v/
) { NIGHTSTAR'

NightStar RT Tutorial

Version 5.2

(RedHawk™ Linux®)

£ concurrent

REAL-TIIVIE June 2024

Copyright 1990-2024 Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for use with Concurrent
Real-Time products by Concurrent Real-Time personnel, customers, and end—users. It may not be reproduced in any form without the written per-
mission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent Real-Time product names are
trademarks of Concurrent Real-Time while all other product names are trademarks or registered trademarks of their respective owners.

® is used pursuant to a sublicense from the Linux Mark Institute.

Linux
NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of The Qt Company.

NVIDIA® CUDA™ is a trademark of NVIDIA Corporation.

Preface

General Information

NightStar RT™ allows users running RedHawk Linux to schedule, monitor, debug and
analyze the run-time behavior of their time-critical applications as well as the operating
system kernel.

NightStar RT consists of the NightTrace™ event analyzer; the NightProbe™ data moni-
toring tool, the NightView™ symbolic debugger, the NightSim™ scheduler, the NightTu-
ne™ gystem and application tuner, the Data Monitoring API, and the Shmdefine shared
memory utility.

Scope of Manual

This manual is a tutorial for NightStar RT.

Structure of Manual

This manual consists of seven chapters and an appendix which comprise the tutorial for
NightStar RT.

Syntax Notation

The following notation is used throughout this guide:
italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and comments in code may also appear in italic.

list bold

User input appears in 1ist bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in 1ist bold type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appears in 1ist type. Keywords also appear in
list type.

emphasis

Words or phrases that require extra emphasis use emphasis type.

NightStar RT Tutorial

window

Referenced Publications

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

An ellipsis follows an item that can be repeated.

This symbol means is defined as in Backus-Naur Form (BNF).

The following publications are referenced in this document:

0898395

NightView™ User’s Guide

0898398

NightTrace™ User’s Guide

0898465

NightProbe™ User’s Guide

0898480

NightSim™ User’s Guide

0898515

NightTune™ User’s Guide

Contents

Chapter 1 Overview

Getting Started. 1-2
Setting Up User Privileges 1-2
Creating a Tutorial Directoryt 1-4
Building the Program 1-4
Chapter 2 Panels
Moving Panels. 2-2
Tabbed Panels 2-6
ConteXt MENUS. . .\ oottt et e e e et e e 2-8
Tutorial Screen Shots. i 2-9

Chapter 3 Using NightView

Invoking NightView it 3-2
Debugging Multiple Threads. 3-5
Rerunning the Process i, 3-8
Traversing Linked Lists.o 3-10
Using MONtorpointsottt et e ee e e 3-16
Using Eventpoint Conditions and Ignore Counts 3-19
Using Patchpoints et 3-20
Adding and Replacing Functions Dynamically. 3-23
UsSIing TracepoIntsottt ettt 3-25
Heap Debuggingt e e 3-27
Activating Heap Debugging., 3-27
Setting up Heap Debugging Scenarios.cvvnn... 3-30
Scenario 1: Use of a Freed Pointer. 3-31
Scenario 2: Freeing an Invalid Pointer Value. 3-34
Scenario 3: Writing Past the End of an Allocated Block 3-36
Scenario 4: Use of Uninitialized Heap Blocks. 3-37
Scenario 5: Detection of Leaks. i, 3-38
Scenario 6: Allocation Reports. ..., 3-40
Disabling Heap Debugging, 3-42
Ready for NightTraceoiuirii i e 3-42
Conclusion - NightViewt 3-42

Chapter 4 Using NightTrace

Invoking NightTracet e 4-1
Configuringa User Daemonttt .. 4-3
Streaming Live Data to the NightTrace GUIL. 4-4
Halting the Daemon. 4-4
Viewing EVents e 4-5

NightStar RT Tutorial

Using NightTrace Timelines 4-7
ZOOMING .+ o ettt et et e e e e e e e e e e e e 4-8
Moving The Interval 4-9

Using the Events Panel for Textual Analysis........................... 4-10

Customizing Event Descriptions 4-11

Searching the Events List. 4-12

USING States . . . o\ttt et 4-15
Displaying State Duration., 4-19
Generating Summary Information 4-20

Defininga Data Graph. i 4-23

Kernel Tracingottt 4-28
Obtaining Kernel Trace Data 4-28
Using Prerecorded Kernel Data 4-30
Analyzing Kernel Data. 4-31
Mixing Kernel and User Data. 4-35

Using the NightTrace Analysis APL. 4-39

Automatically Tracing Your Application. 4-41
nlight Wizard - Selecting Programs 4-42
nlight Wizard - Defining [lluminators 4-45
nlight Wizard - Selecting [lluminators 4-46
nlight Wizard - Relinking the Program. 4-48
nlight Wizard - Activating [lluminators 4-50
Running the Program 4-51
Analyzing Application [llumination Events 4-51

Summarizing Workload Performance 4-59

Batch Summary of Functions. 4-60

Shutting Down 4-61
Conclusion - NightTrace 4-61

Chapter 5 Using NightProbe

Invoking NightProbe 5-1
Selecting Processes . ..ot 5-2
Viewing Live Data. i e 5-3
Modifying Variables 5-5
Selecting Variables for Recording and Alternative Viewing 5-7
Selection Of VIEWSottt 5-8
Table VIeW . ..o 5-8
Graph View 5-11
Sending Probed Data to Other Programs. 5-15
Using Datamon to Modify Program Variables. 5-19
Conclusion - NightProbe, 5-21

Chapter 6 Using NightTune

Invoking NightTune.ot 6-1
Monitoring a Process oot 6-2
Tracing System Calls e 6-3
Process Detailst 6-4
Process Details - Memory Details. 6-6

Process Details - File Descriptors, 6-7

Process Details - Signals 6-9
Changing Process Scheduling Parameters. 6-10

Contents

Setting Process CPU Affinity 6-11
Setting Interrupt CPU Affinity. 6-14
Shielding CPUs for Maximum Determinism and Performance 6-16
Conclusion - NightTune. i 6-17

Chapter 7 Using NightSim

Creating FBS Applicationsoiiiiniriinenn.n. 7-1
Invoking NightSim i 7-2
Creatinga Scheduler 7-3
Running the Scheduler. 7-7
Using Datamon to Modify Program Variables 7-9
Overrun Detection and System Tuning, 7-10
Shutting Down the Scheduler 7-15
A Tutorial Files
Y0 I« A-1
10 o X P A-5
FUNCHION.C. . . oot A-11
4] 0102 P A-11
set workload.C. A-11
SEL TATC.C & vttt et e A-12
WOTK.C . A-13
WOTKET.C . o oo A-13
lllustrations
Figure 2-1. Viewing Page with List & Graph Panels 2-2
Figure 2-2. Panel Detaches fromPage 2-3
Figure 2-3. Panel Movement in Progress 2-4
Figure 2-4. Graph Panel on Top of List Panel 2-5
Figure 2-5. Table View addedtoPage 2-6
Figure 2-6. Panel in Motion Creating Tab 2-7
Figure 3-1. NightView Main Window 3-2
Figure 3-2. app Program Loaded 3-4
Figure 3-3. Context Panel With Stack Frames Expanded 3-6
Figure 3-4. Run Mode Selector i, 3-7
Figure 3-5. Set Patchpoint dialog with changes 3-9
Figure 3-6. Pointer to Linked List Expanded 3-11
Figure 3-7. Dialog Selecting Linked List Component 3-11
Figure 3-8. Pointer Variable Displayed As Linked List 3-12
Figure 3-9. Filter Dialog 3-13
Figure 3-10. Filtered Linked List 3-14
Figure 3-11. Filtered Linked List Expanded 3-14
Figure 3-12. Monitorpoint Dialog 3-17
Figure 3-13. NightView Monitor Panel 3-18
Figure 3-14. Patchpoint Dialog 3-22
Figure 3-15. Result of Patching in Call to Newly Loaded Function 3-25
Figure 3-16. TracepointDialog 3-27
Figure 3-17. NightView Debug Heap Dialog 3-31
Figure 3-18. Heap Totals and Configuration 3-34
Figure 3-19. info memory Command Output 3-37

NightStar RT Tutorial

Figure 3-20
Figure 3-21
Figure 3-22
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.
Figure 4-23.
Figure 4-24.
Figure 4-25.
Figure 4-26.
Figure 4-27.
Figure 4-28.
Figure 4-29.
Figure 4-30.
Figure 4-31.
Figure 4-32.
Figure 4-33.
Figure 4-34.
Figure 4-35.
Figure 4-36.
Figure 4-37.
Figure 4-38.
Figure 4-39.
Figure 4-40.
Figure 4-41.
Figure 4-42.
Figure 4-43.
Figure 4-44.
Figure 4-45.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

. Heap Error Description 3-38
. Heap Leaks Display 3-42
. Still Allocated Blocks Display 3-44
NightTrace Main Window 4-2
Import Daemon Definitions Dialog 4-3
Logging Data 4-4
app dataPage 4-6
NightTrace Timeline i, . 4-8
Timeline Interval Panel 4-10
EventsPanel i 4-11
Add Event Descriptiondialog 4-12
Searching using the Profiles Dialog 4-13
Browse Events Dialog, 4-14
Timeline Panel After Search 4-15
Events Panel After Search 4-16
Profiles Dialog With Obtuse Profile Selected 4-17
Timeline Editing 4-18
Edit State Graph Profile dialog 4-19
Sine State in Timeline, 4-21
Summary Results Page 4-23
Summary Graph 4-24
State Durations Graph Modified 4-25
TimelineinEditMode 4-26
AddingaDataGraph 4-27
Edit Data Graph Profile Dialog 4-28
Display Page with Data Graph 4-29
Edit Daemon Definition Dialog 4-31
Kernel Display Page 4-33
System Call Resume for Nanosleep 4-36
Events Panel after Search 4-37
Longest Instance of State 4-39
Export Profiles to NightTrace API Source File dialog 4-41
nlight Wizard - Select Programs Step 4-45
nlight Wizard - Define [lluminators Step 4-47
nlight Wizard - Select [lluminators Step 4-48
nlight Wizard - Relink Programs Step 4-50
nlight Wizard - Activate [lluminators Step 4-52
NightTrace - Import File Name 4-54
NightTrace - Daemon Ready to Launch 4-55
NightTrace - Daemon Collection Events 4-56
NightTrace - /tmp/data_import Timeline 4-57
NightTrace - Events Panel w/ Tool Tip 4-58
NightTrace - Event Panel Search Dialog 4-59
NightTrace - Events Panel after Search 4-59
NightTrace - Events Panel Context Menu 4-60
NightTrace - Launches Editor with Source File at Line Number 4-61
NightTrace - Functions Summary Table 4-62
Function Details Table for the work function 4-63
NightProbe Main Window 5-2
Program Selection Dialog 5-3
Process Selection Dialog 5-3
NightProbe Browse Panel 5-4
Expanded Dataltem 5-5
Variable Modification in Progress 5-6

Contents

Figure 5-7. Mark and Record Attributes Set 5-7
Figure 5-8. Table View i 5-9
Figure 5-9. Item Selection Dialog 5-10
Figure 5-10. Table in Automatic SamplingMode 5-11
Figure 5-11. Graph Panel 5-12
Figure 5-12. Graph Panel Actively Displaying Values 5-13
Figure 5-13. Edit Curve Attributes Dialog 5-14
Figure 5-14. Graph Panel with Modified Curves 5-15
Figure 5-15. GraphZoomedIn 5-16
Figure 5-16. Recording area of Configuration Page 5-18
Figure 5-17. Clock SelectionDialog 5-18
Figure 5-18. Record To Program Dialog 5-19
Figure 5-19. Recording Area of Configuration Page w/ Destination 5-20
Figure 5-20. Example Output of Graph Program 5-21
Figure 6-1. NightTune Initial Panels 6-2
Figure 6-2. Expanded Process List 6-3
Figure 6-3. Process List with Threads 6-3
Figure 6-4. Strace Outputof Thread 6-4
Figure 6-5. Process Details Dialog 6-6
Figure 6-6. Process Memory Details Page 6-7
Figure 6-7. File Descriptors Page 6-9
Figure 6-8. SignalsPage 6-10
Figure 6-9. Process Scheduler Dialog 6-11
Figure 6-10. NightTune Process List with modified thread 6-12
Figure 6-11. CPU Shielding and Binding Panel 6-13
Figure 6-12. CPU Shielding and Binding Panel with Bound Thread 6-14
Figure 6-13. NightTune with Interrupt Detail Activity Panel 6-16
Figure 6-14. Interrupt Affinity Dialog 6-17
Figure 7-1. NightSim Initial Window 7-3
Figure 7-2. NightSim Edit Process Dialog 7-5
Figure 7-3. Runtime PropertiesTab 7-6
Figure 7-4. Scheduling Started 7-7
Figure 7-5. NightSim Monitor Page - Metrics Panel 7-7
Figure 7-6. NightSim Monitor Page - Percent of Period Used Panel 7-8
Figure 7-7. NightTune with Interrupt and CPU Shielding & Binding Panels . .7-11
Figure 7-8. Process and Interrupt BoundtoCPUO 7-12
Figure 7-9. Change Shielding Dialog 7-13
Figure 7-10. Shielding Changes Pending 7-13
Figure 7-11. NightSim Percentage of Period Panel - Shielded CPU 7-15

NightStar RT Tutorial

10

1
Overview

NightStar RT™ is an integrated set of debugging tools for developing time-critical Linux®
applications. NightStar RT are designed to be minimally intrusive, preserving the execu-
tion behavior and determinism of your applications. Users can quickly and easily debug,
monitor, analyze, and tune their applications.

The NightStar RT tools consist of:
* NightView™ source-level debugger
* NightTrace™ event analyzer
* NightProbe™ data monitor
* NightTune™ system and application tuner

* NightSim™ scheduler

In this tutorial, we will integrate these tools into one cohesive example incorporating vari-
ous scenarios which demonstrate their extensive functionality.

1-1

NightStar RT Tutorial

Getting Started

Certain activities in this tutorial require enhanced user privileges which are not granted to
user accounts by default. You will need to obtain appropriate privileges as detailed in the
“Setting Up User Privileges” on page 1-2 or run as the root user.

Setting Up User Privileges

1-2

Linux provides a means to grant otherwise unprivileged users the authority to perform cer-
tain privileged operations. pam capability (8), the Pluggable Authentication Mod-
ule, is used to manage sets of capabilities, called roles, required for various activities.

Linux systems should be configured with a nightstar role which provides the capabili-
ties required by NightStar RT. In order to take full advantages of NightStar RT features,
each user must be configured to use (at a minimum) the capabilities specified below.

Edit /etc/security/capability.conf and define the nightstar role (if it is
not already defined) in the “ROLES” section:

role nightstar cap sys nice cap_ipc lock cap_sys rawio

Additionally, for each NightStar RT user on the target system, add the following line at the
end of the file:

user username nightstar
where username is the login name of the user.

If the user requires capabilities not defined in the nightstar role, add a new role which
contains nightstar and the additional capabilities needed, and substitute the new role
name for nightstar in the text above.

In addition to registering your login name in /etc/security/capability.conf,
files under the /ete/pam. d directory must also be configured to allow capabilities to be
activated.

To activate capabilities, add the following line to the end of selected files in
/etc/pam.d if it is not already present:

session required pam capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.

Table 1-1. Recommended /etc/pam.d Configuration

Overview

/etc/pam.d File

Affected Services

Comment

password-auth
common-password
passwd

Many services

On newer Linux systems, this file also must be
modified. If it exists, add the line to this file as
well.

sshd ssh You must also edit /etc/ssh/sshd_con-
fig and ensure that the following line is pres-
ent:
UsePrivilegeSeparation no
login local login (e.g. console) | *On some versions of Linux, the presence of the
telnet* remote file limits the scope of the 1ogin file
rlogin* to local logins. In such cases, the other services
rsh* (when used w/o a command) listed here with 1login are then affected solely
by the remote configuration file.
rsh rsh (when used with a command) €.g. rsh system name a.out
remote telnet Depending on your system, the remote file
rlogin may not exist. Do not create the remote file,

rsh (when used w/o a command)

systemd-user

Some GUI sessions

On legacy systems, the following files may also be useful:

gdm-password
gdm

gnome sessions

On some systems you must modify
gdm-password/gdm as well, if it exists.

kde

kde sessions

If you modify /etc/pam.d/sshd or /etc/ssh/sshd _config, you must restart the
sshd service for the changes to take effect:

service sshd restart

In order for the above changes to take effect, the user must log off and log back onto the

target system.

NOTE

To verify that you have been granted capabilities, issue the fol-

lowing command:

/sbin/getpcaps

$S

The output from that command will list the roles currently

assigned to you.

1-3

NightStar RT Tutorial

Creating a Tutorial Directory

We will start by creating a directory in which we will do all our work. Create a directory

and position yourself in it:

- Use the mkdir (1) command to create a working directory.

We will name our directory tutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using the ed (1) com-

mand:

cd tutorial

Source files, as well as configuration files for the various tools, are copied to
/usr/lib/NightStar/tutorial during the installation of NightStar RT. We will
copy these tutorial-related files to our tutorial directory.

- Copy all tutorial-related files to our local directory.

cp /usr/lib/NightStar/tutorial/*

Building the Program

Our example uses a cyclic multi-threaded program which performs various tasks during
each cycle. The cycle will be controlled by the main thread which uses a timeout with a

configurable rate.

A portion of the main source file, app . ¢, is shown below:

int
main

{

(int argc, char * argvl])
pthread t thread;
pthread attr t attr;
struct sembuf trigger =
nosighup () ;

{0, 2,

trace begin

sema = semget (IPC PRIVATE, 1,
pthread attr init (&attr);
pthread create (&thread, &attr,

pthread attr init (&attr);

pthread create (&thread, &attr,
pthread attr init (&attr);
pthread create (&thread, &attr,
pthread attr init(&attr);
pthread create (&thread, &attr,

14

("/tmp/data",NULL) ;

0};

IPC_CREAT+0666) ;

watchdog thread, NULL);
sine thread, &data(0]);
&datal[l]) ;

cosine thread,

heap thread, NULL);

for (;:) {
struct timespec delay = { 0, rate } ;
nanosleep (&delay, NULL) ;
work (random() % 1000);
if (state != hold) semop(sema,&trigger,1);
}

trace end () ;

}

Overview

The program creates four threads and then enters a loop which cyclically activates each of
two threads based on a common timeout. The third and fourth threads, heap thread

and watchdog thread, run asynchronously.

To build the executable

Type make to build all the programs needed in this tutorial.

NOTE

During the build process you may see compiler options that you
don't normally use or recognize.

These are required when building the tutorial on some modern

Linux distributions. These options disable the following compiler

modes:

® Generation of Position Independent Executables (PIE)

® Use of the DWARF 5 debugging format

The following NightStar components do not yet support those fea-
tures:

®* nprobe
* datamon

® nlight

These restrictions will be lifted in a following release.

For more information about these limitations, see Section 10 of

the NightStar Installation Guide
(https://redhawk.concurrent-rt.com/docs).

1-5

NightStar RT Tutorial

1-6

2
Panels

NightStar provides flexibility in configuring the graphical user interface to suit your needs through the
use of resizable and movable panels.

This chapter presents the concepts involved in moving and resizing panels. It is designed merely for
reference, not as a step-by-step instructional guide.

Please read this chapter before proceeding to the first steps in using the tools, which follows in “Using
NightView” on page 3-1.

2-1

NightStar RT Tutorial

Moving Panels

Consider the following NightProbe page which contains a List view and a Graph view each in their
own panel:

(3] NightProbe = Bl 23

ile Target Programs Miew Record Tools Help

PAQD «$S»E

List (&) Graph
o sine

[Co\umns. I Mode [ViewLwe Samples ‘v] lSeIEdH}ems...l Mode: [ViewLwe Samples ‘v] lSeIEdH}ems...
‘ " @ cosine

HEHE @

Name — \M[ﬂ b

sine = 95192975999 15266E-01 ,
cosinge = -8.039828303359371E-01

sine & -9.345038277802859E-01]
cosine = -8871085537240205E01 05
sine = -9.146962431763993E01

cosine = .9.4839075719973@ED1 1
sine = -8.922915439840908E-01

cosing = -9.863204720734302E-01

sine = -B.G74411398227979E01 4
cosine = -099963744579061E-01

Values
=

sine = -8402131438073572E-01
cosine = -0839B46322739806E01

05 -
sine = -8.106821856580049E01

cosine = -9.536534772454514E01

sine -7 7B9292081393038E-01

-8948402481998683E-01

-
-
-
-

cosine

sine = -7.450412432096655E01 a4

cosine = 5.139931195848509E-01 | L L
= 0 50 100 150 200

[« [«]] Most Recent Samples

Sample # 182 Sample # 179

Automatic Refresh] (1005 | =] [Clear] I Refresh | Automatic Refresh %) E] E] E] E] @

A

Figure 2-1. Viewing Page with List & Graph Panels

Panels are moved by left-clicking the title bar, dragging them to a new location, and then releasing the
mouse button. Depending on the location of the panel when the mouse button is released, the panel will
either remain detached or will be inserted into the page again.

2-2

Panels

To detach the panel from the page without inserting it, click the left-most control box in the upper
right-hand corner of the panel.

3] NightProbe —_ox
File Target Programs View Record Tools Help
PAED Sl EHEHS O
List
|| |setect ems.. |
|=| Value l;l
= 9.863182849213420E-01

sine
cosine

-8 646004681504512E-01
9999636313903533E-01

Graph

Mode: | View Live Samples - Select ltems...

-8.837122665409466E-01
9.889865960 7505 GBE-01

< sine

< cosine

-9.123854295707058E01
9.536574695599381E01

-9 325578117808162E-01
8948461707238989E01

-9.501741221671883E-01
B 140008264864 739E-01

-9.651860757290984E-01
TA3NM2 NN FFI273E01

since last sample

-9.775525258147957E01
5.946642445353578E-01

-9 872395769014239E-01
4 615737923007912E-01

T
o 50 100 150 200
Most Recent Samples

-9.9422067 75001375601 Sample # 282

3.171178805846042E-01

Sample # 286

‘ Automatic Refresh [X] E] E] E] E] @

Figure 2-2. Panel Detaches from Page

The Graph panel detaches from the page and becomes free floating.

If moved outside the boundaries of the main window and released, the panel will remain detached from
the main window. However, even in detached mode, if the main window is iconified, the detached panel
will be iconified with it. For this reason, detached panels are not very useful in and of themselves.
Detaching is most often useful as part of moving a panel and re-docking it.

2-3

NightStar RT Tutorial

To insert a panel into the page at a new location, drag the panel using the left mouse button on its title
bar and move it until it approaches a boundary of the page. The window will respond by creating space
indicating where the panel will be inserted.

P NightProbe -ox
File Target Programs Miew Record Tools Help
FPAED « Sl ESHEs O
Configuration Browse List
Gragh
Mode: | View Live Samples - Select ltems.
@ sine
< cosine
g
s
[Cu\umns. I Mode [ViewLwe Samples
e 2] E—
sine = -5.470221409676048E
cosine = -1.64856104627 7579E4
-5 024611261224546E-
-8532514478755851E- _
B e o e e B e e B B B I s s e e e e
o 50 100 150 200 250 300 350
-4.565229025822717E Most Recent Samples
1.480011741403115E0
Sample & 307
sine = 4.093333836119926E Automatic Refresh K] [I] E] E] E] @ @ ~
cosine = 3.008905838079935E0 -
Sample # 310
=]

Figure 2-3. Panel Movement in Progress

The figure above shows space being created above the List panel as the Graph panel is dragged towards
the upper horizontal boundary of the page.

Panels

At this point, releasing the mouse button will cause the Graph panel to be inserted into the page,

consuming the recently created space.

File Target Programs Miew Record Tools Help
PAEE «+ S0
Configuration
Graph

Mode. | View Live Samples |v] [Seled Items.]

= sine

05 & cosine

g 3 Ji||“|||i J" Ji' IL li||‘|||il Ji|| Ji|| l J]||“|||| J'“

g’ !ll 'f 1||“||If 1l| 1l| |f 1l|“|||f |l| ||| If
10 300

—
0 150 200 250
Most Recent Samples

Sample # 325

AummaticRe!reshlE E m E] E] @

List

[Columns. l Mode [View Live Samples |v] [Se\ect Hems..

| Name | =| Value ILI
sine = 4.041359647839041E01

cosine = 3.171229138094276E01

sine = 4.574537139001663E01

cosine = 1.648587218959383E01

sine = 4975340618566884E-01

cosing = B535167958101247E-03

sine = 5.422507058360454E01

cosine = -1479985497871588E-01

Sample # 329

E uJ

Figure 2-4. Graph Panel on Top of List Panel

IMPORTANT

When attempting to move panels inside of a page, if an empty
space does not appear where you desire it, try increasing the size
of the main window, decreasing the size of the undocked panel,
and moving an alternative edge of the undocked panel near where
you want to place it.

NightStar RT Tutorial

By default, the tools usually add panels to the right-hand side of the page when a new panel is created.

In the following figure, a Table panel has been added to the right-hand side of the Graph and List

panels.

[NightProbe = Bl 23

File Target Programs View Record Tools Help
PAED 2 3>E =EHES @
Configuration Browse List
Graph (%] Tabla
Mode [V\ewLive Samples |v] [Seledlh&ms] Mode: [ViawLwe Samples |v] [Sa\ectltems...]
o sine Sample Vl sine | cosine |
1 9.999959502250392E-01 -B.537821437386546E-03
& cosine
m 2 9.987744391722430E01 1.479959254329640E01
3 3 9.948153614292241E01 3.008855275923056E01
=
> 4 9.881205685345565E01 4 463663419705859E01
5 9 78735385750801E01 5 808561541337323E01
6 9 6665B5618367655E-01 7 .010433841430058E-01
frorrrrrrr T rerT T T T T T T e T T 7 9.519321984711745E01 B.039686285061294E-01
o 50 100 150 200 250 300 350 400
Most Recent Samples B 9.345966595243134E01 B.870975303901165E-01
Sample # 360] 9.146994604232058E-01 9 48383 1837923442601
= 10 B892295137915416E01 9 B63165350746592E-01
| smmarns (5512 (4] (3] (2] (] (2] (2]
b 11 B8.674451005879934E01 9 999E35408095693E01
List @ 12 B402174005508337E-01 9 6396816689056/ 2E-01
= = 13 B 106868467466902E-01 9 536606632906549E-01
[Columns. I Mode [VIEWLWE Samples |v] [Sa\ectltems..]

14 7.789342003986476E-01 894850908629 7051E01
| Name - Value Fi] 15 7.450465531562550E01 B.14006991904G008E-01
sine = B8106368467466902E01
cosine = 9.536606632906549E-01
sine 106866467466902E-01
cosine — 8948509086297051E-01
sine = 7.78934200398647 6E-01
cosing B8948509086297051E-01
sine = 7.450465531562550E01 =
cosine = B.1400699719046008E-01 -

Sample # 363 Sample # 15

Figure 2-5. Table View added to Page

Panels can be resized by left-clicking on the separator between the panels and dragging it to the desired

size.

Tabbed Panels

Another feature of the graphical user interface is the use of tabbed panels. Tabbed panels allow you to
maximize your GUI real estate by placing two or more panels in the same location by stacking them on

top of each other. You can then raise a panel to the top by clicking

2-6

on its tab.

Panels

To create a tabbed panel, move a panel to the lower horizontal edge of another panel until a tab appears

at the bottom of the panel still connected to the page.

[4]

Automatic Refresh %] a

List]

Clear

NightProbe -0
File Target Programs Miew Record Tools Help
PAED »J3>0 ELES O
Configuration Browse List
[Table
Columns. Mode | View Live Samples - Select Hems... Mode: | View Live Samples - Select ltems...
| Mame | =| Value [ﬂ Sample Vl sine cosing F:]
sine = 2.61568058045674ED1 1 8674451005879934E-01 9 999 635408095693E
) o
cosine 5 AR LI 2 84021746055083376:01 9 B39851 669905672601
13 8 106568467466902E01 9 536606632906549E. .
sine = 2.106357436094004E01
oeine g o————————— 14 7.789342003986476E-01 B.948509086297051E01
E=r [F= 15 7 450465531562550E01 B.140069919046008E-01
Mode: 16 7.001167885482276E01 7.131195552047748. .
9 17 6.712433873955804E01 5946727 781278225. .
o sine
18 6315301578829990E-01 4 615832082430596E-01
05 O @ 19 5900859510283019E-01 3.171279470253189E. ..
2 20 5470243623208700E01 1.648639564288165E-01
3 0
s 21 5.024634204098081E01 B.540474916611725E..
05 2 4565252635062418E01 -1479933010777271..
3 4093358047014619E01 -3 0082996981283 7E..
B L e s e AL B o L] 24 3.610243868035007E-01 4 463639674157159
0 S0 100 150 200 250 300 350 400 25 3.117234278270850E01 -5 8085399410433 71E
Most Recent Samples
26 2.61568058045674E01 -7.0104149 18260834501
Sample # 379
27 2106957496094004E01 8.039670504967339.
Automatic Refresh (] E E] E] [Z] E] @ 28 1.592459397440948E.01 -BB70963055440058. .
=TT T TR b 1073596485 641914E-01 9 483623422 692438E-01
cosine = -9.536614617065463E-01 kW 5.517909254704703E02 8 B63160975956257 .
31 2B47294728121487E03 9 999635181467702
sine = -1.536214600154930E01
- = 32 4949230731455999E.02 9 BH9EA559 7020350
cosine = 8948520930904039E01
33 S1.016962546121732E01 9.536614617065463.
I (1 B
34 -1.536214600154930E01 -8.948520930904039E.
Sample # 382 =
Sample # 34

A

Figure 2-6. Panel in Motion Creating Tab

In the figure above, the Graph panel is being dragged from its original position on top of
the List panel towards the bottom of the List panel. A tab appears on the List panel indi-
cating that if the mouse button is released, the Graph and List panels will be tabbed and

therefore consume the same area of the page.

NightStar RT Tutorial

B NightProbe -Ox
File Target Programs View Record Tools Help
PAND s Sl = o
Configuration Browse List
Graph (%] Tabla
Mode [V\ew Live Samples v Seled Iltems... Mode: [ViawL\ve Samples |v] [Sa\ect Ibems...]
1 o sine Sample ¥ | sine cosing ';l
» cosine 3 2.847294728121487E03 9999635181467 702...
32 -4949230731455999E-02 -9.889885597020350...
33 -1.016962546121732E01 9.536614617065463. .
34 -1.536214600154930E-01 -8.948520930904039E. ..
s EL -2051256003861611E01 -5.140085332448029E.01
36 -2 S5E0675066938565E01 -7 13121415561 6331
37 -3.063075509501417E01 -5946743115154704..
38 -3.557020289184271E01 -4.615855622205012. ..
39 -4041335375510747E01 -3.171304636299150..
m 40 4.514513467191126E01 -1.648665736935143...
% 41 4875317600173227E01 85431283957 76766, .
= 42 -5.42248A762475387E01 14799067 67214481E01
3 -5.854789296057998E-01 3 00BB0466368143 1601
“ -6271046286244881E01 446361592857 7028E. ..
45 -6.670114803480504E01 5.808518340708521E01
46 -7.050901030563593E01 7.010395995042347E ..
47 -7 412361260658435E-01 B.039654724816773E. ..
48 -7.75350475807B489E01 B.870950806916488E01
49 B073396473789159E01 9 483615007394654E01
50 83711596083 13947601 9.86315660109647 1
51 -8.04597801497000GE01 9 9996349547 BA300E. ..
,.‘..,‘.‘.‘...‘,..‘.,....‘.‘.‘,‘.‘.‘...‘, 52 -BA9709B436899673E01 9 8A9B895240 65389ED1
100 150 200 250 300 350 400 53 9.123832571623726E01 9 536622601157224E ..
Most Recent Samples
54 -9.325558957695392E01 89485327 75448017E01 E
Sample # 398 =
s B @)@ 0@ @ G
I Graph List Automac Refresh (¢
A

Figure 2-7. Graph Panel Created a New Tab

IMPORTANT

To move a panel above another panel, move the desired panel to
the top boundary of the other panel. If you move a panel to the
bottom boundary of another panel, it will become a tabbed panel
instead.

Context Menus

2-8

The NightStar tools rely heavily on use of context menus.

Context menus are menus that appear when you use the mouse to right-click when the
mouse cursor is positioned over an area or item of interest. They are called context menus
because their content is often dependent on the context of the area in which you
right-click, or the item which you right-click upon.

When in doubt, try a right-click operation and see if a menu becomes available.

Panels

Tutorial Screen Shots

In order to show full screen shots in this tutorial, the size of each main window has often
been left to its default setting. Displaying larger windows would require compression in
order to fit the image within the available space of a printed page; such compression
obscures detail.

However, as a user of the tutorial, increasing the size of the main window is highly rec-
ommended so you can see more data without having to scroll the contents of individual
panels.

In many cases within this tutorial, portions of expanded areas of the screen have been
extracted from the main window and are included as stand-alone screen shots. These cor-
respond to panels within the main window of each tool.

2-9

NightStar RT Tutorial

2-10

Using NightView

3

NightView is a graphical source-level debugging and monitoring tool specifically
designed for time-critical applications. NightView can monitor, debug, and patch multiple
processes running on multiple processors with minimal intrusion.

NightView supports all the features you find in standard debuggers, including:

breakpoints

single-stepping through statements
single-stepping over function calls

full symbolic expression analysis

conditions and ignore counts for breakpoints

assembly and symbolic debugging

In addition to standard debugging capabilities, NightView provides the following features:

application-speed eventpoint conditions

the ability to patch code to change program flow or modify memory or reg-
isters during program execution

hot patch and eventpoint control

synchronous data monitoring

loadable modules

support of multi-threaded programs

debugging of multiple processes

dynamic memory debugging

traversing linked lists

searching segments of memory

branch history

per-thread debugging (protected, single thread, multiple threads)

smart printing (customizing the way opaque or complex structures are dis-
played)

3-1

NightStar RT Tutorial
Invoking NightView

- Execute NightView by issuing the following command:

nview &
at the command prompt or by double-clicking on the desktop icon.
NOTE
If you do not have desktop icons for the NightStar tools, run

/usr/lib/NightStar/bin/install icons.

When we launch NightView, the NightView main window is presented.

File View Shell Process Source Eventpoint Data Tools Help

PUE==MESET I[X90 &=

I
i

EE‘C@@. x’r

Source Eventpaints
|Type| ID & | Location |PID| Enabled | Ignore | H'rtsl Crossings |Cmds| |

])
Context

| Item Processes for shell local

ID

g

< 1]
| Context Locals |

Messages
MightView 7.4(nview-riqll756A), Linked Mon Jan 28 16:49:19 EST
2013

In case of confusion, type "help”
fusr/lib/NightView-7.4/ReadyToDebug
~jeffh/.bash_init complete.
zippy> fusr/lib/MightView-7.4/ReadyToDebug

Command: Iv] [Run All Threads |v]

No process

4

Figure 3-1. NightView Main Window

3-2

Using NightView

NOTE

If this is the first time you’ve invoked NightView since installing
NightStar or upgrading to the latest version, you may see a wel-
come screen. You can disable the welcome screen for subsequent
invocations using the checkbox in the lower left corner of that
screen. Ifthe screen appears, press the NightView button to pro-
ceed.

If you have used NightView before and have customized its con-
figuration, you may want to load the default configuration to
avoid confusion during the tutorial. To do this, go to the File
menu and select Load System Default Configuration.

In our example, we’ll be debugging a single application.

NOTE

If you have not yet created the app program, see “Building the
Program” on page 1-4.

- Invoke our tutorial application in the NightView main window by selecting
the Process menu, then Run... then in the Run on local dialog enter

./app

- Press OK to close the dialog and run the program.
Any output generated by the program will appear in the Messages panel in green.

When the app program is loaded for execution, NightView stops the program immedi-
ately after dynamic linking has finished its initial phase (but before any static constructor
code might be executed) and displays the source for the main function in the source panel.

3-3

NightStar RT Tutorial

% NightViewDebugger (on dingbat) ™|=E3
File View Shell Process Source Eventpoint Data Tools Help
= = = oo [ioi = = == = = e o
DIE=EE)EET IXD0 EZEEE-R @ EEFL
app - local:18653 - app.c Eventpoints
;é void * Type | ID &~ | Location | PID | Enabled | Ignore | Hitsl Crossings |Cmd5|
59 cosine_thread (void * ptr)
+ 60 {
+ 61 control_t * data = (control_t *)ptr;
+ B2 struct sembuf wait = {0, -1, 0};
+ 63 work(l);
64
+ 65 trace_set_thread_name (data-=name); [[+]+]
66
67 for (::) { Context
+ B8 semop(sema, &wait, 1); Item |Stackfor local:18653 app
+ B9 data->count++; = #0 0x000023a333abc060 at < dl debug state>
+ 70 data-»angle += data->delta;
+ 71 data-»value = cos(data-=angle);
+ 72 1
73}
74
75 int
76 main (int argc, char * argv(l)
o T
78 pthread_t thread;
79 pthread_attr_t attr;
+ B0 struct sembuf trigger = {0, 2, 0};
+ 81 const char * data_file = strdup("/
+ 82 nosighup();
a3 —|_|
+ B4 if (arge = 1) { : [III]
. 8 data file = argvlll; Context [Data Locals]
86 }
+ 87 trace begin (data_file,NULL); T TTTT—TTTS T T T T e ‘_;._-Mffs..a‘ges
a8 dingbat> app =]
+ 89 sema = semget (IPC_PRIVATE, 1, IPC_CREAT+0666); New process: local:18653 parent pid: 17980
ag Process local:18653 is executing /users/jeffh/test/tut/app.
+ 91 pthread_attr_init(&attr); Reading symbols from fusers/jeffh/test/tut/app...
+ 92 pthread_create (&thread, &attr, watchdog_thread, NULL); Executable file set to
[k} Jusers/jeffh/test/tut/app
+ 94 pthread _attr_init(&attr); Program was dynamically linked.
+ 95 pthread_create (&thread, &attr, sine thread, &datalo]); Dynamic linking completed. -
a | -
Command:]v] [RunAlIThreads |v]
app - local:18653 - Stopped for exec 4

Figure 3-2. app Program Loaded

NightView supports debugging multiple processes as well as single and multi-threaded
processes. In this tutorial, you will be debugging a single process with multiple threads.

Using NightView
Debugging Multiple Threads

Our application consists of the main thread and four additional ones created by the main
thread.

- Allow the process to run by entering the following command in the Com-
mand panel:

resume

NOTE

Alternatively, press the Resume icon m

The second thread, the watchdog thread, is a critical thread and must run unimpeded
without missing its 50ms deadline; otherwise it will fail.

NOTE

If the watchdog thread is printing overrun messages continually in
the message panel and you are not a privileged user (see “Setting
Up User Privileges” on page 1-2) or the root user, this is because it
cannot set its scheduling class to SCHED FIFO. Consider run-
ning as a privileged user or as root.

We want to mark this thread as protected so NightView will not stop the thread when
other threads stop.

- Right-click on the watchdog thread in the Context panel and click
the Protected Thread checkbox.

The context panel responds by showing the word protected on the watchdog thread
line. The protected attribute is a special NightView-maintained thread attribute.

The values of all NightView thread attributes are displayed in the thread list. Thread attri-
butes can be useful to you. See Thread Tags in the Concepts chapter of the Night-
View User’s Guide for more information.

In the next few sections, we will use breakpoints and other techniques that cause the pro-
cess to stop.

- Set a breakpoint on line 52 by issuing the following command:

b 52

The process will run until one of the threads reaches the breakpoint on line 52, but the
watchdog thread will not stop because it is protected -- all non-protected threads are
stopped by NightView.

- Click on the Context tab to raise the Context panel.

3-5

NightStar RT Tutorial

- Click on the plus sign in the Item column to expand the thread displayed in
green.

- Click on the plus sign to expand the first item in the walkback list that
appeared as a result of the last step.

5. 4 18660
#- £ 18661

Cantext

Item Threads for local:18659 app
= § 18653 C thread Ox2aaaaaafedB0
#0 0x00401110 in main(int argc = 1 (0x1), char ** argv = 0x7fffffffded8) at app.c line
m o 18658 C thread 0x2aaaac000700 (watchdog_thread), protected
S & 18659 C thread 0x2aaaac201700 (sine thread)
=" ‘ #0 0x00400ecT in sine threadivoid * ptr = 0x602120) at app.c ling 52

&[] data 0x602120 struct *

..... [¥] ptr 0x602120

- [1E] wait struct sembuf

C thread 0x2aaaac402700 (cosine thread)
C thread 0x2aaaac603700 (heap_thread)

3-6

Figure 3-3. Context Panel With Stack Frames Expanded

Expanding an individual Frame in the walkback list shows all local variables for that
frame. You can further expand composite variables and pointers to composite variables.

The source shown in the Source panel is that associated with the program counter of the
thread which caused the process to stop. You can tell which thread you are stopped in by
looking for the name of the thread’s start routine in parenthesis. NightView automatically
assigns names to threads based on the start routine which was passed to pthread cre-
ate (2). Additionally, you can set the name of a thread inside NightView using the
set-thread-name command.

You can switch to the context of other threads by clicking on the thread of interest. When
you click on a thread, the source displayed in the NightView main window changes to the
location where that thread is executing.

Alternatively, you can use the select-context command and specify the thread name
as shown in the Threads display in the Context panel or from the output of the info
threads command:

info threads /v
select-context name="cosine_ thread”

When thread names are not unique across threads, you can use the thread ID which is
always unique. A thread ID is a hexadecimal number representing the thread -- it is
assigned by the threads library upon thread creation. The thread ID immediately follows
the words “C thread” on each thread item in the Context panel.

- Switch to the context of the thread executing sine thread () by click-
ing on it.

Using NightView

NightView provides a Run Mode which specifies how threads are resumed and stopped.
By default, the Run Mode is Run All Threads. Thus when the application hits a
breakpoint or is otherwise stopped by NightView, all non-protected threads in the applica-
tion will stop. Similarly, when NightView resumes execution of a thread, all threads will
resume execution.

If you change the Run Mode to Run One Thread, then it is the only one that runs
when you resume a thread, All other stopped threads remain stopped.

On one of the toolbars, you will see an option list which represents the current run mode.
By default, this item is at the bottom of the screen to the right of the Command area.

Bun All Threads |v]

Figure 3-4. Run Mode Selector

- Change the mode to Run One Thread by clicking on the list and select-
ing that mode.

- Click the Next icon E several times until the green PC icon [= stops
on line 51, the call to semop ().

NOTE

If the PC icon arrow is gray instead of green, you are stopped
somewhere without debug information and the app . c file will be
displayed. If the system has debug information for the standard
libraries, the arrow will be green and you will probably see the
source file for the semop routine.

- Now click the Next icon one more time. Notice that the Next operation
does not complete.

This is because we were only allowing a single thread to execute, and the thread is blocked
in the semop () call, waiting for another thread to unblock it (the main thread).

- Press the Interrupt icon o to cancel the Next operation.

NOTE

Some versions of glibc on some distributions may be missing
proper walkback information for the semop (2) routine, which is
where the thread is stopped. In this case, the walkback and
interest instructions below will not react as described below
for this specific example.

3-7

NightStar RT Tutorial

Also, some systems may have debug versions of glibc installed, in
which case NightView may show you source code inside
semop (), or semtimedop (), or routines it calls. Regardless,
you will likely be presented with a gray or green PC icon (triangu-
lar arrow), as described below, unless you are stopped at the low-
est level, a system call.

A gray or green PC icon before the line number in the source panel represents the fact that
we are positioned at a stack frame which is not the topmost stack frame and that the cur-
rent frame is executing a subprogram call.

By default, NightView hides uninteresting frames. If you desire to see all frames for all
routines, even those that have no debug information, you can set your interest threshold to
the keyword min:

interest threshold min

Once that command is issued, the walkback information shows all frames and you can
position to any frame and debug at the assembly level if desired.

- Reset the interest threshold to zero via the following command:
interest threshold 0

- Change the Run Mode Selector to Run All Threads.

Rerunning the Process

3-8

Oftentimes while debugging a program, you want to rerun the program.

NightView automatically remembers all Eventpoint settings and reapplies them when the
process runs again. However, it does not re-apply a thread’s protected status.

But NightView has another method that can be used to set the protected attribute on the
fly. This provides some automation in reapplying the protected status (see below).

First we will rerun the process.

- Re-initiate the program by pressing the ReRun icon ‘J in the Process
toolbar.

NOTE

Alternatively, you can issue the following command directly from
the Command panel to initiate the process:

rerun
- Resume the process with the following command:

resume

Notice that our breakpoint was automatically reapplied and we hit the breakpoint, and all
threads stopped, including the watchdog thread(), because it is no longer protected.

Using NightView

We can apply a patchpoint to ensure its protected status is always reapplied when the
thread starts execution.

- Scroll down to line 286 and click on the line.

- From the Eventpoint menu select Set Patchpoint.

- Click the Set thread local tag values radio button.

- Inthe Thread Tags text box enter the text: protected=1
- Click the Enable, disable after next hit radio button.

- Press OK.

Set New Patchpoint (on chroma)

Location
= app.c:286]
|
Line nurnbers in location must mabch exactly. 1
Options]
Enable |:
® ;Enable, disable after next hit | |‘
Disable |
Condition If:
4 lgnore Count: | 0 :
Name:
Action

Insert an expression at this location
Branch to a different location

@ Set thread local tag values

Thread Tags: | protected=1

Figure 3-5. Set Patchpoint dialog with changes

Now as soon as the task is created and executes line 286, it will set itself as protected.
Since the protected attribute is set as part of a patchpoint, it will be retained on a rerun
command.

3-9

NightStar RT Tutorial

- Rerun and resume the process again:

rerun
resume

The process hits the breakpoint on line 52, but the watchdog did not stop and has the tag
(protected) in the context window.

- Delete the breakpoint on line 52 by right-clicking on that breakpoint in the
Eventpoints panel and selecting Delete or by issuing the following
command:

clear app.c:52

- Resume execution of the process.

NOTE

A significant feature of NightView is the ability to execute most
debugging operations without having to stop execution of the pro-
cess.

The debugging operations in the several sections of this tutorial
are done without stopping the process!

Traversing Linked Lists

NightView’s data display panels allow you to view variables, indirect through pointers,
and expand or collapse levels of detail. Variables are presented in a tree to facilitate view-

ing.

NightView provides two features which make viewing complex data structures easier:
linked lists and filtering.

Our application has created a list of structures which are linked via a member of each
structure. The variable head represents the start of this linked list.

For simplicity, we will remove the existing Data panel (if displayed) before proceeding
with this section. By default you should only see the Context and Locals panels. If you
do see a Data panel, remove it as described below:

- Raise the existing Data panel and then close it by clicking the close button
in the upper-right of the panel’s control area.

- Add the variable head to a new data panel by typing the following com-
mand:

data head

A new data panel now appears and contains the pointer variable head.

3-10

Using NightView

- Expand the pointer variable and the 1ink pointer member of it, and sev-
eral of its children.

Data
Item Value
0x603550 struct node t *
. [a] value 6 (0x6)
=[] link 0x603570 struct node_t *
- [m] value 7 (0x7)
=[] link 0x603590 struct node_t *
. [a] value 8 (0xB)
&[] link 0x6035b0 struct node_t *
am an

Figure 3-6. Pointer to Linked List Expanded

As shown in the figure above, each node in the linked list is nested under the previous
node in the list. While this is a fine representation, it becomes cumbersome once you dis-
play more than just a few nodes.

As an alternative, you can tell NightView that the pointer is a member of a linked list.

- Right-click on the head variable and select Treat As Pointer To
Linked List...

A small dialog is presented which allows you to specify the member of the structure which
defines the next element in the list.

f .~ inked List Expression (on ¢]

Enter an expression that, given an
element, produces the address of the
next element. $p is a temporary
convenience variable with the address of
each element in turn.

Linked List Expression:
|$.p—::-|ir'|k v]
‘ 0K ‘ | Cancel | | Help |

Figure 3-7. Dialog Selecting Linked List Component

NightView automatically populates a drop-down list with all members which have types
appropriate for indicating a link in a list. In our case, it has correctly chosen the member
which identifies the next node in the list.

- Press OK.

The head variable in the data panel is now displayed using an alternative method.

3-11

NightStar RT Tutorial

3-12

Data

Item Value
= [¥] head 0x804c268 struct node t * {linked list: $p-=link [0:3]}

i [¥] -> [Oth] 0xB04c268 struct node t *

&[] -> [1st] 0x804¢278 struct node t *

&[] -> [2nd] 0x804¢288 struct node t *

&[] > [3rd] 0x804c298 struct node t *

- b [a] value 9

@[] link 0x804c2a8 struct node t *
4 «|»

Figure 3-8. Pointer Variable Displayed As Linked List

In the figure above, the various nodes in the linked list are displayed at the same level and
are numbered, starting from 0.

- Click on the guard symbol (blue chevron) several times until the “3rd”
node is shown and then expand it to match the figure above.

NightView allows you to expand the list as long as the member that you selected above
that defines the next item in the list is not NULL. You can also use the context-menu to tell
NightView how many nodes in the list to display (as opposed to continuing to click on the
guard symbol to extend the list).

Often when viewing a linked list you may want to identify a particular node in the list. We
will use NightView’s filtering capability to do this.

- Right-click on the head variable and select Filter Elements with a
Condition...

Using NightView

The following dialog appears which allows you to type in an expression which defines the

nodes in the list to be shown.

Enter a condition expression. Only the elements that match
the condition will be shown. Some temporary convenience
variables are set as the condition is evaluated for each element
in turn:

$i has the index of the element. Example: my_array[$i] < 5
%p has the address of the element. Example: *3p <5
$v refers to the element. Example: $v < 5

Clear the text field to remove the filter,

Condition Filter Expression:

|$p-:=-value % 7 == 0 Jv]

When looking for each filtered element, how many of the
underlying elements should the filter check?

Search Limit: [1[}24]%]

| 0K || Cancel || Help

Figure 3-9. Filter Dialog

The expression can include several special built-in variables which aid you in specifying

the filter. The text in the dialog explains these variables: $i, $p, and $v.

- Type the following text into the Condition Filter Expression field, as

shown in the figure above, and then press OK.

$p->value % 7 ==

We have told NightView to only show us nodes in the list whose member value is a mul-

tiple of seven.

3-13

NightStar RT Tutorial

Data

Item Value
'0x804c268 struct node t * {linked list: $p->link filtered: $p->

G- 0] -> [1stl... 0x804c278 struct node t *
... % Click to search... Search at 4 for up to 1024 elements.

Figure 3-10. Filtered Linked List

Initially, the first node in the list matching the filter condition is shown -- it is node # 1, the
second node in the list (node numbering starts at 0).

- Expand the filtered list by clicking the guard symbol = two times, and
then expand all three filtered elements to match the figure below:

Data
Item Value
=k [#] head 0xB804c268 struct node_t * {linked list: $p->link filtered: $p->
=[] -> [1stl... 0x804c278 struct node I *
.. [m] value 7
-] link 0x804c288 struct node_t *
= [¥] -> [8thl]... 0x804c2e8 struct node t *
- [m] value 14
&[] link 0x804c2f8 struct node t *
=- [¥] -=> [15thl] 0x804c358 struct node t *
- [] value 21
-] link 0x804c368 struct node_t *
Click to search... Search at 16 for up to 1024 elements.
4 b 4/

Figure 3-11. Filtered Linked List Expanded

See that all nodes shown in the list have a value member which is a multiple of seven,
which satisfies the filter expression we specified above.

Notice that an ellipsis follows each node number when the next node in the list is not con-
secutive, indicating that there are gaps in the displayed list due to filtering. The description
field of the head of the linked list also indicates filtering is active.

3-14

Using NightView

You can use NightView’s filtering capability on arrays as well as linked lists. In fact, you
can use it to search through memory for a particular value. Just add a pointer value to the
data panel, tell NightView to treat it as an array using the context menu, and then apply a
filter expression.

3-15

NightStar RT Tutorial

Using Monitorpoints

3-16

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor panel.

Unlike asynchronous sampling, monitorpoints allow you to view data which is synchro-
nized with execution of a particular location in your application.

- Right-click on line 52 and select Set eventpoint from the context menu
and select Set Monitorpoint... from the sub-menu.

NOTE

Alternatively, you could go to the Eventpoint menu and select
the Set Monitorpoint... option, or click the Set Monitor-
point icon from the toolbar to launch the Set New Moni-
torpoint dialog.

Using NightView

& Set New Monitorpoint (on dingbat) X
Location
=) |app.c:52| |
[] Line numbers in location must match exacthy
—Options
® Enable
() Enable, disable after next hit
() Disable
Condition If: []
- []
Ignore Count: _ﬂ
MName: []
—Expressions
| Expression Format
Default
al L Gl
[Ok l l Cancel l [Help]

Figure 3-12. Monitorpoint Dialog
- Ensure that the Location text field displays app.c:52, correcting it if
need be.

- In the text field below the Expression column head, enter the following
but do not press the Enter key yet:

data->count
- Scroll to the right then enter the following in the Label column:
sine count

- While still positioned in the cell under the Label column, press the Tab
key. This positions you to the next row and allows you to continue adding
expressions.

3-17

NightStar RT Tutorial

NOTE

If you have already left the cell and only one row is shown, press
the New button.

- In the second row under the Expression column, type the following:
data->value

- Set its label value in the Label column, by typing the following:
sine value

- Press the OK button in the Set New Monitorpoint dialog.

A Monitor panel is created containing an entry for the expressions entered above.

- Likewise, set a monitorpoint on line 69 with the same expressions as in the
previous monitorpoint, substituting cosine for sine in the Label fields.

Monitor

Item Value (1000 ms between samples)
- sine value v -0.788010753607640

. cosine count v 3344

... Cosine value v -0.615661475324483

[an

Figure 3-13. NightView Monitor Panel

At this point, the data values in the Monitor panel change.

The values are sampled whenever line 52 or 69 are executed, respectively. NightView
displays the latest set of values in the Monitor panel at a user-selectable rate.

3-18

Using NightView
Using Eventpoint Conditions and Ignore Counts

All eventpoints in NightView have optional condition and ignore attributes.

A condition is a user-supplied boolean expression of arbitrary complexity which is evalu-
ated before the eventpoint is executed. Conditions can involve function calls in the user
application.

Similarly, the ignore attribute is a count of the number of times to ignore an eventpoint
before actually executing it.

Conditions and ignore counts are evaluated by the application itself via patched-in code
and, as such, run at full application speed. Ignore-count values are consulted before con-
dition-expression evaluation. Other debuggers evaluate the conditions and ignore counts
from within the context of the debugger which takes significant time and can drastically
affect the behavior of your program.

- Click the cell in the Ignore column of the row of the Eventpoint panel
which describes the Monitorpoint for line 52.

- Change the value to 500 and press Enter.

The Monitor panel now indicates that the values for that monitorpoint have not been sam-
pled by displaying a question mark before the value. When the ignore count reaches zero,
the values will start updating again.

Finally, monitorpoints can include complex expressions that aren’t just simple variables as
long as the final expression resolves to a simple type; e.g., character, integer, floating
point, or pointer.

- Enter the following commands in the Command panel of the NightView
main window:

monitor app.c:105
p FunctionCall ()
end monitor

A new item is added to the Monitor panel which represents the result of the function call
FunctionCall () asexecuted by the user application each timeline 105 is crossed.

3-19

NightStar RT Tutorial
Using Patchpoints

Unlike breakpoints and monitorpoints, patchpoints allow you to modify the behavior of
your program.

Patchpoints allow you to change program flow or modify variables or machine registers.

First, we will use a patchpoint to branch around some statements in our program.

NOTE

If the source file app. ¢ is not displayed, issue the following
command:

1 app.c:53

- Scroll the source file displayed in the NightView main window and
right-click on line 53:

data->angle += data->delta

and select Set eventpoint from the context menu and select Set Patchpoint...
from the sub-menu.

NOTE

Alternatively, you could go to the Eventpoint menu and select
the Set Patchpoint... option, or click on the Set Patchpoint
icon E in the toolbar to launch the Set New Patchpoint dia-
log.

3-20

Using NightView

. |
Set New Patchpoint x
Location
= |app.c:53
Line numbers in location must match exactly.
Options
® Enable
Enable, disable after next hit
Disable
Condition If:
Ignore Count: 0 =
Name:
Action

Insert an expression at this location
® Branch to a different location

Set thread local tag values

Go To: ||

Cancel Help

Figure 3-14. Patchpoint Dialog

- Inthe Location text area, ensure the text indicates app.c:53.

- Click on the Branch to a different location radio button in the lower
portion of the dialog.

- Inthe Go To: text area, type:
app.c:54
then press the OK button.

This will effectively cause the application to skip execution of line 53, where it updates
the angle used in the subsequent sin () call.

Note that the sine value in the Monitor panel stops changing, yet the associated sine
count continues to change.

Alternatively, we can use patchpoints to change the value of expressions or variables.

3-21

NightStar RT Tutorial

3-22

- Type the following command in the Command panel of the NightView
main window:

patch app.c:52 eval data->count -= 2

Note that the value of sine count is decrementing, because for each iteration, it contin-
ues to be incremented by 1, but it is now also decremented by 2.

We can disable the patchpoints without deleting them.
- Select both patchpoints in the Eventpoints panel (as indicated in the
Type column by the word Patch), right-click and select Disable from

the context menu.

The patches are disabled and the values shown in the Monitor panel return to their origi-
nal behavior.

Using NightView
Adding and Replacing Functions Dynamically

NOTE

This section does not currently apply to systems with
binutils-2.31 or higher (generally, Ubuntu 20.04 or higher,
or RHEL/CentOS/Rocky/Oracle 9.2 or higher). If you are run-
ning such a system, skip this section and resume the tutorial at
“Using Tracepoints” on page 3-25. In the future, NightView will
support loading object files with these relocations. This issue is
discussed under “Known Problems” in the NightStar RT Installa-
tion Guide “Problem: NightView Load Command” on page 45.

NightView provides the ability to dynamically add new functions to the application being
debugged, as well as to replace existing functions.

- In a terminal session outside of NightView, compile the report. c source
file which was copied into your current directory in the initial steps of this
tutorial:

cc -g -c report.c --no-pie

- Load the new module into the program using the following command in
the Command panel of the NightView main window:

load report.o

We have added a simple function which prints information to stdout. The function
could have been arbitrarily complex and referenced any variable in the application. The
only limitation is that the function cannot reference symbols that are absent from the mod-
ule being loaded and are not already in the user application.

- Issue the following command to see the source code for the function
report () :

1 report.c

You will see that the report () function expects a pair of arguments whose types are
char *and double, respectively.

- Go back to the application source file by issuing the following command:
1 app.c
We will install a new patchpoint which will call the newly added function.

- Set a patchpoint on line app . c: 69 with the following expression:

report (“cos”,data->value)

The program is now generating output to stdout in the Messages panel of the Night-
View main window as calls to the report () function are executed.

3-23

NightStar RT Tutorial

Mes=ages
[he value Trom cos 1s O, 150576 [:j
The value from cos is 0.139173
The value from cos is 0.147209
The value from cos is 0.156434
The value from cos is 0.165048
The value from cos is 0.173648
The value from cos is 0.182236
The value from cos is 0.190209
The value from cos is 0.1993&8
The value from cos is 0.207912
The value from cos is 0.216440
The value from cos is 0,22495]

3-24

Figure 3-15. Result of Patching in Call to Newly Loaded Function

- Disable the patchpoint that was just added by clearing its Enabled check-
box in the Eventpoints panel.

Finally, we will replace a function that already exists in the application.

- In a terminal session outside of NightView, list the contents of the source
file function. ¢ which was copied into your current directory in the ini-
tial steps of this tutorial, and compile it with the following commands:

cat function.c
cc -g -c¢ function.c --no-pie

- Now load the replacement code by entering the following command in the
Command panel of the NightView main window:

load function.o

Note how the Monitor panel value for the FunctionCall () value no longer pertains
to the value computed by the application, but rather is a monotonically increasing number
as per the source file function.c.

- Return the NightView main window source panel to the app . ¢ source file
on line 41 via the following command:

1 app.c:41

Using NightView
Using Tracepoints

This section covers NightView’s integration with NightTrace.

A tracepoint is a specialized eventpoint which essentially patches a call to log a trace
event with optional arguments.

Even if the application doesn’t already use the NightTrace API, NightView can link in the
required components and activate the tracing module. Our application already uses the
NightTrace API, so this will not be necessary (see the set-trace command in the
NightView User’s Guide for more information on using tracepoints in applications which
don’t already use the NightTrace API).

Suppose that we were interested in measuring the performance of our cycles in the
sine thread() and cosine thread () routines and that we also were interested in
logging data values during the cycle.

- Scroll the source file displayed in the NightView main window and
right-click on line 53:

data->angle += data->delta

and select Set eventpoint from the context menu and select Set Tracepoint...
from the sub-menu.

NOTE

Alternatively, you could launch the dialog from the Eventpoint
menu and select Set Tracepoint..., or click the Set Trace-
point icon E on the toolbar to launch the Set New Trace-
point dialog.

3-25

NightStar RT Tutorial

f g Set New Tracepoint(on dingbat)]

@ [app.c:SS]

Condition If: []

. []
grorecountfo]2

Location

[] Line numbers in location must match exactly

— Options

@ Enable
"y Enable, disable after next hit

(" Disable

Mame: []

NightTrace Event

1

ID: |

Value: []

3-26

[oK H cancel H Help]

Figure 3-16. Tracepoint Dialog

- Inthe Location: text field ensure that app.c:53 is displayed.

- Inthe NightTrace Event section’s ID field, type the following:
1

- Press the OK button.

Similarly, we’ll set additional tracepoints but we will also specify a value to be logged
with the tracepoint.

- Setatracepoint on line app . c¢: 51 and specify an Event ID of 2 and enter
the following in the Value text field:

data->value

- Set a tracepoint on line app . ¢: 68 and specify an Event ID of 3 and enter
the following in the Value text field:

data->value

Trace events can now be logged with the NightTrace tool, but first we’ll examine Night-
View’s heap debugging features and then return to launching NightTrace.

Using NightView
Heap Debugging

This section describes NightView’s heap debugging features, which are quite useful.

However, if you wish to move immediately to the NightTrace section, skip to “Ready for
NightTrace” on page 3-42. You can always come back to this section in the future.

Debugging dynamic memory problems can be difficult and extremely time-consuming.
The word heap refers to a collection of allocated and freed memory typically controlled by
themalloc () and free () utilities in the C language.

NightView provides the unique ability to monitor and detect memory allocations, frees,
and sets of user errors without requiring a non-standard allocator to be compiled or linked
into your program.

One advantage of this is that often when you switch to a debugging allocator, the way
blocks are allocated and freed changes -- often hiding the very bugs you’re trying to find.

NightView offers a variety of settings and debugging levels that are useful in catching
common heap-related errors. Some settings will change the behavior of the system alloca-
tor, affecting the size of allocated blocks and, ultimately, the address values returned.

Dynamic memory errors are typically detected in one of four ways:

¢ acheck of the entire heap at a specified frequency in terms of the number
of heap functions (e.g., malloc, free, calloc, etc.) called

* a check of an individual allocated block when free or realloc is called
® a check of the entire heap when a heappoint is crossed

¢ acheck of the entire heap when a heapcheck command is issued

The frequency setting of the heapdebug command or Debug Heap window controls
how often NightView should check for heap errors when a heap function is called. Setting
the frequency to 1 causes NightView to check for heap errors on every heap operation.

A heappoint causes NightView to check for errors when the execution flows through
the heappoint. An unlimited number of heappoints can be inserted into your program.

The check of an individual block when free or realloc is called is automatic.

All four mechanisms are useful. With the first three mechanisms, the heap error detection
is executed at program application speed without context switching to the debugger.

Activating Heap Debugging

A limitation of heap debugging is that it requires that you activate the debugging before
any allocations occur in your program and that several heap debugging commands only
work if the entire process is stopped. If you attempt to activate the heap debugging fea-
tures after allocations have already occurred, NightView will inform you of its inability to
satisfy your request.

3-27

NightStar RT Tutorial

3-28

If the app process is not currently being debugged (perhaps because you
skipped this section previously), then load the process:

nview ./app

Otherwise, if the application is still running under NightView, then we
must disable the protected attribute of the watchdog thread and pre-
vent it from entering its real-time processing loop (since it will be stopped
at various times in this section).

¢ Delete the patchpoint on line 286 (right-click on the relevant
event point in the Event Points panel and select Delete).

® Rerun the process:
rerun

Enter the following command to cause the watchdog thread to essen-
tially become idle:

patch 293 goto 308

From the Process menu in the NightView main window, select the
Debug Heap... option.

The Debug Heap window is shown.

Select the Enable heap debugging checkbox at the top of the dialog.
Press the Medium button in the Debugging Level area.

Change the Specify check heap freq text field to 1.

Using NightView

The Debug Heap window should look similar to the following figure:

Bl Debug Heap x

[%| Enable heap debugging
~ Debugging Level

l Disable H Low H Medium H High]

~Common Errors Detection

lBIucleverrun] [Dangling Pointer] [Uninitialized Field]

~iaeneral Settings — Ernar Contral
[7] Hardware overrun protection Stop Print
. free fill modified
[Specify check heap freq | 1|

free not at beginning

|z| Specify retained free blocks [1(]0 free unallocated

[] Specify heap size [malloc 22ro

memalign not power of 2

Slop size [L’J
out of memory

post-fence modified
pre-fence modified

Walkback entries / block [s

Pre-fence size [4

realloc not at Beginning

¢ (3] [[][] [] [[5
| (%] [[[][] [][[[x]

Post-fence size [4 realloc unallocated

~—Fill Settings
%] Fill malloc space [Mallucfill byte: 0xcS]%] [Pre-fence fill byte: Dxbf]%]
%] Fill free space [Free fill byte: Dxc3]%] [F’nst—fence fill byte: Dxaf]%]

[%€] Check free fill

oK H Reset H Cancel H Help]

Figure 3-17. NightView Debug Heap Dialog

- Press the OK button to apply the changes and close the dialog.

These options instruct the debugger to activate heap debugging, retain freed blocks to
detect certain kinds of errors, allocate some additional memory past the end of the
requested size to detect errors, and stop the program when any heap error is detected.

- Click the Resume button | to resume process execution.

3-29

NightStar RT Tutorial

Setting up Heap Debugging Scenarios

3-30

The fourth thread created by the main program executes a routine called heap thread.

This routine iteratively executes various dynamic memory operations based on the setting
of the scenario variable. These operations are representative of common programming
errors relating to dynamic memory.

Let’s set a breakpoint on line 130.

- Scroll to line 130 in the source window:
sleep (5);

- Right-click anywhere on that line and select Set simple breakpoint
from the context menu.

NOTE

Optionally, you could set a breakpoint on line 130 by using the Eventpoint menu
and selecting Set Breakpoint, or by entering the following command in the
Command panel of the NightView main window:

break app.c:130

The process will hit the breakpoint in the heap thread and all threads will stop.

Using NightView

Scenario 1: Use of a Freed Pointer

A common error is to read or write a block of memory that has already been freed.

A way to detect this is to tell NightView to retain freed blocks and fill the freed blocks
with a specific pattern. If the blocks are subsequently read, your application may more
quickly discover the error since the contents are unexpected. If the blocks are modified,
NightView can detect this.

By default, the heap thread will not actually execute any of the five scenarios.

- To cause it to execute scenario 1, set the variable scenarioto 1 by enter-
ing the following commands in the Command panel:

set scenario=1
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc ptr(1024,3);
free ptr (ptr,2);
memset (ptr, 47, 64);

The last line represents usage of dynamically allocated space that has already been freed.

NightView will detect this at a heappoint inserted by the user, or at a subsequent heap
operation (based on the frequency setting of the heapdebug command), in this case
on line 170.

NightView will stop the process once the heap error has been detected and issue a diag-
nostic similar to the following:

Heap errors in process local:3771:
free-fill modified in free block (value=0x804a818)
#0 0x8048b6d in heap thread(void*unused=0) at app.c line 170

The error refers to the fact that locations within the freed block were modified by the pro-
cess after the block was freed.

The Data panel is useful for displaying heap-related information as well as a variety of
other attributes.

- From the Data menu select Heap Information.

A new tab may be created for the Data panel unless the application was still run-
ning. It is added to the NightView main window in the same location as the Locals
and Context panels.

- Click on the Data tab (this is probably not necessary as it should be raised
as the current tab already).

- Resize the first column (if necessary) by clicking on the divider between
the column headings and dragging it to the right so that the items of interest
below can be seen in their entirety.

3-31

NightStar RT Tutorial

3-32

- Expand the Configuration item under Heap Information in the

Data panel to show the current heapdebug settings.

- Expand the Totals item under Heap Information to show summary
statistics related to heap activity.

Data
Iem Value
= i iHeap Information i local: 19671
- ¥ Totals
- Ewver allocated (blocks) 22
- Ever allocated (size) 11922 bytes
- Everallocated (debugger ... 264 bytes
- Ever freed (blocks) 5
- Ever freed (size) 2121 bytes
- Ever freed (debugger over... 60 bytes
- zurrent allocated (blocks) 17
- Current allocated (size) 9801 bytes
- Current allocated idebugg. .. 204 bytes
- Zurrent retained freed {(bl... 5
- zurrent retained freed (size) 2121 bytes
- Current retained freed (de. .. 60 bytes
= ~* Configuration

- heap debugging on
- postfence 4 bytes with Oxaf
- pre-fence 4 byte s with Oxbf
- slop 0 bytes
- free fill with 0xc3
- malloc fill with OxcS
- hardware overrun protection disabled
- frequency every 1 heap oparation
- heap size unlimited
- retain 100 free blocks
- walkback g frames
- check free fill enabled

Figure 3-18. Heap Totals and Configuration

NOTE

In general, all information in the Data panel is updated whenever

the process being debugged stops.

The values in the Totals section will vary from system to sys-

tem.

Using NightView

- Collapse the Totals and Configuration items.

- Click on the tab labeled Locals.

The list of items in the Locals panel represents the local variables associated with the
current frame being displayed. Note that the value of the variable ptr is displayed in red
because it no longer contains a valid (allocated) heap address.

Expanding the ptr item reveals the (heap info) item. Expanding that item reveals
additional information relating to the block that the pointer once referred to including:

® its state - freed, but retained
* its address range

® its size

® errors

¢ free and allocation information, which when expanded include walkback
information relating to the routines which allocated and freed the block.

Locals
Item |‘|.|'alue
- [m]il 5 (0x5)
- [¥] iptr 0
& [¥] ptr 0x2aaabc0008f0
=] (heap info)
- state freed, but retained
- Fange 0x0000233abc000BT0 .. 0x0000233abc000cef
- Size 1024 bytes
] Brrors 1 (as of last heap check)
5. free information 0x0040141c in free2() at app.c line 203

- o configuration
= ‘ walkback 0x0040141c in free2() at app.c line 203
bl Frame 0 0x0040141c in free2() at app.c line 203
Framel 0x00401448 in freel() at app.c line 209
.. Frame2 0x00401497 in free ptr() at app.c line 222
..[& Frame3 0x004011e3 in heap_thread() at app.c line 135
i} allocation information 0x00401354 in func3() at app.c line 177
- [m] scenario 1(0x1)

&- [¥] unused 0

1] an

Figure 3-19. Heap Locals Info

3-33

NightStar RT Tutorial

Scenario 2: Freeing an Invalid Pointer Value

Another common error is to free a pointer multiple times or to free a value which doesn’t
actually refer to a heap block.

- Resume the process and let it reach the breakpoint on line 130:
resume
- Set the variable scenario to 2:

set scenario=2
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc ptr(1024,3);
free ptr(ptr,2);
free (ptr);

NightView will detect the failure and print a diagnostic similar to the following:
Heap error in process local:3771: free called on freed or

unallocated block (value=0x804ac40)
#0 0x8048a78 in heap thread(void*unused=0) at app.c line 142

NOTE

If you have glibc debugging information installed on the system,
NightView may show you a different frame in the glibc allocator.
If so, enter the command up until you are presented with a frame
inheap thread.

Another way of obtaining information about the heap block in question is to use the info
memory command. It provides text about the information available in the Locals panel
under the ptr item to the Messages panel of the NightView main window.

- Issue the following command in the Command panel:

info memory ptr

NightView will provide output similar to the following in the Messages panel:

3-34

Using NightView

Messages @

info memory ptr [=]

Memory map enclosing address 8x000015553c001030 for process local:139999:

Virtual Address Range No. bytes
Comments
0x000015553c000008 OxEOOA15553co20fff 135168

Readable,Writable
Allocator information for address 0x000015553c081830 for process local:139999:

freed, but retained
in block 0x880015553cB01830 .. 0xBOOO15553c80142f (1024 bytes)
no errors detected in block
free information:
4 post-
fence bytes with @xaf (fence range @x080015553c001430 .. Ox000815553cOO1433)
4 pre-
fencephytes with @xbf (fence range 6x080015553c@0102c .. Ox000015553c00102f)
free fill with Bxc3
mallec fill with @xc5
walkback:
0xB0000000000401841 in freeZ() at app.c line 203
0xB000000000040186d in freel() at app.c line 209
0x00000000004018bc in free ptr{) at app.c line 222
Ox0000000000401647 in heap thread() at app.c line 141
allecation information:
4 post-
fence bytes with 8xaf (fence range @x080015553c001430 .. Ox000815553cBO1433)
4 pre-
fencephytes with 8xbf (fence range 6x080015553c00102c .. Ox000015553c00102f)
free fill with Bxc3
mallec fill with @xc5
walkback:
0xB000000000401779 in func3() at app.c line 177
0x0000000000401732 in funcZ() at app.c line 182
0x00000000004017da in funcl() at app.c line 188
Ox00000000004018% in alloc ptri) at app.c line 217
Ox0000000000401632 in heap_thread() at app.c line 140

el

Figure 3-20. info memory Command Output

Note that it reports no error in the block per se. The actual problem here is that a second
attempt was made to free the block when it already had been freed previously.

In this case, the walkback information associated with the actual free is useful as you can
quickly locate what code segment actually freed the block.

3-35

NightStar RT Tutorial

Scenario 3: Writing Past the End of an Allocated Block

Another common error is to allocate insufficient space or to write past the end of an allo-
cated block.

- Resume the process and let it reach the breakpoint on line 130:
resume
- Set the variable scenario to 3:

set scenario=3
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc ptr(strlen(MyString),2);
strcpy (ptr, MyString); // oops -- forgot the zero-byte

NightView will detect the failure and print a diagnostic similar to the following:
Heap errors in process local:3771:
post-fence modified in block (value=0x804b068)
#0 0x8048b6d in heap thread(void*unused=0) at app.c line 170

Note that the description of the variable ptr in the Locals panel does not indicate an
invalid status. That is because ptr does point to a valid heap block.

However, expanding the (heap info) information for ptr and the errors list indi-
cates that the block referenced by the ptr is invalid because the post-fence was modified.

Context
Item |Thread5 for local:19102 app
= % 19102 C thread 0x2aaaace03700 (heap thread)
|:_“|‘ #0 0x00401329 in heap thread{veoid * unused = 0) at app.c line]
L W] 5 (0x5)
B [¥] iptr 0
Cr- [F] ptr Dx2aaabc000980
£ =[] (heap info)
state allocated
range 0x0000233abc000980 .. 0x00002aaabc000987
size g bytes
] Errors 1 (as of last heap check)
: i.errorl post-fence modified in block (value=0x2aaabc000980)
- allocation information 0x0040138c in func2() at app.c line 183
.. [m] scenario 3 (0x3)
- [] unused 0

Figure 3-21. Heap Error Description

3-36

Using NightView

Scenario 4: Use of Uninitialized Heap Blocks

Another common error is forgetting to initialize dynamically allocated memory before
using it. Code segments may assume that dynamically allocated memory is initialized to
zero, as is the case with calloc () butnotmalloc ().

- Resume the process and let it reach the breakpoint on line 130:
resume

- Tell NightView to stop whenever a SIGSEGV is sent to the process and
also set the variable scenario to 4:

handle sigsegv stop print pass
set scenario=4
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

iptr = (int**)alloc ptr(sizeof (void*),2);
if (*iptr) **iptr = 2778;

NightView will detect the failure and print a diagnostic similar to the following:

Process local:3771 received SIGSEGV
#0 0x8048ad2 in heap thread(void*unused=0) at app.c line 153

One heap debugging option instructs NightView to fill newly allocated, uninitialized
space with a specific pattern to make it easier to detect use of uninitialized memory. The
Fill malloc space field in the Debug Heap dialog that we used when enabling heap
debugging specified the byte pattern to be 0xc5.

- Issue the following command to view the content of the uninitialized mem-
ory block:

x/x iptr
A SIGSEGV signal is a fatal error so we must restart the process to continue the tutorial.
- Issue the following command:
kill

- Re-initiate the program by pressing the ReRun icon ‘J in the Process
toolbar:

NOTE

Alternatively, you can issue the following command directly from
the Command panel to initiate the process:

rerun

NOTE

NightView automatically re-applies all eventpoint and heap con-
trol settings when it sees the subsequent execution of the program.

3-37

NightStar RT Tutorial

Scenario 5: Detection of Leaks

3-38

Another situation which may be indicative of error or inappropriate use of memory are
leaks. In this instance, we define a leak as a dynamically allocated block of memory that
is no longer referred to by any pointer in the program.

Detection of leaks is a very expensive process with respect to CPU utilization and intru-
sion on the user application. As such, leak detection is only executed when an explicit
request is made from the user.

- Resume the process and let it reach the breakpoint on line 130:
resume
- Enter the following commands:

set scenario=5
resume

This causes the following snippet of code to be executed after a delay of 5 seconds:

ptr = alloc ptr(37,1);
ptr = 0;

NightView does not detect the leak automatically, as mentioned above. The process will
stop again when the breakpoint on line 130 is reached.

- At this time, specifically request a leak report by clicking the Data menu
then selecting Heap Leaks... then check the New Leaks radio button,
and press OK in the Data Heap Leaks dialog to add the item to the
Data panel.

This operation causes NightView to analyze the program for leaks and displays a
Leak Sets item in the Data panel. On small programs, this operation may appear
to be insignificant, but for larger programs it can take some significant time.

- Click on the Data tab.

- Expand the Leak Sets item, if necessary.

An additional item is displayed for every leak set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets provides the
common walkback shown for each allocation as well as expandable descriptions of
each individual leaked block.

- Expand the leak set item with size 37 and then expand the walkback item
associated with it.

Note the walkback indicating that it was allocated by the heap thread () routine
on line 157 of app . c.

Using NightView

Data

ltem

Value

E- { :Heap Information

. @ ¥ Jotals
. & o Configuration
£t Leak Sets
G- O# leak set, 48 bytes
Cl- @+ leak set, 37 bytes
: =+ gy walkback
il Frame 0
Frame 1
I Frame 2
: B ¢+ blocks
& @ leak set, 32 bytes
- O# leak set, 1 bytes

local:19137

local:19137: new at heap operation 112

1 block of 48 bytes, 0x00002aaaaace32c3 at <xt_get default xtconfig+21=>
1 block of 37 bytes, 0x004013c4 in funcl() at app.c line 189

0x004013c4 in funcl() at app.c line 189

0x004013c4 in funcl() at app.c line 189

0x00401475 in alloc_ptr() at app.c line 217

0x004012a4 in heap_thread() at app.c line 157

1 block of 32 bytes, 0x00002aaaaace8487 at <xt trace register thread+17=>
1 block of 1 bytes, 0x0040132d in heap_thread() at app.c line 170

an

Figure 3-22. Heap Leaks Display

NOTE

The Leak Sets display will vary depending on your system
type. Concentrate on the leak set of 37 bytes as shown above.

The last frame shown may be in heap thread(), or it may be in
the pthread library (start thread()), depending on whether
you have pthread debugging files installed on your system.

NOTE

Unlike most items in the Data panel, the 1eak sets item is not
automatically updated when the process stops. The description is
a snapshot of the leaks at a certain moment in the execution of the
program, and therefore it will remain unchanged even if addi-
tional leaks occur. To get updated information, request another
leak report (go to the Data menu and select Heap Leaks...).

3-39

NightStar RT Tutorial

Scenario 6: Allocation Reports

NightView provides a detailed report of all allocated memory.

Construction of this report is a very expensive process with respect to CPU utilization and
intrusion on the user application execution time. As such, allocation reports are only exe-
cuted when an explicit request is made from the user.

- Set the variable scenario to 6:

set scenario=6
resume /one

This resumes only the heap thread (because of the /one parameter to the resume
command) and causes additional allocations to be made.

The thread will stop again when the breakpoint on line 130 is reached.

- At that time, specifically request an allocation report by clicking the Data
menu and selecting Still Allocated Blocks... then click the All Blocks
radio button, and press OK in the Data Still Allocated Blocks dialog
to add the item to the Data panel.

This operation causes NightView to analyze the program and displays a Still Allo-
cated Sets item in the Data panel. On small programs, this operation may appear to
be insignificant, but for larger programs it can take some significant time.

- Resize the first column (if necessary) by clicking on the divider between
the column headings and dragging it to the right so that the items of interest
below can be seen in their entirety.

- Expand the Still Allocated Sets item, if necessary. An additional
item is displayed for every allocation set with a matching block size that
was allocated with a matching walkback. Expansion of individual sets pro-
vides the common walkback shown for each allocation as well as expand-
able descriptions of each individual leaked block.

- Expand the allocated set item with size 1048576 and then expand the
walkback item associated with it.

3-40

Using NightView

Note the walkback indicates that it was allocated by the func3 () function, which
was initiated by a call to alloc _ptr () inthe heap thread() routine on line

162 of app . c.
Data
Item |\.'Blue !ﬂ
E ¢ Heap Information local:19137
" Leak Sets local:19137: new at heap operation 112
- P Still Allocated Sets local:19137: all at heap operation 218
- P4 allocated set, 1048576 bytes 1 block of 1048576 bytes, 0x00401354 in func3() at app.c line 177
& gy walkback 0x00401354 in func3() at app.c line 177
-l Frame 0 0x00401354 in func3() at app.c line 177
Frame 1 0x0040137d in func2() at app.c line 182
Frame 2 0x004013b5 in funcl() at app.c line 188
Frame 3 0x00401475 in alloc_ptr() at app.c line 217
-l Frame 4 0x004012c1 in heap_thread() at app.c line 162
T4 blocks
i) P4 allocated set, 8177 bytes 1 block of 8177 bytes, 0x00401354 in func3() at app.c line 177
-- P4 allocated set, 4564 bytes 1 block of 4564 bytes, 0x00401354 in func3() at app.c line 177
[94 allocated set, 1024 bytes 1 block of 1024 bytes, 0x0040138c in func2() at app.c line 183
-- 4 allocated set, 272 bytes 1 block of 272 bytes, 0x00002aaaaaabe8ad at <_d| allocate tls+36=> L
[74 allocated set, 272 bytes 1 block of 272 bytes, 0x00002aaaaaabe8ad at <_d| allocate tls+36>
-- P4 allocated set, 272 bytes 1 block of 272 bytes, 0x000023aaaaabe8ad at <_d|_allocate_tls+36>
[74 allocated set, 272 bytes 1 block of 272 bytes, 0x000023aaaaabe8ad at <_d|_allocate _tls+36>
-- 24 allocated set, 62 bytes 1 block of 62 bytes, 0x004013c4 in funcl(} at app.c line 189
[74 allocated set, 48 bytes 1 block of 48 bytes, 0x00002aaaaace32c3 at <xt_get _default_xtconfig+21>
-- P4 allocated set, 37 bytes 1 block of 37 bytes, 0x004013c4 in funcl() at app.c line 189 ~
7+ allocated set, 32 bytes 1 block of 32 bytes, 0x0000233aaace8487 at <xt _trace register_thread+17> E
[« [I»)

Figure 3-23. Still Allocated Blocks Display

NOTE

The data from the Still Allocated Sets will vary depending on
your system. Concentrate on the allocated set of 1048576 bytes as
shown above.

NOTE

Unlike most items in the Data panel, the Still Allocated
Sets item is not automatically updated when the process stops.
The description is a snapshot of the leaks at a certain moment in
the execution of the program, and therefore it will remain
unchanged even if additional items are allocated or freed. To
update the information, request another allocation report (click the
Data menu then select Still Allocated Blocks...).

3-41

NightStar RT Tutorial

Disabling Heap Debugging
- To disable all overhead associated with heap debugging, issue the follow-
ing command:
heapdebug off

- Delete the breakpoint on line 130 by right-clicking on that breakpoint in
the Eventpoints panel and selecting Delete or by issuing the following
command:

clear app.c:130

This concludes the tutorial’s topic on heap debugging.

Ready for NightTrace

This section assumes you have completed the steps in the section “Using Tracepoints” on
page 3-25. If not, go back to that section and complete those steps and then return here.

- To launch NightTrace, open the Tools menu, select NightTrace, and then
select NightTrace Analyzer.

The remaining sections of the tutorial do not use NightView, however, we want to keep the
tracepoints patched into the executable. We will now detach the program from NightView
but it will continue to execute and will retain all patchpoints and tracepoints.

- If the process is running, stop the process by typing the following into the
Command panel:

stop /protected
- Inthe Process menu select Detach.

- Inthe File menu select Exit NightView to exit NightView.

NOTE

Normally, processes started from within NightView will be killed
when NightView exits, even if they have been detached. This is
because the shell that is used by NightView to invoke them sends
them a SIGHUP signal. Our application ignores SIGHUP, so it
can continue to execute.

Conclusion - NightView

This concludes the NightView portion of the NightStar RT Tutorial.

3-42

4
Using NightTrace

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log user-defined application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems. NightTrace can
also log kernel events such as individual system calls, context switches, machine excep-
tions, page faults and interrupts. By combining application events with kernel events,
NightTrace presents a synchronized view of the entire system. Furthermore, NightTrace
allows you to zoom, search, filter, summarize, and analyze those events in a wide variety
of ways.

Using NightTrace, you can manage multiple user and kernel NightTrace daemons simulta-
neously from a central location. NightTrace provides you with the ability to start, stop,
pause, and resume execution of any of the daemons under its management.

NightTrace lets you define and save a “session” consisting of one or more daemon defini-
tions. These definitions include daemon collection modes and settings, daemon priorities
and CPU bindings, and data output formats, as well as the trace event types that are logged
by that particular daemon.

Invoking NightTrace

NightTrace was invoked during the last step of the Using NightView section.

If you skipped the Using NightView section, build the program (See “Building the Pro-
gram” on page 1-4), run the program in NightView (nview ./app), and execute the
steps in “Using Tracepoints” on page 3-25 before beginning this section of the tutorial
(and resume execution of the process).

4-1

NightStar RT Tutorial

Nightirace - New Session (on raptor)

File View Daemons Search Summary Profiles Timelines Tools Help

PR R -FrmPPAP: Elue 18 a

Daemons

Type | Daemon

kernel_trace_to_gui

Target Logged Lost State Attached Buffer

raptor Halted

[(!JLaunch H Resume H Pause H Halt l [Elush H Display l [Triggers... l [Enable Events... H Delete l
Trace Segments
| Type ¥ |Trice Segment | Tlrgetl Loggedl Lnstl Durltbn(sec)lUnsnved|
Save Trace Data,.. l [Close Trace Data

Figure 4-1. NightTrace Main Window

Below the menu bar and toolbar, the first page of the NightTrace main window contains
the following two panels:

Table 4-1. NightTrace Panels

Daemons Shows the daemons configured.

Trace Segments Shows each trace segment (contiguous collection
of trace data).

The statistics on the Daemons panel indicate the number of raw events in the shared
memory buffer used between the daemon and the user application and the number of raw
events written to NightTrace by the daemon (under the Buffer and Logged columns,
respectively).

The Trace Segments panel indicates the number of processed events that are currently
available for immediate analysis through the Events panels and timelines.

Using NightTrace

NOTE

The number of events shown in the Daemons panel will nor-
mally differ from the number of events shown in the Trace Seg-
ments panel. The former are raw events and the latter are pro-
cessed events. A processed event is often constructed from
multiple raw events.

Configuring a User Daemon

NightTrace allows you to configure a user daemon to collect user trace events.

User trace events are generated by user applications that use the NightTrace API or by
those inserted into a program by NightView.

We will configure a user daemon to collect the events that our app program logs.

To configure a user daemon based on a running application
- From the Daemons menu select Import... then Running Application.

The Import Daemon Definitions dialog is presented:

m Import Daemon Definitions x
Target |[ET Refresh List
| Program ID 4 | Program User | Key File
32498 app jefih ftmpidata
|m part Sele-:lecl] [Cancel l [Help

Figure 4-2. Import Daemon Definitions Dialog

The Import Daemon Definitions dialog allows you to define daemon attributes
based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the app application.

- Press the Import Selected button.

The Import Daemon Definitions dialog closes and a new user daemon is cre-
ated and added to the Daemon Control Area in the NightTrace main window.

4-3

NightStar RT Tutorial

Streaming Live Data to the NightTrace GUI

NightTrace allows you to use a daemon to capture trace events and store them in a file for
subsequent analysis or to stream the events directly into the graphical interface for live
analysis.

Our daemon is configured for live streaming.

- Select the daemon labeled app data from the Daemons panel in the
NightTrace main window.

- Press the Launch button.

- Press the Resume button.

The daemon is now collecting events which are being generated by the app program from
the tracepoints we inserted via NightView in “Using Tracepoints” on page 3-25.

In the Daemons panel, the count of events shown in the Buffer column will begin to
change.

Caemons
Type |Dnemnn | Thrge‘ll Luggar.ll Lolll smel Aﬂnchedl Buf'l'er|
—k=— kernel_trace_to_gui narf Halted
app_data narf 1] [u] Logging 3 2311
[Launch l [Resume [|| Pausa l [W Halt] [Flush l [Display] [Triggers...] [Enable Events... l Delete l

Figure 4-3. Logging Data

Halting the Daemon

4-4

Since the NightTrace portion of the tutorial is rather lengthy and may likely be a new
experience for many users, we will halt the daemon to reduce memory consumption.

- Wait until the sum of the Buffer and Logged cells reaches at least 20,000
events and then halt the daemon by pressing the Halt button.

NOTE

Do not be concerned if the number of events shown in the Trace Segments panel is
smaller than the number of events shown in the Daemon Control Area just before you

Using NightTrace

halted the daemon. The latter shows raw event counts whereas the Trace Segments
panel shows processed event counts -- a processed event is often constructed from multi-
ple raw events.

Viewing Events

This page is automatically generated by NightTrace and has individual rows for individual
threads (those described via set thread name (2)) in the NightTrace API (see the
NightTrace User’s Guide for details), as well as a row for any events that the process gen-
erated. Initially, these rows may be blank until you scroll to see events logged a bit later
than the interval shown.

- Click on the newly-created tab labeled app_data that contains the
Events panel and the timeline associated with those events.

NightTrace - New Session(Unsaved) (on zoey) = @ X
File View Daemons Search Summary Profiles Timelines Tools Help
PR BYrrmmumPPBP: Eloh%a & 48
Trace = /tmp/data_import = Page 1
Events [E][ZJ
Offsetl Evantl Prucessl Threadl Tag | Time (sec) | Description *
839 ENTER_semop appAl sin 5.176_781_615 calling ...
840 RETURN_usleep appAl watchdog_thread 5.215_462_190 returning from usleep()=0
841 ENTER_clock_gettime appAl watchdog_thread 5.215_462 532 calling clock_gettime(clock_id=0,tp=0x7ffff6ab0f20)
842 RETURN_clock_gettime appAl watchdog_thread 5.215_462_853 returning from clock_gettime()=0
843 ENTER_usleep appAl watchdog_thread 5.215_462_968 calling usleep(useconds=40000) caller=0x40182d ...
844 RETURN_nanosleep appal main 5.226_803_563 returning from nanosleep()=0
845 ENTER_random appAl main 5.226_803_904 calling random() caller=0x40116a [mainl) at app.c:...
846 RETURN_random appal main 5.226_804_125 returning from random()=231602422
847 ENTER_work appAl main 5.226_804 242 calling work(control=422) caller=0x4011a2 [main()...
848 ENTER_malloc appAl main 5.226_830_132 calling malloc(bytes=16) caller=0x401613 ...
849 RETURN_malloc appal main 5.226_830_543 returning from malloc{)=0x6a8fb0
850 RETURN_work appAl main 5.226_830_678 returning from work(}
851 ENTER_semop appAl main 5.226_830_839 calling ...
852 RETURN_semop appAl main 5.226_835_427 returning from semaop{)=0
853 ENTER_nanosleep appAl main 5.226_835_631 calling nanosleep(req=0x7fffffffa520,rem=0x0)
854 RETURN_semop appal cos 5.226_837_899 returning from semop()=0
855 RETURN_semop appAl sin 5.226_838_132 returning from semop()=0
856 ENTER_semop appAl cos 5.226_838_247 calling ...
ENTER semop 5.226 838 646
858 RETURN_usleep appAl watchdog_thread calling semop(semid=5472266,s0ps=0x7ffff62afeed, nsops=1)
859 ENTER_clock_gettime appAl watchdog_thread ;?;}12£32¥;2$;é;a¥?$3e_th read() at app.c:52]
860 RETURN_clock_gettime appAl watchdog_thread
gt SR appAl watchdog thresd |Raw Arguments: 0x400f17, 0x0, 0xf62aff00, Ox7fff, 0x53800a,
862 RETURN_nanosleep appAl main 0xf62afee0, Ox7fff, Ox1, 0x0
)

Figure 4-4. app_data Page

45

NightStar RT Tutorial

4-6

NOTE

If you have previously used NightTrace you may have saved Pref-
erences which override the default colors as shown above. To
change your preferences to use the colors shown above, go to the
File menu, select Preferences, click on the Timelines tab,
click the Restore Defaults button, check the Apply to exist-
ing timelines checkbox, and then click on Save.

Initially, the panels may be mostly blank.

You can force events to be flushed from the daemon buffer and output stream to be
brought into the segment area for immediate viewing by zooming out on a timeline.

Click anywhere in the display area containing the timelines.
Press Up to zoom out.

Press Alt-Up to zoom out completely.

The Events list will be populated with the events currently logged and the timeline
will graphically display those events. If you don’t see any events, press Alt-Up
again.

Click in the middle of the lower panel.

NOTE

To reverse the zoom behavior of the keys or to change the default
zoom factor, go to the File menu and select Preferences...
then make your desired adjustments in the Zooming Controls
section of the dialog. Click OK to save and exit.

Using NightTrace Timelines

Using NightTrace

" NightTrace - New Session(Unsaved) (as'superuser) [=][=]x]
File View Daemons Search Summary Profiles Timelines Tools Help
7y —_— r N » *
Pl R =rm@m@PPPP: E % an 5 18
Trace | app_data
Events
‘ Offsetl Eventl Processl Threadl Tag | Time (sec)lDescription F:]
12223 il app sin 360.8342754...
12224 2 app sin 360.8342971... argl=-0.843391
12225 3 app cos 360.8966408... argl=-0.522499 |:|
12226 1 app sin 360.8966637...
12227 2 app sin 360.8966977... argl=-0.848048
12228 3 app cos 360.9590324... argl=-0.515038
12229 1 app sin 360.9590484,.,
12230 2 app sin 360.9590717... argl=-0.852640
12231 3 app cos 361.0214110... argl=-0.507538
app_data
TrrEET TSI TET
Thread: sin(3508)
User Events:
0.1s ['300.15 riOO.lS
T I N I I T I
r].ls ['300.15 ril]ﬂ.ls
T R 1 I T I B
Current Time 360.925662060 Hover time from current timeline = 355.212002506; 23 events around offset=29304 id=3 proc=app
Start Time 0.000000000 thr=cos time(sec)=716.137664566
End Ti 924.426201641 Szl
S” me ooz ascooiea] |Current offset=12227 id=2 proc=app thr=sin time(sec)=360.896697770 (0.028964290 from
fan : current time)
arnl —_N QA9N0MA9
< | [«
|| b

Figure 4-5. NightTrace Timeline

The timeline contains static and dynamic labels and event and state graphs.

By default, NightTrace detects the threads that have registered themselves through Night-
Trace API calls and creates individual labels and graphs for each thread.

Our application contains five threads, four of which have registered themselves with spe-
cific thread names: heap, sin, cos, and main. Rows for individual threads show only
events logged by that thread. In addition, there is a user events graph near the bottom that
shows events for all threads.

NOTE

You will see blank labels and graphs in your timeline. These are
the labels and graphs for the main and heap threads which are not
logging any events. The contents of the label are not shown until
at least one event is logged by a thread.

4-7

NightStar RT Tutorial

Zooming

4-8

If you see all blank labels, you likely didn’t click in the middle of
the timeline as instructed in the preceding step.

In “Using Tracepoints” on page 3-25 in the Using NightView section, we inserted trace-
points into the sine and cosine threads, which registered themselves as “sin” and
“cos”, respectively.

Each vertical line in the graph represents at least one event. You can zoom in and zoom
out to adjust the level of detail.

- Left click anywhere within the timeline

- Press the Down key repeatedly until you can see individual lines in the
graph

- Press the Up key to zoom back out

- If you have a mouse wheel, move the wheel back and forth to zoom in and
out

The vertical dashed line is the current timeline and is directly connected to the highlighted
event in the Events panel.

Left-clicking the mouse in the display area moves the current timeline. The information in
the Event Detail area below the timeline changes to reflect the event closest to the left of
the current timeline.

Using NightTrace

Moving The Interval

app_data

Thread: cos(12515)

Thread: sin(12514)

User Events:

|18,15 ' |19‘15 |20,15
Coeoo oy e e e ey

D.1s 0.1s | 0.1s 0.1s 0.1s
||

18.689 833 985| [Hover time from current timeline = 0.473_825_150

Current Time

Start Time 17.566 297 178
End Time 20.189 530 890
Span

2.623 233 712| |Current offset=944 id=2 proc=app thr=sin timelsec)=18.689_833_985 (0.000_000_0

00 from current time)
argl=0.713250

D)

Figure 4-6. Timeline Interval Panel

By default, each timeline panel has two ruler rows positioned below the event graphs and
above the descriptive boxes at the bottom of the panel. These contain numbers and hash
marks that describe intervals of time.

The ruler on top indicates the timespan currently shown.

The ruler on the bottom indicates the timespan for all data currently available for viewing.
This ruler is called the global ruler and has a gray area within it. The gray area represents
the amount of the entire timespan that is currently shown in the panel. Thus zooming in
will decrease the width of the gray area and zooming out will have the opposite effect.

NOTE

If you do not see a gray area, zoom out until you do.

There are several methods of moving through the entire timeline.
- Press the Right key

This causes the current timeline to go to the next event. If you are zoomed out too
far, you may not notice the timeline moving. In this case, either zoom in or hold the
Right key down until you can see the timeline move.

Alternatively, press the Left key to move the current timeline to the previous event.

- Press Ctrl+Right

4-9

NightStar RT Tutorial

This causes the displayed interval to move 25% of a section to the right by default.
The section is the amount of time currently visible in the interval. Notice how the
gray area in the global ruler moves.

Alternatively, pressing Ctrl+Left causes a shift one section to the left.

- Click midway between the gray area and the far-right portion of the global
ruler.

Clicking anywhere in the global ruler causes the interval to shift to be centered at the
selected time at the current zoom setting.

Thus to move the very beginning or end of the data set, you can click the beginning
or end of the global ruler.

Using the Events Panel for Textual Analysis

Events
Dﬁsetl Eventl Prooessl Threadl Tag | Time (sec) | Description 'L’
941 2 app sin 18.639_737 052 argl=0.707107
942 3 app cos 18.689 830 607 arg1=0.713250 D
943 1 app sin 18.689_830 614
945 1 app sin 18.739 897 536
946 3 app cos 18.739 897 556 argl=0.707107 @
947 2 app sin 18.739 900 519 argl=0.719340

4-10

Figure 4-7. Events Panel

The events shown in the Events panel are synchronized with the events shown in the
timeline. The highlighted event indicates the current timeline.

- Click on a line in the Events panel.
- Press the Down key to move to the next event.

- Press the Up key to move to the previous event.

Whenever an event is selected or the current event line moves, the Event Detail arca
below the timeline on the right shows additional information about the event, if available.

- Press the PageDown key to advance to the next set of events.

- Press the PageUp key to shift to the previous set of events.

These actions only move the current timeline by the number of events that can be
shown in the Events panel.

Using NightTrace
Customizing Event Descriptions

The event values we logged with the tracepoint commands in NightView were event
IDs 1-3. We will customize the description of these events.

- Click on a row in the Events panel that shows event Code 1.

- Right-click that row and select Edit Current Event Description...
from the context menu.

Code & Mame | Description |

1

<add>
Search:] ¥ Next 4 Previous [| Match case

Edit || add || Delete || close || Help

Figure 4-8. Add Event Description dialog

- Double-click the selected Name field and enter:
cycle start
in the Name field.
- Double-click the table cell that contains <add>.
- Type 2 in the Code cell.
- Click in the Name cell for that row.
- Inthe Name text field enter:

cycle end

Press the Close button.

The descriptions of the events in the Events panel now correspond to the textual identifi-
ers we assigned to them.

4-11

NightStar RT Tutorial

Events
Offset Event Process 11|r¢a|:|| Tag | Time (sec) | Description IL’
938 cycle_end app sin 18.589 677_378 argl=0.700909
939 cycle_start app sin 18.639_734_687
940 3 app cos 18.639 736 625 argl=0.719340
941 cycle_end app sin 18.639_737_052 argl=0.707107
942 3 app cos 18.689 830 607 argl=0.713250 D
943 cycle start app sin 18.689_830_614
944 cycle_end app sin 18.689_833 985 argl=0.713250
945 cycle_start app sin 18.739_897_536
946 3 app cos 18.739 897 556 argl=0.707107
947 cycle_end app sin 18.739 900 519 argl=0.719340
948 cycle_start app sin 18.789_970_202
949 3 app cos 18.789_972_729 argl=0.700909 =
950 cycle end app sin 18.789_972 991 argl=0.725374 E

Figure 4-9. Events Panel with Event Descriptions displayed

Searching the Events List

We can use the search capabilities of NightTrace to search for a specific occurrence of an
event or condition relating to an event or its arguments.

- In the Search menu select Power Search....

A dialog appears containing a list of defined profiles (currently empty) and several
fields that allow you to define new profiles or edit existing ones:

Profiles (as superuser) =

|Type|Name | Status | Count| Last|oﬁset|
Key / Value | Condition |+|| PReset |
Events [ALL | [Browse... |
Exclude Events [NONE | [Browse... |

Condition | TRUE]

Processes | ALL || Browse... |
Threads [ALL | [Browse... |
Output Seript [/usr/lib/NightTrace/bin/event-summary.sh || Browse... |
CPUs (mask=all)
Name | cond |

[%| Close dialog on summary or successful search

[Apply] ['ESearch Backward l

| [Halt Search l [¥ summarize All Events l [Close l [Help l

Figure 4-10. Searching Using the Profiles Dialog

4-12

Using NightTrace

The top area of the dialog is the Profiles list area -- it shows all previously defined pro-

files.

The rest of the dialog provides mechanisms for defining or changing a profile, and com-

mon actions to act upon them.

- Press the Browse... button to the right of the Events field.

" Select Events (onlraptor) &)

NONE =
ALL

ALLADA

ALLAI

ALLKERNEL
ALLUSER

BKL_LOCK

BKL_SPIN
BKL_UNLOCK
BUFFER_END
BUFFER_START
CUSTOM
EVENT_CREATED
EVENT_DESTROYED
EVENT_LOST
EVENT_MASK
FES_OVERRUN
FBS_SYSCALL
FILE_SYSTEM
GLOBAL_CLI
GLOBAL_STI
GRAPHICS_PGALLOC
IPC

IRQ_ENTRY

IRQ_EXIT
KERNEL_TIMER
MEMORY

NETWORK
NT_ASSOC_PID
NT_ASSOC_TID
NT_BEGIN_EUFFER
NT_BEGIN_SEGMENT
NT_BEGIN_STREAM
NT_CONTINUE
NT_DBL_CONTINUE @
NT_DISCARDED_DATA

Search: [:] B MNext 4 Previous ["] Match case

[seea) [Lcaneel) [l]

Figure 4-11. Browse Events Dialog

- Click in the Search text field and type cycle. The first event name that
includes that word is shown. Ensure that cycle end is selected in the
event list, or press Next #nNext until it is. Then press the Select button.

- Enter the following text in the Condition text field of the Profiles panel:

arg dbl > 0.8
- Enter the following text into the Name text field:

obtuse

4-13

NightStar RT Tutorial

- Press the Add button in the Profiles panel.

A profile called obtuse is now defined and appears in the Profile Status List

area of the dialog.

- Press the Search Forward button at the bottom of the Profiles dialog.

The current timeline is moved to the next event that matched the search criteria, that

being the end of a cycle when the sine value exceeded 0.8.

NOTE

If a dialog appears telling you that NightTrace has reached the end
of the available dataset and asks you whether it should resume the
search at the beginning, press OK.

- By default, NightTrace closes the Profiles dialog and returns you to the
timeline as shown below:

app_data

Thread: cos(12515)

Thread: sin(12514)

User Events:

8.1s 9.1s | 0.1s
| | | | ll | | | | | | | | 1 Il | | | 1 :l | | | | lz |

D.1s 0.1s ‘0.15 D.1s D.1s
|||||||||||||||||||||||||||I||||||||||

Current Time 19.490 989 483| [Hover time from current timeline = 1.713_896_740

Start Time 17.566 297 178

End Time 20.189 530 890

Span 2.623 233 712| (Current offset=992 id=cycle end proc=app thr=sin time(sec)=19.490 989 483 (0.00

0_000_000 from current time)

Eﬁl=0.80385?
=

[+]

[4]v]

Figure 4-12. Timeline Panel After Search

- Verify that the current event listed in the Events panel indicates argl
with a value exceeding 0.8.

4-14

Using NightTrace

Events
Offset Event Process Throadl Tag | Time (sec) | Description 'L’
986 cycle_end app sin 19.390_874_186 argl=0.793353
987 3 app cos 19.440 928 124 argl=0.615661
988 cycle_start app sin 19.440_929 571
989 cycle_end app sin 19.440_931_735 argl=0.798636
990 3 app cos 19.490_987_163 argl=0.608761 D
991 cycle start app sin 19.490_987_360
19.490 989 483 argl=0.803857
993 3 app cos 19.541 048 819 argl=0.601815
994 cycle_start app sin 19.541_048_848
995 cycle_end app sin 19.541 051 516 argl=0.809017
996 cycle_start app sin 19.591 126 _040
997 3 app cos 19.591 126 446 argl=0.594823
998 cycle_end app sin 19.591_128_256 argl=0.814116 @
Figure 4-13. Events Panel After Search

Similarly, the timeline shows a description of the current event in the Event Detail area
in the bottom portion of the panel.

- Move the mouse cursor to the event description box at the bottom of the
panel and leave it there without moving it.

A tool-tip pops up with the full description of the event. This is useful when the descrip-
tion shown is truncated due to the size of the description box on the timeline page.

Using States

In addition to displaying individual events, NightTrace can display states.

Click either of the Profiles icons on the toolbar.

B H

4-15

NightStar RT Tutorial

The Profiles dialog is displayed with the previously defined profile selected.

A Profiles)
Type Name Status Count Last | Offset
obtuse True 416 5672
Key / Value |Condition v | Reset
Events | cycle_end | | Browse... |
Exclude Events | NONE | | Browse... |

Condition | arg_dbl > 0.8 |

Processes [ALL] [Browse...]
Threads [ALL | | Browse... |
Output Script [,Iusrflib,INightTrace;bin;event—summary.sh] [Browse...]

CPUs (mask=all)

Name | obtuse]

[%] Close dialog on summary or successful search

lAdd l [Apply] [*® Search Backward] [* Search Forward] lHalt Search] [¥ Summarize l

Figure 4-14. Profiles Dialog With Obtuse Profile Selected

Press the Reset button.
- Inthe Key / Value option list select State.
- Inthe Start Events text area enter:
cycle start
- Inthe End Events text field enter:
cycle end
- Inthe Threads text field enter:
sin
- Inthe Name text field enter:
sine

- Press the Add button.

Close the dialog.

A state named sine has now been defined and occurrences can be displayed in the graphs
on the display page.

4-16

Using NightTrace

- Right-click anywhere in the display area and select Edit Mode from the
context menu or press Ctrl+E to enter edit mode. (Black dots appear in the
background indicating you are in Edit Mode.)

app_data =X
.. |Thread: cos(12515)
. . |Thread: sin(12514)
User Events: 0
¥ . Eﬁs FD.IS |12D.15 IlBD.ls
Foconoona . | AT T T T T T N T Y T TN T T N
e e c.p01s | 00.1s 00.1s 00.1s 00.1s 00.1s 00.1s
:IIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII
: + [current Time 97.656 771 203| : [Hover time from current timeline = 96.959 222 837
- - [Start Time 0.000 000 000} *
: - |[End Time 195.313 542 406} :
: = |Span 195.313 542 406} : |Current offset=5675 id=cycle_end proc=app thr=sin time(sec)=97.646_747_269 (0.0
IIiiIiiIiiiiiiiiiiiiiiiiiiiiiiiin|r0_023 934 from current time)
.................................. argl=0.913545 -
4 4|

Figure 4-15. Timeline Editing

- Double-click on the graph associated with the row labeled “Thread: sin”.
That graph is a row with vertical lines representing events inside the larger
graph area, aligned with the label “Thread: sin”.

The Edit State Graph Profile dialog is displayed as shown below:

a Edit State Graph Profile B
koy [Waluc | State |~ Rasat Choose Frofile...
Start Events | NONE Browse...
End Evcnts | NONE Browse. ..
Events | ALLUSER Browsa...

Start Condition | TRUE

End Condition | TRUE

Ewecnts Condition | TRUE
Procosses | ALL Browsa...
Thirzads | sin Browse...

Ewvent Color | hlack

Statc Color | hluc

CPUs | all (mask=all)

Cancel Help

Figure 4-16. Edit State Graph Profile dialog

4-17

NightStar RT Tutorial

- From the Key / Value option list select State.

- Press the Choose Profile... button.
The Choose Profile dialog is displayed.

- Select the sine state from the list.
- Make sure the Import by reference checkbox is checked.
- Press Select.

- Click on the colored button to the right of the row labeled State Color.
The Select color dialog is presented.

m Select color x

Fy

Basic colors

EEEEENENEN
EEEEEEEO

EEEENEEN(]
EEEEEOEC
EEEENECO®]

Custom colors

Hue: Red:

BOO00000 =
00000000 = Bl s

l Val: [255]2] Blue:

[oK ” Cancel] [Add to Custom Calors]

[Define Custom Colors ==

- Select a pleasing color in the Select color dialog and press OK.
- Press OK in the Edit State Graph Profile dialog.

- Right-click anywhere in the display area and select Edit Mode from the
context menu or press Ctrl+E to return to view mode.

The graph has now been configured to display the sine state as a solid bar in the lower por-
tion of the state graph. Events will still be displayed as vertical black lines that extend
over the entire vertical height of the graph.

It is likely that the display page has not changed in a significant way. This is because the
cycle startand cycle end events occur so closely together in time that you cannot
distinguish them at the current zoom setting.

- Click in the middle of the state graph.

- Zoom in using the mouse wheel or using the Zoom In icon Q on the
toolbar or the Down key until the two events can be distinguished and a
state bar is shown.

- You may need to readjust the current timeline as you zoom in.

4-18

Using NightTrace

NOTE
If the Down key has no effect, press the Num Lock key and try
again.

NOTE
The state may vanish at some zoom levels where it is still very

small compared to the zoom level’s scale. If so, just continue to
zoom in and it will reappear.

The figure below displays an instance of the sine state.

app_data
i 4]
Thread: cos{12515) | !
Thread: sin(12514) | i |
User Events: | | ! |
| F)Z.[l)891'9115 | | FZ.DI891941|5 | | F)IZ.DSQTQTIS | | FZ.?SQETDCIITS |

D.1s |DD_15 00.1s 00.1s 00.1s 00.1s 00.1s
RN R A EETE N T fr |||||||||| Con b b e e

Current Time

92.089 797 161

Start Time

92.089 790 425

End Time
Span

92.089 802 067

0.000 011 642

Current offset=5341 id=cycle_start proc=app thr=sin time(sec)=92.089_795 469 (0.0
00_001_692 from current time)

D)

Figure 4-17. Sine State in Timeline

NOTE

If no states are visible, recheck the definition of the sine profile in
the Profiles panel as described in “Using States” on page 4-15.

The activity shown in the cos row may be different than shown
above.

Displaying State Duration

The duration of the most recently completed state can be displayed via a data box.

4-19

NightStar RT Tutorial

Right-click anywhere in the display area on the page labeled app data
and select Edit Mode from the context menu or press Ctrl+E to enter edit
mode.

Right-click anywhere in the grid (the area with black dots in the back-
ground) and select Add Data Box option from the context menu.

The cursor will turn into a + character.

Using the left mouse button, click an empty area in the left-side of the dis-
play page on the grid (outside of any currently displayed graph or data box
-- i.e. only on an available area whose background shows the dotted grid)
and drag the mouse to create the outline of the new data box -- release the
mouse button.

Double-click the data box. The Edit Data Box Profile dialog is pre-
sented.

Enter the following into the Output field:
format ("cycle = %f ms", state_dur(sine)*1000.0)
Press the OK button.

Right-click anywhere in the display area and select Edit Mode from the
context menu or press Ctrl+E to return to view mode.

The data box now displays the length of the most recently completed instance (with
respect to the current timeline indicator) of the sine state in milliseconds.

Generating Summary Information

4-20

In addition to obtaining detailed information about specific events and states, summary
information is easily generated.

- From the Summary menu select Change Summary Profile... .

- From the Profile Status List table, select the profile matching the sine

state.

It is likely that the sine profile is already selected. You can verify this by looking
at the profile name shown in the Name text area near the bottom of the dialog.

- Press the Summarize All Events button.

A new page is created displaying the results of the summary.

Summarizing from offset 0 thru offset 12222,

State Summary Results

Number of states found:

Maximum state duration:
Minimum state duration:
Average state duration:
Total of state durations:

4074

Number of state gaps found: 4073

Maximum state gap:
Minimum state gap:
Average state gap:
Total of state gaps:

0.000_015_549 at offset: 3371
0.000_ 001 041 at offset: 11526
0.000_001_945
0.007_823_114

0.050_447_180 at offset: 9525
0.049 703 026 at offset: 4389
0.050_071_006

203.939_206_932

sine (0 to 12222)

Using NightTrace

Gap (sec)

Eventl CPU | Process

Offset & End Offset Duration (sec) Thread Time (sec)
12220} 12221 0.000_001 908 0.050 060 162 cycle_start 13581 sin 212,971 266 598 |
12217 12218 0.000_002 345 0.050 071 084 cycle_start 13581 sin 212921 204 091
12214 12215 0.000_002_041 0.050_084_504 cycle_start 13581 sin 212.871_130_967
12211 12212 0.000_002 212 0.050_041_545 cycle_start 13581 sin 212.821_044 251
12208 12209 0.000_001_982 0.050_085_049 cycle_start 13581 sin 212.771_000_724
12205 12206 0.000 002 143 0.050_083 553 cycle_start 13581 sin 212720 913 532
12202 12203 0.000_001 913 0.050 069 862 cycle_start 13581 sin 212.670_828 067
12199 12200 0.000 002 120 0.050 069 816 cycle_start 13581 sin 212.620_756 085
12196 12197 0.000_002_396 0.050_070_375 cycle_start 13581 sin 212.570_683 873
12193 12194 0.000_002_440 0.050_116_065 cycle_start 13581 sin 212.520_611_057
12190 12191 0.000_001_895 0.050_048_747 cycle_start 13581 sin 212.470_493 098
12187 12188 0.000_ 001 987 0.050_055_088 cycle_start 13581 sin 212.420_442_363
12184 12185 0.000_001 855 0.050 056 909 cycle_start 13581 sin 212.370_385 421
12181 12182 0.000 001 945 0.050_088 050 cycle_start 13581 sin 212320 326 566
12178 12179 0.000_001 887 0.050 054 579 cycle_start 13581 sin 212270 236 629
12175 12176 0.000_002_151 0.050_096_382 cycle_start 13581 sin 212.220_179 898
12172 12173 0.000_002_068 0.050_033_480 cycle_start 13581 sin 212.170_081_448
12169 12170 0.000_002_066 0.050_086_616 cycle_start 13581 sin 212.120_045_902
12166 12167 0.000_001 893 0.050 112 274 cycle_start 13581 sin 212,069 957 392
12163 12164 0.000_001 936 0.050 007 152 cycle_start 13581 sin 212.019 843 183
12161 12162 0.000_001 189 0.050 086 515 cycle_start 13581 sin 211.969 834 842

(

Figure 4-18. Summary Results Page

The summary results page provides a number of columns of information including the
state’s starting and ending offsets, the state’s duration, and the gap between a state and its
most recent previous occurrence. You can click on the column headers to control how the

list is sorted.

Double-clicking on a row in the list positions the current timeline to the beginning of that
instance of the state and creates a tag at that position.

To go to the instance of the longest state duration, do the following:

- Click on the Duration header to select duration as the sort key.

- Click the Duration header until the sort order is largest to smallest.

- The instance of the state with the longest duration is shown in the top row.

Click on that row.

The current timeline is moved to that instance of the state, as shown in the Events

and Timeline panels.

The minimum and maximum state occurrences are often of interest. However, a
graphical display of state durations can be more enlightening.

- From the Summary menu select the Graph State Durations... option.

4-21

NightStar RT Tutorial

- Change the standard deviation value in the dialog to 0.

- Press the OK button.

sine Durations

Current Time

439.513 282 828 |State duration graph for state sine

Start Time 0.000 000 000
End Time 651.045 141 353
Span 651.045 141 353

Statistics for state durations left of current time (439.463 226 567s):
min = 0.000_001_3165 @ 0; max = 0.000_003_303s @ 0; avg = 0.000_001_900s

active = false; last_duration = 0.000_001_541s

00.1s 1]

15

00.1s
L1

00.1s
|

00.1s
PRI BT

00.1s
L1

00.1s

00.1s
T

00.1s
L1

00.1s
PR B R

00.1s
PRI BRI

00.1s
L1

00.1s
[|

1s
P B

Hover time from current timeline = 122.970_570_914

Current offset=26158 id=cycle start proc=app thr=sin time(sec)=439.513 282 828 (0.000_000_000 from current time)

£ |

Figure 4-19. Summary Graph

A new page is created with a summary graph and a textual description of the instances of
the state.

The row with blue shown indicates individual instances of the state. If the blue bar
appears to be a single bar, zoom in until individual instances can be seen.

- Zoom all the way out by pressing Alt+Up.
A data graph is shown in the tall row beneath the row with blue state indicators.
Each red line indicates the duration of an instance of the state.

Sometimes a single occurrence of the state may be much longer than most occur-
rences. In such cases, the detail is obscured.

We can rebuild the page using a different standard deviation index.

- Right-click the tab that contains the summary and click Delete Current
Page.

4-22

Using NightTrace

- From the Summary menu, select Graph State Durations and supply a
value of 1 to the standard deviation request dialog.

sine Durations

Current Time

482.698 909 949

Start Time 0.000 000 000
End Time 651.045 141 353
Span 651.045 141 353

State duration graph for state sine

Statistics for state durations left of current time (482.672_852 902s):
min = 0.000_001_270s @ 0; max = 0.000_022_489s @ 0; avg = 0.000_001_894s
active = false; last_duration = 0.000_002_110s

15

00.1s

00.1s 00.1s

00.15 00.15 00.15 [1]
1 L1 11 | L1 11 L1 11

1s

00.1s

00.1s 00.1s 00.1s 00.1s 00.1s
TN S N O I B |

Hover time from current timeline = 9.574_193_255

Current offset=28745 id=cycle end proc=app thr=sin time(sec)=482.672 852 902 (0.026_057_048 from current time})
argl=-0.017452

£

Figure 4-20. State Durations Graph Modified

The graph now shows more detail. The current timeline in the data graph is linked to the
current timeline in all timelines and the Events panel. Clicking anywhere in the graph
will move the current timeline in all such panels.

NOTE

Depending on various factors, selecting a standard deviation of 1
may actually have the opposite effect, obscuring detail even fur-
ther. Experiment with standard deviation factors using the proce-
dure above until you find one that is most useful (which may in
fact be a factor of zero).

Defining a Data Graph

- Raise the app data timeline page by clicking on its tab.

4-23

NightStar RT Tutorial

- Remove the Events panel by clicking the close box at the upper
right-most portion of the panel’s title bar.

The area that contains the individual rows with events is called the graph container. It has
a pink background which you can see at the very top and the very bottom.

- Right-click anywhere in the display panel labeled app data and select
Edit Mode from the context menu or press Ctrl+E to enter edit mode.

- Click on the middle of the top horizontal line of the graph container.

- Move the mouse cursor so that it hovers over the middle of the top horizon-
tal line of the column.

- When the cursor changes to two arrows pointing up and down, click and
drag the upper boundary of the graph container upward to make space for
the data graph.

app_data)|

Thread: cos(3354)
! [Thread: sin(3353)

User Events:

*[current Time 66.756 345 [Hover time from current timeline = 66.756_345_954; offset=0 id=NT_TIMER proc=0 thr

Start Time 0.000 000 =0 time(sec)=0.000_000_000

: |End Time 134.992 006 - [argl=0x0

: [Span 134.992 006 : |Current offset=3824 id=cycle end proc=app thr=sin time(sec)=66.756_345 954 (0.0

Iiiriiriiiiiiiiiiiiiiiiiiioiocioi:|00_000 000 from current timel 1
. |argl=0.622515 =

Figure 4-21. Timeline in Edit Mode

- Release the mouse button when sufficient space has been made (approxi-
mately an inch/2.54 cm or more vertically).

- Click on the top horizontal line of the graph container.

- Right-click inside the graph container and select Add to Selected
Graph Container from the context menu and select Data Graph from
the sub-menu.

The cursor changes to a block plus sign.

4-24

Using NightTrace

- Click in the space created by the previous steps.

app_data

Thread: cos{12515)
. |Thread: sin(12514)

User Events:

... .15 00.1s 00.1s 00.1s 00.1s 00.1s 00.1s] ;
e v e e b b b e b b e Lo L i Ly

s 00.1s 00.1s 00.1s 00.1s | 00.1s 00.1s] ;
:IIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII
* [Current Time 482.672 852 902(: |Hover time from current timeline = 231.555_441 237
: |Start Time 0.000 000 00O0F:
* |[End Time 651.045 141 353f:
* |Span 651.045 141 353{ : |Current offset=28745 id=cycle end proc=app thr=sin time(sec)=482.672_852_902 (0

.000_000_000 from current time)
argl=-0.017452

Figure 4-22. Adding a Data Graph

- Click inside the data graph you just inserted.

- Drag the top border to the top of the data graph and the bottom border to
the bottom of the data graph so that it fills most of the available space in the
top portion of the graph container.

- Double-click in the middle of the data graph.

The Edit Data Graph Profile dialog is presented.

4-25

NightStar RT Tutorial

Kay f Velue | Condition [+][Reset |
Events [ALL | [Browse... | b
Exclude Events [NONE | | Browse... |

Condition [TAUE]

Procosses [ALL | [Browse... |
Throeds [ALL | [Browse... |
CPUs (mask=zll)
Valuz [NOME]

Min Velue [calc]

Max Velue [CALC]

[Brawing and Caloring Gptions... |

[oc [coneal |[nep |

Figure 4-23. Edit Data Graph Profile Dialog

- Inthe Events text field enter:
cycle end
- Inthe Value text field enter:
argl dbl
- Press OK to close the Edit Data Graph Profile dialog.

- Right-click inside the data graph and select Adjust Colors in Selected
from the context menu and select Data Graph Value Color... from the
sub-menu.

- Select a pleasing color from the Select color dialog for the data graph.
Press OK to close the Select color dialog.

- Right-click anywhere in the display panel labeled app data and select
Edit Mode from the context menu or press Ctrl+E to return to view
mode.

- Zoom the display to see the sine wave generated by the program.

4-26

Using NightTrace

app_data

Thread: cos(12515)

Thread: sin(12514)

User Events:

cycle = 0.000000.

ms

[120,15 1]

D.1s 00.1s 00.1s 00.1s 00.1s 00.1s 00.1s
o b e e e e e e e e B B e

Current Time 482.672 852 902
Start Time 362.004 639 676
End Time 524.765 925 015
Span 162.761 285 338| |Current offset=28745 id=cycle_ end proc=app thr=sin time(sec)=482.672_852 902 (0

.000_000_000 from current time)
argl=-0.017452

v

Figure 4-24. Display Page with Data Graph

4-27

NightStar RT Tutorial
Kernel Tracing

Kernel tracing provides amazing insight into the activities of the system and how applica-
tions interact with each other and the kernel.

In order to use kernel tracing you must be running a trace-enabled kernel.

Kernel names ending in —trace and -debug have kernel tracing enabled. You may
check to see which kernel is running by using the following command:

uname -r

If you are not running a trace-enabled kernel, reboot now and select it from the GRUB
menu at boot time. If you are unable to reboot your system at this time, please follow the
beginning of the tutorial to load the pre-recorded kernel data as instructed.

- Click on the first tab of the NightTrace main window.

- Ensure the user daemon is halted; if not click on it in the Daemons panel
and press the Halt button (which will only be sensitized if the daemon is
still running).

- Select the app data segment in the Trace Segments panel.

- Press the Close Trace Data button in the Trace Segments panel.

NightTrace will pop up a dialog warning you that the trace data has not been saved and
will be discarded; the data does not need to be saved for this tutorial.

Obtaining Kernel Trace Data

If you are not running a trace-enabled kernel, skip this section and refer to the section
Using Prerecorded Kernel Data“Using Prerecorded Kernel Data” on page 4-30.

- Double-click on the kernel trace to gui entry in the Daemons
panel on the first page of the NightTrace main window.

4-28

Using NightTrace

~General Settings

Name [kemel_trace_to_gui] 1 RCIM Clock
Target [zippy] User | jeffh

Output () File @ Stream () Consumer

~Stream Settings

Stream Buffer Size (bytes) [8388608

~Trace Buffer Settings

["] specify Non-Default Buffer Size (bytes)
Trace CPU List | all {mask=all)

~Trace Daemon Runtime Settings

Policy | First In First Out |«
Priority |50 IZ]'
CPU List |all (mask=all)

~Event Groups

Enabled: custom,interrupts,traps,syscalls,softirgs, work,tasks,scheduler, process,signals.files.timers, fbs

Change...

| ok || Reset || cancel || Hep

Figure 4-25. Edit Daemon Definition Dialog

NOTE

The Trace Buffer Settings and Event Groups may look dif-
ferent depending on which version of the RedHawk Kernel you
are running; regardless, all versions have a Buffer Wrap setting.

We don’t actually need to change anything at this time; this step was just for informational
purposes to show you the attributes of kernel tracing you can control.

- Press OK.

Depending on system activity, huge amounts of kernel trace data can be generated in a rel-
atively short period of time. Since operation of NightTrace is likely a new experience for
many users, we will restrict the data flow to a manageable size for new users.

- Ensure that kernel trace to gui is selected in the Daemon Control
Area.

- Press the Launch button.

4-29

NightStar RT Tutorial

- Press the Resume button.

- Watch the daemon statistics in the Daemon Control Area; once at least
200,000 events are present in the Logged column, press the Halt button.

Skip the next section and jump directly to “Analyzing Kernel Data” on page 4-31.

Using Prerecorded Kernel Data

This section is provided only for those using the tutorial that have not booted a
trace-enabled kernel.

If you collected live kernel trace data in the preceding section, skip to Analyzing Kernel
Data“Analyzing Kernel Data” on page 4-31.

The NightStar RT tutorial directory contains some pre-recorded kernel data which can
be used in the section titled “Analyzing Kernel Data” on page 4-31.

- From the NightTrace menu in the NightTrace main window, select
Open Files... .

- In the file dialog’s Selection text field, type the following:
/usr/lib/NightStar/tutorial/.kernel-data

- Press the OK button.

Proceed to the next section.

4-30

Using NightTrace

Analyzing Kernel Data

NightTrace automatically generates a default kernel display page that is customized to the
system from which the kernel data was captured.

- Click on the tab created in the NightTrace main window to display the
newly-created kernel display page. The tab will have a name like
<machine_name> Timeline.

Ewerts
| OffsetltEPUl Eventl Processl Threadl Tag | Time (sedlDescriptin
46 5 FILE_OFEM ntracekd 20016 0.000_208_017 File opened
a7 5 SYSCALL EXIT ntracekd 20016 0.000_208 115 Exited syste
48 5 SYSCALL_ENTER ntracekd 20016 0.000_208 540 Entering s
coco Timeline
e ;
coco CPU 7
1 1 1 1 1 1
I I I I I I
Default Kernel Timeline 031s 0Bls
interrupt Exception L b PR PR
Syscall Kernel Event
User Event PID P15 1S 18 F-ls
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Current Time 0.000 208 540 |Howver time from current timeline = 0.097_287_ 690
Start Time 0.000 182 473
End Time 0.107 263 782
Span 0.107 0Bl 308 |Current offset=48 cpu=5 id=SY¥SCALL_EMNTER proc=ntracekd thr=2001&
208 540 (0.000_000_000 from current time)
Entering system call open from pc=0x7ffff67 37fff

Figure 4-26. Kernel Display Page

NOTE

Your timelines may look significantly different if you have a dif-
ferent number of CPUs. Additional system activity can make the
display vary as well. Do not be concerned about such differences
at this step.

- Press Alt+Right to move to the end of the data set.

- Click in an active area and zoom in until detail can be seen.
For each CPU, the following information is displayed:

* interrupt activity (in red)

4-31

NightStar RT Tutorial

¢ machine exception activity (in green)
* system call activity (in blue)
® per-process CPU utilization (shown in a variety of colors)

¢ detailed kernel events (in dark red)

The data boxes on the left hand side of the display page are color coded to match the infor-
mation they describe. Their contents change dynamically based on the position of the cur-
rent timeline.

Press Ctrl+F to bring up the Profiles dialog.
- Click the Reset button to the right of the Key/Value selection area.

- Press the Browse... button to the right of the Processes text field.
The Select Processes dialog is presented.

- Select the app process from the list of known processes.
- Press the Select button to close the Select Processes dialog.

- From the Key / Value option list select System Call Enter Events.
The Select System Calls dialog is presented.

- Select nanosleep from the list of system calls shown.

NOTE
On some distributions, such as Ubuntu 20.04, the name of the sys-
tem call isn’t “nanosleep”, but “clock nanosleep”. Ifyou

fail to find nanosleep events, substitute_clock_nanosleep for
nanosleep in the following instructions.

- Press the Select button to close the Select System Calls dialog.

4-32

Using NightTrace

- Change the list of events in the Events text field to include only
SYSCALL RESUME. The Search/Summarize window should look like the

following:

Type|Name

| Status | Count | Last | Offset |

Add | Apply

Exclude Events
Condition
Processes

Threads
Output Script

CPUs

Name

*® Search Backward | | %% Search Forward

clock_nanosleep

Key / Value System Call Enter Events = Reset Choose Profile...

Events |SYSCALL RESUME

NONE

argl() == get item(syscall,"clock_nanosleep”)
ALL

ALL

fusrflib/NightTrace/binfevent-summary.sh

all {mask=all}

cond_sysc_enter_clock_nanosleep

X Close dialog on summary or successful search

X Summarize All Events

Close

Values...

Browse...

Browse...

Browse...

Browse...

Browse...

Help

- Press the Search Forward button.

A new profile based on the information entered is added to the Profile Status List and
the current timeline is changed to the next occurrence of a resumption of a suspended

nanosleep system call in process app.

NOTE

If NightTrace fails to find an occurrence matching the sort criteria
just entered, recheck the search criteria. It is likely that you may
have skipped pressing the Reset button in the steps above.
Ensure that the Threads text field indicates ALL and not sin.

- Click on the tab corresponding to the kernel display page.

- Click somewhere within the page in the background area to regain focus,
(not within the grid, as that would change the current time indicator).

4-33

NightStar RT Tutorial

- Zoom in until detailed information is visible, similar to what is shown

HRTIMER START

below:
Ewents [z]
Offsetlcpul Event Process Threadl Tag | Time (sec) | D¢*]
2760 3 HRTIMER_CAMCEL idle 0 0.073_611 109 ar
2761 3 HRTIMER_START idle 0 0.073_611 296 Ca
2762 3 SCHED_SWITCH app 20005 0.073_611_975 idl
2763 3 SYSCALL_RESUME app 20005 0.073_ 611 976 RE—E
(] | 41+
coco Timeline @
e r : E]
coco CPU 3 i
apic_timer - —
Page-Fault | |
nanosleep
app: 20005
SYSCALL RESUME HI 1IN
coco CPU 4 i
apic timer i
Semop : |:|
idle:0 :

4] |

Howver time from current timeline = 0.000_005_796

4-34

Figure 4-27. System Call Resume for Nanosleep

NOTE

Your timeline may look significantly different if you have a differ-
ent number of CPUs. Additional system activity can make the
display vary as well. Repeat the search a few times to find an
occurrence that looks similar to the row that indicates the app
process. You can repeat the last search by pressing the forward
search icon on the toolbar or by pressing the Ctrl+G.

The red bar to the left of the current timeline indicates that an interrupt occurred. In this

case, it was a local timer interrupt.

The tall vertical black line spanning the system call and exception rows represents a con-
text switch. The current timeline (dashed line spanning the entire rectangular display
area) is likely overlaid with the context switch line at this zoom setting.

- Select the highlighted event in the Events panel. This is the event at the
current timeline, which should be SYSCALL RESUME.

Using NightTrace

The Description column in the Events panel for the currently highlighted event
describes the event in more detail:

Events

0ﬁset|CPU| Eventl Prooessl Threadl Tag | Time Isec]l Description
25617 O PROCESS idle 0 9.404_318_205 Wake process app (12383)
25618 /] IRQ_EXIT idle 0 9.404_319_791 Interrupt handling for local_timer (IRQ=239) exited
25619 0 SCHEDCHANGE app main 9.404_321_346 idle switched out (runnable); app (12383) switched in

0 SYSCALL_RESUME 9.404 321 347 Resuming system call nanosleep .
25621 V] SYSCALL_EXIT app main 9.404_322_904 Exited system call nanosleep
25622 /] SYSCALL_ENTRY app main 9.404_346_638 Entering system call semop from pc=0x2ac4e21e6297
25623 0 PROCESS app main 9.404_350_035 Wake process app (12515) @

Figure 4-28. Events Panel after Search

- While the current timeline is at the SYSCALL RESUME event, press the
Up key.

The current timeline is changed to the preceding event and the text description indicates a
context switch with text similar to the following:

idle switched out (runnable); app (12383) switched in

The blue bar represents system call activity. The data box to the left will describe the sys-
tem call name for the system call at or to the left of the current timeline.

- Press Ctrl+G to go back to the SYSCALL RESUME event.

In the instance shown in the screen shot above, shortly after the sine thread returns from
nanosleep, the main thread is exiting the nanosleep call on line 105 of app.c. It
will then soon enter a semop system call to execute the semop library call on line 108.

NOTE

On some systems, the system call may be described as ipc or
semtimedop instead of semop.

Mixing Kernel and User Data

If not running a trace-enabled kernel, skip this section and proceed to Using the Night-
Trace Analysis API “Using the NightTrace Analysis API” on page 4-39.

- Click on the first tab of the NightTrace main window.

- Ensure the kernel daemon is halted by pressing the Halt button if it is sen-
sitized (it should have been halted in a previous step).

- In the Trace Segments panel select the kernel trace to gui
segment and select the Close Trace Data menu option of the context
menu.

- Select both daemons in the Daemons panel using Click and
Shift+Click mouse and keyboard actions.

4-35

NightStar RT Tutorial

- Before proceeding, make absolutely sure both daemons are selected. If not,
correct that.

- Press the Launch button.
Read the next four steps before proceeding, then execute them in order.

- Press the Resume button.

- Wait until over 2500 events show up in the Buffer cell for the app data
row.

- Press the Flush button.

- Press the Halt button.

Data from both the user application and the kernel have been captured and brought into
NightTrace.

- From the Summary menu select Change Summary Profile.

- From the Profile Status List at the top of the page, select the sine pro-
file.

- Press the Summarize All Events button.

The last action caused a new page to be created containing a summary of the sine state
defined in “Generating Summary Information” on page 4-20.

- Click on the Duration header until it is sorted in descending order (you
may have to click more than once).

- Click the cell containing the value of the duration in the first row.
- Click on the tab corresponding to the kernel display page.

- Click somewhere within the page to regain focus for the timelines, but only
on the background -- clicking inside the grid would change the current
timeline.

- Zoom in or out as required until you can clearly see the detail relating to
the sine thread’s cycle.

In the graphic shown below, the sine thread was preempted by a kernel processing of an
rcim interrupt.

4-36

Using NightTrace

raptor Timeline
raptor CPU O
reim | | i | |
nanosleep
app
SCHEDCHANGE
raptor CPU 1
reschedule

write char dewv

ksoftirgd/1

SOFT_IRQ_EXIT

raptor CPU 2

local_timer

_newssalect

sshd:

MEMORY

raptor CPU 3

local_timer

_newsslect

| m smEms w1 Bi

idle

IRQ_EXIT

A 71741=

L O (1] @

A 71771
an

A 71781 | n | A F17R1=

Figure 4-29. Longest Instance of State

The reason for the extended cycle in your trace data may be due to other circumstances.

Was the sine thread () preempted by another process?
Did an interrupt occur during the cycle?

Was there significant activity on the hyper-threaded sibling CPU which
stole cycles from the CPU where the sine thread was executing?

Did the application get a page fault or other machine exception?

Did activity on a hyper-threaded sibling CPU interfere with the CPU where
app is executing?

Some of these circumstances are discussed in more detail in “Overrun Detection and Sys-
tem Tuning” on page 7-10.

Machine exceptions include information detailing the type of exception, the faulting
address (when applicable), and the PC at which the exception occurred.

Type Ctrl+F while the kernel display page is selected.
Press the Reset button.
From the Key / Value option list select Exception Enter Events.

Select Page-Fault from the list of exceptions. If you're on an arm64 sys-
tem, you may select one of the following as the alternative: DABT (current
EL), DABT (lower EL), IABT (current EL), IABT (lower EL).

Press the Select button.

4-37

NightStar RT Tutorial

- Press the Search/Forward button.

If a page fault is located, the current timeline is moved to the next occurrence of a page
fault. The text area at the top of the kernel display page includes detailed information
about the exception, including the PC at which the fault occurred and the faulting address.

4-38

Using NightTrace
Using the NightTrace Analysis API

NightTrace provides a powerful API which allows user applications to analyze
pre-recorded trace data or to monitor and analyze live trace data.

You can write programs that define states and conditions and process events as they occur.

In this tutorial, we will instruct NightTrace to build an API program automatically.

Click on the either of the two Profiles toolbar icons. 8 =

From the Profile Status List select the sine profile.

Select Search Forward.

From the Profiles menu select Export to API Source... .
The following dialog is displayed:
u Export Profile(s) to NightTrace APl Source File x

[%| Define maini) function [%] State start callbacks
[3| Define callback functions [3| State end callbacks

[%] Default printf()'s in callbacks || State active callbacks
[%| Repart analysis AP errars [State inactive callbacks

[3| Read trace data from sidin

Trace Data File []

Profiles Source [export_analysis_ﬂ.c l

Callbacks Source [export_analysis_ﬂ.c]

” Reset H Cancel H Help l

Figure 4-30. Export Profiles to NightTrace API Source File dialog

- Clear the State start callbacks checkbox.
- Press the Export button.

- From the NightTrace menu select the Exit Immediately menu item to
exit NightTrace.

NightTrace has created an API program which listens for occurrences of the state defined
by the sine profile and prints out some information for each instance.

- Build the API program using the following command:
cc -g export analysis 0.c -lntrace analysis
This program expects to consume live trace data.

You can configure a user daemon with the NightTrace GUI and have NightTrace launch
the analysis program automatically.

4-39

NightStar RT Tutorial

4-40

Alternatively, you can use the command line user daemon program ntraceud to achieve
the same effect.

- Type the following command:
ntraceud --stream --join /tmp/data | ./a.out

This command instructs ntraceud to start capturing trace data from a running applica-
tion which is using the file /tmp/data as a handle. The --stream option indicates
that instead of logging the data to the named file, it should be sent to stdout.

The application program may not immediately begin generating output because the data
rate is fairly low and buffering is involved.

- To flush the current buffers for immediate consumption by the application,
issue the following command in a different terminal session:

ntraceud --flush /tmp/data

NOTE

You may need to repeat that command several times over a period
of a few seconds to allow the data to pass through system buffers.

Data similar to the following will appear on stdout in the terminal session where the
analysis program was launched:

sine (end)offset 665 occur 333 code 2 pid 3399 time 16.628649 duration 0.000003
sine (end)offset 667 occur 334 code 2 pid 3399 time 16.678631 duration 0.000003
sine (end)offset 669 occur 335 code 2 pid 3399 time 16.728655 duration 0.000003
sine (end)offset 671 occur 336 code 2 pid 3399 time 16.778676 duration 0.000003
sine (end)offset 673 occur 337 code 2 pid 3399 time 16.828693 duration 0.000003
sine (end)offset 675 occur 338 code 2 pid 3399 time 16.878716 duration 0.000004
sine (end)offset 677 occur 339 code 2 pid 3399 time 16.928745 duration 0.000003
sine (end)offset 679 occur 340 code 2 pid 3399 time 16.978760 duration 0.000003
sine (end)offset 681 occur 341 code 2 pid 3399 time 17.028779 duration 0.000003

- Issue the following command to terminate the daemon:

ntraceud --quit-now /tmp/data

If you are not running a trace-enabled kernel, skip the remaining portion of this section
and proceed to “Conclusion - NightTrace” on page 4-61. You can check to see which
kernel you are running by issuing the following command: uname -r. Trace-enabled
kernels normally end in —trace, although you may have built a custom kernel with trac-
ing enabled and did not follow the naming convention.

Several sample API programs are provided with NightTrace.

- Type the following commands to build the watchdog example program:

cc -g -o watchdog \
/usr/lib/NightTrace/examples/c/analysis/watchdog.c \
-lntrace analysis

Using NightTrace

This simple sample program watches for context switches on a specific CPU and prints
the name of the process that is switching in.

This time the ntracekd kernel daemon will be used to capture 5 seconds of kernel data
and stream the output to the watchdog program.

- Issue the following command:

ntracekd --stream --wait=5 /tmp/x | ./watchdog 1

The program will eventually generate output similar to the following:

context switch: 4.979350027 4 ksoftirgd/0
context switch: .979358275 2846 X
context switch: .983906074 0 idle

.983960385 2846 X
.994892976 3167 firefox-bin
.994989171 4492 ntfilterl
.995070736 4489 watchdog
.995092415 4492 ntfilterl
.995173214 4489 watchdog
.995188096 4492 ntfilterl
.995256175 4489 watchdog
.995270824 4492 ntfilterl
.995332743 4489 watchdog
.995355783 2846 X
.000351519 4 ksoftirgd/0
.000360675 2846 X

context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:
context switch:

O O D D D D D D D D D D DD D

Automatically Tracing Your Application

This section will utilize a new invocation of the NightTrace analysis tool.

- If you still have a NightTrace session active, exit NightTrace via the File
menu and selecting Exit NightTrace Immediately.

NightTrace provides a component called Application Illumination, which automatically
instruments your application with trace points that record the entry and exit of subpro-
grams.

The arguments and return values to those subprogram calls, among other things, can be
included as part of the trace data, so that you can see them when you analyze the data.

Not all subprograms can be automatically instrumented. Application [llumination cannot
detect functions which do not have globally visible external symbol names (e.g. static
void func (); in the C programming language). Similarly, it cannot detect functions
which are completely internal to a linked shared library (i.e. functions that have no exter-
nal entry point). Similarly, by default, Application [llumination only operates on func-
tions which have compiler-generated debug information -- although you can change this
behavior.

The utility /usr/bin/nlight is the primary interface used to instrument your applica-
tion.

4-41

NightStar RT Tutorial

nlight provides for selection and exclusion of subprograms as well as customization of
detail levels.

In this tutorial, we’ll use nlight’s wizard to quickly and easily instrument the app pro-
gram we’ve been using thus far.

nlight Wizard - Selecting Programs

- While positioned in the tutorial test directory you created in the initial
stages of this tutorial, invoke the nlight tool:

nlight &

4-42

Using NightTrace

The following window is displayed.

File View Tools Help

NightLight = New Session

@ Select Programs

-
.

-

) Define llluminators

7 Select llluminators

e

s

) Relink Programs

) Activate llluminators

)

() Run Scripts

Select Programs with Debug Information

One or more programs may be instrumented with trace points at function calls. By building the executable file
with debug information, function retums may alse be instrumented, and information about function arguments,
return values, and global variables may be recorded as arguments to the events.

Program: |v]

[Browse... H Delete]

NightLight will use the Build Command to build any missing programs. The Build and Build All buttons may
be used to build the current program or all programs respectively at any time.

Build Command:]

[Build H Build Au]

As an advanced feature, the Manager may be used to identify object files, archives, shared objects, and
programs, and to create illuminators for them.

[Prev H Next H Help]

A4

Figure 4-31. nlight Wizard - Select Programs Step

NOTE

If the window shown is significantly different than the figure
above, remove the .nlightre file from your SHOME directory
(or that of root’s SHOME directory if you are running as root).
Kill off nlight and then invoke it again as directed above.

The Wizard tab is raised by default and provides step-wise instructions for instrumenting
your application.

4-43

NightStar RT Tutorial

4-44

The bullet list on the left side of the page indicates what step you’re currently working on
within the wizard, while the Prev and Next buttons at the bottom navigate through the
steps.

The initial step is Select Program, in which we tell n1light which program to illumi-
nate.

- Press the Browse... button and select the app program file from the file
selection dialog, then press Save to close the file selection dialog.

Note that the Build Command text area below the program selection now contains a
default make command. While not specifically required, it is convenient to provide
nlight a command which can rebuild your original program, in case you should choose
to do so from within nlight. Further, n1ight will automatically invoke this command
if it finds that the specified program file does not exist.

- Press the Next button to proceed to the next step.

Using NightTrace

nlight Wizard - Defining llluminators

The Define llluminators step is displayed, which allows us to select the portions of
code in the application that we want to illuminate.

NightLlight = New Session

File View Tools Help

Ward

() Select Programs

@ Define llluminators
() Select lluminators
() Relink Programs

() Activate Illuminators

() Run Scripts

Define an llluminator for each Program

An illuminator is a directory containing object code to record trace events for functions in the statically linked
portion of each program, descriptions of those events for NightTrace, and various other files. An illuminator may
be created for each program and will be called programiName. ad.

Program: [app |vl

[%| Define an illuminator for this program.

Functions may be included or excluded from being traced by matching their names against regular
expressions. The inclusions and exclusions in the list below are applied in order from top to bottom. By
default, all functions are included except those beginning with underscore, those in C++ std namespace,
main, and Ada's internal 1/O routines.

Functions Included or Excluded from Being Traced:

add

Delete

e]
Down

As advanced features: (1) the Editor may be used to customize the user-defined illuminator, (2) the Manager
may be used to customize additienal illuminaters, including the predefined ones, (3) to assist with deing
advanced customizations, the user-defined illuminator may be populated with all functions and global variables
found in the program, and (4} a detailed report about the user-defined illuminater may be written to the
Console.

Advanced,” Build] [Prev H Next H Help]

Creating llluminator Done

A4

Figure 4-32. nlight Wizard - Define llluminators Step

The term i/luminator refers to a directory which contains the nlight-generated files
required for instrumenting code. Normally, you don’t interact directly with the contents of
that directory; nlight does all the work. The Define an illuminator for this pro-
gram checkbox tells n1light that we want to instrument the statically-linked portions of
the app program.

4-45

NightStar RT Tutorial

This page also includes a selection and exclusion area which allows you to specify spe-
cific subprograms you want to include or exclude from instrumentation. You can also
specify patterns via regular expressions to include or exclude multiple functions easily.

We’ll just let nlight illuminate all the statically-linked portions of our app program at
this step.

- Ensure the checkbox labeled Define an illuminator for this program
is checked.

- Press the Next button to proceed to the next step.

nlight Wizard - Selecting llluminators

The Select llluminators step is now displayed.

= ‘NightLight -New Session (onburner)
File View Tools Help
Manager Wizard Console
alz gl Select Pmdgfingd Hluminators for _each Prog_ram ;
Some predefined illuminators are provided with NightTrace and may be linked into each program.
Select Programs Program: app -
Define Illuminators The main illuminator initiates tracing with a trace begin() call before main() begins running.
e Select llluminators Programs that already initiate tracing on their own should not include this illuminator.
Relink Programs ® main
Activate llluminators These illuminators trace calls to functions in the corresponding shared system libraries.
Run Scripts glibc
pthread
ccur_rt
cuda
fbsched

As an advanced feature, the Manager may be used to link additional illuminators into the
program and to customize the predefined ones. Glibc's debuginfo package(s) must be installed to
customize glibc and pthread.

Advanced... Prewv MNext Help

Creating Illuminator Done

Figure 4-33. nlight Wizard - Select llluminators Step

This step allows us to select additional, predefined illuminators for our program.

NOTE
The list of predefined illuminators may be different on your sys-

tem. However, all systems should have main, glibc, and
pthread.

The main illuminator is special and is only needed if your application doesn’t already use
the NightTrace API. Our app program already does, so we should clear this checkbox.

4-46

Using NightTrace

- Clear the main checkbox.

Additional illuminators are already built and shipped with NightTrace. In the middle sec-
tion of the page, we can include illuminators for system libraries that our program uses.

- Check the glibc checkbox to include the glibe illuminator.
- Check the pthread checkbox to include the pthread illuminator.

- Press the Next button to proceed to the next step.

4-47

NightStar RT Tutorial

nlight Wizard - Relinking the Program

The Relink Programs step is now displayed.

File View Tools Help

Ward

NightLight = New Session

() Select Programs
() Define llluminators

7 Select llluminators

y

-

@ Relink Programs

) Activate llluminators

)

() Run Scripts

Relink llluminated Programs

Hluminators have object files that must be linked with pregrams along with libntrace. Each program is relinked
with these files and library as a separate executable file. The illuminators are initially not activated. Unactivated
illuminators have zero run-time overhead.

Program: |app |vl

By default, the copy of the program with the illuminators and libntrace linked in is named originalNameaI.
Hluminated Program Path: |appAl]

The command to relink the program with illuminators may be specified using some substitution variables
{#keyword) for the illuminated program path, the options that must be passed to the compiler, and the
dependency list. Click on the View buttons for further assistance.

Relink Command: [View Typical Makefile Target l [View Substitution Variables l

[make SSRELINK ILLUMINATOR_OPTIONS ="%GCC" ILLUMINATORS ="%Al"]

[DefaultMakeHDefauIta.linkl [Relink H RelinkAIIl

There are no additional advanced features available on the Manager, but it may be used to make the same
settings.

[e [e

A4

4-48

Figure 4-34. nlight Wizard - Relink Programs Step

In order to utilize the illuminators, we need to create a new version of our executable pro-
gram which links with exactly the same objects and libraries as the original program, but
also includes the nlight-generated illuminator files.

The resultant executable will contain the unmodified object files and libraries from the
original program, but it will also include instrumented “wrapper” functions which inject
the actual trace event calls at runtime.

Using NightTrace

Since we need to essentially recreate the original program and add some new link options,
the wizard needs you to enter a command that will do this. The default “relink” command
is already filled in and assumes you will use the make utility to build the program. It
passes some make parameters which make it very easy for you to form the Makefile
rule to build the new program.

In most cases, you can simply copy the final rule required to create your original applica-
tion and rename it and add the options passed by the wizard on the link line.

Our Makefile in the tutorial test directory already has a rule defined for the instru-
mented program name, which, by convention, is the original name of the program with the
letters “Al” appended to it. The following is an excerpt from the Makefile that shows
the rules to build app and appAT.

app: app.c
cc -g -o app app.c \
-lntrace thr -lpthread -1lm -lrt

appAIl: app.c
cc -g -o appAI app.c \
$ (ILLUMINATOR OPTIONS) -lntrace_thr -lpthread \
-lm -1rt

Notice that the rule to build appATI (the instrumented version of the program) is exactly
the same as the rule to build the original app program, except that we also include the
options passed in by the wizard in the “relink” command.

- Press the Next button.

This causes the program appAl to be automatically linked.

4-49

NightStar RT Tutorial

nlight Wizard -

Activating llluminators

The Activate llluminators step is now displayed.

File View Tools Help

Ward

NightLlight = app:-nl

() Select Programs

() Define llluminators
) select llluminaters
() Relink Programs

(@ Activate llluminators

() Run Scripts

Activate llluminators in each Program

Use the check box te activate or deactivate the illuminaters linked into each program. Deactivated illuminators
have zero execution-time overhead. Opticns may be specified for each illuminator.

Program: |app |vl

Detail Level controls how much detail is recorded as arguments to events.

The glibe illuminator traces function calls to the system C library.

[%] glibc Detail Level:

The pthread illuminator traces functien calls te the POSIX threads library.

[%] pthread Detail Level:

This illuminator is the user-defined illuminator for the current program.

[%] app.ai Detail Level:

As an advanced feature, the Manager may be used to configure multiple activation sets, set additional options,
and select a different default activation set (if no default activation set existed, the wizard created one called
Wizard).

4-50

Figure 4-35. nlight Wizard - Activate llluminators Step

An important feature of Application Illumination is that once you relink your program and
include the illuminators, the illuminators are inert. You can run your application with zero
overhead while the illuminators are inert.

In this step, we’ll activate them so that when we run the program trace data will be logged.

The default activation level is 2, which provides a medium amount of detail with each

event. In this tutorial we want to see more detail, so we’ll increase the detail level of each
illuminator.

Using NightTrace

- Change the Detail Level for the glibc illuminator to 3.
- Change the Detail Level for the pthread illuminator to 3.
- Change the Detail Level for the app.ai illuminator to 3.

- Press the Next button to finalize the activation and proceed to the next
step.

Running the Program

The Run Scripts step is now displayed in the wizard.
The wizard provides this step for convenience.

We’ll go ahead and close nlight now and run the application ourselves outside of
nlight.

- From the File menu select Exit Immediately.

- In a shell session, start the illuminated program: . /appAI &

IMPORTANT

Make sure you invoke appAI, the instrumented program, and not
app.

Analyzing Application lllumination Events

Now we’ll invoke NightTrace to analyze the data generated by our instrumented program.

- To avoid confusion with the instance of the app program running (as left in
the “Conclusion - NightView” on page 3-42) which is also generating trace
data, we will kill off that program:

killall -9 app

- Enter the following command while positioned in the directory that con-
tains the appAI program: ntrace —--import=appAI &

4-51

NightStar RT Tutorial

4-52

The NightTrace analysis interface appears.

e ntrace E]@E]

File View Daemons Search Summary Profiles Timelines Tools Help

PE R =Fmm PO @0

13
]

>3

Il
=]

Please specify trace file name:

l oK H Cancel l

Interval : 1 events (0 to 0), 0.000400000 seconds (0.000000000 to 0.000400000) Current TiIA

Figure 4-36. NightTrace - Import File Name

Since NightTrace was invoked with the ——import option, it prompts you for the name of
the trace data file, which is the first parameter your program passed to the trace begin
call.

- Enter /tmp/data in the prompt dialog and press OK.

Use of the —-import option instructs NightTrace to load auxiliary data created by
nlight so that it can fully describe the trace events it collects. The location of that infor-
mation is embedded within the instrumented application, in our case, appAI.

NOTE

If the main illuminator had been selected in nlight, ntrace
would have already known the name of the trace file. In our
example, we didn’t include the main illuminator, because our
program already initiated tracing independently of n1ight.

Using NightTrace

The Daemons panel now includes a user daemon which is ready to collect trace points
from our instrumented appATI program.

NightTrace - New Session(Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help
PE 8= ®P 00O Eﬂ.ﬂ&&%a
Daemons
Type | Daemon Target Logged Lost State Attached Buffer
ftmp/data_import . narf ' ' Halted '
[(!JLaunch H Resume H Pause H Halt l [FElush H Display l [Triggers... l [Enable Events... H Delete l
Trace Segments
| Type ¥ |Traoe Segment | 'Ihrgetl Loggedl Lostl Duration [sec)ll.lnsaved|
Save Trace Data... l l Close Trace Data
4

Figure 4-37. NightTrace - Daemon Ready to Launch

Notice that the name of the Daemon is /tmp/data_import and not simply just the
name of the trace file. This is simply a name constructed by NightTrace which uses the
trace file name and appends “_import” to indicate it was imported via the --import option.

If you were to double-click on the daemon row, the resultant dialog would show that the
trace file is /tmp/data.

- Press the Launch button to launch the daemon.

- Press the Resume button to start collecting trace events.

4-53

NightStar RT Tutorial

Returning to the Daemons panel, you can see that the user daemon is collecting events

as the numbers in the Buffer and Logged columns are steadily increasing.

NightTrace - New Session{Unsaved)

ftmp/data_import

File View Daemons Search Summary Profiles Timelines Tools Help
PHEH 3 =—Tmm@PPA: ElS]s » 8«
Trace | [ftmp/data_import
Daemons
Type | Daemon Target Logged Lost State Attached Buffer

Logging

[L')Launch H Resume H“ Pause l [Flush H Display l [Triggers... l [Enable Events... H Delete l
Trace Segments
| Type ¥ |Traoe Segment | 'lhrgetl Loggedl LostlDuration (soc}ll.lnsavod|
Save Trace Data... l l Close Trace Data

4-54

Figure 4-38. NightTrace - Daemon Collection Events

- Wait until the event count in the sum of the Buffer and Logged columns
reaches 10,000 or more.

- Press the Halt button in the Daemons panel to stop the daemon.

- Click on the /tmp/data_import tab to bring the Events and Timeline
panels to the top of the NightTrace window.

- Click in the middle of the timeline’s graph container area (blue area) and
press Alt+Up.

Using NightTrace

- Click in the middle of the activity in the timeline and zoom in until individ-

ual lines are apparent.

NightTrace - New Session(Unsaved) (on zoey) - o x

File View Daemons Search Summary Profiles Timelines Tools Help

PHR PR~ Fmm PP PP Eol%a 4 xH

Trace

/tmp/data_import

jtmp/data_import

Current offset=857 id=ENTER_semop proc=appAl thr=sin time(sec)=5.226_838 646 (0.021_143 571 from current time)
calling semop(semid=5472266,50ps=0x7{fff62afee0,nsops=1)

caller=0x400f17 [sine_thread() at app.c:52]

frame=0x7ffff62affo0

Hover time from current timeline = 0.479_622_382; 2 events around offset=1043 id=ENTER_semop proc=appAl thr=sin time(sec)=5.727_

604 599

calling semop(semid=5472266,s0ps=0x7{fff62afee0,nsops=1)
caller=0x400f17 [sine_thread() at app.c:52]
frame=0x7ffff62aff00

‘Thread: heap_thread ‘ ‘ ‘
‘Thread: cos ‘
‘Thread: sin ‘
‘Thread: watchdog_thread ‘
‘Thread: main ‘
‘ All Al Events ‘
Current Time 5.247 982 218| p.1s 1s As s
Start Time voooooooool |1 |y Lo Py b B B
End Time 10.795 849 133
Span 10.795 849 133 | |1°‘15 |2°‘15 ks
1 1 | 1 Il 1 Il 1 1 1 1 | 1 1 r Il 1 1 1 1 1 | 1 Il 1 1 1 1 1 1 |

[«

Hover time from current timeline = 0.479 622 382; 2 events around offset=1043 id=ENTER_semop proc=appAl thr

Figure 4-39. NightTrace - /tmp/data_import Timeline

NOTE

You may need to increase the vertical size of the NightTrace win-
dow and drag the /tmp/data-import panel up to generally match
the figure above.

Al timelines are much like standard user trace timelines, except that the event description
and hover description areas are much bigger, because such descriptions are more detailed
and verbose than most ordinary trace data.

In the figure above, notice the description of the semop and nanosleep library calls,
including details about their arguments.

You may notice a black triangle in the bottom-right corner of the description areas of the
/tmp/data panel. This indicates that more text is available than can fit within the con-
tainer. You can either resize the container (Right-click and select Edit mode and grab a

4-55

NightStar RT Tutorial

corner of the container and change the size), or, simply hover the mouse cursor over the
container and a pop-up will appear showing the complete text.

Let’s turn our attention to the Events panel.

- Hover the mouse over the description area of the selected event.

Events

Offset E\mntl Prooessl Thread | Tag | Time (sec) | Description 'ﬂ

199 RETURN_malloc appAl main 3.627_632_309 returning from malloc()=0x6b6d00 errmo=3 D

200 RETURN_add_link appAl main 3.627_632_428 returning from add_link()=7040256 errno=3

201 RETURN_work appAl main 3.627_632_539 returning from work({) errno=3

202 ENTER_semop appAl main 3.627_632_668 calling semop(semid=360459,50ps=0x7fff205ea4...

203 RETURN_semop appAl main 3.627_636_031 returning from semop()=0 errno=3

204 ENTER_nanosleep appal main 3.627_636_209 calling nanosleep(req=0x7{ff205ea3f0,rem=0x0) ...

205 RETURN_semop appAl sin 3.627_637_407 returning from semop()=0 errno=3

206 ENTER_semop appal sin 3.627_637_842 calling semop(semid=360459,50ps=0x2aec6e5fa...

207 RETURN_semaop appAl cos 3.627_638_671 returning from semop()=0 errno=3

ENTER_semop 3.627_639 266 calling semop(semi

dre GG e 2BpAl main 3-577-5E2afffnq se)r.c;fsemid=35045‘3,sc;s:DXZaecEe._ 250, nsops=1)

210 ENTER_random appAl main 3.677_6¢ *sops={

211 RETURN_random appAl main 3.677_64 sem_num=0,

212 ENTER_work appal main 3.677_64 sem_op=63533,

213 ENTER_add_link appal main 3.677_73 sem_flg=0}

caller=0x400de7 [cosine_thread() at app.c:64]

214 ENTER_malloc appal main 3.677.73 ¢ ne=oxzaecee7peso

215 RETURN_malloc appal main 3.677_74

s P o el Y R BTNt

Raw Arguments: 0x400de7, 0x0, 0x6e7fbeb0, Ox2aec,
0x5800b, 0x6e7fhe50, 0x2aec, 0x1, 0x0, 0xffff0000,
0xe7030000

Figure 4-40. NightTrace - Events Panel w/ Tool Tip

As mentioned before, trace event descriptions are quite long, and the description in the last
column in the Events panel may be truncated. Hovering over those areas provides the
full description.

- While the focus is in the Events panel, activate the Textual Search dia-
log by pressing Ctrl+T.

A textual search dialog is shown.

Event Panel Search

This dialeg allows you to search the Events Panel for text. Searching via this panel will
not locate matching text in timeline panels, only in the Events Panel. Press the Profile
Search button if you wish a more powerful search mechansim.

Event Panel Text Search

—Search Options

[] Treat search text as a reqular expression (% Close dialog on successful search

[case sensitive search [Match any criteria [~ |
~Search Criteria
ery——————— [C] Event Name
[| | I
|| Process———— || Thread
[| | I
[Time—————— % Description
[| |0 =)

Ready to search

i ** search Backward H " Search Forward HHaIt Search] [Close] [Help I

Figure 4-41. NightTrace - Event Panel Search Dialog

4-56

Using NightTrace

- Activate the Event Name field by checking its checkbox.

- Type ENTER_work into the Event Name text field and press the
Search Forward button.

The Events panel now has the next occurrence of the ENTER_work event selected.

NightTrace - New Session(Unsaved) (on zoey) = o x

File View Daemons Search Summary Profiles Timelines Tools Help

PR 23 -FmwPPPP: Ecif%a o up b

Trace /tmp/data import Pagel

Events @@

Offsetl Evantl Process | Thread | Tag | Time (sec) | Description l:]

853 ENTER_nanosleep appAl main 5.226_835_631 calling nanosleeplreq=0x7fffffffa520.rem=0x0)

854 RETURN_semop appAl cos 5.226_837_899 returning from semop()=0

855 RETURN_semop appAl sin 5.226_838_132 returning from semop(}=0

856 ENTER_semop appAl cos 5.226 838 247 calling ...

857 ENTER_semop appAl sin 5.226_838_646 calling ...

858 RETURN_usleep appAl watchdog_thread 5.255_471_171 returning from usleep()=0

859 ENTER_clock_gettime appAl watchdog_thread 5.255_471_366 calling clock_gettime(clock_id=0,tp=0x7ffff6ab0f30)

860 RETURN_clock_gettime appAl watchdog_thread 5.255_471_581 returning from clock_gettime()=0

861 ENTER_usleep appAl watchdog_thread 5.255_471_684 calling usleep({useconds=40000) caller=0x40182d ...

862 RETURN_nanosleep appAl main 5.276_846_511 returning from nanosleep()=0

863 ENTER_random appal main 5.276_846_877 calling random() caller=0x40116a [main() at app.c:...

864 RETURN_random appal main 5.276_847_112 returning from random()=1389867269

ENTER_work 5.276_847 229 calling work({control=269) caller=0x4011a2 ...

866 ENTER_malloc appAl main 5.276_863_821 calling malloc(bytes=16) caller=0x401613 ...

867 RETURN_malloc appal main 5.276_864_254 returning from mallec()=0x6a8fd0]

BAE RETURN work AnnAL main 5.276 864 3RT returnina from work() B

Figure 4-42. NightTrace - Events Panel after Search

Notice that the description field includes the location of the caller using both the hexadec-
imal PC location as well as the name of the subprogram and file and line number informa-
tion (hover the mouse over the description to see it):

caller=0x400£83 [main() at app.c:107]

NOTE

Depending on compiler versions and actual source contents, the
line number displayed may actually be associated with the next
code-generating source line after the call. This is because the
return value of the PC that is included with the trace event is the
“return address”; the instruction that will execute after the called
function.

NightTrace will always attempt to map the PC address in the caller portion of the descrip-
tion to the subprogram and file/line values, but it will not be able to provide this informa-
tion if the corresponding routine wasn’t compiled with debug information.

4-57

NightStar RT Tutorial

When a file and line number is available in an event’s description, you can ask NightTrace
to show you the source line in a text editor using the context menu.

- Right-click the mouse on the description of the ENTER work event and
select the Show Source File From Description... option from the
context menu.

Text Search... Ctri+T
¥ Search Forward Ctrl+G
*® Search Backward Ctrl+B
¥ Goto... Ctri+1

[] Distinguish Process Name by PID
Edit Current Event Description... Ctrl+D
Close All Trace Data Alt+W

Show Source File from Description...

Display Fields »

Figure 4-43. NightTrace - Events Panel Context Menu

NightTrace will load the source file and position your text editor at the appropriate line
number, as shown in the following figure.

) emacs@zippy BEE

File Edit Options Buffers Tools C Help

L8 E X & oo T Mo @ ¢
(~] trace begin ((NULL);

sema = semget (IPC PRIVATE, 1, IPC CREAT+0666);

pthread attr_init(&attr);
H pthread create (&thread, &attr, sine thread, &data[0Q]);

pthread attr init(&attr);
pthread create (&thread, &attr, cosine thread, &datal[l]);

pthread_attr_init(&attr);
pthread create (&thread, &attr, heap thread, NULL);

for (;:) {
struct timespen delay = { 0, rate } ;
nanosleep(&delay,NULL);
work(random() % 1000);
l if (state !'= hold) semop(sema,&trigger,1);

(v
--:%%- app.c 28% L95 (C/L Abbrev)---------cccmomooo |

Figure 4-44. NightTrace - Launches Editor with Source File at Line Number

4-58

Using NightTrace

NOTE

As mentioned above, the return PC is always in the next instruc-
tion after the call, which may mean it is associated with the next
source line, as it is in the example above.

NOTE

NightTrace selects your editor via the EDITOR environment vari-
able.

- Close the editor before proceeding.

Summarizing Workload Performance

Remember that we summarized the workload performance of our threads in a previous
section of this tutorial? We used trace points that we inserted via NightView and defined
states for them.

We’ll do the same basic thing here, but this time we’ll just use the trace events that were
automatically created for us by nlight.

- From the Summary menu select Summarize Functions and then
select Summarize All Events from the submenu.

A panel appears with a summary of all instrumented functions that were called.

Function Call Summary (0 to 4812)
Completed | Total Time ¥ | Min Duration | Max Duration | Avg Duration |Min D'I'Fsetl Max Oﬁsetlnctivel Name

900 29.993_530_399 0.000_000_000 0.050_104 956 0.033_252_251 4812 1826 true semop

3 14.996 382 769 1.948 880 211 5.000 057 676 3.749 095 692 4812 4185 true sleep
300 14.988 897 527 0.000_003_917 0.050 060 280 0.049 797 002 4812 305 true nanosleep
300 0.006_002_366 0.000_000_962 0.000_043 153 0.000_020_008 3169 1821 false work
300 0.000 261 374 0.000_000_446 0.000 006 992 0.000_000 871 3216 2656 false add_link
303 0.000_125_690 0.000_000_185 0.000_005_901 0.000_000 415 3519 583 false mallec
300 0.000_075_874 0.000_000_121 0.000_006_569 0.000_000_253 3675 4171 false random

Figure 4-45. NightTrace - Functions Summary Table

A table is created that presents a single row for each instrumented function. It contains
statistics about the number of invocations, their minimum, maximum, and average length,
and the name of the function.

The column labeled Active indicates whether a function call was ongoing at the end of
the data set (or the end of the summarized interval).

4-59

NightStar RT Tutorial

The context menu provides the following actions:

Save table as text...

Set current time to end of longest call

Resize columns to contents

Set current time to start of shortest call
Set current time to end of shortest call

Set current time to start of longest call

Export table as comma separated list...

Launch detailed summary of calls for this function

You can obtain details of a specific function by right-clicking its row in the table.

- Right click on the row for the work function and select Launch detailed
summary of calls for this function.

A table appears with a row for every invocation of that function.

Call Details for work (0 to 4812)
Duration V| Start Time End Time |Start oﬁset|End oﬁset| Thread E
0.000 043 153 8.684 260 243 8.684 303 395 1816 1821 main
0.000 042 501 12.230 798 813 12.239 841 313 2956 2961 main
0.000_042 338 7.733 230 454 7.733 272 792 1512 1517 main
0.000 041 824 14.843 342 523 14.843 384 347 3788 3793 main
0.000 039 343 11.288 374 448 11.288 413 791 2652 2657 main
0.000 039 318 6.632 063 223 6.632 102 541 1160 1165 main
0.000 039 049 15.043 614 293 15.043 653 342 3852 3857 main
0.000 039 015 7.482 967 786 7.483 006 801 1432 1437 main
0.000 038 895 9.034 830 203 9.034 869 098 1928 1933 main
0.000_038 738 5.480 445 938 5.480 484 676 788 793 main
0.000 038 273 15.294 039 323 15.294 077 597 3932 3937 main
0.000_038 131 7.883 373 082 7.883 411 213 1560 1565 main
0.000 037 968 13.541 495 314 13.541 533 281 3372 3377 main
0.000 037 950 13.341 186 742 13.341 224 692 3308 3313 main @
al EID)]

Figure 4-46. Function Details Table for the work function

This table has a context menu that is similar to the Function Summary table’s context
menu.

Batch Summary of Functions

You can also use ntrace in non-GUI mode to obtain summary information for all func-
tions or for specific functions.

- killall appAI

The previous steps already collected trace data, but instead of using that data, the follow-
ing steps show how to collect it from scratch using just the command line:

4-60

Using NightTrace

./appAI &

ntraceud --join /tmp/data
sleep 5

ntraceud --quit-now /tmp/data
killall appAI

You could invoke ntrace with either of the following commands:

ntrace --verbose --summary=fs:* appAI /tmp/data
ntrace --verbose --summary=fs:work appAI /tmp/data

and it would generate output similar to the contents of the tables generated in the figures
above, without presenting the graphical interface.

Shutting Down

- From the File menu of NightTrace, select Exit Immediately to terminate
the NightTrace session.

Conclusion - NightTrace

This concludes the NightTrace portion of the NightStar RT Tutorial.

4-61

NightStar RT Tutorial

4-62

5
Using NightProbe

NightProbe is a graphical tool for viewing and modifying data from independently execut-
ing programs as well as recording data for subsequent analysis.

This chapter assumes you have already built the app program. If you have not built the
program, do so using the instructions in “Building the Program” on page 1-4.

- Ensure no previous instances of app are running by issuing the following
command:

killall -9 app

- Start the application afresh via the following command before proceeding:

./app &

Invoking NightProbe

Programs to be probed do not need to be instrumented with any special API calls. How-
ever, in order for NightProbe to refer to symbolic variable names, the program should be
compiled with debug information (typically the —g compilation option).

NightProbe takes advantage of significant performance capabilities of the RedHawk ker-
nel, eliminating intrusion on the process by sampling and modifying variables in other
programs using direct memory fetches and stores.

- To invoke NightProbe from any NightStar Tool that is currently running,
go to the Tools menu and select NightProbe Monitor. You may also
invoke NightProbe by using the NightProbe desktop icon or by typing the
following command at a shell command prompt:

nprobe &

5-1

NightStar RT Tutorial

The NightProbe main window is displayed.

&4 NightProbe =03

File Target Programs View Record Tools Help
A0 ¢ $6mE

HE®B O

—MNew Session

| Item | Description

@ TargetSystem raptor

" Programs
T Views

£ @ Recording Idle
@ Timer On Demand

Figure 5-1. NightProbe Main Window

Selecting Processes

NightProbe has the ability to probe several kinds of resources, including programs, shared
memory segments, memory mapped entities, and PCI devices.

- On the Configuration page right-click the Programs icon and select the
Program... menu option.

The Program Selection dialog is presented:

Program
Process Name | H Select... I
PD | H Select... I
S!_,rmboIFiIe[H Select... I
oK Reset Cancel Help
L [| I |]_l

Figure 5-2. Program Selection Dialog

- Press the Select... button to the right of the PID field

5-2

v

Using NightProbe

The Process Selection dialog appears.

L

DO DE x
— Processes
Target: raptor
Filter I.* J [Filter] [Clear] Apply To
‘ PID | Owner Vl Name | Command ||
1 root init fshinfinit L
1741 root syslogd fshin/syslogd
1745 root klogd fshin/klogd
1757 root portmap fshinfportmap
1777 root rpc.statd fshinfrpc.statd
1789 root mdadm /shin/mdadm @
4] | E1D]
S — o | |
[0]4] [Cancel]

Figure 5-3. Process Selection Dialog

- Enter ~app in the Filter field and press the Enter key.
The list is filtered to only those process whose name starts with app.

- Locate the program in the table and select it. (If there is only one matching
program it will already be selected.)

- Press Enter again to close the dialog.

The process ID associated with the app program is placed in the PID text field and the
Process Name and Symbol File text fields are updated accordingly.

- Press OK to close the dialog.

The app program is added to the list of resources to be probed as is shown under the Pro-
grams item in the Configuration page and to the tree inside the Browse tab, which
has automatically been raised.

Viewing Live Data

- Ensure that the Browse tab is raised; click on it if it is not.

5-3

NightStar RT Tutorial

5-4

File Target Programs View Record Tools Help

ZAEID « S0

hd NightProbe =8/%|

The Live Browser is displayed inside the Browse tab.

HE®B O

— Live Browser

Fier [‘ [Filter] [Tl] | Apply To Variables |+ | [View Al B

| Iem | Value |
E- 45 app pid=31229

L

4

Figure 5-4. NightProbe Browse Panel

The Browse page serves two purposes. It allows you to browse your program to select
variables of interest for recording or for viewing with alternative View panels.

It also provides you instant viewing of variables using the tree shown directly within the
Browse page.

- Expand the app entry in the tree.

The items under a program’s icon include all global variables as well as any nested scopes
such as Ada packages, or functions that contain static data items.

Each variable item has an icon which indicates whether the variable is a scalar, a pointer,
or a composite item such as an array or structure.

The data variable is a composite object and can be expanded.

- Expand the data variable.

Using NightProbe

Item Value
= 0 iapp i pid=4640
Fi- Ty add ik
El head 0x08040220
£l 5] data
E- [@F] datal0]

E| SEMa 2949149

El tail 0x08042200
E| rate 50000000
- [5] ptrs

[=] state rur

Figure 5-5. Expanded Data Item

If you do not see values but rather “cannot access object,” then you may need to adjust
your system settings to allow NightProbe to see variables.

See “Enabling Full NightStar Support” in the NightStar Installation Guide. You may need
to adjust the sysctl variable kernel.yama.ptrace scope.

The downward pointing chevron w# is the array subscript expansion icon. By clicking
the icon, an additional component of the array is shown. Click the array expansion icon so
that data[1] is shown

- Expand both structures displayed, data[0] and data[1].

In the Browse page, the current value of all variables shown in the tree is displayed
whenever you press the Refresh button at the bottom of the page, and whenever an auto-
matic refresh occurs as controlled by the Auto Refresh checkbox.

- Click the Auto Refresh checkbox.

This causes the display to automatically refresh at the rate shown in the spinbox to the
right of the Auto Refresh checkbox.

Note the values of the count, angle, and value components of each component of the data
array changing.

Modifying Variables

The app main program wakes each thread iteratively to do processing. The state vari-
able controls whether or not this should occur.

Note that the current value of the state variable is the enumeration value run.

5-5

NightStar RT Tutorial

- Double-click the value of the state variable.

ltem Value
2 &5 app pid=31450
=N [bz] data
B [1F] data[0]
- [#] name 0x08048edc
- [®] count 23008
- [m] delta 8.726646259971648E-03
~[m] angle 2.015680753127312E+02
- [m] value 4.848096201641618E-01
=l [m8] data[l]
- [#] name 0x08048e50
- [®] count 23008
- [m] delta 8.726646259971648E-03
~[m] angle 2.015680753127312E+02
- [m] value 8.746197071840462E-01
- [®] sema 1081359
- [m] rate 50000000
(- [Bz] ptrs
- [A] state [m

Figure 5-6. Variable Modification in Progress

The cell containing the value is frozen from updates and the current value is selected.

To change the value of a variable, all we need to do is supply a new value and commit the

change to the program.

- Type the following in the cell:

hold

- Press the Enter key to commit the value to the program.

The value of the state variable is now hold which prevents the program from waking the

threads for computation, as shown in the source code snippet from app. c:

95
96
97
98
99
100

;i) A
struct timespec delay = {
nanosleep (&delay,NULL) ;
work (random () % 1000);
if (state != hold) semop(sema.é&trigger,1);

for

0, rate };

}

- Change the value of the state variable back to run by double-clicking the
value which is displaying ho1ld and then using the option list chevron icon
w7 (shown at the right most part of the value row), select run and press

Enter.

5-6

Using NightProbe

Selecting Variables for Recording and Alternative Viewing

[NightProbe

File Target Programs

Each variable has a Mark and a Record attribute. The Mark attribute, when set, indi-
cates that the variable is of particular interest and may be viewed in other panels. The

Record attribute specifies that the variable is to be included in recording sessions.

Double-clicking an item causes the icon color to turn red and sets its Mark and Record
attributes. Alternatively, you can use an item’s context menu to individually set its attri-

butes.

- Double-click the count, angle, and value fields in the ltem column

from both data[0] and data[1] structures.

- Double-click the rate variable in the ltem column.

The Browse page tree should look similar to the following:

P a3E >

~Live Browse

Configuration | Browse

View Record Tools Help

x|

HE®B @

r

Filter [] [Filter I [Clear I Apply To Variables |+ [View Al -
Item | Value ‘
= 4% app pid=31450
B [mz] data
- [E] datal0]
- [#] name 0x08048edc
- [l count 26674
- [=] delta B.720046259971648E-03
- Il angle 2327745623383434E+02
- [l value 2.923717045885066E-01
El- [@2] data[1]
- [#] name 0x08048e50
- [l count 26593
- [=] delta B.726046259971648E-03
- Il angle 2327745623383434E+02
- [value 9.563047560040737E-01
- [=] sema 1081359
~ Ml rate 50000000
[} W8] ptrs
‘ El state run

Auto Refresh (X

-

4

Figure 5-7. Mark and Record Attributes Set

5-7

NightStar RT Tutorial

Selection of Views

NightProbe provides various methods for viewing data:

¢ The Browse page
® List View

* Table View

® Spreadsheet View
¢ Graph View

Additionally, you can stream the output of a recording session to NightTrace or a user
application for live analysis, or to a file for subsequent analysis within NightProbe.

Table View

5-8

The Table view provides a scrollable table with variables spread across the columns and
rows containing the values of the variables, over time.

- From the View menu select the Table option.

File Target Programs View Record Tools Help

FPAED +JF>0 ELHEB O

| Configuration | Browse || Teble |

Table

Mode: [View Live Samples |v]

Sample #: 0

Automatic Sampling [| :@

Figure 5-8. Table View

Using NightProbe

Initially, the table is empty. The first step is to select the items we wish to display in the
table.

- Press the Select Items... button.

) Select Items for View N

~Table View Item Selection

Select items to be shown in Table View.

Select items from the table below, which is populated
with Marked and Recorded variables. Click the
Browse button to add more items to the table.

| Show | Item

% data[0l.count
data[0].angle

datal[0].value

datal1ll.angle
datal1].value

rate

(%]
(]
[%| data[ll.count
(%]
(%]
(%]

[Browse... H Cancel H Help]

Figure 5-9. Item Selection Dialog

This dialog allows you to select items that have the Mark or Record attribute set.
By default, the dialog sets up defaults to display such variables.

- Hide all elements of the data [1] component by clicking their rows in the
Show column to deselect them.

- Press the OK button.

The table now has five columns, one for the sample number and one for each of the vari-
ables we selected in the previous step.

- Check the Automatic Sampling checkbox

NightStar RT Tutorial

At the rate defined in the spinbox to the right of the Automatic Sampling checkbox,
new samples are taken of the variables in the table.

NightProbe - O @
File Target Programs View Record Tools Help
FPaaEdDd « S0 = ®
Configuration | Browse | Table
Table [F[x
Mode: View Live Samples ~ | Select ltems...
Sample 4| count angle value rate 1=

22 73391 6.404572956656693e+02 -4.146932425742287e-01 123456789 L
23 73399 6.405271088357495e+02 -3.502073811747211e-01 123456789
24 73407 6.405969220058296e+02 -2.840153446168360e-01 123456789
25 73415 6.406667351759097e+02 -2.164396138490863e-01 123456789
26 73423 6.407365483459898e+02 -1.478094110390872e-01 123456789
27 73432 6.408150881623300e+02 -6.975647365242563e-02 123456789
28 73440 6.408849013324101e+02 9.227451858053441e-11 123456789
29 73448 6.409547145024902e+02 6.975647383652511e-02 123456789
30 73456 6.410245276725703e+02 1.391731010521370e-01 123456789
31 73464 6.410943408426505e+02 2.079116909090472e-01 123456789
32 73472 6.411641540127306e+02 2.756373559070485e-01 123456789
33 73480 6.412339671828107e+02 3.420201434140273e-01 123456789
34 73488 6.413037803528908e+02 4.067366431620207e-01 123456789
35 73496 6.413735935229710e+02 4.694715628695333e-01 123456789
36 73504 6.414434066930511e+02 5.299192643138390e-01 123456789 ‘Z]
L 13513 A 4151321086313 3040 S LIIC505 238067000 00 123ASAIC0 :

Sample #: 406388

Sample Automatic Sampling X/ | 1.50s & Clear

Figure 5-10. Table in Automatic Sampling Mode

Values are shown in blue if they have changed since the previous sample.
You can sort by variable value by clicking on a column header.

- Clear the Automatic Sampling checkbox

- Click on the column header for value and then click again so that the table
is sorted from largest to smallest value.

The value shown at the top should be nearly 1.0 if enough samples have been taken (the
value of data[0].value is that of a sine wave).

You can modify variables using the Table view in the same manner as described in
“Modifying Variables” on page 5-5. The difference here is that the cell you click on is the
value of a sample already taken. When you change the cell’s value, the variable’s value
changes immediately within the program, but the cell reverts to the previously sampled
value.

New samples will show the effects of the modification.

- Click on the Sample column header until it is sorted from smallest to
largest.

- Check the Automatic Sampling checkbox.

5-10

- Click the scrollbar box and drag it all the way down to the bottom of the

scrollbar and release.

New values will again be shown at the bottom of the table.

Using NightProbe

Graph View
The Graph panel presents individual variables as separate lines on a graph.
- Go to the View menu and select Add New Page.
- Go the View menu and select Graph.
a NightProbe =)=
File Target Programs View Record Tools Help
FPaEdD « S0 ELHEHSE O
[Configuration | Browse | Tahble IF‘EQE‘!_I
Graph
Mode: [View Live Samples |v]
1000 —
800
@ 600 -]
3]
S 400
200
o -
— Y777
0 200 400 600 800 1000
Most Recent Samples
ames 0 somicsests (4] (3] (] %)

4

Figure 5-11. Graph Panel

Initially, the graph is empty.

- Press the Select items... button.

Unlike the table view, none of the items in the Select Items for View dialog are
selected to be shown. Typically, only one or very few items are shown on a single graph.

- Mark the data[0].value and data[l].value items to show by

clicking their respective rows in the Show column.

- Press the OK button.

5-11

NightStar RT Tutorial

5-12

- Ensure the Automatic Sampling checkbox is checked.

- Change the refresh rate to 1.0 seconds in the spinbox to the right of the

Automatic Sampling checkbox.

Two lines begin to be plotted as shown below.

File Target Programs View Record Tools Help

FPAED + SN EHES O

[Configuration | Browse | Table J Fage 4 l

Graph

Mode: [View Live Samples |vl Select Items...

0 10 20 30 40 50 60
Most Recent Samples

Autormatic Sampling (%] E

g 3 v sons % [4] (3] 4] (%] (B (2]

1 —
] ‘M/"\\ + data[0].value
05 _f X/-‘\ '.-‘/ y LY \ + data[l].value
o] \' \ / / | \'l y
3] r \
E 0 E \"'.\ \\l g g \ h"-
0.5 - ."'!‘ \ .
1 E x-. .’-"’ \“' -

Figure 5-12. Graph Panel Actively Displaying Values

- Select the Edit... option from the context menu of one of the value items in
the legend at the right-hand side of the graph panel. Right-click to activate

the context menu.

al Edit Curve (=1E3)

Variable: data[0].value
— Attributes

sy [side |
symbol (Elipse |+

Color

EI

ling...

" o |[cancel |[wep |

Figure 5-13. Edit Curve Attributes Dialog

.
F

Target

Using NightProbe

- Select Sticks from the Style option list.

- Click on the colored block to activate a color selection dialog to change the
color, if you want.

- Press the OK button to close the color selection dialog.

- Press the OK button to close the Edit Curve Attributes dialog.

NightProbe

Programs View Record Tools Help

PAED® « Sl EHES - B

[Configuration | Browse | Tahble I Pageil

Values

Mode: [Viaw Live Samples |v]

[

(=]
L

(=]

=]
n

o data[0].value

i
=

e 1 s () (2] (2] (30)
Automatic Sampling (%]

-||| ““"l 'I|| “|||. .||“ ““p I|“ ‘
L L L L L L L L L L L T 1 1]
0 40

0 2 60 80 100 120 140
Most Recent Samples

Figure 5-14. Graph Panel with Modified Curves

5-13

NightStar RT Tutorial

- Press the Zoom In icon repeatedly until the desired detail level is reached.

<) NightProbe lEJ l@J l@J

File Target

Programs

FPRAEDDE ¢« S0

View PRecord Tools Help

HE®B @

[Configuration | Browse | Table ‘ F’aQEiI

Graph
Mode: [View Live Samples |v]
1 —— — -
E Fal “‘,‘ 11111 - =" o data[0].value
: P \=\' - o
0.5 / T 1, / = data[l].value

T L] "
w0 - ! I\. L] /
a] :" 1 Y ® :’
% 0 ,-" t “l‘ o ’.«-’

: "- a AN "'
> . [4] .‘-.. ‘ l /]

0.5 |1 & . ‘
] ~ \) *
i * g e
1 — - a48 v ’ “.—-'..f.l ‘ L) a4B * :
L s e e e e ey o L B A e s s
60 70 80 90 100
Most Recent Samples

e ts somscsons 0 (4] (3] (2] (=] (] (]

4

5-14

The program uses the rate variable to determine the frequency at which the threads are

Figure 5-15. Graph Zoomed In

- Check the Automatic Scaling checkbox if it is not already checked.

- Change the refresh rate to 0.5 seconds

activated to do their calculations.

- Using the Browse page or the Table panel, change the value of the rate
variable from 50000000 to 25000000.

- Click the Page 4 tab to see the graph.

Using NightProbe

This change effectively doubles the frequency at which the threads operate, so the sine and
cosine waves will change shape, as shown below.

]
File

AP D ¢« S0

Target

Programs View Record Tools Help

NightProbe =

HEB @

[Configuration | Browse | Table I Pageil

Values

1_

Sample #: 211

[=]
o L
NI AT A

=]
tn

i
=

Graph

Mode: lview Live Samples |v] Select Items...

Automatic Sampling (%] -

» data[0].value

\m\l | |
|H|| I Hnn

1|||\ mm Hl' '| w' 5 II l\l JN
20!] 250

1uu 150
Most Recent Samples

= (4] 2] (&) (=] (2] (8] [sompiess]

4

Sending Probed Data to Other Programs

Data values may be recorded to files for subsequent processing, or may be recorded and
streamed to NightTrace for live processing.

Similarly, you can send recorded data to any process of choice.

5-15

NightStar RT Tutorial

- Raise the Configuration page by clicking on its tab.

File Target Programs View Record Tools Help

P03 ¢ %M

HEB @

Configuration | Browse

—MNew Session

tem Description

- [Target System zZippy
&~ & Programs
[* app pid=21710

Playback

= @@ Recording Idle
b (1 Timer 1 Seconds
- 4 Destinations
£~ [m] Variables
i [] datalOl.count int
.. [a] datal[0].angle double
i [@] datal0l.value double
.. [1] datal1ll.count int
.. [@] datalll.angle double
i [m] datal[ll.value double
[=] state =anon-type>

Figure 5-16. Recording area of Configuration Page

The Recording portion of the configuration tree indicates the Timing source for record-
ing, the recording Destinations, and the list of variables whose Record attributes are
set.

- Right-click on the Timer item in the Recording tree and select the
Clock... option from the Timer sub-menu.

Sampling Interval: [1.000000000 [2] [seconds |~

| ok || Reset || cancel || relp |

Figure 5-17. Clock Selection Dialog

This dialog controls the rate at which recording samples will be taken.

- Change the Sampling Interval value to 100.0.

- Change the units to Milliseconds using the Sampling Interval option
list.

- Press the OK button.

5-16

Using NightProbe

The Timer item and description in the tree changes to reflect this activity.

The recording destination will be a user application.

- Right-click the Destinations item and select To Program...

B Record To Program x
General FEBS Advanced
—Process
Program Path || J
Program Arguments []

Output File [.l'dev.l’null

==

Working Directory [

==

X Display [:o.o

— Activiation

Launch From | MightProbe Server H

When Stopping [Terrninahe Process |vl

oK H Cancel H Help

Figure 5-18. Record To Program Dialog

- Type api into the Program Path text field.

- Replace the /dev/null text in the Output File text field with the fol-

lowing.

/tmp/api.out

- Press the OK button.

A simple application which uses the NightProbe API to consume and print the values of
recorded samples was copied into the tutorial directory in “Creating a Tutorial Direc-

tory” on page 1-4.

The API program should already have been built. If not, see “Building the Program” on
page 1-4, type make, and then return here.

5-17

NightStar RT Tutorial

5-18

The Recording area of the Configuration page should look similar to the following.

Hem Descriplion
[Target System narf

pid=18128

Playback

- () Recording Idle
100 Milliseconds

fhome/jeffhiworktutorial/api

- [m] data[d].count int
- [w] data[0].angle double
- [m] data[d].value double
- [m] data[1].count int
- [m] data[1].angle double
- [w] data[1].value double

- [m] rate int

Figure 5-19. Recording Area of Configuration Page w/ Destination

Now that we have selected the variables to record, the recording timing source, and the
recording destination, we can proceed to record samples and stream them to the api
application.

- Press the Record icon .' on the toolbar:

- View the output of the api program as samples are recorded and passed to
it.

- Enter the following command in a terminal session:

tail -f /tmp/api.out

Using NightProbe

The program will generate output similar to the following:

gnome-terminal

File Edit WView Terminal Tabs Help

Figure 5-20. Example Output of Graph Program

- Stop the recording process by pressing the Stop icon [on the Recording
toolbar, then press Ctrl+C to gain terminal control.

For more information on the NightProbe API, refer to the “NightProbe API” chapter in the
NightProbe User’s Guide.

Using Datamon to Modify Program Variables

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.

Data Monitoring allows you to specify executable programs that contain Ada, C, C++, or
Fortran variables to be monitored, obtain and modify the values of selected variables by
specifying their names, and obtain information about the variables such as their addresses,
types, and sizes.

NOTE

Ada programs are only supported if compiled with the Concurrent
MAXAda compiler which generates proper DWARF debug infor-
mation.

5-19

NightStar RT Tutorial

5-20

Data Monitoring is a powerful capability with a rich API. It also allows you to obtain
detailed symbolic and attribute information for variables in a program file. However, for
our purposes, we will write a very simple program which changes the value of a single
variable.

Refer to the Data Monitoring Reference Manual for more information about Data Moni-
toring.

NOTE

Use of the Data Monitoring API to read and write variables in
executing programs is only supported under SLERT version
1.0-1.6.

The source code for our set_rate program follows:

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
if((x)) {fprintf (stderr, "%s\n", dm get error string());exit(l);}

main (int argc, char * argv[])
{
program descriptor t pgm;
object descriptor t obj;
char buffer[100];

if (argc !'= 2) {
fprintf (stderr, "Usage: set rate integer-value\n");
exit (1) ;

}

check (dm_open_ program("app", 0, &pgm)) ;

check (dm get descriptor("rate",0,pgm, &0bj));
check (dm_get value (&0bj,buffer, sizeof (buffer)));
check (dm_set value (&0bj,argv([1]));

printf ("rate: old value=%s, newfvalue:%s\n", buffer, argv[l]);

}

The dm_open program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

The dm_get descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
app process into the monitoring process.

The dm get value and dm set value routines return and set the value of the vari-
able using direct memory reads and writes; the app process is not affected in any other
way than having the value of the rate variable changed.

The set_rate. c source file was copied into the current working directory during the
activities in “Creating a Tutorial Directory” on page 1-4. The set_rate program should

Using NightProbe

have already been built. If not, see “Building the Program” on page 1-4, type make, and
then return here.

While this portion of the tutorial is in no way dependent on NightProbe itself, we will use
NightProbe to see the effect of changing the rate variable using the Datamon API.

- Raise the Graph panel by clicking on the tab labeled Page 4 in Night-
Probe.

- Use the Pan Right button } in the graph panel to move the viewport to
the end of the graph set -- click the button repeatedly until the end of the
graph is seen.

- Change the value of the rate variable in the app process by issuing the
following command:

./set_rate 123456789

As shown in the source code above, the program prints the previous value of the rate
variable and then sets it to the value specified as an argument to set_rate.

The sine and cosine waves change shape as shown in the Graph panel.

Conclusion - NightProbe

To terminate NightProbe operations, execute the following steps:
- Go to the File menu and select Exit Immediately.

This concludes the NightProbe portion of the NightStar RT Tutorial.

5-21

NightStar RT Tutorial

5-22

6

Using NightTune

NightTune is a graphical tool for analyzing and adjusting system activities.

This chapter assumes you have already built the app program and it is running. If you
have not built the program and it isn't running, do so using the instructions in “Building
the Program” on page 1-4 and execute the application before proceeding: ./app &

Invoking NightTune

- Launch NightTune at a command prompt with the following command:

ntune &

Or, launch it by double-clicking on the NightTune desktop icon.

For some aspects of this tutorial, it will be necessary to execute NightTune as the root
user or to ensure that your user account has appropriate privileges. See the “Setting Up

User Privileges” on page 1-2 for more information.

(dl NightTune

File View Monitor Tools Help

PRRa BN @S2+ RS /] B@L crmrmsrfmn [[|F> X o

raptor Process List: raptor CPU Shielding and Binding:

PID |State | Parent| Size | %CPU | CPU Time |CPU Affinity | Nice |RPri|CL| Command ¥ | | raptor: Intel(R) Xeon(TM) CPU 2.40GHz

} =} System
- Chip 0
CEe(h F O @D CPUD 0% Usage]
Ceefh y O S @ cPu2 (0% Usage]
Ei- Chip 3
h # OF W CPUL 1% Usage]
By # O S CPU3 B% Usagel

raptor CPU Usage:

CPUO

CPU1

CPU2

0

ey [) (0

CPU3 |

100

Figure 6-1. NightTune Initial Panels

6-1

NightStar RT Tutorial

NOTE

If you have used NightTune before, you may have customized the
layout of items within NightTune. You might want to reset the
layout to the default one during this session, as is used in this tuto-
rial. If so, go to the File menu and select Load System
Default Configuration.

Monitoring a Process

First monitor the running app process.

- Inthe Process List panel, click anywhere within the panel and then type
Ctrl+F.

- A Find bar appears at the bottom of the panel. Type “app, and the pro-
cess list will automatically expand and the first process whose process
name starts with the word “app” will be selected.

narf Process List:

| PID | State |Parent| size |%CPI.I|CPI.ITimelCPUlﬁﬁnitleimll!PriIEl Command AB
- @ haldaemon

@ jeffh

- @ jojo

1 32436

31430 Running 1 31896 5.7 49.35 1 all 0 0 OT i L. @ ntune
31333 \Waiting 31257 9144 1.4 4.59 1 all 0 0 or 4 sshd
31336 \Waiting 31333 4464 0.0 0.24 1 all 0 0 oT .. §& bash
messagebus
mysql

ntp

root

rtkit

statd

syslog
tomcaté

Find: |app J 4 Next 4 Previous [| Match case Found

EEEEEEEE O

Figure 6-2. Expanded Process List

If the selected process is not your app process, press the Next icon ¥ Next in the Find
bar until the correct process is selected.

As shown below, notice that the icon associated with the app process has a small gray
gear superimposed on the orange process icon. This indicates that process is
multi-threaded.

o

Using NightTune

- From the context menu associated with the app process, select the Show
Threads option.

jeffh-pc Process List:
PID | state |Parent| size |%cpu|cpu TimelCPUlAfﬁnitleicelRPrilCL| command a
1685 Waiting 1610 12624 0.0 0.03 3 all 0 0 oT L. §# ssh-agent
- @ mdm
- @ messagebus
G- @ nobody
Cl- @ root
1 Waiting 0 27084 0.0 1.32 3 all 0 0 oT G- @ init
2 Waiting 0 0 0.0 0,00 0 al o 0 oT Gl & kthreadd
5419 Waiting 2312 20852 0.0 0.01 0 all 0 0 oT G- §§ sudo
5820 Waiting 5764 20852 0.0 0.00 3 all 0 0 oT E- §# sudo
5821 Waiting 5820 22016 0.0 0.07 0 all 0 0 oT E- §§ bash
5906 Waiting 0.0 0.05 1 all 0 0 oT i main
5907 Running 99.9 77.53 2 all 0 50 FF watchdog_thread
5908 Waiting 0.0 0.00 1 all 0 0 oT sin
5908 Waiting 0.0 0.00 0 all 0 0 oT cos
5910 Waiting 0.0 0.00 0 all 0 0 oT . heap_thread
5911 Running 5821 103248 2.4 271 3 all 0 0 oT L. & ntune
o @ rtkit
Cl- @ syslog @
483 1 247468 0.0 0.47 . 4% rsyslogd
Find: ["app] ¥ Next 4 Previous [| Match case Found

Figure 6-3. Process List with Threads

The panel shows characteristics of each thread and of the entire process. In particular,
they include:

* the virtual memory size of the process

¢ the percentage and amount of CPU time used by each thread and by the
whole process

® CPU on which each thread ran most recently

* CPU affinity for each thread (the set of CPUs on which the thread is
allowed to run)

¢ scheduling characteristics of each thread

¢ the thread name, if it is being debugged by NightView, or, if the application
is using the NightTrace API and names its threads via a call to
trace_set_thread name (3x)

The set of columns displayed can be modified by clicking the Display Fields option of
the context menu for the panel, and then choosing individual fields by checking or
unchecking their menu items.

Tracing System Calls

NightTune provides a handy interface for tracing system calls made by a process. This is
essentially the same as using the strace(1) command, except that NightTune provides the
output in a dialog which can be searched and controlled.

6-3

NightStar RT Tutorial

- From the context menu associated with the sin thread in the app program,
select the Trace System Calls... option then press the start button,
which is an aqua-colored right arrow.

S

e =

semop(98304, 0xb79ab3ae, 1) 0 (2]
semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) =0

semop(98304, 0xb79ab3ae, 1) 0 "
semop(98304, 0xb79ab3ae, 1 h =
Strace Options] D E] [Close] [Help l

Figure 6-4. Strace Output of Thread

As shown in the figure above, the selected thread makes no system calls other than
semop (2) which is associated with the line 51 of api . ¢, as shown in this code seg-

ment:
41 void *
42 sine thread (void * ptr)
43 |
44 control t * data = (control t *)ptr;
45 struct sembuf wait = {0, -1, 0};
46 work (1) ;
47
48 trace set thread name (data->name);
49
50 for (;7) |
51 semop (sema, &wait, 1);
52 data->count++;
53 data->angle += data->delta;
54 data->value = sin(data->angle);
55 }
56 }

- Press the Close button to stop the system call trace and close the dialog.

Process Details

NightTune provides detailed analysis of process attributes.

Using NightTune

- Select the Process Details... option from the context menu of any
thread in the app program.

[\ NightTune Process Details: zippy 11292: app

Memeory Usage | Memory Maps | Memory | File Descriptors | Signals | Capabilities | Environment I_.imits]

ke | Usage [N]
Total 24412 Shared | |
Reserved 0 Residency [0 |
Text 8 NUMA []
Library 2416 0 24 4K

21852 .

oy]
Stack 136

Shared: [Shared| [Non-shared
Shared 736 ared: |Shared] [Tomsnared]

Non-Shared | 23676 Residency: RESLEIEITLE] _ Non-resident
Resident 996 NUMA: Nod [l | Non-resident

Locked 0
Unlocked 996

Non-resident | 23416
NUMA Node 0 996

[Update H Close H Help

Figure 6-5. Process Details Dialog

All information displayed in this dialog is read-only in nature. You cannot make changes
to process attributes using this dialog, except for locking memory pages on the Memory
tab.

Eight tabbed pages provide detailed information about the process, including:

* Memory Usage
* Memory Maps
* Memory

* File Descriptors
¢ Signals

¢ Capabilities

¢ Environment

* Limits

6-5

NightStar RT Tutorial

The Memory Usage page provides summary information of the virtual and resident
usage of memory in both textual and graphical panes.

Process Details - Memory Details

- Click on the Memory tab to raise that page.

A NightTune Process Details: zippy 11292: app)
[Memory Usage | Memory Maps | Memory | File Descriptors | Signals | Capabilities | Envirenment | Limits
NUMA Node
| |
Local NUMA Node
| |
Locked /
| |
Exists
| | | |
0x00007fff53__ 0000
ce do d2 d4 de ds da dc de el e2 ed e6 es ea ec
I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I
0x 000000000000000
0 1 2 3 4 3 3] 7 2 9 a b C d e f
I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I

Current Page: | 0x00007ff5adf7000

Zoom Max

NUMA Mode:

Change Page Locking...l

File Mapping: [stack]
Addresses:
Permissions:
Shared: Private
135168
24576

Default

Size:
Resident:
NUMA Policy:

Status: Monresident

~Memory Regicen Infermation

0x00007fff5adef000 - 0x00007fff5as0ffff
% Read % Write [| Execute

[Previous Region] [Previous Page] [Zoom Out] [Next Page] [Next Region]
[| [shift Left | [{"Zoom in || | Shift Right | | Shift Max |

Zoom Min

Shift Min

Active: 24576 Shared:

Inactive: 110592 Shared Clean:
Backed by Swap: 0 Shared Dirty:
Private:

Private Clean:

Private Dirty:

[Updggﬂ[Close H Help

Figure 6-6. Process Memory Details Page

This dialog provides controls to allow you to get detailed memory information for any
segment or page within the address space.

The controls in the graphical rows are similar to NightTrace in nature.

- Click anywhere on or above the rulers.

- Press Alt+Up keys to zoom out completely.

Using NightTune

The process’s entire address space is now displayed. Each segment of the memory
address space that is associated with pages in your process is indicated by at least a single
vertical black line in the Exists row.

- If no lines are visible in the middle portion of the display, click Previous
Region and then Zoom In multiple times until you see something.

- Use the mouse wheel or the Zoom In button to zoom in until sufficient
detail is available.

In the figure above, memory segments are shown as gray areas in the Exists row. The
boundaries of memory segments are shown as vertical black lines. If the zoom factor is
large enough, a memory segment may be portrayed as merely one or two vertical black
lines.

Details about the memory segment are shown in the textual area in the bottom portion of
the page.

The other rows show per-page information, including NUMA pools, and Locked and Res-
ident attributes of the page.
NOTE
Locked and Resident information may not be available on all
operating system versions. NUMA information is only applicable

to systems supporting a Non-Uniform Memory Architecture and
the information is only provided by some operating systems.

Alternatively, you can select a specific address by typing it into the Current Page text
field.

See the NightTune User’s Guide for more information on the Memory page.
Process Details - File Descriptors

The File Descriptors page lists all open file descriptors associated with the process, and
provides a description of each.

6-7

NightStar RT Tutorial

0-8

The figure below shows the file descriptors in use by an ntune process.

Memory Usage | Memory Maps | Memory | File Descriptors | Signals | Capabilities | Envionment | Limits |

Pathname/Description L]

M e e e
Rir[glelslslala/eERlEBlelalvlalalalulnlnle

Jdev/pts/1 pos=0 mode=0_RDWR flags=[0_LARGEFILE]

Jdev/pts/1 pos=0 mode=0 RDWR flags=[0_LARGEFILE]

Jdev/pts/1 pos=0 mode=0_RDWR flags=[0_LARGEFILE]

pipe:[1074970] (pid 20352/ntune fd 4) pos=0 mode=0_RDONLY flags=[0_NONBLOCK O_CLOEXEC]
pipe:[1074970] (pid 20352/ntune fd 3) pos=0 mode=0_WRONLY flags=[0_NONBLOCK O_CLOEXEC]
pipe:[1074973] (pid 20352/ntune fd 6) pos=0 mode=0_RDONLY flags=[0_NONBLOCK O_CLOEXEC]
pipe:[1074973] (pid 20352/ntune fd 5) pos=0 mode=0_WRONLY flags=[0_NONBLOCK O_CLOEXEC]
socket:[1074974]: unix/stream: state=CONNECTED pos=0 mode=0_RDWR flags=[0_NONBLOCK O_CLOEXEC]
socket:[1074975]: unix/stream: state=CONNECTED pos=0 mode=0_RDWR flags=[0_CLOEXEC]
socket:[1074982]: tcp: local=zippy:58073 remote=zippy:25517 state=ESTABLISHED pos=0 mode=0_RDWR flags=[...
/proc pos=4194561 mode=0_RDONLY flags=[0_NONBLOCK O_LARGEFILE O_DIRECTORY O_CLOEXEC]
Jproc/shield/procs pos=3 mode=0_RDONLY flags=[O_LARGEFILE O_CLOEXEC]

R . a c 2
/proc/shig File or device associated with the file descriptor in cne of these formats:

Jproc/shie| filename

filename (deleted)

pipe:linode] (other-pid) ...

Jproc/stat| socket:[inedel: tcp/udp/raw: local=ip:port remote=ip:port state=s (other-pid) ...
socket:[inodel: unix: name=associated-filename state=s

socket:[inodel: packet

/proc/vms|States are either TCP states like ESTABLISHED, LISTEN, FIN_WAIT1,

etc., or STREAM states like LISTENING, CONNECTED, etc.

Other-pids are other processes on this system either using the same
/sys/devic|pipe inode, or connected to the other end of a socket. ID_CLOEXEC]

Jproc/diskstats pos=1830 mode=0_RDOMNLY flags=[0_LARGEFILE O_CLOEXEC]

Jprocjccul

Jproc/mer

Jsys/devic O_CLOEXEC]

Jprecfinterrupts pes=6227 mode=0_RDONLY flags=[0_LARGEFILE O_CLOEXEC]

Jproc/20352/net/dev pos=702 mode=0_RDONLY flags=[0_LARGEFILE O_CLOEXEC] E

| Update || Close || Help |

Figure 6-7. File Descriptors Page

The description includes the file name associated with a file descriptor (when relevant),
connection information for a socket, and even identifies other processes using a pipe or

socket when those processes are on the same system.

Using NightTune

Process Details - Signals

The Signals table displays attributes of signals.

Memory Usage | Memory Maps | Memory | File Descriptors | Signals | Capabilities | Environment | Limits]

Number & | Name |Ponding|5harod Pending|BIockod|Ignorod|Handlod|mtart| Description B
1 SIGHUP [] | | 5 |] Hangup
2 SIGINT | O O ! O ! Interrupt
3 SIGQUIT [] | | | | | Quit
4 SIGILL 1 1 1 1 1 1 lllegal instruction
5 SIGTRAP (] 1 1] 1] Trace/breakpoint trap
6 SIGABRT [| 1 1 1 1 1 Aborted
7 5IGBUS [} [} [} [l [} [l Bus error
8 SIGFPE 1 1 1 1 1 1 Floating point exception ||
9 SIGKILL [O O] O] Killed
10 SIGUSR1 [] 1 1 1 1 1 User defined signal 1
11 SIGSEGV [] [[[} [[} Segmentation fault
12 SIGUSR2 [] | | 1 [1 User defined signal 2
13 SIGPIPE [] | |] |] Broken pipe
14 SIGALRM [O O 0 O 0 Alarm clock
15 SIGTERM [] | |] |] Terminated
16 SIGSTKFLT [O O ! O ! Stack fault
17 SIGCHLD [] | | 0 | 0 child exited
18 SIGCONT [| | | 1l | 1l Continued
19 SIGSTOP [] (| (| (] (| (] Stopped (signal)
20 SIGTSTP [| 1 1 1 1 1 Stopped
21 SIGTTIN ™ (| (| (] (| (] Stopped (tty input)
22 SIGTTOU [| |:| |:| 1 0 r Stopped (tty output)
23 SIGURG (] [[[} [[} Urgent I/O cendition @

b [Update] [Close l [Help]

Figure 6-8. Signals Page

The information shown includes indicators of signals currently pending or blocked by the
application, as well as whether the application has a handler installed for a signal.

In the figure above, the application has a handler registered for SIGUSR2 and has ignored
SIGHUP.

- Click on the Close button to close the dialog.

6-9

NightStar RT Tutorial
Changing Process Scheduling Parameters

It may be desirable to change the scheduling properties of a thread or process while it is
running to see how that changes the behavior of an application. For instance, perhaps one
thread is being starved of CPU time by other threads. You may wish to change its sched-
uling class to a real-time class and/or its priority to a higher priority.

- On the context menu associated with the sin thread in the app process,
select Process Scheduler... .

orca: NightTune - Process Scheduler (on orca) X

841103 (app)
Priority Current System Values
Scheduling Class: | Other - Scheduling Class: Other

Nice Value: [p : Nice Value: 0

CPU Affinity

CPUs Available: 0-95

CPUs Shielded from Processes: none
CPUs Shielded from IRQs: none

0-95 (mask =0x AT

CPU Affinity: 0-85 (bias=0xffffreeee)

Reset Close Help

Figure 6-9. Process Scheduler Dialog

In this dialog, you can change the Scheduling Class, Nice Value, Real-time Pri-
ority, and/or Time Quantum. On multi-processor systems, you can also change the
CPU Affinity. For each CPU on which the process or thread is allowed to run, the check-
box with the number of that CPU should be checked. See “Setting Process CPU Affinity”
on page 6-11 for more on this topic.

NOTE

To change the Scheduling Class to Round Robin and change the Real-time Pri-
ority, NightTune must be run by the root user or your user account must have appropri-
ate privileges as described in “Setting Up User Privileges” on page 1-2.

- From the Scheduling Class drop down list, select Round Robin.
- Change the Real-Time Priority to 3.

- Press the OK button.

6-10

Using NightTune

The Process List panel now reflects these changes to the thread.

jeffh-pc Process List:
PID | state |Parent| size |%cpu|cpu TimelCPUlAfﬁnitleil:elRPrilCL| command a
1685 Waiting 1610 12624 0.0 0.03 0 all 0 0 oT L. & ssh-agent
@ mdm
@ messagebus
@ nobody
- @ root
1 Waiting 0 27084 0.0 1.32 3 all 0 0 oT G- @ init
2 Waiting 0 o] 0.0 0.00 0 all 0 0 oT G- §& kthreadd
5419 Waiting 2312 20852 0.0 0.01 0 all 0 0 oT @ §§ sudo
5820 Waiting 5764 20852 0.0 0.00 3 all 0 0 oT £ & sudo
5821 Waiting 5820 22016 0.0 0.07 0 all 0 0 oT =
59086 5821 246392 99.9 113.37 e
5906 Waiting 0.0 0.08 1 all 0 0 oT i i @ main
5907 Running 99.9 113.27 2 all 0 50 FF # watchdog_thread
5908 Waiting , 1 0 z
5908 Waiting 0.0 0.01 0 all 0 0 oT # cos
5910 Waiting 0.0 0.00 0 all 0 0 oT L. # heap_thread
5911 Running 5821 103528 2.4 3.68 3 all 0 0 oT - §§ ntune
i @ rtkit
C- @ syslog @
483 1 247468 0.0 0.47 . 4% rsyslogd
Find: ["app] ¥ Next 4 Previous [| Match case Found

Figure 6-10. NightTune Process List with modified thread

For the modified thread, the CL (Scheduling Class) field displays the value RR (Round
Robin), and the RPri (Real-Time Priority) field displays the value 3.

Setting Process CPU Affinity

This section only is applicable if the system running NightTune is a multi-processor sys-
tem. If not, skip to “Conclusion - NightTune” on page 6-17.

6-11

NightStar RT Tutorial

6-12

The CPU Shielding and Binding panel shows the CPU hierarchy, shielding status (on
Concurrent RedHawk Linux only), CPU usage, and process and IRQ bindings.

zippy CPU Shielding and Binding:

zippy: Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz |
|

k- Chip 0
£k Core O
w-(hy #F O ap CPUD [1.0% Usagel
w-(h # O @ am CPU4 [1.9% Usagel
- Core 1
@-¢h # O@an CPUL [0.0% Usagel
w-(y # O @@ CPUS5 [100.0% Usage]
E- Core 2
m-(h) F O an CPU2 [3.4% Usagel
B-() F O @ CPUG [3.4% Usagel
= Core 3
@) # O @ah CPU3 [4.8% Usagel
m-(y # O @@ CPUT [0.5% Usagel

Figure 6-11. CPU Shielding and Binding Panel

The hierarchy is useful in visualizing the relationship of logical CPUs, especially in the
presence of hyper-threaded and multi-core chips.

In the figure above, a single chip contains four physical cores which are hyper-threaded,
totaling eight logical CPUs. Hyper-threaded CPUs share some physical resources between
them, yet operate in all user-visible ways as independent processors. Multi-core CPUs
also share physical resources between their siblings, but much less so than with the
hyper-threaded technology.

A process or thread has a CPU affinity, which determines the set of CPUs on which it may
execute. It may even be restricted such that it may run on only a single CPU. Often this is
called binding the process or thread. “Changing Process Scheduling Parameters” on page
6-10 described one way to change the CPU affinity. In addition, the CPU Shielding
and Binding panel can be used to bind a process or thread quickly.

- Select Expand All from the context menu associated with the System
item in the panel

The tree expands with leaves for bound processes and interrupts for each CPU.

- While the cursor is positioned over one of the threads in the app process,
press and hold the left mouse button, then drag the thread to one of the
CPUs in the CPU Shielding and Binding panel and release the mouse
button.

Using NightTune

zippy CPU Shielding and Binding:

| zippy: Intel(R) Core{TM) i7-2600K CPU @ 3.40GHz |

= Chip 0
£l Core 0
B-(h O@ @ CPUO [6.3% Usagel
- Bound Processes: 0 Threads: 0
- Bound Interrupts: 0
B-(h # O @ CPU4 [1.0% Usagel
... Bound Processes: 0 Threads: 0
... Bound Interrupts: 0
Eh- Core 1
B-(h # OPap CPUL [0.0% Usage]
i . Bound Processes: 0 Threads: 0
- Bound Interrupts: 0
B-(h) F O@ @ CPUS [100.0% Usagel
El- Bound Processes: 1 Threads: 1
| 1.11290 app (1/5)
... Bound Interrupts: 0
El- Core 2
|_=_| (b ;; o @san CPU 2 [2.4% Usagel
i . Bound Processes: 0 Threads: 0
. - Bound Interrupts: 0
B-(h O @ CPUG [0.5% Usagel
... Bound Processes: 0 Threads: 0
... Bound Interrupts: 0
- Core 3
B-(h # OPap CPU3 [1.0% Usage]
i L. Bound Processes: 0 Threads: 0
: - Bound Interrupts: 0
B-(h) F O@ @ CPUT [0.0% Usagel
... Bound Processes: 0 Threads: 0
... Bound Interrupts: 0

Figure 6-12. CPU Shielding and Binding Panel with Bound Thread

This action binds the selected thread to the particular CPU. That is, its CPU affinity is set
to include only that single CPU. When a process’s or thread’s CPU affinity contains only
a single CPU, that process or thread is listed in the CPU Shielding and Binding panel
under the particular CPU’s Processes tab. In the figure above, we bound the sin thread to
CPU and there is one entry under CPU 5. Because only one thread was bound to CPU 1 in
this example, the entry includes the suffix (1/5), indicating that only 1 of the 5 threads is
bound to that CPU.

NOTE

Your system may have additional processes or interrupts bound to
the CPU you selected.

The thread’s new CPU affinity also is reflected in the Affinity field of the Process List
panel. That field displays a bit mask in hexadecimal, where the low order bit represents
CPU 0, the next bit represents CPU 1, etc. In this case, the value 0x20 indicates CPU 5.

6-13

NightStar RT Tutorial

NightTune also can unbind a process quickly.

- While the cursor is over the thread entry in the CPU Shielding and
Binding panel, press and hold the left mouse button, then drag the item to
the Unbind icon #€3 at the upper right of the window (resembling a bro-
ken chain link) and release the mouse button.

The Process List panel will reflect that the thread is unbound once again.
You can also kill programs from within NightTune.

- Inthe Process List panel, click and drag the app program until it hovers
over the Kill icon x and release the mouse.

Setting Interrupt CPU Affinity

6-14

The functionality described in this section only is available if NightTune was executed by
the root user or your user account has appropriate privileges as described in “Setting Up
User Privileges” on page 1-2. If this is not the case, skip to “Conclusion - NightTune” on
page 6-17.

In addition to being able to set the CPU affinity of a process, NightTune can control the
CPU affinity of an interrupt.

It may be desirable to change the CPU affinity of an interrupt. For instance, an interrupt
may be occurring frequently and, depending on the CPU which handles it, may be inter-
fering with an application running on that same CPU.

- Close the Process List panel by clicking on the box in the upper-right of
its title bar.

- Inits place, open the Interrupt Detail Activity panel: From the Moni-
tor menu select the Interrupt Detail Activity option, then the Text
Pane option from its sub-menu.

- Ifyou have a large number of CPUs, a confirmation dialog box will pop up.
Press Yes to continue.

Using NightTune

HEE
File View Monitor Tools Help
- i s o =
PHi Bl @2+FB /) deas D g s vacmam” X a
Pagel | Page2
zippy CPU Shielding and Binding: zippy Interrupt Detall Activity (Interrupts/Second):
CPUS
| zippy: Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz = P | 71 | 2 | 3 | 7 4 | 75 | 7 6 | 7 ||: ription -
= System - -
0 timer 0 0 0 o 0 o 0 0 timer
1i8042 0 o] 0 1] 0 [v] 0 0 8042
O @&an CPUD [1.0% Usage]
A& am CPU4 [1.0% Usagel - o o o o 9o 9o 9 0
8 rtco 0 o] 0 0 0 0 0 0 rtco
4GOSy CPUL [1.9% Usagel . ;
4 O@an CPUS [1.9% Usagel L |9 acpi 0 0 0 0 0 0 0 0 acpi
[} Bound Processes: 1 Threads: 1 12 iso42 0 o] 0 o] 0 o] 0 0 i8042 L
i 13193 app (1/5) = .
. Bound Interrupts: 0 14 ata_piix 22 0 0 0 0 0 0 0 ata_piix
B Core 2 @ 15 ata_piix o 0o 0 0 0 0 0 0 atapix
H - AT X =
: (h#OS@ CPU2 [0.0% Usage] 16 ushl, ... 35 0 0 0 0 0 0 0 ehci_hcd:usbl...
zippy CPU Usage: 17 snd_hda _intel, ... 4 0 0 0 0 0 0 0 snd_hda _intel,...
CPUO[I 18 snd_hda_intel 0 0 0 0 0 0 0 0 snd_hda_intel
CPU 1 [l | 19 ahci, ... 0 V] 0 V] 0 0 0 0 ahci, ata_piix
CPU 2 [1 23 ush2 0 0 0 0 0 0 0 0 ehci_hcd:usb2
CPU 3 [N | | 42 reim 0 0 0 0 0 0 0 0 rcim
CPU 4 [—— 43 ahci o o 0 o 0 0 0 0 ahci
CPU 5
L 44 etho 24 o 0 o 0 0 0 0 etho
CPU 6
45 xhci_hed 0 o] 0 1] 0 [v] 0 0 xhci_hcd
cPU T -
i 0 "] 0 "] 0 0 0 0 xhci_hecd
7 P 46 xhci_hed |
47 xhci_hed 0 0 0 0 0 0 0 0 xhci_hcd
Legend: - System | | Softir m-
9 y_, ._q. & Legend:[5;’ Unshieldede Shielded” ‘b Inactive”-ﬂ- Boundl
4

Figure 6-13. NightTune with Interrupt Detail Activity Panel

The panel shows the number of interrupts per second for each interrupt as handled on each
CPU (if on a multi-processor system).

The chain link icon in the Interrupt Detail Activity panel indicates that an interrupt
may be handled by that particular CPU. However, if an interrupt may be handled by all
CPUs, then no icon appears for that interrupt. The same information is displayed in the
Bound Interrupts items for each CPU in the CPU Shielding and Binding panel.

Some systems may employ IRQ balancing which automatically changes IRQ affinities
over time. This interferes with attempts to control interrupt affinity manually. For pur-
poses of this tutorial, ensure that IRQ balancing is currently disabled by executing the fol-
lowing command as the root user:

sudo systemctl stop irgbalance

To bind an interrupt to a single CPU, it may be dragged in much the same way as a pro-
cess.

While the cursor is over an interrupt in the Interrupt Detail Activity panel, you may
press and hold the left mouse button over any data cell (other than the title) in the row of
an interrupt, then drag the interrupt to the particular CPU in the CPU Shielding and
Binding panel. Similarly, while the cursor is over an interrupt in the Bound Interrupts
list of a CPU in the CPU Shielding and Binding panel, you may press and hold the

6-15

NightStar RT Tutorial

left mouse button, then drag the interrupt to a different CPU in the CPU Shielding and
Binding panel.

To change an interrupt’s affinity to allow multiple CPUs, but possibly exclude one or

more, select the Set CPU Affinity... option from the context menu of any interrupt row
in the panel.

NOTE
As the root user or if your user permissions lack appropriate privi-

leges, the Set CPU Affinity... option will not be present in the
context menu.

orca: NightTune - Interrupt Affinity (on orca) X

127 DMAR-MS| l-edge dmarl iw

Managed Interrupt

Interrupt Affinity Current Affinity
CPUs Available: 0-95 2 (mask=0x4)
CPUs Shielded from Processes: none
CPUs Shielded from IRQs: none
2 (mask=0x4)

Reset Cancel Help

Figure 6-14. Interrupt Affinity Dialog

Specify which CPUs are allowed to handle the interrupt by entering their numbers in the
text box. Comma-separate multiple CPUs, or use a dash to specify a range of CPUs (e.g.,
7,9,11-13). The changes take effect when the OK or Apply button is pressed.

NOTE

For certain interrupts, such as NMI, it is impossible to control
their CPU affinity.

Shielding CPUs for Maximum Determinism and Performance

NightTune allows you to easily shield specific CPUs from processes, interrupts, and
shared resource interference from other CPUs.

This is demonstrated as part of the NightSim section in this tutorial. See “Overrun Detec-
tion and System Tuning” on page 7-10 for more information.

6-16

Using NightTune
Conclusion - NightTune

The remaining portion of the tutorial is unrelated to the execution of the app or worker
programs. Terminate the programs by executing the following steps:

- If the app hasn’t been killed, open the process list via the Monitor menu
and select Process List, search for app and drag the process from the
Process List panel using the left mouse button to the Kill icon x on
the toolbar and release. '

- Do the same for the worker process.

- To terminate NightTune go to the File menu and select Exit.

This concludes the NightTune portion of the NightStar RT Tutorial.

6-17

NightStar RT Tutorial

6-18

7
Using NightSim

NightSim is a graphical tool for scheduling multiple processes in a synchronized manner
and monitoring their execution.

NightSim provides a graphical interface to the Frequency Based Scheduler utilities.

If you don’t have the Frequency Based Scheduler installed on your system, this portion of
the tutorial isn’t applicable to you. Use the following command to see if the Frequency
Based Scheduler is installed:

rpm -q ccur-fbsched (for RHEL/CentOS)
dpkg -1 ccur-fbsched (for Ubuntu)

This chapter of the tutorial also uses a real-time clock interrupt source from the Real-Time
Clock and Interrupt Module (RCIM) which is standard equipment on most Concurrent
iHawk systems. If your system does not include an RCIM device, this portion of the tuto-
rial isn’t applicable to you. Use the following command to see if an RCIM is installed:

cat /proc/driver/rcim/status

If the file shown above does not exist, an RCIM does not exist on your system or your ker-
nel has had the RCIM support removed. If no RCIM is installed, you can check to see if
you have emulated RCIM devices installed:

fgrep rcim-emu /proc/devices

For some aspects of this section, it will be necessary to execute NightSim and NightTune
as the root user or to ensure that your user account has appropriate privileges. See the
“Setting Up User Privileges” on page 1-2 for more information.

Creating FBS Applications

It is trivial to modify cyclic applications so that they may be scheduled via NightSim.

A single API call is required.
The source code for our simplistic work application follows:

#include <fbsched.h>
int workload = 1000;
main ()
{
int data = 0;
int i;
volatile double d = 1.0;
while (fbswait ()>=0) ({
data = !data;
for (i=0; i<workload; ++i) d = d/d;

7-1

NightStar RT Tutorial

The call to fbswait () causes the process to block until its next scheduled cycle at
which point it returns. The process then performs its workload and then loops to block in
fbswait () until its next scheduled cycle.

The work . ¢ source file was copied from /usr/1lib/NightStar/tutorial into the
current working directory in an earlier portion of this tutorial. The work program should
have already been built. If not, see “Building the Program” on page 1-4 , type make, and
then return here.

Invoking NightSim

A NightSim configuration file has been prepared for this tutorial and should have been
copied to your current working directory during the activities in the section entitled “Cre-
ating a Tutorial Directory” on page 1-4.

- Launch NightSim specifying the configuration file, as shown below:

nsim -c nsim.nsc &

7-2

Using NightSim

File Target View Scheduler Moniter Tools Help

U} Il X
Scheduler
Target System: zippy
~ Control ~ Definition ~Interrupt
m m| (%] Automatic Configuration Interrupt Source Iﬁrst Available RTC |v]
Scheduler Key [ﬁ Interrupt Device /dev/rcimy...
| Start | I S l [Fasime | Cycles per Frame [| =] Clock Period/Freq [10.0 |[kHz [+]
Tasks per Cycle [0 2] valid Range (0.000001526 - 1000.0) kHz
Tasks per Frame [—]g]
Refresh Rate m Pemissions E {rwrw rw)
Processes
| PID & | Program | CPU IDsl Policy | Prio |Param| Limit |0v Halt| Deadline |n| Halthriginl Schedule
~ work 0 FIFO 1 0 1 false - - ' '
— idle 0 - - - - = - = -

- [

Cenfiguration File: nsim.nsc 4

Figure 7-1. NightSim Initial Window

NOTE

If NightSim gives you an error about being unable to connect to
the target system, ensure that the hostname of your system is
part of your /etc/hosts file and has a proper IP address.

Creating a Scheduler

NightSim allows you to define the scheduling of multiple processes, using the following
parameters:

® The scheduling source (usually an external interrupt)
® The rate at which the interrupts occur (for clock-based interrupts)
¢ The period at which a process is scheduled

¢ The CPU affinity, scheduling policy and priority of scheduled processes

Collectively, these parameters define a scheduler.

7-3

NightStar RT Tutorial

7-4

A cycle is defined as the time between the scheduling sources (interrupts).

A frame is defined by a fixed number of cycles. Frames are useful concepts in many
cyclic applications where a series of discrete steps (cycles) must be executed in order
before the entire algorithm (frame) repeats.

The scheduler configured by the nsim. nsc file specified on the command line in the pre-
vious section defined a scheduler with the following attributes visible on the main win-
dow:

* Cycles Per Frame -- four cycles per frame

* Timing Source - an interrupt source using the First Available RTC
(real-time clock) of the Real-time Clock and Interrupt Module device
(RCIM)

* Clock Period -- a cycle time of 100 microseconds (10.0 kHz)

* Processes -- a single process, work, scheduled to run on every cycle of
the frameTo view the details of the attributes of the scheduled process,
select the . /work process in the process area at the bottom portion of the
Processes panel and then press the Edit... button in the lower-right por-
tion of the panel.

The Edit Process dialog is displayed.

Using NightSim

[l Add Process (52

Target: zippy

Process Type

@ Schedule a Process

) Measure Idle Time on a CPU

Process Command Line

| Jwork || select...

EBS Schedule | Runtime Properties | I/0 and Debug |

Starting Cycle [0 = N 2] Period within Frame
Parameter |0 1= (Optional)
Arguments [
Soft Overrun Limit |1 @ ["1 Halt FBS if Overrun Limit is Exceeded.

["] Apply Deadline

[HmSec |v]

Cycle-Relative [+

[1 Halt on Deadline Violation

OK H Reset H Cancel H Help

Figure 7-2. NightSim Edit Process Dialog

The FBS Schedule tab shows the starting cycle and period of the work process. The
Starting Cycle defines the cycle within the frame where the process will begin its exe-
cution. The Period defines the frequency of execution, in cycles. A period value of 1
causes the application to execute every cycle in the frame.

- Click on the Runtime Properties tab in the dialog.

7-5

NightStar RT Tutorial

] Add Process 3

Target: zippy

Process Type
@ Schedule a Process

(O Measure Idle Time on a CPU

Process Command Line

[.work] || select...

| EBS Schedule | Runtime Properties | 1/0 and Debug

Working Directory: [] Select...
Scheduling Class: | First In First Qut |-
Priority: |1 IE], (Range: 1-99)

Available CPUS: 0-7

CPU List: |0 (mask=0x1)

OK H Reset H Cancel H Help

Figure 7-3. Runtime Properties Tab

NOTE

The CPU Bias description area of the Runtime Properties
tab may vary depending on the number of CPUs on your system.

The Runtime Properties tab allows you to choose the CPU on which execution is
allowed, the scheduling policy, and the scheduling priority of the process.

- Close the window by pressing the Cancel button.

Notice that in addition to the work process, the idle process is listed in the scheduling
area of the NightSim window. We have registered the idle process so that we may sub-
sequently monitor the amount of idle time available for each cycle. The idle process is
not a process that is scheduled, but rather it is a placeholder used to represent idle cycles.

Using NightSim

Running the Scheduler

To start the scheduling of the process, in the Control area press the Set
up button followed by the Start button.

. File Target View Scheduler Monitor Tools Help
AP E & Op |l X
Scheduler
Target System: zippy
~ Control ~ Definition -~ Interrupt
Setup | " Remove | [# Automatic Configuration Interrupt Source [Real Time Clock rtcO |v]
Running Scheduler Key [ﬁ Interrupt Device /dev/rcim/rtcO
Start over | [Pause l [Resiime | Cycles per Frame = Clock Period/Freq [”kHZ |'|
e liGDaR Tasks per Cycle [2] Valid Range (0.000001526 - 1000.0) kHz
Cycle: 3 Tasks per Frame [—]3]
Refresh Rate Hz [= Permissions E {rwrwrw)
Processes
| PID A| Program |cpu IDsl Policy | Prio |Param| I.imithv Halt| Deadline |DI Halthriginl Schedule
16258 work 0 FIFO 1 0 1 false - - -
— idle 0 - - - = e =
Key: _ w Refresh | [Add l I Copy l [Edit l [Remove
Configuration File: nsim.nsc (unsaved) y

Figure 7-4. Scheduling Started

Note the Frame count begins to increase under the Control area as the Cycle oscillates
between 0 and 3.

- To monitor the execution of the process, click on the Monitor tab near the
top of the window.

Metrics
. . | CPU| Start . Iter- Avg Last Total Soft Over- - Deadline
BIDN Enoramy BelicyjEds Bias | Cycle Beriad ations gellisad Time (us) | Time (us)| Time (us) |Overruns | runs (s e Violations
8458 work FIFO 1 0x1 V] 1 820504 33.4 33.356 33.955 2.737e+07 4563 249 1 false V]
0 idle 0 0x1 0 1 820800 50.3 50.302 0.000 4.129e+07 0
k Scheduler Status: Running Frame: 205100 Cycle: 0
\

Figure 7-5. NightSim Monitor Page - Metrics Panel

The figure above isolates the Metrics panel from the rest of the NightSim window in
order to make the panel more readable in this manual.

NightStar RT Tutorial

The NightSim Monitor Metrics panel provides statistics about each individual process on
the scheduler. It includes the PID, program name, CPU bias, number of cycles executed,
the CPU times related to per cycle execution, counts of overruns, and the average percent-
age of the frame used by each process. Additional statistics can be selected for display via
the Select Fields... option item of the table’s context menu.

Fercent of Periad Used (CPU Time)
=1 Owverrun k Summary of Magnified Graph Area
— 100% | FPID | Min % | Max % A\rg%l Program |
— gpo mm 0 325 35.1 | work
- sow mm1l 00 715 358 /Jidle (cpu 0)
™ — 70%
N | | N |||
[[[I I | 60%
A 1 | L e
R I 1 R |
| | || LT
| — 30%
[| i i LT e
[[[]
[[[[|| 0%
R I B IS W SN S N S S P
Newest
o EEEmD [Show Al][Show..][Hide][Hide All
|:| Automatically Scale |:| Freeze Graph Scheduler Status: Running Frame: 145101 Cycle: O

7-8

Figure 7-6. NightSim Monitor Page - Percent of Period Used Panel

The lower half of the page shows the Percent of Period Used (CPU Time) graph,
which has been extracted in the figure above. There is a line for each process on the
scheduler; the percent of time used (CPU time) during the last cycle is plotted over time.
If an application overruns its timeslot, a red dot is shown on the graph.

Points that fall within the square magnifier are detailed in the table to the right.

Important

A process can overrun its deadline even if it doesn’t use more than
100% of its allotted CPU time -- other processes could be interfer-
ing with it or it may be waiting on I/O, etc. In fact, this is often
the case before we tune the system for best performance, which
we do later in this chapter (See “Overrun Detection and System
Tuning” on page 7-10).

Watch the Last Time column. The values displayed are the CPU time used by each pro-
cess for their last cycle’s execution in microseconds. The values attributed to the idle
process indicate the remaining CPU time available within the cycle.

We will adjust the workload of the work process and see the effects shown in the Night-
Sim Monitor window.

Using NightSim
Using Datamon to Modify Program Variables

The Data Monitoring Application Programming Interface is part of the NightStar RT tool
set.

Data monitoring allows you to specify executable programs that contain Ada, C, C++, or
Fortran variables to be monitored, obtain and modify the values of selected variables by
specifying their names, and obtain information about the variables such as their addresses,
types, and sizes.

Data monitoring is a powerful capability with a rich API. However, for our purposes, we
will write a very simple program which changes the value of a single variable.

Refer to the Data Monitoring Reference Manual for more information about data monitor-
ing.

The source code for our set_workload program follows:

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) \
if((x)) {fprintf(stderr, "%$s\n", dm get error string());exit(l);}

main (int argc, char * argv[])
{
program descriptor t pgm;
object descriptor t obj;
char buffer[100];

if (argc != 2) {
fprintf (stderr, "Usage: set workload integer-value\n");
exit (1) ;

}

check (dm_open program("work",0, &pgm)) ;

check (dm_get descriptor ("workload",0,pgm, &obj));
check (dm _get value (&obj,buffer,sizeof (buffer)));
check (dm_set value (&0bj,argv([1l]));

printf ("workload: old value=%s, new value=%$s\n", buffer, argv[l]);

}

The dm_open program function initializes Data Monitoring on the specified process
name and PID (in this case zero, which instructs the call to use any process matching the
specified name).

The dm_get descriptor call looks for the specified variable name and returns infor-
mation about the variable. It also maps the underlying memory page of the variable in the
work process into the monitoring process.

The dm get value and dm_ set value routines return and set the value of the vari-
able using direct memory reads and writes; the work process is not affected in any other
way than having the value of the workload variable changed.

The set_workload. c source file was copied into the current working directory during
the activities in “Creating a Tutorial Directory” on page 1-4. The set_workload pro-

7-9

NightStar RT Tutorial

gram should have already been built. If not, see “Building the Program” on page 1-4, type
make, and then return here.

- Change the value of the workload variable in the work process by issu-
ing the following command:

./set_workload 0

As shown in the source code above, the program prints the previous value of the work-
load variable and then sets it to the value specified as an argument to set_workload.

The Last Time field for . /work is affected by the reduced workload as shown in the
NightSim Monitor window.

- Experiment with various values of workload using the set_workload
program until the average Last Time (us) for . /work is approximately
50 microseconds. You may want to select Clear Performance Data
from the Monitor menu after each adjustment, or just look at the graph
and stop adjusting when the work line is near 50%.

Overrun Detection and System Tuning

A scheduling overrun occurs when a process’s next cycle begins but it has not yet finished
execution of its previous cycle.

The NightSim Monitor window includes overrun counts for each process.

It is likely that several overruns have occurred for the work process.

NOTE

If overruns have not yet occurred, place some additional load on
the system. Running the following command in a separate termi-
nal session should have the desired effect:

find / -print

The NightTrace tool, as described in a previous chapter, is well suited for determining the
specific cause of process overruns. NightTrace kernel tracing provides a detailed view of
system activity on all CPUs, including process context switches, interrupts, system calls,
and machine exceptions.

For brevity, we will assume that the overruns are due to additional activities unrelated to
the scheduler occurring on the CPU where work executes.

We will use NightTune to shield the CPU associated with our scheduler from other activi-
ties.

7-10

NOTE

Using NightSim

If your system only has a single CPU, the remaining portion of
this section is inapplicable. Skip to “Shutting Down the Sched-
uler” on page 7-15 in this case.

Press Ctrl+c to gain terminal control.

Launch NightTune using the ntune . config file that was copied into the
current working directory during the activities in “Creating a Tutorial

Directory” on page 1-4:

ntune -c ./ntune.config &

NightTune _ @ x
File View Monitor Tools Help
P2 8IlH GESBBf Be - som-s s Xo
elffchawk Interrupt Detall Activity (Interrupts/Second)s I3} elfiehawk CPU Shielding and Binding: (]
cpus
7 “l’ 1 |, zli 3|, ‘|,5|, Sl, 7 |,!|, ,l, 1°|7“| [«] |elﬁehawk;Inlel(R)Cure(TM)iS—lOSﬂSCFU@]ZDGHz =
8 rtco 0 o o o o o o o o o o 0o g a’st&r"; 5
3 acpi 0 o6 o o o o o o o o o oapi £ Core 0
14 INT34C6:00 0 o o o o o o o o o o o/INT3scE:00 (:) 7o O® cruo [issusasal
16 iB01_smbus 0 of o o o o o o o o o oligolsmous @ ?mgl;/ GOW s [0k usagel
27 i2¢_designware.0, .. | 0 0 o o o o © o0 o o 0 o0 ixcdesgwareo, idmass.0 By OB CPUL [2.0% Usagel
40 i2c_designware.1, ... | 0 o o o o o o o o o o 0icdesguwarel, idmacd.1 By OB CPUT [3.0% Usagel
120 dmaro =0 o o o o o o o o o o o0dmn 2 C'Z?r:bz/ S@W G 50 segel
121 dmar1 = o o o o o o o o o o o odman L5 SWmiceun [Lowusager
122 aerdry, ... 0 o o o o o o o o 0o 0o 0aednw,pcedpc E-Core 3
123 aerdrv, ... 0 o o o o o o o o o 0 0/ aerdrv. pcie-dpc By OSW CPU3 [2.0% Usagel o
124 ahci[0000:00:17.0] | 0 o0 o o o 0o o o ©o 0 0 0 ahcil0000:00:27.01 i r?ay O CPUY [1.5% Usage]
125 xhei_hcd o= 5 o o o o o o o o0 o oxhihd BhFOB® cPUa [1.5% Usagel =
126 nvme0q0 0 o o o o o o o o 0o 0 0nmelg0 h¥OB® cPUl0 [1.0%Usagel [T
127 enpos31i6 0 o o=5 o o o o o o o 0enposic e
128 nvme0ql 0 o o o o0 o o o o o 0 0 nvme0ql slnchaok CEUUage %) [E(x]
129 nume0q2 0 0 0 0 0 0 0 0 0 0 0 0 nvme0g2 — cPuo (I
130 nvme0q3 0 o o o o o o o o 0o 0 0nvmeq3 cPUl |
131 nvme0qa 0 o o o o o o o o o 0 0/ nvmeoga cPU2
132 nvme0q5 0 0 0 0 0 0 0 o 0 0 0 0 nvme0q5 CPU3
133 nvme0q6 0 o o o o o o o o o 0 0 nvmeogs eptg
134 nvme0q7 o o6 o o o o o o o 0o 0 0nvmeoq? SRS
135 nume0qs 0 o o o o o o o o o o onvmeogs 2: : 5
136 nvme0q3 [} 6 o o o o o o o 0o 0 0nvmeoqd e
137 nume0q10 0 o0 o o o o o o0 o o o 0nmeoqlo]
138 nvme0q11 0 o o o o o o o0 o o 0o 0nmesqll U]
139 nume0q12 0 o o o o 0o ©o o0 o o0 0 0nvmeoq cPUILE
140 mei_me 0 o o o o o o o o 0o o 0meime 0 100
181 reim = o o o o o o o o o o o orm [r—
0 of o o o o o o o 0 0o o sndhdaintekcardo E]I SR Syster) EE m

142 snd_hda _intel:cardo

Legend:| 7

7 Unshiclded Wgfl shielded | (1) Inactive |42 Bound |42~ Bound & Managed

Figure 7-7. NightTune with Interrupt and CPU Shielding & Binding Panels

A NightTune window appears which displays interrupt activity and the shielding and
bound status of all CPUs.

- In the CPU Shielding & Binding panel, right-click on System and
select Expand All from the context menu.

Note that work process is listed in the Bound Processes list of CPU 0. We’ll want to click
the work process to move it to CPU 1. We want to do this because some interrupts are
automatically bound to CPU 0.

- Drag and drop the work process from CPU 0 to CPU 1.

The work process is now bound to CPU 1.

7-11

NightStar RT Tutorial

- Locate the cell in the Interrupt Detail Activity panel in the Descrip-
tion panel which contains the word “rcim”.

NOTE

You may have to resize the NightTune window and/or the Inter-
rupt Detail Activity panel to see the Description header.

- While the cursor is positioned in the Interrupt panel over the cell in the
Description column which contains the word “rcim”, press and hold the
left mouse button, then drag the interrupt onto the CPU 1 row in the CPU
Shielding and Binding panel, and release the mouse button. The reim
interrupt is now bound to CPU 1.

|ccca: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
£ System
£ Chip 0
[l Core O
CB(h yO@@ cPUuO [1.5% Usagel
i Bound Processes: 0 Threads: 0
Bound Interrupts: 0
CB() f OB@ cPU4 [1.0% Usagel
H ~-Bound Processes: 0 Threads: 0
1 -+ Bound Interrupts: 0
E-Core 1
By OB@ cPUL [1.0% Usagel
H £ Bound Processes: 1 Threads: 1
i 22674 wark
- Bound Interrupts: 1
143 rcim
By yO8@ crus [0.0% Usagel
- Bound Processes: 0 Threads: 0
H - Bound Interrupts: 0
& Core 2
B f OB CcPU2 [1.5% Usagel
- Bound Processes: 0 Threads: 0
i - Beund Interrupts: 0
B fOS@® CPUG [3.0% Usage]
Bound Processes: 0 Threads: 0
i “- Bound Interrupts: 0
[+ Core 3
B¢ FOS@ cPU3 [0.0% Usagel
Bound Processes: 0 Threads: 0
Bound Interrupts: 0
B yOS@ cPu7 [0.0% Usagel
i Bound Processes: 0 Threads: 0
Bound Interrupts: 0

Figure 7-8. Process and Interrupt Bound to CPU 1 (not CPU 0)

- Right-click anywhere in the CPU Shielding and Binding panel and
select the Change Shielding... option from the context menu.

7-12

Using NightSim

~Click on icons to change shielding
Unshield All CPUs
[=H5ystem
£} Core 0
~CPUO () F O @ ® &
~CPUL b F OB @I
El- Core 1
TUNFETRY
IR IEEET |
= Core 2
SCU2 () O @ ©® @
~CPUE h 7O @I
E- Core 3
LU f Q@ @Y
O EEEETY |
[OK H Apply H Reset H Cancel || Help |

Figure 7-9. Change Shielding Dialog (unshielded)

NOTE

The CPU layout shown here may be different than that of your
actual system.

- Click the Maximize Shielding icon in the CPU 1 line (the maxi-
mize shielding icon is the right-most icon with three overlapping shield fig-
ures).

coco: CPU Shielding (on coco) x

Click on icons to change shielding

Unshield All CPUsI: Settings differ from system

£ System
=i Chip 0
& Core 0

oo
w7
| oot e
Lo =]
GG

<
=
cc
@ ww
@ oo

6@ 68

aa

2e

[= 0 8]

G
o0 00 o0g oo
S8 00
Y oy oy oy

(i
g
e e

fafe
o7
{ g o
=~ L
GG

Apply | | Reset Cancel Help

Figure 7-10. Shielding Changes Pending

7-13

NightStar RT Tutorial

7-14

The CPU 1 line changes its display to indicate that all processes and interrupts other than
work and rcim will be shielded from CPU 1. Additionally, the sibling hyper-threaded
CPU (in this case CPU 5) is marked down so that hyper-threaded execution on CPU 5
does not interfere with CPU 1.

NOTE

The hyper-threaded sibling of CPU 1 may be a logical CPU num-
ber other than CPU 5.

NOTE

Your system may not support hyper-threading or it may not have
hyper-threading enabled in which case the CPUs are not displayed
in hyper-threaded groups.

NOTE

If your system does have hyperthreaded CPUs it is possible that
NightTune cannot mark the sibling of CPU 1 down. This can
occur if there are other processes or interrupts that are bound to
the sibling CPU. In this case, you can try to unbind them using
the context menu inside the CPU Shielding and Binding
panel, but be aware that some interrupts cannot be unbound (e.g.
the hpet interrupt on some systems).

- Press the OK button to activate the shielding changes.

Return to the NightSim Monitor window and watch the Overrun column. It is likely that
overruns have ceased to occur.

- Clear the overrun count by going to the Monitor menu and selecting
the Clear Performance Data option. This action resets all the
statistics to zero.

Watch the Overrun column to see if any overruns still occur.

If the system is properly configured, the scheduler should continue to execute without any
overruns on the shielded CPU.

Using NightSim

Percent of Period Used (CPU Time)

W! '\ /\F —k

| | :

[] Automatically Scale [| Freeze Graph

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Newest

g sl |

ES)

summary of Magnified Graph Area

| FPID | Min%l Max % | Avg %| Program |

mm 0 555 | 556

m 1

-
-

55.6 work

fidle {cpu 0)

[Shew All][Show.

| Hide |[Hideall |

Scheduler Status: Running

Frame: 2755061 Cycle: 1

Figure 7-11. NightSim Percentage of Period Panel - Shielded CPU

In the figure above, you can see when the process overruns stopped, due to the shielding

activities we took in NightTune.

Shutting Down the Scheduler

- Return to the Scheduler page and press the Remove button to terminate
the scheduler. Press Yes if presented with a dialog which asks whether to
kill the processes associated with the scheduler.

- Exit NightSim by going to the File menu and selecting Exit. A dialog
asking whether or not to save changes to nsim.nsc may appear; if so,

press NoO.

- You may also wish to clear the shielding attributes for CPU 1 and return
the system to its previous state using NightTune.

- Exit NightTune by going to the File menu and selecting Exit.

This concludes the NightSim portion of the NightStar RT Tutorial.

7-15

NightStar RT Tutorial

7-16

A
Tutorial Files

The following sections show the source listings for the files used in the NightStar RT
Tutorial.

- api.c

- app.c

- function.c

- report.c

- set_workload.c
- set_rate.c

- work.c

- worker.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <nprobe.h>

int cycles = 0;
int overruns = 0;
char * sample;

// Perform the work of consuming a single Data Recording
sample from NightProbe.
//
int
work (FILE * ofile, np handle h, np header * hdr) ({
np item * i;
int status;
int which;

A-1

NightStar RT Tutorial

// Read one sample, which may contain data for multiple
processes
// and variables.
//
status = np read (h, sample);
if (status <= 0) {
return status;

cycles++;

fprintf (ofile, "Sample %d\n", cycles);
for (i = hdr->items; i; 1 = i->1link) {
char buffer [1024];
sprintf (buffer, "item: %s:", i->name);
fprintf (ofile, "%-30s", buffer); // Nice formatting :-

// Display the value of each item.
// For arrays, format each individual item.
//
for (which = 1; which <= i->count; ++which) {
char * image = np format (h, i, sample, which);

if (image != NULL) {
fprintf (ofile, " %s", image);
} else {

fprintf (ofile, "\n<error: %$s>\n", np error (h));
return -1;

free (image);
}
fprintf (ofile, "\n");
}
fflush (ofile);

return 1;

int
main (int argc, char *argvl[])
{

np handle h;

np header hdr;

np process * p;

np item * i;

int fd;

int status;

FILE * ofile = stdout;

A-2

Tutorial Files

fd = 0; // stdin

status = np open (fd, &hdr, &h);
if (status) {
fprintf (stderr, "%s\n", np error (h));

exit (1) ;
}
sample = (char *) malloc (hdr.sample size);
if (sample == NULL) {

fprintf (stderr, "insufficient memory to allocate
sample buffer\n");
exit (1) ;
}

for (p = hdr.processes; p; p = p->1link) {
if (p->pid >= 0) {
fprintf (ofile, "process: %s (%d)\n", p->name, p-
>pid) ;
} else {
fprintf (ofile, "resource: %s (%s)\n", p->name, p-
>label) ;
}

}
fprintf (ofile, "\n");

for (i = hdr.items; 1i; 1 = i->1ink) {
fprintf (ofile, "item: %s (%s), size=%d bits, count=%d,
type=%d\n",
i->name, i->process->name, i->bit size, i-
>count, i->type);
}
fprintf (ofile, "\n");

for (;7) |
status = work (ofile, h, &hdr);
if (status <= 0) break;

o\°
Q.

fprintf (ofile, "Data Recording done: %d cycles fired,
overruns\n",
cycles, overruns);
if (ofile != stdout) {

fclose (ofile);

if (status < 0) {
fprintf (stderr, "%s\n", np error (h));

np close (h);

A-3

NightStar RT Tutorial

// At this point, file descriptor 0 remains open, but is
no
// longer a NightProbe Data File/Stream.

A-4

app.c

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include <ntrace.h>
#include <math.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/prctl.h>

static void add link (void);

static void * heap thread (void * ptr);
static void nosighup (void);

static void * watchdog thread (void * ptr);
extern void work (int control);

typedef struct {
char * name;
int count;
double delta;
double angle;
double wvalue;
} control t;

control t datal2] = { { "sin", 0, M PI/360.0, 0.0,
{ "cos", 0, M PI/360.0, 0.0,

enum { run, hold } state;

int rate = 50000000;
int sema;

extern double
FunctionCall (void)
{

return data[0].value + datal[l].value;

void *
sine thread (void * ptr)

{

control t * data = (control t *)ptr;
struct sembuf wait = {0, -1, 0};
work (1) ;

trace set thread name (data->name);

for (;;) |

o O

Tutorial Files

o O

— e

A-5

NightStar RT Tutorial

A-6

semop (sema, &wait, 1);
data->count++;

data->angle += data->delta;
data->value = sin(data->angle);

void *
cosine thread (void * ptr)

{

control t * data = (control t *)ptr;
struct sembuf wait = {0, -1, 0};
work (1) ;

trace set thread name (data->name);

for (;;) |
semop (sema, &wait, 1);
data->count++;
data->angle += data->delta;
data->value = cos(data->angle);

int
main (int argc, char * argv[])
{
pthread t thread;
pthread attr t attr;
struct sembuf trigger = {0, 2, 0};

const char * data file = strdup("/tmp/data");

nosighup () ;

if (argc > 1) {
data file = argv[1l];
}
trace begin (data file,NULL);

sema = semget (IPC PRIVATE, 1, IPC CREAT+0666) ;

pthread attr init (&attr);

pthread create (&thread, &attr, watchdog thread, NULL);

pthread attr init (&attr);

pthread create (&thread, &attr, sine thread,

pthread attr init (&attr);

&datal[0]);

pthread create (&thread, &attr, cosine thread, &datalll]);

pthread attr init (&attr);

pthread create (&thread, &attr, heap thread, NULL);

for (;;) |
struct timespec delay = { 0, rate }

’

nanosleep (&delay,NULL) ;
work (random() % 1000) ;
if (state != hold) {

semop (sema, &trigger, 1) ;

trace end () ;

void * ptrs[5];

static void *
heap thread (void * unused)
{

int 1 = 5;

int scenario = -1;

void * ptr;

int * * iptr;

extern void * alloc ptr (int size, int swtch);
extern void free ptr (void * ptr, int swtch);

trace set thread name ("heap thread");

for (;;) |

sleep (5);
switch (scenario) {
case 1:

// Use of freed pointer
ptr = alloc ptr(1024,3);
free ptr(ptr,2);
memset (ptr, 47, 64);
break;

case 2:
// Double-free
ptr = alloc ptr(1024,3);
free ptr(ptr,2);
free(ptr);
break;

case 3:

Tutorial Files

// Overwriting past end of an allocated block

#define MyString "mystring"
ptr = alloc ptr(strlen(MyString),2);

strcpy (ptr,MyString); // oops -- forgot the zero-
byte
break;
case 4:
// Uninitialized use
iptr = (int * *) alloc ptr(sizeof(void*),2);
if (*iptr) **iptr = 2778;
break;
case 5:
// Leak -- all references to block removed

ptr = alloc ptr(37,1);

A-7

NightStar RT Tutorial

// Some more allocations we will check on...

ptrs[0] = alloc ptr(1024*1024,3);
ptrs[1l] = alloc ptr(1024,2);
ptrs[2] = alloc ptr(62,1);
ptrs[3] = alloc ptr(4564,3);
ptrs[4] = alloc ptr(8177,3);
break;

(void) malloc (1) ;
scenario = 0;

void * func3 (int size, int count)

{

return malloc (size);

void * func2 (int size, int count)

{

if (--count > 0) return func3(size,count);
return malloc (size);

void * funcl (int size, int count)

{

if (--count > 0) return func2(size,count);
return malloc (size);

void free3d (void * ptr, int count)

{
free(ptr);

void free2 (void * ptr, int count)

{

if (-—count > 0) {
free3 (ptr, count) ;
return;

}

free(ptr);

void freel (void * ptr, int count)

{

if (--count > 0) {
free2 (ptr, count) ;
return;

A-8

Tutorial Files

free(ptr);

void * alloc _ptr (int size, int count)
{

return funcl (size,count);

void free ptr (void * ptr, int count)
{

freel (ptr,count) ;

void work (int control)

{
volatile double calculations[2048];
volatile double d = 0.0;

int i;
for (i=0; 1<2048; 1i+=512) {
calculations([i] = 3.14159;

}

for (i=0; i<control*10; ++1) {

d = d*d;
calculations[i%2048] = d;
}
add link();

struct node t {

int value;

struct node t * link;
i
struct node_ t * head;
struct node t * tail;

static void add link (void)

{

static int count;

count++;
if (count > 5 && count < 1000) {
struct node t * n = (struct

node t*)malloc (sizeof (struct node t));
n->value = count;
n->1link = NULL;
if (tail) {
tail->1ink = n;
} else {
head = n;
}

tail = n;

#include <signal.h>

A-9

NightStar RT Tutorial

A-10

static void nosighup (void)

{
struct sigaction ignore;
ignore.sa flags = 0;
ignore.sa handler = SIG IGN;
sigemptyset (&ignore.sa mask);
sigaction (SIGHUP, &ignore,NULL) ;

#include <time.h>
#include <sched.h>
#include <stdio.h>
void * watchdog thread (void * unused)
{
double deadline = 0.050;
struct timespec ts;
double last, now;
int overrun is fatal = 0;
struct sched param param;

// prctl(PR_SET NAME, "watchdog thread"); or
trace set thread name ("watchdog thread");

param.sched priority = 50;
if (sched setscheduler (0,SCHED FIFO,¶m) != 0) {
printf ("Warning: sched setscheduler failed:
%s\n", strerror (errno)) ;
}
clock gettime (CLOCK REALTIME, &ts) ;
last = (double)ts.tv _sec + ((double)ts.tv_nsec)/
1000000000.0;
for (;;) {
clock gettime (CLOCK REALTIME, &ts);
now = (double)ts.tv_sec + ((double)ts.tv_nsec)/
1000000000.0;
if (now-last > deadline) {

printf(ritrrrrrrrrrrrrrrrrrrrriitiNn")

printf ("Deadline missed by %f seconds!!!!!\n", (now-
last) -deadline) ;

printf(ritrrrrrrrrrrrrrrrrrrrriitiNn")

if (overrun is fatal) break;

}

last = now;
usleep(40000) ;

for (;7) |
sleep (1) ;

Tutorial Files

function.c
double
FunctionCall (void)
{
static double counter;
return counter++;
}
report.c

#include <stdio.h>

void report (char * caller, double value)

{

static int count;

if (++count % 40) printf ("The value from %s is %$f\n",
caller, value);

}

set_workload.c

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) if ((x)) {fprintf (stderr, "%s\n",
dm get error string());exit(l);}
int

main (int argc, char * argv([])
{
program descriptor t pgm;
object descriptor t obj;
char buffer[100];

if (argc !'= 2) {
fprintf (stderr, "Usage: set workload integer-
value\n");
exit (1) ;

A-11

NightStar RT Tutorial

set_rate.c

A-12

check
check
check
check

dm open program("work", 0, &pgm)) ;

dm get descriptor ("workload",0,pgm, &obj));
dm get value(&obj,buffer,sizeof (buffer)));
dm set value(&obj,argv([1l]));

—_~ o~~~

printf ("workload: old value=%s, new value=%s\n", buffer,

argvl[l]);

}

// Workaround for incompatible change in glibc extern void
cfree (void* x) { free(x); }

#include <stdlib.h>
#include <stdio.h>
#include <datamon.h>

#define check(x) if((x)) {fprintf (stderr, "%$s\n",
dm get error string());exit(1l);}

int
main (int argc, char * argvl(])

{

program descriptor t pgm;
object descriptor t obj;
char buffer[100];

if (argc != 2) {
fprintf (stderr, "Usage: set rate: integer-value\n");
exit (1) ;

check
check
check
check

dm open program("app", 0, &pgm)) ;

dm get descriptor("rate",0,pgm, &obj));

dm get value(&obj,buffer,sizeof (buffer)));
dm set value(&obj,argv([1l]));

—~ e~~~

printf ("rate: old value=%s, new value=%s\n", buffer,

argvl[l]);

}

// Workaround for incompatible change in glibc extern void
cfree (void* x) { free(x); }

Tutorial Files

work.c

#include <fbsched.h>
int workload = 1000;

int
main
{
int data = 0;
int i;
volatile double d = 1.0;

while (fbswait () >=0) {
data = !data;
for (i=0; i<workload; ++i) d = d/d;

worker.c

#include <time.h>
#include <stdio.h>

static int elapsed(struct timespec*,struct timespec*);

int outer = 50;

int inner = 10;

int threashold = 200;
int usecs;

int overruns;

double
work (void)
{
volatile double d = 0.0;
int 1,37
for (i=0; i<outer; ++i) {
for (3j=0; j<inner; ++j) {
d *= d;

int
main ()

{

struct timespec start;

A-13

NightStar RT Tutorial

struct timespec stop;
for (;;) |
struct timespec t = {0,10000000};
nanosleep(&t,0);
clock gettime (CLOCK REALTIME, &start);
work () ;
clock gettime (CLOCK REALTIME, &stop) ;
usecs = elapsed(&stop, &start);
if (usecs > threashold) {
printf ("Overrun %d\n",++overruns) ;

static
int
elapsed (struct timespec * stop, struct timespec * start)
{
int sec = stop->tv_sec - stop->tv_sec;
int nsec;
if (stop->tv _nsec < start->tv _nsec) {
sec-—;
nsec = 1000000000~ (start->tv_nsec-stop->tv_nsec);
} else {
nsec = stop->tv_nsec-start->tv _nsec;
}
return sec * 1000000 + nsec/1000;

A-14

	NightStar RT Tutorial
	Preface
	Contents
	Overview
	Getting Started
	Setting Up User Privileges
	Creating a Tutorial Directory
	Building the Program

	Panels
	Moving Panels
	Tabbed Panels
	Context Menus
	Tutorial Screen Shots

	Using NightView
	Invoking NightView
	Debugging Multiple Threads
	Rerunning the Process

	Traversing Linked Lists
	Using Monitorpoints
	Using Eventpoint Conditions and Ignore Counts
	Using Patchpoints
	Adding and Replacing Functions Dynamically
	Using Tracepoints
	Heap Debugging
	Activating Heap Debugging
	Setting up Heap Debugging Scenarios
	Scenario 1: Use of a Freed Pointer
	Scenario 2: Freeing an Invalid Pointer Value
	Scenario 3: Writing Past the End of an Allocated Block
	Scenario 4: Use of Uninitialized Heap Blocks
	Scenario 5: Detection of Leaks
	Scenario 6: Allocation Reports
	Disabling Heap Debugging

	Ready for NightTrace
	Conclusion - NightView

	Using NightTrace
	Invoking NightTrace
	Configuring a User Daemon
	Streaming Live Data to the NightTrace GUI
	Halting the Daemon
	Viewing Events
	Using NightTrace Timelines
	Zooming
	Moving The Interval

	Using the Events Panel for Textual Analysis
	Customizing Event Descriptions
	Searching the Events List
	Using States
	Displaying State Duration
	Generating Summary Information

	Defining a Data Graph
	Kernel Tracing
	Obtaining Kernel Trace Data
	Using Prerecorded Kernel Data
	Analyzing Kernel Data
	Mixing Kernel and User Data

	Using the NightTrace Analysis API
	Automatically Tracing Your Application
	nlight Wizard - Selecting Programs
	nlight Wizard - Defining Illuminators
	nlight Wizard - Selecting Illuminators
	nlight Wizard - Relinking the Program
	nlight Wizard - Activating Illuminators
	Running the Program
	Analyzing Application Illumination Events
	Summarizing Workload Performance
	Batch Summary of Functions

	Shutting Down

	Conclusion - NightTrace

	Using NightProbe
	Invoking NightProbe
	Selecting Processes
	Viewing Live Data
	Modifying Variables
	Selecting Variables for Recording and Alternative Viewing

	Selection of Views
	Table View
	Graph View

	Sending Probed Data to Other Programs
	Using Datamon to Modify Program Variables
	Conclusion - NightProbe

	Using NightTune
	Invoking NightTune
	Monitoring a Process
	Tracing System Calls
	Process Details
	Process Details - Memory Details
	Process Details - File Descriptors
	Process Details - Signals

	Changing Process Scheduling Parameters
	Setting Process CPU Affinity
	Setting Interrupt CPU Affinity
	Shielding CPUs for Maximum Determinism and Performance
	Conclusion - NightTune

	Using NightSim
	Creating FBS Applications
	Invoking NightSim
	Creating a Scheduler
	Running the Scheduler
	Using Datamon to Modify Program Variables
	Overrun Detection and System Tuning
	Shutting Down the Scheduler

	Tutorial Files

