
RedHawkTM Linux® User’s Guide

0898004-300

April 2003

Copyright 2002 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be repro-
duced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, Florida, 33069. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

Linux is a registered trademark of Linus Torvalds.
Red Hat is a registered trademark of Red Hat, Inc.
RedHawk, iHawk, NightStar, NightTrace, NightSim, NightProbe and NightView are trademarks of Concurrent Com-
puter Corporation.
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
The X Window System is a trademark of The Open Group.
OSF/Motif is a registered trademark of the Open Software Foundation, Inc.
Ethernet is a trademark of the Xerox Corporation.
NFS is a trademark of Sun Microsystems, Inc.
Other products mentioned in this document are trademarks, registered trademarks, or trade names of the
manufacturers or marketers of the product with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:

Original Release -- August 2002 000 RedHawk Linux Release 1.1

Previous Release -- December 2002 200 RedHawk Linux Release 1.2

Current Release -- April 2003 300 RedHawk Linux Release 1.3

iii

Preface

Scope of Manual

This manual consists of three parts. The information in Part 1 is directed towards real-time
users. Part 2 is directed towards system administrators. Part 3 consists of backmatter:
appendix and index. An overview of the contents of the manual follows.

Structure of Manual

This guide consists of the following sections:

Part 1 - Real-Time User

• Chapter 1, Introduction to RedHawk Linux, provides an introduction to the
RedHawk Linux operating system and gives an overview of the real-time
features included.

• Chapter 2, Real-Time Performance, discusses issues involved with
achieving real-time performance including interrupt response, process
dispatch latency and deterministic program execution. The shielded CPU
model is described.

• Chapter 3, Real-Time Interprocess Communication, discusses procedures
for using the POSIX and System V message-passing facilities.

• Chapter 4, Process Scheduling, provides an overview of process
scheduling and describes POSIX® scheduling policies and priorities.

• Chapter 5, Interprocess Synchronization, describes the interfaces provided
by RedHawk Linux for cooperating processes to synchronize access to
shared resources. Included are: POSIX counting semaphores, System V
semaphores, rescheduling control tools and condition synchronization
tools.

• Chapter 6, Programmable Clocks and Timers, provides an overview of
some of the RCIM and POSIX timing facilities that are available under
RedHawk Linux.

• Chapter 7, System Clocks and Timers, describes the per-CPU local timer
and the system global timer.

• Chapter 8, File Systems and Disk I/O, explains the xfs journaling file
system and procedures for performing direct disk I/O on the RedHawk
Linux operating system.

• Chapter 9, Memory Mapping, describes the methods provided by
RedHawk Linux for a process to access the contents of another process’
address space.

RedHawk Linux User’s Guide

iv

Part 2 - Administrator

• Chapter 10, Configuring and Building the Kernel, provides information on
how to configure and build a RedHawk Linux kernel.

• Chapter 11, Linux Kernel Crash Dump (LKCD), provides guidelines for
saving, restoring and analyzing the kernel memory image using LKCD.

• Chapter 12, Pluggable Authentication Modules (PAM), describes the PAM
authentication capabilities of RedHawk Linux.

• Chapter 13, Device Drivers and Real Time, describes real-time issues
involved with writing device drivers for RedHawk Linux.

Part 3 - Common Material

• Appendix A contains an example program illustrating the System V
message queue facility.

• The Index contains an alphabetical reference to key terms and concepts and
the pages where they occur in the text.

Syntax Notation

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms may also appear in italics.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and
messages and listings of files and programs appear in list type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such options or arguments

Related Publications

 Title Pub No.

RedHawk Linux Release Notes Version x.x 0898003

RedHawk Linux Frequency-Based Scheduler (FBS) User’s Guide 0898005

Real-Time Clock and Interrupt Module (RCIM) User’s Guide 0898007

where x.x = release version

v

Chapter 0Contents

Preface . iii

Chapter 1 Introduction to RedHawk Linux

Overview . 1-1
RedHawk Linux Kernels . 1-2
System Updates . 1-2
Real-Time Features in RedHawk Linux . 1-3

Processor Shielding . 1-3
Processor Affinity. 1-3
User-level Preemption Control. 1-3
Fast Block/Wake Services . 1-4
RCIM Driver . 1-4
Frequency-Based Scheduler . 1-4
/proc Modifications . 1-4
Kernel Trace Facility . 1-5
ptrace Extensions . 1-5
Kernel Preemption . 1-5
Real-Time Scheduler . 1-5
Low Latency Patches . 1-6
High Resolution Timing . 1-6
Capabilities Support . 1-6
Kernel Debuggers. 1-6
Kernel Core Dumps/Crash Analysis . 1-7
User-Level Spin Locks . 1-7
usermap and /proc mmap . 1-7
Hyper-threading . 1-7
XFS Journaling File System. 1-7
POSIX Real-Time Extensions . 1-8

User Priority Scheduling . 1-8
Memory Resident Processes . 1-8
Memory Mapping and Data Sharing. 1-8
Process Synchronization . 1-9
Asynchronous Input/Output . 1-9
Synchronized Input/Output . 1-9
Real-Time Signal Behavior . 1-9
Clocks and Timers. 1-10
Message Queues . 1-10

Chapter 2 Real-Time Performance

Overview of the Shielded CPU Model . 2-1
Overview of Determinism . 2-2
Process Dispatch Latency . 2-2

Effect of Disabling Interrupts . 2-4
Effect of Interrupts . 2-5
Effect of Disabling Preemption . 2-8
Effect of Open Source Device Drivers . 2-9

RedHawk Linux User’s Guide

vi

How Shielding Improves Real-Time Performance . 2-9
Shielding From Background Processes . 2-9
Shielding From Interrupts . 2-10
Shielding From Local Interrupt . 2-10

Interfaces to CPU Shielding. 2-11
Shield Command. 2-11

Shield Command Examples. 2-13
Exit Status . 2-13
Shield Command Advanced Features . 2-13

/proc Interface to CPU Shielding . 2-13
Assigning Processes to CPUs . 2-14

Multiprocessor Control Using mpadvise . 2-15
Assigning CPU Affinity to init . 2-16

Example of Setting Up a Shielded CPU . 2-17
Procedures for Increasing Determinism. 2-20

Locking Pages in Memory . 2-20
Setting the Program Priority . 2-21
Setting the Priority of Deferred Interrupt Processing . 2-21
Waking Another Process. 2-22
Hyper-threading . 2-22

RedHawk and Hyper-threading . 2-24
Recommended CPU Configurations . 2-24

Known Issues with Linux Determinism. 2-27

Chapter 3 Real-Time Interprocess Communication

Overview . 3-1
Understanding POSIX Message Queues . 3-1

Understanding Basic Concepts . 3-2
Understanding Advanced Concepts . 3-4
Understanding Message Queue Library Routines . 3-5

Understanding the Message Queue Attribute Structure 3-5
Using the Library Routines . 3-6

Understanding System V Messages. 3-17
Using Messages . 3-18
Getting Message Queues . 3-21

Using msgget . 3-21
Example Program . 3-23

Controlling Message Queues . 3-25
Using msgctl . 3-25
Example Program . 3-26

Operations for Messages. 3-30
Using Message Operations: msgsnd and msgrcv . 3-30
Example Program . 3-31

Chapter 4 Process Scheduling

Overview . 4-1
How the Process Scheduler Works . 4-2
Scheduling Policies. 4-3

First-In-First-Out Scheduling (SCHED_FIFO). 4-3
Round-Robin Scheduling (SCHED_RR) . 4-4
Time-Sharing Scheduling (SCHED_OTHER) . 4-4

Contents

vii

Procedures for Enhanced Performance . 4-4
How to Set Priorities . 4-4
Bottom Half Interrupt Routines . 4-5
SCHED_FIFO vs SCHED_RR . 4-5
Access to Lower Priority Processes . 4-5
Memory Locking . 4-6
CPU Affinity and Shielded Processors. 4-6

Process Scheduling Interfaces . 4-6
POSIX Scheduling Routines . 4-6

The sched_setscheduler Routine . 4-7
The sched_getscheduler Routine. 4-8
The sched_setparam Routine . 4-9
The sched_getparam Routine . 4-10
The sched_yield Routine. 4-10
The sched_get_priority_min Routine . 4-11
The sched_get_priority_max Routine . 4-11
The sched_rr_get_interval Routine . 4-12

The run Command . 4-13

Chapter 5 Interprocess Synchronization

Understanding Interprocess Synchronization . 5-1
Rescheduling Control . 5-3

Understanding Rescheduling Variables . 5-3
Using the resched_cntl System Call . 5-4
Using the Rescheduling Control Macros . 5-5

 resched_lock. 5-6
 resched_unlock. 5-6
 resched_nlocks . 5-7

Applying Rescheduling Control Tools . 5-7
Busy-Wait Mutual Exclusion. 5-8

Understanding the Busy-Wait Mutual Exclusion Variable. 5-8
Using the Busy-Wait Mutual Exclusion Macros . 5-9
Applying Busy-Wait Mutual Exclusion Tools . 5-10

POSIX Counting Semaphores . 5-11
Overview . 5-11
Interfaces . 5-13

Using the sem_init Routine . 5-13
Using the sem_destroy Routine. 5-15
Using the sem_wait Routine . 5-15
Using the sem_trywait Routine . 5-16
Using the sem_post Routine . 5-16
Using the sem_getvalue Routine. 5-17

System V Semaphores . 5-18
Overview . 5-18
Using System V Semaphores . 5-19
Getting Semaphores . 5-21

Using the semget System Call. 5-22
Example Program . 5-24

Controlling Semaphores . 5-26
Using the semctl System Call . 5-26
Example Program . 5-28

Operations On Semaphores . 5-34

RedHawk Linux User’s Guide

viii

Using the semop System Call . 5-34
Example Program . 5-35

Condition Synchronization . 5-38
Using the postwait System Call . 5-38
Using the Server System Calls . 5-40

server_block. 5-40
server_wake1 . 5-41
server_wakevec . 5-42

Applying Condition Synchronization Tools . 5-43

Chapter 6 Programmable Clocks and Timers

Understanding Clocks and Timers . 6-1
RCIM Clocks and Timers . 6-1
POSIX Clocks and Timers . 6-2

Understanding the POSIX Time Structures . 6-3
Using the POSIX Clock Routines . 6-4

Using the clock_settime Routine . 6-4
Using the clock_gettime Routine . 6-5
Using the clock_getres Routine . 6-6

Using the POSIX Timer Routines . 6-6
Using the timer_create Routine . 6-7
Using the timer_delete Routine . 6-8
Using the timer_settime Routine . 6-9
Using the timer_gettime Routine . 6-10
Using the timer_getoverrun Routine. 6-11

Using the POSIX Sleep Routines. 6-12
Using the nanosleep Routine . 6-12
Using the clock_nanosleep Routine . 6-13

/proc Interface to POSIX Timers . 6-14

Chapter 7 System Clocks and Timers

Local Timer . 7-1
Functionality . 7-1

CPU Accounting . 7-2
Process Execution Time Quanta and Limits . 7-2
Interval Timer Decrementing. 7-2
System Profiling . 7-3
CPU Load Balancing . 7-3
CPU Rescheduling. 7-3
POSIX Timers . 7-3
Miscellaneous . 7-3

Disabling the Local Timer . 7-4
Global Timer . 7-4

Chapter 8 File Systems and Disk I/O

Journaling File System. 8-1
Creating an XFS File System . 8-2
Mounting an XFS File System . 8-2
Data Management API (DMAPI) . 8-2

Direct Disk I/O. 8-3

Contents

ix

Chapter 9 Memory Mapping

Establishing Mappings to a Target Process’ Address Space 9-1
Using mmap(2). 9-1
Using usermap(3) . 9-3
Considerations . 9-4

Kernel Configuration Parameters . 9-4

Chapter 10 Configuring and Building the Kernel

Introduction . 10-1
Configuring a Kernel Using ccur-config . 10-2
Building a Kernel. 10-4
Building Driver Modules. 10-5
Additional Information . 10-6

Chapter 11 Linux Kernel Crash Dump (LKCD)

Introduction . 11-1
Installation/Configuration Details . 11-1
Documentation. 11-2
Forcing a Crash Dump on a Hung System . 11-2
Using lcrash to Analyze a Crash Dump. 11-3
Crash Dump Examples . 11-4

Chapter 12 Pluggable Authentication Modules (PAM)

Introduction . 12-1
PAM Modules . 12-1
Services . 12-2
Role-Based Access Control . 12-2

Examples . 12-3
Defining Capabilities . 12-3

Examples . 12-4
Implementation Details . 12-5

Chapter 13 Device Drivers and Real Time

Interrupt Routines . 13-1
Deferred Interrupt Functions . 13-2
Multi-threading Issues . 13-4
The Big Kernel Lock (BKL) and ioctl. 13-4

Appendix A Example Program - Message Queues. A-1

Index . Index-1

Screens

Screen 10-1. Linux Kernel Configuration, Main Menu . 10-3

RedHawk Linux User’s Guide

x

Illustrations

Figure 2-1. Normal Process Dispatch Latency . 2-3
Figure 2-2. Effect of Disabling Interrupts on Process Dispatch Latency 2-4
Figure 2-3. Effect of High Priority Interrupt on Process Dispatch Latency 2-5
Figure 2-4. Effect of Low Priority Interrupt on Process Dispatch Latency 2-6
Figure 2-5. Effect of Multiple Interrupts on Process Dispatch Latency 2-7
Figure 2-6. Effect of Disabling Preemption on Process Dispatch Latency 2-8
Figure 2-7. The Standard Shielded CPU Model . 2-25
Figure 2-8. Shielding with Interrupt Isolation . 2-25
Figure 2-9. Hyper-thread Shielding . 2-26
Figure 3-1. Example of Two Message Queues and Their Messages 3-3
Figure 3-2. The Result of Two mq_sends . 3-12
Figure 3-3. The Result of Two mq_receives . 3-13
Figure 3-4. Definition of msqid_ds Structure . 3-19
Figure 3-5. Definition of ipc_perm Structure . 3-19
Figure 4-1. The RedHawk Linux Scheduler . 4-2
Figure 5-1. Definition of sembuf Structure . 5-19
Figure 5-2. Definition of semid_ds Structure . 5-20
Figure 10-1. Example of Complete Kernel Configuration and Build Session 10-5

Tables

Table 2-1. Options to the shield(1) Command . 2-12
Table 3-1. Message Queue Operation Permissions Codes . 3-22
Table 5-1. Semaphore Operation Permissions Codes . 5-22
Table 11-1. LKCD and lcrash Documents . 11-2
Table 13-1. Deferred Interrupt Types and Characteristics . 13-3

1
Introduction to RedHawk Linux

Overview . 1-1
RedHawk Linux Kernels . 1-2
System Updates . 1-2
Real-Time Features in RedHawk Linux . 1-3

Processor Shielding . 1-3
Processor Affinity. 1-3
User-level Preemption Control. 1-3
Fast Block/Wake Services . 1-4
RCIM Driver . 1-4
Frequency-Based Scheduler . 1-4
/proc Modifications . 1-4
Kernel Trace Facility . 1-5
ptrace Extensions . 1-5
Kernel Preemption . 1-5
Real-Time Scheduler . 1-5
Low Latency Patches . 1-6
High Resolution Timing . 1-6
Capabilities Support . 1-6
Kernel Debuggers. 1-6
Kernel Core Dumps/Crash Analysis . 1-7
User-Level Spin Locks . 1-7
usermap and /proc mmap . 1-7
Hyper-threading . 1-7
XFS Journaling File System. 1-7
POSIX Real-Time Extensions . 1-8

User Priority Scheduling . 1-8
Memory Resident Processes . 1-8
Memory Mapping and Data Sharing. 1-8
Process Synchronization . 1-9
Asynchronous Input/Output . 1-9
Synchronized Input/Output . 1-9
Real-Time Signal Behavior . 1-9
Clocks and Timers. 1-10
Message Queues . 1-10

RedHawk Linux User’s Guide

1-1

1
Chapter 1Introduction to RedHawk Linux

1
1
1

Overview 1

The RedHawkTM Linux® operating system is included with each Concurrent iHawk™
system. It is based on the Red Hat® Linux distribution, a unique Linux kernel that has been
modified for deterministic real-time processing.

The iHawk Series 860 features from one to eight Intel® Pentium® Xeon™ processors in a
single rackmount or tower enclosure. The iHawk 860G is a one or two processor, high-
performance AGP/PCI-based platform for real-time imaging applications. The iHawk
systems offer leading-edge integrated circuit and packaging technology. iHawks are true
symmetric multiprocessors (SMPs) that run a single copy of the RedHawk Linux real-time
operating system. All CPUs in a system are linked by a high-speed front-side processor
bus and have direct, cache-coherent access to all of main memory.

Except for the kernel, all Red Hat components operate in their standard fashion. These
include Linux utilities, libraries, compilers, tools and installer unmodified from Red Hat.

The components that are unique to RedHawk include a modified Linux kernel, some
additional user-level libraries and commands and optionally, the NightStarTM real-time
application development tools. The RedHawk Linux kernel is based on the kernel
maintained by Linus Torvalds and utilizes the 2.4.21-pre4 version.

There are three classes of changes that have been applied to this Linux kernel:

• new kernel features added by Concurrent based on features in the real-time
operating systems that Concurrent has been deploying for many years

• open source real-time patches not integrated into standard Linux which
supply features or performance benefits for real-time applications

• performance improvements developed by Concurrent to improve worst-
case process dispatch latency or to improve determinism in process
execution

These kernel enhancements provide the support needed for developing complex real-time
applications. The additional user-level libraries in RedHawk Linux provide interfaces to
some of the real-time features present in the Red Hat Linux kernel. Descriptions of the
real-time features in RedHawk Linux are provided in the section “Real-Time Features in
RedHawk Linux” later in this chapter.

Linux conforms to many of the interface standards defined by POSIX, but does not fully
conform to these standards. Red Hat Linux has the same level of POSIX conformance as
other Linux distributions based on the 2.4 series of kernels. Linux on the Intel x86
architecture has defined a defacto binary standard of its own which allows shrink-wrapped
applications that are designed to run on the Linux/Intel x86 platform to run on
Concurrent’s iHawk platform.

RedHawk Linux User’s Guide

1-2

RedHawk Linux Kernels 1

There are three flavors of RedHawk Linux kernels installed on the iHawk system. The
system administrator can select which version of the RedHawk Linux kernel is loaded via
the GRUB boot loader. The three flavors of RedHawk Linux kernels available are:

The default RedHawk Linux trace kernel installed on the iHawk system has been built
with kernel trace points enabled. The kernel trace points allow the NightTraceTM tool to
trace kernel activity.

The debug kernel has been built with both debugging checks and kernel trace points
enabled. The debugging checks are extra sanity checks that allow kernel problems to be
detected earlier than they might otherwise be detected. However, these checks do produce
extra overhead. If you are measuring performance metrics on your iHawk system, this
activity would be best performed using a non-debug version of the kernel.

System Updates 1

RedHawk Linux updates can be downloaded from Concurrent’s RedHawk Linux update
website. Refer to the RedHawk Linux Release Notes for details.

NOTE

It is NOT recommended that the user download Red Hat updates.

Most user-level components on RedHawk Linux are provided by the Red Hat Linux 8.0
distribution. The RedHawk Linux kernel replaces the standard Red Hat kernel. While the
RedHawk Linux kernel is likely to work with any version of the Red Hat 8.0 distribution,
it is not recommended that the user download additional Red Hat updates as these could
potentially destabilize the system. Red Hat updates will be made available to RedHawk
Linux users as those updates are validated against the RedHawk Linux kernel.

Kernel Name Kernel Description

vmlinuz-2.4.21-pre4-RedHawk-x.x-trace Default kernel with trace points but no
debug checks

vmlinuz-2.4.21-pre4-RedHawk-x.x-debug Kernel with both debug checks and kernel
trace points

vmlinuz-2.4.21-pre4-RedHawk-x.x Kernel with no trace points and no debug
checks

Where x.x = RedHawk Linux version number; for example, “1.3”.

Introduction to RedHawk Linux

1-3

Real-Time Features in RedHawk Linux 1

This section provides a brief description of the real-time features included in the
RedHawk Linux operating system. It reflects features included in open source Linux
patches applied to RedHawk Linux as well as new features and enhancements developed
by Concurrent to meet the demands of Concurrent’s real-time customers.

More detailed information about the functionality described below is provided in
subsequent chapters of this guide. Online readers can display the information immediately
by clicking on the chapters referenced.

Processor Shielding 1

Concurrent has developed a method of shielding selected CPUs from the unpredictable
processing associated with interrupts and system daemons. By binding critical, high-
priority tasks to particular CPUs and directing most interrupts and system daemons to
other CPUs, the best process dispatch latency possible on a particular CPU in a
multiprocessor system can be achieved. Chapter 2 presents a model for shielding CPUs
and describes techniques for improving response time and increasing determinism.

Processor Affinity 1

In a real-time application where multiple processes execute on multiple CPUs, it is
desirable to have explicit control over the CPU assignments of all processes in the system.
This capability is provided by Concurrent through the mpadvise(3) library routine and
the run(1) command. See Chapter 2 and the man pages for additional information.

User-level Preemption Control 1

When an application has multiple processes that can run on multiple CPUs and those
processes operate on data shared between them, access to the shared data must be
protected to prevent corruption from simultaneous access by more than one process. The
most efficient mechanism for protecting shared data is a spin lock; however, spin locks
cannot be effectively used by an application if there is a possibility that the application can
be preempted while holding the spin lock. To remain effective, RedHawk provides a
mechanism that allows the application to quickly disable preemption. See Chapter 5 and
the resched_cntl(2) man page for more information about user-level preemption
control.

RedHawk Linux User’s Guide

1-4

Fast Block/Wake Services 1

Many real-time applications are composed of multiple cooperating processes. These
applications require efficient means for doing inter-process synchronization. The fast
block/wake services developed by Concurrent allow a process to quickly suspend itself
awaiting a wakeup notification from another cooperating process. See Chapter 2,
Chapter 5 and the postwait(2) and server_block(2) man pages for more details.

RCIM Driver 1

A driver has been added for support of the Real-Time Clock and Interrupt Module
(RCIM). This multi-purpose PCI card has the following functionality:

• connection of four external device interrupts

• four real time clocks that can interrupt the system

• four programmable interrupt generators which allow generation of an
interrupt from an application program

These functions can all generate local interrupts on the system where the RCIM card is
installed. Multiple RedHawk Linux systems can be chained together, allowing up to eight
of the local interrupts to be distributed to other RCIM-connected systems. This allows one
timer or one external interrupt or one application program to interrupt multiple RedHawk
Linux systems almost simultaneously to create synchronized actions. In addition, the
RCIM contains a synchronized high-resolution clock so that multiple systems can share a
common time base. See Chapter 6 of this guide and the Real-Time Clock & Interrupt
Module (RCIM) PCI Form Factor manual for additional information.

Frequency-Based Scheduler 1

The Frequency-Based Scheduler (FBS) is a mechanism added to RedHawk Linux for
scheduling applications that run according to a predetermined cyclic execution pattern.
The FBS also provides a very fast mechanism for waking a process when it is time for that
process to execute. In addition, the performance of cyclical applications can be tracked,
with various options available to the programmer when deadlines are not being met. The
FBS is the kernel mechanism that underlies the NightSimTM GUI for scheduling cyclical
applications. See the Frequency-Based Scheduler (FBS) User’s Guide and NightSim
User’s Guide for additional information.

/proc Modifications 1

Modifications have been made to the process address space support in /proc to allow a
privileged process to read or write the values in another process’ address space. This is for
support of the NightProbeTM data monitoring tool and the NightViewTM debugger.

Introduction to RedHawk Linux

1-5

Kernel Trace Facility 1

Support was added to RedHawk Linux to allow kernel activity to be traced. This includes
mechanisms for inserting and enabling kernel trace points, reading trace memory buffers
from the kernel, and managing trace buffers. The kernel trace facility is used by the
NightTraceTM tool.

ptrace Extensions 1

The ptrace debugging interface in Linux has been extended to support the capabilities of
the NightView debugger. Features added include:

• the capability for a debugger process to read and write memory in a process
not currently in the stopped state

• the capability for a debugger to trace only a subset of the signals in a
process being debugged

• the capability for a debugger to efficiently resume execution at a new
address within a process being debugged

• the capability for a debugger process to automatically attach to all children
of a process being debugged

Kernel Preemption 1

The ability for a high priority process to preempt a lower priority process currently
executing inside the kernel is provided through an open source patch to RedHawk Linux.
Under standard Linux the lower priority process would continue running until it exited
from the kernel, creating longer worst case process dispatch latency. This patch leverages
the data structure protection mechanisms built into the kernel to support symmetric
multiprocessing.

Real-Time Scheduler 1

The O(1) scheduler patch created by Ingo Molnar was actually created for the 2.5 Linux
development baseline. It provides fixed-length context switch times regardless of how
many processes are active in the system. It also provides a true real-time scheduling class
that operates on a symmetric multiprocessor.

RedHawk Linux User’s Guide

1-6

Low Latency Patches 1

In order to protect shared data structures used by the kernel, the kernel protects code paths
that access these shared data structures with spin locks and semaphores. The locking of a
spin lock requires that preemption, and sometimes interrupts, be disabled while the spin
lock is held. A study was made which identified the worst-case preemption off times. The
low latency patches applied to RedHawk Linux modify the algorithms in the identified
worst-case preemption off scenarios to provide better interrupt response times.

High Resolution Timing 1

In the standard Linux kernel, the system accounts for a process’ CPU execution times
using a very coarse-grained mechanism. This means that the amount of CPU time charged
to a particular process can be very inaccurate. The high resolution timing provided by an
open source patch to RedHawk Linux provides a mechanism for very accurate CPU
execution time accounting, allowing better performance monitoring of applications. This
facility is used by the Performance Monitor and can be utilized for system and user
execution time accounting when the local timer interrupt is disabled on a CPU.

Capabilities Support 1

The Pluggable Authentication Modules (PAM) open source patch provides a mechanism
to assign privileges to users and set authentication policy without having to recompile
authentication programs. Under this scheme, a non-root user can be configured to run
applications that require privileges only root would normally be allowed. For example, the
ability to lock pages in memory is provided by one predefined privilege that can be
assigned to individual users or groups.

Privileges are granted through roles defined in a configuration file. A role is a set of valid
Linux capabilities. Defined roles can be used as a building block in subsequent roles, with
the new role inheriting the capabilities of the previously defined role. Roles are assigned
to users and groups, defining their capabilities on the system.

See Chapter 12 for information about the PAM functionality.

Kernel Debuggers 1

Two different kernel debuggers are supported through open source patches. Each provides
a different set of features. The kdb kernel debugger is linked with the kernel and can be
run as a native kernel debugger. The kgdb debugger allows the RedHawk Linux kernel to
be debugged with gdb as if it were a user application. gdb runs on a separate system,
communicating with the kernel being debugged through the console’s serial port.

Introduction to RedHawk Linux

1-7

Kernel Core Dumps/Crash Analysis 1

This open source patch provides the support for dumping physical memory contents to a
file as well as support for utilities that do a post mortem analysis of a kernel core dump.
See Chapter 11 and the lcrash(1) man page for more information about crash dump
analysis.

User-Level Spin Locks 1

RedHawk Linux busy-wait mutual exclusion tools include a low-overhead busy-wait
mutual exclusion variable (a spin lock) and a corresponding set of macros that allow you
to initialize, lock, unlock and query spin locks. To be effective, user-level spin locks must
be used with user-level preemption control. Refer to Chapter 5 for details.

usermap and /proc mmap 1

The usermap(3) library routine, which resides in the libccur_rt library, provides
applications with a way to efficiently monitor and modify locations in currently executing
programs through the use of simple CPU reads and writes.

The /proc file system mmap(2) is the underlying kernel support for usermap(3),
which lets a process map portions of another process’ address space into its own address
space. Thus, monitoring and modifying other executing programs becomes simple CPU
reads and writes within the application’s own address space, without incurring the
overhead of /proc file system read(2) and write(2) system service calls. Refer to
Chapter 9 for more information.

Hyper-threading 1

Hyper-threading is a feature of the Intel Pentium Xeon processor that allows for a single
physical processor to appear to the operating system as two logical processors. Two
program counters run simultaneously within each CPU chip so that in effect, each chip is a
dual-CPU SMP. With hyper-threading, physical CPUs can run multiple tasks “in parallel”
by utilizing fast hardware-based context-switching between the two register sets upon
things like cache-misses or special instructions. RedHawk Linux includes support for
hyper-threading and supplies it as the default mode of operation. Refer to Chapter 2 for
more information on how to effectively use this feature in a real-time environment.

XFS Journaling File System 1

The XFS journaling file system from SGI is implemented in RedHawk Linux. Journaling
file systems use a journal (log) to record transactions. In the event of a system crash, the
background process is run on reboot and finishes copying updates from the journal to the
file system. This drastically cuts the complexity of a file system check, reducing recovery
time. The SGI implementation is a multithreaded, 64-bit file system capable of large files
and file systems, extended attributes, variable block sizes, is extent based and makes
extensive use of Btrees to aid both performance and scalability. Refer to Chapter 8 for
more information.

RedHawk Linux User’s Guide

1-8

POSIX Real-Time Extensions 1

RedHawk Linux supports most of the interfaces defined by the POSIX real-time
extensions as set forth in ISO/IEC 9945-1. The following functional areas are supported:

• user priority scheduling

• process memory locking

• memory mapped files

• shared memory

• message queues

• counting semaphores (note that named semaphores are not supported
[sem_open, sem_close, sem_unlink])

• real-time signal behavior

• asynchronous I/O

• synchronized I/O

• timers (high resolution version is supported)

User Priority Scheduling 1

RedHawk Linux accommodates user priority scheduling––that is, processes scheduled
under the fixed-priority POSIX scheduling policies do not have their priorities changed by
the operating system in response to their run-time behavior. The resulting benefits are
reduced kernel overhead and increased user control. Process scheduling facilities are fully
described in Chapter 4.

Memory Resident Processes 1

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping,
RedHawk Linux allows you to make certain portions of a process’ virtual address space
resident. The mlockall(2), munlockall(2), mlock(2), and munlock(2)
POSIX system calls allow locking all or a portion of a process’ virtual address space in
physical memory.

Memory Mapping and Data Sharing 1

RedHawk Linux supports shared memory and memory-mapping facilities based on IEEE
Standard 1003.1b-1993, as well as System V IPC mechanisms. The POSIX facilities allow
processes to share data through the use of memory objects, named regions of storage that
can be mapped to the address space of one or more processes to allow them to share the
associated memory. The term memory object includes POSIX shared memory objects,
regular files, and some devices, but not all file system objects (terminals and network
devices, for example). Processes can access the data in a memory object directly by
mapping portions of their address spaces onto the objects. This is generally more efficient
than using the read(2) and write(2) system calls because it eliminates copying the
data between the kernel and the application.

Introduction to RedHawk Linux

1-9

Process Synchronization 1

RedHawk Linux provides a variety of tools that cooperating processes can use to
synchronize access to shared resources.

Counting semaphores based on IEEE Standard 1003.1b-1993 allow multiple processes to
synchronize their access to the same set of resources. A counting semaphore has a value
associated with it that determines when resources are available for use and allocated.
System V IPC semaphore sets are also available under RedHawk Linux.

In addition to semaphores, a set of real-time process synchronization tools developed by
Concurrent provides the ability to control a process’ vulnerability to rescheduling,
serialize processes’ access to critical sections with busy-wait mutual exclusion
mechanisms, and coordinate client–server interaction among processes. With these tools, a
mechanism for providing sleepy-wait mutual exclusion with bounded priority inversion
can be constructed.

Descriptions of the synchronization tools and procedures for using them are provided in
Chapter 5.

Asynchronous Input/Output 1

Being able to perform I/O operations asynchronously means that you can set up for an I/O
operation and return without blocking on I/O completion. RedHawk Linux accommodates
asynchronous I/O with a group of library routines based on IEEE Standard 1003.1b-1993.
These interfaces allow a process to perform asynchronous read and write operations,
initiate multiple asynchronous I/O operations with a single call, wait for completion of an
asynchronous I/O operation, cancel a pending asynchronous I/O operation, and perform
asynchronous file synchronization.

Synchronized Input/Output 1

RedHawk Linux also supports the synchronized I/O facilities based on IEEE Standard
1003.1b-1993. POSIX synchronized I/O provides the means for ensuring the integrity of
an application’s data and files. A synchronized output operation ensures the recording of
data written to an output device. A synchronized input operation ensures that the data read
from a device mirrors the data currently residing on disk.

Real-Time Signal Behavior 1

Real-time signal behavior specified by IEEE Standard 1003.1b-1993 includes
specification of a range of real-time signal numbers, support for queuing of multiple
occurrences of a particular signal, and support for specification of an application-defined
value when a signal is generated to differentiate among multiple occurrences of signals of
th e s a m e t y p e . T h e P O SI X s i g n a l -m a n a g e m e n t f a c i l i t i e s i n c lu d e t h e
sigtimedwait(2), sigwaitinfo(2), and sigqueue(2) system calls, which
allow a process to wait for receipt of a signal and queue a signal and an application-
defined value to a process.

RedHawk Linux User’s Guide

1-10

Clocks and Timers 1

Support for high-resolution POSIX clocks and timers is included in RedHawk Linux.
There are four system-wide POSIX clocks that can be used for such purposes as time
stamping or measuring the length of code segments. POSIX timers allow applications to
use relative or absolute time based on a high resolution clock and to schedule events on a
one-shot or periodic basis. Applications can create multiple timers for each process. In
addition, high-resolution sleep mechanisms are provided which can be used to put a
process to sleep for a very short time quantum and specify which clock should be used for
measuring the duration of the sleep. See Chapter 6 for additional information.

Message Queues 1

POSIX message passing facilities based on IEEE Standard 1003.1b-1993 are included in
RedHawk Linux, implemented as a file system. POSIX message queue library routines
allow a process to create, open, query and destroy a message queue, send and receive
messages from a message queue, associate a priority with a message to be sent, and
request asynchronous notification when a message arrives. POSIX message queues
operate independently of System V IPC messaging, which is also available under
RedHawk Linux. See Chapter 3 for details.

2
Real-Time Performance

Overview of the Shielded CPU Model . 2-1
Overview of Determinism . 2-2
Process Dispatch Latency . 2-2

Effect of Disabling Interrupts . 2-4
Effect of Interrupts . 2-5
Effect of Disabling Preemption . 2-8
Effect of Open Source Device Drivers . 2-9

How Shielding Improves Real-Time Performance . 2-9
Shielding From Background Processes . 2-9
Shielding From Interrupts . 2-10
Shielding From Local Interrupt . 2-10

Interfaces to CPU Shielding . 2-11
Shield Command . 2-11

Shield Command Examples . 2-13
Exit Status . 2-13
Shield Command Advanced Features . 2-13

/proc Interface to CPU Shielding . 2-13
Assigning Processes to CPUs. 2-14

Multiprocessor Control Using mpadvise. 2-15
Assigning CPU Affinity to init . 2-16

Example of Setting Up a Shielded CPU. 2-17
Procedures for Increasing Determinism . 2-20

Locking Pages in Memory . 2-20
Setting the Program Priority. 2-21
Setting the Priority of Deferred Interrupt Processing. 2-21
Waking Another Process . 2-22
Hyper-threading . 2-22

RedHawk and Hyper-threading. 2-24
Recommended CPU Configurations . 2-24

Standard Shielded CPU Model . 2-24
Shielding with Interrupt Isolation . 2-25
Hyper-thread Shielding . 2-26
Floating-point / Integer Sharing. 2-26
Shared Data Cache . 2-27
Shielded Uniprocessor . 2-27

Known Issues with Linux Determinism . 2-27

RedHawk Linux User’s Guide

2-1

2
Chapter 2Real-Time Performance

2
2
2

This chapter discusses some of the issues involved with achieving real-time performance
under RedHawk Linux. The primary focus of the chapter is on the Shielded CPU Model,
which is a model for assigning processes and interrupts to a subset of CPUs in the system
to attain the best real-time performance.

Key areas of real-time performance are discussed: interrupt response, process dispatch
latency and deterministic program execution. The impact of various system activities on
these metrics is discussed and techniques are given for optimum real-time performance.

Overview of the Shielded CPU Model 2

The shielded CPU model is an approach for obtaining the best real-time performance in a
symmetric multiprocessor system. The shielded CPU model allows for both deterministic
execution of a real-time application as well as deterministic response to interrupts.

A task has deterministic execution when the amount of time it takes to execute a code
segment within that task is predictable and constant. Likewise the response to an interrupt
is deterministic when the amount of time it takes to respond to an interrupt is predictable
and constant. When the worst-case time measured for either executing a code segment or
responding to an interrupt is significantly different than the typical case, the application’s
performance is said to be experiencing jitter. Because of computer architecture features
like memory caches and contention for shared resources, there will always be some
amount of jitter in measurements of execution times. Each real-time application must
define the amount of jitter that is acceptable to that application.

In the shielded CPU model, tasks and interrupts are assigned to CPUs in a way that
guarantees a high grade of service to certain important real-time functions. In particular, a
high-priority task is bound to one or more shielded CPUs, while most interrupts and low
priority tasks are bound to other CPUs. The CPUs responsible for running the high-
priority tasks are shielded from the unpredictable processing associated with interrupts
and the other activity of lower priority processes that enter the kernel via system calls, thus
these CPUs are called shielded CPUs.

Some examples of the types of tasks that should be run on shielded CPUs are:

• tasks that require guaranteed interrupt response time

• tasks that require the fastest interrupt response time

• tasks that must be run at very high frequencies

• tasks that require deterministic execution in order to meet their deadlines

• tasks that have no tolerance for being interrupted by the operating system

RedHawk Linux User’s Guide

2-2

There are several levels of CPU shielding that provide different degrees of determinism
for the tasks that must respond to high-priority interrupts or that require deterministic
execution. Before discussing the levels of shielding that can be enabled on a shielded
CPU, it is necessary to understand how the system responds to external events and how
some of the normal operations of a computer system impact system response time and
determinism.

Overview of Determinism 2

Determinism refers to a computer system’s ability to execute a particular code path (a set
of instructions executed in sequence) in a fixed amount of time. The extent to which the
execution time for the code path varies from one instance to another indicates the degree
of determinism in the system.

Determinism applies not only to the amount of time required to execute a time-critical
portion of a user’s application but also to the amount of time required to execute system
code in the kernel. The determinism of the process dispatch latency, for example, depends
upon the code path that must be executed to handle an interrupt, wake the target process,
perform a context switch, and allow the target process to exit from the kernel. (The section
“Process Dispatch Latency” defines the term process dispatch latency and presents a
model for obtaining the best process dispatch latency possible on a particular CPU in a
multiprocessor system.)

The largest impact on the determinism of a program’s execution is the receipt of
interrupts. This is because interrupts are always the highest priority activity in the system
and the receipt of an interrupt is unpredictable – it can happen at any point in time while a
program is executing. Shielding from non-critical interrupts will have the largest impact
on creating better determinism during the execution of high priority tasks.

Other techniques for improving the determinism of a program’s execution are discussed in
the section called “Procedures for Increasing Determinism.”

Process Dispatch Latency 2

Real-time applications must be able to respond to a real-world event and complete the
processing required to handle that real-world event within a given deadline.
Computations required to respond to the real-world event must be complete before the
deadline or the results are considered incorrect. A single instance of having an unusually
long response to an interrupt can cause a deadline to be missed.

The term process dispatch latency denotes the time that elapses from the occurrence of an
external event, which is signified by an interrupt, until the process waiting for that external
event executes its first instruction in user mode. For real-time applications, the worst-case
process dispatch latency is a key metric, since it is the worst-case response time that will
determine the ability of the real-time application to guarantee that it can meet its
deadlines.

Real-Time Performance

2-3

Process dispatch latency comprises the time that it takes for the following sequence of
events to occur:

1. The interrupt controller notices the interrupt and generates the interrupt
exception to the CPU.

2. The interrupt routine is executed, and the process waiting for the interrupt
(target process) is awakened.

3. The currently executing process is suspended, and a context switch is
performed so that the target process can run.

4. The target process must exit from the kernel, where it was blocked waiting
for the interrupt.

5. The target process runs in user mode.

This sequence of events represents the ideal case for process dispatch latency; it is
illustrated by Figure 2-1. Note that events 1-5 described above, are marked in Figure 2-1.

Figure 2-1. Normal Process Dispatch Latency

The process dispatch latency is a very important metric for event–driven real–time
applications because it represents the speed with which the application can respond to an
external event. Most developers of real–time applications are interested in the worst-case
process dispatch latency because their applications must meet certain timing constraints.

Process dispatch latency is affected by some of the normal operations of the operating
system, device drivers and computer hardware. The following sections examine some of
the causes of jitter in process dispatch latency.

RedHawk Linux User’s Guide

2-4

Effect of Disabling Interrupts 2

An operating system must protect access to shared data structures in order to prevent those
data structures from being corrupted. When a data structure can be accessed at interrupt
level, it is necessary to disable interrupts whenever that data structure is accessed. This
prevents interrupt code from corrupting a shared data structure should it interrupt program
level code in the midst of an update to the same shared data structure. This is the primary
reason that the kernel will disable interrupts for short periods of time.

When interrupts are disabled, process dispatch latency is affected because the interrupt
that we are trying to respond to cannot become active until interrupts are again enabled. In
this case, the process dispatch latency for the task awaiting the interrupt is extended by the
amount of time that interrupts remain disabled. This is illustrated in Figure 2-2. In this
diagram, the low priority process has made a system call which has disabled interrupts.
When the high priority interrupt occurs it cannot be acted on because interrupts are
currently disabled. When the low priority process has completed its critical section, it
enables interrupts, the interrupt becomes active and the interrupt service routine is called.
The normal steps of interrupt response then complete in the usual fashion. Note that the
numbers 1-5 marked in Figure 2-2 represent the steps of normal process dispatch latency
as described earlier on page 2-3.

Obviously, critical sections in the operating system where interrupts are disabled must be
minimized to attain good worst-case process dispatch latency.

Figure 2-2. Effect of Disabling Interrupts on Process Dispatch Latency

Real-Time Performance

2-5

Effect of Interrupts 2

The receipt of an interrupt affects process dispatch latency in much the same way that
disabling interrupts does. When a hardware interrupt is received, the system will block
interrupts of the same or lesser priority than the current interrupt. The simple case is
illustrated in Figure 2-3, where a higher priority interrupt occurs before the target
interrupt, causing the target interrupt to be held off until the higher priority interrupt
occurs. Note that the numbers 1-5 marked in Figure 2-3 represent the steps of normal
process dispatch latency as described earlier on page 2-3.

Figure 2-3. Effect of High Priority Interrupt on Process Dispatch Latency

RedHawk Linux User’s Guide

2-6

The relative priority of an interrupt does not affect process dispatch latency. Even when a
low priority interrupt becomes active, the impact of that interrupt on the process dispatch
latency for a high-priority interrupt is the same. This is because interrupts always run at a
higher priority than user-level code. Therefore, even though we might service the interrupt
routine for a high-priority interrupt, that interrupt routine cannot get the user-level context
running until all interrupts have completed their execution. This impact of a low priority
interrupt on process dispatch latency is illustrated in Figure 2-4. Note that the ordering of
how things are handled is different than the case of the high-priority interrupt in
Figure 2-3, but the impact on process dispatch latency is the same. Note that the numbers
1-5 marked in Figure 2-4 represent the steps of normal process dispatch latency as
described earlier on page 2-3.

Figure 2-4. Effect of Low Priority Interrupt on Process Dispatch Latency

Real-Time Performance

2-7

One of the biggest differences between the effect of disabling interrupts and receipt of an
interrupt in terms of the impact on process dispatch latency is the fact that interrupts occur
asynchronously to the execution of an application and at unpredictable times. This is
important to understanding the various levels of shielding that are available.

When multiple interrupts can be received on a given CPU, the impact on worst-case
process dispatch latency can be severe. This is because interrupts can stack up, such that
more than one interrupt service routine must be processed before the process dispatch
latency for a high priority interrupt can be completed. Figure 2-5 shows a case of two
interrupts becoming active while trying to respond to a high priority interrupt. Note that
the numbers 1-5 marked in Figure 2-5 represent the steps of normal process dispatch
latency as described earlier on page 2-3. When a CPU receives an interrupt, that CPU will
disable interrupts of lower priority from being able to interrupt the CPU. If a second
interrupt of lower-priority becomes active during this time, it is blocked as long as the
original interrupt is active. When servicing of the first interrupt is complete, the second
interrupt becomes active and is serviced. If the second interrupt is of higher priority than
the initial interrupt, it will immediately become active. When the second interrupt
completes its processing, the first interrupt will again become active. In both cases, user
processes are prevented from running until all of the pending interrupts have been
serviced.

Conceivably, it would be possible for a pathological case where interrupts continued to
become active, never allowing the system to respond to the high-priority interrupt. When
multiple interrupts are assigned to a particular CPU, process dispatch latency is less
predictable on that CPU because of the way in which the interrupts can be stacked.

Figure 2-5. Effect of Multiple Interrupts on Process Dispatch Latency

RedHawk Linux User’s Guide

2-8

Effect of Disabling Preemption 2

There are critical sections in RedHawk Linux that protect a shared resource that is never
locked at interrupt level. In this case, there is no reason to block interrupts while in this
critical section. However, a preemption that occurs during this critical section could cause
corruption to the shared resource if the new process were to enter the same critical section.
Therefore, preemption is disabled while a process executes in this type of critical section.
Blocking preemption will not delay the receipt of an interrupt. However, if that interrupt
wakes a high priority process, it will not be possible to switch to that process until
preemption has again been enabled. Assuming the same CPU is required, the actual effect
on worst-case process dispatch latency is the same as if interrupts had been disabled. The
effect of disabling preemption on process dispatch latency is illustrated in Figure 2-6.
Note that the numbers 1-5 marked in Figure 2-6 represent the steps of normal process
dispatch latency as described earlier on page 2-3.

Figure 2-6. Effect of Disabling Preemption on Process Dispatch Latency

Real-Time Performance

2-9

Effect of Open Source Device Drivers 2

Device drivers are a part of the Linux kernel, because they run in supervisor mode. This
means that device drivers are free to call Linux functions that disable interrupts or disable
preemption. Device drivers also handle interrupts, therefore they control the amount of
time that might be spent at interrupt level. As shown in previous sections of this chapter,
these actions have the potential to impact worst-case interrupt response and process
dispatch latency.

Device drivers enabled in RedHawk Linux have been tested to be sure they do not
adversely impact real-time performance. While open source device driver writers are
encouraged to minimize the time spent at interrupt level and the time interrupts are
disabled, in reality open source device drivers are written with very varied levels of care.
If additional open source device drivers are enabled they may have a negative impact upon
the guaranteed worst-case process dispatch latency that RedHawk Linux provides.

Refer to the “Device Drivers and Real Time” chapter for more information about real-time
issues with device drivers.

How Shielding Improves Real-Time Performance 2

This section will examine how the different attributes of CPU shielding improve both the
ability for a user process to respond to an interrupt (process dispatch latency) and
determinism in execution of a user process.

When enabling shielding, all shielding attributes are enabled by default. This provides the
most deterministic execution environment on a shielded CPU. Each of these shielding
attributes is described in more detail below. The user should fully understand the impact of
each of the possible shielding attributes, as some of these attributes do have side effects to
normal system functions. There are three categories of shielding attributes currently
supported:

- shielding from background processes

- shielding from interrupts

- shielding from the local interrupt

Each of these attributes is individually selectable on a per-CPU basis. Each of the
shielding attributes is described below.

Shielding From Background Processes 2

This shielding attribute allows a CPU to be reserved for a subset of processes in the
system. This shielding attribute should be enabled on a CPU when you want that CPU to
have the fastest, most predictable response to an interrupt. The best guarantee on process
dispatch latency is achieved when only the task that responds to an interrupt is allowed to
execute on the CPU where that interrupt is directed.

RedHawk Linux User’s Guide

2-10

When a CPU is allowed to run background processes, it can affect the process dispatch
latency of a high-priority task that desires very deterministic response to an interrupt
directed to that CPU. This is because background processes will potentially make system
calls that can disable interrupts or preemption. These operations will impact process
dispatch latency as explained in the sections “Effect of Disabling Interrupts” and “Effect
of Disabling Preemption.”

When a CPU is allowed to run background processes, there is no impact on the
determinism in the execution of high priority processes. This assumes the background
processes have lower priority than the high-priority processes. Note that background
processes could affect the time it takes to wake a process via other kernel mechanisms
such as signals or the server_wake1(3) interface.

Each process in the system has a CPU affinity mask. The CPU affinity mask determines
on which CPUs the process is allowed to execute. The CPU affinity mask is inherited from
the process' parent process and can be set via the mpadvise(3) library routine or the
sched_setaffinity(2) system call. When a CPU is shielded from processes, that
CPU will only run processes that have explicitly set their CPU affinity to a set of CPUs
that only includes shielded CPUs. In other words, if a process has a non-shielded CPU in
its CPU affinity mask, then the process will only run on those CPUs that are not shielded.
To run a process on a CPU shielded from background processes, the process must have a
CPU affinity mask that specifies ONLY shielded CPUs.

Shielding From Interrupts 2

This shielding attribute allows a CPU to be reserved for processing only a subset of
interrupts received by the system. This shielding attribute should be enabled when it is
desirable to have the fastest, most predictable process dispatch latency or when it is
desirable to have determinism in the execution time of an application.

Because interrupts are always the highest priority activity on a CPU, the handling of an
interrupt can affect both process dispatch latency and the time it takes to execute a normal
code path in a high priority task. This is described in the section, “Effect of Interrupts”.

Each device interrupt is associated with an IRQ. These IRQs have an associated CPU
affinity that determines which CPUs are allowed to receive the interrupt. When interrupts
are not routed to a specific CPU, the interrupt controller will select a CPU for handling an
interrupt at the time the interrupt is generated from the set of CPUs in the IRQ affinity
mask. IRQ affinities are modified by the shield(1) command or through
/proc/irq/N/smp_affinity.

Shielding From Local Interrupt 2

The local interrupt is a special interrupt for a private timer associated with each CPU.
Under RedHawk Linux, this timer is used for various timeout mechanisms in the kernel
and at user level. This functionality is described in Chapter 7. By default, this interrupt is
enabled on all CPUs in the system.

Real-Time Performance

2-11

By default, this interrupt fires every ten milliseconds, making the local interrupt one of the
most frequently executed interrupt routines in the system. Therefore, the local interrupt is
a large source of jitter to real-time applications.

When a CPU is shielded from the local interrupt, the functions provided by the local timer
associated with that CPU are no longer performed; however, they continue to run on other
CPUs where the local interrupt has not been shielded. Some of these functions will be lost,
while others can be provided via other means.

One of the functions that is disabled when the local timer is disabled on a particular CPU
is the CPU execution time accounting. This is the mechanism that measures how much
CPU time is used by each process that executes on this CPU. It is possible to continue to
measure the amount of time used by processes at user and system levels by enabling the
High Resolution Process Timing Facility.

When a CPU is shielded from the local interrupt, the local interrupt will continue to be
used for POSIX timers and nanosleep functionality by processes biased to the shielded
CPU. For this reason, if it is critical to totally eliminate local timer interrupts for optimum
performance on a specific shielded CPU, applications utilizing POSIX timers or nanosleep
functionality should not be biased to that CPU. If a process is not allowed to run on the
shielded CPU, its timers will be migrated to a CPU where the process is allowed to run.

Refer to Chapter 7, “System Clocks and Timers” for a complete discussion on the effects
of disabling the local timer.

Interfaces to CPU Shielding 2

This section describes both the command level and programming interfaces that can be
used for setting up a shielded CPU. There is also an example that describes the common
case for setting up a shielded CPU.

Shield Command 2

The shield(1) command sets specified shielding attributes for selected CPUs. The
shield command can be used to mark CPUs as shielded CPUs. A shielded CPU is
protected from some set of system activity in order to provide better determinism in the
time it takes to execute application code.

The list of logical CPUs affected by an invocation of the shield command is given as a
comma-separated list of CPU numbers or ranges.

The format for executing the shield command is:

shield [OPTIONS]

Options are described in Table 2-1.

RedHawk Linux User’s Guide

2-12

In the options listed below, CPULIST is a list of comma separated values or a range of
values representing logical CPUs. For example, the list of CPUs “0-4,7” specifies the
following logical CPU numbers: 0,1,2,3,4,7.

Table 2-1. Options to the shield(1) Command

Option Description

--irq=CPULIST, -i CPULIST Shields all CPUs in CPULIST from interrupts.
The only interrupts that will execute on the
specified CPUs are those that have been
assigned a CPU affinity that would prevent
them from executing on any other CPU.

--loc=CPULIST, -l CPULIST The specified list of CPUs is shielded from the
local timer. The local timer provides time-
based services for a CPU. Disabling the local
timer may cause some system functionality
such as user/system time accounting and
round-robin quantum expiration to be disabled.
Refer to Chapter 7 for more a complete discus-
sion.

--proc=CPULIST, -p CPULIST The specified list of CPUs is shielded from
extraneous processes. Processes that have an
affinity mask that allows them to run on a non-
shielded CPU only run on non-shielded CPUs.
Processes that would be precluded from exe-
cuting on any CPU other than a shielded CPU
are allowed to execute on that shielded CPU.

--all=CPULIST, -a CPULIST The specified list of CPUs will have all
available shielding attributes set. See the
descriptions of the individual shielding options
above to understand the implications of each
shielding attribute.

--help, -h Describes available options and usage.

--version, -V Prints out current version of the command.

--reset, -r Resets shielding attributes for all CPUs. No
CPUs are shielded.

--current, -c Displays current settings for all active CPUs.

Real-Time Performance

2-13

Shield Command Examples 2

The following command first resets all shielding attributes, then shields CPUs 0,1 and 2
from interrupts, then shields CPU 1 from local timer, shields CPU 2 from extraneous
processes, and finally, displays all new settings after the changes:

shield -r -i 0-2 -l 1 -p 2 -c

The following command shields CPUs 1,2 and 3 from interrupts, local timer, and
extraneous processes. CPU 0 is left as a “general purpose” CPU that will service all
interrupts and processes not targeted to a shielded CPU. All shielding attributes are set for
the list of CPUs.

shield --all=1-3

Exit Status 2

Normally, the exit status is zero. However, if an error occurred while trying to modify
shielded CPU attributes, a diagnostic message is issued and an exit status of 1 is returned.

Shield Command Advanced Features 2

It is recommended that the advanced features described below should only be used by
experienced users.

CPUs specified in the CPULIST can be preceded by a '+' or a '-' sign in which case the
CPUs in the list are added to ('+') or taken out of ('-') the list of already shielded CPUs.

Options can be used multiple times. For example, “shield -i 0 -c -i +1 -c” shows current
settings after CPU 0 has been shielded from interrupts and then displays current settings
again after CPU 1 has been added to the list of CPUs shielded from interrupts.

/proc Interface to CPU Shielding 2

The kernel interface to CPU shielding is through the /proc file system using the
following files:

/proc/shield/procs process shielding

/proc/shield/irqs irq shielding

/proc/shield/ltmrs local timer shielding

/proc/shield/all all of the above

All users can read these files, but only root or users with the CAP_SYS_NICE capability may
write to them.

When read, an 8 digit ASCII hexadecimal value is returned. This value is a bitmask of
shielded CPUs. Set bits identify the set of shielded CPUs. The radix position of each set
bit is the number of the logical CPU being shielded by that bit.

RedHawk Linux User’s Guide

2-14

For example:

00000001 - bit 0 is set so CPU #0 is shielded

00000002 - bit 1 is set so CPU #1 is shielded

00000004 - bit 2 is set so CPU #2 is shielded

00000006 - bits 1 and 2 are set so CPUs #1 and #2 are shielded

When written to, an 8 digit ASCII hexadecimal value is expected. This value is a bitmask
of shielded CPUs in a form identical to that listed above. The value then becomes the new
set of shielded CPUs.

See the shield(5) man page for additional information.

Assigning Processes to CPUs 2

This section describes the methods available for assigning a process to a set of CPUs. The
set of CPUs where a process is allowed to run is known as a process’ CPU affinity.

By default, a process can execute on any CPU in the system. Every process has a bit mask,
or CPU affinity, that determines the CPU or CPUs on which it can be scheduled. A process
inherits its CPU affinity from its creator during a fork(2) or a clone(2) but may
change it thereafter.

You can set the CPU affini ty for one or more processes by specifying the
MPA_PRC_SETBIAS command on a call to mpadvise(3), or the -b bias option to the
run(1) command. Another set of interfaces for set t ing CPU aff ini ty are
sched_setaffinity(2) a n d sched_getaffinity(2) . The
sched_setaffinity(2) function restricts the execution of some process to a subset
of the available CPUs. sched_getaffinity(2) returns the set of CPUs that a
process is restricted to.

To set the CPU affinity, the following conditions must be met:

• The real or effective user ID of the calling process must match the real or
saved user ID of the process for which the CPU affinity is being set, or

• the calling process must have the CAP_SYS_NICE capability or be root.

To add a CPU to a process’ CPU affinity, the calling process must have the
CAP_SYS_NICE capability or be root.

A CPU affinity can be assigned to the init(8) process. All general processes are a
descendant from init. As a result, most general processes would have the same CPU
affinity as init or a subset of the CPUs in the init CPU affinity. Only privileged
processes (as described above) are able to add a CPU to their CPU affinity. Assigning a
restricted CPU affinity to init restricts all general processes to the same subset of CPUs
as init. The exception is selected processes that have the appropriate capability who
explicitly modify their CPU affinity. If you wish to change the CPU affinity of init, see
the section “Assigning CPU Affinity to init” below for instructions.

Real-Time Performance

2-15

The mpadvise library routine is documented in the section “Multiprocessor Control
Using mpadvise” below and the mpadvise(3) man page. The run command is
documented in the section “The run Command” in Chapter 4 and the run(1) man page.
For information on sched_setaffinity(2) and sched_getaffinity(2), see
the sched_affinity(2) man page.

Multiprocessor Control Using mpadvise 2

mpadvise(3) performs a variety of multiprocessor functions. CPUs are identified by
specifying a pointer to a cpuset_t object, which specifies a set of one or more CPUs.
For more information on CPU sets, see the cpuset(3) man page.

Synopsis

#include <mpadvise.h>

int mpadvise (int cmd, int which, int who, cpuset_t *setp)

gcc [options] file -lccur_rt ...

Informational Commands

The following commands get or set information about the CPUs in the system. The which
and who parameters are ignored.

MPA_CPU_PRESENT Returns a mask indicating which CPUs are physically
present in the system. CPUs brought down with the
cpu(1) command are still included.

MPA_CPU_ACTIVE Returns a mask indicating which CPUs are active, that is,
initialized and accepting work, regardless of how many
exist in the backplane. If a CPU has been brought down
using the cpu(1) command, it is not included.

MPA_CPU_BOOT Returns a mask indicating the CPU that booted the system.
The boot CPU has some responsibilities not shared with the
other CPUs.

Control Commands

The following commands provide control over the use of CPUs by a process, a process
group, or a user.

MPA_PRC_GETBIAS Return the CPU set for the CPU affinity of the specified
process. Only MPA_PID is supported at this time.

MPA_PRC_SETBIAS Sets the CPU affinity of all the specified processes to the
specified cpuset. To change the CPU affinity of a process,
the real or effective user ID must match the real or the saved
(from exec(2)) user ID of the process, unless the current
user has the CAP_SYS_NICE capability.

MPA_PRC_GETRUN Return a CPU set with exactly one CPU in it that
corresponds to the CPU where the specified process is
currently running (or waiting to run). Only MPA_PID is

RedHawk Linux User’s Guide

2-16

supported at this time. Note that it is possible that the CPU
assignment may have already changed by the time the value
is returned (if more than one CPU is specified in the
process’ affinity).

Using which and who

which Used to specify the selection criteria. Can be one of the
following:

MPA_PID (a specific process)
MPA_PGID (a process group)
MPA_UID (a user)

who Interpreted relative to which:

a process identifier
a process group identifier
user identifier

A who value of 0 causes the process identifier, process
group identifier, or user identifier of the caller to be used.

Assigning CPU Affinity to init 2

All general processes are a descendent from init(8). By default, init has a mask that
includes all CPUs in the system and only selected processes with appropriate capabilities
can modify their CPU affinity. If it is desired that by default all processes are restricted to
a subset of CPUs, a CPU affinity can be assigned by a privileged user to the init
process. To achieve this goal, the run(1) command can be invoked early during the
system initialization process.

For example, to bias init and all its descendants to CPUs 1, 2 and 3, the following
command may be added at the end of the system’s /etc/rc.sysinit script, which is
called early during system initialization (see inittab(5)). The init process is
specified in this command by its process ID which is always 1.

/usr/bin/run -b 1-3 -p 1

The same effect can be achieved by using the shield(1) command. The advantage of
using this command is that it can be done from the command line at any run level. The
shield command will take care of migrating processes already running in the CPU to be
shielded. In addition, with the shield command you can also specify different levels of
shielding. See the section “Shield Command” or the shield(1) man page for more
information on this command.

For example, to shield CPU 0 from running processes, you would issue the following
command.

$ shield -p 0

After shielding a CPU, you can always specify selected processes to run in the shielded
CPU using the run command.

Real-Time Performance

2-17

For example, to run mycommand on CPU 0 which was previously shielded from
processes, you would issue the following command:

$ run -b 0 ./mycommand

Example of Setting Up a Shielded CPU 2

The following example shows how to use a shielded CPU to guarantee the best possible
interrupt response to an edge-triggered interrupt from the RCIM. In other words, the intent
is to optimize the time it takes to wake up a user-level process when the edge-triggered
interrupt on an RCIM occurs and to provide a deterministic execution environment for
that process when it is awakened. In this case the shielded CPU should be set up to handle
just the RCIM interrupt and the program responding to that interrupt.

The first step is to direct interrupts away from the shielded processor through the
shield(1) command. The local timer interrupt will also be disabled and background
processes will be precluded to achieve the best possible interrupt response. The shield
command that would accomplish these results for CPU 1 is:

$ shield -a 1

At this point, there are no interrupts and no processes that are allowed to execute on
shielded CPU 1. The shielding status of the CPUs can be checked using any of the
following methods:

via the shield(1) command:

$ shield -c
 CPUID all irqs ltmrs procs

 0 no no no no
 1 no no no no
 2 no no no no
 3 no no no no

via the cpu(1) command:

$ cpu

log id
(phys id) state shielding
--------- ----- -------------
0 (0) up none
1 (0) up none
2 (1) up none
3 (1) up none

or via the /proc file system:

$ cat /proc/shield/all
00000002

RedHawk Linux User’s Guide

2-18

To check only the status of interrupt shielding on CPU 1:

$ cat /proc/shield/irqs
00000002

This indicates that all interrupts are precluded from executing on CPU 1. In this example,
the goal is to respond to a particular interrupt on the shielded CPU, so it is necessary to
direct the RCIM interrupt to CPU 1 and to allow the program that will be responding to
this interrupt to run on CPU 1.

The first step is to determine the IRQ to which the RCIM interrupt has been assigned. The
assignment between interrupt and IRQ will be constant for devices on the motherboard
and for a PCI device in a particular PCI slot. If a PCI board is moved to a new slot, its IRQ
assignment may change. To find the IRQ for your device, perform the following
command:

$ cat /proc/interrupts
 IRQs CPU0 CPU1 CPU2 CPU3

0: 41067 0 0 0 IO-APIC-edge timer

1: 6 0 0 0 IO-APIC-edge keyboard

2: 0 0 0 0 XT-PIC cascade

4: 11 0 0 0 IO-APIC-edge serial

7: 0 0 0 0 IO-APIC-level usb-ohci

8: 1 0 0 0 IO-APIC-edge rtc

 12: 5 0 0 0 IO-APIC-edge PS/2 Mouse

 14: 4 0 0 0 IO-APIC-edge ide0

 16: 6831 0 0 0 IO-APIC-level aic7xxx

 17: 13742 0 0 0 IO-APIC-level eth0

 20: 0 0 0 0 IO-APIC-level rcim

 21: 71 0 0 0 IO-APIC-level megaraid

 NMI: 0 0 0 0
 LOC: 38462 38482 38484 38466
 ERR: 0
 MIS: 0

 SOFTIRQs CPU0 CPU1 CPU2 CPU3
 0: 39681 0 0 0 timer tasklets

 1: 9414 0 0 0 hi tasklets
 2: 3926 0 0 0 net xmit
 3: 7267 312 0 107 net recv
 4: 168382 0 0 2 lo tasklets

 240434 312 0 109 totals
 BHs CPU0 CPU1 CPU2 CPU3

 0: 0 0 0 0 TIMER_BH
 1: 2716 0 0 0 TQUEUE_BH
 3: 9 0 0 0 SERIAL_BH
 8: 6948 0 0 0 SCSI_BH
 9: 6 0 0 0 IMMEDIATE_BH
 9679 0 0 0 totals

The first section of the /proc/interrupts file contains the IRQ to device
assignments. The RCIM is assigned to IRQ 20 in the list above. Now that its IRQ number
is known, the interrupt for the RCIM can be assigned to the shielded processor via the
/proc file that represents the affinity mask for IRQ 20. The affinity mask for an IRQ is
an 8 digit ASCII hexadecimal value. The value is a bit mask of CPUs. Each bit set in the
mask represents a CPU where the interrupt routine for this interrupt may be handled. The

Real-Time Performance

2-19

radix position of each set bit is the number of a logical CPU that can handle the interrupt.
The following command sets the CPU affinity mask for IRQ 20 to CPU 1:

$ echo 2 > /proc/irq/20/smp_affinity

Note that the “smp_affinity” file for IRQs is installed by default with permissions
such that only the root user can change the interrupt assignment of an IRQ. The /proc
file for IRQ affinity can also be read to be sure that the change has taken effect:

$ cat /proc/irq/20/smp_affinity
00000002 user 00000002 actual

Note that the value returned for “user” is the bit mask that was specified by the user for the
IRQ's CPU affinity. The value returned for “actual” will be the resulting affinity after any
non-existent CPUs and shielded CPUs have been removed from the mask. Note that
shielded CPUs will only be stripped from an IRQ's affinity mask if the user set an affinity
mask that contained both shielded and non-shielded CPUs. This is because a CPU
shielded from interrupts will only handle an interrupt if there are no unshielded CPUs in
the IRQ's affinity mask that could handle the interrupt. In this example, CPU 1 is shielded
from interrupts, but CPU 1 will handle IRQ 20 because its affinity mask specifies that only
CPU 1 is allowed to handle the interrupt.

The next step is to be sure that the program responding to the RCIM edge-triggered
interrupt will run on the shielded processor. Each process in the system has an assigned
CPU affinity mask. For a CPU shielded from background processes, only a process that
has a CPU affinity mask which specifies ONLY shielded CPUs will be allowed to run on a
shielded processor. Note that if there are any non-shielded CPUs in a process’ affinity
mask, then the process will only execute on the non-shielded CPUs.

The following command will execute the user program “edge-handler” at a real-time
priority and force it to run on CPU 1:

$ run -s fifo -P 50 -b 1 edge-handler

Note that the program could also set its own CPU affinity by calling the library routine
mpadvise(3) as described in the section “Multiprocessor Control Using mpadvise.”

The CPU affinity of the program edge-handler can be checked via the /proc file system
as well. First the PID of this program must be attained through the ps(1) command:

$ ps
 PID TTY TIME CMD
5548 pts/2 00:00:00 ksh
9326 pts/2 00:00:00 edge-handler
9354 pts/2 00:00:00 ps

Then view the /proc file for this program's affinity mask:

$ cat /proc/9326/affinity
00000002 user 00000002 actual

Alternatively, the run(1) command can be used to check the program’s affinity:

$ run -i -n edge-handler
Pid Bias Actual Policy Pri Nice Name
9326 0x2 0x2 fifo 50 0 edge-handler

RedHawk Linux User’s Guide

2-20

Note that the value returned for “user”/”bias” is the bit mask that was specified by the user
for the process' CPU affinity. The value returned for “actual” will be the resulting affinity
after any non-existent CPUs and shielded CPUs have been removed from the mask. Note
that shielded CPUs will only be stripped from a process' affinity mask if the user set an
affinity mask that contained both shielded and non-shielded CPUs. This is because a CPU
shielded from background processes will only handle a process if there are no unshielded
CPUs in the process' affinity mask that could run the program. In this example, CPU 1 is
shielded from background processes, but CPU 1 will run the “edge-handler” program
because its affinity mask specifies that only CPU 1 is allowed to run this program.

Procedures for Increasing Determinism 2

The following sections explain various ways in which you can improve performance using
the following techniques:

• locking a process’ pages in memory

• using favorable static priority assignments

• removing non-critical processing from interrupt level

• speedy wakeup of processes

• judicious use of hyper-threading

Locking Pages in Memory 2

You can avoid the overhead associated with paging and swapping by using the
mlockall(2), munlockall(2), mlock(2), and munlock(2) system calls.

These system calls allow you to lock and unlock all or a portion of a process’ virtual
address space in physical memory. These interfaces are based on IEEE Standard 1003.1b-
1993.

With each of these calls, pages that are not resident at the time of the call are faulted into
memory and locked. To use the mlockall(2), munlockall(2), mlock(2), and
munlock(2) system calls you must have the CAP_IPC_LOCK capability (for additional
information on capabilities, refer to Chapter 12 and the pam_capability(8) man
page.

Procedures for using these system calls are fully explained in the corresponding man
pages.

Real-Time Performance

2-21

Setting the Program Priority 2

The RedHawk Linux kernel accommodates static priority scheduling––that is, processes
scheduled under certain POSIX scheduling policies do not have their priorities changed by
the operating system in response to their run-time behavior.

Processes that are scheduled under one of the POSIX real-time scheduling policies always
have static priorities. (The real-time scheduling policies are SCHED_RR and SCHED_FIFO;
they are explained Chapter 4.) To change a process’ scheduling priority, you may use the
sched_setscheduler(2) and the sched_setparam(2) system calls. Note that
to use these system calls to change the priority of a process to a higher (more favorable)
value, you must have the CAP_SYS_NICE capability (for complete information on
capability requirements for using these routines, refer to the corresponding man pages).

The highest priority process running on a particular CPU will have the best process
dispatch latency. If a process is not assigned a higher priority than other processes running
on a CPU, its process dispatch latency will be affected by the time that the higher priority
processes spend running. As a result, if you have more than one process that requires good
process dispatch latency, it is recommended that you distribute those processes among
several CPUs. Refer to the section “Assigning Processes to CPUs,” for the procedures for
assigning processes to particular CPUs.

Process scheduling is fully described in Chapter 4. Procedures for using the
sched_setscheduler and sched_setparam system calls to change a process’
priority are also explained.

Setting the Priority of Deferred Interrupt Processing 2

Linux supports several mechanisms that are used by interrupt routines in order to defer
processing that would otherwise have been done at interrupt level. The processing
required to handle a device interrupt is split into two parts. The first part executes at
interrupt level and handles only the most critical aspects of interrupt completion
processing. The second half of the interrupt routine is deferred to run at program level. By
removing non-critical processing from interrupt level, the system can achieve better
interrupt response time as described earlier in this chapter in the section “Effect of
Interrupts.”

The second half of an interrupt routine can be handled by several different kernel
daemons, depending on which deferred interrupt technique is used by the device driver.
There are kernel tunables that allow a system administrator to set the priority of the kernel
daemons that handle deferred interrupt processing. When a real-time task executes on a
CPU that is handling deferred interrupts, it is possible to set the priority of the deferred
interrupt kernel daemon so that a high-priority user process has a more favorable priority
than the deferred interrupt kernel daemon. This allows more deterministic response time
for this real-time process.

For more information on deferred interrupt processing, including the daemons used and
kernel tunables for setting their priorities, see the chapter “Device Drivers and Real
Time.”

RedHawk Linux User’s Guide

2-22

Waking Another Process 2

In multiprocess applications, you often need to wake a process to perform a particular
task. One measure of the system’s responsiveness is the speed with which one process can
wake another process. The fastest method you can use to perform this switch to another
task is to use the postwait(2) system call. For compatibility with legacy code, the
server_block(2) and server_wake1(2) functions are provided in RedHawk
Linux.

Procedures for using these functions are explained in Chapter 5 of this guide.

Hyper-threading 2

Hyper-threading is a feature of the Intel Pentium Xeon processor that allows for a single
physical processor to run multiple threads of software applications simultaneously. This is
achieved by having two sets of architectural state on each processor while sharing one set
of processor execution resources. The architectural state tracks the flow of a program or
thread, and the execution resources are the units on the processor that do the work: add,
multiply, load, etc. Each of the two sets of architectural state in a hyper-threaded physical
CPU can be thought of as a “logical” CPU. The term “sibling CPU” will be used when
referring to the other CPU in a pair of logical CPUs that reside on the same physical CPU.

When scheduling threads, the operating system treats the two logical CPUs on a physical
CPU as if they were separate processors. Commands like ps(1) or shield(1) will
identify each logical CPU. This allows multiprocessor capable software to run unmodified
on twice as many logical processors. While hyper-threading technology will not provide
the level of performance scaling achieved by adding a second physical processor, some
benchmark tests show that parallel applications can experience as much as a 30 percent
gain in performance. See the section “Recommended CPU Configurations” for ideas on
how to best utilize hyper-threading for real-time applications.

The performance gain from hyper-threading comes from the fact that having one
processor with two logical CPUs allows the processor to more efficiently utilize execution
resources. During normal program operation on a non-hyper-threaded CPU there are often
times when execution resources on the chip sit idle awaiting input. Because the two
logical CPUs share one set of execution resources, the thread executing on the second
logical CPU can use resources that would otherwise be idle if only one thread was
executing. For example while one logical CPU is stalled waiting for a fetch from memory
to complete, the other logical CPU can continue processing its instruction stream. Because
the speeds of the processor and the memory bus are very unequal, a processor can spend a
significant portion of its time waiting for data to be delivered from memory. Thus, for
certain parallel applications hyper-threading provides a significant performance
improvement. Another example of the parallelism that can be achieved through hyper-
threading is that one logical processor can execute a floating-point operation while the
other logical processor executes an addition and a load operation. These operations
execute in parallel because they utilize different processor execution units on the chip.

While hyper-threading will generally provide better performance in terms of the execution
time for a multi-thread workload, for real-time applications hyper-threading can be
problematic. This is because of the impact on the determinism of execution of a thread.
Because a hyper-threaded CPU shares the execution unit of the processor with another

Real-Time Performance

2-23

thread, the execution unit itself becomes another level of resource contention when a
thread executes on a hyper-threaded CPU. Because the execution unit will not always be
available when a high priority process on a hyper-threaded CPU attempts to execute an
instruction, the amount of time that it takes to execute a code segment on a hyper-threaded
CPU is not as predictable as on a CPU that does not have hyper-threading enabled.

A designer of a parallel real-time application will have to make a decision about whether
hyper-threading makes sense for his application. It should first be determined whether the
application benefits from having its tasks run in parallel on a hyper-threaded CPU as
compared to running those tasks sequentially. If hyper-threading does provide a benefit,
then the developer can make measurements to determine how much execution time jitter
is introduced into the execution speeds of important high-priority threads by running them
on a hyper-threaded CPU.

The level of jitter that is acceptable is highly application dependent. If there is an
unacceptable amount of jitter introduced into a real-time application because of hyper-
threading, then the affected real-time task should be run on a shielded CPU with the
sibling CPU marked down via the cpu(1) command. It should be noted that certain cross
processor interrupts will still be handled on a CPU that is marked down (see the cpu(1)
man page for more information). An example of a system with a CPU marked down is
given later in this chapter. If desired, hyper-threading can be disabled on a system-wide
basis. See the section “RedHawk and Hyper-threading” below for details.

Hyper-threading technology is complementary to MP-based systems because the
operating system can not only schedule separate threads to execute on each physical
processor simultaneously, but on each logical processor simultaneously as well. This
improves overall performance and system response because many parallel threads can be
dispatched sooner due to twice as many logical processors being available to the system.
Even though there are twice as many logical processors available, they are still sharing the
same amount of execution resources. So the performance benefit of another physical
processor with its own set of dedicated execution resources will offer greater performance
levels. In other words, hyper-threading technology is complementary to multiprocessing
by offering greater parallelism within each processor in the system, but is not a
replacement for dual or multiprocessing. This can be especially true for applications that
are using shielded CPUs for obtaining a deterministic execution environment.

As mentioned above, each logical CPU maintains a complete set of the architecture state.
The architecture state (which is not shared by the sibling CPUs) consists of registers
including the general-purpose registers, the control registers, the advanced programmable
interrupt controller (APIC) registers and some machine state registers. Logical processors
share nearly all other resources on the physical processor, such as caches, execution units,
branch predictors, control logic, and buses. Each logical processor has its own interrupt
controller or APIC. Assigning interrupts to logical CPUs works the same as it always has
because interrupts sent to a specific logical CPU are handled only by that logical CPU.

RedHawk Linux User’s Guide

2-24

RedHawk and Hyper-threading 2

Hyper-threading is enabled by default on all physical CPUs. This means that if a system
was previously running an older version of RedHawk, commands like top(1) and
run(1) will report twice as many CPUs as were previously present on the same system.

The system administrator can disable hyper-threading on a system-wide basis by turning
off the CONFIG_HT kernel tunable accessible through the Processor Type and Features
selection of the Linux Kernel Configuration menu or at boot time by specifying the “noht”
option. Note that when hyper-threading is disabled on a system-wide basis, the logical
CPU numbers are equivalent to the physical CPU numbers.

Hyper-threading can be disabled on a per-CPU basis using the cpu(1) command to mark
one of the siblings down. Refer to the cpu(1) man page for more details.

Recommended CPU Configurations 2

Hyper-threading technology offers the possibility of better performance for parallel
applications. However, because of the manner in which CPU resources are shared between
the logical CPUs on a single physical CPU, different application mixes will have varied
performance results. This is especially true when an application has real-time
requirements requiring deterministic execution times for the application. Therefore, it is
important to test the performance of the application under various CPU configurations to
determine optimal performance. For example, if there are two tasks that could be run in
parallel on a pair of sibling CPUs, be sure to compare the time it takes to execute these
tasks in parallel using both siblings versus the time it takes to execute these tasks serially
with one of the siblings down. This will determine whether these two tasks can take
advantage of the unique kind of parallelism provided by hyper-threading.

Below are suggested ways of configuring an SMP system that contains hyper-threaded
CPUs for real-time applications. These examples contain hints about configurations that
might work best for applications with various performance characteristics.

Standard Shielded CPU Model 2

This model would be used by applications having very strict requirements for determinism
in program execution. A shielded CPU provides the most deterministic environment for
these types of tasks (see the section “How Shielding Improves Real-Time Performance”
for more information on shielded CPUs). In order to maximize the determinism of a
shielded CPU, hyper-threading on that physical CPU is disabled. This is accomplished by
marking down the shielded CPU’s sibling logical CPU using the cpu(1) command.

In the Standard Shielded CPU Model, the non-shielded CPUs have hyper-threading
enabled. These CPUs are used for a non-critical workload because in general hyper-
threading allows more CPU resources to be applied.

Figure 2-7 illustrates the Standard Shielded CPU Model on a system that has two physical
CPUs (four logical CPUs). In this example, CPU 3 has been taken down and CPU 2 is
shielded from interrupts, processes and hyper-threading. A high priority interrupt and the
program responding to that interrupt would be assigned to CPU 2 for the most
deterministic response to that interrupt.

Real-Time Performance

2-25

Figure 2-7. The Standard Shielded CPU Model

The commands to set up this configuration are:

$ shield -a 2
$ cpu -d 3

Shielding with Interrupt Isolation 2

This model is very similar to the Standard Shielded CPU Model. However, in this case all
logical CPUs are used, none are taken down. Like the Standard Shielded CPU Model, a
subset of the logical CPUs is shielded. But rather than taking down the siblings of the
shielded CPUs, those CPUs are also shielded and are dedicated to handling high priority
interrupts that require deterministic interrupt response. This is accomplished by shielding
the sibling CPUs from processes and interrupts and then setting the CPU affinity of a
particular interrupt to that sibling CPU. Shielding with interrupt isolation is illustrated in
Figure 2-8.

Figure 2-8. Shielding with Interrupt Isolation

The benefit of this approach is that it provides a small amount of parallelism between the
interrupt routine (which runs on CPU 3) and execution of high priority tasks on the sibling
CPU (the program awaiting the interrupt runs on CPU 2). Because the interrupt routine is
the only code executing on CPU 3, this interrupt routine will generally be held in the L1
cache in its entirety, and the code will stay in the cache, providing optimum execution

RedHawk Linux User’s Guide

2-26

times for the interrupt routine. There is a small penalty to pay however, because the
interrupt routine must send a cross processor interrupt in order to wake the task that is
awaiting this interrupt on the sibling CPU. This additional overhead has been measured at
less than two microseconds.

Another potential use of using shielding with interrupt isolation is to improve I/O
throughput for a device. Because we are dedicating a CPU to handling a device interrupt,
this interrupt will always complete as quickly as possible when an I/O operation has
completed. This allows the interrupt routine to immediately initiate the next I/O operation,
providing better I/O throughput.

Hyper-thread Shielding 2

This configuration is another variation of the Standard Shielded CPU Model. In this case,
one sibling is shielded while the other sibling is allowed to run general tasks. The shielded
CPU will have its determinism impacted by the activity on its sibling CPU. However, the
advantage is that much more of the CPU power of this physical CPU can be utilized by the
application. Figure 2-9 illustrates a Hyper-thread Shielding configuration.

Figure 2-9. Hyper-thread Shielding

In this example, CPU 3 is shielded and allowed to run only a high priority interrupt and the
program that responds to that interrupt. CPU 2 is either not shielded and therefore
available for general use or is set up to run a specific set of tasks. The tasks that run on
CPU 2 will not directly impact interrupt response time, because when they disable
preemption or block interrupts there is no effect on the high priority interrupt or task
running on CPU 3. However, at the chip resource level there is contention that will impact
the determinism of execution on CPU 3. The amount of impact is very application
dependent.

Floating-point / Integer Sharing 2

This configuration can be used when the application has some programs that primarily
perform floating-point operations and some programs that primarily perform integer
arithmetic operations. Both siblings of a hyper-threaded CPU are used to run specific
tasks. Programs that are floating-point intensive are assigned to one sibling CPU and
programs that primarily execute integer operations are assigned to the other sibling CPU.
The benefit of this configuration is that floating-point operations and integer operations
use different chip resources. This allows the application to make good use of hyper-thread
style parallelism because there is more parallelism that can be exploited at the chip level.

Real-Time Performance

2-27

It should also be noted that applications on the CPU that are only performing integer
operations would see faster context switch times because there won’t be save/restore of
the floating-point registers during the context switch.

Shared Data Cache 2

This configuration can be used when the application is a producer/consumer style of
application. In other words, one process (the consumer) is operating on data that has been
passed from another process (the producer). In this case, the producer and consumer
threads should be assigned to the siblings of a hyper-threaded CPU. Because the two
sibling CPUs share the data cache, it is likely that the data produced by the producer
process is still in the data cache when the consumer process accesses the data that has been
passed from the producer task. Using two sibling CPUs in this manner allows the producer
and consumer tasks to operate in parallel, and the data passed between them is essentially
passed via the high-speed cache memory. This offers significant opportunity for exploiting
hyper-thread style parallelism.

Another potential use of this model is for the process on one sibling CPU to pre-fetch data
into the data cache for a process running on the other sibling on a hyper-threaded CPU.

Shielded Uniprocessor 2

This configuration is a variation of the Hyper-thread Shielding configuration. The only
difference is that we are applying this technique to a uniprocessor rather than to one
physical CPU in an SMP system. Because a physical CPU now contains two logical
CPUs, a uniprocessor can now be used to create a shielded CPU. In this case, one of the
CPUs is marked shielded while the other CPU is used to run background activity.
Determinism on this type of shielded CPU will not be as solid as using CPU shielding on a
distinct physical CPU, but it will be significantly better than with no shielding at all.

Known Issues with Linux Determinism 2

The following are issues with standard Linux that are known to have a negative impact on
real-time performance. These actions are generally administrative in nature and should not
be performed while the system is executing a real-time application.

• The hdparm(1) utility is a command line interface for enabling special
parameters for IDE and SCSI disks. This utility is known to disable
interrupts for very lengthy periods of time.

• The blkdev_close(2) interface is used by BootLoaders to write to the
raw block device. This is known to disable interrupts for very lengthy
periods of time.

• Avoid scrolling the frame-buffer (fb) console. This is known to disable
interrupts for very lengthy periods of time.

• When using virtual consoles, don’t switch consoles. This is known to
disable interrupts for very lengthy periods of time.

RedHawk Linux User’s Guide

2-28

• Avoid mounting and unmounting CDs and unmounting file systems. These
actions produce long latencies.

• Turn off auto-mount of CDs. This is a polling interface and the periodic
poll introduces long latencies.

• By default the Linux kernel locks the Big Kernel Lock (BKL) before
calling a device driver’s ioctl() routine. This can cause delays when the
ioctl() routine is called by a real-time process or is called on a shielded
CPU. See the “Device Drivers and Real Time” chapter for more
information on how to correct this problem.

3
Real-Time Interprocess Communication

Overview . 3-1
Understanding POSIX Message Queues . 3-1

Understanding Basic Concepts. 3-2
Understanding Advanced Concepts . 3-4
Understanding Message Queue Library Routines . 3-5

Understanding the Message Queue Attribute Structure 3-5
Using the Library Routines . 3-6

Using the mq_open Routine. 3-6
Using the mq_close Routine . 3-9
Using the mq_unlink Routine . 3-9
Using the mq_send and mq_timedsend Routines 3-10
Using the mq_receive and mq_timedreceive Routines 3-12
Using the mq_notify Routine. 3-14
Using the mq_setattr Routine. 3-16
Using the mq_getattr Routine . 3-16

Understanding System V Messages . 3-17
Using Messages . 3-18
Getting Message Queues . 3-21

Using msgget. 3-21
Example Program . 3-23

Controlling Message Queues . 3-25
Using msgctl . 3-25
Example Program . 3-26

Operations for Messages . 3-30
Using Message Operations: msgsnd and msgrcv . 3-30

Sending a Message. 3-30
Receiving Messages. 3-31

Example Program . 3-31

RedHawk Linux User’s Guide

3-1

3
Chapter 3Real-Time Interprocess Communication

3
3
3

This chapter describes RedHawk Linux support for real-time interprocess communication
through POSIX and System V message passing facilities.

Appendix A contains an example program that illustrates the use of the System V message
queue facilities.

Overview 3

Message queues allow one or more processes to write messages to be read by one or more
reading processes.

Real-time interprocess communication support in RedHawk Linux includes POSIX mes-
sage-passing facilities that are based on the IEEE 1003.1b-1993 Standard as well as the
System V message type of interprocess communication (IPC).

POSIX message passing facilities provide the means for passing arbitrary amounts of data
between cooperating processes. POSIX message queue library routines allow a process to
create, open, query and destroy a message queue, send and receive messages from a mes-
sage queue, associate a priority with a message to be sent, and request asynchronous noti-
fication when a message arrives.

System V messages are also supported. Information about this type of interprocess com-
munication (IPC) is presented in “Understanding System V Messages.”

POSIX and System V messaging functionality operate independent of each other. The
recommended message-passing mechanism is the POSIX message queue facility because
of its efficiency and portability.

Understanding POSIX Message Queues 3

An application may consist of multiple cooperating processes, possibly running on
separate processors. These processes may use system-wide POSIX message queues to
efficiently communicate and coordinate their activities.

The primary use of POSIX message queues is for passing data between processes. In
contrast, there is little need for functions that pass data between cooperating threads in the
same process because threads within the same process already share the entire address
space. However, nothing prevents an application from using message queues to pass data
between threads in one or more processes.

“Understanding Basic Concepts” presents basic concepts related to the use of POSIX
message queues. “Understanding Advanced Concepts” presents advanced concepts.

RedHawk Linux User’s Guide

3-2

Understanding Basic Concepts 3

POSIX message queues are implemented as files in the mqueue file system. This file
system must be mounted on the mountpoint /dev/mqueue. A message queue appears as
a file in the directory /dev/mqueue; for example:

/dev/mqueue/my_queue

Cat(1), stat(1), ls(1), chmod(1), chown(1), rm(1), touch(1), and
umask(2) all work on mqueue files as on other files. File permissions and modes also
work the same as with other files.

Other common file manipulation commands like copy may work to some degree, but
mqueue files, although reported as regular files by the VFS, are not designed to be used in
this manner. One may find some utility with some commands, however; notably cat and
touch:

• touch will create a queue with limits set to ‘0’.

• cat will produce some information in four fields:

QSIZE number of bytes in memory occupied by the entire queue
NOTIFY notification marker (see mq_notify(2))
SIGNO the signal to be generated during notification
NOTIFY_PID which process should be notified

One cannot create a directory under /dev/mqueue because the mqueue file system does
not support directories. One might use the system calls close(2), open(2), and
unlink(2) for operating on POSIX message queues within source code, but full access
to POSIX message queue features can only be achieved through library routines provided
by the RedHawk Linux real-time library interface, which serves as a wrapper around
kernel-level ioctls. The ioctls perform the actual operations. See “Understanding Message
Queue Library Routines” for futher discussion on using the interface.

When the RedHawk Linux real-time library rpm is installed, the mountpoint
/dev/mqueue is created and the following line is appended to /etc/fstab:

none /dev/mqueue mqueue defaults 0 0

To manually mount the mqueue file system on /dev/mqueue, issue the command:

mkdir -p /dev/mqueue (if the mountpoint does not exist)
mount -t mqueue none /dev/mqueue

This is how the mounted mqueue file system appears after issuing the mount command
with no options (see the mount(8) man page).

none on /dev/mqueue type mqueue (rw)

Real-Time Interprocess Communication

3-3

It is important not to become confused about the nature of /dev/mqueue. It is a
mountpoint only and not a device file. The ‘none’ argument in the mount command
reflects this:

mount -t type device dir

type = mqueue
device = none
dir = /dev/mqueue

The major number 0 (reserved as null device number) is used by the kernel for unnamed
devices (e.g. non-device mounts).

The act of mounting /dev/mqueue starts the file system driver. Nothing prevents
mounting the mqueue file system on paths other than /dev/mqueue, but the interface
and driver will reject references to POSIX message queues that aren’t rooted under
/dev/mqueue.

The following system limits apply to POSIX message queues:

MQ_MAXMSG 40 max number of message queues
MQ_MAX 4 max number of messages in each queue
MQ_MSGSIZE 16384 max message size
MQ_MAXSYSSIZE 1048576 max size that all queues can have together
MQ_PRIO_MAX 32768 max message priority

A message queue consists of message slots. To optimize message sending and receiving,
all message slots within one message queue are the same size. A message slot can hold
one message. The message size may differ from the message slot size, but it must not
exceed the message slot size. Messages are not padded or null-terminated; message length
is determined by byte count. Message queues may differ by their message slot sizes and
the maximum number of messages they hold. Figure 3-1 illustrates some of these facts.

Figure 3-1. Example of Two Message Queues and Their Messages

Message Queue 2

Message Queue 1

Message

163230

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

• • • • • • • • • • • •þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ••þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•þ•

• • • • • • • • • • •• • • • • • • • • • •
• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •

Message
Slot

RedHawk Linux User’s Guide

3-4

POSIX message queue library routines allow a process to:

• create, open, query, close, and destroy a message queue

• send messages to and receive messages from a message queue (may be
timed)

• associate a priority with a message to be sent

• request asynchronous notification via a user-specified signal when a
message arrives at a specific empty message queue

Processes communicate with message queues via message queue descriptors. A child
process created by a fork(2) system call inherits all of the parent process’ open
message queue descriptors. The exec(2) and exit(2) system calls close all open
message queue descriptors.

When one thread within a process opens a message queue, all threads within that process
can use the message queue if they have access to the message queue descriptor.

A process attempting to send messages to or receive messages from a message queue may
have to wait. Waiting is also known as being blocked.

Two different types of priority play a role in message sending and receiving: message
priority and process-scheduling priority. Every message has a message priority. The
oldest, highest-priority message is received first by a process.

Every process has a scheduling priority. Assume that multiple processes are blocked to
send a message to a full message queue. When space becomes free in that message queue,
the system wakes the highest-priority process; this process sends the next message. When
there are multiple processes having the highest priority, the one that has been blocked the
longest is awakened. Assume that multiple processes are blocked to receive a message
from an empty message queue. When a message arrives at that message queue, the same
criteria is used to determine the process that receives the message.

Understanding Advanced Concepts 3

Spin locks synchronize access to the message queue, protecting message queue structures.
While a spin lock is locked, most signals are blocked to prevent the application from
aborting. However, certain signals cannot be blocked.

Assume that an application uses message queues and has a lock. If a signal aborts this
application, the message queue becomes unusable by any process; all processes
attempting to access the message queue hang attempting to gain access to the lock. For
successful accesses to be possible again, a process must destroy the message queue via
mq_unlink(2) and re-create the message queue via mq_open(2). For more
information on these routines, see “Using the mq_unlink Routine” and “Using the
mq_open Routine,” respectively.

Real-Time Interprocess Communication

3-5

Understanding Message Queue Library Routines 3

The POSIX library routines that support message queues depend on a message queue
attribute structure. “Understanding the Message Queue Attribute Structure” describes this
structure. “Using the Library Routines” presents the library routines.

All applications that call message queue library routines must link in the Concurrent real-
time library. You may link this library either statically or dynamically. The following
example shows the typical command-line format:

gcc [options...] file -lccur_rt ...

Understanding the Message Queue Attribute Structure 3

The message queue attribute structure mq_attr holds status and attribute information
about a specific message queue. When a process creates a message queue, it
automatically creates and initializes this structure. Every attempt to send messages to or
receive messages from this message queue updates the information in this structure.
Processes can query the values in this structure.

You supply a pointer to an mq_attr structure when you invoke mq_getattr(2) and
optionally when you invoke mq_open(2). Refer to “Using the mq_getattr Routine” and
“Using the mq_open Routine,” respectively, for information about these routines.

The mq_attr structure is defined in <mqueue.h> as follows:

struct mq_attr {
 long mq_flags;
 long mq_maxmsg;
 long mq_msgsize;
 long mq_curmsgs;
};

The fields in the structure are described as follows.

mq_flags a flag that indicates whether or not the operations associated
with this message queue are in nonblocking mode

mq_maxmsg the maximum number of messages this message queue can
hold

mq_msgsize the maximum size in bytes of a message in this message
queue

mq_curmsgs the number of messages currently in this message queue

RedHawk Linux User’s Guide

3-6

Using the Library Routines 3

The POSIX library routines that support message queues are briefly described as follows:

mq_open create and open a new message queue or open an existing
message queue

mq_close close an open message queue

mq_unlink remove a message queue and any messages in it

mq_send write a message to an open message queue

mq_timedsend write a message to an open message queue with timeout
value

mq_receive read the oldest, highest-priority message from an open mes-
sage queue

mq_timedreceive read the oldest, highest-priority message from an open mes-
sage queue with timeout value

mq_notify register for notification of the arrival of a message at an
empty message queue such that when a message arrives, the
calling process is sent a user-specified signal

mq_setattr set the attributes associated with a message queue

mq_getattr obtain status and attribute information about an open
message queue

Procedures for using each of the routines are presented in the sections that follow.

Using the mq_open Routine 3

The mq_open(2) library routine establishes a connection between a calling process and
a message queue. Depending on flag settings, mq_open may create a message queue.
The mq_open routine always creates and opens a new message queue descriptor. Most
other library routines that support message queues use this message queue descriptor to
refer to a message queue.

Synopsis

#include <mqueue.h>

mqd_t mq_open(const char name, int oflag, /*
mode_t mode, struct mq_attr *attr */ ...);

The arguments are defined as follows:

name is concatenated with the mountpoint /dev/mqueue to form an
absolute path naming the mqueue file. For example, if name is
/my_queue, the path becomes /dev/mqueue/my_queue. This path
must be within the limits of PATH_MAX.

Real-Time Interprocess Communication

3-7

Processes calling mq_open with the same value of name refer to the
same message queue. If the name argument is not the name of an
existing message queue and you did not request creation, mq_open
fails and returns an error.

oflag an integer value that shows whether the calling process has send and
receive access to the message queue; this flag also shows whether the
calling process is creating a message queue or establishing a connection
to an existing one.

The mode a process supplies when it creates a message queue may limit
the oflag settings for the same message queue. For example, assume
that at creation, the message queue mode permits processes with the
same effective group ID to read but not write to the message queue. If a
process in this group attempts to open the message queue with oflag set
to write access (O_WRONLY), mq_open returns an error.

The only way to change the oflag settings for a message queue is to call
mq_close and mq_open to respectively close and reopen the message
queue descriptor returned by mq_open.

Processes may have a message queue open multiple times for sending,
receiving, or both. The value of oflag must include exactly one of the
three following access modes:

O_RDONLY Open a message queue for receiving messages. The
calling process can use the returned message queue
descriptor with mq_receive but not mq_send.

O_WRONLY Open a message queue for sending messages. The
calling process can use the returned message queue
descriptor with mq_send but not mq_receive.

O_RDWR Open a message queue for both receiving and sending
messages. The calling process can use the returned
message queue descriptor with mq_send and
mq_receive.

The value of oflag may also include any combination of the remaining flags:

O_CREAT Create and open an empty message queue if it does
not already exist. If message queue name is not cur-
rently open, this flag causes mq_open to create an
empty message queue. If message queue name is
already open on the system, the effect of this flag is as
noted under O_EXCL. When you set the O_CREAT

flag, you must also specify the mode and attr argu-
ments.

A newly-created message queue has its user ID set to
the calling process’ effective user ID and its group ID
set to the calling process’ effective group ID.

O_EXCL Return an error if the calling process attempts to cre-
ate an existing message queue. The mq_open routine

RedHawk Linux User’s Guide

3-8

fails if O_EXCL and O_CREAT are set and message
queue name already exists. The mq_open routine
succeeds if O_EXCL and O_CREAT are set and message
queue name does not already exist. The mq_open
routine ignores the setting of O_EXCL if O_EXCL is set
but O_CREAT is not set.

O_NONBLOCK On an mq_send, return an error rather than wait for
space to become free in a full message queue. On an
mq_receive, return an error rather than wait for a
message to arrive at an empty message queue.

mode an integer value that sets the read, write, and execute/search permission
for a message queue if this is the mq_open call that creates the message
queue. The mq_open routine ignores all other mode bits (for example,
setuid). The setting of the file-creation mode mask, umask, modifies
the value of mode. For more information on mode settings, see the
chmod(1) and umask(2) man pages.

When you set the O_CREAT flag, you must specify the mode argument to
mq_open.

attr the null pointer constant or a pointer to a structure that sets message
queue attributes--for example, the maximum number of messages in a
message queue and the maximum message size. For more information
on the mq_attr structure, see “Understanding the Message Queue
Attribute Structure.”

If attr is NULL, the system creates a message queue with system limits.
If attr is not NULL, the system creates the message queue with the
attributes specified in this field. If attr is specified, it takes effect only
when the message queue is actually created.

If attr is not NULL, the following attributes must be set to a value
greater than zero:

attr.mq_maxmsg
attr.mq_msgsize

A return value of a message queue descriptor shows that the message queue has been
successfully opened. A return value of ((mqd_t) -1) shows that an error has occurred;
errno is set to show the error. Refer to the mq_open(2) man page for a listing of the
types of errors that may occur.

Real-Time Interprocess Communication

3-9

Using the mq_close Routine 3

The mq_close(2) library routine breaks a connection between a calling process and a
message queue. The mq_close routine does this by removing the message queue
descriptor that the calling process uses to access a message queue. The mq_close
routine does not affect a message queue itself or the messages in a message queue.

 Note

If a process requests notification about a message queue and later
closes its connection to the message queue, this request is
removed; the message queue is available for another process to
request notification. For information on notification requests via
mq_notify, see “Using the mq_notify Routine.”

Synopsis

#include <mqueue.h>

int mq_close(mqd_t mqdes);

The argument is defined as follows:

mqdes a message queue descriptor obtained from an mq_open.

A return value of 0 shows that the message queue has been successfully closed. A return
value of -1 shows that an error has occurred; errno is set to show the error. Refer to the
mq_close(2) man page for a listing of the types of errors that may occur.

Using the mq_unlink Routine 3

The mq_unlink(2) library routine prevents further mq_open calls to a message queue.
When there are no other connections to this message queue, mq_unlink removes the
message queue and the messages in it.

Synopsis

#include <mqueue.h>

int mq_unlink(const char *name);

The argument is defined as follows:

name is concatenated with the mountpoint /dev/mqueue to form an
absolute path naming the mqueue file. For example, if name is
/my_queue, the path becomes /dev/mqueue/my_queue. This path
must be within the limits of PATH_MAX.

If a process has message queue name open when mq_unlink is called,
mq_unlink immediately returns; destruction of message queue name
is postponed until all references to the message queue have been closed.
A process can successfully remove message queue name only if the
mq_open that created this message queue had a mode argument that
granted the process both read and write permission.

RedHawk Linux User’s Guide

3-10

A return value of 0 shows that a message queue has been successfully removed. A return
value of -1 shows that an error has occurred; errno is set to show the error. Refer to the
mq_unlink(2) man page for a listing of the types of errors that may occur.

Using the mq_send and mq_timedsend Routines 3

The mq_send(2) library routine adds a message to the specified message queue. The
mq_send routine is an async-safe operation; that is, you can call it within a signal-
handling routine.

A successful mq_send to an empty message queue causes the system to wake the highest
priority process that is blocked to receive from that message queue. If a message queue
has a notification request attached and no processes blocked to receive, a successful
mq_send to that message queue causes the system to send a signal to the process that
attached the notification request. For more information, read about mq_receive in
“Using the mq_receive and mq_timedreceive Routines” and mq_notify in “Using the
mq_notify Routine.”

The mq_timedsend library routine can be used to specify a timeout value so that if the
specified message queue is full, the wait for sufficient room in the queue is terminated
when the timeout expires.

Synopsis

#include <mqueue.h>
#include <time.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned int msg_prio);

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t
msg_len, unsigned int msg_prio, const struct timespec
*abs_timeout);

The arguments are defined as follows:

mqdes a message queue descriptor obtained from an mq_open. If the specified
message queue is full and O_NONBLOCK is set in mqdes, the message is
not queued, and mq_send returns an error. If the specified message
queue is full and O_NONBLOCK is not set in mqdes, mq_send blocks
until space becomes available to queue the message or until mq_send
is interrupted by a signal.

Assume that multiple processes are blocked to send a message to a full
message queue. When space becomes free in that message queue
(because of an mq_receive), the system wakes the highest-priority
process that has been blocked the longest. This process sends the next
message.

For mq_send to succeed, the mq_open call for this message queue
descriptor must have had O_WRONLY or O_RDWR set in oflag. For
information on mq_open, see “Using the mq_open Routine.”

Real-Time Interprocess Communication

3-11

msg_ptr a string that specifies the message to be sent to the message queue
represented by mqdes.

msg_len an integer value that shows the size in bytes of the message pointed to
by msg_ptr. The mq_send routine fails if msg_len exceeds the
mq_msgsize message size attribute of the message queue set on the
creating mq_open. Otherwise, the mq_send routine copies the
message pointed to by the msg_ptr argument to the message queue.

msg_prio an unsigned integer value that shows the message priority. The system
keeps messages in a message queue in order by message priority. A
newer message is queued before an older one only if the newer message
has a higher message priority. The value for msg_prio ranges from 0
through MQ_PRIO_MAX, where 0 represents the least favorable priority.
For correct usage, the message priority of an urgent message should
exceed that of an ordinary message. Note that message priorities give
you some ability to define the message receipt order but not the message
recipient.

abs_timeout
a timeout value in nanoseconds. The range is 0 to 1000 million. If the
specified message queue is full and O_NONBLOCK is not set in the
message queue description associated with mqdes, the wait for
sufficient room in the queue is terminated when the timeout expires.

Figure 3-2 illustrates message priorities within a message queue and situations where
processes are either blocked or are free to send a message to a message queue.
Specifically, the following facts are depicted:

• The operating system keeps messages in each message queue in order by
message priority.

• Several messages within the same message queue may have the same
message priority.

• By default, a process trying to send a message to a full message queue is
blocked.

RedHawk Linux User’s Guide

3-12

Figure 3-2. The Result of Two mq_sends

A return value of 0 shows that the message has been successfully sent to the designated
message queue. A return value of -1 shows that an error has occurred; errno is set to
show the error. Refer to the mq_send(2) man page for a listing of the types of errors
that may occur.

Using the mq_receive and mq_timedreceive Routines 3

The mq_receive(2) library routine reads the oldest of the highest-priority messages
from a specific message queue, thus freeing space in the message queue. The
mq_receive routine is an async-safe operation; that is, you can call it within a signal-
handling routine.

A successful mq_receive from a full message queue causes the system to wake the
highest-priority process that is blocked to send to that message queue. For more
information, read about mq_send in “Using the mq_send and mq_timedsend Routines.”

The mq_timedreceive library routine can be used to specify a timeout value so that if
no message exists on the queue to satisfy the receive, the wait for such a message is
terminated when the timeout expires.

Synopsis

#include <mqueue.h>
#include <time.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t
msg_len, unsigned int msg_prio);

ssize_t mq_timedreceive(mqd_t mqdes, char *msg_ptr, size_t
msg_len, unsigned int msg_prio, const struct timespec
*abs_timeout);

Process
p1

Priority
5

Message

Process
p2

Message Queue 1

Message Queue 2

Priority
31

Message

Priority
10

Message

Priority
0

Message
(older)

Priority
0

Message
(newer)

Send
OK

Send
Blocked

163210

Real-Time Interprocess Communication

3-13

The arguments are defined as follows:

mqdes a message queue descriptor obtained from an mq_open. If
O_NONBLOCK is set in mqdes and the referenced message queue is
empty, nothing is read, and mq_receive returns an error. If
O_NONBLOCK is not set in mqdes and the specified message queue is
empty, mq_receive blocks until a message becomes available or until
mq_receive is interrupted by a signal.

Assume that multiple processes are blocked to receive a message from
an empty message queue. When a message arrives at that message
queue (because of an mq_send), the system wakes the highest-priority
process that has been blocked the longest. This process receives the
message.

For mq_receive to succeed, the process’ mq_open call for this
message queue must have had O_RDONLY or O_RDWR set in oflag. For
information on mq_open, see “Using the mq_open Routine.”

Figure 3-3 shows two processes without O_NONBLOCK set in mqdes.
Although both processes are attempting to receive messages, one
process is blocked because it is accessing an empty message queue. In
the figure, the arrows indicate the flow of data.

Figure 3-3. The Result of Two mq_receives

msg_ptr a pointer to a character array (message buffer) that will receive the
message from the message queue represented by mqdes. The return
value of a successful mq_receive is a byte count.

msg_len an integer value that shows the size in bytes of the array pointed to by
msg_ptr. The mq_receive routine fails if msg_len is less than the
mq_msgsize message-size attribute of the message queue set on the
creating mq_open. Otherwise, the mq_receive routine removes the
message from the message queue and copies it to the array pointed to by
the msg_ptr argument.

Process
p1

Priority
10

Message

Process
p2

Priority
0

Message

Message Queue 1

Message Queue 2

Receive
OK

Receive
Blocked

163220

RedHawk Linux User’s Guide

3-14

msg_prio the null pointer constant or a pointer to an unsigned integer variable that
will receive the priority of the received message. If msg_prio is NULL,
the mq_receive routine discards the message priority. If msg_prio is
not NULL, the mq_receive routine stores the priority of the received
message in the location referenced by msg_prio. The received message
is the oldest, highest-priority message in the message queue.

abs_timeout
a timeout value in nanoseconds. The range is 0 to 1000 million. If
O_NONBLOCK is not specified when the message queue was opened via
mq_open(2), and no message exists on the queue to satisfy the
receive, the wait for such a message is terminated when the timeout
expires.

A return value of -1 shows that an error has occurred; errno is set to show the error and
the contents of the message queue are unchanged. A non-negative return value shows the
length of the successfully-received message; the received message is removed from the
message queue. Refer to the mq_receive(2) man page for a listing of the types of
errors that may occur.

Using the mq_notify Routine 3

The mq_notify(2) library routine allows the calling process to register for notification
of the arrival of a message at an empty message queue. This functionality permits a
process to continue processing rather than blocking on a call to mq_receive(2) to
receive a message from a message queue (see “Using the mq_receive and
mq_timedreceive Routines” for an explanation of this routine). Note that for a
multithreaded program, a more efficient means of attaining this functionality is to spawn a
separate thread that issues an mq_receive call.

At any time, only one process can be registered for notification by a message queue.
However, a process can register for notification by each mqdes it has open except an
mqdes for which it or another process has already registered. Assume that a process has
already registered for notification of the arrival of a message at a particular message
queue. All future attempts to register for notification by that message queue will fail until
notification is sent to the registered process or the registered process removes its
registration. When notification is sent, the registration is removed for that process. The
message queue is again available for registration by any process.

Assume that one process blocks on mq_receive and another process registers for
notification of message arrival at the same message queue. When a message arrives at the
message queue, the blocked process receives the message, and the other process’
registration remains pending.

Synopsis

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent
*notification);

The arguments are defined as follows:

mqdes a message queue descriptor obtained from an mq_open.

Real-Time Interprocess Communication

3-15

notification
the null pointer constant or a pointer to a structure that specifies the way
in which the calling process is to be notified of the arrival of a message
at the specified message queue. If notification is not NULL and neither
the calling process nor any other process has already registered for
notification by the specified message queue, mq_notify registers the
calling process to be notified of the arrival of a message at the message
queue. When a message arrives at the empty message queue (because of
an mq_send), the system sends the signal specified by the notification
argument to the process that has registered for notification. Usually the
calling process reacts to this signal by issuing an mq_receive on the
message queue.

When notification is sent to the registered process, its registration is
removed. The message queue is then available for registration by any
process.

If notification is NULL and the calling process has previously registered
for notification by the specified message queue, the existing registration
is removed.

If the value of notification is not NULL, the only meaningful value that
notification->sigevent.sigev_notify can specify is SIGEV_SIGNAL. With
this value set, a process can specify a signal to be delivered upon the
arrival of a message at an empty message queue.

If you specify SIGEV_SIGNAL, notification->sigevent.sigev_signal must
specify the number of the signal that is to be generated, and notification-
>sigevent.sigev_value must specify an application-defined value that is
to be passed to a signal-handling routine defined by the receiving
process. A set of symbolic constants has been defined to assist you in
specifying signal numbers. These constants are defined in the file
<signal.h>. The application-defined value may be a pointer or an
integer value. If the process catching the signal has invoked the
sigaction(2) system call with the SA_SIGINFO flag set prior to the
time that the signal is generated, the signal and the application-defined
value are queued to the process when a message arrives at the message
queue. The siginfo_t structure may be examined in the signal
handler when the routine is entered. The following values should be
expected (see siginfo.h):

si_value specified sigevent.sigev_value to be sent on notification
si_code SI_MESGQ (real time message queue state change value: -3)
si_signo specified sigevent.sigev_signal to be generated
si_errno associated errno value with this signal

A return value of 0 shows that the calling process has successfully registered for
notification of the arrival of a message at the specified message queue. A return value of
-1 shows that an error has occurred; errno is set to show the error. Refer to the
mq_notify(2) man page for a listing of the types of errors that may occur.

RedHawk Linux User’s Guide

3-16

Using the mq_setattr Routine 3

The mq_setattr(2) library routine allows the calling process to set the attributes
associated with a specific message queue.

Synopsis

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat,
struct mq_attr *omqstat);

The arguments are defined as follows:

mqdes a message queue descriptor obtained from an mq_open. The
mq_setattr routine sets the message queue attributes for the message
queue associated with mqdes.

mqstat a pointer to a structure that specifies the flag attribute of the message
queue referenced by mqdes. The value of this flag may be zero or
O_NONBLOCK. O_NONBLOCK causes the mq_send and mq_receive
operations associated with the message queue to operate in nonblocking
mode.

The values of mq_maxmsg, mq_msgsize, and mq_curmsgs are
ignored by mq_setattr.

For information on the mq_attr structure, see “Understanding the
Message Queue Attribute Structure.” For information on the mq_send
and mq_receive rou t ines , see “Us ing the mq_send and
mq_t imedsend Rout ines” and “Using the mq_rece ive and
mq_timedreceive Routines,” respectively.

omqstat the null pointer constant or a pointer to a structure to which information
about the previous attributes and the current status of the message queue
referenced by mqdes is returned. For information on the mq_attr
structure, see “Understanding the Message Queue Attribute Structure.”

A return value of 0 shows that the message queue attributes have been successfully set as
specified. A return value of -1 shows that an error has occurred; errno is set to show the
error. Refer to the mq_setattr(2) man page for a listing of the types of errors that
may occur.

Using the mq_getattr Routine 3

The mq_getattr(2) library routine obtains status and attribute information associated
with a specific message queue.

Synopsis

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

Real-Time Interprocess Communication

3-17

The arguments are defined as follows:

mqdes a message queue descriptor obtained from an mq_open. The
mq_getattr routine provides information about the status and
attributes of the message queue associated with mqdes.

mqstat a pointer to a structure that receives current information about the status
and attributes of the message queue referenced by mqdes. For
information on the mq_attr structure, see “Understanding the
Message Queue Attribute Structure.”

A return value of 0 shows that the message queue attributes have been successfully
attained. A return value of -1 shows that an error has occurred; errno is set to show the
error. Refer to the mq_getattr(2) man page for a listing of the types of errors that
may occur.

Understanding System V Messages 3

The System V message type of interprocess communication (IPC) allows processes
(executing programs) to communicate through the exchange of data stored in buffers. This
data is transmitted between processes in discrete portions called messages. Processes
using this type of IPC can send and receive messages.

Before a process can send or receive a message, it must have the operating system
generate the necessary software mechanisms to handle these operations. A process does
this using the msgget(2) system call. In doing this, the process becomes the
owner/creator of a message queue and specifies the initial operation permissions for all
processes, including itself. Subsequently, the owner/creator can relinquish ownership or
change the operation permissions using the msgctl(2) system call. However, the
creator remains the creator as long as the facility exists. Other processes with permission
can use msgctl to perform various other control functions.

Processes which have permission and are attempting to send or receive a message can
suspend execution if they are unsuccessful at performing their operation. That is, a process
which is attempting to send a message can wait until it becomes possible to post the
message to the specified message queue; the receiving process isn’t involved (except
indirectly; for example, if the consumer isn’t consuming, the queue space will eventually
be exhausted) and vice versa. A process which specifies that execution is to be suspended
is performing a blocking message operation. A process which does not allow its execution
to be suspended is performing a nonblocking message operation.

A process performing a blocking message operation can be suspended until one of three
conditions occurs:

• the operation is successful
• the process receives a signal
• the message queue is removed from the system

System calls make these message capabilities available to processes. The calling process
passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs its
function and returns applicable information. Otherwise, -1 is returned to the process, and
an external error number variable, errno, is set accordingly.

RedHawk Linux User’s Guide

3-18

Using Messages 3

Before a message can be sent or received, a uniquely identified message queue and data
structure must be created. The unique identifier is called the message queue identifier
(msqid); it is used to identify or refer to the associated message queue and data structure.
This identifier is accessible by any process in the system, subject to normal access
restrictions.

A message queue’s corresponding kernel data structures are used to maintain information
about each message being sent or received. This information, which is used internally by
the system, includes the following for each message:

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message queue,
msqid_ds. This data structure contains the following information related to the message
queue:

• operation permissions data (operation permission structure)

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

NOTE

All C header files discussed in this chapter are located in the
/usr/include subdirectories.

The definition of the associated message queue data structure msqid_ds includes the
members shown in Figure 3-4.

Real-Time Interprocess Communication

3-19

Figure 3-4. Definition of msqid_ds Structure

The C programming language data structure definition for msqid_ds should be obtained
by including the <sys/msg.h> header file, even though this structure is actually defined
in <bits/msq.h>.

The definition of the interprocess communication permissions data structure, ipc_perm,
includes the members shown in Figure 3-5:

Figure 3-5. Definition of ipc_perm Structure

The C programming language data structure definition of ipc_perm should be obtained
by including the <sys/ipc.h> header file, even though the actual definition for this
structure is located in <bits/ipc.h>. Note that <sys/ipc.h> is commonly used for
all IPC facilities.

The msgget(2) system call performs one of two tasks:

• creates a new message queue identifier and create an associated message
queue and data structure for it

• locates an existing message queue identifier that already has an associated
message queue and data structure

Both tasks require a key argument passed to the msgget system call. If key is not already
in use for an existing message queue identifier, a new identifier is returned with an

struct ipc_perm msg_perm;/* structure describing operation permission */
__time_t msg_stime; /* time of last msgsnd command */
__time_t msg_rtime; /* time of last msgrcv command */
__time_t msg_ctime; /* time of last change */
unsigned long int __msg_cbytes; /* current number of bytes on queue */
msgqnum_t msg_qnum; /* number of messages currently on queue */
msglen_t msg_qbytes;/* max number of bytes allowed on queue */
__pid_t msg_lspid; /* pid of last msgsnd() */
__pid_t msg_lrpid; /* pid of last msgrcv() */

__key_t __key; /* Key. */
__uid_t uid; /* Owner’s user ID. */
__gid_t gid; /* Owner’s group ID. */
__uid_t cuid; /* Creator’s user ID. */
__gid_t cgid; /* Creator’s group ID. */
unsigned short int mode; /* Read/write permission. */
unsigned short int __seq; /* Sequence number. */

RedHawk Linux User’s Guide

3-20

associated message queue and data structure created for the key it, provided no system
tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), known as the private key
(IPC_PRIVATE). When this key is specified, a new identifier is always returned with an
associated message queue and data structure created for it, unless a system limit for the
maximum number of message queues (MSGMNI) would be exceeded. The ipcs(8)
command will show the key field for the msqid as all zeros.

If a message queue identifier exists for the key specified, the value of the existing
identifier is returned. If you do not want to have an existing message queue identifier
returned, a control command (IPC_EXCL) can be specified (set) in the msgflg argument
passed to the system call (see “Using msgget” for details of this system call).

When a message queue is created, the process that calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly. Remember,
ownership can be changed but the creating process always remains the creator. The
message queue creator also determines the initial operation permissions for it.

Once a uniquely identified message queue has been created or an existing one is found,
msgop(2) (message operation) and msgctl(2) (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving messages. The
msgsnd and msgrcv system calls are provided for each of these operations (see
“Operations for Messages” for details of the msgsnd and msgrcv system calls).

The msgctl system call permits you to control the message facility in the following
ways:

• by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

• by changing operation permissions for a message queue (IPC_SET)

• by changing the size (msg_qbytes) of the message queue for a particular
message queue identifier (IPC_SET)

• by removing a particular message queue identifier from the RedHawk
Linux operating system along with its associated message queue and data
structure (IPC_RMID)

See the section “Using msgctl” for details of the msgctl system call.

Real-Time Interprocess Communication

3-21

Getting Message Queues 3

This section describes how to use the msgget system call. The accompanying program
illustrates its use.

Using msgget 3

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);

All of these #include files are located in the /usr/include subdirectories of the
RedHawk Linux operating system.

key_t is defined by a typedef in the <bits/types.h> header file to be an integral
type (this header file is included internally by <sys/types.h>).

The integer returned from this function upon successful completion is the message queue
identifier, msqid. Upon failure, the external variable errno is set to indicate the reason
for failure, and -1 (which is not a valid msqid) is returned.

As declared, the process calling the msgget system call must supply two arguments to be
passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided if either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and the control command IPC_CREAT is specified in
the msgflg argument.

The value passed to the msgflg argument must be an integer-type value that will specify
the following:

• operation permissions

• control fields (commands)

Operation permissions determine the operations that processes are permitted to perform
on the associated message queue. “Read” permission is necessary for receiving messages
or for determining queue status by means of a msgctl IPC_STAT operation. “Write”
permission is necessary for sending messages.

RedHawk Linux User’s Guide

3-22

Table 3-1 reflects the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific value is derived by adding or bitwise OR’ing the octal values for the operation
permissions wanted. That is, if “read by user” and “read/write by others” is desired, the
code value would be 00406 (00400 plus 00006).

Control flags are predefined constants (represented by all upper-case letters). The flags
which apply to the msgget system call are IPC_CREAT and IPC_EXCL and are defined in
the <bits/ipc.h> header file, which is internally included by the <sys/ipc.h>
header file.

The value for msgflg is therefore a combination of operation permissions and control
commands. After determining the value for the operation permissions as previously
described, the desired flag(s) can be specified. This is accomplished by adding or bitwise
OR’ing (|) them with the operation permissions; the bit positions and values for the
control commands in relation to those of the operation permissions make this possible.

The msgflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value:

msqid = msgget (key, (IPC_CREAT | 0400));
msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the msgget(2) man page, success or failure of this system call depends
upon the argument values for key and msgflg and upon system wide resource limits.

The system call will attempt to return a new message queue identifier if one of the
following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a message queue identifier associated with it and
(msgflg & IPC_CREAT) is “true” (not zero).

The system call will always be attempted. Exceeding the MSGMNI limit always causes a
failure. The MSGMNI limit value determines the system-wide number of unique message
queues that may be in use at any given time. This limit value is a fixed define value
located in <linux/msg.h>.

Table 3-1. Message Queue Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Write by User 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

Real-Time Interprocess Communication

3-23

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It causes the
system call to return an error if a message queue identifier already exists for the specified
key. This is necessary to prevent the process from thinking it has received a new identifier
when it has not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a new
message queue identifier is returned if the system call is successful.

Refer to the msgget(2) man page for specific associated data structure initialization, as
well as the specific failure conditions and their error names.

Example Program 3

The example program presented at the end of this section is a menu-driven program. It
allows all possible combinations of using the msgget(2) system call to be exercised.
From studying this program, you can observe the method of passing arguments and
receiving return values.

This program begins (lines 5-9) by including the required header files as specified by the
msgget(2) man page. Note that the <errno.h> header file is additionally included for
referencing the errno variable.

Variable names have been chosen to be as close as possible to those in the synopsis for the
system call. Their declarations are intended to be self-explanatory. These names make the
program more readable and are valid because they are local to the program.

The variables declared for this program and their roles are:

key passes the value for the desired key

opperm stores the desired operation permissions

flags stores the desired control commands (flags)

opperm_flags stores the combination from the logical ORing of the opperm and
flags variables; it is then used in the system call to pass the
msgflg argument

msqid stores the message queue identification number for a successful
system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation permissions
code, and finally for the control command combinations (flags) which are selected from
a menu (lines 16-33). All possible combinations are allowed even though they might not
be valid, in order to allow observing errors for invalid combinations.

Next, the menu selection for the flags is combined with the operation permissions, and the
result is stored in the opperm_flags variable (lines 37-52).

The system call is made next, and the result is stored in the msqid variable (line 54).

Because the msqid variable now contains a valid message queue identifier or the error
code (-1), it can be tested to see if an error occurred (line 56). If msqid equals -1, a
message indicates that an error resulted, and the external errno variable is displayed
(line 58).

If no error occurred, the returned message queue identifier is displayed (line 62).

RedHawk Linux User’s Guide

3-24

The example program for the msgget system call follows. This file is provided as
/usr/share/doc/ccur/examples/msgget.c.

1 /*
2 * Illustrates the message get, msgget(),
3 * system service capabilities.
4 */
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <sys/ipc.h>
8 #include <sys/msg.h>
9 #include <errno.h>
10 /* Start of main C language program */
11 main()
12 {
13 key_t key;
14 int opperm, flags;
15 int msqid, opperm_flags;
16 /* Enter the desired key */
17 printf("Enter the desired key in hex = ");
18 scanf("%x", &key);
19 /* Enter the desired octal operation
20 permissions. */
21 printf("\nEnter the operation\n");
22 printf("permissions in octal = ");
23 scanf("%o", &opperm);
24 /* Set the desired flags. */
25 printf("\nEnter corresponding number to\n");
26 printf("set the desired flags:\n");
27 printf("No flags = 0\n");
28 printf("IPC_CREAT = 1\n");
29 printf("IPC_EXCL = 2\n");
30 printf("IPC_CREAT and IPC_EXCL = 3\n");
31 printf(" Flags = ");
32 /* Get the flag(s) to be set. */
33 scanf("%d", &flags);
34 /* Check the values. */
35 printf ("\nkey =0x%x, opperm = 0%o, flags = 0%o\n",
36 key, opperm, flags);
37 /* Incorporate the control fields (flags) with
38 the operation permissions */
39 switch (flags)
40 {
41 case 0: /* No flags are to be set. */
42 opperm_flags = (opperm | 0);
43 break;
44 case 1: /* Set the IPC_CREAT flag. */
45 opperm_flags = (opperm | IPC_CREAT);
46 break;
47 case 2: /* Set the IPC_EXCL flag. */
48 opperm_flags = (opperm | IPC_EXCL);
49 break;
50 case 3: /* Set the IPC_CREAT and IPC_EXCL flags. */
51 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
52 }
53 /* Call the msgget system call.*/
54 msqid = msgget (key, opperm_flags);
55 /* Perform the following if the call is unsuccessful. */
56 if(msqid == -1)
57 {
58 printf ("\nThe msgget call failed, error number = %d\n",
59 errno);
60 }
61 /* Return the msqid upon successful completion. */
62 else
63 printf ("\nThe msqid = %d\n", msqid);
64 exit(0);
65 }

Real-Time Interprocess Communication

3-25

Controlling Message Queues 3

This section describes how to use the msgctl(2) system call. The accompanying
program illustrates its use.

Using msgctl 3

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (int msqid, int cmd, struct msqid_ds *buf);

The msgctl system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The msqid variable must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The cmd argument can be any one of the following values:

IPC_STAT returns the status information contained in the associated data
structure for the specified message queue identifier, and places it in
the data structure pointed to by the buf pointer in the user memory
area

IPC_SET writes the effective user and group identification, operation
permissions, and the number of bytes for the message queue to the
values contained in the data structure pointed to by the buf pointer in
the user memory area

IPC_RMID removes the specified message queue identifier along with its
associated message queue and data structure

To perform an IPC_SET or IPC_RMID control command, a process must meet one or more
of the following conditions:

• have an effective user id of OWNER

• have an effective user id of CREATOR

• be the super-user

• have the CAP_SYS_ADMIN capability

Additionally, when performing an IPC_SET control command that increases the size of the
msg_qbytes value beyond the value of MSGMNB (defined in <linux/msg.h>), the
process must have the CAP_SYS_RESOURCE capability.

Note that a message queue can also be removed by using the ipcrm(8) command by
specifying the “msg id” option, where id specifies the msqid for the message queue. To
use this command, the user must have the same effective user id or capability that is
required for performing an IPC_RMID control command. See the ipcrm(8) man page for
additional information on the use of this command.

RedHawk Linux User’s Guide

3-26

Read permission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the following example program. If you
need more information on the logic manipulations in this program, read the msgget(2)
man page; it goes into more detail than would be practical for this document.

Example Program 3

The example program presented at the end of this section is a menu-driven program. It
allows all possible combinations of using the msgctl system call to be exercised. From
studying this program, you can observe the method of passing arguments and receiving
return values.

This program begins (lines 6-11) by including the required header files as specified by the
msgctl(2) man page. Note that the <errno.h> header file is additionally added for
referencing the external errno variable.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations should be self-explanatory. These names
make the program more readable and are valid because they are local to the program.

The variables declared for this program and their roles are:

uid stores the IPC_SET value for the effective user identification

gid stores the IPC_SET value for the effective group identification

mode stores the IPC_SET value for the operation permissions

bytes stores the IPC_SET value for the number of bytes in the message
queue (msg_qbytes)

rtrn stores the return integer value from the system call

msqid stores and pass the message queue identifier to the system call

command stores the code for the desired control command so that subsequent
processing can be performed on it

choice determines which member is to be changed for the IPC_SET control
command

msqid_ds receives the specified message queue identifier’s data structure when
an IPC_STAT control command is performed

buf a pointer passed to the system call which locates the data structure in
the user memory area where the IPC_STAT control command is to
place its return values or where the IPC_SET command gets the
values to set

Although the buf pointer is declared to be a pointer to a data structure of the msqid_ds
type, it must also be initialized to contain the address of the user memory area data
structure (line 18).

Real-Time Interprocess Communication

3-27

The program first prompts for a valid message queue identifier which is stored in the
msqid variable (lines 20, 21). This is required for every msgctl system call.

Next, the code for the desired control command must be entered (lines 22-28) and stored
in the command variable. The code is tested to determine the control command for
subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is performed
(lines 38, 39) and the status information returned is printed out (lines 40-47); only the
members that can be set are printed out in this program. Note that if the system call is
unsuccessful (line 107), the status information of the last successful call is printed out. In
addition, an error message is displayed and the errno variable is printed out (line 109). If
the system call is successful, a message indicates this along with the message queue
identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the current status information for
the message queue identifier specified must be obtained (lines 51-53). This is necessary
because this example program provides for changing only one member at a time, and the
system call changes all of them. Also, if an invalid value happened to be stored in the user
memory area for one of these members, it would cause repetitive failures for this control
command until corrected. Next, the program prompts for a code corresponding to the
member to be changed (lines 54-60). This code is stored in the choice variable (line 61).
Now, depending upon the member picked, the program prompts for the new value (lines
67-96). The value is placed into the appropriate member in the user memory area data
structure, and the system call is made (lines 97-99). Depending upon success or failure,
the program returns the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is performed
(lines 101-104), and the msqid along with its associated message queue and data
structure are removed from the RedHawk Linux operating system. Note that the buf
pointer is ignored in performing this control command, and its value can be zero or NULL.
Depending upon the success or failure, the program returns the same messages as for the
other control commands.

RedHawk Linux User’s Guide

3-28

The example program for the msgctl system call follows. This file is provided as
/usr/share/doc/ccur/examples/msgctl.c.

1 /*
2 * Illustrates the message control,
3 * msgctl(),system service capabilities
4 */
5
6 /* Include necessary header files. */
7 #include <stdio.h>
8 #include <sys/types.h>
9 #include <sys/ipc.h>
10 #include <sys/msg.h>
11 #include <errno.h>
12 /* Start of main C language program */
13 main()
14 {
15 int uid, gid, mode, bytes;
16 int rtrn, msqid, command, choice;
17 struct msqid_ds msqid_ds, *buf;
18 buf = &msqid_ds;
19 /* Get the msqid, and command. */
20 printf("Enter the msqid = ");
21 scanf("%d", &msqid);
22 printf("\nEnter the number for\n");
23 printf("the desired command:\n");
24 printf("IPC_STAT = 1\n");
25 printf("IPC_SET = 2\n");
26 printf("IPC_RMID = 3\n");
27 printf("Entry = ");
28 scanf("%d", &command);
29 /* Check the values. */
30 printf ("\nmsqid =%d, command = %d\n",
31 msqid, command);
32 switch (command)
33 {
34 case 1: /* Use msgctl() to duplicate
35 the data structure for
36 msqid in the msqid_ds area pointed
37 to by buf and then print it out. */
38 rtrn = msgctl(msqid, IPC_STAT,
39 buf);
40 printf ("\nThe USER ID = %d\n",
41 buf->msg_perm.uid);
42 printf ("The GROUP ID = %d\n",
43 buf->msg_perm.gid);
44 printf ("The operation permissions = 0%o\n",
45 buf->msg_perm.mode);
46 printf ("The msg_qbytes = %d\n",
47 buf->msg_qbytes);
48 break;
49 case 2: /* Select and change the desired
50 member(s) of the data structure. */
51 /* Get the original data for this msqid
52 data structure first. */
53 rtrn = msgctl(msqid, IPC_STAT, buf);
54 printf("\nEnter the number for the\n");
55 printf("member to be changed:\n");
56 printf("msg_perm.uid = 1\n");
57 printf("msg_perm.gid = 2\n");
58 printf("msg_perm.mode = 3\n");
59 printf("msg_qbytes = 4\n");
60 printf("Entry = ");
61 scanf("%d", &choice);
62 /* Only one choice is allowed per
63 pass as an invalid entry will
64 cause repetitive failures until
65 msqid_ds is updated with
66 IPC_STAT. */
67 switch(choice){
68 case 1:

Real-Time Interprocess Communication

3-29

69 printf("\nEnter USER ID = ");
70 scanf ("%ld", &uid);
71 buf->msg_perm.uid =(uid_t)uid;
72 printf("\nUSER ID = %d\n",
73 buf->msg_perm.uid);
74 break;
75 case 2:
76 printf("\nEnter GROUP ID = ");
77 scanf("%d", &gid);
78 buf->msg_perm.gid = gid;
79 printf("\nGROUP ID = %d\n",
80 buf->msg_perm.gid);
81 break;
82 case 3:
83 printf("\nEnter MODE = ");
84 scanf("%o", &mode);
85 buf->msg_perm.mode = mode;
86 printf("\nMODE = 0%o\n",
87 buf->msg_perm.mode);
88 break;
89 case 4:
90 printf("\nEnter msq_bytes = ");
91 scanf("%d", &bytes);
92 buf->msg_qbytes = bytes;
93 printf("\nmsg_qbytes = %d\n",
94 buf->msg_qbytes);
95 break;
96 }
97 /* Do the change. */
98 rtrn = msgctl(msqid, IPC_SET,
99 buf);
100 break;
101 case 3: /* Remove the msqid along with its
102 associated message queue
103 and data structure. */
104 rtrn = msgctl(msqid, IPC_RMID, (struct msqid_ds *) NULL);
105 }
106 /* Perform the following if the call is unsuccessful. */
107 if(rtrn == -1)
108 {
109 printf("\nThe msgctl call failed, error number = %d\n", errno);
110 }
111 /* Return the msqid upon successful completion. */
112 else
113 printf ("\nMsgctl was successful for msqid = %d\n",
114 msqid);
115 exit (0);
116 }

RedHawk Linux User’s Guide

3-30

Operations for Messages 3

This section describes how to use the msgsnd and msgrcv system calls. The
accompanying program illustrates their use.

Using Message Operations: msgsnd and msgrcv 3

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
void *msgp;
size_t msgsz;
int msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
void *msgp;
size_t msgsz;
long msgtyp;
int msgflg;

Sending a Message 3

The msgsnd system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The msqid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that contains the
type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data structure pointed
to by the msgp argument. This is the length of the message. The maximum size of this
array is determined by the MSGMAX define, which is located in <linux/msg.h>.

The msgflg argument allows the blocking message operation to be performed if the
IPC_NOWAIT flag is not set ((msgflg & IPC_NOWAIT)= = 0); the operation blocks if the
total number of bytes allowed on the specified message queue are in use (msg_qbytes).
If the IPC_NOWAIT flag is set, the system call fails and returns -1.

Further details of this system call are discussed in the following program. If you need
more information on the logic manipulations in this program, see the section “Using
msgget.” It goes into more detail than would be practical for every system call.

Real-Time Interprocess Communication

3-31

Receiving Messages 3

When the msgrcv system call is successful, it returns the number of bytes received; when
unsuccessful it returns -1.

The msqid argument must be a valid, non-negative, integer value. In other words, it must
have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that will receive the
message type and the message text.

The msgsz argument specifies the length of the message to be received. If its value is less
than the message in the array, an error can be returned if desired (see the msgflg argument
below).

The msgtyp argument is used to pick the first message on the message queue of the
particular type specified:

• If msgtyp is equal to zero, the first message on the queue is received.

• If msgtyp is greater than zero and the MSG_EXCEPT msgflg is not set, the
first message of the same type is received.

• If msgtyp is greater than zero and the MSG_EXCEPT msgflg is set, the first
message on the message queue that is not equal to msgtyp is received.

• If msgtyp is less than zero, the lowest message type that is less than or equal
to the absolute value of msgtyp is received.

The msgflg argument allows the blocking message operation to be performed if the
IPC_NOWAIT flag is not set ((msgflg & IPC_NOWAIT) == 0); the operation blocks if the
total number of bytes allowed on the specified message queue are in use (msg_qbytes).
If the IPC_NOWAIT flag is set, the system call fails and returns a -1. And, as mentioned in
the previous paragraph, when the MSG_EXCEPT flag is set in the msgflg argument and the
msgtyp argument is greater than 0, the first message in the queue that has a message type
that is different from the msgtyp argument is received.

If the IPC_NOWAIT flag is set, the system call fails immediately when there is not a
message of the desired type on the queue. msgflg can also specify that the system call fail
if the message is longer than the size to be received; this is done by not setting the
MSG_NOERROR flag in the msgflg argument ((msgflg & MSG_NOERROR)) == 0). If the
MSG_NOERROR flag is set, the message is truncated to the length specified by the msgsz
argument of msgrcv.

Further details of this system call are discussed in the following program. If you need
more information on the logic manipulations in this program, see the section “Using
msgget.” It goes into more detail than would be practical for every system call.

Example Program 3

The example program presented at the end of this section is a menu-driven program. It
allows all possible combinations of using the msgsnd and msgrcv system calls to be
exercised. From studying this program, you can observe the method of passing arguments
and receiving return values.

RedHawk Linux User’s Guide

3-32

This program begins (lines 5-10) by including the required header files as specified by the
msgop(2) man page.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis. Their declarations are intended to be self-explanatory. These names make the
program more readable and are valid because they are local to the program.

The variables declared for this program and their roles are:

sndbuf a buffer which contains a message to be sent (line 14); it uses the
msgbuf1 data structure as a template (lines 11-14). The msgbuf1
structure is a duplicate of the msgbuf structure contained in the
<sys/msg.h> header file, except that the size of the character array
for mtext is tailored to fit this application. The msgbuf structure
should not be used directly because mtext has only one element that
would limit the size of each message to one character. Instead, declare
your own structure. It should be identical to msgbuf except that the
size of the mtext array should fit your application.

rcvbuf a buffer used to receive a message (line 14); it uses the msgbuf1 data
structure as a template (lines 11-14)

msgp a pointer (line 14) to both the sndbuf and rcvbuf buffers

i a counter for inputting characters from the keyboard, storing them in
the array, and keeping track of the message length for the msgsnd
system call; it also serves as a counter to output the received message
for the msgrcv system call

c receives the input character from the getchar function (line 50)

flag stores the code of IPC_NOWAIT for the msgsnd system call (line
61)

flags stores the code of the IPC_NOWAIT or MSG_NOERROR flags for the
msgrcv system call (line 117)

choice stores the code for sending or receiving (line 30)

rtrn stores the return values from all system calls

msqid stores and passes the desired message queue identifier for both
system calls

msgsz stores and passes the size of the message to be sent or received

msgflg passes the value of flag for sending or the value of flags for
receiving

msgtyp specifies the message type for sending or for picking a message type
for receiving

Note that a msqid_ds data structure is set up in the program (line 21) with a pointer
initialized to point to it (line 22); this allows the data structure members affected by
message operations to be observed. They are observed by using the msgctl (IPC_STAT)
system call to get them for the program to print them out (lines 80-92 and lines 160-167).

Real-Time Interprocess Communication

3-33

The program first prompts for whether to send or receive a message. A corresponding
code must be entered for the desired operation; it is stored in the choice variable (lines
23-30). Depending upon the code, the program proceeds as in the following msgsnd or
msgrcv sections.

msgsnd

When the code is to send a message, the msgp pointer is initialized (line 33) to the address
of the send data structure, sndbuf. Next, a message type must be entered for the
message; it is stored in the variable msgtyp (line 42), and then (line 43) it is put into the
mtype member of the data structure pointed to by msgp.

The program then prompts for a message to be entered from the keyboard and enters a
loop of getting and storing into the mtext array of the data structure (lines 48-51). This
will continue until an end-of-file is recognized which, for the getchar function, is a
CTRL-d immediately following a carriage return (RETURN).

The message is immediately echoed from the mtext array of the sndbuf data structure
to provide feedback (lines 54-56).

The next and final decision is whether to set the IPC_NOWAIT flag. The program does
this by requesting that a code of 1 be entered for yes or anything else for no (lines 57-65).
It is stored in the flag variable. If 1 is entered, IPC_NOWAIT is logically ORed with
msgflg; otherwise, msgflg is set to zero.

The msgsnd system call is performed (line 69). If it is unsuccessful, a failure message is
displayed along with the error number (lines 70-72). If it is successful, the returned value
is printed and should be zero (lines 73-76).

Every time a message is successfully sent, three members of the associated data structure
are updated. They are:

msg_qnum represents the total number of messages on the message queue; it is
incremented by one

msg_lspid contains the process identification (PID) number of the last process
sending a message; it is set accordingly

msg_stime contains the time in seconds since January 1, 1970, Greenwich Mean
Time (GMT) of the last message sent; it is set accordingly

These members are displayed after every successful message send operation (lines 79-92).

msgrcv

When the code is to receive a message, the program continues execution as in the
following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive the
message is requested; it is stored in msqid (lines 100-103).

The message type is requested; it is stored in msgtyp (lines 104-107).

RedHawk Linux User’s Guide

3-34

The code for the desired combination of control flags is requested next; it is stored in flags
(lines 108-117). Depending upon the selected combination, msgflg is set accordingly
(lines 118-131).

Finally, the number of bytes to be received is requested; it is stored in msgsz (lines 132-
135).

The msgrcv system call is performed (line 142). If it is unsuccessful, a message and error
number is displayed (lines 143-145). If successful, a message indicates so, and the number
of bytes returned and the msg type returned (because the value returned may be different
from the value requested) is displayed followed by the received message (lines 150-156).

When a message is successfully received, three members of the associated data structure
are updated. They are:

msg_qnum contains the number of messages on the message queue; it is
decremented by one

msg_lrpid contains the PID of the last process receiving a message; it is set
accordingly

msg_rtime contains the time in seconds since January 1, 1970, Greenwich Mean
Time (GMT) that the last process received a message; it is set
accordingly

The sample code for the msgop system call follows. This file is provided as
/usr/share/doc/ccur/examples/msgop.c.

1 /*
2 * Illustrates the message operations,
3 * msgop(), system service capabilities.
4 */
5 /* Include necessary header files. */
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/msg.h>
10 #include <errno.h>
11 struct msgbuf1 {
12 long mtype;
13 char mtext[8192];
14 } sndbuf, rcvbuf, *msgp;
15 /* Start of main C language program */
16 main()
17 {
18 int i, c, flag, flags, choice;
19 int rtrn, msqid, msgsz, msgflg;
20 long mtype, msgtyp;
21 struct msqid_ds msqid_ds, *buf;
22 buf = &msqid_ds;
23 /* Select the desired operation. */
24 printf("Enter the corresponding\n");
25 printf("code to send or\n");
26 printf("receive a message:\n");
27 printf("Send = 1\n");
28 printf("Receive = 2\n");
29 printf("Entry = ");
30 scanf("%d", &choice);
31 if(choice == 1) /* Send a message. */
32 {
33 msgp = &sndbuf; /*Point to user send structure. */
34 printf("\nEnter the msqid of\n");
35 printf("the message queue to\n");
36 printf("handle the message = ");

Real-Time Interprocess Communication

3-35

37 scanf("%d", &msqid);
38 /* Set the message type. */
39 printf("\nEnter a positive integer\n");
40 printf("message type (long) for the\n");
41 printf("message = ");
42 scanf("%ld", &msgtyp);
43 msgp->mtype = msgtyp;
44 /* Enter the message to send. */
45 printf("\nEnter a message: \n");
46 /* A control-d (^d) terminates as
47 EOF. */
48 /* Get each character of the message
49 and put it in the mtext array. */
50 for(i = 0; ((c = getchar()) != EOF); i++)
51 sndbuf.mtext[i] = c;
52 /* Determine the message size. */
53 msgsz = i;
54 /* Echo the message to send. */
55 for(i = 0; i < msgsz; i++)
56 putchar(sndbuf.mtext[i]);
57 /* Set the IPC_NOWAIT flag if
58 desired. */
59 printf("\nEnter a 1 if you want \n");
60 printf("the IPC_NOWAIT flag set: ");
61 scanf("%d", &flag);
62 if(flag == 1)
63 msgflg = IPC_NOWAIT;
64 else
65 msgflg = 0;
66 /* Check the msgflg. */
67 printf("\nmsgflg = 0%o\n", msgflg);
68 /* Send the message. */
69 rtrn = msgsnd(msqid, (const void*) msgp, msgsz, msgflg);
70 if(rtrn == -1)
71 printf("\nMsgsnd failed. Error = %d\n",
72 errno);
73 else {
74 /* Print the value of test which
75 should be zero for successful. */
76 printf("\nValue returned = %d\n", rtrn);
77 /* Print the size of the message
78 sent. */
79 printf("\nMsgsz = %d\n", msgsz);
80 /* Check the data structure update. */
81 msgctl(msqid, IPC_STAT, buf);
82 /* Print out the affected members. */
83 /* Print the incremented number of
84 messages on the queue. */
85 printf("\nThe msg_qnum = %d\n",
86 buf->msg_qnum);
87 /* Print the process id of the last sender. */
88 printf("The msg_lspid = %d\n",
89 buf->msg_lspid);
90 /* Print the last send time. */
91 printf("The msg_stime = %d\n",
92 buf->msg_stime);
93 }
94 }
95 if(choice == 2) /*Receive a message. */
96 {
97 /* Initialize the message pointer
98 to the receive buffer. */
99 msgp = &rcvbuf;
100 /* Specify the message queue which contains
101 the desired message. */
102 printf("\nEnter the msqid = ");
103 scanf("%d", &msqid);
104 /* Specify the specific message on the queue
105 by using its type. */
106 printf("\nEnter the msgtyp = ");
107 scanf("%ld", &msgtyp);
108 /* Configure the control flags for the

RedHawk Linux User’s Guide

3-36

109 desired actions. */
110 printf("\nEnter the corresponding code\n");
111 printf("to select the desired flags: \n");
112 printf("No flags = 0\n");
113 printf("MSG_NOERROR = 1\n");
114 printf("IPC_NOWAIT = 2\n");
115 printf("MSG_NOERROR and IPC_NOWAIT = 3\n");
116 printf(" Flags = ");
117 scanf("%d", &flags);
118 switch(flags) {
119 case 0:
120 msgflg = 0;
121 break;
122 case 1:
123 msgflg = MSG_NOERROR;
124 break;
125 case 2:
126 msgflg = IPC_NOWAIT;
127 break;
128 case 3:
129 msgflg = MSG_NOERROR | IPC_NOWAIT;
130 break;
131 }
132 /* Specify the number of bytes to receive. */
133 printf("\nEnter the number of bytes\n");
134 printf("to receive (msgsz) = ");
135 scanf("%d", &msgsz);
136 /* Check the values for the arguments. */
137 printf("\nmsqid =%d\n", msqid);
138 printf("\nmsgtyp = %ld\n", msgtyp);
139 printf("\nmsgsz = %d\n", msgsz);
140 printf("\nmsgflg = 0%o\n", msgflg);
141 /* Call msgrcv to receive the message. */
142 rtrn = msgrcv(msqid, (void*) msgp, msgsz, msgtyp,msgflg);
143 if(rtrn == -1) {
144 printf("\nMsgrcv failed., Error = %d\n", errno);
145 }
146 else {
147 printf ("\nMsgctl was successful\n");
148 printf("for msqid = %d\n",
149 msqid);
150 /* Print the number of bytes received,
151 it is equal to the return
152 value. */
153 printf("Bytes received = %d\n", rtrn);
154 /* Print the received message. */
155 for(i = 0; i<rtrn; i++)
156 putchar(rcvbuf.mtext[i]);
157 }
158 /* Check the associated data structure. */
159 msgctl(msqid, IPC_STAT, buf);
160 /* Print the decremented number of messages. */
161 printf("\nThe msg_qnum = %d\n", buf->msg_qnum);
162 /* Print the process id of the last receiver. */
163 printf("The msg_lrpid = %d\n", buf->msg_lrpid);
164 /* Print the last message receive time */
165 printf("The msg_rtime = %d\n", buf->msg_rtime);
166 }
167 }

4
Process Scheduling

Overview . 4-1
How the Process Scheduler Works. 4-2
Scheduling Policies . 4-3

First-In-First-Out Scheduling (SCHED_FIFO) . 4-3
Round-Robin Scheduling (SCHED_RR) . 4-4
Time-Sharing Scheduling (SCHED_OTHER) . 4-4

Procedures for Enhanced Performance . 4-4
How to Set Priorities . 4-4
Bottom Half Interrupt Routines . 4-5
SCHED_FIFO vs SCHED_RR . 4-5
Access to Lower Priority Processes . 4-5
Memory Locking . 4-6
CPU Affinity and Shielded Processors. 4-6

Process Scheduling Interfaces . 4-6
POSIX Scheduling Routines . 4-6

The sched_setscheduler Routine . 4-7
The sched_getscheduler Routine. 4-8
The sched_setparam Routine . 4-9
The sched_getparam Routine . 4-10
The sched_yield Routine. 4-10
The sched_get_priority_min Routine . 4-11
The sched_get_priority_max Routine . 4-11
The sched_rr_get_interval Routine . 4-12

The run Command . 4-13

RedHawk Linux User’s Guide

4-1

4
Chapter 4Process Scheduling

4
4
4

This chapter provides an overview of process scheduling on RedHawk Linux systems. It
explains how the process scheduler decides which process to execute next and describes
POSIX scheduling policies and priorities. It explains the procedures for using the program
interfaces and commands that support process scheduling and discusses performance
issues.

Overview 4

In the RedHawk Linux OS, the schedulable entity is always a process. Scheduling
priorities and scheduling policies are attributes of processes. The system scheduler
determines when processes run. It maintains priorities based on configuration parameters,
process behavior, and user requests; it uses these priorities as well as the CPU affinity to
assign processes to a CPU.

The scheduler offers three different scheduling policies, one for normal non-critical
processes (SCHED_OTHER), and two fixed-priority policies for real-time applications
(SCHED_FIFO and SCHED_RR). These policies are explained in detail in the section
“Scheduling Policies” on page 4-3.

By default, the scheduler uses the SCHED_OTHER time-sharing scheduling policy. For
processes in the SCHED_OTHER policy, the scheduler manipulates the priority of runnable
processes dynamically in an attempt to provide good response time to interactive
processes and good throughput to CPU-intensive processes.

Fixed-priority scheduling allows users to set static priorities on a per-process basis. The
scheduler never modifies the priority of a process that uses one of the fixed priority
scheduling policies. The highest fixed-priority process always gets the CPU as soon as it is
runnable, even if other processes are runnable. An application can therefore specify the
exact order in which processes run by setting process priority accordingly.

For system environments in which real-time performance is not required, the default
scheduler configuration works well, and no fixed-priority processes are needed. However,
for real-time applications or applications with strict timing constraints, fixed-priority
processes are the only way to guarantee that the critical application's requirements are met.
When certain programs require very deterministic response times, fixed priority
scheduling policies should be used and tasks that require the most deterministic response
should be assigned the most favorable priorities.

A set of system calls based on IEEE Standard 1003.1b provides direct access to a process’
scheduling policy and priority. Included in the set are system calls that allow processes to
obtain or set a process’ scheduling policy and priority; obtain the minimum and maximum
priorities associated with a particular scheduling policy; and obtain the time quantum
associated with a process scheduled under the round robin (SCHED_RR) scheduling policy.
You may alter the scheduling policy and priority for a process at the command level by

RedHawk Linux User’s Guide

4-2

using the run(1) command. The system calls and the run command are detailed later in
this chapter along with procedures and hints for effective use.

How the Process Scheduler Works 4

Figure 4-1 illustrates how the scheduler operates.

Figure 4-1. The RedHawk Linux Scheduler

When a process is created, it inherits its scheduling parameters, including scheduling
policy and a priority within that policy. Under the default configuration, a process begins
as a time-sharing process scheduled with the SCHED_OTHER policy. In order for a process
to be scheduled under a fixed-priority policy, a user-request must be made via system calls
or the run(1) command.

When the user sets the priority of a process, he is setting the “user priority.” This is also
the priority that will be reported by the sched_getparam(2) call when a user retrieves
th e c u r r e n t p r i o r i ty. A p o r t a b le a p p l i c a t io n s h o u ld u s e t h e
sched_get_priority_min() and sched_get_priority_max() interfaces to
determine the range of valid priorities for a particular scheduling policy. A user priority
value (sched_priority) is assigned to each process. SCHED_OTHER processes can
only be assigned a user priority of 0. SCHED_FIFO and SCHED_RR processes have a user
pr ior i ty in the range 1 to 99 by defaul t . This range can be modif ied with
CONFIG_MAX_USER_RT_PRIO kernel tunable accessible through the General Setup selection
of the Linux Kernel Configuration menu (see the “Configuring and Building the Kernel”
chapter of this guide).

The scheduler converts scheduling policy-specific priorities into global priorities. The
global priority is the scheduling policy value used internally by the RedHawk Linux
kernel. The scheduler maintains a list of runnable processes for each possible global
priority value. There are 40 global scheduling priorities associated with the SCHED_OTHER

Global
Priority

Highest First

Scheduling
Order

Scheduler
Policies

Process
Queues

Policy-Specific
Priorities

Fixed
Priorities

Fixed Priority
Processes

•
•
•

•
•
•

Time-Sharing

LastLowest

Processes

Time-Sharing
Priorities

 User
Priority

99

 1

 0
 .
 .
 .
 .
 .
 0

 .
 .
 .
 .

99

100

1

139

SCHED_FIFO
 and
SCHED_RR

SCHED_OTHER

Process Scheduling

4-3

scheduling policy; there are 99 global scheduling priorities associated with the fixed
priority scheduling policies (SCHED_RR and SCHED_FIFO). The scheduler looks for the
non-empty list with the highest global priority and selects the process at the head of this
list for execution on the current CPU. The scheduling policy determines for each process
where it will be inserted into the list of processes with equal user priority and the process’
relative position in this list when processes in the list are blocked or made runnable.

As long as a fixed-priority process is ready-to-run for a particular CPU, no time-sharing
process will run on that CPU.

Once the scheduler assigns a process to the CPU, the process runs until it uses up its time
quantum, sleeps, blocks or is preempted by a higher-priority process.

Note that the priorities displayed by ps(1) and top(1) are internally computed values
and only indirectly reflect the priority set by the user.

Scheduling Policies 4

POSIX defines three types of scheduling policies that control the way a process is
scheduled:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy

SCHED_RR round-robin (RR) scheduling policy

SCHED_OTHER default time-sharing scheduling policy

First-In-First-Out Scheduling (SCHED_FIFO) 4

SCHED_FIFO can only be used with user priorities higher than 0. That means when a
SCHED_FIFO process becomes runnable, it will always immediately preempt any currently
running SCHED_OTHER process. SCHED_FIFO is a simple scheduling algorithm without
time slicing. For processes scheduled under the SCHED_FIFO policy, the following rules
are applied: A SCHED_FIFO process that has been preempted by another process of higher
priority will stay at the head of the list for its priority and will resume execution as soon as
all processes of higher priority are blocked again. When a SCHED_FIFO process becomes
runnable, i t will be inserted at the end of the lis t for its priority. A cal l to
sched_setscheduler(2) or sched_setparam(2) will put the SCHED_FIFO

process identified by pid at the end of the list if it was runnable. A process calling
sched_yield(2) will be put at the end of its priority list. No other events will move a
process scheduled under the SCHED_FIFO policy in the wait list of runnable processes with
equal user priority. A SCHED_FIFO process runs until either it is blocked by an I/O request,
it is preempted by a higher priority process, or it calls sched_yield.

RedHawk Linux User’s Guide

4-4

Round-Robin Scheduling (SCHED_RR) 4

SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for
SCHED_FIFO also applies to SCHED_RR, except that each process is only allowed to run for
a maximum time quantum. If a SCHED_RR process has been running for a time period
equal to or longer than the time quantum, it will be put at the end of the list for its priority.
A SCHED_RR process that has been preempted by a higher priority process and
subsequently resumes execution as a running process will complete the unexpired portion
of its round robin time quantum. The length of the time quantum can be retrieved by
sched_rr_get_interval(2). The length of the time quantum is affected by the nice
value associated with a process scheduled under the SCHED_RR scheduling policy. Higher
nice values are assigned larger time quantums.

Time-Sharing Scheduling (SCHED_OTHER) 4

SCHED_OTHER can only be used at user priority 0. SCHED_OTHER is the default universal
time-sharing scheduler policy that is intended for all processes that do not require special
user priority real-time mechanisms. The process to run is chosen from the user priority 0
list based on a dynamic priority that is determined only inside this list. The dynamic
priority is based on the nice level (set by the nice(2) or setpriority(2) system
call) and increased for each time quantum the process is ready to run, but denied to run by
the scheduler. This ensures fair progress among all SCHED_OTHER processes. Other
factors, such as the number of times a process voluntarily blocks itself by performing an
I/O operation, also come into consideration.

Procedures for Enhanced Performance 4

How to Set Priorities 4

The following code segment will place the current process into the SCHED_RR fixed-
priority scheduling policy at a fixed priority of 60. See the section “Process Scheduling
Interfaces” later in this chapter for information about the POSIX scheduling routines.

#include <sched.h>
...
struct sched_param sparms;

sparms.sched_priority = 60;
if (sched_setscheduler(0, SCHED_RR, &sparms) < 0)
{

perror("sched_setsched");
exit(1);

}

Process Scheduling

4-5

Bottom Half Interrupt Routines 4

Processes scheduled in one of the fixed-priority scheduling policies will be assigned a
higher priority than the processing associated with bottom half interrupt routines (this
includes softirqs and tasklets). These bottom half interrupt routines perform work on
behalf of interrupt routines that have executed on a given CPU. The real interrupt routine
runs at a hardware interrupt level and preempts all activity on a CPU (including processes
scheduled under one of the fixed-priority scheduling policies). Device driver writers under
Linux are encouraged to perform the minimum amount of work required to interact with a
device to make the device believe that the interrupt has been handled. The device driver
can then raise one of the bottom half interrupt mechanisms to handle the remainder of the
work associated with the device interrupt routine. Because fixed-priority processes run at
a priority above bottom half interrupt routines, this interrupt architecture allows fixed-
priority processes to experience the minimum amount of jitter possible from interrupt
routines. For more information about interrupt routines in device drivers, see the “Device
Drivers and Real Time” chapter.

SCHED_FIFO vs SCHED_RR 4

The two fixed priority scheduling policies are very similar in their nature, and under most
conditions they will behave in an identical manner. It is important to remember that while
SCHED_RR has a time quantum associated with the process, when that time quantum
expires the process will only yield the CPU if there currently is a ready-to-run process of
equal priority in one of the fixed priority scheduling policies. If there is no ready-to-run
process of equal priority, the scheduler will determine that the original SCHED_RR process
is still the highest priority process ready to run on this CPU and the same process will
again be selected for execution.

This means that the only time there is a difference between processes scheduled under
SCHED_FIFO and SCHED_RR is when there are multiple processes running under one of the
fixed-priority scheduling policies scheduled at the exact same scheduling priority. In this
case, SCHED_RR will allow these processes to share a CPU according to the time quantum
that has been assigned to the process. Note that a process’ time quantum is affected by the
nice(2) system call. Processes with higher nice values will be assigned a larger time
quantum. A process’ time quantum can also be changed via the run(1) command (see
“The run Command” later in this chapter for details).

Access to Lower Priority Processes 4

A non-blocking endless loop in a process scheduled under the SCHED_FIFO and SCHED_RR

scheduling policies will block all processes with lower priority indefinitely. As this
scenario can starve the CPU of other processes completely, precautions should be taken to
avoid this.

During software development, a programmer can break such an endless loop by keeping
available on the console a shell scheduled under a higher user priority than the tested
application. This will allow an emergency kill of tested real-time applications that do not
block or terminate as expected. As SCHED_FIFO and SCHED_RR processes can preempt
other processes forever, only root processes or processes with the CAP_SYS_NICE

capability are allowed to activate these policies.

RedHawk Linux User’s Guide

4-6

Memory Locking 4

Paging and swapping often add an unpredictable amount of system overhead time to
application programs. To eliminate performance losses due to paging and swapping, use
the mlockall(2), munlockall(2), mlock(2) and munlock(2) system calls to
lock all or a portion of a process’ virtual address space in physical memory.

CPU Affinity and Shielded Processors 4

Each process in the system has a CPU affinity mask. The CPU affinity mask determines
on which CPUs the process is allowed to execute. When a CPU is shielded from
processes, that CPU will only run processes that have explicitly set their CPU affinity to a
set of CPUs that only includes shielded CPUs. Utilizing these techniques adds additional
control to where and how a process executes. See the “Real-Time Performance” chapter of
this guide for more information.

Process Scheduling Interfaces 4

A set of system calls based on IEEE Standard 1003.1b provides direct access to a process’
scheduling policy and priority. You may alter the scheduling policy and priority for a
process at the command level by using the run(1) command. The system calls are
detailed below. The run command is detailed on page 4-13.

POSIX Scheduling Routines 4

The sections that follow explain the procedures for using the POSIX scheduling system
calls. These system calls are briefly described as follows:

Scheduling Policy:

sched_setscheduler set a process’ scheduling policy and priority

sched_getscheduler obtain a process’ scheduling policy

Scheduling Priority:

sched_setparam change a process’ scheduling priority

sched_getparam obtain a process’ scheduling priority

Relinquish CPU:

sched_yield relinquish the CPU

Process Scheduling

4-7

Low/High Priority:

sched_get_priority_min obtain the lowest priority associated with a
scheduling policy

sched_get_priority_max obtain the highest priority associated with a
scheduling policy

Round-Robin Policy:

sched_rr_get_interval obtain the time quantum associated with a
process scheduled und er the S C H E D _ R R

scheduling policy

The sched_setscheduler Routine 4

The sched_setscheduler(2) system call allows you to set the scheduling policy
and the associated parameters for the process.

It is important to note that to use the sched_setscheduler call to (1) change a
process’ scheduling policy to the SCHED_FIFO or the SCHED_RR policy or (2) change the
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, one of the
following conditions must be met:

• The calling process must have root capability.

• The effective user ID (uid) of the calling process must match the effective
user ID of the target process (the process for which the scheduling policy
and priority are being set), or the calling process must have superuser or
CAP_SYS_NICE capability.

Synopsis

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *p);

 struct sched_param {
 ...
 int sched_priority;
 ...
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the
scheduling policy and priority are being set. To specify the current process, set
the value of pid to zero.

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy

SCHED_RR round-robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

RedHawk Linux User’s Guide

4-8

p a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of
priorities defined for the scheduler class associated with the specified policy.
You can determine the range of priorities associated with that policy by
invoking one of the following system calls: sched_get_priority_min
or sched_get_priority_max (for an explanation of these system calls,
see page 4-11).

If the scheduling policy and priority of the specified process are successfully set, the
sched_setscheduler system call returns the process’ previous scheduling policy. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched_setscheduler(2) man page for a listing of the types of errors
that may occur. If an error occurs, the process’ scheduling policy and priority are not
changed.

It is important to note that when you change a process’ scheduling policy, you also change
its time quantum to the default time quantum that is defined for the scheduler associated
with the new policy and the priority. You can change the time quantum for a process
scheduled under the SCHED_RR scheduling policy at the command level by using the
run(1) command (see p. 4-13 for information on this command).

The sched_getscheduler Routine 4

The sched_getscheduler(2) system call allows you to obtain the scheduling
policy for a specified process. Scheduling policies are defined in the file <sched.h> as
follows:

SCHED_FIFO first-in-first-out (FIFO) scheduling policy

SCHED_RR round-robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

Synopsis

#include <sched.h>

int sched_getscheduler(pid_t pid);

The argument is defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling policy. To specify the current process, set the value of
pid to zero.

If the call is successful, sched_getscheduler returns the scheduling policy of the
specified process. A return value of -1 indicates that an error has occurred; errno is set
to indicate the error. Refer to the sched_getscheduler(2) man page for a listing of
the types of errors that may occur.

Process Scheduling

4-9

The sched_setparam Routine 4

The sched_setparam(2) system call allows you to set the scheduling parameters
associated with the scheduling policy of a specified process.

It is important to note that to use the sched_setparam call to change the scheduling
priority of a process scheduled under the SCHED_FIFO or the SCHED_RR policy, one of the
following conditions must be met:

• The calling process must have the root capability.

• The effective user ID (euid) of the calling process must match the effective
user ID of the target process (the process for which the scheduling policy
and priority are being set), or the calling process must have superuser or
CAP_SYS_NICE capability.

Synopsis

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *p);

struct sched_param {
 ...
 int sched_priority;
 ...
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which the
scheduling priority is being changed. To specify the current process, set the
value of pid to zero.

p a pointer to a structure that specifies the scheduling priority of the process
identified by pid. The priority is an integer value that lies in the range of
priorities associated with the process’ current scheduling policy. High
numbers represent more favorable priorities and scheduling.

Yo u c an o b t a i n a p r o c e s s ’ s c h e d u l i n g p o l i c y b y in v o k in g t h e
sched_getscheduler(2) system call (see p. 4-7 for an explanation of this system
call). You can determine the range of priorities associated with that policy by invoking the
sched_get_priority_min(2) and sched_get_priority_max(2) system
calls (see page 4-11 for explanations of these system calls).

A return value of 0 indicates that the scheduling priority of the specified process has been
successfully changed. A return value of -1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sched_setparam(2) man page for a listing of
the types of errors that may occur. If an error occurs, the process’ scheduling priority is
not changed.

RedHawk Linux User’s Guide

4-10

The sched_getparam Routine 4

The sched_getparam(2) system call allows you to obtain the scheduling parameters
of a specified process.

Synopsis

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *p);

struct sched_param {
 ...
 int sched_priority;
 ...
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the scheduling priority. To specify the current process, set the value of
pid to zero.

p a pointer to a structure to which the scheduling priority of the process
identified by pid will be returned.

A return value of 0 indicates that the call to sched_getparam has been successful. The
scheduling priority of the specified process is returned in the structure to which p points. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sched_getparam(2) man page for a listing of the types of errors that
may occur.

The sched_yield Routine 4

The sched_yield(2) system call allows the calling process to relinquish the CPU
until it again becomes the highest priority process that is ready to run. Note that a call to
sched_yield is effective only if a process whose priority is equal to that of the calling
process is ready to run. This system call cannot be used to allow a process whose priority
is lower than that of the calling process to execute.

Synopsis

#include <sched.h>

int sched_yield(void);

A return value of 0 indicates that the call to sched_yield has been successful. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error.

Process Scheduling

4-11

The sched_get_priority_min Routine 4

The sched_get_priority_min(2) system call allows you to obtain the lowest
(least favorable) priority associated with a specified scheduling policy.

Synopsis

#include <sched.h>

int sched_get_priority_min(int policy);

The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. The value returned by sched_get_priority_max
will be greater than the value returned by sched_get_priority_min.

RedHawk Linux by default allows the user priority value range 1 to 99 for SCHED_FIFO

and SCHED_RR and the priority 0 for SCHED_OTHER. Scheduling priority ranges for the
S C H E D _ F I F O and S C H E D _ R R schedul ing pol icies can be a l te red using the
CONFIG_MAX_USER_RT_PRIO kernel parameter accessible through the General Setup
selection of the Linux Kernel Configuration menu.

If the call is successful, sched_get_priority_min returns the lowest priority
associated with the specified scheduling policy. A return value of -1 indicates that an
error has occurred; errno is set to indicate the error. Refer to the man page for
sched_get_priority_max(2) to obtain a listing of the errors that may occur.

The sched_get_priority_max Routine 4

The sched_get_priority_max(2) system call allows you to obtain the highest
(most favorable) priority associated with a specified scheduling policy.

Synopsis

#include <sched.h>

int sched_get_priority_max(int policy);

The argument is defined as follows:

policy a scheduling policy as defined in the file <sched.h>. The value of policy
must be one of the following:

SCHED_FIFO first–in–first–out (FIFO) scheduling policy

SCHED_RR round–robin (RR) scheduling policy

SCHED_OTHER time-sharing scheduling policy

RedHawk Linux User’s Guide

4-12

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. The value returned by sched_get_priority_max
will be greater than the value returned by sched_get_priority_min.

RedHawk Linux by default allows the user priority value range 1 to 99 for SCHED_FIFO

and SCHED_RR and the priority 0 for SCHED_OTHER. Scheduling priority ranges for the
S C H E D _ F I F O and S C H E D _ R R schedul ing pol icies can be a l tered using the
CONFIG_MAX_USER_RT_PRIO kernel parameter accessible through the General Setup
selection of the Linux Kernel Configuration menu.

If the call is successful, sched_get_priority_max returns the highest priority
associated with the specified scheduling policy. A return value of -1 indicates that an
error has occurred; errno is set to indicate the error. For a listing of the types of errors
that may occur, refer to the sched_get_priority_max(2) man page.

The sched_rr_get_interval Routine 4

The sched_rr_get_interval(2) system call allows you to obtain the time
quantum for a process that is scheduled under the SCHED_RR scheduling policy. The time
quantum is the fixed period of time for which the kernel allocates the CPU to a process.
When the process to which the CPU has been allocated has been running for its time
quantum, a scheduling decision is made. If another process of the same priority is ready to
run, that process will be scheduled. If not, the other process will continue to run.

Synopsis

include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *tp);

struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
};

The arguments are defined as follows:

pid the process identification number (PID) of the process for which you wish to
obtain the time quantum. To specify the current process, set the value of pid to
zero.

tp a pointer to a timespec structure to which the round robin time quantum of the
process identified by pid will be returned. The identified process should be
running under the SCHED_RR scheduling policy.

A return value of 0 indicates that the call to sched_rr_get_interval has been
successful. The time quantum of the specified process is returned in the structure to which
tp points. A return value of -1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sched_rr_get_interval(2) man page for a listing
of the types of errors that may occur.

Process Scheduling

4-13

The run Command 4

The run(1) command can be used to control process scheduler attributes and CPU
affinity. The command syntax is:

run [options] {command [args] | process_specifier}

The run command executes the specified command in the environment described by the
list of options and exits with the command’s exit value. If a process specifier is given, run
modifies the environment of the set of processes selected by the specifier. The process
specifiers are defined below. A command may not be combined with a process specifier
on the same command line invocation.

The run command allows you to run a program under a specified POSIX scheduling
policy and at a specified priority (see p. 4-3 for a complete explanation of POSIX
scheduling policies). It also allows you to set the time quantum for a program scheduled
under the SCHED_RR policy.

To set a program’s scheduling policy and priority, invoke the run command from the
shell, and specify either the --policy=policy or –s policy option and the --priority=priority
or -P priority option. Valid keywords for policy are:

SCHED_FIFO or fifo for first-in-first-out scheduling

SCHED_RR or rr for round robin scheduling, and

SCHED_OTHER or other for timeshare scheduling.

The value of priority must be an integer value that is valid for the specified scheduling
policy (or the current scheduling policy if the -s option is not used). Higher numerical
values represent more favorable scheduling priorities.

To set the time quantum for a program being scheduled under the SCHED_RR scheduling
policy, also specify the --quantum=quantum or -q quantum option. quantum is specified
as a nice value between -20 and 19 inclusive, with -20 being the longest slice of time and
19 being the shortest, or as a millisecond value corresponding to a nice value.
--quantum=list displays the nice values and their equivalent millisecond values.

You can set the CPU affinity using the --bias=list or -b list option. list is a comma-
separated list of logical CPU numbers or ranges, for example: “0,2-4,6”. list may also be
specified as the string active or boot to specify all active processors or the boot processor,
respectively. The CAP_SYS_NICE capability is required to add additional CPUs to an
affinity.

The --negate or -N option negates the CPU bias list. A bias list option must also be
specified when the negate option is specified. The bias used will contain all CPUs on the
system except those specified in the bias list.

The --copies=count or -c count option enables the user to run the specified number of
identical copies of the command.

Other options are available for displaying information and running the command in the
background. See the run(1) man page for more information.

RedHawk Linux User’s Guide

4-14

PROCESS SPECIFIER

Only one of the following process specifiers may be specified. Multiple comma separated
values can be specified for all lists and ranges are allowed where appropriate.

--pid=list, -p list Specify a list of existing PIDs to modify.

--group=list, -g list Specify a list of process groups to modify; all existing processes
in the process groups listed will be modified.

--user=list, -u list Specify a list of users to modify; all existing processes owned by
the users listed will be modified. Each user in the list may either
be a valid numeric user ID or character login ID.

--name=list, -n list Specify a list of existing process names to modify.

EXAMPLES

1. The following command runs make(1) in the background on any of
CPUs 0-3 under the default SCHED_OTHER scheduling policy with default
priority.

run --bias=0-3 make &

2. The following command runs date(1) with a priority of 10 in the
SCHED_RR (i.e. Round Robin) scheduling policy.

run -s SCHED_RR -P 10 date

3. The following command changes the scheduling priority of process ID 987
to level 32.

run --priority=32 -p 987

4. The following command moves all processes in process group 1456 to
CPU 3.

run -b 3 -g 1456

5. The following command sets all processes whose name is “pilot” to run in
the SCHED_FIFO scheduling policy with a priority of 21.

run -s fifo -P 21 -n pilot

Refer to the run(1) man page for additional information.

5
Interprocess Synchronization

Understanding Interprocess Synchronization . 5-1
Rescheduling Control . 5-3

Understanding Rescheduling Variables . 5-3
Using the resched_cntl System Call . 5-4
Using the Rescheduling Control Macros . 5-5

 resched_lock. 5-6
 resched_unlock. 5-6
 resched_nlocks . 5-7

Applying Rescheduling Control Tools . 5-7
Busy-Wait Mutual Exclusion. 5-8

Understanding the Busy-Wait Mutual Exclusion Variable. 5-8
Using the Busy-Wait Mutual Exclusion Macros . 5-9
Applying Busy-Wait Mutual Exclusion Tools . 5-10

POSIX Counting Semaphores . 5-11
Overview . 5-11
Interfaces . 5-13

Using the sem_init Routine . 5-13
Using the sem_destroy Routine. 5-15
Using the sem_wait Routine . 5-15
Using the sem_trywait Routine . 5-16
Using the sem_post Routine . 5-16
Using the sem_getvalue Routine. 5-17

System V Semaphores . 5-18
Overview . 5-18
Using System V Semaphores . 5-19
Getting Semaphores . 5-21

Using the semget System Call. 5-22
Example Program . 5-24

Controlling Semaphores . 5-26
Using the semctl System Call . 5-26
Example Program . 5-28

Operations On Semaphores . 5-34
Using the semop System Call . 5-34
Example Program . 5-35

Condition Synchronization . 5-38
Using the postwait System Call . 5-38
Using the Server System Calls . 5-40

server_block . 5-40
server_wake1. 5-41
server_wakevec . 5-42

Applying Condition Synchronization Tools. 5-43

RedHawk Linux User’s Guide

5-1

5
Chapter 5Interprocess Synchronization

5
5
5

This chapter describes the tools that RedHawk Linux provides to meet a variety of
interprocess synchronization needs. All of the interfaces described here provide the means
for cooperating processes to synchronize access to shared resources.

The most efficient mechanism for synchronizing access to shared data by multiple
programs in a multiprocessor system is by using spin locks. However, it is not safe to use
a spin lock from user level without also using a rescheduling variable to protect against
preemption while holding a spin lock.

If portability is a larger concern than efficiency, then POSIX counting semaphores are the
next best choice for synchronizing access to shared data. In addition, the System V
semaphores are provided, which allow processes to communicate through the exchange of
semaphore values. Since many applications require the use of more than one semaphore,
this facility allows you to create sets or arrays of semaphores.

Problems associated with synchronizing cooperating processes’ access to data in shared
memory are discussed as well as the tools that have been developed by Concurrent to
provide solutions to these problems.

Understanding Interprocess Synchronization 5

Multiprocess real-time applications require synchronization mechanisms that allow
cooperating processes to coordinate access to the same set of resources—for example, a
number of I/O buffers, units of a hardware device, or a critical section of code.

RedHawk Linux supplies a variety of interprocess synchronization tools. These include
tools for controlling a process’ vulnerability to rescheduling, serializing processes’ access
to critical sections with busy-wait mutual exclusion mechanisms, semaphores for mutual
exclusion to critical sections and coordinating interaction among processes.

Application programs that consist of two or more processes sharing portions of their
virtual address space through use of shared memory need to be able to coordinate their
access to shared memory efficiently. Two fundamental forms of synchronization are used
to coordinate processes’ access to shared memory: mutual exclusion and condition
synchronization. Mutual exclusion mechanisms serialize cooperating processes’ access to
shared resources. Condition synchronization mechanisms delay a process’ progress until
an application-defined condition is met.

RedHawk Linux User’s Guide

5-2

Mutual exclusion mechanisms ensure that only one of the cooperating processes can be
executing in a critical section at a time. Three types of mechanisms are typically used to
provide mutual exclusion—those that involve busy waiting, those that involve sleepy
waiting, and those that involve a combination of the two when a process attempts to enter
a locked critical section. Busy-wait mechanisms, also known as spin locks, use a locking
technique that obtains a lock using a hardware supported test and set operation. If a
process attempts to obtain a busy-wait lock that is currently in a locked state, the locking
process continues to retry the test and set operation until the process that currently holds
the lock has cleared it and the test and set operation succeeds. In contrast, a sleepy-wait
mechanism, such as a semaphore, will put a process to sleep if it attempts to obtain a lock
that is currently in a locked state.

Busy-wait mechanisms are highly efficient when most attempts to obtain the lock will
succeed. This is because a simple test and set operation is all that is required to obtain a
busy-wait lock. Busy-wait mechanisms are appropriate for protecting resources when the
amount of time that the lock is held is short. There are two reasons for this: 1) when lock
hold times are short, it is likely that a locking process will find the lock in an unlocked
state and therefore the overhead of the lock mechanism will also be minimal and 2) when
the lock hold time is short, the delay in obtaining the lock is also expected to be short. It is
important when using busy-wait mutual exclusion that delays in obtaining a lock be kept
short, since the busy-wait mechanism is going to waste CPU resources while waiting for a
lock to become unlocked. As a general rule, if the lock hold times are all less than the time
it takes to execute two context switches, then a busy-wait mechanism is appropriate.

Critical sections are often very short. To keep the cost of synchronization comparatively
small, synchronizing operations performed on entry to and exit from a critical section
cannot enter the kernel. It is undesirable for the execution overhead associated with
entering and leaving the critical section to be longer than the length of the critical section
itself.

In order for spin locks to be used as an effective mutual exclusion tool, the expected time
that a process will spin waiting for another process to release the lock must be not only
brief but also predictable. Such unpredictable events as page faults, signals, and the
preemption of a process holding the lock cause the real elapsed time in a critical section to
significantly exceed the expected execution time. At best, these unexpected delays inside
of a critical section may cause other CPUs to delay longer than anticipated; at worst, they
may cause deadlock. Locking pages in memory can be accomplished during program
initialization so as not to have an impact on the time to enter a critical section. The
mechanisms for rescheduling control provide a low-overhead means of controlling signals
and process preemption.

Semaphores are another mechanism for providing mutual exclusion. Semaphores are a
form of sleepy-wait mutual exclusion because a process that attempts to lock a semaphore
that is already locked will be blocked or put to sleep. POSIX counting semaphores provide
a portable means of controlling access to shared resources. A counting semaphore is an
object that has an integer value and a limited set of operations defined for it. Counting
semaphores provide a simple interface that is implemented to achieve the fastest
performance for lock and unlock operations. System V semaphores are a complex data
type that allows many additional functions (for example the ability to find out how many
waiters there are on a semaphore or the ability to operate on a set of semaphores).

Interprocess Synchronization

5-3

Tools for providing rescheduling control are described in “Rescheduling Control.” Tools
for implementing busy-wait mutual exclusion are explained in “Busy-Wait Mutual
Exclusion.” Tools for coordinating interaction between processes are explained in
“Condition Synchronization.”

POSIX counting semaphores are described in the section “POSIX Counting Semaphores.”
System V semaphores are described in the section “System V Semaphores.”

Rescheduling Control 5

Multiprocess, real-time applications frequently wish to defer CPU rescheduling for brief
periods of time. To use busy-wait mutual exclusion effectively, spinlock hold times must
be small and predictable.

CPU rescheduling and signal handling are major sources of unpredictability. A process
would like to make itself immune to rescheduling when it acquires a spinlock, and
vulnerable again when it releases the lock. A system call could raise the caller’s priority to
the highest in the system, but the overhead of doing so is prohibitive.

A rescheduling variable provides control for rescheduling and signal handling. You
allocate the variable in your application, notify the kernel of its location, and manipulate it
directly from your application to disable and re-enable rescheduling. While rescheduling
is disabled, quantum expirations, preemptions, and certain types of signals are held.

A system call and a set of macros accommodate use of the rescheduling variable. In the
sections that follow, the variable, the system call, and the macros are described, and the
procedures for using them are explained.

The primitives described here provide low overhead control of CPU rescheduling and
signal delivery.

Understanding Rescheduling Variables 5

A rescheduling variable is a data structure, defined in <sys/rescntl.h> that controls a
single process’ vulnerability to rescheduling:

struct resched_var {
 pid_t rv_pid;

...
 volatile int rv_nlocks;

 ...
};

It is allocated on a per-process basis by the application, not by the kernel. The
resched_cntl(2) system call informs the kernel of the location of the variable, and
the kernel examines the variable before making rescheduling decisions. Direct
manipulation of the variable from user mode with the resched_lock and
resched_unlock macros disable and re-enable rescheduling.

RedHawk Linux User’s Guide

5-4

Use of the resched_cntl system call is explained in “Using the resched_cntl System
Call.” A set of rescheduling control macros enables you to manipulate the variable from
your application. Use of these macros is explained in “Using the Rescheduling Control
Macros.”

These interfaces should be used only by single-threaded processes. A rescheduling
variable is valid only for the process or thread that registers the location of the
rescheduling variable.

Using the resched_cntl System Call 5

The resched_cntl system call enables you to perform a variety of rescheduling control
operations. These include initializing a rescheduling variable, informing the kernel of its
location, obtaining its location, and setting a limit on the length of time that rescheduling
can be deferred.

Synopsis

#include <sys/rescntl.h>

int resched_cntl(cmd, arg)

int cmd;
char *arg;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

cmd the operation to be performed

arg a pointer to an argument whose value depends upon the value of cmd

cmd can be one of the following. The values of arg that are associated with each command
are indicated.

RESCHED_SET_VARIABLE
This command informs the kernel of the location of the caller’s
rescheduling variable. The rescheduling variable must be located
in a process private page, which excludes pages in shared memory
segments or files that have been mapped MAP_SHARED.

Two threads of the same process should not register the same
address as their rescheduling variable. If arg is not NULL, the
struct resched_var it points to is initialized and locked into
physical memory. If arg is NULL, the caller is disassociated from
any existing variable, and the appropriate pages are unlocked.

After a fork(2), the child process inherits rescheduling
variables from its parent. The rv_pid field of the child’s
rescheduling variable is updated to the process ID of the child.

Interprocess Synchronization

5-5

If a child process has inherited a rescheduling variable and it, in
turn, forks one or more child processes, those child processes
inherit the rescheduling variable with the rv_pid field updated.

If a rescheduling variable is locked in the parent process at the
time of the call to fork, the rescheduling variable is locked in the
child process.

Use of this command requires root capability or CAP_IPC_LOCK

and CAP_SYS_RAWIO privileges.

RESCHED_SET_LIMIT This command is a debugging tool. If arg is not NULL, it points to
a struct timeval specifying the maximum length of time the
caller expects to defer rescheduling. The SIGABRT signal is sent to
the caller when this limit is exceeded if the local timer of the CPU
is enabled. If arg is NULL, any previous limit is forgotten.

RESCHED_GET_VARIABLE

This command returns the location of the caller’s rescheduling
variable. arg must point to a rescheduling variable pointer. The
pointer referenced by arg is set to NULL if the caller has no
rescheduling variable, and is set to the location of the
rescheduling variable otherwise.

RESCHED_ESIGNAL The process received one of the error signals that are not deferred
while a rescheduling variable lock was held.

RESCHED_SERVE This command is used by resched_unlock to service pending
signals and context switches. Applications should not need to use
this command directly. arg must be 0.

Using the Rescheduling Control Macros 5

A set of rescheduling control macros enables you to disable and re-enable rescheduling
and to determine the number of rescheduling locks in effect. These macros are briefly
described as follows:

resched_lock increments the number of rescheduling locks held by the calling
process

resched_unlock decrements the number of rescheduling locks held by the calling
process

resched_nlocks returns the number of rescheduling locks currently in effect

RedHawk Linux User’s Guide

5-6

 resched_lock 5

Synopsis

#include <sys/rescntl.h>

void resched_lock(r);

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling process’ rescheduling variable

Resched_lock does not return a value; it increments the number of rescheduling locks
held by the calling process. As long as the process does not enter the kernel, quantum
expirations, preemptions, and some signal deliveries are deferred until all rescheduling
locks are released.

However, if the process generates an exception (e.g., a page fault) or makes a system call,
it may receive signals or otherwise context switch regardless of the number of
rescheduling locks it holds. The following signals represent error conditions and are NOT
affected by rescheduling locks: SIGILL, SIGTRAP, SIGFPE, SIGKILL, SIGBUS, SIGSEGV,
SIGABRT, SIGSYS, SIGPIPE, SIGXCPU, and SIGXFSZ.

Making system calls while a rescheduling variable is locked is possible but not
recommended. However, it is not valid to make any system call that results in putting the
calling process to sleep while a rescheduling variable is locked.

 resched_unlock 5

Synopsis

#include <sys/rescntl.h>

void resched_unlock(r);

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling process’ rescheduling variable

Resched_unlock does not return a value. If there are no outstanding locks after the
decrement and a context switch or signal are pending, they are serviced immediately.

NOTE

The rv_nlocks field must be a positive integer for the lock to
be considered active. Thus, if the field is zero or negative, it is
considered to be unlocked.

Interprocess Synchronization

5-7

 resched_nlocks 5

Synopsis

#include <sys/rescntl.h>

int resched_nlocks(r);

struct resched_var *r;

The argument is defined as follows:

r a pointer to the calling process’ rescheduling variable

Resched_nlocks returns the number of rescheduling locks currently in effect.

For additional information on the use of these macros, refer to the resched_cntl(2)
man page.

Applying Rescheduling Control Tools 5

The following C program segment illustrates the procedures for controlling rescheduling
by using the tools described in the preceding sections. This program segment defines a
rescheduling variable (rv) as a global variable; initializes the variable with a call to
resched_cntl ; and disables and re-enables reschedul ing with cal ls to
resched_lock and resched_unlock, respectively.

01 struct resched_var rv;
02
03 void
04 main ()
05 {
06 resched_cntl(RESCHED_SET_VARIABLE, (char *)&rv);
07
08 resched_lock(&rv);
09
10 /* nonpreemptible code */
11 ...
12
13 resched_unlock(&rv);
14 }

RedHawk Linux User’s Guide

5-8

Busy-Wait Mutual Exclusion 5

Busy-wait mutual exclusion is achieved by associating a synchronizing variable with a
shared resource. When a process or thread wishes to gain access to the resource, it locks
the synchronizing variable. When it completes its use of the resource, it unlocks the
synchronizing variable. If another process or thread attempts to gain access to the resource
while the first process or thread has the resource locked, that process or thread must delay
by repeatedly testing the state of the lock. This form of synchronization requires that the
synchronizing variable be accessible directly from user mode and that the lock and unlock
operations have very low overhead.

RedHawk Linux busy-wait mutual exclusion tools include a low-overhead busy-wait
mutual exclusion variable (a spin lock) and a corresponding set of macros. In the sections
that follow, the variable and the macros are defined, and the procedures for using them are
explained.

The threads library, libpthread, also provides a set of spin lock routines. These
routines are described in the man page for pthread_mutex_init(3). It is
recommended that you use the macros described in this chapter instead of the pthread
mutex routines because the macros are more efficient and they give you more flexibility;
for example, the spin lock macros allow you to construct a synchronization primitive that
is a combination of the busy-wait and sleepy-wait primitives. If you were to construct such
a primitive, the primitive would gain access to the lock by spinning for some number of
spins and then blocking if the lock were not available. The advantage that this type of lock
offers is that you do not have to use rescheduling variables to prevent deadlock.

Understanding the Busy-Wait Mutual Exclusion Variable 5

The busy-wait mutual exclusion variable is a data structure known as a spin lock. This
variable is defined in <spin.h> as follows:

struct spin_mutex {

 ...

};

The spin lock has two states: locked and unlocked. When initialized, the spin lock is in the
unlocked state.

If you wish to use spin locks to coordinate access to shared resources, you must allocate
them in your application program and locate them in memory that is shared by the
processes or threads that you wish to synchronize. You can manipulate them by using the
macros described in “Using the Busy-Wait Mutual Exclusion Macros.”

Interprocess Synchronization

5-9

Using the Busy-Wait Mutual Exclusion Macros 5

A set of busy-wait mutual exclusion macros allows you to initialize, lock, and unlock spin
locks and determine whether or not a particular spin lock is locked. These macros are
briefly described as follows:

spin_init initialize a spin lock to the unlocked state

spin_trylock attempt to lock a specified spin lock

spin_unlock unlock a specified spin lock

spin_islock determine whether or not a specified spin lock is locked

It is important to note that none of these macros enables you to lock a spin lock
unconditionally. You can construct this capability by using the tools that are provided.

CAUTION

Operations on spin locks are not recursive; a process or thread can
deadlock if it attempts to relock a spin lock that it has already
locked.

You must initialize spin locks before you use them by calling the spin_init macro.
You call spin_init only once for each spin lock. If the specified spin lock is locked,
spin_init effectively unlocks it. The spin_init macro is specified as follows:

#include <spin.h>

void spin_init(m)

struct spin_mutex *m;

The argument is defined as follows:

m the starting address of the spin lock to be initialized

Spin_init does not return a value; it places the spin lock in the unlocked state.

The spin_trylock macro is specified as follows:

#include <spin.h>

int spin_trylock(m)

struct spin_mutex *m;

The argument is defined as follows:

m a pointer to the spin lock that you wish to try to lock

RedHawk Linux User’s Guide

5-10

A return of TRUE indicates that the calling process or thread has succeeded in locking the
spin lock. A return of FALSE indicates that it has not succeeded. Spin_trylock does
not block the calling process or thread.

The spin_unlock macro is specified as follows:

#include <spin.h>

void spin_unlock(m)

struct spin_mutex *m;

The argument is defined as follows:

m a pointer to the spin lock that you wish to unlock

Spin_unlock does not return a value.

The spin_islock macro is specified as follows:

#include <spin.h>

int spin_islock(m)

struct spin_mutex *m;

The argument is defined as follows:

m a pointer to the spin lock whose state you wish to determine

A return of TRUE indicates that the specified spin lock is locked. A return of FALSE
indicates that it is unlocked. Spin_islock does not attempt to lock the spin lock.

For additional information on the use of these macros, refer to the spin_trylock(3)
man page.

Applying Busy-Wait Mutual Exclusion Tools 5

Procedures for using the tools for busy-wait mutual exclusion are illustrated by the
following code segments. The first segment shows how to use these tools along with
rescheduling control to acquire a spin lock; the second shows how to release a spin lock.
Note that these segments contain no system calls or procedure calls.

The _m argument points to a spin lock, and the _r argument points to the calling process’
or thread’s rescheduling variable. It is assumed that the spin lock is located in shared
memory. To avoid the overhead associated with paging and swapping, it is recommended
that the pages that will be referenced inside the critical section be locked in physical
memory (see the mlock(2) and shmctl(2) system calls).

Interprocess Synchronization

5-11

#define spin_acquire(_m,_r) \
{ \
 resched_lock(_r); \
 while (!spin_trylock(_m)) { \

 resched_unlock(_r); \
 while (spin_islock(_m)); \
 resched_lock(_r); \

 } \
}

#define spin_release(_m,_r) \
{ \
 spin_unlock(_m); \
 resched_unlock(_r); \
}

In the first segment, note the use of the spin_trylock and spin_islock macros. If a
process or thread attempting to lock the spin lock finds it locked, it waits for the lock to be
released by calling spin_islock. This sequence is more efficient than polling directly
with spin_trylock. The spin_trylock macro contains special instructions to
perform test-and-set atomically on the spin lock. These instructions are less efficient than
the simple memory read performed in spin_islock.

Note also the use of the rescheduling control macros. To prevent deadlock, a process or
thread disables rescheduling prior to locking the spin lock and re-enables it after
unlocking the spin lock. A process or thread also re-enables rescheduling just prior to the
call to spin_islock so that rescheduling is not deferred any longer than necessary.

POSIX Counting Semaphores 5

Overview 5

Counting semaphores provide a simple interface that can be implemented to achieve the
fastest performance for lock and unlock operations. A counting semaphore is an object
that has an integer value and a limited set of operations defined for it. These operations
and the corresponding POSIX interfaces include the following:

• An initialization operation that sets the semaphore to zero or a positive value—
sem_init

• A lock operation that decrements the value of the semaphore—sem_wait. If
the resulting value is negative, the process performing the operation blocks.

• An unlock operation that increments the value of the semaphore—sem_post.
If the resulting value is less than or equal to zero, one of the processes blocked
on the semaphore is awakened. If the resulting value is greater than zero, no
processes were blocked on the semaphore.

• A conditional lock operation that decrements the value of the semaphore only
if the value is positive—sem_trywait. If the value is zero or negative, the
operation fails.

• A query operation that provides a snapshot of the value of the semaphore—
sem_getvalue

RedHawk Linux User’s Guide

5-12

The lock, unlock, and conditional lock operations are atomic (the set of operations are
performed at the same time and only if they can all be performed simultaneously).

A counting semaphore may be used to control access to any resource that can be used by
multiple cooperating threads. A process creates and initializes an unnamed semaphore
through a call to the sem_init(2) routine. The semaphore is initialized to a value that is
specified on the call. All threads within the application have access to the unnamed
semaphore once it has been created with the sem_init routine call.

When the unnamed semaphore is initialized, its value should be set to the number of
available resources. To use an unnamed counting semaphore to provide mutual exclusion,
the semaphore value should be set to one.

A cooperating process that wants access to a critical resource must lock the semaphore
that protects that resource. When the process locks the semaphore, it knows that it can use
the resource without interference from any other cooperating process in the system. An
application must be written so that the resource is accessed only after the semaphore that
protects it has been acquired.

As long as the semaphore value is positive, resources are available for use; one of the
resources is allocated to the next process that tries to acquire it. When the semaphore value
is zero, then none of the resources are available; a process trying to acquire a resource
must wait until one becomes available. If the semaphore value is negative, then there may
be one or more processes that are blocked and waiting to acquire one of the resources.
When a process completes use of a resource, it unlocks the semaphore, indicating that the
resource is available for use by another process.

The concept of ownership does not apply to a counting semaphore. One process can lock
a semaphore; another process can unlock it.

The semaphore unlock operation is async-signal safe; that is, a process can unlock a
semaphore from a signal-handling routine without causing deadlock.

The absence of ownership precludes priority inheritance. Because a process does not
become the owner of a semaphore when it locks the semaphore, it cannot temporarily
inherit the priority of a higher-priority process that blocks trying to lock the same
semaphore. As a result, unbounded priority inversion can occur.

NOTE

RedHawk Linux does not currently support named semaphores.
As a result, the sem_open, sem_close and sem_unlink
functions all return an errno value of ENOSYS, and should not be
used at this time.

Interprocess Synchronization

5-13

Interfaces 5

The sections that follow explain the procedures for using the POSIX counting semaphore
interfaces. These interfaces are briefly described as follows:

sem_init initializes an unnamed counting semaphore

sem_destroy removes an unnamed counting semaphore

sem_wait locks a counting semaphore

sem_trywait locks a counting semaphore only if it is currently unlocked

sem_post unlocks a counting semaphore

sem_getvalue obtains the value of a counting semaphore

Note that to use these interfaces, you must link your application with the Linux Threads
library. You may link with this library statically or dynamically (with shared libraries).
The following example shows the command line invocation when using shared libraries:

gcc [options] file.c -lpthread

The same application could be built statically with the following invocation line:

gcc [options] -static file.c -lpthread

Using the sem_init Routine 5

The sem_init(3) library routine allows the calling process to initialize an unnamed
counting semaphore by setting the semaphore value to the number of available resources
being protected by the semaphore. To use a counting semaphore for mutual exclusion, the
process sets the value to one.

Currently RedHawk Linux only supports counting semaphores that are local to the process
(the pshared parameter must be set to 0). These semaphores may thus only be shared
among threads within the same application.

After one thread in an application creates and initializes a semaphore, other cooperating
threads within that same application can operate on the semaphore by using the
sem_wait, sem_trywait, sem_post and sem_getvalue library routines. These
routines are explained in the sections that follow.

A child process created by a fork(2) system call does not inherit access to a semaphore
that has already been initialized by the parent. A process also loses access to a semaphore
after invoking the exec(3) or exit(2) system calls.

RedHawk Linux User’s Guide

5-14

CAUTION

The IEEE 1003.1b-1993 standard does not indicate what happens
when multiple processes invoke sem_init for the same
semaphore. Currently, the RedHawk Linux implementation
simply reinitializes the semaphore to the value specified on
sem_init calls that are made after the initial sem_init call.

To be certain that application code can be ported to any system
that supports POSIX interfaces (including future Concurrent
systems), cooperating processes that use sem_init should
ensure that a single process initializes a particular semaphore and
that it does so only once.

If sem_init is called after it has already been initialized with a
prior sem_init call, and there are currently threads that are
waiting on this same semaphore, then these threads will never
return from their sem_wait calls, and they will need to be
explicitly terminated.

An unnamed counting semaphore is removed by invoking the sem_destroy routine (see
“Using the sem_destroy Routine” for an explanation of this routine).

Synopsis

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

The arguments are defined as follows:

sem a pointer to a sem_t structure that represents the unnamed counting
semaphore to be initialized

pshared an integer value that indicates whether or not the semaphore is to be
shared by other processes. If pshared is set to a non-zero value, then the
semaphore is shared among processes. If pshared is set to zero, then the
semaphore is shared only among threads within the same application.

NOTE

RedHawk Linux does not currently support process-shared
semaphores. Therefore, sem_init always returns with -1 and
errno set to ENOSYS if pshared is not set to zero.

value zero or a positive integer value that initializes the semaphore value to
the number of resources currently available. This number cannot
exceed the value of SEM_VALUE_MAX (see the file <semaphore.h> to
determine this value).

A return value of 0 indicates that the call to sem_init has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_init(3) man page for a listing of the types of errors that may occur.

Interprocess Synchronization

5-15

Using the sem_destroy Routine 5

CAUTION

An unnamed counting semaphore should not be removed until
there is no longer a need for any process to operate on the
semaphore and there are no processes currently blocked on the
semaphore.

Synopsis

#include <semaphore.h>

int sem_destroy(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore to be removed. Only a
counting semaphore created with a call to sem_init(3) may be
removed by invoking sem_destroy.

A return value of 0 indicates that the call to sem_destroy has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_destroy(3) man page for a listing of the types of errors that may occur.

Using the sem_wait Routine 5

The sem_wait(3) library routine allows the calling process to lock an unnamed
counting semaphore. If the semaphore value is equal to zero, the semaphore is already
locked. In this case, the process blocks until it is interrupted by a signal or the semaphore
is unlocked. If the semaphore value is greater than zero, the process locks the semaphore
and proceeds. In either case, the semaphore value is decremented.

Synopsis

#include <semaphore.h>

int sem_wait(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore to be locked

A return value of 0 indicates that the process has succeeded in locking the specified
semaphore. A return value of –1 indicates that an error has occurred; errno is set to
indicate the error. Refer to the sem_wait(3) man page for a listing of the types of
errors that may occur.

RedHawk Linux User’s Guide

5-16

Using the sem_trywait Routine 5

The sem_trywait(3) library routine allows the calling process to lock a counting
semaphore only if the semaphore value is greater than zero, indicating that the semaphore
is unlocked. If the semaphore value is equal to zero, the semaphore is already locked, and
the call to sem_trywait fails. If a process succeeds in locking the semaphore, the
semaphore value is decremented; otherwise, it does not change.

Synopsis

#include <semaphore.h>

int sem_trywait(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore that the calling process is
attempting to lock

A return value of 0 indicates that the calling process has succeeded in locking the
specified semaphore. A return value of –1 indicates that an error has occurred; errno is
set to indicate the error. Refer to the sem_trywait(3) man page for a listing of the
types of errors that may occur.

Using the sem_post Routine 5

The sem_post(3) library routine allows the calling process to unlock a counting
semaphore. If one or more processes are blocked waiting for the semaphore, the waiting
process with the highest priority is awakened when the semaphore is unlocked.

Synopsis

#include <semaphore.h>

int sem_post(sem_t *sem);

The argument is defined as follows:

sem a pointer to the unnamed counting semaphore to be unlocked

A return value of 0 indicates that the call to sem_post has been successful. A return
value of –1 indicates that an error has occurred; errno is set to indicate the error. Refer to
the sem_post(3) man page for a listing of the types of errors that may occur.

Interprocess Synchronization

5-17

Using the sem_getvalue Routine 5

The sem_getvalue(3) library routine allows the calling process to obtain the value of
an unnamed counting semaphore.

Synopsis

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

The arguments are defined as follows:

sem a pointer to the unnamed counting semaphore for which you wish to
obtain the value

sval a pointer to a location where the value of the specified unnamed
counting semaphore is to be returned. The value that is returned
represents the actual value of the semaphore at some unspecified time
during the call. It is important to note, however, that this value may not
be the actual value of the semaphore at the time of the return from the
call.

A return value of 0 indicates that the call to sem_getvalue has been successful. A
return value of –1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the sem_getvalue(3) man page for a listing of the types of errors that may
occur.

RedHawk Linux User’s Guide

5-18

System V Semaphores 5

Overview 5

The System V semaphore is an interprocess communication (IPC) mechanism that allows
processes to synchronize via the exchange of semaphore values. Since many applications
require the use of more than one semaphore, the operating system has the ability to create
sets or arrays of semaphores. A semaphore set can contain one or more semaphores, up to
a limit of SEMMSL (as defined in <linux/sem.h>). Semaphore sets are created using
the semget(2) system call.

When only a simple semaphore is needed, a counting semaphore is more efficient (see the
section “POSIX Counting Semaphores”).

The process performing the semget system call becomes the owner/creator, determines
how many semaphores are in the set, and sets the initial operation permissions for all
processes, including itself. This process can subsequently relinquish ownership of the set
or change the operation permissions using the semctl(2) system call. The creating
process always remains the creator as long as the facility exists. Other processes with
permission can use semctl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore grants
permission. Each semaphore within a set can be incremented and decremented with the
semop(2) system call (see the section “Using the semop System Call” later in this
chapter).

To increment a semaphore, an integer value of the desired magnitude is passed to the
semop system call. To decrement a semaphore, a minus (-) value of the desired
magnitude is passed.

The operating system ensures that only one process can manipulate a semaphore set at any
given time. Simultaneous requests are performed sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by attempting
to decrement the semaphore by one more than that value. If the process is successful, the
semaphore value is greater than that certain value. Otherwise, the semaphore value is not.
While doing this, the process can have its execution suspended (IPC_NOWAIT flag not set)
until the semaphore value would permit the operation (other processes increment the
semaphore), or the semaphore facility is removed.

The ability to suspend execution is called a blocking semaphore operation. This ability is
also available for a process which is testing for a semaphore equal to zero; only read
permission is required for this test; it is accomplished by passing a value of zero to the
semop system call.

On the other hand, if the process is not successful and did not request to have its execution
suspended, it is called a nonblocking semaphore operation. In this case, the process is
returned -1 and the external errno variable is set accordingly.

The blocking semaphore operation allows processes to synchronize via the values of
semaphores at different points in time. Remember also that IPC facilities remain in the
operating system until removed by a permitted process or until the system is reinitialized.

Interprocess Synchronization

5-19

When a set of semaphores is created, the first semaphore in the set is semaphore number
zero. The last semaphore number in the set is numbered one less than the total in the set.

A single system call can be used to perform a sequence of these blocking/nonblocking
operations on a set of semaphores. When performing a sequence of operations, the
blocking/nonblocking operations can be applied to any or all of the semaphores in the set.
Also, the operations can be applied in any order of semaphore number. However, no
operations are done until they can all be done successfully. For example, if the first three
of six operations on a set of ten semaphores could be completed successfully, but the
fourth operation would be blocked, no changes are made to the set until all six operations
can be performed without blocking. Either all of the operations are successful and the
semaphores are changed, or one or more (nonblocking) operation is unsuccessful and none
are changed. In short, the operations are performed atomically.

Remember, any unsuccessful nonblocking operation for a single semaphore or a set of
semaphores causes immediate return with no operations performed at all. When this
occurs, -1 is returned to the process, and the external variable errno is set accordingly.

System calls make these semaphore capabilities available to processes. The calling
process passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs its
function and returns the appropriate information. Otherwise, -1 is returned to the process,
and the external variable errno is set accordingly.

Using System V Semaphores 5

Before semaphores can be used (operated on or controlled) a uniquely identified data
structure and semaphore set (array) must be created. The unique identifier is called the
semaphore set identifier (semid); it is used to identify or refer to a particular data
structure and semaphore set. This identifier is accessible by any process in the system,
subject to normal access restrictions.

The semaphore set contains a predefined number of structures in an array, one structure
for each semaphore in the set. The number of semaphores (nsems) in a semaphore set is
user selectable.

The sembuf structure, which is used on semop(2) system calls, is shown in Figure 5-1.

Figure 5-1. Definition of sembuf Structure

The sembuf structure is defined in the <sys/sem.h> header file.

struct sembuf {
 unsigned short int sem_num; /* semaphore number */
 short int sem_op; /* semaphore operation */
 short int sem_flg; /* operation flag */
};

RedHawk Linux User’s Guide

5-20

The struct semid_ds structure, which is used on certain semctl(2) service calls, is
shown in Figure 5-2.

Figure 5-2. Definition of semid_ds Structure

Though the semid_ds data structure is located in <bits/sem.h>, user applications
should include the <sys/sem.h> header file, which internally includes the
<bits/sem.h> header file.

Note that the sem_perm member of this structure is of type ipc_perm.

The ipc_perm data structure is the same for all IPC facilities; it is located in the
<bits/ipc.h> header file, but user applications should include the <sys/ipc.h>
file, which internally includes the <bits/ipc.h> header file. The details of the
ipc_perm data structure are given in the section entitled “Understanding System V
Messages” in Chapter 3.

A semget(2) system call performs one of two tasks:

• creates a new semaphore set identifier and creates an associated data structure
and semaphore set for it

• locates an existing semaphore set identifier that already has an associated data
structure and semaphore set

The task performed is determined by the value of the key argument passed to the semget
system call. If key is not already in use for an existing semid and the IPC_CREAT flag is
set, a new semid is returned with an associated data structure and semaphore set created
for it, provided no system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), which is known as the
private key (IPC_PRIVATE). When this key is specified, a new identifier is always returned
with an associated data structure and semaphore set created for it, unless a system-tunable
parameter would be exceeded. The ipcs(8) command will show the key field for the
semid as all zeros.

When a semaphore set is created, the process which calls semget becomes the
owner/creator and the associated data structure is initialized accordingly. Remember,
ownership can be changed, but the creating process always remains the creator (see the
“Controlling Semaphores” section). The creator of the semaphore set also determines the
initial operation permissions for the facility.

struct semid_ds {
struct ipc_perm sem_perm; /* operation permission struct */
__time_t sem_otime; /* last semop() time */
unsigned long int __unused1;
__time_t sem_ctime; /* last time changed by semctl() */
unsigned long int __unused2;
unsigned long int sem_nsems; /* number of semaphores in set */
unsigned long int __unused3;
unsigned long int __unused4;

};

Interprocess Synchronization

5-21

If a semaphore set identifier exists for the key specified, the value of the existing identifier
is returned. If you do not want to have an existing semaphore set identifier returned, a
control command (IPC_EXCL) can be specified (set) in the semflg argument passed to the
system call. The system call will fail if it is passed a value for the number of semaphores
(nsems) that is greater than the number actually in the set; if you do not know how many
semaphores are in the set, use 0 for nsems (see “Using the semget System Call” for more
information).

Once a uniquely identified semaphore set and data structure are created or an existing one
is found, semop(2) and semctl(2) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for zero. The
semop system call is used to perform these operations (see “Operations On Semaphores”
for details of the semop system call).

The semctl system call permits you to control the semaphore facility in the following
ways:

• by returning the value of a semaphore (GETVAL)

• by setting the value of a semaphore (SETVAL)

• by returning the PID of the last process performing an operation on a
semaphore set (GETPID)

• by returning the number of processes waiting for a semaphore value to become
greater than its current value (GETNCNT)

• by returning the number of processes waiting for a semaphore value to equal
zero (GETZCNT)

• by getting all semaphore values in a set and placing them in an array in user
memory (GETALL)

• by setting all semaphore values in a semaphore set from an array of values in
user memory (SETALL)

• by retrieving the data structure associated with a semaphore set (IPC_STAT)

• by changing operation permissions for a semaphore set (IPC_SET)

• by removing a particular semaphore set identifier from the operating system
along with its associated data structure and semaphore set (IPC_RMID)

See the section “Controlling Semaphores” for details of the semctl system call.

Getting Semaphores 5

This section describes how to use the semget system call. The accompanying program
illustrates its use.

RedHawk Linux User’s Guide

5-22

Using the semget System Call 5

The semget system call creates a new semaphore set or identifies an existing one.

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key_t key, int nsems, int semflg);

key_t is defined by a typedef in the <bits/sys/types.h> header file to be an
integral type (this header file is included internally by <sys/types.h>). The integer
returned from this system call upon successful completion is the semaphore set identifier
(semid).

A new semid with an associated semaphore set and data structure is created if one of the
following conditions is true:

• key is equal to IPC_PRIVATE,

• key is a unique integer and semflg ANDed with IPC_CREAT is “true.”

The value passed to the semflg argument must be an integer that will specify the following:

• operation permissions

• control fields (commands)

Table 5-1 shows the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific value is derived by adding or bitwise ORing the values for the operation
permissions wanted. That is, if “read by user” and “read/alter by others” is desired, the
code value would be 00406 (00400 plus 00006).

Control flags are predefined constants. The flags that apply to the semget system call are
IPC_CREAT and IPC_EXCL.

Table 5-1. Semaphore Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Alter by User 00200

Read by Group 00040

Alter by Group 00020

Read by Others 00004

Alter by Others 00002

Interprocess Synchronization

5-23

The value for semflg is, therefore, a combination of operation permissions and control
commands. After determining the value for the operation permissions as previously
described, the desired flag(s) can be specified. This specification is accomplished by
adding or bitwise ORing (|) them with the operation permissions; the bit positions and
values for the control commands in relation to those of the operation permissions make
this possible.

The semflg value can easily be set by using the flag names in conjunction with the octal
operation permissions value:

semid = semget (key, nsems, (IPC_CREAT | 0400));
semid = semget (key, nsems, (IPC_CREAT | IPC_EXCL|0400));

As specified by the semget(2) man page, success or failure of this system call depends
upon the actual argument values for key, nsems, and semflg, and system-tunable
parameters. The system call will attempt to return a new semaphore set identifier if one of
the following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a semaphore set identifier associated with it and
semflg and IPC_CREAT is “true” (not zero).

The following values are defined in <linux/sem.h>. Exceeding these values always
cause a failure.

SEMMNI determines the maximum number of unique semaphore sets (semid values)
that may be in use at any given time.

SEMMSL determines the maximum number of semaphores in each semaphore set.

SEMMNS determines the maximum number of semaphores in all semaphore sets system
wide

A list of semaphore limit values may be obtained with the ipcs(8) command by using
the following options:

ipcs -s -l

See the ipcs(8) man page for details.

IPC_EXCL can be used in conjunction with IPC_CREAT. This causes the system call to
return an error if a semaphore set identifier already exists for the specified key provided.
This is necessary to prevent the process from thinking that it has received a new (unique)
identifier when it has not. In other words, when both IPC_CREAT and IPC_EXCL are
specified, a new semaphore set identifier is returned only if a new semaphore is created.
Any value for semflg returns a new identifier if key equals zero (IPC_PRIVATE), assuming
no system-tunable parameters are exceeded.

Refer to the semget(2) man page for specific associated data structure initialization, as
well as the specific failure conditions and their error names.

RedHawk Linux User’s Guide

5-24

Example Program 5

The example program presented at the end of this section is a menu-driven program. It
allows all possible combinations of using the semget system call to be exercised. From
studying this program, you can observe the method of passing arguments and receiving
return values.

This program begins (lines 5-9) by including the required header files as specified by the
semget(2) man page.

Variable names have been chosen to be as close as possible to those in the synopsis. Their
declarations are intended to be self-explanatory. These names make the program more
readable and are valid because they are local to the program.

The variables declared for this program and their roles are:

key passes the value for the desired key

opperm stores the desired operation permissions

flags stores the desired control commands (flags)

opperm_flags stores the combination from the logical ORing of the opperm and
flags variables; it is then used in the system call to pass the
semflg argument

semid returns the semaphore set identification number for a successful
system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation permissions
code, and the control command combinations (flags) which are selected from a menu
(lines 16-33). All possible combinations are allowed even though they might not be valid,
in order to allow observing the errors for invalid combinations.

Next, the menu selection for the flags is combined with the operation permissions and the
result is stored in opperm_flags (lines 37-53).

Then, the number of semaphores for the set is requested (lines 54-58) and its value is
stored in nsems.

The system call is made next; the result is stored in the semid (lines 61, 62).

Because the semid variable now contains a valid semaphore set identifier or the error
code (-1), it can be tested to see if an error occurred (line 64). If semid equals -1, a
message indicates that an error resulted and the external errno variable is displayed (line
66). Remember that the external errno variable is only set when a system call fails; it
should only be examined immediately following system calls.

If no error occurs, the returned semaphore set identifier is displayed (line 70).

The example program for the semget system call follows. This file is provided as
/usr/share/doc/ccur/examples/semget.c.

1 /*
2 * Illustrates the semaphore get, semget(),
3 * system call capabilities.
4 */

Interprocess Synchronization

5-25

5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <sys/ipc.h>
8 #include <sys/sem.h>
9 #include <errno.h>
10 /* Start of main C language program */
11 main()
12 {
13 key_t key;
14 int opperm, flags, nsems;
15 int semid, opperm_flags;
16 /* Enter the desired key */
17 printf("\nEnter the desired key in hex = ");
18 scanf("%x", &key);
19 /* Enter the desired octal operation
20 permissions. */
21 printf("\nEnter the operation\n");
22 printf("permissions in octal = ");
23 scanf("%o", &opperm);
24 /* Set the desired flags. */
25 printf("\nEnter corresponding number to\n");
26 printf("set the desired flags:\n");
27 printf("No flags = 0\n");
28 printf("IPC_CREAT = 1\n");
29 printf("IPC_EXCL = 2\n");
30 printf("IPC_CREAT and IPC_EXCL = 3\n");
31 printf(" Flags = ");
32 /* Get the flags to be set. */
33 scanf("%d", &flags);
34 /* Error checking (debugging) */
35 printf ("\nkey =0x%x, opperm = 0%o, flags = %d\n",
36 key, opperm, flags);
37 /* Incorporate the control fields (flags) with
38 the operation permissions. */
39 switch (flags)
40 {
41 case 0: /* No flags are to be set. */
42 opperm_flags = (opperm | 0);
43 break;
44 case 1: /* Set the IPC_CREAT flag. */
45 opperm_flags = (opperm | IPC_CREAT);
46 break;
47 case 2: /* Set the IPC_EXCL flag. */
48 opperm_flags = (opperm | IPC_EXCL);
49 break;
50 case 3: /* Set the IPC_CREAT and IPC_EXCL
51 flags. */
52 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
53 }
54 /* Get the number of semaphores for this set. */
55 printf("\nEnter the number of\n");
56 printf("desired semaphores for\n");
57 printf("this set (max is SEMMSL) = ");
58 scanf("%d", &nsems);
59 /* Check the entry.* /
60 printf("\nNsems = %d\n", nsems);
61 /* Call the semget system call.* /
62 semid = semget(key, nsems, opperm_flags);
63 /* Perform the following if the call is unsuccessful.* /
64 if(semid == -1)
65 {
66 printf("The semget call failed, error no. = %d\n", errno);
67 }
68 /* Return the semid upon successful completion.* /
69 else
70 printf("\nThe semid = %d\n", semid);
71 exit(0);
72 }

RedHawk Linux User’s Guide

5-26

Controlling Semaphores 5

This section describes how to use the semctl(2) system call. The accompanying
program illustrates its use.

Using the semctl System Call 5

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun
{
 int val;
 struct semid_ds *buf;
 ushort *array;
} arg;

The semid argument must be a valid, non-negative, integer value that has already been
created using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates to
sequences of operations (atomically performed) on the set. When a set of semaphores is
created, the first semaphore is number 0, and the last semaphore is numbered one less than
the total in the set.

The cmd argument can be replaced by one of the following values:

GETVAL returns the value of a single semaphore within a semaphore set

SETVAL sets the value of a single semaphore within a semaphore set

GETPID returns the PID of the process that performed the last operation on
the semaphore within a semaphore set

GETNCNT returns the number of processes waiting for the value of a
particular semaphore to become greater than its current value

GETZCNT returns the number of processes waiting for the value of a
particular semaphore to be equal to zero

GETALL returns the value for all semaphores in a semaphore set

SETALL sets all semaphore values in a semaphore set

IPC_STAT returns the status information contained in the associated data
structure for the specified semid, and places it in the data structure
pointed to by arg.buf

Interprocess Synchronization

5-27

IPC_SET sets the effective user/group identification and operation
permissions for the specified semaphore set (semid)

IPC_RMID removes the specified semaphore set (semid) along with its
associated data structure

NOTE

The semctl(2) service also supports the IPC_INFO, SEM_STAT

and SEM_INFO commands. However, since these commands are
only intended for use by the ipcs(8) utility, these commands
are not discussed.

To perform an IPC_SET or IPC_RMID control command, a process must meet one or more
of the following conditions:

• have an effective user id of OWNER

• have an effective user id of CREATOR

• be the super-user

• have the CAP_SYS_ADMIN capability

Note that a semaphore set can also be removed by using the ipcrm(1) command and
specifying the “sem id” option, where id specifies the identifier for the semaphore set. To
use this command, a process must have the same capabilities as those required for
performing an IPC_RMID control command. See the ipcrm(1) man page for additional
information on the use of this command.

The remaining control commands require either read or write permission, as appropriate.

The arg argument is used to pass the system call the appropriate union member for the
control command to be performed. For some of the control commands, the arg argument
is not required and is simply ignored.

• arg.val required: SETVAL

• arg.buf required: IPC_STAT, IPC_SET

• arg.array required: GETALL, SETALL

• arg ignored: GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

The details of this system call are discussed in the following program. If you need more
information on the logic manipulations in this program, read “Using the semget System
Call.” It goes into more detail than would be practical for every system call.

RedHawk Linux User’s Guide

5-28

Example Program 5

The example program presented at the end of this section is a menu-driven program. It
allows all possible combinations of using the semctl system call to be exercised. From
studying this program, you can observe the method of passing arguments and receiving
return values.

This program begins (lines 5-10) by including the required header files as specified by the
semctl(2) man page plus the <errno.h> header file, which is used for referencing
errno.

Variable, structure, and union names have been chosen to be as close as possible to those
in the synopsis. Their declarations are intended to be self-explanatory. These names make
the program more readable and are valid because they are local to the program.

The variables declared for this program and their roles are:

semid_ds receives the specified semaphore set identifier’s data structure
when an IPC_STAT control command is performed

c receives the input values from the scanf function (line 119)
when performing a SETALL control command

i stores a counter value to increment through the union
arg.array when displaying the semaphore values for a
GETALL (lines 98-100) control command, and when initializing
the arg.array when performing a SETALL (lines 117-121)
control command

length stores a variable value to test for the number of semaphores in a
set against the i counter variable (lines 98, 117)

uid stores the IPC_SET value for the user identification

gid stores the IPC_SET value for the group identification

mode stores the IPC_SET value for the operation permissions

retrn stores the return value from the system call

semid stores and passes the semaphore set identifier to the system call

semnum stores and passes the semaphore number to the system call

cmd stores the code for the desired control command so that
subsequent processing can be performed on it

choice used to determine which member (uid, gid, mode) for the
IPC_SET control command is to be changed

semvals[] stores the set of semaphore values when getting (GETALL) or
initializing (SETALL)

arg.val stores a value for the system call to set, or stores a value returned
from the system call, for a single semaphore (union member)

Interprocess Synchronization

5-29

arg.buf a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command
is to place its return values, or where the IPC_SET command gets
the values to set (union member)

arg.array a pointer passed to the system call which locates the array in the
user memory where the GETALL control command is to place its
return values, or when the SETALL command gets the values to
set (union member)

Note that the semvals array is declared to have 250 elements (0 through 249). This
number corresponds to the usual maximum number of semaphores allowed per set
(SEMMSL), a define located in <linux/sem.h>. The actual value of SEMMSL in use on
the currently executing kernel may be viewed with the “ipcs -s -l” command.

First, the program prompts for a valid semaphore set identifier, which is stored in the
semid variable (lines 24-26). This is required for all semctl system calls.

Next, the code for the desired control command must be entered (lines 17-42), and the
code is stored in the cmd variable. The code is tested to determine the control command
for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting for a
semaphore number is displayed (lines 48, 49). When it is entered, it is stored in the
semnum variable (line 50). Then, the system call is performed and the semaphore value is
displayed (lines 51-54). Note that the arg argument is not required in this case and the
system call will ignore it. If the system call is successful, a message indicates this along
with the semaphore set identifier used (lines 197, 198); if the system call is unsuccessful,
an error message is displayed along with the value of the external errno variable (lines
194, 195).

If the SETVAL control command is selected (code 2), a message prompting for a
semaphore number is displayed (lines 55, 56). When it is entered, it is stored in the
semnum variable (line 57). Next, a message prompts for the value to which the semaphore
is to be set; it is stored as the arg.val member of the union (lines 58, 59). Then, the
system call is performed (lines 60, 62). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is made immediately
since all required arguments are known (lines 63-66), and the PID of the process
performing the last operation is displayed. Note that the arg argument is not required in
this case, and the system call will ignore it. Depending upon success or failure, the
program returns the same messages as for GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting for a
semaphore number is displayed (lines 67-71). When entered, it is stored in the semnum
variable (line 73). Then, the system call is performed and the number of processes waiting
for the semaphore to become greater than its current value is displayed (lines 73-76). Note
that the arg argument is not required in this case, and the system call will ignore it.
Depending upon success or failure, the program returns the same messages as for GETVAL
above.

If the GETZCNT control command is selected (code 5), a message prompting for a
semaphore number is displayed (lines 77-80). When it is entered, it is stored in the
semnum variable (line 81). Then the system call is performed and the number of processes

RedHawk Linux User’s Guide

5-30

waiting for the semaphore value to become equal to zero is displayed (lines 82-85).
Depending upon success or failure, the program returns the same messages as for GETVAL
above.

If the GETALL control command is selected (code 6), the program first performs an
IPC_STAT control command to determine the number of semaphores in the set (lines 87-
93). The length variable is set to the number of semaphores in the set (line 93). The
arg.array union member is set to point to the semvals array where the system call is
to store the values of the semaphore set (line 96). Then, a loop is entered which displays
each element of the arg.array from zero to one less than the value of length (lines
98-104). The semaphores in the set are displayed on a single line, separated by a space.
Depending upon success or failure, the program returns the same messages as for GETVAL
above.

If the SETALL control command is selected (code 7), the program first performs an
IPC_STAT control command to determine the number of semaphores in the set (lines
107-110). The length variable is set to the number of semaphores in the set (line 113).
Next, the program prompts for the values to be set and enters a loop which takes values
from the keyboard and initializes the semvals array to contain the desired values of the
semaphore set (lines 115-121). The loop puts the first entry into the array position for
semaphore number zero and ends when the semaphore number that is filled in the array
equals one less than the value of length. The arg.array union member is set to point
to the semvals array from which the system call is to obtain the semaphore values. The
system call is then made (lines 122-125). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is performed (line
129), and the status information returned is printed out (lines 130-141); only the members
that can be set are printed out in this program. Note that if the system call is unsuccessful,
the status information of the last successful one is printed out. In addition, an error
message is displayed, and the errno variable is printed out (line 194).

If the IPC_SET control command is selected (code 9), the program gets the current status
information for the semaphore set identifier specified (lines 145-149). This is necessary
because this example program provides for changing only one member at a time, and the
semctl system call changes all of them. Also, if an invalid value is stored in the user
memory area for one of these members, it would cause repetitive failures for this control
command until corrected. Next, the program prompts for a code corresponding to the
member to be changed (lines 150-156). This code is stored in the choice variable (line
157). Then, depending upon the member picked, the program prompts for the new value
(lines 158-181). The value is placed into the appropriate member in the user memory area
data structure and the system call is made (line 184). Depending upon success or failure,
the program returns the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call is performed
(lines 186-188). The semaphore set identifier, along with its associated data structure and
semaphore set, is removed from the operating system. Depending upon success or failure,
the program returns the same messages as for the other control commands.

Interprocess Synchronization

5-31

The example program for the semctl system call follows. This file is provided as
/usr/share/doc/ccur/examples/semctl.c.

 1 /*
 2 * Illustrates the semaphore control, semctl(),
 3 * system call capabilities
 4 */
 5 /* Include necessary header files.* /
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/sem.h>
 10 #include <errno.h>
 11 /* Start of main C language program* /
 12 main()
 13 {
 14 struct semid_ds semid_ds;
 15 int c, i, length;
 16 int uid, gid, mode;
 17 int retrn, semid, semnum, cmd, choice;
 18 ushort semvals[250];
 19 union semun {
 20 int val;
 21 struct semid_ds *buf;
 22 ushort *array;
 23 } arg;
 24 /* Enter the semaphore ID.* /
 25 printf(“Enter the semid = “);
 26 scanf(“%d”, &semid);
 27 /* Choose the desired command.* /
 28 printf(“\nEnter the number for\n”);
 29 printf(“the desired cmd:\n”);
 30 printf(“GETVAL = 1\n”);
 31 printf(“SETVAL = 2\n”);
 32 printf(“GETPID = 3\n”);
 33 printf(“GETNCNT = 4\n”);
 34 printf(“GETZCNT = 5\n”);
 35 printf(“GETALL = 6\n”);
 36 printf(“SETALL = 7\n”);
 37 printf(“IPC_STAT = 8\n”);
 38 printf(“IPC_SET = 9\n”);
 39 printf(“IPC_RMID = 10\n”);
 40 printf(“Entry = “);
 41 scanf(“%d”, &cmd);
 42 /* Check entries.* /
 43 printf (“\nsemid =%d, cmd = %d\n\n”,
 44 semid, cmd);
 45 /* Set the command and do the call.* /
 46 switch (cmd)
 47 {
 48 case 1: /* Get a specified value.* /
 49 printf(“\nEnter the semnum = “);
 50 scanf(“%d”, &semnum);
 51 /* Do the system call.* /
 52 retrn = semctl(semid, semnum, GETVAL, arg);
 53 printf(“\nThe semval = %d”, retrn);
 54 break;
 55 case 2: /* Set a specified value.* /
 56 printf(“\nEnter the semnum = “);
 57 scanf(“%d”, &semnum);
 58 printf(“\nEnter the value = “);
 59 scanf(“%d”, &arg.val);
 60 /* Do the system call.* /
 61 retrn = semctl(semid, semnum, SETVAL, arg);
 62 break;
 63 case 3: /* Get the process ID.* /
 64 retrn = semctl(semid, 0, GETPID, arg);
 65 printf(“\nThe sempid = %d”, retrn);
 66 break;
 67 case 4: /* Get the number of processes
 68 waiting for the semaphore to

RedHawk Linux User’s Guide

5-32

 69 become greater than its current
 70 value.* /
 71 printf(“\nEnter the semnum = “);
 72 scanf(“%d”, &semnum);
 73 /* Do the system call.* /
 74 retrn = semctl(semid, semnum, GETNCNT, arg);
 75 printf(“\nThe semncnt = %d”, retrn);
 76 break;
 77 case 5: /* Get the number of processes
 78 waiting for the semaphore
 79 value to become zero.* /
 80 printf(“\nEnter the semnum = “);
 81 scanf(“%d”, &semnum);
 82 /* Do the system call.* /
 83 retrn = semctl(semid, semnum, GETZCNT, arg);
 84 printf(“\nThe semzcnt = %d”, retrn);
 85 break;
 86 case 6: /* Get all of the semaphores.* /
 87 /* Get the number of semaphores in
 88 the semaphore set.* /
 89 arg.buf = &semid_ds;
 90 retrn = semctl(semid, 0, IPC_STAT, arg);
 91 if(retrn == -1)
 92 goto ERROR;
 93 length = arg.buf->sem_nsems;
 94 /* Get and print all semaphores in the
 95 specified set.* /
 96 arg.array = semvals;
 97 retrn = semctl(semid, 0, GETALL, arg);
 98 for (i = 0; i < length; i++)
 99 {
 100 printf(“%d”, semvals[i]);
 101 /* Separate each
 102 semaphore.* /
 103 printf(“ “);
 104 }
 105 break;
 106 case 7: /* Set all semaphores in the set.* /
 107 /* Get the number of semaphores in
 108 the set.* /
 109 arg.buf = &semid_ds;
 110 retrn = semctl(semid, 0, IPC_STAT, arg);
 111 if(retrn == -1)
 112 goto ERROR;
 113 length = arg.buf->sem_nsems;
 114 printf(“Length = %d\n”, length);
 115 /* Set the semaphore set values.* /
 116 printf(“\nEnter each value:\n”);
 117 for(i = 0; i < length ; i++)
 118 {
 119 scanf(“%d”, &c);
 120 semvals[i] = c;
 121 }
 122 /* Do the system call.* /
 123 arg.array = semvals;
 124 retrn = semctl(semid, 0, SETALL, arg);
 125 break;
 126 case 8: /* Get the status for the semaphore set.* /
 127 /* Get and print the current status values.* /
 128 arg.buf = &semid_ds;
 129 retrn = semctl(semid, 0, IPC_STAT, arg);
 130 printf (“\nThe USER ID = %d\n”,
 131 arg.buf->sem_perm.uid);
 132 printf (“The GROUP ID = %d\n”,
 133 arg.buf->sem_perm.gid);
 134 printf (“The operation permissions = 0%o\n”,
 135 arg.buf->sem_perm.mode);
 136 printf (“The number of semaphores in set = %d\n”,
 137 arg.buf->sem_nsems);
 138 printf (“The last semop time = %d\n”,
 139 arg.buf->sem_otime);
 140 printf (“The last change time = %d\n”,

Interprocess Synchronization

5-33

 141 arg.buf->sem_ctime);
 142 break;
 143 case 9: /* Select and change the desired
 144 member of the data structure.* /
 145 /* Get the current status values.* /
 146 arg.buf = &semid_ds;
 147 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
 148 if(retrn == -1)
 149 goto ERROR;
 150 /* Select the member to change.* /
 151 printf(“\nEnter the number for the\n”);
 152 printf(“member to be changed:\n”);
 153 printf(“sem_perm.uid = 1\n”);
 154 printf(“sem_perm.gid = 2\n”);
 155 printf(“sem_perm.mode = 3\n”);
 156 printf(“Entry = “);
 157 scanf(“%d”, &choice);
 158 switch(choice){
 159 case 1: /* Change the user ID.* /
 160 printf(“\nEnter USER ID = “);
 161 scanf (“%d”, &uid);
 162 arg.buf->sem_perm.uid = uid;
 163 printf(“\nUSER ID = %d\n”,
 164 arg.buf->sem_perm.uid);
 165 break;
 166 case 2: /* Change the group ID.* /
 167 printf(“\nEnter GROUP ID = “);
 168 scanf(“%d”, &gid);
 169 arg.buf->sem_perm.gid = gid;
 170 printf(“\nGROUP ID = %d\n”,
 171 arg.buf->sem_perm.gid);
 172 break;
 173 case 3: /* Change the mode portion of
 174 the operation
 175 permissions.* /
 176 printf(“\nEnter MODE in octal = “);
 177 scanf(“%o”, &mode);
 178 arg.buf->sem_perm.mode = mode;
 179 printf(“\nMODE = 0%o\n”,
 180 arg.buf->sem_perm.mode);
 181 break;
 182 }
 183 /* Do the change.* /
 184 retrn = semctl(semid, 0, IPC_SET, arg);
 185 break;
 186 case 10: /* Remove the semid along with its
 187 data structure.* /
 188 retrn = semctl(semid, 0, IPC_RMID, arg);
 189 }
 190 /* Perform the following if unsuccessful.* /
 191 if(retrn == -1)
 192 {
 193 ERROR:
 194 printf(“\nsemctl failed!,error no.= %d\n”, errno);
 195 exit(0);
 196 }
 197 printf (“\n\nsemctl successful\n”);
 198 printf (“for semid = %d\n”, semid);
 199 exit (0);
 200 }

RedHawk Linux User’s Guide

5-34

Operations On Semaphores 5

This section describes how to use the semop(2) system call. The accompanying program
illustrates its use.

Using the semop System Call 5

Synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semid, struct sembuf *sops, unsigned nsops);

The semop system call returns an integer value, which is zero for successful completion
or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other words, it must
have already been returned from a prior semget(2) system call.

The sops argument points to an array of structures in the user memory area that contains
the following for each semaphore to be changed:

• the semaphore number (sem_num)

• the operation to be performed (sem_op)

• the control flags (sem_flg)

The *sops declaration means that either an array name (which is the address of the first
element of the array) or a pointer to the array can be used. sembuf is the tag name of the
data structure used as the template for the structure members in the array; it is located in
the <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of structures in the
array). The maximum size of this array is determined by the SEMOPM system-tunable
parameter. Therefore, a maximum of SEMOPM operations can be performed for each
semop system call.

The semaphore number (sem_num) determines the particular semaphore within the set on
which the operation is to be performed.

Interprocess Synchronization

5-35

The operation to be performed is determined by the following:

• If sem_op is positive, the semaphore value is incremented by the value of
sem_op.

• If sem_op is negative, the semaphore value is decremented by the absolute
value of sem_op.

• If sem_op is zero, the semaphore value is tested for equality to zero.

The following operation commands (flags) can be used:

IPC_NOWAIT can be set for any operations in the array. The system call returns
unsuccessfully without changing any semaphore values at all if
any operation for which IPC_NOWAIT is set cannot be performed
successfully. The system call is unsuccessful when trying to
decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not.

SEM_UNDO tells the system to undo the process’ semaphore changes
automatically when the process exits; it allows processes to avoid
deadlock problems. To implement this feature, the system
maintains a table with an entry for every process in the system.
Each entry points to a set of undo structures, one for each
semaphore used by the process. The system records the net
change.

Example Program 5

The example program presented at the end of this section is a menu-driven program. It
allows all possible combinations of using the semop system call to be exercised. From
studying this program, you can observe the method of passing arguments and receiving
return values.

This program begins (lines 5-10) by including the required header files as specified by the
semop(2) man page plus the <errno.h> header file, which is used for referencing
errno.

Variable and structure names have been chosen to be as close as possible to those in the
synopsis. Their declarations are intended to be self-explanatory. These names make the
program more readable and are valid because they are local to the program.

The variables declared for this program and their roles are:

sembuf[10] an array buffer (line 14) to contain a maximum of ten sembuf
type structures; ten is the standard value of the tunable parameter
SEMOPM, the maximum number of operations on a semaphore set
for each semop system call

sops a pointer (line 14) to the sembuf array for the system call and for
accessing the structure members within the array

string[8] a character buffer to hold a number entered by the user

rtrn stores the return value from the system call

RedHawk Linux User’s Guide

5-36

flags stores the code of the IPC_NOWAIT or SEM_UNDO flags for the
semop system call (line 59)

sem_num stores the semaphore number entered by the user for each
semaphore operation in the array

i a counter (line 31) for initializing the structure members in the
array, and used to print out each structure in the array (line 78)

semid stores the desired semaphore set identifier for the system call

nsops specifies the number of semaphore operations for the system call;
must be less than or equal to SEMOPM

First, the program prompts for a semaphore set identifier that the system call is to perform
operations on (lines 18-21). semid is stored in the semid variable (line 22).

A message is displayed requesting the number of operations to be performed on this set
(lines 24-26). The number of operations is stored in the nsops variable (line 27).

Next, a loop is entered to initialize the array of structures (lines 29-76). The semaphore
number, operation, and operation command (flags) are entered for each structure in the
array. The number of structures equals the number of semaphore operations (nsops) to be
performed for the system call, so nsops is tested against the i counter for loop control.
Note that sops is used as a pointer to each element (structure) in the array, and sops is
incremented just like i. sops is then used to point to each member in the structure for
setting them.

After the array is initialized, all of its elements are printed out for feedback (lines 77-84).

The sops pointer is set to the address of the array (lines 85, 86). sembuf could be used
directly, if desired, instead of sops in the system call.

The system call is made (line 88), and depending upon success or failure, a corresponding
message is displayed. The results of the operation(s) can be viewed by using the semctl
GETALL control command.

The example program for the semop system call follows. This file is provided as
/usr/share/doc/ccur/examples/semop.c.

 1 /*
 2 * Illustrates the semaphore operations, semop(),
 3 * system call capabilities.
 4 */
 5 /* Include necessary header files. */
 6 #include <stdio.h>
 7 #include <sys/types.h>
 8 #include <sys/ipc.h>
 9 #include <sys/sem.h>
 10 #include <errno.h>
 11 /* Start of main C language program */
 12 main()
 13 {
 14 struct sembuf sembuf[10], *sops;
 15 char string[8];
 16 int retrn, flags, sem_num, i, semid;
 17 unsigned nsops;
 18 /* Enter the semaphore ID. */
 19 printf(“\nEnter the semid of\n”);

Interprocess Synchronization

5-37

 20 printf(“the semaphore set to\n”);
 21 printf(“be operated on = “);
 22 scanf(“%d”, &semid);
 23 printf(“\nsemid = %d”, semid);
 24 /* Enter the number of operations. */
 25 printf(“\nEnter the number of semaphore\n”);
 26 printf(“operations for this set = “);
 27 scanf(“%d”, &nsops);
 28 printf(“\nsops = %d”, nsops);
 29 /* Initialize the array for the
 30 number of operations to be performed. */
 31 for(i = 0, sops = sembuf; i < nsops; i++, sops++)
 32 {
 33 /* This determines the semaphore in
 34 the semaphore set. */
 35 printf(“\nEnter the semaphore\n”);
 36 printf(“number (sem_num) = “);
 37 scanf(“%d”, &sem_num);
 38 sops->sem_num = sem_num;
 39 printf(“\nThe sem_num = %d”, sops->sem_num);
 40 /* Enter a (-)number to decrement,
 41 an unsigned number (no +) to increment,
 42 or zero to test for zero. These values
 43 are entered into a string and converted
 44 to integer values. */
 45 printf(“\nEnter the operation for\n”);
 46 printf(“the semaphore (sem_op) = “);
 47 scanf(“%s”, string);
 48 sops->sem_op = atoi(string);
 49 printf(“\nsem_op = %d\n”, sops->sem_op);
 50 /* Specify the desired flags. */
 51 printf(“\nEnter the corresponding\n”);
 52 printf(“number for the desired\n”);
 53 printf(“flags:\n”);
 54 printf(“No flags = 0\n”);
 55 printf(“IPC_NOWAIT = 1\n”);
 56 printf(“SEM_UNDO = 2\n”);
 57 printf(“IPC_NOWAIT and SEM_UNDO = 3\n”);
 58 printf(“ Flags = “);
 59 scanf(“%d”, &flags);
 60 switch(flags)
 61 {
 62 case 0:
 63 sops->sem_flg = 0;
 64 break;
 65 case 1:
 66 sops->sem_flg = IPC_NOWAIT;
 67 break;
 68 case 2:
 69 sops->sem_flg = SEM_UNDO;
 70 break;
 71 case 3:
 72 sops->sem_flg = IPC_NOWAIT | SEM_UNDO;
 73 break;
 74 }
 75 printf(“\nFlags = 0%o\n”, sops->sem_flg);
 76 }
 77 /* Print out each structure in the array. */
 78 for(i = 0; i < nsops; i++)
 79 {
 80 printf(“\nsem_num = %d\n”, sembuf[i].sem_num);
 81 printf(“sem_op = %d\n”, sembuf[i].sem_op);
 82 printf(“sem_flg = 0%o\n”, sembuf[i].sem_flg);
 83 printf(“ “);
 84 }

RedHawk Linux User’s Guide

5-38

 85 sops = sembuf; /* Reset the pointer to
 86 sembuf[0]. */
 87 /* Do the semop system call. */
 88 retrn = semop(semid, sops, nsops);
 89 if(retrn == -1) {
 90 printf(“\nSemop failed, error = %d\n”, errno);
 91 }
 92 else {
 93 printf (“\nSemop was successful\n”);
 94 printf(“for semid = %d\n”, semid);
 95 printf(“Value returned = %d\n”, retrn);
 96 }
 97 }

Condition Synchronization 5

The fol lowing sections describe the postwait(2) and server_block/
server_wake(2) system calls that can be used to manipulate cooperating processes.

Using the postwait System Call 5

The postwait(2) function is a fast, efficient, sleep/wakeup/timer mechanism used
between a cooperating group of processes.

To go to sleep, a process calls pw_wait(). The process will wake up when:

• the timer expires

• the process is posted to by another process in the cooperating group calling
pw_post()

• the call is interrupted

Synopsis

#include <sys/time.h>
#include <sys/rescntl.h>
#include <sys/pw.h>

int pw_getukid(ukid_t *ukid);
int pw_wait(struct timespec *t, struct resched_var *r);
int pw_post(ukid_t ukid, struct resched_var *r);
int pw_postv(int count, ukid_t targets[], int errors[], struct
resched_var *r);
int pw_getvmax(void);

gcc [options] file -lccur_rt ...

Interprocess Synchronization

5-39

Processes using postwait(2) are identified by their ukid. A process should call
pw_getukid() to obtain its ukid. The ukid maps to a pid. This value should then be
shared with the other cooperating processes that may wish to post to this process.

pw_wait() returns a value of 1 if posted or 0 if timed-out. pw_wait() is called with a
timeout value and a rescheduling value. If the caller specifies a rescheduling value (that is,
the value is not NULL), its lock-count is decremented.

If the timeout value is NULL, the process will not timeout. If the timeout value is 0,
pw_wait() immediately returns with a 1 if posted, or returns an EAGAIN in all other
cases.

If the time specified for the timeout value is greater than 0, the process sleeps for that
amount of time unless it is posted to before it times out. The timeout value is updated to
reflect the amount of time remaining if the process is posted to or interrupted.

If one or more pw_post or pw_postv operations have occurred prior to a pw_wait,
the pw_wait call does not block the calling process. A subsequent pw_wait without any
intervening pw_post or pw_postv calls will block if the time specified for the timeout
is greater than zero.

pw_postv() can be used to post to multiple processes at once. It attempts to post to all
processes specified in targets. The default (maximum) number of targets to be posted by
pw_postv() is 64 as determined by the CONFIG_PW_VMAX kernel tunable accessible
through the General Setup selection of the Linux Kernel Configuration menu (refer to the
“Configuring and Building the Kernel” chapter). Errors for respective targets are returned
in the errors array. pw_postv() returns a 0 if all succeed, or the error value of the last
target to cause an error if there are any errors.

If the caller specifies a rescheduling variable (that is, the rescheduling variable is not
NULL), its lock-count is decremented.

pw_getvmax() returns the maximum number of targets that can be posted to with one
pw_postv() call.

Refer to the postwait(2) man page for a listing of the types of errors that may occur.

RedHawk Linux User’s Guide

5-40

Using the Server System Calls 5

This set of system calls enables you to manipulate processes acting as servers using an
interface compatible with the PowerMAX operating system. These system calls are briefly
described as follows:

server_block blocks the calling process only if no wake-up request has occurred
since the last return from server_block. If a wake-up has
occurred, server_block returns immediately.

server_wake1 wakes server if it is blocked in the server_block system call;
if the specified server is not blocked in this call, the wake-up
request is applied to the server’s next call to server_block.

server_wakevec serves the same purpose as server_wake1, except that a vector
of processes may be specified rather than one process.

CAUTION

These system calls should be used only by single-threaded
processes. The global process ID of a multiplexed thread changes
according to the process on which the thread is currently
scheduled. Therefore, it is possible that the wrong thread will be
awakened or blocked when these interfaces are used by
multiplexed threads.

server_block 5

server_block blocks the calling process only if no wake-up request has occurred
since the last return from server_block.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_block(options, r, timeout)
int options;
struct resched_var *r;
struct timeval *timeout;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

options the value of this argument must be zero

r a pointer to the calling process’ rescheduling variable. This argument is
optional: its value can be NULL.

timeout a pointer to a timeval structure that contains the maximum length of
time the calling process will be blocked. This argument is optional: its
value can be NULL. If its value is NULL, there is no time out.

Interprocess Synchronization

5-41

The server_block system call returns immediately if the calling process has a pending
wake-up request; otherwise, it returns when the calling process receives the next wake-up
request. A return of 0 indicates that the call has been successful. A return of –1 indicates
that an error has occurred; errno is set to indicate the error. Note that upon return, the
calling process should retest the condition that caused it to block; there is no guarantee
that the condition has changed because the process could have been prematurely
awakened by a signal.

server_wake1 5

Server_wake1 is invoked to wake a server that is blocked in the server_block call.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wake1(server, r)
global_lwpid_t server;
struct resched_var *r;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

server the global process ID of the server process to be awakened

r a pointer to the calling process’ rescheduling variable. This argument is
optional; its value can be NULL.

It is important to note that to use the server_wake1 call, the real or effective user ID of
the calling process must match the real or saved [from exec] user ID of the process
specified by server.

Server_wake1 wakes the specified server if it is blocked in the server_block call.
If the server is not blocked in this call, the wake-up request is held for the server’s next
call to server_block. Server_wake1 also decrements the number of rescheduling
locks associated with the rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

RedHawk Linux User’s Guide

5-42

server_wakevec 5

The server_wakevec system call is invoked to wake a group of servers blocked in the
server_block call.

Synopsis

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wakevec(servers, nservers, r)
global_lwpid_t *servers;
int nservers;
struct resched_var *r;

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

servers a pointer to an array of the global process IDs of the server processes to
be awakened

nservers an integer value specifying the number of elements in the array

r a pointer to the calling process’ rescheduling variable. This argument is
optional; its value can be NULL.

It is important to note that to use the server_wakevec call, the real or effective user ID
of the calling process must match the real or saved [from exec] user IDs of the processes
specified by servers.

Server_wakevec wakes the specified servers if they are blocked in the
server_block call. If a server is not blocked in this call, the wake-up request is applied
to the server’s next call to server_block. Server_wakevec also decrements the
number of rescheduling locks associated with a rescheduling variable specified by r.

A return of 0 indicates that the call has been successful. A return of –1 indicates that an
error has occurred; errno is set to indicate the error.

For additional information on the use of these calls, refer to the server_block(2)
man page.

Interprocess Synchronization

5-43

Applying Condition Synchronization Tools 5

The rescheduling variable, spin lock, and server system calls can be used to design
functions that enable a producer and a consumer process to exchange data through use of a
mailbox in a shared memory region. When the consumer finds the mailbox empty, it
blocks until new data arrives. After the producer deposits new data in the mailbox, it
wakes the waiting consumer. An analogous situation occurs when the producer generates
data faster than the consumer can process it. When the producer finds the mailbox full, it
blocks until the data is removed. After the consumer removes the data, it wakes the
waiting producer.

A mailbox can be represented as follows:

struct mailbox {
struct spin_mutex mx;/* serializes access to mailbox */
queue_of consumers: /* waiting consumers */
queue_of data; /* the data, type varies */

};

The mx field is used to serialize access to the mailbox. The data field represents the
information that is being passed from the producer to the consumer. The full field is
used to indicate whether the mailbox is full or empty. The producer field identifies the
process that is waiting for the mailbox to be empty. The consumer field identifies the
process that is waiting for the arrival of data.

Using the spin_acquire and the spin_release functions, a function to enable the
consumer to extract data from the mailbox can be defined as follows:

void
consume (box, data)

struct mailbox *box;
any_t *data;

{
spin_acquire (&box–>mx, &rv);
while (box–>data == empty) {

enqueue (box–>consumers, rv.rv_glwpid);
spin_unlock (&box–>mx);
server_block (0, &rv, 0);
spin_acquire (&box–>mx, &rv);

}
*data = dequeue (box–>data;
spin_release (&box–>mx, &rv);

}

Note that in this function, the consumer process locks the mailbox prior to checking for
and removing data. If it finds the mailbox empty, it unlocks the mailbox to permit the
producer to deposit data, and it calls server_block to wait for the arrival of data. When
the consumer is awakened, it must again lock the mailbox and check for data; there is no
guarantee that the mailbox will contain data—the consumer may have been awakened
prematurely by a signal.

RedHawk Linux User’s Guide

5-44

A similar function that will enable the producer to place data in the mailbox can be
defined as follows:

void
produce (box, data)

struct mailbox *box;
any_t data;

{
spin_acquire (&box–>mx, &rv);
enqueue (box–>data, data);
if (box–>consumer == empty)

spin_release (&box–>mx, &rv);
else {

global_lwpid_t id = dequeue (box–>consumers);
spin_unlock (&box->mx);
server_wake1 (id, &rv);

}
}

In this function, the producer process waits for the mailbox to empty before depositing
new data. The producer signals the arrival of data only when the consumer is waiting; note
that it does so after unlocking the mailbox. The producer must unlock the mailbox first so
that the awakened consumer can lock it to check for and remove data. Unlocking the
mailbox prior to the call to server_wake1 also ensures that the mutex is held for a short
time. To prevent unnecessary context switching, rescheduling is disabled until the
consumer is awakened.

6
Programmable Clocks and Timers

Understanding Clocks and Timers. 6-1
RCIM Clocks and Timers. 6-1
POSIX Clocks and Timers . 6-2

Understanding the POSIX Time Structures. 6-3
Using the POSIX Clock Routines . 6-4

Using the clock_settime Routine . 6-4
Using the clock_gettime Routine . 6-5
Using the clock_getres Routine . 6-6

Using the POSIX Timer Routines . 6-6
Using the timer_create Routine . 6-7
Using the timer_delete Routine . 6-8
Using the timer_settime Routine . 6-9
Using the timer_gettime Routine . 6-10
Using the timer_getoverrun Routine . 6-11

Using the POSIX Sleep Routines . 6-12
Using the nanosleep Routine . 6-12
Using the clock_nanosleep Routine . 6-13

/proc Interface to POSIX Timers . 6-14

RedHawk Linux User’s Guide

6-1

6
Chapter 6Programmable Clocks and Timers

6
6
6

This chapter provides an overview of some of the facilities that can be used for timing.
The POSIX clocks and timers interfaces are based on IEEE Standard 1003.1b-1993. The
clock interfaces provide a high-resolution clock, which can be used for such purposes as
time stamping or measuring the length of code segments. The timer interfaces provide a
means of receiving a signal or process wakeup asynchronously at some future time. In
addition, high-resolution system calls are provided which can be used to put a process to
sleep for a very short time quantum and specify which clock should be used for measuring
the duration of the sleep. Additional clocks and timers are provided by the RCIM PCI
card.

Understanding Clocks and Timers 6

Real-time applications must be able to operate on data within strict timing constraints in
order to schedule application or system events. High resolution clocks and timers allow
applications to use relative or absolute time based on a high resolution clock and to
schedule events on a one-shot or periodic basis. Applications can create multiple timers
for each process.

Several timing facilities are available on the iHawk system. These include POSIX clocks
and timers under RedHawk Linux as well as non-interrupting clocks and real-time clock
timers provided by the Real-Time Clock and Interrupt Module (RCIM) PCI card. These
clocks and timers and their interfaces are explained in the sections that follow.

See Chapter 7 for information about system clocks and timers.

RCIM Clocks and Timers 6

The Real-Time Clock and Interrupt Module (RCIM) provides two non-interrupting clocks.
These clocks can be synchronized with other RCIMs when the RCIMs are chained
together. The RCIM clocks are:

primary (tick) clock a 64-bit non-interrupting clock that increments by one on each
tick of the common 400ns clock signal. This clock can be reset to
zero and synchronized across the RCIM chain providing a
common time stamp.

The primary clock can be read on any system, master or slave,
using direct reads when the device file /dev/rcim/sclk is
mapped into the address space of a program.

secondary (POSIX) a 64-bit non-interrupting counter encoded in POSIX 1003.1
format. The upper 32 bits contain seconds and the lower 32 bits
contain nanoseconds. This clock is incremented by 400 on each

RedHawk Linux User’s Guide

6-2

tick of the common 400ns clock signal. Primarily used as a high-
resolution local clock.

The secondary clock is accessed in a manner similar to the
primary clock in that the same utilities and device files are used.
The secondary clock can be loaded with any desired time;
however, the value loaded is not synchronized with other clocks in
an RCIM chain. Only the secondary clock of the RCIM attached
to the host is updated.

The RCIM also provides four real-time clock (RTC) timers. Each of these counters is
accessible using a special device fi le and each can be used for almost any
timing/frequency control function. They are programmable to several different resolutions
which, when combined with a clock count value, provide a variety of timing intervals.
This makes them ideal for running processes at a given frequency (e.g., 100Hz) or for
timing code segments. In addition to being able to generate an interrupt on the host
system, the output of an RTC can be distributed to other RCIM boards for delivery to their
corresponding host systems, or delivered to external equipment attached to one of the
RCIMs external output interrupt lines. The RTC timers are controlled by open(2),
close(2) and ioctl(2) system calls.

For complete information about the RCIM clocks and timers, refer to the Real-Time Clock
and Interrupt Module (RCIM) User’s Guide manual.

POSIX Clocks and Timers 6

The POSIX clocks provide a high-resolution mechanism for measuring and indicating
time. The following system-wide POSIX clocks are available:

CLOCK_REALTIME the system time-of-day clock, defined in the file <time.h>.
CLOCK_REALTIME_HR This clock supplies the time used for file system creation and

modification, accounting and auditing records, and IPC
message queues and semaphores. CLOCK_REALTIME_HR is
obsoleted by the fact that both clocks have 1 microsecond
resolution, share the same characteristics and are operated on
simultaneously. In addition to the POSIX clock routines
described in this chapter, the following commands and system
calls read and set this clock: date(1), gettimeofday(2),
settimeofday(2) , stime(2) , time(1) and
adjtimex(2).

CLOCK_MONOTONIC the system uptime clock measuring the time in seconds and
CLOCK_MONOTONIC_HR nanoseconds since the system was booted. The monotonic

clocks cannot be set. CLOCK_MONOTONIC_HR is obsoleted by
the fact that both clocks have 1 microsecond resolution, share
the same characteristics and are operated on simultaneously.

There are two types of timers: one-shot and periodic. They are defined in terms of an
initial expiration time and a repetition interval. The initial expiration time indicates when
the timer will first expire. It may be absolute (for example, at 8:30 a.m.) or relative to the
current time (for example, in 30 seconds). The repetition interval indicates the amount of
time that will elapse between one expiration of the timer and the next. The clock to be
used for timing is specified when the timer is created.

Programmable Clocks and Timers

6-3

A one-shot timer is armed with either an absolute or a relative initial expiration time and a
repetition interval of zero. It expires only once--at the initial expiration time--and then is
disarmed.

A periodic timer is armed with either an absolute or a relative initial expiration time and a
repetition interval that is greater than zero. The repetition interval is always relative to the
time at the point of the last timer expiration. When the initial expiration time occurs, the
timer is reloaded with the value of the repetition interval and continues counting. The
timer may be disarmed by setting its initial expiration time to zero.

The local timer is used as the interrupt source for scheduling POSIX timer expiries. See
Chapter 7 for information about the local timer.

NOTE

Access to high resolution clocks and timers is provided by a set of
related POSIX system calls located within /usr/lib/
libccur_rt.a . Some of the timer functions are also provided
as low-resolution by the standard gnu libc librt.so library.

Understanding the POSIX Time Structures 6

The POSIX routines related to clocks and timers use two structures for time
specifications: the timespec structure and the itimerspec structure. These structures
are defined in the file <time.h>.

The timespec structure specifies a single time value in seconds and nanoseconds. You
supply a pointer to a timespec structure when you invoke routines to set the time of a
clock or obtain the time or resolution of a clock (for information on these routines, see
“Using the POSIX Clock Routines”). The structure is defined as follows:

struct timespec {
 time_t tv_sec;
 long tv_nsec;
};

The fields in the structure are described as follows:

tv_sec specifies the number of seconds in the time value

tv_nsec specifies the number of additional nanoseconds in the time value.
The value of this field must be in the range zero to 999,999,999.

The itimerspec structure specifies the initial expiration time and the repetition interval
for a timer. You supply a pointer to an itimerspec structure when you invoke routines
to set the time at which a timer expires or obtain information about a timer’s expiration
time (for information on these routines, see “Using the POSIX Timer Routines”). The
structure is defined as follows:

struct itimerspec {
 struct timespec it_interval;
 struct timespec it_value;
};

RedHawk Linux User’s Guide

6-4

The fields in the structure are described as follows.

it_interval specifies the repetition interval of a timer

it_value specifies the timer’s initial expiration

Using the POSIX Clock Routines 6

The POSIX routines that allow you to perform a variety of functions related to clocks are
briefly described as follows:

clock_settime sets the time of a specified clock

clock_gettime obtains the time from a specified clock

clock_getres obtains the resolution in nanoseconds of a specified clock

Procedures for using each of these routines are explained in the sections that follow.

Using the clock_settime Routine 6

The clock_settime(2) system call allows you to set the time of the system time-of-
day clock, CLOCK_REALTIME. The calling process must have root or the CAP_SYS_NICE

capability. By definition, the CLOCK_MONOTONIC clocks cannot be set.

It should be noted that if you set CLOCK_REALTIME after system start-up, the following
times may not be accurate:

• file system creation and modification times

• times in accounting and auditing records

• the expiration times for kernel timer queue entries

Setting the system clock does not affect queued POSIX timers.

Synopsis

#include <time.h>

int clock_settime(clockid_t which_clock,
const struct timespec *setting);

gcc [options] file -lccur_rt ...

Programmable Clocks and Timers

6-5

The arguments are defined as follows:

which_clock the identifier for the clock for which the time will be set. The value of
which_c lock c ann o t be e i t he r C L O C K _ M O N O T O N I C o r
CLOCK_MONOTONIC_HR. Note that setting either CLOCK_REALTIME

or CLOCK_REALTIME_HR changes both.

setting a pointer to a structure that specifies the time to which which_clock is
to be set. When which_clock is CLOCK_REALTIME, the time-of-day
clock is set to a new value. Time values that are not integer multiples
of the clock resolution are truncated down.

A return value of 0 indicates that the specified clock has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the clock_settime(2) man page for a listing of the types of errors that may occur.

Using the clock_gettime Routine 6

The clock_gettime(2) system call allows you to obtain the time from a specified
clock.

Synopsis

#include <time.h>

int clock_gettime(clockid_t *which_clock, struct timespec
*setting);

gcc [options] file -lccur_rt ...

The arguments are defined as follows:

which_clock the identifier for the clock from which to obtain the time. The
va l u e o f which_clock m a y b e a n y o f t h e f o l lo wi n g :
CLOCK_REALTIME, CLOCK_REALTIME_HR, CLOCK_MONOTONIC

or CLOCK_MONOTONIC_HR.

setting a pointer to a structure where the time of which_clock is returned.

A return value of 0 indicates that the call to clock_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_gettime(2) man page for a listing of the types of errors that may
occur.

RedHawk Linux User’s Guide

6-6

Using the clock_getres Routine 6

The clock_getres(2) system call allows you to obtain the resolution in nanoseconds
of a specified clock.

The clock resolutions are system dependent and cannot be set by the user.

Synopsis

#include <time.h>

int clock_getres(clockid_t *which_clock, struct timespec
*resolution);

gcc [options] file -lccur_rt ...

The arguments are defined as follows:

which_clock the identifier for the clock for which you wish to obtain the
r e s o l u t i o n . which_c lock m a y b e a n y o f t h e f o l lo wi n g :
CLOCK_REALTIME, CLOCK_REALTIME_HR, CLOCK_MONOTONIC or
CLOCK_MONOTONIC_HR.

resolution a pointer to a structure where the resolution of which_clock is
returned

A return value of 0 indicates that the call to clock_getres has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the clock_getres(2) man page for a listing of the types of errors that may
occur.

Using the POSIX Timer Routines 6

Processes can create, remove, set, and query timers and may receive notification when a
timer expires.

The POSIX system calls that allow you to perform a variety of functions related to timers
are briefly described as follows:

timer_create creates a timer using a specified clock

timer_delete removes a specified timer

timer_settime arms or disarms a specified timer by setting
the expiration time

timer_gettime obtains the repetition interval for a specified
timer and the time remaining until the timer
expires

Programmable Clocks and Timers

6-7

timer_getoverrun obtains the overrun count for a specified
periodic timer

nanosleep pauses execution for a specified time

clock_nanosleep provides a higher resolution pause based on
a specified clock

Procedures for using each of these system calls are explained in the sections that follow.

Using the timer_create Routine 6

The timer_create(2) system call allows the calling process to create a timer using a
specified clock as the timing source.

A timer is disarmed when it is created. It is armed when the process invokes the
timer_settime(2) system call (see “Using the timer_settime Routine” for an
explanation of this system call).

It is important to note the following:

• When a process invokes the fork system call, the timers that it has created
are not inherited by the child process.

• When a process invokes the exec system call, the timers that it has created
are disarmed and deleted.

Linux threads in the same thread group can share timers. The thread which calls
timer_create will receive all of the signals, but other threads in the same threads
group can manipulate the timer through calls to timer_settime(2).

Synopsis

#include <time.h>
#include <signal.h>

int timer_create(clockid_t which_clock, struct sigevent
*timer_event_spec, timer_t created_timer_id);

gcc [options] file -lccur_rt ...

The arguments are defined as follows:

which_clock the identifier for the clock to be used for the timer. The value of
which_clock must be CLOCK_REALTIME or CLOCK_REALTIME_HR.

timer_event_spec
the null pointer constant or a pointer to a structure that specifies the
way in which the calling process is to be asynchronously notified of
the expiration of the timer:

NULL SIGALRM is sent to the process when the timer expires.

RedHawk Linux User’s Guide

6-8

sigev_notify=SIGEV_SIGNAL

a signal specified by sigev_signo is sent to the process when
the timer expires.

sigev_notify=SIGEV_THREAD

the specified sigev_notify function is called in a new thread
with sigev_value as the argument when the timer expires.

sigev_notify=SIGEV_THREAD_ID

the sigev_notify_thread_id number should contain the
pthread_t id of the thread that is to receive the signal
sigev_signo when the timer expires.

sigev_notify=SIGEV_NONE

no notification is delivered when the timer expires

NOTE

The signal denoting expiration of the timer may cause the process
to terminate unless it has specified a signal-handling system call.
To determine the default action for a particular signal, refer to the
signal(2) man page.

created_timer_id
a pointer to the location where the timer ID is stored. This identifier is
required by the other POSIX timer system calls and is unique within
th e c a l l i n g p ro ces s u n t i l t h e t im e r i s d e l e t ed b y t h e
timer_delete(2) system call.

A return value of 0 indicates that the call to timer_create has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_create(2) man page for a listing of the types of errors that may
occur.

Using the timer_delete Routine 6

The timer_delete(2) system call allows the calling process to remove a specified
timer. If the selected timer is already started, it will be disabled and no signals or actions
assigned to the timer will be delivered or executed. A pending signal from an expired
timer, however, will not be removed.

Synopsis

#include <time.h>

int timer_delete(timer_t timer_id);

gcc [options] file -lccur_rt ...

The argument is defined as follows:

timer_id the identifier for the timer to be removed. This identifier comes from
a previous call to timer_create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

Programmable Clocks and Timers

6-9

A return value of 0 indicates that the specified timer has been successfully removed. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_delete(2) man page for a listing of the types of errors that may
occur.

Using the timer_settime Routine 6

The timer_settime(2) system call allows the calling process to arm a specified
timer by setting the time at which it will expire. The time to expire is defined as absolute
or relative. A calling process can use this system call on an armed timer to (1) disarm the
timer or (2) reset the time until the next expiration of the timer.

Synopsis

#include <time.h>

int timer_settime(timer_t timer_id, int flags, const struct
itimerspec *new_setting, const struct itimerspec *old_setting);

gcc [options] file -lccur_rt ...

The arguments are defined as follows:

timer_id the identifier for the timer to be set. This identifier comes from a
previous call to timer_create(2) (see “Using the timer_create
Routine” for an explanation of this system call).

flags an integer value that specifies one of the following:

TIMER_ABSTIME causes the selected timer to be armed with an
absolute expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified by it_value. If this
time has already passed, timer_settime
succeeds, and the timer-expiration notification
is made.

0 causes the selected timer to be armed with a
relative expiration time. The timer will expire
when the clock associated with the timer
reaches the value specified by it_value.

new_setting a pointer to a structure that contains the repetition interval and the
initial expiration time of the timer.

If you wish to have a one-shot timer, specify a repetition interval
(it_interval) of zero. In this case, the timer expires once, when the
initial expiration time occurs, and then is disarmed.

If you wish to have a periodic timer, specify a repetition interval
(it_interval) that is not equal to zero. In this case, when the initial
expiration time occurs, the timer is reloaded with the value of the
repetition interval and continues to count.

RedHawk Linux User’s Guide

6-10

In either case, you may set the initial expiration time to a value that is
absolute (for example, at 3:00 p.m.) or relative to the current time (for
example, in 30 seconds). To set the initial expiration time to an
absolute time, you must have set the TIMER_ABSTIME bit in the flags
argument. Any signal that is already pending due to a previous timer
expiration for the specified timer will still be delivered to the process.

To disarm the timer, set the initial expiration time to zero. Any signal
that is already pending due to a previous timer expiration for this
timer will still be delivered to the process.

old_setting the null pointer constant or a pointer to a structure to which the
previous repetition interval and initial expiration time of the timer are
returned. If the timer has been disarmed, the value of the initial
expiration time is zero. The members of old_setting are subject to the
resolution of the timer and are the same values that would be returned
by a timer_gettime(2) call at that point in time.

A return value of 0 indicates that the specified timer has been successfully set. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the timer_settime(2) man page for a listing of the types of errors that may occur.

Using the timer_gettime Routine 6

The timer_gettime(2) system call allows the calling process to obtain the repetition
interval for a specified timer and the amount of time remaining until the timer expires.

Synopsis

#include <time.h>

int timer_gettime(timer_t timer_id, struct itimerspec
*setting);

gcc [options] file -lccur_rt ...

The arguments are defined as follows:

timer_id the identifier for the timer whose repetition interval and time
remaining are requested. This identifier comes from a previous call to
timer_create(2) (see “Using the timer_create Routine” for an
explanation of this system call).

setting a pointer to a structure to which the repetition interval and the amount
of time remaining on the timer are returned. The amount of time
remaining is relative to the current time. If the timer is disarmed, the
value is zero.

A return value of 0 indicates that the call to timer_gettime has been successful. A
return value of -1 indicates that an error has occurred; errno is set to indicate the error.
Refer to the timer_gettime(2) man page for a listing of the types of errors that may
occur.

Programmable Clocks and Timers

6-11

Using the timer_getoverrun Routine 6

The timer_getoverrun(2) system call allows the calling process to obtain the
overrun count for a particular periodic timer. A timer may expire faster than the system
can deliver signals to the application. If a signal is still pending from a previous timer
expiration rather than queuing another signal, a count of missed expirations is maintained
with the pending signal. This is the overrun count.

Timers may overrun because the signal was blocked by the application or because the
timer was over-committed.

Assume that a signal is already queued or pending for a process with a timer using timer-
expiration notification SIGEV_SIGNAL. If this timer expires while the signal is queued or
pending, a timer overrun occurs, and no additional signal is sent.

NOTE

You must invoke this system call from the timer-expiration signal-
handling. If you invoke it outside this system call, the overrun
count that is returned is not valid for the timer-expiration signal
last taken.

Synopsis

#include <time.h>

int timer_getoverrun(timer_t timer_id);

gcc [options] file -lccur_rt ...

The argument is defined as follows:

timer_id the identifier for the periodic timer for which you wish to obtain the
overrun count. This identifier comes from a previous call to
timer_create(2) (see “Using the timer_create Routine” for an
explanation of this system call).

If the call is successful, timer_getoverrun returns the overrun count for the specified
timer. This count cannot exceed DELAYTIMER_MAX in the file <limits.h>. A return
value of -1 indicates that an error has occurred; errno is set to indicate the error. Refer
to the timer_getoverrun(2) man page for a listing of the types of errors that may
occur.

RedHawk Linux User’s Guide

6-12

Using the POSIX Sleep Routines 6

The nanosleep(2) and the clock_nanosleep(2) POSIX system calls provide a
high-resolution sleep mechanism that causes execution of the calling process or thread to
be suspended until (1) a specified period of time elapses or (2) a signal is received and the
associated action is to execute a signal-handling system call or terminate the process.

The clock_nanosleep(2) system call provides a high-resolution sleep with a
specified clock. It suspends execution of the currently running thread until the time
specified by rqtp has elapsed or until the thread receives a signal.

The use of these system calls has no effect on the action or blockage of any signal.

Using the nanosleep Routine 6

Synopsis

#include <time.h>

int nanosleep(const struct timespec *req, struct timespec
*rem);

gcc [options] file -lccur_rt ...

Arguments are defined as follows:

req a pointer to a timespec structure that contains the length of time
that the process is to sleep. The suspension time may be longer than
requested because the req value is rounded up to an integer multiple
of the sleep resolution or because of the scheduling of other activity
by the system. Except for the case of being interrupted by a signal,
the suspension time will not be less than the time specified by req, as
measured by CLOCK_REALTIME. You will obtain a resolution of one
microsecond on the blocking request.

rem the null pointer constant or a pointer to a timespec structure to
which the amount of time remaining in the sleep interval is returned
if nanosleep is interrupted by a signal. If rem is NULL and
nanosleep is interrupted by a signal, the time remaining is not
returned.

A return value of 0 indicates that the requested period of time has elapsed. A return value
of -1 indicates that an error has occurred; errno is set to indicate the error. Refer to the
nanosleep(2) man page for a listing of the types of errors that may occur.

Programmable Clocks and Timers

6-13

Using the clock_nanosleep Routine 6

Synopsis

#include <time.h>

int clock_nanosleep(clockid_t *which_clock, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

gcc [options] file -lccur_rt ...

The arguments are defined as follows:

which_clock the identifier for the clock to be used. The value of which_clock may
be CLOCK_REALTIME, CLOCK_REALTIME_HR, CLOCK_MONOTONIC,

or CLOCK_MONOTONIC_HR.

flags an integer value that specifies one of the following:

TIMER_ABSTIME interprets the time specified by rqtp to be
absolute with respect to the clock value
specified by which_clock.

0 interprets the time specified by rqtp to be
relative to the current time.

rqtp a pointer to a timespec structure that contains the length of time
that the process is to sleep. If the TIMER_ABSTIME flag is specified
and the time value specified by rqtp is less than or equal to the current
time value of the specified clock (or the clock’s value is changed to
such a time), the function will return immediately. Further, the time
slept is affected by any changes to the clock after the call to
clock_nanosleep(2). That is, the call will complete when the
actual time is equal to or greater than the requested time no matter
how the clock reaches that time, via setting or actual passage of time
or some combination of these.

The time slept may be longer than requested as the specified time
value is rounded up to an integer multiple of the clock resolution, or
due to scheduling and other system activity. Except for the case of
interruption by a signal, the suspension time is never less than
requested.

rmtp If TIMER_ABSTIME is not specified, the timespec structure pointed
to by rmtp is updated to contain the amount of time remaining in the
interval (i.e., the requested time minus the time actually slept). If
rmtp is NULL, the remaining time is not set. The rmtp value is not set
in the case of an absolute time value.

On success, clock_nanosleep returns a value of 0 after at least the specified time has
elapsed. On failure, clock_nanosleep returns the value -1 and errno is set to
indicate the error. Refer to the clock_nanosleep(2) man page for a listing of the
types of errors that may occur.

RedHawk Linux User’s Guide

6-14

/proc Interface to POSIX Timers 6

For most applications, the default resolution for the POSIX timers and nanosleep
functionality should be acceptable. If an application has problems with the way the timing
occurs and it is prohibitive to change the application, or when it is desirable to group
expiries together, adjustments may be appropriate. The kernel interface to POSIX timers
is through the /proc file system. The files listed below control the resolution of POSIX
timers and nanosleep functionality and can be used to limit the rate at which timers expire.
The files are in the directory /proc/sys/kernel/posix-timers:

max_expiries The maximum number of expiries to process from a single
interrupt. The default is 20.

recovery_time The time in nanoseconds to delay before processing more
timer expiries if the max_expiries limit is hit. The
default is 100000.

min_delay The minimum time between timer interrupts in
nanoseconds. This ensures that the timer interrupts do not
consume all of the CPU time. The default is 10000.

nanosleep_res The resolution of nanosleep(2) in nanoseconds. The
default is 1000.

resolution The resolution of other POSIX timer functions including
clock_nanosleep(2). The default is 1000.

7
System Clocks and Timers

Local Timer . 7-1
Functionality. 7-1

CPU Accounting . 7-2
Process Execution Time Quanta and Limits . 7-2
Interval Timer Decrementing . 7-2
System Profiling . 7-3
CPU Load Balancing. 7-3
CPU Rescheduling . 7-3
POSIX Timers . 7-3
Miscellaneous . 7-3

Disabling the Local Timer . 7-4
Global Timer . 7-4

RedHawk Linux User’s Guide

7-1

7
Chapter 7System Clocks and Timers

7
7
7

This chapter describes the local timer and global timer. It also discusses the effect of
disabling the local timer on system functions.

Local Timer 7

On Concurrent’s iHawk systems, each CPU has a local (private) timer which is used as a
source of periodic interrupts local to that CPU. By default these interrupts occur 100 times
per second and are staggered in time so that only one CPU is processing a local timer
interrupt at a time.

The local timer interrupt routine performs the following local timing functions, which are
explained in more detail in the sections that follow:

- gathers CPU utilization statistics, used by top(1) and other utilities

- causes the process running on the CPU to periodically consume its time
quantum

- causes the running process to release the CPU in favor of another running
process when its time quantum is used up

- periodically balances the load of runnable processes across CPUs

- implements process and system profiling

- implements system time-of-day (wall) clock and execution time quota
limits for those processes that have this feature enabled

- provides the interrupt source for POSIX timers

The local timer interrupt can be disabled on a per CPU basis. This improves both the
worst-case interrupt response time and the determinism of program execution on the CPU
as described in the “Real-Time Performance” chapter. However, disabling the local timer
interrupt has an effect on some functionality normally provided by RedHawk Linux.
These effects are described below.

Functionality 7

The local timer performs the functions described in the sections below. The effect of
disabling the local timer is discussed as well as viable alternatives for some of the features.

RedHawk User’s Guide

7-2

CPU Accounting 7

The local timer is used to accumulate the user and system execution time accounted for on
a per process basis. This execution time accounting is reported by various system features
such as times(2) , wait4(2) , sigaction(2) , uptime(1) , w(1) ,
getrusage(2), mpstat(1), clock(3), acct(2), ps(1), top(1) and
/proc/pid/stat. When the local timer is disabled, user and system times are no longer
accumulated.

An alternative to using the local timer for CPU accounting is using the High Resolution
Process Timing Facility. This facility samples the time stamp counter (TSC) register at
appropriate times. Because the TSC sampling rate is the clock-speed of the processor, this
accounting method yields very high resolution, providing accurate process execution user
and system times with minimal overhead. The High Resolution Process Timing Facility is
enabled through the CONFIG_HR_PROC_ACCT kernel tunable accessible through the General
Setup selection on the Linux Kernel Configuration menu (refer to the “Configuring and
Building the Kernel” chapter of this guide). The Concurrent real-time library “libccur_rt”
provides many “hrtime” library routines for obtaining process execution times, converting
times, and managing the High Resolution Process Timing Facility.

Process Execution Time Quanta and Limits 7

The local timer is used to expire the quantum of processes scheduled in the SCHED_OTHER

and SCHED_RR scheduling policies. This allows processes of equal scheduling priority to
share the CPU in a round-robin fashion. If the local timer is disabled on a CPU, processes
on that CPU will no longer have their quantum expired. This means that a process
executing on this CPU will run until it either blocks, or until a higher priority process
becomes ready to run. In other words, on a CPU where the local timer interrupt is
disabled, a process scheduled in the SCHED_RR scheduling policy will behave as if it were
scheduled in the SCHED_FIFO scheduling policy. Note that processes scheduled on CPUs
where the local timer is still enabled are unaffected. For more information about process
scheduling policies, see Chapter 4, “Process Scheduling”.

The setrlimit(2) and getrlimit(2) system calls allow a process to set and get a
limit on the amount of CPU time that a process can consume. When this time period has
expired, the process is sent the signal SIGXCPU. The accumulation of CPU time is done in
the local timer interrupt routine. Therefore if the local timer is disabled on a CPU, the time
that a process executes on the CPU will not be accounted for. If this is the only CPU where
the process executes, it will never receive a SIGXCPU signal.

Interval Timer Decrementing 7

The setitimer(2) and getitimer(2) system calls allow a process to set up a
“virtual timer” and obtain the value of the timer, respectively. A virtual timer is
decremented only when the process is executing. There are two types of virtual timers:
one that decrements only when the process is executing at user level, and one that is
decremented when the process is executing at either user level or kernel level. When a
virtual timer expires, a signal is sent to the process. Decrementing virtual timers is done in
the local timer routine. Therefore when the local timer is disabled on a CPU, none of the
time used will be decremented from the virtual timer. If this is the only CPU where the
process executes, then its virtual timer will never expire.

System Clocks and Timers

7-3

System Profiling 7

The local timer drives system profiling. The sample that the profiler records is triggered
by the firing of the local timer interrupt. If the local timer is disabled on a given CPU, the
gprof(1) command and profil(2) system service will not function correctly for
processes that run on that CPU.

CPU Load Balancing 7

The local timer interrupt routine will periodically call the load balancer to be sure that the
number of runnable processes on this CPU is not significantly lower than the number of
runnable processes on other CPUs in the system. If this is the case, the load balancer will
steal processes from other CPUs to balance the load across all CPUs. On a CPU where the
local timer interrupt has been disabled, the load balancer will only be called when the CPU
has no processes to execute. The loss of this functionality is generally not a problem for a
shielded CPU because it is generally not desirable to run background processes on a
shielded CPU.

CPU Rescheduling 7

The RESCHED_SET_LIMIT function of the resched_cntl(2) system call allows a user
to set an upper limit on the amount of time that a rescheduling variable can remain locked.
The SIGABRT signal is sent to the process when the time limit is exceeded. This feature is
provided to debug problems during application development. When a process with a
locked rescheduling variable is run on a CPU on which the local timer is disabled, the time
limit is not decremented and therefore the signal may not be sent when the process
overruns the specified time limit.

POSIX Timers 7

The local timer interrupt provides the timing source for POSIX timers. If a CPU is
shielded from local timer interrupts, the local timer interrupts will still occur on the
shielded CPU if a process on that CPU has an active POSIX timer or nanosleep(2)
function. If a process is not allowed to run on the shielded CPU, its timers will be migrated
to a CPU where the process is allowed to run.

Miscellaneous 7

In addition to the functionality listed above, some of the functions provided by some
standard Linux commands and utilities may not function correctly on a CPU if its local
timer is disabled. These include:

bash(1)
sh(1)
strace(1)

For more information about these commands and utilities, refer to the corresponding man
pages.

RedHawk User’s Guide

7-4

Disabling the Local Timer 7

The local timer can be disabled for any mix of CPUs via the shield(1) command or by
assigning a hexadecimal value to /proc/shield/ltmrs. This hexadecimal value is a
bitmask of CPUs; the radix position of each bit identifies one CPU and the value of that bit
specifies whether or not that CPU’s local timer is to be disabled (=1) or enabled (=0). See
Chapter 2, “Real-Time Performance” and the shield(1) man page for more
information.

Global Timer 7

The Programmable Interrupt Timer (PIT) functions as a global system-wide timer on the
iHawk system. This interrupt is called IRQ 0 and by default each occurrence of the
interrupt will be delivered to any CPU not currently processing an interrupt.

This global timer is used to perform the following system-wide timer functions:

- updates the system time-of-day (wall) clock and ticks-since-boot times

- dispatches events off the system timer list. This includes driver watchdog
timers and process timer functions such as alarm(2).

The global timer interrupt cannot be disabled. However, it can be directed to some desired
subset of CPUs via the shield(1) command or via assignment of a bitmask of allowed
CPUs, in hexadecimal form, to /proc/irq/0/smp_affinity. See Chapter 2, “Real-
Time Performance” for more information about CPU shielding.

8
File Systems and Disk I/O

Journaling File System . 8-1
Creating an XFS File System . 8-2
Mounting an XFS File System . 8-2
Data Management API (DMAPI). 8-2

Direct Disk I/O . 8-3

RedHawk Linux User’s Guide

8-1

8
Chapter 8File Systems and Disk I/O

This chapter explains the xfs journaling file system and the procedures for performing
direct disk I/O on the RedHawk Linux operating system.

Journaling File System 8

Traditional file systems must perform special file system checks after an interruption,
which can take many hours to complete depending upon how large the file system is. A
journaling file system is a fault-resilient file system, ensuring data integrity by
maintaining a special log file called a journal. When a file is updated, the file’s metadata
are written to the journal on disk before the original disk blocks are updated. If a system
crash occurs before the journal entry is committed, the original data is still on the disk and
only new changes are lost. If the crash occurs during the disk update, the journal entry
shows what was supposed to have happened. On reboot, the journal entries are replayed
and the update that was interrupted is completed. This drastically cuts the complexity of a
file system check, reducing recovery time.

Support for the XFS journaling file system from SGI is enabled by default in RedHawk
Linux. XFS is a multithreaded, 64-bit file system capable of handling files as large as a
million terabytes. In addition to large files and large file systems, XFS can support
extended attributes, variable block sizes, is extent based and makes extensive use of
Btrees (directories, extents, free space) to aid both performance and scalability. Both user
and group quotas are supported.

The journaling structures and algorithms log read and write data transactions rapidly,
minimizing the performance impact of journaling. XFS is capable of delivering near-raw
I/O performance.

Extended attributes are name/value pairs associated with a file. Attributes can be attached
to regular files, directories, symbolic links, device nodes and all other types of inodes.
Attribute values can contain up to 64KB of arbitrary binary data. Two attribute
namespaces are available: a user namespace available to all users protected by the normal
file permissions, and a system namespace accessible only to privileged users. The system
namespace can be used for protected file system metadata such as access control lists
(ACLs) and hierarchical storage manage (HSM) file migration status.

NFS Version 3 can be used to export 64-bit file systems to other systems that support that
protocol. NFS V2 systems have a 32-bit limit imposed by the protocol.

Backup and restore of XFS file systems to local and remote SCSI tapes or files is done
using xfsdump and xfsrestore. Dumping of extended attributes and quota
information is supported.

RedHawk Linux User’s Guide

8-2

The Data Management API (DMAPI/XDSM) allows implementation of hierarchical
storage management software as well as high-performance dump programs without
requiring raw access to the disk and knowledge of file system structures.

A full set of tools is provided with XFS. Extensive documentation for the XFS file system
can be found at:

http://oss.sgi.com/projects/xfs/

Creating an XFS File System 8

To create an XFS file system, the following is required:

• Identify a partition on which to create the XFS file system. It may be from
a new disk, unpartitioned space on an existing disk, or by overwriting an
existing partition. Refer to the fdisk(1) man page if creating a new
partition.

• Use mkfs.xfs(8) to create the XFS file system on the partition. If the
target disk partition is currently formatted for a file system, use the -f
(force) option.

mkfs.xfs [-f] /dev/devfile

where devfile is the partition where you wish to create the file system; e.g.,
sdb3. Note that this will destroy any data currently on that partition.

Mounting an XFS File System 8

Use the mount(8) command to mount an XFS file system:

mount -t xfs /dev/devfile /mountpoint

Refer to the mount(8) man page for options available when mounting an XFS file
system.

Because XFS is a journaling file system, before it mounts the file system it will check the
transaction log for any unfinished transactions and bring the file system up to date.

Data Management API (DMAPI) 8

DMAPI is the mechanism within the XFS file system for passing file management
requests between the kernel and a hierarchical storage management system (HSM).

To build DMAPI, set the CONFIG_XFS_DMAPI system parameter accessible through the File
Systems selection of the Linux Kernel Configuration menu as part of your build.

http://oss.sgi.com/projects/xfs/

File Systems and Disk I/O

8-3

For more information about building DMAPI, refer to

http://oss.sgi.com/projects/xfs/dmapi.html

Direct Disk I/O 8

Normally, all reads and writes to a file pass through a file system cache buffer. Some
applications, such as database programs, may need to do their own caching. Direct I/O is
an unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct I/O, the
file system transfers data directly between the disk and the user-supplied buffer.

RedHawk Linux enables a user process to both read directly from--and write directly to--
disk into its virtual address space, bypassing intermediate operating system buffering and
increasing disk I/O speed. Direct disk I/O also reduces system overhead by eliminating
copying of the transferred data.

To set up a disk file for direct I/O use the open(2) or fcntl(2) system call. Use one
of the following procedures:

• Invoke the open system call from a program; specify the path name of a
disk file; and set the O_DIRECT bit in the oflag argument.

• For an open file, invoke the fcntl system call; specify an open file
descriptor; specify the F_SETFL command, and set the O_DIRECT bit in the
arg argument.

Direct disk I/O transfers must meet all of the following requirements:

• The user buffer must be aligned on a byte boundary that is an integral
multiple of the _PC_REC_XFER_ALIGN pathconf(2) variable.

• The current setting of the file pointer locates the offset in the file at which
to start the next I/O operation. This setting must be an integral multiple of
the value returned for the _PC_REC_XFER_ALIGN pathconf(2) variable.

• The number of bytes transferred in an I/O operation must be an integral
mul t ip le of t he va lue re tu rned fo r t he _ P C _ R E C _ X F E R _ A L I G N

pathconf(2) variable.

Enabling direct I/O for files on file systems not supporting direct I/O returns an error.
Trying to enable direct disk I/O on a file in a file system mounted with the file system-
specific soft option also causes an error. The soft option specifies that the file system
need not write data from cache to the physical disk until just before unmounting.

Although not recommended, you can open a file in both direct and cached (nondirect)
modes simultaneously, at the cost of degrading the performance of both modes.

Using direct I/O does not ensure that a file can be recovered after a system failure. You
must set the POSIX synchronized I/O flags to do so.

You cannot open a file in direct mode if a process currently maps any part of it with the
mmap(2) system call. Similarly, a call to mmap fails if the file descriptor used in the call
is for a file opened in direct mode.

http://oss.sgi.com/projects/xfs/dmapi.html

RedHawk Linux User’s Guide

8-4

Whether direct I/O provides better I/O throughput for a task depends on the application:

• All direct I/O requests are synchronous, so I/O and processing by the
application cannot overlap.

• Since the operating system cannot cache direct I/O, no read-ahead or write-
behind algorithm improves throughput.

However, direct I/O always reduces system-wide overhead because data moves directly
from user memory to the device with no other copying of the data. Savings in system
overhead is especially pronounced when doing direct disk I/O between an embedded SCSI
disk controller (a disk controller on the processor board) and local memory on the same
processor board.

9
Memory Mapping

Establishing Mappings to a Target Process’ Address Space 9-1
Using mmap(2). 9-1
Using usermap(3) . 9-3
Considerations . 9-4

Kernel Configuration Parameters . 9-4

RedHawk Linux User’s Guide

9-1

9
Chapter 9Memory Mapping

This chapter describes the methods provided by RedHawk Linux for a process to access
the contents of another process’ address space.

Establishing Mappings to a Target Process’ Address Space 9

For each running process, the /proc file system provides a file that represents the
address space of the process. The name of this file is /proc/pid/mem, where pid denotes
the ID of the process whose address space is represented. A process can open(2) a
/proc/pid/mem file and use the read(2) and write(2) system calls to read and
modify the contents of another process’ address space.

The usermap(3) library routine, which resides in the libccur_rt library, provides
applications with a way to efficiently monitor and modify locations in currently executing
programs through the use of simple CPU reads and writes.

The underlying kernel support for this routine is the /proc file system mmap(2) system
service call, which lets a process map portions of another process’ address space into its
own address space. Thus, monitoring and modifying other executing programs becomes
simple CPU reads and writes within the application’s own address space, without
incurring the overhead of /proc file system read(2) and write(2) calls.

The sections below describe these interfaces and lists considerations when deciding
whether to use mmap(2) or usermap(3) within your application.

Using mmap(2) 9

A process can use mmap(2) to map a portion of its address space to a /proc/pid/mem
file, and thus directly access the contents of another process’ address space. A process that
establishes a mapping to a /proc/pid/mem file is hereinafter referred to as a monitoring
process. A process whose address space is being mapped is referred to as a target process.

To establish a mapping to a /proc/pid/mem file, the following requirements must be
met:

• The file must be opened with at least read permission. If you intend to
modify the target process’ address space, then the file must also be opened
with write permission.

• On the call to mmap to establish the mapping, the flags argument should
specify the MAP_SHARED option, so that reads and writes to the target
process’ address space are shared between the target process and the
monitoring process.

RedHawk Linux User’s Guide

9-2

• The target mappings must be to real memory pages. The current
implementation does not support the creation of mappings to I/O space
pages.

It is important to note that a monitoring process’ resulting mmap mapping is to the target
process’ physical memory pages that are currently mapped in the range [offset, offset +
length). As a result, a monitoring process’ mapping to a target process’ address space can
become invalid if the target’s mapping changes after the mmap call is made. In such
circumstances, the monitoring process retains a mapping to the underlying physical pages,
but the mapping is no longer shared with the target process. Because a monitoring process
cannot detect that a mapping is no longer valid, you must make provisions in your
application for controlling the relationship between the monitoring process and the target.
(The notation [start, end) denotes the interval from start to end, including start but
excluding end.)

Circumstances in which a monitoring process’ mapping to a target process’ address space
becomes invalid are:

• The target process terminates.

• The target process unmaps a page in the range [offset, offset + length) with
either munmap(2) or mremap(2).

• The target process maps a page in the range [offset, offset + length) to a
different object with mmap(2).

• The target process invokes fork(2) and writes into an unlocked, private,
writable page in the range [offset, offset + length) before the child process
does. In this case, the target process receives a private copy of the page,
and its mapping and write operation are redirected to the copied page. The
monitoring process retains a mapping to the original page.

• The target process invokes fork(2) and then locks into memory a private,
writable page in the range [offset, offset + length), where this page is still
being shared with the child process (the page is marked copy-on-write). In
this case, the process that performs the lock operation receives a private
copy of the page (as though it performed the first write to the page). If it is
the target (parent) process that locks the page, then the monitoring process’
mapping is no longer valid.

• The target process invokes mprotect(2) to enable write permission on
a locked, private, read-only page in the range [offset, offset + length) that is
still being shared with the child process (the page is marked copy-on-
write). In this case, the target process receives a private copy of the page.
The monitoring process retains a mapping to the original memory object.

If your application is expected to be the target of a monitoring process’ address space
mapping, you are advised to:

• Perform memory-locking operations in the target process before its address
space is mapped by the monitoring process.

• Prior to invoking fork(2), lock into memory any pages for which
mappings by the parent and the monitoring process need to be retained.

If your application is not expected to be the target of address space mapping, you may
wish to postpone locking pages in memory until after invoking fork.

Please refer to the mmap(2) man page for additional details.

Memory Mapping

9-3

Using usermap(3) 9

In addition to the /proc file system mmap(2) system service call support, RedHawk
Linux also provides the usermap(3) library routine as an alternative method for
mapping portions of a target process’ address space into the virtual address space of the
monitoring process. This routine resides in the libccur_rt library.

While the usermap library routine internally uses the underlying /proc mmap system
service call interface to create the target address space mappings, usermap does provide
the following additional features:

• The caller only has to specify the virtual address and length of the virtual
area of interest in the target process’ address space. The usermap routine
will deal with the details of converting this request into a page aligned
starting address and a length value that is a multiple of the page size before
calling mmap.

• The usermap routine is intended to be used for mapping multiple target
process data items, and therefore it has been written to avoid the creation of
redundant mmap mappings. usermap maintains internal mmap
information about all existing mappings, and when a requested data item
mapping falls within the range of an already existing mapping, then this
existing mapping is re-used, instead of creating a redundant, new mapping.

• When invoking mmap, you must supply an already opened file descriptor.
It is your responsibility to open(2) and close(2) the target process’
file descriptor at the appropriate times.

When using usermap, the caller only needs to specify the process ID
(pid_t) of the target process. The usermap routine will deal with
opening the correct /proc/pid/mem file. It will also keep this file
descriptor open, so that additional usermap(3) calls for this same target
process ID will not require re-opening this /proc file descriptor.

Note that leaving the file descriptor open may not be appropriate in all
cases. However, it is possible to explicitly close the file descriptor(s) and
flush the internal mapping information that usermap is using by calling
the routine with a “len” parameter value of 0. It is recommended that the
monitoring process use this close-and-flush feature only after all target
mappings have been created, so that callers may still take advantage of the
optimizations that are built into usermap. Please see the usermap(3)
man page for more details on this feature.

Note that the same limitations discussed under “Using mmap(2)” about a monitoring
process’ mappings becoming no longer valid also apply to usermap mappings, since the
usermap library routine also internally uses the same underlying /proc/pid/mem
mmap(2) system call support.

For more information on the use of the usermap(3) routine, refer to the usermap(3)
man page.

RedHawk Linux User’s Guide

9-4

Considerations 9

In addition to the previously mentioned usermap features, it is recommended that you
also consider the following remaining points when deciding whether to use the
usermap(3) library routine or the mmap(2) system service call within your
application:

• The mmap(2) system call is a standard System V interface, although the
capability of using it to establish mappings to /proc/pid/mem files is a
Concurrent RedHawk Linux extension. The usermap(3) routine is
entirely a Concurrent RedHawk Linux extension.

• Mmap(2) provides direct control over the page protections and the
location of mappings within the monitoring process. The usermap(3)
routine does not.

Kernel Configuration Parameters 9

There are two Concurrent RedHawk Linux kernel configuration parameters that directly
affect the behavior of the /proc file system mmap(2) calls. Because usermap(3)
also uses the /proc file system mmap(2) support, usermap(3) is equally affected by
these two configuration parameters.

The two kernel configuration parameters are accessible through the File Systems selection
of the Linux Kernel Configuration menu:

CONFIG_PROC_MMAP If this kernel configuration parameter is enabled, the /proc
file system mmap(2) support will be built into the kernel.

If this kernel configuration parameter is disabled, no /proc
file system mmap(2) support is built into the kernel. In this
case, usermap(3) and /proc mmap(2) calls will return
an errno value of ENODEV.

This kernel configuration parameter is enabled by default in
all Concurrent RedHawk Linux kernel configuration files.

 CONFIG_MEMIO_ANYONE If this kernel configuration parameter is enabled, any
/proc/pid/mem file that the monitoring process is able to
successfully open(2) with read or read/write access may be
used as the target process for a /proc mmap(2) or
usermap(3) call.

If this kernel configuration parameter is disabled, the
monitoring process may only /proc mmap(2) or
usermap(3) a target process that is currently being
ptraced by the monitoring process. Furthermore, the ptraced
target process must also be in a stopped state at the time the
/proc mmap(2) system service call is made. (See the
ptrace(2) man page for more information on ptracing
other processes.)

This kernel configuration parameter is enabled by default in
all Concurrent RedHawk Linux kernel configuration files.

10
Configuring and Building the Kernel

Introduction . 10-1
Configuring a Kernel Using ccur-config . 10-2
Building a Kernel. 10-4
Building Driver Modules. 10-5
Additional Information . 10-6

RedHawk Linux User’s Guide

10-1

10
Chapter 10Configuring and Building the Kernel

8
8
8

Introduction 10

The RedHawk kernels are located in the /boot directory. The actual kernel file names
change from release to release, however, they generally have the following form:

vmlinuz-kernelversion-RedHawk-x.x[-flavor]

kernelversion is the official version of Linux kernel source code upon which the
RedHawk kernel is based

x.x is the version number of the RedHawk kernel release

flavor is an optional keyword that specifies an additional kernel feature
that is provided by the specific kernel

The kernel is loaded into memory each time the system is booted. It is a nucleus of
essential code that carries out the basic functions of the system. The kernel remains in
physical memory during the entire time that the system is running (it is not swapped in and
out like most user programs).

The exact configuration of the kernel depends upon:

• a large number of tunable parameters that define the run-time behavior of
the system

• a number of optional device drivers and loadable modules

Kernel configuration, or reconfiguration, is the process of redefining one or more of these
kernel variables and then creating a new kernel according to the new definition.

In general, the supplied kernels are created with tunable parameters and device drivers that
are suitable for most systems. However, you may choose to reconfigure the kernel if you
want to alter any of the tunable parameters to optimize kernel performance for your
specific needs.

After you change a tunable parameter or modify the hardware configuration, the kernel
will need to be rebuilt, installed and rebooted.

RedHawk Linux User’s Guide

10-2

Configuring a Kernel Using ccur-config 10

The RedHawk Linux product includes three pre-built kernels. The kernels are
distinguished from each other by their “-flavor” suffix. The following flavors are defined:

(no suffix) The generic kernel. This kernel is the most optimized and will
provide the best overall performance, however it lacks certain
features required to take full advantage of the NightStar tools.

trace The trace kernel. This kernel is recommended for most users as it
supports all of the features of the generic kernel and in addition
provides support for the kernel tracing feature of the NightTrace
performance analysis tool.

debug The debug kernel. This kernel supports all of the features of the
trace kernel and in addition provides support for kernel-level
debugging. This kernel is recommended for users who are
developing drivers or trying to debug system problems.

Each pre-built RedHawk kernel has an associated configuration file that captures all of the
details of the kernel's configuration. These files are located in the “configs” directory
of the kernel source tree. For the three pre-built kernels, the configuration files are named
as follows:

generic static.config

trace trace-static.config

debug debug-static.config

In order to configure and build a kernel that matches one of the three pre-built kernels, you
must cd to the top of the kernel source tree and run the ccur-config tool.

NOTE

The ccur-config script must be run as root and with the
system in graphical mode (i.e. run-level 5) or with a valid
DISPLAY variable set.

The following example configures the kernel source tree for building a new kernel based
on the trace kernel’s configuration. Note that it is not necessary to specify the “.config”
suffix of the configuration file as that is automatically appended.

cd /usr/src/linux-2.4.21-pre4RedHawk1.3
#./ccur-config trace-static

Configuring and Building the Kernel

10-3

During the execution of ccur-config you will be presented with a graphical
configuration window in which you can customize many different aspects of the
RedHawk Linux kernel. See Screen 10-1 for an example of the graphical configuration
main menu. Note that even if you do not change any configuration parameters it is still
necessary to choose the “Save and Exit” button in order to properly update the kernel's
configuration files.

An exhaustive list of the settings and configuration options that are available via the
graphical configuration window is beyond the scope of this document, however many
parameters related to real-time performance are discussed throughout this manual. In
addition, online help is available for every parameter that can be modified; simply click
the Help button located to the right of each parameter for more information about the
parameter.

Screen 10-1. Linux Kernel Configuration, Main Menu

RedHawk Linux User’s Guide

10-4

Building a Kernel 10

Regardless of which kernel configuration is used, the resulting kernel will be named with
a “vmlinuz” prefix followed by the current kernel version string as it is defined in the
top-level Makefile, followed with a “-custom” suffix added. For example:

 vmlinuz-2.4.21-pre4-RedHawk-1.3-custom

The final suffix can be changed by editing the REDHAWKFLAVOR variable in the top-level
Makefile before running ccur-config. When building multiple kernels from the
same kernel source tree, it is important to change the suffix to avoid overwriting existing
kernels accidentally.

NOTE

The pre-built kernels supplied by Concurrent have suffixes that
are reserved for use by Concurrent. Therefore, you should not set
the suffix to “-trace”, “-debug” or “ ” (empty string). Use the
ccur-config -c option if you need to build driver modules
for one of the pre-built kernels (see the section “Building Driver
Modules” later in this chapter).

Once kernel configuration has completed, a kernel can be built by issuing the appropriate
make(1) commands. There are many targets in the top-level Makefile, however the
following are of special interest:

make install Build a standalone kernel and install it into the /boot directory
along with an associated System.map file. Note that when
performing a “make install” of a RedHawk kernel it is normal
for the make to terminate with errors after installing the kernel
and map file into the /boot directory.

make modules Build any kernel modules that are specified in the kernel
configuration.

make modules_install Install modules into the module directory associated with the
currently configured kernel. Note that the name of this directory
is derived from the kernel version string as defined in the top-
level Makefile. For example, if the REDHAWKFLAVOR is
defined as “-custom” then the resulting modules directory will
be “/lib/modules/2.4.21-pre4-RedHawk-1.3-
custom”.

NOTE

To completely build and install a new kernel, all three of these
Makefile targets must be issued in order.

For an example of a complete kernel configuration and build session, refer to Figure 10-1.

Configuring and Building the Kernel

10-5

Figure 10-1. Example of Complete Kernel Configuration and Build Session

Building Driver Modules 10

It is often necessary to build driver modules for use with one of the pre-existing kernels
supplied by Concurrent. To build driver modules for one of the pre-existing kernels, the
following conditions must be met:

• The desired pre-built kernel must be the currently running kernel.

• The kernel source directory must be configured properly for the currently
running kernel.

The -c option to ccur-config can be used to ensure that the kernel source directory is
properly configured. For example:

cd /usr/src/linux-2.4.21-pre4RedHawk1.3
./ccur-config -c -n

This automatically detects the running kernel and configures the source tree to properly
match the running kernel. Driver modules can then be properly compiled for use with the
running kernel.

NOTE

The -c option to ccur_config is only intended for
configuring the kernel source tree to build driver modules and
should not be used when building a new kernel.

 # cd /usr/src/linux-2.4.21-pre4RedHawk1.3
 [edit Makefile and change REDHAWKFLAVOR to "-test"]
 # ./ccur-config debug-static
 Configuring version: 2.4.21-pre4-RedHawk-1.3-test
 Cleaning source tree...
 Starting graphical configuration tool...
 [configure kernel parameters as desired]
 Making kernel dependencies...

 Configuration complete.

 # make install
 [ignore error about missing module directory]
 # make modules
 # make modules_install
 [edit /etc/grub.conf to reference new kernel and reboot]

RedHawk Linux User’s Guide

10-6

Additional Information 10

There are many resources available that provide information to help understand and
demystify Linux kernel configuration and building. A good first step is to read the
README file located in the top-level of the installed RedHawk kernel source tree. In
addition, the following HOWTO document is available via The Linux Documentation
Project web site: http://www.tldp.org/HOWTO/Kernel-HOWTO.html

http://www.tldp.org/HOWTO/Kernel-HOWTO.html

11
Linux Kernel Crash Dump (LKCD)

Introduction . 11-1
Installation/Configuration Details . 11-1
Documentation. 11-2
Forcing a Crash Dump on a Hung System . 11-2
Using lcrash to Analyze a Crash Dump. 11-3
Crash Dump Examples . 11-4

RedHawk Linux User’s Guide

11-1

11
Chapter 11Linux Kernel Crash Dump (LKCD)

9
2

This chapter discusses the Linux Kernel Crash Dump facility, how it is configured and
some examples of its use.

Introduction 11

The Linux Kernel Crash Dump (LKCD) facility contains kernel and user level code
designed to:

- save the kernel memory image when the system dies due to a software
failure

- recover the kernel memory image when the system is rebooted

- analyze the memory image to determine what happened when the failure
occurred

When a crash dump is requested (a kernel Oops or panic occurs or a user forces a crash
dump), the memory image is stored into a dump device, which is represented by one of the
disk partitions on the system. After the operating system is rebooted, the memory image is
moved to /var/log/dump/n, where n is a number that increments with each successive
crash dump. The files within that directory are used when analyzing the crash dump using
lcrash(1).

Installation/Configuration Details 11

The lkcdutils rpm is automatically installed as part of the RedHawk Linux
installation. The default RedHawk Linux kernel configurations include the lkcd kernel
p a t ch . C o n c u r r e n t h a s a d d e d s c r i p t s t o a u t o m a t i c a l l y p a t ch t h e
/etc/rc.d/rc.sysinit file to configure lkcd to take dumps and to save dumps at
boot time. LKCD will automatically self-configure to use the swap partition as the dump
device. This is done by creating the file /dev/vmdump as a symbolic link to the swap
partition.

The dump is saved to a disk partition and then copied to the dump directory on reboot. The
system administrator must set up the disk partitions so there is enough space in
/var/log/dump and the swap partition.

The /etc/sysconfig/dump configuration file contains configuration details. This file
may be edited by the user if needed to make certain specifications; for example, to modify
the method of compressing dumps or to change the directory where dumps are saved.

RedHawk Linux User’s Guide

11-2

Documentation 11

With LKCD installed on the system, the documents listed in Table 11-1 are available at
/usr/share/doc/lkcd. These documents contain all the information needed to
understand and use LKCD, which is beyond the scope of this chapter. The user needs to be
familiar with the contents of these documents.

In addition to the Lcrash HOWTO document, there is a man page for lcrash(1).

Additional information about LKCD and the LKCD project can be found at:

http://lkcd.sourceforge.net/

Forcing a Crash Dump on a Hung System 11

LKCD contains a Magic System Request (SysRq) option to force a dump. By default,
Concurrent has configured the kernel with this option. To use SysRq, the user must enable
it through the /proc file system as follows:

$echo 1 > /proc/sys/kernel/sysrq

The configuration file /etc/sysctl.conf sets the default value.

Two methods to force a dump are described below. Use the method applicable to your
configuration:

 Using PC keyboard: Ctrl+Alt+SysRq+C

 Using serial console: Break followed by C

An example of how you can send a Break using a serial console is illustrated below:

Using minicom as terminal emulator: Ctrl+A+F to send break, followed by C

Table 11-1. LKCD and lcrash Documents

File Name Title and Contents of Document

lkcd_tutorial.pdf LKCD Installation and Configuration
This document explains the process used by LKCD to cre-
ate a crash dump as well as important installation and con-
figuration information.

lcrash.pdf and
lcrash.htm

Lcrash HOWTO
This document contains all the commands and features of
the lcrash utility used to analyze a crash dump.

http://lkcd.sourceforge.net/

Linux Kernel Crash Dump (LKCD)

11-3

Using lcrash to Analyze a Crash Dump 11

A dump is a set of files contained in a directory structure that increments with each
successive crash dump. For example:

cd /var/log/dump
ls
0 1 bounds

cd 0
ls
analysis.0 dump.0 kerntypes.0 lcrash.0 map.0

The example above shows navigating to /var/log/dump/0 which contains the files for
the initial crash dump. Note that the names of the files created by LKCD within that
directory reflect that crash dump operation number. A copy of the lcrash utility found in
/sbin/lcrash at the time of the crash is one of those files.

To invoke lcrash to operate on this initial crash dump, you would enter the following:

lcrash -n 0

Please wait...
Initializing vmdump access ... Done.
Loading system map ... Done.
Loading type info (Kerntypes) ... Done.
Initializing arch specific data ... Done.
Loading ksyms from dump Done.

>>

Refer to the lcrash(1) man page and the lcrash documentation provided in
/usr/share/doc/lkcd for complete instructions for using lcrash.

Examples of crash dump operations are given in the next section.

RedHawk Linux User’s Guide

11-4

Crash Dump Examples 11

Example #1 11

This example shows a kernel Oops message and the progress message that are displayed
as lkcd saves the memory image to the dump device.

Oops: 0002
CPU: 1
EIP: 0010:[<c03fa906>] Not tainted
EFLAGS: 00010246
eax: 00000000 ebx: 00000000 ecx: 00000001 edx: 00000001
esi: 00000000 edi: 00000000 ebp: c127bfb8 esp: c127bfac
ds: 0018 es: 0018 ss: 0018
Process swapper (pid: 0, stackpage=c127b000)
Stack: 00000000 00000000 00000000 c127bfc0 c03faa7d c127b3f8 ffffffff 00000cf9
 c03f2000 c03f3f7c c011cf0b 00000ccc 00000000 00000292 00000001 c046b0ca
 00000246 0000002a c03f3f90 00000000 00000000
Call Trace: [<c011cf0b>]

Code: 00 00 8e 4d d3 3c 54 b9 84 3c 54 b9 84 3c 00 00 00 00 f4 01

dump: Dumping to device 0x305 [ide0(3,5)] on CPU 1 ...
dump: Compression value is 0x0, Writing dump header

dump: Pass 1: Saving Reserved Pages:
dump: Memory Bank[0]: 0 ... 7ffffff: .

dump: Pass 2: Saving Remaining Referenced Pages:
dump: Memory Bank[0]: 0 ... 7ffffff:

dump: Pass 3: Saving Remaining Unreferenced Pages:
dump: Memory Bank[0]: 0 ... 7ffffff:

dump: Dump Complete; 32672 dump pages saved.
dump: Dump: Rebooting in 5 seconds

Example #2 11

This example illustrates the message received after using the Ctrl+Alt+SysRq+C key
combination to force a dump.

SysRq : Start a Crash Dump (If Configured)
Dumping from interrupt handler !
Uncertain scenario - but will try my best

dump: Dumping to device 0x305 [ide0(3,5)] on CPU 0 ...
dump: Compression value is 0x0, Writing dump header

Linux Kernel Crash Dump (LKCD)

11-5

Example #3 11

When saving a crash dump, lcrash relies on the files /boot/Kerntypes and
/boot/System.map matching the running kernel. Normally, several kernels are
installed with version extended names, and the Kerntypes and System.map files are
symbolic links to files that match the default kernel. If you boot a different kernel and the
system takes a crash dump, it may copy the wrong System.map and Kerntypes files.
In general, the core file will be saved successfully and the correct System.map and
Kerntypes files can be copied manually or specified on the lcrash command line
when examining the dump.

[jim@dual 0]$ /sbin/lcrash -n 0
map = map.0, dump = dump.0, outfile = stdout, kerntypes = kerntypes.0

Please wait...
 Initializing vmdump access ... Done.
 Loading system map Done.
 Loading type info (Kerntypes) ... Done.
 Initializing arch specific data ... Done.
 Loading ksyms from dump Done.
>>

Example #4 11

This example illustrates the message received when issuing the stat command. The
stat command displays the log buffer which may contain clues as to what went wrong.
It’s also a way to determine if you have a good dump.

>> stat

 sysname : Linux
 nodename : dual
 release : 2.4.18-RedHawk-1.0
 version : #6 SMP Wed Apr 10 18:01:43 EDT 2002
 machine : i686
domainname : (none)

LOG_BUF:

 <1>Unable to handle kernel NULL pointer dereference at virtual address
000000a0
 <4> printing eip:
 <4>c012886b
 <1>*pde = 00000000
 <4>Oops: 0000
 <4>CPU: 1
 <4>EIP: 0010:[<c012886b>] Not tainted
 <4>EFLAGS: 00210186
 <4>eax: 00000000 ebx: c5204000 ecx: 00000001 edx: 00000000
 <4>esi: 01800001 edi: 080a6038 ebp: bffff7b8 esp: c5205fc0
 <4>ds: 0018 es: 0018 ss: 0018

RedHawk Linux User’s Guide

11-6

 <4>Process xscreensaver (pid: 1035, stackpage=c5205000)
 <4>Stack: c01075db 0808cff8 00000001 00000000 01800001 080a6038 bffff7b8
00000014
 <4> 4030002b 0000002b 00000014 40296167 00000023 00200282 bffff5dc
0000002b
 <4>Call Trace: [<c01075db>]
 <4>
 <4>Code: 8b 80 a0 00 00 00 c3 8d b4 26 00 00 00 00 8d bc 27 00 00 00

Example #5 11

This example illustrates the message received when issuing the trace command. The
trace command without arguments displays the stack trace back for the processor that
triggered the dump.

>> trace
==
STACK TRACE FOR TASK: 0xc5204000(xscreensaver)

 0 save_other_cpu_states+72 [0xc026ccc8]
 1 __dump_configure_header+42 [0xc026ceaa]
 2 dump_configure_header+348 [0xc026b84c]
 3 dump_execute+31 [0xc026bf7f]
 4 die+121 [0xc0107e39]
 5 do_page_fault+390 [0xc01168d6]
 6 do_int3+38 [0xc01088f6]
 7 error_code+50 [0xc0107722]
 ebx: c5204000 ecx: 00000001 edx: 00000000 esi: 01800001
 edi: 080a6038 ebp: bffff7b8 eax: 00000000 ds: 0018
 es: 0018 eip: c012886b cs: 0010 eflags: 00210186
 8 sys_getpid+11 [0xc012886b]
 9 system_call+84 [0xc01075d4]
 ebx: 0808cff8 ecx: 00000001 edx: 00000000 esi: 01800001
 edi: 080a6038 ebp: bffff7b8 eax: 00000014 ds: 002b
 es: 002b eip: 40296167 cs: 0023 eflags: 00200282
 esp: bffff5dc ss: 002b
==
>>

Linux Kernel Crash Dump (LKCD)

11-7

Example #6 11

This example illustrates the message received when issuing the ps command followed by
the trace command with a stack address (from the first column of the ps output) to trace
an arbitrary stack.

>> ps
Address Uid Pid PPid Stat Flags SIZE:RSS Command

c03f8000 0 0 0 0x00 0x00000100 0:0 swapper
c126a000 0 1 0 0x00 0x00000100 353:130 init
c1266000 0 2 0 0x01 0x00008140 0:0 migration_CPU0
c1264000 0 3 0 0x01 0x00008140 0:0 migration_CPU1
c12f6000 0 4 1 0x00 0x00000040 0:0 keventd
c12f2000 0 5 0 0x01 0x00008040 0:0 ksoftirqd_CPU0
c12f0000 0 6 0 0x01 0x00008040 0:0 ksoftirqd_CPU1
c12e0000 0 7 0 0x01 0x00000840 0:0 kswapd

 o
 o
 o
c2f84000 0 1334 1330 0x01 0x00000100 635:342 bash
c2de0000 0 1381 1334 0x01 0x00000100 1496:995 lcrash
c2422000 0 1415 752 0x01 0x00000040 399:176 crond
c2572000 41 1416 1415 0x00 0x00100104 0:0 python

57 processes found
>> trace c2572000
==
STACK TRACE FOR TASK: 0xc2572000(python)

 0 smp_call_function+144 [0xc0114280]
 1 flush_tlb_all+15 [0xc01140bf]
 2 vmfree_area_pages+213 [0xc01391b5]
 3 vfree+180 [0xc0139444]
 4 exit_mmap+13 [0xc0132d8d]
 5 mmput+79 [0xc011a61f]
 6 do_exit+197 [0xc0120135]
 7 sys_exit+11 [0xc012042b]
 8 system_call+84 [0xc01075d4]
 ebx: 00000000 ecx: 00000000 edx: 401a5154 esi: 401a42e0
 edi: 00000000 ebp: bffffdd8 eax: 00000001 ds: 002b
 es: 002b eip: 40129afd cs: 0023 eflags: 00000246
 esp: bffffdac ss: 002b
==
>>

RedHawk Linux User’s Guide

11-8

12
Pluggable Authentication Modules (PAM)

Introduction . 12-1
PAM Modules . 12-1
Services . 12-2
Role-Based Access Control . 12-2

Examples . 12-3
Defining Capabilities . 12-3

Examples . 12-4
Implementation Details . 12-5

RedHawk Linux User’s Guide

12-1

12
Chapter 12Pluggable Authentication Modules (PAM)

10
3

This chapter discusses the PAM facility that provides a secure and appropriate
authentication scheme accomplished through a library of functions that an application
may use to request that a user be authenticated.

Introduction 12

PAM, which stands for Pluggable Authentication Modules, is a way of allowing the system
administrator to set authentication policy without having to recompile authentication
programs. With PAM, you control how the modules are plugged into the programs by
editing a configuration file.

Most users will never need to touch this configuration file. When you use rpm(8) to
install programs that require authentication, they automatically make the changes that are
needed to do normal password authentication. However, you may want to customize your
configuration, in which case you must understand the configuration file.

PAM Modules 12

There are four types of modules defined by the PAM standard. These are:

auth provides the actual authentication, perhaps asking for and
checking a password, and they set “credentials” such as
group membership

account checks to make sure that the authentication is allowed (the
account has not expired, the user is allowed to log in at this
time of day, and so on)

password used to set passwords

session used once a user has been authenticated to allow them to use
their account, perhaps mounting the user's home directory
or making their mailbox available

These modules may be stacked, so that multiple modules are used. For instance, rlogin
normally makes use of at least two authentication methods: if rhosts authentication
succeeds, it is sufficient to allow the connection; if it fails, then standard password
authentication is done.

New modules can be added at any time, and PAM-aware applications can then be made to
use them.

RedHawk Linux User’s Guide

12-2

Services 12

Each program using PAM defines its own “service” name. The login program defines the
service type login, ftpd defines the service type ftp, and so on. In general, the service
type is the name of the program used to access the service, not (if there is a difference) the
program used to provide the service.

Role-Based Access Control 12

Role-Based Access Control for RedHawk Linux is implemented using PAM. In the Role-
B a s e d Ac c e s s C o n t r o l s c h e m e , y o u s e t u p a s e r i e s o f r o l e s i n t h e
capability.conf(5) file. A role is defined as a set of valid Linux capabilities. The
c u r r e n t s e t o f a l l v a l i d L in u x c a p a b i l i t i e s c a n b e f o u n d i n t h e
/usr/include/linux/capability.h kernel header file or by using the
_cap_names[] string array.

Roles can act as building blocks in that once you have defined a role, it can be used as one
of the capabilities of a subsequent role. In this way the newly defined role inherits the
capabilities of the previously defined role. Examples of this feature are given below. See
the capability.conf(5) man page for more information.

Once you have defined a role, it can be assigned to a user or a group in the
capability.conf(5) file. A user is a standard Linux user login name that
corresponds to a valid user with a login on the current system. A group is a standard
Linux group name that corresponds to a valid group defined on the current system.

Files in /etc/pam.d correspond to a service that a user can use to log into the system.
These files may be modified to include a pam_capability session line (examples of
adding pam_capability session lines to service files are given in the “Examples”
section below). For example: the /etc/pam.d/login file is a good candidate as it
covers login via telnet. If a user logs into the system using a service that has not been
modified, no special capability assignment takes place.

The following options can be specified when supplying a pam_capability session line
to a file in /etc/pam.d:

conf=conf_file specify the location of the configuration file. If this option is not
sp ec i f i ed t h en t he de f au l t l o ca t i on w i l l be
/etc/security/capability.conf.

debug Log debug information via syslog. The debug information is
logged in the syslog authpriv class. Generally, this log
information is collected in the /var/log/secure file.

Pluggable Authentication Modules (PAM)

12-3

Examples 12

The following examples illustrate adding session lines to /etc/pam.d/login:

1. To allow the roles defined in the /etc/security/capability.conf
file to be assigned to users who login to the system via telnet(1)
append the following line to /etc/pam.d/login:

session required /lib/security/pam_capability.so

2. To allow the roles defined in the /etc/security/capability.conf
file to be assigned to users who login to the system via ssh(1) append the
following line to /etc/pam.d/sshd:

session required /lib/security/pam_capability.so

3. To have ssh users get their role definitions from a different
capability.conf file than the one located in /etc/security
append the following lines to /etc/pam.d/sshd:

session required /lib/security/pam_capability.so \
conf=/root/ssh-capability.conf

Thus, the roles defined in the /root/ssh-capability.conf file will be
applied to users logging in via ssh.

Defining Capabilities 12

The capability.conf file provides information about the roles that can be defined
and assigned to users and groups. The file has three types of entries: Roles, Users and
Groups.

Roles A role is a defined set of valid Linux capabilities. The current set
o f a l l v a l id L i n u x c a p a b i l i t i e s c a n b e f o u n d i n t h e
/usr/include/linux/capability.h kernel header file or
by using the _cap_names[] string array. This array is
described in the cap_from_text(3) man page. In addition,
the following capability keywords are pre-defined:

all all capabilities (except cap_setcap)
cap_fs_mask all file system-related capabilities
none no capabilities whatsoever

As the name implies, it is expected that different roles will be
defined, based on the duties that various system users and groups
need to perform.

The format of a role entry in the capability.conf file is:

role rolename capability_list

RedHawk Linux User’s Guide

12-4

Entries in the capability list can reference previously defined
roles. For example, you can define a role called basic in the file
and then add this role as one of your capabilities in the capability
list of a subsequent role. Note that the capability list is a
whitespace or comma separated list of capabilities that will be
turned on in the user’s inheritable set.

Users A user is a standard Linux user login name that corresponds to a
valid user with a login on the current system. User entries that do
not correspond to valid users on the current system (verified by
getpwnam(3)) are ignored.

The format of a user entry in the capability.conf file is:

user username rolename

The special username ’*’ can be used to assign a default role for
users that do not match any listed users or have membership in a
listed group:

user * default_rolename

Groups A group is a standard Linux group name that corresponds to a
valid group defined on the current system. Group entries that do
not correspond to valid groups on the current system (verified by
getgrnam(3)) are ignored.

The format of a group entry in the capability.conf file is:

group groupname rolename

Examples 12

1. The following example sets up an administrative role (admin) that is
roughly equivalent to root:

role admin all

2. The following example sets up a desktop user role that adds sys_boot and
sys_time to the inheritable capability set:

role desktopuser cap_sys_boot \
 cap_sys_time

3. The following example sets up a poweruser user role, using the desktop
user role created previously:

role poweruser desktopuser\
cap_sys_ptrace\
cap_sys_nice\
cap_net_admin

Pluggable Authentication Modules (PAM)

12-5

4. To assign the desktopuser role to a user, enter the following in the
USERS section of the capability.conf file:

user joe desktopuser

5. To assign the poweruser role to a group, enter the following in the
GROUPS section of the capability.conf file:

group hackers poweruser

Implementation Details 12

The following items address requirements for full implementation of the PAM
functionality:

• Pam_capability requires that the running kernel be modified to inherit
capabilities across the exec() system call. Kernels that have been patched
with the kernel patch shipped with this module can enable capability
inheritance using the CONFIG_INHERIT_CAPS_ACROSS_EXEC configuration
option accessible through the General Setup selection of the Linux Kernel
Configuration menu (refer to the “Configuring and Building the Kernel”
chapter of this guide). All RedHawk Linux kernels have this option
enabled by default.

• In order to use the pam_capability feature with ssh, the
/etc/ssh/sshd_config file must have the following option set:

UsePrivilegeSeparation no

RedHawk Linux User’s Guide

12-6

13
Device Drivers and Real Time

Interrupt Routines . 13-1
Deferred Interrupt Functions . 13-2
Multi-threading Issues . 13-4
The Big Kernel Lock (BKL) and ioctl. 13-4

RedHawk Linux User’s Guide

13-1

13
Chapter 13Device Drivers and Real Time

11
4
2

A device driver runs in kernel mode and is an extension of the kernel itself. Device drivers
therefore have the ability to influence the real-time performance of the system in the same
way that any kernel code can affect real-time performance. This chapter provides a high-
level overview of some of the issues related to device drivers and real-time.

It should be noted that while there are many open source device drivers that are available
for Linux, these drivers have a wide range of quality associated with them, especially in
regards to their suitability for a real-time system.

Interrupt Routines 13

The duration of an interrupt routine is very important in a real-time system because an
interrupt routine cannot be preempted to execute a high-priority task. Lengthy interrupt
routines directly affect the process dispatch latency of the processes running on the CPU
to which the interrupt is assigned. The term process dispatch latency denotes the time that
elapses from the occurrence of an external event, which is signified by an interrupt, until
the process that is waiting for that external event executes its first instruction in user mode.
For more information on how interrupts affect process dispatch latency, see the “Real-
Time Performance” chapter.

If you are using a device driver in a real-time production environment, you should
minimize the amount of work performed at interrupt level. Linux supports several
different mechanisms for deferring processing that should not be performed at interrupt
level. These mechanisms allow an interrupt routine to trigger processing that will be
performed in the context of a kernel daemon at program level. Because the priority of
these kernel daemons is configurable, it is possible to run high-priority real-time processes
at a priority level higher than the deferred interrupt processing. This allows a real-time
process to have higher priority than some activity that might normally be run at interrupt
level. Using this mechanism, the execution of real-time tasks is not delayed by any
deferred interrupt activity. See the “Deferred Interrupt Functions” section for more
information about deferring interrupts.

Generally, a device’s interrupt routine can interact with the device to perform the
following types of tasks:

• acknowledge the interrupt

• save data received from the device for subsequent transfer to a user

• initiate a device operation that was waiting for completion of the previous
operation

RedHawk Linux User’s Guide

13-2

A device’s interrupt routine should not perform the following types of tasks:

• copy data from one internal buffer to another

• allocate or replenish internal buffers for the device

• replenish other resources used by the device

These types of tasks should be performed at program level via one of the deferred
interrupt mechanisms. You can, for example, design a device driver so that buffers for the
device are allocated at program level and maintained on a free list that is internal to the
driver. When a process performs read or write operations, the driver checks the free list to
determine whether or not the number of buffers available is sufficient for incoming
interrupt traffic. The interrupt routine can thus avoid making calls to kernel buffer
allocation routines, which are very expensive in terms of execution time. Should a device
run out of resources and only notice this at interrupt level, new resources should be
allocated as part of the deferred interrupt routine rather than at interrupt level.

Deferred Interrupt Functions 13

Linux supports several methods by which the execution of a function can be deferred.
Instead of invoking the function directly, a “trigger” is set that causes the function to be
invoked at a later time. These mechanisms are used by interrupt routines under Linux in
order to defer processing that would otherwise have been done at interrupt level. By
removing this processing from interrupt level, the system can achieve better interrupt
response time as described above.

There are three different mechanisms for deferring interrupt processing. Each of these
mechanisms has different requirements in terms of whether or not the code that is deferred
must be reentrant or not. The three types of deferrable functions are softirqs, tasklets and
bottom halves. A softirq must be completely reentrant because a single instance of a
softirq can execute on multiple CPUs at the same time. Tasklets are implemented as a
special type of softirq and are handled by the same kernel daemon. The difference is that a
given tasklet function will always be serialized with respect to itself. In other words, no
two CPUs will ever execute the same tasklet code at the same time. This property allows a
simpler coding style in a device driver, since the code in a tasklet does not have to be
reentrant with respect to itself. Bottom halves are globally serialized. In other words, only
one bottom half of any type will ever execute in the system at the same time. Because of
the performance implications of this global serialization, bottom halves are slowly being
phased out of the Linux kernel.

By default under RedHawk, all deferred interrupt functions will only execute in the
context of a kernel daemon. It should be noted that this is different than the way standard
Linux operates. The priority and scheduling policy of these kernel daemons can be set via
kernel configuration parameters. This allows the system to be configured such that a high-
priority real-time task can preempt the activity of deferred interrupt functions.

Softirqs and tasklets are both run by the ksoftirqd daemon. There is one ksoftirqd
daemon per logical CPU. A softirq or tasklet will run on the CPU that triggered its
execution. Therefore, if a hard interrupt has its affinity set to a specific CPU, the
corresponding softirq or tasklet will also run on that CPU. The priority of the ksoftirqd
is determined by the CONFIG_SOFTIRQ_PRI kernel tunable, which is located under the

Device Drivers and Real Time

13-3

Processor Types and Features selection of the Linux Kernel Configuration menu. By
default the value of this tunable is set to zero, which indicates that the ksoftirqd
daemon will run as under the SCHED_FIFO scheduling policy at a priority of one less than
the highest real-time priority. Setting this tunable to a positive value specifies the real-time
priority value that will be assigned to all ksoftirqd daemons.

Bottom halves can be run by two different kernel daemons – keventd and kbottomd.
The difference between these types of bottom halves is historical and has to do with
whether or not hardware interrupts are blocked while the bottom half is executed. Unlike
the ksoftirqd, there is only one instance of keventd and one instance of kbottomd.
These daemons would therefore generally be run on a non-shielded CPU. The priority of
these kernel daemons can be set via the kernel tunables CONFIG_EVENTD_PRI and
CONFIG_BH_PRI respectively, which are located under the Processor Types and Features
selection of the Linux Kernel Configuration menu. By default the keventd kernel
daemon runs under the SCHED_OTHER scheduling policy, at the highest SCHED_OTHER

priority. By default, the kbottomd kernel daemon is set to the same priority and
scheduling policy as the ksoftirqd kernel daemon. By setting the value of the
appropriate kernel configuration parameter to a positive value, the affected kernel daemon
will run as a SCHED_FIFO process at the specified priority.

Table 13-1 provides a summary of the types of deferred interrupts and their corresponding
values.

When configuring a system where real-time processes can run at a higher priority than the
deferred interrupt daemons, it is important to understand whether those real-time
processes depend upon the services offered by the daemon. If a high-priority real-time
task is CPU bound at a level higher than a deferred interrupt daemon, it is possible to
starve the daemon so it is not receiving any CPU execution time. If the real-time process
also depends upon the deferred interrupt daemon, a deadlock can result.

Table 13-1. Deferred Interrupt Types and Characteristics

Deferred
Interrupt Type Kernel Daemon Daemon Tunable Default Value

softirq ksoftirqd CONFIG_SOFTIRQ_PRI Maximum SCHED_FIFO
priority - 1

tasklet ksoftirqd CONFIG_SOFTIRQ_PRI Maximum SCHED_FIFO
priority - 1

bottom half
(events)

keventd CONFIG_EVENTD_PRI Maximum SCHED_OTHER
priority

bottom half
(standard)

kbottomd CONFIG_BH_PRI Follows the setting for
CONFIG_SOFTIRQ_PRI

RedHawk Linux User’s Guide

13-4

Multi-threading Issues 13

RedHawk Linux is built to support multiple CPUs in a single system. This means that all
kernel code and device drivers must be written to protect their data structures so that the
data structures cannot be modified simultaneously on more than one CPU. The process of
multi-threading a device driver involves protecting accesses to data structures so that all
modifications to a data structure are serialized. In general this is accomplished in Linux by
using spin locks to protect these kinds of data structure accesses.

Locking a spin lock will cause preemption to be disabled and/or interrupts to be disabled.
In either case, the worst case process dispatch latency for a process executing on the CPU
where preemption or interrupts are disabled is directly impacted by the length of time that
these features are disabled. It is therefore important when writing a device driver to
minimize the length of time that spin locks are held, which will affect the amount of time
that preemption and/or interrupts are disabled. Remember that locking a spin lock will
implicitly cause preemption or interrupts to be disabled (depending upon which spin lock
interface is used). For more information about this topic, see the “Real-Time
Performance” chapter.

The Big Kernel Lock (BKL) and ioctl 13

The Big Kernel Lock (BKL) is a spin lock in the Linux kernel, which is used when a piece
of kernel source code has not been fine-grain multi-threaded. While much use of the BKL
has been removed by systematically multi-threading the Linux kernel, the BKL is still the
most highly contended and longest held lock in the Linux kernel.

By default, the Linux kernel will lock the BKL before calling the ioctl(2) function
that is associated with a device driver. If a device driver is multi-threaded, then it is not
necessary to lock the BKL before calling the ioctl routine. RedHawk Linux supports a
mechanism for a device driver to specify that the BKL should not be locked before calling
the ioctl routine. When a device is used to support real-time functions or when an
application makes calls to a device’s ioctl routine on a shielded CPU, it is very
important that the device driver be modified so that the BKL is not locked. Without this
modification, a process could stall spinning on the BKL spin lock for an extended period
of time causing jitter to the programs and interrupts that are assigned to the same CPU.

Device Drivers and Real Time

13-5

The mechanism for specifying that the BKL should not be locked on entry to a device’s
ioctl routine is to set the FOPS_IOCTL_NOBKL flag in the file_operations structure
in the device driver source code. Below is an example of how the RCIM device sets this
flag:

static struct file_operations rcim_fops = {
owner: THIS_MODULE,
open: rcim_master_open,
release: rcim_master_release,
ioctl: rcim_master_ioctl,
mmap: rcim_master_mmap,
flags: FOPS_IOCTL_NOBKL,

};

After making this change, the device driver must be rebuilt. For a static driver this means
rebuilding the entire kernel. For a dynamically loadable module, only that module must be
rebuilt. See the “Configuring and Building the Kernel” chapter for more information.

RedHawk Linux User’s Guide

13-6

A-1

A
Appendix AExample Program - Message Queues

12
5
3

This appendix contains an example program that illustrates the use of the System V
message queue facilities. The program is written in C. In this program, a parent process
spawns a child process to off load some of its work. The parent process also creates a
message queue for itself and the child process to use.

When the child process completes its work, it sends the results to the parent process via
the message queue and then sends the parent a signal. When the parent process receives
the signal, it reads the message from the message queue.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <signal.h>
#include <errno.h>

#define MSGSIZE 40/* maximum message size */
#define MSGTYPE 10/* message type to be sent and received */

/* Use a signal value between SIGRTMIN and SIGRTMAX */
#define SIGRT1(SIGRTMIN+1)

/* The message buffer structure */
struct my_msgbuf {
 long mtype;
 char mtext[MSGSIZE];
};
struct my_msgbuf msg_buffer;

/* The message queue id */
int msqid;

/* SA_SIGINFO signal handler */
void sighandler(int, siginfo_t *, void *);

/* Set after SIGRT1 signal is received */
volatile int done = 0;

pid_t parent_pid;
pid_t child_pid;

main()
{

int retval;
sigset_t set;
struct sigaction sa;

/* Save off the parent PID for the child process to use. */
parent_pid = getpid();

RedHawk Linux User’s Guide

A-2

/* Create a private message queue. */
msqid = msgget(IPC_PRIVATE, IPC_CREAT | 0600);
if (msqid == -1) {

perror(“msgget”);
exit(-1);

}

/* Create a child process. */
child_pid = fork();

if (child_pid == (pid_t)-1) {
/* The fork(2) call returned an error. */
perror(“fork”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);
}

if (child_pid == 0) {
/* Child process */

/* Set the message type. */
msg_buffer.mtype = MSGTYPE;

/* Perform some work for parent. */
sleep(1);

/* ... */

/* Copy a message into the message buffer structure. */
strcpy(msg_buffer.mtext, “Results of work”);

/* Send the message to the parent using the message
 * queue that was inherited at fork(2) time.
 */
retval = msgsnd(msqid, (const void *)&msg_buffer,

strlen(msg_buffer.mtext) + 1, 0);

if (retval) {
perror(“msgsnd(child)”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);
}

/* Send the parent a SIGRT signal. */
retval = kill(parent_pid, SIGRT1);
if (retval) {

perror(“kill SIGRT”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
exit(-1);

}
exit(0);

}

Example Program - Message Queues

A-3

/* Parent */

/* Setup to catch the SIGRT signal. The child process
 * will send a SIGRT signal to the parent after sending
 * the parent the message.
 */
sigemptyset(&set);
sa.sa_mask = set;
sa.sa_sigaction = sighandler;
sa.sa_flags = SA_SIGINFO;
sigaction(SIGRT1, &sa, NULL);

/* Do not attempt to receive a message from the child
 * process until the SIGRT signal arrives. Perform parent
 * workload while waiting for results.
 */
while (!done) {

/* ... */
}

/* Remove the message queue.
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
 */

/* All done.
 */
exit(0);

}

/*
* This routine reacts to a SIGRT1 user-selected notification
* signal by receiving the child process’ message.
*/
void
sighandler(int sig, siginfo_t *sip, void *arg)
{

int retval;
struct ucontext *ucp = (struct ucontext *)arg;

/* Check that the sender of this signal was the child process.
 */
if (sip->si_pid != child_pid) {

/* Ignore SIGRT from other processes.
 */
printf(“ERROR: signal received from pid %d\n”, sip->si_pid);
return;

}

/* Read the message that was sent to us.
 */
retval = msgrcv(msqid, (void*)&msg_buffer,

MSGSIZE, MSGTYPE, IPC_NOWAIT);

done++;

if (retval == -1) {
perror("mq_receive (parent)");
return;

RedHawk Linux User’s Guide

A-4

}

if (msg_buffer.mtype != MSGTYPE) {
printf(“ERROR: unexpected message type %d received.\n”,

msg_buffer.mtype);
return;

}

printf(“message type %d received: %s\n”,
msg_buffer.mtype, msg_buffer.mtext);

}

Index-1

Symbols

/boot directory 10-1
/dev/mqueue 3-2, 3-3
/etc/pam.d 12-2
/etc/rc.sysinit 2-16
/etc/security/capability.conf 12-2, 12-3
/etc/sysconfig/dump 11-1
/etc/sysctl.conf 11-2
/proc file system 1-4
/proc/interrupts 2-18
/proc/irq/n/smp_affinity 2-10, 7-4
/proc/pid/mem 9-1
/proc/shield/all 2-13
/proc/shield/irqs 2-13
/proc/shield/ltmrs 2-13, 7-4
/proc/shield/procs 2-13
/proc/sys/kernel/posix-timers 6-14
/proc/sys/kernel/sysrq 11-2
/usr/lib/libccur_rt 6-3, 7-2, 9-3
/usr/share/doc/lkcd 11-2
/var/log/dump 11-1

A

affinity 2-10, 2-14–2-19
asynchronous I/O 1-9
async-safe 3-10, 3-12
authentication 12-1

B

bash command 7-3
Big Kernel Lock (BKL) 13-4
block a process 5-38–5-42
bottom half interrupt routines 4-5, 13-2, 13-3
building a kernel 10-4
busy-wait mutual exclusion 5-2, 5-8–5-11

C

capabilities 12-3
ccur-config 10-2
clock_getres 6-6
clock_gettime 6-5
CLOCK_MONOTONIC 6-2
CLOCK_MONOTONIC_HR 6-2
clock_nanosleep 6-12, 6-13
CLOCK_REALTIME 6-2
CLOCK_REALTIME_HR 6-2
clock_settime 6-4
clocks

POSIX 1-10, 6-1, 6-2
RCIM 1-4, 6-1
system time-of-day (wall) 6-2, 6-4, 7-1, 7-4

condition synchronization 5-1, 5-38
CONFIG_BH_PRI 13-3
CONFIG_EVENTD_PRI 13-3
CONFIG_HR_PROC_ACCT 7-2
CONFIG_HT 2-24
CONFIG_INHERIT_CAPS_ACROSS_EXEC 12-5
CONFIG_MAX_USER_RT_PRIO 4-2, 4-11
CONFIG_MEMIO_ANYONE 9-4
CONFIG_PROC_MMAP 9-4
CONFIG_PW_VMAX 5-39
CONFIG_SOFTIRQ_PRI 13-2, 13-3
CONFIG_XFS_DMAPI 8-2
configuring a kernel 10-2
counting semaphores 1-9, 5-2, 5-11–5-17
CPU

accounting 2-11, 7-2
affinity 2-10, 2-14–2-19, 4-6, 4-13
identification 2-22
load balancing 7-3
logical/physical 2-22
rescheduling 7-3
shielded, see shielded CPUs

cpu command 2-17, 2-23–2-24
crash dump 11-1

Index

RedHawk Linux User’s Guide

Index-2

D

Data Management API (DMAPI) 8-2
data sharing 1-8
debug kernel 1-2, 10-2
debugger 1-5, 1-6
determinism 2-2, 2-20, 2-27
device drivers 2-9, 10-5, 13-1
direct I/O 8-1
disk I/O 8-1
DMAPI 8-2

E

examples
authentication 12-3, 12-4
busy-wait mutual exclusion 5-10
condition synchronization 5-43
CPU affinity for init 2-16
CPU shielding 2-13, 2-17, 2-24–2-27
crash dump 11-4–11-7
kernel configuration and build 10-5
messaging 3-23, 3-26, 3-31, A-1
rescheduling control 5-7
run command 4-14
semaphores 5-24, 5-28, 5-35
set process priorities 4-4
shielded CPU 2-13, 2-17, 2-24–2-27

F

FIFO scheduling 4-1, 4-3, 4-5
file systems 8-1
floating point operations 2-26
Frequency-Based Scheduler (FBS) 1-4

G

gdb 1-6
Global Timer 7-4

H

High Resolution Process Timing Facility 1-6, 2-11, 7-2
hyper-threading 1-7, 2-22–2-27

I

I/O
asynchronous 1-9
direct 8-3
disk 8-1
synchronized 1-9

iHawk Series 860 1-1
iHawk Series 860G 1-1
init 2-14–2-16
interprocess communications 3-1
interprocess synchronization 5-1
interrupts

/proc interface 2-18
bottom half routines 4-5, 13-2, 13-3
deferred functions 2-21, 13-2, 13-3
disabling 2-10–2-13, 7-1, 7-4
effect of disabling 2-4
effect of receiving 2-5–2-7
Local Timer, see Local Timer Interrupt
RCIM 1-4
response time improvements 1-6
routines in device drivers 13-1
shield CPU from 2-10–2-13, 2-25
softirqs 4-5, 13-2, 13-3
tasklets 4-5, 13-2, 13-3

interval timer 7-2
IPC mechanisms 3-1, 5-18
IRQ 2-10, 2-12, 2-13, 2-18

J

journaling file system 1-7, 8-1

K

kbottomd 13-3
kdb 1-6
kernel

build 10-1
configuration 10-2
crash dump 11-1
daemons 13-2, 13-3
debug 1-2, 10-2
debugger 1-5, 1-6
flavors 1-2, 10-2
preemption 1-5
RedHawk Linux 1-1, 1-2, 10-1, 10-2
trace 1-2, 1-5, 10-2

Index

Index-3

tunable parameters 10-1, 10-3
CONFIG_BH_PRI 13-3
CONFIG_EVENTD_PRI 13-3
CONFIG_HR_PROC_ACCT 7-2
CONFIG_HT 2-24
CONFIG_INHERIT_CAPS_ACROSS_EXEC 12-5
CONFIG_MAX_USER_RT_PRIO 4-2, 4-11
CONFIG_MEMIO_ANYONE 9-4
CONFIG_PROC_MMAP 9-4
CONFIG_PW_VMAX 5-39
CONFIG_SOFTIRQ_PRI 13-2, 13-3
CONFIG_XFS_DMAPI 8-2
SysRq 11-2

updates 1-2
keventd 13-3
kgdb 1-6
ksoftirqd 13-2, 13-3

L

lcrash 11-2, 11-3
libraries 3-5, 5-8, 5-13, 6-3, 7-2
Linux Documentation Project web site 10-6
Linux Kernel Crash Dump (LKCD) 11-1
lkcdutils 11-1
load balancing 7-3
Local Timer Interrupt

disabling 2-10–2-13, 7-4
functionality 7-1

low latency patches 1-6

M

mailbox 5-43
make install 10-4
make modules 10-4
make modules_install 10-4
memory locking 4-6, 5-2
memory mapping 1-8, 9-1
memory resident processes 1-8
message structures

POSIX 3-5
System V 3-18

messaging 3-1, A-1
mlock 1-8, 2-20, 4-6
mlockall 1-8, 2-20, 4-6
mmap 1-7, 9-1, 9-4
mpadvise 2-14, 2-15
mq_close 3-9
mq_getattr 3-16

mq_notify 3-14
mq_open 3-6
mq_receive 3-12
mq_send 3-10
mq_setattr 3-16
mq_timedreceive 3-12
mq_timedsend 3-10
mq_unlink 3-9
mqueue 3-2, 3-3
msgctl 3-17, 3-20, 3-25
msgget 3-17, 3-19, 3-21
msgop 3-20
msgrcv 3-30
msgsnd 3-30
munlock 1-8, 2-20, 4-6
munlockall 1-8, 2-20, 4-6
mutual exclusion 5-1, 5-2, 5-13

N

nanosleep 2-11, 6-12, 7-3
NightProbe 1-4
NightSim 1-4
NightStar 1-1, 10-2
NightTrace 1-2, 1-5, 10-2
NightView 1-4, 1-5

O

one-shot timer 6-2

P

paging 1-8
PAM 1-6, 12-1
pam_capability 12-2
performance improvements

bottom half routines 4-5, 13-2, 13-3
deferred interrupts 2-21, 13-2, 13-3
device driver 13-1
direct I/O 8-4
disabling local timer 7-1
hyper-threading 2-24
locking pages in memory 2-20, 4-6
negative issues 2-27
priority scheduling 2-21, 4-4–4-5
shielding CPUs 2-9–2-11, 4-6
softirqs 4-5, 13-2

RedHawk Linux User’s Guide

Index-4

tasklets 4-5, 13-2
waking a process 2-22, 5-38–5-42

periodic timer 6-2
PIT 7-4
Pluggable Authentication Modules (PAM) 1-6, 12-1
POSIX conformance 1-1
POSIX facilities

asynchronous I/O 1-9
clocks 1-10, 6-1, 6-2
counting semaphores 1-9, 5-2, 5-11–5-17
memory locking 1-8, 2-20, 4-6
memory mapping 1-8
message queues 3-1
real-time extension 1-8
real-time signals 1-9
scheduling policies 4-1, 4-3
shared memory 1-8
timers 1-10, 2-11, 6-2, 6-6, 6-14, 7-3

POSIX routines
clock_getres 6-6
clock_gettime 6-5
clock_settime 6-4
mlock 1-8, 2-20, 4-6
mlockall 1-8, 2-20, 4-6
mq_close 3-9
mq_getattr 3-16
mq_notify 3-14
mq_open 3-6
mq_receive 3-12
mq_send 3-10
mq_setattr 3-16
mq_timedreceive 3-12
mq_timedsend 3-10
mq_unlink 3-9
munlock 1-8, 2-20, 4-6
munlockall 1-8, 2-20, 4-6
sched_get_priority_max 4-11, 4-12
sched_get_priority_min 4-11
sched_getparam 4-10
sched_getscheduler 4-8
sched_rr_get_interval 4-12
sched_setparam 4-9
sched_setscheduler 4-7
sched_yield 4-10
sigqueue 1-9
sigtimedwait 1-9
sigwaitinfo 1-9
timer_create 6-7
timer_delete 6-8
timer_getoverrun 6-11
timer_gettime 6-10
timer_settime 6-9

postwait 5-38
preemption 1-3, 1-5, 2-8, 5-3

process
assign to CPU(s) 2-14–2-16
block 5-38–5-42
cooperating 5-38
dispatch latency 2-2, 2-3
execution time quantum 4-4–4-5, 4-8, 4-12, 4-13,

7-2
memory resident 1-8
scheduling 4-1, 7-2
synchronization 1-9, 5-1
wake 2-22, 5-38–5-42

Process Scheduler 4-2
profiling 7-3
Programmable Interval Timer (PIT) 7-4
ps command 4-3
ptrace 1-5

R

RCIM 1-4, 6-1
real-time clock timers 6-2
real-time features 1-3
real-time scheduler 1-5
real-time signals 1-9
Red Hat Linux distribution 1-1
RedHawk Linux kernel 1-1, 1-2, 10-1, 10-2
RedHawk Linux Scheduler 4-2
related publications iv
resched_cntl 5-4
resched_lock 5-6
resched_nlocks 5-7
resched_unlock 5-6
rescheduling control 5-3–5-7, 7-3
rescheduling variables 5-3
Role-Based Access Control 1-6, 12-2
Round Robin scheduling 4-1, 4-4, 4-5
RTC timers 6-2
run command 2-14, 2-15, 4-2, 4-13

S

SCHED_FIFO 4-1, 4-3, 4-5
sched_get_priority_max 4-11, 4-12
sched_get_priority_min 4-11
sched_getaffinity 2-14
sched_getparam 4-10
sched_getscheduler 4-8
SCHED_OTHER 4-1, 4-4
SCHED_RR 4-1, 4-4, 4-5
sched_rr_get_interval 4-12

Index

Index-5

sched_setaffinity 2-14, 2-15
sched_setparam 2-21, 4-9
sched_setscheduler 2-21, 4-7
sched_yield 4-10
scheduler, real-time 1-5
scheduling policies 4-1, 4-3
sem_close 5-12
sem_destroy 5-15
sem_getvalue 5-17
sem_init 5-12, 5-13
sem_open 5-12
sem_post 5-16
sem_trywait 5-16
sem_unlink 5-12
sem_wait 5-15
semaphores

data structures 5-19
POSIX counting 5-2, 5-11–5-17
System V 5-2, 5-18–5-38

semctl 5-18, 5-26
semget 5-18, 5-20, 5-22
semop 5-18, 5-19, 5-34
server_block 5-40
server_wake1 5-41
server_wakevec 5-42
sh command 7-3
shared memory 1-8
shared resources 5-1
shield command 2-11, 2-13, 7-4
shielded CPUs

examples 2-13, 2-17, 2-24–2-27
interfaces 2-11
overview 1-3, 2-1
performance 2-9–2-11, 4-6
uniprocessor 2-27

sigqueue 1-9
sigtimedwait 1-9
sigwaitinfo 1-9
sleep routines 5-38, 6-12
Sleep/Wakeup/Timer mechanism 5-38
sleepy-wait mutual exclusion 5-2
softirqs 4-5, 13-2
spin lock

BKL 13-4
busy-wait mutual exclusion 1-7, 5-2, 5-8–5-11
condition synchronization 5-43
message queue access 3-4
multithread device driver 13-4
preemption 1-3, 1-6

spin_init 5-9
spin_islock 5-10
spin_trylock 5-9
spin_unlock 5-10
ssh 12-5

strace command 7-3
swapping 1-8
synchronized I/O 1-9
syntax notation iv
system profiling 7-3
system security 12-1
system updates 1-2
System V messages 3-17, A-1
System.map file 10-4

T

tasklets 4-5, 13-2
threads library 5-8, 5-13
Time Stamp Counter (TSC) 7-2, 7-4
time structures 6-3
time-of-day clock 6-2, 6-4, 7-1, 7-4
timer_create 6-7
timer_delete 6-8
timer_getoverrun 6-11
timer_gettime 6-10
timer_settime 6-9
timers

global 7-4
local 2-13, 7-1, 7-4
POSIX 1-10, 2-11, 6-2, 6-6, 6-14, 7-3
RCIM RTC 6-2
system 7-1

Time-Share scheduling 4-1, 4-4
top command 4-3
trace kernel 1-2
trace points 1-5, 10-2
TSC 7-2, 7-4

U

uniprocessor 2-27
updates, system 1-2
user authentication 12-1
user-level spin locks 1-7
usermap 1-7, 9-3, 9-4

W

wake a process 2-22, 5-38–5-42
wall clock 6-2, 6-4, 7-1, 7-4

X

xfs 1-7, 8-1

RedHawk Linux User’s Guide

Index-6

Spine for 1” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

tm
tt

R
ed

H
aw

k
tm L

in
u

x
®

User’s Guide

0898004

User

ttm

	Preface
	Contents
	Introduction to RedHawk Linux
	Overview
	RedHawk Linux Kernels
	System Updates
	Real-Time Features in RedHawk Linux
	Processor Shielding
	Processor Affinity
	User-level Preemption Control
	Fast Block/Wake Services
	RCIM Driver
	Frequency-Based Scheduler
	/proc Modifications
	Kernel Trace Facility
	ptrace Extensions
	Kernel Preemption
	Real-Time Scheduler
	Low Latency Patches
	High Resolution Timing
	Capabilities Support
	Kernel Debuggers
	Kernel Core Dumps/Crash Analysis
	User-Level Spin Locks
	usermap and /proc mmap
	Hyper-threading
	XFS Journaling File System
	POSIX Real-Time Extensions
	User Priority Scheduling
	Memory Resident Processes
	Memory Mapping and Data Sharing
	Process Synchronization
	Asynchronous Input/Output
	Synchronized Input/Output
	Real-Time Signal Behavior
	Clocks and Timers
	Message Queues

	Real-Time Performance
	Overview of the Shielded CPU Model
	Overview of Determinism
	Process Dispatch Latency
	Effect of Disabling Interrupts
	Effect of Interrupts
	Effect of Disabling Preemption
	Effect of Open Source Device Drivers

	How Shielding Improves Real-Time Performance
	Shielding From Background Processes
	Shielding From Interrupts
	Shielding From Local Interrupt

	Interfaces to CPU Shielding
	Shield Command
	Shield Command Examples
	Exit Status
	Shield Command Advanced Features

	/proc Interface to CPU Shielding
	Assigning Processes to CPUs
	Multiprocessor Control Using mpadvise
	Assigning CPU Affinity to init

	Example of Setting Up a Shielded CPU

	Procedures for Increasing Determinism
	Locking Pages in Memory
	Setting the Program Priority
	Setting the Priority of Deferred Interrupt Processing
	Waking Another Process
	Hyper-threading
	RedHawk and Hyper-threading
	Recommended CPU Configurations

	Known Issues with Linux Determinism

	Real-Time Interprocess Communication
	Overview
	Understanding POSIX Message Queues
	Understanding Basic Concepts
	Understanding Advanced Concepts
	Understanding Message Queue Library Routines
	Understanding the Message Queue Attribute Structure
	Using the Library Routines

	Understanding System V Messages
	Using Messages
	Getting Message Queues
	Using msgget
	Example Program

	Controlling Message Queues
	Using msgctl
	Example Program

	Operations for Messages
	Using Message Operations: msgsnd and msgrcv
	Example Program

	Process Scheduling
	Overview
	How the Process Scheduler Works
	Scheduling Policies
	First-In-First-Out Scheduling (SCHED_FIFO)
	Round-Robin Scheduling (SCHED_RR)
	Time-Sharing Scheduling (SCHED_OTHER)

	Procedures for Enhanced Performance
	How to Set Priorities
	Bottom Half Interrupt Routines
	SCHED_FIFO vs SCHED_RR
	Access to Lower Priority Processes
	Memory Locking
	CPU Affinity and Shielded Processors

	Process Scheduling Interfaces
	POSIX Scheduling Routines
	The sched_setscheduler Routine
	The sched_getscheduler Routine
	The sched_setparam Routine
	The sched_getparam Routine
	The sched_yield Routine
	The sched_get_priority_min Routine
	The sched_get_priority_max Routine
	The sched_rr_get_interval Routine

	The run Command

	Interprocess Synchronization
	Understanding Interprocess Synchronization
	Rescheduling Control
	Understanding Rescheduling Variables
	Using the resched_cntl System Call
	Using the Rescheduling Control Macros
	resched_lock
	resched_unlock
	resched_nlocks

	Applying Rescheduling Control Tools

	Busy-Wait Mutual Exclusion
	Understanding the Busy-Wait Mutual Exclusion Variable
	Using the Busy-Wait Mutual Exclusion Macros
	Applying Busy-Wait Mutual Exclusion Tools

	POSIX Counting Semaphores
	Overview
	Interfaces
	Using the sem_init Routine
	Using the sem_destroy Routine
	Using the sem_wait Routine
	Using the sem_trywait Routine
	Using the sem_post Routine
	Using the sem_getvalue Routine

	System V Semaphores
	Overview
	Using System V Semaphores
	Getting Semaphores
	Using the semget System Call
	Example Program

	Controlling Semaphores
	Using the semctl System Call
	Example Program

	Operations On Semaphores
	Using the semop System Call
	Example Program

	Condition Synchronization
	Using the postwait System Call
	Using the Server System Calls
	server_block
	server_wake1
	server_wakevec

	Applying Condition Synchronization Tools

	Programmable Clocks and Timers
	Understanding Clocks and Timers
	RCIM Clocks and Timers
	POSIX Clocks and Timers

	Understanding the POSIX Time Structures
	Using the POSIX Clock Routines
	Using the clock_settime Routine
	Using the clock_gettime Routine
	Using the clock_getres Routine

	Using the POSIX Timer Routines
	Using the timer_create Routine
	Using the timer_delete Routine
	Using the timer_settime Routine
	Using the timer_gettime Routine
	Using the timer_getoverrun Routine

	Using the POSIX Sleep Routines
	Using the nanosleep Routine
	Using the clock_nanosleep Routine

	/proc Interface to POSIX Timers

	System Clocks and Timers
	Local Timer
	Functionality
	CPU Accounting
	Process Execution Time Quanta and Limits
	Interval Timer Decrementing
	System Profiling
	CPU Load Balancing
	CPU Rescheduling
	POSIX Timers
	Miscellaneous

	Disabling the Local Timer

	Global Timer

	File Systems and Disk I/O
	Journaling File System
	Creating an XFS File System
	Mounting an XFS File System
	Data Management API (DMAPI)

	Direct Disk I/O

	Memory Mapping
	Establishing Mappings to a Target Process’ Address Space
	Using mmap(2)
	Using usermap(3)
	Considerations

	Kernel Configuration Parameters

	Configuring and Building the Kernel
	Introduction
	Configuring a Kernel Using ccur-config
	Building a Kernel
	Building Driver Modules
	Additional Information

	Linux Kernel Crash Dump (LKCD)
	Introduction
	Installation/Configuration Details
	Documentation
	Forcing a Crash Dump on a Hung System
	Using lcrash to Analyze a Crash Dump
	Crash Dump Examples

	Pluggable Authentication Modules (PAM)
	Introduction
	PAM Modules
	Services
	Role-Based Access Control
	Examples

	Defining Capabilities
	Examples

	Implementation Details

	Device Drivers and Real Time
	Interrupt Routines
	Deferred Interrupt Functions
	Multi-threading Issues
	The Big Kernel Lock (BKL) and ioctl

	Example Program - Message Queues
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

