facility
	ptrace Extensions
	Kernel Preemption
	Real-Time Scheduler
	Low Latency Enhancements
	Priority Inheritance
	High Resolution Process Accounting
	Capabilities Support
	Kernel Debuggers
	Kernel Core Dumps/Crash Analysis
	User-level Spin Locks
	usermap and /proc mmap
	Hyper-threading
	XFS Journaling File System
	POSIX Real-Time Extensions
	User Priority Scheduling
	Memory Resident Processes
	Memory Mapping and Data Sharing
	Process Synchronization
	Asynchronous Input/Output
	Synchronized Input/Output
	Real-Time Signal Behavior
	Clocks and Timers
	Message Queues

	Real-Time Performance
	Overview of the Shielded CPU Model
	Overview of Determinism
	Process Dispatch Latency
	Effect of Disabling Interrupts
	Effect of Interrupts
	Effect of Disabling Preemption
	Effect of Open Source Device Drivers

	How Shielding Improves Real-Time Performance
	Shielding From Background Processes
	Shielding From Interrupts
	Shielding From Local Interrupt

	Interfaces to CPU Shielding
	Shield Command
	Shield Command Examples
	Exit Status
	Shield Command Advanced Features

	/proc Interface to CPU Shielding
	Assigning Processes to CPUs
	Multiprocessor Control Using mpadvise
	Assigning CPU Affinity to init

	Example of Setting Up a Shielded CPU

	Procedures for Increasing Determinism
	Locking Pages in Memory
	Setting the Program Priority
	Setting the Priority of Deferred Interrupt Processing
	Waking Another Process
	Avoiding Cache Thrashing
	Reserving Physical Memory
	Binding to NUMA Nodes
	I/O Throughput on Quad Opteron Systems
	Understanding Hyper-threading
	System Configuration
	Recommended CPU Configurations

	Avoiding a Low Memory State

	Known Issues with Linux Determinism

	Real-Time Interprocess Communication
	Overview
	POSIX Message Queues
	System V Messages
	Using Messages
	The msgget System Call
	The msgctl System Call
	The msgsnd and msgrcv System Calls
	Sending a Message
	Receiving a Message

	POSIX Shared Memory
	Using the shm_open Routine
	Using the shm_unlink Routine

	System V Shared Memory
	Using Shared Memory
	The shmget System Call
	The shmctl System Call
	Binding a Shared Memory Segment to I/O Space
	Using shmget
	Using shmbind

	The shmat and shmdt System Calls
	Attaching a Shared Memory Segment
	Detaching Shared Memory Segments

	Shared Memory Utilities
	The shmdefine Utility
	The shmconfig Command

	Process Scheduling
	Overview
	How the Process Scheduler Works
	Scheduling Policies
	First-In-First-Out Scheduling (SCHED_FIFO)
	Round-Robin Scheduling (SCHED_RR)
	Time-Sharing Scheduling (SCHED_OTHER)

	Procedures for Enhanced Performance
	How to Set Priorities
	Interrupt Routines
	SCHED_FIFO vs SCHED_RR
	Fixed Priority Processes Locking Up a CPU
	Memory Locking
	CPU Affinity and Shielded Processors

	Process Scheduling Interfaces
	POSIX Scheduling Routines
	The sched_setscheduler Routine
	The sched_getscheduler Routine
	The sched_setparam Routine
	The sched_getparam Routine
	The sched_yield Routine
	The sched_get_priority_min Routine
	The sched_get_priority_max Routine
	The sched_rr_get_interval Routine

	The run Command

	Interprocess Synchronization
	Understanding Interprocess Synchronization
	Rescheduling Control
	Understanding Rescheduling Variables
	Using resched_cntl System Call
	Using the Rescheduling Control Macros
	resched_lock
	resched_unlock
	resched_nlocks

	Applying Rescheduling Control Tools

	Busy-Wait Mutual Exclusion
	Understanding the spin_mutex Variable
	Using the spin_mutex Interfaces
	Applying spin_mutex Tools
	Understanding the nopreempt_spin_mutex Variable
	Using the nopreempt_spin_mutex Interfaces

	POSIX Counting Semaphores
	Overview
	Interfaces
	The sem_init Routine
	The sem_destroy Routine
	The sem_open Routine
	The sem_close Routine
	The sem_unlink Routine
	The sem_wait Routine
	The sem_timedwait Routine
	The sem_trywait Routine
	The sem_post Routine
	The sem_getvalue Routine

	Extensions to POSIX Mutexes
	Robust Mutexes
	Priority Inheritance
	User Interface
	pthread_mutex_consistent_np
	pthread_mutex_getunlock_np
	pthread_mutex_setconsistency_np
	pthread_mutex_setunlock_np
	pthread_mutexattr_getfast_np
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getrobust_np
	pthread_mutexattr_getunlock_np
	pthread_mutexattr_setfast_np
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setrobust_np
	pthread_mutexattr_setunlock_np

	Compiling Programs with POSIX Mutexes

	System V Semaphores
	Overview
	Using System V Semaphores
	The semget System Call
	The semctl System Call
	The semop System Call

	Condition Synchronization
	The postwait System Call
	The Server System Calls
	server_block
	server_wake1
	server_wakevec

	Applying Condition Synchronization Tools

	Programmable Clocks and Timers
	Understanding Clocks and Timers
	RCIM Clocks and Timers
	POSIX Clocks and Timers

	Understanding the POSIX Time Structures
	Using the POSIX Clock Routines
	Using the clock_settime Routine
	Using the clock_gettime Routine
	Using the clock_getres Routine

	Using the POSIX Timer Routines
	Using the timer_create Routine
	Using the timer_delete Routine
	Using the timer_settime Routine
	Using the timer_gettime Routine
	Using the timer_getoverrun Routine

	Using the POSIX Sleep Routines
	Using the nanosleep Routine
	Using the clock_nanosleep Routine

	System Clocks and Timers
	System Timekeeping
	Local Timer
	Functionality
	CPU Accounting
	Process Execution Time Quanta and Limits
	Interval Timer Decrementing
	System Profiling
	CPU Load Balancing
	CPU Rescheduling
	POSIX Timers
	RCU Processing
	Miscellaneous

	Disabling the Local Timer

	File Systems and Disk I/O
	Journaling File System
	Creating an XFS File System
	Mounting an XFS File System
	Data Management API (DMAPI)

	Direct Disk I/O

	Memory Mapping
	Establishing Mappings to a Target Process’ Address Space
	Using mmap(2)
	Using usermap(3)
	Considerations
	Kernel Configuration Parameters

	Non-Uniform Memory Access (NUMA)
	Overview
	Memory Policies
	NUMA User Interface
	Memory-shielded Nodes
	Memory-shielding and Preallocated Graphics Pages
	NUMA Support for Processes using run(1)
	NUMA Support for Shared Memory Areas using shmconfig(1)
	System Calls
	Library Functions
	Informational Files and Utilities
	Node Statistics
	Node IDs for Mapped Pages

	NUMA Hit/Miss Statistics Using numastat
	kdb Support

	Performance Guidelines
	Task-Wide NUMA Mempolicy
	Shared Memory Segments

	Configuration

	Configuring and Building the Kernel
	Introduction
	Configuring a Kernel Using ccur-config
	Building a Kernel
	Building Driver Modules
	Example-Building a Dynamic Loadable Module in a Pre-built RedHawk Kernel

	Additional Information

	Kernel Debugging
	Overview
	Taking and Analyzing a System Crash
	Activating kdump
	How a Crash Dump is Created
	Installation/Configuration Details
	kdump Options Defined in the Configuration File
	kdump Command Line Interface
	Using crash to Analyze the Dump
	Analyzing a Dump File
	Analyzing a Live System
	Getting Help

	Kernel Debuggers
	kdb

	NMI Interrupts
	NMI Button

	Pluggable Authentication Modules (PAM)
	Introduction
	PAM Modules
	Services
	Role-Based Access Control
	Examples

	Defining Capabilities
	Examples

	Implementation Details

	Device Drivers
	Understanding Device Driver Types
	Developing User-level Device Drivers
	Accessing PCI Resources
	PCI BAR Interfaces

	Kernel Skeleton Driver
	Understanding the Sample Driver Functionality
	Testing the Driver

	Developing Kernel-level Device Drivers
	Building Driver Modules
	Kernel Virtual Address Space
	Real-Time Performance Issues
	Interrupt Routines
	Deferred Interrupt Functions (Bottom Halves)
	Multi-threading Issues
	The Big Kernel Lock (BKL) and ioctl

	Userspace I/O Drivers (UIO)
	Analyzing Performance

	PCI-to-VME Support
	Overview
	Documentation
	Installing the Hardware
	Unpacking
	Configuring the Adapter Cards
	Installing the PCI Adapter Card
	Installing the VMEbus Adapter Card
	Connecting the Adapter Cable

	Installing the Software
	Configuration
	The btp Module
	Device Files and Module Parameter Specifications
	VMEbus Mappings

	User Interface
	API Functions
	Bind Buffer Implementation
	bt_get_info BT_INFO_KMALLOC_BUF
	bt_set_info BT_INFO_KMALLOC_SIZ
	bt_set_info BT_INFO_KFREE_BUF
	Additional Bind Buffer Information

	Mapping and Binding to VMEbus Space
	bt_hw_map_vme
	bt_hw_unmap_vme
	The /proc File System Interface

	Example Applications
	bt_bind_mult
	bt_bind_multsz
	bt_hwmap
	bt_hwunmap
	readdma
	shmat
	shmbind
	shmconfig-script
	vme-mappings
	writemem
	writedma

	Example Message Queue Programs
	POSIX Message Queue Example
	System V Message Queue Example

	Kernel Tunables for Real-time Features
	Capabilities
	Overview
	Capabilities

	Kernel Trace Events
	Pre-defined Kernel Trace Events
	User-defined Kernel Trace Events
	Pre-defined CUSTOM Trace Event
	Dynamic Kernel Tracing

	Migrating 32-bit Code to 64-bit Code
	Introduction
	Procedures
	Coding Requirements
	Data Type Sizes
	Longs
	Pointers
	Arrays
	Declarations
	Explicit Data Sizes
	Constants

	APIs
	Calling Conventions
	Conditional Compilation
	Miscellaneous

	Compiling
	Testing/Debugging
	Performance Issues
	Memory Alignment and Structure Padding

	Kernel-level Daemons on Shielded CPUs
	Cross Processor Interrupts on Shielded CPUs
	Overview
	Memory Type Range Register (MTRR) Interrupts
	Graphics Interrupts
	NVIDIA CUDA Interrupts
	User Address Space TLB Flush Interrupts

	Serial Console Setup
	Boot Command Line Parameters
	Glossary
	Index

