
Onload

User Guide

UG1586 (v1.2) July 31, 2023

AMD Adaptive Computing is creating an environment where
employees, customers, and partners feel welcome and included. To
that end, we’re removing non-inclusive language from our products
and related collateral. We’ve launched an internal initiative to remove
language that could exclude people or reinforce historical biases,
including terms embedded in our software and IPs. You may still find
examples of non-inclusive language in our older products as we work
to make these changes and align with evolving industry standards.
Follow this link for more information.

https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Table of Contents
Chapter 1: What’s New..9

New Features in OpenOnload-8.1.0.. 10
New Features in OpenOnload-8.0.2.. 12
New Features in OpenOnload-8.0.1.. 13
New Features in OpenOnload-8.0.0.. 13
New Features in OpenOnload-7.1.3.. 16
New Features in OpenOnload-7.1.2.. 16
New Features in OpenOnload-7.1.1.. 17
New Features in OpenOnload-7.1.0.. 18
New Features in OpenOnload-7.0.0.. 20
Change History.. 22

Chapter 2: X3 Low Latency Quickstart... 23
Software Installation...23
Test Setup...25
Reference System Specification...27
Latency Tests..28
Latency Test Results..31
Latency against Payload...32
Further Information..36

Chapter 3: Overview..37
Contrasting with Conventional Networking.. 38

Chapter 4: Installation...41
Onload Distributions...41
Hardware and Software Supported Platforms.. 42
Onload and Network Adapter Drivers.. 44
Removing an Existing Installation...46
Pre-install Notes.. 47
Building and Installing from a Tarball.. 48
Building and Installing from a DKMS Package.. 51

UG1586 (v1.2) July 31, 2023
Onload User Guide 2Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=2

Building and Installing from a Source RPM... 53
Building and Installing from a Source DEB..55
Onload Kernel Modules..56
Configuring the Network Interfaces...57
Installing Netperf and sfnettest.. 57
Running Onload.. 57
Testing the Onload Installation... 58
Applying an Onload Patch..58
Kernel and OS Upgrades.. 60

Chapter 5: Tuning Onload.. 61
System Tuning... 61
Spinning, Polling and Interrupts... 64
Onload Deployment on NUMA Systems...66
Interrupt Handling for the sfc Driver..69
Performance Jitter... 76
Using Onload Tuning Profiles.. 78
Benchmark Testing... 80
Application-Specific Tuning..80
Worked Examples..81

Chapter 6: Onload Functionality.. 88
Onload Transparency..88
Onload Stacks.. 88
Virtual Network Interface (VNIC).. 89
Functional Overview... 89
Onload with Mixed Network Adapters... 89
Maximum Number of Network Interfaces...90
Allowlist and Denylist for Interfaces... 90
Onload Accelerated Process IDs..91
File Descriptors, Stacks, and Sockets.. 91
System Calls Intercepted by Onload...92
Linux Sysctls... 92
Namespaces...95
User-space Control Plane Server...95
Changing Onload Control Plane Table Sizes..98
SO_BINDTODEVICE..100
Multiplexed I/O..100
Wire Order Delivery.. 103

UG1586 (v1.2) July 31, 2023
Onload User Guide 3Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=3

Stack Sharing... 105
Application Clustering.. 106
eXpress Data Path (XDP).. 108
Zero-Copy API.. 110
Debug and Logging.. 110

Chapter 7: Timestamps..112
Introduction... 112
Software Timestamps... 112
Hardware Timestamps... 113
Example Timestamping Applications... 116

Chapter 8: Onload and TCP..119
TCP Operation..119
TCP Handshake, SYN and SYNACK.. 120
TCP SYN Cookies..120
TCP Socket Options... 120
TCP Level Options..122
TCP File Descriptor Control.. 123
TCP Congestion Control... 123
TCP SACK.. 124
TCP QUICKACK...125
TCP Delayed ACK... 125
TCP Dynamic ACK.. 125
Limit Duplicate ACK Rate..126
Limit Challenge ACK Rate... 126
TCP Loopback Acceleration..126
TCP Striping..128
TCP Connection Reset on RTO... 128
ONLOAD_MSG_WARM...129
Listen/Accept Sockets... 130
Socket Caching.. 130
Shared Local Ports.. 133
Scalable Filters... 134
Transparent Reverse Proxy Modes... 137
Transparent Reverse Proxy on Multiple CPUs... 138
Performance in Lossy Network Environments.. 139
Initial Sequence Number Caching.. 140
Urgent Data Processing... 141

UG1586 (v1.2) July 31, 2023
Onload User Guide 4Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=4

TIMEWAIT Assassination.. 141

Chapter 9: Onload and UDP.. 142
UDP Operation...142
Socket Options...142
Source Specific Socket Options... 143
Onload Sockets vs. Kernel Sockets..144
Send and Receive Paths for UDP Sockets...144
Fragmented UDP...145
User Level recvmmsg for UDP...146
User-Level sendmmsg for UDP... 146
UDP sendfile.. 146
Multicast Replication...146
Multicast Operation and Stack Sharing..147
Multicast Loopback... 150
Hardware Multicast Loopback...150
IP_MULTICAST_ALL..152

Chapter 10: Packet Buffers..153
Network Adapter Buffer Table Mode..153
Huge Pages.. 154
How Onload Uses Packet Buffers..155
Physical Addressing Mode... 158
Programmed I/O... 159
CTPIO.. 161

Chapter 11: Interfaces... 168
Bonding, Link Aggregation and Failover..168
Teaming..169
VLANS..170
MACVLAN... 171
IPVLAN.. 171
Accelerated pipe()... 172

Chapter 12: Onload and Virtualization... 174
Overview...174
Onload and Linux KVM... 174
Onload and NIC Partitioning... 176
Onload in a Docker Container... 178

UG1586 (v1.2) July 31, 2023
Onload User Guide 5Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=5

Chapter 13: Limitations...185
Introduction... 185
Changes to Behavior...186
Limits to Acceleration... 191
Known Issues with Epoll...195
Configuration Issues...197

Chapter 14: Onload Change History...202
Mapping Onload Versions..202
Features..202
Environment Variables... 203
Module Options...204
Adapter Net Drivers.. 205

Appendix A: Parameter Reference..206
Parameter List... 206

Appendix B: Meta Options...280
Environment Variables... 280

Appendix C: Build Dependencies... 282
General... 282
Red Hat Enterprise Linux 8.x..284

Appendix D: Onload Extensions API...285
Common Components... 286
Stacks API... 293
Zero-Copy API.. 303
Receive Filtering API... 313
Templated Sends API.. 315
Delegated Sends API...318

Appendix E: onload_stackdump..328
General Use..328
List Onloaded Processes.. 329
List Onloaded Threads, Priority and Affinity..329
List Onload Environment Variables...329
TX PIO Counters.. 330
Send RST on a TCP Socket.. 330

UG1586 (v1.2) July 31, 2023
Onload User Guide 6Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=6

Removing Zombie and Orphan Stacks... 330
Snapshot vs. Dynamic Views..331
Monitoring Receive and Transmit Packet Buffers...331
TCP Application Statistics... 333
The onload_stackdump LOTS Command... 335
Onload Stackdump Filters.. 366
Remote Monitoring...367

Appendix F: sfnettest... 370
sfnt-pingpong.. 370
sfnt-stream...373
Running Without Spinning...376

Appendix G: onload_tcpdump..377
Building onload_tcpdump.. 377
Using onload_tcpdump.. 377

Appendix H: ef_vi...381
Components.. 381
Compiling and Linking..381
Documentation..382

Appendix I: onload_iptables... 383
How it Works..383
Features..384
Rules... 384
Preview Firewall Rules.. 385
Error Messages..387

Appendix J: eflatency..389
eflatency... 389

Appendix K: Management Information Base... 391
Host...391
Container..391
Namespaces...391
List Available Options... 392
Tables..392

Appendix L: X2 Low Latency Quickstart.. 399

UG1586 (v1.2) July 31, 2023
Onload User Guide 7Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=7

Software Installation...399
Test Setup...400
Reference System Specification...403
Latency Tests..404
Latency Test Results..408
Latency against Payload...408
Further Information..413

Appendix M: X2 Throughput Quickstart..414
Software Installation...414
Test Setup...415
Reference System Specification...416
Throughput.. 417
HTTP connections..418
Further Information..420

Appendix N: Additional Resources and Legal Notices...........................421
Finding Additional Documentation...421
Support Resources.. 422
References..422
Revision History...422
Please Read: Important Legal Notices... 423

UG1586 (v1.2) July 31, 2023
Onload User Guide 8Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=8

Chapter 1

What’s New
This issue of the user guide identifies changes and new features introduced in the OpenOnload 8
release.

For a complete list of features and enhancements refer to the Release Notes and the Release
Change Log available from the NIC Software and Drivers web page.

OpenOnload-8 includes the 5.3.12.1023 net driver.

Users should refer to ReleaseNotes-sfc in the distribution package for details of changes to
the adapter driver.

Onload Version Numbering

Starting with version 7.0.0, OpenOnload version numbering has been revised to align with the
EnterpriseOnload and net driver version numbering scheme.

OpenOnload-7.0.0 was the successor to onload-201811-u1.

Version numbers have four components. Their meaning is shown in the following table for the
example of version 7.1.2.141:

Table 1: Component Values and Meanings for Version Number 7.1.2.141

Value Meaning
7 Major version

1 Minor version - feature release

2 Minor version - bug fix update release

141 Build number

Note: Use the NIC Software and Drivers web page to download supported Onload distributions, including
EnterpriseOnload and OpenOnload.

Use the Onload GitHub web page for an unsupported preview of Onload work in progress.

The openonload.org website has been phased out.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 9Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://github.com/Xilinx-CNS/onload
https://www.openonload.org/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=9

New Features in OpenOnload-8.1.0
This is a feature release of Onload:

• It has extended support for the AMD Alveo™ X3522 low latency network adapters.

• It supports new Operating System and kernel releases.

• It includes features and fixes from OpenOnload 8.0.2.51 onwards.

• It refreshes the sfc net driver included in the package.

Linux Distribution Support
This package can be installed on:

• Red Hat Enterprise Linux 7.9

• Red Hat Enterprise Linux 8.4 - 8.8

• Red Hat Enterprise Linux 9.0 - 9.2

• SuSE Linux Enterprise Server 15 SP4 - SP5

• Canonical Ubuntu Server LTS 20.04 and 22.04

• Debian 11 “Bullseye”

• Debian 12 “Bookworm”

• Linux kernels 4.15 - 6.3

Drivers for X3522
Onload on the Alveo X3522 requires a compatible net driver version from https://
www.xilinx.com/products/boards-and-kits/alveo/x3.html#software such as v1.5.2.0 at the time
of writing. Older kernels such as on RHEL 7.9 and RHEL 8.4 also require the auxiliary bus driver
to be installed (available from the same download page). See Alveo X3522 Release Notes and
documentation.

Controlling Access to RX Queues on X3522
Onload 8.1 introduces a new mechanism for enabling users to reserve a hardware receive queue
for a given singular application. This mechanism is currently only supported on X3522 network
adapters.

This is via a new filter flag (EF_FILTER_FLAG_EXCLUSIVE_RXQ) that is applied via
ef_filter_spec_init(). With this change, users can ensure the following properties for
their application.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 10Send Feedback

https://www.xilinx.com/products/boards-and-kits/alveo/x3.html#software
https://www.xilinx.com/products/boards-and-kits/alveo/x3.html#software
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=10

• Other applications will be unable to snoop on traffic filtered to this application.

• This application can guarantee that it will not receive any packets for which it did not explicitly
add a filter.

In addition, this version of Onload introduces a new function, ef_filter_spec_set_dest().
This API enables the user to specify which hardware receive queue an application can listen on.

Due to the additional granularity afforded by the above granular controls, this version has
necessitated the deprecation of the following broader ef_vi application flags:

• EF_VI_EFCT_UNIQUEUE

• EF_VI_RX_EXCLUSIVE

Further details of specific exclusivity conditions can be found under the
EF_FILTER_FLAG_EXCLUSIVE_RXQ documentation in the ef_vi User Guide (SF-114063-CD).

Hardware Filter IDs on X3522
New features have been added to ef_vi to allow applications to reuse the result of the hardware
packet parsing and filtering which an X3522 has performed on RX. The new
ef_vi_filter_query() will return the ID which the NIC has allocated for a previously-added
filter, which will match the ef_event.rx_ref.filter_id field returned by an
ef_vi_poll() call.

Note: ef_vi will not always use on-NIC filtering to satisfy a call to ef_vi_filter_add(), and so
ef_vi_filter_query() has the ability to report that no filter ID is available. Applications should be
written to be robust to this scenario.

IPv6 on X3522
When using IPv6 with an Onload accelerated socket on X3522 received IPv6 fragments will be
dropped.

Transmit Path Warming on X3522
Onload 8.1 adds new API features to allow the X3522 transmit code path to be exercised
without sending any data on the wire. This can potentially improve latency when transmitting
after a period of inactivity, as recently executed code is more likely to be cached. This new
functionality is available via both ef_vi and TCPDirect APIs.

• ef_vi: Use efct_vi_start_transmit_warm() and efct_vi_stop_transmit_warm()
to start and stop warming. Call transmit functions while warming to exercise the code. These
functions are only usable for EFCT (X3) NICs.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 11Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=11

• TCPDirect: Use zft_send_single_warm() and zfut_send_single_warm(). These
functions are not new, but Onload 8.1 extends them to be usable for any NIC architecture
including EFCT (X3).

Note: Transmit path warming is also supported forOnload applications via the ONLOAD_MSG_WARM
socket option. This feature is hardware independent, and so has always been available to the X3522.

Deprecation of RHEL 7
Future feature releases of OpenOnload might not include support for Red Hat Enterprise
Linux 7.x. Long Term Support for Onload 8.1 including on RHEL 7.9 will be available in the form
of EnterpriseOnload 8.1. Please ask your sales representative for details.

New Features in OpenOnload-8.0.2
This is an update release of Onload that extends support to recent operating system updates and
fixes various bugs.

See the accompanying ChangeLog for a list of bugs fixed.

Library Versioning and Backward Compatibility
Backward compatibility between Onload 8.0.1 or later and Onload 7 or earlier has been restored
as follows:

• ef_vi:

○ Restored ABI compatibility.

○ Restored ability to link libciul1.a with libonload_zf_static.a into single
executable.

• Onload extension library:

○ Restored API compatibility.

○ Restored ABI compatibility.

○ Reverted library major version number increment.

As a consequence of this change, backward compatibility between versions 8.0.1 and 8.0.0 of
Onload has not been preserved and ef_vi applications or Onload applications using extensions
built with the Onload 8.0.0 extension library need to be rebuilt with Onload 8.0.1 or later.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 12Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=12

Checksum Validation and Non-TCP/UDP with ef_vi on
X3522
Previous releases of Onloadwith X3522 support classified all non-TCP/UDP packets as discards.
This release brings the behavior on X3522 in line with earlier network adapters, where by default
other protocols generate a normal event, in this case an RX_REF event.

However, this change has implications for applications that rely on the hardware checksum
validation. The hardware will only validate a checksum if it can successfully parse a packet as a
protocol for which it does validation. If the protocol header is corrupted in such a way that the
packet is not recognized as a given protocol, it might be reported as a valid packet of an unknown
protocol that checksum validation is not performed for.

To allow an application to distinguish a packet that has been parsed and checksummed as a given
protocol new discard types have been added. These allow the application to request that discard
events are generated for any packets for protocols that are not expected by that application. For
example, an application that expects to receive only UDP packets can set the discard mask for
the VI to mark any packets of non-TCP/UDP L4 protocols as discards. This means that anything
that is not a discard will have had the checksum validated successfully.

For more details refer to the documentation for ef_vi_receive_set_discards() and
ef_vi_rx_discard_err_flags in the ef_vi User Guide (SF-114063-CD).

New Features in OpenOnload-8.0.1
This is an update release of Onload that improves support for the new X3-series network
adapters from AMD, extends support to recent operating system updates, includes a new sfc net
driver and fixes various bugs.

See the accompanying ChangeLog for a list of bugs fixed.

New Features in OpenOnload-8.0.0
This is a major feature release of Onload:

• It adds support for the new X3-series network adapters from AMD.

• It incorporates a significantly updated version of the sfc net driver for X2-series adapters.

• It supports major new Operating System releases including Red Hat Enterprise Linux 9.0.

• It includes features and fixes from OpenOnload-7.1.3.202 onwards.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 13Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=13

TCPDirect is now supplied as a separate package.

Linux Distribution Support
This package can be installed on:

• Red Hat Enterprise Linux 7.8 - 7.9

• Red Hat Enterprise Linux 8.2 - 8.6

• Red Hat Enterprise Linux 9.0

• SuSE Linux Enterprise Server 15 SP1 - SP3

• Canonical Ubuntu Server LTS 20.04 and 22.04

• Canonical Ubuntu Server 21.10

• Debian 10 “Buster”

• Debian 11 “Bullseye”

• Linux kernels 4.15 - 5.15

Packaging, Source and Licensing Changes
The Onload control plane is now distributed as source code rather than a binary and built from
source with Onload. The control plane, ef_vi and various other components are now provided
with a BSD 2-Clause license.

TCPDirect has been moved into a separate package which should be installed with a
corresponding version of Onload. For example, tcpdirect-8.0.0.x should be used with
onload-8.0.0.y.

The table below summarizes the situation for each component:

Table 2: Onload Packaging, Source, and Licensing

Supplied as Licence Package
Onload Source GPL-2.0 onload-8.0.0

Onload headers needed for
ef_vi applications

Source GPL-2.0 or BSD 2-Clause onload-8.0.0

Onload extensions stub
library

Source BSD 2-Clause onload-8.0.0

Control plane Source BSD 2-Clause onload-8.0.0

User-modifiable scripts and
examples

Source BSD 2-Clause onload-8.0.0

ef_vi Source BSD 2-Clause onload-8.0.0

TCPDirect Binary Proprietary tcpdirect-8.0.0

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 14Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=14

Use with X3-series Adapters
Applications are unaffected, Onload deals with underlying architectural differences, and the data
visible to the application via the sockets API is unaffected.

The following architectural differences affect receive:

• Maximum of 256 filters.

• Filtering is by 3-tuple (remote IP address and port).

• No receive-side scaling.

The following architectural differences affect transmit:

• Maximum of 15 applications for unshared TX queues (16 queues).

• All transmission is by reliable CTPIO with stable performance.

• No hardware checksums.

• Frequent polling is essential to achieve reasonable packet rate due to small transmit buffer in
hardware.

The following difference affect tuning:

• On X3522 the xilinx_efct net driver must perform regular work to keep the RX path
supplied with buffers, including when using Onload/TCPDirect/ef_vi.

• Ensure that xilinx_efct interrupts are delivered to CPU cores that have sufficient capacity
and can be handled in a timely fashion to avoid underruns.

For more detailed information about X3-series adapters and their differences from predecessors,
see the Alveo X3522 User Guide (UG1523).

Installing for X3-series Adapters

The following components must be installed to use X3-series network adapters, in the given
order of dependency:

• The auxiliary bus driver.

• The xilinx_efct net driver.

• OpenOnload-8.0.0.

Note: The auxiliary bus driver is supplied as a back-ported standalone component. It is only necessary for
kernels that are built without CONFIG_AUXILIARY_BUS. The following supported distributions include
built-in support and so do not need the driver:

• RedHat Enterprise Linux 8.5 and later.

• Canonical Ubuntu Server 20.10 and later.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 15Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1523-x3522-user&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=15

For more detailed information about installing X3-series adapters and their drivers, see the Alveo
X3522 Installation Guide (UG1522).

Python 3 Required
The Python scripts have been updated and now require a Python 3 interpreter.

Deprecation
This and successor releases do not support the acceleration of 32-bit applications.

The deprecated support for adding steering filters through the sfc_affinity driver and the
sfcaffinity tool has been removed. sfc_affinity_config has been modified to use the sfc_resource
driver.

New Features in OpenOnload-7.1.3
This is an update release of Onload that extends support to recent operating system updates and
fixes various bugs.

See the accompanying ChangeLog for a list of bugs fixed.

Linux Distribution Support
Linux distribution support has been changed:

• Support recent Linux distributions (RHEL 8.5, Debian 11 “Bullseye”).

See Hardware and Software Supported Platforms for a full list of supported OS and kernels.

Deprecation
TCP Urgent pointer handling is deprecated. EF_TCP_URG_MODE is set to 0 by default. This code
will be removed completely in the next major feature release of Onload. Please contact AMD
support if you need this feature.

New Features in OpenOnload-7.1.2
This is an update release of Onload that extends support to recent operating system updates and
fixes various bugs.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 16Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1522-x3522-installation&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=16

See the accompanying ChangeLog for a list of bugs fixed.

Linux Distribution Support
Linux distribution support has been changed:

• Support recent Linux kernel versions (up to 5.12).

• Support recent Linux distributions (RHEL 8.4).

See Hardware and Software Supported Platforms for a full list of supported OS and kernels.

XDP/eBPF Filtering
This release fixes unnecessary high latency when XDP is enabled.

To support BPF filtering for recent kernels, it was necessary to give the control plane server the
CAP_SYS_ADMIN capability. This is now disabled by default so the cplane_track_xdp
module option must be provided, for example via the modprobe configuration.

New ef_vi Event EF_EVENT_TYPE_RESET
A new event, EF_EVENT_TYPE_RESET is issued by ef_vi to notify applications of fatal hardware
restarts.

Deprecation
Support for accelerating 32-bit applications will be removed in the next major feature release of
Onload, but 32-bit applications will continue to be supported by Onload-7.1.x bugfix releases.

New Features in OpenOnload-7.1.1
This is an update release of Onload that extends support to recent operating system updates,
includes a new sfc net driver and fixes various bugs.

See the accompanying ChangeLog for a list of bugs fixed.

setuid/setgid
The onload binaries were previously installed as setuid/setgid by default. This is no longer the
case. The previous behavior can be selected by passing the --setuid flag to
onload_install.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 17Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=17

EF_TCP_COMBINE_SENDS_MODE
A new option controls how Onload fills packets in the TCP send buffer. In the default mode (set
to 0) Onload will prefer to use all the space at the end of a previous packet before allocating a
new one. When set to 1, Onload will prefer to allocate a new packet for each new send.

In all cases this is a hint rather than guaranteed behavior. There are conditions where the
preference indicated by this option will not be possible, e.g. memory pressure might cause
packets in the send queue to be combined. MSG_MORE and TCP_CORK can override this option
when set. The zero-copy sends API can also use the segmentation provided by the caller's
buffers.

For full control of message segmentation the delegated sends API can be used. Setting this
option can affect the capacity of send buffers belonging to sockets in this stack and increase
packet buffer usage. It can also reduce efficiency as packets will be allocated for each send call
rather than being able to reuse one that is already available.

Note: Setting this option is only recommended for those who have an explicit need to avoid combined or
split sends.

Linux Distribution Support
Linux distribution support has been changed:

• Support recent Linux kernel versions (up to 5.9).

• Support recent Linux distributions (RHEL 7.9, RHEL 8.3, SLES 15 sp2).

• Deprecate older Linux distributions (RHEL 6.8, RHEL 7.5, RHEL 8.0, SLES 15,
Ubuntu LTS 16.04).

See Hardware and Software Supported Platforms for a full list of supported OS and kernels.

New Features in OpenOnload-7.1.0
This release of Onload adds system-level interface blacklisting, provides improvements for XDP
and TCPDirect, includes various bug fixes and refreshes the sfc net driver included in the
package.

This release is the successor to the 7.0.0.176 version of OpenOnload and Cloud Onload and is
provided in a single package which simplifies feature activation.

See the accompanying ChangeLog for a list of bugs fixed.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 18Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=18

Feature Activation
Activation files are no longer used in this Onload release. Neither activation files nor NIC
activation are required for most Onload features, including IPv6, XDP and UDP acceleration.
TCPDirect and ultra low latency NIC features still require NIC activation.

The 'cloud' build profile is still required to enable IPv6 and XDP. This is to optimize performance
for users who do not require these features and to ensure compatibility with older OSs.

For further information, please contact your sales representative.

TCPDirect
TCPDirect includes the following improvements:

• TCPDirect applications can now process incoming packet data during receipt.

• TCPDirect is now supported on full-feature firmware.

For full details, refer to the TCPDirect User Guide (SF-116303-CD).

System-level Interface Denylisting
In addition to the per-stack EF_INTERFACE_BLACKLIST and EF_INTERFACE_WHITELIST
environment variables, a system-level configuration has been added. See Allowlist and Denylist
for Interfaces.

Onload Remote Monitor Enhancement
The Onload Remote Monitor has been enhanced to add a new orm_json_lib library, which
can be used by customers to build their own custom monitoring solutions. See Remote
Monitoring.

eBPF/XDP
The implementation of XDP features is now delegated to the currently-running kernel. This
expands the set of supported XDP features to those provided by the kernel but means that XDP
is no longer supported on older OSs that do not provide the corresponding features natively.

For further details of Onload XDP support, see eXpress Data Path (XDP).

Modified Configuration Options
The EF_UDP_CONNECT_HANDOVER configuration option has been extended.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 19Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=19

This option now also accepts a value of 2, which will cause all UDP sockets to be handed over
when calling connect(), regardless of whether the socket could have been accelerated. See
EF_UDP_CONNECT_HANDOVER.

Linux Distribution Support
Linux distribution support has been changed:

• Support recent Linux kernel versions (up to 5.5).

• Support recent Linux distributions (RHEL 7.8, RHEL 8.2, SLES 12 sp5 and Ubuntu 20.04).

• Deprecate older Linux distributions (RHEL 7.4, SLES 12 sp3 and Ubuntu 19.04).

See Hardware and Software Supported Platforms for a full list of supported OS and kernels.

Deprecation
The ability to insert filters to steer kernel traffic using sfcaffinity is deprecated and will be
removed in a future release. Instead ethtool should be used for this purpose.

New Features in OpenOnload-7.0.0
RHEL 8.x Dependencies
Users of Red Hat Enterprise Linux version 8.x should be aware of the build dependencies for Red
Hat Enterprise Linux 8.x.

Activation Files and Build Profiles
Cloud Onload in Onload-7.0.0 requires:

• A Cloud Onload activation file to enable all Cloud Onload specific features

• Build with the cloud build profile

Without a Cloud Onload activation file, the default Onload activation file enables all standard
Onload features.

In all cases an Onload AppFlex activation key is required on the adapter.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 20Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=20

eXpress Data Path (XDP)
Support for XDP allows the user to insert eBPF programs very early into the packet receive path.

eBPF programs are executed before received packets reach the adapter driver or network stack.
Dropped packets incur minimal CPU overhead and are not allocated socket memory buffers, so
packet processing is very fast with almost no overheads.

For further details of Onload XDP support, see eXpress Data Path (XDP).

Equal Cost Multipath Routing
ECMP will attempt to distribute link load sharing by routing packets along multiple paths of equal
cost.

IPv6 Acceleration
Acceleration of IPv6 traffic is added as a compile-time option to Onload-7.0.0. Refer to
limitations of IPv6 Traffic.

Extensions API Timestamps
The EF_RX_TIMESTAMPING_ORDERING environment variable allows the user to select either
NIC hardware timestamps or timestamps generated by an external equipment in cPacket trailer
format.

For more information, refer to onload_ordered_epoll_wait.

The onload_timestamping_request() function supports received packet timestamps from
multiple sources with sub-nanosecond resolution.

Timestamps can be generated by the network adapter and/or timestamps applied by an external
equipment using the cPacket trailer format.

See onload_timestamping_request for details.

IPVLAN
Onload 7.0.0 will accelerate network traffic over layer 2 IPVLAN interfaces. For further details
refer to IPVLAN.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 21Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=21

Change History
Chapter 14: Onload Change History is updated with every revision of this document to include
the latest Onload features, changes or additions to environment variables and changes or
additions to Onload module options.

Chapter 1: What’s New

UG1586 (v1.2) July 31, 2023
Onload User Guide 22Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=22

Chapter 2

X3 Low Latency Quickstart
This chapter demonstrates how to achieve very low latency coupled with minimum jitter on a
system fitted with an X3 series network adapter and using the OpenOnload kernel-bypass
network acceleration middleware.

The procedure will focus on the performance of the network adapter for TCP and UDP
applications running on Linux, using the AMD supplied open source sfnettest network
benchmark test tools, and also the industry-standard Netperf network benchmark application.

The results of these tests can be found in Latency Test Results, and Latency against Payload.

Note: Please read the supplied ONLOAD_LICENSE file regarding the disclosure of performance test results.

Software Installation
IMPORTANT! Before installing Onload, you must ensure that the auxiliary bus driver, the xilinx_efct net
driver and the correct firmware versions are installed. See the Alveo X3522 Installation Guide (UG1522).

For example, for the reference system described later in this chapter:

[root@server-N]# ethtool -i <interface>
driver: xilinx_efct
version: 0.21.0.0
firmware-version: 1.11.1.1

Onload
Before Onload network and kernel drivers can be built and installed the system must support a
build environment capable of compiling kernel modules. Refer to Appendix C: Build
Dependencies for more details.

1. Download the onload-<version>.tgz file from the NIC Software and Drivers web page.

2. Unpack the tar file using the tar command:

tar -zxvf onload-<version>.tgz

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 23Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1522-x3522-installation&ft:locale=en-US
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=23

3. Run the onload_install command from the onload-<version>/scripts
subdirectory:

./onload-<version>/scripts/onload_install

Refer to Driver Loading - NUMA Node to ensure that drivers are affinitized to a core on the
correct NUMA node.

TCPDirect
Before TCPDirect can be built and installed:

• The system must support a build environment capable of compiling kernel modules. Refer to
Appendix C: Build Dependencies for more details.

• The system must provide the libstdc++ package. This is an additional build dependency for
TCPDirect, To add this package:

yum install libstdc++-static

• You must already have installed the following:

○ the auxiliary bus driver

○ the xilinx_efct network driver

○ Onload.

To build and install TCPDirect:

1. Set the ONLOAD_TREE environment variable to the path of the unpacked Onload build tree:

export ONLOAD_TREE=<path>/onload-<version>

2. Download the tcpdirect-<version>.tgz file from the NIC Software and Drivers web
page.

3. Unpack the tar file using the tar command:

tar -zxvf tcpdirect-<version>.tgz

4. Enter the top directory of the unpacked TCPDirect tree:

cd tcpdirect-<version>

5. Run the make command:

make

Netperf
Netperf is available as a package for most OS distributions.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 24Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=24

Netperf can also be downloaded from https://github.com/HewlettPackard/netperf

• Unpack the compressed zip file using the unzip command:

unzip netperf-master.zip

• Refer to the INSTALL file within the distribution for instructions.

Following installation the netperf and netserver applications are typically located in
the /usr/local/bin subdirectory.

Sfnettest
Download the sfnettest source from https://github.com/Xilinx-CNS/cns-sfnettest.

Unpack the downloaded source if necessary, for example:

unzip cns-sfnettest-master.tgz

Run the make utility from the src subdirectory to build the sfnt-pingpong and other test
applications.

Test Setup
The following figure identifies the required physical configuration of two servers equipped with
supported network adapters connected back-to-back.

Figure 1: Test setup

System under test System under testLink
(direct attach or optical)

X26391-031422

• Two servers are equipped with supported network adapters and connected with a single cable
between the supported interfaces.

• The supported interfaces are configured with an IP address so that traffic can pass between
them. Use ping to verify connection.

• Onload, sfnettest and netperf are installed on both machines.

If required, tests can be repeated with a switch on the link to measure the additional latency
delta using a particular switch.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 25Send Feedback

https://github.com/HewlettPackard/netperf
https://github.com/Xilinx-CNS/cns-sfnettest
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=25

BIOS Settings
Make the following BIOS settings on both machines:

1. Enable Turbo Boost (sometimes called Turbo Mode).

2. Enable CStates.

3. Disable any of the following settings that are present:

• Virtualization Technology (also called VT-d/VT-x)

• IOMMU.

These are similar in their effect, and typically only one will be present.

Pre-Test Configuration
The following configuration options are applicable to RHEL8 systems.

First, set some configuration options that decrease latency for Onload acceleration technologies.
On both machines:

1. Add the following options to the kernel configuration line in /boot/grub/grub.conf:

isolcpus=<comma separated cpu list> nohz=off iommu=off intel_iommu=off
mce=ignore_ce nmi_watchdog=0

2. Stop the following services on the server:

systemctl stop cpupower
systemctl stop irqbalance
systemctl stop firewalld

3. Allocate huge pages. For example, to configure 1024 huge pages:

sysctl -w vm.nr_hugepages=1024

To make this change persistent, update /etc/sysctl.conf. For example:

echo "vm.nr_hugepages = 1024" >> /etc/sysctl.conf

For more information refer to Allocating Huge Pages.

4. Consider the selection of the NUMA node, as this affects latency on a NUMA-aware system.
Refer to Onload Deployment on NUMA Systems.

5. Disable interrupt moderation.

ethtool -C <interface> rx-usecs 0 adaptive-rx off

Now perform the following configuration to improve latency without Onload.

Note: These configuration changes have minimal effect on the performance of Onload.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 26Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=26

1. Set interrupt affinity such that interrupts and the application are running on different CPU
cores but on the same processor package.

a. Use the following command to identify the interrupts used by the receive queues created
for an interface:

cat /proc/interrupts | grep <interface>

The output lists the IRQs. For example:

 46: 75744 68481 60581 90520 PCI-MSI 524288-
edge enp1s0f0np0-rx-0
 48: 77959 109946 51941 55480 PCI-MSI 524289-
edge enp1s0f0np0-rx-1
 50: 68880 70980 90226 65240 PCI-MSI 524290-
edge enp1s0f0np0-rx-2
 52: 117159 96120 47240 34807 PCI-MSI 524291-
edge enp1s0f0np0-rx-3
 54: 0 0 0 0 PCI-MSI 524292-
edge enp1s0f0np0-tx-4

b. Direct the listed IRQs to unused CPU cores that are on the same processor package as
the application. For example, to direct IRQs 34-38 to CPU core 2 (where cores are
numbered from 0 upwards), using bash:

for irq in {46..54..2}
> do
> echo 04 > /proc/irq/$irq/smp_affinity
> done

2. Set an appropriate tuned profile:

• The tuned network-latency profile produces better kernel latency results:

tuned-adm profile network-latency

• If available, the cpu-partitioning profile includes the network-latency profile, but also
makes it easy to isolate cores that can be dedicated to interrupt handling or to an
application. For example, to isolate cores 1-3:

echo "isolated_cores=1-3" \
 > /etc/tuned/cpu-partitioning-variables.conf
tuned-adm profile cpu-partitioning

3. Enable the kernel “busy poll” feature to disable interrupts and allow polling of the socket
receive queue. The following values are recommended:

sysctl net.core.busy_poll=50 && sysctl net.core.busy_read=50

Reference System Specification
The following measurements were recorded on Intel® Ice Lake servers. The specification of the
test systems is as follows:

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 27Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=27

• DELL PowerEdge R650 servers equipped with Intel Xeon Gold 6334 CPU @ 3.60 GHz, 64 GB
RAM.

• BIOS configured as specified in BIOS Settings.

• AMD Alveo™ X3522 NIC (driver and firmware – see Software Installation).

• Direct attach cable linking the NICs:

○ 10 Gb cable for measurements at 10 Gb

• Red Hat Enterprise Linux 8.4 (x86_64 kernel, version 4.18.0-305.el8.x86_64).

• OS configured as specified in Pre-Test Configuration

The tuned cpu-partitioning profile has been enabled, configured to isolate all cores except for
core 0, to reduce jitter and remove outliers.

• OpenOnload distribution: 8.0.

• sfnettest version 1.5.0.

• netperf version 2.7.1.

It is expected that similar results will be achieved on any Intel based, PCIe Gen 4 server or
compatible system.

Latency Tests
This section describes various latency tests.

X3 series network adapters use cut through PIO (CTPIO). Packets to be sent are streamed
directly over the PCIe bus to the network port, bypassing the main adapter transmit datapath.
For more information refer to CTPIO.

The tests are repeated for different CTPIO modes:

• cut-through CTPIO.

• store and forward CTPIO.

Note: These different CTPIO modes require changes to the command lines, noted below.

The command lines given below use the taskset command to run the tests on core 1. Change
this as necessary, to use an appropriate isolated core on your test system.

Layer 2 ef_vi Latency
ef_vi is a network layer 2 API.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 28Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=28

ef_vi test applications can be found in:

onload-<version>/build/gnu_x86_64/tests/ef_vi

Run the eflatency UDP test application on both systems:

[sys-1]# taskset -c 1 eflatency <mode> -s <payload> pong <interface>

[sys-2]# taskset -c 1 eflatency <mode> -s <payload> ping <interface>

where:

• <mode> is omitted for cut-through CTPIO, or is -p for store and forward CTPIO

• <payload> is the payload size, in bytes

• <interface> is the interface to use.

The output gives various diagnostic information (ef_vi version, payload and frame length, number
of iterations and warmups, and mode). It also identifies mean RTT, which is halved to give the
mean ½ RTT latency.

Note: Appendix J: eflatency describes the eflatency application, command line options and provides
example command lines.

TCPDirect Latency
TCPDirect test applications can be found in:

tcpdirect-<version>/build/gnu_x86_64/tests/zf_apps/static

Run the zfudppingpong application on both systems:

[sys-1]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zfudppingpong -s <payload> pong <sys-1_ip>:20000 <sys-2_ip>:20000

[sys-2]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zfudppingpong -s <payload> ping <sys-2_ip>:20000 <sys-1_ip>:20000

or run the zftcppingpong application on both systems:

[sys-1]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zftcppingpong -s <payload> pong <sys-1_ip>:20000

[sys-2]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zftcppingpong -s <payload> ping <sys-1_ip>:20000

where:

• <interface> is the interface to use

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 29Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=29

• <mode> is the CTPIO mode to use, which is ct for cut-through CTPIO, or sf for store and
forward CTPIO

• <payload> is the payload size, in bytes

• <sys-1_ip> is the IP address of sys-1

• <sys-2_ip> is the IP address of sys-2.

The output identifies mean RTT, which is halved to give the mean ½ RTT latency.

Onload Latency with netperf
You can measure Onload latency with standard tools. This test identifies how to use netperf.

Run the netserver application on system-1:

[sys-1]# pkill -f netserver
[sys-1]# onload --profile=<profile> taskset -c 1 netserver

and the netperf application on system-2:

[sys-2]# onload --profile=<profile> taskset -c 1 \
 netperf -t <test> -H <sys-1_ip> -l 10 -- -r <payload>

where:

• <profile> is latency-best for cut-through CTPIO, or latency for store and forward
CTPIO

• <test> is UDP_RR or TCP_RR, as appropriate

• <payload> is the payload size, in bytes

• <sys-1_ip> is the IP address of sys-1.

The output identifies the transaction rate per second, from which:

mean ½ RTT = (1 / transaction rate) / 2

Onload Latency with sfnt-pingpong
You can also measure Onload latency with the sfnt-pingpong application.

Note: The latencies measured with sfnt-pingpong are almost identical to the latencies measured with
netperf in Onload Latency with netperf.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 30Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=30

Run the sfnt-pingpong application on both systems:

[sys-1]# onload --profile=<profile> taskset -c 1 sfnt-pingpong

[sys-2]# onload --profile=<profile> taskset -c 1 sfnt-pingpong \
 --affinity "1;1" <protocol> <sys-1_ip>

where:

• <profile> is latency-best for cut-through CTPIO, or latency for store and forward
CTPIO

• <protocol> is udp or tcp, as appropriate

• <sys-1_ip> is the IP address of sys-1.

The output identifies mean, minimum, median and maximum (nanosecond) ½ RTT latency for
increasing packet sizes, including the 99% percentile and standard deviation for these results.

Latency Test Results
The table below shows the results of running the tests described in Latency Tests. The times
given are ½ RTT latency for a 1 byte message.

Table 3: ½ RTT Latency for a 1 Byte Message

Acceleration Protocol 10 Gb Notes Description
ef_vi UDP 797 ns eflatency Layer 2 ef_vi Latency

TCPDirect UDP 830 ns zfudppingpong TCPDirect Latency

TCP 846 ns zftcppingpong TCPDirect Latency

Onload UDP 1040 ns netperf Onload Latency with
netperf

1060 ns sfnt-pingpong Onload Latency with
sfnt-pingpong

TCP 1140 ns netperf Onload Latency with
netperf

1150 ns sfnt-pingpong Onload Latency with
sfnt-pingpong

These tests have also been repeated with different payloads, to generate the graphs in Latency
against Payload.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 31Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=31

Latency against Payload
Latency for UDP Payloads at 10 Gb
The following figure shows the latency for different UDP payloads using the ef_vi eflatency
application (see Layer 2 ef_vi Latency).

Figure 2: Latency for different UDP payloads at 10 Gb using ef_vi

The following figure shows the latency for different UDP payloads using the TCPDirect
zfudppingpong application (see TCPDirect Latency). The ef_vi latency is also shown as a baseline.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 32Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=32

Figure 3: Latency for different UDP payloads at 10 Gb using TCPDirect

The following figure shows the latency for different UDP payloads using Onload with the netperf
application (see Onload Latency with netperf). The ef_vi latency is also shown as a baseline.

Figure 4: Latency for different UDP payloads at 10 Gb using Onload with netperf

The following figure shows the latency for different UDP payloads using Onload with the sfnt-
pingpong application (see Onload Latency with sfnt-pingpong). The ef_vi latency is also shown as
a baseline.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 33Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=33

Figure 5: Latency for different UDP payloads at 10 Gb using Onload with sfnt-
pingpong

Latency for TCP Payloads at 10 Gb
The following figure shows the latency for different TCP payloads using the TCPDirect
zftcppingpong application (see TCPDirect Latency). The ef_vi latency is also shown as a baseline.

Figure 6: Latency for different TCP payloads at 10 Gb using TCPDirect

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 34Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=34

The following figure shows the latency for different TCP payloads using Onload with the netperf
application (see Onload Latency with netperf). The ef_vi latency is also shown as a baseline.

Figure 7: Latency for different TCP payloads at 10 Gb using Onload with netperf

The following figure shows the latency for different TCP payloads using Onload with the sfnt-
pingpong application (see Onload Latency with sfnt-pingpong). The ef_vi latency is also shown as
a baseline.

Figure 8: Latency for different TCP payloads at 10 Gb using Onload with sfnt-pingpong

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 35Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=35

Further Information
For installation of X3522 adapters and performance tuning of the network driver when not using
Onload refer to the Alveo X3522 Installation Guide (UG1522) and the Alveo X3522 User Guide
(UG1523).

Questions regarding Solarflare products, Onload and this User Guide can be emailed to support-
nic@amd.com.

Chapter 2: X3 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 36Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1522-x3522-installation&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?url=ug1523-x3522-user&ft:locale=en-US
mailto:support-nic@amd.com?subject=Onload%20User%20Guide
mailto:support-nic@amd.com?subject=Onload%20User%20Guide
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=36

Chapter 3

Overview
Onload is accelerated network middleware. It is an implementation of TCP and UDP over IP
which is dynamically linked into the address space of user-mode applications, and granted direct
(but safe) access to the network-adapter hardware. The result is that data can be transmitted to
and received from the network directly by the application, without involvement of the operating
system. This technique is known as 'kernel bypass'.

Kernel bypass avoids disruptive events such as system calls, context switches and interrupts and
so increases the efficiency with which a processor can execute application code. This also
directly reduces the host processing overhead, typically by a factor of two, leaving more CPU
time available for application processing. This effect is most pronounced for applications which
are network intensive, such as:

• Market-data and trading applications

• Computational fluid dynamics (CFD)

• HPC (High Performance Computing)

• HPMPI (High Performance Message Passing Interface), Onload is compatible with MPICH1
and 2, HPMPI, OpenMPI and SCALI

• Other physical models which are moderately parallelizable

• High-bandwidth video-streaming

• Web-caching, Load-balancing and Memcached applications

• Content Delivery Networks (CDN) and HTTP servers

• Other system hot-spots such as distributed lock managers or forced serialization points

The Onload library dynamically links with the application at runtime using the standard BSD
sockets API, meaning that no modifications are required to the application being accelerated.
Onload is the first and only product to offer full kernel bypass for POSIX socket-based
applications over TCP/IP and UDP/IP protocols.

Note: Throughout this user guide the term Onload refers to both OpenOnload and EnterpriseOnload
unless otherwise stated.

Note: This guide should be read with the Solarflare Server Adapter User Guide (SF-103837-CD), which
describes procedures for hardware and software installation of Solarflare network interfaces cards,
network device drivers and related software.

Chapter 3: Overview

UG1586 (v1.2) July 31, 2023
Onload User Guide 37Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=37

Contrasting with Conventional Networking
When using conventional networking, an application calls on the OS kernel to send and receive
data to and from the network. Transitioning from the application to the kernel is an expensive
operation, and can be a significant performance barrier.

When an application accelerated using Onload needs to send or receive data, it need not access
the operating system, but can directly access a partition on the network adapter. The two
schemes are shown in the following figure.

Figure 9: Contrast with Conventional Networking.

User space

Application

Sockets

User space

Application

Sockets

Onload

Kernel domain

TCP/IP stack

Network driver

Network Interface Controller

VNIC

MAC

VNIC

X26440-031822

An important feature of the conventional model is that applications do not get direct access to
the networking hardware and so cannot compromise system integrity. Onload is able to preserve
system integrity by partitioning the NIC at the hardware level into many, protected 'Virtual NICs'
(VNIC). An application can be granted direct access to a VNIC without the ability to access the
rest of the system (including other VNICs or memory that does not belong to the application).
Thus Onload with a supported NIC allows optimum performance without compromising security
or system integrity.

Note: On X3-series adapters receive queues can be shared by more than one client, and so there must be a
trust relationship between processes on the system. X3-series adapters should not be used in scenarios
where strict POSIX isolation is necessary.

Chapter 3: Overview

UG1586 (v1.2) July 31, 2023
Onload User Guide 38Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=38

In summary, Onload can significantly reduce network processing overheads.

How Onload Increases Performance
Onload can significantly reduce the costs associated with networking by reducing CPU
overheads and improving performance for latency, bandwidth and application scalability.

Overhead

Transitioning into and out of the kernel from a user-space application is a relatively expensive
operation: the equivalent of hundreds or thousands of instructions. With conventional
networking such a transition is required every time the application sends and receives data. With
Onload, the TCP/IP processing can be done entirely within the user-process, eliminating
expensive application/kernel transitions through system calls. In addition, the Onload TCP/IP
stack is highly tuned, offering further overhead savings.

The overhead savings of Onload mean more of the CPU's computing power is available to the
application to do useful work.

Latency

Conventionally, when a server application is ready to process a transaction it calls into the OS
kernel to perform a 'receive' operation, where the kernel puts the calling thread 'to sleep' until a
request arrives from the network. When such a request arrives, the network hardware
'interrupts' the kernel, which receives the request and 'wakes' the application.

All of this overhead takes CPU cycles as well as increasing cache and translation lookaside-buffer
(TLB) footprint. With Onload, the application can remain at user level waiting for requests to
arrive at the network adapter and process them directly. The elimination of a kernel-to-user
transition, an interrupt, and a subsequent user-to-kernel transition can significantly reduce
latency. In short, reduced overheads mean reduced latency.

Bandwidth

Because Onload imposes less overhead, it can process more bytes of network traffic every
second. Along with specially tuned buffering and algorithms designed for 10 gigabit networks,
Onload allows applications to achieve significantly improved bandwidth.

Scalability

Modern multi-core systems are capable of running many applications simultaneously. However,
the advantages can be quickly lost when the multiple cores contend on a single resource, such as
locks in a kernel network stack or device driver. These problems are compounded on modern
systems with multiple caches across many CPU cores and Non-Uniform Memory Architectures.

Chapter 3: Overview

UG1586 (v1.2) July 31, 2023
Onload User Guide 39Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=39

Onload results in the network adapter being partitioned and each partition being accessed by an
independent copy of the TCP/IP stack. The result is that with Onload, doubling the cores really
can result in doubled throughput as demonstrated by the following figure.

Figure 10: Onload Partitioned Network Adapter

Network
adapter

OS kernel

CPU core

VNIC

Onload stack

Socket

Application

CPU core

VNIC

Onload stack

Socket

Application

X26430-031722

Further Information
For detailed information refer to:

• Chapter 6: Onload Functionality.

• Chapter 8: Onload and TCP.

• Chapter 9: Onload and UDP.

• Chapter 12: Onload and Virtualization.

Chapter 3: Overview

UG1586 (v1.2) July 31, 2023
Onload User Guide 40Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=40

Chapter 4

Installation
This chapter describes how to install Onload.

Onload Distributions
Onload is available in the following distributions:

• “OpenOnload” is a free version of Onload available from the NIC Software and Drivers web
page distributed as a source tarball under the GPLv2 license. OpenOnload is subject to a linear
development cycle where major releases include the latest development features.

• “EnterpriseOnload” is a commercial enterprise version of Onload distributed as a source RPM
under the GPLv2 license. EnterpriseOnload differs from OpenOnload in that it is offered as a
mature commercial product that is downstream from OpenOnload having undergone a
comprehensive software product test cycle resulting in tested, hardened and validated code.

These distributions are available in the following formats:

Table 4: Available Formats for Distributions

Distribution Tarball DKMS package Source RPM Source DEB
OpenOnload ✓ ✓ ✓ ✓
EnterpriseOnload — — ✓ ✓

• A tarball (called the “Release Package” on the download site) contains source for Onload and
its drivers.

A supplied script builds and installs Onload and its drivers from the source in the tarball.
Another supplied script can uninstall Onload.

• A DKMS package requires that Dynamic Kernel Module Support (DKMS) framework is
available.

The DKMS framework builds and installs Onload and its drivers from the source in the DKMS
package, and automatically rebuilds them if a new OS kernel is installed. The framework can
also uninstall Onload.

• A Source RPM (or SRPM) requires that the RPM Package Manager is available.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 41Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=41

The RPM Package Manager builds and installs Onload and its drivers from the source RPM.
The Package Manager can also uninstall Onload.

• A Source DEB is a Debian package containing source, and requires that the Debian Package
Management System is available.

A tool from the Management System builds and installs Onload and its drivers from the source
DEB. The tool can also uninstall Onload.

A flexible and broad range of support options is offered. Users should consult their reseller for
details. For further details of the Enterprise Service and Support options that are available,
contact support-nic@amd.com.

Cloud Build Profile
Users requiring IPv6 or XDP/eBPF filtering should build Onload with the cloud build profile. This
enables additional cloud-specific features that target data centers providing cloud services:

./onload_install --build-profile cloud

Onload LICENSE Files
Users are advised to read the following license files in the Onload distribution:

• LICENSE

• LICENSES-ALL

• Any *-LICENSE files (older Onload distributions only).

Kubernetes Onload
“Kubernetes Onload” is a version of Onload for use with Red Hat OpenShift or Kubernetes/
Calico available from the NIC Software and Drivers web page. It provides an Onload Operator
that automates the deployment of Onload. It allows for the creation of pods with interfaces that
can run accelerated Onload applications.

Note: Installation of Kubernetes Onload is described within its distribution. See its Release Note for further
details.

Hardware and Software Supported Platforms
Onload supports the following platforms.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 42Send Feedback

mailto:support-nic@amd.com?subject=Enterprise%20Service%20and%20Support%20options
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=42

Supported Network Adapters
Onload supports the following network adapters:

• AMD X3 series adapters.

Refer to the Alveo X3522 User Guide (UG1523) for adapter details.

• Solarflare XtremeScale™ X2 series adapters.

Refer to the Solarflare Server Adapter User Guide ‘Product Specifications’ for adapter details.

• Solarflare XtremeScale™ SFN8000 series adapters.

Refer to the Solarflare Server Adapter User Guide ‘Product Specifications’ for adapter details.

Supported Processors
Onload can run on all lntel and AMD x86 processors, on 64 bit platforms.

Note: Older versions of Onload can also run on 32 bit platforms:

• Support for 32 bit kernels was removed in Onload 201805.

• Support for 32 bit userspace applications continues up to (and including) Onload-7.1.x bugfix releases,
but has been removed in Onload 8.

Note: Support for AMD processors prior to Zen was removed in Onload 201811. Onload can still be
installed and used on such systems. See Build and Install Onload.

Supported Operating Systems
The following table identifies supported operating systems/kernels:

Table 5: OS/Kernel Support

OS Version Notes
Red Hat Enterprise Linux 7.9 —

Red Hat Enterprise Linux 8.4 - 8.8 —

Red Hat Enterprise Linux 9.0 - 9.2 —

SuSE Linux Enterprise Server 15 SP4 - SP5 —

Canonical Ubuntu Server LTS 20.04 and 22.04 —

Debian 11 “Bullseye” —

Debian 12 “Bookworm” —

Linux kernels 4.15 - 6.3 —

Notes:
1. AMD aim to support the OS current and previous major release at the point these are released (plus the latest long

term support release if this is not already included). This includes all minor releases where the distributor has not yet
declared end of life/support.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 43Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1523-x3522-user&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=43

Whilst the Onload QA test cycle predominantly focuses on the Linux OS versions documented
above, although not formally supported, AMD are not aware of any issues preventing Onload
installation on other Linux variants such as CentOS and Fedora. Some versions of Ubuntu and
Debian earlier than those listed above are also known to support Onload.

Onload and Network Adapter Drivers
The network adapter drivers that you must use with Onload depends on the adapter that you are
using:

• If you are using an AMD X3 series adapter, you must use the xilinx_efct and auxiliary bus
drivers. You must build and install these before you build Onload.

See X3 Series Drivers.

• If you are using a Solarflare XtremeScale adapter, you must use the sfc driver that is supplied
with Onload.

See XtremeScale Drivers.

X3 Series Drivers
Drivers for X3 series adapters are available separately from Onload. The following are required:

• The auxiliary bus driver.

This is provided by some recent Linux distributions, and is also available from AMD.

• The xilinx_efct network adapter driver.

This is available from AMD.

IMPORTANT! You must install and build these drivers before you install Onload. Follow the instructions in
the Installation Guide for your X3 series adapter.

If you are not also using Solarflare XtremeScale adapters, omit the rest of this section and go to
Removing an Existing Installation.

XtremeScale Drivers
Solarflare XtremeScale network adapters (X2-series and their predecessors) use the sfc network
driver. This is generally available from three sources:

• Packaged in many Linux distributions such as Red Hat Enterprise Linux.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 44Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=44

This is commonly known as ‘in-tree’, ‘in-box’, or ‘boxed’. Depending on the OS version this
driver might not support more recent Solarflare XtremeScale adapters, and also does not
support any Onload features. You must not use this driver with Onload.

• Downloaded as source RPM from the NIC Software and Drivers web page.

This method for getting the sfc driver is recommended when you require the latest driver for
non-Onload use.

• Packaged in the OpenOnload/EnterpriseOnload distribution.

This bundled sfc driver is installed along with the other Onload drivers. It supports the
specific features of the Onload release. You must always use this bundled driver with Onload.

To ensure the bundled Onload driver is always loaded following system reboot, any other sfc
drivers can be removed from the OS entirely. See Identifying and Removing Previously Installed
Drivers.

Alternatively any Onload startup script should include the following command to reload the
Onload drivers, including the bundled sfc driver:

onload_tool reload

Identifying and Removing Previously Installed Drivers

You can identify any previously installed sfc drivers using the ethtool -i command:

• An ‘in-tree’ driver uses one of the following formats for its version number:

○ On older versions of Linux, the ‘in-tree’ driver outputs only Major and Minor revision
numbers:

ethtool -i enp3s0f0
driver: sfc
version: 4.0

○ On recent versions of Linux, the ‘in-tree’ driver instead outputs the kernel version number:

ethtool -i enp3s0f0
driver: sfc
version: 4.18.0-372.9.1.el8.x86_64

• All other sfc drivers display detailed version information:

ethtool -i enp3s0f0
driver: sfc
version: 4.15.12.1008

Note: For a list of the sfc driver included in each Onload release see Adapter Net Drivers.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 45Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=45

To remove the previously installed driver (with Onload uninstalled or not yet installed):

find /lib/modules/$(uname -r) -name 'sfc*.ko' | xargs rm –rf
rmmod sfc
update-initramfs -u -k <kernel version>

initramfs commands might differ on different Linux based OS, for example on CentOS 7 the
following dracut command can be used:

dracut –f

Removing an Existing Installation
When migrating between Onload versions or between Onload distributions (OpenOnload or
EnterpriseOnload), a previously installed version or distribution must first be unloaded using the
onload_tool unload command and then removed. Tarball installs can be removed with the
onload_uninstall command.

onload_tool unload
onload_uninstall

In some specific cases it might be necessary to manually remove onload driver modules before
upgrading to a more recent version. To do this, list the modules and remove each dependency
before removing the modules:

lsmod | grep onload
onload 580599 3
sfc_char 47419 1 onload
 162351 2 onload,sfc_char
sfc 431807 4 sfc_resource,onload,sfc_char,sfc_affinity
onload_cplane 144142 3 onload

and:

lsmod | grep sfc
sfc_chsfc_resourcear 47419 1 onload
sfc_resource 162351 2 onload,sfc_char
sfc_affinity 17948 1 sfc_resource
sfc 431807 4 sfc_resource,onload,sfc_char,sfc_affinity

To remove modules:

rmmod onload
rmmod sfc_char

Repeat the rmmod command for each module.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 46Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=46

CAUTION! Attempts to unload or uninstall Onload and drivers when onload stacks are still present will
result in the following type of warnings:

onload_tool unload
onload_tool: /sbin/modprobe -r onload
FATAL: Module onload is in use.
FATAL: Error running remove command for onload
onload_tool: ERROR: modprobe -r onload failed (0)
onload_tool: /sbin/modprobe -r sfc_char
FATAL: Module sfc_char is in use.
FATAL: Error running remove command for sfc_char
onload_tool: ERROR: modprobe -r sfc_char failed (0)
onload_tool: /sbin/modprobe -r sfc_resource
FATAL: Module sfc_resource is in use.
onload_tool: ERROR: modprobe -r sfc_resource failed (0)
onload_tool: /sbin/modprobe -r sfc_affinity
FATAL: Module sfc_affinity is in use.
FATAL: Error running remove command for sfc_affinity
onload_tool: ERROR: modprobe -r sfc_affinity failed (0)
onload_tool: /sbin/modprobe -r sfc
FATAL: Module sfc is in use.
onload_tool: ERROR: modprobe -r sfc failed (0)"

The user should check using onload_stackdump [-z] to ensure that all onload stacks have been
terminated before the uninstall.

Removing RPMs
If Onload was installed from a source RPM, it might also be necessary to remove installed RPM
packages:

rpm -qa | grep 'enterpriseonload' | xargs rpm -e
rpm -qa | grep 'cloudonload' | xargs rpm -e
rpm -qa | grep 'onload' | xargs rpm -e
rpm -qa | grep 'sfc' | xargs rpm -e
rpm -qa | grep 'sfutils' | xargs rpm -e
onload_uninstall

Pre-install Notes
Before installing, note the following:

• If Onload is to accelerate a 32-bit application on a 64-bit architecture, the 32-bit libc
development headers should be installed before building Onload. Refer to Appendix C: Build
Dependencies for install instructions.

• The Solarflare drivers are currently classified as unsupported in SLES 11 and 12, the
certification process is underway. To overcome this add ‘allow_unsupported_modules 1’
to the following file:

○ For SLES 11, /etc/modprobe.d/unsupported-modules

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 47Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=47

○ For SLES 12, /etc/modprobe.d/10-unsupported-modules.conf

• Determine which Onload distribution and format you will be installing (see Onload
Distributions). Then refer to the appropriate section from the following:

○ Building and Installing from a Tarball

○ Building and Installing from a DKMS Package

○ Building and Installing from a Source RPM

○ Building and Installing from a Source DEB.

Building and Installing from a Tarball
This section identifies the procedures to build and install Onload from a tarball. It uses
OpenOnload as an example, but the same procedures apply to any other Onload distributions in
this format.

Download and Untar Onload
1. Download the required tar file from the NIC Software and Drivers web page.

The compressed tar file (.tgz) should be downloaded/copied to a directory on the machine on
which it will be installed.

2. As root, unpack the tar file using the tar command.

tar -zxvf onload-<version>.tgz

This will unpack the tar file and, within the current directory, create a sub-directory called
onload-<version> which contains other sub-directories including the scripts directory
from which subsequent install commands can be run.

Build and Install Onload
Note: Refer to Appendix C: Build Dependencies for details of build dependencies.

The following command will build and install Onload and required drivers in the system
directories:

./onload_install [options]

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 48Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=48

Make sure that all required options are specified with the install command. For help use ./
onload_install -h

options:
 --newkernel <ver> - Build and install drivers for new kernel
 --kernelver <ver> - Specify kernel version for drivers
 --nobuild - Do not (re)compile
 --require32 - Fail if 32-bit binaries are not installed
 --setuid - Preload libraries are set-uid and set-gid
 --nosetuid - Preload libraries are not set-uid/gid
 --affinity - Include sfcaffinity
 --noaffinity - Do not include sfcaffinity
 --debug - Build debug binaries
 --no-debug-info - Omit debug info from binaries
 --strict - Compiler warnings are errors
 --require-optional-targets - Require optional targets
 --userfiles - Only install user-level components
 --kernelfiles - Only install kernel driver components
 --modprobe - Only install modprobe configuration
 --force - Force install if already installed
 --allow-unsupported-cpu - Force install even when CPU is too old
 --verbose - Verbose logging of commands
 --test - Do not install; just print commands
 --listfiles - Do not install; just list installed files
 --filter-engine - Specify location of filter engine directory
 by default - /opt/onload_filter_engine
 --no-filter-engine - Don't include filter engine support even
 if it's present in the system
 --build-profile - Specify a build profile
 --no-initramfs - Do not update initramfs
 --no-tcpdirect - Do not install TCPDirect libraries

Successful installation will be indicated with the following output “onload_install:
Install complete” – possibly followed by a warning that the sfc (net driver) driver is already
installed.

Note: The onload_install script does not create RPMs.

• Some optional targets require additional packages (Optional targets are listed in Appendix C:
Build Dependencies). By default, an Onload install continues if these targets cannot be built. If
the --require-optional-targets option is specified, the install fails when any prerequisite for an
optional target is missing:

./onload_install --require-optional-targets

• Installing on an unsupported CPU gives an error. This can also be overridden:

./onload_install --allow-unsupported-cpu

Cloud Build Profile
Users requiring IPv6 or XDP/eBPF filtering should build Onload with the cloud build profile. This
enables additional cloud-specific features that target data centers providing cloud services:

./onload_install --build-profile cloud

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 49Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=49

Load the Onload Drivers
Following installation you must load the Onload drivers:

1. Load the network and Onload kernel drivers:

• If you are using the sfc network driver (for 8000 series or X2 series adapters), just use the
onload_tool command:

onload_tool reload

This replaces any previously loaded sfc network driver with the sfc driver from the
Onload distribution.

• Otherwise you must reload the network driver yourself, and also the auxiliary driver. For
example if you are using the xilinx_efct driver with an X3 series adapter:

modprobe -r xilinx_efct
modprobe -r auxiliary
modprobe auxiliary
modprobe xilinx_efct
onload_tool reload --onload-only

2. Confirm success:

onload
OpenOnload <version>
Copyright 2019-2022 Xilinx, 2006-2019 Solarflare Communications,
2002-2005 Level 5 Networks
Built: <date> <time> (release)
Kernel module: <version>

If a Kernel module version is shown, this confirms that the Onload kernel module is
installed and loaded.

Note: An alternative to the onload_tool reload command is to reboot the system to load Onload
drivers.

Confirm Onload Installation
When the Onload installation is complete run the onload command to confirm installation of
Onload software and kernel module:

onload

This will display the Onload product banner and usage:

onload
Onload b704114d6b 2022-02-08 master
Copyright 2019-2022 Xilinx, 2006-2019 Solarflare Communications, 2002-2005
Level 5 Networks
Built: Feb 8 2022 17:19:25 (debug)
Build profile header: <ci/internal/transport_config_opt_extra.h>
Kernel module: b704114d6b 2022-02-08 master

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 50Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=50

usage:
 onload [options] <command> <command-args>
options:
 -p,--profile=<profile> -- comma sep list of config profile(s)
 --force-profiles -- profile settings override environment
 --no-app-handler -- do not use app-specific settings
 --app=<app-name> -- identify application to run under onload
 --version -- print version information
 -v -- verbose
 -h --help -- this help message

Building a Source RPM from a Tarball
Alternatively, a source RPM can be built from the Onload tarball.

1. Download the required tarball from the NIC Software and Drivers web page.

2. As root, execute the following command:

rpmbuild -ts onload-<version>.tgz*
 x86_64 Wrote: /root/rpmbuild/SRPMS/onload-<version>.src.rpm

The output identifies the location of the source RPM. For instructions on installing this, see
Building and Installing from a Source RPM.

Note: Use the -ta option to generate a binary RPM.

Building and Installing from a DKMS Package
This section identifies the procedures to build and install Onload from a DKMS package. It uses
OpenOnload as an example, but the same procedures apply to any other Onload distributions in
this format.

DKMS packages are available for OpenOnload from version 201811 onwards.

DKMS must be installed on the server. DKMS can be downloaded from http://linux.dell.com/
dkms/ or from the OS distribution. To check this run the following command which will return
nothing if DKMS is not installed:

dkms --version
dkms: 2.2.0.3

Install on RHEL
To install on RHEL:

1. Install the Onload dkms package:

rpm -i onload-dkms-<version>.noarch.rpm

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 51Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
http://linux.dell.com/dkms/
http://linux.dell.com/dkms/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=51

2. Load the network and Onload kernel drivers:

• If you are using the sfc network driver (for 8000 series or X2 series adapters), just use the
onload_tool command:

onload_tool reload

This replaces any previously loaded sfc network driver with the sfc driver from the
Onload distribution.

• Otherwise you must reload the network driver yourself, and also the auxiliary driver. For
example if you are using the xilinx_efct driver with an X3 series adapter:

modprobe -r xilinx_efct
modprobe -r auxiliary
modprobe auxiliary
modprobe xilinx_efct
onload_tool reload --onload-only

3. Confirm success:

onload
OpenOnload <version>
Copyright 2019-2022 Xilinx, 2006-2019 Solarflare Communications,
2002-2005 Level 5 Networks
Built: <date> <time> (release)
Kernel module: <version>

If a Kernel module version is shown, this confirms that the Onload kernel module is
installed and loaded.

Install on Ubuntu
A method that can be used on Ubuntu is as follows:

1. Create a .deb package from the RPM:

$ sudo alien -c onload-dkms-<version>.noarch.rpm

You must use the -c option otherwise the driver binary will not be built.

2. Make sure the .deb package is created:

$ ls
onload-dkms_<version>_all.deb onload-dkms-<version>.noarch.rpm

3. Install the .deb package (this takes a few minutes):

$ sudo dpkg -i onload-dkms_<version>_all.deb

This produces a lot of output while it builds the following components:

sfc, sfc_affinity.ko, sfc_char.ko, sfc_resource.ko, and onload.ko.

4. Load the network and Onload kernel drivers:

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 52Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=52

• If you are using the sfc network driver (for 8000 series or X2 series adapters), just use the
onload_tool command:

$ sudo onload_tool reload

This replaces any previously loaded sfc network driver with the sfc driver from the
Onload distribution.

• Otherwise you must reload the network driver yourself, and also the auxiliary driver. For
example if you are using the xilinx_efct driver with an X3 series adapter:

$ sudo modprobe -r xilinx_efct
$ sudo modprobe -r auxiliary
$ sudo modprobe auxiliary
$ sudo modprobe xilinx_efct
$ sudo onload_tool reload --onload-only

5. Confirm success:

$ onload
OpenOnload <version>
Copyright 2019-2022 Xilinx, 2006-2019 Solarflare Communications,
2002-2005 Level 5 Networks
Built: <date> <time> (release)
Kernel module: <version>

If a Kernel module version is shown, this confirms that the Onload kernel module is
installed and loaded.

Note: Instead of creating and installing a .deb package (1 - 3 above), you can use the alien command to
install directly from the RPM:

$ sudo alien --scripts -i onload-dkms-<version>.noarch.rpm

This produces a lot of output similar to the previous method.

Building and Installing from a Source RPM
This section identifies the procedures to build and install Onload from a source RPM. It uses
EnterpriseOnload as an example, but the same procedures apply to other Onload distributions in
this format, such as OpenOnload.

Source RPMs can be built by the ‘root’ or ‘non-root’ user, but the user must have superuser
privileges to install RPMs. Customers should contact their customer sales representative for
access to Onload source RPM resources.

Build the RPMs
Note: Refer to Appendix C: Build Dependencies for details of build dependencies.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 53Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=53

As root:

rpmbuild --rebuild enterpriseonload-<version>.src.rpm

Or as a non-root user:

It is advised to use _topdir to ensure that RPMs are built into a directory to which the user has
permissions. The directory structure must pre-exist for the rpmbuild command to succeed.

mkdir -p /tmp//myrpm/{SOURCES,BUILD,RPMS,SRPMS}
rpmbuild --define "_topdir /tmp/myrpm" \
 --rebuild enterpriseonload-<version>.src.rpm

Note: On some non-standard kernels the rpmbuild might fail because of build dependencies. In this event
retry, adding the --nodeps option to the command line.

Building the source RPM will produce two binary RPM files which can be found in one of the
following directories:

• /usr/src/*/RPMS/

• _topdir/RPMS (when built by a non-root user)

• /tmp/myrpm/RPMS/x86_64/ (when _topdir was defined in the rpmbuild command line).

For example, the user-space components:

/usr/src/redhat/RPMS/x86_64/enterpriseonload-<version>.x86_64.rpm

and the kernel components:

/usr/src/redhat/RPMS/x86_64/enterpriseonload-kmod-2.6.18-92.el5-
<version>.x86_64.rpm

Install the Built RPMs
The Onload RPM and the kernel RPM must be installed for Onload to function correctly.

rpm -ivf enterpriseonload-<version>.x86_64.rpm
rpm -ivf enterpriseonload-kmod-2.6.18-92.el5-<version>.x86_64.rpm

Note: Onload is now installed but the kernel modules are not yet loaded.

Note: The enterpriseonload-kmod filename is specific to the kernel that it is built for.

Load the Onload Drivers
Following installation you must load the Onload drivers:

1. Load the network and Onload kernel drivers:

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 54Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=54

• If you are using the sfc network driver (for 8000 series or X2 series adapters), just use the
onload_tool command:

onload_tool reload

This replaces any previously loaded sfc network driver with the sfc driver from the
Onload distribution.

• Otherwise you must reload the network driver yourself, and also the auxiliary driver. For
example if you are using the xilinx_efct driver with an X3 series adapter:

modprobe -r xilinx_efct
modprobe -r auxiliary
modprobe auxiliary
modprobe xilinx_efct
onload_tool reload --onload-only

2. Confirm success:

onload
OpenOnload <version>
Copyright 2019-2022 Xilinx, 2006-2019 Solarflare Communications,
2002-2005 Level 5 Networks
Built: <date> <time> (release)
Kernel module: <version>

If a Kernel module version is shown, this confirms that the Onload kernel module is
installed and loaded.

Note: At this point Onload is loaded, but until the network interface has been configured and brought into
service Onload will be unable to accelerate traffic.

Building and Installing from a Source DEB
This section identifies the procedures to build and install Onload from a source DEB. It uses
EnterpriseOnload as an example, but the same procedures apply to other Onload distributions in
this format, such as OpenOnload.

Debian source packages are available for EnterpriseOnload from version 4.0 onwards. Packages
are named in the following format:

enterpriseonload_<version>-debiansource.tgz

1. Untar the source package:

$ tar xf enterpriseonload_<version>-debiansource.tgz

2. Extract the source:

$ dpkg-source -x enterpriseonload_<version>-1.dsc

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 55Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=55

3. Build the packages:

$ cd enterpriseonload-<version>
$ debuild -i -uc -us

4. Install the packages:

$ sudo dpkg -i ../enterpriseonload-user_<version>-1_amd64.deb
$ sudo dpkg -i ../enterpriseonload-source_<version>-1_all.deb

5. Build and install the modules:

$ sudo m-a a-i enterpriseonload

Onload Kernel Modules
To identify relevant drivers already installed on the server:

find /lib/modules/`uname -r` -type f -name '*.ko' -printf '%f\n' | grep -E
'sfc|onload'

Table 6: Driver Names and Descriptions

Driver Name Description
sfc.ko A Linux net driver provides the interface between the Linux

network stack and the Solarflare network adapter.

sfc_char.ko Provides low level access to the Solarflare network adapter
virtualized resources. Supports direct access to the network
adapter for applications that use the ef_vi user-level
interface for maximum performance.

sfc_tune.ko This is used to prevent the kernel during idle periods from
putting the CPUs into a sleep state.
Removed in openonload-201405.

sfc_affinity.ko Used to direct traffic flow managed by a thread to the core
the thread is running on, inserts packet filters that override
the RSS behavior.

sfc_resource.ko Manages the virtualization resources of the adapter and
shares the resources between other drivers.

onload.ko The kernel component of Onload.

onload_cplane.ko The control plane component of Onload. User of
Onload-201710 onwards refer to User-space Control Plane
Server.

To unload any loaded drivers:

onload_tool unload

To remove the installed files of a previous Onload:

onload_uninstall

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 56Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=56

To load the Solarflare net driver (if not already loaded):

modprobe sfc

To reload drivers following upgrade or changed settings:

onload_tool reload

Note: The onload_tool reload command reloads drivers listed in the preceding table, but does not
reload other network drivers such as the xilinx_efct driver used by X3 series adapters. To reload any
unlisted drivers, use the modprobe command.

Configuring the Network Interfaces
Network interfaces should be configured according to the Solarflare Server Adapter User’s Guide.

When the interface(s) have been configured, the dmesg command will display output similar to
the following (one entry for each Solarflare interface):

sfc 0000:13:00.0: INFO: eth2 Solarflare Communications NIC PCI(1924:803)
sfc 0000:13:00.1: INFO: eth3 Solarflare Communications NIC PCI(1924:803)

Note: IP address configuration should be carried out using normal OS tools, such as system-config-network
(Red Hat) or yast (SUSE).

Note: The performance_profile driver module option must not be set to throughput when using
Onload.

Installing Netperf and sfnettest
Refer to the Appendix L: X2 Low Latency Quickstart for instructions to install the Netperf and
sfnettest applications.

Running Onload
Once Onload has been installed there are different ways to accelerate applications.

• Prefixing the application command line with the Onload command will accelerate the
application.

onload <app_name> [app_options]

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 57Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=57

• Exporting LD_PRELOAD to the environment will mean that all applications started in the
same environment will be accelerated.

export LD_PRELOAD=libonload.so

Testing the Onload Installation
The Appendix L: X2 Low Latency Quickstart demonstrates testing of Onload with the Netperf
and sfnettest benchmark tools.

Applying an Onload Patch
Occasionally, AMD might issue a software ‘patch’ which is applied to Onload to resolve a specific
bug or investigate a specific issue. The method of applying a patch is dependent on how Onload
was installed.

Patching a Tarball Installation
This section describes how a patch should be applied when Onload was installed from a tarball. It
uses OpenOnload as an example, but the same procedures apply to any other Onload
distributions in this format.

1. Copy the patch to a directory on the server where Onload is already installed.

2. Go to the Onload directory:

cd onload-<version>

3. Apply the patch. For example:

patch -p1 < ~/<path>/<name of patch file>.patch

4. Uninstall the old Onload drivers:

onload_uninstall

5. Build and re-install the Onload drivers:

./scripts/onload_install

6. Load the network and Onload kernel drivers:

• If you are using the sfc network driver (for 8000 series or X2 series adapters), just use the
onload_tool command:

onload_tool reload

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 58Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=58

This replaces any previously loaded sfc network driver with the sfc driver from the
Onload distribution.

• Otherwise you must reload the network driver yourself, and also the auxiliary driver. For
example if you are using the xilinx_efct driver with an X3 series adapter:

modprobe -r xilinx_efct
modprobe -r auxiliary
modprobe auxiliary
modprobe xilinx_efct
onload_tool reload --onload-only

7. Confirm success:

onload
OpenOnload <version>
Copyright 2019-2022 Xilinx, 2006-2019 Solarflare Communications,
2002-2005 Level 5 Networks
Built: <date> <time> (release)
Kernel module: <version>

If a Kernel module version is shown, this confirms that the Onload kernel module is
installed and loaded.

Patching a Source RPM Installation
The following procedure describes how a patch should be applied when Onload was installed
from a source RPM. It uses EnterpriseOnload as an example, but the same procedures apply to
other Onload distributions in the RPM format, such as OpenOnload.

1. Copy the patch to the directory on the server where the Onload RPM package exists and
carry out the following commands:

rpm2cpio enterpriseonload-<version>.src.rpm | cpio –id
tar -xzf enterpriseonload-<version>.tgz
cd enterpriseonload-<version>
patch -p1 < $PATCHNAME

2. This can now be installed directly from this directory:

./scripts/onload_install

3. Or it can be repackaged as a new source RPM:

cd ..
tar -czf enterpriseonload-<version>.tgz enterpriseonload-<version>
rpmbuild -ts enterpriseonload-<version>.tgz

4. The rpmbuild procedure will display a ‘Wrote’ line identifying the location of the source RPM.
For example:

Wrote: /root/rpmbuild/SRPMS/enterpriseonload-<version>.el6.src.rpm

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 59Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=59

Kernel and OS Upgrades
An Onload installation is specific to a particular version of kernel and OS. If the kernel or OS is
changed to a different version, Onload must be rebuilt for the new version, and then reinstalled:

1. Uninstall Onload. Refer to Removing an Existing Installation.

2. Install the new version of kernel or OS.

3. Rebuild Onload.

4. Install the newly built version of Onload.

Chapter 4: Installation

UG1586 (v1.2) July 31, 2023
Onload User Guide 60Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=60

Chapter 5

Tuning Onload
This chapter documents the available tuning options for Onload, and the expected results.

Most of the Onload configuration parameters, including tuning parameters, are set by
environment variables exported into the accelerated applications environment. Environment
variables can be identified throughout this manual as they begin with EF_. All environment
variables are described in Appendix A: Parameter Reference or Appendix B: Meta Options in this
guide. Examples throughout this guide assume the use of the bash or sh shells; other shells might
use different methods to export variables into the applications environment.

• System Tuning describes tools and commands which can be used to tune the server and OS.

• Spinning, Polling and Interrupts describes how to perform standard heuristic tuning, which can
help improve the application’s performance. There are also benchmark examples running
specific tests to demonstrate the improvements Onload can have on an application.

• Onload Deployment on NUMA Systems describes the selection of a NUMA node, the
allocation of cache memory and the affinitization of drivers, processes and interrupts.

• Interrupt Handling for the sfc Driver describes how to tune interrupt handling on X2-series
adapters (and earlier) that use the sfc driver.

• Performance Jitter helps you to reduce or eliminate jitter.

• Using Onload Tuning Profiles introduces you to tuning profiles that apply multiple settings.

• Benchmark Testing references some benchmarking procedures.

• Application-Specific Tuning introduces advanced tuning options driven from analysis of the
Onload stack using onload_stackdump.

• Worked Examples demonstrate how to achieve the application tuning goals.

Note: Onload tuning and kernel driver tuning are subject to different requirements. This section describes
the steps to tune Onload. For details on how to tune the Solarflare kernel driver, refer to the 'Performance
Tuning on Linux' section of the Solarflare Server Adapter User Guide, available from the NIC Software and
Drivers web page.

System Tuning
This section details steps to tune the server and operating system for lowest latency.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 61Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=61

See also the system tuning described in Chapter 2: X3 Low Latency Quickstart

Sysjitter
The sysjitter utility measures the extent to which the system introduces jitter and so impacts on
the user-level process. Sysjitter runs a thread on each processor core and when the thread is de-
scheduled from the core it measures for how long. Sysjitter produces summary statistics for each
processor core. The sysjitter utility can be downloaded from https://github.com/Xilinx-CNS/cns-
sysjitter.

Sysjitter should be run on a system that is idle. When running on a system with cpusets enabled,
run sysjitter as root.

Refer to the sysjitter README file for further information on building and running sysjitter.

The following is an example of the output from sysjitter on a single CPU socket server with four
CPU cores.

./sysjitter --runtime 10 200 | column -t
core_i: 0 1 2 3
threshold(ns): 200 200 200 200
cpu_mhz: 3215 3215 3215 3215
runtime(ns): 9987653973 9987652245 9987652070 9987652027
runtime(s): 9.988 9.988 9.988 9.988
int_n: 10001 10130 10012 10001
int_n_per_sec: 1001.336 1014.252 1002.438 1001.336
int_min(ns): 1333 1247 1299 1446
int_median(ns): 1390 1330 1329 1470
int_mean(ns): 1424 1452 1452 1502
int_90(ns): 1437 1372 1357 1519
int_99(ns): 1619 5046 2392 1688
int_999(ns): 5065 22977 15604 3694
int_9999(ns): 31260 39017 184305 36419
int_99999(ns): 40613 45065 347097 49998
int_max(ns): 40613 45065 347097 49998
int_total(ns): 14244846 14719972 14541991 15031294
int_total(%): 0.143 0.147 0.146 0.150

The table below describes the output fields of the sysjitter utility.

Table 7: Output Fields of the Sysjitter Utility

Field Description
threshold (ns) Ignore any interrupts shorter than this period
cpu_mhz CPU speed
runtime (ns) Runtime of sysjitter - nanoseconds
runtime (s) Runtime of sysjitter - seconds
int_n Number of interruptions to the user thread
int_n_per_sec Number of interruptions to the user thread per second
int_min (ns) Minimum time taken away from the user thread due to an

interruption

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 62Send Feedback

https://github.com/Xilinx-CNS/cns-sysjitter
https://github.com/Xilinx-CNS/cns-sysjitter
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=62

Table 7: Output Fields of the Sysjitter Utility (cont'd)

Field Description
int_median (ns) Median time taken away from the user thread due to an

interruption
int_mean (ns) Mean time taken away from the user thread due to an

interruption
int_90 (ns) 90%percentile value
int_99 (ns) 99% percentile value
int_999 (ns) 99.9% percentile value
int_9999 (ns) 99.99% percentile value
int_99999 (ns) 99.999% percentile value
int_max (ns) Max time taken away from the user thread
int_total (ns) Total time spent not processing the user thread
int_total (%) int_total (ns) as a percentage of total runtime

Timer (TSC) Stability
Onload uses the Time Stamp Counter (TSC) CPU registers to measure changes in time with very
low overhead. Modern CPUs support an “invariant TSC”, which is synchronized across different
CPUs and ticks at a constant rate regardless of the current CPU frequency and power saving
mode. Onload relies on this to generate accurate time calculations when running across multiple
CPUs. If run on a system which does not have an invariant TSC, Onload might calculate wildly
inaccurate time values and this can, in extreme cases, lead to some connections becoming stuck.

Users should consult their server vendor documentation and OS documentation to ensure that
servers can meet the invariant TSC requirement.

CPU Power Saving Mode
Modern processors have design features that enable a CPU core to drop into lowering power
states when instructed by the operating system that the CPU core is idle. When the OS
schedules work on the idle CPU core (or when other CPU cores or devices need to access data
currently in the idle CPU core’s data cache) the CPU core is signaled to return to the fully-on
power state. These changes in CPU core power states create additional network latency and
jitter.

It is therefore recommended that customers wishing to achieve the lowest latency and lowest
jitter disable the “C1E power state” or “CPU power saving mode” within the machine's BIOS.

Disabling the CPU power saving modes is required if the application is to realize low latency with
low jitter.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 63Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=63

Note: To ensure C states are not enabled, overriding the BIOS settings, it is recommended to put the line
‘intel_idle.max_cstate=0 idle=poll’ (for Intel) or ‘processor.max_cstate=0 idle=poll’
(for AMD) into the kernel command line /boot/grub/grub.conf. The settings will produce consistent
results and are particularly useful when benchmarking. Allowing some cores to enable Turbo modes while
others are idle can produce better latency in some servers. For this, use idle=mwait and enable C-states in
the BIOS. Alternatively, on later Linux versions, the tuned service can be enabled and used with the
network-latency profile. Users should refer to vendor documentation and experiment with C states for
different applications.

Consult your system vendor and documentation for details concerning the disabling of C1E, C states or
CPU power saving states.

Spinning, Polling and Interrupts
This section helps you choose when to use spinning for Onload, and whether to use a polling
model or an interrupt-driven model.

Spinning (busy-wait)
Conventionally, when an application attempts to read from a socket and no data is available, the
application will enter the OS kernel and block. When data becomes available, the network
adapter will interrupt the CPU, allowing the kernel to reschedule the application to continue.

Blocking and interrupts are relatively expensive operations, and can adversely affect bandwidth,
latency and CPU efficiency.

Onload can be configured to spin on the processor in user mode for up to a specified number of
microseconds waiting for data from the network. If the spin period expires the processor will
revert to conventional blocking behavior. Non-blocking sockets will always return immediately as
these are unaffected by spinning.

Onload uses the EF_POLL_USEC environment variable to configure the length of the spin
timeout.

export EF_POLL_USEC=100000

will set the busy-wait period to 100 milliseconds. See Processing at User-Level for a worked
example, and Appendix B: Meta Options for more details.

Enabling Spinning
To enable spinning in Onload:

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 64Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=64

Set EF_POLL_USEC. This causes Onload to spin on the processor for up to the specified number
of microseconds before blocking. This setting is used in TCP and UDP and also in recv(),
select(), pselect() and poll(), ppoll() and epoll_wait(), epoll_pwait() and
onload_ordered_epoll_wait(). Use the following command:

export EF_POLL_USEC=100000

Note: If neither of the spinning options EF_POLL_USEC and EF_SPIN_USEC are set, Onload will resort to
default interrupt driven behavior because the EF_INT_DRIVEN environment variable is enabled by default.

Setting the EF_POLL_USEC variable also sets the following environment variables.

EF_SPIN_USEC=EF_POLL_USEC
EF_SELECT_SPIN=1
EF_EPOLL_SPIN=1
EF_POLL_SPIN=1
EF_PKT_WAIT_SPIN=1
EF_TCP_SEND_SPIN=1
EF_UDP_RECV_SPIN=1
EF_UDP_SEND_SPIN=1
EF_TCP_RECV_SPIN=1
EF_BUZZ_USEC=MIN(EF_POLL_USEC, 100)
EF_SOCK_LOCK_BUZZ=1
EF_STACK_LOCK_BUZZ=1

Turn off adaptive moderation and set interrupt moderation to a high value (microseconds) to
avoid flooding the system with interrupts. Use the following command:

/sbin/ethtool -C eth2 rx-usecs 60 adaptive-rx off

See Appendix B: Meta Options for more details.

When to Use Spinning
The optimal setting is dependent on the nature of the application. If an application is likely to find
data soon after blocking, or the system does not have any other major tasks to perform, spinning
can improve latency and bandwidth significantly.

In general, an application will benefit from spinning if the number of active threads is less than
the number of available CPU cores. However, if the application has more active threads than
available CPU cores, spinning can adversely affect application performance because a thread that
is spinning (and therefore idle) takes CPU time away from another thread that could be doing
work. If in doubt, it is advisable to try an application with a range of settings to discover the
optimal value.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 65Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=65

Polling vs. Interrupts
Interrupts are useful because they allow the CPU to do other useful work while simultaneously
waiting for asynchronous events (such as the reception of packets from the network). The
historical alternative to interrupts was for the CPU to periodically poll for asynchronous events
and on single processor systems this could result in greater latency than would be observed with
interrupts. Historically it was accepted that interrupts were “good for latency”.

On modern, multicore systems the tradeoffs are different. It is often possible to dedicate an
entire CPU core to the processing of a single source of asynchronous events (such as network
traffic). The CPU dedicated to processing network traffic can be spinning (also known as busy
waiting), continuously polling for the arrival of packets. When a packet arrives, the CPU can
begin processing it almost immediately.

Contrast the polling model to an interrupt-driven model. Here the CPU is likely in its “idle loop”
when an interrupt occurs. The idle loop is interrupted, the interrupt handler executes, typically
marking a worker task as runnable. The OS scheduler will then run and switches to the kernel
thread that will process the incoming packet. There is typically a subsequent task switch to a
user-mode thread where the real work of processing the event (for example acting on the packet
payload) is performed. Depending on the system, it can take on the order of a microsecond to
respond to an interrupt and switch to the appropriate thread context before beginning the real
work of processing the event. A dedicated CPU spinning in a polling loop can begin processing
the asynchronous event in a matter of nanoseconds.

It follows that spinning only becomes an option if a CPU core can be dedicated to the
asynchronous event. If there are more threads awaiting events than CPU cores (that is if all CPU
cores are oversubscribed to application worker threads), then spinning is not a viable option, (at
least, not for all events). One thread will be spinning, polling for the event while another could be
doing useful work. Spinning in such a scenario can lead to (dramatically) increased latencies. But
if a CPU core can be dedicated to each thread that blocks waiting for network I/O, then spinning
is the best method to achieve the lowest possible latency.

Onload Deployment on NUMA Systems
When deployed on NUMA systems, application load throughput and latency performance can be
adversely affected unless due consideration is given to the selection of the NUMA node, the
allocation of cache memory and the affinitization of drivers, processes and interrupts.

For best performance the accelerated application should always run on the NUMA node nearest
to the network adapter. The correct allocation of memory is particularly important to ensure that
packet buffers are allocated on the correct NUMA node to avoid unnecessary increases in QPI
traffic and to avoid dropped packets.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 66Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=66

Useful Commands
• To identify NUMA nodes, socket memory and CPU core allocation:

numactl -H

• To identify the NUMA node local to an adapter:

cat /sys/class/net/<interface>/device/numa_node

• To identify memory allocation and use on a particular NUMA node:

cat /sys/devices/system/node/node<N>/numastat

• To identify NUMA node mapping to cores, use one of the following:

numactl --hardware# cat /sys/devices/system/node/node<N>/cpulist

Driver Loading - NUMA Node
When loading, the Onload module will create a variety of common data structures. To ensure
that these are created on the NUMA node nearest to the network adapter, onload_tool
reload should be affinitized to a core on the correct NUMA node.

numactl --cpunodebind=1 onload_tool reload

When there is more than one supported adapter in the same server, on different NUMA nodes,
the user must select one node over the other when loading the driver, but also make sure that
interrupt IRQs are affinitized to the correct local CPU node for each adapter.

onload_tool reload is single threaded, so running with “cpunodebind=0,1”, for example, means
the command could run on either node which is not identifiable by the user until after the
command has completed.

Memory Policy
To guarantee that memory is appropriately allocated - and to ensure that memory allocations do
not fail, a memory policy that binds to a specific NUMA node should be selected. When no policy
is specified the system will generally use a default policy allocating memory on the node on
which a process is executing.

Application Processing
The majority of processing by Onload occurs in the context of the Onloadaccelerated application.
Various methods can be used to affinitize the Onload accelerated process; numactl, taskset
or cpusets or the CPU affinity can be set programatically.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 67Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=67

Workqueues
An Onloaded application will create two shared workqueues and one per-stack workqueue. The
implementation of the workqueue differs between Linux kernels - and so does the method used
to affinitize workqueues.

On more recent Linux kernels (3.10+) the Onload work queues will be initially affinitized to the
node on which they are created. Therefore if the driver load is affinitized and the Onloaded
application affinitized to the correct node, Onload stacks will be created on the correct node and
there will be no further work required.

Specifying a cpumask via sysfs for a workqueue is NOT recommended as this can break ordering
requirements.

On older Linux kernels dedicated workqueue threads are created - and these can be affinitized
using taskset or cpusets. Identify the two workqueues shared by all Onload stacks:

onload-wqueue
sfc_vi

Identify the per-stack workqueue which has a name in the format onload-wq<stack id> (for
example onload-wq:1 for stack 1).

Use the onload_stackdump command to identify Onload stacks and the PID of the process
that created the stack:

onload_stackdump
#stack-id stack-name pids
0 - 106913

Use the Linux pidof command to identify the PIDs for Onload workqueues:

pidof onload-wq:0 sfc_vi onload-wqueue
106930 105409 105431

It is recommended that the shared workqueues are affinitized immediately after the driver is
loaded and the per-stack queue immediately after stack creation.

Interrupts
When Onload is being used in an interrupt-driven mode (see Interrupt Handling - Using Onload)
interrupts should affinitized to the same NUMA node running the Onload application, but not on
the same CPU core as the application.

When Onload is spinning (busy-wait) there will be few (if any) interrupts, so it is not a real
concern where these are handled.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 68Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=68

Verification
The onload_stackdump lots command is used to verify that allocations occur on the required
NUMA node:

onload_stackdump lots | grep numa
numa nodes: creation=0 load=0
numa node masks: packet alloc=1 sock alloc=1 interrupt=1

The load parameter identifies the node where the adapter driver has been loaded. The creation
parameter identifies the node allocating memory for the Onload stack. The numa node masks
identify which NUMA nodes allocate memory for packets and for sockets, and the nodes on
which interrupts have actually occurred. A mask value of 1 identifies node 0, a value of 2
identifies node 1, a value of 3 identifies both nodes 0 and 1 etc.

For most purposes it is best when load and creation identify the same node which is also the
node local to the network adapter. To identify the local node use the following:

cat /sys/class/net/<interface>/device/numa_node

The cpu affinity of individual Onloaded threads can be identified with the following command:

onload_stackdump threads

Interrupt Handling for the sfc Driver
This section describes interrupt handling on X2-series adapters (and earlier) that use the sfc
driver.

For details of interrupt handling with X3-series adapters, refer to the Alveo X3522 User Guide
(UG1523).

Default Behavior
Using the value identified from the rss_cpus option, the Solarflare NET driver will create a
number of receive (and transmit) queues (termed an “RSS channel”) for each physical interface.
By default the driver creates one RSS channel per CPU core detected in the server up to a
maximum of 32.

The rss_cpus sfc driver module option can be set in a user created file <sfc.conf> in the /etc/
modprobe.d directory. The driver must be reloaded before the option becomes effective. For
example, rss_cpus can be set to an integer value:

options sfc rss_cpus=4

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 69Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1523-x3522-user&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=69

In the above example four receive queues are created per interface. The default value is
rss_cpus=cores. Other available options are rss_cpus=<int>,
rss_cpus=hyperthreads and rss_cpus=packages.

Note: If the sfc driver module parameter ‘rss_numa_local’ is enabled, RSS will be restricted to use
cores/hyperthreads on the NUMA node local to the network adapter.

Affinitizing RSS Channels to CPUs
As described in the previous section, the default behavior of the Solarflare network driver is to
create one RSS channel per CPU core. At load time the driver affinitizes the interrupt associated
with each RSS channel to a separate CPU core so the interrupt load is evenly distributed over the
available CPU cores.

Note: These initial interrupt affinities will be disrupted and changed if the Linux IRQ balancer daemon is
running. To stop the IRQ balancer use the following command: # service irqbalance stop

In the following example, we have a server with two dual-port network adapters (total of four
network interfaces), installed in a server with two CPU sockets with eight cores per socket
(hyperthreading is disabled).

If we set rss_cpus=4, each interface will create four RSS channels. The driver takes care to
spread the affinitized interrupts evenly over the CPU topology, that is evenly between the two
CPU sockets and evenly over shared L2/L3 caches.

The driver also attempts to spread the interrupt load of the multiple network interfaces by using
different CPU cores for different interfaces:

Table 8: Example RSS Channel Mapping

Interface Number of RX Queues Map to Cores
1 4 0,1,2,3

2 4 4,5,6,7

3 4 8,9,10,11

4 4 12,13,14,15

With four receive queues created per interface this results, on this machine, to the first network
interface mapping to the four lowest number CPU cores, that is two cores from each CPU socket
as illustrated below. The next network interface uses the next four CPUs until each CPU core is
loaded with a single RSS channel – as illustrated in the following figure.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 70Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=70

Figure 11: Mapping RSS Channels to CPU cores.

Socket # 0

core 0
core 2
core 4
core 6
core 8

core 10
core 12
core 14

Adapter # 1

eth4

eth5

Socket # 1

core 1
core 3
core 5
core 7
core 9

core 11
core 13
core 15

Adapter # 2

eth6

eth7

X26414-031622

To identify the mapping of receive queues to CPU cores, use the following command:

cat /proc/interrupts | grep eth4
106: 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IR-PCI-MSI-edge eth4-0
107: 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IR-PCI-MSI-edge eth4-1
108: 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 IR-PCI-MSI-edge eth4-2
109: 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 IR-PCI-MSI-edge eth4-3

Observe that each receive queue has an assigned IRQ. Receive queue eth4-0 is served by IRQ
106, eth4-1 by IRQ 107 etc.

sfcaffinity_config

The OpenOnload distribution also includes the sfcaffinity_config script which can also be
used to affinitize RSS channel interrupts. sfcaffinity_config has a number of command
line options but a common way of running it is with the auto command:

sfcaffinity_config auto

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 71Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=71

Auto instructs sfcaffinity_config to set interrupts affinities to evenly spread the RSS
channels over the available CPU cores. Using the above scenario as an example, where
rss_cpus has been set to 4, the command will affinitize the interrupt associated with each
receive queue evenly over the CPU topology – in this case the first four CPU cores.

sfcaffinity_config: INFO: eth4: Spreading 4 interrupts evenly over 2 shared
caches
sfcaffinity_config: INFO: eth4: bind rxq 0 (irq 106) to core 1
sfcaffinity_config: INFO: eth4: bind rxq 1 (irq 107) to core 0
sfcaffinity_config: INFO: eth4: bind rxq 2 (irq 108) to core 3
sfcaffinity_config: INFO: eth4: bind rxq 3 (irq 109) to core 2
sfcaffinity_config: INFO: eth4: configure sfc_affinity n_rxqs=4
cpu_to_rxq=1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2

Figure 12: Mapping with sfcaffinity_config auto

Socket # 0

core 0
core 2
core 4
core 6
core 8

core 10
core 12
core 14

Adapter # 1

eth4

eth5

Socket # 1

core 1
core 3
core 5
core 7
core 9

core 11
core 13
core 15

Adapter # 2

eth6

eth7

X26415-031622

In this example, after running the sfcaffinity_config auto command, interrupts for the
four receive queues from the four interfaces are now all directed to the same four cores 0,1,2,3
as illustrated by the preceding figure.

Note: Running the sfcaffinity_config auto command also disables the kernel irqbalance service
to prevent interrupts being redirected by the kernel to other cores.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 72Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=72

Using the irqbalance Service

If you want to keep using the irqbalance service, do not use the sfcaffinity_config
auto command. Configure the irqbalance service using the /etc/sysconfig/
irqbalance file:

• To prevent the network adapter interrupts from being redirected by irqbalance, append
instances of the --banirq option. to the IRQBALANCE_ARGS environment variable. For
example, to exclude interrupts 106-109 inclusive:

IRQBALANCE_ARGS="--banirq=106 --banirq=107 --banirq=108 --banirq=109"

• To exclude irqbalance from redirecting any interrupts to specific CPUs, include them in the
IRQBALANCE_BANNED_CPUS bitmask. For example, to exclude CPUs 1 and 2, set it to 3
(bits 1 and 2 are set):

IRQBALANCE_BANNED_CPUS=3

Note: If this bitmask is not set, recent versions of irqblance do not use CPUs that are listed in the
isolcpus kernel configuration parameter.

You can then manually configure the affinity of any excluded interrupts.

Restrict RSS to Local NUMA Node
The sfc driver module parameter rss_numa_local will restrict RSS to only use CPU cores or
hypterthreads (if hyperthreading is enabled) on the NUMA node local to the network adapter.

rss_numa_local does NOT restrict the number of RSS channels created by the driver – it
instead works by restricting the RSS spreading so only the channels on the local NUMA node will
receive kernel driver traffic.

In the default case (where rss_cpus=cores), one RSS channel is created per CPU core.
However, the driver adjusts the RSS settings such that only the RSS channels affinitized to the
local CPU socket receive traffic. It therefore has no effect on the Onload allocation and use of
receive queues and interrupts.

The following figure identifies the receive queue interrupts spread when rss_cpus=4 and
rss_numa_local=1. In this machine adapter 1 is attached to the PCIe bus on socket #0 with
adapter #2 attached to the PCIe bus on socket #1.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 73Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=73

Figure 13: Mapping with rss_numa_local

Socket # 0

core 0
core 2
core 4
core 6
core 8

core 10
core 12
core 14

Adapter # 1

eth4

eth5

Socket # 1

core 1
core 3
core 5
core 7
core 9

core 11
core 13
core 15

Adapter # 2

eth6

eth7

X26415-031622

Restrict RSS Receive Queues
The ethtool -X command can also be used to restrict the receive queues accessible by RSS. In
the following example rss_cpus=4 and ethtool -x identifies the four receive queues per
interface:

ethtool -x eth4

RX flow hash indirection table for eth4 with 4 RX ring(s):
 0: 0 1 2 3 0 1 2 3
 8: 0 1 2 3 0 1 2 3
 16: 0 1 2 3 0 1 2 3
 24: 0 1 2 3 0 1 2 3
 32: 0 1 2 3 0 1 2 3
 40: 0 1 2 3 0 1 2 3
 48: 0 1 2 3 0 1 2 3
 56: 0 1 2 3 0 1 2 3
 64: 0 1 2 3 0 1 2 3
 72: 0 1 2 3 0 1 2 3
 80: 0 1 2 3 0 1 2 3
 88: 0 1 2 3 0 1 2 3
 96: 0 1 2 3 0 1 2 3
 104: 0 1 2 3 0 1 2 3
 112: 0 1 2 3 0 1 2 3
 120: 0 1 2 3 0 1 2 3

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 74Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=74

To restrict RSS to spread receive flows evenly over the first two receive queues, use ethtool -
X:

ethtool -X eth4 equal 2

RX flow hash indirection table for eth4 with 4 RX ring(s):
 0: 0 1 0 1 0 1 0 1
 8: 0 1 0 1 0 1 0 1
 16: 0 1 0 1 0 1 0 1
 24: 0 1 0 1 0 1 0 1
 32: 0 1 0 1 0 1 0 1
 40: 0 1 0 1 0 1 0 1
 48: 0 1 0 1 0 1 0 1
 56: 0 1 0 1 0 1 0 1
 64: 0 1 0 1 0 1 0 1
 72: 0 1 0 1 0 1 0 1
 80: 0 1 0 1 0 1 0 1
 88: 0 1 0 1 0 1 0 1
 96: 0 1 0 1 0 1 0 1
 104: 0 1 0 1 0 1 0 1
 112: 0 1 0 1 0 1 0 1
 120: 0 1 0 1 0 1 0 1

Interrupt Handling - Using Onload
A thread accelerated by Onload will either be interrupt driven or it will be spinning.

When the thread is interrupt driven, a thread which calls into Onload to read from its receive
queue and for which there are no received packets to be processed, will ‘sleep’ until an
interrupt(s) from the kernel informs it that there is more work to do.

When a thread is spinning, it is busy waiting on its receive queue until packets are received - in
which case the packets are retrieved and the thread returns immediately to the receive queue, or
until the spin period expires. If the spin period expires the thread will relinquish the CPU core and
‘sleep’ until an interrupt from the kernel informs it that further packets have been received. If the
spin period is set greater than the packet inter-arrival rate, the spinning thread can continue to
spin and retrieve packets without interrupts occurring. Even when spinning, an application might
experience a few interrupts.

As a general rule, when spinning, only a few interrupts will be expected so performance is
typically insensitive as to which CPU core processes the interrupts.

However, when Onload is interrupt driven performance can be sensitive to where the interrupts
are handled and will typically benefit to be on the same CPU socket as the application thread
handling the socket I/O. The method required depends on the setting of the
EF_PACKET_BUFFER_MODE environment variable:

• If EF_PACKET_BUFFER_MODE=0 or 2, an Onload stack will use one or more of the interrupts
assigned to the NET driver receive queues. The CPU core handling the interrupts is defined by
the RSS mapping of receive queues to CPU cores:

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 75Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=75

○ If sfcaffinity_config has been used to affinitize RSS channel interrupts, the interrupt
handling core for the stack can be set using the EF_IRQ_CORE environment variable.

It is only possible for interrupts to be handled on the requested core if a NET driver
interrupt is assigned to the selected core.

See Affinitizing RSS Channels to CPUs.

○ Otherwise, the interrupt handling core for the stack can be set using the
EF_IRQ_CHANNEL environment variable. Onload interrupts are handled by the same core
assigned to the NET driver receive channel.

• If EF_PACKET_BUFFER_MODE=1 or 3, the onload stack creates dedicated interrupts. The
interrupt handling core for the stack can be set using the EF_IRQ_CORE environment variable.

For more information about these environment variables, see:

• EF_IRQ_CHANNEL

• EF_IRQ_CORE

• EF_PACKET_BUFFER_MODE.

When Onload is using a NET driver RSS channel for its source of interrupts, it can be useful to
dedicate this channel to Onload and prevent the driver from using this channel for RSS traffic.
See Restrict RSS to Local NUMA Node and Restrict RSS Receive Queues for methods of how to
achieve this.

Performance Jitter
On any system reducing or eliminating jitter is key to gaining optimum performance, however the
causes of jitter leading to poor performance can be difficult to define and difficult to remedy. The
following section identifies some key points that should be considered.

• A first step towards reducing jitter should be to consider the configuration settings specified in
the Appendix L: X2 Low Latency Quickstart - this includes the disabling of the irqbalance
service, interrupt moderation settings and measures to prevent CPU cores switching to power
saving modes.

• Use isolcpus to isolate CPU cores that the application - or at least the critical threads of the
application will use and prevent OS housekeeping tasks and other non-critical tasks from
running on these cores.

• Set an application thread running on one core and the interrupts for that thread on a separate
core - but on the same physical CPU package. Even when spinning, interrupts can still occur,
for example, if the application fails to call into the Onload stack for extended periods because
it is busy doing other work.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 76Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=76

• Ideally each spinning thread will be allocated a separate core so that, in the event that it
blocks or is de-scheduled, it will not prevent other important threads from doing work. A
common cause of jitter is more than one spinning thread sharing the same CPU core. Jitter
spikes might indicate that one thread is being held off the CPU core by another thread.

You can detect this using the scheduling statistics from cat /proc/<pid>/sched for the
application threads. The nr_involuntary_switches counter records the number of times
the process was descheduled, for example because of an interrupt handler or another task
running on the same CPU core.

• When EF_STACK_LOCK_BUZZ=1, threads will spin for the EF_BUZZ_USEC period while they
wait to acquire the stack lock. Lock buzzing can lead to unfairness between threads competing
for a lock, and so result in resource starvation for one. Occurrences of this are counted in the
'stack_lock_buzz' counter. EF_STACK_LOCK_BUZZ is enabled by default when
EF_POLL_USEC (spinning) is enabled.

• If a multi-thread application is doing lots of socket operations, stack lock contention will lead
to send/receive performance jitter. In such cases improved performance can be had when
each contending thread has its own stack. This can be managed with
EF_STACK_PER_THREAD which creates a separate Onload stack for the sockets created by
each thread. For an example see Minimizing Lock Contention.

If separate stacks are not an option then it might be beneficial to reduce the EF_BUZZ_USEC
period or to disable stack lock buzzing altogether.

• It is always important that threads that need to communicate with each other are running on
the same CPU package so that these threads can share a memory cache.

See Onload Deployment on NUMA Systems for more information.

• Jitter can also be introduced when some sockets are accelerated and others are not. Onload
will ensure that accelerated sockets are given priority over non-accelerated sockets, although
this delay will only be in the region of a few microseconds - not milliseconds, the penalty will
always be on the side of the non-accelerated sockets. The environment variables
EF_POLL_FAST_USEC and EF_POLL_NONBLOCK_FAST_USEC can be configured to manage
the extent of priority of accelerated sockets over non-accelerated sockets.

• If traffic is sparse, spinning will deliver the same latency benefits, but the user should ensure
that the spin timeout period, configured using the EF_POLL_USEC variable, is sufficiently long
to ensure the thread is still spinning when traffic is received.

See Spinning, Polling and Interrupts for more information.

• When applications only need to send and receive occasionally it might be beneficial to
implement a keepalive - heartbeat mechanism between peers. This has the effect of retaining
the process data in the CPU memory cache. Calling send or receive after a delay can result in
the call taking measurably longer, due to the cache effects, than if this is called in a tight loop.

• Some adapters support warming the send path without actually transmitting data. This can
similarly retain data in cache and so reduce jitter.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 77Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=77

• On some servers BIOS settings such as power and utilization monitoring can cause
unnecessary jitter by performing monitoring tasks on all CPU cores. The user should check the
BIOS and decide if periodic tasks (and the related SMIs) can be disabled.

• The sysjitter utility can be used to identify and measure jitter on all cores of an idle system -
refer to Sysjitter for details.

Using Onload Tuning Profiles
Environment variables set in the application user-space can be used to configure and control
aspects of the accelerated application’s performance. These variables can be exported using the
Linux export command. For example:

export EF_POLL_USEC=100000

Onload supports tuning profile script files which are used to group environment variables within
a single file to be called from the Onload command line.

The latency profile sets the EF_POLL_USEC=100000 setting the busy-wait spin timeout to
100 milliseconds. The profile also disables TCP faststart for new or idle connections where
additional TCP ACKs will add latency to the receive path. To use the profile include it on the
onload command line. For example:

onload --profile=latency netperf -H onload2-sfc -t TCP_RR

Following Onload installation, the profiles that it provides are located in the following directory -
this directory will be deleted by the onload_uninstall command:

/usr/libexec/onload/profiles

User-defined environment variables can be written to a user-defined profile script file (having
a .opf extension) and stored in any directory on the server. The full path to the file should then be
specified on the onload command line. For example:

onload --profile=/tmp/myprofile.opf netperf -H onload2-sfc -t TCP_RR

As an example the latency profile, provided by the Onload distribution is shown below:

Onload low latency profile.
Enable polling / spinning. When the application makes a blocking call
such as recv() or poll(), this causes Onload to busy wait for up to 100ms
before blocking.
onload_set EF_POLL_USEC=100000
Disable FASTSTART when connection is new or has been idle for a while.
The additional acks it causes add latency on the receive path.
onload_set EF_TCP_FASTSTART_INIT 0
onload_set EF_TCP_FASTSTART_IDLE 0

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 78Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=78

For a complete list of environment variables refer to Appendix A: Parameter Reference.

The latency-best Profile

The latency-best profile targets the lowest possible latency for a given release of Onload.
This means that:

• Some features used in the profile might be experimental.

• The combination of features in the profile might not be suitable for all deployments, or all
types of traffic.

• The profile is subject to change between releases.

As new low-latency features become available, they will be added to the profile.

Consequently, the following is recommended:

• Always create a renamed copy of the profile, and use the copy.

This will avoid the profile unexpectedly changing when you update Onload, and potentially
breaking your applications.

• Always test and tune your copy of the profile in a non-production environment, before
deploying it.

This will avoid issues caused by combinations of settings that are inappropriate for your
production systems.

IMPORTANT! If you do not follow the above recommendations, and directly use the latency-best profile
in a production environment, you might experience issues either now, or when upgrading Onload in the
future.

The nginx_reverse_proxy Profile

Onload's clustering capability has been extended to provide better support for the NGINX
application's master process pattern and hot restart operation by correctly associating Onload
stacks and application worker processes. To do so, the following settings are used:

EF_SCALABLE_FILTERS_ENABLE: 2
EF_CLUSTER_HOT_RESTART: 1

See EF_CLUSTER_HOT_RESTART, and EF_SCALABLE_FILTERS_ENABLE.

A new nginx_reverse_proxy profile has an example set of relevant configurations, including
further settings. This profile searches for the NGINX configuration file, and then uses the settings
from that file to make the correct Onload settings. Similar techniques can be used to make
profiles that target other applications.

Note: Use of this profile is not compatible with use of the onload extensions stackname API.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 79Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=79

Benchmark Testing
Benchmark procedures using Onload, netperf and sfnt-pingpong are described in the Chapter 2:
X3 Low Latency Quickstart.

Application-Specific Tuning
Advanced tuning requires closer examination of the application performance.

Onload includes a diagnostic application called onload_stackdump, which can be used to
monitor Onload performance and to set tuning options.

The following worked examples demonstrate the use of onload_stackdump to examine
aspects of the system performance, and hence to determine which environment variables should
be set to tune the application. The process should address these tuning objectives.

• To have as much processing at user-level as possible.

See Processing at User-Level.

• To have as few interrupts as possible.

See As Few Interrupts as Possible.

• To eliminate drops.

See Eliminating Drops.

• To minimize lock contention.

See Minimizing Lock Contention.

For further examples and use of onload_stackdump refer to Appendix E: onload_stackdump.

Monitoring Using onload_stackdump
To use onload_stackdump, enter the following command:

onload_stackdump [command]

To list available commands and view documentation for onload_stackdump enter the
following commands:

onload_stackdump doc
onload_stackdump -h

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 80Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=80

A specific stack number can also be provided on the onload_stackdump command line.

Worked Examples
This section contains some worked examples for tuning Onload.

Reducing Jitter from Page Faults
The Onload environment variable EF_PREFAULT_PACKETS will cause the user process to ‘touch’
the specified number of packet buffers when an Onload stack is created. This means that
memory for these packet buffers is pre-allocated and memory-mapped into the user-process
address space.

Pre-allocation is advised to prevent latency jitter caused by the allocation and memory-mapping
overheads.

When deciding how many packets to prefault, the user should look at the alloc value when the
onload_stackdump packets command is run. The alloc value is a high water mark
identifying the maximum the number of packets being used by the stack at any singular point.
Setting EF_PREFAULT_PACKETS to at least this value is recommended.

onload_stackdump packets$ onload_stackdump packets
ci_netif_pkt_dump_all: id=0
 pkt_sets: pkt_size=2048 set_size=1024 max=32 alloc=2
 pkt_set[0]: free=544
 pkt_set[1]: free=446 current
 pkt_bufs: max=32768 alloc=2048 free=990 async=0
 pkt_bufs: rx=1058 rx_ring=992 rx_queued=2 pressure_pool=64
 pkt_bufs: tx=0 tx_ring=0 tx_oflow=0
 pkt_bufs: in_loopback=0 in_sock=0
 994: 0x200 Rx
 n_zero_refs=1054 n_freepkts=1 estimated_free_nonb=1053
 free_nonb=0 nonb_pkt_pool=ffffffffffffffff

Note: It is not possible to prefault a number of packets exceeding the current value of EF_MAX_PACKETS.

When deciding how many packets to prefault the user should consider that Onload must allocate
from the EF_MAX_PACKET pool, a number of packet buffers per receive ring per interface. Once
these have been allocated, any remainder can be prefaulted.

Users who require to prefault the maximum possible number of available packets can set
EF_PREFAULT_PACKETS and EF_MAX_PACKETS to the same value:

EF_PREFAULT_PACKETS=64000 EF_MAX_PACKETS=64000 onload <myapplication>...

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 81Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=81

Users can alternatively set EF_PREALLOC_PACKETS to allocate EF_MAX_PACKETS packet
buffers during stack creation:

EF_PREALLOC_PACKETS=1 EF_MAX_PACKETS=64000 onload <myapplication>...

Refer to Appendix A: Parameter Reference for details of these variables.

CAUTION! Prefaulting packet buffers for one stack will reduce the number of available buffers available
for others. Users should consider that over allocation to one stack might mean spare (redundant) packet
buffer capacity that could be better allocated elsewhere.

Processing at User-Level
Many applications can achieve better performance when most processing occurs at user-level
rather than kernel-level. To identify how an application is performing, enter the following
command:

onload_stackdump lots | grep polls

Table 9: Onload_stackdump Polling Counters

Counter Description
k_polls Number of times the socket event queue was polled from

the kernel.
u_polls Number of times the socket event queue was polled from

user space.
periodic_polls Number of times a periodic timer has polled for events.
interrupt_polls Number of times an interrupt polled for network events.
deferred_polls Number of times poll has been deferred to the stack lock

holder.
timeout_interrupt_polls Number of times timeout interrupts polled for network

events.

$ onload_stackdump lots | grep poll k_polls: 673 u_polls: 41

The output identifies many more k_polls than u_polls indicating that the stack is operating
mainly at kernel-level and might not be achieving optimal performance. A possible cause is that
application logic is taking longer than EF_POLL_USEC.

Solution

Terminate the application and set the EF_POLL_USEC parameter to 100000. Restart the
application and re-run onload_stackdump:

export EF_POLL_USEC=100000 onload_stackdump lots | grep polls$
onload_stackdump lots | grep polls k_polls: 673 u_polls: 1289

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 82Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=82

The output identifies that the number of u_polls is far greater than the number of k_polls
indicating that the stack is now operating mainly at user-level.

For more information see Spinning, Polling and Interrupts.

As Few Interrupts as Possible
A tuned application will reach a balance between the number/rate of interrupts processed and
the amount of real work that gets done, for example by processing multiple packets per interrupt
rather than one. Even spinning applications can benefit from the occasional interrupt. For
example when a spinning thread has been de-scheduled from a CPU, a timeout interrupt will
prod the thread back to action after 250 µs.

onload_stackdump lots | grep ^interrupt

Table 10: Onload_stackdump Interrupt Counters

Counter Description
Interrupts Total number of interrupts received for the stack.

Interrupt polls Number of times the stack is polled - invoked by interrupt.

Interrupt evs Number of events processed when invoked by an interrupt.

Interrupt wakes Number of times the application is woken by interrupt.

Interrupt primes Number of times interrupts are re-enabled (after spinning
or polling the stack).

Interrupt no events Number of stack polls for which there was no event to
recover.

Interrupt lock contends The application polled the stack and has the lock before an
interrupt fired.

Interrupt budget limited Number of times, when handling a poll in an interrupt, the
poll was stopped when the NAPI budget was reached. Any
remaining events are then processed on the stack
workqueue.

Solution

If an application is observed taking lots of interrupts it might be beneficial to increase the spin
time with the EF_POLL_USEC variable or setting a high interrupt moderation value for the net
driver using ethtool. You should also ensure that the application CPU cores are isolated to
avoid descheduling. If it is not possible to isolate the cores, consider switching to interrupt mode.

The number of interrupts on the system can also be identified from /proc/interrupts.

Eliminating Drops
The performance of networks is impacted by any packet loss. This is especially pronounced for
reliable data transfer protocols that are built on top of unicast or multicast UDP sockets.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 83Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=83

First check to see if packets have been dropped by the network adapter before reaching the
Onload stack. Use ethtool to collect stats directly from the network adapter:

ethtool -S enps0f0 | grep -E 'drop|discard'

Table 11: Ethtool Drop Counters

Counter Description
rx_noskb_drops Number of packets dropped when there are no further

socket buffers to use.
port_rx_nodesc_drops Number of packets dropped when there are no further

descriptors in the rx ring buffer to receive them.
port_rx_dp_di_dropped_packets Number of packets dropped because filters indicate the

packets should be dropped - this can happen when packets
do not match any filter or the matched filter indicates the
packet should be dropped.

port_rx_dp_q_disabled_packets Number of packets sent to a queue which does not exist. A
small number might be observed following initialization or
teardown, a larger number or incrementing number might
indicate a mismatch between the size of a VI set and the
actual number of VIs.

port_rx_pm_discard_bb_overflow Number of packets discarded due to packet memory buffer
overflow.

port_rx_pm_discard_vfifo_full Count of the number of packets dropped because of a lack
of main packet memory on the adapter to receive the
packet into.

port_rx_pm_discard_mapping Number of packets dropped because they have an 802.1p
priority level configured to be dropped.

ethtool -S enps0f0 | grep drop
 rx_noskb_drops: 0
 port_rx_nodesc_drops: 0
 port_rx_dp_di_dropped_packets: 681618610

Solution

The most common cause for this is the application being descheduled. You can detect this using
the scheduling statistics from cat /proc/<pid>/sched for the application. The
nr_involuntary_switches counter records the number of times the process was
descheduled, for example because of an interrupt handler or another task running on the same
CPU core.You should ensure that the application CPU cores are isolated to avoid descheduling. If
it is not possible to isolate the cores, consider switching to interrupt mode.

If packet loss is observed at the network level due to a lack of receive buffering try increasing the
size of the receive descriptor queue size via EF_RXQ_SIZE. If packet drops are observed at the
socket level consult the application documentation. It might also be worth experimenting with
socket buffer sizes (see EF_UDP_RCVBUF). Setting the EF_EVS_PER_POLL variable to a higher
value can also improve efficiency. Refer to Appendix A: Parameter Reference for descriptions of
these variables.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 84Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=84

Minimizing Lock Contention
Lock contention can greatly affect performance. When threads share a stack, a thread holding
the stack lock will prevent another thread from doing useful work. Applications with fewer
threads might be able to create a stack per thread (see EF_STACK_PER_THREAD and Stacks
API).

Use onload_stackdump to identify instances of lock contention:

onload_stackdump lots | egrep "(lock_)|(sleep)"

Table 12: Onload_stackdump Lock and Sleep Counters

Counter Description
periodic_lock_contends Number of times periodic timer could not get the stack lock.
interrupt_lock_contends Number of times the interrupt handler could not get the

stack lock because it is already held by user level or other
context.

timeout_interrupt_lock_contends Number of times timeout interrupts could not lock the
stack.

sock_sleeps Number of times a thread has blocked on a single socket.
sock_sleep_primes Number of times select/poll/epoll enabled interrupts.
unlock_slow Number of times the slow path was taken to unlock the

stack lock.
unlock_slow_pkt_waiter Number of times packet memory shortage provoked the

unlock slow path.
unlock_slow_socket_list Number of times the deferred socket list provoked the

unlock slow path.
unlock_slow_need_prime Number of times interrupt priming provoked the unlock

slow path.
unlock_slow_wake Number of times the unlock slow path was taken to wake

threads.
unlock_slow_swf_update Number of times the unlock slow path was taken to update

sw filters.
unlock_slow_close Number of times the unlock slow path was taken to close

sockets/pipes.
unlock_slow_syscall Number of times a syscall was needed on the unlock slow

path.
lock_wakes Number of times a thread is woken when blocked on the

stack lock.
stack_lock_buzz Number of times a thread has spun waiting for the stack

lock.
sock_lock_sleeps Number of times a thread has slept waiting for a sock lock.
sock_lock_buzz Number of times a thread has spun waiting for a sock lock.
tcp_send_ni_lock_contends Number of times TCP sendmsg() contended the stack lock

udp_send_ni_lock_contends Number of times UDP sendmsg() contended the stack lock

getsockopt_ni_lock_contends Number of times getsockopt() contended the stack lock.

setsockopt_ni_lock_contends Number of times setsockopt() contended the stack lock.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 85Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=85

Table 12: Onload_stackdump Lock and Sleep Counters (cont'd)

Counter Description
lock_dropped_icmps Number of dropped ICMP messages not processed due to

contention.

Solution

Performance will be improved when stack contention is kept to a minimum. When threads share
a stack it is preferable for a thread to spin rather than sleep when waiting for a stack lock. The
EF_BUZZ_USEC value can be increased to reduce ‘sleeps’. Where possible use stacks per thread.

Stack Contention - Deferred Work
When multiple threads share an Onload stack, the ability for one thread to defer sending tasks to
another thread that is currently holding the stack lock, can mitigate the effects of lock
contention. When sending data, contention occurs when one thread calls send(), while another
thread holds the stack lock. The task of sending the data can be deferred to the lock holder -
freeing the deferring thread to continue with other work. However a send() which also
processes a lot of deferred work will take longer to execute - preventing other threads from
getting the stack lock.

A thread which calls send() when the stack EF_DEFER_WORK_LIMIT has been reached cannot
defer further work to the lock holder, but is forced to block and wait for the stack lock. The
defer_work_limited counter identifies the number of these occurrences.

onload_stackdump per-socket counters will indicate the level of deferred work on each socket
within a stack. For example:

TCP 2:10 lcl=172.16.20.123:4112 rmt=172.16.20.88:4112 ESTABLISHED snd:
limited rwnd=17 cwnd=129 nagle=0 more=0 app=103905 tx: defer=48799 nomac=0
warm=0 warm_aborted=0

onload_stackdump per-stack counters also indicate the level of lock contention:

• deferred_work - the number packets sent using the deferred mechanism.

• defer_work_limited - the number of times a sending thread is prevented from deferring
to the stack lock holder because the EF_DEFER_WORK_LIMIT has been reached.

• deferred_polls - a thread is prevented from polling the stack when another thread has the
stack lock. The poll is deferred to the lock holder. The lock holder will place any ready received
data on the correct socket queues and wake other threads if there is work to be done.

Solutions

To reduce the level of stack lock contention, the following actions are recommended:

• For affected stacks, reduce the number of threads performing network I/O.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 86Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=86

• Applications with fewer threads can use a stack for each thread - see
EF_STACK_PER_THREAD.

• Bind critical sockets to selected stacks - see Stacks API.

• For TCP connections, use onload_move_fd() to place sockets accepted from a listening
socket into multiple stacks.

For more information see Minimizing Lock Contention.

Chapter 5: Tuning Onload

UG1586 (v1.2) July 31, 2023
Onload User Guide 87Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=87

Chapter 6

Onload Functionality
This chapter provides detailed information about specific aspects of Onload operation and
functionality.

Onload Transparency
Onload provides significantly improved performance without the need to rewrite or recompile
the user application, whilst retaining complete interoperability with the standard TCP and UDP
protocols.

In the regular kernel TCP/IP architecture an application is dynamically linked to the libc library.
This OS library provides support for the standard BSD sockets API via a set of ‘wrapper’
functions with real processing occurring at the kernel-level. Onload also supports the standard
BSD sockets API. However, in contrast to the kernel TCP/IP, Onload moves protocol processing
out of the kernel-space and into the user-level Onload library itself.

As a networking application invokes the standard socket API function calls such as socket(),
read(), write() etc, these are intercepted by the Onload library making use of the
LD_PRELOAD mechanism on Linux. From each function call, Onload will examine the file
descriptor identifying those sockets using a supported interface - which are processed by the
Onload stack, whilst those not using a supported interface are transparently passed to the kernel
stack.

Onload Stacks
An Onload 'stack' is an instance of a TCP/IP stack. The stack includes transmit and receive
buffers, open connections and the associated port numbers and stack options. Each stack has
associated with it one or more Virtual NICs (typically one per physical port that stack is using).

In normal usage, each accelerated process will have its own Onload stack shared by all
connections created by the process. It is also possible for multiple processes to share a single
Onload stack instance (refer to Stack Sharing), and for a single application to have more than one
Onload stack. Refer to Appendix D: Onload Extensions API.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 88Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=88

Note: An Onload stack can only exist in a single network namespace and cannot be shared by different
network namespaces.

Virtual Network Interface (VNIC)
SFN8000 series and X2 series Solarflare network adapters support 1024 transmit queues, 1024
receive queues, 1024 event queues and 1024 timer resources per network port. A VNIC (virtual
network interface) consists of one unique instance of each of these resources which allows a
VNIC client such as the Onload stack, an isolated and safe mechanism of sending and receiving
network traffic. Received packets are steered to the correct VNIC by means of IP/MAC filter
tables on the network adapter and/or Receive Side Scaling (RSS). An Onload stack allocates one
VNIC per Solarflare network port so it has a dedicated send and receive channel from user mode.

Following a reset of the Solarflare network adapter driver, all virtual interface resources including
Onload stacks and sockets will be re-instated. The reset operation will be transparent to the
application, but traffic will be lost during the reset.

Functional Overview
When establishing its first socket, an application is allocated an Onload stack which allocates the
required VNICs.

When a packet arrives, IP filtering in the adapter identifies the socket and the data is written to
the next available receive buffer in the corresponding Onload stack. The adapter then writes an
event to an “event queue” managed by Onload. If the application is regularly making socket calls,
Onload is regularly polling this event queue, and then processing events directly rather than
interrupts are the normal means by which an application is able to rendezvous with its data.

User-level processing significantly reduces kernel/user-level context switching and interrupts are
only required when the application blocks - because when the application is making socket calls,
Onload is busy processing the event queue picking up new network events.

Onload with Mixed Network Adapters
A server might be equipped with supported network interfaces and unsupported network
interfaces. When an application is accelerated, Onload reads the Linux kernel routing tables to
identify which network interface is required to make a connection. If an unsupported interface is
required to reach a destination Onload will pass the connection to the kernel TCP/IP stack. No
additional configuration is required to achieve this as Onload does this automatically.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 89Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=89

Maximum Number of Network Interfaces
A maximum of 32 network interfaces capable of acceleration can be registered with the Onload
driver. Third party interfaces that cannot be accelerated do not count towards this limit.

Further limits are set by values in the src/include/ci/internal/
transport_config_opt.h header file within the source code:

• The maximum number of hardware ports in the system is set by the CI_CFG_MAX_HWPORTS
value. The default for this value is 8, and it can be increased to a maximum of 32.

• The maximum number of network interfaces per stack is set by the
CI_CFG_MAX_INTERFACES value. The default for this value is 8, and it can be increased to a
maximum of 16.

If this value is less than the number of interfaces that the driver provides:

○ The interfaces can be distributed between stacks using blacklisting or namespacing. See
Allowlist and Denylist for Interfaces, and Namespaces.

○ If there remain more interfaces visible to an Onload stack than it can support, then the
higher interfaces will not be accelerated.

Following changes to these values it is necessary to rebuild and reinstall Onload.

Allowlist and Denylist for Interfaces
The user can, on a system-wide or a per-stack basis, specify interfaces that can be used by the
Onload stack, or prevent interfaces being used by the stack:

• The system-level configuration Files in /proc/driver/sfc_resource/<intf-name>/
enable can be written with “1” or “0” to enable or disable a network interface for all
applications on the system:

This feature is available from Onload-7.1.0 onwards.

• The per-stack environment variables EF_INTERFACE_BLACKLIST and
EF_INTERFACE_WHITELIST are space-separated lists of interfaces. The network interfaces
can be identified as the real interface such as p1p1 or eth1, or as a higher-order interface such
as a VLAN, MACVLAN, team or bond. When the Onload stack is created interface names will
be resolved to identify the underlying and adapter interface.

This feature is available from OpenOnload-201710 onwards.

By default, all interfaces are enabled when the driver is loaded. To disable all interfaces initially,
pass the “enable_accel_by_default=0” module parameter to sfc_resource.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 90Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=90

All interfaces identified in the allowlist will be accelerated by Onload, however the denylist takes
precedence such that an interface appearing in both lists will not be accelerated by Onload.

If an interface is in the denylist:

• Onloaded applications will not accelerate sockets using the interface (the socket will be
handled by the kernel).

• ef_vi applications will fail the ef_pd_alloc() call at startup.

Onload Accelerated Process IDs
To identify processes accelerated by Onload use the onload_fuser command:

onload_fuser -v
9886 ping

Only processes that have created an Onload stack are present. Processes which are loaded under
Onload, but have not created any sockets are not present. The onload_stackdump command
can also list accelerated processes. See List Onloaded Processes for details.

File Descriptors, Stacks, and Sockets
For an Onloaded process it is possible to identify the file descriptors, Onload stacks and sockets
being accelerated by Onload. Use the /proc/<PID>/fd file - supplying the PID of the
accelerated process. For example:

ls -l /proc/9886/fd
total 0
lrwx------ 1 root root 64 May 14 14:09 0 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 1 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 2 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 3 -> onload:[tcp:6:3]
lrwx------ 1 root root 64 May 14 14:09 4 -> /dev/pts/0
lrwx------ 1 root root 64 May 14 14:09 5 -> /dev/onload
lrwx------ 1 root root 64 May 14 14:09 6 -> onload:[udp:6:2]

Accelerated file descriptors are listed as symbolic links to /dev/onload. Accelerated sockets
are described in [protocol:stack:socket] format.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 91Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=91

System Calls Intercepted by Onload
System calls intercepted by the Onload library are listed in the following file:

[onload]/src/include/onload/declare_syscalls.h.tmpl

Linux Sysctls
The Linux directory /proc/sys/net/ipv4 contains default settings which tune different parts
of the IPv4 networking stack. In many cases Onload takes its default settings from the values in
this directory. In some cases the default can be overridden, for a specified processes or socket,
using socket options or with Onload environment variables. The following sections identify the
default Linux values and how Onload tuning parameters can override the Linux settings.

Refer to the Appendix A: Parameter Reference for details of environment variables.

tcp_slow_start_after_idle
Controls congestion window validation as per RFC2861.

Onload value

“off” by default in Onload, as it's not usually useful in modern switched networks.

Comments

#define CI_CFG_CONGESTION_WINDOW_VALIDATION in transport_config_opt.h.

Recompile after changing.

tcp_congestion_control
Determines what congestion control algorithm is used by TCP. Valid settings include reno, bic
and cubic.

Onload value

No direct equivalent - see TCP Congestion Control.

Comments

See EF_CONG_AVOID_SCALE_BACK.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 92Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=92

tcp_adv_win_scale
Defines how quickly the TCP window will advance.

Onload value

No direct equivalent - see TCP Congestion Control.

Comments

See EF_TCP_ADV_WIN_SCALE_MAX.

tcp_rmem
The default size of sockets' receive buffers (in bytes)

Onload value

Defaults to the currently active Linux settings, but is ignored on TCP accepted sockets. Refer to
EF_TCP_RCVBUF_ESTABLISHED_DEFAULT.

Comments

Can be overriden with the SO_RCVBUF socket option.

Can be set with EF_TCP_RCVBUF.

tcp_wmem
The default size of sockets' send buffers (in bytes).

Onload value

Defaults to the currently active Linux settings.

Comments

EF_TCP_SNDBUF (see EF_TCP_SNDBUF) overrides SO_SNDBUF which overrides tcp_wmem.

tcp_dsack
Allows TCP to send duplicate SACKS.

Onload value

Uses the currently active Linux settings.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 93Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=93

Comments

—

tcp_fack
Enables forward acknowledgment algorithm.

Onload value

Enabled.

Comments

—

tcp_sack
Enable TCP selective acknowledgments, as per RFC2018.

Onload value

Enabled by default. Onload uses the currently active Linux setting.

Comments

Clear bit 2 of EF_TCP_SYN_OPTS (see EF_TCP_SYN_OPTS) to disable.

tcp_max_syn_backlog
The maximum size of a listening socket's backlog.

Onload value

Set with EF_TCP_BACKLOG_MAX (see EF_TCP_BACKLOG_MAX).

Comments

—

tcp_synack_retries
The maximum number of retries of SYN-ACKs.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 94Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=94

Onload value

Set with EF_RETRANSMIT_THRESHOLD_SYNACK (see
EF_RETRANSMIT_THRESHOLD_SYNACK).

Comments

Default value 5.

Namespaces
Onload includes support for all Linux namespace types. Network namespace support has been
primarily implemented for use with Onload in a Docker container, but Onload will support all
Linux namespace types in host and container environments. Onload will create a control_plane
instance per namespace in which an Onload stack is created.

An Onload stack can exist in only one network namespace. The stack cannot be moved between
network namespaces and cannot be shared by multiple network namespaces.

Note: Onload stacks cannot be shared by different network namespaces.

The following are not supported:

• multiple interfaces with the same IP address

• multiple interfaces with the same MAC address.

User-space Control Plane Server
Starting from the onload-201710 release, Onload deploys a user-space control plane daemon.

A single onload_cp_server process is created per network namespace in which there is an
active onload_stack.

The onload_cp_server process is spawned when the first Onload stack is created in a
namespace, and stack creation will wait until the process becomes ready - this might result in a
noticeable delay. Onload also spawns a control plane server for the default (main) network
namespace at load time, thus avoiding the delay for the majority of use-cases.

The onload_cp_server exits after a “grace period” when the last stack in the namespace has
been destroyed. A new stack, created in the same namespace, before the grace period expires,
can use the existing onload_cp_server avoiding the stack creation delay. The grace period, in
seconds, can be managed - see options below.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 95Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=95

The compiler architecture of the onload_cp_server must match that of the host kernel.

See also the Management Information Base in Appendix K: Management Information Base.

Onload Options for the Control Plane Server
The following Onload options configure the user-space Control Plane Server. For the latest
details of options use the following command:

modinfo onload

Table 13: Onload Options for the Control Plane Server

Option Description
cplane_init_timeout (int) Time in seconds to wait for the control plane to initialize

when creating a stack.
This initialization requires that the user-level control plane
process be spawned if one is not already running for the
current network namespace.
If this parameter is zero, stack-creation will fail immediately
if the control plane is not ready.
If it is negative, stack-creation will block indefinitely in wait
for the control plane.

cplane_spawn_server (bool) If true, control plane server processes are spawned on-
demand.
Typically this occurs when a stack is created in a network
namespace in which there are no other stacks.

cplane_server_path Sets the path to the onload_cp_server binary. Defaults
to /sbin/onload_cp_server if empty.

cplane_server_params Set additional parameters for the onload_cp_server
server when it is spawned on-demand.

cplane_server_grace_timeout Time in seconds to wait before killing the control plane
server after the last user has gone (that is, after the last
Onload stack in this namespace has been destroyed). It is
used with cplane_spawn_server = Y only.

cplane_route_request_limit (int) Queue depth limit for route resolution requests.

cplane_route_request_timeout_ms Time out value for route resolution requests.

ONLOAD_CPLANE_USER Add this option in /etc/sysconfig/onload file to restrict
access to users.
The server retains CAP_NET_ADMIN capability.

cplane_server_uid Restrict cplane access to specific user.

cplane_server_gid Restrict cplane access to specific user group.

cplane_use_prefsrc_as_local If true, use a preferred source of any accelerated route in
the same way as an address assigned to accelerated
interface. This setting allows the acceleration of unbound
connections via accelerated routes when the preferred
source is assigned to another network interface.
See also oof_use_all_local_ip_addresses module parameter.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 96Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=96

Parameters for onload_cp_server
The onload_cp_server process has parameters that can be passed to it on startup. These
parameters are usually specified by setting the cplane_server_params module option. For
example, you might add the following line to a file in the /etc/modprobe.d directory:

options onload cplane_server_params="--llap-max=100 --fwd-max=512"

These parameters can also be given with the environment variable CI_OPTS:

Table 14: Parameters for onload_cp_server

Parameter Description Default
-s --dump Interval between table dump, in

seconds
3

--no-listen Do not listen for netlink updates false

--fwd-refresh Interval between fwd cache
housekeeping, in seconds

5

-t --time-to-live Time-to-live for forward cache entries,
in seconds

300

-K --log-to-kmsg Log to /dev/kmsg (with -D only) false

--affinity CPU mask to set the cp_server affinity
to. Limited to 64 CPUs.

-1

-l --llap-max Maximum number of network
interfaces (including “lo”)

32

-b --bond-max Maximum number of bond/team
interfaces and their ports

64

-m --mac-max Maximum number of ARP entries in the
system (will be rounded up to a power
of 2)

1024

-f --fwd-max Maximum number of remote
addresses used by Onload (will be
rounded up to a power of 2).
The default value is usually sufficient;
but might need to be increased for
complex routing setups.

1024

-r --fwd-req-max Ignored —

--bond-base-period Interval between background bond-
state polls, in milliseconds

100

--bond-peak-period Interval between peak-rate bond-state
polls, in milliseconds

10

--bond-peak-polls Number of peak-rate bond polls before
reverting to background rate

20

--bond-3ad-period interval between re-dumping bond-3ad
slave state, in milliseconds

100

The following additional parameters are automatically set when the Onload drivers launch the
onload_cp_server process.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 97Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=97

Note: The default values shown in the following table are for when the process is not started by the
Onload drivers.)

Table 15: Additional Parameters for onload_cp_server

Parameter Description Default
--network-namespace-file Path to a file specifying the network

namespace to manage
—

-D --daemonise Daemonise at start and log to syslog false

--bootstrap Manage the namespace even if there
are no clients

false

-h --hwport-max Maximum number of hardware ports
When Onload is starting the
onload_cp_server process, set this via
CI_CFG_MAX_HWPORTS.

8

-i --ipif-max Maximum number of local IP addresses
(on all interfaces)
When Onload is starting the
onload_cp_server process, set this via
CI_CFG_MAX_LOCAL_IPADDRS

64

--force-bonding-netlink Only use netlink (and not ioctls) for
determining bonding state

false

--no-ipv6 Disable IPv6 support false

For the latest details of parameters use the following command:

onload_cp_server --help

Changing Onload Control Plane Table Sizes
The default sizes of the tables used by the Onload Control Plane are normally sufficient for the
majority of applications. The table sizes can be changed, but creating larger tables might impact
application performance.

The procedure for doing so changed in the onload-201710 release.

Note: Following changes Onload should be restarted using the reload command: onload_tool reload.

Changing Table Sizes for Onload-201710 and Later
From onload-201710 onwards, the sizes of Onload Control Plane tables are set by parameters for
the onload_cp_server process. These are listed in Parameters for onload_cp_server.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 98Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=98

If non-default values are needed, the user should create a file in the /etc/modprobe.d
directory. The file must have the .conf extension. The onload_cp_server parameters can be
added to the file in a single line, space-separated, in the following format:

options onload cplane_server_params="--mac-max=512 --fwd-max=256"

Changing Table Sizes before Onload-201710
Releases of Onload prior to onload-201710 support the following runtime configurable options
which determine the size of control plane tables:

Table 16: Obsolete Options for Changing Table Sizes

Option Description Default
max_layer2_interfaces Sets the maximum number of network

interfaces, including physical
interfaces, VLANs and bonds,
supported in Onload’s control plane.
Table: mib_llap (also referred to in
messages as the “local address table”).

50

max_local_addrs Sets the maximum number of local
network addresses supported in
Onload’s control plane.
Table: mib_ipif

256

max_neighs Sets the maximum number of rows in
the Onload ARP/neighbor table. The
value is rounded up to a power of two.
Table: mib_mac

1024

max_routes Sets the maximum number of entries
in the Onload route table.
The default size is usually sufficient;
but might need to be increased for
complex routing setups. The minimum
size needed can be calculated as ((local
IP addresses +1) * remote IP
addresses); or determined by:

ip link show | wc -l

Table: mib_fwd

256

If non-default values are needed, the user should create a file in the /etc/modprobe.d
directory. The file must have the .conf extension. Onload options can be added to the file, a
single option per line, in the following format:

options onload_cplane max_neighs=512
options onload_cplane max_routes=256

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 99Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=99

SO_BINDTODEVICE
In response to the setsockopt() function call with SO_BINDTODEVICE, sockets identifying
unsupported interfaces will be handled by the kernel and all sockets identifying supported
interfaces will be handled by Onload. All sends from a socket are sent via the bound interface.
Only traffic received over the bound interface will be delivered to the socket.

Multiplexed I/O
Linux supports three common methods for handling multiplexed I/O operation; poll(),
select() and the epoll set of functions.

The general behavior of the poll(), select() and epoll_wait() functions with Onload is
as follows:

• If there are operations ready on any file descriptors, poll(), select() and epoll_wait()
will return immediately. Refer to Poll, ppoll, Select, pselect and Epoll for specific behavior
details.

• If there are no file descriptors ready and spinning is not enabled, calls to poll(), select()
and epoll_wait() will enter the kernel and block.

• In the cases of poll()and select(), when the set contains file descriptors that are not
accelerated sockets, there is a slight latency overhead as Onload must make a system call to
determine the readiness of these sockets. There is no such cost when using epoll_wait()
and a system call is only needed when non-Onload descriptors become ready.

To ensure that non-accelerated (kernel) file descriptors are checked when there are no events
ready on accelerated (onload) descriptors, disable the following options:

○ EF_SELECT_FAST and EF_POLL_FAST - setting both to zero.

○ EF_POLL_FAST_USEC and EF_SELECT_FAST_USEC - setting both to zero.

• If there are no file descriptors ready and spinning is enabled, Onload will spin to ensure that
accelerated sockets are polled a specified number of times before unaccelerated sockets are
examined. This reduces the overhead incurred when Onload has to call into the kernel and
reduces latency on accelerated sockets.

The following subsections discuss the use of these I/O functions and Onload environment
variables that can be used to manipulate behavior of the I/O operation.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 100Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=100

Poll, ppoll
The poll(), ppoll() file descriptor set can consist of both accelerated and non-accelerated
file descriptors. The environment variable EF_UL_POLL enables/disables acceleration of the
poll(), ppoll() function calls. Onload supports the following options for the EF_UL_POLL
variable:

Table 17: Options for the EF_UL_POLL Variable

Value Behavior
0 Disable acceleration at user-level. Calls to poll(), ppoll() are handled by the kernel.

Spinning cannot be enabled.

1 Enable acceleration at user-level. Calls to poll(), ppoll() are processed at user level.
Spinning can be enabled and interrupts are avoided until an application blocks.

Additional environment variables can be employed to control the poll(), ppoll() functions
and to give priority to accelerated sockets over non-accelerated sockets and other file
descriptors. Refer to EF_POLL_FAST, EF_POLL_FAST_USEC and EF_POLL_SPIN.

Select, pselect
The select(), pselect() file descriptor set can consist of both accelerated and non-
accelerated file descriptors. The environment variable EF_UL_SELECT enables/disables
acceleration of the select(), pselect() function calls. Onload supports the following
options for the EF_UL_SELECT variable:

Table 18: Options for the EF_UL_SELECT Variable

Value Epoll Behavior
0 Disable acceleration at user-level. Calls to select(), pselect() are handled by the kernel.

Spinning cannot be enabled.

1 Enable acceleration at user-level. Calls to select(), pselect() are processed at user-level.
Spinning can be enabled and interrupts are avoided until an application blocks.

Additional environment variables can be employed to control the select(), pselect()
functions and to give priority to accelerated sockets over non-accelerated sockets and other file
descriptors. Refer to EF_SELECT_FAST and EF_SELECT_SPIN.

Epoll
The epoll set of functions, epoll_create(), epoll_ctl(), epoll_wait(),
epoll_pwait(), are accelerated in the same way as poll and select. The environment variable
EF_UL_EPOLL enables/disables epoll acceleration. Refer to the release change log for
enhancements and changes to epoll behavior.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 101Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=101

Using Onload an epoll set can consist of both Onload file descriptors and kernel file descriptors.
Onload supports the following options for the EF_UL_EPOLL environment variable:

Table 19: Options for the EF_UL_EPOLL Variable

Value Epoll Behavior
0 Accelerated epoll is disabled and epoll_ctl(), epoll_wait() and epoll_pwait() function

calls are processed in the kernel. Other functions calls such as send() and recv() are still
accelerated.
Interrupt avoidance does not function and spinning cannot be enabled.
If a socket is handed over to the kernel stack after it has been added to an epoll set, it will be
dropped from the epoll set.
onload_ordered_epoll_wait() is not supported.

1 Function calls to epoll_ctl(), epoll_wait(), epoll_pwait() are processed at user level.
Delivers best latency except when the number of accelerated file descriptors in the epoll set is
very large. This option also gives the best acceleration of epoll_ctl() calls.
Spinning can be enabled and interrupts are avoided until an application blocks.
CPU overhead and latency increase with the number of file descriptors in the epoll set.
onload_ordered_epoll_wait() is supported.

2 Calls to epoll_ctl(), epoll_wait(), epoll_pwait() are processed in the kernel.
Delivers best performance for large numbers of accelerated file descriptors.
Spinning can be enabled and interrupts are avoided until an application blocks.
CPU overhead and latency are independent of the number of file descriptors in the epoll set.
onload_ordered_epoll_wait() is not supported.

3 Function calls to epoll_ctl(), epoll_wait(), epoll_pwait() are processed at user level.
Delivers best acceleration latency for epoll_ctl() calls and scales well when the number of
accelerated file descriptors in the epoll set is very large - and all sockets are in the same stack. The
cost of the epoll_wait() is independent of the number of accelerated file descriptors in the set
and depends only on the number of descriptors that become ready.
The benefits will be less if sockets exist in different Onload stacks:
• From Onload 201805 onwards, each socket can be in up to four epoll sets at a time, provided

that each epoll set is in a different process
• Otherwise, each socket can be in at most one epoll set at a time.
In such cases the recommendation is to use EF_UL_EPOLL=2.
EF_UL_EPOLL=3 does not allow monitoring the readiness of the epoll file descriptors from
another epoll/poll/select.
EF_UL_EPOLL=3 cannot support epoll sets which exist across fork().
Spinning can be enabled and interrupts are avoided until an application blocks.
onload_ordered_epoll_wait() is supported.

The relative performance of epoll options 1 and 2 depends on the details of application behavior
as well as the number of accelerated file descriptors in the epoll set. Behavior can also differ
between earlier and later kernels and between Linux realtime and non-realtime kernels.
Generally the OS will allocate short time slices to a user-level CPU intensive application which
might result in performance (latency spikes). A kernel-level CPU intensive process is less likely to
be de-scheduled resulting in better performance. You are recommended to evaluate options 1
and 2 for applications that manages many file descriptors, or to try option 3 (onload-201502 and
later) when using very large sets and all sockets are in the same stack.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 102Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=102

Additional environment variables can be employed to control the epoll_ctl(),
epoll_wait() and epoll_pwait() functions and to give priority to accelerated sockets over
non-accelerated sockets and other file descriptors. Refer to EF_EPOLL_CTL_FAST,
EF_EPOLL_SPIN and EF_EPOLL_MT_SAFE.

Refer also to Known Issues with Epoll.

Wire Order Delivery
When a TCP or UDP application is working with multiple network sockets simultaneously it is
difficult to ensure data is delivered to the application in the strict order it was received from the
wire across these sockets.

The onload_ordered_epoll_wait() API is an Onload alternative implementation of
epoll_wait() providing additional data allowing a receiving application to recover in-order
timestamped data from multiple sockets. To maintain wire order delivery, only a specific number
of bytes, as identified by the onload_ordered_epoll_event, should be recovered from a
ready socket.

• All sockets must be in the same Onload stack. This can be confirmed using the
onload_fd_stat() function.

• Ordering is done on a per-stack basis - for TCP and UDP sockets.

• Only data received from an Onload stack with a hardware timestamp will be ordered.

• The environment variable EF_RX_TIMESTAMPING must be enabled:

EF_RX_TIMESTAMPING=1

• File descriptors where timestamping information is not available can be included in the epoll
set, but received data will be returned from these unordered.

• The application must use the epoll API and the onload_ordered_epoll_wait() function.

• The application must set the per-process environment variable EF_UL_EPOLL=1 or
EF_UL_EPOLL=3.

• EPOLLET and ONESHOT flags should NOT be used.

• Concurrent use of the ordering data is not safe, and so onload_ordered_epoll_wait()
must not be called from multiple threads.

• See onload_ordered_epoll_wait for further details.

To prevent packet coalescing in the receive queue, resulting in multiple packets received with the
same hardware timestamp, the EF_TCP_RCVBUF_STRICT variable should be disabled (default
setting). The following figure demonstrates the Wire Order Delivery feature.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 103Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=103

Figure 14: Wire Order Delivery

Skt A 1

Skt B 2 3

4

X

Data arrival order

X26442-032122

onload_ordered_epoll_wait() returning at point X would allow the following data to be
recovered:

• Socket A: timestamp of packet 1, bytes in packet 1.

• Socket B: timestamp of packet 2, bytes in packets 2 and 3.

• onload_ordered_epoll_wait() returning again would recover timestamp of packet 4
and bytes in packet 4.

The Wire Order Delivery feature is only available on Solarflare Flareon or XtremeScale™ adapters
having a PTP/HW timestamping activation key. When receiving across multiple adapters,
Solarflare sfptpd (PTP) can ensure that adapters are closely synchronized with each other and, if
required, with an external PTP clock source.

Example API for Wire Order Delivery
The Onload distribution includes example client/server applications to demonstrate the wire
order feature:

wire_order_server - uses onload_ordered_epoll_wait to receive ordered data over a set of
sockets. Received data is echoed back to the client on a single reply socket.

wire_order_client - Sends sequenced data across the socket set, reads the reply data from
the server and ensures data is received in sequence.

Building the example

Source code for the wire order API is available in:

onload-<version>/src/tests/onload/wire_order

Although not compiled as part of the Onload install process, to build the example API do the
following:

Ensure mmaketool is in the current path (can be found in the onload-<version>/scripts
directory):

export PATH=$PATH:/onload-<version>/scripts
cd /onload-<version>/build/gnu_x86_64/tests/onload/wire_order
USEONLOADEXT=1 make

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 104Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=104

Running the example server

EF_RX_TIMESTAMPING=3 onload ./wire_order_server

Running the example client

onload --profile=latency ./wire_order_client <ip server>

By default the client will send data over 100 TCP sockets controlled with the -s option. UDP can
be selected using the -U option.

Note: To prevent sends being re-ordered between streams, the latency profile should be used on the client
side. The environment variable EF_RX_TIMESTAMPING must be set on the server side.

Stack Sharing
By default each process using Onload has its own 'stack'. Refer to Onload Stacks for definition.
Several processes can be made to share a single stack, using the EF_NAME environment variable.
Processes with the same value for EF_NAME in their environment will share a stack.

Stack sharing is one supported method to enable multiple processes using Onload to be
accelerated when receiving the same multicast stream or to allow one application to receive a
multicast stream generated locally by a second application. Other methods to achieve this are
Multicast Replication and Hardware Multicast Loopback.

Stacks can also be shared by multiple processes to preserve and control resources within the
system. Stack sharing can be employed by processes handling TCP as well as UDP sockets.

Note: Onload stacks cannot be shared by different network namespaces.

Stack sharing should only be requested if there is a trust relationship between the processes. If
two processes share a stack then they are not completely isolated: a bug in one process can
impact the other, or one process can gain access to the privileged information of the other and so
breach security. Once the EF_NAME variable is set, any process on the local host can set the
same value and gain access to the stack.

By default Onload stacks can only be shared with processes having the same UID. The
EF_SHARE_WITH environment variable provides additional security while allowing a different
UID to share a stack. Refer to Appendix A: Parameter Reference for a description of the
EF_NAME and EF_SHARE_WITH variables.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 105Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=105

Processes with different UIDs, sharing an Onload stack cannot use huge pages. Onload will issue a
warning at startup and prevent the allocation of huge pages if EF_SHARE_WITH identifies a UID
of another process or is set to -1. If a process P1 creates an Onload stack, but is not using huge
pages and another process P2 attempts to share the Onload stack by setting EF_NAME, the stack
options set by P1 will apply, allocation of huge pages in P2 will be prevented.

To suppress these startup warnings about turning huge pages off, set EF_USE_HUGE_PAGES to
0 if EF_SHARE_WITH is non-zero.

An alternative method of implementing stack sharing is to use the Onload Extensions API and
the onload_set_stackname() function which, through its scope parameter, can limit stack
access to the processes created by a particular user. Refer to Appendix D: Onload Extensions API
for details.

Application Clustering
An application cluster is the set of Onload TCP or UDP stack sockets bound to the same port.
This feature dramatically improves the scaling of some applications across multiple CPUs
(especially those establishing many sockets from a TCP listening socket).

Onload from version 201405 automatically creates a cluster using the SO_REUSEPORT socket
option. TCP or UDP processes running on RHEL 6.5 (and later) setting this option can bind
multiple sockets to the same TCP or UDP port.

Note: Some older Linux kernel/distributions do not have kernel support for SO_REUSEPORT (introduced in
the Linux 3.9 kernel). Onload contains experimental support for SO_REUSEPORT on older kernel versions
but this has yet to be fully tested and verified. Users are free to try the Onload application clustering
feature on these kernels and report their findings via email to support-nic@amd.com.

For TCP, clustering allows the established connections resulting from a listening socket to be
spread over a number of Onload stacks. Each thread/process creates its own listening socket
(using SO_REUSEPORT) on the same port, with each listening socket residing in its own Onload
stack. Handling of incoming new TCP connections are spread via the adapter (using RSS) over the
application cluster and therefore over each of the listening sockets resulting in each Onload stack
and therefore each thread/process, handling a subset of the total traffic as illustrated in the
following figure.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 106Send Feedback

mailto:support-nic@amd.com?subject=SO_REUSEPORT%20on%20older%20kernel%20versions
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=106

Figure 15: Application Clustering - TCP

Onload stack

est.
socket

est.
socket

listen
socket

Onload stack

est.
socket

est.
socket

listen
socket

Kernel

NIC

RSSFilter port 80

X26390-031422

For UDP, clustering allows UDP unicast traffic to be spread over multiple applications with each
application receiving a subset of the total traffic load.

Existing applications that do not use SO_RESUSEPORT can use the application clustering feature
without the need for re-compilation by using the Onload EF_TCP_FORCE_REUSEPORT or
EF_UDP_FORCE_REUSEPORT environment variables identifying the list of ports to which
SO_RESUSEPORT will be applied.

The size or number of socket members of a cluster in Onload is controlled with
EF_CLUSTER_SIZE. To create a cluster the application sets the cluster name with
EF_CLUSTER_NAME. A cluster of EF_CLUSTER_SIZE is then created.

Note: The number of socket members must equal the EF_CLUSTER_SIZE value otherwise a portion of the
received traffic will be lost.

The spread of received traffic between cluster sockets employs Receive Side Scaling (RSS). The
RSS hash is a function of the src_ip:src_port and dst_ip:dst_port 4-tuple.

The reception of traffic within a cluster is dependent on port numbers only.

Restarting an application that includes cluster socket members can fail when orphan stacks are
still present. Use EF_CLUSTER_RESTART to force termination of orphaned stacks allowing the
creation of the new cluster.

Refer to Chapter 13: Limitations for details of application clustering limitations.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 107Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=107

eXpress Data Path (XDP)
From Onload-7.1.0 onwards, the implementation of XDP features is delegated to the currently-
running kernel. This expands the set of supported XDP features to those provided by the kernel,
but means that XDP is not supported on older OSs that do not provide the corresponding
features natively.

Note: On Onload-7.0.0.176, XDP was implemented using a snapshot of the Linux 4.20 implementation.
Onload support for XDP allows the user to insert extended Berkeley Packet Filter code (eBPF) very early
into the Onload packet receive path. This can be used, for example, to implement low overhead IPtables
type filters, for packet statistics collection or for more complex packet manipulation using eBPF
programming.

OS Requirements
XDP is not supported on RHEL6 or RHEL7. XDP requires (minimum) RHEL8 or the 4.20 Linux
kernel.

Advantages of XDP
The advantages of XDP are as follows:

• An eBPF program is executed before received packets reach the network stack.

• An eBPF program is executed before expensive socket memory allocations for received
packets.

• Dropped packets incur low CPU overhead and do not consume packet socket buffers.

Including eBPF with Onload
To use eBPF with Onload:

1. Build Onload with BPF support when using the onload_install script:

onload_install --build profile cloud

2. Enable native kernel BPF program functionality (is enabled by default):

#define CI_CFG_WANT_BPF_NATIVE 1

This is in: /src/include/ci/internal/transport_config_opt.h.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 108Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=108

Onload Tools
If you are using the legacy implementation of XDP (instead of the kernel-provided one), see
onload_bpftools dependencies in Appendix C: Build Dependencies.

onload_bpftool help
Usage:
 onload_bpftool help
 onload_bpftool prog { show | list }
 onload_bpftool prog dump { xlated | jited } ATTACHMENT
 onload_bpftool prog load object FILE [section NAME] [verbose]
attach ATTACHMENT [attach ATTACHMENT]...
 onload_bpftool prog detach ATTACHMENT

 ATTACH_POINT := { xdp_ingress }
 ATTACHMENT := ATTACH_POINT [dev IFNAME] [stack STACKNAME]

An example eBPF program and build command lines are documented in the Onload Release
Notes.

eBPF Return Codes
The following are supported by Onload:

• XDP_DROP

Reject and silently drop the packet. Drops are not seen by any application including tcpdump
and onload_tcpdump.

• XDP_PASS

Accept and forward the packet to the network stack.

Programmatic Access
Onload includes the libbpfintf library exposing the feature set of the onload_bpftool. Users
should refer to documentation comments in the header file for further details:

/src/include/onload/oobpf.h

BPF Statistics
Statistics identify the number of packets passed through the eBPF program, categorized by
return code from the program.

onload_stackdump lots | grep xdp

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 109Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=109

Table 20: Onload_stackdump XDP Counters

Counter Description
unlock_slow_xdp_change Number of attempts to release the lock and needed to

handle change in XDP program
rx_xdp_pass Number of packets accepted by the eBPF program
rx_xdp_drop Number of packets rejected by the eBPF program
rx_xdp_tx Number of RX packets rejected due to eBPF program

returning TX code
rx_xdp_redirect Number of RX packets rejected due to eBPF program

returning REDIRECT code
rx_xdp_aborted Number of RX packets rejected due to eBPF program

returning ABORTED code
rx_xdp_unknown Number of RX packets rejected due to eBPF program

returning unknown code

Note: Onload has no current support for AF_XDP sockets. This might be included in future releases.

Zero-Copy API
The Onload Extensions API includes support for zero-copy of TCP transmit packets and UDP
receive packets. Refer to Zero-Copy API for detailed descriptions and example source code of the
API.

Debug and Logging
Onload supports various debug and logging options. Logging and debug information will be
displayed on an attached console or will be sent to the syslog. To force all debug to the syslog set
the Onload environment variable EF_LOG_VIA_IOCTL=1.

For more information about debug/logging environment variables refer to Appendix A:
Parameter Reference.

To enable debug and logging using the options below, Onload must be installed with debug
enabled:

• When Onload was installed from a source tarball:

onload_install --debug

• When Onload was installed from a source RPM:

rpmbuild --define "debug true" rebuild enterpriseonload-$VERSION.rpm

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 110Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=110

If Onload is already installed, uninstall as described in Removing an Existing Installation. Then re-
install with the --debug option as shown above.

Log options are as follows:

• EF_UNIX_LOG - A bitmask of the types of diagnostic messages to be logged.

• EF_LOG - A comma separated list options which can be logged, enabled, disabled.

• EF_LOG_FILE - When EF_LOG_VIA_IOCTL is unset, the user is able to redirect Onload output
to a specified directory and file using the EF_LOG_FILE option. Timestamps can also be added
to the logfile when EF_LOG_TIMESTAMPS is also enabled.

EF_LOG_FILE=<path/file>

Note: Kernel logging is still directed to the syslog.

• TP_LOG (bitmask) - useful for stack debugging. See Onload source code /src/
include/ci/internal/ip_log.h for bit values.

• Control plane module option:

○ cplane_debug_bits=[bitmask] - useful for kernel logging and events involving the
control plane. See src/include/cplane/debug.h for bit values.

• Onload module options:

○ ci_tp_log=[bitmask] - useful for kernel logging and events involving an onload stack.
See Onload source code /src/include/ci/internal/ip_log.h for details.

○ oo_debug_bits=[bitmask] - useful for kernel logging and events not involving an
onload stack or the control plane. See src/include/onload/debug.h for bit values.

Chapter 6: Onload Functionality

UG1586 (v1.2) July 31, 2023
Onload User Guide 111Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=111

Chapter 7

Timestamps
This chapter describes how to use timestamps with Onload.

Introduction
This section identifies options for using software and hardware timestamps.

Software Timestamps
Setting the SO_TIMESTAMP or SO_TIMESTAMPNS options using setsockopt() enables
software timestamping on TCP or UDP sockets. Functions such as cmesg(), recvmsg() and
recvmmsg() can then recover timestamps for packets received at the socket.

Onload implements a microsecond resolution software timestamping mechanism, which avoids
the need for a per-packet system call thereby reducing the normal timestamp overheads.

Supported adapters will always deliver received packets to the receive ring buffer in the order
that these arrive from the network. Onload will append a software timestamp to the packet meta
data when it retrieves a packet from the ring buffer - before the packet is transferred to a waiting
socket receive buffer.

TCP Streams
From a TCP stream the timestamp returned is that for the first available byte. Due to
retransmissions and any reordering, timestamps might not be monotonically increasing as these
are delivered to the application.

Interrupt Driven Applications
When a packet is received it is delivered from the adapter to the receive queue and a notification
event placed on the event queue. When the Onload application is interrupt driven, a received
packet is timestamped when Onload receives the corresponding event.

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 112Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=112

Spinning Applications
If the Onload application is spinning, a received packet is timestamped when the stack is polled
at which point the packet is placed on the socket receive queue. Spinning will generally produce
more accurate timestamps so long as the receiving application is able to keep pace with the
packet arrival rate.

Software Timestamp Values
The value of the software timestamp is the start time for the poll that fetches the packet from
the hardware.

Rarely, a packet might arrive during a poll, and can then be given the same timestamp as an
earlier packet fetched by the same poll. If you are also using hardware timestamping for such a
packet, its software timestamp might be earlier than its hardware timestamp.

Software Timestamp Formats
The format of timestamps is defined by struct_timeval.

Applications preferring timestamps with nanosecond resolution can use SO_TIMESTAMPNS in
place of the normal (microsecond resolution) SO_TIMESTAMP value.

Hardware Timestamps
Setting the SO_TIMESTAMPING option using setsockopt() enables hardware timestamping
on TCP or UDP sockets. Timestamps are generated by the adapter for each received packet. A
timestamp is generated when the first byte enters the adapter. Timestamp resolution is <8ns on
an X2 series adapter.

Functions such as cmesg(), recvmsg() and recvmmsg() can then recover hardware
timestamps for packets recovered from a socket.

Requirements
• Supported only on Solarflare Flareon XtremeScale™ SFN8000 and XtremeScale™ X2 series

adapters.

• An activation Key for hardware timestamps must be installed on the adapter:

○ The PTP/timestamping activation key is installed during manufacture on the PLUS variants
of SFN8000 and X2 series adapters.

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 113Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=113

○ An appropriate activation key can be installed on other SFN8000 and X2 series adapters by
the user.

Hardware Timestamp Format
The format of timestamps is defined by struct_timespec. Interested users should read the
kernel SO_TIMESTAMPING documentation for more details of how to use this socket API –
kernel documentation can be found, for example, at:

https://www.kernel.org/doc/Documentation/networking/timestamping/

Received Packets
• The Onload stack for the socket must have the environment variable EF_RX_TIMESTAMPING

set - see Appendix A: Parameter Reference for details.

• Received packets are timestamped when they enter the MAC on the SFN8000 or X2 series
adapter.

Transmitted Packets
Onload supports hardware timestamping of UDP and TCP packets transmitted over a supported
interface. A timestamp is generated when the first byte enters the adapter.

Recent Linux kernels support hardware timestamps for TCP, and Onload 8.1 adds similar
capability. To recover hardware timestamps for transmitted TCP packets that are similar to the
Linux kernel, set the following socket options:

SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_SYS_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE

Because older Linux kernels do not support hardware timestamps for TCP, Onload provides an
extension to the standard SO_TIMESTAMPING API with the
ONLOAD_SOF_TIMESTAMPING_STREAM socket option to support this. To recover hardware
timestamps for transmitted TCP packets that use an Onload proprietary format, set the following
socket options:

SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_SYS_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE | ONLOAD_SOF_TIMESTAMPING_STREAM

To recover hardware timestamps for transmitted UDP packets, set the following socket options:

SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_SYS_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE

From Onload 8.1 onwards,SOF_TIMESTAMPING_OPT_ID and
SOF_TIMESTAMPING_OPT_TSONLY are also supported with Linux-style timestamps.

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 114Send Feedback

https://www.kernel.org/doc/Documentation/networking/timestamping/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=114

Other socket flag combinations, not listed above, will be silently ignored.

To receive hardware transmit timestamps:

• The adapter must support hardware transmit timestamps. The following adapters currently do
so:

○ XtremeScale™ SFN8000 series

○ XtremeScale™ X2 series

○ AMD Alveo™ X3 series.

• The adapter must have a PTP/HW timestamping activation key.

Note: Alveo X3 series are an exception to this requirement, because they do not use activation keys.

• The adapter must have a SolarCapture Pro activation key or Performance Monitoring
activation key.

Note: Alveo X3 series are an exception to this requirement, because they do not use activation keys.

• You must set EF_TX_TIMESTAMPING on stacks where transmit timestamping is required.

• You must set EF_TIMESTAMPING_REPORTING to control the type of timestamp returned to
the application. This is optional, by default Onload will report translated timestamps if the
adapter clock has been fully synchronized to correct time by the Solarflare PTP daemon. In all
cases Onload will always report raw timestamps. Refer to Appendix A: Parameter Reference
for full details of the EF_TIMESTAMPING_REPORTING variable.

• Solarflare PTP (sfptpd) must be running if timestamps are to be synchronized with an external
PTP master clock.

For details of the SO_TIMESTAMPING API refer to the Linux documentation:

https://www.kernel.org/doc/Documentation/networking/timestamping/

Zeroed Timestamps
If timestamps returned from the adapter are zeroed, refer to Setting the Adapter Clock Time.

Synchronizing Time
Solarflare Enhanced PTP can be enabled to synchronize the time across all clocks within a server
or between multiple servers.

The sfptpd daemon supports clock synchronization with external NTP and PTP time sources and
includes an optional PTP/NTP fallback configuration.

For details of Solarflare PTP refer to the Enhanced PTP User Guide (UG1602).

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 115Send Feedback

https://www.kernel.org/doc/Documentation/networking/timestamping/
https://docs.xilinx.com/access/sources/dita/map?url=ug1602-ptp-user&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=115

Example Timestamping Applications
The onload distribution includes example applications to demonstrate receive and transmit
hardware timestamping. With Onload installed, source code is located in the following
subdirectory:

/onload-<version>/src/tests/onload/hwtimestamping

Building the Examples
Following the onload_install, the example applications: rx_timestamping and tx_timestamping are
located in the following directory:

onload-<version>/build/gnu_x86_64/tests/onload/hwtimestamping

Using earlier versions of Onload the user should run the make command in the following
directory to build example timestamping applications:

openonload-<version>/src/tests/onload/hwtimestamping

Running the Examples
The following conditions are required to run the example applications:

• The server must have a Solarflare SFN8000 or X2 series adapter.

• The adapter must have a PTP/HW timestamping activation key.

• The connection from which packets are to be timestamped must be routed over the
timestamping adapter.

• To receive TX timestamps, the adapter must have a SolarCapture Pro activation key or
Performance Monitoring activation key

• The Onload environment variable EF_RX_TIMESTAMPING or EF_TX_TIMESTAMPING must
be enabled in the Onload environment.

Note: User should also read the specific requirements from the RX/TX timestamping sections above.

Setting the Adapter Clock Time
It might be necessary to ‘seed’ the adapter clock time - otherwise timestamps might be zeroed or
reported as 01 Jan 1970. This can be done by briefly running Solarflare PTP (sfptpd) as a slave -
the adapter clock is seeded from the system clock.

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 116Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=116

Running sfptpd in freerun mode will achieve the same result. It is not required to actually receive
any PTP packets to seed the adapter clock and sfptpd can be terminated after a few seconds as it
is only required to ‘seed’ the adapter clock.

Users who wish to synchronize the adapter clock with an external time source should refer to the
Enhanced PTP User Guide (UG1602).

Order of Timestamps in the Example Applications
Timestamps in the example applications are displayed in the following order:

• System: software timestamp from the system clock.

• Transformed: hardware timestamp converted to software timestamp. This can be ignored
because the adapter is using UTC time and transformation is not required. Transformed
timestamps are identical to Raw timestamps.

• Raw: hardware timestamp generated by the adapter clock.

rx_timestamping Example
This demonstrates the rx_timestamping example application.

Server1

Server1 sets the EF_RX_TIMESTAMPING environment variable and starts the
rx_timestamping application:

EF_RX_TIMESTAMPING=2 onload ./rx_timestamping --proto tcp
oo:rx_timestamping[31250]: Using OpenOnload 201509 Copyright 2006-2015
Solarflare Communications, 2002-2005 Level 5 Networks [0]
Socket created, listening on port 9000
Socket accepted
Selecting hardware timestamping mode.
Packet 1 - 27 bytes timestamps 1460374944.990960465
1460374944.993421129 1460374944.993421129
Packet 2 - 27 bytes timestamps 1460374966.478980336
1460374966.481623531 1460374966.481623531
Packet 3 - 0 bytes no timestamp
recvmsg returned 0 - end of stream

Server2

Server2 uses the Linux netcat utility to send packets to server1:

nc <server1 ip> 9000
abcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 117Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1602-ptp-user&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=117

tx_timestamping Example
This demonstrates the tx_timestamping example application.

From Onload 8.1 onwards this example defaults to using Linux format timestamps for TCP. Use
the --stream option to instead use the Onload proprietary format.

Server1

Server1 sets the EF_TX_TIMESTAMPING environment variable and starts the
tx_timestamping application:

EF_TX_TIMESTAMPING=3 onload ./tx_timestamping --proto tcp --ioctl eth4
oo:tx_timestamping[16139]: Using OpenOnload 201509 Copyright 2006-2015
Solarflare Communications, 2002-2005 Level 5 Networks [4]
TCP listening on port 9000
 TCP connection accepted
Accepted SIOCHWTSTAMP ioctl.
Selecting hardware timestamping mode.
Packet 1 - 27 bytes
Timestamp for 27 bytes:
First sent timestamp 1453436034.615029223
Last sent timestamp 0.000000000

Server2

Server2 uses the Linux netcat utility to send a packet to server1 which is then echoed back to
the sender:

nc <server1 ip> 9000
abcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz (echoed back from server 1)

Example UDP Commands
This section gives an example of how the preceding commands can be modified to use UDP.:

Server1

EF_RX_TIMESTAMPING=2 onload ./rx_timestamping --proto udp --port 9000

Server2

nc -u <server1_ipaddr> 9000

Zeroed Timestamps
If timestamps returned from the example applications are zeroed, refer to Setting the Adapter
Clock Time.

Chapter 7: Timestamps

UG1586 (v1.2) July 31, 2023
Onload User Guide 118Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=118

Chapter 8

Onload and TCP
This chapter gives information about using TCP with Onload.

TCP Operation
The table below identifies the Onload TCP implementation RFC compliance.

Table 21: Onload TCP Implementation RFC Compliance

RFC Title Compliance
793 Transmission Control Protocol Yes

813 Window and Acknowledgement
Strategy in TCP

Yes

896 Congestion Control in IP/TCP Yes

1122 Requirements for Hosts Yes

1191 Path MTU Discovery Yes

1323 TCP Extensions for High Performance Yes

2018 TCP Selective Acknowledgment Options Yes

2581 TCP Congestion Control Yes

2582 The NewReno Modification to TCP’s
Fast Recovery Algorithm

Yes

2883 An Extension to the Selective
Acknowledgment (SACK) Option for
TCP

Yes

2988 Computing TCP’s Retransmission Timer Yes

3128 Protection Against a Variant of the Tiny
Fragment Attack

Yes

3168 The Addition of Explicit Congestion
Notification (ECN) to IP

Yes

3465 TCP Congestion Control with
Appropriate Byte Counting (ABC)

Yes

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 119Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=119

TCP Handshake, SYN and SYNACK
During the TCP connection establishment three-way handshake, Onload negotiates the MSS,
Window Scale, SACK permitted, ECN, PAWS and RTTM timestamps.

For TCP connections Onload will negotiate an appropriate MSS for the MTU configured on the
interface. However, when using jumbo frames, Onload will currently negotiate an MSS value up
to a maximum of 2048 bytes minus the number of bytes required for packet headers. This is due
to the fact that the size of buffers passed to the Solarflare network interface card is 2048 bytes
and the Onload stack cannot currently handle fragmented packets on its TCP receive path.

TCP options advertised during the handshake can be selected using the EF_TCP_SYN_OPTS
environment variable. Refer to Appendix A: Parameter Reference for details of environment
variables.

TCP SYN Cookies
The Onload environment variable EF_TCP_SYNCOOKIES can be enabled on a per stack basis to
force the use of SYNCOOKIES thereby providing a degree of protection against the Denial of
Service (DOS) SYN flood attack. EF_TCP_SYNCOOKIES is disabled by default. Refer to Appendix
A: Parameter Reference for details of environment variables.

TCP Socket Options
Onload TCP supports the following socket options which can be used in the setsockopt() and
getsockopt() function calls.

Table 22: Socket Options for setsockopt() and getsockopt()

Option Description
SO_PROTOCOL Retrieve the socket protocol as an integer.
SO_ACCEPTCONN Determines whether the socket can accept incoming

connections - true for listening sockets. (Only valid as a
getsockopt()).

SO_BINDTODEVICE Bind this socket to a particular network interface. See
SO_BINDTODEVICE.

SO_CONNECT_TIME Number of seconds a connection has been established.
(Only valid as a getsockopt()).

SO_DEBUG Enable protocol debugging.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 120Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=120

Table 22: Socket Options for setsockopt() and getsockopt() (cont'd)

Option Description
SO_ERROR The errno value of the last error occurring on the socket.

(Only valid as a getsockopt()).

SO_EXCLUSIVEADDRUSE Prevents other sockets using the SO_REUSEADDR option to
bind to the same address and port.

SO_KEEPALIVE Enable sending of keep-alive messages on connection
oriented sockets.

SO_LINGER When enabled, a close() or shutdown() will not return
until all queued messages for the socket have been
successfully sent or the linger timeout has been reached.
Otherwise the close() or shutdown() returns
immediately and sockets are closed in the background.

SO_OOBINLINE Indicates that out-of-band data should be returned in-line
with regular data. This option is only valid for connection-
oriented protocols that support out-of-band data.

SO_PRIORITY Set the priority for all packets sent on this socket. Packets
with a higher priority might be processed first depending on
the selected device queuing discipline.

SO_RCVBUF Sets or gets the maximum socket receive buffer in bytes.
EF_TCP_RCVBUF overrides this value, and
EF_TCP_RCVBUF_ESTABLISHED_DEFAULT can also override
this value.
Setting SO_RCVBUF to a value < MTU can result in poorer
performance and is not recommended.

SO_RCVLOWAT Sets the minimum number of bytes to process for socket
input operations.

SO_RCVTIMEO Sets the timeout for input function to complete.
SO_RECVTIMEO Sets the timeout in milliseconds for blocking receive calls.
SO_REUSEADDR Can reuse local port numbers (another socket can bind to

the same port) except when there is an active listening
socket bound to the port.

SO_RESUSEPORT Allows multiple sockets to bind to the same port.
SO_SNDBUF Sets or gets the maximum socket send buffer in bytes. The

value set is doubled by the kernel and by Onload to allow
for bookkeeping overhead when it is set by the
setsockopt() function call.
This value can be overridden by EF_TCP_SNDBUF,
EF_TCP_SNDBUF_MODE and
EF_TCP_SNDBUF_ESTABLISHED_DEFAULT.
When the EF_TCP_SNDBUF_MODE is set to 2, the SNDBUF
size is automatically adjusted for each TCP socket to match
the window advertised by the peer.

SO_SNDLOWAT Sets the minimum number of bytes to process for socket
output operations. Always set to 1 byte.

SO_SNDTIMEO Set the timeout for sending function to send before
reporting an error.

SO_TIMESTAMP Report timestamps from system clock in struct timeval.
SO_TIMESTAMPNS Report timestamps from system clock in struct timespec.
SO_TIMESTAMPING Enable/disable hardware timestamps for received packets.
SOF_TIMESTAMPING_TX_HARDWARE Obtain a hardware generated transmit timestamp.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 121Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=121

Table 22: Socket Options for setsockopt() and getsockopt() (cont'd)

Option Description
SOF_TIMESTAMPING_SYS_HARDWARE Obtain a hardware transmit timestamp adjusted to the

system time base.
SOF_TIMESTAMPING_OPT_CMSG Deliver timestamps using the cmsg API.

ONLOAD_SOF_TIMESTAMPING_STREAM Onload extension to the standard SO_TIMESTAMPING API to
support hardware timestamps on TCP sockets.

SO_TYPE Returns the socket type (SOCK_STREAM or SOCK_DGRAM).
(Only valid as a getsockopt()).

IP_TRANSPARENT This socket option allows the calling application to bind the
socket to a nonlocal IP address.

TCP Level Options
Onload TCP supports the following TCP options which can be used in the setsockopt() and
getsockopt() function calls

Table 23: TCP Options for setsockopt() and getsockopt()

Option Description
TCP_CORK Stops sends on segments less than MSS size until the

connection is uncorked.
TCP_DEFER_ACCEPT A connection is ESTABLISHED after handshake is complete

instead of leaving it in SYN-RECV until the first real data
packet arrives. The connection is placed in the accept queue
when the first data packet arrives.

TCP_INFO Populates an internal data structure with tcp statistic values.
TCP_KEEPALIVE_ABORT_THRESHOLD How long to try to produce a successful keepalive before

giving up.
TCP_KEEPALIVE_THRESHOLD Specifies the idle time for keepalive timers.
TCP_KEEPCNT Number of keepalives before giving up.
TCP_KEEPIDLE Idle time for keepalives.
TCP_KEEPINTVL Time between keepalives.
TCP_MAXSEG Gets the MSS size for this connection.
TCP_NODELAY Disables Nagle’s Algorithm and small segments are sent

without delay and without waiting for previous segments to
be acknowledged.

TCP_QUICKACK When enabled ACK messages are sent immediately
following reception of the next data packet. This flag will be
reset to zero following every use. It is a one time option.
New connections start in a mode where all packets are
acknowledged, and so this value initially defaults to 1.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 122Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=122

TCP File Descriptor Control
Onload supports the following options in socket() and accept() calls.

Table 24: Options for socket() and accept()

Option Description
SOCK_NONBLOCK Supported in socket() and accept(). Sets the

O_NONBLOCK file status flag on the new open file descriptor
saving extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC Supported in accept(). Sets the close-on-exec
(FD_CLOEXEC) flag on the new file descriptor.

TCP Congestion Control
Onload TCP implements congestion control in accordance with RFC3465 and employs the
NewReno algorithm with extensions for Appropriate Byte Counting (ABC).

On new or idle connections and those experiencing loss, Onload employs a Fast Start algorithm
in which delayed acknowledgments are disabled, thereby creating more ACKs and subsequently
‘growing’ the congestion window rapidly. Two environment variables; EF_TCP_FASTSTART_INIT
and EF_TCP_FASTSTART_LOSS are associated with the fast start - Refer to Appendix A:
Parameter Reference for details.

During Slow Start, the congestion window is initially set to 2 × maximum segment size (MSS)
value. As each ACK is received the congestion window size is increased by the number of bytes
acknowledged up to a maximum 2 × MSS bytes. This allows Onload to transmit the minimum of
the congestion window and advertised window size:

transmission window (bytes) = min(CWND, receiver advertised window size)

If loss is detected - either by retransmission timeout (RTO), or the reception of duplicate ACKs,
Onload will adopt a congestion avoidance algorithm to slow the transmission rate. In congestion
avoidance the transmission window is halved from its current size - but will not be less than 2 ×
MSS. If congestion avoidance was triggered by an RTO timeout the Slow Start algorithm is again
used to restore the transmit rate. If triggered by duplicate ACKs Onload employs a Fast
Retransmit and Fast Recovery algorithm.

If Onload TCP receives three duplicate ACKs this indicates that a segment has been lost - rather
than just received out of order and causes the immediate retransmission of the lost segment (Fast
Retransmit). The continued reception of duplicate ACKs is an indication that traffic still flows
within the network and Onload will follow Fast Retransmit with Fast Recovery.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 123Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=123

During Fast Recovery Onload again resorts to the congestion avoidance (without Slow Start)
algorithm with the congestion window size being halved from its present value.

Onload supports a number of environment variables that influence the behavior of the
congestion window and recovery algorithms identified below. Refer to Appendix A: Parameter
Reference:

• EF_TCP_INITIAL_CWND - sets the initial size (bytes) of congestion window

• EF_TCP_LOSS_MIN_CWND - sets the minimum size of the congestion window following loss.

• EF_CONG_AVOID_SCALE_BACK - slows down the rate at which the TCP congestion window
is opened to help reduce loss in environments already suffering congestion and loss.

CAUTION! The congestion variables should be used with caution to avoid violating TCP protocol
requirements and degrading TCP performance.

Small Receive Window Size
Onload, by default, does not behave like the kernel if the remote receiving end of a connection
advertises a receive window too small for the data Onload needs to send. The kernel stack will
split waiting data to fill the available window space. Onload would probe the remote end with up
to three ACKs to prompt the remote end to increase the advertised receive window size before
sending the entire packet.

The following compile time option can be enabled to force Onload to behave as the kernel does:

#define CI_CFG_SPLIT_SEND_PACKETS_FOR_SMALL_RECEIVE_WINDOWS

The flag, in the include/ci/internal/transport_config_opt.h file, is disabled by
default, Set to 1 to enable.

TCP SACK
Onload will employ TCP Selective Acknowledgment (SACK) if the option has been negotiated
and agreed by both ends of a connection during the connection establishment three-way
handshake. Refer to RFC 2018 for further information.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 124Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=124

TCP QUICKACK
TCP will generally aim to defer the sending of ACKs to minimize the number of packets on the
network. Onload supports the standard TCP_QUICKACK socket option which allows some
control over this behavior. Enabling TCP_QUICKACK causes an ACK to be sent immediately in
response to the reception of the following data packet. This is a one-shot operation and
TCP_QUICKACK self clears to zero immediately after the ACK is sent.

TCP Delayed ACK
By default TCP stacks delay sending acknowledgments (ACKs) to improve efficiency and
utilization of a network link. Delayed ACKs also improve receive latency by ensuring that ACKs
are not sent on the critical path. However, if the sender of TCP packets is using Nagle’s algorithm,
receive latency will be impaired by using delayed ACKs.

Using the EF_DELACK_THRESH environment variable the user can specify how many TCP
segments can be received before Onload will respond with a TCP ACK. Refer to the Parameter
List for details of the Onload environment delayed TCP ACK variables.

TCP Dynamic ACK
The sending of excessive TCP ACKs can impair performance and increase receive side latency.
Although TCP generally aims to defer the sending of ACKs, Onload also supports a further
mechanism. The EF_DYNAMIC_ACK_THRESH environment variable allows Onload to
dynamically determine when it is non-detrimental to throughput and efficiency to send a TCP
ACK. Onload will force an TCP ACK to be sent if the number of TCP ACKs pending reaches the
threshold value.

Refer to the Parameter List for details of the Onload environment delayed TCP ACK variables.

Note: When used together with EF_DELACK_THRESH or EF_DYNAMIC_ACK_THRESH, the socket option
TCP_QUICKACK will behave exactly as stated above. Both onload environment variables identify the
maximum number of segments that can be received before an ACK is returned. Sending an ACK before the
specified maximum is reached is allowed.

Note: TCP ACKS should be transmitted at a sufficient rate to ensure the remote end does not drop the TCP
connection.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 125Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=125

Limit Duplicate ACK Rate
The environment variable, EF_INVALID_ACK_RATELIMIT enables Onload support for the Linux
tcp_invalid_ratelimit where the aim is to reduce the number of duplicate ACKs in
response packets on an existing connection, but invalid for any of the following reasons:

• out-of-window ACK number

• out-of-window sequence number

• ACK for PAWS check failure.

The rate limit, applied per-socket, is the minimal time gap between sending dupacks.

The default rate is that from /proc/sys/net/ipv4/tcp_invalid_ratelimit.

Limit Challenge ACK Rate
The per-stack environment variable, EF_CHALLENGE_ACK_RATELIMIT enables Onload support
for the Linux tcp_challenge_ack_limit where the aim is to limit the number of Challenge
ACKs sent per second when mitigating against a TCP blind window attack.

The default rate is that from /proc/sys/net/ipv4/tcp_challenge_ack_limit.

TCP Loopback Acceleration
Onload supports the acceleration of TCP loopback connections, providing an accelerated
mechanism through which two processes on the same host can communicate. Accelerated TCP
loopback connections do not invoke system calls, reduce the overheads for read/write
operations and offer improved latency over the kernel implementation.

The server and client processes who want to communicate using an accelerated TCP loopback
connection do not need to be configured to share an Onload stack. However, the server and
client TCP loopback sockets can only be accelerated if they are in the same Onload stack. Onload
has the ability to move a TCP loopback socket between Onload stacks to achieve this.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 126Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=126

TCP loopback acceleration is configured via the environment variables
EF_TCP_CLIENT_LOOPBACK and EF_TCP_SERVER_LOOPBACK. As well as enabling TCP
loopback acceleration these environment variables control Onload’s behavior when the server
and client sockets do not originate in the same Onload stack. This gives the user greater
flexibility and control when establishing loopback on TCP sockets either from the listening
(server) socket or from the connecting (client) socket. The connecting socket can use any local
address or specify the loopback address.

The following diagram illustrates the client and server loopback options. Refer to Appendix A:
Parameter Reference for a description of the loopback variables.

Figure 16: EF_TCP_CLIENT/SERVER_LOOPBACK

STACK

SKT

EF_TCP_CLIENT_LOOPBACK=0

Client is not accelerated

Server

STACK

SKT

Client

STACK

SKT

EF_TCP_SERVER_LOOPBACK=0

Server is not accelerated

Server

STACK

SKT

Client

EF_TCP_CLIENT_LOOPBACK=1

Accelerate if listening socket is
from the same stack

STACK

SKT

STACK

SKT

EF_TCP_SERVER_LOOPBACK=1

Accelerate if connecting socket
is from the same stack

STACK

SKT

EF_TCP_CLIENT_LOOPBACK=2

Accelerate and move accepted
socket to the stack of the
connecting socket

STACK

SKT

SK

STACK

SKT

EF_TCP_SERVER_LOOPBACK=2

Accelerate and move accepted
socket to the stack of the
connecting socket

STACK

SKT

SK

STACK

SKT

SK

EF_TCP_CLIENT_LOOPBACK=3

Accelerate and move connecting
socket to the stack of the listening
socket

STACK

SKT

STACK

SKT

EF_TCP_CLIENT_LOOPBACK=4

STACK

SK

SK

EF_TCP_SERVER_LOOPBACK=2

STACK

SKT

SKT SKT

X26398-031422

The client loopback option EF_TCP_CLIENT_LOOPBACK=4, when used with the server loopback
option EF_TCP_SERVER_LOOPBACK=2, differs from other loopback options such that rather
than move sockets between existing stacks they will create an additional stack and move sockets
from both ends of the TCP connection into this new stack. This avoids the possibility of having
many loopback sockets sharing and contending for the resources of a single stack.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 127Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=127

When client and server are not the same UID, set the environment variable EF_SHARE_WITH to
allow both processes to share the created shared stack.

TCP Striping
Onload supports a proprietary TCP striping mechanism that allows a single TCP connection to
use both physical ports of a network adapter. Using the combined bandwidth of both ports
means increased throughput for TCP streaming applications. TCP striping can be particularly
beneficial for Message Passing Interface (MPI) applications.

If the TCP connection’s source IP address and destination IP address are on the same subnet as
defined by EF_STRIPE_NETMASK then Onload will attempt to negotiate TCP striping for the
connection. Onload TCP striping must be configured at both ends of the link.

TCP striping allows a single TCP connection to use the full bandwidth of both physical ports on
the same adapter. This should not be confused with link aggregation/port bonding in which any
one TCP connection within the bond can only use a single physical port and therefore more than
one TCP connection would be required to realize the full bandwidth of two physical ports.

Note: TCP striping is disabled by default. To enable this feature set the parameter
CI_CFG_PORT_STRIPING=1 in the onload distribution source directory src/include/internal/
tranport_config_opt.h file.

TCP Connection Reset on RTO
Under certain circumstances it can be preferable to avoid re-sending TCP data to a peer service
when data delivery has been delayed. Once data has been sent, and for which no
acknowledgment has been received, the TCP retransmission timeout period represents a
considerable delay. When the retransmission timeout (RTO) eventually expires it can be
preferable not to retransmit the original data.

Onload can be configured to reset a TCP connection rather than attempt to retransmit data for
which no acknowledgment has be received.

This feature is enabled with the EF_TCP_RST_DELAYED_CONN per stack environment variable
and applies to all TCP connections in the onload stack. On any TCP connection in the onload
stack, if the RTO timer expires before an ACK is received the TCP connection will be reset.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 128Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=128

ONLOAD_MSG_WARM
Applications that send data infrequently may see increased send latency compared to an
application that is making frequent sends. This is due to the send path and associated data
structures not being cache and TLB resident (which can occur even if the CPU has been
otherwise idle since the previous send call).

Onload allows applications to repeatedly call send() to keep the TCP fast send path ‘warm’ in the
cache without actually sending data. This is particularly useful for applications that only send
infrequently and helps maintain low latency performance for those TCP connections that do not
send often. These “fake” sends are performed by setting the ONLOAD_MSG_WARM flag when
calling the TCP send calls. The message warm feature does not transmit any packets.

char buf[10];
send(fd, buf, 10, ONLOAD_MSG_WARM);

Onload stackdump supports counters to indicate the level of message warm use:

• warm_aborted is a count of the number of times a message warm send function was called,
but the sendpath was not exercised due to Onload locking constraints.

• warm is a count of the number of times a message warm send function was called when the
send path was exercised.

• A send() ONLOAD_MSG_WARM can return 0 (length of data sent) if the send() was
unsuccessful. This will be due to normal stack and TCP networking conditions such as cannot
get stack lock, insufficient send window available, other packets in the send queue or
retransmit queue etc.

CAUTION! Onload applications should not invoke send(MSG_WARM) and send(normal) from different
threads on the same socket. This is not a supported feature.

CAUTION! The ONLOAD_MSG_WARM flag is an Onload feature. It can be applied to sockets created by
Onload. However if sockets are subsequently handed off to the kernel - so they are not accelerated by
Onload, it can cause the message warm packets to be actually sent. This is due to a limitation in some
Linux distributions which appear to ignore this flag. The Onload extensions API can be used to check
whether a socket supports the MSG_WARM feature via the onload_fd_check_feature()  API
(onload_fd_check_feature).

Note: When using the MSG_WARM feature, Onload does not attempt to split large packets into multiple
segments and for this reason, the size of data passed to Onload when using the MSG_WARM feature must
not exceed the MSS value.

Note: Onload versions earlier than 201310 do not support the ONLOAD_MSG_WARM socket flag, therefore
setting the flag will cause message warm packets to be sent.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 129Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=129

Listen/Accept Sockets
TCP sockets accepted from a listening socket will share a wildcard filter with the parent socket.
The following Onload module options can be used to control behavior when the parent socket is
closed.

oof_shared_keep_thresh - default 100, is the number of accepted sockets sharing a
wildcard filter that will cause the filter to persist after the listening socket has closed.

oof_shared_steal_thresh - default 200, is the number of sockets sharing a wildcard filter
that will cause the filter to persist even when a new listening socket needs the filter.

If the listening socket is closed the behavior depends on the number of remaining accepted
sockets as follows:

Table 25: Behavior If the Listening Socket is Closed

Number of Accepted Sockets Onload Action
> oof_shared_keep_thresh but
< oof_shared_steal_thresh

Retain the wildcard filter shared by all accepted sockets.
If a new listening socket requires the filter, Onload will
install a full-match filter for each accepted socket allowing
the listening socket to use the wildcard filter.

> oof_shared_steal_thresh Retain the wildcard filter shared by all accepted sockets.
A new listening socket can be created but a filter cannot be
installed meaning the socket will receive no traffic until the
number of accepted connections is reduced.

Socket Caching
Socket caching means Onload can further reduce the overhead of setting up new TCP
connections by reusing existing sockets instead of creating from new.

A cached socket retains a file descriptor and socket buffer when it is returned to the cache of the
Onload stack from which it originated.

Socket caching is enabled when EF_SOCKET_CACHE_MAX is set to a value greater than zero.
Onload will apply passive or active caching as appropriate for the type of sockets created by the
user application.

EF_SOCKET_CACHE_MAX applies to both active and passive sockets, so if set to 100 the cache
limit is 100 of each socket type.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 130Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=130

TCP Passive Socket Caching
Passive socket caching, supported from the Onload 201502 release, means Onload will re-use
socket buffers and file descriptors from passive-open (listening sockets).

This can improve the accept rate of active-open TCP connections and will benefit processes
which need to accept lots of connections from these listening sockets.

TCP Active Socket Caching
Active socket caching, supported from the Onload 201509 release, means Onload will re-use
socket buffers and file descriptors from active-open sockets when an established TCP connection
has terminated.

Active-open sockets setting the IP_TRANSPARENT socket option can be cached.

From Onload 201805, socket caching can be enabled for active-open sockets but disabled for
passive-open sockets. To do so, set EF_PER_SOCKET_CACHE_MAX to 0.

Caching for Web Proxies
Applications such as web proxies can create and close large numbers of sockets. In Onload
201805, socket caching has been extended to improve the support for such applications:

• Applications using many listening sockets with scalable filters can now use a common cache of
sockets accepted from them, improving utilization of the cache.

• When a listening socket is used simultaneously by multiple processes, file descriptors can now
be cached per-process. In earlier versions of Onload, accepted sockets were cachable only in
the process that originated them.

This is of particular benefit to server applications such as NGINX that support dynamic
reconfiguration by spawning a new process reusing existing listening sockets.

This feature is not compatible with sockets that require O_CLOEXEC.

Caching Stackdump
Onload stackdump can be used to monitor caching activity on Onload stacks.

onload_stackdump lots [| grep cache]

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 131Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=131

Table 26: Onload_stackdump Cache Counters

Counter Description
active cache: hit=0 avail=0 cache=EMPTY
pending=EMPTY

TCP socket caching:
hit = number of cache hits (were cached)
avail = number of sockets available for caching
current cache state

sockcache_cached Number of sockets cached over the lifetime of the stack
sockcache_contention Number of sockets not cached due to lock contention
passive_sockcache_stacklim Number of passive sockets not cached due to stack limit
active_sockcache_stacklim Number of active sockets not cached due to stack limit
sockcache_socklim Number of sockets not cached due to socket limit
sockcache_hit Number of socket cache hits (were cached)
sockcache_hit_reap Number of socket cache hits (were cached) after reaping
sockcache_miss_intmismatch Number of socket cache misses due to mismatched

interfaces
activecache_cached Number of active sockets cached over the lifetime of the

stack.
activecache_stacklim Number of active sockets not cached due to stack limit
activecache_hit Number of active socket cache hits (were cached)
activecache_hit_reap Number of active socket cache hits (were cached) after

reaping

Caching Requirements
There are some necessary pre-requisites when using socket caching:

• Set EF_UL_EPOLL=3 and set EF_FDS_MT_SAFE=1

• Socket caching is not supported after fork()

• Sockets that have been dup()ed will not be cached

• Sockets that use the O_ASYNC or O_APPEND modes will not be cached

• Caching offers no benefit if a single socket accepts connections on multiple local addresses
(applicable to passive caching only).

• Set O_NONBLOCK or O_CLOEXEC if required on the socket, when creating the socket.

From Onload 201805 onwards, O_CLOEXEC cannot be used when a listening socket is used
simultaneously by multiple processes.

When socket caching cannot be enabled, sockets will be processed as normal Onload sockets.

Users should refer to details of the following environment variables:

• EF_SOCKET_CACHE_MAX

• EF_PER_SOCKET_CACHE_MAX

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 132Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=132

• EF_SOCKET_CACHE_PORTS

Note: Allowing more sockets to be cached than there are file descriptors available can result in drastically
reduced performance and users should consider that the socket cache limit, EF_SOCKET_CACHE_MAX,
applies per stack, unlike the per-process EF_SOCKET_CACHE_PORTS limits.

Refer to Appendix A: Parameter Reference for details of Onload environment variables.

Shared Local Ports
The shared local ports feature improves the performance of TCP active-opens. It:

• reduces the cost of both blocking and non-blocking connect() calls

• reduces the latency to establish new connections

• enables scaling to large numbers of active-open connections

• reduces the cost of closing these connections.

These improvements are achieved by sharing a set of local port numbers amongst active-open
sockets, which saves the cost and scaling limits associated with installing packet steering filters
for each active-open socket. Shared local ports are only used when the local port is not explicitly
assigned by the application.

To enable shared local ports, set the EF_TCP_SHARED_LOCAL_PORTS option to ≥1. The value
set gives the initial number of local ports to allocate when the Onload stack is created. More
shared local ports are allocated on demand as needed up to the maximum given by
EF_TCP_SHARED_LOCAL_PORTS_MAX.

Additional configuration options were added in Onload 201805:

• When EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK is set, connecting TCP sockets will
use ports only from the TCP shared local port pool (unless explicitly bound).

If all shared local ports are in use, the connect() call will fail.

• When EF_TCP_SHARED_LOCAL_PORTS_PER_IP is set, ports reserved for the pool of shared
local ports will be reserved per local IP address on demand.

This helps avoid exhaustion of the ephemeral port range.

• When EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST is set, shared local ports can be
reused immediately when the previous socket using that port has reached the CLOSED state,
even if it did so via LAST-ACK.

This allows the pool of shared local ports to be recycled more rapidly.

Further configuration options were added in Onload 201811:

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 133Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=133

• EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX sets the maximum size of the pool of local
shared ports for a given local IP address.

When used with scalable RSS mode this setting limits the total number within the cluster.

• EF_TCP_SHARED_LOCAL_PORTS_STEP controls the number of ports allocated when
expanding the pool of shared local ports.

This can be used to fine tune the responsiveness of the pool.

Scalable Filters
Using scalable filters, an Onload stack can install a MAC filter to receive all traffic from a specified
interface.

Note: Once the MAC filter is inserted on an interface, ARP, ICMP and IGMP traffic is directed to the kernel,
but all other traffic is directed to a single Onload stack.

Using scalable filters removes limitations on:

• the number of listening sockets in scalable filters passive mode

• the number of active-open connections in scalable filters transparent-active mode. This works
only for sockets having the IP_TRANSPARENT option set. See Transparent Reverse Proxy
Modes below.

On Onload 201805 and later, scalable filters can be combined for both passive and active open
connections and with RSS, enabling very high transaction rates for use cases such as a reverse
web proxy.

Note: This feature requires modern CPUs that support the CLMUL instruction.

The most effective way to use scalable filters is with a dedicated VI created with a MACVLAN.
This allows the kernel stack or another application using scalable filters to use the same physical
port. The kernel option inject_kernel_gid (introduced in Onload 201805) controls the
injection of packets not handled by Onload back to the kernel when the VI is instead shared with
other functions

Solarflare adapters can be partitioned to expose up to 16 PCIe physical functions (PF). Each PF is
presented to the OS as a standard network interface. The adapter is partitioned with the sfboot
utility - see example below.

Once a MAC filter has been installed on a PF, other Onload stacks can still receive other traffic
on the same PF, but sockets will have to insert IP filters for the required traffic. Apart from ARP,
ICMP and IGMP packets, OS kernel sockets, using the same PF, will not receive any traffic.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 134Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=134

Per interface, the MAC filter can only be installed by a single Onload stack. If a process creates
multiple stacks, the EF_SCALABLE_FILTERS_ENABLE per-stack variable can be used to enable/
disable this feature for individual stacks using the existing Onload extensions API. For example:

onload_stack_opt_set_int("EF_SCALABLE_FILTERS_ENABLE", 1);

The MAC filter is inserted when the stack is created. This is before sockets are created, and
sockets need to be created to receive any traffic destined for this stack.

Scalable Filter Restrictions
Scalable filters have the following restrictions:

• Scalable filters are only used for TCP traffic.

• UDP traffic can be received and accelerated by Onload on interfaces where scalable filters are
enabled, but kernel UDP sockets will not receive traffic.

• UDP fragmented frames cannot be received on interfaces where scalable filters are enabled.
Users should avoid having fragmented frames on these interfaces.

• The adapter must use the full-feature or ultra-low-latency firmware variants.

• Minimum firmware version: 4.6.5.1000.

• Stack per thread options (EF_STACK_PER_THREAD) cannot be used with this feature.

• By default the scalable filters feature requires CAP_NET_RAW. Onload can be configured to
avoid capability checks for this using the Onload module option scalable_filter_gid.
See Module Options for details.

• When using any rss mode with scalable filters, the stack cannot be named by either
EF_NAME or onload_set_stackname().

Configuring Scalable Filters
To enable scalable filters on a specific interface:

EF_SCALABLE_FILTERS=enps0f0

Various modes can be specified that can combine both passive and active open connections,
optionally with RSS. For example:

EF_SCALABLE_FILTERS=enps0f0=rss:transparent_active

For full details, see EF_SCALABLE_FILTERS.

Per interface, the MAC filter can only be installed by a single Onload stack. A cluster (see
Application Clustering) might have multiple stacks and each stack could install a MAC filter on a
different interface.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 135Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=135

Sockets must be bound to the IP address of the interface.

This feature is targeted at TCP listening sockets only and connections accepted from a listening
socket will share the MAC filter.

See also the following configuration parameters:

• EF_SCALABLE_FILTERS_ENABLE turns the scalable filter feature on or off on a stack. It is
not normally required, because it defaults to 1 when it is unset but EF_SCALABLE_FILTERS
is set.

The value 2, available from Onload 201805, Indicates a special mode to address a master-
worker hierarchy of some event driven applications, such as NGINX.

For full details, see EF_SCALABLE_FILTERS_ENABLE.

• EF_SCALABLE_LISTEN_MODE, available from Onload 201805, sets the behavior of scalable
listening sockets.

○ The default mode 0 accelerates connections to a local address configured on the scalable
interface. Passive connections that come via other interfaces are not accelerated.

○ The non-default mode 1 rejects connections that are not to a local address configured on
the scalable interface. This avoids kernel scalability issues with large numbers of listen
sockets.

For full details, see EF_SCALABLE_LISTEN_MODE.

Partitioning the NIC
The following example demonstrates how to partition the adapter to expose more than one PF:

sfboot pf-count=2 vf-count=0 switch-mode=partitioning

A cold reboot of the server is needed after changes using sfboot.

The sfboot utility is available in the Solarflare Linux Utilities package (SF-107601-LS).

Scalable Filters and Bonding
Bonded interfaces created with the standard Linux bonding or teaming driver can be used for
scalable filters.

Every interface that is part of the bond must be present in the system when the scalable filters
stack is created. Removing the bond will cause the scalable filter to stop receiving traffic. After a
new bond interface is created, the application must be restarted to use the bond.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 136Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=136

Transparent Reverse Proxy Modes
Enhancements such as Scalable Filters, Socket Caching and support for the IP_TRANSPARENT
socket option support Onload with greater efficiency and increased scalability in transparent
reverse proxy mode server deployments.

These features reduce to a minimum the overheads associated with creating and connecting
transparent sockets. Onload can use of up to 2 million transparent active-open sockets per
Onload stack.

A transparent socket is created when a socket sets the IP_TRANSPARENT socket option and
explicitly binds to IP addresses and port. The IP address can be on a foreign host.
IP_TRANSPARENT must be set before the bind.

The EF_SCALABLE_FILTERS variable is used to enable scalable filters and to configure the
transparent proxy mode.

Restrictions
The following restrictions apply:

• The IP_TRANSPARENT option must be set before the socket is bound.

• The IP_TRANSPARENT option cannot be cleared after bind on accelerated sockets.

• IP_TRANSPARENT sockets cannot be accelerated if they are bound to port 0 or to
INADDR_ANY.

• IP_TRANSPARENT sockets cannot be passed to the kernel stack when bound to a port that is
in the list specified by EF_TCP_FORCE_REUSEPORT.

• Reverse path filters must be disabled on all interfaces. The user should check the value
returned from the following files:

cat /proc/sys/net/ipv4/conf/all/rp_filter# cat /proc/sys/net/ipv4/
conf/lo/rp_filter

• When using the rss:transparent_active mode (see below), EF_CLUSTER_NAME must
be explicitly set by the process sharing the cluster and the stack cannot be named by either
EF_NAME or onload_set_stackname().

Example Configuration Settings
Below are examples of configurations using the EF_SCALABLE_FILTERS environment option to
set transparent proxy modes.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 137Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=137

• Enable scalable filters on interface enps0f0 - this inserts a MAC address filter on the adapter.
The filter is shared by all active open connections on the interface. Socket caching will be
applied to the passive side of the TCP connection.

EF_SCALABLE_FILTERS=enps0f0=passive

• Enable scalable filters on enps0f0, then all sockets using this interface that have the
IP_TRANSPARENT flag set will use the MAC filter, other sockets will continue to use normal
IP filters on this interface. Socket caching will be applied to the active side of a TCP
connection:

EF_SCALABLE_FILTERS=enps0f0=transparent_active

• As for the example above, but uses symmetrical RSS to ensure that requests/responses
between clients and backend servers are processed by the same thread.

EF_SCALABLE_FILTERS=enps0f0=rss:transparent_active

• Enable scalable filters on enps0f0, then all sockets using this interface that have the
IP_TRANSPARENT flag set will use the MAC filter, other sockets will continue to use normal
IP filters on this interface. Socket buffers are cached from active and passive sides of the TCP
connection.

EF_SCALABLE_FILTERS=enps0f0=transparent_active:passive

Transparent Reverse Proxy on Multiple CPUs
Used together with Application Clustering, transparent scalable modes can deliver linear
scalability using multiple CPU cores.

This uses RSS to distribute traffic, both upstream and downstream of the proxy application,
mapping streams to the correct Onload stack. When each CPU core is associated exclusively with
a single clustered stack there can be no contention between stacks.

For this use-case to function correctly, the proxy application will use the downstream client
address:port on the upstream (to server) side of the TCP connection. In this way RSS and
hardware filters ensure that client side and server side are handled by the same worker thread
and traffic is directed to the correct stack.

In this scenario the client thinks it communicates directly with the server, and the server thinks it
communicates directly with the client - the transparent proxy server is ‘transparent’.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 138Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=138

Performance in Lossy Network Environments
This release makes several improvements to Onload's TCP core in the presence of loss and
reordering, as can be the case, for example, where the route to the peer traverses the Internet.

Tail-drop Probe
Classical TCP implementations recover poorly from the case where the last segment(s) in flight
are dropped. This results in no visible gap in sequence space, and so there is nothing to trigger
fast retransmissions. The segments are instead retransmitted by the RTO mechanism. In order to
attempt to trigger a fast retransmission in the case where such tail-loss is suspected, a “tail-drop
probe” segment can be sent after a short timeout. This segment would either be the next
segment due to be transmitted, or an opportunistic retransmission of the most recent in-flight
segment.

Onload 201805-u1 and earlier had a tail-drop probe implementation, but it was not compiled in
by default.

In Onload 201811 the tail-drop probe mechanism has been rewritten, and is now built by default.
Its use is controlled at runtime by the following environment variable:

• EF_TAIL_DROP_PROBE

This now defaults to the value read from the kernel configuration at /proc/sys/net/
ipv4/tcp_early_retrans, which defaults to on. It previously defaulted to 0 (off).

For more information, see EF_TAIL_DROP_PROBE.

Early Retransmit (RFC 5827) Algorithm
Onload 201811 implements the Early Retransmit (RFC 5827) algorithm for TCP, and also the
Limited Transmit (RFC 3042) algorithm, on which Early Retransmit depends. As for tail-drop
probes, the purpose of these algorithms is to allow fast retransmissions to happen more readily.
The use of these algorithms is controlled by the following environment variable:

• EF_TCP_EARLY_RETRANSMIT

The default value is read from the kernel configuration at /proc/sys/net/ipv4/
tcp_early_retrans.

For more information, see EF_TCP_EARLY_RETRANSMIT.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 139Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=139

SACK Improvements
From Onload 201811 onwards, selective acknowledgments received from the peer are used to
grow the congestion window more aggressively when recovering from loss. See also TCP SACK.

Initial Sequence Number Caching
Applications which rapidly open and close a large number of connections to other machines
might experience occasional connection failures due to the rapid reuse of TCP sequence
numbers being detected as retransmits in the TIME-WAIT state. This is most commonly a
problem with Windows and FreeBSD TCP stacks.

The standard RFC-derived algorithm for avoiding this problem relies on a clock ticking at a rate
which is faster than bytes are transmitted. A link running at 100 Mb can theoretically transmit
faster than the clock can tick, however, and 10 Gb+ links can practically do this.

Onload has added the EF_TCP_ISN_MODE option to provide a solution. The default “clocked”
setting uses the standard best-effort algorithm. The “clocked+cache” setting will store the last
sequence number used for every remote endpoint to guarantee that the problem is avoided. This
mode is recommended for applications such as proxies which rapidly open and close connections
to a variety of unknown, third-party servers.

The following settings can be used to fine-tune the clocked+cache mode:

• EF_TCP_ISN_CACHE_SIZE

Number of entries to allocate in the cache of remote endpoints. The default value of 0 selects
a size automatically.

For more information, see EF_TCP_ISN_CACHE_SIZE.

• EF_TCP_ISN_INCLUDE_PASSIVE

Store data for closed passively-opened connections in the cache. This data would only be
needed by an application which closed its listening socket and continued to run, so the option
is disabled by default

For more information, see EF_TCP_ISN_INCLUDE_PASSIVE.

• EF_TCP_ISN_OFFSET

Distance by which to step the initial sequence number of new connections relative to the
previous connection. Only extremely specialized applications would consider changing the
default.

For more information, see EF_TCP_ISN_OFFSET.

• EF_TCP_ISN_2MSL

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 140Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=140

Maximum amount of time that any remote TCP stack's implementation will leave a socket in
the TIME-WAIT state. This is configurable in many systems, however the default value of 240
seconds is a maximum common value across a variety of operating systems.

For more information, see EF_TCP_ISN_2MSL.

Urgent Data Processing
TCP urgent data processing is a rarely-used feature that is inconsistently implemented on various
operating systems. In Onload 201811 a new EF_TCP_URG_MODE environment variable has
been added, that can be used to ignore this feature.

IMPORTANT! If urgent data is received when Onload is configured to ignore urgent data processing, then
applications that are written to the Linux convention will experience corrupt data.

TIMEWAIT Assassination
In Onload 201811 the EF_TCP_TIME_WAIT_ASSASSINATION environment variable has been
added, to implement the RFC 1337 behavior of replacing old TIMEWAIT sockets with newly-
received incoming connections.

The default value is read from /proc/sys/net/ipv4/tcp_rfc1337.

Chapter 8: Onload and TCP

UG1586 (v1.2) July 31, 2023
Onload User Guide 141Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=141

Chapter 9

Onload and UDP
This chapter gives information about using UDP with Onload.

UDP Operation
The table below identifies the Onload UDP implementation RFC compliance.

Table 27: UDP Implementation RFC Compliance

RFC Title Compliance
768 User Datagram Protocol Yes

1122 Requirements for Hosts Yes

3678 Socket Interface Extensions for
Multicast Source Filters

Partial
See Source Specific Socket Options

Socket Options
Onload UDP supports the following socket options which can be used in the setsockopt()
and getsockopt() function calls.

Table 28: Socket Options for setsockopt() and getsockopt()

Option Description
SO_PROTOCOL Retrieve the socket protocol as an integer.
SO_BINDTODEVICE bind this socket to a particular network interface. See

SO_BINDTODEVICE.
SO_BROADCAST When enabled datagram sockets can send and receive

packets to/from a broadcast address.
SO_DEBUG Enable protocol debugging.
SO_ERROR The errno value of the last error occurring on the socket.

(Only valid as a getsockopt()).

SO_EXCLUSIVEADDRUSE Prevents other sockets using the SO_REUSEADDR option to
bind to the same address and port.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 142Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=142

Table 28: Socket Options for setsockopt() and getsockopt() (cont'd)

Option Description
SO_LINGER When enabled a close() or shutdown() will not return

until all queued messages for the socket have been
successfully sent or the linger timeout has been reached.
Otherwise the call returns immediately and sockets are
closed in the background.

SO_PRIORITY Set the priority for all packets sent on this socket. Packets
with a higher priority might be processed first depending on
the selected device queuing discipline.

SO_RCVBUF Sets or gets the maximum socket receive buffer in bytes.
EF_UDP_RCVBUF overrides this value.
Setting SO_RCVBUF to a value < MTU can result in poorer
performance and is not recommended.

SO_RCVLOWAT Sets the minimum number of bytes to process for socket
input operations.

SO_RECVTIMEO Sets the timeout for input function to complete.
SO_REUSEADDR Can reuse local ports (another socket can bind to the same

port number) except when there is an active listening socket
bound to the port.

SO_RESUSEPORT Allow multiple sockets to bind to the same port.
SO_SNDBUF Sets or gets the maximum socket send buffer in bytes. The

value set is doubled by the kernel and by Onload to allow
for bookkeeping overhead when it is set by the
setsockopt() function call.
EF_UDP_SNDBUF overrides this value.

SO_SNDLOWAT Sets the minimum number of bytes to process for socket
output operations. Always set to 1 byte.

SO_SNDTIMEO Set the timeout for sending function to send before
reporting an error.

SO_TIMESTAMP Enable or disable receiving the SO_TIMESTAMP control
message (microsecond resolution). See below.

SO_TIMESTAMPNS Enable or disable receiving the SO_TIMESTAMP control
message (nanosecond resolution).

SO_TIMESTAMPING Enable/disable hardware timestamps for received packets.
SOF_TIMESTAMPING_TX_HARDWARE obtain a hardware generated transmit timestamp.
SOF_TIMESTAMPING_SYS_HARDWARE Obtain a hardware transmit timestamp adjusted to the

system time base.
SO_TYPE Returns the socket type (SOCK_STREAM or SOCK_DGRAM).

(Only valid as a getsockopt()).

Source Specific Socket Options
The following table identifies source specific socket options supported from onload-201210-u1
onwards. Refer to the ReleaseNotes file in your Onload distribution for Onload specific
behavior regarding these options.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 143Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=143

Table 29: Source Specific Socket Options

Option Description
IP_ADD_SOURCE_MEMBERSHIP Join the supplied multicast group on the given interface and

accept data from the supplied source address.
IP_DROP_SOURCE_MEMBERSHIP Drops membership to the given multicast group, interface

and source address.
MCAST_JOIN_SOURCE_GROUP Join a source specific group.
MCAST_LEAVE_SOURCE_GROUP Leave a source specific group.

Onload Sockets vs. Kernel Sockets
For each UDP socket, Onload creates both an accelerated socket and a kernel socket. Onload will
always give priority to the Onload sockets over any kernel sockets.

This is important because if there is always traffic arriving at the Onload receive queue, Onload
will might never get to process any packets delivered via the kernel socket (for example if traffic
arrives from an unsupported interface).

Send and Receive Paths for UDP Sockets
For each UDP socket, Onload creates both an accelerated socket and a kernel socket. There is
usually no file descriptor for the kernel socket visible in the user’s file descriptor table. When a
UDP process is ready to transmit data, Onload will check a cached ARP table which maps IP
addresses to MAC addresses. A cache ‘hit’ results in sending via the Onload accelerated socket. A
cache ‘miss’ results in a syscall to populate the user mode cached ARP table. If no MAC address
can be identified via this process the packet is sent via the kernel stack to provoke ARP
resolution. Therefore, it is possible that some UDP traffic will be sent occasionally via the kernel
stack.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 144Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=144

Figure 17: UDP Send and Receive Paths

Onload stack

UDP socket

Application

Kernel

Kernel stack

UDP socket

sfc driver

Supported network adapter

Filter

Kernel
bypass

Unsupported network adapter

X26441-032122

The preceding figure illustrates the UDP send and receive paths. Dark gray arrows indicate the
accelerated ‘kernel bypass’ path. Light gray arrows identify fragmented UDP packets received by
the supported adapter and UDP packets received from an unsupported adapter. UDP packets
arriving at the supported adapter are filtered on source and destination address and port number
to identify a VNIC the packet will be delivered to. Fragmented UDP packets are received by the
application via the kernel UDP socket. UDP packets received by an unsupported adapter are
always received via the kernel UDP socket.

Fragmented UDP
When sending datagrams which exceed the MTU, the Onload stack will send multiple Ethernet
packets. On hosts running Onload, fragmented datagrams are always received via the kernel
stack.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 145Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=145

User Level recvmmsg for UDP
The recvmmsg() function is intercepted for UDP sockets which are accelerated by Onload.

The Onload user-level recvmmsg() is available to systems that do not have kernel/libc support
for this function. The recvmmsg()is not supported for TCP sockets.

User-Level sendmmsg for UDP
The sendmmsg() function is intercepted for UDP sockets which are accelerated by Onload.

The Onload user-level sendmmsg() is available to systems that do not have kernel/libc support
for this function. The sendmmsg() is not supported for TCP sockets.

UDP sendfile
The UDP sendfile()method is not currently accelerated by Onload. When an Onload
accelerated application calls sendfile() this will be handled seamlessly by the kernel.

Multicast Replication
The Solarflare SFN8000 and X2 series adapters support multicast replication where received
packets are replicated in hardware and delivered to multiple receive queues. This feature allows
any number of Onload clients, listening to the same multicast data stream, to receive their own
copy of the packets, without an additional software copy and without the need to share Onload
stacks. As illustrated below, the packets are delivered multiple times by the controller to each
receive queue that has installed a hardware filter to receive the specified multicast stream.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 146Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=146

Figure 18: Hardware Multicast Replication

Onload stack

socket

Application

Onload stack

socket

Application

Onload stack

socket

Application

Kernel

NIC

VNIC VNIC VNIC

MAC Multicast stream

Kernel
bypass

MAC Controller

X26399-031422

Multicast replication is performed in the adapter transparently and does not need to be explicitly
enabled.

This feature removes the need to share Onload stacks using the EF_NAME environment variable.
Users using EF_NAME exclusively for sharing multicast traffic can now remove EF_NAME from
the configurations.

Multicast Operation and Stack Sharing
To illustrate shared stacks, the following examples describe Onload behavior when two
processes, on the same host, subscribe to the same multicast stream:

• Multicast Transmit Using Different Onload Stacks

• Multicast Transmit Sharing an Onload Stack

• Multicast Receive to Onload or Kernel Stack

• Multicast Receive and Multiple Sockets.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 147Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=147

Note: The following subsections use two processes to demonstrate Onload behavior. In practice multiple
processes can share the same Onload stack. Stack sharing is not limited to multicast subscribers and can be
employed by any TCP and UDP applications.

Multicast Transmit Using Different Onload Stacks
The following figure illustrates the use of different Onload stacks. Arrows indicate the receive
path and fragmented UDP path.

Figure 19: Using Different Onload Stacks

Onload stack

UDP socket

Application Application

Kernel

Kernel stack

UDP socket

Kernel stack

UDP socket

TCP/IP TCP/IP

Network adapter

Filter

Multicast stream

Onload stack

UDP socket

X26424-031722

Referring to the preceding figure, if one process were to transmit multicast datagrams, these
would not be received by the second process. Onload is only able to accelerate transmitted
multicast datagrams when they do not need to be delivered to other applications in the same
host. Or more accurately, the multicast stream can only be delivered within the same Onload
stack.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 148Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=148

Multicast Transmit Sharing an Onload Stack
The following figure illustrates sharing an Onload stack. Dark gray arrows indicate the
accelerated (kernel bypass) path. Light gray arrows indicate the fragmented UDP path.

Figure 20: Sharing an Onload Stack

Shared Onload stack

UDP socket

Application

UDP socket

Application

Kernel stack

UDP socket

Kernel stack

UDP socket

TCP/IP TCP/IP

Network adapter

Filter

Multicast stream

Kernel
bypass

X26423-031722

Referring to the preceding figure, datagrams transmitted by one process would be received by
the second process because both processes share the Onload stack.

Multicast Receive to Onload or Kernel Stack
If a multicast stream is being accelerated by Onload, and another application that is not using
Onload subscribes to the same stream, then the second application will not receive the
associated datagrams. Therefore if multiple applications subscribe to a particular multicast
stream, either all or none should be run with Onload.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 149Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=149

Multicast Receive and Multiple Sockets
When multiple sockets join the same multicast group, received packets are delivered to these
sockets in the order that they joined the group.

When multiple sockets are created by different threads and all threads are spinning on recv(),
the thread which is able to receive first will also deliver the packets to the other sockets.

If a thread ‘A’ is spinning on poll(), and another thread ‘B’, listening to the same group, calls
recv() but does not spin, ‘A’ will notice a received packet first and deliver the packet to ‘B’
without an interrupt occurring.

Multicast Loopback
The socket option IP_MULTICAST_LOOP controls whether multicast traffic sent on a socket can
be received locally on the machine. Receiving multicast traffic locally requires both the sender
and receiver to be using the same Onload stack. Therefore, when a receiver is in the same
application as the sender it will receive multicast traffic. If sender and receiver are in different
applications then both must be running Onload and must be configured to share the same
Onload stack.

For two processes to share an Onload stack both must set the same value for the EF_NAME
parameter (max eight chars). If one local process is to receive the data sent by a sending local
process, EF_MCAST_SEND must be set to 1 or 3 on the thread creator of the stack.

User of earlier Onload versions and users of EF_MULTICAST_LOOP_OFF should refer to the
Parameter Reference table Appendix A: Parameter Reference for details of deprecated features.

Hardware Multicast Loopback
An alternative to the Onload stack sharing scheme described in Multicast Loopback, Hardware
Multicast Loopback, available from openonload-201405, enables the passing of multicast traffic
between Onload stacks allowing applications running on the same server to benefit from Onload
acceleration without the need to share an Onload stack thereby reducing the risk of stack lock
and resource contention.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 150Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=150

Figure 21: Hardware Multicast Loopback

Onload stack

socket

Application

Onload stack

socket

Application

Onload stack

socket

Application

Kernel

NIC

VNIC VNIC

MAC Multicast stream

Kernel
bypass

MAC Controller

VNIC

X26400-031422

• Only available on the XtremeScale™ SFN8000 and XtremeScale™ X2 series adapters.

• Adapters must have a minimum firmware version v4.0.7.6710 and “full featured” firmware
must be selected using the firmware-variant option via the “sfboot” utility. For further
details refer to the Sfboot Parameters section of the Solarflare Server User Guide.

Hardware Multicast Loopback allows data generated by one process to be received by another
process on the same host - Multicast Replication does not support local loopback.

Reception of looped back traffic is enabled by default on a per Onload stack basis. A stack can
choose not to receive looped back traffic by setting the environment variable
EF_MCAST_RECV_HW_LOOP=0.

Note: Hardware Multicast Loopback is enabled through a single hardware filter. For this reason, if any
single process chooses to receive multicast loopback traffic by EF_MCAST_RECV_HW_LOOP=1, then all
other processes joined to the same multicast group will also receive the loopback traffic regardless of their
setting for EF_MCAST_RECV_HW_LOOP.

Sending of looped back traffic is disabled by default. On a per-stack basis this feature can be
enabled by setting the environment variable EF_MCAST_SEND to either 2 or 3.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 151Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=151

Setting the socket option MULTICAST_TTL=0 will disable the sending of traffic on the normal
network path and prevent traffic being looped back. The value of the socket option
IP_MULTICAST_LOOP has no effect on Hardware Multicast Loopback. Refer to Onload and
IP_MULTICAST_TTL for differences in Linux kernel and Onload behavior.

IP_MULTICAST_ALL
For an accelerated socket, Onload will usually behave as if IP_MULTICAST_ALL=0. However:

• If two multicast sockets are bound to INADDR_ANY:<same_port> in different stacks, then
Onload does behave as if IP_MULTICAST_ALL=0. But if the sockets are in one stack, then they
both receive all packets, as if IP_MULTICAST_ALL=1.

The behavior is even more complex if the sockets join the same address on different VLANs.

• There is always the potential for messages to arrive at the host - perhaps from an
unsupportedsupportedinterface or via the loopback interface - which will also be delivered to
the socket under normal UDP port matching rules so the socket could receive traffic for
groups not explicitly joined on this socket.

Chapter 9: Onload and UDP

UG1586 (v1.2) July 31, 2023
Onload User Guide 152Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=152

Chapter 10

Packet Buffers
This chapter describes packet buffers on SFN8000 series and X2 series adapters. For a
description of packet buffers and CTPIO on X3 series adapters refer to the Alveo X3522 User
Guide (UG1523).

Packet buffers describe the memory used by the Onload stack (and network adapter) to receive,
transmit and queue network data. Packet buffers provide a method for user-mode accessible
memory to be directly accessed by the network adapter without compromising system integrity.

Onload will request huge pages if these are available when allocating memory for packet buffers.
Using huge pages can lead to improved performance for some applications by reducing the
number of Translation Lookaside Buffer (TLB) entries needed to describe packet buffers and
therefore minimize TLB ‘thrashing’.

Note: Onload huge page support should not be enabled if the application uses IPC namespaces and the
CLONE_NEWIPC flag.

Onload offers two configuration modes for network packet buffers:

Network Adapter Buffer Table Mode
Solarflare network adapters employ a proprietary hardware-based buffer address translation
mechanism to provide memory protection and translation to Onload stacks accessing a VNIC on
the adapter. This is the default packet buffer mode and is suitable for the majority of applications
using Onload.

This scheme employs a buffer table residing on the network adapter to control the memory an
Onload stack can use to send and receive packets.

If the total packet buffer requirements of all applications using Onload require more than the
number of packet buffers supported by the adapter’s buffer table, the user should consider
changing to the Scalable Packet Buffers configuration.

Large Buffer Table Support
The Solarflare SFN8000 and X2 series adapters support many more than the 120,000 packet
buffer without the need to switch to Scalable Packet Buffer Mode.

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 153Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug1523-x3522-user&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=153

Each buffer table entry in the SFN8000 and X2 series adapter can describe a 4 KB, 64 KB, 1 MB
or 4 MB block of memory where each table entry is the page size as directed by the operating
system.

Huge Pages
Huge pages are available in 2 MB or 1 GB sizes and can be a benefit to hardware as they create
fewer entries in the adapter page table.

Onload applications should not use 1 GB huge pages otherwise every Onload stack would
allocate 1 GB huge pages which might not even be required.

The OS huge page size should be set to 2 MB only. A mix of  2 MB and 1 GB sizes is not
recommended.

Allocating Huge Pages
Using huge pages can lead to improved performance for some applications by reducing the
number of Translation Lookaside Buffer (TLB) entries needed to describe packet buffers and
therefore minimize TLB ‘thrashing’. Huge pages also deliver many packets buffers, but consume
only a single entry in the buffer table. Explicit huge pages are recommended.

Onload is able to use a total of 4096 huge pages.

The current huge page allocation can be checked by inspection of /proc/meminfo:

cat /proc/meminfo | grep Huge

This should return something similar to:

AnonHugePages: 2048 kB
HugePages_Total: 2050
HugePages_Free: 2050
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

The total number of huge pages available on the system is the value HugePages_Total. The
following command can be used to dynamically set and/or change the number of huge pages
allocated on a system to <N> (where <N> is a non-negative integer):

echo <N> > /proc/sys/vm/nr_hugepages

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 154Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=154

On a NUMA platform, the kernel will attempt to distribute the huge page pool over the set of all
allowed nodes specified by the NUMA memory policy of the task that modifies nr_hugepages.
The following command can be used to check the per node distribution of huge pages in a
NUMA system:

cat /sys/devices/system/node/node*/meminfo | grep Huge

Huge pages can also be allocated on a per-NUMA node basis (rather than have the huge pages
allocated across multiple NUMA nodes). The following command can be used to allocate <N>
huge pages on NUMA node <M>:

echo <N> > /sys/devices/system/node/node<M>/hugepages/hugepages-2048kB/
nr_hugepages

How Onload Uses Packet Buffers
Each packet buffer is allocated to exactly one Onload stack and is used to receive, transmit or
queue network data. Packet buffers are used by Onload in the following ways:

1. Receive descriptor rings. By default the RX descriptor ring will hold 512 packet buffers at all
times. This value is configurable using the EF_RXQ_SIZE (per stack) variable.

2. Transmit descriptor rings. By default the TX descriptor ring will hold up to 512 packet buffers.
This value is configurable using the EF_TXQ_SIZE (per stack) variable.

3. To queue data held in socket receive and send buffers.

4. TCP sockets can also hold packet buffers in the socket’s retransmit queue and in the reorder
queue.

5. User-level pipes also consume packet buffer resources.

Identifying Packet Buffer Requirements
When deciding the number of packet buffers required by an Onload stack consideration should
be given to the resource needs of the stack to ensure that the available packet buffers can be
shared efficiently between all Onload stacks.

• Example 1:

If we consider a hypothetical case of a single host:

○ which employs multiple Onload stacks, for example 10

○ each stack has multiple sockets, for example 6

○ and each socket uses many packet buffers, for example 2000

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 155Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=155

This would require a total of 120,000 packet buffers

• Example 2:

If on a stack the TCP receive queue is 1 MB and the MSS value is 1472 bytes, this would
require at least 700 packet buffers - (and a greater number if segments smaller that the MSS
were received).

• Example 3:

A UDP receive queue of 500 received datagrams, each 200 bytes long, has a total payload of
approximately 100 KB. However, it will consume approximately 1 MB. This is because each
packet buffer is 2048 bytes, even though the packet data is less than 2048 bytes.

The examples above use only approximate calculated values. The onload_stackdump command
provides accurate measurements of packet buffer allocation and usage.

Consideration should be given to packet buffer allocation to ensure that each stack is allocated
the buffers it will require rather than a ‘one size fits all’ approach.

When using the Buffer Table Mode the system is limited to 120,000 packet buffers - these are
allocated symmetrically across all Solarflare interfaces.

Note: Packet buffers are accessible to all network interfaces and each packet buffer requires an entry in
every network adapters’ buffer table. Adding more network adapters - and therefore more interfaces does
not increase the number of packet buffers available.

Running Out of Packet Buffers
When Onload detects that a stack is close to allocating all available packet buffers it will take
action to try and avoid packet buffer exhaustion. Onload will automatically start dropping
packets on receive and, where possible, will reduce the receive descriptor ring fill level in an
attempt to alleviate the situation. A ‘memory pressure’ condition can be identified using the
onload_stackdump lots command where the pkt_bufs field will display the CRITICAL
indicator. See Identifying Memory Pressure below.

Complete packet buffer exhaustion can result in deadlock. In an Onload stack, if all available
packet buffers are allocated (for example currently queued in socket receive and send buffers)
the stack is prevented from transmitting further data as there are no packet buffers available for
the task.

If all available packet buffers are allocated then Onload will also fail to keep its adapters receive
queues replenished. If the queues fall empty further data received by the adapter is instantly
dropped. On a TCP connection packet buffers are used to hold unacknowledged data in the
retransmit queue, and dropping received packets containing ACKs delays the freeing of these
packet buffers back to Onload. Setting the value of EF_MIN_FREE_PACKETS=0 can result in a
stack having no free packet buffers and this, in turn, can prevent the stack from shutting down
cleanly.

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 156Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=156

Identifying Memory Pressure

The following extracts from the onload_stackdump command identify an Onload stack under
memory pressure.

The EF_MAX_PACKETS value identifies the maximum number of packet buffers that can be used
by the stack. EF_MAX_RX_PACKETS is the maximum number of packet buffers that can be used
to hold packets received. EF_MAX_TX_PACKETS is the maximum number of packet buffers that
can be used to hold packets to send. These two values are always less than EF_MAX_PACKETS
to ensure that neither the transmit or receive paths can starve the other of packet buffers. Refer
to Appendix A: Parameter Reference for detailed descriptions of these per stack variables.

The example Onload stack has the following default environment variable values:

EF_MAX_PACKETS: 32768
EF_MAX_RX_PACKETS: 24576
EF_MAX_TX_PACKETS: 24576

The onload_stackdump lots command identifies packet buffer allocation and the onset of a
memory pressure state:

pkt_bufs: size=2048 max=32768 alloc=24576 free=32 async=0 CRITICAL
pkt_bufs: rx=24544 rx_ring=9 rx_queued=24535

There are potentially 32768 packet buffers available and the stack has allocated (used) 24576
packet buffers.

In the socket receive buffers there are 24544 packets buffers waiting to be processed by the
application. This is approaching the EF_MAX_RX_PACKETS limit and is the reason the
CRITICAL flag is present. The Onload stack is under memory pressure. Only nine packet buffers
are available to the receive descriptor ring.

Onload will aim to keep the RX descriptor ring full at all times. If there are not enough available
packet buffers to refill the RX descriptor ring this is indicated by the LOW memory pressure flag.

The onload_stackdump lots command will also identify the number of memory pressure
events and number of packets dropped when Onload fails to allocate a packet buffer on the
receive path.

memory_pressure_enter: 1
memory_pressure_drops: 22096

The memory_pressure enter/exit counters count the number of times Onload enter/exits a state
when it is trying to refill the receive queue (rxq) when the adapter runs out of packet buffers.

The Onload module option, max_packets_per_stack, places an upper limit on
EF_MAX_PACKETS. When max_packets_per_stack is not set in the /etc/modprobe.d/
<file>, its default value is 512K.

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 157Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=157

Controlling Onload Packet Buffer Use
A number of environment variables control the packet buffer allocation on a per stack basis.
Refer to Appendix A: Parameter Reference for a description of EF_MAX_PACKETS.

Unless explicitly configured by the user, EF_MAX_RX_PACKETS and EF_MAX_TX_PACKETS will
be automatically set to 75% of the EF_MAX_PACKETS value. This ensures that sufficient buffers
are available to both receive and transmit. The EF_MAX_RX_PACKETS and
EF_MAX_TX_PACKETS are not typically configured by the user.

If an application requires more packet buffers than the maximum configured, then
EF_MAX_PACKETS can be increased to meet demand, however it should be recognized that
larger packet buffer queues increase cache footprint which can lead to reduced throughput and
increased latency.

EF_MAX_PACKETS is the maximum number of packet buffers that could be used by the stack.
Setting EF_MAX_RX_PACKETS to a value greater than EF_MAX_PACKETS effectively means
that all packet buffers (EF_MAX_PACKETS) allocated to the stack will be used for RX - with
nothing left for TX. The safest method is to only increase EF_MAX_PACKETS which keeps the RX
and TX packet buffers values at 75% of this value.

Physical Addressing Mode
Physical addressing mode is a Scalable Packet Buffer Mode that also allows Onload stacks to use
large amounts of packet buffer memory (avoiding the limitations of the address translation table
on the adapter), but without the requirement to configure and use SR-IOV virtual functions.

Physical addressing mode, does however, remove memory protection from the network adapter’s
access of packet buffers. Unprivileged user-level code is provided and directly handles the raw
physical memory addresses of packets buffers. User-level code provides physical memory
addresses directly to the adapter and therefore has the ability to direct the adapter to read or
write arbitrary memory locations. A result of this is that a malicious or buggy application can
compromise system integrity and security. Onload versions earlier than OpenOnload 201210 and
EnterpriseOnload 2.1.0.0 are limited to 1 million packet buffers. This limit was raised to 2 million
packet buffers in OpenOnload 201210-u1 and EnterpriseOnload 2.1.0.1.

To enable physical addressing mode:

1. Ignore configuration steps 1-4 above.

2. Put the following option into a user-created .conf file in the /etc/modprobe.d directory:

options onload phys_mode_gid=<n>

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 158Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=158

Where setting <n> to be -1 allows all users to use physical addressing mode and setting to an
integer x restricts use of physical addressing mode to the specific user group x.

3. Reload the Onload kernel drivers:

onload_tool reload

4. Enable the Onload environment using EF_PACKET_BUFFER_MODE 2 or 3.

EF_PACKET_BUFFER_MODE=2 is equivalent to mode 0, but uses physical addresses. Mode
3 uses SR-IOV VFs with physical addresses, but does not use the IOMMU for memory
translation and protection. Refer to Appendix A: Parameter Reference for a complete
description of all EF_PACKET_BUFFER_MODE options.

Programmed I/O
PIO (programmed input/output) describes the process whereby data is directly transferred by the
CPU to or from an I/O device. It is an alternative to bus master DMA techniques where data are
transferred without CPU involvement.

Solarflare SFN8000 and X2 series adapters support TX PIO, where packets on the transmit path
can be “pushed” to the adapter directly by the CPU. This improves the latency of transmitted
packets but can cause a very small increase in CPU utilization. TX PIO is therefore especially
useful for smaller packets.

The Onload TX PIO feature is enabled by default but can be disabled via the environment
variable EF_PIO. An additional environment variable, EF_PIO_THRESHOLD specifies the size of
the largest packet size that can use TX PIO.

The number of PIO buffers available depend on the adapter type being used and the number of
PCIe Physical Functions (PF) exposed per port.

Table 30: Number of PIO Buffers Available

Solarflare Adapter Total PIO Buffers Maximum per PF PIO Buffer Size
SFN7x02 16 16 2 KB

SFN7x22 16 16 2 KB

SFN7x24 32 16 2 KB

SFN7X42 32 16 2 KB

SFN8522 16 16 4 KB

X2522 16 16 4 KB

X254x 16 16 4 KB

X2552 16 16 4 KB

X2562 16 16 4 KB

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 159Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=159

For optimum performance, PIO buffers should be reserved for critical processes and other
processes should set EF_PIO to 0 (zero).

The Onload stackdump utility provides additional counters to indicate the level of PIO use - see
TX PIO Counters for details.

The Solarflare net driver will also use PIO buffers for non-accelerated sockets and this will reduce
the number of PIO buffers available to Onload stacks. To prevent this set the driver module
option piobuf_size=0. Driver module options can be set in a user-created file (sfc.conf) in
the /etc/modprobe.d directory:

options sfc piobuf_size=0

An Onload stack requires one PIO buffer for each VI it creates. An Onload stack will create one
VI for each physical interface that it uses.

When both accelerated and non-accelerated sockets are using PIO, the number of PIO buffers
available to Onload stacks can be calculated from the available PIO regions:

Table 31: Number of PIO Buffers Available

Input Description Example Value
piobuf_size driver module parameter 256

rss_cpus driver module parameter 4

region a chunk of memory 2048 bytes 2048 bytes

PF PCIe physical function. The adapter can
be partitioned to expose up to eight
PFs per physical port.
Refer to Onload and NIC Partitioning
for details

Default one PF

Using the above example values applied to a SFN7x22 adapter, each PF on the adapter requires:

piobuf_size * rss_cpus * num_PFs/ region size = 0.5 regions - (round up - so each port needs 1
region).

This leaves 16-2 = 14 regions for Onload stacks which also require one region per port, per stack.
Therefore from our example we can have 7 onload stacks using PIO buffers.

PIO buffers are allocated on a first-come, first-served basis. The following warning might be
observed when stacks cannot be allocated any more PIO buffers:

WARNING: all PIO bufs allocated to other stacks. Continuing without PIO.
 Use EF_PIO to control this

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 160Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=160

To ensure more buffers are available for Onload, it is possible to prevent the net driver from using
PIO buffers. This can be done by setting the sfc driver module option in a user-created file in
the /etc/modprobe.d directory:

options sfc piobuf_size=0

Reload the Onload kernel drivers for the changes to be effective:

onload_tool reload

The per-stack EF_PIO variable can also be unset for stacks where PIO buffers are not required. If
there is contention for PIO buffers, consider disabling PIO for any stacks that primarily receive,
so the buffers are available for stacks that perform latency-critical sends.

CTPIO
Onload-201805 introduces the Cut Through Programmed Input Output (CTPIO) feature to
deliver the lowest send-path latency enabled by the architecture of the X2 series adapters.
Packets are streamed directly over the PCIe bus to the network port, bypassing the main adapter
transmit datapath.

CTPIO coexists alongside the standard host-buffered (DMA) transmit mechanism (Network
Adapter Buffer Table Mode) and legacy PIO buffering (Programmed I/O). From an Onload VI,
traffic using all three methods can be mixed on a frame-by-frame basis and per frame ordering is
maintained. CTPIO delivers the lowest transmit latency.

Capabilities
The X2 series adapter supports up to 2048 VIs, and all VIs can transmit using CTPIO. However,
only one CTPIO packet, per adapter physical port, can be pushed at a time. When multiple VIs
are mapped to the same physical port, a CTPIO push in progress will continue undisturbed, whilst
another push attempt, overlapping the first, will fail with the send falling back to use the normal
DMA transmit datapath.

The adapter can tolerate back-to-back bursts of CTPIO frames from a VI. An Onload stack
creates a VI for each physical port that it uses.

Note: X2 series adapters support CTPIO on a maximum four physical ports.

Requirements for CTPIO
CTPIO has the following requirements:

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 161Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=161

• CTPIO is a feature of the X2 series of adapters. On the X2 models, CTPIO is enabled by
default.

• The minimum adapter driver and firmware versions are identified below:

ethtool -i <interface>driver: sfcversion: 4.13.1.1034firmware-version:
7.1.1.1007 rx1 tx1

• CTPIO can be used with all adapter firmware variant settings apart from capture-packed-
stream.

Because CTPIO bypasses the main adapter datapath, packets sent by CTPIO cannot be looped
back in hardware. As a result, CTPIO is not enabled by default on interfaces running full-
featured firmware. This behavior can be overridden using a configuration variable. See
EF_CTPIO_SWITCH_BYPASS.

• CTPIO can be used with Onload 201805 and later versions.

CTPIO Modes
The CTPIO feature can be used in three modes:

1. cut-through (ct)

Lowest latency. A packet is transmitted onto the network as it is being streamed across the
PCIe bus. The adapter starts transmitting the packet even before the entire packet has been
delivered over the PCIe bus.

Note: This mode is supported at 10 Gb, but not at 25 Gb.

2. store-and-forward (sf)

The packet is buffered on the adapter before transmitting onto the network. The adapter only
transmits when the whole packet has been delivered over the PCIe bus.

3. store-and-forward-with-poison-disabled (sf-np)

As for [2], but guaranteed that packets are never poisoned. Invalid packets are not
transmitted on the wire. This is the default mode for Onload.

CAUTION! When [3] (sf-np) is enabled on any VI, all VIs are placed into this mode.

CTPIO Frame Length
The table below shows frame lengths when using CTPIO.

Table 32: Frame Lengths When Using CTPIO

Frame Length
Maximum CTPIO frame 4092 bytes

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 162Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=162

Table 32: Frame Lengths When Using CTPIO (cont'd)

Frame Length
Minimum CTPIO frame 29 bytes

Frame sizes 29-59 bytes Are padded to 60 bytes by CTPIO logic

Cost of CTPIO
The very low-latency CTPIO transmit path comes at a sacrifice of some of the adapter
acceleration features:

The following adapter features are not available to packets sent via CTPIO.

Table 33: Feature Restrictions with CTPIO

Feature Restriction
No checksum offloads Checksums must be done in the host.

No pacing Packet is sent as soon as last descriptor is posted.

No switch loopback No HW loopback of packets to local receivers.

No filter drop No loopback packets to local receivers and CTPIO packets
are not subject to any TX drop filters.

No flow control
No Qbb flow control

CTPIO traffic cannot be subject to pause frames or priority
flow control measures.
Pause frames received at the CTPIO sender will have no
effect.

Using CTPIO with Onload
On the X2 series adapter, CTPIO is enabled by default in sf-np mode. The following Onload
environment variables are used to configure CTPIO:

Table 34: Environment Variables for Configuring CTPIO

EF Variable Settings
EF_CTPIO 0 disable

1 enable (default)
2 enable, fail if not available

EF_CTPIO_MODE ct cut-through mode (not supported for 25 Gb)
sf store-and-forward mode
sf-np store-and-forward-no-poison (default)

EF_CTPIO_MAX_FRAME_LEN Integer value
Packets with length exceeding this value are not sent via
CTPIO, but are sent using the legacy DMA datapath.

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 163Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=163

Latency-best Profile

Onload-201805 includes a new low latency profile that enables CTPIO in cut-through mode to
deliver lowest CTPIO latency:

onload --profile=latency-best <application, args>

Before using this profile, please read The latency-best Profile, especially the warning on usage.

Using CTPIO with TCPDirect
On the X2 series adapter, CTPIO is enabled by default in sf-np mode. The following TCPDirect
attributes are used to configure CTPIO:

Table 35: TCPDirect attributes for Configuring CTPIO

TCPDirect attribute Settings
ctpio 0 disable

1 enable (default)
2 enable, warn if not available
3 enable, fail if not available

ctpio_mode ct cut-through mode (not supported for 25 Gb)
sf store-and-forward mode
sf-np store-and-forward-no-poison (default)

For further details, refer to the TCPDirect User Guide (SF-116303-CD).

Using CTPIO with ef_vi
The OpenOnload 201805 distribution includes an example application using CTPIO with ef_vi:

onload/src/tests/rtt/rtt_efvi.c.

When OpenOnload is installed the test application is found at the following location:

/onload-201805/build/gnu_x86_64/tests/rtt

The following sequence is required to send via CTPIO:

1. When allocating a VI, ef_vi_alloc_from_pd(), set the EF_VI_TX_CTPIO flag. Also set
the TX timestamping flag if required.

2. To initiate a send, form a complete Ethernet frame (excluding FCS) in host memory. Initiate
the send with ef_vi_transmit_ctpio() or ef_vi_transmitv_ctpio().

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 164Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=164

3. Post a fall-back descriptor using ef_vi_transmit_ctpio_fallback() or
ef_vi_transmitv_ctpio_fallback(). These calls are used just like the standard DMA
send calls (ef_vi_transmit() etc.), and so must be provided with a copy of the frame in
registered memory.

4. A TX completion event is returned to the host application regardless of whether the frame is
sent via CTPIO or the legacy DMA send method.

The posting of a fall-back descriptor is not on the latency critical path, provided the CTPIO
operation succeeds, however it should be posted before posting any further sends on the same
VI.

For further details, refer to the ef_vi User Guide (SF-114063-CD).

Latency Tests
For benchmark latency tests using CTPIO refer to the Appendix L: X2 Low Latency Quickstart.

Onload 201805 and later include the rtt benchmark test application. The application source code
can be found in:

<onload_dir>/src/tests/rtt

The application binary can be found in:

<onload_dir>/build/gnu_x86_64/tests/rtt

Example command lines:

• On server1:

./rtt pong efvi:tx=ctpio,intf=<interface>

• On server2:

./rtt ping efvi:tx=ctpio,intf=<interface> | ef_vi/stats

rtt produces raw output which can be piped to file.

CTPIO Timestamps
TX timestamps are returned with TX completion events to the VI event queue.

CTPIO Statistics
The adapter driver exposes CTPIO counters via ethtool.

ethtool -S <interface> | grep ctpio

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 165Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=165

Counts in the following table are aggregated for all interfaces on the adapter.

Table 36: Per-adapter Statistics for CTPIO

Stats Description
ctpio_vi_busy_fallback When a CTPIO push occurs from a VI, but the VI DMA

datapath is still busy with packets in flight or waiting to be
sent. The packet is sent over the DMA datapath.

ctpio_long_write_success Host wrote excess data beyond 32-byte boundary after
frame end, but the CTPIO send was successful.

ctpio_missing_dbell_fail When CTPIO push is not accompanied by a TX doorbell.
ctpio_overflow_fail When the host pushes packet bytes too fast and overflows

the CTPIO buffer.
ctpio_underflow_fail When the host fails to push packet bytes fast enough to

match the adapter port speed.
The packet is truncated and data transmitted as a poisoned
packet.

ctpio_timeout_fail When host fails to send all bytes to complete the packet to
be sent by CTPIO before the VI inactivity timer expires.
The packet is truncated and data transmitted as a poisoned
packet.

ctpio_noncontig_wr_fail A non-sequential address (for packet data) is encountered
during CTPIO, caused when packet data is sent over PCIe
interface as out-of-order or with gaps.
Packet is truncated and transmitted as a poisoned packet.

ctpio_frm_clobber_fail When a CTPIO push from one VI would have ‘clobbered’ a
push already in progress by the same VI or another VI. One
or both packets are sent over the DMA datapath - no
packets are dropped.

ctpio_invalid_wr_fail If packet length is less than length advertised in the CTPIO
header the CTPIO fails.
Or packet write is not aligned to (or multiple of) 32-bytes,
Packet maybe transmitted as a poisoned packet if sending
has already started. Or erased if send has not already
started.

ctpio_vi_clobber_fallback When a CTPIO collided with another already in progress. In-
progress packets succeeds, other is sent over the DMA
datapath.

ctpio_unqualified_fallback VI is not enabled to send using CTPIO or first write is not the
packet header.
Packet is discarded and sent over the DMA datapath.

ctpio_runt_fallback Length in header < 29 bytes.
Packet is discarded and sent over the DMA datapath.

Counts in the following table are per interface on the adapter.

Table 37: Per-interface Statistics for CTPIO

Stats Description
ctpio_success Number of successful CTPIO transmit events.

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 166Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=166

Table 37: Per-interface Statistics for CTPIO (cont'd)

Stats Description
ctpio_fallback Number of instances when CTPIO push was rejected. This

can occur because:
• the VI legacy datapath is still busy
• another CTPIO is in progress
• VI is not enabled to use CTPIO
• push request for illegal sized frame
Fallback events do not result in poison packets. Rejected
packets will fallback to use the legacy DMA datapath path.

ctpio_poison When the packet send has started, if CTPIO has to abort this
packet, a corrupt CRC is attached to the packet.
A poisoned packet might be sent over the wire - depending
on the mode.
The packet will fallback to use the legacy DMA datapath.

ctpio_erase Before a packet send has started. Corrupt, undersized or
poisoned packets are erased from the CTPIO datapath.
Packet send will fallback to use the legacy DMA datapath.

Chapter 10: Packet Buffers

UG1586 (v1.2) July 31, 2023
Onload User Guide 167Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=167

Chapter 11

Interfaces
This chapter identifies Onload support for virtual interfaces types.

Bonding, Link Aggregation and Failover
Bonding (also known as teaming) allows for improved reliability and increased bandwidth by
combining physical ports from one or more network adapters into a bond. A bond has a single IP
address, single MAC address and functions as a single port or single adapter to provide
redundancy.

Onload monitors the OS configuration of the standard kernel bonding module and accelerates
traffic over bonds that are detected as suitable (see limitations). As a result no special
configuration is required to accelerate traffic over bonded interfaces.

For example, to configure an 802.3ad bond of two SFC interfaces (eth2 and eth3):

modprobe bonding miimon=100 mode=4 xmit_hash_policy=layer3+4
ifconfig bond0 up

Interfaces must be down before adding to the bond.

echo +eth2 > /sys/class/net/bond0/bonding/slaves
echo +eth3 > /sys/class/net/bond0/bonding/slaves
ifconfig bond0 192.168.1.1/24

The file /var/log/messages should then contain a line similar to:

[onload] Accelerating bond0 using Onload

Traffic over this interface will then be accelerated by Onload.

Chapter 11: Interfaces

UG1586 (v1.2) July 31, 2023
Onload User Guide 168Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=168

Polling the Bonding Configuration
Onload will monitor the underlying bonding configuration and state using netlink where this is
supported by the OS or revert to the previous method when netlink is not supported. Polling
parameters are now set through the cplane_server_params option via the onload_module
parameters:

options cplane_server --bond_base_period=800options cplane_server --
bond_peak_period=1600

The cplane_server parameters are in milliseconds.

Refer to the Limitations section, Bonding, Link Aggregation for further information.

Teaming
In addition to traditional Linux bonding, Onload also supports link aggregation using the Linux
teaming driver that is introduced in RHEL 7, SLES 12, and other recent distributions. There are
various methods to configure teaming. The example below demonstrates the use of the
NetworkManager CLI which creates the ifcfg files in the /etc/sysconfig/network-
scripts directory. Using nmcli, teams persist across server reboots.

1. Create the team:

nmcli connection add type team ifname teamA
Connection 'team-teamA' (b7c39a10-84ac-4840-85f2-66adb5e71183)
successfully added.

2. List the created team:

nmcli con show
NAME UUID TYPE DEVICE
eno2 4efeb125-d489-4a06-9d8a-407bf03fcc77 802-3-ethernet --
eno1 f270807d-9904-452e-bbd2-0d6b48840c80 802-3-ethernet eno1
enp1s0f1 16192f4d-7a97-4154-924b-02ca905c8cd7 802-3-ethernet --
team-teamA b7c39a10-84ac-4840-85f2-66adb5e71183 team teamA
virbr0 ceb1a683-7db9-4721-8ca9-38a577ff5d77 bridge virbr0
enp1s0f0 cbc92b25-9855-451c-8c6b-186b6d5db9f6 802-3-ethernet --

3. View default settings for the newly created team:

cat /etc/sysconfig/network-scripts/ifcfg-team-teamA
DEVICE=teamA
DEVICETYPE=Team
BOOTPROTO=dhcp
DEFROUTE=yes
PEERDNS=yes
PEERROUTES=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes

Chapter 11: Interfaces

UG1586 (v1.2) July 31, 2023
Onload User Guide 169Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=169

IPV6_DEFROUTE=yes
IPV6_PEERDNS=yes
IPV6_PEERROUTES=yes
IPV6_FAILURE_FATAL=no
NAME=team-teamA
UUID=b7c39a10-84ac-4840-85f2-66adb5e71183
ONBOOT=yes

4. Add primary interface to the team:

nmcli con add type team-slave con-name teamA-port1 ifname enp1s0f0
master teamA
Connection 'teamA-port1' (015f09d7-3f2a-4578-aaea-7ff89a2769f7)
successfully added.

5. Add a second interface to the team:

nmcli con add type team-slave con-name teamA-port2 ifname enp1s0f1
master teamA
Connection 'teamA-port2' (92dfe561-860a-4906-842d-b7ebdf263dbe)
successfully added.

6. Bring up the team ports:

nmcli connection up teamA-port1
Connection successfully activated (D-Bus active path: /org/freedesktop/
NetworkManager/ActiveConnection/6)

Repeat command for other team ports.

7. Assign team IP addresses via ifcfg files or command line as required.

Note: Teams created with the teamd daemon are non-persistent. Teams created with nmcli are persistent
across server reboots.

To disable Onload acceleration of teaming, please contact support-nic@amd.com.

VLANS
The division of a physical network into multiple broadcast domains or VLANs offers improved
scalability, security and network management.

Onload will accelerate traffic over suitable VLAN interfaces by default with no additional
configuration required.

For example to add an interface for VLAN 5 over an SFC interface (eth2):

modprobe onload
modprobe 8021q
vconfig add eth2 5
ifconfig eth2.5 192.168.1.1/24

Traffic over this interface will then be transparently accelerated by Onload.

Chapter 11: Interfaces

UG1586 (v1.2) July 31, 2023
Onload User Guide 170Send Feedback

mailto:support-nic@amd.com?subject=Change%20value%20of%20CPLANE_TEAMING
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=170

Refer to the Limitations section, VLANs for further information.

MACVLAN
The MACVLAN driver is supported from onload-201710 in container configurations and in
standard host configurations.

• MACVLAN sub-interfaces will be accelerated by Onload when these are created over a
supported interface.

• Nested MACVLAN (MACVLAN on top of MACVLAN on top of base adapter) interfaces are
also accelerated by Onload.

• MACVLAN sub-interfaces that are not in the main network namespace will be accelerated
only if the base adapter is present in the current or main namespace.

If there are more than one PCI physical interfaces (PF) or virtual interfaces (VF) configured, the
adapter firmware-variant must be one of the following:

• the ultra-low-latency firmware variant.

• when using the full-feature firmware variant, the insecure-filters=1 sfboot option must be set.

Restrictions do not apply when there is only a single PF and no VFs configured. Check the
adapter configuration with the sfboot utility.

IPVLAN
The IPVLAN driver is supported from Onload-7.0.0 in container and standard host
configurations.

IPVLAN requires RHEL8 or Ubuntu 18.10. Other OS variants might have minimum version
requirements.

IPVLAN sub-interfaces will be accelerated by Onload when there are created over a supported
interface.

Use standard Linux commands to create the IPVLAN interface:

ip link add link <master> name <slave> type ipvlan [mode][flags]

example:

ip link add link p2p2 name ipv1 type ipvlan mode l2 bridge

Chapter 11: Interfaces

UG1586 (v1.2) July 31, 2023
Onload User Guide 171Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=171

Only l2 mode is accelerated, l3 or l3s modes are not accelerated. MAC filter-based scalable filter
modes are not supported with IPVLAN interface.

Accelerated pipe()
Onload supports the acceleration of pipes, providing an accelerated IPC mechanism through
which two processes on the same host can communicate using shared memory at user-level.
Accelerated pipes do not invoke system calls. Accelerated pipes therefore, reduce the overheads
for read/write operations and offer improved latency over the kernel implementation.

To create a user-level pipe, and before the pipe() or pipe2() function is called, a process
must be accelerated by Onload and must have created an Onload stack. By default, an
accelerated process that has not created an Onload stack is granted only a non-accelerated pipe.
See EF_PIPE for other options.

The accelerated pipe is created from the pool of available packet buffers.

The following function calls, related to pipes, will be accelerated by Onload and will not enter the
kernel unless they block:

• pipe()

• read()

• write()

• readv()

• writev()

• send()

• recv()

• recvmsg()

• sendmsg()

• poll()

• select()

• epoll_ctl()

• epoll_wait()

As with TCP/UDP sockets, the Onload tuning options such as EF_POLL_USEC and
EF_SPIN_USEC will also influence performance of the user-level pipe.

Refer also to EF_PIPE, EF_PIPE_RECV_SPIN, EF_PIPE_SEND_SPIN in Appendix A: Parameter
Reference.

Chapter 11: Interfaces

UG1586 (v1.2) July 31, 2023
Onload User Guide 172Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=172

Note: Only anonymous pipes created with the pipe() or pipe2() function calls will be accelerated.

Chapter 11: Interfaces

UG1586 (v1.2) July 31, 2023
Onload User Guide 173Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=173

Chapter 12

Onload and Virtualization
Using Onload from release 201502, accelerated applications can benefit from the inherent
security through isolation, ease of deployment through migration and increased resource
management supported by Linux virtualized environments.

This chapter identifies the following:

• Onload and Linux KVM

• Onload and NIC Partitioning

• Onload in a Docker Container

Overview
• Running Onload in a Virtual Machine (VM) or Docker Container means the Onload accelerated
application benefits from the inherent isolation policy of the virtualized environment.

• There is minimal degradation of latency and throughput performance. Near native network
I/O performance is possible because there is direct hardware access (no hardware emulation)
with the guest kernel (and virtualization platform hypervisor) being bypassed.

• Multiple containers/virtual machines can co-exist on the same host and all are isolated from
each other.

Onload and Linux KVM
This feature is supported on Solarflare SFN8000 and X2 series adapters.

Onload includes support to accelerate applications running within Linux VMs on a KVM host.
Each physical interface on the adapter can be exposed to the host as up to 16 PCIe physical
functions (PF) and up to 240 virtual functions (VF). The adapter also supports up to 2048 MSI-X
interrupts.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 174Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=174

This support requires a VF (or PF) to be exposed directly into the Linux VM – KVM call this
network configuration Network hostdev. Onload provides user-level access to the adapter via the
VF in exactly the same way as is achieved on a non-virtualized Linux install. Firmware on the
Solarflare SFN8000 and X2 series adapter configures layer 2 switching capability that supports
the transport of network packets between PCI physical functions and virtual functions. This
feature supports the transport of network traffic between Onload applications running in
different virtual machines. This allows traffic to be replicated across multiple functions and traffic
transmitted from one VM can be received on another VM.

The following figure illustrates Onload deployed into the Linux KVM Network Hostdev
architecture which exposes Virtual Functions (VF) directly to the VM guest. This configuration
allows the Onload data path to fully bypass the host operating system and provides maximum
acceleration for network traffic.

Figure 22: Onload and Network Hostdev Configuration

Host

VM

OS

Application

Onload

sfc.ko

VM

OS

Application

Onload

Adapter
VF PF VF

L2 switch

Physical port

X26412-031622

To deploy Onload in a Linux KVM:

• As detailed in the SRIOV chapter of the Solarflare Server Adapter User Guide (SF-103837-CD):

○ Install the Solarflare NET driver version 4.4.1.1017 (or later)

○ Ensure the adapter is using firmware version 4.4.2.1011 (or later)

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 175Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=175

○ Run sfboot to select the full-feature firmware variant, set the switch-mode and identify the
required number of VFs:

sfboot firmware-variant=full-feature switch-mode=sriov vf-count=4

○ Reboot the server, so the Linux KVM host can enumerate the VFs.

• Follow the instructions in Solarflare Server Adapter User Guide (SF-103837-CD) section KVM
Libvirt network hostdev - Configuration to:

○ Create a VM

○ Configure the VFs

○ Unbind VFs from the host

○ Pass VFs to the VM.

Example virsh command line and XML file configuration instructions are provided.

• Install Onload in the VM as in a non-virtualized host - see Building and Installing from a
Tarball.

• Set the sfc driver module option num_vis to create the number of virtual interfaces. A VI is
needed for each Onload stack created on a VF. Driver module options should be set in a user
created file (for example sfc.conf) in the /etc/modprobe.d directory.

options sfc num_vis=<NUM>

Note: When using Onload with multiple virtual functions (VF) it is necessary to set the Onload module
option oof_all_ports_required to zero. See Module Options for details.

The Solarflare Server Adapter User Guide is available from the NIC Software and Drivers web page.

Onload and NIC Partitioning
Each physical interface on a Solarflare SFN8000 and X2 series adapter can be exposed to the
host as multiple PCIe physical functions (PF). Up to 16 PFs, each having a unique MAC address,
are supported per adapter. To Onload, each PF represents a virtual adapter.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 176Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=176

Figure 23: Onload and NIC Partitioning

vPort vPort vPort vPort

L2 switch

Physical port

Host machine

ethA ethB ethC ethD

Onload

Application

vAdapter

PF0

vAdapter

PF1

vAdapter

PF2

vAdapter

PF3

X26431-040323

On the adapter each PF is backed by a virtual adapter and virtual port - these components are
created by the Solarflare NET driver when it finds a partitioned adapter. The PFs can be
configured to transparently place traffic on separate VLANS (so each partition is on a separate
broadcast domain).

To configure Onload to use the partitioned NIC:

• Ensure the adapter is using firmware version 4.4.2.1011 (minimum)

• Use sfboot to select the full-feature firmware variant

• Use sfboot to partition the NIC into multiple PFs

• Rebooting the host allows the firmware to partition the NIC into multiple PFs.

• To identify which physical port a network interface is using:

cat /sys/class/net/eth<N>/device/physical_port

For complete details of configuring NIC Partitioning refer to theSRIOV chapter of the Solarflare
Server Adapter User Guide (SF-103837-CD), available from the NIC Software and Drivers web
page.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 177Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=177

Onload in a Docker Container
The following figure illustrates the Onload deployment in a Docker container environment. Only
the user-level components are created in the container. Onload in the container uses the Onload
drivers installed on the host for network I/O. Network interfaces configured on the host are also
visible and usable directly from the container.

Figure 24: Onload in a Docker Container

Host machine

OSOnload

Docker container

OS

ethX ethY

Onload

Application

Network adapterport port

X26392-031422

In keeping with the containerization theory, it is envisaged that only a single Onload instance will
be running in each container, however, there are no restrictions preventing multiple instances
running in the same container.

Pre-Installation
CAUTION! This install procedure makes the following assumptions - ensure these components are
created/installed before continuing:

• Docker is installed on the host server.

• Identical Onload versions must be installed on the host and in the container.

• The Onload installation in a container must match the Onload installation on the host.
Configuration options such as any CI_CFG_* options set in one environment must match
those set in the other.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 178Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=178

In addition to requiring that char devices nodes for onload, onload_epoll and sfc_char be
present in /dev, Onload requires that the procfs and sysfs filesystems be mounted
respectively at /proc and /sys, and that those mounts be in the same network namespace as
the stack. These properties are all arranged correctly when containers are created according to
the instructions in Installation below.

Installation
1. The docker run command will create a container named onload. The container is created from

the centos:latest base image and a bash shell terminal will be started in the container.

If MACVLAN driver support and namespace support are required, refer to MACVLAN
Support below before creating the container.

docker run \
 --net=host \
 --device=/dev/onload \
 --device=/dev/onload_epoll \
 --name=onload \
 -it \
 -v /src/onload-201502.tgz:/tmp/onload-201502.tgz \
 centos:latest \
 /bin/bash

The example above copies the onload-201502.tgz file from the /src directory on the
host and placed this file into /tmp in the container root file system. All subsequent commands
are run inside the container unless host is specified.

Note: The directive --device=/dev/sfc_char is required when used with ef_vi.

2. Install required OS tools/packages in the container:

yum install perl autoconf automake libtool tar gcc make net-tools
ethtool

Different docker base images might require additional OS packages installed.

3. Unpack the tarball to build the onload-<version> sub-directory:

/usr/bin/tar -zxvf /tmp/onload-201502.tgz

Note: It is not possible to use tools/utilities (such as tar) from the host file system on files in the
container file system.

4. Change directory to the onload-<version>/scripts directory:

cd /tmp/onload-201502/scripts

5. Build the Onload user-level components in the container:

./onload_build --user

If the build process identifies any missing dependencies, return to step 2 to install missing
components.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 179Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=179

6. Install the Onload user-level components in the container:

./onload_install --userfiles --nobuild

The following warning might appear at the end of the install process, but it is not necessary to
reload the drivers:

onload_install: To load the newly installed drivers run: onload_tool
reload

7. Check Onload installation:

onload
OpenOnload 201502
Copyright 2006-2012 Solarflare Communications, 2002-2005 Level 5 Networks
Built: Feb 5 2015 12:41:04 (release)
Kernel module: 201502

usage:
 onload [options] <command> <command-args>

options:
 --profile=<profile> -- comma sep list of config profile(s)
 --force-profiles -- profile settings override environment
 --no-app-handler -- do not use app-specific settings
 --app=<app-name> -- identify application to run under onload
 --version -- print version information
 -v -- verbose
 -h --help -- this help message

8. On the host, check that the container has been created and is running:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
e2a12a635359 centos:latest "/bin/bash" 15 seconds ago Up 14
seconds onload

9. Configure network interfaces.

Configure network adapter interfaces in the host. Interfaces will also be visible and usable
from the container:

ifconfig -a

10. Onload is now installed and ready to use in the container.

MACVLAN Support

Onload from 201710 adds supports for network namespaces within Docker containers. Support
is also included for the MACVLAN driver and MACVLAN sub-interfaces in container and
standard host configurations.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 180Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=180

The MACVLAN driver allows a single physical interface to be assigned multiple MAC addresses,
creating sub-interfaces, each having a unique MAC address. The hardware address can be
randomly generated by the driver, or supplied by the user.

An application running in a Docker container will bind to a specific sub-interface to gain direct
access to the network adapter. Onload will accelerate network traffic between the container and
the network.

Onload is not able to send packets directly between containers having sub-interfaces from the
same parent. Such packets will be delivered between containers only via an underlying switch.

MACVLAN Interface Configurations

Onload will support:

• MACVLAN on top of a supported adapter.

• Nested MACVLAN on top of MACVLAN on top of supported adapter.

Figure 25: Onload using MACVLAN Sub-interfaces

Host machine

Docker container

Onload

onload_cplane

Sub-interface

Docker container

Onload

onload_cplane

Sub-interface

M
A
C
0

M
A
C
1

ethY

Network adapter
Port0 Port1

ethX

When the container is created the
MACVLAN sub-interface is moved
to the network namespace of the
container.

X26413-031622

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 181Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=181

Traffic between containers might be delivered depending on the routing configuration/policy of
the connected external switch and the configuration settings of EF_MCAST_SEND and
EF_MCAST_RECV_HW_LOOP.

Configure MACVLAN for a Docker Network

1. Before creating the Docker container, setup the Docker network:

docker network create \
 -d MACVLAN \
 -o parent=<interface> \
 --subnet=<address> \
 --ip-range=<address> \
 my-network

where <interface> is the physical network interface that becomes the parent interface to the
created sub-interfaces.

When the network is created, only the parent interface needs to be present. When the
container is created a sub-interface is created and moved to the network namespace of the
container.

2. Include the network when creating the Docker container:

docker run \
 -it \
 --net=my-network \
 --device=/dev/onload \
 --device=/dev/onload_epoll \
 --device=/dev/sfc_char \
 my-onload-image \
 /bin/bash

See the Installation section and examples above.

Create Onload Docker Image
To create a new docker image that includes the Onload installation prior to migration. All
commands are run on the host.

1. Identify the container (note CONTAINER ID or NAME)

docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
35bfeceb7022 centos:latest "/bin/bash" 24 hours ago Exited
onload

2. Create new image (this example uses the NAME value)

docker commit -m "installed onload 201502" onload onload:v1
89e95645d5ff1fa02880dee44b433ab577f5a2715daf944fd0b393620d8253f1

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 182Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=182

3. List images

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
onload v1 89e95645d5ff 28 seconds ago 486 MB
centos latest dade6cb4530a 3 days ago 224 MB

Migration
The docker save command can be used to archive a docker image which includes the Onload
installation. This image can then be migrated to other servers having the following configuration:

• Docker is installed and docker service is running

• Host operating system RHEL 7

• The Onload version running on the host must be the same as the migrated image Onload
version

• The target server does not need to have the same network adapter types installed.

1. Create a tar file of the container image:

docker save -o <dir path to store image>/<name of image>.tar <current
name of image>

Example (store image tar file in host /tmp directory):

docker save -o /tmp/dk-onload-201502.tar onload

2. The image tar file can then be copied to the target server where it can be loaded with the
docker load command:

docker load -i /<path to transferred file>/dk-onload-201502.tar

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
onload v1 303ec2d3e2b5 About an hour ago 486 MB

3. Create/run a container from the transferred image.

docker run --net=host --device=/dev/onload --device=/dev/onload_epoll
--name=onload -it onload:v1 /bin/bash

When the container has been created, Onload will be running within it.

Note: The directive --device=/dev/onload_cplane is required when used with onload-201606
and later releases.

Onload Docker Images
Onload images are not currently available from the default docker registry hub. Images might be
made available if there is sufficient customer interest and requirement for this feature.

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 183Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=183

Copying Files Between Host and Container
The following example demonstrates how to copy files from the host to a container. All
commands are run on the host.

1. Get the container Short Name (output truncated):

[root@hostname]# docker ps -a
CONTAINER ID
bd1ea8d5526c

2. Discover the container Long Name:

[root@hostname]# docker inspect -f '{{.Id}}' bd1ea8d5526c
bd1ea8d5526c55df4740de9ba5afe14ed28ac3d127901ccb1653e187962c5156

The container long name can also be discovered using the container name in place of the
container identifier.

3. Copy a file to root file system (/tmp) on the container:

[root@hostname]# cp myfile.txt /var/lib/docker/devicemapper/mnt/
bd1ea8d5526c55df4740de9ba5afe14ed28ac3d127901ccb1653e187962c5156/
rootfs/tmp/myfile.txt

Chapter 12: Onload and Virtualization

UG1586 (v1.2) July 31, 2023
Onload User Guide 184Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=184

Chapter 13

Limitations
IMPORTANT! Users are advised to read the latest Release Notes distributed with the Onload release for a
comprehensive list of known issues.

Introduction
This chapter outlines configurations that Onload does not accelerate and ways in which Onload
can change behavior of the system and applications. It is a key goal of Onload to be fully
compatible with the behavior of the regular kernel stack, but there are some cases where
behavior deviates.

Resources
Onload uses certain physical resources on the network adapter. If these resources are exhausted,
it is not possible to create new Onload stacks and not possible to accelerate new sockets or
applications. The onload_stackdump utility should be used to monitor hardware resources.
Physical resources include:

Virtual NICs

Virtual NICs provide the interface by which a user level application sends and receives network
traffic. When these are exhausted it is not possible to create new Onload stacks, meaning new
applications cannot be accelerated. However, Solarflare network adapters support large numbers
of Virtual NICs, and this resource is not typically the first to become unavailable.

Endpoints

Onload represents sockets and pipes as structures called endpoints. The maximum number of
accelerated endpoints permitted by each Onload stack is set with the EF_MAX_ENDPOINTS
variable. The stack limit can be reached sooner than expected when syn-receive states (the
number of half-open connections) also consume endpoint buffers. Four syn-receive states
consume one endpoint. The maximum number of syn-receive states can be limited using the
EF_TCP_SYNRECV_MAX variable.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 185Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=185

Filters

Filters are used to deliver packets received from the wire to the appropriate application. When
filters are exhausted it is not possible to create new accelerated sockets. The general
recommendation is that:

• On X3-series adapters, applications do not allocate more than 256 filters or create more than
256 outgoing connections.

• On X2-series adapters, applications do not allocate more than 16384 filters or create more
than 16384 outgoing connections.

• On earlier adapters, applications do not allocate more than 4096 filters or create more than
4096 outgoing connections.

The limit does not apply to inbound connections to a listening socket.

Buffer Table

The buffer table provides address protection and translation for DMA buffers. When all buffer
resources are exhausted it is not possible to create new Onload stacks, and existing stacks are
not able to allocate more DMA buffers.

When hardware resources are exhausted, normal operation of the system should continue, but it
will not be possible to accelerate new sockets or applications.

TX, RX Ring Buffer Size

Onload does not obey RX, TX ring sizes set in the kernel, but instead uses the values specified by
EF_RXQ_SIZE and EF_TXQ_SIZE. Both default to 512.

Devices
The efrm driver used by Onload supports a maximum of 64 devices.

Changes to Behavior
Onload exhibits the following changes to behavior compared with the kernel stack.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 186Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=186

Multithreaded Applications Termination
As Onload handles networking in the context of the calling application's thread it is
recommended that applications ensure all threads exit cleanly when the process terminates. In
particular the exit() function causes all threads to exit immediately - even those in critical
sections. This can cause threads currently within the Onload stack holding the per stack lock to
terminate without releasing this shared lock - this is particularly important for shared stacks
where a process sharing the stack could ‘hang’ when Onload locks are not released.

An unclean exit can prevent the Onload kernel components from cleanly closing the application's
TCP connections, a message similar to the following will be observed:

[onload] Stack [0] released with lock stuck

and any pending TCP connections will be reset. To prevent this, applications should always
ensure that all threads exit cleanly.

Thread Cancellation
Unexpected behavior can result when an accelerated application uses a pthread_cancel function.
There is increased risk from multi-threaded applications or a
PTHREAD_CANCEL_ASYNCHRONOUS thread calling a non-async safe function. Onload users
are strongly advised that applications should not use pthread_cancel functions.

Packet Capture
Packets delivered to an application via the accelerated path are not visible to the OS kernel. As a
result, diagnostic tools such as tcpdump and wireshark do not capture accelerated packets. The
supplied onload_tcpdump application does support capture of UDP and TCP packets from
Onload stacks - Refer to Appendix G: onload_tcpdump for details.

Firewalls
Packets delivered to an application via the accelerated path are not visible to the OS kernel. As a
result, these packets are not visible to the kernel firewall (iptables) and therefore firewall rules will
not be applied to accelerated traffic. The onload_iptables feature can be used to enforce Linux
iptables rules as hardware filters on the Solarflare adapter, refer to Appendix I: onload_iptables.

Note: Hardware filtering on the network adapter will ensure that accelerated applications receive traffic
only on ports to which they are bound.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 187Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=187

Socket Visibility to System Tools
With the exception of ‘listening’ sockets, TCP sockets accelerated by Onload are not visible to
the netstat tool. UDP sockets are visible to netstat.

Accelerated sockets appear in the /proc directory as symbolic links to /dev/onload. Tools
that rely on /proc will probably not identify the associated file descriptors as being sockets.
Refer to File Descriptors, Stacks, and Sockets for more details.

Accelerated sockets can be inspected in detail with the Onload onload_stackdump tool, which
exposes considerably more information than the regular system tools. For details of
onload_stackdump refer to Appendix E: onload_stackdump.

Signals
If an application receives a SIGSTOP signal, it is possible for the processing of network events to
be stalled in an Onload stack used by the application. This happens if the application is holding a
lock inside the stack when the application is stopped, and if the application remains stopped for a
long time, this can cause TCP connections to time-out.

A signal which terminates an application can prevent threads from exiting cleanly. Refer to
Multithreaded Applications Termination for more information.

Undefined content can result when a signal handler uses the third argument (ucontext) and if the
signal is postponed by Onload. To avoid this, use the Onload module option
safe_signals_and_exit=0 or use EF_SIGNALS_NOPOSTPONE to prevent specific signals
being postponed by Onload.

Onload and IP_MULTICAST_TTL
Onload will act in accordance with RFC 791 when it comes to the IP_MULTICAST_TTL setting.
Using Onload, if IP_MULTICAST_TTL=0, packets will never be transmitted on the wire.

This differs from the Linux kernel where the following behavior has been observed:

Kernel - IP_MULTICAST_TTL 0 - if there is a local listener, packets will not be transmitted on the
wire.

Kernel - IP_MULTICAST_TTL 0 - if there is NO local listener, packets will always be transmitted
on the wire.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 188Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=188

Source/Policy Based Routing
OpenOnload 201710 / EnterpriseOnload 6.0

The Onload 201710 and EnterpriseOnload 6.0 releases include support for source based policy
routing for unicast and multicast packets. The following are supported:

• source ip address

• destination ip address

• outgoing interface (SO_BINDTODEVICE)

• TOS (Type of Service)

Policy rules based on other criteria are not supported and will be ignored by Onload.

Earlier Onload Versions

Earlier Onload versions do not support source based or policy based routing. Whereas the Linux
kernel will select a route and interface based on routing metrics, Onload will select any of the
valid routes and Onload interfaces to a destination that are available.

The EF_TCP_LISTEN_REPLIES_BACK environment variable provides a pseudo source-based
routing solution. This option forces a reply to an incoming SYN to ignore routes and reply to the
originating network interface.

Enabling this option will allow new TCP connections to be setup, but does not guarantee that all
replies from an Onloaded application will go via the receiving interface - and some re-ordering of
the routing table might be needed to guarantee this OR an explicit route (to go via the receiving
interface) should be added to the routing table.

Routing Table Metrics
Onload, from version 201606, introduced support for routing table metrics, therefore, if two
entries in the routing table will route traffic to the destination address, the entry with the best
metric will be selected even if that means routing over an unaccelerated interface.

Multipath Routes
Onload does not support a multipath route simultaneously via Onload-accelerated and non-
Onload-accelerated interfaces. The paths in a multipath route should either all be acceleratable,
or all be non-acceleratable.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 189Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=189

Reverse Path Filtering
Onload does not support Reverse Path Filtering. When Onload cannot route traffic to a remote
endpoint over an accelerated interface (no suitable route table entry), the traffic will be handled
via the kernel.

SO_REUSEPORT
Onload vs. kernel behavior is described in Application Clustering.

Thread Safe
Onload assumes that file descriptor modifications are thread-safe and that file descriptors are not
concurrently modified by different threads. Concurrent access should not cause problems. This is
different from kernel behaviour and users should set EF_FDS_MT_SAFE=0 if the application is
not considered thread-safe.

Similar consideration should be given when using epoll() where default concurrency control
are disabled in Onload. Users should set EF_EPOLL_MT_SAFE=0.

Control of Duplicated Sockets
When a socket has been duplicated, for example, using fork(), and where the parent fd is
controlled by the kernel, the child fd controlled by Onload. Changes by the kernel using fcntl() to
modify flags such as O_NONBLOCK will not be reflected in the Onload socket.

UDP Sockets shutdown()
When a kernel UDP socket is unconnected, a shutdown() call will prompt a blocking recv()
operation on the socket to successfully complete. When an Onload UDP socket is unconnected,
a shutdown() call does not successfully complete a blocking recv() call and thereafter the socket
fd cannot be reused.

When a UDP socket is connected, kernel and Onload behavior is the same, a shutdown() call will
prompt a blocking recv() operation to complete successfully.

Note: Kernel behavior might differ between different kernel versions.

SOF_TIMESTAMPING_OPT_ID
Onload does not support the SOF_TIMESTAMPING_OPT_ID socket option.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 190Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=190

Limits to Acceleration
Onload has the following limits to acceleration.

IP Fragmentation
Fragmented IP traffic is not accelerated by Onload on the receive side, and is instead received
transparently via the kernel stack. IP fragmentation is rarely seen with TCP, because the TCP/IP
stacks segment messages into MTU-sized IP datagrams. With UDP, datagrams are fragmented by
IP if they are too large for the configured MTU. Refer to Fragmented UDP for a description of
Onload behavior.

Broadcast Traffic
Broadcast sends and receives function as normal but will not be accelerated. Multicast traffic can
be accelerated.

IPv6 Traffic
The following are not supported when Onload is accelerating IPv6 traffic:

• Multicast traffic is not accelerated

• Fragmented packets are not accelerated

• IPv6 specific socket options are not supported except IPV6_V6ONLY

• SYN cookies are not supported

• Flow information is neither set not considered

• Opportunistic packet processing

IPv6 is not supported when using the Onload extensions API: delegated send or zero-copy send.
TCP NOP Options

Onload will silently discard packets that include IP header No Operation (NOP) options. Discards
will not increment drop packet counters.

Onload will process packets that include NOP options in the TCP header, but the options
themselves will be ignored.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 191Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=191

IPv6 Kernel Support
If the kernel does not support IPv6, the following error message is output:

sock_create(10, <1 or 2>, 0) failed (-97)

where

• -97 is the error code EAFNOSUPPORT (Address family not supported by protocol)

• the other numbers indicate an IPv6 TCP or UDP socket

One possible cause of this error is when using Java which often creates IPv6 sockets alongside
IPv4 sockets.

Raw Sockets
Raw Socket sends and receives function as normal but will not be accelerated.

Socketpair and UNIX Domain Sockets
Onload will intercept, but does not accelerate the socketpair() system call. Sockets created
with socketpair() will be handled by the kernel. Onload also does not accelerate UNIX
domain sockets.

UDP sendfile()
The UDP sendfile()method is not currently accelerated by Onload. When an Onload
accelerated application calls sendfile() this will be handled seamlessly by the kernel.

Statically Linked Applications
Onload will not accelerate statically linked applications. This is due to the method in which
Onload intercepts libc function calls (using LD_PRELOAD).

Local Port Address
Onload is limited to OOF_LOCAL_ADDR_MAX number of local interface addresses. A local address
can identify a physical port or a VLAN, and multiple addresses can be assigned to a single
interface where each address contributes to the maximum value. Users can allocate additional
local interface addresses by increasing the compile time constant OOF_LOCAL_ADDR_MAX in
the /src/lib/efthrm/oof_impl.h file and rebuilding Onload. In onload-201205
OOF_LOCAL_ADDR_MAX was replaced by the onload module option
max_layer2_interfaces.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 192Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=192

Bonding, Link Aggregation
• Onload will only accelerate traffic over 802.3ad and active-backup bonds.

• Onload will not accelerate traffic if a bond contains any slave interfaces that are not supported
network devices.

• Adding an unsupported network device to a bond that is currently accelerated by Onload can
result in unexpected results such as connections being reset.

• Acceleration of bonded interfaces in Onload requires a kernel configured with sysfs support
and a bonding module version of 3.0.0 or later.

• Traffic on the backup link is not filtered.

In cases where Onload will not accelerate the traffic it will continue to work via the OS network
stack.

VLANs
The following limitations apply to VLANs:

• Onload will only accelerate traffic over VLANs where the master device is either a Solarflare
network device, or over a bonded interface that is accelerated. If the VLAN's master is
accelerated, then so is the VLAN interface itself.

• Nested VLAN tags are not accelerated, but will function as normal.

• The ifconfig command will return inconsistent statistics on VLAN interfaces (not master
interface).

• When a Solarflare VLAN tagged interface is subsequently placed in a bond, the interface will
continue to be accelerated, but the bond is not accelerated.

• Using SFN8000 and X2 series adapters with the low-latency firmware variant, the following
limitation applies:

Hardware filters installed by Onload on the adapter will only act on the IP address and port,
but not the VLAN identifier. Therefore if the same IP address:port combination exists on
different VLAN interfaces, only the first interface to install the filter will receive the traffic.

This limitation does not apply to SFN8000 and X2 series adapters using the full-feature
firmware variant.

In cases where Onload will not accelerate the traffic it will continue to work via the OS network
stack.

For more information and details and configuration options refer to the Setting Up VLANs section
of the Solarflare Server Adapter User Guide.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 193Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=193

Ethernet Bridge Configuration
Onload does not currently support acceleration of interfaces added to an Ethernet bridge
configured/added with the Linux brctl command.

TCP RTO During Overload Conditions
Using Onload, under very high load conditions an increased frequency of TCP retransmission
timeouts (RTOs) might be observed. This has the potential to occur when a thread servicing the
stack is descheduled by the CPU whilst still holding the stack lock thus preventing another
thread from accessing/polling the stack. A stack not being serviced means that ACKs are not
received in a timely manner for packets sent, resulting in RTOs for the unacknowledged packets
and increased jitter on the Onload stack.

Enabling the per stack environment variable EF_INT_DRIVEN can reduce the likelihood of this
behavior and reduce jitter by ensuring the stack is serviced promptly. TCP with Jumbo Frames

When using jumbo frames with TCP, Onload will limit the MSS to 2048 bytes to ensure that
segments do not exceed the size of internal packet buffers.

This should present no problems unless the remote end of a connection is unable to negotiate
this lower MSS value.

Packet Loss on the Transmission Path
Occasionally Onload needs to send a packet, which would normally be accelerated, via the
kernel. This occurs when there is no destination address entry in the ARP table or to prevent an
ARP table entry from becoming stale.

By default, the Linux sysctl, unres_qlen, will enqueue three packets per unresolved address
when waiting for an ARP reply, and on a server subject to a very high UDP or TCP traffic load
this can result in packet loss on the transmit path and packets being discarded.

The unres_qlen value can be identified using the following command:

sysctl -a | grep unres_qlen
net.ipv4.neigh.eth2.unres_qlen = 3
net.ipv4.neigh.eth0.unres_qlen = 3
net.ipv4.neigh.lo.unres_qlen = 3
net.ipv4.neigh.default.unres_qlen = 3

Changes to the queue lengths can be made permanent in the /etc/sysctl.conf file. It is
recommended to set the unres_qlen value to at least 50.

If packet discards are suspected, this extremely rare condition can be indicated by the cp_defer
counter produced by the onload_stackdump lots command on UDP sockets or from the
unresolved_discards counter in the Linux /proc/net/stat arp_cache file.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 194Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=194

TCP Packets with Unsupported Routing
If TCP packets are received over an Onload accelerated interface, but Onload cannot find a
suitable Onload accelerated return route, no response will be sent resulting in the connection
timing out.

Application Clustering
For details of Application Clustering, refer to Application Clustering.

• Onload matches the Linux kernel implementation such that clustering is not supported for
multicast traffic and where setting of SO_REUSEPORT has the same effect as
SO_REUSEADDR.

• Calling connect() on a TCP socket which was previously subject to a bind() call is not
currently supported. This will be supported in a future release.

• An application cluster will not persist over adapter/server/driver reset. Before restarting the
server or resetting the adapter the Onload applications should be terminated.

• The environment variable EF_CLUSTER_RESTART determines the behavior of the cluster
when the application process is restarted - refer to EF_CLUSTER_RESTART in Appendix A:
Parameter Reference.

• If the number of sockets in a cluster is less than EF_CLUSTER_SIZE, a portion of the received
traffic will be lost.

• There is little benefit when clustering involves a TCP loopback listening socket as connections
will not be distributed amongst all threads. A non-loopback listening socket - which might
occasionally get some loopback connections can benefit from Application Clustering.

Duplicate IP or MAC Addresses
Onload does not support multiple interfaces with the same IP address or MAC address.

Known Issues with Epoll
Onload supports different implementations of epoll controlled by the EF_UL_EPOLL environment
variable - see Multiplexed I/O for configuration details.

There are various limitations and differences in Onload vs. kernel behavior - refer to Multiplexed
I/O for details.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 195Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=195

• When using EF_UL_EPOLL=1 or 3, it has been identified that the behavior of epoll_wait()
differs from the kernel when the EPOLLONESHOT event is requested, resulting in two
‘wakeups’ being observed, one from the kernel and one from Onload. This behavior is
apparent on SOCK_DGRAM and SOCK_STREAM sockets for all combinations of
EPOLLONESHOT, EPOLLIN and EPOLLOUT events. This applies for all types of accelerated
sockets. EF_EPOLL_CTL_FAST is enabled by default and this modifies the semantics of epoll.
In particular, it buffers up calls to epoll_ctl() and only applies them when
epoll_wait() is called. This can break applications that do epoll_wait() in one thread
and epoll_ctl() in another thread. The issue only affects EF_UL_EPOLL=2 and the
solution is to set EF_EPOLL_CTL_FAST=0 if this is a problem. The described condition does
not occur if EF_UL_EPOLL=1 or EF_UL_EPOLL=3.

• When EF_EPOLL_CTL_FAST is enabled and an application is testing the readiness of an epoll
file descriptor without actually calling epoll_wait(), for example by doing epoll within
epoll() or epoll within select(), if one thread is calling select() or epoll_wait() and
another thread is doing epoll_ctl(), then EF_EPOLL_CTL_FAST should be disabled. This
applies when using EF_UL_EPOLL 1, 2 or 3.

If the application is monitoring the state of the epoll file descriptor indirectly, for example by
monitoring the epoll fd with poll, then EF_EPOLL_CTL_FAST can cause issues and should be
set to zero.

To force Onload to follow the kernel behavior when using the epoll_wait() call, the
following variables should be set:

EF_UL_EPOLL=2

EF_EPOLL_CTL_FAST=0

EF_EPOLL_CTL_HANDOFF=0 (when using EF_UL_EPOLL=1)

• A socket should be removed from an epoll set only when all references to the socket are
closed.

With EF_UL_EPOLL=1 (default) or EF_UL_EPOLL=3, a socket is removed from the epoll set if
the file descriptor is closed, even if other references to the socket exist. This can cause
problems if file descriptors are duplicated using dup(), dup2() or fork(). For example:

s = socket();
s2 = dup(s);
epoll_ctl(epoll_fd, EPOLL_CTL_ADD, s, ...);
close(s); /* socket referenced by s is removed from epoll set when using
onload */

Workaround is set EF_UL_EPOLL=2.

• When Onload is unable to accelerate a connected socket, for example because no route to the
destination exists which uses a Solarflare interface, the socket will be handed off to the kernel
and is removed from the epoll set. Because the socket is no longer in the epoll set, attempts to
modify the socket with epoll_ctl() will fail with the ENOENT (descriptor not present) error.
The described condition does not occur if EF_UL_EPOLL=1 or 3.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 196Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=196

• If an epoll file descriptor is passed to the read() or write() functions these will return a
different errorcode than that reported by the kernel stack. This issue exists for all
implementations of epoll.

• When EPOLLET is used and the event is ready, epoll_wait() is triggered by ANY event on
the socket instead of the requested event. This issue should not affect application correctness.

• Users should be aware that if a server is overclocked the epoll_wait() timeout value will
increase as CPU MHz increases resulting in unexpected timeout values. This has been
observed on Intel based systems and when the Onload epoll implementation is
EF_UL_EPOLL=1 or 3. Using EF_UL_EPOLL=2 this behavior is not observed.

• On a spinning thread, if epoll acceleration is disabled by setting EF_UL_EPOLL=0, sockets on
this thread will be handed off to the kernel, but latency will be worse than expected kernel
socket latency.

• To ensure that non-accelerated file descriptors are checked in poll and select functions, the
following options should be disabled (set to zero):

• EF_SELECT_FAST and EF_POLL_FAST

• When using poll() and select() calls, to ensure that non-accelerated file descriptors are
checked when there are no events on any accelerated descriptors, set the following options:

• EF_POLL_FAST_USEC and EF_SELECT_FAST_USEC, setting both to zero.

Nested Epoll Sets
When an epoll set includes accelerated sockets and is nested inside another epoll set, the
following can occur with the outer set:

• it might not always get notified about socket readiness

• after a socket becomes ready, its state cannot be cleared.

This limitation is known to affect EF_UL_EPOLL=3.

Timing Issues and Spinning
Onload users should consider that as different software is being run, timings will be affected
which can result in unexpected scheduling behavior and memory use. Spinning applications, in
particular, require a dedicated core per spinning Onload thread.

Configuration Issues
Onload has the following configuration issues.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 197Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=197

Mixed Adapters Sharing a Broadcast Domain
Onload should not be used when Solarflare and non-Solarflare interfaces in the same network
server are configured in the same broadcast domain, as depicted by the following figure.

Note: A Broadcast domain can be a local network segment or VLAN.

Figure 26: Mixed Adapters Sharing a Broadcast Domain

Broadcast domain
Server-S2

non-Solarflare

Solarflare

Server-S1

NIC

X26389-031422

When an originating server (S1) sends an ARP request to a remote server (S2) having more than
one interface within the same broadcast domain, ARP responses from S2 will be generated from
all interfaces and it is non-deterministic which response the originator uses. When Onload
detects this situation, it prompts a message identifying 'duplicate claim of ip address'
to appear in the (S1) host syslog as a warning of potential problems.

Problem 1

Traffic from S1 to S2 can be delivered through either of the interfaces on S2, irrespective of the
IP address used. This means that if one interface is accelerated by Onload and the other is not,
you might or might not get acceleration.

To resolve the situation (for the current session) issue the following command:

echo 1 >/proc/sys/net/ipv4/conf/all/arp_ignore

or to resolve it permanently add the following line to the /etc/sysctl.conf file:

net.ipv4.conf.all.arp_ignore = 1

and run the sysctl command for this be effective.

sysctl -p

These commands ensure that an interface will only respond to an ARP request when the IP
address matches its own. Refer to the Linux documentation Linux/Documentation/
networking/ip-sysctl.txt for further details.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 198Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=198

Problem 2

A more serious problem arises if one interface on S2 carries Onload accelerated TCP connections
and another interface on the same host and same broadcast domain is non-Solarflare:

A TCP packet received on the non-Solarflare interface can result in accelerated TCP connections
being reset by the kernel stack and therefore appear to the application as if TCP connections are
being dropped/terminated at random.

To prevent this situation the Solarflare and non-Solarflare interfaces should not be configured in
the same broadcast domain. The solution described for Problem 1 above can reduce the
frequency of Problem 2, but does not eliminate it.

TCP packets can be directed to the wrong interface because:

• the originator S1 needs to refresh its ARP table for the destination IP address - so sends an
ARP request and subsequently directs TCP packets to the non-Solarflare interface

• a switch within the broadcast domain broadcasts the TCP packets to all interfaces.

IGMP Operation and Multicast Process Priority
It is important that the priority of processes using UDP multicast do not have a higher priority
than the kernel thread handling the management of multicast group membership.

Failure to observe this could lead to the following situations:

1. Incorrect kernel IGMP operation.

2. The higher priority user process is able to effectively block the kernel thread and prevent it
from identifying the multicast group to Onload which will react by dropping packets received
for the multicast group.

A combination of indicators can identify this:

• ethtool reports good packets being received while multicast mismatch does not increase.

• ifconfig identifies data is being received.

• onload_stackdump will show the rx_discard_mcast_mismatch counter increasing.

Lowering the priority of the user process will remedy the situation and allow the multicast
packets through Onload to the user process.

Dynamic Loading
If the onload library libonload is opened with dlopen() and closed with dlclose() it can
leave the application in an unpredictable state. Users are advised to use the RTLD_NODELETE
flag to prevent the library from being unloaded when dlclose() is called.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 199Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=199

Huge Pages with IPC Namespace
Huge page support should not be enabled if the application uses IPC namespaces and the
CLONE_NEWIPC flag. Failure to observe this might result in a segfault.

Huge Pages with Shared Stacks
Processes having the same UID, which share an Onload stack, should not attempt to use huge
pages. Refer to Stack Sharing for limitation details.

Huge Page Size
When using huge pages, it is recommended to avoid setting the page size greater than 2 MB. A
failure to observe this could lead to Onload unable to allocate further buffer table space for
packet buffers.

Huge Pages and shmmni
Users should ensure that the number of system wide shared memory segments (shmmni) exceeds
the number of huge pages required.

• To identify current shmmni setting:

cat /proc/sys/kernel/shmmni

• To set (no reboot required - but not permanent):

echo 8000 > /proc/sys/kernel/shmmni

• To set (permanent - reboot required):

echo "kernel.shmmni=8000" >> /etc/sysctl.conf

For example, if 4000 huge pages are required, increase the current shmmni value by 4000.

Use of vfork() in Java 7 Applications
Onload accelerated Java 7 applications that call vfork() should set the environment variable
EF_VFORK_MODE=2 and thereafter the application should not create sockets or accelerated
pipes in vfork() child before exec.

PIO Not Supported in KVM/ESXi
Due to limitations with write-combine mapping in a virtual guest environment, PIO is not
currently supported for Onload applications running in a virtual machine in KVM or ESXi.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 200Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=200

Users should ensure that EF_PIO is set to 0 for all Onload stacks running in VMs.

IP_MTU_DISCOVER Socket Option
Onload does not support the IP_PMTUDISC_INTERFACE and IP_PMTUDISC_OMIT values for
the IP_MTU_DISCOVER socket option.

Chapter 13: Limitations

UG1586 (v1.2) July 31, 2023
Onload User Guide 201Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=201

Chapter 14

Onload Change History
This chapter provides a brief history of changes, additions and removals to Onload releases
affecting Onload behavior and Onload environment variables.

The OOL column identifies the OpenOnload release supporting the feature. The EOL column
identifies the EnterpriseOnload release supporting the feature (NS = not supported).

Mapping Onload Versions
The following table maps major EnterpriseOnload releases to the closest functionally equivalent
OpenOnload release. Users should always also refer to the Release Notes and Change Logs to
identify feature support in the Enterprise releases.

Table 38: Onload Version Mapping

OpenOnload EnterpriseOnload
201011-u1 1.0

201109-u2 2.0

201310-u2 3.0

201502-u2 4.0

201606-u1 5.0

201811 6.0

201811-u1 6.0

Notes:
1. Version numbers are common from 7.0 onwards.

Features
The following table shows new feature availability in Onload releases from OpenOnload 7.0
onwards.

Chapter 14: Onload Change History

UG1586 (v1.2) July 31, 2023
Onload User Guide 202Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=202

Table 39: Feature Availability

Feature OOL EOL Description/Notes
Controlling access to RX queues on
X3522

8.1 8.1 —

Hardware filter IDs on X3522 8.1 8.1 —

Transmit path warming on X3522 8.1 8.1 —

X3 series adapters supported 8.0 8.0 —

TCPDirect multi-send 7.0 7.1 See TCPDirect User Guide.

IPv6 acceleration 7.0 7.1 See IPv6 Traffic

Equal Cost Multipath routing 7.0 7.1 —

External timestamps received in packet
trailers

7.0 7.1 Refer to onload_timestamping_request

eXpress Data Path filtering 7.0 7.1 See eXpress Data Path (XDP)

IPVLANs 7.0 7.1 IPVLAN

Installation of Onload control plane as
non-root user

7.0 6.0 Default behavior

Environment Variables
The following table shows changes to environment variables in Onload releases from
OpenOnload 7.0 onwards.

Table 40: Environment Variables

Variable OOL EOL Changed Notes
EF_CHALLENGE_ACK_LIMIT — — 8.1 Default and maximum increased

to INT_MAX to match current
Linux kernels.

EF_AF_XDP_ZEROCOPY 8.0 8.0 — Enables zerocopy on AF_XDP
NICs.

EF_CLUSTER_SIZE — — 8.0 Defaults to 0, which disables
clustering.

EF_COMPOUND_PAGES_MODE — — 8.0 Value 1 is obsolete.

EF_EVS_PER_POLL — — 8.0 When EF_POLL_IN_KERNEL is set
the default value is 192.

EF_ICMP_PKTS 8.0 8.0 — Maximum number of ICMP
messages which can be queued
to one Onload stack.

EF_IRQ_MODERATION — — 8.0 Removed.

EF_PACKET_BUFFER_MODE — — 8.0 Modes 1 and 3 removed.

EF_RXQ_MIN — — 8.0 Minimum is 0.

EF_RXQ_SIZE — — 8.0 Minimum is 0.

EF_CTPIO_MAX_FRAME_LEN — — 7.1.3 Maximum value is 4092.

Chapter 14: Onload Change History

UG1586 (v1.2) July 31, 2023
Onload User Guide 203Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=203

Table 40: Environment Variables (cont'd)

Variable OOL EOL Changed Notes
EF_TCP_URG_MODE — — 7.1.3 Default is ignore.

EF_TXQ_LIMIT — — 7.1.2 Removed.

EF_TXQ_RESTART — — 7.1.2 Removed.

EF_TCP_COMBINE_SENDS_MODE 7.1.1 7.1 — Controls how Onload fills packets
in the TCP send buffer.

EF_UDP_CONNECT_HANDOVER — — 7.1 This option now also accepts a
value of 2, which will cause all
UDP sockets to be handed over
when calling connect(),
regardless of whether the socket
could have been accelerated.

EF_CHALLENGE_ACK_LIMIT 7.0 7.1 — Limit the number of “challenge
ACK packets” sent.
See Limit Challenge ACK Rate.

EF_DEFER_ARP_MAX 7.0 7.1 — Maximum packets to keep while
resolving MAC address.

EF_DEFER_ARP_TIMEOUT 7.0 7.1 — Time to keep packets and try to
resolve MAC address.

EF_INVALID_ACK_RATELIMIT 7.0 7.1 — Limit the ACKs sent because of
invalid incoming TCP packet.
See Limit Duplicate ACK Rate.

EF_POLL_IN_KERNEL 7.0 7.1 — Do polling of eventq in kernel
when using mode 3.

EF_RX_TIMESTAMPING_ORDERIN
G

7.0 7.1 — Select the timestamps to use to
order received packets.

EF_AUTO_FLOWLABELS 7.0 7.1 — Defines whether to generate
non-zero IPv6 flow labels.
Defaults to the sysctl
net.ipv6.auto_flowlabels setting.

EF_USE_DSACK 7.0 7.1 — Controls use of Duplicate
Selective Acknowledgment.
Defaults to 1 (on).

Module Options
Onload has module options:

• To list all onload module options:

modinfo onload
modinfo onload_cplane

• Onload module options can be set in a user-created file (for example onload.conf) in
the /etc/modprobe.d directory. For example:

options onload max_layer2_interfaces=16
options onload_cplane max_layer2_interfaces=16

Chapter 14: Onload Change History

UG1586 (v1.2) July 31, 2023
Onload User Guide 204Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=204

The following table shows changes to module options in Onload releases from OpenOnload 7.0
onwards.

Table 41: Module Options

Option OOL EOL Changed Notes
cplane_track_xdp 7.1.2 7.1 — Track XDP programs linked to

network interfaces. It is needed
for EF_XDP_MODE=compatible
mode to function properly

cplane_use_prefsrc
_as_local

7.1 7.1 — Use a preferred source of any
accelerated route in the same
way as an address assigned to
accelerated interface.

oo_accelerate_veth 7.0 7.1 — Controls whether Onload will
accelerate traffic over veth
interfaces.

Note: The user should always refer to the Onload distribution Release Notes and Change Log. These are
available from the NIC Software and Drivers web page.

Adapter Net Drivers
The following table identifies the Solarflare adapter net driver included in Onload releases from
OpenOnload 7.0 onwards.

Table 42: Net Drivers

OOL EOL Net Driver Notes
8.1.0.15 8.1.0.3 5.3.14.1019 Linux kernels 4.15 - 6.3

8.0.2.51 NS 5.3.13.1006 Linux kernels 4.15 - 5.18

8.0.1.39 NS 5.3.13.1006 Linux kernels 4.15 - 5.17

8.0.0.34 NS 5.3.12.1023 Linux kernels 4.15 - 5.15

7.1.3.202 7.1.3.4 4.15.14.1002 Linux kernels 4.4 - 5.12

7.1.2.141 7.1.2.3 4.15.12.1008 Linux kernels 4.4 - 5.12

7.1.1.75 7.1.1.2 4.15.12.1008 Linux kernels 4.4 - 5.9

7.1.0.218 NS 4.15.6.1003 Linux kernels 3.10 - 5.4

NS 6.0.6 4.15.14.1001 —

NS 6.0.5 4.15.12.1008 —

NS 6.0.4 4.15.6.1004 —

NS 6.0.3 4.15.6.1000 —

NS 6.0.2 4.15.5.1003 —

7.0.0.173 NS 4.15.4.1003 Linux kernels 3.10 - 5.2

Chapter 14: Onload Change History

UG1586 (v1.2) July 31, 2023
Onload User Guide 205Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=205

Appendix A

Parameter Reference
This appendix gives reference descriptions of parameters that can be used with Onload.

Parameter List
The parameter list details the following:

• The environment variable used to set the parameter.

• Parameter name: the name used by onload_stackdump.

• The default, minimum and maximum values.

• Whether the variable scope applies per-stack or per-process.

• Description.

EF_ACCEPTQ_MIN_BACKLOG
• Name: acceptq_min_backlog
• Default: 1
• Scope: per-stack

Sets a minimum value to use for the 'backlog' argument to the listen() call. If the application
requests a smaller value, use this value instead.

EF_ACCEPT_INHERIT_NONBLOCK
• Name: accept_force_inherit_nonblock
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

If set to 1, TCP sockets accepted from a listening socket inherit the O_NONBLOCK flag from the
listening socket.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 206Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=206

EF_AF_XDP_ZEROCOPY
• Name: af_xdp_zerocopy
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Enables zerocopy on AF_XDP NICs. Support for zerocopy is required.

EF_AUTO_FLOWLABELS
• Name: auto_flowlabels
• Default: 0
• Minimum: 0
• Maximum: 3
• Scope: per-process

If set to 1, will generate non-zero IPv6 flow labels. Defaults to sysctl net.ipv6.auto_flowlabels
setting.

EF_BINDTODEVICE_HANDOVER
• Name: bindtodevice_handover
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Hand sockets over to the kernel stack that have the SO_BINDTODEVICE socket option enabled.

EF_BURST_CONTROL_LIMIT
• Name: burst_control_limit
• Default: 0
• Scope: per-stack

If non-zero, limits how many bytes of data are transmitted in a single burst. This can be useful to
avoid drops on low-end switches which contain limited buffering or limited internal bandwidth.
This is not usually needed for use with most modern, high-performance switches.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 207Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=207

EF_BUZZ_USEC
• Name: buzz_usec
• Default: 0
• Scope: per-stack

Sets the timeout in microseconds for lock buzzing options. Set to zero to disable lock buzzing
(spinning). Will buzz forever if set to -1. Also set by the EF_POLL_USEC option.

EF_CHALLENGE_ACK_LIMIT
• Name: challenge_ack_limit
• Default: INT_MAX
• Minimum: 0
• Maximum: INT_MAX
• Scope: per-stack

Limit the number of “challenge ACK packets” sent as part of TCP blind window attack mitigation,
RFC 5961; in packets per second. The limitation applies for each Onload stack separately.

The value from /proc/sys/net/ipv4/tcp_challenge_ack_limit is used by default.

EF_CLUSTER_HOT_RESTART
• Name: cluster_hot_restart_opt
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

This option controls whether or not clusters support the hot/seamless restart of applications.
Enabling this reuses existing stacks in the cluster to allow up to two processes per stack to bind
to the same port simultaneously.

Note: It is required there will be as many new sockets on the port as old ones; traffic will be lost otherwise
when the old sockets close.

• 0 - disable per-port stack sharing (default)

• 1 - enable per-port stack sharing for hot restarts.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 208Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=208

EF_CLUSTER_IGNORE
• Name: cluster_ignore
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

EF_CLUSTER_IGNORE is deprecated, use EF_CLUSTER_SIZE=0 to disable clustering.

When set, this option instructs Onload to ignore attempts to use clusters and effectively ignore
attempts to set SO_REUSEPORT.

EF_CLUSTER_NAME
• Name: cluster_name
• Default: none
• Minimum: none
• Maximum: none
• Scope: per-process

This option sets the name for an Onload stack that is created when using clusters. The name
should have the following maximum length:

• 5 characters in scalable mode

• 7 characters in normal mode with EF_CLUSTER_SIZE ≥ 10

• 8 characters in normal mode with EF_CLUSTER_SIZE < 10.

EF_CLUSTER_RESTART
• Name: cluster_restart_opt
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

This option controls the behavior when recreating a stack (e.g. due to restarting a process) in an
SO_REUSEPORT cluster and it encounters a resource limitation such as an orphan stack from the
previous process:

• 0 - return an error

• 1 - terminate the orphan to allow the new process to continue.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 209Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=209

EF_CLUSTER_SIZE
• Name: cluster_size
• Default: 0
• Minimum: 0
• Scope: per-process

If use of SO_REUSEPORT creates a cluster, this option specifies size of the cluster to be created.
This option has no impact if use of SO_REUSEPORT joins a cluster that already exists.

Note: If fewer sockets than specified here join the cluster, then some traffic will be lost. Refer to
Application Clustering for more detail.

EF_COMPOUND_PAGES_MODE
• Name: compound_pages
• Default: 0
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Debug option, not suitable for normal use.

For packet buffers, allocate system pages in the following way:

• 0 - try to use compound pages if possible (default)

• 1 - obsolete, same behavior as 0

• 2 - do not use compound pages at all.

EF_CONG_AVOID_SCALE_BACK
• Name: cong_avoid_scale_back
• Default: 0
• Scope: per-stack

When >0, this option slows down the rate at which the TCP congestion window is opened. This
can help to reduce loss in environments where there is lots of congestion and loss.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 210Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=210

EF_CTPIO
• Name: ctpio
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Controls whether the CTPIO low-latency transmit mechanism is enabled:

• 0 – no (use DMA and/or PIO)

• 1 – enable CTPIO if available (default)

• 2 – enable CTPIO and fail stack creation if not available.

Mode 1 will fall back to DMA or PIO if CTPIO is not currently available. Mode 2 will fail to create
the stack if the hardware supports CTPIO but CTPIO is not currently available. On hardware that
does not support CTPIO there is no difference between mode 1 and mode 2.

In all cases, CTPIO is only be used for packets if length ≤ EF_CTPIO_MAX_FRAME_LEN and
when the VI's transmit queue is empty. If these conditions are not met DMA or PIO is used, even
in mode 2.

Note: CTPIO is currently only available on x86_64 systems.

Note: Mode 2 will not prevent a stack from operating without CTPIO in the event that CTPIO allocation is
originally successful but then fails after an adapter is rebooted or hotplugged while that stack exists.

EF_CTPIO_CT_THRESH
• Name: ctpio_ct_thresh
• Default: 64
• Minimum: 0
• Scope: per-stack

Experimental: Sets the cut-through threshold for CTPIO transmits, when EF_CTPIO_MODE=ct.
This option is for test purposes only and is likely to be changed or removed in a future release.

EF_CTPIO_MAX_FRAME_LEN
• Name: ctpio_max_frame_len
• Default: 500 if EF_CTPIO_MODE=ct, else 1518
• Minimum: 0
• Maximum: 4092
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 211Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=211

Sets the maximum frame length for the CTPIO low-latency transmit mechanism. Packets up to
this length will use CTPIO, if CTPIO is supported by the adapter and if CTPIO is enabled (see
EF_CTPIO). Longer packets will use PIO and/or DMA. The cost per byte of packet payload varies
between host architectures, as does the effect of packet size on the probability of poisoning, and
so on some hosts it might be beneficial to reduce this value.

EF_CTPIO_MODE
• Name: ctpio_mode
• Default: sf-np
• Scope: per-stack

CTPIO transmission mode:

• sf - store and forward

The NIC will buffer the entire packet before starting to send it on the wire.

• sf-np - store and forward, no poison

Similar to sf mode but the NIC will guarantee never to emit a poisoned frame under any
circumstances. This will force store-and-forward semantics for all users of CTPIO on the same
port.

• ct - cut-through

The NIC will start to send the outgoing packet onto the wire before it has been fully received,
improving latency at the cost of occasionally transmitting a poisoned frame under some
circumstances (such as the process being descheduled before it has finished writing the packet
to the NIC).

EF_CTPIO_SWITCH_BYPASS
• Name: ctpio_switch_bypass
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Allows CTPIO to be enabled on interfaces using the adapter's internal switch (i.e. on interfaces
running full-feature firmware). This switching functionality is used to implement hardware
multicast loopback and hardware loopback between interfaces, as used by virtual machines.
CTPIO bypasses the switch, and hence is not compatible with those features.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 212Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=212

EF_DEFER_ARP_MAX
• Name: defer_arp_pkts
• Default: 128
• Minimum: 0
• Maximum: 4096
• Scope: per-stack

Limits the total number of packets to queue in a stack for all next hops while waiting for the OS
to complete neighbor resolution (via ARP protocol for IPv4 or Neighbor Discovery for IPv6).

EF_DEFER_ARP_TIMEOUT
• Name: defer_arp_timeout
• Default: 60
• Minimum: 1
• Maximum: 600
• Scope: per-stack

Onload now handles the deferral of packet sends during neighbor resolution (via ARP protocol
for IPv4 or Neighbor Discovery for IPv6) rather than delegating the sends to the OS This option
specifies a timeout (seconds) to wait for the OS to complete neighbor resolution before Onload
sends deferred packets.

EF_DEFER_WORK_LIMIT
• Name: defer_work_limit
• Default: 32
• Scope: per-stack

The maximum number of times that work can be deferred to the lock holder before we force the
unlocked thread to block and wait for the lock

EF_DELACK_THRESH
• Name: delack_thresh
• Default: 1
• Minimum: 0
• Maximum: 65535
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 213Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=213

This option controls the delayed acknowledgment algorithm. A socket can receive up to the
specified number of TCP segments without generating an ACK. Setting this option to 0 disables
delayed acknowledgments.

Note: This option is overridden by EF_DYNAMIC_ACK_THRESH, so both options need to be set to 0 to
disable delayed acknowledgments.

EF_DONT_ACCELERATE
• Name: dont_accelerate
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Do not accelerate by default. This option is usually used with onload_set_stackname() to
allow individual sockets to be accelerated selectively.

EF_DYNAMIC_ACK_THRESH
• Name: dynack_thresh
• Default: 16
• Minimum: 0
• Maximum: 65535
• Scope: per-stack

If set to >0 this will turn on dynamic adaptation of the ACK rate to increase efficiency by
avoiding ACKs when they would reduce throughput. The value is used as the threshold for
number of pending ACKs before an ACK is forced. If set to zero then the standard delayed-ack
algorithm is used.

EF_ENDPOINT_PACKET_RESERVE
• Name: endpoint_packet_reserve
• Default: 0
• Minimum: 0
• Maximum: 1024
• Scope: per-stack

This option enables reservation of packets per endpoint. No other endpoints would be able to
use that reserved quota. Furthermore, new endpoints will only be created if there are enough
free packets to reserve. Currently, this option is limited to TCP sockets and enforced on incoming
TCP connections.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 214Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=214

EF_EPOLL_CTL_FAST
• Name: ul_epoll_ctl_fast
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Avoid system calls in epoll_ctl() when using an accelerated epoll implementation. System
calls are deferred until epoll_wait() blocks, and in some cases removed completely. This
option improves performance for applications that call epoll_ctl() frequently.

Caveats:

• This option has no effect when EF_UL_EPOLL=0.

• Do not turn this option on if your application uses dup(), fork() or exec() with epoll file
descriptors or with the sockets monitored by epoll.

• If you monitor the epoll fd in another poll, select or epoll set, and have this option enabled, it
might not give correct results.

• If you monitor the epoll fd in another poll, select or epoll set, and the effects of
epoll_ctl() are latency critical, then this option can cause latency spikes or even deadlock.

• With EF_UL_EPOLL=2, this option is harmful if you are calling epoll_wait() and
epoll_ctl() simultaneously from different threads or processes.

EF_EPOLL_CTL_HANDOFF
• Name: ul_epoll_ctl_handoff
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Allow epoll_ctl() calls to be passed from one thread to another to avoid lock contention, in
EF_UL_EPOLL=1 or 3 case. This optimization is particularly important when epoll_ctl() calls
are made concurrently with epoll_wait() and spinning is enabled.

This option is enabled by default.

Caveat:

• This option can cause an error code returned by epoll_ctl() to be hidden from the
application when a call is deferred. In such cases an error message is emitted to stderr or
the system log.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 215Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=215

EF_EPOLL_MT_SAFE
• Name: ul_epoll_mt_safe
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

This option disables concurrency control inside the accelerated epoll implementations, reducing
CPU overhead. It is safe to enable this option if, for each epoll set, all calls on the epoll set and all
calls that can modify a member of the epoll set are concurrency safe. Calls that can modify a
member are bind(), connect(), listen() and close().

This option improves performance with EF_UL_EPOLL=1 or 3 and also with EF_UL_EPOLL=2
and EF_EPOLL_CTL_FAST=1.

EF_EPOLL_SPIN
• Name: ul_epoll_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in epoll_wait() calls until an event is satisfied or the spin timeout expires (whichever is
the sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set by
EF_SPIN_USEC or EF_POLL_USEC.

EF_EVS_PER_POLL
• Name: evs_per_poll
• Default: 64
• Minimum: 0
• Maximum: 0x7fffffff
• Scope: per-stack

Sets the number of hardware network events to handle before performing other work. This is a
hint for internal tuning, and the actual number handled might differ. The value chosen represents
a trade-off: Larger values increase batching (which typically improves efficiency) but can also
increase the working set size (which harms cache efficiency). When EF_POLL_IN_KERNEL is set
(either explicitly or implicitly) then the default value is 192, to increase batching efficiency.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 216Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=216

EF_FDS_MT_SAFE
• Name: fds_mt_safe
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

This option allows less strict concurrency control when accessing the user-level file descriptor
table, resulting in increased performance, particularly for multi-threaded applications. Single-
threaded applications get a small latency benefit, but multi-threaded applications benefit most
due to decreased cache-line bouncing between CPU cores.

This option is unsafe for applications that make changes to file descriptors in one thread while
accessing the same file descriptors in other threads. For example, closing a file descriptor in one
thread while invoking another system call on that file descriptor in a second thread. Concurrent
calls that do not change the object underlying the file descriptor remain safe.

Calls to bind(), connect(), listen() can change the underlying object. If you call such
functions in one thread while accessing the same file descriptor from the other thread, this
option is also unsafe. In some special cases, any functions may change the underlying object.

Also concurrent calls might happen from signal handlers, so set this to 0 if your signal handlers
call bind(), connect(), listen() or close()

EF_FDTABLE_SIZE
• Name: fdtable_size
• Default: 0
• Scope: per-process

Limit the number of opened file descriptors by this value. If zero, the initial hard limit of open
files (`ulimit -n -H`) is used. Hard and soft resource limits for opened file descriptors (help
ulimit, man 2 setrlimit) are bound by this value.

EF_FDTABLE_STRICT
• Name: fdtable_strict
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 217Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=217

Enables more strict concurrency control for the user-level file descriptor table. Enabling this
option can reduce performance for applications that create and destroy many connections per
second.

EF_FORCE_SEND_MULTICAST
• Name: force_send_multicast
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option causes all multicast sends to be accelerated. When disabled, multicast sends are only
accelerated for sockets that have cleared the IP_MULTICAST_LOOP flag.

This option disables loopback of multicast traffic to receivers on the same host, unless (a) those
receivers are sharing an Onload stack with the sender (see EF_NAME) and EF_MCAST_SEND is
set to 1 or 3, or(b) prerequisites to support loopback to other Onload stacks are met (see
EF_MCAST_SEND).

EF_FORCE_TCP_NODELAY
• Name: tcp_force_nodelay
• Default: 0
• Minimum: 0
• Maximum: 2
• Scope: per-stack

This option allows the user to override the use of TCP_NODELAY. This can be useful in cases
where third-party software is (not) setting this value and the user would like to control its
behavior:

• 0 - do not override

• 1 - always set TCP_NODELAY

• 2 - never set TCP_NODELAY

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 218Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=218

EF_FORK_NETIF
• Name: fork_netif
• Default: 3
• Minimum: CI_UNIX_FORK_NETIF_NONE
• Maximum: CI_UNIX_FORK_NETIF_BOTH
• Scope: per-process

This option controls behavior after an application calls fork():

• 0 - Neither fork parent nor child creates a new Onload stack

• 1 - Child creates a new stack for new sockets

• 2 - Parent creates a new stack for new sockets

• 3 - Parent and child each create a new stack for new sockets.

EF_FREE_PACKETS_LOW_WATERMARK
• Name: free_packets_low
• Default: 0
• Scope: per-stack

Keep free packets number to be at least this value. EF_MIN_FREE_PACKETS defines initialization
behavior, and this value is about normal application runtime. In some combinations of hardware
and software, Onload is not able allocate packets at any context, so it makes sense to keep some
spare packets. Default value 0 is interpreted as EF_RXQ_SIZE/2.

EF_HELPER_PRIME_USEC
• Name: timer_prime_usec
• Default: 250
• Scope: per-stack

Sets the frequency with which software should reset the count-down timer. Usually set to a
value that is significantly smaller than EF_HELPER_USEC to prevent the count-down timer from
firing unless needed. Defaults to (EF_HELPER_USEC/2).

EF_HELPER_USEC
• Name: timer_usec
• Default: 500
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 219Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=219

Timeout in microseconds for the count-down interrupt timer. This timer generates an interrupt if
network events are not handled by the application within the given time. It ensures that network
events are handled promptly when the application is not invoking the network, or is descheduled.

Set this to 0 to disable the count-down interrupt timer. It is disabled by default for stacks that are
interrupt driven.

EF_HIGH_THROUGHPUT_MODE
• Name: rx_merge_mode
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option causes onload to optimize for throughput at the cost of latency.

EF_ICMP_PKTS
• Name: icmp_msg_max
• Default: 64
• Minimum: 2
• Maximum: 1024
• Scope: per-stack

Maximum number of ICMP messages which can be queued to one Onload stack.

EF_INTERFACE_BLACKLIST
• Name: iface_blacklist
• Default: none
• Minimum: none
• Maximum: none
• Scope: per-stack

List of names of interfaces for which use by the stack is denied. Space separated.See
EF_INTERFACE_WHITELIST for notes as the same caveats apply.

Note: The denylist takes priority over the allowlist so an interface present in both lists will not be
accelerated.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 220Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=220

EF_INTERFACE_WHITELIST
• Name: iface_whitelist
• Default: none
• Minimum: none
• Maximum: none
• Scope: per-stack

Space separated list of names of interfaces for which use by the stack is allowed. Beside passing
the network interface of Solarflare NIC itself, it is allowed to provide name of higher order
interface such as VLAN, MACVLAN, team or bond. At stack creation time these names will be
used to identify underlying Solarflare NICs on which the allowlisting operates.

Note: The granularity of allowlisting is limited: all interfaces based on allowlisted Solarflare NICs are
accelerated.

EF_INT_DRIVEN
• Name: int_driven
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Put the stack into an 'interrupt driven' mode of operation. When this option is not enabled
Onload uses heuristics to decide when to enable interrupts, and this can cause latency jitter in
some applications. So enabling this option can help avoid latency outliers.

This option is enabled by default except when spinning is enabled.

This option can be used with spinning to prevent outliers caused when the spin timeout is
exceeded and the application blocks, or when the application is descheduled. In this case we
recommend that interrupt moderation be set to a reasonably high value (e.g. 100 μs) to prevent
too high a rate of interrupts.

EF_INT_REPRIME
• Name: int_reprime
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Enable interrupts more aggressively than the default.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 221Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=221

EF_INVALID_ACK_RATELIMIT
• Name: oow_ack_ratelimit
• Default: 500
• Minimum: 0
• Maximum: 65535
• Scope: per-stack

Limit the rate of ACKs sent because of invalid incoming TCP packet, in milliseconds. The
limitation is applied per-socket. The value from /proc/sys/net/ipv4/
tcp_invalid_ratelimit is used by default.

EF_IRQ_CHANNEL
• Name: irq_channel
• Default: -1
• Minimum: -1
• Maximum: SMAX
• Scope: per-stack

Set the net-driver receive channel that will be used to handle interrupts for this stack. The core
that receives interrupts for this stack will be whichever core is configured to handle interrupts for
the specified net driver receive channel.

EF_IRQ_CORE
• Name: irq_core
• Default: -1
• Minimum: -1
• Maximum: SMAX
• Scope: per-stack

Specify which CPU core interrupts for this stack should be handled on.

Onload interrupts are handled via net driver receive channel interrupts. The sfc_affinity driver is
normally used to choose which net-driver receive channel is used, however this value can be
used to override that mechanism.. It is only possible for interrupts to be handled on the
requested core if a net driver interrupt is assigned to the selected core. Otherwise a nearby core
will be selected.

Note: If the IRQ balancer service is enabled it can redirect interrupts to other cores.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 222Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=222

EF_KEEPALIVE_INTVL
• Name: keepalive_intvl
• Default: 75000
• Scope: per-stack

Default interval between keepalives, in milliseconds.

The value from /proc/sys/net/ipv4/tcp_keepalive_intvl (which is in seconds) is used
to find the default.

EF_KEEPALIVE_PROBES
• Name: keepalive_probes
• Default: 9
• Scope: per-stack

Default number of keepalive probes to try before aborting the connection.

The value from /proc/sys/net/ipv4/tcp_keepalive_probes is used by default.

EF_KEEPALIVE_TIME
• Name: keepalive_time
• Default: 7200000
• Scope: per-stack

Default idle time before keepalive probes are sent, in milliseconds.

The value from /proc/sys/net/ipv4/tcp_keepalive_time (which is in seconds) is used
to find the default.

EF_KERNEL_PACKETS_BATCH_SIZE
• Name: kernel_packets_batch_size
• Default: 1
• Minimum: 0
• Maximum: 64
• Scope: per-stack

In some cases (for example, when using scalable filters), packets that should be delivered to the
kernel stack are instead delivered to Onload. Onload will forward these packets to the kernel, and
can do so in batches of size up to the value of this option.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 223Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=223

EF_KERNEL_PACKETS_TIMER_USEC
• Name: kernel_packets_timer_usec
• Default: 500
• Scope: per-stack

Controls the maximum time for which Onload will queue up a packet that was received by
Onload but should be forwarded to the kernel.

EF_LOAD_ENV
• Name: load_env
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Onload will only consult other environment variables if this option is set. i.e. Clearing this option
will cause all other EF_ environment variables to be ignored.

EF_LOG
• Name: log_category
• Default: 27
• Minimum: 0
• Scope: per-stack

Designed to control how chatty Onload's informative/warning messages are. Specified as a
comma separated list of options to enable and disable (with a minus sign). Valid options are:

• 'banner' (on by default)

• 'resource_warnings' (on by default)

• 'config_warnings' (on by default)

• 'conn_drop' (off by default)

• 'usage_warnings' (on by default).

For example:

• To enable conn_drop:

EF_LOG=conn_drop

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 224Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=224

• To enable conn_drop and turn off resource warnings:

EF_LOG=conn_drop,-resource_warnings

EF_LOG_FILE
• Scope: per-process

When EF_LOG_VIA_IOCTL is unset, the user can direct Onload debug and output data to a
directory/file instead of stdout and instead of the syslog.

EF_LOG_TIMESTAMPS
• Name: log_timestamps
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: global

If enabled this will add a timestamp to every Onload output log entry. Timestamps are originated
from the FRC counter.

EF_LOG_VIA_IOCTL
• Name: log_via_ioctl
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Causes error and log messages emitted by Onload to be written to the system log rather than
written to standard error. This includes the copyright banner emitted when an application creates
a new Onload stack.

By default, Onload logs are written to the application standard error if and only if it is a TTY.

Enable this option when it is important not to change what the application writes to standard
error.

Disable it to guarantee that log goes to standard error even if it is not a TTY.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 225Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=225

EF_MAX_ENDPOINTS
• Name: max_ep_bufs
• Default: 8192
• Minimum: 4
• Maximum: CI_CFG_NETIF_MAX_ENDPOINTS_MAX (default 1<<21)
• Scope: per-stack

This option places an upper limit on the number of accelerated endpoints (sockets, pipes etc.) in
an Onload stack. This option should be set to a power of two between 4 and 2^21. When this
limit is reached listening sockets are not able to accept new connections over accelerated
interfaces. New sockets and pipes created via socket() and pipe() etc. are handed over to
the kernel stack and so are not accelerated.

Note: ~4 syn-receive states consume one endpoint, see also EF_TCP_SYNRECV_MAX.

EF_MAX_PACKETS
• Name: max_packets
• Default: 32768
• Minimum: 1024
• Scope: per-stack

Upper limit on number of packet buffers in each Onload stack. Packet buffers require hardware
resources which may become a limiting factor if many stacks are each using many packet buffers.
This option can be used to limit how much hardware resource and memory a stack uses. This
option has an upper limit determined by the max_packets_per_stack onload module option.

Note: When 'scalable packet buffer mode' is not enabled (see EF_PACKET_BUFFER_MODE) the total
number of packet buffers possible in aggregate is limited by a hardware resource.

EF_MAX_RX_PACKETS
• Name: max_rx_packets
• Default: 24576
• Minimum: 0
• Maximum: 1000000000
• Scope: per-stack

The maximum number of packet buffers in a stack that can be used by the receive data path. This
should be set to a value smaller than EF_MAX_PACKETS to ensure that some packet buffers are
reserved for the transmit path.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 226Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=226

EF_MAX_TX_PACKETS
• Name: max_tx_packets
• Default: 24576
• Minimum: 0
• Maximum: 1000000000
• Scope: per-stack

The maximum number of packet buffers in a stack that can be used by the transmit data path.
This should be set to a value smaller than EF_MAX_PACKETS to ensure that some packet buffers
are reserved for the receive path.

EF_MCAST_JOIN_BINDTODEVICE
• Name: mcast_join_bindtodevice
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When a UDP socket joins a multicast group (using IP_ADD_MEMBERSHIP or similar), this option
causes the socket to be bound to the interface that the join was on. The benefit of this is that it
ensures the socket will not accidentally receive packets from other interfaces that happen to
match the same group and port. This can sometimes happen if another socket joins the same
multicast group on a different interface, or if the switch is not filtering multicast traffic
effectively.

If the socket joins multicast groups on more than one interface, then the binding is automatically
removed.

EF_MCAST_JOIN_HANDOVER
• Name: mcast_join_handover
• Default: 0
• Minimum: 0
• Maximum: 2
• Scope: per-stack

When this option is set to 1, and a UDP socket joins a multicast group on an interface that is not
accelerated, the UDP socket is handed-over to the kernel stack. This can be a good idea because
it prevents that socket from consuming Onload resources, and may also help avoid spinning
when it is not wanted.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 227Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=227

When set to 2, UDP sockets that join multicast groups are always handed-over to the kernel
stack.

EF_MCAST_RECV
• Name: mcast_recv
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Controls whether or not to accelerate multicast receives. When set to zero, multicast receives are
not accelerated, but the socket continues to be managed by Onload.

See also EF_MCAST_JOIN_HANDOVER.

EF_MCAST_RECV_HW_LOOP
• Name: mcast_recv_hw_loop
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When enabled allows udp sockets to receive multicast traffic that originates from other Onload
stacks.

EF_MCAST_SEND
• Name: mcast_send
• Default: 0
• Minimum: 0
• Maximum: 3
• Scope: per-stack

Controls loopback of multicast traffic to receivers in the same and other Onload stacks.

• When set to 0 (default) disables loopback within the same stack as well as to other Onload
stacks.

• When set to 1 enables loopback to the same stack.

• When set to 2 enables loopback to other Onload stacks.

• When set to 3 enables loopback to the same as well as other Onload stacks.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 228Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=228

In respect to loopback to other Onload stacks the options is just a hint and the feature requires
all the following:

• 8000-series or newer device

• selecting firmware variant with loopback support.

EF_MIN_FREE_PACKETS
• Name: min_free_packets
• Default: 100
• Minimum: 0
• Maximum: 1000000000
• Scope: per-stack

Minimum number of free packets to reserve for each stack at initialization. If Onload is not able
to allocate sufficient packet buffers to fill the RX rings and fill the free pool with the given
number of buffers, then creation of the stack will fail.

EF_MULTICAST_LOOP_OFF
• Name: multicast_loop_off
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

EF_MULTICAST_LOOP_OFF is deprecated in favor of EF_MCAST_SEND.

When set, disables loopback of multicast traffic to receivers in the same Onload stack.

This option only takes effect when EF_MCAST_SEND is not set and is equivalent to
EF_MCAST_SEND=1 or EF_MCAST_SEND=0 for values of 0 and 1 respectively.

EF_NAME
Default: none Maximum: 8 chars Scope: per-stack

The environment variable EF_NAME will be honored to control Onload stack sharing. However, a
call to onload_set_stackname() overrides this variable, and EF_DONT_ACCELERATE and
EF_STACK_PER_THREAD both take precedence over EF_NAME.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 229Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=229

EF_NETIF_DTOR
• Name: netif_dtor
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-process

This option controls the lifetime of Onload stacks when the last socket in a stack is closed.

EF_NONAGLE_INFLIGHT_MAX
• Name: nonagle_inflight_max
• Default: 50
• Minimum: 1
• Scope: per-stack

This option affects the behavior of TCP sockets with the TCP_NODELAY socket option. Nagle's
algorithm is enabled when the number of packets in-flight (sent but not acknowledged) exceeds
the value of this option. This improves efficiency when sending many small messages, while
preserving low latency.

Set this option to -1 to ensure that Nagle's algorithm never delays sending of TCP messages on
sockets with TCP_NODELAY enabled.

EF_NO_FAIL
• Name: no_fail
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

This option controls whether failure to create an accelerated socket (due to resource limitations)
is hidden by creating a conventional unaccelerated socket. Set this option to 0 to cause out-of-
resources errors to be propagated as errors to the application, or to 1 to have Onload use the
kernel stack instead when out of resources.

Disabling this option can be useful to ensure that sockets are being accelerated as expected (i.e.
to find out when they are not).

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 230Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=230

EF_ONLOAD_FD_BASE
• Name: fd_base
• Default: 4
• Scope: per-process

Onload uses fds internally that are not visible to the application. This can cause problems for
applications that make assumptions about their use of the fd space, for example by doing dup2/3
onto a specific file descriptor. If this is done on an fd that is internally used by Onload than an
error of the form 'citp_ep_dup3(29, 3): target is reserved, see EF_ONLOAD_FD_BASE' will be
generated.

This option specifies a base file descriptor value, that Onload should try to make its internal file
descriptors greater than or equal to. This allows the application to direct Onload to a part of the
fd space that it is not expecting to explicitly use.

EF_PACKET_BUFFER_MODE
• Name: packet_buffer_mode
• Default: 0
• Minimum: 0
• Maximum: 2
• Scope: per-stack

This option affects how DMA buffers are managed. The default packet buffer mode uses a
limited hardware resource, and so restricts the total amount of memory that can be used by
Onload for DMA.

Setting EF_PACKET_BUFFER_MODE!=0 enables 'scalable packet buffer mode' which removes
that limit. See details for each mode below:

• 2 - Physical address mode.

Inherently unsafe, with no address space separation between different stacks or net driver
packets.

Mode 1 was relevant only to adapters which are no longer supported.

For unsafe physical address mode (2), you should tune phys_mode_gid module parameter of the
onload module.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 231Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=231

EF_PERIODIC_TIMER_CPU
• Name: periodic_timer_cpu
• Default: -1
• Minimum: -1
• Maximum: SMAX
• Scope: per-stack

Affinitizes Onload's periodic tasks to the specified CPU core. To ensure that Onload internal tasks
such as polling timers are correctly serviced, the user should select a CPU that is receiving
periodic timer ticks.

EF_PER_SOCKET_CACHE_MAX
• Name: per_sock_cache_max
• Default: -1
• Minimum: -1
• Maximum: SMAX
• Scope: per-stack

When socket caching is enabled, (i.e. when EF_SOCKET_CACHE_MAX > 0), this sets a further
limit on the size of the cache for each socket.

• If set to -1 in Onload 201805 onwards, or to 0 in earlier versions, no limit is set beyond the
global limit specified by EF_SOCKET_CACHE_MAX.

This behavior is the default.

• If set to 0 in Onload 201805 onwards, no accepted sockets will be cached for any listening
sockets. This allows active-open socket caching to be enabled without also enabling passive-
open socket caching.

EF_PIO
• Name: pio
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Control of whether Programmed I/O is used instead of DMA for small packets:

• 0 - no (use DMA)

• 1 - use PIO for small packets if available (default)

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 232Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=232

Mode 1 will fall back to DMA if PIO is not currently available.

• 2 - use PIO for small packets and fail if PIO is not available.

Mode 2 will fail to create the stack if the hardware supports PIO but PIO is not currently
available.

On hardware that does not support PIO there is no difference between mode 1 and mode 2.

In all cases, PIO will only be used for small packets (see EF_PIO_THRESHOLD) and if the VI's
transmit queue is currently empty. If these conditions are not met DMA will be used, even in
mode 2.

Note: PIO is currently only available on x86_64 systems.

Note: Mode 2 will not prevent a stack from operating without PIO in the event that PIO allocation is
originally successful but then fails after an adapter is rebooted or hotplugged while that stack exists.

EF_PIO_THRESHOLD
• Name: pio_thresh
• Default: 1514
• Minimum: 0
• Scope: per-stack

Sets a threshold for the size of packet that will use PIO (if turned on using EF_PIO) or CTPIO (if
turned on using EF_CTPIO). Packets up to the threshold will use PIO or CTPIO. Larger packets
will not.

EF_PIPE
• Name: ul_pipe
• Default: 2
• Minimum: 0
• Maximum: 2
• Scope: per-process

• 0 - disable pipe acceleration

• 1 - enable pipe acceleration

• 2 - accelerate pipes only if an Onload stack already exists in the process.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 233Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=233

EF_PIPE_RECV_SPIN
• Name: pipe_recv_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in pipe receive calls until data arrives or the spin timeout expires (whichever is the sooner). If
the spin timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or
EF_POLL_USEC.

EF_PIPE_SEND_SPIN
• Name: pipe_send_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in pipe send calls until space becomes available in the socket buffer or the spin timeout
expires (whichever is the sooner). If the spin timeout expires, enter the kernel and block. The spin
timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_PIPE_SIZE
• Name: pipe_size
• Default: 237568
• Minimum: OO_PIPE_MIN_SIZE (default 4096)
• Maximum: CI_CFG_MAX_PIPE_SIZE (default 1<<20)
• Scope: per-process

Default size of the pipe in bytes. Actual pipe size will be rounded up to the size of packet buffer
and subject to modifications by fcntl F_SETPIPE_SZ where supported.

EF_PKT_WAIT_SPIN
• Name: pkt_wait_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 234Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=234

Spin while waiting for DMA buffers. If the spin timeout expires, enter the kernel and block. The
spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_POLL_FAST
• Name: ul_poll_fast
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Allow a poll() call to return without inspecting the state of all polled file descriptors when at
least one event is satisfied. This allows the accelerated poll() call to avoid a system call when
accelerated sockets are 'ready', and can increase performance substantially.

This option changes the semantics of poll(), and as such could cause applications to
misbehave. It effectively gives priority to accelerated sockets over non-accelerated sockets and
other file descriptors. In practice a vast majority of applications work fine with this option.

EF_POLL_FAST_USEC
• Name: ul_poll_fast_usec
• Default: 32
• Scope: per-process

When spinning in a poll() call, causes accelerated sockets to be polled for N usecs before
unaccelerated sockets are polled. This reduces latency for accelerated sockets, possibly at the
expense of latency on unaccelerated sockets. Since accelerated sockets are typically the parts of
the application which are most performance-sensitive this is typically a good tradeoff.

EF_POLL_IN_KERNEL
• Name: poll_in_kernel
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Ensures that mode 3 polling always occurs in kernel context. Defaults to 0 (off).

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 235Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=235

EF_POLL_NONBLOCK_FAST_USEC
• Name: ul_poll_nonblock_fast_usec
• Default: 200
• Scope: per-process

When invoking poll() with timeout==0 (non-blocking), this option causes non-accelerated
sockets to be polled only every N usecs.

This reduces latency for accelerated sockets, possibly at the expense of latency on unaccelerated
sockets. Since accelerated sockets are typically the parts of the application which are most
performance-sensitive this is often a good tradeoff.

Set this option to zero to disable, or to a higher value to further improve latency for accelerated
sockets.

This option changes the behavior of poll() calls, so could potentially cause an application to
misbehave.

EF_POLL_ON_DEMAND
• Name: poll_on_demand
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Poll for network events in the context of the application calls into the network stack. This option
is enabled by default.

This option can improve performance in multi-threaded applications where the Onload stack is
interrupt-driven (EF_INT_DRIVEN=1), because it can reduce lock contention. Setting
EF_POLL_ON_DEMAND=0 ensures that network events are (mostly) processed in response to
interrupts.

EF_POLL_SPIN
• Name: ul_poll_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 236Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=236

Spin in poll() calls until an event is satisfied or the spin timeout expires (whichever is the
sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set by
EF_SPIN_USEC or EF_POLL_USEC.

EF_POLL_USEC
• Name: ef_poll_usec_meta_option
• Default: 0
• Scope: per-process

This option enables spinning and sets the spin timeout in microseconds.

Setting this option is equivalent to: Setting EF_SPIN_USEC and EF_BUZZ_USEC, enabling
spinning for UDP sends and receives, TCP sends and receives, select, poll and epoll_wait(),
and enabling lock buzzing.

Spinning typically reduces latency and jitter substantially, and can also improve throughput.
However, in some applications spinning can harm performance, particularly application that have
many threads. When spinning is enabled you should normally dedicate a CPU core to each thread
that spins.

You can use the EF_*_SPIN options to selectively enable or disable spinning for each API and
transport. You can also use the onload_thread_set_spin() extension API to control
spinning on a per-thread and per-API basis.

See also EF_POLL_USEC.

EF_PREALLOC_PACKETS
• Name: prealloc_packets
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

If set ensures all packet buffers (EF_MAX_PACKETS) get allocated during stack creation or the
stack creation fails. Also when set EF_MIN_FREE_PACKETS option is not taken into account.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 237Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=237

EF_PREFAULT_PACKETS
• Name: prefault_packets
• Default: 1
• Minimum: 0
• Maximum: 1000000000
• Scope: per-stack

When set, this option causes the process to 'touch' the specified number of packet buffers when
the Onload stack is created. This causes memory for the packet buffers to be pre-allocated, and
also causes them to be memory-mapped into the process address space. This can prevent latency
jitter caused by allocation and memory-mapping overheads.

The number of packets requested is in addition to the packet buffers that are allocated to fill the
RX rings. There is no guarantee that it will be possible to allocate the number of packet buffers
requested.

The default setting causes all packet buffers to be mapped into the user-level address space, but
does not cause any extra buffers to be reserved. Set to 0 to prevent prefaulting.

EF_PROBE
• Name: probe
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

When set, file descriptors accessed following exec() will be 'probed' and Onload sockets will be
mapped to user-land so that they can be accelerated. Otherwise Onload sockets are not
accelerated following exec().

EF_RETRANSMIT_THRESHOLD
• Name: retransmit_threshold
• Default: 15
• Minimum: 0
• Maximum: SMAX
• Scope: per-stack

Number of retransmit timeouts before a TCP connection is aborted.

The value from /proc/sys/net/ipv4/tcp_retries2 is used by default.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 238Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=238

EF_RETRANSMIT_THRESHOLD_ORPHAN
• Name: retransmit_threshold_orphan
• Default: 8
• Minimum: 0
• Maximum: SMAX
• Scope: per-stack

Number of retransmit timeouts before a TCP connection is aborted in case of orphaned
connection.

The value from /proc/sys/net/ipv4/tcp_orphan_retries is used by default.

EF_RETRANSMIT_THRESHOLD_SYN
• Name: retransmit_threshold_syn
• Default: 4
• Minimum: 0
• Maximum: SMAX
• Scope: per-stack

Number of times a SYN will be retransmitted before a connect() attempt will be aborted.

The value from /proc/sys/net/ipv4/tcp_syn_retries is used by default.

EF_RETRANSMIT_THRESHOLD_SYNACK
• Name: retransmit_threshold_synack
• Default: 5
• Minimum: 0
• Maximum: CI_CFG_TCP_SYNACK_RETRANS_MAX (default 10)
• Scope: per-stack

Number of times a SYN-ACK will be retransmitted before an embryonic connection will be
aborted.

The value from /proc/sys/net/ipv4/tcp_synack_retries is used by default.

EF_RFC_RTO_INITIAL
• Name: rto_initial
• Default: 1000
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 239Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=239

Initial retransmit timeout in milliseconds. i.e. The number of milliseconds to wait for an ACK
before retransmitting packets.

EF_RFC_RTO_MAX
• Name: rto_max
• Default: 120000
• Scope: per-stack

Maximum retransmit timeout in milliseconds.

EF_RFC_RTO_MIN
• Name: rto_min
• Default: 200
• Scope: per-stack

Minimum retransmit timeout in milliseconds.

EF_RXQ_LIMIT
• Name: rxq_limit
• Default: 65535
• Minimum: CI_CFG_RX_DESC_BATCH (default 16)
• Maximum: 65535
• Scope: per-stack

Maximum fill level for the receive descriptor ring. This has no effect when it has a value larger
than the ring size (EF_RXQ_SIZE).

EF_RXQ_MIN
• Name: rxq_min
• Default: 256
• Minimum: 0 (default 33)
• Scope: per-stack

Minimum initial fill level for each RX ring. If Onload is not able to allocate sufficient packet
buffers to fill each RX ring to this level, then creation of the stack will fail.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 240Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=240

EF_RXQ_SIZE
• Name: rxq_size
• Default: 512
• Minimum: 0
• Maximum: 4096
• Scope: per-stack

Set the size of the receive descriptor ring. Valid values: 512, 1024, 2048 or 4096.

A larger ring size can absorb larger packet bursts without drops, but might reduce efficiency
because the working set size is increased.

EF_RX_TIMESTAMPING
• Name: rx_timestamping
• Default: 0
• Minimum: 0
• Maximum: 3
• Scope: per-stack

Control of hardware timestamping of received packets, possible values:

• 0 - do not do timestamping (default)

• 1 - request timestamping but continue if hardware is not capable or it does not succeed

• 2 - request timestamping and fail if hardware is capable and it does not succeed

• 3 - request timestamping and fail if hardware is not capable or it does not succeed.

EF_RX_TIMESTAMPING_ORDERING
• Name: rx_timestamping_ordering
• Default: nic
• Scope: per-stack

Select the source of timestamps to use to order received packets:

• nic - use hardware timestamps generated by the NIC

• cpacket - use cPacket timestamps on received packets.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 241Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=241

EF_SA_ONSTACK_INTERCEPT
• Name: sa_onstack_intercept
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Intercept signals when signal handler is installed with SA_ONSTACK flag.

• 0 - Do not intercept.

If you call socket-related functions such as send, file-related functions such as close or dup
from your signal handler, then your application might deadlock. (default)

• 1 - Intercept.

There is no guarantee that SA_ONSTACK flag will really work, but Onload library will do its best.

EF_SCALABLE_ACTIVE_WILDS_NEED_FILTER
• Name: scalable_active_wilds_need_filter
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When set to 1, IP filter is installed for every cached active-opened socket (see
EF_TCP_SHARED_LOCAL_PORTS). Otherwise it is assumed that scalable filters do the job.

Default: 1 if EF_SCALABLE_FILTERS_ENABLE=1 and scalable mode in
EF_SCALABLE_FILTERS_MODE is “active”; 0 otherwise.

EF_SCALABLE_FILTERS
• Name: scalable_filter_string
• Default: 0
• Minimum: none
• Maximum: none
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 242Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=242

Specifies the interface on which to enable support for scalable filters, and configures the scalable
filter mode(s) to use. Scalable filters allow Onload to use a single hardware MAC-address filter to
avoid hardware limitations and overheads. This removes restrictions on the number of
simultaneous connections and increases performance of active connect calls, but kernel support
on the selected interface is limited to ARP/DHCP/ICMP protocols and some Onload features
that rely on unaccelerated traffic (such as receiving fragmented UDP datagrams) will not work.
Please see the Onload user guide for full details.

Depending on the mode selected this option will enable support for:

• scalable listening sockets

• IP_TRANSPARENT socket option

• scalable active open.

Format of EF_SCALABLE_FILTERS variable is as follows:

EF_SCALABLE_FILTERS=[<interface-name>[=mode[:mode]],]<interface-
name>[=mode[:mode]]

The following modes and their combinations can be specified:

• transparent_active

• rss:transparent_active

• passive

• rss:passive

• transparent_active:passive

• active

• rss:active

• rss:passive:active

It is possible to specify both an active mode interface and a passive mode interface. If two
interfaces are specified then both the active and passive interfaces must have the same rss
qualifier. Furthermore, if the interface is the string “any”, scalable filters are installed on all
interfaces.

EF_SCALABLE_FILTERS_ENABLE
• Name: scalable_filter_enable
• Default: 0
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 243Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=243

Turn the scalable filter feature on or off on a stack. Takes one of the following values:

• 0 – Scalable filters are not used for this stack.

• 1 – The configuration selected in EF_SCALABLE_FILTERS will be used.

• 2 – Indicates a special mode to address a master-worker hierarchy of some event driven
applications.

The scalable filter gets created for reuse by port bound sockets in the master process context.
However, active mode will become available in worker processes once they add one of the
sockets to their epoll set.

Applies to rss:*active scalable modes.

Note: This mode is not compatible with use of the onload extensions stackname API.

If unset this will default to 1 if EF_SCALABLE_FILTERS is configured.

EF_SCALABLE_FILTERS_IFINDEX_ACTIVE
• Name: scalable_filter_ifindex_active
• Default: 0
• Minimum: CITP_SCALABLE_FILTERS_MIN
• Maximum: SMAX
• Scope: per-stack

Stores active scalable filter interface set with EF_SCALABLE_FILTERS. To be set indirectly with
EF_SCALABLE_FILTERS variable

EF_SCALABLE_FILTERS_IFINDEX_PASSIVE
• Name: scalable_filter_ifindex_passive
• Default: 0
• Minimum: CITP_SCALABLE_FILTERS_MIN
• Maximum: SMAX
• Scope: per-stack

Stores passive scalable filter interface set with EF_SCALABLE_FILTERS. To be set indirectly with
EF_SCALABLE_FILTERS variable

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 244Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=244

EF_SCALABLE_FILTERS_MODE
• Name: scalable_filter_mode
• Default: -1
• Minimum: -1
• Maximum: 13
• Scope: per-stack

Stores scalable filter mode set with EF_SCALABLE_FILTERS. To be set indirectly with
EF_SCALABLE_FILTERS variable.

EF_SCALABLE_LISTEN_MODE
• Name: scalable_listen
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Choose behavior of scalable listening sockets when using EF_SCALABLE_FILTERS

• 0 – Listening sockets bound to a local address configured on the scalable interface use the
scalable filter (default). Connections on other interfaces are not accelerated.

• 1 – Listening sockets bound to a local address configured on the scalable interface use the
scalable filter. Connections on other interfaces including loopback are refused.

This mode avoids kernel scalability issues with large numbers of listen sockets.

EF_SELECT_FAST
• Name: ul_select_fast
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Allow a select() call to return without inspecting the state of all selected file descriptors when
at least one selected event is satisfied. This allows the accelerated select() call to avoid a
system call when accelerated sockets are 'ready', and can increase performance substantially.

This option changes the semantics of select(), and as such could cause applications to
misbehave. It effectively gives priority to accelerated sockets over non-accelerated sockets and
other file descriptors. In practice a vast majority of applications work fine with this option.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 245Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=245

EF_SELECT_FAST_USEC
• Name: ul_select_fast_usec
• Default: 32
• Scope: per-process

When spinning in a select() call, causes accelerated sockets to be polled for N μsecs before
unaccelerated sockets are polled. This reduces latency for accelerated sockets, possibly at the
expense of latency on unaccelerated sockets. Because accelerated sockets are typically the parts
of the application which are most performance-sensitive this is typically a good tradeoff.

EF_SELECT_NONBLOCK_FAST_USEC
• Name: ul_select_nonblock_fast_usec
• Default: 200
• Scope: per-process

When invoking select() with timeout==0 (non-blocking), this option causes non-accelerated
sockets to be polled only every N μsecs.

This reduces latency for accelerated sockets, possibly at the expense of latency on unaccelerated
sockets. Because accelerated sockets are typically the parts of the application which are most
performance-sensitive this is often a good tradeoff.

Set this option to zero to disable, or to a higher value to further improve latency for accelerated
sockets.

This option changes the behavior of select() calls, so could potentially cause an application to
misbehave.

EF_SELECT_SPIN
• Name: ul_select_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in blocking select() calls until the select set is satisfied or the spin timeout expires
(whichever is the sooner). If the spin timeout expires, enter the kernel and block. The spin
timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 246Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=246

EF_SEND_POLL_MAX_EVS
• Name: send_poll_max_events
• Default: 96
• Minimum: 1
• Maximum: 65535
• Scope: per-stack

When polling for network events after sending, this places a limit on the number of events
handled.

EF_SEND_POLL_THRESH
• Name: send_poll_thresh
• Default: 64
• Minimum: 0
• Maximum: 65535
• Scope: per-stack

Poll for network events after sending this many packets.

Setting this to a larger value might improve transmit throughput for small messages by allowing
batching. However, such batching can cause sends to be delayed leading to increased jitter.

EF_SHARE_WITH
• Name: share_with
• Default: 0
• Minimum: -1
• Maximum: SMAX
• Scope: per-stack

Set this option to allow a stack to be accessed by processes owned by another user. Set it to the
UID of a user that should be permitted to share this stack, or set it to -1 to allow any user to
share the stack. By default stacks are not accessible by users other than root.

Processes invoked by root can access any stack. Setuid processes can only access stacks created
by the effective user, not the real user. This restriction can be relaxed by setting the Onload
kernel module option allow_insecure_setuid_sharing=1.

IMPORTANT! A user that is permitted to access a stack is able to: snoop on any data transmitted or
received via the stack; inject or modify data transmitted or received via the stack; damage the stack and
any sockets or connections in it; cause misbehavior and crashes in any application using the stack.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 247Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=247

EF_SIGNALS_NOPOSTPONE
• Name: signals_no_postpone
• Default: 67110088
• Minimum: 0
• Maximum: (ci_uint64)(-1)
• Scope: per-process

Comma-separated list of signal numbers to avoid postponing of the signal handlers. Your
application will deadlock if one of the handlers uses socket function. By default, the list includes
SIGILL, SIGBUS, SIGFPE, SIGSEGV and SIGPROF.

Please specify numbers, not string aliases: EF_SIGNALS_NOPOSTPONE=7,11,27 instead of
EF_SIGNALS_NOPOSTPONE=SIGBUS,SIGSEGV,SIGPROF.

You can set EF_SIGNALS_NOPOSTPONE to empty value to postpone all signal handlers in the
same way if you suspect these signals to call network functions.

EF_SLEEP_SPIN_USEC
• Name: sleep_spin_usec
• Default: 0
• Scope: per-process

Sets the duration in microseconds of sleep after each spin iteration. Currently applies to EPOLL3
epoll_wait only. Enabling the option trades some of the benefits of spinning - latency - for
reduction in CPU utilization and power consumption.

Spinning typically reduces latency and jitter substantially, and can also improve throughput.
However, in some applications spinning can harm performance; particularly application that have
many threads. When spinning is enabled you should normally dedicate a CPU core to each thread
that spins.

You can use the EF_*_SPIN options to selectively enable or disable spinning for each API and
transport. You can also use the onload_thread_set_spin() extension API to control
spinning on a per-thread and per-API basis.

EF_SOCKET_CACHE_MAX
• Name: sock_cache_max
• Default: 0
• Maximum: SMAX
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 248Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=248

Sets the maximum number of TCP sockets to cache for this stack. When set > 0, Onload will
cache resources associated with sockets to improve connection set-up and tear-down
performance. This improves performance for applications that make new TCP connections at a
high rate.

EF_SOCKET_CACHE_PORTS
• Name: sock_cache_ports
• Default: 0
• Scope: per-process

This option specifies a comma-separated list of port numbers. When set (and socket caching is
enabled), only sockets bound to the specified ports will be eligible to be cached.

EF_SOCK_LOCK_BUZZ
• Name: sock_lock_buzz
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin while waiting to obtain a per-socket lock. If the spin timeout expires, enter the kernel and
block. The spin timeout is set by EF_BUZZ_USEC.

The per-socket lock is taken in recv() calls and similar. This option can reduce jitter when
multiple threads invoke recv() on the same socket, but can reduce fairness between threads
competing for the lock.

EF_SO_BUSY_POLL_SPIN
• Name: so_busy_poll_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin poll, select and epoll in a Linux-like way: enable spinning only if a spinning socket is preset in
the poll/select/epoll set. See Linux documentation on SO_BUSY_POLL socket option for details.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 249Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=249

You should also enable spinning via EF_{POLL, SELECT, EPOLL}_SPIN variable if you'd like to spin
in poll, select or epoll correspondingly. The spin duration is set via EF_SPIN_USEC, which is
equivalent to the Linux sysctl.net.busy_poll value. EF_POLL_USEC is all-in-one variable to set for
all 4 variables mentioned here.

Most versions of Linux never spin in epoll, but Onload does. This variable does not affect epoll
behavior if EF_UL_EPOLL=2.

EF_SPIN_USEC
• Name: ul_spin_usec
• Default: 0
• Scope: per-process

Sets the timeout in microseconds for spinning options. Set this to -1 to spin forever. The spin
timeout can also be set by the EF_POLL_USEC option.

Spinning typically reduces latency and jitter substantially, and can also improve throughput.
However, in some applications spinning can harm performance, particularly application that have
many threads. When spinning is enabled you should normally dedicate a CPU core to each thread
that spins.

You can use the EF_*_SPIN options to selectively enable or disable spinning for each API and
transport. You can also use the onload_thread_set_spin() extension API to control
spinning on a per-thread and per-API basis.

EF_STACK_LOCK_BUZZ
• Name: stack_lock_buzz
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin while waiting to obtain a per-stack lock. If the spin timeout expires, enter the kernel and
block. The spin timeout is set by EF_BUZZ_USEC.

This option reduces jitter caused by lock contention, but can reduce fairness between threads
competing for the lock.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 250Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=250

EF_STACK_PER_THREAD
• Name: stack_per_thread
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Create a separate Onload stack for the sockets created by each thread.

EF_SYNC_CPLANE_AT_CREATE
• Name: sync_cplane
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-process

When this option is set to 2 Onload will force a sync of control plane information from the kernel
when a stack is created. This can help to ensure up to date information is used where a stack is
created immediately following interface configuration.

If this option is set to 1 then Onload will perform a lightweight sync of control plane information
without performing a full dump. It is the default mode.

Setting this option to 0 will disable forced sync. Synchronizing data from the kernel will continue
to happen periodically.

Sync operation time is limited by cplane_init_timeout onload module option.

EF_TAIL_DROP_PROBE
• Name: tail_drop_probe
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Whether to probe if the tail of a TCP burst isn't ACKed quickly.

The value from /proc/sys/net/ipv4/tcp_early_retrans is used to derive the default.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 251Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=251

EF_TCP
• Name: ul_tcp
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Clear to disable acceleration of new TCP sockets.

EF_TCP_ACCEPT_SPIN
• Name: tcp_accept_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in blocking TCP accept() calls until incoming connection is established, the spin timeout
expires or the socket timeout expires (whichever is the sooner). If the spin timeout expires, enter
the kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_ADV_WIN_SCALE_MAX
• Name: tcp_adv_win_scale_max
• Default: 14
• Minimum: 0
• Maximum: 14
• Scope: per-stack

Maximum value for TCP window scaling that will be advertised. Set it to 0 to turn window scaling
off.

The value from /proc/sys/net/ipv4/tcp_window_scaling is used by default.

EF_TCP_BACKLOG_MAX
• Name: tcp_backlog_max
• Default: 256
• Scope: per-stack

Places an upper limit on the number of embryonic (half-open) connections for one listening
socket. See also EF_TCP_SYNRECV_MAX.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 252Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=252

The value from /proc/sys/net/ipv4/tcp_max_syn_backlog is used by default.

EF_TCP_CLIENT_LOOPBACK
• Name: tcp_client_loopback
• Default: 0
• Minimum: 0
• Maximum: 4
• Scope: per-stack

Enable acceleration of TCP loopback connections on the connecting (client) side:

• 0 - not accelerated (default)

• 1 - accelerate if the listening socket is in the same stack (you should also set
EF_TCP_SERVER_LOOPBACK!=0)

• 2 - accelerate and move accepted socket to the stack of the connecting socket (server should
allow this via EF_TCP_SERVER_LOOPBACK=2)

• 3 - accelerate and move the connecting socket to the stack of the listening socket (server
should allow this via EF_TCP_SERVER_LOOPBACK!=0)

• 4 - accelerate and move both connecting and accepted sockets to the new stack (server
should allow this via EF_TCP_SERVER_LOOPBACK=2).

Note: Options 3 and 4 break some applications using epoll(), fork() and dup() calls.

Note: Options 2 and 4 cause accept() to misbehave if the client exits too early.

EF_TCP_COMBINE_SENDS_MODE
• Name: tcp_combine_sends_mode
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option controls how Onload fills packets in the TCP send buffer:

• 0 - Onload prefers to use all the space at the end of a previous packet before allocating a new
one (default)

• 1 - Onload prefers to allocate a new packet for each new send.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 253Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=253

In all cases this is a hint rather than guaranteed behavior, and there are conditions where the
preference indicated by this option will not be possible. For example memory pressure might
cause packets in the send queue to be combined. MSG_MORE and TCP_CORK can override this
option when set. The zero-copy sends API can also use the segmentation provided by the caller's
buffers. For full control of message segmentation the delegated sends API can be used. Setting
this option can affect the capacity of send buffers belonging to sockets in this stack and increase
packet buffer usage. It can also reduce efficiency as packets must be allocated for each send call
rather than reusing one that is already available.

Setting this option is only recommended if you have an explicit need to avoid combined or split
sends.

EF_TCP_CONNECT_HANDOVER
• Name: tcp_connect_handover
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When an accelerated TCP socket calls connect(), hand it over to the kernel stack. This option
disables acceleration of active-open TCP connections.

EF_TCP_CONNECT_SPIN
• Name: tcp_connect_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in blocking TCP connect() calls until connection is established, the spin timeout expires or
the socket timeout expires (whichever is the sooner). If the spin timeout expires, enter the kernel
and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_EARLY_RETRANSMIT
• Name: tcp_early_retransmit
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 254Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=254

Enables the Early Retransmit (RFC 5827) algorithm for TCP, and also the Limited Transmit (RFC
3042) algorithm, on which Early Retransmit depends.

The value from /proc/sys/net/ipv4/tcp_early_retrans is used to derive the default.

EF_TCP_FASTSTART_IDLE
• Name: tcp_faststart_idle
• Default: 65536
• Minimum: 0
• Scope: per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing so might
reduce performance. FASTSTART is enabled when a connection is new, following loss and after
the connection has been idle for a while.

This option sets the number of bytes that must be ACKed by the receiver before the connection
exits FASTSTART. Set to zero to prevent a connection entering FASTSTART after an idle period.

EF_TCP_FASTSTART_INIT
• Name: tcp_faststart_init
• Default: 65536
• Minimum: 0
• Scope: per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing so might
reduce performance. FASTSTART is enabled when a connection is new, following loss and after
the connection has been idle for a while.

This option sets the number of bytes that must be ACKed by the receiver before the connection
exits FASTSTART. Set to zero to disable FASTSTART on new connections.

EF_TCP_FASTSTART_LOSS
• Name: tcp_faststart_loss
• Default: 65536
• Minimum: 0
• Scope: per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing so might
reduce performance. FASTSTART is enabled when a connection is new, following loss and after
the connection has been idle for a while.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 255Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=255

This option sets the number of bytes that must be ACKed by the receiver before the connection
exits FASTSTART following loss. Set to zero to disable FASTSTART after loss.

EF_TCP_FIN_TIMEOUT
• Name: fin_timeout
• Default: 60
• Scope: per-stack

Time in seconds to wait for an orphaned connection to be closed properly by the network
partner (e.g. FIN in the TCP FIN_WAIT2 state, zero window opening to send our FIN, etc).

The value from /proc/sys/net/ipv4/tcp_fin_timeout is used by default.

EF_TCP_FORCE_REUSEPORT
• Name: tcp_reuseports
• Default: 0
• Scope: per-process

This option specifies a comma-separated list of port numbers. TCP sockets that bind to those
port numbers will have SO_REUSEPORT automatically applied to them.

EF_TCP_INITIAL_CWND
• Name: initial_cwnd
• Default: 0
• Minimum: 0
• Maximum: SMAX
• Scope: per-stack

Sets the initial size of the congestion window (in bytes) for TCP connections. Some care is
needed as, for example, setting smaller than the segment size might result in Onload being
unable to send traffic.

IMPORTANT! Modifying this option can violate the TCP protocol.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 256Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=256

EF_TCP_ISN_2MSL
• Name: tcp_isn_2msl
• Default: 240
• Maximum: CITP_TCP_ISN_2MSL_MAX
• Scope: per-stack

Maximum time that peers are assumed to stay in TIMEWAIT state. In seconds. Relevant when
EF_TCP_ISN_MODE is set to clocked+cache.

EF_TCP_ISN_CACHE_SIZE
• Name: tcp_isn_cache_sizel
• Default: 0
• Scope: per-stack

Cache size for recently used four-tuples and their last sequence number. 0 - automatically
chosen. Relevant when EF_TCP_ISN_MODE is set to clocked+cache.

EF_TCP_ISN_INCLUDE_PASSIVE
• Name: tcp_isn_include_passive
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Enables populating isn cache with passively opened connections. Relevant when
EF_TCP_ISN_MODE is set to clocked+cache.

EF_TCP_ISN_MODE
• Name: tcp_isn_mode
• Default: clocked+cache
• Scope: per-stack

Selects behavior with which Onload interacts with peers when reusing four-tuples:

• clocked – Linux compatible behavior (default)

• clocked+cache – additional cache to avoid failed connection attempts.

Note: The behavior is relevant to high connection rate use cases with high outgoing data rates.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 257Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=257

When in clocked+cache mode, sequence numbers used by closed TCP connections are
remembered so that initial sequence numbers for subsequent uses of the same four-tuple can be
selected so as not to overlap with the previous connection’s sequence space.

EF_TCP_ISN_OFFSET
• Name: tcp_isn_offset
• Default: 65537
• Scope: per-stack

Increase in sequence number between subsequent connections reusing the same four-tuple.
Lower value allows to reduce use of ISN cache, however potentially being unsafe with some host
types or rare use cases.

EF_TCP_LISTEN_HANDOVER
• Name: tcp_listen_handover
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When an accelerated TCP socket calls listen(), hand it over to the kernel stack. This option
disables acceleration of TCP listening sockets and passively opened TCP connections.

EF_TCP_LOSS_MIN_CWND
• Name: loss_min_cwnd
• Default: 0
• Minimum: 0
• Maximum: SMAX
• Scope: per-stack

Sets the minimum size of the congestion window for TCP connections following loss.

IMPORTANT! Modifying this option can violate the TCP protocol.

Deprecated. Please use EF_TCP_MIN_CWND instead.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 258Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=258

EF_TCP_MIN_CWND
• Name: min_cwnd
• Default: 0
• Minimum: 0
• Maximum: SMAX
• Scope: per-stack

Sets the minimum size of the congestion window for TCP connections. This value is used for any
congestion window changes: connection start, packet loss, connection being idle, etc.

IMPORTANT! Modifying this option can violate the TCP protocol.

EF_TCP_RCVBUF
• Name: tcp_rcvbuf_user
• Default: 0
• Minimum: 0
• Maximum: SMAX/2
• Scope: per-stack

Override SO_RCVBUF for TCP sockets. (Note: the actual size of the buffer is double the amount
requested, mimicking the behavior of the Linux kernel.)

EF_TCP_RCVBUF_ESTABLISHED_DEFAULT
• Name: tcp_rcvbuf_est_def
• Default: 131072
• Minimum: 0
• Maximum: SMAX/4
• Scope: per-stack

Overrides the OS default SO_RCVBUF value for TCP sockets in the ESTABLISHED state if the
OS default SO_RCVBUF value falls outside bounds set with this option. This value is used when
the TCP connection transitions to ESTABLISHED state, to avoid confusion of some applications
like netperf.

The lower bound is set to this value and the upper bound is set to 4 * this value. If the OS default
SO_RCVBUF value is less than the lower bound, then the lower bound is used. If the OS default
SO_RCVBUF value is more than the upper bound, then the upper bound is used.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 259Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=259

This variable overrides OS default SO_RCVBUF value only, it does not change SO_RCVBUF if the
application explicitly sets it (see EF_TCP_RCVBUF variable which overrides application-supplied
value).

EF_TCP_RCVBUF_MODE
• Name: tcp_rcvbuf_mode
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option controls how the RCVBUF is set for TCP Mode 0 (default) gives fixed size RCVBUF.

Mode 1 will enable automatic tuning of RCVBUF using Dynamic Right Sizing. If SO_RCVBUF is
explicitly set by the application this value will be used. EF_TCP_SOCKBUF_MAX_FRACTION can
be used to control the maximum size of the buffer for an individual socket.

The effect of EF_TCP_RCVBUF_STRICT is independent of this setting.

EF_TCP_RCVBUF_STRICT
• Name: tcp_rcvbuf_strict
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option prevents TCP small segment attack. With this option set, Onload limits the number of
packets inside TCP receive queue and TCP reorder buffer. In some cases, this option causes
performance penalty. You probably want this option if your application is connecting to
untrusted partner or over untrusted network.

Off by default.

EF_TCP_RECV_SPIN
• Name: tcp_recv_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 260Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=260

Spin in blocking TCP receive calls until data arrives, the spin timeout expires or the socket
timeout expires (whichever is the sooner). If the spin timeout expires, enter the kernel and block.
The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_RST_DELAYED_CONN
• Name: rst_delayed_conn
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option tells Onload to reset TCP connections rather than allow data to be transmitted late.
Specifically, TCP connections are reset if the retransmit timeout fires. (This usually happens when
data is lost, and normally triggers a retransmit which results in data being delivered hundreds of
milliseconds late).

IMPORTANT! This option is likely to cause connections to be reset spuriously if ACK packets are dropped
in the network.

EF_TCP_RX_CHECKS
• Name: tcp_rx_checks
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Internal/debugging use only: perform extra debugging/consistency checks on received packets.

EF_TCP_RX_LOG_FLAGS
• Name: tcp_rx_log_flags
• Default: 0
• Scope: per-stack

Log received packets that have any of these flags set in the TCP header. Only active when
EF_TCP_RX_CHECKS is set.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 261Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=261

EF_TCP_SEND_NONBLOCK_NO_PACKETS_MODE
• Name: tcp_nonblock_no_pkts_mode
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option controls how a non-blocking TCP send() call should behave if it is unable to allocate
sufficient packet buffers. By default Onload will mimic Linux kernel stack behavior and block for
packet buffers to be available. If set to 1, this option will cause Onload to return error ENOBUFS.
Note this option can cause some applications (that assume that a socket that is writable is able to
send without error) to malfunction.

EF_TCP_SEND_SPIN
• Name: tcp_send_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in blocking TCP send calls until window is updated by peer, the spin timeout expires or the
socket timeout expires (whichever is the sooner). If the spin timeout expires, enter the kernel and
block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_SERVER_LOOPBACK
• Name: tcp_server_loopback
• Default: 0
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Enable acceleration of TCP loopback connections on the listening (server) side:

• 0 - not accelerated (default)

• 1 - accelerate if the connecting socket is in the same stack (you should also set
EF_TCP_CLIENT_LOOPBACK!=0)

• 2 - accelerate and allow accepted socket to be in another stack (this is necessary for clients
with EF_TCP_CLIENT_LOOPBACK=2,4).

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 262Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=262

EF_TCP_SHARED_LOCAL_PORTS
• Name: tcp_shared_local_ports
• Default: 0
• Minimum: 0
• Scope: per-stack

This feature improves the performance of TCP active-opens. It reduces the cost of both blocking
and non-blocking connect() calls, reduces the latency to establish new connections, and enables
scaling to large numbers of active-open connections. It also reduces the cost of closing these
connections.

These improvements are achieved by sharing a set of local port numbers amongst active-open
sockets, which saves the cost and scaling limits associated with installing packet steering filters
for each active-open socket. Shared local ports are only used when the local port is not explicitly
assigned by the application. Set this option to >=1 to enable local port sharing.

The value set gives the initial number of local ports to allocate when the Onload stack is created.
More shared local ports are allocated on demand as needed up to the maximum given by
EF_TCP_SHARED_LOCAL_PORTS_MAX.

Note: Typically only one local shared port is needed, as different local ports are only needed when multiple
connections are made to the same remote IP:port.

EF_TCP_SHARED_LOCAL_PORTS_MAX
• Name: tcp_shared_local_ports_max
• Default: 100
• Minimum: 0
• Scope: per-stack

This setting sets the maximum size of the pool of local shared ports in the stack. See
EF_TCP_SHARED_LOCAL_PORTS for details.

EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK
• Name: tcp_shared_local_no_fallback
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When set, connecting TCP sockets will use ports only from the TCP shared local port pool (unless
explicitly bound). If all shared local ports are in use, the connect() call will fail.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 263Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=263

EF_TCP_SHARED_LOCAL_PORTS_PER_IP
• Name: tcp_shared_local_ports_per_ip
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When set, ports reserved for the pool of shared local ports will be reserved per local IP address
on demand.

EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX
• Name: tcp_shared_local_ports_per_ip_max
• Default: 0
• Minimum: 0
• Scope: per-stack

Sets the maximum size of the pool of local shared ports for given local IP address. When used
with scalable RSS mode this setting limits the total number within the cluster. 0 – no limit. See
EF_TCP_SHARED_LOCAL_PORTS for details.

EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST
• Name: tcp_shared_local_ports_reuse_fast
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When enabled, this option allows shared local ports (as controlled by the
EF_TCP_SHARED_LOCAL_PORTS option) to be reused immediately when the previous socket
using that port has reached the CLOSED state, even if it did so via LAST-ACK.

EF_TCP_SHARED_LOCAL_PORTS_STEP
• Name: tcp_shared_local_ports_step
• Default: 1
• Minimum: 1
• Scope: per-stack

Controls the number of ports allocated when expanding the pool of shared local ports.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 264Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=264

EF_TCP_SNDBUF
• Name: tcp_sndbuf_user
• Default: 0
• Minimum: 0
• Maximum: SMAX/2
• Scope: per-stack

Override SO_SNDBUF for TCP sockets (Note: the actual size of the buffer is double the amount
requested, mimicking the behavior of the Linux kernel.)

EF_TCP_SNDBUF_ESTABLISHED_DEFAULT
• Name: tcp_sndbuf_est_def
• Default: 131072
• Minimum: 0
• Maximum: SMAX/4
• Scope: per-stack

Overrides the OS default SO_SNDBUF value for TCP sockets in the ESTABLISHED state if the
OS default SO_SNDBUF value falls outside bounds set with this option. This value is used when
the TCP connection transitions to ESTABLISHED state, to avoid confusion of some applications
like netperf.

The lower bound is set to this value and the upper bound is set to 4 * this value. If the OS default
SO_SNDBUF value is less than the lower bound, then the lower bound is used. If the OS default
SO_SNDBUF value is more than the upper bound, then the upper bound is used.

This variable overrides OS default SO_SNDBUF value only, it does not change SO_SNDBUF if the
application explicitly sets it (see EF_TCP_SNDBUF variable which overrides application-supplied
value).

EF_TCP_SNDBUF_MODE
• Name: tcp_sndbuf_mode
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-stack

This option controls how the SO_SNDBUF limit is applied to TCP sockets. In the default mode the
limit applies to the size of the send queue and retransmit queue combined. When this option is
set to 0 the limit applies to the send queue only.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 265Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=265

When this option is set to 2, the SNDBUF size is automatically adjusted for each TCP socket to
match the window advertised by the peer (limited by EF_TCP_SOCKBUF_MAX_FRACTION). If
the application sets SO_SNDBUF explicitly then automatic adjustment is not used for that socket.
The limit is applied to the size of the send queue and retransmit queue combined. You might also
want to set EF_TCP_RCVBUF_MODE to give automatic adjustment of RCVBUF.

EF_TCP_SOCKBUF_MAX_FRACTION
• Name: tcp_sockbuf_max_fraction
• Default: 1
• Minimum: 1
• Maximum: 10
• Scope: per-stack

This option controls the maximum fraction of the TX buffers that can be allocated to a single
socket with EF_TCP_SNDBUF_MODE=2.

It also controls the maximum fraction of the RX buffers that can be allocated to a single socket
with EF_TCP_RCVBUF_MODE=1.

The maximum allocation for a socket is EF_MAX_TX_PACKETS/(2^N) for TX and
EF_MAX_RX_PACKETS/(2^N) for RX, where N is specified here.

EF_TCP_SYNCOOKIES
• Name: tcp_syncookies
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Use TCP syncookies to protect from SYN flood attack.

EF_TCP_SYNRECV_MAX
• Name: tcp_synrecv_max
• Default: 1024
• Maximum: CI_CFG_NETIF_MAX_ENDPOINTS_MAX (default 1<<21)
• Scope: per-stack

Places an upper limit on the number of embryonic (half-open) connections in an Onload stack.
See also EF_TCP_BACKLOG_MAX.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 266Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=266

By default, EF_TCP_SYNRECV_MAX = 4 * EF_TCP_BACKLOG_MAX.

EF_TCP_SYN_OPTS
• Name: syn_opts
• Default: 7
• Scope: per-stack

A bitmask specifying the TCP options to advertise in SYN segments:

• bit 0 (0x1) is set to 1 to enable PAWS and RTTM timestamps (RFC1323)

• bit 1 (0x2) is set to 1 to enable window scaling (RFC1323)

• bit 2 (0x4) is set to 1 to enable SACK (RFC2018)

• bit 3 (0x8) is set to 1 to enable ECN (RFC3128).

The values from /proc/sys/net/ipv4/tcp_sack, /proc/sys/net/ipv4/
tcp_timestamp and /proc/sys/net/ipv4/tcp_window_scaling are used to find the
default.

EF_TCP_TCONST_MSL
• Name: msl_seconds
• Default: 25
• Scope: per-stack

The Maximum Segment Lifetime (as defined by the TCP RFC). A smaller value causes
connections to spend less time in the TIME_WAIT state.

EF_TCP_TIME_WAIT_ASSASSINATION
• Name: time_wait_assassinate
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Allow TCP TIMEWAIT state assassination, as with /proc/sys/net/ipv4/tcp_rfc1337 set
to 0.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 267Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=267

EF_TCP_TSOPT_MODE
• Name: tcp_tsopt_mode
• Default: 2
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Enable or disable per-stack TCP header timestamps (as defined in RFC 1323). Overrides system
setting ipv4.tcp_timestamps and EF_TCP_SYN_OPTS. Possible values are:

• 0 - Disable TCP header timestamps

• 1 - Enable TCP header timestamps

• 2 - Use system settings (default).

EF_TCP_URG_MODE
• Name: urg_mode
• Default: ignore
• Scope: per-stack

• allow – process the urgent flag and pointer.

• ignore – ignore the urgent flag and pointer in received packets.

IMPORTANT! Applications actually using urgent data will see corrupt streams.

EF_TIMESTAMPING_REPORTING
• Name: timestamping_reporting
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Controls timestamp reporting, possible values:

• 0: report translated timestamps only when the NIC clock has been set

• 1: report translated timestamps only when the system clock and the NIC clock are in sync (e.g.
using ptpd)

If the above conditions are not met Onload will only report raw (not translated) timestamps.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 268Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=268

EF_TXQ_SIZE
• Name: txq_size
• Default: 512
• Minimum: 512
• Maximum: 4096
• Scope: per-stack

Set the size of the transmit descriptor ring. Valid values: 512, 1024, 2048 or 4096.

EF_TX_MIN_IPG_CNTL
• Name: tx_min_ipg_cntl
• Default: 0
• Minimum: -1
• Maximum: 20
• Scope: per-stack

Rate pacing value.

EF_TX_PUSH
• Name: tx_push
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Enable low-latency transmit.

EF_TX_PUSH_THRESHOLD
• Name: tx_push_thresh
• Default: 100
• Minimum: 1
• Scope: per-stack

Sets a threshold for the number of outstanding sends before we stop using TX descriptor push.
This has no effect if EF_TX_PUSH=0. It makes sense to set this value similar to
EF_SEND_POLL_THRESH.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 269Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=269

EF_TX_QOS_CLASS
• Name: tx_qos_class
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Set the QOS class for transmitted packets on this Onload stack. Two QOS classes are supported:
0 and 1. By default both Onload accelerated traffic and kernel traffic are in class 0. You can
minimize latency by placing latency sensitive traffic into a separate QOS class from bulk traffic.

EF_TX_TIMESTAMPING
• Name: tx_timestamping
• Default: 0
• Minimum: 0
• Maximum: 3
• Scope: per-stack

Control of hardware timestamping of transmitted packets, possible values:

• 0 - do not do timestamping (default)

• 1 - request timestamping but continue if hardware is not capable or it does not succeed

• 2 - request timestamping and fail if hardware is capable and it does not succeed

• 3 - request timestamping and fail if hardware is not capable or it does not succeed.

EF_UDP
• Name: ul_udp
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Clear to disable acceleration of new UDP sockets.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 270Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=270

EF_UDP_CONNECT_HANDOVER
• Name: udp_connect_handover
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-stack

When set to 1, if a UDP socket is connected to an IP address that cannot be accelerated by
Onload, or resource restrictions prevent RX acceleration, hand the socket over to the kernel
stack.

When this option is disabled the socket remains under the control of Onload. This might be
worthwhile because the socket might subsequently be re-connected to an IP address that can be
accelerated, or the socket might be intended for TX use only.

When set to 2, hand the socket over on connect() even if the address could have been
accelerated.

EF_UDP_FORCE_REUSEPORT
• Name: udp_reuseports
• Default: 0
• Scope: per-process

This option specifies a comma-separated list of port numbers. UDP sockets that bind to those
port numbers will have SO_REUSEPORT automatically applied to them.

EF_UDP_PORT_HANDOVER2_MAX
• Name: udp_port_handover2_max
• Default: 1
• Scope: per-stack

When set (together with EF_UDP_PORT_HANDOVER2_MIN), this causes UDP sockets explicitly
bound to a port in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER2_MIN
• Name: udp_port_handover2_min
• Default: 2
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 271Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=271

When set (together with EF_UDP_PORT_HANDOVER2_MAX), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The range is
inclusive.

EF_UDP_PORT_HANDOVER3_MAX
• Name: udp_port_handover3_max
• Default: 1
• Scope: per-stack

When set (together with EF_UDP_PORT_HANDOVER3_MIN), this causes UDP sockets explicitly
bound to a port in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER3_MIN
• Name: udp_port_handover3_min
• Default: 2
• Scope: per-stack

When set (together with EF_UDP_PORT_HANDOVER3_MAX), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The range is
inclusive.

EF_UDP_PORT_HANDOVER_MAX
• Name: udp_port_handover_max
• Default: 1
• Scope: per-stack

When set (together with EF_UDP_PORT_HANDOVER_MIN), this causes UDP sockets explicitly
bound to a port in the given range to be handed over to the kernel stack. The range is inclusive.

EF_UDP_PORT_HANDOVER_MIN
• Name: udp_port_handover_min
• Default: 2
• Scope: per-stack

When set (together with EF_UDP_PORT_HANDOVER_MAX), this causes UDP sockets explicitly
bound to a port in the given range to be handed over to the kernel stack. The range is inclusive.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 272Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=272

EF_UDP_RCVBUF
• Name: udp_rcvbuf_user
• Default: 0
• Minimum: 0
• Maximum: SMAX/2
• Scope: per-stack

Override SO_RCVBUF for UDP sockets. (Note: the actual size of the buffer is double the amount
requested, mimicking the behavior of the Linux kernel.)

EF_UDP_RECV_SPIN
• Name: udp_recv_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in blocking UDP receive calls until data arrives, the spin timeout expires or the socket
timeout expires (whichever is the sooner). If the spin timeout expires, enter the kernel and block.
The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_UDP_SEND_NONBLOCK_NO_PACKETS_MODE
• Name: udp_nonblock_no_pkts_mode
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

This option controls how a non-blocking UDP send() call should behave if it is unable to
allocate sufficient packet buffers. By default Onload will mimic Linux kernel stack behavior and
block for packet buffers to be available. If set to 1, this option will cause Onload to return error
ENOBUFS. Note this option can cause some applications (that assume that a socket that is
writable is able to send without error) to malfunction.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 273Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=273

EF_UDP_SEND_SPIN
• Name: udp_send_spin
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

Spin in blocking UDP send calls until space becomes available in the socket buffer, the spin
timeout expires or the socket timeout expires (whichever is the sooner). If the spin timeout
expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

Note: UDP sends usually complete very quickly, but can block if the application does a large burst of sends
at a high rate. This option reduces jitter when such blocking is needed.

EF_UDP_SEND_UNLOCKED
• Name: udp_send_unlocked
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Enables the 'unlocked' UDP send path. When enabled this option improves concurrency when
multiple threads are performing UDP sends.

EF_UDP_SEND_UNLOCK_THRESH
• Name: udp_send_unlock_thresh
• Default: 1500
• Scope: per-stack

UDP message size below which we attempt to take the stack lock early. Taking the lock early
reduces overhead and latency slightly, but might increase lock contention in multi-threaded
applications.

EF_UDP_SNDBUF
• Name: udp_sndbuf_user
• Default: 0
• Minimum: 0
• Maximum: SMAX/2
• Scope: per-stack

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 274Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=274

Override SO_SNDBUF for UDP sockets. (Note: the actual size of the buffer is double the amount
requested, mimicking the behavior of the Linux kernel.)

EF_UL_EPOLL
• Name: ul_epoll
• Default: 1
• Minimum: 0
• Maximum: 3
• Scope: per-process

Choose epoll implementation. The choices are:

• 0 - kernel (unaccelerated)

• 1 - user-level (accelerated, lowest latency)

• 2 - kernel-accelerated (best when there are lots of sockets in the set and mode 3 is not
suitable)

• 3 - user-level (accelerated, lowest latency, scalable, supports socket caching).

The default is the user-level implementation (1).

Mode 3 can offer benefits over mode 1, particularly with larger sets. However, this mode has
some restrictions:

• It does not support epoll sets that exist across fork().

• It does not support monitoring the readiness of the set's epoll fd via a another epoll/poll/
select.

EF_UL_POLL
• Name: ul_poll
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Clear to disable acceleration of poll() calls at user-level.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 275Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=275

EF_UL_SELECT
• Name: ul_select
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-process

Clear to disable acceleration of select() calls at user-level.

EF_UNCONFINE_SYN
• Name: unconfine_syn
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Accept TCP connections that cross into or out-of a private network.

EF_UNIX_LOG
• Name: log_level
• Default: 3
• Scope: per-process

A bitmask determining which kinds of diagnostics messages will be logged:

• 0x1 errors

• 0x2 unexpected

• 0x4 setup

• 0x8 verbose

• 0x10select()

• 0x20poll()

• 0x100 socket set-up

• 0x200 socket control

• 0x400 socket caching

• 0x1000 signal interception

• 0x2000 library enter/exit

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 276Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=276

• 0x4000 log call arguments

• 0x8000 context lookup

• 0x10000 pass-through

• 0x20000 very verbose

• 0x40000 verbose returned error

• 0x80000 very verbose errors: show 'ok' too

• 0x20000000 verbose transport control

• 0x40000000 very verbose transport control

• 0x80000000 verbose pass-through

EF_URG_RFC
• Name: urg_rfc
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Choose between compliance with RFC1122 (1) or BSD behavior (0) regarding the location of the
urgent point in TCP packet headers.

EF_USE_DSACK
• Name: use_dsack
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

Whether or not to use DSACK (duplicate SACK).

The value from /proc/sys/net/ipv4/tcp_dsack is used by default.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 277Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=277

EF_USE_HUGE_PAGES
• Name: huge_pages
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-stack

Control of whether huge pages are used for packet buffers:

• 0 - no

• 1 - use huge pages if available (default)

• 2 - always use huge pages and fail if huge pages are not available.

Mode 1 prints syslog message if there is not enough huge pages in the system.

Mode 2 guarantees only initially-allocated packets to be in huge pages. It is recommended to use
this mode together with EF_MIN_FREE_PACKETS, to control the number of such guaranteed
huge pages. All non-initial packets are allocated in huge pages when possible. A syslog message is
printed if the system is out of huge pages.

Non-initial packets can be allocated in non-huge pages without any warning in syslog for both
mode 1 and 2 even if the system has free huge pages.

EF_VALIDATE_ENV
• Name: validate_env
• Default: 1
• Minimum: 0
• Maximum: 1
• Scope: per-stack

When set this option validates Onload related environment variables (starting with EF_).

EF_VFORK_MODE
• Name: vfork_mode
• Default: 1
• Minimum: 0
• Maximum: 2
• Scope: per-process

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 278Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=278

This option dictates how vfork() intercept should work. After a vfork(), parent and child still
share address space but not file descriptors. We have to be careful about making changes in the
child that can be seen in the parent. We offer three options here. Different apps might require
different options depending on their use of vfork(). If using EF_VFORK_MODE=2, it is not safe
to create sockets or pipes in the child before calling exec().

• 0 - Old behavior. Replace vfork() with fork()

• 1 - Replace vfork() with fork() and block parent till child exits/execs

• 2 - Replace vfork() with vfork().

EF_WODA_SINGLE_INTERFACE
• Name: woda_single_if
• Default: 0
• Minimum: 0
• Maximum: 1
• Scope: per-process

This option alters the behavior of onload_ordered_epoll_wait(). This function would
normally ensure correct ordering across multiple interfaces. However, this impacts latency, as
only events arriving before the first interface polled can be returned and still guarantee ordering.

If the traffic being ordered is only arriving on a single interface then this additional constraint is
not necessary. When this option is enabled, traffic will only be ordered relative to other traffic
arriving on the same interface.

Appendix A: Parameter Reference

UG1586 (v1.2) July 31, 2023
Onload User Guide 279Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=279

Appendix B

Meta Options
This appendix gives reference descriptions of meta options that can be used with Onload.

Environment Variables
There are several environment variables which act as meta options and set several of the options
detailed in Appendix A: Parameter Reference. These are:

EF_POLL_USEC
Setting EF_POLL_USEC causes the following options to be set:

• EF_SPIN_USEC=EF_POLL_USEC

• EF_SELECT_SPIN=1

• EF_EPOLL_SPIN=1

• EF_POLL_SPIN=1

• EF_PKT_WAIT_SPIN=1

• EF_TCP_SEND_SPIN=1

• EF_TCP_RECV_SPIN=1

• EF_UDP_SEND_SPIN=1

• EF_UDP_RECV_SPIN=1

• EF_BUZZ_USEC=EF_POLL_USEC

• EF_SOCK_LOCK_BUZZ=1

• EF_STACK_LOCK_BUZZ=1

It does not set the following options, which must be set individually if required:

• EF_TCP_ACCEPT_SPIN

• EF_TCP_CONNECT_SPIN

• EF_PIPE_RECV_SPIN

Appendix B: Meta Options

UG1586 (v1.2) July 31, 2023
Onload User Guide 280Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=280

• EF_PIPE_SEND_SPIN

Note: If neither of the spinning options; EF_POLL_USEC and EF_SPIN_USEC are set, Onload will resort to
default interrupt driven behavior because the EF_INT_DRIVEN environment variable is enabled by default.

Note: When EF_POLL_USEC or EF_SPIN_USEC are greater than zero, EF_INT_DRIVEN will be zero.

See also EF_BUZZ_USEC.

EF_BUZZ_USEC
Setting EF_BUZZ_USEC sets the following options:

• EF_SOCK_LOCK_BUZZ=1

• EF_STACK_LOCK_BUZZ=1

Note: If EF_POLL_USEC is set to value N, then EF_BUZZ_USEC is also set to N only if N ≤ 100, If N > 100
then EF_BUZZ_USEC will be set to 100. This is deliberate as spinning for too long on internal locks may
adversely affect performance. However the user can explicitly set EF_BUZZ_USEC value. For example
export EF_POLL_USEC=10000 export EF_BUZZ_USEC=1000.

Appendix B: Meta Options

UG1586 (v1.2) July 31, 2023
Onload User Guide 281Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=281

Appendix C

Build Dependencies
This appendix describes the build dependencies for Onload.

General
Before Onload network and kernel drivers can be built and installed, the target platform must
support the following capabilities:

• Support a general C build environment that has gcc, make, libc and libc-devel.

• From version 201502 the following are required: perl, autoconf, automake and libtool.

• Can compile kernel modules, and so has the correct kernel-devel package for the installed
kernel version.

Note: Onload builds have been tested against libtool versions 1.5.26 to 2.4.2. Users experiencing build
issues with other libtool versions should contact support-nic@amd.com.

Building Kernel Modules
The kernel must be built with the following options enabled, where supported:

• CONFIG_NETFILTER

• CONFIG_KALLSYMS

• EFRM_KALLSYMS_ALL

• CONFIG_FIB_RULES

• CONFIG_IP_MULTIPLE_TABLES.

Standard distributions will already have these enabled, but they must also be enabled when
building a custom kernel. These options do not affect performance.

The following commands can be used to install kernel development headers.

• Debian based Distributions - including Ubuntu (any kernel):

apt-get install linux-headers-$(uname -r)

Appendix C: Build Dependencies

UG1586 (v1.2) July 31, 2023
Onload User Guide 282Send Feedback

mailto:support-nic@amd.com?subject=Onload%20build%20issues
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=282

• For RedHat/Fedora (not for 32 bit kernel):

○ If the system supports a 32 bit kernel and the kernel is PAE, then:

yum -y install kernel-PAE-devel

○ otherwise:

yum -y install kernel-devel

• For SuSE:

yast -i kernel-source

onload
Onload requires the following to be installed:

• autoconf

• automake

• bash

• binutils

• gawk

• gcc

• gettext

• glibc-common

• libcap-devel.

• libtool

• make

• sed

onload_tcpdump
onload_tcpdump requires the following additional packages to be installed:

• libpcap

• libpcap-devel.

Note: If these additional packages are not installed then onload_tcpdump will not be built, but the Onload
build will succeed.

Appendix C: Build Dependencies

UG1586 (v1.2) July 31, 2023
Onload User Guide 283Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=283

solar_clusterd
solar_clusterd requires the following additional packages to be installed:

• python-devel.

Note: If these additional packages are not installed then solar_clusterd will not be built, but the Onload
build will succeed.

onload_bpftools
onload_bpftools requires the following additional packages to be installed:

• libelf development package

• the elfutil-devel or libelf-dev packages are required to use the ‘load’ option.

Note: If these additional packages are not installed then onload_bpftools will not be built, but the Onload
build will succeed.

IPv6 Support
Onload IPv6 support requires Linux kernel 4.4 or later, or RHEL7.4 or later.

Red Hat Enterprise Linux 8.x
Users of RHEL 8.0 and later releases must ensure the CodeReady Builder repository is included
in the system repository list. This is a requirement to provide the libcap build dependency.

Appendix C: Build Dependencies

UG1586 (v1.2) July 31, 2023
Onload User Guide 284Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=284

Appendix D

Onload Extensions API
The Onload Extensions API allows the user to customize an application using advanced features
to improve performance.

The Extensions API does not create any runtime dependency on Onload and an application using
the API can run without Onload. The license for the API and associated libraries is a BSD 2-
Clause License.

API groups

This appendix covers the following API groups within the Extensions API:

• Common Components

• Stacks API

• Zero-Copy API

• Templated Sends API

• Delegated Sends API

Source code

The Extensions API source code is provided with the Onload distribution. Entry points for the
source code are:

• src/lib/transport/unix/onload_ext_intercept.c

• src/lib/transport/unix/zc_intercept.c

Java Native Interface Wrapper

The Onload distribution includes a JNI wrapper for use with the Extensions API. Java users
should also refer to the files:

• /onload-<version>/src/tools/jni

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 285Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=285

Common Components
For all applications employing the Extensions API the following components are provided:

• #include <onload/extensions.h>

An application should include the header file containing function prototypes and constant
values required when using the API.

• libonload_ext.a, libonload_ext.so

This library provides stub implementations of the extended API. An application that wishes to
use the extensions API should link against this library.

When Onload is not present, the application will continue to function, but calls to the
extensions API will have no effect (unless documented otherwise).

○ To link dynamically to this library include the ‘-l’ linker option on the compiler command
line:

-lonload_ext

○ You can instead link against the libonload_ext.a static library. This is required to run
the application on servers that do not have the dynamic libraries installed. When doing so,
it is necessary to also link with the dynamic library by adding the ‘ldl’ option to the compiler
command line.

-ldl -l:libonload_ext.a

onload_is_present
Description

If the application is linked with libonload_ext, but not running with Onload this will return 0.
If the application is running with Onload this will return 1.

Definition

int onload_is_present (void)

Formal Parameters

None.

Return Value

1 from libonload.so library, or 0 from libonload_ext.a library

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 286Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=286

onload_fd_stat
struct onload_stat
{
 int32_t stack_id;
 char* stack_name;
 int32_t endpoint_id;
 int32_t endpoint_state;
};

extern int onload_fd_stat(int fd, struct onload_stat* stat);

Description

Retrieves internal details about an accelerated socket.

Definition

See above.

Formal Parameters

See above.

Return Value

0 socket is not accelerated

1 socket is accelerated

-ENOMEM when memory cannot be allocated

Notes

When calling free() on stack_name use the (char *) because memory is allocated using
malloc.

This function will call malloc() and so should never be called from any other function requiring
a malloc lock.

Note: Can be used to check if a fd is accelerated without allocating memory if stat is declared as NULL.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 287Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=287

onload_fd_check_feature
enum onload_fd_feature {
 /* Check whether this fd supports ONLOAD_MSG_WARM or not */
 ONLOAD_FD_FEAT_MSG_WARM,
 /* see Notes for details */
 ONLOAD_FD_FEAT_UDP_TX_TS_HDR
};

int onload_fd_check_feature (int fd, enum onload_fd_feature feature);

Description

Used to check whether the Onload file descriptor supports a feature or not.

Definition

See above.

Formal Parameters

See above.

Return Value

0 if the feature is supported but not on this fd

>0 if the feature is supported both by onload and this fd

<0 if the feature is not supported:

-ENOSYS if onload_fd_check_feature() is not supported.

- ENOTSUPP if the feature is not supported by onload.

Notes

Onload-201509 and later versions support the ONLOAD_FD_FEAT_UDP_TX_TS_HDR option.
onload_fd_check_feature() will return 1 to indicate that a recvmsg used to retrieve TX
timestamps for UDP packets will return the entire Ethernet header.

Note: When run on older versions of onload this will return -EOPNOTSUPP.

onload_thread_set_spin
Description

For a thread calling this function, onload_thread_set_spin() sets the per-thread spinning
actions, it is not per-stack and not per-socket.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 288Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=288

Definition

int onload_thread_set_spin(enum onload_spin_type type, unsigned spin)

Formal Parameters

• type: Which operation to change the spin status of. The type must be one of the following:

enum onload_spin_type {
 ONLOAD_SPIN_ALL, /* enable or disable all spin options */
 ONLOAD_SPIN_UDP_RECV,
 ONLOAD_SPIN_UDP_SEND,
 ONLOAD_SPIN_TCP_RECV,
 ONLOAD_SPIN_TCP_SEND,
 ONLOAD_SPIN_TCP_ACCEPT,
 ONLOAD_SPIN_PIPE_RECV,
 ONLOAD_SPIN_PIPE_SEND,
 ONLOAD_SPIN_SELECT,
 ONLOAD_SPIN_POLL,
 ONLOAD_SPIN_PKT_WAIT,
 ONLOAD_SPIN_EPOLL_WAIT,
 ONLOAD_SPIN_STACK_LOCK,
 ONLOAD_SPIN_SOCK_LOCK,
 ONLOAD_SPIN_SO_BUSY_POLL,
 ONLOAD_SPIN_TCP_CONNECT,
 ONLOAD_SPIN_MIMIC_EF_POLL, /* thread spin configuration which mimics
 * spin settings in EF_POLL_USEC. Note
 * that this has no effect on the
 * usec-setting part of EF_POLL_USEC.
 * This needs to be set separately
 */
 ONLOAD_SPIN_MAX /* special value to mark largest valid input */
};

• spin: A boolean which indicates whether the operation should spin or not.

Return Value

0 on success

-EINVAL if unsupported type is specified.

Notes

Spin time (for all threads) is set using the per-process EF_SPIN_USEC parameter.

Examples

The onload_thread_set_spin API can be used to control spinning on a per-thread or per-
API basis. The existing spin-related configuration options set the default behavior for threads,
and the onload_thread_set_spin API overrides the default for the thread calling this
function.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 289Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=289

• Disable All Sorts of Spinning:

onload_thread_set_spin(ONLOAD_SPIN_ALL, 0);

• Enable All Sorts of Spinning:

onload_thread_set_spin(ONLOAD_SPIN_ALL, 1);

• Enable Spinning only for Certain Threads:

1. Set the spin timeout by setting EF_SPIN_USEC, and disable spinning by default by setting
EF_POLL_USEC=0.

2. In each thread that should spin, invoke onload_thread_set_spin().

• Disable Spinning only in Certain Threads:

1. Enable spinning by setting EF_POLL_USEC=<timeout>.

2. In each thread that should not spin, invoke onload_thread_set_spin().

IMPORTANT! If a thread is set to NOT spin and then blocks this might invoke an interrupt for the
whole stack. Interrupts occurring on moderately busy threads can cause unintended and undesirable
consequences.

• Enable Spinning for UDP Traffic, but not TCP Traffic:

1. Set the spin timeout by setting EF_SPIN_USEC, and disable spinning by default by setting
EF_POLL_USEC=0.

2. In each thread that should spin (UDP only), do:

onload_thread_set_spin(ONLOAD_SPIN_UDP_RECV, 1)
onload_thread_set_spin(ONLOAD_SPIN_UDP_SEND, 1)

• Enable Spinning for TCP Traffic, but not UDP Traffic:

1. Set the spin timeout by setting EF_SPIN_USEC, and disable spinning by default by setting
EF_POLL_USEC=0.

2. In each thread that should spin (TCP only), do:

onload_thread_set_spin(ONLOAD_SPIN_TCP_RECV, 1)
onload_thread_set_spin(ONLOAD_SPIN_TCP_SEND, 1)
onload_thread_set_spin(ONLOAD_SPIN_TCP_ACCEPT, 1)

Spinning and Sockets

When a thread calls onload_thread_set_spin() it sets the spinning actions applied when
the thread accesses any socket - irrespective of whether the socket is created by this thread.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 290Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=290

If a socket is created by thread-A and is accessed by thread-B, calling
onload_thread_set_spin(ONLOAD_SPIN_ALL, 1) only from thread-B will enable spinning
for thread-B, but not for thread-A. In the same scenario, if
onload_thread_set_spin(ONLOAD_SPIN_ALL, 1) is called only from thread-A, then
spinning is enabled only for thread-A, but not for thread-B.

The onload_thread_set_spin() function sets the per-thread spinning action.

onload_thread_get_spin
Description

For the current thread, identify which operations should spin.

Definition

int onload_thread_get_spin(unsigned *state)

Formal Parameters

• state: Location at which to write the spin status as a bitmask. Bit n of the mask is set if
spinning has been enabled for spin type n (see onload_thread_set_spin).

Return Value

0 on success.

Notes

Spin time (for all threads) is set using the EF_SPIN_USEC parameter.

Examples

Determine if spinning is enabled for UDP receive:

unsigned state;
onload_thread_get_spin(&state);
if (state & (1 << ONLOAD_SPIN_UDP_RECV)) {
 // spinning is enabled for UDP receive
}

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 291Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=291

onload_socket_nonaccel
Description

Create a socket which is not accelerated by Onload. This function is useful when attempting to
reserve a port for an ephemeral ef_vi instance without installing Onload filters. It is also possible
to use the stackname API to disable acceleration for specific socket(s).

Definition

int onload_socket_nonaccel(int domain int type, int protocol)

Formal Parameters

This function takes arguments and returns values that correspond exactly to the standard
socket() function call.

Return Value

Return the file descriptor that refers to the created endpoint.

-1 with errno ENOSYS if the Onload extensions library is not in use.

onload_socket_unicast_nonaccel
Description

Create a socket that will only accelerate multicast traffic. If this socket is not able to receive
multicast, for example, because it is bound to a unicast local address, or it is a TCP socket, then it
will be handed over to the kernel.

This function is useful for cases where a socket will be used solely for multicast traffic to avoid
consuming limited filter table resource. This does not prevent unicast traffic from arriving at the
socket, and if appropriate traffic is received, it will still be delivered via the unaccelerated path. It
is most useful for sockets that are bound to INADDR_ANY, because for these Onload must install
a filter per IP address that is configured on an accelerated interface, on each accelerated
hardware port.

If a socket is bound to a multicast local address, then no unicast filters will be installed, so there is
no need for this function.

Definition

int onload_socket_unicast_nonaccel(int domain, int type, int protocol)

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 292Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=292

Formal Parameters

This function takes arguments and returns values that correspond exactly to the standard
socket() function call.

Return Value

Return the file descriptor that refers to the created endpoint.

-1 with errno ENOSYS if the Onload extensions library is not in use.

Stacks API
Using the Onload Extensions API an application can bind selected sockets to specific Onload
stacks and in this way ensure that time-critical sockets are not starved of resources by other non-
critical sockets. The API allows an application to select sockets which are to be accelerated thus
reserving Onload resources for performance critical paths. This also prevents non-critical paths
from creating jitter for critical paths.

onload_set_stackname
Description

Select the Onload stack that new sockets are placed in. A socket can exist only in a single stack.
A socket can be moved to a different stack - see onload_move_fd() below.

Moving a socket to a different stack does not create a copy of the socket in originator and target
stacks.

Definition

int onload_set_stackname(int who, int scope, const char *name)

Formal Parameters

• who: Must be one of the following:

• ONLOAD_THIS_THREAD - to modify the stack name in which all subsequent sockets are
created by this thread.

• ONLOAD_ALL_THREADS - to modify the stack name in which all subsequent sockets are
created by all threads in the current process. ONLOAD_THIS_THREAD takes precedence
over ONLOAD_ALL_THREADS.

• scope: Must be one of the following:

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 293Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=293

• ONLOAD_SCOPE_THREAD - name is scoped with current thread

• ONLOAD_SCOPE_PROCESS - name is scoped with current process

• ONLOAD_SCOPE_USER - name is scoped with current user

• ONLOAD_SCOPE_GLOBAL - name is global across all threads, users and processes.

• ONLOAD_SCOPE_NOCHANGE - undo effect of a previous call to
onload_set_stackname(ONLOAD_THIS_THREAD, …), see Note 4.

• name: One of the following:

• the stack name up to eight characters.

• an empty string to set no stackname

• the special value ONLOAD_DONT_ACCELERATE to prevent sockets created in this thread,
user, process from being accelerated.

Sockets identified by the options above will belong to the Onload stack until a subsequent call
using onload_set_stackname identifies a different stack or the ONLOAD_SCOPE_NOCHANGE
option is used.

Return Value

0 on success

-1 with errno set to ENAMETOOLONG if the name exceeds permitted length

-1 with errno set to EINVAL if other parameters are invalid.

Note 1

This applies for stacks selected for sockets created by socket() and for pipe(), it has no
effect on accept(). Passively opened sockets created via accept() will always be in the same
stack as the listening socket that they are linked to. This means that the following are functionally
identical:

onload_set_stackname(foo)
socket
listen
onload_set_stackname(bar)
accept

and:

onload_set_stackname(foo)
socket
listen
accept
onload_set_stackname(bar)

In both cases the listening socket and the accepted socket will be in stack foo.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 294Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=294

Note 2

Scope defines the namespace in which a stack belongs. A stackname of foo in scope user is not
the same as a stackname of foo in scope thread. Scope restricts the visibility of a stack to either
the current thread, current process, current user or is unrestricted (global). This has the property
that with, for example, process based scoping, two processes can have the same stackname
without sharing a stack - as the stack for each process has a different namespace.

Note 3

Scoping can be thought of as adding a suffix to the supplied name, for example:

ONLOAD_SCOPE_THREAD: <stackname>-t<thread_id>

ONLOAD_SCOPE_PROCESS: <stackname>-p<process_id>

ONLOAD_SCOPE_USER: <stackname>-u<user_id>

ONLOAD_SCOPE_GLOBAL: <stackname>

This is an example only and the implementation is free to do something different such as
maintaining different lists for different scopes.

Note 4

ONLOAD_SCOPE_NOCHANGE will undo the effect of a previous call to
onload_set_stackname(ONLOAD_THIS_THREAD, …).

If you have previously used onload_set_stackname(ONLOAD_THIS_THREAD, …) and want to
revert to the behavior of threads that are using the ONLOAD_ALL_THREADS configuration,
without changing that configuration, you can do the following:

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_NOCHANGE, "");

Related Environment Variables

Related environment variables are:

• EF_DONT_ACCELERATE:

Default: 0

Minimum: 0

Maximum: 1

Scope: Per-process

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 295Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=295

If this environment variable is set then acceleration for ALL sockets is disabled and handed off
to the kernel stack until the application overrides this state with a call to
onload_set_stackname().

• EF_STACK_PER_THREAD:

Default: 0

Minimum: 0

Maximum: 1

Scope: Per-process

If this environment variable is set each socket created by the application will be placed in a
stack depending on the thread in which it is created. Stacks could, for example, be named
using the thread ID of the thread that creates the stack, but this should not be relied upon.

A call to onload_set_stackname overrides this variable. EF_DONT_ACCELERATE takes
precedence over this variable.

• EF_NAME:

Default: none

Minimum: 0

Maximum: 8

Scope: Per-stack

The environment variable EF_NAME will be honored to control Onload stack sharing.
However, a call to onload_set_stackname overrides this variable and,
EF_DONT_ACCELERATE and EF_STACK_PER_THREAD both take precedence over
EF_NAME.

onload_move_fd
Description

Move the file descriptor to the current stack. The target stack can be specified with
onload_set_stackname(),then use onload_move_fd() to put the socket into the target
stack.

A socket can exist only in a single stack. Moving a socket to a different stack does not create a
copy of the socket in originator and target stacks. Limited to TCP closed or accepted sockets
only.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 296Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=296

Definition

int onload_move_fd (int fd)

Formal Parameters

fd - the file descriptor to be moved to the current stack.

Return Value

0 on success

non-zero otherwise.

Notes

• Useful to move fds obtained by accept() to a different Onload stack from the listening
socket.

• Cannot be used on actively opened connections, although it is possible to use
onload_set_stackname() before calling connect() to achieve the same result.

• The socket must have empty send and retransmit queues (send not called on this socket)

• The socket must have a simple receive queue (no loss, reordering, etc)

• The fd is not yet in an epoll set.

• The onload_move_fd function should not be used if SO_TIMESTAMPING is set to a non-zero
value for the originating socket.

• Should not be used simultaneously with other I/O multiplex actions such as poll(),
select(), recv() etc on the file descriptor.

• This function is not async-safe and should never be called from any process function handling
signals.

• This function cannot be used to hand sockets over to the kernel. It is not possible to use
onload_set_stackname (ONLOAD_DONT_ACCELERATE) and then onload_move_fd().

Note: The onload_move_fd function does not check whether a destination stack has either RX or TX
timestamping enabled.

onload_stackname_save
Description

Save the state of the current onload stack identified by the previous call to
onload_set_stackname().

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 297Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=297

Definition

int onload_stackname_save (void)

Formal Parameters

none

Return Value

0 on success

-ENOMEM when memory cannot be allocated.

onload_stackname_restore
Description

Restore stack state saved with a previous call to onload_stackname_save(). All updates/
changes to state of the current stack will be deleted and all state previously saved will be
restored. To avoid unexpected results, the stack should be restored in the same thread as used to
call onload_stackname_save().

Definition

int onload_stackname_restore (void)

Formal Parameters

none

Return Value

0 on success

non-zero if an error occurs.

Notes

The API stackname save and restore functions provide flexibility when binding sockets to an
Onload stack.

Using a combination of onload_set_stackname(), onload_stackname_save() and
onload_stackname_restore(), the user is able to create default stack settings which apply
to one or more sockets, save this state and then create changed stack settings which are applied
to other sockets. The original default settings can then be restored to apply to subsequent
sockets.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 298Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=298

onload_stack_opt_set_int
Description

Set/modify per-stack options for all subsequently created stacks. These override any global per-
stack environment options already set. When using this function - check the scope field on the
environment variable, for example:

• EF_NAME:

Default: none

Minimum: 0

Maximum: 8

Scope: Per-stack

The onload_stack_opt_set_int() function has no effect for per-process, per-thread
options which should be set with onload_thread_set_spin().

Definition

int onload_stack_opt_set_int(const char* name, int64_t value)

Formal Parameters

• name: Stack option to modify

• value: New value for the stack option.

Example

onload_stack_opt_set_int(“EF_SCALABLE_FILTERS_ENABLE”, 1);

Return Value

0 on success

errno set to EINVAL if the requested option is not found or ENOMEM.

Notes

• Cannot be used to modify options on existing stacks - only for new stacks.

• Cannot be used to modify per-process options - only per-stack options.

• Modified options will be used for all newly created stacks until
onload_stack_opt_reset() is called.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 299Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=299

onload_stack_opt_reset
Description

Revert to using global stack options for newly created stacks.

Definition

int onload_stack_opt_reset(void)

Formal Parameters

None.

Return Value

0 always

Notes

Should be called following a call to onload_stack_opt_set_int() to revert to using global
stack options for all newly created stacks.

onload_ordered_epoll_wait
For details of the Wire Order Delivery feature refer to Wire Order Delivery.

Description

If the epoll set contains accelerated sockets in only one stack this function can be used instead of
epoll_wait() to return events in the order these were recovered from the wire. There is no
explicit check on sockets, so applications must ensure that the rules are applied to avoid mis-
ordering of packets.

Definition

int onload_ordered_epoll_wait (
 int epfd,
 struct epoll_event *events,
 struct onload_ordered_epoll_event *oo_events,
 int maxevents,
 int timeout);

Formal Parameters

See definition epoll_wait().

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 300Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=300

Return Value

• A positive value identifies the number of epoll_evs / ordered_evs to process.

• A zero value indicates there are no events which can be processed while maintaining ordering,
that is there might be no data or only unordered data.

• A negative return value identifies an error condition.

Notes

Any file descriptors returned as ready without a valid timestamp (tv_sec = 0), should be
considered unordered with respect to the rest of the set. This can occur for data received via the
kernel or data returned without a hardware timestamp, that is from an interface that does not
support hardware timestamping.

The environment variable EF_UL_EPOLL=1 must be set if hardware timestamps are required.
This feature is only available on the SFN8000 and X2 series adapters.

struct onload_ordered_epoll_event{
 /* The hardware timestamp of the first readable data */
 struct timespec ts;
 /* Number of bytes that may be read to maintain wire order */
 int bytes
};

ONLOAD_MSG_ONEPKT and EF_TCP_RCVBUF_STRICT are incompatible with the wire order
delivery feature. Refer to Wire Order Delivery for details.

Use the environment variable EF_RX_TIMESTAMPING_ORDERING to select either the (default)
NIC hardware timestamps or external timestamps from cPacket trailers applied by upstream
external equipment. When using external timestamps, packets might appear out of order due to
external delays unknown to Onload.

onload_timestamping_request
Can be called instead of setsockopt(SO_TIMESTAMPING) to enable packet timestamping in
multiple formats.

Description

Receive packet timestamps from multiple sources with sub-nanosecond resolution. Supported
sources are hardware timestamps generated by the Solarflare adapter and timestamps applied by
an external equipment using the cPacket format.

Definition

int onload_timestamping_request (int fd, unsigned flags);

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 301Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=301

Formal Parameters

• fd: Socket file descriptor

• flags: Onload_timestamping_flags:

enum onload_timestamping_flags {
 /* Request NIC timestamps for sent packets */
 ONLOAD_TIMESTAMPING_FLAG_TX_NIC = 1 << 0,

 /* Request NIC and/or external timestamps for received packets */
 ONLOAD_TIMESTAMPING_FLAG_RX_NIC = 1 << 1,
 ONLOAD_TIMESTAMPING_FLAG_RX_CPACKET = 1 << 2,
};

Return Value

0 on success

EINVAL unknown flag is set

ENOTTY fd does not refer to an Onload-accelerated socket

EOPNOTSUPP this build of Onload does not support timestamping

Stacks API Examples
Using a combination of the EF_DONT_ACCELERATE environment variable and the function
onload_set_stackname(), the user is able to control/select sockets which are to be
accelerated and isolate these performance critical sockets and threads from the rest of the
system.

The following examples demonstrate using onload_set_stackname():

• This thread will use stack foo, other threads in the stack will continue as before.

onload_set_stackname(ONLOAD_THIS_THREAD, ONLOAD_SCOPE_GLOBAL, "foo")

• All threads in this process will get their own stack called foo. This is equivalent to the
EF_STACK_PER_THREAD environment variable.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_THREAD, "foo")

• All threads in this process will share a stack called foo. If another process did the same
function call it will get its own stack.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_PROCESS, "foo")

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 302Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=302

• All threads in this process will share a stack called foo. If another process run by the same user
did the same, it would share the same stack as the first process. If another process run by a
different user did the same it would get is own stack.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_USER, "foo")

• Equivalent to EF_NAME. All threads will use a stack called foo which is shared by any other
process which does the same.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_GLOBAL, "foo")

• Equivalent to EF_DONT_ACCELERATE. New sockets/pipes will not be accelerated until
another call to onload_set_stackname().

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_GLOBAL,
ONLOAD_DONT_ACCELERATE)

Zero-Copy API
Zero-Copy can improve the performance of networking applications by eliminating intermediate
buffers when transferring data between application and network adapter.

The Onload Extensions Zero-Copy API supports zero-copy of UDP received packet data and TCP
transmit packet data.

The API provides the following components:

• #include <onload/extensions_zc.h>

In addition to the common components, an application should include this header file which
contains all function prototypes and constant values required when using the API. The header
file also includes comprehensive documentation, required data structures and function
definitions.

Zero-Copy Data Buffers
To avoid the copy data is passed to and from the application in special buffers described by a
struct onload_zc_iovec. A message or datagram can consist of multiple iovecs using a
struct onload_zc_msg. A single call to send can involve multiple messages using an array of
struct onload_zc_mmsg.

Figure 27: Zero-Copy Data Buffers

/* A zc_iovec describes a single buffer */
struct onload_zc_iovec {
 void* iov_base; /* Address within buffer */
 size_t iov_len; /* Length of data */
 onload_zc_handle buf; /* (opaque) buffer handle */

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 303Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=303

 unsigned iov_flags; /* Not currently used */
};
/* A msg describes array of iovecs that make up datagram */
struct onload_zc_msg {
 struct onload_zc_iovec* iov; /* Array of buffers */
 struct msghdr msghdr; /* Message metadata */
};
/* An mmsg describes a message, the socket, and its result */
struct onload_zc_mmsg {
 struct onload_zc_msg msg; /* Message */
 int rc; /* Result of send operation */
 int fd; /* socket to send on */
};

Zero-Copy UDP Receive Overview
The following figure illustrates the difference between the normal UDP receive mode and the
zero-copy method.

When using the standard POSIX socket calls, the adapter delivers packets to an Onload packet
buffer which is described by a descriptor previously placed in the RX descriptor ring. When the
application calls recv(), Onload copies the data from the packet buffer to an application-
supplied buffer.

Using the zero-copy UDP receive API the application calls the onload_zc_recv() function
including a callback function which will be called when data is ready. The callback can directly
access the data inside the Onload packet buffer avoiding a copy.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 304Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=304

Figure 28: Traditional vs. Zero-Copy UDP Receive

NIC NIC

Onload Onload

Application Application

Data received

foo()

Data received

Socket receive buffer Socket receive buffer

Buffer onload_zc_recv(foo())

Post descriptor

Deliver dataPost descriptor

Data delivered
to socket buffer

Copy data

recv() Callback foo()
to process data

Zero copy

X26429-031722

A single call using onload_zc_recv() function can result in multiple datagrams being
delivered to the callback function. Each time the callback returns to Onload the next datagram is
delivered. Processing stops when the callback instructs Onload to cease delivery or there are no
further received datagrams.

If the receiving application is filtering and so does not require to look at all data received this can
result in a considerable performance advantage because this data is not pulled into the
processor's cache, thereby reducing the application cache footprint.

As a general rule, the callback function should avoid calling other system calls which attempt to
modify or close the current socket.

Zero-copy UDP Receive is implemented within the Onload Extensions API.

Zero-Copy UDP Receive
The onload_zc_recv() function specifies a callback to invoke for each received UDP
datagram. The callback is invoked in the context of the call to onload_zc_recv() (it blocks/
spins waiting for data).

Before calling, the application must set the following in the struct onload_zc_recv_args:

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 305Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=305

Table 43: onload_zc_recv_args Fields

Field Value

cb
Set to the callback function pointer.

user_ptr
Set to point to application state, this is not touched by
Onload

msg.msghdr.msg_control
msg_controllen
msg_name
msg_namelen

The user application should set these to appropriate buffers
and lengths (if required) as you would for recvmsg (or NULL
and 0 if not used).

flags
Set to indicate behavior (for example
ONLOAD_MSG_DONTWAIT).

Figure 29: Zero-Copy recv_args

typedef enum onload_zc_callback_rc
(*onload_zc_recv_callback)(struct onload_zc_recv_args *args, int flags);
struct onload_zc_recv_args
{
 struct onload_zc_msg msg;
 onload_zc_recv_callback cb;
 void* user_ptr;
 int flags;
};
int onload_zc_recv(int fd, struct onload_zc_recv_args *args);

The callback gets to examine the data, and can control what happens next:

• whether or not the buffer(s) are kept by the callback or are immediately freed by Onload

• whether or not onload_zc_recv() will internally loop and invoke the callback with the
next datagram, or immediately return to the application.

The next action is determined by setting flags in the return code as follows:

Table 44: Flags for Setting in the Return Code

Flag Description

ONLOAD_ZC_KEEP
The callback function can elect to retain ownership of
received buffer(s) by returning ONLOAD_ZC_KEEP. Following
this, the correct way to release retained buffers is to call
onload_zc_release_buffers() to explicitly release the
first buffer from each received datagram. Subsequent
buffers pertaining to the same datagram will then be
automatically released.

ONLOAD_ZC_CONTINUE
To suggest that Onload should loop and process more
datagrams

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 306Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=306

Table 44: Flags for Setting in the Return Code (cont'd)

Flag Description

ONLOAD_ZC_TERMINATE
To insist that Onload immediately return from the
onload_zc_recv()

Flags can also be set by Onload:

Table 45: Flags That Can Be Set By Onload

Flag Description

ONLOAD_ZC_END_OF_BURST
Onload sets this flag to indicate that this is the last packet

ONLOAD_ZC_MSG_SHARED
Packet buffers are read only

If there is unaccelerated data on the socket from the kernel’s receive path this cannot be handled
without copying. The application has two choices as follows:

Table 46: Flags for Handling Unaccelerated Data

Flag Description

ONLOAD_MSG_RECV_OS_INLINE
Set this flag when calling onload_zc_recv(). Onload will
deal with the kernel data internally and pass it to the
callback

check return code Check the return code from onload_zc_recv(). If it
returns ENOTEMPTY then the application must call
onload_recvmsg_kernel() to retrieve the kernel data.

Zero-Copy Receive Example #1
Figure 30: Zero-Copy Receive Example #1

struct onload_zc_recv_args args;
struct zc_recv_state state;
int rc;
state.bytes = bytes_to_wait_for;
/* Easy way to set msg_control* and msg_name* to zero */
memset(&args.msg, 0, sizeof(args.msg));
args.cb = &zc_recv_callback;
args.user_ptr = &state;
args.flags = ONLOAD_ZC_RECV_OS_INLINE;
rc = onload_zc_recv(fd, &args);
//---
enum onload_zc_callback_rc
zc_recv_callback(struct onload_zc_recv_args *args, int flags)
{
 int i;
 struct zc_recv_state *state = args->user_ptr;

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 307Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=307

 for(i = 0; i < args->msg.msghdr.msg_iovlen; ++i) {
 printf("zc callback iov %d: %p, %d", i,
 args->msg.iov[i].iov_base,
 args->msg.iov[i].iov_len);
 state->bytes -= args->msg.iov[i].iov_len;
 }
 if(state->bytes <= 0) return ONLOAD_ZC_TERMINATE;
 else return ONLOAD_ZC_CONTINUE;
}

Zero-Copy Receive Example #2
Figure 31: Zero-Copy Receive Example #2

static enum onload_zc_callback_rc
zc_recv_callback(struct onload_zc_recv_args *args, int flag)
{
 struct user_info *zc_info = args->user_ptr;
 int i, zc_rc = 0;
 for(i = 0; i < args->msg.msghdr.msg_iovlen; ++i) {
 zc_rc += args->msg.iov[i].iov_len;
 handle_msg(args->msg.iov[i].iov_base,
 args->msg.iov[i].iov_len);
 }
 if(zc_rc == 0)
 return ONLOAD_ZC_TERMINATE;
 zc_info->zc_rc += zc_rc;
 if((zc_info->flags & MSG_WAITALL) &&
 (zc_info->zc_rc < zc_info->size))
 return ONLOAD_ZC_CONTINUE;
 else return ONLOAD_ZC_TERMINATE;
}
struct onload_zc_recv_args zc_args;
ssize_t do_recv_zc(int fd, void* buf, size_t len, int flags)
{
 struct user_info info; int rc;
 init_user_info(&info);
 memset(&zc_args, 0, sizeof(zc_args));
 zc_args.user_ptr = &info;
 zc_args.flags = 0;
 zc_args.cb = &zc_recv_callback;
 if(flags & MSG_DONTWAIT)
 zc_args.flags |= ONLOAD_MSG_DONTWAIT;
 rc = onload_zc_recv(fd, &zc_args);
 if(rc == -ENOTEMPTY) {
 if((rc = onload_recvmsg_kernel(fd, &msg, 0)) < 0)
 printf("onload_recvmsg_kernel failed\n");
 }
 else if(rc == 0) {
 /* zc_rc gets set by callback to bytes received, so we
 * can return that to appear like standard recv call */
 rc = info.zc_rc;
 }
 return rc;
}

Note: onload_zc_recv() should not be used together with onload_set_recv_filter() and only
supports accelerated (Onloaded) sockets. For example, when bound to a broadcast address the socket fd is
handed off to the kernel and this function will return ESOCKNOTSUPPORT.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 308Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=308

Zero-Copy TCP Send Overview
The following figure illustrates the difference between the normal TCP transmit method and the
zero- copy method.

When using standard POSIX socket calls, the application first creates the payload data in an
application allocated buffer before calling the send() function. Onload will copy the data to a
Onload packet buffer in memory and post a descriptor to this buffer in the network adapter TX
descriptor ring.

Using the zero-copy TCP transmit API the application calls the onload_zc_alloc_buffers()
function to request buffers from Onload. A pointer to a packet buffer is returned in response.
The application places the data to send directly into this buffer and then calls
onload_zc_send() to indicate to Onload that data is available to send.

Onload will post a descriptor for the packet buffer in the network adapter TX descriptor ring and
ring the TX doorbell. The network adapter fetches the data for transmission.

Figure 32: Traditional vs. Zero-Copy TCP Transmit

NIC NIC

Onload Onload

Application Application

Data transmit

Socket send buffer Socket send buffer

Data to send ptr_to_buffer

Post descriptorPost descriptor

send()

zc_alloc_buffer()

Return
buffer

Zero copy

Data transmit

zc_send()

X26428-031722

Note: The socket used to allocate zero-copy buffers must be in the same stack as the socket used to send
the buffers. When using TCP loopback, Onload can move a socket from one stack to another. Users must
ensure that they always use buffers from the correct stack.

Note: The onload_zc_send function does not currently support the ONLOAD_MSG_MORE or
TCP_CORK flags.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 309Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=309

Zero-copy TCP transmit is implemented within the Onload Extensions API.

Zero-Copy TCP Send
The zero-copy send API supports the sending of multiple messages to different sockets in a
single call. Data buffers must be allocated in advance and for best efficiency these should be
allocated in blocks and off the critical path. The user should avoid simply moving the copy from
Onload into the application, but where this is unavoidable, it should also be done off the critical
path.

Figure 33: Zero-Copy Send

int onload_zc_send(struct onload_zc_mmsg* msgs, int mlen, int flags);

Figure 34: Zero-Copy Allocate Buffers

int onload_zc_alloc_buffers(int fd,
 struct onload_zc_iovec* iovecs,
 int iovecs_len,
 onload_zc_buffer_type_flags flags);
int onload_zc_release_buffers(int fd,
 onload_zc_handle* bufs,
 int bufs_len);

The onload_zc_send() function return value identifies how many of the onload_zc_mmsg
array’s rc fields are set. Each onload_zc_mmsg.rc returns how many bytes (or error) were sent
in for that message. Refer to the table below.

rc = onload_zc_send()

rc < 0 application error calling onload_zc_send(). rc is set to the
error code

rc == 0 should not happen
0 < rc <= n_msgs rc is set to the number of messages whose status has been

sent in mmsgs[i].rc.
rc == n_msgs is the normal case

rc = mmsg[i].rc

rc < 0 error sending this message. rc is set to the error code

rc >= 0 rc is set to the number of bytes that have been sent in this
message. Compare to the message length to establish
which buffers sent

Sent buffers are owned by Onload. Unsent buffers are owned by the application and must be
freed or reused to avoid leaking.

Note: Buffers sent with the ONLOAD_MSG_WARM feature enabled are not actually sent buffers,
ownership remains with the user who is responsible for freeing these buffers.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 310Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=310

Zero-Copy Send with Single Message and Buffer
Figure 35: Zero-Copy with Single Message and Buffer Example

struct onload_zc_iovec iovec;
struct onload_zc_mmsg mmsg;
rc = onload_zc_alloc_buffers(fd, &iovec, 1,
 ONLOAD_ZC_BUFFER_HDR_TCP);
assert(rc == O);
assert(my_data_len <= iovec.iov_len);
memcpy(iovec.iov_base, my_data, my_data_len);
iovec.iov_len = my_data_len;
mmsg.fd = fd;
mmsg.msg.iov = &iovec;
mmsg.msg.msghdr.msg_iovlen = 1;
rc = onload_zc_send(&mmsg, 1, 0);
if(rc <= 0) {
 /* Probably application bug */
 return rc;
} else {
 /* Only one message, so rc should be 1 */
 assert(rc == 1);
 /* rc == 1 so we can look at the first (only) mmsg.rc */
 if(mmsg.rc < 0)
 /* Error sending message */
 onload_zc_release_buffers(fd, &iovec.buf, 1);
 else
 /* Message sent, single msg, single iovec so
 * shouldn't worry about partial sends */
 assert(mmsg.rc == my_data_len);
}

The example above demonstrates error code handling. Note it contains an examples of bad
practice where buffers are allocated and populated on the critical path.

Zero-Copy Send with Multiple Messages and Buffers
Figure 36: Zero-Copy with Multiple Messages and Buffers Example

#define N_BUFFERS 2
#define N_MSGS 2
struct onload_zc_iovec iovec[N_MSGS][N_BUFFERS];
struct onload_zc_mmsg mmsg[N_MSGS];
for(i = 0; i < N_MSGS; ++i) {
 rc = onload_zc_alloc_buffers(fd, iovec[i], N_BUFFERS,
 ONLOAD_ZC_BUFFER_HDR_TCP);
 assert(rc == 0);
 /* TODO store data in iovec[i][j].iov_base,
 * set iovec[i][j]iov_len */
 mmsg[i]fd = fd; /* Could be different for each message */
 mmsg[i].iov = iovec[i];
 mmsg[i].msg.msghdr.msg_iovlen = N_BUFFERS;
}
rc = onload_zc_send(mmsg, N_MSGS, 0);
if(rc <= 0) {
 /* Probably application bug */
 return rc;
} else {

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 311Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=311

 for(i = 0; i < N_MSGS; ++i) {
 if(i < rc) {
 /* mmsg[i] is set and we can use it */
 if(mmsg[i] < 0) {
 /* error sending this message - release buffers */
 for(j = 0; j < N_BUFFERS; ++j)
 onload_zc_release_buffers(fd, &iovec[i][j].buf, 1);
 } else if(mmsg(i] < sum_over_j(iovec[i][j].iov_len)) {
 /* partial success */
 /* TODO use mmsg[i] to determine which buffers in
 * iovec[i] array are sent and which are still
 * owned by application */
 } else {
 /* Whole message sent, buffers now owned by Onload */
 }
 } else {
 /* mmsg[i] is not set, this message was not sent */
 for(j = 0; j < N_BUFFERS; ++j)
 onload_zc_release_buffers(fd, &iovec[i][j].buf, 1);
 }
 }
}

The example above demonstrates error code handling and contains some examples of bad
practice where buffers are allocated and populated on the critical path.

Zero-Copy Send Full Example
Figure 37: Zero-Copy Send

static struct onload_zc_iovec iovec[NUM_ZC_BUFFERS];
static ssize_t do_send_zc(int fd, const void* buf, size_t len, int flags)
{
 int bytes_done, rc, i, bufs_needed;
 struct onload_zc_mmsg mmsg;
 mmsg.fd = fd;
 mmsg.msg.iov = iovec;
 bytes_done = 0;
 mmsg.msg.msghdr.msg_iovlen = 0;
 while(bytes_done < len) {
 if(iovec[mmsg.msg.msghdr.msg_iovlen].iov_len > (len - bytes_done))
 iovec[mmsg.msg.msghdr.msg_iovlen].iov_len = (len - bytes_done);
 memcpy(iovec[i].iov_base, buf+bytes_done, iov_len);
 bytes_done += iovec[mmsg.msg.msghdr.msg_iovlen].iov_len;
 ++mmsg.msg.msghdr.msg_iovlen;
 }
 rc = onload_zc_send(&mmsg, 1, 0);
 if(rc != 1 /* Number of messages we sent */) {
 printf("onload_zc_send failed to process msg, %d\n", rc);
 return -1;
 } else {
 if(mmsg.rc < 0)
 printf("onload_zc_send message error %d\n", mmsg.rc);
 else {
 /* Iterate over the iovecs; any that were sent we must replenish. */
 i = 0; bufs_needed= 0;
 while(i < mmsg.msg.msghdr.msg_iovlen) {
 if(bytes_done == mmsg.rc) {
 printf(onload_zc_send did not send iovec %d\n", i);
 /* In other buffer allocation schemes we would have to release

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 312Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=312

 * these buffers, but seems pointless as we guarantee at the
 * end of this function to have iovec array full, so do nothing.
*/
 } else {
 /* Buffer sent, now owned by Onload, so replenish iovec array */
 ++bufs needed;
 bytes_done += iovec[i].iov_len;
 }
 ++i;
 }
 if(bufs_needed) /* replenish the iovec array */
 rc = onload_zc_alloc_buffers(fd, iovec, bufs_needed,
 ONLOAD_ZC_BUFFER_HDR_TCP);
 }
 }
 /* Set a return code that looks similar enough to send(). NB. we're
 * not setting (and neither does onload_zc_send()) errno */
 if(mmsg.rc < 0) return -1;
 else return bytes_done;
}

Receive Filtering API
The Onload Extensions Receive Filtering API allows a user-defined callback to inspect data
received on a UDP socket before it enters the socket receive buffer. It provides an alternative to
the onload_zc_recv() function described in the previous sections.

Figure 38: UDP Receive Filtering

NIC NIC

Onload Onload

Application Application

Data received

Callback

Data received

Socket receive buffer Socket receive buffer

Buffer Buffer

Post descriptor

Deliver dataPost descriptor

Data delivered
to socket buffer

Deliver

Copy data

recv() recv() Wanted
data

Callback

Receive filter

X26427-031722

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 313Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=313

Receive filtering is implemented within the Onload Extensions API.

Note: An application using the Receive Filtering API can continue to use any POSIX function on the socket
such as select(), poll(), epoll_wait() or recv(), but must not use the onload_zc_receive()
function.

Receive Filtering API
The Onload Extensions Receive Filtering API provides the following components:

• #include <onload/extensions_zc.h>

In addition to the common components, an application should include this header file which
contains all function prototypes and constant values required when using the API.

This file includes comprehensive documentation, required data structures and function
definitions.

The Receive Filtering API is a variation on the zero-copy receive whereby the normal socket
methods are used for accessing the data, but the application can specify a callback to inspect
each datagram before it is received.

typedef enum onload_zc_callback_rc
(*onload_zc_recv_filter_callback)(struct onload_zc_msg *msg,
 void* arg,
 int flags);
int onload_set_recv_filter(int fd,
 onload_zc_recv_filter_callback filter,
 void* cb_arg,
 int flags);

Figure 39: Receive Filter

The onload_set_recv_filter() function returns immediately.

The callback is invoked once per message in the context of subsequent calls to recv(),
recvmsg() etc. The cb_arg value is passed to the callback along with the message. The flags
argument of the callback is set to ONLOAD_ZC_MSG_SHARED if the message is shared with other
sockets, and the caller should take care not to modify the contents of the iovec.

The message can be found in msg->iov[], and the iovec is of length msg-
>msghdr.msg_iovlen.

The callback must return ONLOAD_ZC_CONTINUE to allow the message to be delivered to the
application. Other return codes such as ONLOAD_ZC_TERMINATE and ONLOAD_ZC_MODIFIED
are deprecated and no longer supported.

This function can only be used with accelerated sockets (those being handled by Onload). If a
socket has been handed over to the kernel stack (for example because it has been bound to an
address that is not routed over a SFC interface), it will return -ESOCKTNOSUPPORT.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 314Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=314

Receive Filtering Example
static enum onload_zc_callback_rczc_recv_filter(struct onload_zc_msg* msg,
void* arg, int flags)
{
 return ONLOAD_ZC_CONTINUE;
}struct zc_recv_state zc_filter_state;
static int do_zc_filter(controller_t* c)
{
 zc_filter_state.c = c;
 zc_filter_state.bytes = 0;
 return onload_set_recv_filter(the_socket, zc_recv_filter,
 &zc_filter_state, 0);
}

Figure 40: Receive Filtering Example

Note: The onload_set_recv_filter() function should not be used together with the
onload_zc_recv() function.

Templated Sends API
“Templated sends” is a feature for the SFN8000 and X2 series adapters that builds on top of TX
PIO to provide further transmit latency improvements. Refer to Programmed I/O for details of TX
PIO.

Description
Templated sends can be used in applications that know the majority of the content of packets in
advance of when the packet is to be sent. For example, a market feed handler might publish
packets that vary only in the specific value of certain fields, possibly different symbols and price
information, but are otherwise identical.

The Onload templated sends feature uses the Onload Extensions API to generate the packet
template which is then instantiated on the adapter ready to receive the “missing” data before
each transmission.

Templated sends involve allocating a template of a packet on the adapter containing the bulk of
the data prior to the time of sending the packet. Then, when the packet is to be sent, the
remaining data is pushed to the adapter to complete and send the packet.

When the socket, associated with an allocated template, is shutdown or closed, allocated
templates are freed and subsequent calls to access these template will return an error.

The API details are available in the Onload distribution at:

• /src/include/onload/extensions_zc.h

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 315Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=315

MSG Template
struct oo_msg_template {
 /* To verify subsequent templated calls are used with the same socket */
 oo_sp oomt_sock_id;
};

MSG Update
/* An update_iovec describes a single template update */
struct onload_template_msg_update_iovec {
 void* otmu_base; /* Pointer to new data */
 size_t otmu_len; /* Length of new data */
 off_t otmu_offset; /* Offset within template to update */
 unsigned otmu_flags; /* For future use. Must be set to 0. */
};

MSG Allocation
Description

Populated from an array of iovecs to specify the initial packet data. This function is called once to
allocate the packet template and populate the template with the bulk of the payload data.

Definition

extern int onload_msg_template_alloc(
int fd,
struct iovec* initial_msg,
int iovlen,
onload_template_handle* handle,
unsigned flags);

Formal Parameters

• fd: File descriptor to send on.

• initial_msg: Array of iovecs which are the bulk of the payload.

• iovlen: Length of initial msg.

• handle: Template handle, used to refer to this template.

• flags: See notes below. Can also be set to zero.

Return Value

0 on success.

Non-zero otherwise.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 316Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=316

Notes

The initial iovec array passed to onload_msg_template_alloc() must have at least one
element having a valid address and non-zero length.

If PIO allocation fails, then onload_msg_template_alloc() will fail. Setting the flags to
ONLOAD_TEMPLATE_FLAGS_PIO_RETRY will force allocation without PIO while attempting to
allocate the PIO in later calls to onload_msg_template_update().

MSG Template Update
Description

Takes an array of onload_template_msg_update_iovec to describe changes to the base
packet populated by the onload_msg_template_alloc() function. Each of the update
iovecs should describe a single change. The update function is used to overwrite existing
template content or to send the complete template content when the
ONLOAD_TEMPLATE_FLAGS_SEND_NOW flag is set.

Definition

extern int onload_msg_template_update(
int fd,
onload_template_handle* handle,
struct onload_template_msg_update_iovec* updates,
int ulen,
unsigned flags);

Formal Parameters

• fd: File descriptor to send on.

• handle: Template handle, returned from the alloc function.

• onload_template_msg_update_iovec: Array of
onload_template_msg_update_iovec each of which is a change to the template
payload.

• ulen: Length of updates array (the number of changes).

• flags: See below. Can also be set to zero.

Return Value

0 on success.

Non-zero otherwise.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 317Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=317

Notes

If the ONLOAD_TEMPLATE_FLAGS_SEND_NOW flag is set, ownership of the template is
passed to Onload.

This function can be called multiple times and changes are cumulative.

Flags

• ONLOAD_TEMPLATE_FLAGS_SEND_NOW: Perform the template update, send the template
contents and pass ownership of the template to Onload.

To send without updating template contents – updates=NULL, ulen=0 and set the send now
flag.

• ONLOAD_TEMPLATE_FLAGS_DONTWAIT (same as MSG_DONTWAIT): Do not block.

MSG Template Abort
Abort use of the template without sending the template and free the template resources
including the template handle and PIO region.

Definition

extern int onload_msg_template_alloc(
int fd,
onload_template_handle* handle);

Formal Parameters

• fd: File descriptor owning the template.

• handle: Template handle, used to refer to this template.

Return Value

0 on success.

Non-zero otherwise.

Delegated Sends API
The delegated send API can lower the latency overhead incurred when calling send() on TCP
sockets by controlling TCP socket creation and management through Onload, but allowing TCP
sends directly through the Onload layer 2 ef_vi API or other similar API.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 318Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=318

Description
An application using the delegated sends API will prepare a packet buffer with IP/TCP header
data, before adding payload data to the packet. The packet buffer can be prepared in advance
and payload added just before the send is required.

After each delegated send, the actual data sent (and length of that data) is returned to Onload.
This allows Onload to update the TCP internal state and have the data to hand if retransmissions
are required on the socket.

This feature is intended for applications that make sporadic TCP sends as opposed to large
amounts of bi-directional TCP traffic. The API should be used with caution to send small amounts
of TCP data. Although the packet buffer can be prepared in advance of the send, the idea is to
complete the delegated send operation (onload_delegated_send_complete()) soon after
the initial send to maintain the integrity of the TCP internal state ensuring that sequence/
acknowledgment numbers are correct.

The user is responsible for serialization when using the delegated send API. The first call should
always be onload_delegated_send_prepare(). If a normal send is required following the
prepare, the user should use onload_delegated_send_cancel().

Note: For a given file descriptor, while a delegated send is in progress, and until complete has been called,
the user should NOT attempt any standard send(), write() or sendfile()close() etc operations.

Performance
For best latency the application should call onload_delegated_send_complete() as soon
as a delegated send is complete. This allows Onload to continue if retransmissions are required.

IMPORTANT! Onload cannot perform any retransmission until complete has been called.

When a link partner has already acknowledged data before complete has been called, Onload will
not have to copy the sent data to the TCP retransmit queue. So delaying the complete call might
avoid a data copy, but latency might suffer in the event of packet loss.

Standard Send vs. Delegated Send
The following sequence demonstrates the events sequence of a normal TCP send and the
Delegated send.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 319Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=319

Figure 41: Standard vs. Delegated Send

Application calls
send()

Packet enqueued
for sending

TCP/IP stack
generates network

headers

Packet sent by TCP/
IP stack, added to
retransmit queue

TCP/IP state
updated for

subsequent headers

Peer replies

Application calls
o_d_s_prepare()

TCP/IP stack
generates network

headers

Packet sent via ef_vi

Application calls
o_d_s_complete()

Packet added to
retransmit queue

TCP/IP state
updated for

subsequent headers

Peer replies

Packet removed from retransmit queue and
TCP/IP state updated for subsequent headers

Normal send Delegated

X26439-031822

A packet could be delayed before sending when the receiver or network is not ready. When this
occurs using delegated send, the onload_delegated_send_prepare() function will return
zero values in the cong/send window fields of the delegated send state and the caller can elect
to send with the standard method.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 320Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=320

Example Code
The Onload distribution includes the exchange.c and trader_onload_ds_efvi.c example
applications to demonstrate the delegated sends API. Variables and constants definitions,
including socket flags and function return codes required when using the API can be found in the
extensions.h header file.

• onload-<version>/src/tests/trade_sim

• onload-<version>/build/gnu_x86_64/tests/trade_sim

Run Client/Server
[server1] # onload -p latency-best ./exchange <interface>
oo:exchange[22157]: Using OpenOnload 201811 Copyright 2006-2018 Solarflare
Communications, 2002-2005 Level 5 Networks [1]
Waiting for client to connect
Accepted client connection
Starting event loop
n_lost_msgs: 0
n_samples: 50000
latency_mean: 1441
latency_min: 1312
latency_max: 38322

[server2]# onload -p latency-best ./trader_onload_ds_efvi <interface>
<exchange-host-ip>
oo:trader_onload_ds[2430]: Using OpenOnload 201811 Copyright 2006-2018
Solarflare Communications, 2002-2005 Level 5 Networks [2]
n_normal_sends: 55000
n_delegated_sends: 0

struct onload_delegated_send
struct onload_delegated_send {
 void* headers;
 int headers_len; /* buffer len on input, headers len on output */
 int mss; /* one packet payload may not exceed this */
 int send_wnd; /* send window */
 int cong_wnd; /* congestion window */
 int user_size; /* the "size" value from send_prepare() call */
 int tcp_seq_offset;
 int ip_len_offset;
 int ip_tcp_hdr_len;
 int reserved[5];
};

onload_delegated_send_rc
The return codes for the onload_delegated_send_prepare() function are defined in enum
onload_delegated_send_rc, and are as follows

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 321Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=321

• enum onload_delegated_send_rc { ONLOAD_DELEGATED_SEND_RC_OK = 0: Send
successful.

• ONLOAD_DELEGATED_SEND_RC_BAD_SOCKET: Non-onloaded, non-TCP, non-connected or
write-shutdowned.

• ONLOAD_DELEGATED_SEND_RC_SMALL_HEADER: Too small header_len value.

• ONLOAD_DELEGATED_SEND_RC_SENDQ_BUSY: Send queue is not empty.

• ONLOAD_DELEGATED_SEND_RC_NOWIN: Send window is closed, the peer cannot receive
more data.

• ONLOAD_DELEGATED_SEND_RC_NOARP: Failed to find the destination MAC address. See
extensions.h for further information.

• ONLOAD_DELEGATED_SEND_RC_NOCWIN: Congestion window is closed. It is a violation of
the TCP protocol to send anything. However, all the headers are filled in and the caller can use
them for sending.

onload_delegated_send_prepare
Description

Prepare to send up to size bytes. Allocate TCP headers and prepare them with Ethernet IP/TCP
header data - including current sequence number and acknowledgment number.

Definition

enum onload_delegated_send_prepare (
int fd,
int size,
uint flags,
struct onload_delegated_send*)

Formal Parameters

• fd: File descriptor to send on.

• size: Size of payload data.

• flags: See below.

• struct onload_delegated_send*: See struct onload_delegated_send.

Return Value

Refer to onload_delegated_send_rc above.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 322Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=322

Notes

This function can be called speculatively so that the packet buffer is prepared in advance,
headers are added so that the packet payload data can be added immediately before the send is
required.

This function assumes the packet length is equal to MSS in which case there is no need to call
onload_delegated_send_tcp_update().

Flags are used for ARP resolution:

• default flags = 0

• ONLOAD_DELEGATED_SEND_FLAG_IGNORE_ARP - do not do ARP lookup, the caller will
provide destination MAC address.

• ONLOAD_DELEGATED_SEND_FLAG_RESOLVE_ARP - if ARP information is not available,
send a speculative TCP_ACK to provoke kernel into ARP resolution, and wait up to 1 ms for
ARP information to appear.

Note: TCP send window/congestion windows must be respected during delegated sends.

See extensions.h for flags and return code values.

onload_delegated_send_tcp_update
Description

This function does not send TCP data, but is called to update packet headers with the sequence
number and flags following successive sends via the onload_delegated_send_tcp_advance()
function.

Note: This function does not update the ACK number.

Definition

void onload_delegated_send_tcp_update (
struct onload_delegated_send*,
int size,
int flags)

Formal Parameters

• struct onload_delegated_send*: See struct onload_delegated_send.

• size: Size of payload data.

• flags: See below.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 323Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=323

Return Value

None.

Notes

This function is called when, during a send, the payload length is not equal to the MSS value. See
onload_delegated_send_prepare.

Flag TCP_FLAG_PSH is expected to be set on the last packet when sending a large data chunk.

onload_delegated_send_tcp_advance
Description

Advance TCP headers after sending a TCP packet. This function if good for:

• Sending a few small packets in rapid succession

• Sending large data chunk (>MSS) over multiple packets.

The sequence number is updated for each outgoing packet. When a packet has been sent, the
application must call onload_delegated_send_tcp_update() to update packet headers
with the payload length - thereby ensuring that the sequence number is correct for the next
send.

This function does not update the ACK number in outgoing packets. The ACK number in
successive outgoing packets is the value from the last call to the
onload_delegated_send_prepare() function.

The advance function is used to send a small number of successive outgoing packets, but the
application should then call onload_delegated_send_complete() to return control to
Onload to maintain sequence/acknowledgment number integrity and allow Onload to remove
sent data from the retransmit queue.

Definition

void onload_delegated_send_tcp_advance (
struct onload_delegated_send*,
int bytes)

Formal Parameters

• struct onload_delegated_send*: See struct onload_delegated_send

• bytes: Number of bytes sent.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 324Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=324

Return Value

None.

Notes

When sending a packet using multiple sends, the function is called to update the header data
with the number of bytes after each send.

The actual data sent is not returned to Onload until the function
onload_delegated_send_complete() is called.

onload_delegated_send_complete
Description

Following a delegated send, this function is used to return the actual data sent (and length of that
data) to Onload which will update the internal TCP state (the sequence numbers) and remove
packets from the retransmit queue (when appropriate ACKs are received).

Definition

int onload_delegated_send_complete (
int fd,
const struct iovec *,
int iovlen,
int flags)

Formal Parameters

• fd: The file descriptor.

• struct iovec: Pointer to the data sent.

• iovlen: Size (bytes) of the iovec array.

• flags: (MSG_DONTWAIT | MSG_NOSIGNAL)

Return Value

Number of bytes accepted, or return -1 if an error occurs with errno set.

Notes

Onload is unable to do any retransmit until this function has been called.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 325Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=325

This function should be called even if some (but not all) bytes specified in the prepare function
have been sent. The user must also call onload_delegated_send_cancel() if some of the
bytes are not going to be sent (they are reserved-but-not-sent) - see
onload_delegated_send_cancel() notes below.

Note: This function differs from the send() function in its handling of a “resource temporarily unavailable”
or “operation would block” situation. This function returns 0, but the send() function would return -1
with errno set to EAGAIN.

This function can block because of SO_SNDBUF limitation and will ignore the SO_SNDTIMEO
value.

onload_delegated_send_cancel
Description

No more delegated send is planned.

Normal send(), shutdown() or close() etc can be called after this call.

Definition

int onload_delegated_send_cancel (int fd)

Formal Parameters

• fd: The file descriptor to be closed.

Return Value

0 on success

-1 on failure with errno set.

Notes

When TCP headers have been allocated with onload_delegated_send_prepare(), but it is
subsequently required to do a normal send, this function can be used to cancel the delegated
send operation and do a normal send.

There is no need to call this function before calling onload_delegated_send_prepare().

There is no need to call this function if all the bytes specified in the
onload_delegated_send_prepare() function have been sent.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 326Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=326

If some, but not all bytes have been sent, you must call
onload_delegated_send_complete() for the sent bytes, then call
onload_delegated_send_cancel() for the remaining bytes (reserved-but-not-sent) bytes.
This applies even if the reason for not sending is that the window limits returned from the
prepare function have been reached.

Normal send(), shutdown() or close() etc can be called after this call.

Appendix D: Onload Extensions API

UG1586 (v1.2) July 31, 2023
Onload User Guide 327Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=327

Appendix E

onload_stackdump
The onload_stackdump diagnostic utility is a component of the Onload distribution which can
be used to monitor Onload performance, set tuning options and examine aspects of the system
performance.

Note: To view data for all stacks, created by all users, the user must be root when running
onload_stackdump. Non-root users can only view data for stacks created by themselves or accessible to
them via the EF_SHARE_WITH environment variable.

The following examples of onload_stackdump are demonstrated elsewhere in this user guide:

• Monitoring Using onload_stackdump

• Processing at User-Level

• As Few Interrupts as Possible

• Eliminating Drops

• Minimizing Lock Contention

• Stack Contention - Deferred Work

General Use
The onload_stackdump tool can produce an extensive range of data and it can be more useful
to limit output to specific stacks or to specific aspects of the system performance for analysis
purposes.

• For help, and to list all onload_stackdump commands and options:

onload_stackdump --help

• To display documentation of EF_* environment variables:

onload_stackdump doc

• For descriptions of statistics variables:

onload_stackdump describe_stats

Describes all statistics listed by the onload_stackdump lots command.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 328Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=328

• To identify all stacks, by identifier and name, and all processes accelerated by Onload:

onload_stackdump
#stack-id stack-name pids
6 teststack 28570

• To limit the command/option to a specific stack, for example stack 4:

onload_stackdump 4 lots

List Onloaded Processes
The ‘onload_stackdump processes’ command will show the PID and name of processes
being accelerated by Onload and the Onload stack being used by each process. For example:

onload_stackdump processes
#pid stack-id cmdline
25587 3 ./sfnt-pingpong

Onloaded processes which have not created a socket are not displayed, but can be identified
using the lsof command.

List Onloaded Threads, Priority and Affinity
The ‘onload_stackdump threads’ command will identify threads within each Onload-accelerated
process, the CPU affinity of the thread and its runtime priority.

onload_stackdump threads | column -t
#pid thread affinity priority realtime
12606 12606 00000002 0 0

List Onload Environment Variables
The ‘onload_stackdump env’ command will identify onloaded processes running in the
current environment and list all Onload variables set in the current environment. For example:

EF_POLL_USEC=100000 EF_TXQ_SIZE=4096 EF_INT_DRIVE=1 onload <application>
onload_stackdump env
pid: 25587
cmdline: ./sfnt-pingpong
env: EF_POLL_USEC=100000
env: EF_TXQ_SIZE=4096
env: EF_INT_DRIVEN=1

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 329Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=329

TX PIO Counters
The Onload stackdump utility exposes counters to indicate how often TX PIO is being used - see
Debug and Logging. To view PIO counters run the following command:

$ onload_stackdump stats | grep pio
pio_pkts: 2485971
no_pio_err: 0

The values returned will identify the number of packets sent via PIO and number of times when
PIO was not used due to an error condition.

Send RST on a TCP Socket
To send a reset on an Onload accelerated TCP socket, specify the stack and socket using the rst
command:

onload_stackdump <stack:socket> rst

CAUTION! This resets the TCP connection, and so is likely to disrupt the application.

Removing Zombie and Orphan Stacks
Onload stacks and sockets can remain active even after all processes using them have been
terminated or have exited, for example to ensure sent data is successfully received by the TCP
peer or to honor TCP TIME_WAIT semantics. Such stacks should always eventually self-destruct
and disappear with no user intervention. However, these stacks, in some instances, cause
problems for restarting applications, for example the application might be unable to use the same
port numbers when these are still being used by the persistent stack socket. Persistent stacks
also retain resources such as packet buffers which are then denied to other stacks.

Such stacks are termed ‘zombie’ or ‘orphan’ stacks and it can be either undesirable or desirable
that they exist.

• To list all persistent stacks:

onload_stackdump -z all

No output to the console or syslog means that no such stacks exist.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 330Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=330

• To list a specific persistent stack:

onload_stackdump -z <stack ID>

• To display the state of persistent stacks:

onload_stackdump -z [dump | lots]

• To terminate persistent stacks

onload_stackdump -z kill

• To display all options available for zombie/orphan stacks:

onload_stackdump --help

Snapshot vs. Dynamic Views
The onload_stackdump tool presents a snapshot view of the system when invoked. To
monitor state and variable changes whilst an application is running use onload_stackdump
with the Linux watch command. For example:

• snapshot: onload_stackdump netif

• dynamic: watch -d -n1 onload_stackdump netif

Some onload_stackdump commands also update periodically whilst monitoring a process.
These commands usually have the watch_ prefix. For example:

watch_stats, watch_more_stats, watch_tcp_stats, watch_ip_stats etc.

Use the onload_stackdump -h option to list all commands.

Monitoring Receive and Transmit Packet
Buffers

onload_stackdump packets

onload_stackdump packets
ci_netif_pkt_dump_all: id=1
 pkt_sets: pkt_size=2048 set_size=1024 max=32 alloc=2
 pkt_set[0]: free=544
 pkt_set[1]: free=437 current
 pkt_bufs: max=32768 alloc=2048 free=981 async=0
 pkt_bufs: rx=1067 rx_ring=1001 rx_queued=2 pressure_pool=64

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 331Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=331

 pkt_bufs: tx=0 tx_ring=0 tx_oflow=0
 pkt_bufs: in_loopback=0 in_sock=0
 1003: 0x200 Rx
 n_zero_refs=1045 n_freepkts=981 estimated_free_nonb=64
 free_nonb=0 nonb_pkt_pool=ffffffffffffffff

The onload_stackdump packets command can be useful to review packet buffer allocation,
use and reuse within a monitored process.

The example above identifies that the process has a maximum of 32768 buffers (each of 2048
bytes) available. From this pool 2048 buffers have been allocated and 981 from that allocation
are currently free for reuse - that means they can be pushed onto the receive or transmit ring
buffers ready to accept new incoming/outgoing data.

On the receive side of the stack, 1067 packet buffers have been allocated, 1001 have been
pushed to the receive ring - and are available for incoming packets, and 2 are currently in the
receive queue for the application to process.

On the transmit side of the stack, zero buffers are currently allocated or being used. The
remaining values are calculations based on the packet buffer values.

Using the EF_PREFAULT_PACKETS environment variable, packets can be pre-allocated to the
user-process when an Onload stack is created. This can reduce latency jitter and improve Onload
performance - for further details see Reducing Jitter from Page Faults.

Packet Sets
A packet set is a 2 MB chunk of packet buffers being used by an Onload application. An
application might use buffers from a single set or from several sets depending on its complexity
and packet buffer requirements.

With an aim to further reduce TLB thrashing and eliminate packets drops, Onload will try to
reuse buffers from the same set.

The onload_stackdump lots command will report on the current use of packets sets. For
example:

$ onload_stackdump lots | grep pkt_set

 pkt_sets: pkt_size=2048 set_size=1024 max=32 alloc=2
 pkt_set[0]: free=544
 pkt_set[1]: free=442 current

In the above output there are two packet sets, the counters identify the number of free packet
buffers in each set and identify the set currently being used.

The packet sets feature is not available to user applications using the ef_vi layer directly.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 332Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=332

TCP Application Statistics
The following onload_stackdump commands can be used to monitor accelerated TCP
connections:

onload_stackdump tcp_stats

Table 48: Output from onload_stackdump tcp_stats

Field Description
tcp_active_opens Number of socket connections initiated by the local end.

This is the number of times TCP connections have made a direct transition to the
SYN-SENT state from the CLOSED state

tcp_passive_opens Number of sockets connections accepted by the local end.
This is the number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state.

tcp_l3xudp_active_opens Number of l3xudp socket connections initiated by the local end.
This is the number of times TCP connections have made a direct transition to the
SYN-SENT state from the CLOSED state and that socket is using l3xudp
encapsulation.

tcp_l3xudp_passive_opens Number of l3xudp sockets connections accepted by the local end.
This is the number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state and that socket is using l3xudp
encapsulation.

tcp_attempt_fails Number of failed connection attempts.
This is the number of times TCP connection have made a direct transition to the
CLOSED state from the SYN-SENT state or the SYN-RCVD state, plus the number
of times TCP connections have made a direct transition to the LISTEN state from
the SYN-RCVD state.

tcp_estab_resets Number of established connections which were subsequently reset.
This is the number of times TCP connections have made a direct transition to the
CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

tcp_curr_estab Number of TCP connections for which the current state is either ESTABLISHED or
CLOSE-WAIT.

tcp_in_segs Total number of segments received, including those received in error.
tcp_out_segs Total number of segments sent, including those on current connections but

excluding those containing only retransmitted octets.
tcp_retran_segs Total number of segments retransmitted.
tcp_in_errs Number of erroneous segments received.
tcp_out_rsts Number of RST segments sent.

onload_stackdump more_stats | grep tcp

Table 49: Output from onload_stackdump more_stats | grep tcp

Field Description
tcp_has_recvq The number of TCP sockets that currently have data in a receive queue.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 333Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=333

Table 49: Output from onload_stackdump more_stats | grep tcp (cont'd)

Field Description
tcp_recvq_bytes The number of bytes currently waiting in TCP receive queues.
tcp_recvq_pkts The number of packets currently waiting in TCP receive queues.
tcp_has_recv_reorder The number of sockets with out of sequence bytes.

This is the number of sockets with packets in the re-ordering queue. Re-ordering
usually (though not always) indicates loss. We hold on to the future packets until
the intervening ones arrive, then push them to the receive queue. So unless
Onload is currently waiting for some retransmits; this counter will be zero. It is
not a historical log.

tcp_recv_reorder_pkts: Number of out of sequence packets received.
This is the number of packets currently in re-ordering queues. Re-ordering
usually (though not always) indicates loss. We hold on to the future packets until
the intervening ones arrive, then push them to the receive queue. So unless
Onload is currently waiting for some retransmits; this counter will be zero. It is
not a historical log.

tcp_has_sendq Non zero if send queues have data ready
This is the number of TCP sockets with packets in the send queue. This counter
will usually be zero; unless something is preventing Onload from sending
immediately (for example congestion window).
See also send+pre= in Table 54: Stackdump Output: TCP Established Connection
Socket for per-socket information.

tcp_sendq_bytes Number of bytes currently in all send queues for this connection
This is the count of bytes in TCP send queues. This counter will usually be zero;
unless something is preventing Onload from sending immediately (for example
congestion window).
See also send+pre= in Table 54: Stackdump Output: TCP Established Connection
Socket for per-socket information.

tcp_sendq_pkts Number of packets currently in all send queues for this connection
This is the number of packets in TCP send queues. This counter will usually be
zero; unless something is preventing Onload from sending immediately (for
example congestion window).
See also send+pre= in Table 54: Stackdump Output: TCP Established Connection
Socket for per-socket information.

tcp_has_inflight Non zero if some data remains unacknowledged
This is the number of sockets that have packets 'in-flight' (sent but for which
Onload has not yet received an ACK).
See also inflight= in Table 54: Stackdump Output: TCP Established Connection
Socket for per-socket information.

tcp_inflight_bytes Total number of unacknowledged bytes
This is the number of bytes that are 'in-flight' (sent but for which Onload has not
yet received an ACK).
See also inflight= in Table 54: Stackdump Output: TCP Established Connection
Socket for per-socket information.

tcp_inflight_pkts Total number of unacknowledged packets
This is the number of packets 'in-flight' (sent but for which Onload has not yet
received an ACK).
See also inflight= in Table 54: Stackdump Output: TCP Established Connection
Socket for per-socket information.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 334Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=334

Table 49: Output from onload_stackdump more_stats | grep tcp (cont'd)

Field Description
tcp_n_in_listenq Number of sockets in SYN-RECEIVED state.

This is the number of sockets (summed across all listening sockets) where the
local end has responded to SYN with a SYN_ACK, but this has not yet been
acknowledged by the remote end
The size of the listen queue is limited by EF_TCP_BACKLOG_MAX.

tcp_n_in_acceptq Number of sockets that have reached ESTABLISHED state, that the application
has not yet called accept() for.

Use the onload_stackdump -h command to list all TCP connection, stack and socket
commands.

The onload_stackdump LOTS Command.
The onload_stackdump lots command will produce extensive data for all accelerated stacks
and sockets. The command can also be restricted to a specific stack and its associated
connections when the stack number is entered on the command line. For example:

onload_stackdump lots
onload_stackdump 2 lots

The following sections each describe a part of the output from the onload_stackdump lots
command. See:

• TCP Stacks

• TCP ESTABLISHED Connection Sockets

• TCP LISTEN Sockets

• UDP Sockets

• Statistics

• Environment Variables

TCP Stacks
This section describes typical output for a TCP stack.

Note: Depending on the state of the stack, some of the output shown in this section might be omitted. The
sample output in this section is from several different stacks, to illustrate these different states, and so
might not be self-consistent.

The output starts with basic information about the stack, shown in the following table:

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 335Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=335

Table 50: Stackdump Output: TCP Stack

Sample Output Description
ci_netif_dump_to_logger: Function dumping the stack.

stack=7 Stack id.

name= Stack name as set by EF_NAME.

cplane_pid=813 Process id of Onload control plane server.
namespace=net:[4026531956] Namespace id.
ver=201811 Onload version.
uid=0 User id.
pid=1930 Process id of creator process.
ns_flags=0 Flags as a hexadecimal value, followed by names of flags

including:
• ONLOAD_UNSUPPORTED
• SOCKCACHE_FORKED.

creation_time=2019-01-25 15:16:14 Creation time of stack.
(delta=19secs) Age of stack, as a delta between stack creation and the

stackdump.
lock=20000000 LOCKED Internal stack lock status.
nics=3 Hexadecimal bitfield identifying adapters used by this stack.

For example, 0x3 = 0b11, so the stack is using adapters 1
and 2.

primed=1 1 if the event queue will generate an interrupt when the
next event arrives, otherwise 0.

ref= Count of references to this stack.
trusted_lock= Kernel side stack lock:

• 0: unlocked

• 2: awaiting free

• Otherwise: locked, bitmask gives more information.
k_ref= Count of kernel references to this stack.
n_ep_closing= Count of kernel references to this stack for closing

endpoints.
sock_bufs: Sockets buffers which can be allocated:

max=8192 Maximum number.

n_allocated=4 Number currently allocated.

aux_bufs: Aux buffers, used by partially opened TCP connections
(incoming connections) before they are established and
promoted to use socket buffers.
The number of aux buffers is limited to
EF_TCP_SYNRECV_MAX * 2

free=6 Number of free aux buffers.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 336Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=336

Table 50: Stackdump Output: TCP Stack (cont'd)

Sample Output Description
aux_bufs[syn-recv state]: Aux buffers for the syn-recv state:

n=0 Number currently allocated

max=2048 Maximum number.

aux_bufs[syn-recv bucket]: Aux buffers for the syn-recv bucket:

n=0 Number currently allocated

max=8192 Maximum number.

aux_bufs[epoll3 state]: Aux buffers for the epoll3 state:

n=0 Number currently allocated

max=8192 Maximum number.

pkt_sets: Packet sets:

pkt_size=2048 Size of a packet buffer, in bytes.

set_size=1024 Number of packet buffers in each packet set.

max=32 Maximum number of packet sets available to this stack.

alloc=2 Number of packet sets currently allocated.

pkt_set[0]: Packet set 0:

free=112 Number of free packet buffers in the set, each of size
pkt_sets -> pkt_size.

pkt_set[1]: Packet set 1:

free=880 Number of free packet buffers in the set, each of size
pkt_sets -> pkt_size.

current This is the packet set currently being used.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 337Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=337

Table 50: Stackdump Output: TCP Stack (cont'd)

Sample Output Description
pkt_bufs: Packet buffers:

max=32768 Maximum number of packet buffers this stack can
allocate, each of size pkt_sets -> pkt_size.

alloc=576 Number of packet buffers that have been allocated.

free=57 Number of packet buffers that are free, and can be
reused by either receive or transmit rings.

async=0 Number of packet buffers used by Onload in one of its
asynchronous queues.

pkt_bufs: Receive packet buffers:

rx=1056 Number of receive packet buffers that are currently in
use.

rx_ring=992 Number of packet buffers that have been pushed to the
receive ring.

rx_queued=0 Number of packet buffers that are in the application’s
receive queue.

pressure_pool=64 Number of packet buffers in the pressure pool. This is a
pool of packet buffers used when the stack is under
memory pressure. Its size is rx - (rx_ring +
rx_queued).
This might be followed by flags indicating a memory
pressure condition:
CRITICAL: the number of packets in the receive socket
buffers is approaching the EF_MAX_RX_PACKETS value.
LOW: there are not enough packet buffers available to
refill the RX descriptor ring.

pkt_bufs: Transmit packet buffers:

tx=2 Number of transmit packet buffers that are currently in
use.

tx_ring=1 Number of packet buffers that remain in the transmit
ring.

tx_oflow=0 The number of extra packets that are ready to send to
the transmit queue, but that the transmit queue does
not have space to accept.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 338Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=338

Table 50: Stackdump Output: TCP Stack (cont'd)

Sample Output Description
pkt_bufs: Other packet buffer totals:

in_loopback=0 Number of packet buffers currently used in TCP
loopback connection.

in_sock=991 Number of packet buffers currently used by a TCP
socket.

pkt_bufs: Other packet buffer totals:

rx_reserved= Total number of receive packet buffers that are reserved
by ESTABLISHED sockets.

signal_q=[%d,%d] Asynchronous signal queue head and tail (Windows only).
completion_q=%d Asynchronous completion queue (Windows only).
time: Internal timer values.

To convert ticks to milliseconds, multiply by
ci_ip_time_tick2ms:

netif=5eb5c61 Current cached time, in ticks.

poll=5eb5c61 Scheduler’s view of time, in ticks.

now=5eb5c61 (diff=0.000sec) Time now from cache of real ticks, and difference
between this time and the netif time.
If the difference is more than 5 seconds, it is followed
by: !! STUCK !!

ERRORS: Errors, if any, including:
• PPL

• LOOP

• ASS

• SYNRECV.

active cache: TCP socket caching:

hit=0 Number of cache hits (were cached).

avail=0 Number of sockets available for caching.

cache=EMPTY Current cache state, either “EMPTY” or “yes”.

pending=EMPTY Current pending state, either “EMPTY” or “yes”.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 339Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=339

Table 50: Stackdump Output: TCP Stack (cont'd)

Sample Output Description
passive scalable cache: TCP socket caching:

cache=EMPTY Current cache state, either “EMPTY” or “yes”.

pending=EMPTY Current pending state, either “EMPTY” or “yes”.

readylist: Ready list (one line per list):

id=%d Ready list id

pid=%d Process id of process managing ready list

ready=%s Current ready list state, either “EMPTY” or “yes”.

unready=%s Current unready list state, either “EMPTY” or “yes”.

flags=%x Ready list flags, as a hexadecimal value.

There is then a section that is repeated for each virtual interface associated with the stack,
describing the virtual interface to the NIC. This is shown in the following table:

Table 51: Stackdump Output: Virtual Interface for a TCP Stack

Sample Output Description
ci_netif_dump_vi: Function dumping the stack’s virtual interface to the NIC

stack=7 Stack id.

intf=0 Interface (port) number.

dev=(pci address) PCI address of NIC.

hw=0C0 Hardware version, given as an architecture / variant /
revision tuple.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 340Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=340

Table 51: Stackdump Output: Virtual Interface for a TCP Stack (cont'd)

Sample Output Description
vi=240 Identifies the VI in use by the stack.
pd_owner=1 Will be zero when using physical addressing mode.
channel=0 Identifies the receive queue being used on this interface.
tcpdump=off One of the following:

• all

• nomatch

• off.
vi_flags=3800000 VI flags, as a hexadecimal value.
oo_vi_flags=3 Hexadecimal bitfield identifying features requested on this

VI. For details, see src/include/ci/internal/
oo_vi_flags.h.

evq: Event queue data:

cap=2048 Maximum number of events the queue can hold, set by
EF_RXQ_SIZE, EF_TXQ_SIZE.

current=16de30 The current event queue location.

is_32_evs=0 Is 1 if there are 32 or more events pending.

is_ev=0 Is 1 if there are any events pending.

evq: Further event queue data:

sync_major=ffffffff Major part of the timestamp (seconds).

sync_minor=0 Minor part of the timestamp (upper part of ns).

sync_min=0 Smallest possible seconds value for timestamp.

evq: Further event queue data:

sync_synced=0 Timestamp synchronized with adapter

sync_flags=0 Time synchronization flags

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 341Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=341

Table 51: Stackdump Output: Virtual Interface for a TCP Stack (cont'd)

Sample Output Description
rxq: Receive queue data:

cap=511 Total capacity.

lim=511 Maximum fill level for receive descriptor ring, specified
by EF_RXQ_LIMIT.

spc=1 Amount of empty buffers ready to be used.

level=510 How full the receive queue currently is.

total_desc=93666 Total number of descriptors that have been pushed to
the receive queue.

txq: Transmit queue data:

cap=511 Total capacity.

lim=511 Maximum fill level for transmit descriptor ring.

spc=511 Amount of empty buffers ready to be used.

level=0 How full the transmit queue currently is.

pkts=0 How many packets are represented by the descriptors in
the transmit queue.

oflow_pkts=0 How many packets are in the overflow transmit queue
(that is, waiting for space in the NIC's transmit queue).

txq: Further transmit queue data:

pio_buf_size=2048 PIO buffer size.

tot_pkts=93669 Total number of packet buffers used.

bytes=0 Number of packet bytes currently in the queue.

txq: Further transmit queue data:

ts_nsec=40000000 Nanoseconds from timestamp in tx queue state.

clk: Flags from last synchronization:
• SET

• SYNC.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 342Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=342

Table 51: Stackdump Output: Virtual Interface for a TCP Stack (cont'd)

Sample Output Description
last_rx_stamp: Last receive timestamp:

0:0 Given as seconds:nanoseconds

ctpio: Cut-through PIO

max_frame_len=500 Maximum frame length for the CTPIO low-latency
transmit mechanism.

frame_len_check=500 Frame length check, CTPIO is disabled if this is zero.

ct_thresh=65535 Cut-through threshold for CTPIO transmits.

ERRORS: Errors, if any, including:
• REMAP.

vi=240 Identifies the VI in use by the stack when there is a separate
receive queue for UDP.

evq: Event queue data for when there is a separate receive
queue for UDP:

cap=2048 Maximum number of events the queue can hold, set by
EF_RXQ_SIZE, EF_TXQ_SIZE.

current=16de30 The current event queue location.

is_32_evs=0 Is 1 if there are 32 or more events pending, otherwise 0.

is_ev=0 Is 1 if there are any events pending, otherwise 0.

rxq: Receive queue data for when there is a separate receive
queue for UDP:

cap=511 Total capacity.

lim=511 Maximum fill level for receive descriptor ring, specified
by EF_RXQ_LIMIT.

spc=1 Amount of empty buffers ready to be used.

level=510 How full the receive queue currently is.

total_desc=93666 Total number of descriptors that have been pushed to
the receive queue.

There is then a section giving extra information about the stack, shown in the following table:

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 343Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=343

Table 52: Stackdump Output: Extra Information for a TCP Stack

Sample Output Description
ci_netif_dump_extra: Function dumping the extra information

stack=7 Stack id.

in_poll=0 Is 1 if the process is currently polling, otherwise 0.
post_poll_list_empty=1 Is 1 if there are tasks to be done once polling is complete,

otherwise 0.
poll_did_wake=0 Is 1 if while polling, the process identified a socket which

needs to be woken following the poll, otherwise 0.
rx_defrag_head=-1 Reassembly sequence number. -1 means no re-assembly

has occurred.
rx_defrag_tail=-1 Reassembly sequence number. -1 means no re-assembly

has occurred.
tx_may_alloc=1 The number of packet buffers TCP could use.
can=1 The number of packet buffers TCP can use now.
nonb_pool=1 The number of packet buffers available to TCP process

without holding the lock.
send_may_poll=0 Is 1 if using EF_POLL_ON_DEMAND, otherwise 0.
is_spinner=0,0 First value is 1 if a thread is spinning, otherwise 0. Second

value is the number of spinning threads.
hwport_to_intf_i=0,-1,-1,-1,-1,-1 Internal mapping of hardware ports to internal interfaces.
intf_i_to_hwport=0,0,0,0,0,0 Internal mapping of internal interfaces to hardware ports.
uk_intf_ver=03e89aa26d20b98fd08793e771f2cdd9 md5 user/kernel interface checksum computed by both

kernel and user application to verify internal data
structures.

deferred count 0/32 NUMA node parameters - refer to Onload Deployment on
NUMA Systems.

numa nodes: Further NUMA node parameters - refer to Onload
Deployment on NUMA Systems.

creation=0

load=0

numa node masks: Further NUMA node parameters - refer to Onload
Deployment on NUMA Systems.

packet alloc=1

sock alloc=1

interrupt=1

Finally, there is a list of process ids shown in the following table:

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 344Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=344

Table 53: Stackdump Output: Process Ids for a TCP Stack

Sample Output Description
pids:14025 List of processes being accelerated by Onload on this stack.

TCP ESTABLISHED Connection Sockets
The following table shows typical output for a TCP ESTABLISHED connection socket.

Table 54: Stackdump Output: TCP Established Connection Socket

Sample Output Description
TCP TCP socket.
7:1 Stack:socket id.
lcl=192.168.1.2:50773 Local ip:port address.
rmt=192.168.1.1:34875 Remote ip:port address.
ESTABLISHED Connection is ESTABLISHED.
lock: 10000000 UNLOCKED Internal socket lock status, as a hexadecimal number,

followed by status names including:
• LOCKED

• CONTENDED.

rx_wake=0000b6f4(RQ) Internal sequence value that is incremented each time a
receive queue is ‘woken’.
(RQ) indicates that a wake has been requested.

tx_wake=00000002 Internal sequence value that is incremented each time a
transmit queue is ‘woken’.
(RQ) indicates that a wake has been requested.

flags: Flags (if any), including:
• WK_TX, WK_RX

• TCP_PP

• ORPH

• ACCEPTQ

• DEFERRED

• AVOID_INT

• O_ASYNC, O_NONBLOCK, O_NDELAY, O_APPEND,
O_CLOEXEC

• CACHE, PASSIVE_CACHE, CACHE_NO_FD

• OS_BACKED

• NONB_UNSYNCED.

ul_poll: User-level poll():

301326900 spin cycles in spin cycles

100000 usec in μs.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 345Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=345

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
uid=0 User id that owns this socket.
s_flags: Socket flags, including:

• CORK

• SHUTRD, SHUTWR

• TCP_NODELAY

• ACK

• REUSE

• KALIVE

• BCAST

• OOBIN

• LINGER

• DONTROUTE

• FILTER

• BOUND, ABOUND, PBOUND

• SNDBUF, RCVBUF

• SW_FILTER_FULL

• TRANSPARENT

• SCALACTIVE, SCALPASSIVE

• MAC_FILTER

• REUSEPORT

• BOUND_ALIEN

• CONNECT_MUST_BIND

• PMTU_DO

• ALWAYS_DF

• IP_TTL

• DEFERRED_BIND

• V6ONLY

• NOMCAST.

rcvbuf=129940 Socket receive buffer size.
sndbuf=131072 Socket send buffer size.
bindtodev=-1(-1,0:0) Device to which the socket is bound, given as an interface,

or -1 if unbound. This is followed by an (interface index,
hardware port:vlan) tuple.

ttl=64 Initial TTL value.
rcvtimeo_ms=0 Timeout value (microseconds) before an error is generated

for receive functions, as set by SO_RCVTIMEO.
sndtimeo_ms=0 Timeout value (microseconds) before an error is generated

for send functions, as set by SO_SNDTIMEO.
sigown=0 The PID receiving signals from this socket.
cmsg= Current message flags, including:

• NO_MCAST_TX.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 346Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=346

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
rx_errno=0 Zero whilst data can still arrive, otherwise contains error

code.
tx_errno=0 Zero if transmit can still happen, otherwise contains error

code.
so_error=0 Current socket error, or zero if no error.
os_sock=0 0 if the socket is handled by Onload, 1 if the socket is

handled by the OS and not by Onload.
TX Socket is being used for transmit.
epoll3: ready_list_id 0 List of ready sockets from the epoll3 set.
tcpflags: TSO WSCL SACK ESTAB PASSIVE TCP flags currently set for this socket, including:

• TSO

• WSCL

• SACK

• ECN

• STRIPE

• SYNCOOKIE

• ESTAB
• NONBCON

• PASSIVE

• ARP_FAIL

• NO_TX_ADVANCE

• LOOP_DEFER

• NO_QUICKACK

• MEM_DROP

• FIN_RECV

• ACTIVE_WILD

• MSG_WARM

• LOOP_FAKE

• TOA

• TLP_TIMER

• TLP_SENT

• FIN_PENDING.
local_peer: -1 The peer socket in a local loopback connection.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 347Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=347

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
snd: Send data:

up=b554bb86 Urgent Pointer: the sequence number of the byte
following the 00B byte.

una-nxt-max=b554bb86-b554bb87-b556b6a6 Sequence numbers of:
una: first unacknowledged byte
nxt: next byte we expect to be acknowledged
max: last byte in the current send window.

enq=b554bb87 Sequence number of last byte currently queued for
transmit.

snd: Further send data:

send=0(0) Number of bytes (packets) held in the send buffer.

send+pre=0 Number of packets in the pre-send queue.
A process can add data to this queue when it is
prevented from sending the data immediately. The data
will be sent when the current sending operation is
complete.

inflight=1(1) Number of bytes (packets) sent but not yet
acknowledged.

wnd=129824 Advertised window size of the receiver, in bytes.

unused=129823 Number of unused (free) bytes in that window.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 348Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=348

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
snd: Further send data:

cwnd=49733+0 Congestion window size, in bytes.

used=0 Portion of the congestion window that is currently in
use.

ssthresh=65535 Number of bytes that have to be sent before the process
can exit slow start.

bytes_acked=0 Number of bytes acknowledged.
This value is used to calculate the rate at which the
congestion window is opened.

Open Current congestion window status, one of:
Open

RTO

RTORecovery

FastRecovery

Cooling

RTOCooling

Notified.

snd: Further send data:

timed_seq 0 First byte of timed packet.

timed_ts 3fa5511c Timestamp for timed packet.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 349Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=349

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
snd: Further send data:

sndbuf_pkts=136 Size of the send buffer (packets). Send buffer is
calculated as bytes.

Onloaded(Valid) Status of cached control plane information, one of:
Onloaded = can reach the destination via an accelerated
interface
NoMac

NoRoute

ViaOs

Local

MacFail

followed by its validity:
(Valid): information is up-to-date. Can send
immediately using this information.
(Old): information might be out-of-date. On next send
Onload will do a control plane lookup - this will add
some latency.

if=6 Interface being used.

mtu=1500 MTU being used.

intf_i=0 Intf_i value.

vlan=0 VLAN being used.

encap=4 Types of encapsulation supported by the NIC, as a
hexadecimal mask.

snd: Further send data:

limited Counts of transmission being stopped for the following
reasons:

rwnd=0 - receive window size

cwnd=0 - congestion window size

nagle=0 - Nagle's algorithm

more=0 - more (CORK, MSG_MORE)

app=412548 - transmit queue being empty.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 350Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=350

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
rcv: Receiver data:

nxt-max=0e9251fe-0e944d1d Next byte we expect to receive and last byte we expect
to receive (because of window size).

wnd adv=129823 Receiver advertised window size.

cur=0e944d92 Byte currently being processed.

FASTSTART FAST Possible flags:
FASTSTART: is in faststart
FAST: can use fast path.

rcv: Further receiver data:

isn=b8f5ec59 Initial sequence number.

up=b8f5ec58 Urgent Pointer: the sequence number of the byte
following the 00B byte.

urg_data=0000 Urgent data: byte and associated flags.

q=recv1 Queue in use: rcv1 or rcv2.

rcv: Further receiver data:

bytes=13201600 Total number of bytes received.

tot_pkts= Total number of packets received.

rob_pkts=0 Number of packets in the reorder buffer.
Bytes received out of sequence are put into a reorder
buffer awaiting further bytes before reordering can
occur.

q_pkts=2+0 Number of packets queued in (recv1+recv2).

usr=0 Number of bytes of received data available to the user.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 351Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=351

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
eff_mss=1448 Effective maximum segment size.
smss=1460 Sender maximum segment size.
amss=1460 Advertised maximum segment size.
used_bufs=2 Number of transmit buffers used.
wscl Window scaling:

s=2 Send window scaling.

r=2 Receive window scaling.

srtt=01 Smoothed round trip time (RTT), in milliseconds.
rttvar=000 Round trip time (RTT) variation, in milliseconds.
rto=189 Current RTO timeout value, in ticks.

To convert ticks to milliseconds, multiply by
ci_ip_time_tick2ms.

zwins=0,0 Zero windows for probes,acks: times when advertised
window has gone to zero size.

curr_retrans=0 Current re-transmissions.
total_retrans=0 Total re-transmissions.
dupacks=0 Number of duplicate acks received.
congrecover=0 Next sequence number to send when loss detected.
rtos=0 Number of retrans timeouts.
frecs=0 Number of fast recoveries.
seqerr=0,0 Number of sequence errors.
ooo_pkts=0 Number of out of sequence packets.
ooo=0 Number of out of order events.
tx: Transmit data:

defer=0 Number of packets where send is deferred to stack lock
holder.

nomac=0 Number of packets sent via the OS using raw sockets
when up to date ARP data is not available.

warm=0 Number of packets sent using MSG_WARM.

warm_aborted=0 Number of times a message warm send function was
called, but not sent due to onload lock constraints.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 352Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=352

Table 54: Stackdump Output: TCP Established Connection Socket (cont'd)

Sample Output Description
tmpl: Templated send data:

send_fast=0 Number of fast templated sends.

send_slow=0 Number of slow templated sends.

active=0 Number of active templated sends.

timers: Currently active timers:

rto(200ms[3fa586ca]) Retransmit timeout timer.

TCP LISTEN Sockets
The following table shows typical output for a TCP LISTEN socket.

Table 55: Stackdump Output: TCP Stack Listen Socket

Sample Output Description
TCP TCP socket.
7:3 Stack:socket id.
lcl=0.0.0.0:50773 Listening on port 50773, local ip address not set (not bound

to any IP address).
rmt=0.0.0.0:0 Remote ip:port address not set (not bound to any IP

address).
LISTEN Connection is LISTENing.
lock: 10000000 UNLOCKED Internal socket lock status, as a hexadecimal number,

followed by status names including:
• LOCKED

• CONTENDED.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 353Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=353

Table 55: Stackdump Output: TCP Stack Listen Socket (cont'd)

Sample Output Description
rx_wake=0000b6f4(RQ) Internal sequence value that is incremented each time a

receive queue is ‘woken’.
(RQ) indicates that a wake has been requested.

tx_wake=00000002 Internal sequence value that is incremented each time a
transmit queue is ‘woken’.
(RQ) indicates that a wake has been requested.

flags: Flags (if any), including:
• WK_TX, WK_RX

• TCP_PP

• ORPH

• ACCEPTQ

• DEFERRED

• AVOID_INT

• O_ASYNC, O_NONBLOCK, O_NDELAY, O_APPEND,
O_CLOEXEC

• CACHE, PASSIVE_CACHE, CACHE_NO_FD

• OS_BACKED

• NONB_UNSYNCED.

ul_poll: User-level poll():

369599500 spin cycles in spin cycles

100000 usec in μs.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 354Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=354

Table 55: Stackdump Output: TCP Stack Listen Socket (cont'd)

Sample Output Description
uid=0 User id that owns this socket.
s_flags: REUSE BOUND PBOUND Socket flags, including:

• CORK

• SHUTRD, SHUTWR

• TCP_NODELAY

• ACK

• REUSE

• KALIVE

• BCAST

• OOBIN

• LINGER

• DONTROUTE

• FILTER

• BOUND, ABOUND, PBOUND

• SNDBUF, RCVBUF

• SW_FILTER_FULL

• TRANSPARENT

• SCALACTIVE, SCALPASSIVE

• MAC_FILTER

• REUSEPORT

• BOUND_ALIEN

• CONNECT_MUST_BIND

• PMTU_DO

• ALWAYS_DF

• IP_TTL

• DEFERRED_BIND

• V6ONLY

• NOMCAST.

The sample output allows bind to reuse local port.
rcvbuf=129940 Socket receive buffer size.
sndbuf=131072 Socket send buffer size.
bindtodev=0(0,0x0:0) Device to which the socket is bound, given as an interface,

or -1 if unbound. This is followed by an (interface index,
hardware port:vlan) tuple.

ttl=64 Initial TTL value.
rcvtimeo_ms=0 Timeout value (microseconds) before an error is generated

for receive functions, as set by SO_RCVTIMEO.
sndtimeo_ms=0 Timeout value (microseconds) before an error is generated

for send functions, as set by SO_SNDTIMEO.
sigown=0 The PID receiving signals from this socket.
cmsg= Current message flags, including:

• NO_MCAST_TX.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 355Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=355

Table 55: Stackdump Output: TCP Stack Listen Socket (cont'd)

Sample Output Description
rx_errno=6b Zero whilst data can still arrive, otherwise contains error

code.
tx_errno=20 Zero if transmit can still happen, otherwise contains error

code.
so_error=0 Current socket error, or zero if no error.
os_sock=0 0 if the socket is handled by Onload, 1 if the socket is

handled by the OS and not by Onload.
TX Socket is being used for transmit.
listenq: Listen Queue:

This is a queue of half open connects (SYN received and
SYNACK sent, waiting for final ACK).

max=1024 Maximum number of connections in the queue.

n=0 Current number of connections in the queue.

new=0 Length of buffer for first connection in the queue.

buckets=1 Number of buckets in hash table for queue lookup.

acceptq: Accept Queue:
This is a queue of open connections, waiting for the
application to call accept().

max=5 Maximum number of connections in the queue.

n=0 Current number of connections in the queue.

accepted=0 Number of connections that have been accepted, and so
removed from queue.

defer_accept=0 Number of times TCP_DEFER_ACCEPT kicked in (see TCP
Level Options), or 255 if TCP_DEFER_ACCEPT is disabled.

sockcache: Socket endpoint cache:

n=0 Number of endpoints currently known to this socket.

sock_n=0 Number of available cache entries for this socket.

cache=EMPTY EMPTY, or yes if endpoints are in the cache (can be used
for an accept).

pending=EMPTY EMPTY, or yes if endpoints are waiting to be cached
because they are in close-wait (closed but not dropped).

connected=EMPTY EMPTY, or yes if endpoints are connected (accepted).

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 356Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=356

Table 55: Stackdump Output: TCP Stack Listen Socket (cont'd)

Sample Output Description
l_overflow=0 Number of times listen queue was full and had to reject a

SYN request.
l_no_synrecv=0 Number of times unable to allocate internal resource for a

SYN request.
aq_overflow=0 Number of times unable to promote a connection to the

accept queue because the queue was full.
aq_no_sock=0 Number of times unable to promote a connection to the

accept queue because could not create a socket.
aq_no_pkts=0 Number of times unable to promote a connection to the

accept queue because could not create a packet buffer.
a_loop2_closed=0 Number of times the real client for a loopback has gone,

and so the connection was closed.
a_no_fd=0 Number of times a file descriptor could not be acquired.
ack_rsts=0 Number of times received an ACK before SYN, so the

connection was reset.
os=2 Number of sockets being processed in the kernel.
rx_pkts=0 Number of packets received.

UDP Sockets
The following table shows typical output for a UDP socket

Table 56: Stackdump Output: UDP Socket

Sample Output Description
UDP Socket configuration:
4:1 Stack:socket id.
lcl=192.168.1.2:38142 Local ip:port address.
rmt=192.168.1.1:42638 Remote ip:port address.
UDP Connection is UDP.
lock: 20000000 LOCKED Internal socket lock status, as a hexadecimal number,

followed by status names including:
• LOCKED

• CONTENDED.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 357Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=357

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
rx_wake=000e69b0 Internal sequence value that is incremented each time a

receive queue is ‘woken’.
(RQ) indicates that a wake has been requested.

tx_wake=000e69b1 Internal sequence value that is incremented each time a
transmit queue is ‘woken’.
(RQ) indicates that a wake has been requested.

flags: Flags (if any), including:
• WK_TX, WK_RX

• TCP_PP

• ORPH

• ACCEPTQ

• DEFERRED

• AVOID_INT

• O_ASYNC, O_NONBLOCK, O_NDELAY, O_APPEND,
O_CLOEXEC

• CACHE, PASSIVE_CACHE, CACHE_NO_FD

• OS_BACKED

• NONB_UNSYNCED.

ul_poll: User-level poll():

0 spin cycles in spin cycles

0 (usec) in μs.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 358Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=358

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
uid=0 User id that owns this socket.
s_flags: FILTER Socket flags, including:

• CORK

• SHUTRD, SHUTWR

• TCP_NODELAY

• ACK

• REUSE

• KALIVE

• BCAST

• OOBIN

• LINGER

• DONTROUTE

• FILTER

• BOUND, ABOUND, PBOUND

• SNDBUF, RCVBUF

• SW_FILTER_FULL

• TRANSPARENT

• SCALACTIVE, SCALPASSIVE

• MAC_FILTER

• REUSEPORT

• BOUND_ALIEN

• CONNECT_MUST_BIND

• PMTU_DO

• ALWAYS_DF

• IP_TTL

• DEFERRED_BIND

• V6ONLY

• NOMCAST.

rcvbuf=129024 Socket receive buffer size.
sndbuf=129024 Socket send buffer size.
bindtodev=-1(01,0:0) Device to which the socket is bound, given as an interface,

or -1 if unbound. This is followed by an (interface index,
hardware port:vlan) tuple.

ttl=64 Initial TTL value.
rcvtimeo_ms=0 Timeout value (microseconds) before an error is generated

for receive functions, as set by SO_RCVTIMEO.
sndtimeo_ms=0 Timeout value (microseconds) before an error is generated

for send functions, as set by SO_SNDTIMEO.
sigown=0 The PID receiving signals from this socket.
cmsg= Current message flags, including:

• NO_MCAST_TX.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 359Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=359

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
rx_errno=0 Zero whilst data can still arrive, otherwise contains error

code.
tx_errno=0 Zero if transmit can still happen, otherwise contains error

code.
so_error=0 Current socket error, or zero if no error.
os_sock=0 0 if the socket is handled by Onload, 1 if the socket is

handled by the OS and not by Onload.
TX Socket is being used for transmit.
epoll3: ready_list_id 0 List of ready sockets from the epoll3 set.
udpflags: FILT MCAST_LOOP RXOS UDP flags currently set for this socket, including:

• FILT

• MCAST_LOOP

• IMP_BIND

• EFSND

• LAST_RCV_ON

• BIND

• MC_B2D

• NO_MC_B2D

• PEEKOS

• SO_TS

• MC

• MC_FILT

• NO_UC_FILT.

rcv: Receive data:

q_pkts=0 Number of packets currently in receive queue.

reap=2 Number of packet buffers in the process of being freed
for reuse.

tot_pkts=944560 Total number of packet buffers used.
Note any packets that are delivered to multiple receive
queues get wrapped in an additional 0-length buffer, to
reference those queues.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 360Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=360

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
rcv: Further receive data:

oflow_drop=0(0%) Number of packets dropped because the buffer is full.

mem_drop=0 Number of packets dropped due to running out of
packet buffer memory.

eagain=0 Number of times the application tried to read from a
socket when there is no data ready. This value can be
ignored on the receive side.

pktinfo=0 Number of times an IP_PKTINFO control message was
received.

q_max_pkts=0 Maximum depth reached by the receive queue
(packets).

rcv: Further receive data:

os=0(0%) Number of packets received via the operating system,
both as a number and as a percentage of total packets
received.

os_slow=0 Number of packets received via the operating system
slow path.

os_error=0 Number of times a recv() function call via the
operating system returned an error.

snd: Send data:

q=0+0 Number of bytes sent to the interface but not yet
transmitted, + number of bytes waiting because the
interface lock is contended in sendmsg().

ul=944561 Number of packets sent via Onload.

os=0(0%) Number of packets sent via the operating system, both
as a number and as a percentage of total packets sent.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 361Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=361

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
snd: Send data…

LOCK
…about locks:

cp=1(0%) Count of locks held while updating the control plane.

pkt=737815(99%) Count of locks to get a packet buffer.

snd=3(0%) Count of locks held when sending.

poll=0(0%) Count of locks held to poll the stack.

defer=1(0%) Count of sends deferred to the lock holder.

snd: Send data…

MCAST
…about multicast:

if=9 The interfaces being used by the UDP stack.

src=172.16.128.28 Source IP address for multicast.

ttl=1 Initial TTL value.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 362Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=362

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
snd: Send data…

TO
…about unconnected sends:

n=737820 Total number of UDP packets sent on this socket via
Onload.

match=737819(99%) Number of packets that matched the cache, both as a
number and as a percentage of total packets sent.

lookup=1+0(0%) Number of packets needing lookup, from the control
plane + because unlocked, both as numbers and as a
percentage of total packets sent.

Onloaded(Valid) Status of cached control plane information, one of:
Onloaded = can reach the destination via an accelerated
interface
NoMac

NoRoute

ViaOs

Local

MacFail

followed by its validity:
(Valid): information is up-to-date. Can send
immediately using this information.
(Old): information might be out-of-date. On next send
Onload will do a control plane lookup - this will add
some latency.

snd: Further send data…

TO
…about unconnected sends:

if=9 Interface being used.

mtu=1500 MTU being used.

intf_i=0 Intf_i value.

vlan=0 VLAN being used.

encap=4 Types of encapsulation supported by the NIC, as a
hexadecimal mask.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 363Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=363

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
snd: Further send data…

TO
…about unconnected sends:

172.16.128.28:34645 => UDP send multicast source ip:port address.

224.1.2.3:8001 UDP send multicast ip:port address.

snd: Further send data…

CON
…about connected sends:

n=0 Total number of UDP packets sent on this socket via
Onload.

lookup=0 Number of packets needing lookup from the control
plane.

NoRoute(Old) Status of cached control plane information, one of:
Onloaded = can reach the destination via an accelerated
interface
NoMac

NoRoute

ViaOs

Local

MacFail

followed by its validity:
(Valid): information is up-to-date. Can send
immediately using this information.
(Old): information might be out-of-date. On next send
Onload will do a control plane lookup - this will add
some latency.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 364Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=364

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
snd: Further send data…

CON
…about connected sends:

if=9 Interface being used.

mtu=0 MTU being used.

intf_i=-1 Intf_i value.

vlan=0 VLAN being used.

encap=0 Types of encapsulation supported by the NIC, as a
hexadecimal mask.

snd: Further send data:

eagain=0 Count of the number of times the application tried to
send data, but the transmit queue is already full. A high
value on the send side might indicate transmit issues.

spin=0 Number of times process had to spin when the send
queue was full.

block=0 Number of times process had to block when the send
queue was full.

snd: Further send data:

poll_avoids_full=0 Number of times polling created space in the send
queue.

fragments=0 Number of (non first) fragments sent.

confirm=0 Number of packets sent with MSG_CONFIRM flag.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 365Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=365

Table 56: Stackdump Output: UDP Socket (cont'd)

Sample Output Description
snd: Further send data:

os_slow=1 Number of packets sent via the operating system slow
path.

os_late=0 Number of packets sent via the operating system after
copying

unconnect_late=0 Number of packets silently dropped when process/
thread becomes disconnected during a send procedure.

nomac=0(0%) Number of times when no MAC address was known, so
ARP was required before delivering traffic.

Statistics
Following the stack and socket data onload_stackdump lots will display a list of statistical
data. For descriptions of the fields refer to the output from the following command:

onload_stackdump describe_stats

Environment Variables
The final list produced by onload_stackdump lots shows the current values of all
environment variables in the monitored process environment. For descriptions of the
environment variables refer to Appendix A: Parameter Reference or use the following command:

onload_stackdump doc

Onload Stackdump Filters
Use the onload_stackdump filters commands to identify filters installed by the Onload
application.

onload_stackdump filters

1. oof_manager_dump: hwports up=f, down=0 unavailable=0 local_addr_n=1
2. 172.16.130.252 active=1 sockets=0
3. oof_local_port_dump: UDP:8001 n_refs=1
4. wild sockets:
5. : 0:3 UDP 0.0.0.0:8001 0.0.0.0:0 ACCELERATED

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 366Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=366

6. FILTER 172.16.130.252:8001 hwports=c stack=0
7. mcast filters:
8. maddr=224.1.2.3:8001 stack=0 hwports=1,1,0
9. 0:3 UDP 0.0.0.0:8001 0.0.0.0:0 if=6 hwports=1,1,0 KERNEL
10. oof_manager_dump: scalable interfaces and MAC filters

onload_stackdump filter_table

1. ci_netif_filter_dump: 0 size=16384 n_entries=2 n_slots=2 max=1 mean=1
2. 0000000431 id=3 rt_ct=0 UDP 224.1.2.3:8001 0.0.0.0:0
0000000431:1109197297
3. 0000012173 id=3 rt_ct=0 UDP 172.16.130.252:8001 0.0.0.0:0
0000012173:-1113780035

Remote Monitoring
The Onload Remote Monitor (ORM) provides similar details to onload_stackdump about
Onload stacks and sockets. This data is exported in JSON format, which might be easier for an
application to consume. The data is typically processed by a remote third-party monitoring
application, such as collectd.

Two scripts are supplied:

• orm_webserver provides the data via a webserver, for remote consumption.

See orm_webserver.

• orm_json provides the data to stdout, for local consumption.

See orm_json.

These scripts are installed via the onload_install script, in the following directory:

onload-<version>/src/tools/onload_remote_monitor

(from OpenOnload 201606-u1 onwards and EnterpriseOnload 5.0.0 onwards).

From Onload-7.1.0 onwards, most of the ORM functionality has been separated into a new
orm_json_lib library. The orm_webserver and orm_json scripts now internally use this
library, and customers can also use it to build their own custom monitoring solutions. See
orm_json_lib.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 367Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=367

orm_webserver
To allow the statistics to be queried from a remote machine, run the orm_webserver Python
script on the machine that is running Onload, specifying a port through which HTTP clients can
connect:

orm_webserver <port>

The script starts a webserver process that provides the following URLs, where <stackname> is
the EF_NAME for a stack:

• http://<serverhost>:<port>/onload/stats

• http://<serverhost>:<port>/onload/stack

• http://<serverhost>:<port>/onload/opts

• http://<serverhost>:<port>/onload/lots

• http://<serverhost>:<port>/onload/all

• http://<serverhost>:<port>/onload/stackname/<stackname>/stats

• http://<serverhost>:<port>/onload/stackname/<stackname>/stack

• http://<serverhost>:<port>/onload/stackname/<stackname>/opts

• http://<serverhost>:<port>/onload/stackname/<stackname>/lots

• http://<serverhost>:<port>/onload/stackname/<stackname>/all

Gathering the Statistics

An example of how to set up collectd to gather statistics from Onload Remote Monitor is
provided in:

onload-<version>/src/tests/onload/onload_remote_monitor/using_collectd/

orm_json
Alternatively, orm_json can be run directly, in a similar manner to onload_stackdump. It
sends the JSON output to stdout on the local machine.

To see the available options, type orm_json –h.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 368Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=368

orm_json_lib
A simple example of how to use orm_json_lib is provided in src/tools/
onload_remote_monitor/orm_zmq_publisher.c. This will publish the chosen statistics
via a ZeroMQ publisher every N seconds. A companion example src/tools/
onload_remote_monitor/zmq_subscriber.c can be used to receive the JSON statistics
via ZeroMQ.

Appendix E: onload_stackdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 369Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=369

Appendix F

sfnettest
Sfnettest is a set of benchmark tools and test utilities created by Solarflare for benchmark and
performance testing of network servers and network adapters. Sfnettest is available in source
form from:

https://github.com/Xilinx-CNS/cns-sfnettest

Download the sfnettest source and unpack if necessary, for example:

unzip cns-sfnettest-master.tgz

Run the make utility from the src subdirectory to build the benchmark applications.

Refer to the README.sfnt-pingpong or README.sfnt-stream files in the distribution
directory once sfnettest is installed.

sfnt-pingpong
Description

The sfnt-pingpong application measures TCP and UDP latency by creating a single socket
between two servers and running a simple message pattern between them. The output identifies
latency and statistics for increasing TCP/UDP packet sizes.

Usage

sfnt-pingpong [options] [<tcp|udp|pipe|unix_stream|unix_datagram>
[<host[:port]>]]

Options

The following table lists the sfnt-pingpong options:

Table 57: sfnt-pingpong Options

Option Description
--port server port

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 370Send Feedback

https://github.com/Xilinx-CNS/cns-sfnettest
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=370

Table 57: sfnt-pingpong Options (cont'd)

Option Description
--sizes single message size (bytes)
--connect connect() UDP socket

--spin spin on non-blocking recv()

--muxer select, poll or epoll
--serv-muxer none, select, poll or epoll (same as client by default)
--rtt report round-trip-time
--raw dump raw results to files
--percentile percentile
--minmsg minimum message size
--maxmsg maximum message size
--minms min time per msg size (ms)
--maxms max time per msg size (ms)
--miniter minimum iterations for result
--maxiter maximum iterations for result
--mcast use multicast addressing
--mcastintf set the multicast interface. The client sends this parameter to the server.

--mcastintf=eth2 both client and server use eth2
--mcastintf='eth2;eth3' client uses eth2 and server uses eth3 (quotes are required
for this format)

--mcastloop IP_MULTICAST_LOOP
--bindtodev SO_BINDTODEVICE
--forkboth fork client and server
--n-pipe include pipes in file descriptor set
--n-unix-d include Unix datagrams in the file descriptor set
--n-unix-s include Unix streams in the file descriptor set
--n-udp include UDP sockets in file descriptor set
--n-tcpc include TCP sockets in file descriptor set
--n-tcpl include TCP listening sockets in file descriptor set
--tcp-serv host:port for TCP connections
--timeout socket SND/RECV timeout
--affinity '<client-core>;<server-core>' Enclose values in quotes. This option should be set

on the client side only. The client sends the <server_core> value to the server. The user
must ensure that the identified server core is available on the server machine.

IMPORTANT! This option will override any value set by taskset on the same command line.

--n-pings number of ping messages
--n-pongs number of pong messages
--nodelay enable TCP_NODELAY

The following table lists the standard options:

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 371Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=371

Table 58: Standard Options

Option Description
-? --help this message
-q --quiet quiet
-v --verbose display more information

Example TCP Latency Command Lines

[server]# onload --profile=latency taskset -c 1 ./sfnt-pingpong

[client]# onload --profile=latency taskset -c 1 ./sfnt-pingpong \
 --maxms=10000 --affinity "1;1" tcp <server-ip>

Example UDP Latency Command Lines

[server]# onload --profile=latency taskset -c 9 ./sfnt-pingpong

[client]# onload --profile=latency taskset -c 9 ./sfnt-pingpong \
 --maxms=10000 --affinity "9;9" udp <server_ip>

Example Output

version: 1.5.0
src: 8dc3b027d85b28bedf9fd731362e4968
date: Tue 9 Feb 13:15:46 GMT 2016
uname: Linux dellr210g2q.uk.level5networks.com 3.10.0-327.el7.x86_64 #1
SMP Thu Oct 29 17:29:29 EDT 2015 x86_64 x86_64 x86_64 GNU/Linux
cpu: model name : Intel(R) Xeon(R) CPU E3-1280 V2 @ 3.60GHz
lspci: 05:00.0 Ethernet controller: Intel Corporation I350 Gigabit
Network Connection (rev 01)
lspci: 05:00.1 Ethernet controller: Intel Corporation I350 Gigabit
Network Connection (rev 01)
lspci: 83:00.0 Ethernet controller: Solarflare Communications SFC9020
[Solarstorm]
lspci: 83:00.1 Ethernet controller: Solarflare Communications SFC9020
[Solarstorm]
lspci: 85:00.0 Ethernet controller: Intel Corporation 82574L Gigabit
Network Connection
eth0: driver: igb
eth0: version: 3.0.6-k
eth0: bus-info: 0000:05:00.0
eth1: driver: igb
eth1: version: 3.0.6-k
eth1: bus-info: 0000:05:00.1
eth2: driver: sfc
eth2: version: 3.2.1.6083
eth2: bus-info: 0000:83:00.0
eth3: driver: sfc
eth3: version: 3.2.1.6083
eth3: bus-info: 0000:83:00.1
eth4: driver: e1000e
eth4: version: 1.4.4-k
eth4: bus-info: 0000:85:00.0
virbr0: driver: bridge

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 372Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=372

virbr0: version: 2.3
virbr0: bus-info: N/A
virbr0-nic: driver: tun
virbr0-nic: version: 1.6
virbr0-nic: bus-info: tap
ram: MemTotal: 32959748 kB
tsc_hz: 3099966880
LD_PRELOAD=libonload.so
server LD_PRELOAD=libonload.so
onload_version=201205
EF_TCP_FASTSTART_INIT=0
EF_POLL_USEC=100000
EF_TCP_FASTSTART_IDLE=0
#
size mean min median max %ile stddev iter
 1 2453 2380 2434 18288 2669 77 1000000
 2 2453 2379 2435 45109 2616 90 1000000
 4 2467 2380 2436 10502 2730 82 1000000
 8 2465 2383 2446 8798 2642 70 1000000
 16 2460 2380 2441 7494 2632 68 1000000
 32 2474 2399 2454 8758 2677 71 1000000
 64 2495 2419 2474 12174 2716 77 1000000

The output identifies mean, minimum, median and maximum (nanosecond) ½ RTT latency for
increasing packet sizes including the 99% percentile and standard deviation for these results. In
the above example a message size of 32 bytes has a mean latency of 2.4 microseconds with a
99%ile latency less than 2.7 microseconds.

sfnt-stream
The sfnt-stream application measures RTT latency (not ½ RTT) for a fixed size message at
increasing message rates. Latency is calculated from a sample of all messages sent. Message rates
can be set with the rates option and the number of messages to sample using the sample
option.

sfnt-stream only functions on UDP sockets. This limitation will be removed to support other
protocols in the future.

Refer to the README.sfnt-stream file which is part of the Onload distribution for further
information.

Usage

sfnt-stream [options] [tcp|udp|pipe|unix_stream|unix_datagram [host[:port]]]

Options

The following table lists the sfnt-stream options:

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 373Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=373

Table 59: sfnt-stream Options

Option Description
--msgsize message size (bytes)
--rates msg rates <min>-<max>[+<step>]
--millisec time per test (milliseconds)
--samples number of samples per test
--stop stop when TX rate achieved is below give percentage of target rate
--maxburst maximum burst length
--port server port number
--connect connect() UDP socket

--spin spin on non-blocking recv()

--muxer select, poll, epoll or none
--rtt report round-trip-time
--raw dump raw results to file
--percentile percentile
--mcast set the multicast address
--mcastintf set multicast interface. The client sends this parameter to the server.

--mcastintf=eth2 both client and server use eth2
--mcastintf='eth2;eth3' client uses eth2 and server uses eth3 (quotes are required
for this format)

--mcastloop IP_MULTICAST_LOOP
--ttl IP_TTL and IP_MULTICAST_TTL
--bindtodevice SO_BINDTODEVICE
--n-pipe include pipes in file descriptor set
--n-unix-d include Unix datagram in file descriptor set
--n-unix-s include Unix stream in file descriptor set
--n-udp include UDP sockets in file descriptor set
--n-tcpc include TCP sockets in file descriptor set
--n-tcpl include TCP listening sockets in file descriptor set
--tcpc-serv host:port for TCP connections
--nodelay enable TCP_NODELAY
--affinity "<client-tx>,<client-rx>;<server-core>" enclose the values in double quotes, for

example "4,5;3". This option should be set on the client side only. The client sends the
<server_core> value to the server. The user must ensure that the identified server core is
available on the server machine.

IMPORTANT! This option will override any value set by taskset on the same command line.

--rtt-iter iterations for RTT measurement

The following table lists the standard options:

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 374Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=374

Table 60: Standard Options

Option Description
-? --help this message
-q --quiet quiet
-v --verbose display more information
--version display version information

Example Command Lines for Client/Server

[server]# ./sfnt-stream

[client]# ./sfnt-stream --affinity 1,1 udp <server-ip>

[client]# ./taskset -c 1 ./sfnt-stream --affinity="3,5;3" --mcastintf=eth4
udp \
 <remote-ip>

Example of Bonded Interfaces

The following example configures a single bond, having two slaves interfaces, on each machine.
Both server and client machines use eth4 and eth5.

[root@server src]# ifconfig eth4 0.0.0.0 down
[root@server src]# ifconfig eth5 0.0.0.0 down
[root@server src]# modprobe bonding miimon=100 mode=1
xmit_hash_policy=layer2 primary=eth5
[root@server src]# ifconfig bond0 up
[root@server src]# echo +eth4 > /sys/class/net/bond0/bonding/slaves
[root@server src]# echo +eth5 > /sys/class/net/bond0/bonding/slaves
[root@server src]# ifconfig bond0 172.16.136.28/21
NOTE: server sends to IP address of client bond
[root@server src]# onload --profile=latency taskset -c 1 ./sfnt-stream --
mcastintf=bond0 --affinity "1,1;3" udp 172.16.136.27

[root@client src]# ifconfig eth4 0.0.0.0 down
[root@client src]# ifconfig eth5 0.0.0.0 down
[root@client src]# modprobe bonding miimon=100 mode=1
xmit_hash_policy=layer2 primary=eth5
[root@client src]# ifconfig bond0 up
[root@client src]# echo +eth4 > /sys/class/net/bond0/bonding/slaves
[root@client src]# echo +eth5 > /sys/class/net/bond0/bonding/slaves
[root@client src]# ifconfig bond0 172.16.136.27/21
[root@client src]# onload --profile=latency taskset -c 3 ./sfnt-stream
sfnt-stream: server: waiting for client to connect...
sfnt-stream: server: client connected
sfnt-stream: server: client 0 at 172.16.136.28:45037

Output Fields

All time measurements are nanoseconds unless otherwise stated.

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 375Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=375

Table 61: sfnt-stream Output Fields

Field Description
mps target Msg per sec target rate
mps send Msg per sec actual rate
mps recv Msg receive rate
latency mean RTT mean latency
latency min RTT minimum latency
latency median RTT median latency
latency max RTT maximum latency
latency %ile RTT 99%ile
latency stddev Standard deviation of sample
latency samples Number of messages used to calculate latency measurement
sendjit mean Mean variance when sending messages
sendjit min Minimum variance when sending messages
sendjit max Maximum variance when sending messages
sendjit behind Number of times the sender falls behind and is unable to keep up with the transmit rate
gaps n_gaps Count the number of gaps appearing in the stream
gaps n_drops Count the number of drops from stream
gaps n_ooo Count the number of sequence numbers received out of order

Running Without Spinning
Both sfnt-pingpong and sfnt-stream use scripts found in the onload_apps subdirectory which
invoke the onload latency profile thereby causing the application to ‘spin’.

To run these test programs in an interrupt driven mode, replace the --profile=latency
option on the command line, with the --no-app-handler option.

Appendix F: sfnettest

UG1586 (v1.2) July 31, 2023
Onload User Guide 376Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=376

Appendix G

onload_tcpdump
By definition, Onload is a kernel bypass technology and this prevents packets from being
captured by packet sniffing applications such as tcpdump, netstat and wireshark.

Onload supports the onload_tcpdump application that supports packet capture from onload
stacks to a file or to be displayed on standard out (stdout). Packet capture files produced by
onload_tcpdump can then be imported to the regular tcpdump, wireshark or other third party
application where users can take advantage of search and analysis features.

Onload_tcpdump allows for the capture of all TCP and UDP unicast and multicast data sent or
received via Onload stacks - including shared stacks.

Note: Onload tcpdump is not a replacement for the standard Linux tcpdump utility. Onload tcpdump
captures traffic only from Onload stacks.

Building onload_tcpdump
The onload_tcpdump script is supplied with the Onload distribution and is located in the
Onload-<version>/scripts sub-directory.

Note: libpcap and libpcap-devel must be built and installed before Onload is installed.

Using onload_tcpdump
For help use the ./onload_tcpdump -h command:

Usage:
onload_tcpdump [-o stack-(id|name) [-o stack ...]]
tcpdump_options_and_parameters
"man tcpdump" for details on tcpdump parameters.
You may use stack id number or shell-like pattern for the stack name
to specify the Onload stacks to listen on.
If you do not specify stacks, onload_tcpdump will monitor all onload stacks.
If you do not specify interface via -i option, onload_tcpdump
listens on ALL interfaces instead of the first one.

For further information refer to the Linux man tcpdump pages.

Appendix G: onload_tcpdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 377Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=377

Note: Onload tcpdump only accepts separate command line options - combined options will be ignored by
the application parser:

The following example will work:

onload_tcpdump -n -i <interface>

The following example will not work:

onload_tcpdump -ni <interface>

Examples
• Capture all accelerated traffic from eth2 to a file called mycaps.pcap:

onload_tcpdump -ieth2 -wmycaps.pcap

• If no file is specified onload_tcpdump will direct output to stdout:

onload_tcpdump -ieth2

• To capture accelerated traffic for a specific Onload stack (by name):

onload_tcpdump -ieth4 -o stackname

• To capture accelerated traffic for a specific Onload stack (by ID):

onload_tcpdump -o 7

• To capture accelerated traffic for Onload stacks where name begins with “abc”

onload_tcpdump -o 'abc*'

• To capture accelerated traffic for onload stack 1, stack named “stack2” and all onload stacks
with name beginning with “ab”:

onload_tcpdump -o 1 -o 'stack2' -o 'ab*'

VLAN Examples
• Capture all UDP VLAN tagged traffic from the specified interface:

onload_tcpdump -nn -i eth3 udp and vlan

• Capture all UDP non-VLAN tagged traffic from the specified interface:

onload_tcpdump -nn -i eth3 udp and not vlan

Appendix G: onload_tcpdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 378Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=378

Dependencies
The onload_tcpdump application requires libpcap and libpcap-devel to be installed on
the server. If libpcap is not installed the following message is reported when
onload_tcpdump is invoked:

./onload_tcpdump
ci Onload was compiled without libpcap development package installed. You
need to install libpcap-devel or libpcap-dev package to run onload_tcpdump.
tcpdump: truncated dump file; tried to read 24 file header bytes, only got 0
Hangup

If libpcap is missing it can be downloaded from http://www.tcpdump.org/.

Untar the compressed file on the target server and follow build instructions in the INSTALL.txt
file. The libpcap package must be installed before Onload is built and installed.

Limitations
• Using multiple onload_tcpdump instances to capture from the same onload stack is not a

supported configuration.

• Currently onload_tcpdump captures only packets from Onload stacks and not from kernel
stacks.

• onload_tcpdump delivers timestamps with microsecond resolution. onload_tcpdump
does not support nanosecond precision.

• The onload_tcpdump application monitors stack creation events and will attach to newly
created stacks however, there is a short period (normally only a few milliseconds) between
stack creation and the attachment during which packets sent/received will not be captured.

Known Issues
• Users might observe that the packets sent when the destination address is not in the host

ARP table causes the packets to appear in both onload_tcpdump and (Linux) tcpdump.

CAUTION! Users should not attempt to accelerate onload_tcpdump. The following command should
not be used:

onload onload_tcpdump -i <interface>

• onload_tcpdump will also be accelerated if LD_PRELOAD is exported in the Onload
environment, so the following methods should not be used:

export LD_PRELOAD=libonload.so
onload_tcpdump -i <interface>

Appendix G: onload_tcpdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 379Send Feedback

http://www.tcpdump.org/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=379

SolarCapture
SolarCapture is a packet capture application for Solarflare network adapters. It is able to capture
received packets from the wire at line rate, assigning accurate nanosecond precision timestamps
to each packet. Packets are captured to PCAP file or forwarded to user-supplied logic for
processing. For details see the SolarCapture User Guide (SF-108469-CD).

Appendix G: onload_tcpdump

UG1586 (v1.2) July 31, 2023
Onload User Guide 380Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#drivers-software
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=380

Appendix H

ef_vi
The ef_vi API is a layer 2 API that grants an application direct access to the Solarflare network
adapter datapath to deliver lower latency and reduced per message processing overheads. ef_vi
is the internal API used by Onload for sending and receiving packets. It can be used directly by
applications that want the very lowest latency send and receive API and that do not require a
POSIX socket interface.

• ef_vi is packaged with the Onload distribution.

• ef_vi is an OSI level 2 interface which sends and receives raw Ethernet frames.

• ef_vi supports a zero-copy interface because the user process has direct access to memory
buffers used by the hardware to receive and transmit data.

• An application can use both ef_vi and Onload at the same time. For example, use ef_vi to
receive UDP market data and Onload sockets for TCP connections for trading.

• The ef_vi API can deliver lower latency than Onload and incurs reduced per message
overheads.

• ef_vi is free software distributed under a LGPL license.

• The user application wishing to use the layer 2 ef_vi API must implement the higher layer
protocols.

Components
All components required to build and link a user application with the Solarflare ef_vi API are
distributed with Onload. When Onload is installed all required directories/files are located under
the Onload distribution directory.

Compiling and Linking
Refer to the README.ef_vi file in the Onload directory for compile and link instructions.

Appendix H: ef_vi

UG1586 (v1.2) July 31, 2023
Onload User Guide 381Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=381

Documentation
The ef_vi documentation is distributed in doxygen format with the Onload distribution.
Documents in HTML and LaTeX format are generated by running doxygen in the following
directory:

cd onload-<version>/src/include/etherfabric/doxygen
doxygen doxyfile_ef_vi

Documents are generated in the html and latex sub-directories.

The ef_vi User Guide can be viewed in HTML format by opening the html/index.html file.

If TeX Live is installed (version 2014 or later is recommended), the ef_vi User Guide can be
generated in PDF format by:

cd latex
make pdf

The ef_vi User Guide (SF-114063-CD) is also available in PDF format from the Solarflare
download site.

Appendix H: ef_vi

UG1586 (v1.2) July 31, 2023
Onload User Guide 382Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=382

Appendix I

onload_iptables
The Linux netfilter iptables feature provides filtering based on user-configurable rules with the
aim of managing access to network devices and preventing unauthorized or malicious passage of
network traffic. Packets delivered to an application via the Onload accelerated path are not
visible to the OS kernel and, as a result, these packets are not visible to the kernel firewall
(iptables).

The onload_iptables feature allows the user to configure rules which determine which hardware
filters Onload is permitted to insert on the adapter and therefore which connections and sockets
can bypass the kernel and, as a consequence, bypass iptables.

The onload_iptables command can convert a snapshot copy of the kernel iptables rules into
Onload firewall rules.

Note: Any changes to kernel iptables subsequent to the snapshot will not be reflected in the Onload
firewall.

These Onload firewall rules are used to determine if sockets, created by an Onloaded process,
are retained by Onload or handed off to the kernel network stack. Additionally, user-defined filter
rules can be added to the Onload firewall on a per interface basis. The Onload firewall applies to
the receive filter path only.

How it Works
Before Onload accelerates a socket it first checks the Onload firewall module. If the firewall
module indicates the acceleration of the socket would violate a firewall rule, the acceleration
request is denied and the socket is handed off to the kernel. Network traffic sent or received on
the socket is not accelerated.

Onload firewall rules are parsed in ascending numerical order. The first rule to match the newly
created socket - which can indicate to accelerate or decelerate the socket - is selected and no
further rules are parsed.

If the Onload firewall rules are an exact copy of the kernel iptables, with no additional rules
added by the Onload user, then a socket handed off to the kernel because of an iptables rule
violation will be unable to receive data through either path.

Appendix I: onload_iptables

UG1586 (v1.2) July 31, 2023
Onload User Guide 383Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=383

Changing rules using onload_iptables will not interrupt existing network connections.

Note: Onload firewall rules will not persist over network driver restarts.

Note: The onload_iptables “IP rules” will only block hardware IP filters from being inserted and
onload_iptables “MAC rules” will only block hardware MAC filters from being inserted. Therefore it is
possible that if a rule is inserted to block a MAC address, the user is still able to accept traffic from the
specified host by Onload inserting an appropriate IP hardware filter.

Files
When the Onload drivers are loaded, firewall rules exist in the Linux proc pseudo file system at:

/proc/driver/sfc_resource

Within this directory the firewall_add, firewall_del and resources files will be present.
These files are writable only by a root user. No attempt should be made to remove these files.

Once rules have been created for a particular interface – and only while these rules exist – a
separate directory exists which contains the current firewall rules for the interface:

/proc/driver/sfc_resource/ethN/firewall_rules

Features
To get help:

onload_iptables -h

Rules
The general format of the rule is:

[rule=n] if=ethN protocol=(ip|tcp|udp) [local_ip=a.b.c.d[/mask]]
[remote_ip=a.b.c.d[/mask]] [local_port=a[-b]] [remote_port=a[-b]] [vlan=n]
action=(ACCELERATE|DECELERATE)

Note: Using the IP address rule form, the vlan identifier is effective only when using a Solarflare SFN8000
or X2 series adapter which is configured to use the full-featured firmware variant. On other Solarflare
adapters the vlan identifier is ignored. The vlan identifier can only be specified with the vlan=n syntax and
not on the interface.

[rule=n] if=ethN protocol=eth mac=xx:xx:xx:xx:xx:xx[/FF:FF:FF:FF:FF:FF]
[vlan=n] action=(ACCELERATE|DECELERATE)

Appendix I: onload_iptables

UG1586 (v1.2) July 31, 2023
Onload User Guide 384Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=384

Note: Using the MAC address rule form, the vlan identifier is effective when specified for any Solarflare
adapter.

Preview Firewall Rules
Before creating the Onload firewall, run the onload_iptables -v option to identify which
rules will be adopted by the firewall and which will be rejected (a reason is given for rejection):

onload_iptables -v
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:5201
=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=5201-5201
remote_ip=0.0.0.0/0 remote_port=0-65535 action=DECELERATE
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:5201
=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=5201-5201
remote_ip=0.0.0.0/0 remote_port=0-65535 action=DECELERATE
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpts:80:88
=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=80-88
remote_ip=0.0.0.0/0 remote_port=0-65535 action=
tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:800
=> Error parsing: Insuffcient arguments in rule.

The last rule is rejected because the action is missing.

Note: The -v option does not create firewall rules for any Solarflare interface, but allows the user to
preview which Linux iptables rules will be accepted and which will be rejected by Onload.

To Convert Linux iptables to Onload Firewall Rules
The Linux iptables can be applied to all or individual Solarflare interfaces.

Onload iptables are only applied to the receive filter path. The user can select the INPUT CHAIN
or a user defined CHAIN to parse from the iptables. The default CHAIN is INPUT. To adopt the
rules from iptables even though some rules will be rejected enter the following command
identifying the Solarflare interface the rules should be applied to:

onload_iptables -i ethN -c
onload_iptables -a -c

Running the onload_iptables command will overwrite existing rules in the Onload firewall when
used with the -i (interface) or -a (all interfaces) options.

Note: Applying the Linux iptables to a Solarflare interface is optional. The alternatives are to create user-
defined firewall rules per interface or not to apply any firewall rules per interface (default behavior).

Note: onload_iptables will import all rules to the identified interface - even rules specified on another
interface. To avoid importing rules specified on ‘other’ interfaces using the --use-extended option.

Appendix I: onload_iptables

UG1586 (v1.2) July 31, 2023
Onload User Guide 385Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=385

To View Rules for a Specific Interface
When firewall rules exist for a Solarflare interface, and only while they exist, a directory for the
interface will be created in:

/proc/driver/sfc_resource

Rules for a specific interface will be found in the firewall_rules file. For example:

cat /proc/driver/sfc_resource/eth3/firewall_rules
if=eth3 rule=0 protocol=tcp local_ip=0.0.0.0/0.0.0.0
remote_ip=0.0.0.0/0.0.0.0 local_port=5201-5201 remote_port=0-65535
action=DECELERATE
if=eth3 rule=1 protocol=tcp local_ip=0.0.0.0/0.0.0.0
remote_ip=0.0.0.0/0.0.0.0 local_port=5201-5201 remote_port=0-65535
action=DECELERATE
if=eth3 rule=2 protocol=tcp local_ip=0.0.0.0/0.0.0.0
remote_ip=0.0.0.0/0.0.0.0 local_port=5201-5201 remote_port=72-72
action=DECELERATE
if=eth3 rule=3 protocol=tcp local_ip=0.0.0.0/0.0.0.0
remote_ip=0.0.0.0/0.0.0.0 local_port=80-88 remote_port=0-65535
action=DECELERATE

To Add a Rule for a Selected Interface
echo "rule=4 if=eth3 action=ACCEPT protocol=udp local_port=7330-7340" \
 > /proc/driver/sfc_resource/firewall_add

Rules can be inserted into any position in the table and existing rule numbers will be adjusted to
accommodate new rules. If a rule number is not specified the rule will be appended to the
existing rule list.

Note: Errors resulting from the add/delete commands will be displayed in dmesg.

To Delete a Rule from a Selected Interface
To delete a single rule:

echo "if=eth3 rule=2" > /proc/driver/sfc_resource/firewall_del

To delete all rules:

echo "eth2 all" > /proc/driver/sfc_resource/firewall_del

When the last rule for an interface has been deleted the interface firewall_rules file is
removed from /proc/driver/sfc_resource. The interface directory will be removed only
when completely empty.

Appendix I: onload_iptables

UG1586 (v1.2) July 31, 2023
Onload User Guide 386Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=386

Error Checking
The onload_iptables command does not log errors to stdout. Errors arising from add or delete
commands will logged in dmesg.

Interface and Port
Onload firewall rules are bound to an interface and not to a physical adapter port. It is possible to
create rules for an interface in a configured/down state.

Virtual/Bonded Interface
On virtual or bonded interfaces firewall rules are only applied and enforced on the ‘real’ interface.

Error Messages
Error messages relating to onload_iptables operations will appear in dmesg.

Table 62: Error messages for onload_iptables

Error Message Description
Internal error Internal condition - should not happen.
Unsupported rule Internal condition - should not happen.
Out of memory allocating new rule Memory allocation error.
Seen multiple rule numbers Only a single rule number can be specified when adding/

deleting rules.
Seen multiple interfaces Only a single interface can be specified when adding/

deleting rules.
Unable to understand action The action specified when adding a rule is not supported.

Note: There should be no spaces, like this:
action=ACCELERATE.

Unable to understand protocol Non-supported protocol.
Unable to understand remainder of the rule Non-supported parameters/syntax.
Failed to understand interface The interface does not exist. Rules can be added to an

interface that does not yet exist, but cannot be deleted from
an non-existent interface.

Failed to remove rule The rule does not exist.
Error removing table Internal condition - should not happen.

Appendix I: onload_iptables

UG1586 (v1.2) July 31, 2023
Onload User Guide 387Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=387

Table 62: Error messages for onload_iptables (cont'd)

Error Message Description
Invalid local_ip rule Invalid address/mask format. Supported formats:

a.b.c.d
a.b.c.d/n
a.b.c.d/e.f.g.h
where a.b.c.d.e.f.g.h are decimal range 0-255, n = decimal
range 0-32.

Invalid remote_ip rule Invalid address/mask format.
Invalid rule A rule must identify at least an interface, a protocol, an

action and at least one match criteria.
Invalid mac Invalid mac address/mask format.

Supported formats:
xx:xx:xx:xx:xx:xx
xx:xx:xx:xx:xx:xx/xx:xx:xx:xx:xx:xx
where x is a hex digit.

Note: A Linux limitation applicable to the /proc/ filesystem restricts a write operation to 1024 bytes.
When writing to /proc/driver/sfc_resource/firewall_[add|del] files the user is advised to
flush the write between lines which exceed the 1024 byte limit.

Appendix I: onload_iptables

UG1586 (v1.2) July 31, 2023
Onload User Guide 388Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=388

Appendix J

eflatency
The OpenOnload distribution includes the command line eflatency test application to measure
latency of the ef_vi layer 2 API.

eflatency is a single thread ping/pong application. When all iterations are complete the client side
will display the round-trip time.

eflatency determines the lowest latency mode that it is possible to use, from the following:

• TX alternatives

• PIO

• DMA.

By default, eflatency sends 10000 warm-up packets to fill caches and stabilize the system, before
measuring statistics over 100000 iterations of packets with no payload. Payload size and
numbers of iterations can be configured.

With the Onload distribution installed, eflatency will be present in the following directory:

~/onload-<version>/build/gnu_x86_64/tests/ef_vi

eflatency
./eflatency –help
usage:
 eflatency [options] <ping|pong> <interface>
options:
 -n <iterations> - set number of iterations
 -s <message-size> - set udp payload size
 -w <iterations> - set number of warmup iterations

Table 63: eflatency Parameters

Parameter Description
interface the local interface to use, for example eth2

Appendix J: eflatency

UG1586 (v1.2) July 31, 2023
Onload User Guide 389Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=389

To Run eflatency
The eflatency must be started on the server (pong side) before the client (ping side) is run.
Command line examples are shown below.

1. On the server side (server1)

taskset –c <M> ./eflatency -s 28 pong eth<N>
ef_vi_version_str: <onload version>
udp payload len: 28
iterations: 100000
warmups: 10000
frame len: 70
mode: Alternatives

where:

• <M> is the CPU core

• <N> is the Solarflare adapter interface.

2. On the client side (server2)

taskset –c <M> ./eflatency -s 28 ping eth<N>
ef_vi_version_str: <onload version>
udp payload len: 28
iterations: 100000
warmups: 10000
frame len: 70
mode: Alternatives
mean round-trip time: <n.nnn> usec

where:

• <M> is the CPU core

• <N> is the Solarflare adapter interface

• <n.nnn> is the reported mean round-trip time for a 28 byte payload.

Appendix J: eflatency

UG1586 (v1.2) July 31, 2023
Onload User Guide 390Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=390

Appendix K

Management Information Base
The Onload Management Information Base utility, onload_mibdump introduced in
OpenOnload 201710, provides state information from the onload control plane MIB tables.

In previous versions of Onload this information was provided via the tables in:

/proc/driver/onload_cplane/mib-*

Note: This utility is designed primarily to aid Solarflare support when investigating Onload support issues.

Host
When the ‘onload_mibdump all’ command is run in the host environment, tables are generated
for all onload_cp_server objects visible from all namespaces and all containers.

Container
When the ‘onload_mibdump all’ command is run within a container, tables are generated only for
onload_cp_server objects visible within the container namespace.

Namespaces
When the ‘onload_mibdump all’ command is run within a specific namespace, tables are
generated only for onload_cp_server objects visible within the namespace.

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 391Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=391

List Available Options
onload_mibdump
onload_mibdump: No tables specified.
onload_mibdump:
onload_mibdump: usage:
onload_mibdump: onload_mibdump [options] [table...]
onload_mibdump:
onload_mibdump: options:
onload_mibdump: -a --all -- Dump all visible control
planes
onload_mibdump: -n --namespace -- Dump the control plane for
the specified namespace
onload_mibdump:
onload_mibdump: Options can also be given with the environment variable
CI_OPTS
onload_mibdump:
onload_mibdump: Available tables are:
onload_mibdump: 'usage' - amount of used and free space in each table
onload_mibdump: 'version' - MIB table versions
onload_mibdump: 'hwport' - mapping from hwports to interfaces
onload_mibdump: 'llap' - status of all known interfaces
onload_mibdump: 'ipif' - local IP address configuration
onload_mibdump: 'ip6if' - local IPv6 address configuration
onload_mibdump: 'fwd' - routing table
onload_mibdump: 'stats' - statistics
onload_mibdump: 'internal' - all the internal state
onload_mibdump: 'int_base' - base of the internal state
onload_mibdump: 'int_dst' - destination prefixes from the internal state
onload_mibdump: 'int_src' - source prefixes from the internal state
onload_mibdump: 'int_dst6' - IPv6 destination prefixes from the internal
state
onload_mibdump: 'int_src6' - IPv6 source prefixes from the internal state
onload_mibdump: 'int_llap' - llap private of the internal state
onload_mibdump: 'int_team' - team table of the internal state
onload_mibdump: 'int_mac' - mac IP table of the internal state
onload_mibdump: 'int_mac6' - mac IPv6 table of the internal state
onload_mibdump: 'int_fwd' - fwd private of the internal state
onload_mibdump: 'int_stats' - stats of the internal state
onload_mibdump: 'int_stat_doc' - documentation for internal statistic
counters
onload_mibdump:
onload_mibdump: Or use 'all' to dump all tables.

Tables
Also refer to User-space Control Plane Server and Changing Onload Control Plane Table Sizes.

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 392Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=392

Usage
Identifies the amount of used/max entries in each table.

onload_mibdump -a usage
Control plane state for server 21745:

<Version info - see Version>

Table space usage:

hwport: 2/8
llap: 7/32
ipif: 5/256
ip6if: 0/0 FULL
fwd: 2/1024

Version numbers are for internal use only. To increase the size of cplane tables, refer to Changing
Onload Control Plane Table Sizes.

Version
Displays MIB tables version numbers. These values are for internal use only.

onload_mibdump -a version
Control plane state for server 21745:

Table version number: 28
LLAP version number: 9
Dump version number: 1903528
Idle version number: 2679954
OOF version number: 26

hwport
Displays mappings of hardware ports to interfaces.

onload_mibdump -a hwport
Control plane state for server 21745:

<Version info - see Version>

Hwport table (licensed f, unlicensed 0):

hwport[000]:
 flags LICENSED-ONLOAD (84)
 oo_vi_flags_mask=ffffffff efhw_flags_extra=00000000 pio_len_shift=0
 ctpio_start_offset=00000000
hwport[001]:
 flags LICENSED-ONLOAD (84)
 oo_vi_flags_mask=ffffffff efhw_flags_extra=00000000 pio_len_shift=0
 ctpio_start_offset=00000000
hwport[002]:
 flags LICENSED-ONLOAD LICENSED-TCP-DIRECT (8c)
 oo_vi_flags_mask=ffffffff efhw_flags_extra=00000000 pio_len_shift=0

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 393Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=393

 ctpio_start_offset=00000000
hwport[003]:
 flags LICENSED-ONLOAD LICENSED-TCP-DIRECT (8c)
 oo_vi_flags_mask=ffffffff efhw_flags_extra=00000000 pio_len_shift=0
 ctpio_start_offset=00000000

• flags

Onload features with an activation key on the adapter

• oo_vi_flags_mask

flag definitions in /src/include/ci/efhw/common.h

• efhw_flags_extra

flag definitions in /src/include/ci/efhw/common.h

• pio_len_shift

internal PIO value

• ctpio_start_offset

Internal CTPIO value.

llap
The llap command provides some of the data available from the ip link show command.

Link state and link characteristics data is displayed for all layer 2 interfaces which have a loaded
driver. Interfaces are sequentially numbered [nnn], this value is dynamically calculated and should
not be used to refer to the interface.

onload_mibdump -a llap
Control plane state for server 21745:

<Version info - see Version>

LLAP table:

llap[000]: enp4s0f1 (650) UP mtu 1500 arp_base 30000ms
 TX hwports 1
 RX hwports 1
 mac 00:0f:53:01:45:49
llap[001]: enp4s0f0 (649) UP mtu 1500 arp_base 30000ms
 TX hwports 0
 RX hwports 0
 mac 00:0f:53:01:45:48
llap[002]: eth0 (652) UP mtu 1500 arp_base 30000ms
 TX hwports 2
 RX hwports 2
 mac 00:0f:53:21:9b:b0
llap[003]: enp5s0f1 (653) UP mtu 1500 arp_base 30000ms
 TX hwports 3
 RX hwports 3
 mac 00:0f:53:21:9b:b1
llap[004]: lo (1) UP mtu 65535 arp_base 30000ms

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 394Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=394

 encap LOOP
 no TX hwports
 no RX hwports
llap[005]: eno1 (2) UP mtu 1500 arp_base 30000ms
 no TX hwports
 no RX hwports
llap[006]: eno2 (3) UP mtu 1500 arp_base 30000ms
 no TX hwports
 no RX hwports
llap[007]: eno3 (4) UP mtu 1500 arp_base 30000ms
 no TX hwports
 no RX hwports
llap[008]: eno4 (5) UP mtu 1500 arp_base 30000ms
 no TX hwports
 no RX hwports

• arp_base

is the /proc/sys/net/ipv4/neigh/<iface>/base_reachable_time_ms
(milliseconds).

• no TX/RX hwports

is a mask mapping kernel interfaces to Onload interfaces.

ipif
Displays IP configuration for local interfaces.

onload_mibdump ipif

<Version info - see Version>

IPIF table:

ipif[000]: lo (1) 127.0.0.1/8 bcast 0.0.0.0 scope host
ipif[001]: eno1 (2) 10.17.130.253/21 bcast 10.17.135.255 scope univ
ipif[002]: virbr0 (10) 192.168.122.1/24 bcast 192.168.122.255 scope univ
ipif[003]: enp4s0f0 (12) 172.16.130.253/21 bcast 172.16.135.255 scope univ
ipif[004]: enp4s0f1 (13) 172.16.138.253/21 bcast 172.16.143.255 scope univ
ipif[005]: enp5s0f0 (14) 172.16.154.253/21 bcast 172.16.159.255 scope univ
ipif[006]: enp5s0f1 (15) 172.16.162.253/21 bcast 172.16.167.255 scope univ

fwd
Will identify and list all interface routes and metrics assigned to each interface. The fwd option is
the equivalent of using the’ ip route show’ command.

onload_mibdump fwd

<Version info - see Version>

FWD table:

Source prefix length in use: 5 32
Destination prefix length in use: 32

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 395Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=395

fwd[001]: from 172.16.154.253/32 to 172.16.154.252/32 via any tos 0
 from 172.16.154.253 via 172.16.154.252 enp5s0f0 (14)
 mtu 1500 type NORMAL arp valid
 hwports 4 from 00:0F:53:25:3A:20 to 00:0F:53:21:9B:B0
 last used: 2682 ms ago
 in use: 1 verinfo: 1-2
fwd[003]: from 10.17.130.253/32 to 10.17.135.251/32 via any tos 0
 from 10.17.130.253 via 10.17.135.251 (0)
 mtu 0 type ALIEN arp invalid
 hwports 0 from 00:00:00:00:00:00 to 00:00:00:00:00:00
 last used: 66111 ms ago
 in use: 1 verinfo: 3-e
fwd[218]: from 0.0.0.0/5 to 172.16.154.252/32 via any tos 0
 from 172.16.154.253 via 172.16.154.252 enp5s0f0 (14)
 mtu 1500 type NORMAL arp valid
 hwports 4 from 00:0F:53:25:3A:20 to 00:0F:53:21:9B:B0
 last used: 326092 ms ago
 in use: 1 verinfo: da-2

stats
These stats are counts of instances when Onload requests routing resolution from the kernel.

onload_mibdump -a stats
Control plane state for server 21745:

<Version info - see Version>

Control Plane statistics:

Route requests (non-waiting): 2
Route requests (waiting): 15
Route requests queue depth: 0
Filter engine requests (non-waiting): 28
ARP confirmations (tried): 29
ARP confirmations (successful): 29
Dropped IP packets routed via OS: 0

internal
onload_mibdump -a internal
Control plane state for server 21745:

<Version info - see Version>

Requesting dump of internal state...
cp_session_print_state(0x0):
 flags=1043 license_threads=0
 state=0 prev_state=0 seen[0]=ffffffffffffffff
 user_hz=10 khz=3695993

Destinations in routes and rules:
 allocated/used/sorted: 32 / 20 / 20
 [0] 192.168.122.255/32
 [1] 192.168.122.1/32
 [2] 192.168.122.0/32
 [3] 172.16.143.255/32

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 396Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=396

 [4] 172.16.137.206/32
 [5] 172.16.136.0/32
 [6] 172.16.135.255/32
 [7] 172.16.129.206/32
 [8] 172.16.128.0/32
 [9] 127.255.255.255/32
 [10] 127.0.0.1/32
 [11] 127.0.0.0/32
 [12] 10.17.135.255/32
 [13] 10.17.129.206/32
 [14] 10.17.128.0/32
 [15] 192.168.122.0/24
 [16] 172.16.136.0/21
 [17] 172.16.128.0/21
 [18] 10.17.128.0/21
 [19] 127.0.0.0/8
Source rules:
 allocated/used/sorted: 8 / 5 / 5
 [0] 192.168.122.1/32
 [1] 172.16.137.206/32
 [2] 172.16.129.206/32
 [3] 127.0.0.1/32
 [4] 10.17.129.206/32
IPv6 destinations in routes and rules:
IPv6 support disabled
IPv6 source rules:
IPv6 support disabled
cp_llap_print:
llap[000]: LOOP arp_base 30000ms

llap[001]: arp_base 30000ms

llap[002]: arp_base 30000ms

llap[003]: arp_base 30000ms

llap[004]: arp_base 30000ms

llap[005]: arp_base 30000ms

llap[006]: arp_base 30000ms

cp_team_print:
cp_mac_print:
mac[357]: if 2 ip 10.17.135.251 mac 00:50:56:9C:F7:55 reachable (1 refs)

 to be re-confirmed after 0 msec

mac[383]: if 1 ip 127.0.0.1 mac 00:00:00:00:00:00 noarp (1 refs)

mac[597]: if 1 ip 10.17.129.206 mac 00:00:00:00:00:00 noarp (1 refs)

mac[610]: if 2 ip 10.17.135.252 mac 00:50:56:9C:3F:FF stale (1 refs)

mac[760]: if 10 ip 172.16.129.207 mac 00:0F:53:65:17:40 reachable (1 refs)

 to be re-confirmed after 0 msec

mac[855]: if 2 ip 10.17.129.207 mac 50:9A:4C:6D:49:F0 stale (1 refs)

mac[871]: if 2 ip 10.17.128.254 mac 70:CA:9B:52:CC:4C stale (1 refs)

cp_mac6_print:

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 397Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=397

IPv6 support disabled
cp_fwd_print:
[769]: macid=760 used 13828 ms ago
[819]: macid=357 used 20828 ms ago
Statistics:
nlmsg_error.link_nodev: 0
nlmsg_error.link: 0
nlmsg_error.addr: 0
nlmsg_error.neigh: 0
nlmsg_error.route: 0
nlmsg_error.rule: 0
nlmsg_error.other: 0
fwd.collision: 0
fwd.hash_loop: 0
fwd.full: 0
fwd.req_complete: 15
fwd.nlmsg_mismatch: 0
fwd.error_mismatch: 0
mac.collision: 0
mac.hash_loop: 0
mac.full: 0
llap.unsupported_ifi_type: 0
llap.unsupported_info_kind: 1903626
llap.unsupported_vlan: 0
llap.full: 0
ipif.full: 0
notify.llap_mod: 201
notify.llap_update_filters: 58
notify.ip_mod: 119
notify.ready: 81
license.onload: 2
license.scaleout: 0
license.non_onload: 4
license.tcp_direct: 2
license.siena: 0
license.ef10: 0
license.medford: 2
license.noname: 0
license.rename: 0
license.too_many_renames: 0
license.sfc_driver: 2
license.non_sfc_driver: 4
Succeeded.

The internal command outputs onload_cplane_server internal statistics.

This command is for diagnostic purposes and might be requested by Solarflare support.

For documentation of the internal statistic counters, type:

onload_mibdump int_stat_doc

all
Running the following command will generate all MIB tables:

onload_mibdump all

Appendix K: Management Information Base

UG1586 (v1.2) July 31, 2023
Onload User Guide 398Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=398

Appendix L

X2 Low Latency Quickstart
This appendix demonstrates how to achieve very low latency coupled with minimum jitter on a
system fitted with an X2 series network adapter and using the OpenOnload kernel-bypass
network acceleration middleware. These techniques also apply to other supported network
adapters that use the sfc network driver, such as 8000 series adapters.

The procedure will focus on the performance of the network adapter for TCP and UDP
applications running on Linux, using the AMD supplied open source sfnettest network
benchmark test tools, and also the industry-standard Netperf network benchmark application.

The results of these tests can be found in Latency Test Results, and Latency against Payload.

Note: Please read the supplied ONLOAD_LICENSE file regarding the disclosure of performance test results.

Software Installation
Before running these benchmark tests ensure that correct driver and firmware versions are
installed. For example, for the reference system described later in this chapter:

[root@server-N]# ethtool -i <interface>
driver: sfc
version: 4.15.0.1012
firmware-version: 7.5.0.1022 rx1 tx1

Firmware Variant
On SFN8000 and X2 series adapters, the adapter should use the ultra-low-latency firmware
variant – as indicated by the presence of rx1 tx1 as shown above. Firmware variants are selected
with the sfboot utility from the Linux Utilities package (SF-107601-LS).

Onload
Before Onload network and kernel drivers can be built and installed the system must support a
build environment capable of compiling kernel modules. Refer to Appendix C: Build
Dependencies for more details.

1. Download the onload-<version>.tgz file from the NIC Software and Drivers web page.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 399Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=399

2. Unpack the tar file using the tar command:

tar -zxvf onload-<version>.tgz

3. Run the onload_install command from the onload-<version>/scripts
subdirectory:

./onload-<version>/scripts/onload_install

Refer to Driver Loading - NUMA Node to ensure that drivers are affinitized to a core on the
correct NUMA node.

Netperf
Netperf is available as a package for most OS distributions.

Netperf can also be downloaded from https://github.com/HewlettPackard/netperf

• Unpack the compressed zip file using the unzip command:

unzip netperf-master.zip

• Refer to the INSTALL file within the distribution for instructions.

Following installation the netperf and netserver applications are typically located in
the /usr/local/bin subdirectory.

Sfnettest
Download the sfnettest source from https://github.com/Xilinx-CNS/cns-sfnettest.

Unpack the downloaded source if necessary, for example:

unzip cns-sfnettest-master.tgz

Run the make utility from the src subdirectory to build the sfnt-pingpong and other test
applications.

Test Setup
The following figure identifies the required physical configuration of two servers equipped with
supported network adapters connected back-to-back.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 400Send Feedback

https://github.com/HewlettPackard/netperf
https://github.com/Xilinx-CNS/cns-sfnettest
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=400

Figure 42: Test setup

System under test System under testLink
(direct attach or optical)

X26391-031422

• Two servers are equipped with supported network adapters and connected with a single cable
between the supported interfaces.

• The supported interfaces are configured with an IP address so that traffic can pass between
them. Use ping to verify connection.

• Onload, sfnettest and netperf are installed on both machines.

If required, tests can be repeated with a switch on the link to measure the additional latency
delta using a particular switch.

BIOS Settings
Make the following BIOS settings on both machines:

1. Enable Turbo Boost (sometimes called Turbo Mode).

2. Enable CStates.

3. Disable any of the following settings that are present:

• Virtualization Technology (also called VT-d/VT-x)

• IOMMU.

These are similar in their effect, and typically only one will be present.

Pre-Test Configuration
The following configuration options are applicable to RHEL7 systems.

First, set some configuration options that decrease latency for Onload acceleration technologies.
On both machines:

1. Add the following options to the kernel configuration line in /boot/grub/grub.conf:

isolcpus=<comma separated cpu list> nohz=off iommu=off intel_iommu=off
mce=ignore_ce nmi_watchdog=0

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 401Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=401

2. Stop the following services on the server:

systemctl stop cpupower
systemctl stop cpuspeed
systemctl stop cpufreqd
systemctl stop powerd
systemctl stop irqbalance
systemctl stop firewalld

3. Allocate huge pages. For example, to configure 1024 huge pages:

sysctl -w vm.nr_hugepages=1024

To make this change persistent, update /etc/sysctl.conf. For example:

echo "vm.nr_hugepages = 1024" >> /etc/sysctl.conf

For more information refer to Allocating Huge Pages.

4. Consider the selection of the NUMA node, as this affects latency on a NUMA-aware system.
Refer to Onload Deployment on NUMA Systems.

5. Disable interrupt moderation.

ethtool -C <interface> rx-usecs 0 adaptive-rx off

6. Enable PIO in the Onload environment.

EF_PIO=1

Now perform the following configuration to improve latency without Onload.

Note: These configuration changes have minimal effect on the performance of Onload.

1. Set interrupt affinity such that interrupts and the application are running on different CPU
cores but on the same processor package.

a. Use the following command to identify the interrupts used by the receive queues created
for an interface:

cat /proc/interrupts | grep <interface>

The output lists the IRQs. For example:

34: ... PCI-MSI-edge p2p1-0
35: ... PCI-MSI-edge p2p1-1
36: ... PCI-MSI-edge p2p1-2
37: ... PCI-MSI-edge p2p1-3
38: ... PCI-MSI-edge p2p1-ptp

b. Direct the listed IRQs to unused CPU cores that are on the same processor package as
the application. For example, to direct IRQs 34-38 to CPU core 2 (where cores are
numbered from 0 upwards), using bash:

for irq in {34..38}
> do
> echo 04 > /proc/irq/$irq/smp_affinity
> done

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 402Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=402

2. Set an appropriate tuned profile:

• The tuned network-latency profile produces better kernel latency results:

tuned-adm profile network-latency

• If available, the cpu-partitioning profile includes the network-latency profile, but also
makes it easy to isolate cores that can be dedicated to interrupt handling or to an
application. For example, to isolate cores 1-3:

echo "isolated_cores=1-3" \
 > /etc/tuned/cpu-partitioning-variables.conf
tuned-adm profile cpu-partitioning

3. Enable the kernel “busy poll” feature to disable interrupts and allow polling of the socket
receive queue. The following values are recommended:

sysctl net.core.busy_poll=50 && sysctl net.core.busy_read=50

Reference System Specification
The following measurements were recorded on Intel® Kaby Lake servers. The specification of the
test systems is as follows:

• DELL PowerEdge R230 servers equipped with Intel Xeon CPU E3-1240 v6 @ 3.70 GHz,
16 GB RAM.

• BIOS configured as specified in BIOS Settings.

• Solarflare X2522-25G NIC (driver and firmware – see Software Installation).

• Direct attach cable linking the NICs:

○ 10 Gb cable for measurements at 10 Gb

○ 25 Gb cable for measurements at 25 Gb

• Red Hat Enterprise Linux 7.4 (x86_64 kernel, version 3.10.0-693.5.2.el7.x86_64).

• OS configured as specified in Pre-Test Configuration

The tuned cpu-partitioning profile has been enabled, configured to isolate all cores except for
core 0, to reduce jitter and remove outliers.

• OpenOnload distribution: openonload-201811.

• sfnettest version 1.5.0.

• netperf version 2.7.1.

It is expected that similar results will be achieved on any Intel based, PCIe Gen 3 server or
compatible system.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 403Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=403

Latency Tests
This section describes various latency tests.

Most of these tests use cut through PIO (CTPIO). This is a feature introduced in the X2 series of
adapters, where packets to be sent are streamed directly over the PCIe bus to the network port,
bypassing the main adapter transmit datapath. For more information refer to CTPIO.

The tests use different CTPIO modes, depending on the link speed:

• 10 Gb tests use cut-through CTPIO. This is supported only at 10 Gb.

• 25 Gb tests use variants of store and forward CTPIO.

Note: These different CTPIO modes require changes to the command lines, noted below.

The command lines given below use the taskset command to run the tests on core 1. Change
this as necessary, to use an appropriate isolated core on your test system.

Layer 2 ef_vi Latency
ef_vi is a network layer 2 API.

ef_vi test applications can be found in:

onload-<version>/build/gnu_x86_64/tests/ef_vi

Run the eflatency UDP test application on both systems:

[sys-1]# taskset -c 1 eflatency <mode> -s <payload> pong <interface>

[sys-2]# taskset -c 1 eflatency <mode> -s <payload> ping <interface>

where:

• <mode> is -p only for 25 Gb, to force store and forward (no-poison) CTPIO

• <payload> is the payload size, in bytes

• <interface> is the interface to use.

The output gives various diagnostic information (ef_vi version, payload and frame length, number
of iterations and warmups, and mode). It also identifies mean RTT, which is halved to give the
mean ½ RTT latency.

Note: Appendix J: eflatency describes the eflatency application, command line options and provides
example command lines.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 404Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=404

TCPDirect Latency
TCPDirect is a feature available for the SFN8000, X2 series and X3 series adapters. SFN8000
and X2 series adapters must have Onload and TCPDirect activation keys installed.

TCPDirect test applications can be found in:

onload-<version>/build/gnu_x86_64/tests/zf_apps/static

Run the zfudppingpong application on both systems:

[sys-1]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zfudppingpong -s <payload> pong <sys-1_ip>:20000 <sys-2_ip>:20000

[sys-2]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zfudppingpong -s <payload> ping <sys-2_ip>:20000 <sys-1_ip>:20000

or run the zftcppingpong application on both systems:

[sys-1]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zftcppingpong -s <payload> pong <sys-1_ip>:20000

[sys-2]# ZF_ATTR="interface=<interface>;ctpio_mode=<mode>" taskset -c 1 \
 zftcppingpong -s <payload> ping <sys-1_ip>:20000

where:

• <interface> is the interface to use

• <mode> is the CTPIO mode to use, which is ct for 10 Gb, or sf for 25 Gb

• <payload> is the payload size, in bytes

• <sys-1_ip> is the IP address of sys-1

• <sys-2_ip> is the IP address of sys-2.

The output identifies mean RTT, which is halved to give the mean ½ RTT latency.

Onload Latency with netperf
You can measure Onload latency with standard tools. This test identifies how to use netperf.

Run the netserver application on system-1:

[sys-1]# pkill -f netserver
[sys-1]# onload --profile=<profile> taskset -c 1 netserver

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 405Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=405

and the netperf application on system-2:

[sys-2]# onload --profile=<profile> taskset -c 1 \
 netperf -t <test> -H <sys-1_ip> -l 10 -- -r <payload>

where:

• <profile> is latency-best for 10 Gb (which uses cut-through CTPIO), or latency for
25 Gb (which uses store and forward (no-poison) CTPIO)

• <test> is UDP_RR or TCP_RR, as appropriate

• <payload> is the payload size, in bytes

• <sys-1_ip> is the IP address of sys-1.

The output identifies the transaction rate per second, from which:

mean ½ RTT = (1 / transaction rate) / 2

Onload Latency with sfnt-pingpong
You can also measure Onload latency with the sfnt-pingpong application.

Note: The latencies measured with sfnt-pingpong are almost identical to the latencies measured with
netperf in Onload Latency with netperf.

Run the sfnt-pingpong application on both systems:

[sys-1]# onload --profile=<profile> taskset -c 1 sfnt-pingpong

[sys-2]# onload --profile=<profile> taskset -c 1 sfnt-pingpong \
 --affinity "1;1" <protocol> <sys-1_ip>

where:

• <profile> is latency-best for 10 Gb (which uses cut-through CTPIO), or latency for
25 Gb (which uses store and forward (no-poison) CTPIO)

• <protocol> is udp or tcp, as appropriate

• <sys-1_ip> is the IP address of sys-1.

The output identifies mean, minimum, median and maximum (nanosecond) ½ RTT latency for
increasing packet sizes, including the 99% percentile and standard deviation for these results.

Latency without CTPIO
The previous tests all use CTPIO. This test shows the result of disabling CTPIO, using UDP traffic
with TCPDirect.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 406Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=406

TCPDirect test applications can be found in:

onload-<version>/build/gnu_x86_64/tests/zf_apps/static

Run the zfudppingpong application on both systems:

[sys-1]# ZF_ATTR="interface=<interface>;ctpio=0" taskset -c 1 \
 zfudppingpong -s <payload> pong <sys-1_ip>:20000 <sys-2_ip>:20000

[sys-2]# ZF_ATTR="interface=<interface>;ctpio=0" taskset -c 1 \
 zfudppingpong -s <payload> ping <sys-2_ip>:20000 <sys-1_ip>:20000

where:

• <interface> is the interface to use

• <payload> is the payload size, in bytes

• <sys-1_ip> is the IP address of sys-1

• <sys-2_ip> is the IP address of sys-2.

The output identifies mean RTT, which is halved to give the mean ½ RTT latency.

Note: This can be compared with the result of the UDP test in TCPDirect Latency, which is identical except
that CTPIO is enabled.

Kernel Latency
The benchmark performance tests can be run without Onload using the regular kernel network
drivers. To do this remove the onload --profile=… part from the command line.

Run the sfnt-pingpong application on both systems:

[sys-1]# taskset -c 1 sfnt-pingpong

[sys-2]# taskset -c 1 sfnt-pingpong --affinity "1;1" \
 <connect> <protocol> <sys-1_ip>

where:

• <connect> is --connect only for UDP, to use connect()

• <protocol> is udp or tcp, as appropriate

• <sys-1_ip> is the IP address of sys-1.

The output identifies mean, minimum, median and maximum (nanosecond) ½ RTT latency for
increasing packet sizes, including the 99% percentile and standard deviation for these results.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 407Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=407

Latency Test Results
The table below shows the results of running the tests described in Latency Tests. The times
given are ½ RTT latency for a 32 byte message

Table 64: ½ RTT Latency for a 32 Byte Message

Acceleration Protocol 25 Gb 10 Gb Notes Description
ef_vi UDP 750 ns 819 ns eflatency Layer 2 ef_vi

Latency

TCPDirect UDP 783 ns 864 ns zfudppingpong TCPDirect Latency

968 ns 1022 ns No CTPIO Latency without
CTPIO

TCP 795 ns 870 ns zftcppingpong TCPDirect Latency

Onload UDP 1034 ns 1107 ns netperf Onload Latency
with netperf

1022 ns 1095 ns sfnt-pingpong Onload Latency
with sfnt-
pingpong

TCP 1032 ns 1119 ns netperf Onload Latency
with netperf

1025 ns 1110 ns sfnt-pingpong Onload Latency
with sfnt-
pingpong

Kernel UDP 2658 ns 2750 ns sfnt-pingpong Kernel Latency

TCP 3124 ns 3257 ns sfnt-pingpong Kernel Latency

These tests have also been repeated with different payloads, to generate the graphs in Latency
against Payload.

Latency against Payload
Latency for UDP Payloads at 25 Gb
The following figure identifies latency for different UDP payloads, both without Onload, and with
different Onload technologies.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 408Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=408

Figure 43: Latency for different UDP payloads at 25 Gb

The following figure shows a detail of the preceding figure, for smaller payloads with different
Onload technologies.

Figure 44: Detail of latency for different UDP payloads at 25 Gb

Latency for TCP Payloads at 25 Gb
The following figure shows the latency for different TCP payloads, both without Onload, and
with different Onload technologies.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 409Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=409

Figure 45: Latency for different TCP payloads at 25 Gb

The following figure shows a detail of the preceding figure, for smaller payloads with different
Onload technologies.

Figure 46: Detail of latency for different TCP payloads at 25 Gb

Latency for UDP Payloads at 10 Gb
The following figure shows the latency for different UDP payloads, both without Onload, and
with different Onload technologies.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 410Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=410

Figure 47: Latency for different UDP payloads at 10 Gb

The following figure shows a detail of the preceding figure, for smaller payloads with different
Onload technologies.

Figure 48: Detail of latency for different UDP payloads at 10 Gb

Latency for TCP Payloads at 10 Gb
The following figure shows the latency for different TCP payloads, both without Onload, and
with different Onload technologies.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 411Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=411

Figure 49: Latency for different TCP payloads at 10 Gb

The following figure shows a detail of the preceding figure, for smaller payloads with different
Onload technologies.

Figure 50: Detail of latency for different TCP payloads at 10 Gb

Notes on Latency and Payload Graphs
Note the following about the preceding latency and payload graphs:

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 412Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=412

• Latency is ordered as follows, starting with the lowest latency:

1. ef_vi using CTPIO

2. TCPDirect using cut-through CTPIO

Note: Cut-through CTPIO is supported only for 10 Gb.

3. TCPDirect using store and forward CTPIO

4. TCPDirect without CTPIO

5. Onload with the latency-best profile (which uses cut-through CTPIO)

Note: Cut-through CTPIO is supported only for 10 Gb.

6. Onload with the latency profile (which uses store and forward CTPIO, without poisoning).

7. Kernel.

• The relative latency of CTPIO variants differs by payload:

○ for very small payloads, store and forward CTPIO has similar latency to cut-through CTPIO

Note: Cut-through CTPIO is supported only for 10 Gb.

○ for intermediate payloads, the latency of store and forward CTPIO gradually increases
relative to cut-through CTPIO, tending towards the latency for no CTPIO

○ for large payloads, store and forward CTPIO has similar latency to no CTPIO.

• The step in the graphs for a payload of 200+ bytes occurs when the packet size reaches the
PIO threshold of 256 bytes.

Further Information
For installation of Solarflare adapters and performance tuning of the network driver when not
using Onload refer to the Solarflare Server Adapter User Guide (SF-103837-CD).

Questions regarding Solarflare products, Onload and this User Guide can be emailed to support-
nic@amd.com.

Appendix L: X2 Low Latency Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 413Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
mailto:support-nic@amd.com?subject=Onload%20User%20Guide
mailto:support-nic@amd.com?subject=Onload%20User%20Guide
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=413

Appendix M

X2 Throughput Quickstart
This chapter demonstrates how to achieve efficient packet handling and throughput on a system
fitted with an X2 series network adapter and using the OpenOnload kernel-bypass network
acceleration middleware. These techniques also apply to other supported network adapters that
use the sfc network driver, such as 8000 series adapters.

The procedure will focus on the performance of the network adapter for TCP applications
running on Linux, using the industry-standard Netperf network benchmark application, and also
the Nginx web server.

Note: Please read the supplied ONLOAD_LICENSE file regarding the disclosure of performance test results.

Software Installation
Before running these benchmark tests ensure that correct driver and firmware versions are
installed. For example, for the reference system described later in this chapter:

[root@server-N]# ethtool -i <interface>
driver: sfc
version: 4.15.0.1012
firmware-version: 7.5.0.1002 rx1 tx1

Onload
Before Onload network and kernel drivers can be built and installed the system must support a
build environment capable of compiling kernel modules. Refer to Appendix C: Build
Dependencies for more details.

1. Download the onload-<version>.tgz file from the NIC Software and Drivers web page.

2. Unpack the tar file using the tar command:

tar -zxvf onload-<version>.tgz

3. Run the onload_install command from the onload-<version>/scripts
subdirectory:

./onload-<version>/scripts/onload_install

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 414Send Feedback

https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=414

Refer to Driver Loading - NUMA Node to ensure that drivers are affinitized to a core on the
correct NUMA node.

Netperf
Netperf is available as a package for most OS distributions.

Netperf can also be downloaded from https://github.com/HewlettPackard/netperf:

• Unpack the compressed zip file using the unzip command:

unzip netperf-master.zip

• Refer to the INSTALL file within the distribution for instructions.

Following installation the netperf and netserver applications are typically located in
the /usr/local/bin subdirectory.

Wrk
Wrk is available as a package for most OS distributions.

Wrk can also be downloaded from https://github.com/wg/wrk.git:

• Refer to the download website for instructions.

Following installation the wrk application is typically located in the /usr/local/bin
subdirectory.

Nginx
Nginx is available as a package for most OS distributions.

Nginx can also be downloaded from https://nginx.org (free version without support) or from
https://nginx.com (paid version with support):

• Refer to the download website for instructions.

Following installation the nginx application is typically located in the /usr/sbin subdirectory.

Test Setup
The following figure identifies the required physical configuration of two servers equipped with
supported network adapters connected back-to-back.

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 415Send Feedback

https://github.com/HewlettPackard/netperf
https://github.com/wg/wrk
https://nginx.org
https://nginx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=415

Figure 51: Test setup

System under test System under testLink
(direct attach or optical)

X26391-031422

• Two servers are equipped with supported network adapters and connected with a single cable
between the supported interfaces.

• The supported interfaces are configured with an IP address so that traffic can pass between
them. Use ping to verify connection.

• Onload and netperf are installed on both machines.

• Wrk is installed on one machine, and nginx on the other.

If required, tests can be repeated with a switch on the link to measure the additional latency
delta using a particular switch.

Reference System Specification
The following measurements were recorded on Intel® Kaby Lake servers. The specification of the
test systems is as follows:

• DELL PowerEdge R230 servers equipped with Intel Xeon CPU E3-1240 v6 @ 3.70 GHz,
16 GB RAM.

• BIOS configured as specified in BIOS Settings.

• Solarflare X2522-25G NIC (driver and firmware – see Software Installation).

• 25 Gb direct attach cable linking the NICs.

• Red Hat Enterprise Linux 7.4 (x86_64 kernel, version 3.10.0-693.5.2.el7.x86_64).

• OS configured as specified in Pre-Test Configuration

The tuned cpu-partitioning profile has been enabled, configured to isolate all cores except for
core 0, to reduce jitter and remove outliers.

• OpenOnload distribution: openonload-201811.

• netperf version 2.7.1.

• wrk version 4.1.0.

• nginx version 1.15.0.

It is expected that similar results will be achieved on any Intel based, PCIe Gen 3 server or
compatible system.

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 416Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=416

Throughput
Pre-test Configuration
The EF_POLL_USEC environment variable is set to 100000.

Throughput with Onload
The benchmark performance tests can be run with Onload using the Onload kernel bypass. To do
this add onload to the start of each command line.

TCP Throughput with Netperf

Run the net-server application on system-1:

[system-1]# pkill -f netserver
[system-1]# onload taskset -c 1 netserver

Run the netperf application on system-2:

[system-2]# onload taskset -c 1 \
 netperf -t TCP_RR -H <system1-ip> -l 10 -- -r 32
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
16384 87380 32 32 10.00 481130.34

This transaction rate is over 3 times the rate achieved without Onload (see Throughput without
Onload below).

Throughput without Onload
The benchmark performance tests can be run without Onload using the regular kernel network
drivers. To do this remove the onload part from the command line.

TCP Throughput with Netperf

Run the net-server application on system-1:

[system-1]# pkill -f netserver
[system-1]# taskset -c 1 netserver

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 417Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=417

Run the netperf application on system-2:

[system-2]# taskset -c 1 \
 netperf -t TCP_RR -H <system1-ip> -l 10 -- -r 32
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
16384 87380 32 32 10.00 135806.82

Observe the reduced transaction rate compared to that achieved with Onload (see Throughput
with Onload above).

HTTP connections
Pre-test Configuration
The nginx application is installed on system-2 and is configured as follows.

The /etc/nginx/nginx.conf file is shown below. Changes from the distributed file are
highlighted :

user nginx;
worker_processes 3;
worker_cpu_affinity auto 1110;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
events {
 worker_connections 1024;
}
http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 log_format main '$remote_addr - $remote_user [$time_local]
"$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 access_log off;
 sendfile off;
 keepalive_timeout 300s;
 keepalive_requests 1000000;
 open_file_cache max=1000 inactive=20s;
 open_file_cache_valid 30s;
 open_file_cache_errors off;
 include /etc/nginx/conf.d/*.conf;
}

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 418Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=418

The /etc/nginx/conf.d directory contains only the default.conf file, shown below.
Changes from the distributed file are highlighted:

server {
 listen nn.nn.nn.nn:80 reuseport;
 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }
}

where nn.nn.nn.nn is the IP address of the system-2 adapter port that will receive the
HTTP requests.

A zero-byte file is created in the root of the nginx server:

touch /usr/share/nginx/html/0kb.bin

Connections with Onload
The benchmark performance tests can be run with Onload using the Onload kernel bypass. To do
this add onload to the start of each command line.

HTTP Connections with nginx

Run the nginx application on system-2, increasing the number of file descriptors available, and
accelerating it using the nginx_reverse_proxy Onload profile:

[system-2]# ulimit -n 1000000 && onload --profile=nginx_reverse_proxy nginx

Run multiple instances of the wrk application on system-1, so there is the capacity to generate
more connection requests than can be handled. A zero-byte file is requested, and the
“Connection: close” header is passed to close the connection immediately:

[system-1]# for i in {1..3}; do taskset -c $i wrk -t 1 -c 50 -d 10s
-H 'Connection: close' http://system-2/0kb.bin & done

Each instance outputs its own results. Aggregating the results gives the following totals:

Requests/sec: 111061.19
Transfer/sec: 25.81MB

The server handles 111061 connections per second (Requests/sec). This is over 3 times the rate
achieved without Onload (see Connections without Onload below).

Note the following:

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 419Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=419

• the total throughput is much less than line rate, so any limit on capacity is in nginx rather than
in the network.

• some instances have connect or timeout errors, or have reduced throughput, indicating that
there are enough instances to reach full nginx capacity:

Socket errors: connect 0, read 0, write 0, timeout 38

Connections without Onload
The benchmark performance tests can be run without Onload using the regular kernel network
drivers. To do this remove the onload part from the command line.

HTTP Connections with nginx

Run the nginx application on system-2, increasing the number of file descriptors available:

[system-2]# ulimit -n 1000000 && nginx

Run multiple instances of the wrk application on system-1, so there is the capacity to generate
more connection requests than can be handled. A zero-byte file is requested, and the
“Connection: close” header is passed to close the connection immediately:

[system-1]# for i in {1..3}; do taskset -c $i wrk -t 1 -c 50 -d 10s
-H 'Connection: close' http://system-2/0kb.bin & done

Each instance outputs its own results. Aggregating the results gives the following totals:

Requests/sec: 34431.98
Transfer/sec: 8.02MB

The server handles only 34431 connections per second (Requests/sec). This rate is greatly
reduced compared to that achieved with Onload (see Connections with Onload above).

Further Information
For installation of Solarflare adapters and performance tuning of the network driver when not
using Onload refer to the Solarflare Server Adapter User Guide (SF-103837-CD).

Questions regarding Solarflare products, Onload and this user guide can be emailed to support-
nic@amd.com.

Appendix M: X2 Throughput Quickstart

UG1586 (v1.2) July 31, 2023
Onload User Guide 420Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
mailto:support-nic@amd.com?subject=Onload%20User%20Guide
mailto:support-nic@amd.com?subject=Onload%20User%20Guide
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=420

Appendix N

Additional Resources and Legal
Notices

Finding Additional Documentation
Documentation Portal

The AMD Adaptive Computing Documentation Portal is an online tool that provides robust
search and navigation for documentation using your web browser. To access the Documentation
Portal, go to https://docs.xilinx.com.

Documentation Navigator

Documentation Navigator (DocNav) is an installed tool that provides access to AMD Adaptive
Computing documents, videos, and support resources, which you can filter and search to find
information. To open DocNav:

• From the AMD Vivado™ IDE, select Help → Documentation and Tutorials.

• On Windows, click the Start button and select Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Note: For more information on DocNav, refer to the Documentation Navigator User Guide (UG968).

Design Hubs

AMD Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• Go to the Design Hubs webpage.

Appendix N: Additional Resources and Legal Notices

UG1586 (v1.2) July 31, 2023
Onload User Guide 421Send Feedback

https://docs.xilinx.com
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=1.4%20English&url=Xilinx-Documentation-Navigator-User-Guide
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=421

Support Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Support.

References

XtremeScale Documents

1. Solarflare Server Adapter User Guide (SF-103837-CD)

Alveo Documents

1. Alveo X3522 Data Sheet (DS1002)

2. Alveo X3522 Installation Guide (UG1522)

3. Alveo X3522 User Guide (UG1523)

Onload Documents

1. TCPDirect User Guide (SF-116303-CD)

2. ef_vi User Guide (SF-114063-CD)

3. Alveo X3 ef_vi Conversion Guide (XN-201257-CD)

Precision Time Protocol Documents

1. Enhanced PTP User Guide (UG1602)

Additional AMD Resources

1. AMD licensing website: https://www.xilinx.com/getproduct

2. AMD Community Forums: https://forums.xilinx.com

3. Xilinx Third-Party End User License Agreement

4. End-User License Agreement

Revision History
The following table shows the revision history for this document.

Appendix N: Additional Resources and Legal Notices

UG1586 (v1.2) July 31, 2023
Onload User Guide 422Send Feedback

https://www.xilinx.com/support
https://docs.xilinx.com/access/sources/ud/document?url=SF-103837-CD-28_Solarflare_Server_Adapter_User_Guide&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?url=ds1002-x3522&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?url=ug1522-x3522-installation&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?url=ug1523-x3522-user&ft:locale=en-US
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/support/download/nic-software-and-drivers.html#onload
https://www.xilinx.com/support/download/nic-software-and-drivers.html
https://docs.xilinx.com/access/sources/dita/map?url=ug1602-ptp-user&ft:locale=en-US
https://www.xilinx.com/getproduct
https://forums.xilinx.com
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/ug763_tplg.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/end-user-license-agreement.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=422

Section Revision Summary
07/31/2023 Version 1.2

New Features in OpenOnload-8.1.0 Added.

New Features in OpenOnload-8.0.2 Added.

New Features in OpenOnload-8.0.1 Added.

Supported Operating Systems Updated for Onload 8.1.0.

Features Added features that are new in Onload 8.1.0.

Environment Variables Added change to EF_CHALLENGE_ACK_LIMIT.

Module Options Inserted line breaks in examples.

Adapter Net Drivers Added releases after Onload 8.0.0.34.

EF_CHALLENGE_ACK_LIMIT Increased default and maximum values.

EF_TCP_RCVBUF Added minimum and maximum values.

EF_TCP_RCVBUF_ESTABLISHED_DEFAULT Added minimum and maximum values.

EF_TCP_SNDBUF Added minimum and maximum values.

EF_TCP_SNDBUF_ESTABLISHED_DEFAULT Added minimum and maximum values.

EF_UDP_RCVBUF Added minimum and maximum values.

EF_UDP_SNDBUF Added minimum and maximum values.

04/07/2023 Version 1.1

Chapter 1: What’s New Updated download locations in first note.

Onload and Network Adapter Drivers Retitled and rearranged. Updated to emphasize that X3
drivers must be built and installed before Onload.

Table 30: Number of PIO Buffers Available Updated PIO buffer sizes.

10/18/2022 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions, and typographical errors. The information contained herein is
subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities
that cannot be completely prevented or mitigated. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes. THIS INFORMATION IS PROVIDED "AS
IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

Appendix N: Additional Resources and Legal Notices

UG1586 (v1.2) July 31, 2023
Onload User Guide 423Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=423

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2022-2023 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, Alveo,
Vivado, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCI, PCIe, and
PCI Express are trademarks of PCI-SIG and used under license. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective
companies.

Appendix N: Additional Resources and Legal Notices

UG1586 (v1.2) July 31, 2023
Onload User Guide 424Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1586&Title=Onload%20User%20Guide&releaseVersion=1.2&docPage=424

	Onload
	Table of Contents
	Ch. 1: What’s New
	New Features in OpenOnload-8.1.0
	Linux Distribution Support
	Drivers for X3522
	Controlling Access to RX Queues on X3522
	Hardware Filter IDs on X3522
	IPv6 on X3522
	Transmit Path Warming on X3522
	Deprecation of RHEL 7

	New Features in OpenOnload-8.0.2
	Library Versioning and Backward Compatibility
	Checksum Validation and Non-TCP/UDP with ef_vi on X3522

	New Features in OpenOnload-8.0.1
	New Features in OpenOnload-8.0.0
	Linux Distribution Support
	Packaging, Source and Licensing Changes
	Use with X3-series Adapters
	Installing for X3-series Adapters

	Python 3 Required
	Deprecation

	New Features in OpenOnload-7.1.3
	Linux Distribution Support
	Deprecation

	New Features in OpenOnload-7.1.2
	Linux Distribution Support
	XDP/eBPF Filtering
	New ef_vi Event EF_EVENT_TYPE_RESET
	Deprecation

	New Features in OpenOnload-7.1.1
	setuid/setgid
	EF_TCP_COMBINE_SENDS_MODE
	Linux Distribution Support

	New Features in OpenOnload-7.1.0
	Feature Activation
	TCPDirect
	System-level Interface Denylisting
	Onload Remote Monitor Enhancement
	eBPF/XDP
	Modified Configuration Options
	Linux Distribution Support
	Deprecation

	New Features in OpenOnload-7.0.0
	RHEL 8.x Dependencies
	Activation Files and Build Profiles
	eXpress Data Path (XDP)
	Equal Cost Multipath Routing
	IPv6 Acceleration
	Extensions API Timestamps
	IPVLAN

	Change History

	Ch. 2: X3 Low Latency Quickstart
	Software Installation
	Onload
	TCPDirect
	Netperf
	Sfnettest

	Test Setup
	BIOS Settings
	Pre-Test Configuration

	Reference System Specification
	Latency Tests
	Layer 2 ef_vi Latency
	TCPDirect Latency
	Onload Latency with netperf
	Onload Latency with sfnt-pingpong

	Latency Test Results
	Latency against Payload
	Latency for UDP Payloads at 10 Gb
	Latency for TCP Payloads at 10 Gb

	Further Information

	Ch. 3: Overview
	Contrasting with Conventional Networking
	How Onload Increases Performance
	Further Information

	Ch. 4: Installation
	Onload Distributions
	Cloud Build Profile
	Onload LICENSE Files
	Kubernetes Onload

	Hardware and Software Supported Platforms
	Supported Network Adapters
	Supported Processors
	Supported Operating Systems

	Onload and Network Adapter Drivers
	X3 Series Drivers
	XtremeScale Drivers
	Identifying and Removing Previously Installed Drivers

	Removing an Existing Installation
	Removing RPMs

	Pre-install Notes
	Building and Installing from a Tarball
	Download and Untar Onload
	Build and Install Onload
	Cloud Build Profile
	Load the Onload Drivers
	Confirm Onload Installation
	Building a Source RPM from a Tarball

	Building and Installing from a DKMS Package
	Install on RHEL
	Install on Ubuntu

	Building and Installing from a Source RPM
	Build the RPMs
	Install the Built RPMs
	Load the Onload Drivers

	Building and Installing from a Source DEB
	Onload Kernel Modules
	Configuring the Network Interfaces
	Installing Netperf and sfnettest
	Running Onload
	Testing the Onload Installation
	Applying an Onload Patch
	Patching a Tarball Installation
	Patching a Source RPM Installation

	Kernel and OS Upgrades

	Ch. 5: Tuning Onload
	System Tuning
	Sysjitter
	Timer (TSC) Stability
	CPU Power Saving Mode

	Spinning, Polling and Interrupts
	Spinning (busy-wait)
	Enabling Spinning
	When to Use Spinning
	Polling vs. Interrupts

	Onload Deployment on NUMA Systems
	Useful Commands
	Driver Loading - NUMA Node
	Memory Policy
	Application Processing
	Workqueues
	Interrupts
	Verification

	Interrupt Handling for the sfc Driver
	Default Behavior
	Affinitizing RSS Channels to CPUs
	Restrict RSS to Local NUMA Node
	Restrict RSS Receive Queues
	Interrupt Handling - Using Onload

	Performance Jitter
	Using Onload Tuning Profiles
	Benchmark Testing
	Application-Specific Tuning
	Monitoring Using onload_stackdump

	Worked Examples
	Reducing Jitter from Page Faults
	Processing at User-Level
	As Few Interrupts as Possible
	Eliminating Drops
	Minimizing Lock Contention
	Stack Contention - Deferred Work

	Ch. 6: Onload Functionality
	Onload Transparency
	Onload Stacks
	Virtual Network Interface (VNIC)
	Functional Overview
	Onload with Mixed Network Adapters
	Maximum Number of Network Interfaces
	Allowlist and Denylist for Interfaces
	Onload Accelerated Process IDs
	File Descriptors, Stacks, and Sockets
	System Calls Intercepted by Onload
	Linux Sysctls
	tcp_slow_start_after_idle
	tcp_congestion_control
	tcp_adv_win_scale
	tcp_rmem
	tcp_wmem
	tcp_dsack
	tcp_fack
	tcp_sack
	tcp_max_syn_backlog
	tcp_synack_retries

	Namespaces
	User-space Control Plane Server
	Onload Options for the Control Plane Server
	Parameters for onload_cp_server

	Changing Onload Control Plane Table Sizes
	Changing Table Sizes for Onload-201710 and Later
	Changing Table Sizes before Onload-201710

	SO_BINDTODEVICE
	Multiplexed I/O
	Poll, ppoll
	Select, pselect
	Epoll

	Wire Order Delivery
	Example API for Wire Order Delivery

	Stack Sharing
	Application Clustering
	eXpress Data Path (XDP)
	OS Requirements
	Advantages of XDP
	Including eBPF with Onload
	Onload Tools
	eBPF Return Codes
	Programmatic Access
	BPF Statistics

	Zero-Copy API
	Debug and Logging

	Ch. 7: Timestamps
	Introduction
	Software Timestamps
	TCP Streams
	Interrupt Driven Applications
	Spinning Applications
	Software Timestamp Values
	Software Timestamp Formats

	Hardware Timestamps
	Requirements
	Hardware Timestamp Format
	Received Packets
	Transmitted Packets
	Zeroed Timestamps
	Synchronizing Time

	Example Timestamping Applications
	Building the Examples
	Running the Examples
	Setting the Adapter Clock Time
	Order of Timestamps in the Example Applications
	rx_timestamping Example
	tx_timestamping Example
	Example UDP Commands
	Zeroed Timestamps

	Ch. 8: Onload and TCP
	TCP Operation
	TCP Handshake, SYN and SYNACK
	TCP SYN Cookies
	TCP Socket Options
	TCP Level Options
	TCP File Descriptor Control
	TCP Congestion Control
	Small Receive Window Size

	TCP SACK
	TCP QUICKACK
	TCP Delayed ACK
	TCP Dynamic ACK
	Limit Duplicate ACK Rate
	Limit Challenge ACK Rate
	TCP Loopback Acceleration
	TCP Striping
	TCP Connection Reset on RTO
	ONLOAD_MSG_WARM
	Listen/Accept Sockets
	Socket Caching
	TCP Passive Socket Caching
	TCP Active Socket Caching
	Caching for Web Proxies
	Caching Stackdump
	Caching Requirements

	Shared Local Ports
	Scalable Filters
	Scalable Filter Restrictions
	Configuring Scalable Filters
	Partitioning the NIC
	Scalable Filters and Bonding

	Transparent Reverse Proxy Modes
	Restrictions
	Example Configuration Settings

	Transparent Reverse Proxy on Multiple CPUs
	Performance in Lossy Network Environments
	Tail-drop Probe
	Early Retransmit (RFC 5827) Algorithm
	SACK Improvements

	Initial Sequence Number Caching
	Urgent Data Processing
	TIMEWAIT Assassination

	Ch. 9: Onload and UDP
	UDP Operation
	Socket Options
	Source Specific Socket Options
	Onload Sockets vs. Kernel Sockets
	Send and Receive Paths for UDP Sockets
	Fragmented UDP
	User Level recvmmsg for UDP
	User-Level sendmmsg for UDP
	UDP sendfile
	Multicast Replication
	Multicast Operation and Stack Sharing
	Multicast Transmit Using Different Onload Stacks
	Multicast Transmit Sharing an Onload Stack
	Multicast Receive to Onload or Kernel Stack
	Multicast Receive and Multiple Sockets

	Multicast Loopback
	Hardware Multicast Loopback
	IP_MULTICAST_ALL

	Ch. 10: Packet Buffers
	Network Adapter Buffer Table Mode
	Large Buffer Table Support

	Huge Pages
	Allocating Huge Pages

	How Onload Uses Packet Buffers
	Identifying Packet Buffer Requirements
	Running Out of Packet Buffers
	Controlling Onload Packet Buffer Use

	Physical Addressing Mode
	Programmed I/O
	CTPIO
	Capabilities
	Requirements for CTPIO
	CTPIO Modes
	CTPIO Frame Length
	Cost of CTPIO
	Using CTPIO with Onload
	Using CTPIO with TCPDirect
	Using CTPIO with ef_vi
	Latency Tests
	CTPIO Timestamps
	CTPIO Statistics

	Ch. 11: Interfaces
	Bonding, Link Aggregation and Failover
	Polling the Bonding Configuration

	Teaming
	VLANS
	MACVLAN
	IPVLAN
	Accelerated pipe()

	Ch. 12: Onload and Virtualization
	Overview
	Onload and Linux KVM
	Onload and NIC Partitioning
	Onload in a Docker Container
	Pre-Installation
	Installation
	MACVLAN Support

	Create Onload Docker Image
	Migration
	Onload Docker Images
	Copying Files Between Host and Container

	Ch. 13: Limitations
	Introduction
	Resources
	Devices

	Changes to Behavior
	Multithreaded Applications Termination
	Thread Cancellation
	Packet Capture
	Firewalls
	Socket Visibility to System Tools
	Signals
	Onload and IP_MULTICAST_TTL
	Source/Policy Based Routing
	Routing Table Metrics
	Multipath Routes
	Reverse Path Filtering
	SO_REUSEPORT
	Thread Safe
	Control of Duplicated Sockets
	UDP Sockets shutdown()
	SOF_TIMESTAMPING_OPT_ID

	Limits to Acceleration
	IP Fragmentation
	Broadcast Traffic
	IPv6 Traffic
	IPv6 Kernel Support
	Raw Sockets
	Socketpair and UNIX Domain Sockets
	UDP sendfile()
	Statically Linked Applications
	Local Port Address
	Bonding, Link Aggregation
	VLANs
	Ethernet Bridge Configuration
	TCP RTO During Overload Conditions
	Packet Loss on the Transmission Path
	TCP Packets with Unsupported Routing
	Application Clustering
	Duplicate IP or MAC Addresses

	Known Issues with Epoll
	Nested Epoll Sets
	Timing Issues and Spinning

	Configuration Issues
	Mixed Adapters Sharing a Broadcast Domain
	IGMP Operation and Multicast Process Priority
	Dynamic Loading
	Huge Pages with IPC Namespace
	Huge Pages with Shared Stacks
	Huge Page Size
	Huge Pages and shmmni
	Use of vfork() in Java 7 Applications
	PIO Not Supported in KVM/ESXi
	IP_MTU_DISCOVER Socket Option

	Ch. 14: Onload Change History
	Mapping Onload Versions
	Features
	Environment Variables
	Module Options
	Adapter Net Drivers

	Appx. A: Parameter Reference
	Parameter List
	EF_ACCEPTQ_MIN_BACKLOG
	EF_ACCEPT_INHERIT_NONBLOCK
	EF_AF_XDP_ZEROCOPY
	EF_AUTO_FLOWLABELS
	EF_BINDTODEVICE_HANDOVER
	EF_BURST_CONTROL_LIMIT
	EF_BUZZ_USEC
	EF_CHALLENGE_ACK_LIMIT
	EF_CLUSTER_HOT_RESTART
	EF_CLUSTER_IGNORE
	EF_CLUSTER_NAME
	EF_CLUSTER_RESTART
	EF_CLUSTER_SIZE
	EF_COMPOUND_PAGES_MODE
	EF_CONG_AVOID_SCALE_BACK
	EF_CTPIO
	EF_CTPIO_CT_THRESH
	EF_CTPIO_MAX_FRAME_LEN
	EF_CTPIO_MODE
	EF_CTPIO_SWITCH_BYPASS
	EF_DEFER_ARP_MAX
	EF_DEFER_ARP_TIMEOUT
	EF_DEFER_WORK_LIMIT
	EF_DELACK_THRESH
	EF_DONT_ACCELERATE
	EF_DYNAMIC_ACK_THRESH
	EF_ENDPOINT_PACKET_RESERVE
	EF_EPOLL_CTL_FAST
	EF_EPOLL_CTL_HANDOFF
	EF_EPOLL_MT_SAFE
	EF_EPOLL_SPIN
	EF_EVS_PER_POLL
	EF_FDS_MT_SAFE
	EF_FDTABLE_SIZE
	EF_FDTABLE_STRICT
	EF_FORCE_SEND_MULTICAST
	EF_FORCE_TCP_NODELAY
	EF_FORK_NETIF
	EF_FREE_PACKETS_LOW_WATERMARK
	EF_HELPER_PRIME_USEC
	EF_HELPER_USEC
	EF_HIGH_THROUGHPUT_MODE
	EF_ICMP_PKTS
	EF_INTERFACE_BLACKLIST
	EF_INTERFACE_WHITELIST
	EF_INT_DRIVEN
	EF_INT_REPRIME
	EF_INVALID_ACK_RATELIMIT
	EF_IRQ_CHANNEL
	EF_IRQ_CORE
	EF_KEEPALIVE_INTVL
	EF_KEEPALIVE_PROBES
	EF_KEEPALIVE_TIME
	EF_KERNEL_PACKETS_BATCH_SIZE
	EF_KERNEL_PACKETS_TIMER_USEC
	EF_LOAD_ENV
	EF_LOG
	EF_LOG_FILE
	EF_LOG_TIMESTAMPS
	EF_LOG_VIA_IOCTL
	EF_MAX_ENDPOINTS
	EF_MAX_PACKETS
	EF_MAX_RX_PACKETS
	EF_MAX_TX_PACKETS
	EF_MCAST_JOIN_BINDTODEVICE
	EF_MCAST_JOIN_HANDOVER
	EF_MCAST_RECV
	EF_MCAST_RECV_HW_LOOP
	EF_MCAST_SEND
	EF_MIN_FREE_PACKETS
	EF_MULTICAST_LOOP_OFF
	EF_NAME
	EF_NETIF_DTOR
	EF_NONAGLE_INFLIGHT_MAX
	EF_NO_FAIL
	EF_ONLOAD_FD_BASE
	EF_PACKET_BUFFER_MODE
	EF_PERIODIC_TIMER_CPU
	EF_PER_SOCKET_CACHE_MAX
	EF_PIO
	EF_PIO_THRESHOLD
	EF_PIPE
	EF_PIPE_RECV_SPIN
	EF_PIPE_SEND_SPIN
	EF_PIPE_SIZE
	EF_PKT_WAIT_SPIN
	EF_POLL_FAST
	EF_POLL_FAST_USEC
	EF_POLL_IN_KERNEL
	EF_POLL_NONBLOCK_FAST_USEC
	EF_POLL_ON_DEMAND
	EF_POLL_SPIN
	EF_POLL_USEC
	EF_PREALLOC_PACKETS
	EF_PREFAULT_PACKETS
	EF_PROBE
	EF_RETRANSMIT_THRESHOLD
	EF_RETRANSMIT_THRESHOLD_ORPHAN
	EF_RETRANSMIT_THRESHOLD_SYN
	EF_RETRANSMIT_THRESHOLD_SYNACK
	EF_RFC_RTO_INITIAL
	EF_RFC_RTO_MAX
	EF_RFC_RTO_MIN
	EF_RXQ_LIMIT
	EF_RXQ_MIN
	EF_RXQ_SIZE
	EF_RX_TIMESTAMPING
	EF_RX_TIMESTAMPING_ORDERING
	EF_SA_ONSTACK_INTERCEPT
	EF_SCALABLE_ACTIVE_WILDS_NEED_FILTER
	EF_SCALABLE_FILTERS
	EF_SCALABLE_FILTERS_ENABLE
	EF_SCALABLE_FILTERS_IFINDEX_ACTIVE
	EF_SCALABLE_FILTERS_IFINDEX_PASSIVE
	EF_SCALABLE_FILTERS_MODE
	EF_SCALABLE_LISTEN_MODE
	EF_SELECT_FAST
	EF_SELECT_FAST_USEC
	EF_SELECT_NONBLOCK_FAST_USEC
	EF_SELECT_SPIN
	EF_SEND_POLL_MAX_EVS
	EF_SEND_POLL_THRESH
	EF_SHARE_WITH
	EF_SIGNALS_NOPOSTPONE
	EF_SLEEP_SPIN_USEC
	EF_SOCKET_CACHE_MAX
	EF_SOCKET_CACHE_PORTS
	EF_SOCK_LOCK_BUZZ
	EF_SO_BUSY_POLL_SPIN
	EF_SPIN_USEC
	EF_STACK_LOCK_BUZZ
	EF_STACK_PER_THREAD
	EF_SYNC_CPLANE_AT_CREATE
	EF_TAIL_DROP_PROBE
	EF_TCP
	EF_TCP_ACCEPT_SPIN
	EF_TCP_ADV_WIN_SCALE_MAX
	EF_TCP_BACKLOG_MAX
	EF_TCP_CLIENT_LOOPBACK
	EF_TCP_COMBINE_SENDS_MODE
	EF_TCP_CONNECT_HANDOVER
	EF_TCP_CONNECT_SPIN
	EF_TCP_EARLY_RETRANSMIT
	EF_TCP_FASTSTART_IDLE
	EF_TCP_FASTSTART_INIT
	EF_TCP_FASTSTART_LOSS
	EF_TCP_FIN_TIMEOUT
	EF_TCP_FORCE_REUSEPORT
	EF_TCP_INITIAL_CWND
	EF_TCP_ISN_2MSL
	EF_TCP_ISN_CACHE_SIZE
	EF_TCP_ISN_INCLUDE_PASSIVE
	EF_TCP_ISN_MODE
	EF_TCP_ISN_OFFSET
	EF_TCP_LISTEN_HANDOVER
	EF_TCP_LOSS_MIN_CWND
	EF_TCP_MIN_CWND
	EF_TCP_RCVBUF
	EF_TCP_RCVBUF_ESTABLISHED_DEFAULT
	EF_TCP_RCVBUF_MODE
	EF_TCP_RCVBUF_STRICT
	EF_TCP_RECV_SPIN
	EF_TCP_RST_DELAYED_CONN
	EF_TCP_RX_CHECKS
	EF_TCP_RX_LOG_FLAGS
	EF_TCP_SEND_NONBLOCK_NO_PACKETS_MODE
	EF_TCP_SEND_SPIN
	EF_TCP_SERVER_LOOPBACK
	EF_TCP_SHARED_LOCAL_PORTS
	EF_TCP_SHARED_LOCAL_PORTS_MAX
	EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK
	EF_TCP_SHARED_LOCAL_PORTS_PER_IP
	EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX
	EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST
	EF_TCP_SHARED_LOCAL_PORTS_STEP
	EF_TCP_SNDBUF
	EF_TCP_SNDBUF_ESTABLISHED_DEFAULT
	EF_TCP_SNDBUF_MODE
	EF_TCP_SOCKBUF_MAX_FRACTION
	EF_TCP_SYNCOOKIES
	EF_TCP_SYNRECV_MAX
	EF_TCP_SYN_OPTS
	EF_TCP_TCONST_MSL
	EF_TCP_TIME_WAIT_ASSASSINATION
	EF_TCP_TSOPT_MODE
	EF_TCP_URG_MODE
	EF_TIMESTAMPING_REPORTING
	EF_TXQ_SIZE
	EF_TX_MIN_IPG_CNTL
	EF_TX_PUSH
	EF_TX_PUSH_THRESHOLD
	EF_TX_QOS_CLASS
	EF_TX_TIMESTAMPING
	EF_UDP
	EF_UDP_CONNECT_HANDOVER
	EF_UDP_FORCE_REUSEPORT
	EF_UDP_PORT_HANDOVER2_MAX
	EF_UDP_PORT_HANDOVER2_MIN
	EF_UDP_PORT_HANDOVER3_MAX
	EF_UDP_PORT_HANDOVER3_MIN
	EF_UDP_PORT_HANDOVER_MAX
	EF_UDP_PORT_HANDOVER_MIN
	EF_UDP_RCVBUF
	EF_UDP_RECV_SPIN
	EF_UDP_SEND_NONBLOCK_NO_PACKETS_MODE
	EF_UDP_SEND_SPIN
	EF_UDP_SEND_UNLOCKED
	EF_UDP_SEND_UNLOCK_THRESH
	EF_UDP_SNDBUF
	EF_UL_EPOLL
	EF_UL_POLL
	EF_UL_SELECT
	EF_UNCONFINE_SYN
	EF_UNIX_LOG
	EF_URG_RFC
	EF_USE_DSACK
	EF_USE_HUGE_PAGES
	EF_VALIDATE_ENV
	EF_VFORK_MODE
	EF_WODA_SINGLE_INTERFACE

	Appx. B: Meta Options
	Environment Variables
	EF_POLL_USEC
	EF_BUZZ_USEC

	Appx. C: Build Dependencies
	General
	Building Kernel Modules
	onload
	onload_tcpdump
	solar_clusterd
	onload_bpftools
	IPv6 Support

	Red Hat Enterprise Linux 8.x

	Appx. D: Onload Extensions API
	Common Components
	onload_is_present
	onload_fd_stat
	onload_fd_check_feature
	onload_thread_set_spin
	onload_thread_get_spin
	onload_socket_nonaccel
	onload_socket_unicast_nonaccel

	Stacks API
	onload_set_stackname
	onload_move_fd
	onload_stackname_save
	onload_stackname_restore
	onload_stack_opt_set_int
	onload_stack_opt_reset
	onload_ordered_epoll_wait
	onload_timestamping_request
	Stacks API Examples

	Zero-Copy API
	Zero-Copy Data Buffers
	Zero-Copy UDP Receive Overview
	Zero-Copy UDP Receive
	Zero-Copy Receive Example #1
	Zero-Copy Receive Example #2
	Zero-Copy TCP Send Overview
	Zero-Copy TCP Send
	Zero-Copy Send with Single Message and Buffer
	Zero-Copy Send with Multiple Messages and Buffers
	Zero-Copy Send Full Example

	Receive Filtering API
	Receive Filtering API
	Receive Filtering Example

	Templated Sends API
	Description
	MSG Template
	MSG Update
	MSG Allocation
	MSG Template Update
	MSG Template Abort

	Delegated Sends API
	Description
	Performance
	Standard Send vs. Delegated Send
	Example Code
	Run Client/Server
	struct onload_delegated_send
	onload_delegated_send_rc
	onload_delegated_send_prepare
	onload_delegated_send_tcp_update
	onload_delegated_send_tcp_advance
	onload_delegated_send_complete
	onload_delegated_send_cancel

	Appx. E: onload_stackdump
	General Use
	List Onloaded Processes
	List Onloaded Threads, Priority and Affinity
	List Onload Environment Variables
	TX PIO Counters
	Send RST on a TCP Socket
	Removing Zombie and Orphan Stacks
	Snapshot vs. Dynamic Views
	Monitoring Receive and Transmit Packet Buffers
	Packet Sets

	TCP Application Statistics
	The onload_stackdump LOTS Command.
	TCP Stacks
	TCP ESTABLISHED Connection Sockets
	TCP LISTEN Sockets
	UDP Sockets
	Statistics
	Environment Variables

	Onload Stackdump Filters
	Remote Monitoring
	orm_webserver
	orm_json
	orm_json_lib

	Appx. F: sfnettest
	sfnt-pingpong
	sfnt-stream
	Running Without Spinning

	Appx. G: onload_tcpdump
	Building onload_tcpdump
	Using onload_tcpdump
	Examples
	VLAN Examples
	Dependencies
	Limitations
	Known Issues
	SolarCapture

	Appx. H: ef_vi
	Components
	Compiling and Linking
	Documentation

	Appx. I: onload_iptables
	How it Works
	Files

	Features
	Rules
	Preview Firewall Rules
	To Convert Linux iptables to Onload Firewall Rules
	To View Rules for a Specific Interface
	To Add a Rule for a Selected Interface
	To Delete a Rule from a Selected Interface
	Error Checking
	Interface and Port
	Virtual/Bonded Interface

	Error Messages

	Appx. J: eflatency
	eflatency
	To Run eflatency

	Appx. K: Management Information Base
	Host
	Container
	Namespaces
	List Available Options
	Tables
	Usage
	Version
	hwport
	llap
	ipif
	fwd
	stats
	internal
	all

	Appx. L: X2 Low Latency Quickstart
	Software Installation
	Firmware Variant
	Onload
	Netperf
	Sfnettest

	Test Setup
	BIOS Settings
	Pre-Test Configuration

	Reference System Specification
	Latency Tests
	Layer 2 ef_vi Latency
	TCPDirect Latency
	Onload Latency with netperf
	Onload Latency with sfnt-pingpong
	Latency without CTPIO
	Kernel Latency

	Latency Test Results
	Latency against Payload
	Latency for UDP Payloads at 25 Gb
	Latency for TCP Payloads at 25 Gb
	Latency for UDP Payloads at 10 Gb
	Latency for TCP Payloads at 10 Gb
	Notes on Latency and Payload Graphs

	Further Information

	Appx. M: X2 Throughput Quickstart
	Software Installation
	Onload
	Netperf
	Wrk
	Nginx

	Test Setup
	Reference System Specification
	Throughput
	Pre-test Configuration
	Throughput with Onload
	Throughput without Onload

	HTTP connections
	Pre-test Configuration
	Connections with Onload
	Connections without Onload

	Further Information

	Appx. N: Additional Resources and Legal Notices
	Finding Additional Documentation
	Support Resources
	References
	Revision History
	Please Read: Important Legal Notices

