
RedHawk™ LinuxÆ
Frequency-Based Scheduler Userís Guide

0898005-360
June 2017

Copyright 2017 by Concurrent Real-Time, Inc.. All rights reserved. This publication or any part thereof is intended
for use with Concurrent Real-Time products by Concurrent Real-Time personnel, customers, and end–users. It may
not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Real-Time makes no warranties, expressed or implied, concerning the information con-
tained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Real-Time, Inc., 2881
Gateway Drive, Pompano Beach, FL 33069. Mark the envelope “Attention: Publications Department.” This publi-
cation may not be reproduced for any other reason in any form without written permission of the publisher.

Concurrent Real-Time, Inc. and its logo are registered trademarks of Concurrent Real-Time, Inc.. All other
Concurrent Real-Time product names are trademarks of Concurrent Real-Time while all other product names are
trademarks or registered trademarks of their respective owners. Linux® is used pursuant to a sublicense from the
Linux Mark Institute.

Printed in U. S. A.

Revision History: Level: Effective With:

August 2002 000 RedHawk Linux 1.1 & 1.2
September 2003 110 RedHawk Linux 1.4
December 2003 200 RedHawk Linux 2.0
March 2004 210 RedHawk Linux 2.1
July 2004 220 RedHawk Linux 2.2
May 2005 230 RedHawk Linux 2.3
March 2006 240 RedHawk Linux 4.1
May 2007 250 RedHawk Linux 4.2
October 2007 260 RedHawk Linux 4.2
April 2008 300 RedHawk Linux 5.1
January 2009 320 RedHawk Linux 5.2.1
August 2009 330 RedHawk Linux 5.2.4
November 2009 340 RedHawk Linux 5.4
January 2013 350 RedHawk Linux 6.3
June 2017 360 RedHawk Linux 7.3

iii

Preface

Scope of Manual

This manual describes the Frequency-Based Scheduler (FBS) and the Performance
Monitor (PM) operating on the RedHawk Linux operating system. These utilities are used
for scheduling processes at specified frequencies for the purpose of monitoring
performance.

Instructions for using the associated real-time command processor (rtcp) and the C and
FORTRAN library routines are included in this guide. Not included are instructions for
using NightSimTM, a graphical user interface for FBS and PM, which is documented in the
NightSim RT User’s Guide.

Structure of Manual

This manual consists of the following sections:

• Chapter 1, Introduction, provides an introduction to the Frequency-Based
Scheduler and the Performance Monitor as well as software, configuration
and access privilege requirements.

• Chapter 2, Using the Frequency-Based Scheduler, provides a description of
the Frequency-Based Scheduler, its capabilities and user interface
summary.

• Chapter 3, Timing Sources, explains how to use a real-time clock, an edge-
triggered interrupt and a user-supplied device as the timing source for a
frequency-based scheduler.

• Chapter 4, Using the Performance Monitor, provides a description of the
Performance Monitor, its capabilities and user interface summary.

• Chapter 5, Using rtcp, explains the procedures for using the real-time
command processor, rtcp, and provides reference information for each of
its commands.

• Chapter 6, The C Library Interface, describes the C Library interface to the
Frequency-Based Scheduler and the Performance Monitor and provides
reference information for each of the routines.

• Chapter 7, The FORTRAN Library Interface, describes the FORTRAN
Library interface to the Frequency-Based Scheduler and the Performance
Monitor and provides reference information for each of the routines.

• Appendix A, Example rtcp Script, contains an example rtcp script.

• Appendix B, rtcp Error Messages, provides explanations of the errors that
may be reported by rtcp.

• Appendix C, Example C Interface, contains an example program that
shows how to use the C library interface to the Frequency-Based Scheduler
and the Performance Monitor.

RedHawk Linux Frequency-Based Scheduler User’s Guide

iv

The Glossary contains definitions of technical terms that are important to understanding
the concepts presented in this book.

The Index contains an alphabetical reference to key terms and concepts and numbers of
pages where they occur in the text.

Syntax Notation

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify appear in
italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in list bold type.

list Operating system and program output such as prompts, messages and
listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify these options or
arguments.

hypertext links When viewing this document online, clicking on chapter, section,
figure, table and page number references will display the
corresponding text. Clicking on Internet URLs provided in blue type
will launch your web browser and display the web site. Clicking on
publication names and numbers in red type will display the
corresponding manual PDF, if accessible.

Related Publications

The following table lists related Concurrent Real-Time documentation. Click on the red
entry to display the document PDF. These documents are also available by clicking on the
“Documents” icon on the desktop and from Concurrent Real-Time’s web site at
www.ccur.com.

 Title Pub No.

RedHawk Linux Release Notes Version x.x 0898003

RedHawk Linux User’s Guide 0898004

Real-Time Clock and Interrupt Module (RCIM)
User’s Guide

0898007

NightSim RT User’s Guide 0890480

NightView RT User’s Guide 0890395

where x.x = release version

v

Chapter 0Contents

Preface . iii

Chapter 1 Introduction

Frequency-Based Scheduler Overview. 1-1
Performance Monitor Overview . 1-2
Software Requirements. 1-2
Configuration . 1-3

Frequency-Based Scheduler . 1-3
Performance Monitor. 1-3

Privileges . 1-4

Chapter 2 Using the Frequency-Based Scheduler

What Is the Frequency-Based Scheduler? . 2-1
How Is Scheduler Frequency Defined? . 2-2
How Are Processes Scheduled? . 2-2
Tolerating Frame Overruns . 2-4
Detecting Deadline Violations. 2-5

User Interface . 2-7
Debugging Frequency-Based Scheduler Processes . 2-7

Chapter 3 Timing Sources

Overview. 3-1
Using a Real-Time Clock . 3-1

Understanding the Real-Time Clock Device. 3-1
Understanding the User Interface . 3-2
General Procedures for Using a Real-Time Clock . 3-2

Using an Edge-Triggered Interrupt . 3-3
Understanding the Edge-Triggered Interrupt . 3-3
Understanding the User Interface . 3-4

Using a User-Supplied Timing Device . 3-4

Chapter 4 Using the Performance Monitor

What Is the Performance Monitor?. 4-1
What Values Are Monitored? . 4-1
Monitoring Idle Time . 4-3
Monitoring Unscheduled Processes . 4-4

User Interface . 4-5
Optimizing the Performance of a Simulation . 4-5

Chapter 5 Using rtcp

What Is the Real-Time Command Processor? . 5-1
rtcp and the Frequency-Based Scheduler . 5-1

RedHawk Linux Frequency-Based Scheduler User’s Guide

vi

rtcp and the Performance Monitor. 5-2
Execution Modes . 5-2

Using Direct Mode . 5-2
Invoking rtcp with a Command Name and Arguments 5-3
Invoking rtcp with Commands Redirected from a Script File 5-3
Invoking a Script that Calls rtcp. 5-3

Using Interactive Mode . 5-4
Getting Help . 5-5
rtcp Commands . 5-7

rtcp Command Summary. 5-7
Command Sequence . 5-8
Using rtcp Commands . 5-10

ats – Attach Timing Source to a Frequency-Based Scheduler 5-11
chs – Change Permissions for a Frequency-Based Scheduler 5-12
cs – Configure a Frequency-Based Scheduler . 5-13
dts – Detach Timing Source from a Frequency-Based Scheduler 5-15
rms – Remove a Frequency-Based Scheduler . 5-16
svs – Save Scheduler Configuration . 5-17
vc – View Minor Cycle/Major Frame Count . 5-18
vs – View Scheduler Configuration . 5-19
ls – Display All Schedulers on the System. 5-21
rc – Start Real-Time Clock. 5-21
sc – Stop Real-Time Clock. 5-22
stc – Set Real-Time Clock . 5-22
gtc – Display Real-Time Clock Settings . 5-23
start – Start Scheduling on a Frequency-Based Scheduler. 5-24
resume – Resume Scheduling on a Frequency-Based Scheduler. 5-25
stop – Stop Scheduling on a Frequency-Based Scheduler 5-25
rmp – Remove a Process from a Frequency-Based Scheduler 5-26
rsp – Reschedule a Process . 5-28
sp – Schedule a Process on a Frequency-Based Scheduler 5-32
vp – View Processes on a Frequency-Based Scheduler 5-35
cpm – Clear Performance Monitor Values . 5-38
pm – Start/Stop Performance Monitoring . 5-40
vcm – View/Modify Performance Monitor Timing Mode 5-42
vpm – View Performance Monitor Values . 5-43
ex – Exit Real-Time Command Processor . 5-47
he – Display Help Information . 5-47

Chapter 6 The C Library Interface

Overview. 6-1
Compiling and Linking Programs. 6-1
The Big-SMP FBS Interface. 6-2
Frequency-Based Scheduler Routines . 6-4

Routine Summary . 6-4
C Library Call Sequence . 6-6
Using Frequency-Based Scheduler Routines . 6-7

fbsaccess – Change Permissions for a Frequency-Based Scheduler 6-7
fbsattach – Attach Timing Source to a Frequency-Based Scheduler 6-8
fbsavail – Query if the Frequency-Based Scheduler is Configured 6-9
fbsconfigure – Configure a Frequency-Based Scheduler. 6-10
fbscycle – Return Minor Cycle/Major Frame Count 6-13

Contents

vii

fbsdetach – Detach Timing Source from a Frequency-Based Scheduler . . . 6-14
fbsdir – Return a List of Scheduler Keys . 6-15
fbsgetpid – Return Process ID for a Scheduled Process. 6-16
fbsgetrtc – Obtain Current Values for a Real-Time Clock. 6-17
fbsid – Return the Frequency-Based Scheduler Identifier for a Key 6-18
fbsinfo, fbsinfo_big – Return Information for a Frequency-Based
 Scheduler . 6-19
fbsintrpt – Start/Stop/Resume Scheduling . 6-22
fbsremove – Remove a Frequency-Based Scheduler 6-23
fbsresume – Resume Scheduling on a Frequency-Based Scheduler 6-24
fbsrunrtc – Start/Stop a Real-Time Clock . 6-25
fbsschedself – Add a Calling Process to a Frequency-Based Scheduler . . . 6-26
fbssetrtc – Set a Real-Time Clock . 6-28
fbstrig – Make a Sleeping Frequency-Based Scheduler Process Runnable . 6-29
fbswait – Wait on a Frequency-Based Scheduler . 6-30
nametopid, namepid, nametopid_big, namepid_big – Return the Process
 ID for a Specified Process Name. 6-31
pgmremove, pgmremove_big – Remove a Process from a
 Frequency-Based Scheduler . 6-33
pgmtrigger – Trigger a Process on a Frequency-Based Scheduler 6-35
sched_fbsqry, sched_fbsqry_big – Query Processes on a
 Frequency-Based Scheduler . 6-36
sched_pgm_deadline_query, sched_pgm_deadline_query_big – Query
 the Assigned Deadline Time for a Process . 6-39
sched_pgm_deadline_test, sched_pgm_deadline_test_big – Test for the
 Presence of a Deadline Violation . 6-42
sched_pgm_set_deadline, sched_pgm_set_deadline_big – Set or Clear
 the Process Deadline Time . 6-45
sched_pgm_set_soft_overrun_limit, sched_pgm_set_soft_overrun_limit_big
 – Set Soft Overrun Limit . 6-48
sched_pgmadd, sched_pgmadd_big – Schedule a Process on a
 Frequency-Based Scheduler . 6-51
sched_pgmadd_args, sched_pgmadd_args_big– Schedule a Process on a
 Frequency-Based Scheduler
with Arguments . 6-54
sched_pgmadd_attr, sched_pgmadd_attr_big – Schedule a Process on a
 Frequency-Based Scheduler with Arguments and Attributes 6-58
sched_pgmqry, sched_pgmqry_big – Query a Process 6-61
sched_pgmresched, sched_pgmresched_big– Reschedule a Process. 6-65

Performance Monitor Routines. 6-69
Routine Summary . 6-69
C Library Call Sequence . 6-69
Using Performance Monitor Routines . 6-70

pmclrpgm, pmclrpgm_big, – Clear Values for a Process. 6-71
pmclrtable, pmclrtable_big – Clear Values for Processor(s) 6-73
pmmonitor, pmmonitor_big – Start/Stop Performance Monitoring on
 Processor(s) . 6-75
pmprogram, pmprogram_big – Start/Stop Performance Monitoring on a
 Process. 6-77
pmqrycpu, pmqrycpu_big – Query Values for Selected Processor(s) 6-79
pmqrylist – Query Values for a List of Processes . 6-83
pmqrypgm, pmqrypgm_big – Query Values for a Selected Process 6-85
pmqrytimer – Query Performance Monitor Mode . 6-88
pmselect – Select Performance Monitor Mode . 6-89

RedHawk Linux Frequency-Based Scheduler User’s Guide

viii

Chapter 7 The FORTRAN Library Interface

Overview. 7-1
Compiling and Linking Procedures . 7-1
The Big-SMP FBS Interface for Fortran . 7-2
Frequency-Based Scheduler Routines . 7-3

Routine Summary . 7-3
FORTRAN Library Call Sequence . 7-5
Using Frequency-Based Scheduler Routines . 7-6

fbsaccess – Change Permissions for a Frequency-Based Scheduler 7-6
fbsattach – Attach Timing Source to a Frequency-Based Scheduler 7-8
fbsconfigure – Configure a Frequency-Based Scheduler 7-9
fbscycle – Return Minor Cycle/Major Frame Count 7-11
fbsdetach – Detach Timing Source from a Frequency-Based Scheduler . . . 7-12
fbsgetrtc – Obtain Current Values for Real–Time Clock. 7-13
fbsid – Return the FBS Identifier for a Key . 7-14
fbsinfo – Return Information for a Frequency-Based Scheduler 7-15
fbsintrpt – Start/Stop/Resume Scheduling on a Frequency-Based Scheduler 7-17
fbsquery – Query Processes on a Frequency-Based Scheduler 7-18
fbsremove – Remove a Frequency-Based Scheduler 7-21
fbsresume – Resume Scheduling on a Frequency-Based Scheduler 7-22
fbsrunrtc – Start/Stop Real–Time Clock . 7-24
fbsschedself – Schedule a Process/Thread on a Frequency-Based Scheduler 7-25
fbssetrtc – Set Real–Time Clock . 7-27
fbswait – Wait on a Frequency-Based Scheduler. 7-28
nametopid – Return the Process ID for a Specified Process Name 7-29
pgmquery – Query a Process on a Frequency-Based Scheduler 7-30
pgmremove – Remove a Process from a Frequency-Based Scheduler 7-32
pgmreschedule – Reschedule a Process . 7-34
pgmschedule – Schedule a Process on a Frequency-Based Scheduler. 7-37
pgmstat – Query State of FBS–Scheduled Process 7-40
pgmtrigger – Trigger Process Waiting on FBS . 7-42
rtparm – Return Initiation Parameter . 7-43
sched_pgm_deadline_query – Query the Assigned Deadline for a Process 7-44
sched_pgm_deadline_test – Test for the Presence of a Deadline Violation 7-46
sched_pgm_set_deadline – Set or Clear Deadline Time 7-48
sched_pgm_set_soft_overrun_limit – Set Soft Overrun Limit 7-50
sched_pgm_soft_overrun_query – Query Soft Overrun Processing 7-51
schedfbsqry – Query Processes on a Frequency-Based Scheduler 7-52
schedpgmadd – Schedule a Process on a Frequency-Based Scheduler 7-55
schedpgmadd_args – Schedule a Process on a Frequency-Based
 Scheduler with Arguments . 7-57
schedpgmqry – Query a Process on a Frequency-Based Scheduler. 7-59
schedpgmresched – Reschedule a Process . 7-62

Performance Monitor Routines. 7-65
Routine Summary . 7-65
FORTRAN Library Call Sequence . 7-65
Using Performance Monitor Routines . 7-67

pmclrpgm – Clear Values for a Process . 7-67
pmclrtable – Clear Values for Processor(s) . 7-69
pmmonitor – Start/Stop Performance Monitoring on Processor(s) 7-70
pmprogram – Start/Stop Performance Monitoring on a Process 7-71
pmqrycpu – Query Values for Selected Processor(s). 7-73
pmqrylist – Query Values for a List of Processes . 7-75

Contents

ix

pmqrypgm – Query Values for a Selected Process 7-77
pmquerytimer – Query Performance Monitor Mode 7-80
pmselect – Select Performance Monitor Mode . 7-81

Appendix A Example rtcp Script . A-1

Appendix B rtcp Error Messages . B-1

Appendix C Example C Interface . C-1

schedule.c . C-2
prog.c . C-8
Makefile . C-8

Glossary. Glossary-1

Index .
Index-1

Screens

Screen 5-1. rtcp Command Display . 5-5
Screen 5-2. First Screen of rtcp Arguments. 5-6
Screen 5-3. Second Screen of rtcp Arguments . 5-7

Illustrations

Figure 5-1. rtcp Command Sequence: Frequency-Based Scheduler 5-9
Figure 5-2. rtcp Command Sequence: Performance Monitor 5-10
Figure 6-1. C Library Call Sequence: Frequency-Based Scheduler 6-6
Figure 6-2. C Library Call Sequence: Performance Monitor 6-70
Figure 7-1. FORTRAN Library Call Sequence: Frequency-Based Scheduler 7-5
Figure 7-2. FORTRAN Library Call Sequence: Performance Monitor 7-66

Tables

Table 2-1. Process Scheduling Example 1. 2-3
Table 2-2. Process Scheduling Example 2. 2-4
Table 3-1. rtcp Commands and Routines for using RTCs . 3-3
Table 3-2. rtcp Commands and Routines for using ETIs. 3-4
Table 5-1. rtcp Commands. 5-7
Table 6-1. Frequency-Based Scheduler C Library Routines 6-4
Table 6-2. Frequency-Based Scheduler Permissions . 6-7
Table 6-3. Performance Monitor C Library Routines . 6-69
Table 7-1. Frequency-Based Scheduler FORTRAN Library Routines 7-3
Table 7-2. Frequency-Based Scheduler Permissions . 7-6
Table 7-3. Contents of Array Elements: fbsinfo . 7-15
Table 7-4. Contents of Array Elements: fbsquery . 7-19
Table 7-5. Contents of Array Elements: fbssetrtc . 7-26
Table 7-6. Contents of Array Elements: schedfbsqry . 7-53
Table 7-7. Performance Monitor FORTRAN Library Routines 7-65

RedHawk Linux Frequency-Based Scheduler User’s Guide

x

Table 7-8. Contents of Array Elements: pmqrycpu . 7-74
Table 7-9. Contents of Array Elements: pmqrylist . 7-76
Table B-1. rtcp Errors . B-1

1
Introduction

Frequency-Based Scheduler Overview. 1-1
Performance Monitor Overview . 1-2
Software Requirements. 1-2
Configuration . 1-3

Frequency-Based Scheduler . 1-3
Performance Monitor. 1-3

Privileges . 1-4

RedHawk Linux Frequency-Based Scheduler User’s Guide

1-1

1
Chapter 1Introduction

1
1
1

This chapter introduces you to the Frequency-Based Scheduler (FBS) and the
Performance Monitor (PM). It also provides software and configuration requirements and
discusses the privileges and capabilities needed to use these utilities.

Frequency-Based Scheduler Overview 1

The Frequency-Based Scheduler (FBS) is a task synchronization mechanism used to
initiate processes at specified frequencies. Frequencies can be based on high-resolution
clocks such as those provided by the Real-Time Clock and Interrupt Module (RCIM), an
external interrupt source, or the completion of a cycle. The processes are then scheduled
using a priority-based scheduler. FBS can control the periodic execution of multiple,
coordinated processes utilizing major and minor cycles with overrun detection.

When used in conjunction with the Performance Monitor, FBS can be used to determine
the best way of allocating processors to various tasks for a particular application.

You can easily configure FBS to meet the needs of specific applications. More than one
frequency-based scheduler can be configured, each with different capabilities allowing a
variety of scheduling techniques for different purposes. A full description of the
Frequency-Based Scheduler is provided in Chapter 2.

Access to the major functions associated with frequency-based scheduling is achieved
through the following interfaces:

• rtcp, the real-time command processor. rtcp is explained in Chapter 5.

• a set of library routines that can be called from application programs
written in C. The library routines are explained in Chapter 6.

• a set of library routines that can be called from application programs
written in FORTRAN. The library routines are explained in Chapter 7.

• NightSim, a Graphical User Interface (GUI) to FBS. NightSim is explained
in the NightSim RT User’s Guide.

RedHawk Linux Frequency-Based Scheduler User’s Guide

1-2

Performance Monitor Overview 1

The Performance Monitor (PM) monitors use of the CPU by processes that are scheduled
on the Frequency-Based Scheduler. Values obtained assist in determining how to
redistribute processes among processors for improved load balancing and processing
efficiency. A full description of the Performance Monitor and its capabilities is provided in
Chapter 4.

Access to the major functions associated with the Performance Monitor is achieved
through the following interfaces:

• rtcp, the real-time command processor. rtcp is explained in Chapter 5.

• a set of library routines that can be called from application programs
written in C. The library routines are explained in Chapter 6.

• a set of library routines that can be called from application programs
written in FORTRAN. The library routines are explained in Chapter 7.

• NightSim, a Graphical User Interface (GUI) to PM. NightSim is explained
in the NightSim RT User’s Guide.

Software Requirements 1

The Frequency-Based Scheduler (FBS) RPM distributed with the RedHawk Linux
operating system provides kernel support for the Frequency-Based Scheduler, the
Performance Monitor and rtcp(1). This software must be installed in order to access
FBS and PM. Refer to the appropriate version of the RedHawk Linux Release Notes for
installation procedures.

If you want to use RCIM devices for timing FBS processes, the Real-Time Clock and
Interrupt Module (RCIM) must be installed and configured in the system. Refer to the
appropriate version of the RedHawk Linux Release Notes for installation procedures.
Refer to the Real-Time Clock and Interrupt Module (RCIM) User’s Guide for information
about configuring the RCIM driver and using the clocks and interrupts.

Introduction

1-3

Configuration 1

Configuration requirements for the Frequency-Based Scheduler and the Performance
Monitor are listed below. For information on how to change kernel parameters, see the
“Configuring and Building the Kernel” chapter in the RedHawk Linux User’s Guide.

Frequency-Based Scheduler 1

The following system tunable parameters affect operation of FBS.

FBSCHED This parrameter, accessible through the Frequency-
Based Scheduler selection of the Kernel Configuration
GUI, configures FBS in the system. By default, FBS is
configured in each of the RedHawk Linux pre-built kernels.
It can be configured as a module, if desired.

RCIM_IRQ_EXTENSIONS This parameter, accessible through the Device Drivers
selection of the Kernel Configuration GUI, provides hooks
for special services in the RCIM driver designed for FBS
use.

Performance Monitor 1

In addition to having FBS configured in the kernel, the Performance Monitor requires the
following:

FBSCHED_PM This tunable, accessible through the Frequency-Based
Scheduler selection of the Kernel Configuration GUI, is
used to configure the Performance Monitor in the system. It
is configured by default in each of the RedHawk Linux pre-
built kernels.

HRACCT This parameter, accessible through the General Setup
selection of the Kernel Configuration GUI, is required in
order to use the Performance Monitor. It enables high
resolution process accounting, which provides the means
for measuring the execution time of each process for its
timing values. This parameter is configured by default in the
RedHawk Linux debug and trace kernels.

RedHawk Linux Frequency-Based Scheduler User’s Guide

1-4

Privileges 1

RedHawk Linux supports a Pluggable Authentication Module (PAM) called
pam_capability(8) that provides a role-based access control scheme. In this
scheme, you set up a series of roles in the capability.conf(5) file. A role is defined
as a set of valid Linux capabilities.

RedHawk systems are configured with the “fbscheduser” role. This role defines the set of
capabilities needed to execute the libraries and kernel code that make up the FBS
subsystem. The FBS user must be configured to use (at a minimum) the capabilities
provided by the “fbscheduser” role by default. This is accomplished by adding a line in
/etc/security/capability.conf for each FBS user with the “fbscheduser” role
defined:

user username fbscheduser

where username is the name of the user.

Programs that are scheduled on a frequency-based scheduler might require other
capabilities to be able to make the system calls that they utilize. The fbscheduser role may
be used as a building block to create a more general purpose role. For example, the
following two entries would grant all users in a group named “software” the capabilities to
use the FBS subsystem (fbscheduser) as well as the capability to use mlock(2) and
mlockall(2) (cap_ipc_lock) along with other capabilities in some user-defined role
(user_defined).

role realtimeuser fbscheduser cap_ipc_lock user_defined
group software realtimeuser

During system initialization the RCIM device files, by default, are created writeable by all
users (mode=0666). If the administrator wishes to restrict the permissions to only certain
users, this must be done in such a way as to allow FBS users permission to write these
files. One way to achieve this is to define a group that provides write access to the RCIM
device files and assign FBS users to that group. An example of how to do this follows.

To add a group named “realtimer”, do the following:

groupadd -r realtimer

Next, give the realtimer group write access to the RCIM device files by editing
/etc/sysconfig/rcim and setting the following:

RCIM_OWN=root
RCIM_GRP=realtimer
RCIM_PERM=0664

Finally, add FBS users to the group. The example here adds “joe” to the realtimer group:

adduser -u 50 -g 100 -d /home/joe -G realtimer -s /bin/bash -c “Joe User” joe

2
Using the Frequency-Based Scheduler

What Is the Frequency-Based Scheduler? . 2-1
How Is Scheduler Frequency Defined? . 2-2
How Are Processes Scheduled? . 2-2
Tolerating Frame Overruns . 2-4
Detecting Deadline Violations. 2-5

User Interface . 2-7
Debugging Frequency-Based Scheduler Processes . 2-7

RedHawk Linux Frequency-Based Scheduler User’s Guide

2-1

2
Chapter 2Using the Frequency-Based Scheduler

2
2
2

This chapter contains a description of the Frequency-Based Scheduler and its capabilities.
It explains how scheduler frequency is defined, how processes are scheduled and what
overruns are and how they are managed. The user interfaces for accessing the scheduler
are introduced.

What Is the Frequency-Based Scheduler? 2

The Frequency-Based Scheduler (FBS) is a task synchronization mechanism that enables
you to run processes at specified frequencies, and optionally with a specified deadline. A
number of frequency-based schedulers can be configured and used simultaneously.
Scheduling frequencies are based on a user-defined number of minor cycles that compose
a major frame. Each scheduler can use any of several available timing sources to define
scheduling frequency or can schedule at the completion of a cycle. In addition, frame
overruns can be monitored.

Specifically, FBS allows you to:

• define frequency in terms of the duration of a minor cycle and the number
of minor cycles per major frame

• specify the scheduling parameters with which processes are scheduled

• control all scheduling features from one processor (that is, schedule and
query a process on any processor)

• detect deadline violations for frequency-based scheduled processes having
assigned deadline times

• detect frame overruns for all frequency-based scheduled processes

• obtain the status of a single frequency-based scheduled process, all
frequency-based scheduled processes on a single processor, or all
frequency-based scheduled processes on all processors

• remove one or all frequency-based scheduled processes from a scheduler

• reschedule a frequency-based scheduled process

• start, stop, and resume scheduling on a frequency-based scheduler

• connect a timing source to and disconnect it from a frequency-based
scheduler

• control use of the real-time clock device as the timing source for a
frequency-based scheduler

• configure up to 100 frequency-based schedulers system-wide in a single
processor or multiprocessor environment

• use both frequency-based scheduling and static priority scheduling
simultaneously

RedHawk Linux Frequency-Based Scheduler User’s Guide

2-2

• set the soft overrun limit for a frequency-based scheduled process

• query the soft overrun limit and the total number of soft overruns incurred
by a frequency-based scheduled process.

How Is Scheduler Frequency Defined? 2

Scheduler frequency is defined, in part, by defining the number of minor cycles that
compose a major frame using either the fbsconfigure(3) library routine or
rtcp(1).

As the smallest unit of frequency maintained by a frequency-based scheduler, a minor
cycle has a duration associated with it. The duration is the time that elapses between
interrupts generated by the timing source attached to the scheduler. If, for example, the
timing source is a real-time clock, the minor cycle duration is defined by specifying the
number of clock counts per minor cycle and the number of microseconds per clock count.

A major frame is one pass through all of the minor cycles with which a frequency-based
scheduler is configured. The duration of a major frame is determined by multiplying the
duration of a minor cycle by the number of minor cycles per major frame.

If, for example, you configure a scheduler with 100 minor cycles per major frame and you
use as the timing source a real-time clock with a clock count of 10,000 and a clock count
duration of one microsecond, each minor cycle has a duration of 10,000 microseconds, or
0.01 second, and each frame a duration of one second.

End-of-cycle scheduling is triggered when the last process scheduled during the current
minor cycle of the current major frame completes its processing.

How Are Processes Scheduled? 2

A process is scheduled to run at a certain frequency by specifying the first minor cycle in
which the process is to be awakened in each major frame (called the starting base cycle)
and the frequency with which it is to be awakened (called the period).

If, for example, you schedule Process-1 with a starting base cycle of zero and a period of
two, the process will be awakened once every two minor cycles, starting with the first
minor cycle in the frame.

If you schedule Process-2 with a starting base cycle of one and a period of four, that
process will be awakened once every four minor cycles, starting with the second minor
cycle in the frame.

If you then schedule Process-3 with a starting base cycle of two and a period of two, that
process will be awakened once every two minor cycles, starting with the third minor cycle
in the frame.

Using the Frequency-Based Scheduler

2-3

On a scheduler configured with 100 minor cycles per major frame, these processes are
awakened as illustrated in Table 2-1.

The maximum frequency that a process can be scheduled is once per minor cycle (a period
of one); the minimum frequency is once per major frame (in the case of the example, a
period of 100).

A process runs until it calls an FBS library routine that causes it to sleep. FBS wakes those
sleeping processes that are scheduled to be awakened in the current minor cycle of the
current major frame and repeats the process for each minor cycle in the current frame. It
continues to repeat the entire process on every major frame until the scheduler is disabled.

To extend the previous example, we can use the three processes from the previous
example:

• Process-1 - starting base cycle=0, period=2

• Process-2 - starting base=1, period=4,

• Process-3 - starting base=2, period=2

If we also configure a scheduler with 100 minor cycles per major frame, a minor cycle
duration of 10,000 microseconds (0.01 second), and a major frame duration of one second,
the three processes are scheduled as illustrated in Table 2-2.

Table 2-1. Process Scheduling Example 1

Minor Cycle Processes Awakened

0 Process-1

1 Process-2

2 Process-1, Process-3

3

4 Process-1, Process-3

5 Process-2

.

.

.

97 Process-2

98 Process-1, Process-3

99

RedHawk Linux Frequency-Based Scheduler User’s Guide

2-4

As illustrated in Table 2-2, when the current major frame is zero and the current minor
cycle is zero, the scheduler wakes Process-1. After 0.01 second, it wakes Process-2; after
0.02 second, it wakes Process-1 and Process-3; and so on.

At one second, when the current major frame becomes one, the current minor cycle
becomes zero again, and the scheduler wakes Process-1. After 0.01 second, it wakes
Process-2; after 0.02 second, it wakes Process-1 and Process-3; and so on. The scheduler
continues repeating this process for as long as it is enabled.

Tolerating Frame Overruns 2

A frame overrun occurs when a scheduled process does not finish its processing before it
is scheduled to run again.

Table 2-2. Process Scheduling Example 2

Major Frame
Time
(sec.)

Minor Cycle Processes Awakened

0 0 0 Process-1

 0.01 1 Process-2

 0.02 2 Process-1, Process-3

 ...

 0.97 97 Process-2

 0.98 98 Process-1, Process-3

 0.99 99

1 1.00 0 Process-1

 1.01 1 Process-2

 1.02 2 Process-1, Process-3

 ...

 1.97 97 Process-2

 1.98 98 Process-1, Process-3

 1.99 99

 ...

n n.00 0 Process-1

 n.01 1 Process-2

 n.02 2 Process-1, Process-3

 ...

 n.97 97 Process-2

 n.98 98 Process-1, Process-3

 n.99 99

Using the Frequency-Based Scheduler

2-5

Frame overruns are classified in two categories:

Note that there are no overruns associated with end-of-cycle scheduling. By definition, the
cycle ends when all processes scheduled are blocked in the fbswait(3) call.

RedHawk Linux counts both soft and hard overruns for each scheduled process, but only
hard overruns for each scheduler. Other processes can get these counts by querying the
scheduled process or scheduler.

When scheduling a process, it is possible to specify that the scheduler is to be stopped by
the kernel when that process running under it causes a hard overrun. Failing to specify
that the scheduler should stop when a process causes a hard overrun allows the scheduler
to continue to run, regardless of the number of hard overruns.

When scheduling a process, it is also possible to specify a consecutive soft overrun limit
count that the process will tolerate and have processed as soft overruns by the kernel. Note
that the default consecutive soft overrun limit is zero. With the limit set to zero, all
overruns incurred by the process are treated as hard overruns (see below).

When a scheduled process overruns a frame and is not configured to be blocked in
fbswait(3) when a frame interrupt occurs, the kernel decides whether to treat this
overrun as a soft or hard overrun using the following steps:

• The consecutive soft overrun counter for the process is incremented.

• If the count does not reach or exceed the soft overrun limit for the process,
the overrun is treated as a soft overrun. The process does not block the next
time it calls fbswait; instead it returns immediately from the fbswait
call with a status value of 2.

• Once the soft overrun limit reaches or exceeds the per-process limit, the
overrun is treated as a hard overrun. The process blocks the next time it
calls fbswait, and when the next normally scheduled frequency-based
scheduler wakeup for that process occurs, the process returns out of the
fbswait call returning a status value of 0. Note that a status of 2 is not
returned in the hard overrun case.

Detecting Deadline Violations 2

A deadline violation occurs when a scheduled process exceeds an applied deadline time
before it calls the FBS library routine that causes it to sleep. When a deadline violation is
detected, the scheduler will be halted if the applied deadline specifies that the FBS should
halt on deadline violation.

hard overruns catastrophic failures of the scheduled process

soft overruns catastrophic failures only if the process reaches its limit on the number
of soft overruns tolerated. Each scheduled process has a soft overrun
limit, defaulting to 0.
Letting a process survive a reasonable number of soft overruns makes
the system more flexible and efficient. Some soft overruns result from
random, unpredictable, or external events unlikely to recur. Other soft
overruns result from only minor frame overruns. Soft overruns give
the scheduled process a chance to recover from a frame overrun and
return to synchronization.

RedHawk Linux Frequency-Based Scheduler User’s Guide

2-6

A deadline may be optionally applied to each process scheduled on the FBS. In addition,
each deadline may be configured to halt the scheduler upon detection, or leave the
scheduler running. Deadlines are detected when the scheduled process calls an FBS
library routine that causes it to sleep, at the end of its processing. For earlier detection of
deadline violations, another FBS library routine provides an explicit test for deadline
violation.

A deadline may be configured to halt the FBS upon detection of a deadline violation.
This may be used to debug an unstable application, or to avoid catastrophic failure when
interfacing with external hardware, for example.

FBS deadlines may be removed from a process using a deadline kind of DEADLINE_CLEAR,
or may be set using a deadline kind of DEADLINE_WALL_TIME. A CLOCK_MONOTONIC

timing source is used to measure execution time when a DEADLINE_WALL_TIME deadline
applies to the process. At this time, no other clock types are supported.

Each deadline time must be measured from an appropriate deadline origin. FBS supports
two different deadline origins, depending on your timing needs:

• A cycle-relative deadline is used when a task needs to be complete by a
fixed time within a minor cycle of a major frame. If, for example, you
configure a scheduler with 100 minor cycles per major frame and each
minor cycle has a duration of 10 milliseconds, and your process is
scheduled to run starting in cycle 2 with a period of 10, then it will run once
every 100 milliseconds, beginning with cycle 2. If the data it produces must
be ready to be written to a hardware device every 100 milliseconds
beginning with cycle 8, then the process must complete within 60
milliseconds. By setting a 60 millisecond cycle-relative deadline, your
program could detect and potentially stop the FBS if the process ever takes
longer than 60 milliseconds to complete its work.

• A task-relative deadline is used when a task needs to complete its work
within a fixed duration of time once it begins execution. For example, if
Process-1 and Process-2 are scheduled in the same cycle, with Process-1 at
a higher real-time priority, then Process-1 will be scheduled to run prior to
Process-2, and Process-2 will run as soon as Process-1 sleeps. If you wish
to detect an occasionally long execution time for Process-2 that you know
should never take more than 12 milliseconds to complete, you can use a 12
millisecond task-relative deadline to halt the FBS if Process-2 ever takes
too long.

In addition, the NightSim GUI supports another form of deadline, measured in cycles,
instead of units of time. A cycle-count deadline may be specified when a task needs to
complete before the start of a following cycle, or before a proportional point within the
cycle (for example, 75%) which will vary with the frequency of the real-time clock. See
the NightSim RT User's Guide for more information.

NOTE

Scheduling with deadlines is supported in RedHawk version 5.2.1
and later.

Using the Frequency-Based Scheduler

2-7

User Interface 2

FBS is accessed using one of the following:

• the real-time command processor–rtcp. This program acts as a command
interpreter for FBS, allowing you to perform key FBS operations by
entering commands from the keyboard or invoking a script. rtcp is
explained in Chapter 5, including an illustration showing the sequence in
which you might invoke the commands.

• a set of library routines. This interface enables you to perform the entire
range of functions associated with the scheduler from application programs
written in C or FORTRAN. The C library routines are explained in
Chapter 6; the FORTRAN library routines are explained in Chapter 7.
Included are illustrations showing the sequence in which you might call the
routines.

• NightSim. This is a Graphical User Interface (GUI) to the entire range of
FBS functions. NightSim is explained in the NightSim RT User’s Guide.

Debugging Frequency-Based Scheduler Processes 2

Debugging processes that have been scheduled on a frequency-based scheduler can be
done using NightView a general-purpose, source-level debugger.

To be able to debug a C executable program, you must compile the source program
specifying the –g option.

The NightView commands you can use to debug frequency-based scheduled processes
are:

attach attach to a running process. This command allows you to debug a
process that is already running

detach detach from an attached process. This command allows you to release
an attached process from the control of the debugger.

To use NightView to debug a frequency-based scheduled process, you must supply the
process ID (PID). You can easily obtain the PID for a frequency-based scheduled process
by using the ps(1) command. You can obtain the PID for a selected process name by
using the C library routine nametopid(3). Use of each of these routines is explained in
the corresponding man pages.

For NightView to attach to a running process, the debugger’s effective user and group ID
must match the effective user and group ID of the process controlled by the debugger.

For additional information on the procedures for using the attach and detach
commands, see the NightView RT User’s Guide.

RedHawk Linux Frequency-Based Scheduler User’s Guide

2-8

3
Timing Sources

Overview. 3-1
Using a Real-Time Clock . 3-1

Understanding the Real-Time Clock Device. 3-1
Understanding the User Interface . 3-2
General Procedures for Using a Real-Time Clock . 3-2

Using an Edge-Triggered Interrupt . 3-3
Understanding the Edge-Triggered Interrupt . 3-3
Understanding the User Interface . 3-4

Using a User-Supplied Timing Device . 3-4

RedHawk Linux Frequency-Based Scheduler User’s Guide

3-1

3
Chapter 3Timing Sources

3
3
3

This chapter contains the procedures for utilizing various timing sources for frequency-
based scheduling.

Overview 3

The Real-Time Clock and Interrupt Module (RCIM) provides real-time clocks and edge-
triggered interrupts suitable as a timing source for a frequency-based scheduler. Each
RCIM provides up to eight real-time clock timers (RTCs) and up to twelve edge-triggered
interrupts (ETIs). These can be used locally or distributed across systems connected in an
RCIM chain. A user-defined device can also be used as a timing source.

Before running the scheduler, the timing source is selected by “attaching” it to the
scheduler. If a real-time clock is used, you can define the duration of a minor cycle by
setting the count and the resolution values.

The sections that follow provide information about the available timing sources.

Using a Real-Time Clock 3

This section provides information for using an RCIM real-time clock as the timing source
for a frequency-based scheduler. Discussions include:

• an overview of the real-time clock device

• a description of the user-interface to the device

• general procedures for using the device

Understanding the Real-Time Clock Device 3

The real-time clock (RTC) device is designed for a variety of timing and frequency control
functions. It provides a range of clock count values and a set of resolutions that, taken
together, produce many different timing intervals––a feature that makes it particularly
appropriate for frequency-based scheduling.

The Real-Time Clock and Interrupt Module (RCIM) provides up to eight real-time clocks
(0-7) on each system. When multiple systems are connected using an RCIM chain, all
RTCs can be designated to be distributed; that is, interrupts are sent to all connected
systems. A distributed RTC may be located on any system within the RCIM chain.

RedHawk Linux Frequency-Based Scheduler User’s Guide

3-2

Each RTC is referenced through its own character special device file:

/dev/rcim/rtcN

For more information, refer to the rcim(4) man page or the Real-Time Clock and
Interrupt (RCIM) User’s Guide.

Understanding the User Interface 3

When using a real-time clock as a timing source for a frequency-based scheduler, any of
the interfaces to FBS can be used to attach the clock to or detach the clock from the
scheduler, or to set, start and stop the clock. The actions to be performed and the rtcp
commands and C and FORTRAN library routines that are used are given in the section
“General Procedures for Using a Real-Time Clock” below. Using NightSim for selecting
and operating a real-time clock for frequency-based scheduling is described in the
NightSim RT User’s Guide.

It is recommended that you use rtcp or the routines contained in the C library as your
interface to the real-time clock. The rtcp command is the easiest to use because it
isolates you from most of the initialization tasks.

Real-time clocks can be controlled directly by using the system calls open(2),
close(2), and ioctl(2). Note that this device does not support read(2) and
write(2) system calls. See the rcim_rtc(4) man page for details.

General Procedures for Using a Real-Time Clock 3

Whether you elect to use rtcp or the routines contained in the libraries as your interface
to the real-time clock, the general procedures for using a real-time clock for frequency-
based scheduling are the same:

STEP 1: Attach a real-time clock to a frequency-based scheduler.

STEP 2: Establish the duration of a minor cycle by specifying the clock count
value and the resolution per clock count.

STEP 3: Start the real-time clock counting.

STEP 4: Start the simulation.

STEP 5: Stop the simulation.

STEP 6: Stop the real-time clock counting.

STEP 7: Detach the real-time clock.

The rtcp commands and C and FORTRAN routines that correspond to each step are
presented in Table 3-1.

Timing Sources

3-3

Refer to Chapter 5 for descriptions of the rtcp commands, Chapter 6 for explanations of
the routines included in the C library and Chapter 7 for the FORTRAN routines.

Using an Edge-Triggered Interrupt 3

This section provides information for using an edge-triggered interrupt as the timing
source for a frequency-based scheduler. Discussions include:

• an overview of the edge-triggered interrupt device

• a description of the user-interface to the device

Understanding the Edge-Triggered Interrupt 3

The edge-triggered interrupt (ETI) device is a software interface to the external interrupt
lines provided by the RCIM. External interrupt lines provide a means for the computer
system to detect an external interrupt coming into the system from any user device that
generates a signal pulse. This signal pulse can be used as the timing source for a
frequency-based scheduler.

There are up to twelve edge-triggered interrupts (0-11) per RCIM. When multiple systems
are connected via an RCIM chain, all ETIs may be designated to be distributed; that is,
interrupts are sent to all connected systems. A distributed ETI may be located on any
system within the RCIM chain.

Each ETI is referenced through its own character special device file:

/dev/rcim/etiN

For more information, refer to the rcim(4) man page or the Real-Time Clock and
Interrupt (RCIM) User’s Guide.

Table 3-1. rtcp Commands and Routines for using RTCs

Step
rtcp

Command C Routine
FORTRAN

Routine

1 ats fbsattach fbsattach

2 stc fbssetrtc fbssetrtc

3 rc fbsrunrtc fbsrunrtc

4 start fbsintrpt fbsintrpt

5 stop fbsintrpt fbsintrpt

6 sc fbsrunrtc fbsrunrtc

7 dts fbsdetach fbsdetach

RedHawk Linux Frequency-Based Scheduler User’s Guide

3-4

Understanding the User Interface 3

When using an edge-triggered interrupt as a timing source for a frequency-based
scheduler, any of the interfaces to FBS can be used to attach the interrupt to or detach it
from the scheduler. Ensure that it is already generating interrupts when you start the
simulation.

The rtcp commands and C and FORTRAN library routines that are used to attach and
detach the interrupt from the scheduler are given in Table 3-2.

Refer to Chapter 5 for descriptions of the rtcp commands, Chapter 6 for explanations of
the routines included in the C library and Chapter 7 for the FORTRAN routines. Using
NightSim for selecting and operating a real-time clock for frequency-based scheduling is
described in the NightSim RT User’s Guide.

Edge-triggered interrupts can be controlled directly by using the system calls open(2),
close(2), and ioctl(2). Note that this device does not support the read(2),
write(2) and mmap(2) system calls. See the rcim_eti(4) man page for details.

Using a User-Supplied Timing Device 3

You may wish to use your own device as the timing source for a frequency-based
scheduler. To use your own device, you must ensure the following:

• Your device driver supports the IOCTLVECNUM ioctl call

• Your device driver supports the IOCTLKEEPALIVE ioctl call

• Your device generates a series of interrupts

FBS makes the IOCTLVECNUM ioctl call to provide the timing source driver with an IRQ
that is associated with the FBS interrupt handler routine. The timing source driver must
invoke this interrupt handler by calling invoke_irq() from its interrupt handler.

The ioctl call requires the following specifications:

#include <linux/ioctl/vecnum.h>

ioctl (fd, IOCTLVECNUM, arg);

fd the file descriptor for the device

IOCTLVECNUM the command to pass the IRQ to the timing source driver

Table 3-2. rtcp Commands and Routines for using ETIs

rtcp
Command C Routine

FORTRAN
Routine

ats fbsattach fbsattach

dts fbsdetach fbsdetach

Timing Sources

3-5

arg an IRQ whose interrupt handler(s) is to be invoked in addition to
the interrupt handler naturally attached to this device. A value of
zero (0) disables a previous association.

To prevent the associated device from shutting down when the final close to the device is
made, the following is also provided:

#include <linux/ioctl/keepalive.h>

ioctl (fd, IOCTLKEEPALIVE, arg);

arg when nonzero, enables the keepalive state enabling the device to
continue running, if possible, after final close of the device. When
zero (0), disables the keepalive state.

At the bottom of the interrupt handler, the following is done to invoke the handler(s) for
the given IRQ:

#include <linux/interrupt.h>

if (irq)
invoke_irq (irq, (struct pt_regs *)0);

Examples of Linux drivers implementing this interface can be found in the following
RedHawk kernel source directory:

<kernel-sourcedir>/drivers/char/rcim

RedHawk Linux Frequency-Based Scheduler User’s Guide

3-6

4
Using the Performance Monitor

What Is the Performance Monitor?. 4-1
What Values Are Monitored? . 4-1
Monitoring Idle Time . 4-3
Monitoring Unscheduled Processes . 4-4

User Interface . 4-5
Optimizing the Performance of a Simulation . 4-5

RedHawk Linux Frequency-Based Scheduler User’s Guide

4-1

4
Chapter 4Using the Performance Monitor

4
4
4

This chapter contains a description of the Performance Monitor and its capabilities. It
explains the values that are monitored and how to enable monitoring of system idle time
and unscheduled processes. Suggestions for optimizing the performance of a simulation
are given and user interface methods are introduced.

What Is the Performance Monitor? 4

The Performance Monitor (PM) allows you to monitor use of a CPU by processes that are
scheduled using a frequency-based scheduler.

The Performance Monitor provides the ability to:

• obtain PM values by process or processor

• control all performance monitoring features from one processor (that is,
enable performance monitoring for any processor)

• start and stop performance monitoring by process or processor

• clear PM values by process or processor

• set the timing mode to include or exclude interrupt times

Note that high-resolution process accounting must be configured in the system in order to
use the Performance Monitor. See the “Configuration” section in Chapter 1 for more
information.

What Values Are Monitored? 4

The performance monitor keeps track of the time that a process spends running from the
time that it is awakened by a frequency-based scheduler until it calls fbswait(3). Time
is measured in microseconds.

One instance of a process being awakened by a scheduler is referred to as an iteration or a
cycle. PM values for frequency-based scheduled processes are reported both in terms of
cycles or iterations, and in terms of major frames. They reflect what has happened since
the last time PM values were cleared and performance monitoring was enabled.

When the PM timing mode is set to include interrupt time, the user and system times of a
process total the elapsed time that accrues when the process is running; time spent
servicing interrupts is added to the system time of the process. When the timing mode is
set to exclude interrupt time, a process’ user and system times total the time that accrues
when the process is the currently running process, excluding time spent servicing
interrupts. Whether the timing mode is set to include or exclude interrupt time, context
switch time is always included in the new process’ system time.

RedHawk Linux Frequency-Based Scheduler User’s Guide

4-2

Whether performance monitoring is enabled for a single frequency-based scheduled
process or for all frequency-based scheduled processes on a processor, the following types
of values are maintained for each process:

Total iterations, cycles The number of times the process has been awakened by
the scheduler

Last time The amount of time the process has spent running from the
last time it has been awakened by the scheduler until it has
called fbswait(3)

Total time The total amount of time the process has spent running in
all cycles

Minimum cycle time The least amount of time the process has spent running in
a cycle

Minimum cycle cycle The number of the minor cycle in which the minimum
cycle time has occurred

Minimum cycle frame The number of the major frame in which the minimum
cycle time has occurred

Maximum cycle time The greatest amount of time the process has spent running
in a cycle

Maximum cycle cycle The number of the minor cycle in which the maximum
cycle time has occurred

Maximum cycle frame The number of the major frame in which the maximum
cycle time has occurred

Minimum frame time The least amount of time the process has spent running
during a major frame

Minimum frame frame The number of the major frame in which the minimum
frame time has occurred

Maximum frame time The greatest amount of time the process has spent running
during a major frame

Maximum frame frame The number of the major frame in which the maximum
frame time has occurred

Number of overruns The number of times the process has caused a frame over-
run

Using the Performance Monitor

4-3

Monitoring Idle Time 4

The Performance Monitor can monitor a processor’s idle time. Idle time refers to the time
the CPU is not busy.

By monitoring a processor’s idle time, you can determine the amount of CPU time
available for allocation to additional processes.

You monitor a processor’s idle time by adding the process /idle to a frequency-based
scheduler and scheduling it on the desired processor. You can monitor idle time for a
number of different processors by adding /idle to a selected frequency-based scheduler
more than once and scheduling it on a different processor each time. You can also add
/idle to more than one frequency-based scheduler. It is important to note, however, that
you can schedule /idle on a particular processor only once.

To add /idle to a frequency-based scheduler, do one of the following:

• execute the rtcp command sp

• make a call to sched_pgmadd(3) from a C program

• make a call to schedpgmadd(3f) from a FORTRAN program

A description of the sp command is provided on page 5-32. A description of the
sched_pgmadd(3) routine can be found on page 6-51 and on the man page. A
description of the schedpgmadd(3f) routine can be found on page 7-55 and on the
man page.

When you add /idle to a frequency-based scheduler, the only parameter you must
specify is the CPU. The default scheduling priority for /idle is zero. The starting base
cycle is zero, and the period is one. The /idle process is scheduled every minor cycle,
starting with the first minor cycle in each major frame.

NOTE

When using the sched_pgmadd(3) subroutine to add /idle
to a scheduler, only one bit can be set in the bit mask that specifies
the processor. To add /idle to a scheduler and schedule it on
more than one processor, you must call the subroutine repeatedly,
specifying a different processor on each call.

After /idle is scheduled, a unique frequency-based scheduler identifier is returned. Use
this number to identify /idle when performing tasks related to FBS or PM.

You obtain scheduling information for /idle in the same way you obtain it for other
frequency-based scheduled processes, by doing one of the following:

• execute the rtcp command vp

• make a call to sched_fbsqry(3) or sched_pgmqry(3) from a C program

• make a call to schedfbsqry(3f) or schedpgmqry(3f) from a FORTRAN
program

A description of the vp command is provided on page 5-35. A description of the
sched_fbsqry routine is provided on page 6-36, sched_pgmqry is on page 6-61,
schedfbsqry(3f) is on page 7-52, schedpgmqry(3f) is on page 7-59 and
descriptions are on the respective man pages.

If you enable performance monitoring for the processor(s) on which /idle is scheduled
or for the process itself, you can obtain all PM values.

RedHawk Linux Frequency-Based Scheduler User’s Guide

4-4

Monitoring Unscheduled Processes 4

The Performance Monitor provides the additional capability of monitoring the
performance of unscheduled processes. Unscheduled processes are those that are not
awakened by the scheduler and do not call fbswait.

To be able to obtain PM values for such processes, add them to a frequency-based
scheduler and specify a starting base cycle of zero and a period of zero. Other scheduling
parameters you must specify include the process scheduling priority and the CPU on
which it is to be scheduled. Optionally specify an octal value to be passed to a process that
is scheduled on a frequency-based scheduler. The halt on overrun flag does not apply to an
unscheduled process.

You add unscheduled processes to a frequency-based scheduler by doing one of the
following:

• executing the rtcp command sp

• making a call to sched_pgmadd(3) from a C program

• making a call to schedpgmadd(3f) from a FORTRAN program

An explanation of the sp command is provided on page 5-32. A description of the
sched_pgmadd routine is located on page 6-51, schedpgmadd is on page 7-55 and
descriptions are on the respective man pages.

After a process is scheduled, the unique frequency-based scheduler identifier is returned.
You can subsequently use this number to identify the process when you are performing
tasks related to FBS or PM.

You obtain scheduling information for unscheduled processes in the same way you obtain
it for other frequency-based scheduled processes by doing one of the following:

• executing the rtcp command vp

• making a call to sched_pgmqry(3) from a C program

• making a call to schedpgmqry(3f) from a FORTRAN program

An explanation of the vp command is provided on page 5-35. A description of the
sched_pgmqry routine can be found on page 6-61, schedpgmqry is on page 7-59 and
descriptions are on the respective man pages.

PM values maintained for unscheduled processes include:

• last time

• total time

• minimum frame time and the number of the frame in which it occurred

• maximum frame time and the number of the frame in which it occurred

You obtain these values by enabling performance monitoring for the processor(s) on
which the processes have been scheduled or on the individual processes.

Using the Performance Monitor

4-5

User Interface 4

PM is accessed using one of the following:

• the real-time command processor–rtcp. This program acts as a command
interpreter for PM, allowing you to perform key performance monitoring
operations by entering commands from the keyboard or invoking a script.
rtcp is explained in Chapter 5, including an illustration showing the
sequence in which you might invoke the commands.

• a set of library routines. This interface enables you to perform the entire
range of functions associated with PM from application programs written
in C and FORTRAN. The library routines are explained in Chapter 6 and
Chapter 7, respectively, including an illustration showing the sequence in
which you might call the routines.

• NightSim. This is a Graphical User Interface (GUI) to the entire range of
PM functions. NightSim is explained in the NightSim RT User’s Guide.

Optimizing the Performance of a Simulation 4

One of the benefits of using multiprocessor systems for real-time processing is that you
can optimize the performance of a simulation by distributing processes among several
processors.

Using FBS to schedule the programs that make up a simulation allows you to use the
Performance Monitor to determine the extent to which the processes are using a CPU and
to find out whether or not they are running at the specified frequency.

A program is scheduled on a processor when it is added to a frequency-based scheduler.
The processor on which it is scheduled is determined by the CPU bias (affinity) specified
when it is added to the scheduler. After programs have been scheduled, enable
performance monitoring on one or more processes or processors and run the simulation.

By examining the PM values that are maintained for each frequency-based scheduled
process, you can determine:

• the processors to which the processes have been assigned

• the amount of time the processes have spent running

• the processes that have not run at their assigned frequency

If you find that a process is not running at its assigned frequency, examine the frequency,
the amount of CPU time being used by the other processes, and the CPU biases for all
processes. Deadlines may also be used to pinpoint instances when a process runs too long.

Note that if the CPU bias of a process identifies more than one processor, you cannot
determine how much time the process has spent on a particular CPU specified in the bit
mask because of dynamic load balancing. To avoid dynamic load balancing, specify only
one processor in the bit mask. By using performance monitoring, you can then tell how
much time a process has spent on its assigned CPU. You can redistribute processes as
necessary.

RedHawk Linux Frequency-Based Scheduler User’s Guide

4-6

You can also enable performance monitoring for a processor’s idle time. The procedures
for doing so are explained in the section “Monitoring Idle Time” in this chapter. By
examining the amount of idle time on each processor, you will be able to identify the
processors that have the lightest load and calculate the additional amount of CPU time that
can be used for scheduling real-time processes.

You can determine the processor assignments that are optimal for your simulation by
analyzing the PM values for frequency-based scheduled processes and for idle time on
selected processors. Redistribute your frequency-based scheduled processes as necessary
by changing their CPU biases.

It is important to note that in order to do so, you must first remove the process from the
scheduler on which it has been scheduled and then add it to a scheduler. For an overview
of the Frequency-Based Scheduler and the interfaces that accommodate its use, refer to
Chapter 2.

The performance of a task can also be influenced by the way in which the system’s CPUs
are configured. See the “Real-Time Performance” chapter of the RedHawk Linux User’s
Guide for more about CPU shielding and hyper-threading.

5
Using rtcp

What Is the Real-Time Command Processor? . 5-1
rtcp and the Frequency-Based Scheduler . 5-1
rtcp and the Performance Monitor. 5-2

Execution Modes . 5-2
Using Direct Mode . 5-2

Invoking rtcp with a Command Name and Arguments 5-3
Invoking rtcp with Commands Redirected from a Script File 5-3
Invoking a Script that Calls rtcp. 5-3

Using Interactive Mode . 5-4
Getting Help . 5-5
rtcp Commands . 5-7

rtcp Command Summary. 5-7
Command Sequence . 5-8
Using rtcp Commands . 5-10

ats – Attach Timing Source to a Frequency-Based Scheduler 5-11
chs – Change Permissions for a Frequency-Based Scheduler 5-12
cs – Configure a Frequency-Based Scheduler . 5-13
dts – Detach Timing Source from a Frequency-Based Scheduler 5-15
rms – Remove a Frequency-Based Scheduler . 5-16
svs – Save Scheduler Configuration . 5-17
vc – View Minor Cycle/Major Frame Count . 5-18
vs – View Scheduler Configuration . 5-19
ls – Display All Schedulers on the System. 5-21
rc – Start Real-Time Clock. 5-21
sc – Stop Real-Time Clock. 5-22
stc – Set Real-Time Clock . 5-22
gtc – Display Real-Time Clock Settings . 5-23
start – Start Scheduling on a Frequency-Based Scheduler. 5-24
resume – Resume Scheduling on a Frequency-Based Scheduler. 5-25
stop – Stop Scheduling on a Frequency-Based Scheduler 5-25
rmp – Remove a Process from a Frequency-Based Scheduler 5-26
rsp – Reschedule a Process . 5-28
sp – Schedule a Process on a Frequency-Based Scheduler 5-32
vp – View Processes on a Frequency-Based Scheduler 5-35
cpm – Clear Performance Monitor Values . 5-38
pm – Start/Stop Performance Monitoring . 5-40
vcm – View/Modify Performance Monitor Timing Mode 5-42
vpm – View Performance Monitor Values . 5-43
ex – Exit Real-Time Command Processor . 5-47
he – Display Help Information . 5-47

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-1

5
Chapter 5Using rtcp

5
5
5

This chapter describes the real-time command processor, rtcp. It describes the execution
modes, the sequence of commands to be used for frequency-based scheduling and
performance monitoring, how to get help, and a complete description of each command.

What Is the Real-Time Command Processor? 5

The real-time command processor (rtcp) is a program that acts as a command interpreter
for the Frequency-Based Scheduler and the Performance Monitor. rtcp allows you to
perform key operations by entering commands from the keyboard or invoking a script
from the shell command line. It reads the commands and interprets them as requests to
execute the related services.

There are two modes of execution: direct and interactive. These modes are described in
detail on page 5-2.

rtcp also has a help facility that makes it possible for you to obtain online information
about commands and arguments. Procedures for using the help facility are explained on
page 5-5.

rtcp and the Frequency-Based Scheduler 5

rtcp commands associated with FBS enable you to perform such key operations as:

• configuring a scheduler

• scheduling programs

• saving a scheduler configuration

• setting up a timing source

• running a simulation

• querying status

See Table 5-1 for a summary of the rtcp commands associated with the Frequency-
Based Scheduler. An overview of the Frequency-Based Scheduler is provided in
Chapter 2. It is recommended that you read this chapter and the chapter on Performance
Monitor before using rtcp.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-2

rtcp and the Performance Monitor 5

rtcp commands associated with the Performance Monitor enable you to perform such
key operations as:

• clearing performance monitor values

• starting and stopping performance monitoring

• setting the timing mode

• querying values

See Table 5-1 for a summary of the rtcp commands associated with the Performance
Monitor. An overview of the Performance Monitor is provided in Chapter 4. It is
recommended that you read this chapter and the chapter on the Frequency-Based
Scheduler before using rtcp.

Execution Modes 5

The real-time command processor provides two modes for executing commands:

direct mode enables you to invoke real-time command processor com-
mands from the shell command line

interactive mode enables you to invoke the real-time command processor,
itself, from the shell command line and then to enter the
desired commands from within the command processor

Using Direct Mode 5

Use direct mode in one of the following ways. Each method is described below.

• Invoke the real-time command processor with a command name and its
arguments at the system command prompt.

• Invoke the real-time command processor at the system command prompt,
redirecting the standard input to come from a file instead of the terminal
keyboard.

• Invoke a script at the system command prompt.

Using rtcp

5-3

Invoking rtcp with a Command Name and Arguments 5

Use the following format when invoking rtcp with a command and arguments:

$ rtcp command [–option [argument]][–option [argument]] ...

Note that you are allowed to enter only one command on the command line at a time. If
you need more than one line to enter a command and its arguments, enter a backslash (\) at
the end of the line to continue on the next line.

Invoking rtcp with Commands Redirected from a Script File 5

This method requires that you create a file that contains the rtcp commands you wish to
execute, and the file is used as standard input to rtcp. Create the file using a text editor of
your choice or by executing the svs (Save Scheduler Configuration) command. The svs
command is explained on page 5-17.

If you use a text editor to create the file, enter each command on a separate line. You may
use either of the following formats:

rtcp command [–option [argument]][–option [argument]] ...

or

command [–option [argument]][–option [argument]] ...

If you need more than one line to enter a command and its arguments, enter a backslash (\)
at the end of the line to continue on the next line.

After you have created the file, invoke the real-time command processor, and redirect the
standard input to come from the file:

$ rtcp < rtcp_input_file

Invoking a Script that Calls rtcp 5

This method requires that you create an executable file that contains the rtcp commands
you wish to execute. The first line in the file can contain a command or the following text:

#!program_name

where program_name specifies the name of the file that contains the shell to be invoked;
for example /bin/bash.

Each command must be entered on a separate line according to the following format:

rtcp command [–option [argument]][–option [argument]] ...

If you need more than one line to enter a command and its arguments, enter a backslash (\)
at the end of the line to continue on the next line.

After you have created the file, make it an executable file by using the chmod(1)
command, then invoke it from the command line as you would any other command:

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-4

$ chmod 755 rtcp_script
$ rtcp_script

For information on use of the chmod(1) command, see the corresponding man page. See
Appendix A for an example of a real-time command processor script.

Using Interactive Mode 5

Use the following procedure to interactively invoke the real-time command processor:

1. Specify the rtcp command at the system command prompt:

$ rtcp

The real-time command processor prompt is then displayed:

rtcp>

2. At the prompt, type real-time processor commands by using the following
format:

rtcp>command [–option [argument]][–option [argument]] ...

If you need more than one line to enter a command and its arguments, enter
a backslash (\) to cause the line to be continued.

In most instances, if the command is successfully executed, a message is
displayed and, where applicable, configuration data, scheduling
information, or performance monitor values are displayed.

Messages and data associated with the commands are included in the
reference information that begins on page 5-7. If an error occurs, a message
indicating the nature of the error is displayed. Error messages are listed and
described in Appendix B.

3. To exit the command processor and return to the shell, type the following:

rtcp>ex

The system command prompt is again displayed.

Using rtcp

5-5

Getting Help 5

Two methods of accessing information about rtcp online are available:

• rtcp(1) man page

• rtcp help facility

Access the rtcp help facility using the he command. The information provided
includes:

• a list and brief description of all rtcp processor commands

• a description and format of a particular command

• a list and description of all command arguments

To display a list of all commands, enter the he command as follows:

he

Commands are displayed as illustrated in Screen 5-1.

Screen 5-1. rtcp Command Display

 rtcp commands

ats - attach timing source to FBS chs - modify FBS access permissions
cs - configure FBS dts- detach timing source from FBS
rms - remove FBS svs- save FBS configuration to a file
vc - view current frame/cycle count vs - view FBS configuration
ls - list FBSs

rc - run real-time clock sc - stop real-time clock
stc - set real-time clock values gtc- get real-time clock values

start - start FBS resume - resume FBS
stop - stop FBS

rmp - remove a process on a FBS rsp- reschedule a process on a FBS
sp - schedule a process on a FBS vp - view scheduled processes on FBS

cpm - clear performance monitor tables pm - start/stop performance monitor
vcm - view/modify PM timing mode vpm- view performance

he - help ex - exit rtcp

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-6

To display a description of a particular command, enter he with the name of the command
as an argument. For example, to display a description of the ats command, specify:

he ats

A description of the ats command and the format for entering the command are
displayed as follows:

Attach timing source to a FBS

rtcp ats -s scheduler -d device | -e

To display a list of command arguments, enter he with option as the argument:

he option

The first screen of rtcp arguments is displayed as illustrated in Screen 5-2.

Screen 5-2. First Screen of rtcp Arguments

 rtcp parameters

-a remove program from FBS and terminate

-b {F|R|O} scheduling policy

-c cpu_bias cpu bias (* = all CPUs) (default = current CPU)

-d name devicename or filename

-e EOC flag

-f frequency number of minor cycles to next wakeup (default = 1)

-h {halt|nohalt} halt FBS on deadline violation (default = nohalt)

-i fpid process fpid number (default = -1)

-m start_cycle 1st minor cycle to wakeup (default = 0)

-n proc_name process name

-o {halt|nohalt} halt FBS on overrun flag (default = nohalt)

-p priority process priority

-r {cycle|task} deadline origin flag (default = cycle)

-s scheduler FBS scheduler key

-t {in|ex} include or exclude interrupt time in pm monitor

-v parameter process initiation parameter

-x {av|mi|ma|al} performance monitor display option (default = average)

Enter ‘he op2’ for more parameters

Using rtcp

5-7

To display the second screen of rtcp arguments, enter he with op2 as the argument:

he op2

The second screen of rtcp arguments is displayed as illustrated in Screen 5-3.

Screen 5-3. Second Screen of rtcp Arguments

rtcp Commands 5

rtcp Command Summary 5

rtcp commands are listed in Table 5-1. Complete information about each command as
well as a command sequence flowchart are provided below.

Table 5-1. rtcp Commands

Command Page Description

Frequency-Based Scheduler:

ats 5-11 Attach timing source to a frequency-based scheduler

chs 5-12 Change permissions for a frequency-based scheduler

cs 5-13 Configure a frequency-based scheduler

dts 5-15 Detach timing source from a frequency-based scheduler

gtc 5-23 Get real-time clock values

ls 5-21 List all frequency-based schedulers configured on the system

rc 5-21 Start real-time clock

(contined on next page)

 rtcp parameters

-C cycles/frame number of minor cycles per major frame

-D duration clock tick duration (default = 10us)

-G gid effective group ID for FBS (default = current user)

-I permissions permissions for FBS in octal (default = 0600)

-L soft_limit soft overrun limit (default = 0)

-M progs/cycle maximum number of processes per minor cycle

-N progs/fbs maximum number of processes per FBS

-O clock_ticks number of clock ticks per minor cycle

-P {ON|OFF} enable/disable performance monitor (default = OFF)

-R {-1 | 0 | 1} reset process flag (default = 0)

-S delay time to delay, in seconds

-T deadline deadline microseconds (default = Clear)

-U uid effective user ID for FBS (default = current user)

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-8

Command Sequence 5

The order in which you might execute the rtcp commands associated with the
Frequency-Based Scheduler is illustrated in Figure 5-1.

Frequency-Based Scheduler (Continued):

resume 5-25 Resume scheduling on a frequency-based scheduler

rmp 5-26 Remove a process from a frequency-based scheduler

rms 5-16 Remove a frequency-based scheduler

rsp 5-28 Reschedule a process

sc 5-22 Stop real-time clock

sp 5-32 Schedule a process on a frequency-based scheduler

start 5-24 Start scheduling on a frequency-based scheduler

stc 5-22 Set real-time clock values

stop 5-25 Stop scheduling on a frequency-based scheduler

svs 5-17 Save scheduler configuration

vc 5-18 View minor cycle/major frame count

vp 5-35 View processes on a frequency-based scheduler

vs 5-19 View scheduler configuration

Performance Monitor:

cpm 5-38 Clear performance monitor values

pm 5-40 Start/stop performance monitoring

vcm 5-42 View or modify performance monitor timing mode

vpm 5-43 View performance monitor values

rtcp:

ex 5-47 Exit real-time command processor

he 5-47 Display help information

Table 5-1. rtcp Commands (Continued)

Command Page Description

Using rtcp

5-9

Figure 5-1. rtcp Command Sequence: Frequency-Based Scheduler

cs

Schedule
Programs

• sp
• rmp
• rsp
• vp

ats

stc

rc start

vc

stop

sc dts

rmp

rms

END

START

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-10

The order in which you might execute the commands associated with the Performance
Monitor is illustrated in Figure 5-2.

Figure 5-2. rtcp Command Sequence: Performance Monitor

Using rtcp Commands 5

This section provides reference information for all of the commands supported by the real-
time command processor. Commands are presented in the order in which they are
described in the help facility. For each command, the following information is provided:

• a description of the command

• the format for entering the command

• detailed descriptions of each argument

• an example of the output from the command

cpm

Start Monitoring
pm

vpm

Stop Monitoring
pm

Modify Timing Mode
vcm

START

END

Using rtcp

5-11

ats – Attach Timing Source to a Frequency-Based Scheduler 5

The ats command attaches a timing source to a frequency-based scheduler or specifies
end-of-cycle scheduling. In the latter case, scheduling is triggered when the last process
scheduled during the current minor cycle completes its processing.

Synopsis

ats –s scheduler {–d device | –e}

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which the timing source is to be attached or end-of-cycle
scheduling specified. The scheduler must previously have been
configured. It can be any positive integer value.

–d device the path name of the real-time clock or edge-triggered interrupt
being used as the timing source for the specified scheduler. Refer
to Chapter 3 for detailed information on the form associated with
each type of device.

–e specifies end-of-cycle scheduling. In this case, execution of the
processes in the next minor cycle occurs when the last process
scheduled to run in the current minor cycle finishes its processing
for the cycle.

Display

The following message is displayed when the specified timing source is successfully
attached to the scheduler or if end-of-cycle scheduling is successfully enabled:

Scheduler attached

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-12

chs – Change Permissions for a Frequency-Based Scheduler 5

The chs command changes the permissions assigned for a frequency-based scheduler. In
order to do this, you must have an effective user ID equal to that of the creator/owner of
the frequency-based scheduler.

Synopsis

chs –s scheduler [–I permissions] [–G gid] [–U uid]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which the permissions are to be changed. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–I permissions the permissions required for operations related to the specified
scheduler.

The permissions argument specifies three octal digits––the first
indicates permissions granted to the owner, the second those
granted to the group, and the third those granted to other users.

The octal method for changing permissions associated with a
scheduler is the same as that used for specifying mode with the
chmod command (see the chmod(1)man page). The default,
600, grants read and alter (write) permission to the owner only.

–G gid the effective group ID of the selected frequency-based scheduler.
The default effective group is the current user.

–U uid the effective user ID of the selected frequency-based scheduler.
The default is the current user.

Display

The following message is displayed when the permissions assigned to the scheduler are
successfully changed:

Scheduler permissions changed

Using rtcp

5-13

cs – Configure a Frequency-Based Scheduler 5

The cs command creates a frequency-based scheduler.

To create a scheduler, you must specify a key, which is a user-selected numeric identifier
with which the scheduler will be associated. You must also define:

• the number of minor cycles that compose a major frame on the scheduler

• the maximum number of tasks that can be scheduled during a minor cycle

• the maximum number of tasks scheduled on a scheduler at one time

A frequency-based scheduler uses two types of permission that control users’ ability to
perform scheduler operations: read and alter (write). Read permission is required to
perform query operations. Alter permission is required to:

• schedule, remove, and reschedule programs

• attach a timing source to and detach it from a scheduler

• start, stop, and resume scheduling

Permissions are assigned when you create the scheduler. They are specified in the same
way in which permissions associated with files are assigned. See the chmod(1) man
page for assistance in specifying permissions.

When you execute the cs command, a unique, positive frequency-based scheduler
identifier and corresponding data structure are created for the specified key if both of the
following conditions are met:

• the key is not already associated to a frequency-based scheduler identifier

• the number of frequency-based schedulers already configured is less than
the maximum number of schedulers allowed on your system

The newly created frequency-based scheduler identifier is displayed on the terminal.

When you specify a key that is already associated with a frequency-based scheduler, the
corresponding frequency-based scheduler identifier is displayed on your terminal screen if
all of the following conditions are met:

• the number of minor cycles specified by the –C cycles/frame argument
matches the number of minor cycles associated with the existing scheduler

• the maximum specified by the –M progs/cycle argument is less than or
equal to the maximum number of processes per minor cycle associated
with the existing scheduler

• the maximum specified by the –N progs/fbs argument is less than or equal
to the maximum number of processes allowed on the existing scheduler

If these conditions are not met, an error message is displayed.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-14

Synopsis

cs –s scheduler –C cycles/frame –M progs/cycle –N progs/fbs [–I permissions] \
[–R reset]

Arguments

–s scheduler a key for the frequency-based scheduler that you wish to create.
The key is a user-selected numeric identifier with which the
scheduler will be associated. The value of scheduler can be any
positive integer value.

–C cycles/frame the number of minor cycles that compose a frame on the specified
frequency-based scheduler.

–M progs/cycle the maximum number of programs that can be scheduled to
execute during one minor cycle.

–N progs/fbs the maximum number of programs that can be scheduled on the
specified scheduler at one time. This value must be less than or
equal to the product obtained by multiplying the values specified
for the cycles/frame and the progs/cycle arguments.

–I permissions permissions required for operations related to the specified
scheduler.

The permissions argument specifies three octal digits––the first
indicates permissions granted to the owner, the second those
granted to the group, and the third those granted to other users.

The octal method for changing permissions associated with a
scheduler is the same as that used for specifying mode with the
chmod command (see the chmod(1)man page). The default,
600, grants read and alter (write) permission to the owner only.

–R reset the manner in which processes currently scheduled on the
specified scheduler are to be handled.

The value of the reset argument can be 1, -1, or 0.

Specifying 0 (the default) allows these processes to remain on the
scheduler. Specifying 1 removes these processes from the
scheduler but allows them to continue executing. Specifying -1
removes these processes from the scheduler and terminates them.

Using rtcp

5-15

Display

The following message is displayed when the scheduler is successfully configured:

Scheduler 10 has FBS ID of 3

Scheduler

Indicates the user-specified key for the selected frequency-based scheduler.
It is important to note that this value is required by most of the real-time
command processor commands.

FBS ID

Indicates the unique positive integer value representing the identifier for
the selected frequency-based scheduler.

dts – Detach Timing Source from a Frequency-Based Scheduler 5

The dts command detaches the timing source from a frequency-based scheduler or
disables end-of-cycle scheduling. If the timing source is a real-time clock, it is
recommended that you stop the clock prior to invoking this routine by making a call to sc
(page 5-22).

Synopsis

dts –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which the timing source is to be detached or end-of-cycle
scheduling disabled. The scheduler must previously have been
configured. See the section “cs – Configure a Frequency-Based
Scheduler” on page 5-13 for information on configuring a
frequency-based scheduler.

Display

The following message is displayed when the timing source is successfully detached from
the scheduler or end-of-cycle scheduling is successfully disabled:

Scheduler detached

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-16

rms – Remove a Frequency-Based Scheduler 5

The rms command removes a frequency-based scheduler. Prior to executing this
command, you must ensure that the timing source for the scheduler has been detached or
that end-of-cycle scheduling has been disabled (see “dts – Detach Timing Source from a
Frequency-Based Scheduler” on page 5-15 for information on use of the dts command).

Note that to remove a scheduler, the calling process must have an effective user ID equal
to that of the owner/creator of the frequency-based scheduler.

Synopsis

rms –s scheduler [–a]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
that you wish to remove. The scheduler must previously have
been configured. See the section “cs – Configure a Frequency-
Based Scheduler” on page 5-13 for information on configuring a
frequency-based scheduler.

–a all processes currently scheduled on the specified scheduler are to
be removed from the scheduler and terminated. If this option is
not specified, all processes currently scheduled on the specified
scheduler are removed but continue executing.

Display

The command displays the following message when the specified scheduler is
successfully removed:

Scheduler removed

Using rtcp

5-17

svs – Save Scheduler Configuration 5

The svs command stores configuration and scheduling data for a selected frequency-
based scheduler in a file.

When you execute this task, the rtcp commands entered from the command line are
saved to the specified output file. The file can then be used as an rtcp input file. The
commands saved by svs are those used to configure a scheduler (cs), schedule programs
on it (sp), attach a timing source to it (ats), and set the real-time clock (stc).

Synopsis

svs –s scheduler –d output_file_name

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to store configuration and scheduling data.
The scheduler must previously have been configured. See the
section “cs – Configure a Frequency-Based Scheduler” on page
5-13 for information on configuring a frequency-based scheduler.

–d output_file_name a standard path name identifying the file in which you wish
configuration data to be stored. It can be a full or relative path
name of up to 1024 characters.

Display

No message is displayed if the scheduler configuration is successfully saved to a file.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-18

vc – View Minor Cycle/Major Frame Count 5

The vc command displays the current minor cycle and major frame count values for a
frequency-based scheduler. These values help determine the progress of a simulation.

Synopsis

vc –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to view the current cycle and frame counts.
The scheduler must previously have been configured. See the
section “cs – Configure a Frequency-Based Scheduler” on page
5-13 for information on configuring a frequency-based scheduler.

Display

When successfully executed, the command displays the following types of information:

Major frame = 65 Minor cycle = 25

Major frame

Indicates the number of the current major frame for the simulation running
on the selected scheduler.

Minor cycle

Indicates the number of the current minor cycle for the simulation running
on the selected scheduler.

Using rtcp

5-19

vs – View Scheduler Configuration 5

The vs command allows you to view information related to a frequency-based scheduler.
Viewable information includes:

• the key and identifier associated with the scheduler

• the number of minor cycles per major frame, the maximum number of
programs per minor cycle, and the maximum number of programs per
scheduler

• the user and group IDs of the owner and creator of the scheduler

• the permissions assigned for the scheduler

• the total number of overruns for all processes on the scheduler

• an indication of whether the scheduler is in the run or the stop state

• the CPUs that are active in the system and the CPUs for which performance
monitoring has been enabled

• the path name of the device that has been attached to the scheduler

Synopsis

vs –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to view current information. The scheduler
must previously have been configured. See the section “cs –
Configure a Frequency-Based Scheduler” on page 5-13 for
information on configuring a frequency-based scheduler.

Display

When successfully executed, the command displays configuration and status information:

Scheduler

Indicates the user-specified key for the selected frequency-based scheduler.

FBS ID

Indicates the unique, positive integer value representing the identifier for
the selected frequency-based scheduler.

Scheduler 417 has FBS ID of 32768: Cycles per frame = 101
Max programs per cycle = 10: Max programs per FBS = 110
owner uid = 9999: owner gid = 101
creator uid = 9999: creator gid = 101:
total overruns = 0: access mode = 600: flags word = 1
active CPU mask = ’----xxxx’: active PM CPU mask = ’----x--x’
interrupt device name = /dev/rcim/rtc2
FBS is currently running

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-20

Cycles per frame

Indicates the number of minor cycles that compose a major frame on the
selected scheduler.

Max programs per cycle

Indicates the maximum number of programs that can be scheduled in a
minor cycle on the selected scheduler.

Max programs per FBS

Indicates the maximum number of programs that can be scheduled on the
selected scheduler at one time.

owner uid

Indicates the user ID of the scheduler’s owner.

owner gid

Indicates the group ID of the scheduler’s owner.

creator uid

Indicates the user ID of the scheduler’s creator.

creator gid

Indicates the group ID of the scheduler’s creator.

total overruns

Indicates the total number of overruns for all processes on the selected
scheduler.

access mode

Indicates an octal value representing the permissions assigned to the
selected scheduler.

flags word

Indicates if a timing source has been attached to the selected scheduler or if
end-of-cycle scheduling has been enabled. If true, this field displays 1;
otherwise, it displays 0.

active CPU mask

Contains a mask of the CPUs that are active in the system. The rightmost
position corresponds to the first logical CPU. The letter x signifies that a
CPU is active; the dash (−) signifies that it is not.

active PM CPU mask

Contains a mask of the CPUs for which performance monitoring has been
enabled. The rightmost position corresponds to the first logical CPU. The
letter x signifies that performance monitoring has been enabled on a CPU;
the dash (−) signifies that it has not.

Using rtcp

5-21

interrupt device name

If a timing source has been attached to the selected scheduler, this field
contains the full path name of the device. If end-of-cycle scheduling has
been enabled, this field contains the following: EOC triggering.

FBS is

Indicates the state of the selected scheduler.

ls – Display All Schedulers on the System 5

The ls command displays a single line of information for each frequency-based scheduler
configured on the system.

Synopsis

ls

Display

This command displays the following information for each configured scheduler:

rc – Start Real-Time Clock 5

The rc command starts the real-time clock that has been specified as the timing source for
a selected frequency-based scheduler (see “ats – Attach Timing Source to a Frequency-
Based Scheduler” on page 5-11 for an explanation of the ats command). Note that you
must first have set the count and resolution values for the real-time clock by executing the
stc command (page 5-22).

Synopsis

rc –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to start the attached real-time clock. The
scheduler must previously have been configured. See the section
“cs – Configure a Frequency-Based Scheduler” on page 5-13 for
information on configuring a frequency-based scheduler.

Display

The following message is displayed when the real-time clock is successfully started:

Clock started

ID SCHEDULER PERMISSIONS OWNER_UID OWNER_GID STATE DEVICE

--- ---------- ----------- --------- ---------- ------- ------------

0 37 --rw-rw-r-- fbsusr1 5309 running /dev/rcim/rtc0

1 38 --rw-rw-r-- fbsusr2 5309 running /dev/rcim/rtc1

2 39 --rw-rw-r-- fbsusr1 5309 stopped /dev/rcim/rtc2

3 40 --rw-rw-r-- fbsusr3 5309 running /dev/rcim/rtc3

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-22

sc – Stop Real-Time Clock 5

The sc command stops the real-time clock that has been specified as the timing source for
a selected frequency-based scheduler.

Synopsis

sc –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to stop the attached real-time clock. The
scheduler must previously have been configured. See the section
“cs – Configure a Frequency-Based Scheduler” on page 5-13 for
information on configuring a frequency-based scheduler.

Display

The following message is displayed when the real-time clock is successfully stopped:

Clock stopped

stc – Set Real-Time Clock 5

The stc command establishes the duration of a minor cycle by setting the count and
duration values for a real-time clock that has been specified as the timing source for a
selected frequency-based scheduler.

Synopsis

stc –s scheduler [–D clock_duration] –O clock_count [–W tick_count]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler to
which the real-time clock has been attached. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–D clock_duration the duration in microseconds of one clock count. The value of
clock_duration must be one of the following: 1, 10, 100, 1000,
10000. The default value is 10.

–O clock_count the number of clock counts per minor cycle. The value of
clock_count can range from 2 to 65535.

–W tick_count For devices that have watchdog timer support, the tick_count is
passed into the driver as a count of sequential interrupts that are
allowed to be missed, before the watchdog timer takes over
driving the FBS. For the driver to support this feature, it must
ac c e p t t h e W A T C H D O G S E T (_ I O W (‘ w ’ , 1 4 , i n t)) a n d
WATCHDOGGET(_IOR(‘w’,13, int)) ioctl commands.

NOTE: Although a clock_count of 1 cannot be used, a timing interval equal to a
clock_duration value can be set by using the next lower clock_duration value

Using rtcp

5-23

and a clock_count of 10; e.g., -D 1000 -O 10 results in a timing interval of
10,000 microseconds.

Display

The following message is displayed when the real-time clock is successfully set:

Clock set

gtc – Display Real-Time Clock Settings 5

The gtc command displays the current count and duration values for a real-time clock
that has been specified as the timing source for a selected frequency-based scheduler. The
clock must previously have been set using the stc command (page 5-22).

Synopsis

gtc –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler to
which the real-time clock has been attached. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

Display

When the real-time clock is currently set, this command displays the following
information:

Clock count = 50: duration = 1000

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-24

start – Start Scheduling on a Frequency-Based Scheduler 5

The start command starts scheduling processes on a frequency-based scheduler. When
you execute this command, the minor cycle, major frame, and overrun count values are set
to zero.

Prior to executing this command, you must have executed the ats command to attach a
timing source to the scheduler or to specify end-of-cycle scheduling (see “ats – Attach
Timing Source to a Frequency-Based Scheduler” on page 5-11 for an explanation of the
ats command).

If you have specified a real-time clock as the timing source for the scheduler, scheduling
will not start until you have set the clock using the stc commands (page 5-22), and
started the clock using the rc command (page 5-21).

If you have specified an edge-triggered interrupt as the timing source, it must already be
generating interrupts in order for scheduling to start.

Synopsis

start –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which you wish to start scheduling. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

Display

The following message is displayed when scheduling on the specified scheduler is
successfully started:

FBS started

Using rtcp

5-25

resume – Resume Scheduling on a Frequency-Based Scheduler 5

The resume command resumes scheduling processes on a selected frequency-based
scheduler with the major frame, minor cycle, and overrun count values the same as they
were when you stopped the scheduler.

Synopsis

resume –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to resume scheduling. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

Display

The following message is displayed when scheduling on the specified scheduler is
successfully resumed:

FBS resumed

stop – Stop Scheduling on a Frequency-Based Scheduler 5

The stop command stops scheduling processes on a selected frequency-based scheduler.

Synopsis

stop –s scheduler

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which you wish to stop scheduling. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

Display

The following message is displayed when scheduling on the specified scheduler is
successfully stopped:

FBS stopped

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-26

rmp – Remove a Process from a Frequency-Based Scheduler 5

The rmp command removes a process from a frequency-based scheduler. Identify the
process that you wish to remove by specifying one of the following:

• the name of the process and the CPU on which it is scheduled

• the process’ frequency-based scheduler process identifier

• the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency-based scheduler identifier.

Synopsis

rmp –s scheduler {–i fpid | –n proc_name [–c cpu_bias]} [–a]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which the process is scheduled. The scheduler must previously
have been configured. See the section “cs – Configure a
Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–i fpid the frequency-based scheduler process identifier for the process to
be removed. This value is displayed when you successfully
schedule a program by executing the sp command (page 5-32). If
you have not identified the process by name, you must specify this
argument.

The default value for fpid is -1. If you accept the default value, you
must identify the process by name and CPU.

–n proc_name a standard path name identifying the process to be removed from
the specified scheduler. This can be a full or relative path name
of up to 1024 characters.

If you do not specify this argument, you must provide the
frequency-based scheduler process identifier by specifying the –i
fpid argument.

–c cpu_bias the processor(s) to be used with the value of the –n proc_name
argument to identify the process to be removed from the specified
scheduler.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from zero to one less than the number of
CPUs, where the number 0 represents the first logical CPU, 1
represents the second, and so on.

Using rtcp

5-27

A list of CPU IDs may specify a sequence or a range of numbers–
–for example, –c 1,3–5,7. Note that you must use commas to
separate items in the list. Specify the entire range of CPU IDs by
entering an asterisk (*).

If you do not specify the –c cpu_bias argument, the default
processor is the CPU on which rtcp is currently executing.

–a the process is to be removed from the specified scheduler and
terminated. If this option is not specified, the process is removed
from the scheduler but allowed to continue executing.

Display

If the specified process is successfully removed from the scheduler, the following message
is displayed:

Process removed

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-28

rsp – Reschedule a Process 5

The rsp command changes the scheduling parameters for a process that has been
scheduled on a frequency-based scheduler. You may wish, for example, to change the
process’ scheduling policy or priority. You may also wish to change the frequency with
which the process is scheduled to run. You cannot, however, change the CPU on which it
has been scheduled.

The effective user ID of the calling process must match the effective user ID of the target
process (the process for which the scheduling policy and priority are being set) for the
following conditions:

• if you execute this command and you wish to change a process’ scheduling
policy to the first-in-first-out (FIFO) or the round-robin policy

• if you wish to change the priority of a process scheduled under the FIFO or
the round-robin policy

• if you wish to raise the priority of a process scheduled under the time-
sharing policy above a per-process limit

You can reschedule a process without first having executed the rmp command (page 5-26)
to remove it from the scheduler or the stop command (page 5-25) to stop scheduling.

Use one of the following methods to identify the process that you wish to reschedule:

• specify the name of the process and the CPU on which it is scheduled

• specify the process’ frequency-based scheduler process identifier

• specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency-based scheduler identifier.

Synopsis

rsp –s scheduler {–i fpid | –n proc_name [–c cpu_bias]} [–f frequency] \
[–m start_cycle] [–b policy] [–p priority] [–o halt_flag] [–L soft_limit] [-T deadline] [-h
halt_flag] [-r origin]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which the process is scheduled. The scheduler must previously
have been configured. See the section “cs – Configure a
Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–i fpid the frequency-based scheduler process identifier for the process
to be rescheduled. This value is displayed when you execute the
sp command (page 5-32). If you have not identified the process

Using rtcp

5-29

by name, you must specify this argument. The default value for
fpid is -1. If you use the default value, you must identify the
process by name and CPU.

–n proc_name a standard path name identifying the process to be rescheduled.
This can be a full or relative path name of up to 1024 characters.
If you do not specify this argument, you must provide the
frequency-based scheduler process identifier by specifying the –i
fpid argument.

–c cpu_bias the processor(s) to be used with the value of the –n proc_name
argument to identify the process to be rescheduled.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from 0 to one less than the number of CPUs,
where the number 0 represents the first logical CPU, 1 represents
the second, and so on.

A list of CPU IDs may specify a sequence or a range of numbers–
–for example, –c 1,3–5,7. Note that you must use commas to
separate items in the list. Specify the entire range of CPU IDs by
entering an asterisk (*).

If you do not specify this argument, the default processor is the
CPU on which the real-time command processor is currently
executing.

–f frequency the frequency with which the specified process is to be awakened
in each major frame.

A frequency of 1 indicates that the specified process is to be
awakened every minor cycle; a frequency of 2 indicates that it is
to be awakened once every two minor cycles and so on.

Specify the number of minor cycles representing the frequency
with which you wish the process to be awakened. The value of
frequency can range from 1 to the number of minor cycles that
compose a frame on the scheduler. The default is 1.

The total number of minor cycles per frame is defined by
executing the cs command (page 5-13).

–m start_cycle the first minor cycle in which the specified process is to be
awakened in each frame. The value of start_cycle can range from
0 to the total number of minor cycles per frame minus 1. The
default is 0. The total number of minor cycles per frame is defined
by executing the cs command (see page 5-13).

–b policy the POSIX scheduling policy for the specified program: F to
select the first-in-first-out (FIFO) scheduling policy, R to select
the round-robin scheduling policy or O to select the time-sharing
scheduling policy.

If you do not specify the -b policy argument, the default policy is
the time-sharing scheduling policy.

Note: It is recommended that you specify this argument.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-30

–p priority the scheduling priority for the specified process. The default value
is 0.

The range of priority values that you can enter is governed by the
value of the policy argument. Determine the allowable range of
priorities associated with each policy (F, R, or O) by invoking the
run(1) command from the shell and not specifying any options
or arguments. Higher numerical values correspond to more
favorable scheduling priorities.

 –o halt_flag indicates whether or not the scheduler should be stopped in the
event that the specified process causes a frame overrun. The value
of halt_flag must be either halt or nohalt. The default is
nohalt.

–L soft_limit the soft overrun limit for the process. The default is 0. If you
reschedule a process that already has a non-zero soft overrun limit
set and you do not specify a soft overrun limit, the process’ soft
overrun limit is set to 0.

-T deadline Specifies the maximum time the task is expected to execute before
returning to fbswait(3). Can be Clear, which removes any
deadline constraint, or a positive number denoting a deadline time
in microseconds. The default value is Clear.

-h halt_flag Enables you to indicate if the scheduler should be stopped in the
event that a deadline violation is detected for the specified
process. Can be set to halt or nohalt. The default is nohalt.

-r origin Indicates the starting point from which to measure time when
testing for deadline violations. Can be set to cycle to measure
time from the beginning of the cycle in which the task is
scheduled, or task to measure time starting when the task exits
fbswait(3) and begins executing. The default is cycle.

Display

When the specified process is successfully rescheduled, the following is displayed:

CPU

The identifier for the CPU on which the specified process is scheduled.

FPID

The unique frequency-based scheduler procesLs identifier for the specified
process. This identifier is displayed by the real-time command processor

CPU FPID Prio. Freq. Start Halt SoftLimit Ddln(us)/Origin HaltOnDL Process Name

0 1 20/F 2 0 T 2 250/C T /home/jojo/wc

0 0 53/F 2 0 T 0 None - /home/jojo/wc

Using rtcp

5-31

when you schedule a program on the scheduler using the sp command
(page 5-32).

Prio.

The scheduling priority of the specified process.

Freq.

The frequency with which the specified process is scheduled to be
awakened in each major frame.

Start

The first minor cycle in which the specified process is scheduled to be
awakened in each major frame.

Halt

Indicates whether or not the “halt on overrun” flag has been set for the
specified process; Y (yes) or N (no).

SoftLimit

The soft overrun limit of the process.

Ddln(us)/Origin

The deadline time in microseconds, displayed with a slash and the origin
c o d e . T h e o r i g i n i s C f o r D L _ C Y C L E _ R E L A T I V E and T f o r
DL_TASK_RELATIVE.

HaltOnDl

The value of the “Halt on deadline violation” flag: T, F, or if no deadline is
assigned, “-” .

Process Name

The full path name of the process that has been scheduled on the selected
frequency-based scheduler.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-32

sp – Schedule a Process on a Frequency-Based Scheduler 5

The sp command creates a process and schedules it on a frequency-based scheduler.

The effective user ID of the calling process must match the effective user ID of the target
process (the process for which the scheduling policy and priority are being set) for the
following conditions:

• if you execute this command and you wish to change a process’ scheduling
policy to the first-in-first-out (FIFO) or the round-robin policy

• if you wish to change the priority of a process scheduled under the FIFO or
the round-robin policy

• if you wish to raise the priority of a process scheduled under the time-
sharing policy above a per-process limit.

If you wish to modify the CPU bias of the process when you invoke this command, the
real or effective user ID of the calling process must match the real or saved user ID of the
process for which the CPU assignment is being changed.

When you execute this command, the real-time command processor returns a unique
frequency-based scheduler process identifier. You can subsequently use this identifier to
specify the process when you are executing other commands.

Synopsis

sp –s scheduler –n proc_name [–c cpu_bias] [–f frequency] [–m start_cycle] [–b policy] \
[–p priority] [–v parameter] [–o halt_flag] [–L soft_limit] [-T deadline] [-h halt_flag]
[-r origin] [–– arg1 [arg2...]]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which the process is to be scheduled. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–n proc_name a standard path name identifying the program that you wish to
schedule. This can be a full or relative path name of up to 1024
characters.

–c cpu_bias the CPU bias for the specified program. The CPU bias determines
the processor or processors on which the program can be
scheduled.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from 0 to one less than the number of CPUs,
where the number 0 represents the first logical CPU, 1 represents
the second, and so on.

A list of CPU IDs may specify a sequence or a range of numbers–
–for example, –c 1,3–5,7. Note that you must use commas to
separate items in the list. Specify the entire range of CPU IDs by
entering an asterisk (*).

Using rtcp

5-33

If you do not specify this argument, the default processor is the
CPU on which the real-time command processor is currently
executing.

–f frequency the frequency with which the specified process is to be awakened
in each major frame.

A frequency of 1 indicates that the specified process is to be
awakened every minor cycle; a frequency of 2 indicates that it is
to be awakened once every two minor cycles, and so on.

Specify the number of minor cycles representing the frequency
with which you wish the process to be awakened. The value of
frequency can range from 1 to the number of minor cycles that
compose a frame on the scheduler. The default value is 1. The
total number of minor cycles per frame is defined by executing the
cs command (see page 5-13).

–m start_cycle the first minor cycle in which the specified process is scheduled to
be awakened in each frame. The value of start_cycle can range
from 0 to the total number of minor cycles per frame minus one.
The default value is 0. The total number of minor cycles per frame
is defined by executing the cs command (see page 5-13).

–b policy the POSIX scheduling policy for the specified process: F to select
the first-in-first-out (FIFO) scheduling policy, R to select the
round-robin scheduling policy or O to select the time-sharing
scheduling policy.

If you do not specify the -b policy argument, the default policy is
the time-sharing scheduling policy.

Note: It is recommended that you specify this argument.

–p priority the scheduling priority for the specified process. The default value
is 0.

The range of priority values is governed by the value of the policy
argument. Determine the allowable range of priorities associated
with each policy (F, R, or O) by invoking the run(1) command
from the shell and not specifying any options or arguments.

Higher numerical values correspond to more favorable scheduling
priorities.

–v parameter an integer value to be passed to a process that is scheduled on a
frequency-based scheduler.

The value of parameter must be a 32-bit decimal number.

–o halt_flag indicates whether or not the scheduler should be stopped in the
event that the specified program causes a frame overrun.

The value of halt_flag must be either halt or nohalt. The
default is nohalt.

–L soft_limit the soft overrun limit for the process. The default is 0.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-34

-T deadline Specifies the maximum time the task is expected to execute before
returning to fbswait(3). Can be Clear, which removes any
deadline constraint, or a positive number denoting a deadline time
in microseconds. The default value is Clear.

-h halt_flag Enables you to indicate if the scheduler should be stopped in the
event that a deadline violation is detected for the specified
process. Can be set to halt or nohalt. The default is nohalt.

-r origin Indicates the starting point from which to measure time when
testing for deadline violations. Can be set to cycle to measure
time from the beginning of the cycle in which the task is
scheduled, or task to measure time starting when the task exits
fbswait(3) and begins executing. The default is cycle.

–– arg1 [arg2...] arguments that are passed to the scheduled process’ command
line, in argv[]

Display

The following information is displayed when the specified process is successfully
scheduled on the frequency-based scheduler:

fpid 199 assigned to process task02

fpid

The unique frequency-based scheduler process identifier assigned to the
specified process.

process

The full path name of the process that has been scheduled on the selected
frequency-based scheduler.

Using rtcp

5-35

vp – View Processes on a Frequency-Based Scheduler 5

The vp command displays information about a particular frequency-based scheduled
process or all frequency-based scheduled processes on one or more processors on a
selected frequency-based scheduler.

You can display information about all frequency-based scheduled processes on a specified
processor or all processors by specifying the scheduler and the CPU(s) on which the
processes are scheduled.

If you wish to display information for a particular frequency-based scheduled process, you
can identify the process by specifying:

• the name of the process and the CPU on which it is scheduled

• the process’ frequency-based scheduler process identifier

• the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency-based scheduler identifier.

Information displayed for each process includes:

• the CPU on which the process is executing

• the frequency-based scheduler process identifier

• the process’ scheduling priority

• the frequency (the number of minor cycles indicating the frequency with
which the process is awakened in each major frame)

• the starting base cycle (the first minor cycle in which the process is
scheduled to be awakened in each major frame)

• the value of the “halt on overrun” flag

• the soft overrun limit of the process

• the set deadline time

• the deadline origin indicator

• the value of the “halt on deadline violation” flag

• the path name of the process.

Synopsis

vp –s scheduler [–n proc_name] [–i fpid] [–c cpu_bias]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler
for which scheduling information is to be displayed. The
scheduler must previously have been configured. See the “cs –

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-36

Configure a Frequency-Based Scheduler” section on page 5-13
for information on configuring a frequency-based scheduler.

–n proc_name a standard path name identifying a particular process for which
scheduling information is to be displayed. This can be a full or
relative path name of up to 1024 characters.

–i fpid the frequency-based scheduler process identifier for a particular
process for which scheduling information is to be displayed. This
value is displayed when you successfully schedule a program by
executing the sp command (page 5-32).

The default value for fpid is -1. If you accept the default value, you
must identify the process by name and CPU.

–c cpu_bias the processor(s) for which scheduling information is to be
displayed.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from 0 to one less than the number of CPUs,
where the number 0 represents the first logical CPU, 1 represents
the second, and so on.

A list of CPU IDs can specify a sequence or a range of numbers—
for example, –c 1,3–5,7. Note that you must use commas to
separate items in the list. Specify the entire range of CPU IDs by
entering an asterisk (*).

The default processor is the CPU on which the real-time
command processor is currently executing.

Display

The following information is displayed when the command is successfully executed:

CPU

The identifiers for the CPUs on which the respective processes are
scheduled.

FPID

The frequency-based scheduler process identifiers for the respective
processes. Identifiers are displayed by the real-time command processor
when you schedule a program on the scheduler using the sp command
(page 5-32).

CPU FPID Prio. Freq. Start Halt SoftLimit Ddln(us)/Origin HaltOnDL Process Name

0 1 20/F 2 0 T 2 250/C T /home/jojo/wc

0 0 53/F 2 0 T 0 None - /home/jojo/wc

Using rtcp

5-37

Prio.

The scheduling priorities of the respective processes.

Freq.

The frequency with which the respective processes are scheduled to be
awakened in each major frame.

Start

The first minor cycle in which the respective processes are scheduled to be
awakened in each major frame.

Halt

Indicates whether or not the “halt on overrun” flag has been set for the
respective processes; Y (yes) or N (no).

SoftLimit

The soft overrun limit of the process.

Ddln(us)/Origin

The deadline time in microseconds, displayed with a slash and the origin
c o d e . T h e o r i g i n i s C f o r D L _ C Y C L E _ R E L A T I V E and T f o r
DL_TASK_RELATIVE.

HaltOnDl

The value of the “Halt on deadline violation” flag: T, F, or if no deadline is
assigned, “-” .

Process Name

The full path names of the processes that have been scheduled on the
selected frequency-based scheduler.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-38

cpm – Clear Performance Monitor Values 5

The cpm command clears performance monitor values for a particular process or all
processes on one or more processors for a selected frequency-based scheduler.

You can clear values for all frequency-based scheduled processes on a specified processor
or all processors by specifying the scheduler and the CPU(s) on which the processes are
scheduled.

If you wish to clear performance monitor values for a particular frequency-based
scheduled process, you can identify the process by specifying:

• the name of the process and the CPU on which it is scheduled

• the process’ frequency-based scheduler process identifier

• the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier

Synopsis

cpm –s scheduler [–i fpid] [–n proc_name] [–c cpu_bias]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which the process or processes are scheduled. The scheduler
must previously have been configured. See the section “cs –
Configure a Frequency-Based Scheduler” section on page 5-13
for information on configuring a frequency-based scheduler.

–i fpid the unique frequency-based scheduler process identifier for a
particular process for which values are to be cleared. This value is
displayed when you execute the sp command (page 5-32).

The default value for fpid is -1. If you accept the default value, you
must identify the process by name and CPU.

–n proc_name a standard path name identifying a particular process for which
values are to be cleared. This can be a full or relative path name
of up to 1024 characters.

–c cpu_bias the processor(s) for which performance monitor values are to be
cleared.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from 0 to one less than the number of CPUs,
where the number 0 represents the first logical CPU, 1 represents
the second, and so on.

A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7. Note that you must use
commas to separate items in the list. Specify the entire range of
CPU IDs by entering an asterisk (*).

The default processor is the CPU on which the real-time
command processor is currently executing.

Using rtcp

5-39

Display

The following message is displayed when the performance monitor values are
successfully cleared:

Performance monitor values cleared

NOTE

This command clears the soft overrun count for all processes
specified by the user.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-40

pm – Start/Stop Performance Monitoring 5

The pm command starts or stops performance monitoring for a particular process or all
processes on one or more processors for a selected frequency-based scheduler.

You can start or stop performance monitoring for all frequency-based scheduled processes
on a specified processor or all processors by specifying the scheduler and the CPU(s) on
which the processes are scheduled.

If you wish to start or stop performance monitoring for a particular frequency-based
scheduled process, you can identify the process by specifying:

• the name of the process and the CPU on which it is scheduled

• the process’ frequency-based scheduler process identifier

• the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier

Synopsis

pm –s scheduler [–i fpid] [–n proc_name] [–c cpu_bias] [–P pm_flag]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which the process or processes are scheduled. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–i fpid the unique frequency-based scheduler process identifier for a
particular process for which performance monitoring is to be
started or stopped. This value is displayed when you execute the
sp command (page 5-32).

The default value for fpid is -1. If you accept the default value, you
must identify the process by name and CPU.

–n proc_name a standard path name identifying a particular process for which
performance monitoring is to be started or stopped. This can be a
full or relative path name of up to 1024 characters.

–c cpu_bias the processor(s) for which performance monitoring is to be started
or stopped.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from 0 to one less than the number of CPUs,
where the number 0 represents the first logical CPU, 1 represents
the second, and so on.

A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7. Note that you must use
commas to separate items in the list. Specify the entire range of
CPU IDs by entering an asterisk (*).

Using rtcp

5-41

The default processor is the CPU on which the real-time
command processor is currently executing.

–P pm_flag indicates whether performance monitoring is to be started or
stopped. The value of pm_flag must be either ON or OFF. The
default is OFF.

Display

The following message is displayed when performance monitoring is successfully started:

Performance monitoring enabled

The following message is displayed when performance monitoring is successfully
stopped:

Performance monitoring disabled

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-42

vcm – View/Modify Performance Monitor Timing Mode 5

The vcm command views or modifies the performance monitor timing mode. The timing
mode can be set to include or exclude time spent servicing interrupts from the
performance monitor timing values.

When interrupt time is included, a process’ user and system times will total the elapsed
time which accrues when the process is the currently running process, including all time
spent servicing interrupts. The time spent servicing interrupts is added to the process’
system time.

When excluding interrupt time, a process’ user and system times will total the time which
accrues when the process is the currently running process, excluding all time spent
servicing interrupts.

CAUTION

The timing mode is the mode in which the High-Resolution Pro-
cess Timing Facility operates system-wide. It affects all processes
running on all CPUs.

Synopsis

vcm [–t pm_tmode]

Arguments

–t pm_tmode specifies whether interrupt time is to be included in or excluded
from performance monitor timing values. The value of pm_tmode
must be either in (included) or ex (excluded).

Display

One of the following messages is displayed when you successfully execute the vcm
command to view the performance monitor timing mode:

PM timing mode includes interrupt times.

or

PM timing mode excludes interrupt times.

Using rtcp

5-43

vpm – View Performance Monitor Values 5

The vpm command displays performance monitor values for one process or all processes
on one or more processors for a selected frequency-based scheduler.

Display values for all frequency-based scheduled processes on a processor or all
processors by specifying the scheduler and the CPU(s) on which the processes are
scheduled.

If you wish to display performance monitor values for a particular frequency-based
scheduled process, you can identify the process by specifying:

• the name of the process and the CPU on which it is scheduled

• the process’ frequency-based scheduler process identifier

• the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier

Synopsis

vpm –s scheduler [–i fpid] [–n proc_name] [–c cpu_bias] [–x pm_output]

Arguments

–s scheduler the numeric key associated with the frequency-based scheduler on
which the process or processes are scheduled. The scheduler must
previously have been configured. See the section “cs – Configure
a Frequency-Based Scheduler” on page 5-13 for information on
configuring a frequency-based scheduler.

–i fpid the unique frequency-based scheduler process identifier for a
particular process for which performance monitor values are to be
displayed. This value is displayed when you execute the sp
command (see page 5-32).

The default value for fpid is -1. If you accept the default value, you
must identify the process by name and CPU.

–n proc_name a standard path name identifying a particular process for which
performance monitor values are to be displayed. This can be a
full or relative path name of up to 1024 characters.

–c cpu_bias the processor(s) for which performance monitor values are to be
displayed.

The value of cpu_bias may be a single CPU ID or a list of CPU
IDs. CPU IDs range from 0 to one less than the number of CPUs,
where the number 0 represents the first logical CPU, 1 represents
the second, and so on.

A list of CPU IDs may specify a sequence or a range of
numbers—for example, –c 1,3–5,7. Note that you must use
commas to separate items in the list. Specify the entire range of
CPU IDs by entering an asterisk (*).

The default processor is the CPU on which the real-time
command processor is currently executing.

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-44

–x pm_output indicates the type of values to display. Four types of values can be
specified: average, minimum, maximum, or all.

Specify av (average) to display: the number of iterations, or
cycles; the last time; the total time; the average time; and the
number of overruns.

Specify mi (minimum) to display: the number of iterations; the
minimum cycle time and the number of the minor cycle and the
major frame in which it has occurred; and the minimum frame
time and the number of the major frame in which it has occurred.

Specify ma (maximum) to display: the number of iterations; the
maximum cycle time and the number of the minor cycle and
major frame in which it has occurred; and the maximum frame
time and the number of the major frame in which it has occurred.

Specify al (all) to display average, minimum, and maximum
values.

Times are reported in microseconds. The default value is av
(average).

Display

The following information is displayed when you select average values and the
command is successfully executed:

fpid

The unique frequency-based scheduler process identifiers for the processes.
This identifier is displayed by the real-time command processor when you
schedule a program on the scheduler using the sp command (see page 5-
32).

Iterations

The number of times that the processes have been awakened by the
frequency-based scheduler since the last time that performance monitor
values have been cleared and performance monitoring has been enabled.

OverRuns

fpid Iterations TimeLast(us) TotalTime(us) Average(us) Hard Soft

199 480 1023 499200 1040 0 0

198 120 2013 240960 2008 1 2

197 240 1521 378960 1579 0 3

Using rtcp

5-45

TimeLast(us)

The amount of time in microseconds that the processes have spent running
from the last time that they were awakened by the frequency-based
scheduler until they called fbswait.

TotalTime(us)

The cumulative times in microseconds that the processes have spent
running in all cycles, or iterations.

Average(us)

The average amount of time in microseconds that the respective processes
have spent running in all cycles, or iterations. These values are obtained by
dividing the values reported in the Total Time column by the values
reported in the Iterations column.

Overruns

Hard The number of times that the respective processes have caused a
catastrophic frame overrun.

Soft The number of times that the respective processes have caused a
non-catastrophic frame overrun.

The following information is displayed when you select minimum values and the
command is successfully executed:

fpid

The unique frequency-based scheduler process identifiers for the respective
processes. This identifier is displayed by the real-time command processor
when you schedule a program on the scheduler using the sp command (see
page 5-32).

Iterations

The number of times that the respective processes have been awakened by
the frequency-based scheduler since the last time that performance monitor
values have been cleared and performance monitoring has been enabled.

 Minimum Cycle Minimum Frame

fpid Iterations time(us) Frame/Cycle time(us) Frame

199 30 1002 6/7 8013 17

198 30 1943 2/1 3995 22

197 30 1312 1/2 5314 11

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-46

Minimum Cycle
time(us)

The least amount of time in microseconds that the processes spent running
in a cycle, or iteration.

Minimum Cycle
Frame/Cycle

The number of the major frame and the minor cycle in which the minimum
cycle time has occurred.

Minimum Frame
time(us)

The least amount of time in microseconds that the processes spent running
during a major frame.

Minimum Frame
Frame

The number of the major frame in which the minimum frame time has
occurred.

The following information is displayed when you select maximum values and the
command is successfully executed:

fpid

The unique frequency-based scheduler process identifiers for the respective
processes. This identifier is displayed by the real-time command processor
when you schedule a program on the scheduler using the sp command (see
page 5-32).

Iterations

The number of times that the respective processes have been awakened by
the frequency-based scheduler since the last time that performance monitor
values were cleared and performance monitoring was enabled.

Maximum Cycle
time(us)

The greatest amount of time in microseconds that the processes spent
running in a cycle, or iteration.

 Maximum Cycle Maximum Frame

fpid Iterations time(us) Frame/Cycle time(us) Frame

199 30 1303 2/4 9502 12

198 30 2201 7/5 4391 17

197 30 1917 9/6 7431 24

Using rtcp

5-47

Maximum Cycle
Frame/Cycle

The number of the major frame and the minor cycle in which the maximum
cycle time has occurred.

Maximum Frame
time(us)

The greatest amount of time in microseconds that the processes have spent
running during a major frame.

Maximum Frame
Frame

The number of the major frame in which the maximum frame time has
occurred.

ex – Exit Real-Time Command Processor 5

The ex command is used only when you are using the real-time command processor in
interactive mode. It exits the command processor and returns to the shell.

Synopsis

ex

The system command prompt is displayed when the command is successfully executed.

he – Display Help Information 5

The he command displays the following types of help information for the real-time
command processor:

• a list and brief descriptions of all commands

• a description and format of a particular command

• a list and description of all command arguments

Synopsis

he [command | option | op2]

Arguments

command the command for which you wish to obtain information

option the first screen of command arguments is to be displayed

op2 the second screen of command arguments is to be displayed

RedHawk Linux Frequency-Based Scheduler User’s Guide

5-48

Display

If you specify the he command without an argument, a list of all commands with a brief
description is displayed. See Screen 5-1 on page 5-5.

If you specify the he command with the option argument, the first screen of rtcp
command arguments is displayed. See Screen 5-2 on page 5-6.

If you specify the he command with the op2 argument, the second screen of rtcp
command arguments is displayed. See Screen 5-3 on page 5-7.

If you specify the he command with the command argument, a description of the specified
command and the format for entering the command is displayed. For example, he chs
displays the following:

Change FBS permissions

rtcp chs -s scheduler -I permissions [-G gid] [-U uid]

6
The C Library Interface

Overview. 6-1
Compiling and Linking Programs. 6-1
The Big-SMP FBS Interface. 6-2
Frequency-Based Scheduler Routines . 6-4

Routine Summary . 6-4
C Library Call Sequence . 6-6
Using Frequency-Based Scheduler Routines . 6-7

fbsaccess – Change Permissions for a Frequency-Based Scheduler 6-7
fbsattach – Attach Timing Source to a Frequency-Based Scheduler 6-8
fbsavail – Query if the Frequency-Based Scheduler is Configured 6-9
fbsconfigure – Configure a Frequency-Based Scheduler. 6-10
fbscycle – Return Minor Cycle/Major Frame Count 6-13
fbsdetach – Detach Timing Source from a Frequency-Based Scheduler . . . 6-14
fbsdir – Return a List of Scheduler Keys . 6-15
fbsgetpid – Return Process ID for a Scheduled Process. 6-16
fbsgetrtc – Obtain Current Values for a Real-Time Clock. 6-17
fbsid – Return the Frequency-Based Scheduler Identifier for a Key 6-18
fbsinfo, fbsinfo_big – Return Information for a Frequency-Based Scheduler 6-19
fbsintrpt – Start/Stop/Resume Scheduling . 6-22
fbsremove – Remove a Frequency-Based Scheduler 6-23
fbsresume – Resume Scheduling on a Frequency-Based Scheduler 6-24
fbsrunrtc – Start/Stop a Real-Time Clock . 6-25
fbsschedself – Add a Calling Process to a Frequency-Based Scheduler . . . 6-26
fbssetrtc – Set a Real-Time Clock . 6-28
fbstrig – Make a Sleeping Frequency-Based Scheduler Process Runnable . 6-29
fbswait – Wait on a Frequency-Based Scheduler . 6-30
nametopid, namepid, nametopid_big, namepid_big – Return the Process ID for a
Specified Process Name . 6-31
pgmremove, pgmremove_big – Remove a Process from a Frequency-Based
Scheduler . 6-33
pgmtrigger – Trigger a Process on a Frequency-Based Scheduler 6-35
sched_fbsqry, sched_fbsqry_big – Query Processes on a Frequency-Based Sched-
uler . 6-36
sched_pgm_deadline_query, sched_pgm_deadline_query_big – Query the As-
signed Deadline Time for a Process . 6-39
sched_pgm_deadline_test, sched_pgm_deadline_test_big – Test for the Presence
of a Deadline Violation . 6-42
sched_pgm_set_deadline, sched_pgm_set_deadline_big – Set or Clear the Pro-
cess Deadline Time. 6-45
sched_pgm_set_soft_overrun_limit, sched_pgm_set_soft_overrun_limit_big –
Set Soft Overrun Limit . 6-48
sched_pgmadd, sched_pgmadd_big – Schedule a Process on a Frequency-Based
Scheduler . 6-51
sched_pgmadd_args, sched_pgmadd_args_big– Schedule a Process on a Frequen-
cy-Based Scheduler
with Arguments . 6-54
sched_pgmadd_attr, sched_pgmadd_attr_big – Schedule a Process on a Frequen-

RedHawk Linux Frequency-Based Scheduler User’s Guide

cy-Based Scheduler with Arguments and Attributes 6-58
sched_pgmqry, sched_pgmqry_big – Query a Process 6-61
sched_pgmresched, sched_pgmresched_big– Reschedule a Process. 6-65

Performance Monitor Routines. 6-69
Routine Summary . 6-69
C Library Call Sequence . 6-69
Using Performance Monitor Routines . 6-70

pmclrpgm, pmclrpgm_big, – Clear Values for a Process. 6-71
pmclrtable, pmclrtable_big – Clear Values for Processor(s) 6-73
pmmonitor, pmmonitor_big – Start/Stop Performance Monitoring on Processor(s)
6-75
pmprogram, pmprogram_big – Start/Stop Performance Monitoring on a Process
6-77
pmqrycpu, pmqrycpu_big – Query Values for Selected Processor(s) 6-79
pmqrylist – Query Values for a List of Processes . 6-83
pmqrypgm, pmqrypgm_big – Query Values for a Selected Process 6-85
pmqrytimer – Query Performance Monitor Mode . 6-88
pmselect – Select Performance Monitor Mode . 6-89

6-1

6
Chapter 6The C Library Interface

6
6

This chapter describes the C library interface to the Frequency-Based Scheduler and the
Performance Monitor. Library information, call sequences for using the scheduler and the
Performance Monitor, and details for each of the library routines are provided.

Overview 6

Access to the functions associated with the Frequency-Based Scheduler and the
Performance Monitor is provided through libraries of routines that can be called from
application programs written in C.

The following information is provided in this chapter for each routine:

• a description of the routine

• the synopsis of the routine

• detailed descriptions of each parameter

• the return value

Information about the individual routines, including an illustration of the sequence in
which you would call the routines during frequency-based scheduling, begins on page 6-4.
The same information is provided for performance monitoring beginning on page 6-69.

An example program that illustrates use of the C library interface to the Frequency-Based
Scheduler and the Performance Monitor is provided in Appendix C.

Compiling and Linking Programs 6

When statically linking a C program, the following libraries are required:

/usr/lib/libccur_fbsched.a
/usr/lib/libccur_rt.a

When dynamically linking a C program, the following libraries are used:

/usr/lib/libccur_fbsched.so
/usr/lib/libccur_rt.so

To compile and link a C program, the command line instruction is as follows:

gcc [options...] source_file.c -lccur_fbsched -lccur_rt
For additional information on compiling and linking procedures, refer to the gcc(1) and
ld(1) man pages.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-2

The Big-SMP FBS Interface 6

Historically, the FBS API has used 32 bit integers as CPU masks. This kept the FBS from
being usable on big-SMP platforms; that is, on platforms which have one or more CPU
IDs with a value >= 32.

Therefore, a new FBS API has been designed. To aid in the transformation of applications
from the old to the new API, the new FBS API has been made as identical as possible to
the old. Please note that this new API does not replace the old; as long as the maximum
CPU ID on a platform is <32, both the old and the new FBS API can be used
interchangeably.

The general transformation rules used to create the new FBS API are:

1. Everywhere in the old API that an integer was used as a CPU mask, a
pointer to a CPU set, as defined in cpuset(3), is used instead.

2. For every old FBS API function that directly or indirectly uses an integer
bitmask, the new big-SMP version of the function has been created with the
same name as the old, with a '_big ' suff ixed. For example,
fbsinfo_big(3) is the big-SMP variant of fbsinfo(3).

3. For every old FBS API data structure that has an integer CPU mask field,
the new big-SMP variant has the same name as the old with a '_big'
inserted somewhere in its name. For example, the big-SMP variant of
'struct pgm2_ds' is 'struct pgm2_big_ds'.

4. For each new FBS API data structure, each cpuset field has the same
name as the old integer CPU mask field, with the characters 'cpu' replaced
by 'cpuset' or 'cpuset_'. For example, the field 'pm_cpuactive' in
'struct fbsinfo_ds' becomes the field 'pm_cpuset_active' in
'struct fbsinfo_big_ds'.

5. No change is made to those FBS API data structures or functions which do
not directly or indirectly reference an integer CPU mask. For example,
'struct pgmqry_ds' has no CPU masks in it, so it is used by both
pmqrypgm(3) and by its big-SMP variant, pgmqrypgm_big(3).

All in all, there are 21 new functions and 9 new data structures in the FBS API.

To make the conversion of applications a bit easier, the following cpuset extensions are
allowed:

1. For those places in the FBS API where a cpuset is an output-only param-
eter, if the cpuset pointer is NULL then no cpuset will be returned.
This is useful for those cases where it is known that the application isn't
using the returned cpuset (which is likely to be most of the time).

2. For those places in the FBS API where a cpuset is an input-only parame-
ter, the pointer to the cpuset can be one of several special values in lieu
of being a pointer to a real cpuset. These special pointers are:

FBS_CPUSET_ALLCPUS The full set.

The C Library Interface

6-3

FBS_CPUSET_CURCPU A cpuset with a single CPU ID,
that of the invoking CPU.

FBS_CPUSET_ONECPU(cpu) A cpuset with a single CPU ID,
that of the given CPU ID cpu.

3. If the cpuset pointer points to a real cpuset, which happens to be the
e m p t y s e t , t h e n t h a t e m p t y s e t i s t r e a t e d t h e s a m e a s
FBS_CPUSET_CURCPU. This mirrors what happens in the old, small-
SMP interface when a CPU mask is set to the (otherwise illegal) value of 0.

4. If a cpuset argument is an input-output parameter, its pointer can still be
set to one of the above special values, but in that case the output cpuset
will not be returned.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-4

Frequency-Based Scheduler Routines 6

Frequency-Based Scheduler routines provide access to the key features of the scheduler.
They enable you to perform such basic operations as:

• configuring a scheduler

• scheduling programs on a scheduler

• setting up and connecting a timing source to a scheduler

• starting, stopping and resuming scheduling on a scheduler

• getting information about scheduled processes

• rescheduling and removing scheduled processes

• disconnecting a timing source

• removing a scheduler

Routine Summary 6

Frequency-Based Scheduler routines are summarized in Table 6-1. Complete information
about each routine is provided under the section “Using Frequency-Based Scheduler
Routines.”

Table 6-1. Frequency-Based Scheduler C Library Routines

Routine Page Description

fbsaccess 6-7 Change permissions for a frequency-based
scheduler

fbsattach 6-8 Attach timing source to a frequency-based
scheduler

fbsavail 6-9 Query if FBS is configured in the system

fbsconfigure 6-10 Configure a frequency-based scheduler

fbscycle 6-13 Return minor cycle/major frame count

fbsdetach 6-14 Detach timing source from a frequency-based
scheduler

fbsdir 6-15 Return list of scheduler keys

fbsgetpid 6-16 Return process ID of scheduled process

fbsgetrtc 6-17 Get real-time clock values

fbsid 6-18 Return the frequency-based scheduler identifier
for a key

fbsinfo
fbsinfo_big

6-19 Return information for a frequency-based
scheduler

fbsintrpt 6-22 Start/stop/resume scheduling

fbsremove 6-23 Remove a frequency-based scheduler

(continued on next page)

The C Library Interface

6-5

fbsresume 6-24 Resume scheduling on a frequency-based
scheduler

fbsrunrtc 6-25 Start/stop real-time clock

fbsschedself 6-26 Add a calling process to a frequency-based
scheduler

fbssetrtc 6-28 Set real-time clock

fbstrig 6-29 Make a sleeping frequency-based scheduled
process runnable

fbswait 6-30 Wait on a frequency-based scheduler

namepid
namepid_big

6-31 Return the process ID for a specified process
name

nametopid
nametopid_big

6-31 Return the process ID for a specified process
name on a specified scheduler

pgmremove
pgmremove_big

6-33 Remove a process from a frequency-based
scheduler

pgmtrigger 6-35 Trigger a process on a frequency-based
scheduler

sched_fbsqry
sched_fbsqry_big

6-36 Query processes on a f requency-based
scheduler

sched_pgm_deadline_query
sched_pgm_deadline_query_big

6-39 Query the assigned deadline time

sched_pgm_deadline_test
sched_pgm_deadline_test_big

6-42 Check a process for a deadline violation

sched_pgm_set_deadline
sched_pgm_set_deadline_big

6-45 Set or clear the process deadline time

sched_pgm_set_soft_overrun_limit
sched_pgm_set_soft_overrun_limit_big

6-48 Set soft overrun limit

sched_pgmadd
sched_pgmadd_big

6-51 Schedule a process on a frequency-based
scheduler

sched_pgmadd_args
sched_pgmadd_args_big

6-54 Schedule a process on a frequency-based
scheduler with arguments

sched_pgmadd_attr
sched_pgmadd_attr_big

6-58 Schedule a process on a frequency-based
scheduler with arguments and attributes

sched_pgmqry
sched_pgmqry_big

6-61 Query a process

sched_pgmresched,
sched_pgmresched_big

6-65 Reschedule a process

Table 6-1. Frequency-Based Scheduler C Library Routines (Continued)

Routine Page Description

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-6

C Library Call Sequence 6

The approximate order in which you might call the routines from an application program
is illustrated in Figure 6-1.

Figure 6-1. C Library Call Sequence: Frequency-Based Scheduler

START

END

fbsconfigure

SCHEDULE
PROGRAMS

fbsattach

• sched_pgmadd
• sched_pgmadd_arg
s
• sched_pgmadd_attr
• sched_pgmresched
• pgmremove
• sched_pgmqry

fbssetrtc

fbsrunrtc

fbsrunrtc fbsdetach

fbsremove

START SIMULATION
fbsintrpt

STOP SIMULATION
fbsintrpt

The C Library Interface

6-7

Using Frequency-Based Scheduler Routines 6

In the sections that follow, the Frequency-Based Scheduler routines contained in the
libccur_fbsched library are presented in alphabetical order.

fbsaccess – Change Permissions for a Frequency-Based Scheduler 6

This routine changes the permissions assigned for a selected frequency-based scheduler. It
is important to note that the permissions can be changed only by a process that has an
effective user ID that is equal to that of the owner/creator of the frequency-based
scheduler.

Synopsis

#include <fbsched.h>

int fbsaccess(fbs_id, uid, gid, permissions)
int fbs_id, uid, gid, permissions;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

uid an integer value representing the effective user ID of the specified
frequency-based scheduler.

gid an integer value representing the effective group ID of the specified
frequency-based scheduler.

permissions a bit pattern used to set the permissions associated with the specified
frequency-based scheduler. Bit patterns and corresponding permissions
are presented in Table 6-2.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsaccess(3) man page for a listing of the types of errors that may occur.

Table 6-2. Frequency-Based Scheduler Permissions

Bit Pattern Permissions

400 Read by user

200 Alter by user

060 Read, alter by group

006 Read, alter by others

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-8

fbsattach – Attach Timing Source to a Frequency-Based Scheduler 6

This routine attaches a timing source to a frequency-based scheduler or specifies end-of-
cycle scheduling. The timing source can be a real-time clock or an edge-triggered interrupt
device.

Synopsis

#include <fbsched.h>

int fbsattach(fbs_id, devname)
int fbs_id;
char *devname;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

devname a null string or the path name of the device that is to be used as the
timing source for the specified scheduler.

If devname contains a null string, end-of-cycle scheduling is specified;
that is, execution of the processes in the next minor cycle will occur
when the last process scheduled to execute in the current minor cycle
finishes its execution for that cycle.

If devname contains a path name, it may refer to a real-time clock or an
edge-triggered interrupt. See Chapter 3 for information about timing
source device files.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsattach(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-9

fbsavail – Query if the Frequency-Based Scheduler is Configured 6

This routine queries the currently running kernel to determine if the Frequency-Based
Scheduler is configured.

Synopsis

#include <fbsched.h>

int fbsavail()

Return Value

A return value of 1 indicates that FBS is configured. A return value of 0 indicates that FBS
is not configured.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-10

fbsconfigure – Configure a Frequency-Based Scheduler 6

This routine configures a frequency-based scheduler or obtains configuration details for a
scheduler that has already been configured.

Indicate the function to be performed using the value assigned to the cycles field of the
fbsconfig_ds structure as follows:

• If the value specified in cycles is NOT equal to 0, and if the number of
existing frequency-based schedulers is less than the system imposed limit
(default = 10) a frequency-based scheduler is created and an identifier is
returned in the fbs_id field.

The value assigned to the reset field of the fbsconfig_ds structure can
be used to further qualify the action to be taken when cycles is not equal to
0 and the scheduler already exists.

• If the value of cycles is equal to 0, the current configuration for the
frequency-based scheduler is returned in the fbsconfig_ds structure.

The user-supplied key field can be used to identify a frequency-based
scheduler.

Synopsis

#include <fbsched.h>

int fbsconfigure(fbs_buf)
struct fbsconfig_ds {
 int key;
 int cycles;
 int progs;
 int max;
 int reset;
 int configflg;
 int fbs_id;
} *fbs_buf;

Parameters

To create a frequency-based scheduler, you must specify the following parameters as
described.

fbs_buf An fbsconfig_ds structure that contains the information with which
you wish to configure a frequency-based scheduler. The type of
information specified in each component is presented below.

key an integer value that may be used later to identify the
frequency-based scheduler to be created. Zero is not a
valid key value but can be assigned to indicate that a key
is not to be used. This is an optional identifier since the
fbs_id value returned here can always be used to
reference a frequency-based scheduler.

cycles an integer value indicating the number of minor cycles
that compose a frame on the specified scheduler.

The C Library Interface

6-11

progs an integer value indicating the maximum number of
programs that can be scheduled to execute during one
minor cycle.

max an integer value indicating the maximum number of
programs that can be scheduled on the specified
scheduler at one time. This value must be less than or
equal to the product that is obtained by multiplying the
values specified for the cycles and progs parameters.

reset an integer value indicating whether or not processes
currently scheduled on the specified scheduler are to be
killed before the scheduler is reconfigured. Acceptable
values and corresponding results are as follows:

<0 Kill and remove all processes currently scheduled on
the specified scheduler

0 Ignore all processes currently scheduled on the
specified scheduler

>0 Remove all processes currently scheduled on the
specified scheduler

configflg an integer value indicating the permissions to be
assigned to the specified scheduler.

fbs_id a unique positive integer value that is returned by
fbsconfigure and represents the identifier for the
specified frequency-based scheduler. It is important to
note that this identifier is required by most of the library
routines for the Frequency-Based Scheduler and the
Performance Monitor.

To obtain information for an existing frequency-based scheduler, you must specify the
following parameters as described.

fbs_buf An fbsconfig_ds structure to which information is returned for an
existing frequency-based scheduler. The types of information specified
or returned in each component is presented below.

key the user-supplied value specified when the scheduler
was created. This value can be used to identify the
frequency-based scheduler for which configuration
information is to be returned.

cycles the integer value 0 indicating that current configuration
information for the specified scheduler is to be returned.
An integer value indicating the number of minor cycles
that compose a frame on the specified scheduler is
returned to this component.

progs the maximum number of programs that can be scheduled
to run during one minor cycle on the specified
scheduler.

max the maximum number of programs that can be scheduled
on the specified scheduler at one time.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-12

configflg the permissions assigned to the specified scheduler.

fbs_id a unique positive integer value representing the
identifier for the specified frequency-based scheduler.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsconfigure(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-13

fbscycle – Return Minor Cycle/Major Frame Count 6

This routine obtains the current minor cycle and major frame count values for a frequency-
based scheduler. These values enable you to determine the progress of a simulation.

Synopsis

#include <fbsched.h>

int fbscycle(fbs_id, cycle_buf)
int fbs_id;
struct fbscycle_ds {
 int ccycle;
 int cframe;
} *cycle_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

cycle_buf refers to an fbscycle_ds structure to which fbscycle will return
integer values indicating the current minor cycle and major frame for
the specified scheduler. The ccycle component will contain the number
of the cycle. The cframe component will contain the number of the
frame.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbscycle(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-14

fbsdetach – Detach Timing Source from a Frequency-Based Scheduler 6

This routine detaches the currently attached timing source from a frequency-based
scheduler or disables end-of-cycle scheduling. If the timing source is a real-time clock, it
is recommended that you stop the clock prior to invoking this routine. You can do so by
making a call to fbsrunrtc (see page 6-25 for an explanation of this routine).

Synopsis

#include <fbsched.h>

int fbsdetach(fbs_id)
int fbs_id;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsdetach(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-15

fbsdir – Return a List of Scheduler Keys 6

This routine returns the list of keys associated with the frequency-based schedulers
currently configured in the system.

Synopsis

#include <fbsched.h>

fbsdir(key_t *keylist, size_t *keycnt)

Parameters

keylist a pointer to a memory reservation to which the keys of frequency-based
schedulers configured on the system is returned. The area must large
enough to store the number of key_t type elements specified by
keycnt.

keycnt the number of frequency-based scheduler keys configured on the
system. If this number is less than the number of schedulers configured
on the system, an error is returned.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsdir(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-16

fbsgetpid – Return Process ID for a Scheduled Process 6

This routine returns the process ID (pid) of a process currently scheduled on a frequency-
based scheduler.

Synopsis

#include <fbsched.h>

int fbsgetpid(fbs_id, *name_ptr, fpid)
int fbs_id, fpid;
char *name_ptr;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

name_ptr a pointer to the path name that identifies the process. This argument is
currently ignored and should be NULL. Use namepid(3) or
nametopid(3) to obtain a process ID by specifying the process’
name.

fpid an integer value providing the unique frequency-based scheduler
process identifier for the process. This value is obtained when you make
a call to sched_pgmadd (see page 6-51 for an explanation of this
routine).

Return Value

Upon successful completion, fbsgetpid returns the process ID. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsgetpid(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-17

fbsgetrtc – Obtain Current Values for a Real-Time Clock 6

This routine obtains the current count and resolution values for the real-time clock
attached to a specified frequency-based scheduler.

Synopsis

#include <fbsched.h>

int fbsgetrtc(fbs_id, count, resolution)
int fbs_id,*count, *resolution;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

count the current number of clock counts per minor cycle. This value can
range from 1 to 65535.

resolution an integer value indicating the current duration in microseconds of one
clock count. This value is one of the following: 1, 10, 100, 1000, or
10000.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsgetrtc(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-18

fbsid – Return the Frequency-Based Scheduler Identifier for a Key 6

This routine obtains the frequency-based scheduler identifier associated with a particular
user-specified key. The key must match the key that was specified when the scheduler was
created via a call to fbsconfigure(3).

Synopsis

#include <fbsched.h>

int fbsid(fbs_key)
int fbs_key;

Parameters

fbs_key an integer value identifying the frequency-based scheduler. This value is
the same value specified for key when the scheduler was created using
fbsconfigure (see page 6-10 for an explanation of this routine).

Return Value

Upon successful completion, fbsid returns an integer value representing the unique
frequency-based scheduler identifier associated with the key. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsid(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-19

fbsinfo, fbsinfo_big – Return Information for a Frequency-Based Scheduler 6

These routines obtain information related to a selected frequency-based scheduler that
cannot be obtained by invoking other routines (for example, sched_fbsqry,
sched_pgmqry).

Information includes:

• user and group IDs of the owner and the creator of the scheduler

• permissions assigned for the scheduler

• key associated with the scheduler’s identifier

• total number of overruns for all processes on the scheduler

• CPUs that are active in the system

• CPUs on which performance monitoring has been enabled

• FBS enabled flag

• path name of the device that has been attached to the scheduler

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int fbsinfo(fbs_id, info_buf, devname)
int fbs_id;
struct fbsinfo_ds {
 int uid;
 int gid;
 int cuid;
 int cgid;
 int mode
 int key;
 int flags;
 int devid;
 int overruns;
 int cpuactive;
 int pm_cpuactive;
 int enabled;
 int filler[29]
} *info_buf;
char *devname;

int fbsinfo_big(fbs_id, info_buf, devname)
int fbs_id;
struct fbsinfo_big_ds {
 int uid;
 int gid;
 int cuid;
 int cgid;
 int mode
 int key;
 int flags;

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-20

 int devid;
 int overruns;

int enabled;
int ifill[9];
cpuset_t *cpuset_active;
cpuset_t *pm_cpuset_active;

 int vfill[9]
} *info_buf;
char *devname;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

info_buf An fbsinfo_ds or fbsinfo_big_ds structure to which fbsinfo
or fbsinfo_big, respectively, returns information about the specified
scheduler. The information returned in each component of the structure
is presented below.

uid owner’s user ID

gid owner’s group ID

cuid creator’s user ID

cgid creator’s group ID

mode access modes

key key

flags flags word

devid reserved for future use

overruns total number of hard overruns for all processes on the
scheduler

cpuactive mask of CPUs active in the system

pm_cpuactive mask of CPUs on which performance monitoring has
been enabled

cpuset_active pointer to a mask of CPUs, in cpuset(3) format, in
the system. If this is the NULL pointer, then no cpuset
information is returned.

pm_cpuset_active pointer to a mask of CPUs, in cpuset(3)
format, on which performance monitoring has been
enabled. If this is the NULL pointer, then no cpuset
information is returned.

enabled FBS enabled flag

The C Library Interface

6-21

devname a variable to which fbsinfo and fbsinfo_big returns the path
name of the device being used as the timing source for the specified
frequency-based scheduler. If end-of-cycle scheduling is specified,
devname contains a null string.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsinfo(3) and fbsinfo_big(3) man pages for a listing of the types of errors that
may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-22

fbsintrpt – Start/Stop/Resume Scheduling 6

This routine starts, stops or resumes scheduling on a frequency-based scheduler. If you
invoke this routine to start scheduling, the minor cycle, major frame, and overrun count
values are reset. If you invoke it to resume scheduling, these values are not reset.

Prior to invoking fbsintrpt, you must have invoked fbsattach to specify end-of-
cycle scheduling or attach a timing source to the frequency-based scheduler on which you
are starting scheduling (see page 6-8 for an explanation of fbsattach).

If you have specified a real-time clock as the timing source, scheduling will not begin until
you have set and started the clock (see pages 6-28 and 6-25 for explanations of
fbssetrtc and fbsrunrtc, respectively).

Synopsis

#include <fbsched.h>

int fbsintrpt(fbs_id, intrflag)
int fbs_id, intrflag;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

intrflag an integer value indicating whether scheduling of processes on the
specified scheduler is to be started, stopped or resumed. Acceptable
values and corresponding results are:

<0 Start scheduling (waking up) processes with the initial
frame, cycle, and overrun count values set to zero

0 Stop scheduling processes and save the count values for
the current frame and cycle

>0 Resume scheduling processes with the frame, cycle, and
overrun count values set to the values that were saved
when the scheduler was last stopped

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsintrpt(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-23

fbsremove – Remove a Frequency-Based Scheduler 6

This routine removes a frequency-based scheduler and frees the data structure associated
with it. Prior to invoking fbsremove, you must ensure that the timing source is detached
from the scheduler (see page 6-14 for information on the use of fbsdetach).

It is important to note that fbsremove removes all processes scheduled on the specified
scheduler. It is recommended, however, that you remove all scheduled processes prior to
invoking fbsremove. You can do so by making a call to pgmremove (see page 6-33 for
information on the use of this routine).

Note that to remove a frequency-based scheduler, the calling process must have an
effective user ID that is equal to that of the owner/creator of the scheduler.

Synopsis

#include <fbsched.h>

int fbsremove(fbs_id, ab)
int fbs_id, ab;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

ab an integer value indicating the manner in which processes scheduled on
the scheduler are to be handled. Acceptable values and corresponding
results are:

<0 Kill and remove all processes currently scheduled on the
specified scheduler

≥0 Remove all processes currently scheduled on the
specified scheduler

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsremove(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-24

fbsresume – Resume Scheduling on a Frequency-Based Scheduler 6

The fbsresume library routine resumes scheduling of processes on a frequency-based
scheduler at the specified minor cycle, major frame, and overrun count.

Note that to resume scheduling of processes on a frequency-based scheduler, the calling
process must have alter permission for the scheduler.

If you wish to resume scheduling of processes on a frequency-based scheduler without
altering the scheduler’s current frame, cycle, and overrun values, it is recommended that
you use the fbsintrpt(3) routine (see page 6-22 for an explanation of this routine).

CAUTION

The fbsresume routine clears Performance Monitor values for
all processes scheduled on the specified scheduler. Changing the
frame and cycle count for the scheduler causes the values that are
being maintained by the Performance Monitor to be inaccurate.

Synopsis

#include <fbsched.h>

int fbsresume(fbs_id, frame, cycle, overruns)
int fbs_id, frame, cycle, overruns;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

frame an integer value indicating the major frame in which you wish
scheduling of processes to be resumed on the specified scheduler.

cycle an integer value indicating the minor cycle in which you wish
scheduling of processes to be resumed on the specified scheduler.

This value can range from 0 to the total number of minor cycles per
frame minus 1. The total number of minor cycles per frame was
specified when the scheduler was created by making a call to
fbsconfigure (see page 6-10).

overruns an integer value indicating the value to which you wish the overrun
count to be set when scheduling resumes on the specified scheduler.

Specify the value -1 if you do not wish to change the overrun count.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsresume(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-25

fbsrunrtc – Start/Stop a Real-Time Clock 6

This routine starts or stops the counting of a real-time clock that has been attached to a
frequency-based scheduler.

Synopsis

#include <fbsched.h>

int fbsrunrtc(fbs_id, runflag)
int fbs_id, runflag;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

runflag an integer value indicating whether the real-time clock is to be started or
stopped. A nonzero value indicates that the clock is to be started. A zero
value indicates that the clock is to be stopped.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsrunrtc(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-26

fbsschedself – Add a Calling Process to a Frequency-Based Scheduler 6

This routine schedules the calling process on a frequency-based scheduler.

It is important to note that fbsschedself does not allow a process to set its scheduling
policy and priority or its CPU bias. These tasks must be performed prior to invoking
fbsschedself.

Note that you cannot use this routine to add /idle to a frequency-based scheduler.

To schedule the calling process on a frequency-based scheduler, the calling process must
have alter permission for the scheduler.

To change the scheduling policy or priority of a frequency-based scheduled process, use
the sched_pgmresched routine (see page 6-65 for an explanation of this routine).

Synopsis

#include <fbsched.h>

int fbsschedself(fbs_id, name, sched_buf)
int fbs_id;
char *name;
struct fbssched_buf {
 int version;
 int param;
 int period;
 int cycle;
 int ab;
 int fpid;
} *sched_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

name a standard path name or arbitrary content identifying the program
associated with the calling process. A full or relative path name of up
to 1023 characters can be specified.

sched_buf a fbssched_buf structure that contains the scheduling information
for the process that is to be scheduled. The type of information
specified in each component is presented below.

version an integer value indicating the version of sched_buf that
is being passed to fbsschedself. Specify the
symbolic constant FBSSCHED_BUF_V1, which is defined
in <fbsched.h> for this purpose.

param an integer value to be passed to a process that is
scheduled on a frequency-based scheduler. This value
can be retrieved by the frequency-based scheduled
process through a call to sched_pgmqry (see page
6-61 for an explanation of this routine).

The C Library Interface

6-27

period an integer value indicating the frequency with which the
calling process is to be awakened in each major frame. A
period of 1 indicates that the calling process is to be
awakened every minor cycle; a period of 2 indicates that
it is to be awakened once every two minor cycles and so
on.

This value can range from 1 to the number of minor
cycles that compose a frame on the specified scheduler
as defined in a call to fbsconfigure (see page 6-10
for an explanation of this routine).

cycle an integer value indicating the first minor cycle in which
the calling process is scheduled to be awakened in each
frame. This value can range from 0 to the total number
of minor cycles per frame minus 1. The total number of
minor cycles per frame is specified in a call to
fbsconfigure (see page 6-10 for an explanation of
this routine).

ab an integer value indicating whether or not the scheduler
should be stopped in the event that the calling process
causes a frame overrun. A nonzero value indicates that
the scheduler will be stopped.

fpid an integer value returned by fbsschedself that is the
unique frequency-based scheduler process identifier for
the scheduled process.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbsschedself(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-28

fbssetrtc – Set a Real-Time Clock 6

This routine establishes the duration of a minor cycle by setting the count and the
resolution values for a real-time clock to be used as an FBS timing device.

Synopsis

#include <fbsched.h>

int fbssetrtc(fbs_id, count, resolution)
int fbs_id, count, resolution;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

count an integer value indicating the number of clock counts per minor cycle.
This value can range from 2 to 65535.

resolution an integer value indicating the duration in microseconds of one clock
count. This value must be one of the following: 1, 10, 100, 1000, or
10000.

NOTE: Although a count of 1 cannot be used, a timing interval equal to a resolution
value can be set by using the next lower resolution value and a count of 10;
e.g., a resolution of 1,000 and count value of 10 results in a timing interval of
10,000 microseconds.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbssetrtc(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-29

fbstrig – Make a Sleeping Frequency-Based Scheduler Process Runnable 6

This routine makes a process scheduled on a frequency-based scheduler runnable if it is in
the fbswait(3) sleep state. In addition, a context switch can be forced on the processor
on which the process is executing.

Synopsis

#include <fbsched.h>

int fbstrig (int fpid, int tgrflg);
int fpid, tgrflg;

Parameters

fpid an integer value providing the unique frequency-based scheduler
process identifier for the sleeping process. This value is obtained when
you make a call to sched_pgmadd (see page 6-51 for an explanation
of this routine).

tgrflg an integer value indicating whether or not a context switch is to be
forced on the processor on which the awakened process is executing. A
nonzero value indicates that a context switch is to be forced.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
fbstrig(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-30

fbswait – Wait on a Frequency-Based Scheduler 6

This routine enables a process that is scheduled on a frequency-based scheduler to sleep
until its next scheduled minor cycle.

When the scheduled process does not call this service by its next scheduled minor cycle,
either a soft overrun or hard overrun is incurred.

A soft overrun occurs if the per-process count of consecutively missed scheduled minor
cycles does not reach or exceed the per-process soft overrun limit. When a soft overrun
occurs, the process returns immediately from the fbswait call instead of blocking to
wait for the next scheduled minor cycle.

When the count of consecutively missed scheduled minor cycles reaches or exceeds
the per-process overrun limit, a hard overrun occurs. In this case, the process is
blocked in fbswait until the next scheduled minor cycle.

A process’ consecutive soft overrun limit may be changed from the default value of 0
using sched_pgm_set_soft_overrun_limit(3). The hard overrun count,
which can be read using pmqrypgm(3), and the soft overrun count, which can be read
using sched_pgm_soft_overrun_query(3), indicate if the process is actually
running at its assigned frequency.

When the scheduled process is subject to a deadline and the scheduled process calls this
service after its deadline time has passed, a deadline violation is detected, and the
scheduler may be halted.

Synopsis

#include <fbsched.h>
int fbswait(void)

Return Value

A return value of 0 indicates that the process has been awakened by the frequency-based
scheduler. A return value of 1 indicates that the process has been awakened by
fbstrig(3). A return value of 2 indicates that the process did not sleep because the
kernel detected a soft overrun and is allowing the process to attempt to recover from it. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the fbswait(3) man page for a listing of the types of errors that can occur.

The C Library Interface

6-31

nametopid, namepid, nametopid_big, namepid_big – Return the Process ID for a
Specified Process Name 6

The namepid and namepid_big routines return the process ID (pid) of the specified
process. The nametopid and nametopid_big routines perform the same function but
allows the search to be restricted to processes scheduled on a particular frequency-based
scheduler.

The ‘big’ routines are identical to their non-big counterparts except for their treatment of
CPU masks. For a complete description of the differences, see “The Big-SMP FBS
Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int nametopid(name, fbs_key, cpu)
int namepid(name, cpu)
int fbs_key, cpu;
char *name;

int nametopid_big(name, fbs_key, cpuset)
int namepid_big(name, cpuset)
int fbs_key;
char *name;
cpuset_t *cpuset;

Parameters

name the path name that identifies the process

fbs_key an integer value identifying the frequency-based scheduler. This value is
the same value specified for key when the scheduler was created using
fbsconfigure (see page 6-10 for an explanation of this routine).

cpu an integer value indicating the processor(s) to be used in conjunction
with the value of the name parameter to identify the process. Acceptable
values and corresponding results are:

0 the first process named by name currently running on the
processor from which the call is made is requested

-1 the first process named by name currently running on
any processor is requested

bit mask those processors with (cpu & (1<<i)) set (where i is an
integer ranging from 0 to 15 and representing a CPU)
are requested

cpuset a pointer that directly or indirectly indicates the set of processors, to be
used in conjunction with name, to identify the process whose pid is to be
returned. The pointer may either point to a valid cpuset, as created by
cpuset_alloc(3) and filled with some set of CPU IDs by other
cpuset(3) operations, or it may take on one of the following special
pointer values:

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-32

FBS_CPUSET_CURCPU the first process by name currently
running on the processor from which the call is made.

FBS_CPUSET_ALLCPUS the first process named by name
running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process named by name
running on the processor with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

Return Value

On success these functions return the process ID. On failure these functions return -1 and
errno i s s e t t o i n d i c a t e t he e r ro r . R e f e r t o t he nametopid(3) a n d
nametopid_big(3) man pages for a listing of the types of errors that can occur

The C Library Interface

6-33

pgmremove, pgmremove_big – Remove a Process from a Frequency-Based
Scheduler 6

These routines remove a process from a frequency-based scheduler. Identify the process to
remove by using one of the following methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency-based scheduler process identifier.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pgmremove(fbs_id, name, cpu, fpid, ab)
int fbs_id, cpu, fpid, ab;
char *name;

int pgmremove_big(fbs_id, name, cpuset, fpid, ab)
int fbs_id, fpid, ab;
char *name;
cpuset_t *cpuset;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

name a standard path name identifying the process to be removed from the
specified scheduler. A full or relative path name of up to 1024 characters
can be specified. If this variable contains the null string, you must
provide the frequency-based scheduler process identifier in the fpid
parameter.

cpu an integer value indicating the processor(s) to be used in conjunction
with the value of the name parameter to identify the process to be
removed from the specified scheduler. Acceptable values and
corresponding results are:

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-34

0 the first process named by name currently running on the
processor from which the call is made is removed

-1 the first process named by name currently running on
any processor is removed

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU) and it is the only
bit set, the first process named by name that is running
on CPU i is removed

If (cpu & (1<<i)) is set and it is not the only bit set, the
first process named by name currently running on any of
the selected CPUs is removed.

cpuset a pointer that directly or indirectly indicates the set of processors, to be
used in conjunction with name, to identify the process to be removed
from the specified scheduler. The pointer may either point to a valid
cpuset, as created by cpuset_alloc(3) and filled with some set
of CPU IDs by other cpuset(3) operations, or it may take on one of
the following special pointer values:

FBS_CPUSET_CURCPU the first process found that is named
by name and is currently running on the processor from
which the call is made.

FBS_CPUSET_ALLCPUS the first process found that is named
by name that is running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process that is named by
name and is running on the processor with a CPU ID of
cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

fpid an integer value providing the unique frequency-based scheduler
process identifier for the process to be removed. This value is obtained
when you make a call to sched_pgmadd (see page 6-51 for an
explanation of this routine). This value must be -1 if you choose to
identify the program to be removed only by specifying name and cpu.

ab a flag that contains an integer value indicating the manner in which the
specified process is be removed from the specified scheduler. A positive
value indicates that the process is to be removed from the scheduler but
allowed to continue executing. A negative value indicates that the
process is to be removed from the scheduler and terminated.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pgmremove(3) and pgmremove_big(3) man pages for a listing of the types of
errors that can occur.

The C Library Interface

6-35

pgmtrigger – Trigger a Process on a Frequency-Based Scheduler 6

This routine enables a process to wake a process that is in the fbswait sleep state. It is
important to note that the calling process does not have to be scheduled on a frequency-
based scheduler; the target process must be.

Synopsis

#include <fbsched.h>

int pgmtrigger(fpid, tgrflg)
int fpid, tgrflg;

Parameters

fpid an integer value providing the unique frequency-based scheduler
process identifier for the sleeping process. This value is obtained when
you make a call to sched_pgmadd (see page 6-51 for an explanation
of this routine).

tgrflg an integer value indicating whether or not a context switch is to be
forced on the processor on which the awakened process is executing. A
nonzero value indicates that a context switch is to be forced.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pgmtrigger(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-36

sched_fbsqry, sched_fbsqry_big – Query Processes on a Frequency-Based
Scheduler 6

These routines obtain information about processes scheduled on a frequency-based
scheduler. Information is returned for all processes scheduled on the user-specified
processor(s). Information provided for each process includes the following:

• a mask of the CPU(s) on which the process can execute

• the frequency-based scheduler process identifier

• the policy under which the process has been scheduled

• the scheduling priority

• the period (the number of minor cycles indicating the frequency with which
the process is awakened in each major frame)

• the starting base cycle (the first minor cycle in which the process is
scheduled to be awakened in each major frame)

• the value of the “halt on overrun” flag

• the current state of the process

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_fbsqry(fbs_id, cpu, fbs_buf, buf_cnt)
int fbs_id, cpu, buf_cnt;
struct pgm2_ds {
 char *name_ptr;
 int cpu;
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;
} *fbs_buf;

int sched_fbsqry_big(fbs_id, cpuset, fbs_buf, buf_cnt)
int fbs_id, cpu, buf_cnt;
struct pgm2_big_ds {
 char *name_ptr;
 cpuset_t *cpuset;

void *vfill[9]
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;

The C Library Interface

6-37

 int halt;
 int status;

int ifill[9];
} *fbs_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

cpu an integer value indicating the processor(s) for which scheduling
information is to be obtained. The acceptable values and corresponding
results are:

0 scheduling information for processes executing on the
processor from which the call is made is returned

-1 scheduling information for all processes on the
scheduler is returned

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU), scheduling
information for processes executing on CPU i is
returned

cpuset a pointer that directly or indirectly indicates the set of processors, to be
used in conjunction with name_ptr, to identify the set of FBS-scheduled
processes about which information is to be obtained. The pointer may
either point to a valid cpuset, as created by cpuset_alloc(3) and
filled with some set of CPU IDs by other cpuset(3) operations, or it
may take on one of the following special pointer values:

FBS_CPUSET_CURCPU the set of process found that are
named by name_ptr and currently running on the
processor from which the call is made.

FBS_CPUSET_ALLCPUS the set of process found that are
named by name_ptr that arerunning on any processor.

FBS_CPUSET_ONECPU(cpu) the set of process that are named by
name_ptr and are running on the processor with a CPU
ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

fbs_buf a pointer to an array of pgm2_ds or pgm2_big_ds structures to
which sched_fbsqry or sched_fbsqry_big, respectively,
returns scheduling information for each process on the processor(s)
specified with the cpu or cpuset parameter. The type of information
returned in each component of the structure for a single process is
presented below.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-38

name_ptr a pointer to a variable that contains a path name
identifying the process for which information is
returned. Note that the application must deallocate the
memory associated with name_ptr for all valid entries
using free (see malloc(3)).

cpu a bit mask indicating the processor(s) on which the
process can execute

cpuset a pointer to the cpuset into which the set of processors
that the process can execute on is returned. If this is the
NULL pointer, then no cpuset information is returned
about the process.

fpid the process’ frequency-based scheduler process
identifier

cid the process’ scheduling policy: SCHED_FIFO, SCHED_RR

or SCHED_OTHER

prior an integer value indicating the specified process’
scheduling priority

param the process’ initiation parameter (optional)

period the number of minor cycles indicating the frequency
with which the process is to be awakened in each major
frame

cycle the first minor cycle in which the process is scheduled to
be awakened in each major frame (starting base cycle)

halt the value of the “halt on overrun” flag. A nonzero value
indicates that the flag is set. A value of zero indicates
that the flag is not set.

status the current state of the process as defined in
<fbsched.h>.

buf_cnt an integer value indicating the number of structures in the array to
which fbs_buf points.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_fbsqry(3) or sched_fbsqry_big(3) man pages for a listing of the types
of errors that may occur.

The C Library Interface

6-39

sched_pgm_deadline_query, sched_pgm_deadline_query_big – Query the
Assigned Deadline Time for a Process 6

These routines query the deadline parameters for a currently scheduled process on the
frequency-based scheduler.

It is important to note that this function will not detect new deadline violations. Use
sched_pgm_deadline_test(3) to trigger the detection of new deadline violations.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgm_deadline_query (fbs_id, deadline_info_buf)
int fbs_id ;
struct deadline_info_ds
{

char *name_ptr;
int cpu;
int fpid;
int halt;
deadline_kind kind;
deadline_origin origin;
struct timespec deadline;
int total_violations;

} *deadline_info_buf ;

int sched_pgm_deadline_query_big (fbs_id, deadline_info_buf)
int fbs_id ;
struct deadline_info_big_ds
{

char *name_ptr;
cpuset_t cpuset;
void *vfill[9];
int fpid;
int halt;
int ifill[9];
deadline_kind kind;
deadline_origin origin;
struct timespec deadline;
int total_violations;

} *deadline_info_buf ;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

deadline_info_buf
a pointer to a deadline_info_ds or deadline_info_big_ds
structure that contains the attributes of any deadline assigned to the
process. The structure definition is:

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-40

name_ptr a pointer to the path name that identifies the process. If
the path name is the null string, the fpid field must be
given.

cpu an integer value indicating the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are:

0 the program pointed to by name_ptr can be
scheduled on the processor from which the
call is made.

-1 the program pointed to by name_ptr can be
scheduled on any processor.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a
CPU), the program pointed to by name_ptr
can be scheduled on CPU i.

cpuset a pointer that directly or indirectly indicates the set of
processors, to be used in conjunction with name_ptr, to
identify the process to be queried. The pointer may
ei ther point to a val id cpuset , as created by
cpuset_alloc(3) and filled with some set of CPU
IDs by other cpuset(3) operations, or it may take on
one of the following special pointer values:

FBS_CPUSET_CURCPU the first process
found that is named by name_ptr and is
currently running on the processor from which
the call is made.

FBS_CPUSET_ALLCPUS the first process
found that is named by name_ptr that is running
on any processor.

FBS_CPUSET_ONECPU(cpu) the first process
that is named by name_ptr and is running on the
processor with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

fpid an integer value providing the unique frequency-based
scheduler process identifier. If this value is -1, name_ptr
must be supplied.

halt indicates whether the scheduler will be stopped upon
detection of a deadline violation for the process. The
value will be DL_HALT to indicate that the scheduler is to
be stopped, or DL_NOHALT.

kind the kind of deadline set by sched_pgm_set_
deadline(3). Its value affects the interpretation of

The C Library Interface

6-41

deadline. kind may be either DEADLINE_CLEAR indicating
that no deadline applies to the specified process, or
D E A D L I N E _ W A L L _ T I M E i n d i c a t i n g t h a t a
CLOCK_MONOTONIC deadline time is assigned to the
specified process.

origin the point from which the deadline time is measured.
origin may either be DL_CYCLE_RELATIVE indicating that
the deadline time is measured from the beginning of a
c y c l e i n w h i c h t h e t a s k i s s c h e d u l e d , o r
DL_TASK_RELATIVE, indicating that the deadline time is
measured from the time the scheduled process exits
fbswait(3) and begins execution.

deadline the maximum time that the process is expected to spend
executing before returning to fbswait(3).

total_violations
the total number of deadline violations that have occurred
for the specified process or task.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error.
R e f e r t o t h e sched_pgm_deadline_query(3) m a n p a g e a n d t h e
sched_pgm_deadline_query_big(3) man page for a listing of the types of errors
that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-42

sched_pgm_deadline_test, sched_pgm_deadline_test_big – Test for the Presence
of a Deadline Violation 6

These routines tests for the occurrence of a deadline violation by the scheduled process on
the frequency-based scheduler.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgm_deadline_test (fbs_id, violation_buf)
int fbs_id ;
struct violation_ds
{

char *name_ptr;
int cpu;
int fpid;
int violated;
int total_violations;
deadline_kind kind;
deadline_origin origin;
struct timespec remaining;

} *violation_buf ;

int sched_pgm_deadline_test_big (fbs_id, violation_buf)
int fbs_id ;
struct violation_big_ds
{

char *name_ptr;
cpuset_t *cpuset;
void *vfill[9];
int fpid;
int violated;
int total_violations;
int ifill[9];
deadline_kind kind;
deadline_origin origin;
struct timespec remaining;

} *violation_buf ;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

violation_buf
a pointer to a violation_ds or violation_big_ds structure that
contains the deadline violation state information for the scheduled
process. The structure definition is:

The C Library Interface

6-43

name_ptr a pointer to the path name that identifies the process. If
the path name is the null string, the fpid field must be
given.

cpu an integer value indicating the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are:

0 the program pointed to by name_ptr can be
scheduled on the processor from which the
call is made.

-1 the program pointed to by name_ptr can be
scheduled on any processor.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a
CPU), the program pointed to by name_ptr
can be scheduled on CPU i.

cpuset a pointer that directly or indirectly indicates the set of
processors, to be used in conjunction with name_ptr, to
identify the process to be tested. The pointer may either
p o i n t t o a v a l i d cpuset , a s c r e a t e d b y
cpuset_alloc(3) and filled in with some set of
CPU IDs by other cpuset(3) operations, or it may
take on one of the following special pointer values:

FBS_CPUSET_CURCPU the first process
named by name_ptr currently running on the
processor from which the call is made.

FBS_CPUSET_ALLCPUS the first process
named by name_ptr running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process
named by name_ptr running on the processor
with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

fpid an integer value providing the unique frequency-based
scheduler process identifier. If this value is -1, name_ptr
must be supplied.

violated indicates whether the scheduler will be stopped upon
detection of a deadline violation for the process. The
value will be DEADLINE_VIOLATION to indicate that the
scheduler is to be stopped, or NO_VIOLATION otherwise.

total_violations
specifies the number of deadline violations detected for
the process since the scheduler was started.

kind the kind of deadline set by
sched_pgm_set_deadline(3). Its value affects

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-44

the interpretation of remaining. kind may be either
DEADLINE_CLEAR indicating that no deadline applies to
the specified process, or DEADLINE_WALL_TIME

indicating that a CLOCK_MONOTONIC deadline time is
assigned to the specified process.

origin the deadline origin set for the process by
sched_pgm_set_deadline(3). Its value affects
the interpretation of remaining. origin may either be
DL_TASK_RELATIVE, indicating that the remaining time is
measured from the beginning of task execution, or
DL_CYCLE_RELATIVE indicating that the remaining time is
measured from the beginning of a cycle.

remaining the remaining time until the expiration of the deadline.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_pgm_deadline_test(3) and sched_pgm_deadline_test_big(3)
man pages for a listing of the types of errors that may occur.

The C Library Interface

6-45

sched_pgm_set_deadline, sched_pgm_set_deadline_big – Set or Clear the Pro-
cess Deadline Time 6

These routines set or clear the deadline time for a currently scheduled process on the
frequency-based scheduler.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

The deadline time for a process indicates the maximum amount of time the process is
expected to spend executing before returning to fbswait(3). If the deadline time is
exceeded, a deadline violation is incurred by the process. The scheduler may optionally be
halted upon detection of a deadline violation.

To set or clear a deadline, the calling process must have alter permission for the scheduler.

Identify the process by using one of the following methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

Synopsis

#include <fbsched.h>

int sched_pgm_set_deadline (fbs_id, deadline_buf)
int fbs_id ;
struct deadline_ds
{

char *name_ptr;
int cpu;
int fpid;
int halt;
deadline_kind kind;
deadline_origin origin;
struct timespec deadline;

}*deadline_buf ;

int sched_pgm_set_deadline_big (fbs_id, deadline_buf)
int fbs_id ;
struct deadline_big_ds
{

char *name_ptr;
cpuset_t *cpuset;
void *vfill[9];
int fpid;
int halt;
int ifill[9];
deadline_kind kind;
deadline_origin origin;
struct timespec deadline;

}*deadline_buf ;

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-46

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

deadline_buf
a pointer to a deadline_ds or deadline_big_ds structure that
contains the deadline configuration information for the scheduled
process. The structure definition is:

name_ptr a pointer to the path name that identifies the process. If
the path name is the null string, the fpid field must be
given.

cpu an integer value indicating the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are:

0 the program pointed to by name_ptr can be
scheduled on the processor from which the
call is made.

-1 the program pointed to by name_ptr can be
scheduled on any processor.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a
CPU), the program pointed to by name_ptr
can be scheduled on CPU i.

cpuset a pointer that directly or indirectly indicates the set of
processors, to be used in conjunction with name_ptr, to
identify the process whose deadline attributes are to be
changed. The pointer may either point to a valid
cpuset, created by cpuset_alloc(3) and filled in
with some set of CPU IDs by other cpuset(3)
operations, or it may take on one of the following special
pointer values:

FBS_CPUSET_CURCPU the first process
named by name_ptr currently running on the
processor from which the call is made.

FBS_CPUSET_ALLCPUS the first process
named by name_ptr running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process
named by name_ptr running on the processor
with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

The C Library Interface

6-47

fpid an integer value providing the unique frequency-based
scheduler process identifier. If this value is -1, name_ptr
must be supplied.

halt indicates whether the scheduler will be stopped upon
detection of a deadline violation for the process. The
value will be DL_HALT to indicate that the scheduler is to
be stopped, or DL_NOHALT.

kind the kind of deadline to be set, affecting the interpretation
of deadline: DEADLINE_CLEAR indicating that no deadline
applies to the specified process, or DEADLINE_WALL_TIME

indicating that a CLOCK_MONOTONIC deadline time is
assigned to the specified process.

origin the point from which the deadline time is measured.
origin may either be DL_CYCLE_RELATIVE indicating that
the deadline time is measured from the beginning of a
c y c l e i n w h i c h t h e t a s k i s s c h e d u l e d , o r
DL_TASK_RELATIVE, indicating that the deadline time is
measured from the time the scheduled task exits
fbswait(3) and begins execution.

deadline must be non-negative and represent a value less than
INT_MAX microseconds. By default this value is zero
seconds, zero nanoseconds; i.e., if the process never sets
a deadline time, it is zero.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_pgm_set_deadline(3) and sched_pgm_set_deadline_big(3)
man pages for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-48

sched_pgm_set_soft_overrun_limit, sched_pgm_set_soft_overrun_limit_big – Set
Soft Overrun Limit 6

These routines set the consecutive soft overrun limit for a currently scheduled process on
the frequency-based scheduler. To set the consecutive soft overrun limit, the calling
process must have alter permission for the scheduler.

Identify the process by using one of the following methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

These routines are identical except for their treatment of CPU masks. For details, see “The
Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgm_set_soft_overrun_limit (fbs_id, soft_overrun_buf)
int fbs_id;
struct soft_overrun_ds{
 char *name_ptr;
 int cpu;
 int fpid;
 int soft_limit;
} *soft_overrun_buf;

int sched_pgm_set_soft_overrun_limit_big (fbs_id, soft_overrun_buf)
int fbs_id;
struct soft_overrun_big_ds{
 char *name_ptr;

cpuset_t *cpuset;
void *vfill[9];

 int fpid;
 int soft_limit;

int ifill[9];
} *soft_overrun_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

soft_overrun_buf
a pointer to a soft_overrun_ds or soft_overrun_big_ds

The C Library Interface

6-49

structure that contains the soft overrun status for the scheduled process.
The structure definition is:

name_ptr a pointer to the path name that identifies the process. If
the path name is the null string, the fpid field must be
given.

cpu an integer value indicating the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results are:

0 the program pointed to by name_ptr can be
scheduled on the processor from which the
call is made.

-1 the program pointed to by name_ptr can be
scheduled on any processor.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a
CPU), the program pointed to by name_ptr
can be scheduled on CPU i.

cpuset a pointer that directly or indirectly indicates the set of
processors, to be used in conjunction with name_ptr, to
identify the process whose overrun attributes are to be
changed. The pointer may either point to a valid
cpuset, as created by cpuset_alloc(3) and filled
in with some set of CPU IDs by other cpuset(3)
operations, or it may take on one of the following special
pointer values:

FBS_CPUSET_CURCPU the first process
named by name_ptr currently running on the
procesor from which the call is made.

FBS_CPUSET_ALLCPUS the first process
named by name_ptr running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process
named by name_ptr running on the processor
with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

fpid an integer value providing the unique frequency-based
scheduler process identifier. If this value is -1, name_ptr
must be supplied.

soft_limit the number of consecutive soft overruns allowed to occur
before failure. This value must be non-negative and less
than INT_MAX (see /usr/include/limits.h). By
default, this value is 0.

Return Value

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-50

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error.

Refer to the sched_pgm_set_soft_overrun_limit(3) man page and the
sched_pgm_set_soft_overrun_limit_big(3) man page for a listing of the
types of errors that may occur.

The C Library Interface

6-51

sched_pgmadd, sched_pgmadd_big – Schedule a Process on a Frequency-
Based Scheduler 6

These routines create a new process and schedules it on a frequency-based scheduler. To
supply a rguments fo r the new process , see sched_pgmadd_args and
sched_pgmadd_args_big on page 6-54. To supply arguments and also soft overrun
and/or deadline attributes for the new process, see sched_pgmadd_attr and
sched_pgmadd_attr_big on page 6-58.

These routines are identical except for their treatment of CPU masks. For details, see “The
Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgmadd(fbs_id, sched_buf)
int fbs_id;
struct pgm2_ds {
 char *name_ptr;
 int cpu;
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;
} *sched_buf;

int sched_pgmadd_big(fbs_id, sched_buf)
int fbs_id;
struct pgm2_big_ds {
 char *name_ptr;

cpuset_t *cpuset;
void *vfill[9];

 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;

int ifill[9];
} *sched_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-52

sched_buf a pgm2_ds or pgm2_big_ds structure that contains the scheduling
parameters with which you wish to schedule the process. The type of
information specified in each component is presented below. Note that
the status component is ignored on this call.

name_ptr a pointer to a variable that contains a path name
identifying the program to be scheduled. A full or
relative path name of up to 1024 characters can be
specified.

cpu an integer value indicating the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results ares:

0 the program pointed to by name_ptr can be
scheduled on the processor from which the
call is made.

-1 the program pointed to by name_ptr can be
scheduled on any processor.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a CPU),
the program pointed to by name_ptr can be
scheduled on CPU i.

cpuset a pointer that directly or indirectly indicates the set of
processors on which the specified program can be
scheduled to run. The pointer may either point to a valid
cpuset, as created by cpuset_alloc(3) and filled
in with some set of CPU IDsby other cpuset(3)
operations, or it may take on one of the following special
pointer values:

FBS_CPUSET_CURCPU the process can
run only on the processor from which this call is
made.

FBS_CPUSET_ALLCPUS the process can
run on any processor.

FBS_CPUSET_ONECPU(cpu) the process can
run only on the processor whose CPU ID is
cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

fpid a returned integer value that is the unique frequency-
based scheduler process identifier for the scheduled
process

cid an integer value indicating the POSIX scheduling policy
under which the specified program is to be scheduled.

The C Library Interface

6-53

Scheduling policies are defined in the file <sched.h>:
SCHED_FIFO, SCHED_RR or SCHED_OTHER.

prior an integer value indicating the scheduling priority of the
specified process. The range of acceptable priority
values is governed by the scheduling policy specified.

param an integer value to be passed to a process scheduled on a
frequency-based scheduler. This value can be retrieved
by the frequency-based scheduled process through a call
to sched_pgmqry or sched_pgmqry_big (see
page 6-51 for an explanation of this routine).

period an integer value indicating the frequency with which the
specified program is to be awakened in each major
frame.

A period of 1 indicates that the specified program is to
be awakened every minor cycle; a period of 2 indicates
that it is to be awakened once every two minor cycles,
and so on.

This value can range from 1 to the number of minor
cycles that compose a frame on the specified scheduler
as defined in a call to fbsconfigure (see page 6-10).

cycle an integer value indicating the first minor cycle in which
the specified program is scheduled to be awakened in
each frame. This value can range from 0 to the total
number of minor cycles per frame minus 1. The total
number of minor cycles per frame is specified in a call to
fbsconfigure (see page 6-10).

halt an integer value indicating whether or not the scheduler
should be stopped in the event that the specified program
causes a frame overrun. A nonzero value indicates that
the scheduler will be stopped.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_pgmadd(3) and sched_pgmadd_big(3) man pages for a listing of the
types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-54

sched_pgmadd_args, sched_pgmadd_args_big– Schedule a Process on a Fre-
quency-Based Scheduler
with Arguments 6

These routines create a new process with arguments and schedules it on a frequency-based
scheduler. To supply arguments and also soft overrun and/or deadline attributes for the
new process, see sched_pgmadd_attr and sched_pgmadd_attr_big on page
6-58.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgmadd_args(fbs_id, sched_buf, argv[])
int fbs_id;
struct pgm2_ds {
 char *name_ptr;
 int cpu;
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;
} *sched_buf;
char * const argv[];

int sched_pgmadd_args_big(fbs_id, sched_buf, argv[])
int fbs_id;
struct pgm2_big_ds {
 char *name_ptr;

cpuset_t* cpuset;
void *vfill[9];

 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;

int ifill[9];
} *sched_buf;
char * const argv[];

Parameters

The C Library Interface

6-55

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

sched_buf a pgm2_ds or pgm2_big_ds structure that contains the scheduling
parameters with which you wish to schedule the process. The type of
information specified in each component is presented below. Note that
the status component is ignored on this call.

name_ptr a pointer to a variable that contains a path name
identifying the program to be scheduled. A full or
relative path name of up to 1024 characters can be
specified.

cpu an integer value indicating the processors on which the
specified program can be scheduled to run. Acceptable
values and corresponding results ares:

0 the program pointed to by name_ptr can be
scheduled on the processor from which the
call is made.

-1 the program pointed to by name_ptr can be
scheduled on any processor.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a CPU),
the program pointed to by name_ptr can be
scheduled on CPU i.

cpuset a pointer that directly or indirectly indicates the set of
processors on which the specified program can be
scheduled to run. The pointer may either point to a valid
cpuset, as created by cpuset_alloc(3) and filled
in with some set of CPU IDsby other cpuset(3)
operations, or it may take on one of the following special
pointer values:

FBS_CPUSET_CURCPU the process can
run only on the processor from which this call is
made.

FBS_CPUSET_ALLCPUS the process can
run on any processor.

FBS_CPUSET_ONECPU(cpu) the process can
run only on the processor whose CPU ID is
cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-56

fpid a returned integer value that is the unique frequency-
based scheduler process identifier for the scheduled
process

cid an integer value indicating the POSIX scheduling policy
under which the specified program is to be scheduled.
Scheduling policies are defined in the file <sched.h>:
SCHED_FIFO, SCHED_RR or SCHED_OTHER.

prior an integer value indicating the scheduling priority of the
specified process. The range of acceptable priority
values is governed by the scheduling policy specified.

param an integer value to be passed to a process scheduled on a
frequency-based scheduler. This value can be retrieved
by the frequency-based scheduled process through a call
to sched_pgmqry or sched_pgmqry_big (see
page 6-51 for an explanation of this routine).

period an integer value indicating the frequency with which the
specified program is to be awakened in each major
frame.

A period of 1 indicates that the specified program is to
be awakened every minor cycle; a period of 2 indicates
that it is to be awakened once every two minor cycles,
and so on.

This value can range from 1 to the number of minor
cycles that compose a frame on the specified scheduler
as defined in a call to fbsconfigure (see page 6-10).

cycle an integer value indicating the first minor cycle in which
the specified program is scheduled to be awakened in
each frame. This value can range from 0 to the total
number of minor cycles per frame minus 1. The total
number of minor cycles per frame is specified in a call to
fbsconfigure (see page 6-10).

halt an integer value indicating whether or not the scheduler
should be stopped in the event that the specified program
causes a frame overrun. A nonzero value indicates that
the scheduler will be stopped.

argv[] an array of pointers to null-terminated strings that
represent the argument list available to the scheduled
program. By convention, the first argument, in argv[0],
should point to the file name associated with the
program being scheduled. The array of pointers must be
terminated by a NULL pointer.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the

The C Library Interface

6-57

sched_pgmadd_args(3) and sched_pgmadd_args_big(3) man pages for a
listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-58

sched_pgmadd_attr, sched_pgmadd_attr_big – Schedule a Process on a Fre-
quency-Based Scheduler with Arguments and Attributes 6

These routines create a new process with arguments and soft overrun attributes and
schedules it on a frequency-based scheduler. The specified soft overrun attributes for the
new process are guaranteed to be initialized before the new process begins execution.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgmadd_attr (fbsid, sched_attr)
int fbs_id;
struct pgmadd_attr_ds *sched_attr;

struct pgmadd_attr_v1 {
struct pgm2_ds *pgm2;
char * const *argv;
int so_soft_limit;
int dl_halt;
deadline_kind dl_kind;
deadline_origin dl_origin;
struct timespec dl_deadline;

};
struct pgmadd_attr_ds {

int version;
union {
struct pgmadd_attr_v1 v1;

} attr;
};

int sched_pgmadd_attr_big (fbsid, sched_attr)
int fbs_id;
struct pgmadd_attr_big_ds *sched_attr;

struct pgmadd_attr_big_v1 {
struct pgm2_big_ds *pgm2;
char * const *argv;
void *vfill[9];
int so_soft_limit;
int dl_halt;
int ifill[9];
deadline_kind dl_kind;
deadline_origin dl_origin;
struct timespec dl_deadline;

};
struct pgmadd_attr_big_ds {

int version;
union {
struct pgmadd_attr_big_v1 v1;

The C Library Interface

6-59

} attr;
};

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

sched_attr a pointer to a pgmadd_attr_ds or pgmadd_attr_big_ds
structure that contains the scheduling parameters and attributes for the
process. The type of information specified in each field of this structure
is described below.

version the version of the attr structure being used. Currently
only version 1 is supported, so this field must be set to
P G M A D D _ A T T R _ V E R S I O N 1 to ind ica te tha t the
pgmadd_attr_v1 structure, v1, is being used.

pgm2 a pointer to the pgm2_ds or pgm2_big_ds structure
that contains the scheduling parameters used to schedule
the process. Refer to the sched_buf parameters in the
sched_pgmadd_args section on page 6-54 for more
details on the pgm2_ds structure fields.

argv a pointer which may be set to a value of NULL if
arguments are not being used, or should otherwise point
to an array of pointers of null-terminated strings that
represent the argument list available to the scheduled
program. By convention, the first argument, in
argv[0], should point to the file name associated with
the program being scheduled. The array of pointers must
be terminated by a NULL pointer.

so_soft_limit may be set to zero if not used, or may contain a soft
o v e r r u n p r o c e s s l i m i t v a l u e . R e f e r t o
sched_pgm_set_soft_overrun_limit on page
6-48 for more details on soft overruns.

dl_halt must be set to DL_HALT to specify that the scheduler is to
be stopped when a deadline violation is detected for the
process, or DL_NOHALT if the scheduler should not be
halted.

dl_kind may be set to DEADLINE_CLEAR to indicate that no
deadline is to be applied to the scheduled process, or
D E A D L I N E _ W A L L _ T I M E i n d i c a t i n g t h a t a
CLOCK_MONOTONIC deadline time is to be applied.
When set to DEADLINE_WALL_TIME, dl_halt, dl_origin
and dl_deadline must also be set.

dl_origin May be set to DL_CYCLE_RELATIVE to measure the
deadline time from the beginning of the cycle in which
the process is scheduled to run, or DL_TASK_RELATIVE to

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-60

measure deadline times from the time the process exits
fbswait(3) and begins execution.

dl_deadline when dl_kind is set to DEADLINE_WALL_TIME, this
timespec s t ruc ture indica tes the amount o f
CLOCK_MONOTONIC time the process is expected to
execute before returning to fbswait(3) . See
sched_pgm_set_deadline on page 6-45 for more
details.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_pgmadd_attr(3) and sched_pgmadd_attr_big(3) man page for a
listing of the types of errors that may occur.

The C Library Interface

6-61

sched_pgmqry, sched_pgmqry_big – Query a Process 6

These routines obtain information for a particular process that has been scheduled on a
frequency-based scheduler. You can identify the process by using one of the following
methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency-based scheduler process identifier.

Information returned includes the following:

• the process’ path name

• the CPU on which the process can execute

• the frequency-based scheduler process identifier

• the scheduling policy under which the process has been scheduled

• the scheduling priority

• the period (the number of minor cycles indicating the frequency with which
the process is awakened in each major frame)

• the starting base cycle (the first minor cycle in which the process is
scheduled to be awakened in each major frame)

• the value of the “halt on overrun” flag

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgmqry(fbs_id, qry_buf)
int fbs_id;
struct pgm2_ds {
 char *name_ptr;
 int cpu;
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;
} *qry_buf;

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-62

int sched_pgmqry_big(fbs_id, qry_buf)
int fbs_id;
struct pgm2_big_ds {
 char *name_ptr;

cpuset_t cpuset;
void* vfill[9];

 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;

int ifill[9];
} *qry_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

qry_buf a pointer to a pgm2_ds or pgm2_big_ds structure that contains
scheduling information for the process. sched_pgmqry will return to
this structure the scheduling information for a specified process. The
information contained in each component of the structure to which
qry_buf points is presented below.

name_ptr a pointer to the path name identifying the process for
which information is to be returned. A full or relative
path name of up to 1024 characters can be specified. If
the pointer points to a null string, you must provide the
frequency-based scheduler process identifier in the fpid
component.

cpu an integer value indicating the processor(s) to be used
with the value of name_ptr to identify the program for
which information is to be obtained. Acceptable values
and corresponding results follow:

0 the first process whose name matches the
name pointed to by name_ptr currently running
on the processor from which the call is made is
requested.

-1 the first process whose name matches the
name pointed to by name_ptr currently
running on any processor is requested.

bit mask if (cpu & (1<<i)) is set (where i is an integer

The C Library Interface

6-63

ranging from 0 to 15 and representing a CPU)
and it is the only bit set, the first process
whose name matches the name pointed to by
name_ptr running on CPU i is requested.

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process whose name matches the
name pointed to by name_ptr currently running
on any of the selected CPUs is requested.

cpuset a pointer that directly or indirectly indicates the set of
processors, to be used in conjunction with name_ptr, to
identify the process to be queried. The pointer may either
p o i n t t o a v a l i d cpuset , a s c r e a t e d b y
cpuset_alloc(3) and filled in with some set of
CPU IDs by other cpuset(3) operations, or it may
take on one of the following special pointer values:

FBS_CPUSET_CURCPU the first process
named by name_ptr currently running on the
processor from which call is made.

FBS_CPUSET_ALLCPUS the first process
named by name_ptr running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process
named by name_ptr running on the processor
with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-64

fpid an integer value providing the frequency-based
scheduler process identifier for the process for which
information is to be returned. This value is obtained
when you make a call to sched_pgmadd (see page
6-51). This value must be -1 if you wish to identify the
program to be queried only by specifying name_ptr and
cpu.

cid an integer value indicating the specified process’
scheduling policy.

prior an integer value indicating the process’ scheduling
priority.

param an integer value indicating the value passed to the
p r o c e s s v i a a c a l l t o sched_pgmadd o r
sched_pgmresched.

period an integer value indicating the frequency with which the
specified program is to be awakened in each major
frame.

cycle an integer value indicating the first minor cycle in which
the specified process is scheduled to be awakened in
each frame.

halt an integer value indicating the value of the “halt on
overrun” flag. A nonzero value indicates that the flag is
set. A value of zero indicates that the flag is not set.

status an integer value indicating the current state of the
specified process as defined in <fbsched.h>

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_pgmqry(3) and sched_pgmqry_big(3) man pages for a listing of the
types of errors that may occur.

The C Library Interface

6-65

sched_pgmresched, sched_pgmresched_big– Reschedule a Process 6

These routines change the scheduling parameters for a process that is scheduled on a
frequency-based scheduler. You may wish, for example, to change a program’s policy or
priority or the frequency with which it is scheduled to run. You cannot, however, change
the CPU on which it has been scheduled.

It is important to note that to use this routine to (1) change a process’ scheduling policy to
the SCHED_FIFO or the SCHED_RR policy or (2) change the priority of a process scheduled
under SCHED_FIFO or SCHED_RR, or (3) raise the priority of a process scheduled under
SCHED_OTHER above a per-process limit, the effective user ID of the calling process must
match the effective user ID of the target process (the process for which the scheduling
policy and priority are being set).

Identify the process to reschedule using one of the following methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency-based scheduler process identifier.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int sched_pgmresched(fbs_id, rsch_buf)
int fbs_id;
struct pgm2_ds {
 char *name_ptr;
 int cpu;
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;
} *rsch_buf;

int sched_pgmresched_big(fbs_id, rsch_buf)
int fbs_id;
struct pgm2_big_ds {
 char *name_ptr;

cpuset_t *cpuset;

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-66

void * vfill[9];
 int fpid;
 int cid;
 int prior;
 int param;
 int period;
 int cycle;
 int halt;
 int status;

int ifill[9];
} *rsch_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

rsch_buf A pgm2_ds or pgm2_big_ds structure that contains the scheduling
parameters with which to reschedule the process. The type of
information specified in each component is presented below. Note that
the status component is ignored on this call.

name_ptr a pointer to a variable that contains a path name
identifying the process for which information is to be
rescheduled. A full or relative path name of up to 1024
characters can be specified. If the pointer points to a null
string, you must provide the frequency-based scheduler
process identifier in the fpid component.

cpu an integer value indicating the processor(s) to be used
with the value of name_ptr to identify the process to be
rescheduled. Acceptable values and corresponding
results follow:

0 the first process whose name matches the
name pointed to by name_ptr currently running
on the processor from which the call is made is
rescheduled.

-1 the first process whose name matches the
name pointed to by name_ptr currently
running on any processor is rescheduled.

bit mask if (cpu & (1<<i)) is set (where i is an integer
ranging from 0 to 15 and representing a CPU)
and it is the only bit set, the first process
whose name matches the name pointed to by
name_ptr running on CPU i is rescheduled.

If (cpu & (1<<i)) is set and it is not the only bit

The C Library Interface

6-67

set, the first process whose name matches the
name pointed to by name_ptr currently running
on any of the selected CPUs is rescheduled.

cpuset a pointer that directly or indirectly indicates the set of
processors, to be used in connection with name_ptr, to
identify the process to be rescheduled. The pointer may
ei ther poin t to a va l id cpuset , as c reated by
cpuset_alloc(3) and filled in with some set of
CPU IDs by other cpuset(3) operations, or it may
take on one of the following special pointer values:

FBS_CPUSET_CURCPU the first process
named by name_ptr currently running on the
processor from which call is made.

FBS_CPUSET_ALLCPUS the first process
named by name_ptr running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process
named by name_ptr running on the processor
with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the
behavior is as described for FBS_CPUSET_CURCPU.

fpid an integer value providing the frequency-based
scheduler process identifier for the process to be
rescheduled. This value is obtained when you make a
call to sched_pgmadd (see page 6-51). This value
must be -1 if you wish to identify the program to be
queried only by specifying name_ptr and cpu.

cid an integer value indicating the specified process’
schedul ing pol icy : S C H E D _ F I F O, S C H E D _ R R or
SCHED_OTHER.

prior an integer value indicating the process’ scheduling
priority. The range of acceptable priority values is
governed by the scheduling policy specified.

param an integer value indicating the value passed to the
process scheduled on a frequency-based scheduler.

period an integer value indicating the frequency with which the
specified program is to be awakened in each major
frame.

A period of 1 indicates that the specified program is to
be awakened every minor cycle; a period of 2 indicates
that it is to be awakened once every two minor cycles,
and so on.

This value can range from 1 to the number of minor
cycles that compose a frame on the specified scheduler
as defined in a call to fbsconfigure (see page 6-10)

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-68

cycle an integer value indicating the first minor cycle in which
the specified process is scheduled to be awakened in
each frame.

This value can range from 0 to the total number of minor
cycles per frame minus 1. The total number of minor
c y c l e s p e r f r a m e i s s p e c i f i e d i n a c a l l t o
fbsconfigure (see page 6-10).

halt an integer value indicating whether or not the scheduler
should be stopped in the event that the specified process
causes a frame overrun. A nonzero value indicates that
the scheduler will be stopped.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
sched_pgmresched(3) and sched_pgmresched_big(3) man pages for a
listing of the types of errors that may occur.

The C Library Interface

6-69

Performance Monitor Routines 6

The Performance Monitor routines provide access to the key features of the Performance
Monitor. They enable you to perform such basic operations as:

• clearing performance monitor values for a process or processor

• starting and stopping performance monitoring for a process or processor

• obtaining performance monitor values for a process or processor

Routine Summary 6

Performance Monitor routines are summarized in Table 6-3. Complete information about
each routine is provided under the section “Using Performance Monitor Routines.”

C Library Call Sequence 6

The approximate order in which you might call the Performance Monitor routines from an
application program is illustrated in Figure 6-2..

Table 6-3. Performance Monitor C Library Routines

Routine Page Description

pmclrpgm
pmclrpgm_big

6-71 Clear values for a process

pmclrtable
pmclrtable_big

6-73 Clear values for processor(s)

pmmonitor
pmmonitor_big

6-75 Start/stop performance monitoring on processor(s)

pmprogram
pmprogram_big

6-77 Start/stop performance monitoring on a process

pmqrycpu
pmqrycpu_big

6-79 Query values for selected processor(s)

pmqrylist 6-83 Query values for a list of processes

pmqrypgm
pmqrypgm_big

6-85 Query values for a selected process

pmqrytimer 6-88 Query Performance Monitor mode

pmselect 6-89 Select Performance Monitor mode

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-70

Figure 6-2. C Library Call Sequence: Performance Monitor

Using Performance Monitor Routines 6

In the sections that follow, the Performance Monitor routines contained in the
libccur_fbsched library are presented in alphabetical order.

END

START

pmselect

pmclrtable

pmmonitor

pmqrycpu
pmqrylist

pmmonitor

pmqrypgm

pmprogram

pmprogram

The C Library Interface

6-71

pmclrpgm, pmclrpgm_big, – Clear Values for a Process 6

These routines clear performance monitor values for a particular process that has been
scheduled on a frequency-based scheduler. You can identify the process using one of the
following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency-based scheduler process identifier.

NOTE

This routine clears the process’ total soft overrun count.

These routines are identical except for their treatment of CPU masks. For details, see “The
Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pmclrpgm(fbs_id, name, cpu, fpid)
int fbs_id, cpu, fpid;
char *name;

int pmclrpgm_big(fbs_id, name, cpuset, fpid)
int fbs_id, fpid;
char *name;
cpuset_t *cpuset;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

name a path name identifying the process for which values are to be cleared. A
full or relative path name of up to 1024 characters can be specified. If
this variable is the null string, you must provide the frequency-based
scheduler process identifier in the fpid parameter.

cpu an integer value indicating the processor(s) to be used in conjunction
with the value of the name parameter to identify the process for which
values are to be cleared. Acceptable values and corresponding results
are presented below.

0 the first process named by name currently running on the
processor from which the call is made is specified

-1 the first process named by name currently running on
any processor is specified

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-72

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU) and it is the only
bit set, the first process named by name currently
running on CPU i is specified

If (cpu & (1<<i)) is set and it is not the only bit set, the
first process named by name currently running on any of
the selected CPUs is specified.

cpuset a pointer that directly or indirectly indicates the set of processors, to be
used in conjunction with name, to identify the process for which values
are to be cleared. The pointer may either point to a valid cpuset, as
created by cpuset_alloc(3) and filled in with some set of CPU
IDs by other cpuset(3) operations, or it may take on one of the
following special pointer values:

FBS_CPUSET_CURCPU the first process named by name
currently running on the processor from which the call is
made.

FBS_CPUSET_ALLCPUS the first process named by name
running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process named by name
running on the processor with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

fpid an integer value providing the unique frequency-based scheduler
process identifier for the process for which values are to be cleared. This
value is obtained when you make a call to sched_pgmadd (see page
6-51). This value must be -1 to identify the process only by specifying
name and cpu.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmclrpgm(3) and pmclrpgm_big(3) man pages for a listing of the types of errors
that may occur.

The C Library Interface

6-73

pmclrtable, pmclrtable_big – Clear Values for Processor(s) 6

These routines clear performance monitor values for frequency-based scheduled processes
on one or more specified processors on a selected scheduler.

NOTE

These routines clear the total soft overrun count for all related pro-
cesses.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pmclrtable(fbs_id, cpu)
int fbs_id, cpu;

int pmclrtable_big(fbs_id, cpuset)
int fbs_id;
cpuset_t *cpuset;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

cpu an integer value indicating the processor or processors for which
performance monitor values are to be cleared. Acceptable values and
corresponding results are presented below.

0 performance monitor values for frequency-based
scheduled processes executing on the processor from
which the call is made are cleared

-1 performance monitor values for all processes on the
scheduler are cleared

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
cleared

cpuset a pointer that directly or indirectly indicates the set of processors for
which performance monitor values are to be cleared. The pointer may
either point to a valid cpuset, as created by cpuset_alloc(3) and
filled in with some set of CPU IDs by other cpuset(3) operations, or
it may take on one of the following special pointer values:

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-74

FBS_CPUSET_CURCPU the processor from which the call is
made.

FBS_CPUSET_ALLCPUS all processors.

FBS_CPUSET_ONECPU(cpu) the processor with a CPU ID of
cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmclrtable(3) and pmclrtable_big(3) man pages for a listing of the types of
errors that may occur.

The C Library Interface

6-75

pmmonitor, pmmonitor_big – Start/Stop Performance Monitoring on Processor(s) 6

These routines start or stop performance monitoring for frequency-based scheduled
processes on one or more processors on a selected scheduler.

These two routines are identical except in their treatment of CPU masks. For a complete
description of these differences, see “The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pmmonitor(fbs_id, pmflag, cpu)
int fbs_id, pmflag,cpu;

int pmmonitor_big(fbs_id, pmflag, cpuset)
int fbs_id, pmflag;
cpuset_t* cpuset;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

pmflag an integer value indicating whether performance monitoring is to be
started or stopped. A nonzero value indicates that performance
monitoring is to be started. A zero value indicates that performance
monitoring is to be stopped.

cpu an integer that indicates the processor or processors for which
performance monitoring is to be started or stopped. Acceptable values
and corresponding results are presented below.

0 performance monitoring for frequency-based scheduled
processes executing on the processor from which the
call is made is started or stopped.

-1 performance monitoring for all processes on the
scheduler is started or stopped.

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU), performance
monitoring for processes executing on CPU i is started
or stopped.

cpuset a pointer that directly or indirectly indicates the set of processors for
which performance monitoring is to be started or stopped. The pointer
m a y e i t h e r p o i n t t o a v a l i d cpuset , a s c r ea t e d by
cpuset_alloc(3) and filled in with some set of CPU IDs by other
cpuset(3) operations, or it may take on one of the following special
pointer values:

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-76

FBS_CPUSET_CURCPU the processor from which the call is
made.

FBS_CPUSET_ALLCPUS all processors.

FBS_CPUSET_ONECPU(cpu) the processor with a CPU ID of
cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmmonitor(3) and pmmonitor_big(3) man pages for a listing of the types of
errors that may occur.

The C Library Interface

6-77

pmprogram, pmprogram_big – Start/Stop Performance Monitoring on a Process 6

These routines start or stop performance monitoring for a particular process that has been
scheduled on a frequency-based scheduler. Identify the process by using one of the
following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU(s) on which it is scheduled, and
its frequency-based scheduler process identifier.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pmprogram(fbs_id, name, cpu, fpid, pmflag)
int fbs_id, cpu, fpid, pmflag;
char *name;

int pmprogram_big(fbs_id, name, cpuset, fpid, pmflag)
int fbs_id, fpid, pmflag;
char *name;
cpuset_t *cpuset;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

name a path name identifying the process for which performance monitoring
is to be started or stopped. A full or relative path name of up to 1024
characters can be specified. If this variable is the null string, you must
provide the frequency-based scheduler process identifier in the fpid
parameter.

cpu an integer value indicating the processor(s) to be used in conjunction
with the value of the name parameter to identify the process for which
performance monitoring is to be started or stopped. Valid values are
presented below:

0 the first process named by name currently running on the
processor from which the call is made is specified

-1 the first process named by name currently running on
any processor is specified

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU) and it is the only
bit set, the first process named by name currently

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-78

running on CPU i is specified.

If (cpu & (1<<i)) is set and it is not the only bit set, the
first process named by name currently running on any of
the selected CPUs is specified.

cpuset a pointer that directly or indirectly indicates the set of processors, to be
used in conjunction with name, to identify the process for which
performance monitoring is to be started or stopped. The pointer may
either point to a valid cpuset, as created by cpuset_alloc(3) and
filled in with some set of CPU IDs by other cpuset(3) operations, or
it may take on one of the following special pointer values:

FBS_CPUSET_CURCPU the first process named by name
currently running on the processor from which the call is
made.

FBS_CPUSET_ALLCPUS the first process named by name
running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process named by name
running on the processor with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, the the behavior is as
described for FBS_CPUSET_CURCPU.

fpid an integer value providing the unique frequency-based scheduler
process identifier for the process for which performance monitoring is
to be started or stopped.

Get this value by making a call to sched_pgmadd (see page 6-51).
This value must be -1 if you wish to identify the process only by
specifying name and cpu.

pmflag an integer value indicating whether performance monitoring is to be
started or stopped. A nonzero value indicates that performance
monitoring is to be started. A zero value indicates that performance
monitoring is to be stopped.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmprogram(3) and pmprogram_big(3) man pages for a listing of the types of
errors that may occur.

The C Library Interface

6-79

pmqrycpu, pmqrycpu_big – Query Values for Selected Processor(s) 6

These routines obtain performance monitor values for frequency-based scheduled
processes on one or more specified processors on a selected scheduler.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pmqrycpu(fbs_id, cpu, pm_buf, buf_cnt)
int fbs_id, cpu, buf_cnt;
struct pmqry_ds {
int fpid;
struct timespec lastcyc_tm;
int tot_cycles;
struct timespec tot_cycles_tm;
int overruns;
struct timespec mincyc_tm;
int mincyc_cycle;
int mincyc_frame;
struct timespec maxcyc_tm;
int maxcyc_cycle;
int maxcyc_frame;
struct timespec minframe_tm;
int minframe;
struct timespec maxframe_tm;
int maxframe;

} *pm_buf;

int pmqrycpu_big(fbs_id, cpuset, pm_buf, buf_cnt)
int fbs_id, buf_cnt;
cpuset_t *cpuset;
struct pmqry_ds *pm_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

cpu an integer value indicating the processor(s) for which performance
monitor values are to be obtained. Acceptable values and corresponding
results are presented below.

0 performance monitor values for frequency-based
scheduled processes executing on the processor from
which the call is made are returned.

-1 performance monitor values for all processes on the
scheduler are returned.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-80

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU), performance
monitor values for processes executing on CPU i are
returned.

cpuset a pointer that directly or indirectly indicates the set of processors for
which performance monitor values are to be obtained. The pointer may
either point to a valid cpuset, as created by cpuset_alloc(3) and
filled in with some set of CPU IDs by other cpuset(3) operations, or
it may take on one of the following special pointer values:

FBS_CPUSET_CURCPU the processor from which the call is
made.

FBS_CPUSET_ALLCPUS all processors.

FBS_CPUSET_ONECPU(cpu) the processor with a CPU ID of
cpu.

If cpuset points to a cpuset(3) that is empty, then the behavior is as
described for FBS_CPUSET_CURCPU.

pm_buf a pointer to an array of pmqry_ds structures to which pmqrycpu
returns the performance monitor values for each frequency-based
scheduled process on the processor(s) specified with the cpu parameter.

The number of processes for which these values are returned is bound
by the value of the buf_cnt parameter. The type of information returned
in each component of the structure for a single process is presented
below.

fpid the process’ frequency-based scheduler process
identifier.

lastcyc_tm the amount of time that the process has spent running
from the last time that it was awakened by the scheduler
until it called fbswait.

tot_cycles the number of times that the process has been awakened
by the scheduler (total iterations, or cycles).

tot_cycles_tm the time that the process has spent running in all cycles.

overruns the number of hard frame overruns caused by the
process.

mincyc_tm the least amount of time that the process has spent
running in a cycle (minimum cycle time).

mincyc_cycle the number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle).

mincyc_frame the number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame).

The C Library Interface

6-81

maxcyc_tm the greatest amount of time that the process has spent
running in a cycle (maximum cycle time).

maxcyc_cycle the number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle).

maxcyc_frame the number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame).

minframe_tm the least amount of time that the process has spent
running during a major frame (minimum frame time).

minframe the number of the major frame in which the minimum
frame time has occurred (minimum frame frame).

maxframe_tm the greatest amount of time that the process has spent
running during a major frame (maximum frame time).

maxframe the number of the major frame in which the maximum
frame time has occurred (maximum frame frame).

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-82

buf_cnt an integer value indicating the number of structures in the array to
which pm_buf points.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmqrycpu(3) and pmqrycpu_big(3) man pages for a listing of the types of errors
that may occur.

The C Library Interface

6-83

pmqrylist – Query Values for a List of Processes 6

This routine gets performance monitor values for a list of processes scheduled on a
frequency-based scheduler.

Synopsis

#include <fbsched.h>

int pmqrylist(fbs_id, pm_buf, buf_cnt)
int fbs_id, buf_cnt;
struct pmqry_ds {
int fpid;
struct timespec lastcyc_tm;
int tot_cycles;
struct timespec tot_cycles_tm;
int overruns;
struct timespec mincyc_tm;
int mincyc_cycle;
int mincyc_frame;
struct timespec maxcyc_tm;
int maxcyc_cycle;
int maxcyc_frame;
struct timespec minframe_tm;
int minframe;
struct timespec maxframe_tm;
int maxframe;

} *pm_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

pm_buf a pointer to an array of pmqry_ds structures to which pmqrylist
returns the performance monitor values for a list of frequency-based
scheduled processes.

The list of processes for which values are returned is created by placing
the frequency-based scheduler identifier in the fpid component of each
structure in the array. The type of information contained in each
component of the structure for a single process is presented below.

fpid the process’ frequency-based scheduler process
identifier.

lastcyc_tm the amount of time that the process has spent running
from the last time that it was awakened by the scheduler
until it called fbswait.

tot_cycles the number of times that the process has been awakened
by the scheduler (total iterations, or cycles).

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-84

tot_cycles_tm the time that the process has spent running in all cycles.

overruns the number of hard frame overruns caused by the
process.

mincyc_tm the least amount of time that the process has spent
running in a cycle (minimum cycle time).

mincyc_cycle the number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle).

mincyc_frame the number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame).

maxcyc_tm the greatest amount of time that the process has spent
running in a cycle (maximum cycle time).

maxcyc_cycle the number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle).

maxcyc_frame the number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame).

minframe_tm the least amount of time that the process has spent
running during a major frame (minimum frame time).

minframe the number of the major frame in which the minimum
frame time has occurred (minimum frame frame).

maxframe_tm the greatest amount of time that the process has spent
running during a major frame (maximum frame time).

maxframe the number of the major frame in which the maximum
frame time has occurred (maximum frame frame).

buf_cnt an integer value indicating the number of structures in the array to
which pm_buf points.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmqrylist(3) man page for a listing of the types of errors that may occur.

The C Library Interface

6-85

pmqrypgm, pmqrypgm_big – Query Values for a Selected Process 6

These routines get performance monitor values for a particular process scheduled on a
frequency-based scheduler. Identify the process by using one of the following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency-based scheduler process identifier.

• Specify the name of the process, the CPU(s) on which it is scheduled, and
its frequency-based scheduler process identifier.

These two routines are identical except for their treatment of CPU masks. For details, see
“The Big-SMP FBS Interface” on page 6-2.

Synopsis

#include <fbsched.h>

int pmqrypgm(fbs_id, name, cpu, pm_buf)
int fbs_id, cpu;
char *name;
struct pmqry_ds {
int fpid;
struct timespec lastcyc_tm;
int tot_cycles;
struct timespec tot_cycles_tm;
int overruns;
struct timespec mincyc_tm;
int mincyc_cycle;
int mincyc_frame;
struct timespec maxcyc_tm;
int maxcyc_cycle;
int maxcyc_frame;
struct timespec minframe_tm;
int minframe;
struct timespec maxframe_tm;
int maxframe;

} *pm_buf;

int pmqrypgm_big(fbs_id, name, cpuset, pm_buf)
int fbs_id;
char *name;
cpuset_t *cpuset;
struct pmqry_ds *pm_buf;

Parameters

fbs_id a unique positive integer value representing the identifier for a
frequency-based scheduler. This value can be obtained using
fbsid(3) (page 6-18) or fbsconfigure(3) (page 6-10).

Enter MY_FBS to reference the frequency-based scheduler on which the
calling process is scheduled without knowing the identifier.

name a pointer to a variable that contains a path name identifying the process
for which performance monitoring values are to be returned. A full or

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-86

relative path name of up to 1024 characters can be specified. If this
variable is the null string, you must provide the frequency-based
scheduler process identifier in the fpid component of the structure to
which pm_buf points.

cpu an integer value indicating the processor(s) to be used in conjunction
with the value of the name parameter to identify the process for which
performance monitoring values are to be returned. Acceptable values
and corresponding results are presented below.

0 the first process named by name currently running on the
processor from which the call is made is specified.

-1 the first process named by name currently running on
any processor is specified.

bit mask if (cpu & (1<<i)) is set (where i is an integer ranging
from 0 to 15 and representing a CPU) and it is the only
bit set, the first process named by name currently
running on CPU i is specified.

If (cpu & (1<<i)) is set and it is not the only bit set, the
first process named by name currently running on any of
the selected CPUs is specified.

cpuset a pointer that directly or indirectly indicates the set of porocessors, to be
used in conjunction with name, to identify the process for which
performance monitoring values are to be returned. The pointer may
either point to a valid cpuset, as created by cpuset_alloc(3) and
filled in with some set of CPU IDs by other cpuset(3) operations, or
it may take on one of the following special pointer values:

FBS_CPUSET_CURCPU the first process named by name
currently running on the processor from which the call is
made.

FBS_CPUSET_ALLCPUS the first process named by name
running on any processor.

FBS_CPUSET_ONECPU(cpu) the first process named by name
running on the processor with a CPU ID of cpu.

If cpuset points to a cpuset(3) that is empty, the the behavior is as
described for FBS_CPUSET_CURCPU.

pm_buf a pointer to a pmqry_ds structure to which pmqrypgm returns the
performance monitor values for the frequency-based scheduled process
pointed to by the name parameter.

The type of information contained in each component of the structure is
presented below:

The C Library Interface

6-87

fpid an integer value providing the unique frequency-based
scheduler process identifier for which performance
monitor values are to be returned.

Get this value by calling sched_pgmadd (see page
6-51). This value must be -1 if you wish to identify the
process only by specifying name and cpu.

lastcyc_tm the amount of time that the process has spent running
from the last time that it was awakened by the scheduler
until it called fbswait.

tot_cycles the number of times that the process has been awakened
by the scheduler since the last time that performance
monitor values have been cleared and performance
monitoring has been enabled (total iterations, or cycles).

tot_cycles_tm the time that the process has spent running in all cycles.

overruns the number of hard frame overruns caused by the
process.

mincyc_tm the least amount of time that the process has spent
running in a cycle (minimum cycle time).

mincyc_cycle the number of the minor cycle in which the minimum
cycle time has occurred (minimum cycle cycle).

mincyc_frame the number of the major frame in which the minimum
cycle time has occurred (minimum cycle frame).

maxcyc_tm the greatest amount of time that the process has spent
running in a cycle (maximum cycle time).

maxcyc_cycle the number of the minor cycle in which the maximum
cycle time has occurred (maximum cycle cycle).

maxcyc_frame the number of the major frame in which the maximum
cycle time has occurred (maximum cycle frame).

minframe_tm the least amount of time that the process has spent
running during a major frame (minimum frame time).

minframe the number of the major frame in which the minimum
frame time has occurred (minimum frame frame).

maxframe_tm the greatest amount of time that the process has spent
running during a major frame (maximum frame time).

maxframe the number of the major frame in which the maximum
frame time has occurred (maximum frame frame).

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmqrypgm(3) and pmqrypgm_big(3) man pages for a listing of the types of errors
that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-88

pmqrytimer – Query Performance Monitor Mode 6

This routine determines whether performance monitor timing values include or exclude
time spent servicing interrupts.

Synopsis

#include <fbsched.h>

int pmqrytimer()

Return Value

A return value of 0 indicates that interrupt time is excluded from performance monitor
timing values. A return value of 1 indicates that interrupt time is included in timing values.
A return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the pmqrytimer(3) man page for a listing of the types of errors that may
occur.

The C Library Interface

6-89

pmselect – Select Performance Monitor Mode 6

This routine selects the timing mode under which the Performance Monitor is to run. The
timing mode can be set to include or exclude time spent servicing interrupts.

When interrupt time is included, a process’ user and system times will total the elapsed
time which accrues when the process is the currently running process, including all time
spent servicing interrupts. The time spent servicing interrupts is added to the process’
system time.

When excluding interrupt time, a process’ user and system times will total the time which
accrues when the process is the currently running process, excluding all time spent
servicing interrupts.

Synopsis

#include <fbsched.h>

int pmselect(mode)
int mode;

Parameters

mode an integer value indicating whether time spent servicing interrupts is to
be included in or excluded from performance monitor timing values.

A nonzero value indicates that interrupt time is to be included. A value
of zero indicates that interrupt time is to be excluded.

Return Value

A return value of 0 indicates that the call has been successful. A return value of -1
indicates that an error has occurred; errno is set to indicate the error. Refer to the
pmselect(3) man page for a listing of the types of errors that may occur.

RedHawk Linux Frequency-Based Scheduler User’s Guide

6-90

7
The FORTRAN Library Interface

Overview. 7-1
Compiling and Linking Procedures . 7-1
The Big-SMP FBS Interface for Fortran . 7-2
Frequency-Based Scheduler Routines . 7-3

Routine Summary . 7-3
FORTRAN Library Call Sequence . 7-5
Using Frequency-Based Scheduler Routines . 7-6

fbsaccess – Change Permissions for a Frequency-Based Scheduler 7-6
fbsattach – Attach Timing Source to a Frequency-Based Scheduler 7-8
fbsconfigure – Configure a Frequency-Based Scheduler 7-9
fbscycle – Return Minor Cycle/Major Frame Count 7-11
fbsdetach – Detach Timing Source from a Frequency-Based Scheduler . . . 7-12
fbsgetrtc – Obtain Current Values for Real–Time Clock. 7-13
fbsid – Return the FBS Identifier for a Key . 7-14
fbsinfo – Return Information for a Frequency-Based Scheduler 7-15
fbsintrpt – Start/Stop/Resume Scheduling on a Frequency-Based Scheduler 7-17
fbsquery – Query Processes on a Frequency-Based Scheduler 7-18
fbsremove – Remove a Frequency-Based Scheduler 7-21
fbsresume – Resume Scheduling on a Frequency-Based Scheduler 7-22
fbsrunrtc – Start/Stop Real–Time Clock . 7-24
fbsschedself – Schedule a Process/Thread on a Frequency-Based Scheduler 7-25
fbssetrtc – Set Real–Time Clock . 7-27
fbswait – Wait on a Frequency-Based Scheduler. 7-28
nametopid – Return the Process ID for a Specified Process Name 7-29
pgmquery – Query a Process on a Frequency-Based Scheduler 7-30
pgmremove – Remove a Process from a Frequency-Based Scheduler 7-32
pgmreschedule – Reschedule a Process . 7-34
pgmschedule – Schedule a Process on a Frequency-Based Scheduler. 7-37
pgmstat – Query State of FBS–Scheduled Process 7-40
pgmtrigger – Trigger Process Waiting on FBS . 7-42
rtparm – Return Initiation Parameter . 7-43
sched_pgm_deadline_query – Query the Assigned Deadline for a Process 7-44
sched_pgm_deadline_test – Test for the Presence of a Deadline Violation 7-46
sched_pgm_set_deadline – Set or Clear Deadline Time 7-48
sched_pgm_set_soft_overrun_limit – Set Soft Overrun Limit 7-50
sched_pgm_soft_overrun_query – Query Soft Overrun Processing 7-51
schedfbsqry – Query Processes on a Frequency-Based Scheduler 7-52
schedpgmadd – Schedule a Process on a Frequency-Based Scheduler 7-55
schedpgmadd_args – Schedule a Process on a Frequency-Based Scheduler with
Arguments . 7-57
schedpgmqry – Query a Process on a Frequency-Based Scheduler. 7-59
schedpgmresched – Reschedule a Process . 7-62

Performance Monitor Routines. 7-65
Routine Summary . 7-65
FORTRAN Library Call Sequence . 7-65
Using Performance Monitor Routines . 7-67

pmclrpgm – Clear Values for a Process . 7-67
pmclrtable – Clear Values for Processor(s) . 7-69

RedHawk Linux Frequency-Based Scheduler User’s Guide

pmmonitor – Start/Stop Performance Monitoring on Processor(s) 7-70
pmprogram – Start/Stop Performance Monitoring on a Process 7-71
pmqrycpu – Query Values for Selected Processor(s). 7-73
pmqrylist – Query Values for a List of Processes . 7-75
pmqrypgm – Query Values for a Selected Process 7-77
pmquerytimer – Query Performance Monitor Mode 7-80
pmselect – Select Performance Monitor Mode . 7-81

7-1

7
Chapter 7The FORTRAN Library Interface

7
7

This chapter describes the FORTRAN library interface to the Frequency-Based Scheduler
and the Performance Monitor. Library information, call sequences for using the scheduler
and the Performance Monitor, and details for each of the library routines are provided.

Overview 7

Access to the functions associated with the Frequency-Based Scheduler and the
Performance Monitor is provided through libraries of routines that can be called from
application programs written in FORTRAN.

The following information is provided in this chapter for each routine:

• a description of the routine

• the FORTRAN variable declarations and call statement needed to reference
the routine in an application program

• detailed descriptions of each parameter

Information about the individual routines, including an illustration of the sequence in
which you would call the routines during frequency-based scheduling, begins on page 7-3.
The same information is provided for performance monitoring beginning on page 7-65.

For compatibility with the PowerMAX operating system, usermap(3f) is provided to
map a target process’ memory into address space. Refer to the man page for details.

Compiling and Linking Procedures 7

When statically linking a FORTRAN program, the following libraries are required:

/usr/lib/libccur_fbsched.a
/usr/lib/libccur_rt.a
/usr/lib/libF77rt.a

When dynamically linking a C program, the following libraries are used:

/usr/lib/libccur_fbsched.so
/usr/lib/libccur_rt.so
/usr/lib/libF77rt.so

To compile and link a FORTRAN program, the command line instruction is as follows:

cf77 [options ...] file.f -lF77rt -lccur_fbsched -lccur_rt

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-2

The Big-SMP FBS Interface for Fortran 7

The Fortran language has not yet been given an API to the Big-SMP FBS interface.
Therefore, Fortran applications that need access to the Big-SMP API should do so
indirectly; for example, by invoking FBS services through the rtcp(1) command, or by
writing and linking C routines that invoke the desired Big-SMP FBS services for the
application

The FORTRAN Library Interface

7-3

Frequency-Based Scheduler Routines 7

Frequency-Based Scheduler routines provide access to the key features of the scheduler.
They enable you to perform such basic operations as:

• configuring a scheduler

• scheduling programs on a scheduler

• setting up and connecting a timing source to a scheduler

• starting, stopping and resuming scheduling on a scheduler

• getting information about scheduled processes

• rescheduling and removing scheduled processes

• disconnecting a timing source

• removing a scheduler

Routine Summary 7

Frequency-Based Scheduler routines are summarized in Table 7-1. Complete information
about each routine is provided under the section “Using Frequency-Based Scheduler
Routines.”

Table 7-1. Frequency-Based Scheduler FORTRAN Library Routines

Routine Page Description

fbsaccess 7-6 Change permissions for a frequency-based
scheduler

fbsattach 7-8 Attach timing source to a frequency-based
scheduler

fbsconfigure 7-9 Configure a frequency-based scheduler

fbscycle 7-11 Return minor cycle/major frame count

fbsdetach 7-12 Detach timing source from a frequency-
based scheduler

fbsgetrtc 7-13 Get real-time clock values

fbsid 7-14 Return the frequency-based scheduler
identifier for a key

fbsinfo 7-15 Return information for a frequency-based
scheduler

fbsintrpt 7-17 Start/stop/resume scheduling

fbsquery 7-18 Query processes on a frequency-based
scheduler

fbsremove 7-21 Remove a frequency-based scheduler

(continued on next page)

fbsresume 7-22 Resume scheduling on a frequency-based
scheduler

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-4

fbsrunrtc 7-24 Start/stop real-time clock

fbsschedself 7-25 Add a calling process to a frequency-based
scheduler

fbssetrtc 7-27 Set real-time clock

fbswait 7-28 Wait on a frequency-based scheduler

nametopid 7-29 Return the process ID

pgmquery 7-30 Query processes on a frequency-based
scheduler

pgmremove 7-32 Remove a process from a frequency-based
scheduler

pgmreschedule 7-34 Reschedule a process

pgmschedule 7-37 Schedule a process on a frequency-based
scheduler

pgmstat 7-40 Query the state of an FBS-scheduled
process

pgmtrigger 7-42 Trigger a process on a frequency-based
scheduler

rtparm 7-43 Return initiation parameter

sched_pgm_deadline_query 7-44 Query assigned deadline for a process

sched_pgm_deadline_test 7-46 Test for the presence of a deadline violation

sched_pgm_set_deadline 7-48 Set or clear process deadline time

sched_pgm_set_soft_overrun_limit 7-50 Set soft overrun limit

sched_pgm_soft_overrun_query 7-51 Query soft overrun processing

schedfbsqry 7-52 Query processes on a frequency-based
scheduler

schedpgmadd 7-55 Schedule a process on a frequency-based
scheduler

schedpgmadd_args 7-57 Schedule a process on a frequency-based
scheduler with arguments

schedpgmqry 7-59 Query a process

schedpgmresched 7-62 Reschedule a process

Table 7-1. Frequency-Based Scheduler FORTRAN Library Routines (Cont.)

Routine Page Description

The FORTRAN Library Interface

7-5

FORTRAN Library Call Sequence 7

The approximate order in which you might call the routines from an application program
is illustrated in Figure 7-1.

Figure 7-1. FORTRAN Library Call Sequence: Frequency-Based Scheduler

START

END

fbsconfigure

SCHEDULE
PROGRAMS

fbsattach

• schedpgmadd
• schedpgmadd_arg
s
• schedpgmre-
sched
• pgmremove

fbssetrtc

fbsrunrtc

fbsrunrtc fbsdetach

fbsremove

START SIMULATION
fbsintrpt

STOP SIMULATION
fbsintrpt

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-6

Using Frequency-Based Scheduler Routines 7

In the sections that follow, the Frequency-Based Scheduler routines contained in the
libF77rt library are presented in alphabetical order.

fbsaccess – Change Permissions for a Frequency-Based Scheduler 7

This subroutine changes the permissions assigned for a selected frequency–based
scheduler. Permissions can be changed only by a process that has an effective user ID that
is equal to that of the owner/creator of the frequency–based scheduler.

Call Statement

call fbsaccess (schdle, uid, gid, permissions, istat)
integer schdle, uid, gid, permissions, istat

Parameters

schdle a unique, positive integer value representing the identifier for a
frequency–based scheduler. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). To reference the frequency–based scheduler on which
the calling process is scheduled without knowing the identifier,
you can specify the value −1.

uid an integer value representing the effective user ID of the
specified frequency–based scheduler.

gid an integer value representing the effective group ID of the
specified frequency–based scheduler.

permissions a bit pattern used to set the permissions associated with the
specified frequency–based scheduler. Bit patterns and
corresponding permissions are presented in Table 7-2.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsaccess(3f) man page for a

Table 7-2. Frequency-Based Scheduler Permissions

Bit Pattern Permissions

400 Read by user

200 Alter by user

060 Read, alter by group

006 Read, alter by others

The FORTRAN Library Interface

7-7

listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-8

fbsattach – Attach Timing Source to a Frequency-Based Scheduler 7

This subroutine is invoked to attach a timing source to a frequency–based scheduler or to
specify end–of–cycle scheduling. The timing source can be a real–time clock or an edge–
triggered interrupt device.

Call Statement

call fbsattach(schdle, cpu, devname, istat)
integer schdle, cpu, istat
character* (*) devname

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which the timing source is
to be attached or end–of–cycle scheduling specified. You can
obtain this value by making a call to fbsconfigure(3f)
(see page 7-9 for an explanation of this subroutine) or
fbsid(3f) (see page 7-14). If you wish to reference the
frequency–based scheduler on which the calling process is
scheduled without knowing its identifier, you can specify a
value of − 1.

cpu a variable that must contain the value 0.

devname a null string or the path name of the device that is to be used as
the timing source for the specified scheduler. If devname
contains a null string, end–of–cycle scheduling is specified;
that is, execution of the processes in the next minor cycle will
occur when the last process scheduled to execute in the current
minor cycle finishes its execution for that cycle.

If devname contains a path name, it may refer to a real-time
clock or an edge-triggered interrupt. See Chapter 3 for
information about timing source device files.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsattach(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-9

fbsconfigure – Configure a Frequency-Based Scheduler 7

This subroutine is invoked to configure a frequency–based scheduler or to obtain
configuration details for a frequency–based scheduler that has already been configured.
Note that to configure a scheduler, the calling process must have the capabilities
associated with the fbscheduser role (for additional information on privileges, refer to
Chapter 1).

If you wish to configure a scheduler, you must specify a key, which is a user–chosen
numeric identifier for a frequency–based scheduler. The value for cycles indicates the
function to be performed:

• If the value specified in cycles is NOT equal to 0, and if the number of
existing frequency-based schedulers is less than the system imposed limit
(default = 10) a frequency-based scheduler is created and an identifier is
returned.

• If the value of cycles is equal to 0, the current configuration for the
frequency-based scheduler is returned.

Call Statement

call fbsconfigure(key, cycles, progs, max, reset, configflg, schdle, istat)
integer key, cycles, progs, max, reset, configflg, schdle, istat

Parameters

To create a frequency-based scheduler, you must specify the following parameters as
described.

key an integer value identifying the frequency–based scheduler that
is to be created.

cycles an integer value indicating the number of minor cycles that
compose a frame on the specified scheduler.

progs an integer value indicating the maximum number of programs
that can be scheduled to execute during one minor cycle.

max an integer value indicating the maximum number of programs
that can be scheduled on the specified scheduler at one time.
This value must be less than or equal to the product that is
obtained by multiplying the values specified for the cycles and
progs parameters.

reset an integer value indicating whether or not processes currently
scheduled on the specified scheduler are to be killed before the
schedu le r i s r econf igured . Accep tab le va lues and
corresponding results are as follows:

 <0 Kill and remove all processes currently scheduled
on the specified scheduler

0 Ignore all processes currently scheduled on the
specified scheduler

>0 Remove all processes currently scheduled on the
specified scheduler

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-10

configflg an integer value indicating the permissions assigned to the
specified scheduler.

schdle a unique, positive integer value representing the identifier for
the specified frequency–based scheduler. It is important to
note that this identifier is required by most of the library
subroutines for the FBS and the performance monitor.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsconfigure(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

To obtain information for an existing frequency–based scheduler, you must specify the
following parameters as described.

key an integer value identifying the frequency–based scheduler for
which configuration information is to be returned. If this value
is zero, the frequency–based scheduler identifier associated
with this scheduler must also be provided by using the schdle
parameter.

cycles the integer value zero, indicating that current configuration
information for the specified scheduler is to be returned.
Fbsconfigure will return to this variable an integer value
indicating the number of minor cycles that compose a frame on
the specified scheduler.

progs the maximum number of programs that can be scheduled to run
during one minor cycle on the specified scheduler.

max the maximum number of programs that can be scheduled on
the specified scheduler at one time.

configflg the permissions assigned to the specified scheduler.

schdle a unique, positive integer value representing the identifier for
the specified frequency–based scheduler. If you specify a key
of 0, this variable must contain the related frequency–based
scheduler identifier.

The FORTRAN Library Interface

7-11

fbscycle – Return Minor Cycle/Major Frame Count 7

This subroutine is invoked to obtain the current minor cycle and major frame count values
for a frequency–based scheduler. These values enable you to determine the progress of a
simulation.

Call Statement

call fbscycle(schdle, count, istat)
integer schdle, count(2), istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which you wish to obtain
the current cycle and frame counts. You can obtain this value
by making a call to fbsconfigure (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing its
identifier, you can specify a value of –1.

count an array containing integer values indicating the current minor
cycle and major frame for the specified scheduler. Count(1)
will contain the current minor cycle. Count(2) will contain the
major frame count.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbscycle(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-12

fbsdetach – Detach Timing Source from a Frequency-Based Scheduler 7

This subroutine is invoked to detach the currently attached timing source from a
frequency–based scheduler or to disable end–of–cycle scheduling. If the timing source is a
real-time clock, it is recommended that you stop the clock prior to invoking this
subroutine. You can do so by making a call to fbsrunrtc (see page 7-24 for an
explanation of this subroutine).

Call Statement

call fbsdetach(schdle, istat)
integer schdle, istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler from which you wish to detach
the currently attached timing source or for which you wish to
disable end–of–cycle scheduling. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing its
identifier, you can specify a value of − 1.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsdetach(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-13

fbsgetrtc – Obtain Current Values for Real–Time Clock 7

This subroutine is invoked to obtain the current count and resolution values for the real–
time clock that is attached to a specified frequency–based scheduler.

Call Statement

call fbsgetrtc(schdle, count, resolution, istat1, istat2)
integer schdle, count, resolution, istat1, istat2

Parameters

Parameters must be specified in the order indicated. They are described as follows.

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler to which the real–time clock is
attached. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

count an integer value indicating the current number of clock counts
per minor cycle. This value can range from one to 65535.

resolution an integer value indicating the current duration in
microseconds of one clock count. This value will be one of the
following: 1, 10, 100, 1000, or 10000.

istat1 an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsgetrtc(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent. If istat1 contains a value
indicating that an error has occurred on an open or ioctl
call, the error status of that call is returned in istat2.

istat2 the error status of an open or ioctl call. See the include file
<errno.h> for a description of the errors.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-14

fbsid – Return the FBS Identifier for a Key 7

This subroutine is invoked to obtain the frequency–based scheduler identifier associated
with a particular user–specified key. The key must match the key that was specified when
the scheduler was created by making a call to fbsconfigure(3f).

Call Statement

call fbsid(key, schdle, istat)
integer key, schdle, istat

Parameters

Parameters must be specified in the order indicated. They are described as follows.

key an integer value identifying a frequency–based scheduler; this
value must be the same value that was specified for key when
the scheduler was created by making a call to fbsconfigure
(see page 7-9 for an explanation of this subroutine).

schdle an integer value representing the unique frequency–based
scheduler identifier associated with the key.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsid(3f) man page for a listing of
the nonzero values that may be returned and the types of errors
that they represent.

The FORTRAN Library Interface

7-15

fbsinfo – Return Information for a Frequency-Based Scheduler 7

This subroutine is invoked to obtain information that is related to a selected frequency–
based scheduler but cannot be obtained by invoking other subroutines (for example,
schedfbsqry, schedpgmqry). Such information includes the following:

• The user and group IDs of the owner and the creator of the scheduler

• The permissions assigned for the scheduler

• The key associated with the scheduler’s identifier

• The total number of overruns for all processes on the scheduler

• The CPUs that are active in the system

• The CPUs on which performance monitoring has been enabled

• The FBS–enabled flag

• The path name of the device that has been attached to the scheduler

Call Statement

call fbsinfo(schdle, buf, devname, istat)
integer schdle, buf(41), istat
character* (*) devname

Parameters

Parameters are described as follows.

schdle a unique, positive integer value representing the identifier for a fre-
quency–based scheduler. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this subrou-
tine) or fbsid(3f) (see page 7-14). If you wish to reference the fre-
quency–based scheduler on which the calling process is scheduled with-
out knowing its identifier, you can specify a value of −1.

buf an array containing information about the specified scheduler. The
information returned in each element of the array is presented in
Table 7-3.

Table 7-3. Contents of Array Elements: fbsinfo

Element Contents

buf(1) owner’s user ID

buf(2) owner’s group ID

buf(3) creator’s user ID

buf(4) creator’s group ID

buf(5) access modes

buf(6) key

buf(7) flags word

buf(8) reserved for future use

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-16

devname the path name of the device that is being used as the timing
source for the specified frequency–based scheduler. If end–of–
cycle scheduling has been specified, devname will contain a
null string.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsinfo(3f) man page for a listing
of the nonzero values that may be returned and the types of
errors that they represent.

buf(9) total number of hard overruns for all processes
on the scheduler

buf(10) mask of CPUs active in the system

buf(11) mask of CPUs on wh ich per fo rmance
monitoring has been enabled

buf(12) FBS–enabled flag

buf(13)–(41) reserved for future use

Table 7-3. Contents of Array Elements: fbsinfo (Cont.)

Element Contents

The FORTRAN Library Interface

7-17

fbsintrpt – Start/Stop/Resume Scheduling on a Frequency-Based Scheduler 7

This subroutine is invoked to start, stop, or resume scheduling on a frequency–based
scheduler. If you invoke this subroutine to start scheduling, the minor cycle, major frame,
and overrun count values are reset. If you invoke it to resume scheduling, these values are
not reset.

Prior to invoking fbsintrpt, you must have invoked fbsattach to specify end–of–
cycle scheduling or attach a timing source to the frequency–based scheduler on which you
are starting scheduling (see page 7-8 for an explanation of fbsattach). If you have
specified a real–time clock as the timing source, scheduling will not begin until you have
set and started the clock (see pages 7-27 and 7-24 for explanations of fbssetrtc and
fbsrunrtc, respectively). If you have specified an edge–triggered interrupt device as
the timing source, it must already be generating interrupts in order for scheduling to start.

Call Statement

CALL fbsintrpt(schdle, intrflag, istat)
integer schdle, intrflag, istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which you wish to start,
stop, or resume scheduling of processes. You can obtain this
value by making a call to fbsconfigure(3f) (see page 7-9
for an explanation of this subroutine) or fbsid(3f) (see
page 7-14). If you wish to reference the frequency-based
scheduler on which the calling process is scheduled without
knowing its identifier, you can specify a value of − 1.

intrflag an integer value indicating whether scheduling of processes on
the specified scheduler is to be started, stopped, or resumed.
Acceptable values and results are as follows:
<0 Start scheduling of processes with the initial frame,

cycle, and overrun count values set to zero
0 Stop scheduling of processes, and save the count values

for the current frame and cycle
>0 Resume scheduling of processes with the frame, cycle,

and overrun count values set to the values that were
saved when the scheduler was last stopped

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsintrpt(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-18

fbsquery – Query Processes on a Frequency-Based Scheduler 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but it returns processes’ scheduling priorities without any
indication of the scheduling policies with which they are associ-
ated. If you have an existing application that uses this interface, it
is recommended that you change your application to use
schedfbsqry(3f) (see p. 7-52).

This subroutine is invoked to obtain information about processes that have been scheduled
on a frequency–based scheduler. Information is returned for all processes scheduled on
the user–specified processor(s). Information provided for each process includes the
following:

• A mask of the CPU(s) on which the process can execute

• The frequency–based scheduler process identifier

• The scheduling priority

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is
scheduled to be wakened in each major frame)

• The value of the “halt on overrun” flag

Call Statement

CALL fbsquery(schdle, cpu, buf1size, buf1, maxsize, buf2size, buf2, istat)
integer schdle, cpu, buf1size, buf1(buf1size), maxsize, buf2size, istat
character* (*) buf2

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which you wish to obtain
scheduling information. You can obtain this value by making a
call to fbsconfigure(3f) (see page 7-9 for an explanation
of this subroutine) or fbsid(3f) (see page 7-14). If you
wish to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier, you
can specify a value of −1.

cpu an integer value indicating the processor(s) for which
scheduling information is to be obtained. Acceptable values
and corresponding results are as follows:
0 Scheduling information for processes

executing on the processor from which the call
is made is returned

-1 Scheduling information for all processes on the
scheduler is returned

The FORTRAN Library Interface

7-19

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU), scheduling information for processes
executing on CPU i is returned

buf1size an integer value indicating the size in 32–bit words of the array
represented by buf1. Because 10 words of information are
returned for each process, it is recommended that this value be
a multiple of 10.

buf1 an array containing a series of 10 integer values for each
process on the processor(s) specified with the cpu parameter.
The number of processes for which these values are returned is
bound by the value of the buf1size parameter. If, for example,
the value of buf1size is 145, values for 14 processes will be
returned. These values represent the scheduling information for
the process(es). The type of information returned in each array
element for a single process is presented in Table 7-4.

maxsize an integer value indicating the maximum length of a path name
to be returned in buf2

buf2size an integer value indicating the size in bytes of the character
string represented by buf2. To ensure that buf2 is large enough
to accommodate the names of all processes that you wish to
query, you may find it helpful to compute the number of bytes
needed by multiplying the maximum number of processes
a l lowed on the schedu le r (see the in fo rma t ion on
fbsconfigure presented on page 7-9) by 32.

Table 7-4. Contents of Array Elements: fbsquery

Element Contents

1 Byte offset of the process’ path name in buf2

2 Length in bytes of the process’ path name

3 Zero

4 Zero

5 Mask of the CPU(s) on which the process can execute

6 The process’ frequency–based scheduler process identifier

7 The process’ scheduling priority

8 The number of minor cycles indicating the frequency with
which the process is to be wakened in each major frame
(period)

9 The first minor cycle in which the process is scheduled to be
wakened in each major frame (starting base cycle)

10 The value of the “halt on overrun” flag. A nonzero value
indicates that the flag is set. A value of zero indicates that the
flag is not set.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-20

buf2 the path names for each process on the processor(s) specified
with the cpu parameter. Path names are returned as a series of
strings. The length of each string is less than or equal to the
value of maxsize. Where maxsize is not large enough to
accommodate a full path name, the concluding component
names are returned. The number of path names returned is
bound by the value of the buf2size parameter.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsquery(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-21

fbsremove – Remove a Frequency-Based Scheduler 7

This subroutine is invoked to remove a frequency–based scheduler and to free the data
structure associated with it. It is important to note that prior to invoking fbsremove, you
must ensure that the timing source is detached from the scheduler or that end–of–cycle
scheduling is disabled (see page 7-12 for information on the use of fbsdetach). It is
important to note that fbsremove will remove all processes scheduled on the specified
scheduler. It is recommended, however, that you remove all scheduled processes prior to
invoking fbsremove. You can do so by making a call to pgmremove (see page 7-32
for information on the use of this subroutine).

Note that to remove a frequency-based scheduler, the calling process must have an
effective user ID that is equal to that of the owner/creator of the scheduler.

Call Statement

call fbsremove(schdle, ab, istat)
integer schdle, ab, istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler that you wish to remove. You
c a n o b t a i n t h i s v a l u e b y m a k i n g a c a l l t o
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of −1.

ab an integer value indicating the manner in which processes
scheduled on the scheduler are to be handled. Acceptable
values and corresponding results are as follows:

<0 Kill and remove all processes currently scheduled on
the specified scheduler

≥0 Remove all processes currently scheduled on the
specified scheduler

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsremove(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-22

fbsresume – Resume Scheduling on a Frequency-Based Scheduler 7

The fbsresume subroutine is invoked to resume scheduling of processes on a
frequency-based scheduler at the specified minor cycle, major frame, and overrun count.

Note that to resume scheduling of processes on a frequency-based scheduler, the calling
process must have alter permission for the scheduler.

If you wish to resume scheduling of processes on a frequency-based scheduler without
altering the scheduler’s current frame, cycle, and overrun values, it is recommended that
you use the fbsintrpt(3f) subroutine (see page 7-17 for an explanation of this
subroutine).

CAUTION

The fbsresume subroutine clears performance monitor values
for all processes scheduled on the specified scheduler. Changing
the frame and cycle count for the scheduler causes the values that
are being maintained by the performance monitor to be inaccu-
rate.

Call Statement

call fbsresume(schdle, frame, cycle, overruns, istat)
integer schdle, frame, cycle, overruns, istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which you wish to resume
scheduling of processes. You can obtain this value by making a
call to fbsconfigure(3f) (see page 7-9 for an explanation
of this subroutine) or fbsid(3f) (see page 7-14). If you
wish to reference the frequency–based scheduler on which the
calling process is scheduled without knowing the identifier,
you can specify the value −1.

frame an integer value indicating the major frame in which you wish
scheduling of processes to be resumed on the specified
scheduler

cycle an integer value indicating the minor cycle in which you wish
scheduling of processes to be resumed on the specified
scheduler. This value can range from zero to the total number
of minor cycles per frame minus one. The total number of
minor cycles per frame was specified when the scheduler was
created by making a call to fbsconfigure (see page 7-9 for
an explanation of this subroutine).

overruns an integer value indicating the value to which you wish the
overrun count to be set when scheduling resumes on the
specified scheduler. If you do not wish to change the overrun
count, you can specify the value −1.

The FORTRAN Library Interface

7-23

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsresume(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-24

fbsrunrtc – Start/Stop Real–Time Clock 7

This subroutine is invoked to start or stop the counting of a real–time clock that has been
attached to a frequency–based scheduler.

Call Statement

call fbsrunrtc(schdle, runflag, istat1, istat2)
integer schdle, runflag, istat1, istat2

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which you wish to start or
stop the attached real–time clock. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing its
identifier, you can specify a value of −1.

runflag an integer value indicating whether the real–time clock is to be
started or stopped. A nonzero value indicates that the clock is
to be started. A zero value indicates that the clock is to be
stopped.

istat1 an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsrunrtc(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent. If istat1 contains a value
indicating that an error has occurred on an open or ioctl
call, the error status of that call is returned in istat2.

istat2 the error status of an open or ioctl call. See the include file
<errno.h> for a description of the error.

The FORTRAN Library Interface

7-25

fbsschedself – Schedule a Process/Thread on a Frequency-Based Scheduler 7

The fbsschedself subroutine is invoked to schedule the calling process or thread on a
frequency-based scheduler.

It is important to note that fbsschedself does not allow a process to set its scheduling
policy and priority or its CPU bias. These tasks must be performed prior to invoking
fbsschedself.

A process can set i ts scheduling policy and priority by using the sched_
setscheduler(2) library routine; it can set its CPU bias by using the the
mpadvise(3) library routine or run(1) command. Procedures for using these
functions are explained in the RedHawk Linux User’s Guide.

Note that you cannot use this subroutine to add /idle to a frequency-based scheduler.

To schedule the calling process on a frequency-based scheduler, it must have alter
permission for the scheduler.

You must not change the scheduling policy or priority of a process while it is scheduled on
a scheduler by using sched_setscheduler or other program interfaces that allow
you to change scheduling policy and priority. The frequency-based scheduler is not aware
of changes in scheduling policy and priority that are made by using these interfaces.

If you need to change the scheduling policy or priority of a single-threaded FBS-scheduled
process, you may do so by using schedpgmresched to reschedule it (see page 7-62 for
an explanation of this routine).

Call Statement

call fbsschedself(schdle, name, sched_buf, istat)
integer schdle, istat
character* (*) name
integer (*) sched_buf

Parameters

schdle a unique, positive integer value representing the identifier for a
frequency–based scheduler. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing the
identifier, you can specify the value −1.

name a standard path name or arbitrary content identifying the
program associated with the calling process. A full or relative
path name of up to 1023 characters can be specified.

sched_buf an integer array that contains the scheduling parameters with
which you wish to schedule the process. The information that
is specified in this array is presented in Table 7-5.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbsschedself(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-26

Table 7-5. Contents of Array Elements: fbssetrtc

Element Contents

sched_buf(1) an integer value indicating the version of sched_buf that is being
passed to fbsschedself. Specify the symbolic constant
FBSSCHED_BUF_V1, which is defined in <fbsched.h> for this
purpose.

sched_buf(2) an integer value to be passed to a process that is scheduled on a
frequency-based scheduler. This value can be retrieved by the FBS–
scheduled process through a call to rtparm (see page 7-43 for an
explanation of this subroutine).

sched_buf(3) an integer value indicating the frequency with which the calling
process is to be wakened in each major frame. A period of one
indicates that the calling process is to be wakened every minor
cycle; a period of two indicates that it is to be wakened once every
two minor cycles, a period of three once every three minor cycles,
and so on.

This value can range from one to the number of minor cycles that
compose a frame on the specified scheduler as defined in a call to
fbsconfigure (see page 7-9 for an explanation of this
subroutine).

sched_buf(4) an integer value indicating the first minor cycle in which the calling
process is scheduled to be wakened in each frame. This value can
range from zero to the total number of minor cycles per frame
minus one. The total number of minor cycles per frame is specified
in a call to fbsconfigure (see page 7-9 for an explanation of
this routine).

sched_buf(5) an integer value indicating whether or not the scheduler should be
stopped in the event that the calling process causes a frame overrun.
A nonzero value indicates that the scheduler will be stopped.

sched_buf(6) an integer value that is returned by fbsschedself and is the
unique frequency–based scheduler process identifier for the
scheduled process

The FORTRAN Library Interface

7-27

fbssetrtc – Set Real–Time Clock 7

This subroutine is invoked to establish the duration of a minor cycle by setting the count
and the resolution values for a real–time clock.

Call Statement

call fbssetrtc(schdle, count, resolution, istat1, istat2)
integer schdle, count, resolution, istat1, istat2

Parameters

Parameters must be specified in the order indicated. They are described as follows.

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler to which a real–time clock has
been attached. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of −1.

count an integer value indicating the number of clock counts per
minor cycle. This value can range from 2 to 65535.

resolution an integer value indicating the duration in microseconds of one
clock count. This value must be one of the following: 1, 10,
100, 1000, or 10000.

istat1 an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the fbssetrtc(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent. If istat1 contains a value
indicating that an error has occurred on an open or ioctl
call, the error status of that call is returned in istat2.

istat2 the error status of an open or ioctl call. See the include file
<errno.h> for a description of the error.

NOTE: Although a count of 1 cannot be used, a timing interval equal to a resolution
value can be set by using the next lower resolution value and a count of 10;
e.g., a resolution of 1,000 and count value of 10 results in a timing interval of
10,000 microseconds.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-28

fbswait – Wait on a Frequency-Based Scheduler 7

This subroutine enables a process that is scheduled on a frequency-based scheduler to
sleep until its next scheduled minor cycle.

If the scheduled process does not call this library routine by its next scheduled minor
cycle, either a soft overrun or a hard overrun is incurred.

A soft overrun occurs if the per-process count of consecutively missed scheduled minor
cycles does not reach or exceed the per-process soft overrun limit. When a soft overrun
occurs, the process returns immediately from the fbswait call instead of blocking to
wait for the next scheduled minor cycle.

When the count of consecutively missed scheduled minor cycles reaches or exceeds the
per-process overrun limits, a hard overrun occurs. In this case, the process is blocked in
fbswait until the next scheduled minor cycle.

A process’ consecutive soft overrun limit may be changed from the default value of 0
using sched_pgm_set_soft_overrun_limit(3f). The hard overrun count,
which can be read via pmqrypgm(3f), and the soft overrun count, which can be read via
sched_pgm_soft_overrun_query(3f), indicate whether the process is actually
running at its assigned frequency.

When the scheduled process is subject to a deadline and the scheduled process calls this
service after its deadline time has passed, a deadline violation will be detected and the
scheduler may be halted.

Call Statement

CALL fbswait(istat)
integer istat

Parameter

istat an integer value indicating whether or not an error has occurred
and whether the process has been wakened by the scheduler or
by an pgmtrigger(3f) call from another process. Values
that may be returned are as follows:

0 The process has been wakened normally
1 The process has been wakened as the result

of a pgmtrigger(3f) call
2 The process did not sleep because the

kernel detected a soft overrun and is
allowing the process to attempt to recover
from it

Other nonzero
value An error of a specific type has occurred.

Refer to thefbswait(3f) man page for a
listing of the nonzero values that may be
returned and the types of errors that they
represent.

The FORTRAN Library Interface

7-29

nametopid – Return the Process ID for a Specified Process Name 7

The nametopid routine returns the process ID (pid) of the specified process.

Call Statement

call nametopid(name, key, cpu, pid, istat)
integer key, cpu, pid, istat
character* (*) name

Parameters

name a standard path name identifying the process.

key an integer value identifying a frequency–based scheduler; this
value must be the same value that was specified for key when
the scheduler was created by making a call to fbsconfigure
(see page 7-9 for an explanation of this subroutine). It may also
be set to -1 to indicate that the process is not sheduled on a
frequency-based scheduler.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the program for which information is to be returned.
Acceptable values and corresponding results are as follows:
0 The first process named by name that is

currently running on the processor from which
the call is made is specified

-1 The first process named by name that is
currently running on any processor is specified

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
specified

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is rescheduled

pid the process ID of the process specified in name

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the nametopid(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-30

pgmquery – Query a Process on a Frequency-Based Scheduler 7

CAUTION

This interface is obsolete. It is recommended that you use
schedpgmqry(3f) (see p. 7-59).

Information that is returned by this subroutine includes the following:

• The process’ path name

• The CPU on which the process can execute

• The frequency–based scheduler process identifier

• The scheduling priority

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is
scheduled to be wakened in each major frame)

• The value of the “halt on overrun” flag

Call Statement

call pgmquery(schdle, name, cpu, slot, prior, period, cycle, ab, istat)
integer schdle, cpu, slot, prior, period, cycle, ab, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process for which
you wish to obtain scheduling information has been scheduled.
Y o u c a n o b t a i n t h i s v a l u e b y m a k i n g a c a l l t o
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process for which
information is to be returned. A full or relative path name of
up to 1024 characters can be specified. If this variable contains
blanks, you must provide the frequency–based scheduler
process identifier in the slot parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the program for which information is to be returned.
Acceptable values and corresponding results are as follows:
0 The first process named by name that is

currently running on the processor from which
the call is made is specified

-1 The first process named by name that is
currently running on any processor is specified

The FORTRAN Library Interface

7-31

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
specified

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is rescheduled

slot an integer value providing the unique frequency–based
scheduler process identifier for the process for which
information is to be returned. This value is obtained when you
make a call to pgmschedule (see page 7-37 for an
explanation of this subroutine). This value must be − 1 if you
wish to identify the program to be queried only by specifying
name and cpu.

prior an integer value indicating the specified process’ scheduling
priority.

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame.

cycle an integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame

ab an integer value indicating the value of the “halt on overrun”
flag. A nonzero value indicates that the flag is set. A value of
zero indicates that the flag is not set.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pgmquery(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-32

pgmremove – Remove a Process from a Frequency-Based Scheduler 7

This subroutine is invoked to remove a process from a frequency–based scheduler. You
can identify the process that you wish to remove by using one of the following methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier.

Call Statement

call pgmremove(schdle, name, cpu, slot, ab, istat)
integer schdle, cpu, slot, ab, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process is
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process to be removed
from the specified scheduler. A full or relative path name of up
to 1024 characters can be specified. If this variable contains
blanks, you must provide the frequency–based scheduler
process identifier in the slot parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the process to be removed from the specified scheduler.
Acceptable values and corresponding results are as follows:

0 The first process named by name that is
currently running on the processor from which
the call is made is removed

-1 The first process named by name that is
currently running on any processor is removed

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a

The FORTRAN Library Interface

7-33

CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
specified

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is specified

slot an integer value providing the unique frequency–based
scheduler process identifier for the process to be removed from
the specified scheduler. This value is obtained when you make
a call to schedpgmadd (see page 7-55 for an explanation of
this subroutine). This value must be − 1 if you choose to
identify the program to be removed only by specifying name
and cpu.

ab an integer value indicating the manner in which the specified
process is be removed from the specified scheduler. A positive
value indicates that the process is to be removed from the
scheduler but allowed to continue executing. A negative value
indicates that the process is to be removed from the scheduler
and terminated.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pgmremove(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-34

pgmreschedule – Reschedule a Process 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a process’
scheduling priority has changed. If you have an existing applica-
tion that uses this interface, it is recommended that you change
your application to use schedpgmresched(3f) (see p. 7-62).

This subroutine is invoked to change the scheduling parameters for a process that is
scheduled on a frequency–based scheduler. You may wish, for example, to change a
program’s priority or the frequency with which it is scheduled to run. You cannot,
however, change the CPU on which it has been scheduled.

To change a process’ priority, the following conditions must be met:

• The calling process must have the capabilities associated with the
fbscheduser role (see Chapter 1).

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER

privilege.

You can call pgmreschedule to change the parameters without having called
pgmremove to remove the process from the scheduler (see page 7-32) or fbsintrpt to
stop the simulation (see page 7-17).

You can identify the process that you wish to reschedule by using one of the following
methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier.

Call Statement

call pgmreschedule(schdle, name, cpu, slot, prior, param, period, cycle, ab, istat)
integer schdle, cpu, slot, prior, param, period, cycle, ab, istat
character* (*) name

Parameters

The FORTRAN Library Interface

7-35

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process is
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process to be
rescheduled. A full or relative path name of up to 1024
characters can be specified. If this variable contains blanks,
you must provide the frequency–based scheduler process
identifier in the slot parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the process to be rescheduled. Acceptable values and
corresponding results are as follows:

0 The first process named by name that is
currently running on the processor from which
the call is made is rescheduled

-1 The first process named by name that is
currently running on any processor is
rescheduled

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
rescheduled

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is rescheduled

slot an integer value providing the unique frequency–based
scheduler process identifier for the process to be rescheduled.
This value is obtained when you make a call to pgmschedule
(see page 7-37 for an explanation of this subroutine). This
value must be − 1 if you wish to identify the program to be
rescheduled only by specifying name and cpu.

prior an integer value indicating the specified process’ scheduling
pr io r i ty . A p rocess tha t has been schedu led us ing
pgmschedule (see p. 7-37 for an explanation of this
subroutine) is scheduled under the POSIX SCHED_RR

scheduling policy. The value specified must lie in the range of
priorities associated with this policy. You can obtain the
allowable range of priorities by invoking the run(1)
command from the shell and not specifying any options or
arguments (see the corresponding man page for an explanation
of this command). Higher numerical values correspond to more
favorable scheduling priorities. For complete information on

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-36

scheduling policies and priorities, refer to the RedHawk Linux
User’s Guide.

param an integer value to be passed to a process that is scheduled on a
frequency–based scheduler.

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame. A
period of one indicates that the specified program is to be
wakened every minor cycle; two indicates that it is to be
wakened once every two minor cycles, three once every three
minor cycles, and so on. This value can range from one to the
number of minor cycles that compose a frame on the specified
scheduler as defined in a call to fbsconfigure (see page
7-9).

cycle an integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame.
This value can range from zero to the total number of minor
cycles per frame minus one. The total number of minor cycles
per frame is specified in a call to fbsconfigure (see page
7-9 for an explanation of this subroutine).

ab an integer value indicating whether or not the scheduler should
be stopped in the event that the specified process causes a
frame overrun. A nonzero value indicates that the scheduler
will be stopped.

istat an integer value indicating whether or not an error has
occurred. Zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the pgmreschedule(3f) man page for a listing
of the nonzero values that may be returned and the types of
errors that they represent.

The FORTRAN Library Interface

7-37

pgmschedule – Schedule a Process on a Frequency-Based Scheduler 7

CAUTION

This interface is obsolete. It is maintained for compatibility with
CX/UX, but its behavior with respect to specification of a process’
scheduling priority has changed. If you have an existing applica-
tion that uses this interface, it is recommended that you change
your application to use schedpgmadd(3f) (see p. 7-55).

This subroutine is invoked to create a new process and schedule it on a frequency–based
scheduler. When a process is scheduled using this subroutine, it is scheduled under the
POSIX SCHED_RR scheduling policy (for complete information on scheduling policies
and priorities, refer to the RedHawk Linux User’s Guide).

If you wish to set the process’ scheduling priority, the following conditions must be met:

• The calling process must have the capabilities associated with the
fbscheduser role (see Chapter 1).

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set), or the calling process must have the P_OWNER

privilege.

If you wish to modify the process’ CPU bias when you invoke this subroutine, the real or
effective user ID of the calling process must match the real or saved user ID of the process
for which the CPU assignment is being changed.

Call Statement

call pgmschedule(schdle, name, prior, param, period, cycle, ab, cpu, slot, istat)
integer schdle, prior, param, period, cycle, ab, cpu, slot, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for a
frequency–based scheduler. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing the
identifier, you can specify the value −1.

name a standard path name identifying the program to be scheduled
on the scheduler. A full or relative path name of up to 1024
characters can be specified.

prior an integer value indicating the specified process’ scheduling
priority. A process that is scheduled using pgmschedule is
scheduled under the POSIX SCHED_RR scheduling policy. The
value specified must lie in the range of priorities associated
with this policy. You can obtain the allowable range of
priorities by invoking the run(1) command from the shell
and not specifying any options or arguments (see the

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-38

corresponding man page for an explanation of this command).
Higher numerical values correspond to more favorable
scheduling priorities.

For complete information on scheduling policies and priorities,
refer to the RedHawk Linux User’s Guide.

param an integer value to be passed to a process that is scheduled on a
frequency–based scheduler. This value can be retrieved by the
FBS–scheduled process through a call to rtparm (see page
7-43 for an explanation of this subroutine).

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame. A
period of one indicates that the specified program is to be
wakened every minor cycle; a period of two indicates that it is
to be wakened once every two minor cycles, a period of three
once every three minor cycles, and so on. This value can range
from one to the number of minor cycles that compose a frame
on t he spec i f i ed schedu le r a s de f ined in a ca l l t o
fbsconfigure (see page 7-9).

cycle an integer value indicating the first minor cycle in which the
specified program is scheduled to be wakened in each frame.
This value can range from zero to the total number of minor
cycles per frame minus one. (The total number of minor cycles
per frame is specified in a call to fbsconfigure. See page
7-9 for an explanation of this subroutine.)

ab refers to a flag that contains an integer value indicating whether
or not the scheduler should be stopped in the event that the
specified program causes a frame overrun. A nonzero value
indicates that the scheduler will be stopped.

cpu refers to a mask that identifies the processors on which the
specified program can be scheduled to run. Acceptable values
and corresponding results are as follows:

0 The program specified by name can be
scheduled on the processor from which the call
is made

-1 The program specified by name can be
scheduled on any processor

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) the program specified by name can be
scheduled on CPU i

slot refers to a variable to which pgmschedule will return an
integer value that is the unique frequency–based scheduler
process identifier for the scheduled process.

The FORTRAN Library Interface

7-39

istat refers to a variable to which pgmschedule will return an
integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the pgmschedule(3f) man page for a listing of
the nonzero values that may be returned and the types of errors
that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-40

pgmstat – Query State of FBS–Scheduled Process 7

This subroutine is invoked to obtain information about the state of a particular process that
has been scheduled on a frequency–based scheduler. The state of the process indicates
whether it is in the fbswait sleep state or is in another state.

You can identify the process by using one of the following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier.

Information that is returned includes the following:

• The process’ path name

• A mask of the CPU(s) on which the process can run

• The frequency–based scheduler process identifier

• The current state of the process

Call Statement

call pgmstat(schdle, name, cpu, slot, state, istat)
integer schdle, cpu, slot, state, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process for which
you wish to obtain state information has been scheduled. You
c a n o b t a i n t h i s v a l u e b y m a k i n g a c a l l t o
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process for which state
information is to be returned. A full or relative path name of
up to 1024 characters can be specified. If this variable contains
blanks, you must provide the frequency–based scheduler
process identifier in the slot parameter. Pgmstat will return
to this variable the path name of the specified FBS–scheduled
process.

The FORTRAN Library Interface

7-41

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the program for which state information is to be returned.
Acceptable values and corresponding results are as follows:

0 The first process named by name that is
currently running on the processor from which
the call is made is specified

-1 The first process named by name that is
currently running on any processor is specified

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
specified

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is specified

Pgmstat will return to this variable the mask of the CPUs on
which the specified process can run.

slot an integer value providing the unique frequency–based
scheduler process identifier for the process for which status
information is to be returned. This value is obtained when you
make a call to schedpgmadd (see page 7-55 for an
explanation of this subroutine). This value must be − 1 if you
wish to identify the program to be queried only by specifying
name and cpu. Pgmstat will return to this variable the
frequency–based scheduler process identifier for the specified
process.

state an integer value indicating the current state of the specified
process as defined in <fbsched.h.>

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pgmstat(3f) man page for a listing
of the nonzero values that may be returned and the types of
errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-42

pgmtrigger – Trigger Process Waiting on FBS 7

This subroutine enables a process to wake a process that is in the fbswait sleep state. It
is important to note that the calling process does not have to be scheduled on a frequency–
based scheduler; the target process must be.

Call Statement

call pgmtrigger(schdle, slot, tgrflg, istat)
integer schdle, slot, tgrflg, istat

Parameters

schdle a unique, positive integer value representing the identifier for a
frequency–based scheduler on which the sleeping process is
scheduled.

slot an integer value providing the unique frequency–based
scheduler process identifier for the sleeping process. This value
is obtained when you make a call to schedpgmadd (see page
7-55 for an explanation of this subroutine).

tgrflg an integer value indicating whether or not a context switch is to
be forced on the processor on which the wakened process is
executing. A nonzero value indicates that a context switch is to
be forced.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that the process is
runnable. A nonzero value indicates that an error of a specific
type has occurred. Refer to the pgmtrigger(3f) man
page for a listing of the nonzero values that may be returned
and the types of errors that they represent.

The FORTRAN Library Interface

7-43

rtparm – Return Initiation Parameter 7

This subroutine enables a process that is scheduled on a frequency–based scheduler to
obtain the value of a process initiation parameter that has been passed to it via a call to
schedpgmadd (see page 7-55) or schedpgmresched (see 7-62).

Call Statement

call rtparm(param)
integer param

Parameter

 param the integer value passed to the process via a call to
schedpgmadd or schedpgmresched.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-44

sched_pgm_deadline_query – Query the Assigned Deadline for a Process 7

This routine queries the deadline parameters for a currently scheduled process or thread on
a frequency-based scheduler.

It is important to note that this function will not detect new deadline violations. Use
sched_pgm_deadline_test(3f) to trigger the detection of new deadline
violations.

The process can be identified in one of the following ways:

• A slot only (if name is blank).

• A path name and processor id pair only (if slot is -1).

• Both a slot and the path name and processor id pair.

Call Statement

call sched_pgm_deadline_query (schdle, name, cpu, slot, ddln_halt, ddln_kind,
ddln_origin, ddln_sec, ddln_nsec, violations, istat)

integer schdle, cpu, slot, ddln_halt, ddln_kind, ddln_origin, ddln_sec, ddln_nsec,
violations, istat

character* (*) name

Parameters

schdle obtained from an fbconfigure(3f) or fbsid(3f) library
routine call or set to -1. -1 enables an FBS-scheduled process to
reference the frequency-based scheduler on which it is scheduled
without knowing the scheduler identifier.

name path name that identifies the process (or thread in a
multithreaded process). If the name is all blanks, then the slot
field (frequency-based scheduler process identifier) must be
given.

cpu either a bit mask or set to 0 or -1. If a bit mask is specified, then
those processors with (cpu & (1<<i)) set are requested. If cpu is
0, then the processor on which the call is made is requested. If
cpu is -1, then all processors are requested. The first process
named name that is currently running on one of the requested
processors is returned.

slot frequency-based scheduler process identifier for the process. If
the slot number equals -1, then a name and processor id must be
given.

ddln_halt indicates whether the scheduler will be halted upon detection of
a deadline violation. Its value may be one of the following:

0 DL_NOHALT indicating that the scheduler should not
be halted upon detection of a deadline
violation.

1 DL_HALT indicating that the scheduler should be
halted upon detection of a deadline
violation.

The FORTRAN Library Interface

7-45

ddln_kind the type of deadline set for the process by a
sched_pgm_set_deadline(3f) call. Its value affects the
interpretation of the value of ddln_sec and ddln_nsec. ddln_kind
may be one of the following:

0 DEADLINE_CLEAR indicating that no deadline is
currently assigned to the specified
process or thread

1 DEADLINE_WALL_TIME

indicating that the values ddln_sec and
ddln_nsec together specify the
CLOCK_MONOTONIC deadline time
value assigned to the process or thread.

ddln_origin denotes the point from which the deadline time is measured. It
may be one of the following:

0 DL_CYCLE_RELATIVE indicating that the deadline time is
measured from the beginning of the
cycle in which the task is scheduled.

1 DL_TASK_RELATIVE indicating that the deadline time is
measured from the time that the
scheduled task exits fbswait(3)
and begins execution.

ddln_sec together, these represent the maximum time, measured from the
ddln_nsec specified origin, until the process is expected to return to

fbswait(3f).

violations indicates the total number of deadline violations that have
occurred for the specified process or task.

istat an integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the man page for a listing of the nonzero values that
may be returned and the types of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-46

sched_pgm_deadline_test – Test for the Presence of a Deadline Violation 7

This subroutine tests for the occurrence of a deadline violation by the currently scheduled
process or thread on a frequency-based scheduler.

The process can be identified in one of the following ways:

• A slot only (if name is blank).

• A path name and processor id pair only (if slot is -1).

• Both a slot and the path name and processor id pair.

Call Statement

call sched_pgm_deadline_test (schdle, name, cpu, slot, violated, violations,
ddln_kind, ddln_origin, remaining_sec, remaining_nsec, istat)

integer schdle, cpu, slot, violated, violations, ddln_kind, ddln_origin, remaining_sec,
remaining_nsec, istat

character* (*) name

Parameters

schdle obtained from an fbconfigure(3f) or fbsid(3f) library
routine call or set to -1. -1 enables an FBS-scheduled process to
reference the frequency-based scheduler on which it is scheduled
without knowing the scheduler identifier.

name path name that identifies the process. If the name is all blanks,
then the slot field (frequency-based scheduler process identifier)
must be given.

cpu either a bit mask or set to 0 or -1. If a bit mask is specified, then
those processors with (cpu & (1<<i)) set are requested. If cpu is
0, then the processor on which the call is made is requested. If
cpu is -1, then all processors are requested. The first process
named name that is currently running on one of the requested
processors is returned.

slot frequency-based scheduler process identifier for the process. If
the slot number equals -1, then a name and processor id must be
given.

violated the occurrence of a deadline violation. It may be one of the
following

0 NO_VIOLATION indicating no deadline has occurred for
the specified process or thread.

1 DEADLINE_VIOLATION indicating a violation has occurred.

violations the number of deadline violations for the process since the
scheduler was started.

ddln_kind the type of deadline set for the process by a
sched_pgm_set_deadline(3f) call. Its value affects the
interpretation of the value of remaining_sec and remaining_nsec.
ddln_kind may be one of the following:

The FORTRAN Library Interface

7-47

0 DEADLINE_CLEAR indicating that no deadline is
currently assigned to the specified
process or thread

1 DEADLINE_WALL_TIME

indicating that the values
remaining_sec and remaining_nsec
together specify the
CLOCK_MONOTONIC time remaining
until the expiration of the deadline.

ddln_origin describes the deadline origin set for the process by a
sched_pgm_set_deadline(3f) call. Its value affects the
interpretation of the value of remaining_sec and remaining_nsec.
ddln_origin may be one of the following:

0 DL_CYCLE_RELATIVE indicating that the remaining time is
measured from the beginning of a
cycle.

1 DL_TASK_RELATIVE indicating that the remaining time is
measured from the beginning of task
execution.

remaining_sec together, these represent the remaining time that the process is
remaining_nsec expected to spend executing before returning to

fbswait(3f).

istat an integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the man page for a listing of the nonzero values that
may be returned and the types of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-48

sched_pgm_set_deadline – Set or Clear Deadline Time 7

This routine sets or clears the deadline time for a currently scheduled process or thread on
a frequency-based scheduler.

The deadline time for a process indicates the maximum amount of time the process is
expected to spend executing before returning to fbswait(3f). If the deadline time is
exceeded, a deadline violation is incurred by the process. The scheduler may optionally be
halted upon detection of a deadline violation.

To set or clear a deadline, the calling process must have alter permission for the scheduler.

The process can be identified in one of the following ways:

• A slot only (if name is blank).

• A path name and processor id pair only (if slot is -1).

• Both a slot and the path name and processor id pair.

Call Statement

call sched_pgm_set_deadline (schdle, name, cpu, slot, ddln_halt, ddln_kind,
ddln_origin, ddln_sec, ddln_nsec, istat)

integer schdle, cpu, slot, ddln_halt, ddln_kind, ddln_origin, ddln_sec, ddln_nsec, istat
character* (*) name

Parameters

schdle obtained from an fbconfigure(3f) or fbsid(3f) library
routine call or set to -1. -1 enables an FBS-scheduled process to
reference the frequency-based scheduler on which it is scheduled
without knowing the scheduler identifier.

name path name that identifies the process (or thread in a
multithreaded process). If the name is all blanks, then the slot
field (frequency-based scheduler process identifier) must be
given.

cpu either a bit mask or set to 0 or -1. If a bit mask is specified, then
those processors with (cpu & (1<<i)) set are requested. If cpu is
0, then the processor on which the call is made is requested. If
cpu is -1, then all processors are requested. The first process
named name that is currently running on one of the requested
processors is returned.

slot frequency-based scheduler process identifier for the process. If
the slot number equals -1, then a name and processor id must be
given.

ddln_halt indicates whether the scheduler will be halted upon detection of
a deadline violation. Its value may be one of the following:

0 DL_NOHALT indicating that the scheduler should not
be halted upon detection of a deadline
violation.

1 DL_HALT indicating that the scheduler should be

The FORTRAN Library Interface

7-49

halted upon detection of a deadline
violation.

ddln_kind the type of deadline to be set for the process. Its value affects the
interpretation of the value of ddln_sec and ddln_nsec. ddln_kind
must be one of the following:

0 DEADLINE_CLEAR indicating that any deadline currently
assigned to the specified process is to
be removed. The specified process is
no longer subject to a deadline. This is
the default.

1 DEADLINE_WALL_TIME

indicating that the values ddln_sec and
ddln_nsec together specify the
CLOCK_MONOTONIC deadline time
value assigned to the process or thread.

ddln_origin denotes the point from which the deadline time is measured. It
may be one of the following:

0 DL_CYCLE_RELATIVE indicating that the deadline time is to
be measured from the beginning of the
cycle in which the task is scheduled.
The measured time will include any
delay before the process begins
execution, including normal process
dispatch latency, time spent servicing
interrupts or time spent waiting for a
higher priority task to yield the CPU.

1 DL_TASK_RELATIVE indicating that the deadline time is
measured from the time that the
scheduled task exits fbswait(3)
and begins execution.

ddln_sec must be non-negative and together define the number of seconds
ddln_nsec and nanoseconds (as for a C struct timespec value) representing

the deadline time. The deadline time is the maximum time,
relative to the specified origin, until the specified process is
expected to return to fbswait(3f). By default, this value is
zero seconds, zero nanoseconds; i.e., if the process never sets a
deadline time, it is zero.

istat an integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the man page for a listing of the nonzero values that
may be returned and the types of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-50

sched_pgm_set_soft_overrun_limit – Set Soft Overrun Limit 7

This subroutine sets the consecutive soft overrun limit for a currently scheduled process or
thread on a frequency-based scheduler.

To set the consecutive soft overrun limit, the calling process must have alter permission for
the scheduler.

The process can be identified in one of the following ways:

• A slot only (if name is blank).

• A path name and processor id pair only (if slot is -1).

• Both a slot and the path name and processor id pair.

Call Statement

call sched_pgm_set_soft_overrun_limit (schdle, name, cpu, slot, soft_limit,
istat)

integer schdle,cpu, slot, soft_limit, istat
character* (*) name

Parameters

schdle obtained from an fbconfigure(3f) or fbsid(3f) library
routine call or set to -1. -1 enables an FBS-scheduled process to
reference the frequency-based scheduler on which it is scheduled
without knowing the scheduler identifier.

name path name that identifies the process. If the name is all blanks,
then the slot field (frequency-based scheduler process identifier)
must be given.

cpu either a bit mask or set to 0 or -1. If a bit mask is specified, then
those processors with (cpu & (1 << i)) set are requested. If cpu is
0, then the processor on which the call is made is requested. If
cpu is -1, then all processors are requested. The first process
named that is currently running on one of the requested
processors has its soft overrun limit set.

slot frequency-based scheduler process identifier for the process. If
the slot number equals -1, then a name and processor ID must be
given.

soft_limit number of consecutive soft overruns allowed to occur before
failure. soft_limit must be non-negative and must be less than
INT_MAX. By default, this value is zero; i.e., if the process never
sets a consecutive soft overrun limit, then it is zero.

istat an integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the man page for a listing of the nonzero values that
may be returned and the types of errors that they represent.

The FORTRAN Library Interface

7-51

sched_pgm_soft_overrun_query – Query Soft Overrun Processing 7

This subroutine queries the status of soft overrun processing for a currently scheduled
process or thread on a frequency-based scheduler. The process can be identified in one of
the following ways:

• A slot only (if name is blank).

• A path name and processor id pair only (if slot is -1).

• Both a slot and the path name and processor id pair.

Call Statement

call sched_pgm_soft_overrun_query (schdle, name, cpu, slot, soft_limit,
soft_total, istat)

integer schdle, cpu, slot, soft_limit, soft_total, istat
character* (*) name

Parameters

schdle obtained from an fbconfigure(3f) or fbsid(3f) library
routine call or set to -1. -1 enables an FBS-scheduled process to
reference the frequency-based scheduler on which it is scheduled
without knowing the scheduler identifier.

name path name that identifies the process. If the name is all blanks,
then the slot field (frequency-based scheduler process identifier)
must be given.

cpu either a bit mask or set to 0 or -1. If a bit mask is specified, then
those processors with (cpu & (1<<i)) set are requested. If cpu is
0, then the processor on which the call is made is requested. If
cpu is -1, then all processors are requested. The first process
named name that is currently running on one of the requested
processors is returned.

slot frequency-based scheduler process identifier for the process. If
the slot number equals -1, then a name and processor id must be
given.

soft_limit number of consecutive soft overruns set by calling
sched_pgm_set_soft_overrun_limit(3f).

soft_total total number of soft overruns incurred by the process.

istat an integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the man page for a listing of the nonzero values that
may be returned and the types of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-52

schedfbsqry – Query Processes on a Frequency-Based Scheduler 7

The schedfbsqry subroutine is invoked to obtain information about processes that have
been scheduled on a frequency–based scheduler. Information is returned for all processes
scheduled on the user–specified processor(s). Information provided for each process
includes the following:

• A mask of the CPU(s) on which the process can execute

• The frequency–based scheduler process identifier

• The scheduling policy under which the process has been scheduled

• The scheduling priority

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is
scheduled to be wakened in each major frame)

• The value of the “halt on overrun” flag

Call Statement

CALL schedfbsqry(schdle, cpu, buf1size, buf1, maxsize, buf2size, buf2, istat)
integer schdle, cpu, buf1size, buf1(buf1size), maxsize, buf2size, istat
character* (*) buf2

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which you wish to obtain
scheduling information. You can obtain this value by making a
call to fbsconfigure(3f) (see page 7-9 for an explanation
of this subroutine) or fbsid(3f) (see page 7-14). If you
wish to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier, you
can specify a value of − 1.

cpu an integer value indicating the processor(s) for which
scheduling information is to be obtained. Acceptable values
and corresponding results are as follows:

0 Scheduling information for processes
executing on the processor from which the call
is made is returned

-1 Scheduling information for all processes on the
scheduler is returned

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU), scheduling information for processes
executing on CPU i is returned

buf1size an integer value indicating the size in 32–bit words of the array
represented by buf1. Because 9 words of information are
returned for each process, it is recommended that this value be
a multiple of 9.

The FORTRAN Library Interface

7-53

buf1 an array containing a series of 11 integer values for each
process on the processor(s) specified with the cpu parameter.
The number of processes for which these values are returned is
bound by the value of the buf1size parameter. If, for example,
the value of buf1size is 145, values for 16 processes will be
returned. These values represent the scheduling information for
the process(es). The type of information returned in each array
element for a single process is presented in Table 7-6.

maxsize an integer value indicating the maximum length of a path name
to be returned in buf2

buf2size an integer value indicating the size in bytes of the character
string represented by buf2. To ensure that buf2 is large enough
to accommodate the names of all processes that you wish to
query, you may find it helpful to compute the number of bytes
needed by multiplying the maximum number of processes
a l lowed on the schedu le r (see the in fo rma t ion on
fbsconfigure presented on page 7-9) by 32.

buf2 refers to a variable to which schedfbsqry will return the
path names for each process on the processor(s) specified with
the cpu parameter. Path names are returned as a series of
strings. The length of each string is less than or equal to the
value of maxsize. Where maxsize is not large enough to
accommodate a full path name, the concluding component
names are returned. The number of path names returned is
bound by the value of the buf2size parameter.

Table 7-6. Contents of Array Elements: schedfbsqry

Element Contents

1 Byte offset of the process’ path name in buf2

2 Length in bytes of the process’ path name

3 Mask of the CPU(s) on which the process can execute

4 The process’ frequency–based scheduler process identifier

5 The process’ scheduling policy

6 The process’ scheduling priority

7 The number of minor cycles indicating the frequency with
which the process is to be wakened in each major frame
(period)

8 The first minor cycle in which the process is scheduled to be
wakened in each major frame (starting base cycle)

9 The value of the “halt on overrun” flag. A nonzero value
indicates that the flag is set. A value of zero indicates that the
flag is not set.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-54

istat refers to a variable to which schedfbsqry will return an
integer value indicating whether or not an error has occurred.
A value of zero indicates that no error has occurred. A nonzero
value indicates that an error of a specific type has occurred.
Refer to the schedfbsqry(3f) man page for a listing of
the nonzero values that may be returned and the types of errors
that they represent.

The FORTRAN Library Interface

7-55

schedpgmadd – Schedule a Process on a Frequency-Based Scheduler 7

The schedpgmadd subroutine is invoked to create a new process and schedule it on a
frequency–based scheduler. To include arguments, see schedpgmadd_args on page
7-57. It is important to note that to use this subroutine, the calling process must have the
capabilities associated with the fbscheduser role (see Chapter 1).

Call Statement

call schedpgmadd(schdle, name, cid, prior, param, period, cycle, ab, cpu, slot, istat)
integer schdle, cid, prior, param, period, cycle, ab, cpu, slot, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for a
frequency–based scheduler. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing the
identifier, you can specify the value − 1.

name a standard path name identifying the program to be scheduled
on the scheduler. A full or relative path name of up to 1024
characters can be specified.

cid an integer value indicating the POSIX scheduling policy under
which the specified process is to be scheduled: SCHED_FIFO,

SCHED_RR or SCHED_OTHER. Scheduling policies are defined in
the file <sched.h>.

prior an integer value indicating the scheduling priority of the
specified program. The range of acceptable priority values is
governed by the scheduling policy specified.

You can determine the allowable range of priorities associated
with each policy (SCHED_FIFO, SCHED_RR, or SCHED_OTHER) by
invoking the run(1) command from the shell and not
specifying any options or arguments (see the corresponding
man page for an explanation of this command). Higher
numerical values correspond to more favorable priorities.

For complete information on scheduling policies and priorities,
refer to the RedHawk Linux User’s Guide.

param an integer value to be passed to a process that is scheduled on a
frequency–based scheduler. This value can be retrieved by the
FBS–scheduled process through a call to rtparm (see page
7-43 for an explanation of this subroutine).

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame. A
period of one indicates that the specified program is to be
wakened every minor cycle; a period of two indicates that it is
to be wakened once every two minor cycles, a period of three

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-56

once every three minor cycles, and so on. This value can range
from one to the number of minor cycles that compose a frame
on t he spec i f i ed schedu le r a s de f ined in a ca l l t o
fbsconfigure (see page 7-9).

cycle an integer value indicating the first minor cycle in which the
specified program is scheduled to be wakened in each frame.
This value can range from zero to the total number of minor
cycles per frame minus one. (The total number of minor cycles
per frame is specified in a call to fbsconfigure. See page
7-9 for an explanation of this subroutine).

ab a flag that contains an integer value indicating whether or not
the scheduler should be stopped in the event that the specified
program causes a frame overrun. A nonzero value indicates
that the scheduler will be stopped.

cpu a mask that identifies the processors on which the specified
program can be scheduled to run. Acceptable values and
corresponding results are as follows:

0 The program specified by name can be
scheduled on the processor from which the call
is made

-1 The program specified by name can be
scheduled on any processor

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) the program specified by name can be
scheduled on CPU i

slot an integer value that is the unique frequency–based scheduler
process identifier for the scheduled process.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the schedpgmadd(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-57

schedpgmadd_args – Schedule a Process on a Frequency-Based Scheduler with
Arguments 7

The schedpgmadd_args subroutine is invoked to create a new process with arguments
and schedule it on a frequency–based scheduler. It is important to note that to use this
subroutine, the calling process must have the capabilities associated with the fbscheduser
role (see Chapter 1).

Call Statement

call schedpgmadd_args(schdle, name, arglist, arglen, argc, cid, prior, param,
period, cycle, ab, cpu, slot, istat)
integer schdle, cid, prior, param, period, cycle, ab, cpu, slot, istat
integer argc, arglen(0:argc-1)
character* (*) arglist(0:argc-1)
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for a
frequency–based scheduler. You can obtain this value by
making a call to fbsconfigure(3f) (see page 7-9 for an
explanation of this subroutine) or fbsid(3f) (see page
7-14). If you wish to reference the frequency–based scheduler
on which the calling process is scheduled without knowing the
identifier, you can specify the value − 1.

name a standard path name identifying the program to be scheduled
on the scheduler. A full or relative path name of up to 1024
characters can be specified.

cid an integer value indicating the POSIX scheduling policy under
which the specified process is to be scheduled: SCHED_FIFO,

SCHED_RR or SCHED_OTHER. Scheduling policies are defined in
the file <sched.h>.

prior an integer value indicating the scheduling priority of the
specified program. The range of acceptable priority values is
governed by the scheduling policy specified.

You can determine the allowable range of priorities associated
with each policy (SCHED_FIFO, SCHED_RR, or SCHED_OTHER) by
invoking the run(1) command from the shell and not
specifying any options or arguments (see the corresponding
man page for an explanation of this command). Higher
numerical values correspond to more favorable priorities.

For complete information on scheduling policies and priorities,
refer to the RedHawk Linux User’s Guide.

param an integer value to be passed to a process that is scheduled on a
frequency–based scheduler. This value can be retrieved by the
FBS–scheduled process through a call to rtparm (see page
7-43 for an explanation of this subroutine).

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-58

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame. A
period of one indicates that the specified program is to be
wakened every minor cycle; a period of two indicates that it is
to be wakened once every two minor cycles, a period of three
once every three minor cycles, and so on. This value can range
from one to the number of minor cycles that compose a frame
on t he spec i f i ed schedu le r a s de f ined in a ca l l t o
fbsconfigure (see page 7-9).

cycle an integer value indicating the first minor cycle in which the
specified program is scheduled to be wakened in each frame.
This value can range from zero to the total number of minor
cycles per frame minus one. (The total number of minor cycles
per frame is specified in a call to fbsconfigure. See page
7-9 for an explanation of this subroutine).

ab a flag that contains an integer value indicating whether or not
the scheduler should be stopped in the event that the specified
program causes a frame overrun. A nonzero value indicates
that the scheduler will be stopped.

cpu a mask that identifies the processors on which the specified
program can be scheduled to run. Acceptable values and
corresponding results are as follows:

0 The program specified by name can be
scheduled on the processor from which the call
is made

-1 The program specified by name can be
scheduled on any processor

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) the program specified by name can be
scheduled on CPU i

arglist, arglen, argc the length of the arglist array is explicitly passsed in argc.
arglist and arglen must be dimensioned at least as large as argc.
While these arrays may be dimensioned greater than required,
argc specifies the number of elements at the beginning of each
array that are to be used by the routine. The string length of
each element in arglist is passed in the corresponding element
of the arglen array.

slot an integer value that is the unique frequency–based scheduler
process identifier for the scheduled process.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the schedpgmadd_args(3f) man page
for a listing of the nonzero values that may be returned and the
types of errors that they represent.

The FORTRAN Library Interface

7-59

schedpgmqry – Query a Process on a Frequency-Based Scheduler 7

The schedpgmqry subroutine is invoked to obtain information for a particular process
that has been scheduled on a frequency–based scheduler. You can identify the process by
using one of the following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier.

Information that is returned includes the following:

• The process’ path name

• The CPU on which the process can execute

• The frequency–based scheduler process identifier

• The scheduling policy

• The scheduling priority

• The period (the number of minor cycles indicating the frequency with
which the process is wakened in each major frame)

• The starting base cycle (the first minor cycle in which the process is
scheduled to be wakened in each major frame)

• The value of the “halt on overrun” flag

Call Statement

call schedpgmqry(schdle, name, cpu, slot, cid, prior, period, cycle, ab, istat)
integer schdle, cpu, slot, cid, prior, period, cycle, ab, istat
character* (*) name

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-60

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process for which
you wish to obtain scheduling information has been scheduled.
Y o u c a n o b t a i n t h i s v a l u e b y m a k i n g a c a l l t o
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process for which
information is to be returned. A full or relative path name of
up to 1024 characters can be specified. If this variable contains
blanks, you must provide the frequency–based scheduler
process identifier in the slot parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the program for which information is to be returned.
Acceptable values and corresponding results are as follows:

0 The first process named by name that is
currently running on the processor from which
the call is made is specified

-1 The first process named by name that is
currently running on any processor is specified

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
specified

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is specified

slot an integer value providing the unique frequency–based
scheduler process identifier for the process for which
information is to be returned. This value is obtained when you
make a call to schedpgmadd (see page 7-55 for an
explanation of this subroutine). This value must be − 1 if you
wish to identify the program to be queried only by specifying
name and cpu.

cid an integer value indicating the scheduling policy under which
the specified process has been scheduled

prior an integer value indicating the specified process’ scheduling
priority

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame.

The FORTRAN Library Interface

7-61

cycle an integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame

ab an integer value indicating the value of the “halt on overrun”
flag. A nonzero value indicates that the flag is set. A value of
zero indicates that the flag is not set.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the schedpgmqry(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-62

schedpgmresched – Reschedule a Process 7

The schedpgmresched subroutine is invoked to change the scheduling parameters for
a process that is scheduled on a frequency–based scheduler. You may wish, for example,
to change a program’s scheduling policy or priority or the frequency with which it is
scheduled to run. You cannot, however, change the CPU on which it has been scheduled.

If you wish to (1) change a process’ scheduling policy to the SCHED_FIFO or the SCHED_RR

policy, (2) change the priority of a process scheduled under the SCHED_FIFO or the
SCHED_RR policy or (3) raise the priority of a process scheduled under the SCHED_OTHER

policy above a per-process or process limit, the following conditions must be met:

• The calling process must have the capabilities associated with the
fbscheduser role (see Chapter 1).

• The effective user ID of the calling process must match the effective user
ID of the target process (the process for which the scheduling policy and
priority are being set).

You can identify the process that you wish to reschedule by using one of the following
methods:

• Specify the name of the process and the CPU on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

The only method that can be used to identify a process that has
been scheduled multiple times on the same CPU is to specify its
frequency–based scheduler process identifier.

Call Statement

call schedpgmresched(schdle, name, cpu, slot, cid, prior, param, period, cycle,
ab, istat)

integer schdle,cpu, slot, cid, prior, param, period, cycle, ab, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process is
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process to be
rescheduled. A full or relative path name of up to 1024
characters can be specified. If this variable contains blanks,

The FORTRAN Library Interface

7-63

you must provide the frequency–based scheduler process
identifier in the slot parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the process to be rescheduled. Acceptable values and
corresponding results are as follows:

0 The first process named by name that is
currently running on the processor from which
the call is made is rescheduled

-1 The first process named by name that is
currently running on any processor is
rescheduled

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
rescheduled

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is rescheduled

slot an integer value providing the unique frequency–based
scheduler process identifier for the process to be rescheduled.
This value is obtained when you make a call to schedpgmadd
(see page 7-55 for an explanation of this subroutine). This
value must be –1 if you wish to identify the program to be
rescheduled only by specifying name and cpu.

cid an integer value indicating the scheduling policy under which
the specified program is to be scheduled: SCHED_FIFO,
SCHED_RR or SCHED_OTHER. Scheduling policies are defined
in the file <sched.h>.

prior an integer value indicating the scheduling priority of the
specified program. The range of acceptable priority values is
governed by the scheduling policy specified.

You can determine the allowable range of priorities associated
with each policy (SCHED_FIFO, SCHED_RR, or SCHED_OTHER) by
invoking the run(1) command from the shell and not
specifying any options or arguments (see the corresponding
man page for an explanation of this command). Higher
numerical values correspond to more favorable priorities.For
complete information on scheduling policies and priorities,
refer to the RedHawk Linux User’s Guide.

param an integer value to be passed to a process that is scheduled on a
frequency–based scheduler.

period an integer value indicating the frequency with which the
specified program is to be wakened in each major frame. A
period of one indicates that the specified program is to be

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-64

wakened every minor cycle; a period of two indicates that it is
to be wakened once every two minor cycles, a period of three
once every three minor cycles, and so on. This value can range
from one to the number of minor cycles that compose a frame
on t he spec i f i ed schedu le r a s de f ined in a ca l l t o
fbsconfigure (see page 7-9).

cycle an integer value indicating the first minor cycle in which the
specified process is scheduled to be wakened in each frame.
This value can range from zero to the total number of minor
cycles per frame minus one. The total number of minor cycles
per frame is specified in a call to fbsconfigure (see page
7-9 for an explanation of this subroutine).

ab a flag that contains an integer value indicating whether or not
the scheduler should be stopped in the event that the specified
process causes a frame overrun. A nonzero value indicates that
the scheduler will be stopped.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the schedpgmresched(3f) man page
for a listing of the nonzero values that may be returned and the
types of errors that they represent.

The FORTRAN Library Interface

7-65

Performance Monitor Routines 7

The Performance Monitor routines provide access to the key features of the Performance
Monitor. They enable you to perform such basic operations as:

• clearing performance monitor values for a process or processor

• starting and stopping performance monitoring for a process or processor

• obtaining performance monitor values for a process or processor

Routine Summary 7

Performance Monitor routines are summarized in Table 7-7. Complete information about
each routine is provided under the section “Using Performance Monitor Routines.”

FORTRAN Library Call Sequence 7

The approximate order in which you might call the Performance Monitor routines from an
application program is illustrated in Figure 7-2.

Table 7-7. Performance Monitor FORTRAN Library Routines

Routine Page Description

pmclrpgm 7-67 Clear values for a process

pmclrtable 7-69 Clear values for processor(s)

pmmonitor 7-70 Start/stop performance monitoring on processor(s)

pmprogram 7-71 Start/stop performance monitoring on a process

pmqrycpu 7-73 Query values for selected processor(s)

pmqrylist 7-75 Query values for a list of processes

pmqrypgm 7-77 Query values for a selected process

pmquerytimer 7-80 Query Performance Monitor mode

pmselect 7-81 Select Performance Monitor mode

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-66

Figure 7-2. FORTRAN Library Call Sequence: Performance Monitor

END

START

pmselect

pmclrtable

pmmonitor

pmqrycpu
pmqrylist

pmprogram

pmmonitor

pmqrypgm

pmprogram

The FORTRAN Library Interface

7-67

Using Performance Monitor Routines 7

In the sections that follow, the Performance Monitor routines contained in the libF77rt
library are presented in alphabetical order.

pmclrpgm – Clear Values for a Process 7

This subroutine is invoked to clear performance monitor values for a particular process
that has been scheduled on a frequency–based scheduler. You can identify the process by
using one of the following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU on which it is scheduled, and its
frequency–based scheduler process identifier.

NOTE

This subroutine will clear the process’ total soft overrun count.

Call Statement

call pmclrpgm(schdle, name, cpu, slot, istat)
integer schdle, cpu, slot, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process is
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process for which values
are to be cleared. A full or relative path name of up to 1024
characters can be specified. If this variable is filled with
blanks, you must provide the frequency–based scheduler
process identifier in the slot parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the process for which values are to be cleared. Acceptable
values and corresponding results are as follows:

0 The first process named by name that is
currently running on the processor from which
the call is made is specified

-1 The first process named by name that is
currently running on any processor is specified

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-68

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU) and it is the only bit set, the first process
named by name that is running on CPU i is
specified

If (cpu & (1<<i)) is set and it is not the only bit
set, the first process named by name that is
currently running on any of the selected CPUs
is specified

slot an integer value providing the unique frequency–based
scheduler process identifier for the process for which values
are to be cleared. This value is obtained when you make a call
to schedpgmadd (see page 7-55 for an explanation of this
subroutine). This value must be − 1 if you wish to identify the
process only by specifying name and cpu.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmclrpgm(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-69

pmclrtable – Clear Values for Processor(s) 7

This subroutine is invoked to clear performance monitor values for FBS–scheduled
processes on one or more specified processors on a selected scheduler.

NOTE

This subroutine will clear the total soft overrun count for all
related processes.

Call Statement

call pmclrtable(schdle, cpucount, cpulist, istat)
integer schdle, cpucount, cpulist(cpucount), istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the processes are
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

cpucount an integer value indicating the number of elements contained in
the array represented by cpulist.

cpulist an array that consists of the number of elements specified by
the cpucount parameter and contains one or more integer
values indicating the processor or processors for which
performance monitor values are to be cleared. Acceptable
values and corresponding results are as follows:

0 Performance monitor values for FBS–scheduled
processes executing on the processor from
which the call is made are cleared

-1 Performance monitor values for all processes on
the scheduler

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU), performance monitor values for
processes executing on CPU i are cleared

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmclrtable(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-70

pmmonitor – Start/Stop Performance Monitoring on Processor(s) 7

This subroutine is invoked to start or stop performance monitoring for FBS–scheduled
processes on one or more specified processors on a selected scheduler.

Call Statement

call pmmonitor(schdle, pmflag, cpucount, cpulist, istat)
integer schdle, pmflag, cpucount, cpulist(cpucount), istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the processes are
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

pmflag an integer value indicating whether performance monitoring is
to be started or stopped. A nonzero value indicates that
performance monitoring is to be started. A zero value indicates
that performance monitoring is to be stopped.

cpucount an integer value indicating the number of elements in the array
represented by cpulist.

cpulist an array that consists of the number of elements specified by
the cpucount parameter and contains one or more integer
values indicating the processor or processors for which
performance monitoring is to be started or stopped. Acceptable
values and corresponding results are as follows:

0 Performance monitoring for FBS–scheduled
processes executing on the processor from
which the call is made is started or stopped

-1 Performance monitoring for all processes on the
scheduler is started or stopped

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a
CPU), performance monitoring for processes
executing on CPU i is started or stopped

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmmonitor(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-71

pmprogram – Start/Stop Performance Monitoring on a Process 7

This subroutine is invoked to start or stop performance monitoring for a particular process
that has been scheduled on a frequency–based scheduler. You can identify the process by
using one of the following methods:

• Specify the name of the process and the CPU(s) on which it is scheduled.

• Specify the process’ frequency–based scheduler process identifier (slot
number).

• Specify the name of the process, the CPU(s) on which it is scheduled, and
its frequency–based scheduler process identifier.

Call Statement

call pmprogram(schdle, name, cpu, slot, pmflag, istat)
integer schdle, cpu, slot, pmflag, istat
character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the process is
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

name a standard path name identifying the process for which
performance monitoring is to be started or stopped. A full or
relative path name of up to 1024 characters can be specified. If
this variable is filled with blanks, you must provide the
frequency–based scheduler process identifier in the slot
parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the process for which performance monitoring is to be started
or stopped. Acceptable values and corresponding results are as
follows:

0 The first process named by name that is currently
running on the processor from which the call is made
is specified

-1 The first process named by name that is currently
running on any processor is specified

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a CPU) and
it is the only bit set, the first process named by name
that is currently running on CPU i is specified

If (cpu & (1<<i)) is set and it is not the only bit set,
the first process named by name that is currently
running on any of the selected CPUs is specified

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-72

slot an integer value providing the unique frequency–based
scheduler process identifier for the process for which
performance monitoring is to be started or stopped. This value
is obtained when you make a call to schedpgmadd (see page
7-55 for an explanation of this subroutine). This value must be
− 1 if you wish to identify the process only by specifying name
and cpu.

pmflag an integer value indicating whether performance monitoring is
to be started or stopped. A nonzero value indicates that
performance monitoring is to be started. A zero value indicates
that performance monitoring is to be stopped.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmprogram(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

The FORTRAN Library Interface

7-73

pmqrycpu – Query Values for Selected Processor(s) 7

This subroutine is invoked to obtain performance monitor values for FBS–scheduled
processes on one or more specified processors on a selected scheduler.

Call Statement

call pmqrycpu(schdle, cpu, bufsiz, buf, istat)
integer schdle, cpu, bufsiz, buf(bufsiz), istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler on which the processes are
scheduled. You can obtain this value by making a call to
fbsconfigure(3f) (see page 7-9 for an explanation of this
subroutine) or fbsid(3f) (see page 7-14). If you wish to
reference the frequency–based scheduler on which the calling
process is scheduled without knowing its identifier, you can
specify a value of − 1.

cpu an integer value indicating the processor(s) for which
performance monitor values are to be obtained. Acceptable
values and corresponding results are as follows:

0 Performance monitor values for FBS–scheduled
processes executing on the processor from which the
call is made are returned

-1 Performance monitor values for all processes on the
scheduler are returned

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a CPU),
performance monitor values for processes executing
on CPU i are returned

bufsiz an integer value indicating the size in 32–bit words of the array
represented by buf. Because 16 words of information are
returned for each process, it is recommended that this value be
a multiple of 16.

buf an array containing a series of 16 integer values for each FBS–
scheduled process on the processor(s) specified with the cpu
parameter. The number of processes for which these values are
returned is bound by the value of the bufsiz parameter. If, for
example, the value of bufsiz is 165, values for 10 processes will
be returned. These values represent the performance
monitoring information for the process(es). The type of
information returned in each array element for a single process
is presented in Table 7-8.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-74

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmqrycpu(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

Table 7-8. Contents of Array Elements: pmqrycpu

Element Contents

1 The process’ frequency–based scheduler process identifier
(slot number)

2 The amount of time that the process has spent running from
the last time that it has been wakened by the scheduler until it
has called fbswait (last time)

3 The number of times that the process has been wakened by the
scheduler (total iterations, or cycles)

4 The number of seconds that the process has spent running in
all cycles (total seconds). The total amount of time that the
process has spent running is equal to the value of Element 4
plus the value of Element 5.

5 The additional number of microseconds that the process has
spent running in all cycles (total microseconds). The total
amount of time that the process has spent running is equal to
the value of Element 4 plus the value of Element 5.

6 The number of hard frame overruns caused by the process

7 The least amount of time that the process has spent running in
a cycle (minimum cycle time)

8 The number of the minor cycle in which the minimum cycle
time has occurred (minimum cycle cycle)

9 The number of the major frame in which the minimum cycle
time has occurred (minimum cycle frame)

10 The greatest amount of time that the process has spent running
in a cycle (maximum cycle time)

11 The number of the minor cycle in which the maximum cycle
time has occurred (maximum cycle cycle)

12 The number of the major frame in which the maximum cycle
time has occurred (maximum cycle frame)

13 The least amount of time that the process has spent running
during a major frame (minimum frame time)

14 The number of the major frame in which the minimum frame
time has occurred (minimum frame frame)

15 The greatest amount of time that the process has spent running
during a major frame (maximum frame time)

16 The number of the major frame in which the maximum frame
time has occurred (maximum frame frame)

The FORTRAN Library Interface

7-75

pmqrylist – Query Values for a List of Processes 7

This subroutine is invoked to obtain performance monitor values for a list of processes
scheduled on a frequency–based scheduler.

Call Statement

call pmqrylist(schdle, slotcount, slotlist, bufsiz, buf, istat)
integer schdle, slotcount, slotlist(slotcount), bufsiz, buf(bufsiz), istat

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which performance monitor
values are requested. You can obtain this value by making a
call to fbsconfigure(3f) (see page 7-9 for an explanation
of this subroutine) or fbsid(3f) (see page 7-14). If you
wish to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier, you
can specify a value of − 1.

slotcount an integer value indicating the number of frequency–based
scheduler process identifiers contained in the array represented
by slotlist.

slotlist an array that consists of the number of elements specified by
the slotcount parameter and contains one or more integer
values indicating the frequency–based scheduler process
identifiers for which performance monitor values are to be
returned.

bufsiz an integer value indicating the size in 32–bit words of the array
represented by buf. Because 15 words of information are
returned for each process, it is recommended that this value be
a multiple of 15.

buf an array containing a series of 15 integer values for each FBS–
scheduled process. The number of processes for which these
values are returned is bound by the value of the bufsiz
parameter. If, for example, the value of bufsiz is 155, values for
10 processes will be returned. These values represent the
performance monitoring information for the processes. The
type of information returned in each array element for a single
process is presented in Table 7-9.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmqrylist(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-76

Table 7-9. Contents of Array Elements: pmqrylist

Element Contents

1 The amount of time that the process has spent running from
the last time that it has been wakened by the scheduler until it
has called fbswait (last time)

2 The number of times that the process has been wakened by
the scheduler (total iterations, or cycles)

3 The number of seconds that the process has spent running in
all cycles (total seconds). The total amount of time that the
process has spent running is equal to the value of Element 3
plus the value of Element 4.

4 The additional number of microseconds that the process has
spent running in all cycles (total microseconds). The total
amount of time that the process has spent running is equal to
the value of Element 3 plus the value of Element 4.

5 The number of hard frame overruns caused by the process

6 The least amount of time that the process has spent running in
a cycle (minimum cycle time)

7 The number of the minor cycle in which the minimum cycle
time has occurred (minimum cycle cycle)

8 The number of the major frame in which the minimum cycle
time has occurred (minimum cycle frame)

9 The greatest amount of time that the process has spent
running in a cycle (maximum cycle time)

10 The number of the minor cycle in which the maximum cycle
time has occurred (maximum cycle cycle)

11 The number of the major frame in which the maximum cycle
time has occurred (maximum cycle frame)

12 The least amount of time that the process has spent running
during a major frame (minimum frame time)

13 The number of the major frame in which the minimum frame
time has occurred (minimum frame frame)

14 The greatest amount of time that the process has spent
running during a major frame (maximum frame time)

15 The number of the major frame in which the maximum frame
time has occurred (maximum frame frame)

The FORTRAN Library Interface

7-77

pmqrypgm – Query Values for a Selected Process 7

This subroutine is invoked to obtain performance monitor values for a particular process
scheduled on a frequency–based scheduler.

Call Statement

call pmqrypgm(schdle, name, cpu, slot, last, iter, totsec, totusec, over, minc,
minctc, minctf, maxc, maxctc, maxctf, minf, minftf, maxf, maxftf, istat)

integer schdle, cpu, slot, last, iter, totsec, totusec, over, minc, minctc, minctf, maxc,
 maxctc, maxctf, minf, minftf, maxf, maxftf, istat

character* (*) name

Parameters

schdle a unique, positive integer value representing the identifier for
the frequency–based scheduler for which performance monitor
values are requested. You can obtain this value by making a
call to fbsconfigure(3f) (see page 7-9 for an explanation
of this subroutine) or fbsid(3f) (see page 7-14). If you
wish to reference the frequency–based scheduler on which the
calling process is scheduled without knowing its identifier, you
can specify a value of − 1.

name a standard path name identifying the process for which
performance monitoring values are to be returned. A full or
relative path name of up to 1024 characters can be specified. If
this variable is filled with blanks, you must provide the
frequency–based scheduler process identifier in the slot
parameter.

cpu an integer value indicating the processor(s) to be used in
conjunction with the value of the name parameter to identify
the process for which performance monitoring values are to be
returned. Acceptable values and corresponding results are as
follows:
0 The first process named by name that is currently

running on the processor from which the call is made
is specified

-1 The first process named by name that is currently
running on any processor is specified

Bit mask If (cpu & (1<<i)) is set (where i is an integer
ranging from zero to 15 and representing a CPU) and
it is the only bit set, the first process named by name
that is currently running on CPU i is specified

If (cpu & (1<<i)) is set and it is not the only bit set,
the first process named by name that is currently
running on any of the selected CPUs is specified

slot an integer value providing the unique frequency–based
scheduler process identifier for the process for which
performance monitoring values are to be returned. This value is
obtained when you make a call to schedpgmadd (see page
7-55 for an explanation of this subroutine). This value must be

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-78

− 1 if you wish to identify the process only by specifying name
and cpu.

last an integer value indicating the amount of time that the process
has spent running from the last time that it has been wakened
by the scheduler until it has called fbswait (last time).

iter an integer value indicating the number of times that the process
has been wakened by the frequency–based scheduler since the
last time that performance monitor values have been cleared
and performance monitoring has been enabled (total iterations,
or cycles).

totsec an integer value indicating the number of seconds that the
process has spent running in all cycles (total time in seconds).
The total amount of time that the process has spent running is
equal to the value of totsec plus totusec.

totusec an integer value indicating the additional number of
microseconds that the process has spent running in all cycles
(total time in microseconds). The total amount of time that the
process has spent running is equal to the value of totsec plus
totusec.

over an integer value indicating the number of times that the process
has caused a hard frame overrun.

minc an integer value indicating the least amount of time that the
process has spent running in a cycle (minimum cycle time).

minctc an integer value indicating the number of the minor cycle in
which the minimum cycle time has occurred (minimum cycle
cycle).

minctf an integer value indicating the number of the major frame in
which the minimum cycle time has occurred (minimum cycle
frame).

maxc an integer value indicating the greatest amount of time that the
process has spent running in a cycle (maximum cycle time).

maxctc an integer value indicating the number of the minor cycle in
which the maximum cycle time has occurred (maximum cycle
cycle).

maxctf an integer value indicating the number of the major frame in
which the maximum cycle time has occurred (maximum cycle
frame).

minf an integer value indicating least amount of time that the
process has spent running in a major frame (minimum frame
time).

minftf an integer value indicating the number of the major frame in
which the minimum frame time has occurred (minimum frame
frame).

The FORTRAN Library Interface

7-79

maxf an integer value indicating the greatest amount of time that the
process has spent running in a major frame (maximum frame
time).

maxftf an integer value indicating the number of the major frame in
which the maximum frame time has occurred (maximum frame
frame).

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmqrypgm(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-80

pmquerytimer – Query Performance Monitor Mode 7

This subroutine is invoked to determine whether performance monitor timing values
include or exclude time spent servicing interrupts.

Call Statement

call pmquerytimer(mode)
integer mode

Parameter

mode a value indicating whether performance monitor timing values
include or exclude time spent servicing interrupts. A value of
one indicates that interrupt time is included. A value of zero
indicates that interrupt time is excluded. A value of one or zero
is returned if the call is successful; a negative value is returned
to indicate that an error of a specific type has occurred. Refer
to the pmquerytimer(3f) man page for a listing of the
values that may be returned and the types of errors that they
represent.

The FORTRAN Library Interface

7-81

pmselect – Select Performance Monitor Mode 7

This subroutine is invoked to select the timing mode under which the performance monitor
is to run. The timing mode can be set to include or exclude time spent servicing interrupts.

When interrupt time is included, a process’ user and system times will total the elapsed
time which accrues when the process is the currently running process, including all time
spent servicing interrupts. The time spent servicing interrupts is added to the process’
system time.

When excluding interrupt time, a process’ user and system times will total the time which
accrues when the process is the currently running process, excluding all time spent
servicing interrupts.

Note that to set the timing mode, the calling process must have the capabilities associated
with the fbscheduser role (see Chapter 1).

Call Statement

call pmselect(mode, istat)
integer mode, istat

Parameters

mode an integer value indicating whether time spent servicing
interrupts is to be included in or excluded from performance
monitor timing values. A nonzero value indicates that interrupt
time is to be included. A value of zero indicates that interrupt
time is to be excluded.

istat an integer value indicating whether or not an error has
occurred. A value of zero indicates that no error has occurred.
A nonzero value indicates that an error of a specific type has
occurred. Refer to the pmselect(3f) man page for a
listing of the nonzero values that may be returned and the types
of errors that they represent.

RedHawk Linux Frequency-Based Scheduler User’s Guide

7-82

A-1

A
Appendix 0Example rtcp Script

1
1
1

This appendix contains an example of a script that can be invoked at the system command
prompt to execute rtcp commands.

This script illustrates using commands to:

• configure a scheduler and schedule programs on it (cs, sp)

• view information about the frequency-based scheduled processes (vp)

• view the scheduler configuration (vs)

• attach, set, and start a real-time clock (ats, stc, rc)

• clear performance monitor values (cpm)

• start performance monitoring and frequency-based scheduling (pm, start)

• view the minor cycle and major frame count (vc)

• stop performance monitoring; stop the real-time clock and the frequency-
based scheduler (pm, sc, stop)

• detach the real-time clock (dts)

• remove the scheduler and all scheduled processes (rms)

rtcp cs –s37 –C10 –I664 –M5 –N10
rtcp sp –s37 -n ./program1 –c0 -bF –p19 –f4 –m0 -ohalt
rtcp sp –s37 -n ./program2 –c1 -bF –p19 –f2 –m1 -ohalt
rtcp vp –s37 –c*
rtcp vs –s37
rtcp ats –s37 –d/dev/rcim/rtc0
rtcp stc –s37 –O10000 –D1
rtcp rc –s37
rtcp cpm –s37 –c*
rtcp pm –s37 –c* –PON
rtcp start –s37
rtcp vc –s37
rtcp pm -s37 -c* -POFF
rtcp sc -s37
rtcp stop -s37
rtcp dts -s37
rtcp rms -s37 -a

RedHawk Linux Frequency-Based Scheduler User’s Guide

A-2

B-1

B
Appendix 0rtcp Error Messages

2
2
2

This appendix contains descriptions of the errors that may be reported by the real-time
command processor, rtcp.

Table B-1. rtcp Errors

Error Description

-2 Interrupt device not specified

-3 Both EOC and interrupt device specified

-4 Process not specified

-5 Invalid rtcp command specified

-6 Invalid help command specified

-7 Invalid cpu (–c) parameter

-8 Invalid frequency (–f) parameter

-9 Invalid halt flag (–h|-o) parameter

-10 Invalid start cycle (–m) parameter

-11 Invalid priority (–p) parameter

-12 Invalid cycle count (–C) parameter

-13 Invalid clock tick duration (–D) parameter

-14 Invalid process per cycle (–M) parameter

-15 Invalid process per frequency-based scheduler (–N) parameter

-16 Invalid clock ticks per cycle (–O) parameter

-17 Invalid PM flag (–P) parameter

-18 Invalid parameter specified

-22 rj file not specified

-23 Invalid rj file specified

-24 Invalid pm viewing mode specified

-25 Invalid pm timing mode specified

-26 Unable to change timing mode to exclude interrupt time

-27 Invalid scheduling policy specified

-28 Exit rtcp

-29 Invalid soft overrun limit (-L) parameter

-30 Number of hosts (-H) exceeds limit

-31 Hostname(s) (-H) not specified

-32 Unable to obtain list of schedulers
-33 Invalid deadline (-T) parameter
-34 Invalid deadline origin (-r) parameter: cycle or task

RedHawk Linux Frequency-Based Scheduler User’s Guide

B-2

C-1

C
Appendix 0Example C Interface

3
3
3

This appendix contains an example program that illustrates use of the C library interface to
the Frequency-Based Scheduler and the Performance Monitor.

The program performs the following tasks:

• configures a scheduler

• schedules programs on the scheduler

• attaches, sets, and starts a real-time clock

• starts performance monitoring for each frequency-based scheduled process

• starts frequency-based scheduling

• obtains performance monitor values for the frequency-based scheduled
processes

• monitors a processor’s idle time

The example program begins on the next page.

RedHawk Linux Frequency-Based Scheduler User’s Guide

C-2

schedule.c 0

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sched.h>
#include <sys/stat.h>
#include <fbsched.h>
#include <errno.h>
#define NUM_PROCS 4
#define START 1
#define STOP 0
#define PROGRAM1 "./prog1"
#define PROGRAM2 "./prog2"
#define IDLE0 "idle0"
#define IDLE1 "idle1"
#define CLOCK1 "/dev/rcim/rtc0"
void
cleanup(int fbs_id)
{
fbsrunrtc(fbs_id, 0); /* stop timing device */
fbsdetach(fbs_id); /* detach timing device */
fbsremove(fbs_id, -1); /* remove frequency-based scheduler */
}
int main()
{
struct fbsconfig_ds fbs_buf;
struct pgm2_ds sched_buf;
struct pmqry_ds pm_buf[NUM_PROCS];
struct fbsinfo_ds info_buf;
struct fbscycle_ds cycle_buf;
int idle0_fpid; /* fpid for idle on cpu 0 */
int idle1_fpid; /* fpid for idle on cpu 1 */
int pgm1_fpid; /* fpid for testprogram 1 */
int pgm2_fpid; /* fpid for testprogram 2 */
int cpu;
int istat;
int pmflg;
int intrflg;
int i;
int count;
int resolution;
char name[1024]; /* programâ€™s full or orelative path name */
char *pgmname[4]; /* programâ€™s name */
FILE *fp;
/* Open file to store performance information */
fp= fopen("pmresults", "w+");
if (fp == NULL)
printf("open failed errno = %d\n", errno);
/*
* CONFIGURE SCHEDULER
*/
fbs_buf.key = 37; /* scheduler key */
fbs_buf.cycles = 10; /* number of cycles per frame */

Example C Interface

C-3

fbs_buf.progs = 5; /* max. number of programs per cycle */
fbs_buf.max = 10; /* max. number of programs allowed on the fbs */
fbs_buf.reset = -1; /* kill/remove processes currently scheduled */
/* owner/group read/write */
fbs_buf.configflg = 0664;
istat = fbsconfigure(&fbs_buf);
if (istat != 0) {
printf("could not configure scheduler: errno = %d\n" ,errno);
exit(1);
}
/*
* SCHEDULE test program1 PROGRAM1
*/
sched_buf.name_ptr = PROGRAM1;
sched_buf.cid = SCHED_FIFO; /* first-in-first out (FIFO) policy */
sched_buf.prior = 19;
sched_buf.param = 0; /* optional initiation parameter */
sched_buf.period = 2; /* time between wakeups */
sched_buf.cycle = 0; /* starting base cycle */
sched_buf.halt = 0; /* halt on overrun */
/* Set cpu mask to schedule testprogram1 on cpu 0 */
sched_buf.cpu = 1;
istat = sched_pgmadd(fbs_buf.fbs_id, &sched_buf);
printf("fbsid = %d\n", fbs_buf.fbs_id);
if (istat != 0) {
printf("could not schedule %s on cpu %d : errno = %d\n",
sched_buf.name_ptr, sched_buf.cpu>>1, errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
pgm1_fpid = sched_buf.fpid;
printf("pgm1 fpid = %d\n", pgm1_fpid);
/*
* SCHEDULE test program2 PROGRAM2
*/
sched_buf.name_ptr = PROGRAM2;
sched_buf.prior = 19;
sched_buf.cid = SCHED_FIFO; /* first-in-first out (FIFO) policy */
sched_buf.param = 0; /* optional initiation parameter */
sched_buf.period = 2; /* time between wakeups */
sched_buf.cycle = 1; /* starting base cycle */
sched_buf.halt = 0; /* halt on overrun */
/* Set cpu mask to schedule testprogram2 on cpu 1 */
sched_buf.cpu = 2;
istat = sched_pgmadd(fbs_buf.fbs_id, &sched_buf);
printf("fbsid = %d\n", fbs_buf.fbs_id);
if (istat != 0) {
printf("could not schedule %s on cpu %d : errno = %d\n",
sched_buf.name_ptr, sched_buf.cpu>>1, errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
pgm2_fpid = sched_buf.fpid;
printf("pgm2 fpid = %d\n", pgm2_fpid);
/*
* SCHEDULE IDLE ON CPU 0
*

RedHawk Linux Frequency-Based Scheduler User’s Guide

C-4

* The only parameter required for /idle is the CPU.
*/
sched_buf.name_ptr = "/idle";
sched_buf.cid = SCHED_OTHER; /* first-in-first out (FIFO) policy */
sched_buf.prior = 0;
sched_buf.param = 0; /* optional initiation parameter */
sched_buf.period = 1; /* time between wakeups */
sched_buf.cycle = 0; /* starting base cycle */
sched_buf.halt = 0; /* halt on overrun */
/* Set cpu mask to schedule idle on cpu 0 */
sched_buf.cpu = 1; /* mask = 1<<cpu */
istat = sched_pgmadd(fbs_buf.fbs_id, &sched_buf);
printf("fbsid = %d\n", fbs_buf.fbs_id);
if (istat != 0) {
printf("could not schedule %s on cpu %d : errno = %d\n",
sched_buf.name_ptr, sched_buf.cpu, errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
idle0_fpid = sched_buf.fpid;
printf("idle0 fpid = %d\n", idle0_fpid);
/*
* SCHEDULE IDLE ON CPU 1
*
* The only parameter required for /idle is the CPU.
*/
sched_buf.name_ptr = "/idle";
sched_buf.prior = 0;
sched_buf.cid = SCHED_OTHER; /* first-in-first out (FIFO) policy */
sched_buf.param = 0; /* optional initiation parameter */
sched_buf.period = 1; /* time between wakeups */
sched_buf.cycle = 0; /* starting base cycle */
sched_buf.halt = 0; /* halt on overrun */
/* Set cpu mask to schedule idle on cpu 1 */
sched_buf.cpu = 2; /* mask = 1<<cpu */
istat = sched_pgmadd(fbs_buf.fbs_id, &sched_buf);
if (istat != 0) {
printf("could not schedule %s on cpu %d : errno = %d\n",
sched_buf.name_ptr, sched_buf.cpu, errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
idle1_fpid = sched_buf.fpid;
printf("idle1 fpid = %d\n", idle1_fpid);
/*
* ATTACH/SET REAL-TIME CLOCK
* Set the clock to interrupt every 10 msecs.
*/
count = 10000;
resolution = 1;
istat = fbsattach(fbs_buf.fbs_id, CLOCK1);
if (istat != 0) {
printf("could not attach timing source: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}

Example C Interface

C-5

istat = fbssetrtc(fbs_buf.fbs_id, count, resolution);
if (istat != 0) {
printf("could not set rtc: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
istat = fbsrunrtc(fbs_buf.fbs_id, START);
if (istat != 0) {
printf("could not start rtc: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/*
* START PERFORMANCE MONITORING
*/
pmflg = 1;
/* zero out the "name" variable (fpid must be specified).
* Ulimately, the "name" variable can be used to store
* the full or relative path name of a test program.
*/
bzero(name, sizeof(name));
cpu = 0; /* not used if fpid is being used */
/* start performance monitoring for testprogram1 */
istat = pmprogram(fbs_buf.fbs_id, name, cpu, pgm1_fpid, pmflg);
if (istat != 0) {
printf("could not start pm for testprogram1 : errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/* start performance monitoring for testprogram2 */
istat = pmprogram(fbs_buf.fbs_id, name, cpu, pgm2_fpid, pmflg);
if (istat != 0) {
printf("coul dnot start pm for testprogram2 : errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/* start performance monitoring for idle on cpu 0 */
istat = pmprogram(fbs_buf.fbs_id, name, cpu, idle0_fpid, pmflg);
if (istat != 0) {
printf("could not start pm for idle0 : errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/* start performance monitoring for idle on cpu 1 */
istat = pmprogram(fbs_buf.fbs_id, name, cpu, idle1_fpid, pmflg);
if (istat != 0) {
printf("could not start pm for idle1 : errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/*
* START SCHEDULING
*/
intrflg = 1;
istat = fbsintrpt(fbs_buf.fbs_id, intrflg);
if (istat != 0) {
printf("could not start scheduler : errno = %d\n", errno);

RedHawk Linux Frequency-Based Scheduler User’s Guide

C-6

cleanup(fbs_buf.fbs_id);
return(1);
}
/*
* QUERY PERFORMANCE MONITOR VALUES
* 1 second = 100 cycles 1 minute = 600 frames
* Query once per second for 1 minute
*/
pm_buf[0].fpid = pgm1_fpid; pgmname[0] = PROGRAM1;
pm_buf[1].fpid = pgm2_fpid; pgmname[1] = PROGRAM2;
pm_buf[2].fpid = idle0_fpid; pgmname[2] = IDLE0;
pm_buf[3].fpid = idle1_fpid; pgmname[3] = IDLE1;
sleep(1); /* sleep for a while */
printf("Please wait, performance information being gathered. \n");
cycle_buf.cframe = 0;
while ((cycle_buf.cframe < 600)) {
istat = fbscycle(fbs_buf.fbs_id, &cycle_buf);
if (istat != 0) {
printf("could not query fbscycle: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
istat = pmqrylist(fbs_buf.fbs_id, pm_buf, NUM_PROCS);
if (istat != 0) {
printf("could not query process: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
fprintf(fp,"***\n");
fprintf(fp,"\tFRAME=%d, CYCLE=%d\n", cycle_buf.cframe,
cycle_buf.ccycle);
fprintf(fp,"***\n\n");
/* Write performance information for each
* process into a file
*/
for (i = 0; i < NUM_PROCS; i++) {
fprintf(fp,"pgm=%s, fpid=%d\n", pgmname[i],
pm_buf[i].fpid);
fprintf(fp,"--------------------------------------\n");
fprintf(fp,"last cycle secs:nsecs = %d:%d\n",
pm_buf[i].lastcyc_tm.tv_sec,
pm_buf[i].lastcyc_tm.tv_nsec);
fprintf(fp,"total cycles = %d\n",pm_buf[i].tot_cycles);
fprintf(fp, "total cycles secs:nsecs = %d:%d\n",
pm_buf[i].tot_cycles_tm.tv_sec,
pm_buf[i].tot_cycles_tm.tv_nsec);
fprintf(fp, "overruns = %d\n",pm_buf[i].overruns);
fprintf(fp, "mincyc secs:nsecs = %d:%d\n",
pm_buf[i].mincyc_tm.tv_sec,
pm_buf[i].mincyc_tm.tv_nsec);
fprintf(fp, "mincyc_cycle = %d\n",
pm_buf[i].mincyc_cycle);
fprintf(fp, "mincyc_frame = %d\n",
pm_buf[i].mincyc_frame);
fprintf(fp, "maxcyc secs:nsecs = %d:%d\n",
pm_buf[i].maxcyc_tm.tv_sec,

Example C Interface

C-7

pm_buf[i].maxcyc_tm.tv_nsec);
fprintf(fp, "maxcyc_cycle = %d\n",
pm_buf[i].maxcyc_cycle);
fprintf(fp, "maxcyc_frame = %d\n",
pm_buf[i].maxcyc_frame);
fprintf(fp, "minframe secs:nsecs = %d:%d\n",
pm_buf[i].minframe_tm.tv_sec,
pm_buf[i].minframe_tm.tv_nsec);
fprintf(fp, "minframe = %d\n", pm_buf[i].minframe);
fprintf(fp, "maxframe secs:nsecs = %d:%d\n",
pm_buf[i].maxframe_tm.tv_sec,
pm_buf[i].maxframe_tm.tv_nsec);
fprintf(fp, "maxframe = %d\n", pm_buf[i].maxframe);
fprintf(fp, "\n");
}
sleep(1); /* sleep for a while */
}
printf("Performance data has been gathered. \n");
if (istat != 0)
printf("istat = %d\n", istat);
/* Stop PM on CPUs 0 and 1 */
pmmonitor(fbs_buf.fbs_id, 0, 3);
/* Stop the clock */
istat = fbsrunrtc(fbs_buf.fbs_id, STOP);
if (istat != 0) {
printf("could not stop rtc: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/* Detach from the fbs */
istat = fbsdetach(fbs_buf.fbs_id);
if (istat != 0) {
printf("could not dettach timing source: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
/* Remove the fbs */
istat = fbsremove(fbs_buf.fbs_id, -1);
if (istat != 0) {
printf("could not remove timing source: errno = %d\n", errno);
cleanup(fbs_buf.fbs_id);
return(1);
}
cleanup(fbs_buf.fbs_id);
return(0);
}

RedHawk Linux Frequency-Based Scheduler User’s Guide

C-8

prog.c 0

#include <fbsched.h>
#include <time.h>

double fact(double x) {
if (x == 1.0) return x;
else return x * fact(x-1.0);

}

int main() {
double factVal;
struct timespec currTime;

// Get/Create a seed for random number creation
clock_gettime(CLOCK_REALTIME, &currTime);
srandom((unsigned) currTime.tv_nsec);

while(1){
fbswait();
factVal = fact ((double) ((random() % 10) + 1));

}
}

Makefile 0

cc = gcc
FLAGS = -g -lccur_rt -lccur_fbsched

all: schedule prog1 prog2

schedule: schedule.c
$(CC) $(FLAGS) -o schedule schedule.c

prog1: prog.c
$(CC) $(FLAGS) -o prog1 prog.c
cp prog1 prog2

clean:
rm -f prog1 prog2 schedule pmresults *.*~

Glossary-1

Glossary

deadline violation

The condition that occurs when a frequency-based scheduled process does not finish its
processing before the end of its deadline time. Note that detection of a deadline violation
may cause the scheduler to be stopped.

end-of-cycle scheduling

A form of frequency-based scheduling in which scheduling is triggered when the last
process scheduled to execute in the current minor cycle of the current major frame
completes its processing.

frame overrun

The condition that occurs when a frequency-based scheduled process does not finish its
processing before it is scheduled to run again. This applies to interrupt scheduling only,
not end-of-cycle scheduling.

frequency

When applied to the frequency-based scheduler, indicates a time interval. This interval
can be based on high-resolution clocks, an external interrupt source or completion of a
cycle.

frequency-based scheduler

A high resolution task synchronization mechanism that enables processes to run at user-
specified frequencies.

hard overrun

A type of frame overrun that is a catastrophic failure of the scheduled process.

idle time

Time during which the CPU is not busy.

iteration

One instance of a process being awakened by a frequency-based scheduler.

last time

A value returned by the performance monitor indicating the amount of time that a
frequency-based scheduled process has spent running from the last time that it has been
awakened by the scheduler until it has called fbswait(3).

RedHawk Linux Frequency-Based Scheduler User’s Guide

Glossary-2

major frame

One pass through all of the minor cycles with which a frequency-based scheduler is
configured. A major frame has associated with it a duration, which is obtained by
multiplying the duration of a minor cycle by the number of minor cycles per major frame.

maximum cycle cycle

A value returned by the performance monitor indicating the number of the minor cycle in
which the maximum cycle time has occurred.

maximum cycle frame

A value returned by the performance monitor indicating the number of the major frame in
which the maximum cycle time has occurred.

maximum cycle time

A value returned by the performance monitor indicating the greatest amount of time in
microseconds that a frequency-based scheduled process has spent running in a cycle.

maximum frame frame

A value returned by the performance monitor indicating the number of the major frame in
which the maximum frame time has occurred.

maximum frame time

A value returned by the performance monitor indicating the greatest amount of time in
microseconds that a frequency-based scheduled process has spent running during a major
frame.

minimum cycle cycle

A value returned by the performance monitor indicating the number of the minor cycle in
which the minimum cycle time has occurred.

minimum cycle frame

A value returned by the performance monitor indicating the number of the major frame in
which the minimum cycle time has occurred.

minimum cycle time

A value returned by the performance monitor indicating the least amount of time in
microseconds that a frequency-based scheduled process has spent running in a cycle.

minimum frame frame

A value returned by the performance monitor indicating the number of the major frame in
which the minimum frame time has occurred.

Glossary

Glossary-3

minimum frame time

A value returned by the performance monitor indicating the least amount of time in
microseconds that a frequency-based scheduled process has spent running during a major
frame.

minor cycle

The smallest unit of frequency maintained by a frequency-based scheduler. A minor cycle
has associated with it a duration, which is the time that elapses between interrupts
generated by the timing source attached to the scheduler. If the timing source is a real-
time clock, the minor cycle duration is defined by specifying the number of clock counts
per minor cycle and the number of microseconds per clock count.

number of overruns

A value returned by the performance monitor indicating the number of times that a
frequency-based scheduled process has caused a frame overrun.

performance monitor

A mechanism that makes it possible to monitor use of the CPU by processes that are
scheduled on a frequency-based scheduler.

period

A frequency-based scheduler parameter that specifies how often a specified program is to
be awakened in each major frame. A period of one indicates that the program is to be
awakened every minor cycle; a period of two indicates that it is to be awakened once
every two minor cycles; and so on.

privilege

A mechanism through which processes are allowed to perform sensitive operations or
override system restrictions.

process dispatch latency

The time that elapses from the occurrence of an external event, which is signified by an
interrupt, until the process waiting for that external event executes its first instruction in
user mode.

scheduler key

A user-supplied numeric identifier for a frequency-based scheduler.

shielded processor

A CPU that is responsible for running high-priority tasks that are protected from the
unpredictable processing associated with interrupts and system daemons.

RedHawk Linux Frequency-Based Scheduler User’s Guide

Glossary-4

soft overrun

A type of frame overrun that is a catastrophic failure only if the process has reached its
limit on the number of soft overruns tolerated. Each scheduled process has a soft overrun
limit, defaulting to 0.

Some soft overruns result from random, unpredictable, or external events unlikely to
recur. Other soft overruns result from only minor frame overruns. Soft overruns give the
scheduled process a chance to recover from a frame overrun and return to synchronization.

Soft overruns apply to interrupt scheduling only, not end-of-cycle scheduling.

spare time

Processor time that is composed of the following: (1) idle time, (2) CPU time of processes
that are not scheduled on a frequency-based scheduler, and (3) CPU time of frequency-
based scheduled processes for which performance monitoring has not been enabled.

starting base cycle

A frequency-based scheduler scheduling parameter that specifies the first minor cycle in
which a frequency-based scheduled process is to be awakened in each major frame.

timing mode

The mode under which the performance monitor runs. It specifies whether time spent
servicing interrupts is to be included in or excluded from performance monitor timing
values.

total iterations

A value returned by the performance monitor indicating the number of times that a
frquency-based scheduled process has been awakened by the scheduler.

total time

A value returned by the performance monitor indicating the total amount of time that a
frequency-based scheduled process has spent running in all cycles.

unscheduled process

A process that is not awakened by the frequency-based scheduler and does not call
fbswait; it is not scheduled to run at a certain frequency.

Index-1

A

ats command 5-11
attach a timing source 5-11, 6-8, 7-8

C

C library call sequence
Frequency-Based Scheduler 6-6
Performance Monitor 6-70

C library routines
fbsaccess 6-7
fbsattach 6-8
fbsavail 6-9
fbsconfigure 6-10
fbscycle 6-13
fbsdetach 6-14
fbsdir 6-15
fbsgetpid 6-16
fbsgetrtc 6-17
fbsid 6-18
fbsinfo 6-19
fbsinfo_big 6-19
fbsintrpt 6-22
fbsremove 6-23
fbsresume 6-24
fbsrunrtc 6-25
fbsschedself 6-26
fbssetrtc 6-28
fbstrig 6-29
fbswait 2-5, 6-30
namepid 6-31
namepid_big 6-31
nametopid 6-31
nametopid_big 6-31
pgmremove 6-33
pgmremove_big 6-33
pgmtrigger 6-35
pmclrpgm 6-71
pmclrpgm_big 6-71
pmclrtable 6-73
pmclrtable_big 6-73
pmmonitor 6-75
pmprogram 6-77

pmprogram_big 6-77
pmqrycpu 6-79
pmqrycpu_big 6-79
pmqrylist 6-83
pmqrypgm 6-85
pmqrypgm_big 6-85
pmqrytimer 6-88
pmselect 6-89
sched_fbsqry 6-36
sched_fbsqry_big 6-36
sched_pgm_deadline_query 6-39
sched_pgm_deadline_query_big 6-39
sched_pgm_deadline_test 6-42
sched_pgm_deadline_test_big 6-42
sched_pgm_set_deadline 6-45
sched_pgm_set_deadline_big 6-45
sched_pgm_set_soft_overrun_limit 6-48
sched_pgm_set_soft_overrun_limit_big 6-48
sched_pgmadd 6-51
sched_pgmadd_args 6-54
sched_pgmadd_args_big 6-54
sched_pgmadd_attr 6-58
sched_pgmadd_attr_big 6-58
sched_pgmadd_big 6-51
sched_pgmqry 6-61
sched_pgmresched 6-65
sched_pgmresched_big 6-65

C program example C-1
change

CPU bias 5-32, 6-51, 6-54, 6-58, 7-55, 7-57
process priority 5-32, 6-51, 6-54, 6-58, 6-65, 7-55,

7-57
scheduler permissions 5-12, 6-7, 7-6
scheduling policy 5-32, 6-51, 6-54, 6-58, 6-65,

7-55, 7-57
timing mode 5-42, 6-89, 7-81

chs command 5-12
clear deadline time 5-32, 6-45, 7-48
clear performance monitor values 5-38, 6-71, 6-73,

7-67, 7-69
configuration parameters 1-3
configure a scheduler 5-13, 6-10, 7-9
cpm command 5-38
CPU bias 4-5, 6-51, 6-54, 6-58, 7-55, 7-57
cs command 5-13

Index

RedHawk Linux Frequency-Based Scheduler User’s Guide

Index-2

D

deadlines
clear time 5-32, 6-45, 7-48
description 2-5
detect violations 2-5
query 5-35, 6-39, 7-44
set time 5-32, 6-45, 7-48
test for violations 6-42, 7-46

debug a process 2-7
detach a timing source 5-15, 6-14, 7-12
direct mode 5-2, 5-3
disable end-of-cycle scheduling 5-15, 6-14, 7-12
distributed interrupt 3-3
dts command 5-15

E

edge-triggered interrupt
attach 5-11, 6-8, 7-8
detach 5-15, 6-14, 7-12
device special files 3-3
overview 3-3
user interface 3-4

end-of-cycle scheduling
definition 2-2
disable 5-15, 6-14, 7-12
enable 5-11, 6-8, 7-8

error messages B-1
ex command 5-47
examples

C program C-1
process scheduling 2-3, 2-4
rtcp script A-1
simulation optimization 4-5

execution modes 5-2–5-4
exit rtcp 5-47

F

fbsaccess 6-7, 7-6
fbsattach 6-8, 7-8
fbsavail 6-9
fbscheduser 1-4
fbsconfigure 6-10, 7-9
fbscycle 6-13, 7-11
fbsdetach 6-14, 7-12
fbsdir 6-15
fbsgetpid 6-16
fbsgetrtc 6-17, 7-13
fbsid 6-18, 7-14
fbsinfo 6-19, 7-15

fbsinfo_big 6-19
fbsintrpt 6-22, 7-17
fbsquery 7-18
fbsremove 6-23, 7-21
fbsresume 6-24, 7-22
fbsrunrtc 6-25, 7-24
fbsschedself 6-26, 7-25
fbssetrtc 6-28, 7-27
fbstrig 6-29
fbswait 2-5, 6-30, 7-28
FORTRAN library call sequence

Frequency-Based Scheduler 7-5
Performance Monitor 7-66

FORTRAN library routines
fbsaccess 7-6
fbsattach 7-8
fbsconfigure 7-9
fbscycle 7-11
fbsdetach 7-12
fbsgetrtc 7-13
fbsid 7-14
fbsinfo 7-15
fbsintrpt 7-17
fbsquery 7-18
fbsremove 7-21
fbsresume 7-22
fbsrunrtc 7-24
fbsschedself 7-25
fbssetrtc 7-27
fbswait 7-28
nametopid 7-29
pgmquery 7-30
pgmremove 7-32
pgmreschedule 7-34
pgmschedule 7-37
pgmstat 7-40
pgmtrigger 7-42
pmclrpgm 7-67
pmclrtable 7-69
pmmonitor 7-70
pmprogram 7-71
pmqrycpu 7-73
pmqrylist 7-75
pmqrypgm 7-77
pmquerytimer 7-80
pmselect 7-81
rtparm 7-43
sched_pgm_deadline_query 7-44
sched_pgm_deadline_test 7-46
sched_pgm_set_deadline 7-48
sched_pgm_set_soft_overrun_limit 7-50
sched_pgm_soft_overrun_query 7-51
schedfbsqry 7-52
schedpgmadd 7-55

Index

Index-3

schedpgmadd_args 7-57
schedpgmqry 7-59
schedpgmresched 7-62

frame overruns, see overruns
frequency 2-2
Frequency-Based Scheduler

C library call sequence 6-6
C library routines 6-4, 6-7
configuration 1-3
FORTRAN library call sequence 7-5
FORTRAN library routines 7-6
overview 1-1, 2-1
privileges 1-4
rtcp command sequence 5-9
rtcp commands 5-7, 5-8, 5-10
timing sources, see timing source
user interface 2-7

G

glossary Glossary-1
gtc command 5-23

H

hard overrun, see overruns
he command 5-47
high-resolution process accounting 1-3

I

idle time 4-3, 4-6, 6-26
interactive mode 5-4
interrupt time include/exclude 4-1, 5-42, 6-88, 6-89,

7-80, 7-81
iteration 4-1, 4-2

L

last time 4-2
list all schedulers on system 5-21
load balancing 4-5
ls command 5-21

M

major frame 2-2, 4-1, 5-18, 6-13, 7-11
manual structure iii
maximum

cycle cycle 4-2, 5-43, 6-79, 6-83, 7-73, 7-75

cycle frame 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
cycle time 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
frame frame 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
frame time 4-2, 5-43, 6-79, 6-83, 7-73, 7-75

minimum
cycle cycle 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
cycle frame 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
cycle time 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
frame frame 4-2, 5-43, 6-79, 6-83, 7-73, 7-75
frame time 4-2, 5-43, 6-79, 6-83, 7-73, 7-75

minor cycle 2-2, 4-2, 5-18, 6-13, 7-11
modify

CPU bias 5-32, 6-51, 6-54, 6-58, 7-55, 7-57
process priority 5-32, 6-51, 6-54, 6-58, 6-65, 7-55,

7-57
scheduler permissions 5-12, 6-7, 7-6
scheduling policy 5-32, 6-51, 6-54, 6-58, 6-65,

7-55, 7-57
timing mode 5-42, 6-89, 7-81

N

namepid 6-31
namepid_big 6-31
nametopid 2-7, 6-31, 7-29
nametopid_big 6-31
NightSim iii, 1-1
NightView 2-7

O

obtain
deadline status 6-39, 7-44
minor cycle/major frame count 5-18, 6-13, 7-11
performance monitor values 5-43, 6-79, 6-83, 6-85,

7-73, 7-75, 7-77
process ID 6-16, 6-31, 7-29
process information 5-35, 6-36, 6-61, 7-18, 7-30,

7-40, 7-52, 7-59
process initiation parameter 7-43
real-time clock settings 5-23, 6-17, 7-13
scheduler identifier for a key 6-18, 7-14
scheduler information 5-19, 6-10, 6-18, 6-19, 7-9,

7-14, 7-15
scheduler key list 6-15
soft overrun status 5-35, 7-51
timing mode 5-42, 6-88, 7-80

overruns
definition 2-4, 4-2, 6-30, 7-28
set soft limit 5-32, 6-48, 7-50
soft status 5-35, 7-51

RedHawk Linux Frequency-Based Scheduler User’s Guide

Index-4

P

PAM 1-4
pam_capability 1-4
Performance Monitor

C library call sequence 6-70
C library routines 6-69, 6-70
configuration 1-3
FORTRAN library call sequence 7-66
FORTRAN library routines 7-65, 7-67
overview 1-2, 4-1
rtcp command sequence 5-10
rtcp commands 5-8
simulation example 4-5
start/stop 5-40, 6-75, 6-77, 7-70, 7-71
timing mode 4-1, 6-88, 6-89, 7-80, 7-81
user interface 4-5
values

clear 5-38, 6-71, 6-73, 7-67, 7-69
definition 4-1, 4-2
obtain 5-43, 6-79, 6-83, 6-85, 7-73, 7-75, 7-77

period 2-2
permissions

FBS 1-4
scheduler 5-12, 5-13, 6-7, 7-6

pgmquery 7-30
pgmremove 6-33, 7-32
pgmremove_big 6-33
pgmreschedule 7-34
pgmschedule 7-37
pgmstat 7-40
pgmtrigger 6-35, 7-42
Pluggable Authentication Module (PAM) 1-4
pm command 5-40
pmclrpgm 6-71, 7-67
pmclrpgm_big 6-71
pmclrtable 6-73, 7-69
pmclrtable_big 6-73
pmmonitor 6-75, 7-70
pmprogram 6-77, 7-71
pmprogram_big 6-77
pmqrycpu 6-79, 7-73
pmqrycpu_big 6-79
pmqrylist 6-83, 7-75
pmqrypgm 6-85, 7-77
pmqrypgm_big 6-85
pmqrytimer 6-88
pmquerytimer 7-80
pmselect 6-89, 7-81
privileges, see permissions
process rescheduling 5-28, 6-65, 7-34, 7-62
process scheduling 2-2, 5-32, 6-26, 6-51, 6-54, 6-58,

7-25, 7-37, 7-55, 7-57
process sleep 6-30, 7-28

Q

query
deadline status 6-39, 7-44
FBS kernel configuration 6-9
performance monitor values 5-43, 6-79, 6-83, 6-85,

7-73, 7-75, 7-77
process information 5-35, 6-36, 6-61, 7-18, 7-30,

7-40, 7-52, 7-59
real-time clock 5-23, 6-17, 7-13
scheduled processes 5-35, 6-36, 6-39, 6-61, 7-18,

7-40, 7-52, 7-59
scheduler configuration 5-19, 6-10, 7-9
soft overrun processing 5-35, 7-51
timing mode 5-42, 6-88, 7-80

R

rc command 5-21
RCIM

device files 1-4
kernel parameter 1-3
timing devices 1-2, 3-3

real-time clock
attach 5-11, 6-8, 7-8
C routine summary 3-3
detach 5-15, 6-14, 7-12
device special files 3-2
obtain settings 5-23, 6-17, 7-13
overview 3-1
procedures 3-2
rtcp command summary 3-3
set 5-22, 6-28, 7-27
start 5-21, 6-25, 7-24
stop 5-22, 6-25, 7-24
user interface 3-2

related publications iv
remove

a process from a scheduler 5-26, 6-33, 7-32
a scheduler 5-16, 6-23, 7-21

reschedule a process 5-28, 6-65, 7-34, 7-62
resume command 5-25
resume frequency-based scheduling 5-25, 6-22, 6-24,

7-17, 7-22
rmp command 5-26
rms command 5-16
rsp command 5-28
rtcp

command script 5-3, A-1
command sequence

FBS 5-9
PM 5-10

command summary 5-7

Index

Index-5

commands
ats 5-11
chs 5-12
cpm 5-38
cs 5-13
dts 5-15
ex 5-47
gtc 5-23
he 5-47
ls 5-21
pm 5-40
rc 5-21
resume 5-25
rmp 5-26
rms 5-16
rsp 5-28
sc 5-22
sp 5-32
start 5-24
stc 5-22
stop 5-25
svs 5-17
vc 5-18
vcm 5-42
vp 5-35
vpm 5-43
vs 5-19

errors B-1
example script A-1
execution modes 5-2–5-4
exit 5-47
help 5-5, 5-47
overview 5-1

rtparm 7-43

S

save scheduler configuration 5-3, 5-17
sc command 5-22
sched_fbsqry 6-36
sched_fbsqry_big 6-36
sched_pgm_deadline_query 6-39, 7-44
sched_pgm_deadline_query_big 6-39
sched_pgm_deadline_test 6-42, 7-46
sched_pgm_deadline_test_big 6-42
sched_pgm_set_deadline 6-45, 7-48
sched_pgm_set_deadline_big 6-45
sched_pgm_set_soft_overrun_limit 6-48, 7-50
sched_pgm_set_soft_overrun_limit_big 6-48
sched_pgm_soft_overrun_query 7-51
sched_pgmadd 6-51
sched_pgmadd_args 6-54
sched_pgmadd_args_big 6-54

sched_pgmadd_attr 6-58
sched_pgmadd_attr_big 6-58
sched_pgmadd_big 6-51
sched_pgmqry 6-61
sched_pgmresched 6-65
sched_pgmresched_big 6-65
schedfbsqry 7-52
schedpgmadd 7-55
schedpgmadd_args 7-57
schedpgmqry 7-59
schedpgmresched 7-62
schedule a process 2-2, 5-32, 6-26, 6-51, 6-54, 6-58,

7-25, 7-37, 7-55, 7-57
scheduler configuration 5-13, 6-10, 7-9
scheduler frequency 2-2
set a real-time clock 5-22, 6-28, 7-27
set deadline time 6-45, 7-48
set soft overrun limit 5-32, 6-48, 7-50
soft overrun, see overruns
software requirements 1-2
sp command 5-32
spare time 4-3, 4-6
start

frequency-based scheduling 5-24, 6-22, 7-17
performance monitoring 5-40, 6-75, 6-77, 7-70,

7-71
real-time clock 5-21, 6-25, 7-24

start command 5-24
starting base cycle 2-2
stc command 5-22
stop

frequency-based scheduling 5-25, 6-22, 7-17
performance monitoring 5-40, 6-75, 6-77, 7-70,

7-71
real-time clock 5-22, 6-25, 7-24

stop command 5-25
svs command 5-3
syntax notation iv

T

test for deadline violations 6-42, 7-46
timing mode 4-1, 5-42, 6-88, 6-89, 7-80, 7-81
timing source

attach 5-11, 6-8, 7-8
detach 5-15, 6-14, 7-12
overview 3-1
privileges 1-4

total iterations 4-2
total time 4-2
trigger a process 6-29, 6-35, 7-42

RedHawk Linux Frequency-Based Scheduler User’s Guide

Index-6

U

unscheduled processes 4-4

V

vc command 5-18
vcm command 5-42
vp command 5-35
vpm command 5-43
vs command 5-19

W

wait on a frequency-based scheduler 6-30, 7-28
wake a sleeping process 6-29, 6-35, 7-42

	Preface
	Contents
	Introduction
	Frequency-Based Scheduler Overview
	Performance Monitor Overview
	Software Requirements
	Configuration
	Frequency-Based Scheduler
	Performance Monitor

	Privileges

	Using the Frequency-Based Scheduler
	What Is the Frequency-Based Scheduler?
	How Is Scheduler Frequency Defined?
	How Are Processes Scheduled?
	Tolerating Frame Overruns
	Detecting Deadline Violations

	User Interface
	Debugging Frequency-Based Scheduler Processes

	Timing Sources
	Overview
	Using a Real-Time Clock
	Understanding the Real-Time Clock Device
	Understanding the User Interface
	General Procedures for Using a Real-Time Clock

	Using an Edge-Triggered Interrupt
	Understanding the Edge-Triggered Interrupt
	Understanding the User Interface

	Using a User-Supplied Timing Device

	Using the Performance Monitor
	What Is the Performance Monitor?
	What Values Are Monitored?
	Monitoring Idle Time
	Monitoring Unscheduled Processes

	User Interface
	Optimizing the Performance of a Simulation

	Using rtcp
	What Is the Real-Time Command Processor?
	rtcp and the Frequency-Based Scheduler
	rtcp and the Performance Monitor

	Execution Modes
	Using Direct Mode
	Invoking rtcp with a Command Name and Arguments
	Invoking rtcp with Commands Redirected from a Script File
	Invoking a Script that Calls rtcp

	Using Interactive Mode

	Getting Help
	rtcp Commands
	rtcp Command Summary
	Command Sequence
	Using rtcp Commands
	ats – Attach Timing Source to a Frequency-Based Scheduler
	chs – Change Permissions for a Frequency-Based Scheduler
	cs – Configure a Frequency-Based Scheduler
	dts – Detach Timing Source from a Frequency-Based Scheduler
	rms – Remove a Frequency-Based Scheduler
	svs – Save Scheduler Configuration
	vc – View Minor Cycle/Major Frame Count
	vs – View Scheduler Configuration
	ls – Display All Schedulers on the System
	rc – Start Real-Time Clock
	sc – Stop Real-Time Clock
	stc – Set Real-Time Clock
	gtc – Display Real-Time Clock Settings
	start – Start Scheduling on a Frequency-Based Scheduler
	resume – Resume Scheduling on a Frequency-Based Scheduler
	stop – Stop Scheduling on a Frequency-Based Scheduler
	rmp – Remove a Process from a Frequency-Based Scheduler
	rsp – Reschedule a Process
	sp – Schedule a Process on a Frequency-Based Scheduler
	vp – View Processes on a Frequency-Based Scheduler
	cpm – Clear Performance Monitor Values
	pm – Start/Stop Performance Monitoring
	vcm – View/Modify Performance Monitor Timing Mode
	vpm – View Performance Monitor Values
	ex – Exit Real-Time Command Processor
	he – Display Help Information

	The C Library Interface
	Overview
	Compiling and Linking Programs
	The Big-SMP FBS Interface
	Frequency-Based Scheduler Routines
	Routine Summary
	C Library Call Sequence
	Using Frequency-Based Scheduler Routines
	fbsaccess – Change Permissions for a Frequency-Based Scheduler
	fbsattach – Attach Timing Source to a Frequency-Based Scheduler
	fbsavail – Query if the Frequency-Based Scheduler is Configured
	fbsconfigure – Configure a Frequency-Based Scheduler
	fbscycle – Return Minor Cycle/Major Frame Count
	fbsdetach – Detach Timing Source from a Frequency-Based Scheduler
	fbsdir – Return a List of Scheduler Keys
	fbsgetpid – Return Process ID for a Scheduled Process
	fbsgetrtc – Obtain Current Values for a Real-Time Clock
	fbsid – Return the Frequency-Based Scheduler Identifier for a Key
	fbsinfo, fbsinfo_big – Return Information for a Frequency-Based Scheduler
	fbsintrpt – Start/Stop/Resume Scheduling
	fbsremove – Remove a Frequency-Based Scheduler
	fbsresume – Resume Scheduling on a Frequency-Based Scheduler
	fbsrunrtc – Start/Stop a Real-Time Clock
	fbsschedself – Add a Calling Process to a Frequency-Based Scheduler
	fbssetrtc – Set a Real-Time Clock
	fbstrig – Make a Sleeping Frequency-Based Scheduler Process Runnable
	fbswait – Wait on a Frequency-Based Scheduler
	nametopid, namepid, nametopid_big, namepid_big – Return the Process ID for a Specified Process Name
	pgmremove, pgmremove_big – Remove a Process from a Frequency-Based Scheduler
	pgmtrigger – Trigger a Process on a Frequency-Based Scheduler
	sched_fbsqry, sched_fbsqry_big – Query Processes on a Frequency-Based Scheduler
	sched_pgm_deadline_query, sched_pgm_deadline_query_big – Query the Assigned Deadline Time for a Process
	sched_pgm_deadline_test, sched_pgm_deadline_test_big – Test for the Presence of a Deadline Violation
	sched_pgm_set_deadline, sched_pgm_set_deadline_big – Set or Clear the Process Deadline Time
	sched_pgm_set_soft_overrun_limit, sched_pgm_set_soft_overrun_limit_big – Set Soft Overrun Limit
	sched_pgmadd, sched_pgmadd_big – Schedule a Process on a Frequency- Based Scheduler
	sched_pgmadd_args, sched_pgmadd_args_big– Schedule a Process on a Frequency-Based Scheduler with Arguments
	sched_pgmadd_attr, sched_pgmadd_attr_big – Schedule a Process on a Frequency-Based Scheduler with Arguments and Attributes
	sched_pgmqry, sched_pgmqry_big – Query a Process
	sched_pgmresched, sched_pgmresched_big– Reschedule a Process

	Performance Monitor Routines
	Routine Summary
	C Library Call Sequence
	Using Performance Monitor Routines
	pmclrpgm, pmclrpgm_big, – Clear Values for a Process
	pmclrtable, pmclrtable_big – Clear Values for Processor(s)
	pmmonitor, pmmonitor_big – Start/Stop Performance Monitoring on Processor(s)
	pmprogram, pmprogram_big – Start/Stop Performance Monitoring on a Process
	pmqrycpu, pmqrycpu_big – Query Values for Selected Processor(s)
	pmqrylist – Query Values for a List of Processes
	pmqrypgm, pmqrypgm_big – Query Values for a Selected Process
	pmqrytimer – Query Performance Monitor Mode
	pmselect – Select Performance Monitor Mode

	The FORTRAN Library Interface
	Overview
	Compiling and Linking Procedures
	The Big-SMP FBS Interface for Fortran
	Frequency-Based Scheduler Routines
	Routine Summary
	FORTRAN Library Call Sequence
	Using Frequency-Based Scheduler Routines
	fbsaccess – Change Permissions for a Frequency-Based Scheduler
	fbsattach – Attach Timing Source to a Frequency-Based Scheduler
	fbsconfigure – Configure a Frequency-Based Scheduler
	fbscycle – Return Minor Cycle/Major Frame Count
	fbsdetach – Detach Timing Source from a Frequency-Based Scheduler
	fbsgetrtc – Obtain Current Values for Real–Time Clock
	fbsid – Return the FBS Identifier for a Key
	fbsinfo – Return Information for a Frequency-Based Scheduler
	fbsintrpt – Start/Stop/Resume Scheduling on a Frequency-Based Scheduler
	fbsquery – Query Processes on a Frequency-Based Scheduler
	fbsremove – Remove a Frequency-Based Scheduler
	fbsresume – Resume Scheduling on a Frequency-Based Scheduler
	fbsrunrtc – Start/Stop Real–Time Clock
	fbsschedself – Schedule a Process/Thread on a Frequency-Based Scheduler
	fbssetrtc – Set Real–Time Clock
	fbswait – Wait on a Frequency-Based Scheduler
	nametopid – Return the Process ID for a Specified Process Name
	pgmquery – Query a Process on a Frequency-Based Scheduler
	pgmremove – Remove a Process from a Frequency-Based Scheduler
	pgmreschedule – Reschedule a Process
	pgmschedule – Schedule a Process on a Frequency-Based Scheduler
	pgmstat – Query State of FBS–Scheduled Process
	pgmtrigger – Trigger Process Waiting on FBS
	rtparm – Return Initiation Parameter
	sched_pgm_deadline_query – Query the Assigned Deadline for a Process
	sched_pgm_deadline_test – Test for the Presence of a Deadline Violation
	sched_pgm_set_deadline – Set or Clear Deadline Time
	sched_pgm_set_soft_overrun_limit – Set Soft Overrun Limit
	sched_pgm_soft_overrun_query – Query Soft Overrun Processing
	schedfbsqry – Query Processes on a Frequency-Based Scheduler
	schedpgmadd – Schedule a Process on a Frequency-Based Scheduler
	schedpgmadd_args – Schedule a Process on a Frequency-Based Scheduler with Arguments
	schedpgmqry – Query a Process on a Frequency-Based Scheduler
	schedpgmresched – Reschedule a Process

	Performance Monitor Routines
	Routine Summary
	FORTRAN Library Call Sequence
	Using Performance Monitor Routines
	pmclrpgm – Clear Values for a Process
	pmclrtable – Clear Values for Processor(s)
	pmmonitor – Start/Stop Performance Monitoring on Processor(s)
	pmprogram – Start/Stop Performance Monitoring on a Process
	pmqrycpu – Query Values for Selected Processor(s)
	pmqrylist – Query Values for a List of Processes
	pmqrypgm – Query Values for a Selected Process
	pmquerytimer – Query Performance Monitor Mode
	pmselect – Select Performance Monitor Mode

	Example rtcp Script
	rtcp Error Messages
	Example C Interface
	schedule.c
	prog.c
	Makefile

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

