
NightView User’s Guide
Version 7.4

(NightStar LX)

0897395-350

February 2013

Copyright 2011,2013 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is intended for use with Con-
current products by Concurrent personnel, customers, and end–users. It may not be reproduced in any form without the written permission of the
publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the correction or comment on the
copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation, 2881 Gateway Drive, Pompano Beach, FL 33069-4324.
Mark the envelope “Attention: Publications Department.” This publication may not be reproduced for any other reason in any form without
written permission of the publisher.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All other Concurrent product
names are trademarks of Concurrent while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.

NVIDIA® CUDATM is a trademark of NVIDIA Corporation.

Preface

NightView is a general purpose source-level program debugger. Some of the features
make it useful for debugging systems of real-time programs, but it can also be used to
debug a single ordinary program.

NightView can debug programs written in multiple languages. C, C++ and Fortran are
supported.

NightView can debug multiple processes on the local system or on different hosts.

NightView has been designed to be as flexible as possible. The NightView command
interpreter includes macro processing so that you can write your own NightView com-
mands.

You communicate with NightView with one of three user interfaces. The command-line
interface is useful when no advanced terminal capabilities are present. A simple full-
screen interface is available for ASCII terminals. The graphical user interface provides the
most functionality.

Scope of Manual

This document is the user manual for the NightView debugger. It is intended for anyone
using NightView, regardless of their previous level of experience with debuggers. This
manual describes how to use NightView, by way of tutorial and reference guide. There is
also material for system administrators.

Structure of Manual

The manual begins with the short tutorials, Chapter 1 [A Quick Start] on page 1-1 and
Chapter 2 [A Quick Start - GUI] on page 2-1, giving you just enough information to get
you started. For more complete tutorial, see Chapter 4 [Tutorials] on page 4-1.

The next section describes the major concepts you will need to understand in order to get
the best use out of NightView. See Chapter 3 [Concepts] on page 3-1.

More detailed information about the NightView commands is found in Chapter 6 [Com-
mand-Line Interface] on page 6-1.

The next chapter describes a simple full-screen interface to NightView. See Chapter 7
[Simple Full-Screen Interface] on page 7-1.

The next chapter describes the graphical user interface for NightView. See Chapter 8
[Graphical User Interface] on page 8-1.

This manual also contains several appendixes that may not be of interest to all users, such
as an implementation overview. A glossary of terms related to NightView and a quick ref-
erence guide are also provided.
iii

NightView LX User’s Guide
Syntax Notation

The following notation is used throughout this guide:

italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and comments in code may also appear in italic.

list bold

User input appears in list bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in list bold type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appears in list type. Keywords also appear in
list type.

window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

[]

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.
Mutually exclusive choices are separated by the pipe (|) character.

{ }

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

...

An ellipsis follows an item that can be repeated.

::=

This symbol means is defined as in Backus-Naur Form (BNF).

Related Publications

The following publications are referenced in this document:

0897008 NightStar LX Installation Guide

0897008 NightStar LX Tutorial
iv

Preface
Reporting Bugs

Please report any bugs you encounter. Software support is available from the Concurrent
Software Support Center at our toll free number 1-800-245-6453. For calls outside the
United States, the number is 1-954-283-1822. The Software Support Center operates
Monday through Friday from 8 a.m. to 5 p.m. Eastern Standard Time. You may also sub-
mit a bug report or a request for assistance at any time by using the Concurrent Computer
Corporation web site at http://www.ccur.com/isd_support_contact.asp or by sending an
email to support@ccur.com.

0897398 NightTraceTM User’s Guide

0897465 NightProbeTM User’s Guide

0897515 NightTuneTM User’s Guide
v

NightView LX User’s Guide
vi

Contents

Chapter 1 A Quick Start

Sample Program . 1-1
Starting Up. 1-2
Getting Help . 1-3
Setting a Breakpoint . 1-4
Finishing up . 1-5

Chapter 2 A Quick Start - GUI

Sample Program - GUI . 2-1
Starting Up - GUI . 2-2
Getting Help - GUI . 2-3
Setting a Breakpoint - GUI . 2-5
Finishing up - GUI. 2-5

Chapter 3 Concepts

Debugging . 3-1
Accessing Files . 3-1
Programs and Processes. 3-2

Multiple Processes . 3-2
Families . 3-2
Attaching . 3-3
Detaching . 3-3
Core Files . 3-4
Qualifiers . 3-4

Dialogues . 3-4
Dialogue I/O . 3-5
Real-Time Debugging . 3-6
Remote Dialogues . 3-6
Remote File Access . 3-7
ReadyToDebug . 3-9

Finding Your Program . 3-9
Controlling Your Program . 3-9

Eventpoints . 3-9
Breakpoints . 3-12
Monitorpoints . 3-12
Patchpoints . 3-12
Tracepoints . 3-13
Heappoints. 3-13
Watchpoints . 3-13
Syscallpoints . 3-15
vii

NightView LX User’s Guide
Signals. 3-15
Restarting a Program . 3-16

Restart Mechanism . 3-17
Restart Information . 3-18
Restart Macros . 3-19

Exited and Terminated Processes . 3-19
Process States . 3-19
Operations While the Process Is Executing . 3-20
Examining Your Program. 3-21

Expression Evaluation . 3-21
C Expressions . 3-22
C++ Expressions . 3-22
Fortran Expressions . 3-23

Overloading . 3-23
Program Counter. 3-24
Context . 3-24
Scope. 3-25
Stack . 3-25
Current Frame . 3-25
Registers . 3-26

Inline Subprograms . 3-26
Interesting Subprograms . 3-27
Monitor Window . 3-28
Debugging the Heap. 3-29

Levels and Common Errors . 3-30
Fences . 3-31
Hardware Overrun Protection . 3-32
Retained Free Blocks . 3-33
Heap Check. 3-33
Leak Detection . 3-34

Branch Tracking. 3-34
Errors . 3-35
Command Streams . 3-36
Interrupting the Debugger . 3-36
Macros . 3-37
Convenience Variables . 3-37
Smart Printing . 3-38
Logging . 3-38
Value History . 3-38
Command History . 3-39
Initialization Files . 3-39
Optimization. 3-39
Multithreaded Programs. 3-40
Thread Tags . 3-41
CUDA Debugging . 3-42
Limitations and Warnings . 3-43

Setuid Programs . 3-43
Attach Permissions . 3-43
Architecture Interoperability. 3-43
NightTrace Daemon . 3-44
Memory Mapped I/O . 3-44
Blocking Interrupts . 3-45
Debugging with Shared Libraries . 3-45
viii

Contents
Chapter 4 Tutorials

General Graphical Tutorial . 4-1
Topical Tutorials . 4-27

Thread Tags Tutorial . 4-27
Tracing Tutorial . 4-33

Chapter 5 Invoking NightView

nview . 5-1
nview-save-core-file . 5-3

Chapter 6 Command-Line Interface

Command Syntax . 6-1
Selecting Overloaded Entities . 6-2
Special Expression Syntax . 6-3

Predefined Convenience Variables . 6-5
IA-32 Registers . 6-6
AMD64 Registers . 6-9
CUDA Registers . 6-13

Location Specifiers. 6-13
Qualifier Specifiers. 6-15
Eventpoint Specifiers . 6-16
Regular Expressions . 6-16
Wildcard Patterns . 6-18

Repeating Commands . 6-19
Replying to Debugger Questions. 6-20
Controlling the Debugger . 6-21

Quitting NightView . 6-22
quit. 6-22

Managing Dialogues. 6-23
login. 6-23
debug . 6-25
nodebug . 6-26
set-debug-file-directory. 6-26
translate-object-file . 6-27
logout. 6-29
on dialogue . 6-29
apply on dialogue . 6-31

Dialogue Input and Output . 6-31
! . 6-32
set-show. 6-33
show . 6-34

Managing Processes . 6-35
run . 6-35
rerun . 6-35
set-notify . 6-36
notify . 6-37
attach . 6-37
detach . 6-38
kill . 6-38
symbol-file . 6-39
ix

NightView LX User’s Guide
core-file . 6-39
save-core-file . 6-41
exec-file . 6-42
on program. 6-44
apply on program. 6-46
on restart . 6-46
checkpoint . 6-47
family . 6-48
set-children . 6-49
set-exit . 6-50
set-shared-lib-update . 6-50
wait . 6-51
mreserve. 6-51

Heap Debugging . 6-53
heapdebug . 6-53

Setting Modes . 6-59
set-log . 6-59
set-language . 6-59
set-qualifier . 6-60
set-history . 6-61
set-limits . 6-61
set-prompt . 6-62
set-terminator. 6-63
set-safety . 6-64
set-restart . 6-64
set-local . 6-65
set-patch-area-size . 6-65
interest . 6-66
set-auto-frame . 6-69
set-overload . 6-69
set-search . 6-70
set-editor . 6-70
set-preallocate . 6-70
set-resume . 6-71
set-download . 6-72
set-disassembly . 6-72
set-branch-tracking . 6-74
set-futurepoints . 6-74
set-cuda-memcheck . 6-74

Debugger Environment Control . 6-76
cd . 6-76
pwd . 6-76

Source Files . 6-77
Viewing and Editing Source Files . 6-77

list . 6-77
directory. 6-79
edit . 6-80

Searching . 6-81
forward-search . 6-81
reverse-search . 6-81

Source Line Decorations. 6-83
Examining and Modifying . 6-86

backtrace . 6-86
print . 6-86
x

Contents
set . 6-88
x . 6-89
output . 6-92
echo. 6-93
data-display. 6-93
display . 6-94
undisplay . 6-95
redisplay . 6-96
printf . 6-96
load . 6-97
branch-history. 6-98

Manipulating Eventpoints . 6-98
Eventpoint Modifiers . 6-100
name . 6-100
breakpoint . 6-101
patchpoint . 6-103
set-trace. 6-106
tracepoint . 6-106
monitorpoint . 6-108
heappoint . 6-110
mcontrol . 6-111
clear . 6-112
commands. 6-113
condition . 6-114
delete. 6-115
disable. 6-115
enable . 6-116
ignore . 6-117
tbreak . 6-118
tpatch . 6-118
watchpoint . 6-120
syscallpoint . 6-121

Controlling Execution . 6-123
set-run-mode. 6-124
continue . 6-124
resume. 6-126
step . 6-127
next . 6-129
stepi . 6-130
nexti . 6-131
finish . 6-132
stop . 6-133
jump . 6-134
signal . 6-135
handle . 6-136

Selecting Context. 6-138
frame. 6-138
up . 6-140
down . 6-140
select-context . 6-141

Miscellaneous Commands . 6-143
help . 6-143
refresh . 6-144
shell . 6-144
xi

NightView LX User’s Guide
source . 6-145
declare-thread-tag . 6-145
set-thread-name. 6-146
delay . 6-147

Info Commands . 6-147
Status Information. 6-149

info log. 6-149
info eventpoint . 6-149
info breakpoint. 6-150
info tracepoint . 6-151
info patchpoint . 6-152
info monitorpoint . 6-153
info heappoint . 6-154
info watchpoint . 6-155
info syscallpoint. 6-156
info frame . 6-157
info directories . 6-158
info convenience . 6-158
info display . 6-158
info history. 6-158
info limits. 6-159
info registers . 6-159
info signal . 6-160
info process . 6-160
info memory . 6-161
info dialogue . 6-164
info family . 6-165
info name . 6-165
info on dialogue . 6-166
info on program . 6-166
info on restart. 6-166
info threads . 6-167
heapcheck . 6-168

Symbol Table Information . 6-169
info args . 6-169
info locals . 6-169
info variables . 6-169
info address . 6-170
info sources . 6-170
info functions . 6-171
info types . 6-171
info whatis . 6-171
info representation . 6-172
info declaration . 6-172
info files . 6-172
info line . 6-172

Defining and Using Macros . 6-173
define . 6-173
Referencing Macros . 6-176
info macros . 6-178

Smart Printing . 6-179
smart-print. 6-180

replace Smart Printers . 6-181
struct Smart Printers . 6-181
xii

Contents
container Smart Printers . 6-182
Smart Printing Limitations . 6-183
Predefined Smart Printers . 6-183
Intrinsics for Smart Printing . 6-184

Chapter 7 Simple Full-Screen Interface

Using the Simple Full-Screen Interface. 7-1
Editing Commands in the Simple Full-Screen Interface . 7-2
Monitor Window - Simple Full-Screen . 7-2

Chapter 8 Graphical User Interface

NightView GUI Concepts . 8-1
GUI Online Help . 8-1

Context-Sensitive Help . 8-2
Help Buttons . 8-2
Help Command . 8-2

Dialogues and Dialog Boxes . 8-2
Context Menu . 8-3
Current Process. 8-3
GUI Configuration . 8-3

Main Window . 8-4
Menu bar. 8-4

File Menu . 8-4
View Menu . 8-5
Shell Menu . 8-8
Process Menu . 8-9
Source Menu . 8-10
Eventpoint Menu . 8-12
Data Menu . 8-14
Tools Menu . 8-17
Help Menu. 8-18

Toolbars . 8-19
Command Toolbar. 8-20
Process Toolbar . 8-20
Run Mode Toolbar . 8-22
Eventpoint Toolbar . 8-22
Value Toolbar . 8-23
Source Display Toolbar . 8-24

Status Bar . 8-24
List of Shortcuts . 8-26
Main Window Dialog Boxes . 8-27

Run Program in Shell Dialog Box. 8-27
Attach Dialog Box. 8-27
Source Selection Dialog Box . 8-27
File Selection Dialog Box . 8-28
Eventpoint Dialog Boxes . 8-29

System Call Selection Dialog . 8-34
Debug Heap Dialog Box . 8-35
Remote Login Dialog Box . 8-36

Remote Login General Page . 8-37
Remote Login Advanced Page. 8-37
xiii

NightView LX User’s Guide
Remote Login Action Buttons . 8-39
Preferences Dialog Box . 8-39

Preferences General Page . 8-41
Safety. 8-41
Automatically Resume On . 8-41
Searching. 8-41
Data Panel . 8-42
Display Limits . 8-42
Source Panel Keystrokes. 8-42
Source File Size. 8-42

Preferences Appearance Page. 8-43
Source Display . 8-43
Disassembly . 8-43
Source Editor. 8-43

Preferences Fonts Page. 8-44
Global NightStar Fonts . 8-45
My NightView Fonts. 8-46
Effective NightView Fonts . 8-46

NightStar Global Fonts Dialog. 8-47
Changes Fonts For... . 8-48
Apply Fonts To.... 8-48
Set Default Fonts
Set Panel Fonts . 8-48
Save & Close. 8-48
Save . 8-48
Cancel . 8-49
Help . 8-49

Preferences Advanced Page . 8-49
Remote Object File Cache. 8-49
Eventpoint Memory Preallocation . 8-50
Restart . 8-50
Value History. 8-50
Expression Evaluation Automatic Overloading 8-50
Future Eventpoints . 8-50
Restore Defaults . 8-50

Process Settings Dialog Box . 8-50
Process Settings General Page . 8-51

Debug Children . 8-51
Set Run Mode . 8-51
Branch Tracking . 8-51
Stop Before Exiting . 8-51
Expression Language . 8-51
Refresh debug info when shared libs change 8-51
Program . 8-51

Process Settings Interest Page . 8-51
Process Settings Signals Page . 8-51

“handle” on page 6-136Rename Page Dialog Box 8-52
Print Dialog Box . 8-52
List Location Dialog Box . 8-52
Eventpoint Panel Update Interval Dialog Box . 8-52

Panels . 8-53
Find Bar . 8-53
Source Panel . 8-53

Source Panel Target Line. 8-54
xiv

Contents
Source Panel Expression Tooltip. 8-54
Source Panel Context Menu . 8-55
Source Panel Tracking. 8-59
Source Panel Keystrokes. 8-59

Shell Panel . 8-60
Message Panel . 8-61
Eventpoint Panel. 8-62
Context Panel . 8-64
Locals Panel . 8-64
Monitor Panel . 8-65
Data Panel. 8-65

Monitor Bar . 8-65
Data Items . 8-65

Expression Data Item . 8-67
Local Variables Data Item . 8-68
Registers Data Item . 8-68
Stack Data Item . 8-69
Branch History Data Item . 8-70
Threads Data Item . 8-71
Processes Data Item . 8-72
Shells Data Item. 8-72
Heap Information Data Item . 8-73
Heap Errors Data Item . 8-74
Leak Sets / Still Allocated Sets Data Items . 8-74
Block Data Item . 8-74
Monitorpoint Values Data Item . 8-75

Data Panel Context Menu . 8-75
Data Panel Dialog Boxes. 8-83

Data Panel Item Dialog Box . 8-83
Data Panel Add Expression . 8-84
Data Panel Add Heap Errors . 8-84
Data Panel Add Heap Leaks . 8-84
Data Panel Add Still Allocated Blocks . 8-85
Data Panel Call Stack Frames . 8-85
Data Panel Edit Expression . 8-85
Data Panel Expand Tree. 8-85
Data Panel Describe . 8-85
Data Panel Load Layout. 8-86
Data Panel Pointer Array Dimension. 8-86
Data Panel Save Layout . 8-86
Data Panel Save Snapshot . 8-87
Data Panel Subscript Array . 8-87
Data Panel Linked List Expression Dialog . 8-88
Data Panel Condition Filter Expression Dialog. 8-88
Monitorpoint Update Interval Dialog Box. 8-89

CUDA Coordinates Panel. 8-90
CUDA Lanes Panel . 8-90

CUDA Lanes Context Menu . 8-91
CUDA Warp Locals Panel . 8-92

CUDA Warp Locals Panel Context Menu . 8-92
Help Window. 8-93
xv

NightView LX User’s Guide
Appendix A NightStar LX Licensing

License Keys . A-1
License Requests . A-2
License Server . A-2
License Reports . A-3
Firewall Configuration for Floating Licenses . A-3

Serving Licenses with a Firewall . A-3
Running NightStar LX Tools with a Firewall. A-5

License Support . A-6

Appendix B Kernel Dependencies

Advantages for NightView. B-1
Advantages for NightTrace . B-1
Advantages for NightProbe . B-2
Advantages for NightTune . B-3
Frequency Based Scheduler . B-3

Appendix C Summary of Commands

Appendix D Quick Reference Guide

Invoking NightView. D-1
Controlling the Debugger. D-1

Quitting NightView. D-1
Managing Dialogues . D-1
Dialogue Input and Output . D-2
Managing Processes . D-2
Heap Debugging . D-3
Setting Modes . D-4
Debugger Environment Control . D-5

Source Files . D-5
Viewing and Editing Source Files . D-5
Searching . D-6

Examining and Modifying . D-6
Manipulating Eventpoints . D-7
Controlling Execution . D-9
Selecting Context . D-9
Miscellaneous Commands . D-10
Info Commands . D-10

Status Information. D-10
Symbol Table Information . D-12

Defining and Using Macros . D-12
Smart Printing . D-13

Appendix E Implementation Overview

Reporting Bugs . E-2
xvi

Contents
Appendix F Tutorial Files

 C Files . F-1
msg.h . F-1
main.c . F-1
parent.c . F-2
child.c . F-2

Fortran Files. F-3
main.f . F-3
parent.f . F-4
child.f . F-4
ftint.c. F-5

Glossary

Index

Tables

Table 3-1. Eventpoint Summary . 3-11
Table 6-1. Special ’$’ Constructs . 6-3
Table 6-2. Predefined Convenience Variables . 6-5
Table 6-3. IA-32 Registers . 6-6
Table 6-4. AMD64 Registers . 6-10
Table 6-5. Regular Expressions . 6-17
Table 6-6. Wildcard Patterns . 6-19
Table 6-7. Source Line Decorations . 6-83
Table 6-8. Eventpoint Commands . 6-98
xvii

NightView LX User’s Guide
xviii

1
Chapter 1A Quick Start

1
1
1

This chapter is for people who want to start using the command-line version of the
debugger before reading the whole manual. You may also be interested in the graphical-
user-interface (GUI) version of this chapter in Chapter 2 [A Quick Start - GUI] on page
2-1. There is a more thorough tutorial in Chapter 4 [Tutorials] on page 4-1.

If you are familiar with the GNU debugger, gdbTM, you should have very few problems
with NightView. The commands are almost all identical. The biggest difference
between NightView and other debuggers is how you tell NightView what program to
debug and how you start that program.

If you get any errors, the error message tells which section of the manual can help you
determine what went wrong. At any time, you can ask the debugger to display help on an
error message by mentioning that section's name as the argument to the help command
(see “help” on page 6-143).

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, use the help command to
get out of it.

Sample Program 1

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugs in it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file from /usr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c:
1-1

NightView LX User’s Guide
1 #include <stdio.h>
2
3 static int factorial(x)
4 int x;
5 {
6 if (x <= 1) {
7 return 1;
8 } else {
9 return x * factorial(x-1);
10 }
11 }
12
13 void
14 main(argc, argv)
15 int argc;
16 char ** argv;
17 {
18 int i, errors;
19 for (i = 1; i < argc; ++i) {
20 long xl;
21 int x;
22 int answer;
23 char * ends = NULL;
24 xl = strtol(argv[i], &ends, 10);
25 x = (int)xl;
26 answer = factorial(x);
27 printf("factorial(%d) == %d\n", x, answer);
28 }
29 exit(0);
30 }

The remainder of this chapter assumes that you compiled fact.c and put the resulting
executable in fact:

cc -g -o fact fact.c

Starting Up 1

You can start NightView with or without a program name. If you start it with a program
name, NightView runs the program in a dialogue shell (see “Dialogues” on page 3-4). If
you start NightView without a program name or you want to debug another program, you
must execute the program with the run command (see “run” on page 6-35) in a dialogue
shell.

Below is an example of starting up the debugger with a program name and a program
argument. Note that throughout the quick start, the version and the link time might not
match exactly for your version of NightView. Also, some of the shell output and other
messages may not come out exactly as shown. Some messages might not appear, or
additional messages might appear, depending on your environment.
1-2

A Quick Start
$ nview -nogui ./fact 7
NightView debugger - Version 7.1, linked Fri Jun 8 10:24:51 EDT 2007
Copyright (C) 2007, Concurrent Computer Corporation

In case of confusion, type "help"

Note that you invoked NightView with a program name argument ./fact and program
argument 7. NightView responded with information about the debugger.

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to /users/bob/fact
/usr/lib/NightView/ReadyToDebug
$ /usr/lib/NightView /ReadyToDebug
$./fact 7
(local)

NightView always runs a special program, /usr/lib/NightView/ReadyToDebug.
This program helps NightView synchronize with the shell. That's why you see that line
in the output. You might see only one echo of /usr/lib/NightView/
ReadyToDebug, depending on how quickly the dialogue shell starts. The dollar signs
("$") are prompts from the shell.

NightView automatically created a dialogue named local; it also displayed the string
local as the prompt, showing that by default, commands apply to that dialogue (or the
processes running in that dialogue).

The debugger waited for the new program to get started. Because sending input to a
dialogue is just like typing commands to a shell (the dialogue is really running the same
shell program you normally use), this caused the fact program to be executed with the
single argument 7.

If the fact program had required input, you would have used the ! command to send the
input to the program. See “!” on page 6-32.

When the dialogue executed the program, NightView got control and informed you that a
new process was just started in dialogue local and told you that the process id was
2347.

Because this is the only program running in dialogue local, you do not have to do
anything special to cause any commands you type to refer to this process; the default
qualifier is already set to local, so commands will automatically apply to the one
process running there.

Getting Help 1

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

(local) foo
Error: Unrecognized command "foo". [E-command_proc003]

NightView responded to the bogus command with an error message and an error code
([E-command_proc003]).
1-3

NightView LX User’s Guide
Now get NightView to tell you more about the error message.

(local) help
E-command_proc003:
Unrecognized command "string".

STRING is not a valid NightView command. See "Summary of
Commands".

You typed help without any arguments to see more information about the error
message. NightView showed the extended error information.

In the command-line and simple screen interfaces, online help is available only for error
messages. Consult a printed manual or view the online help with NightView's graphical
user interface.

If you are familiar with gdb, the remainder of this chapter will be fairly boring because
(once you get the program started) NightView and gdb look very much alike (at least for
all the commands demonstrated in this simple example).

Setting a Breakpoint 1

You will now use the list command to look at the source.

(local) l 1
1 | #include <stdio.h>
2 |
3 | static int factorial(x)
4 | int x;
5 | {
6 * | if (x <= 1) {
7 * | return 1;
8 | } else {
9 * | return x * factorial(x-1);}
10 | }
(local)

You told the list command (abbreviated to l in this example) to list at line 1.

You now decide where you want to set a breakpoint. An interesting spot in this program
is the return statement in the recursive routine factorial where it is about to start
backing out of the recursive calls.

(local) b 7
local:2347 Breakpoint 1 set at fact.c:7
(local)

The return was on line 7, so you used the breakpoint command (abbreviated to b)
to set a breakpoint on line 7.

Complete descriptions of the commands you used here appear in “list” on page 6-77 and
“breakpoint” on page 6-101.
1-4

A Quick Start
Finishing up 1

Now run the program until it reaches the breakpoint.

(local) c
local:2347: at Breakpoint 1, 0x100026fc in factorial(int
x = 1) at fact.c line 7
7 B=| return 1;
(local)

You used the continue command (abbreviated to c) without any arguments. This told
the program to start running. It ran until it hit the breakpoint that you had set on line 7.
Note that your process ID and addresses will differ.

Now look at the call stack.

(local) bt
#0 0x100026fc in factorial(int x = 1) at fact.c line 7
#1 0x1000271c in factorial(int x = 2) at fact.c line 9
#2 0x1000271c in factorial(int x = 3) at fact.c line 9
#3 0x1000271c in factorial(int x = 4) at fact.c line 9
#4 0x1000271c in factorial(int x = 5) at fact.c line 9
#5 0x1000271c in factorial(int x = 6) at fact.c line 9
#6 0x1000271c in factorial(int x = 7) at fact.c line 9
#7 0x10002784 in main(int argc = 2,
char **argv = 0x2ff7eaec)

at fact.c line 26
(local)

You used the bt (backtrace) command to display the call stack. You saw all the
expected recursive calls (see “backtrace” on page 6-86).

Now look at the value of the variable x.

(local) p x
$1: x = 1
(local)

You used the p (print) command to print the variable x, verifying that it was equal to
1.

Now finish running the program.

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped in the _exit() library
routine after the command below. If so, enter the command up
until the debugger reports that the process is in main.
1-5

NightView LX User’s Guide
(local) c
factorial(7) == 5040
Process local:2347 is about to exit normally
#0 0x100027ac in main(int argc = 2,
unsigned char **argv = 0x2ff7eaec)

at fact.c line 29
29 <>| exit(0);
(local)

You used the c (continue) command to allow the process to run to completion.

Exit from NightView.

(local) q
Kill all processes being debugged? y
You are now leaving NightView...
Process local:2347 exited normally
Dialogue local has exited.
$

Finally you typed q (quit) to leave the debugger. The fact program had not fully
exited, so NightView prompted, asking if the program should be killed. You responded
with y, and the sample session ended. The commands used in this section appear in
“continue” on page 6-124, “backtrace” on page 6-86, “print” on page 6-86, and “quit” on
page 6-22.
1-6

2
Chapter 2A Quick Start - GUI

2
2
2

This chapter is for people who want to start using the graphical-user-interface (GUI)
version of the debugger before reading the whole manual. You may also be interested in
the command-line version of this chapter in Chapter 1 [A Quick Start] on page 1-1. There
is a more thorough tutorial in Chapter 4 [Tutorials] on page 4-1.

In this manual, the words click, drag, press, and select always refer to mouse button 1.

This entire manual is available through the online help system built into the debugger. If
you get any errors, the error message tells which section of the manual can help you
determine what went wrong. At any time, you can ask the debugger to display any
section of the manual by clicking on the Help menu or using the H mnemonic. See
“Help Menu” on page 8-18. Click on the NightView User’s Guide menu item or use
the U mnemonic. NightView puts up a Help Window that displays the table of contents
for the manual. See “Help Window” on page 8-93. You can read this manual section by
clicking on A Quick Start - GUI.

The rest of this chapter goes through a sample debug session on a small program. Feel
free to dive right into the debugger. If you get into trouble, use the Help menu to get out
of it.

Sample Program - GUI 2

This section lists the program used as an example through the remainder of the chapter.
The program does not have any bugs in it; it will be used to show how to run a program,
set breakpoints, look at variables, etc. You can copy this file from /usr/lib/
NightView/fact.c into your own directory. The following program is in the file
fact.c:
2-1

NightView LX User’s Guide
1 #include <stdio.h>
2
3 static int factorial(x)
4 int x;
5 {
6 if (x <= 1) {
7 return 1;
8 } else {
9 return x * factorial(x-1);
10 }
11 }
12
13 void
14 main(argc, argv)
15 int argc;
16 char ** argv;
17 {
18 int i, errors;
19 for (i = 1; i < argc; ++i) {
20 long xl;
21 int x;
22 int answer;
23 char * ends = NULL;
24 xl = strtol(argv[i], &ends, 10);
25 x = (int)xl;
26 answer = factorial(x);
27 printf("factorial(%d) == %d\n", x, answer);
28 }
29 exit(0);
30 }

The remainder of this chapter assumes that you compiled fact.c and put the resulting
executable in fact:

cc -g -o fact fact.c

Starting Up - GUI 2

You can start NightView with or without a program name and arguments. If you start it
with a program name, NightView begins debugging the program immediately. If you
start NightView without a program name, or you want to debug another program, you
may run the program with the Run menu item in the Process menu, or by typing in the
shell in a shell panel. See “Shell Panel” on page 8-60. In either case, the program is run
in a dialogue shell (see “Dialogues” on page 3-4).

Below is an example of starting up the debugger with a program name and a program
argument. Note that throughout the quick start, the version and the link time might not
match exactly for your version of NightView. Also, some of the messages might not
come out exactly as shown. Some messages might not appear, or additional messages
might appear, depending on your environment.
2-2

A Quick Start - GUI
$ nview ./fact 7

NightView displays the main window. See “Main Window” on page 8-4.

Starting the debugger with the program name ./fact and argument 7 sent the line ./
fact 7 to the local dialogue and caused the debugger to wait for the new program to
get started. Because sending input to a dialogue is just like typing commands to a shell
(the dialogue is really running the same shell program you normally use), this caused the
fact program to be executed with the single argument 7.

If the fact program had required input, you would have typed the input into a shell
panel. See “Shell Panel” on page 8-60.

The message panel (see “Message Panel” on page 8-61) contains a message like the
following:

New process: local:2347 parent pid: 2340
Process local:2347 is executing /users/bob/fact.
Reading symbols from /users/bob/fact...done
Executable file set to
/users/bob/fact

When the dialogue executed the program, NightView got control and informed you that a
new process was just started in dialogue local and told you that the process id was
2347.

The status bar at the bottom of the window displays the program name, fact, the dialogue
name and PID, local:2347, and the state, Stopped for exec. See “Status Bar” on
page 8-24. The source panel title bar displays the program name, the dialogue name and
PID, and the name of the source file, fact.c. The source code from file fact.c appears
in the source panel, centered around main. See “Source Panel” on page 8-53.

Getting Help - GUI 2

Next you will enter a bogus command. Note that throughout this section, the help text
and display size may not exactly match your NightView session.

The command toolbar is labeled Command:. Click in the combo box of the command
toolbox (see “Command Toolbar” on page 8-20) and issue the following command:

foo

Press Return to enter the command.

NightView responded to the bogus command with the following message and error code:

Error: Unrecognized command "foo". [E-command_proc003]

Now get NightView to tell you more about the error message. Click on the Help menu or
use the H mnemonic. See “Help Menu” on page 8-18. Click on the On Last Error
menu item or use the E mnemonic. NightView puts up a Help Window that displays the
following extended error information:
2-3

NightView LX User’s Guide
E-command_proc003

MESSAGE

ERROR: Unrecognized command "string".

EXPLANATION

string is not a valid NightView command. See Summary of Commands.

Next, dismiss the Help Window by selecting Exit from the File menu. See “Help
Window” on page 8-93.

Next you will read about the list command. Click on the Help menu or use the H
mnemonic. See “Help Menu” on page 8-18. Click on the On Commands menu item
or use the m mnemonic. NightView puts up the following Help Window with a menu of
NightView commands.

Summary of Commands

This section gives a summary of all the commands in NightView. The table is
organized alphabetically by command. The abbreviations for the commands are
included with the corresponding commands, rather than alphabetically.

Also, remember that you can abbreviate commands by using a unique prefix.

!

 Pass input to a dialogue.

apply on dialogue

 Execute on dialogue commands for existing dialogues.

(etc.)

Most of the information would not fit on your display. The Help Window showed this by
having only a small thumb or slider on the vertical scroll bar. Scroll down to the list
command by moving the thumb or by clicking on the arrow heads of the vertical scroll
bar. Click on the list command. NightView displayed the following Help Window with
2-4

A Quick Start - GUI
information about the list command.

list

List a source file. This command has many forms, which are summarized below.

list where-spec

List ten lines centered on the line specified by where-spec.

list where-spec1, where-spec2

List the lines beginning with where-spec1 up to and including the where-spec2 line.

(etc.)

To see more about the list command, you could move the thumb or click on the arrow
heads of the vertical scroll bar. However, rather than reading more, you make the Help
Window go away by selecting Exit from the File menu.

Setting a Breakpoint - GUI 2

You now decide where you want to set a breakpoint. An interesting spot in this program
is the return statement in the recursive routine factorial where it is about to start
backing out of the recursive calls.

Right-click on the line with the return statement (line 7) in the source panel. The line
becomes highlighted and a context menu appears. See “Source Panel Keystrokes” on
page 8-59. Select the first item, Set Simple Breakpoint.

The source line decoration beside line 7 is now a stop sign to indicate a breakpoint.

See “breakpoint” on page 6-101 and “Source Line Decorations” on page 6-83. The
eventpoint panel now has an entry for the breakpoint.

The message panel shows:

local:2347 Breakpoint 1 set at fact.c:7

Finishing up - GUI 2

Now you want to run the program until it reaches the breakpoint. Click on the Resume
button in the process toolbar. See “Process Toolbar” on page 8-20.

Clicking on Resume told the program to start running. It ran until it hit the breakpoint
that you had set on line 7. The source line decoration beside line 7 is now a stop sign
overlaid with a triangle pointing to the right to indicate where execution will
resume.
2-5

NightView LX User’s Guide
NightView responds with:

local:2347: at Breakpoint 1, 0x100026fc in factorial(int
x = 1) at fact.c line 7

Note that your process ID and addresses will differ. The status bar indicates the process is
Stopped at breakpoint 1. Now look at the call stack. The context panel and the
locals panel are in the same area with tabs below them. Click on the Context tab. The
context panel has an entry for each frame on the stack, displayed in tree form. See
“Context Panel” on page 8-64. You see all the expected recursive calls. Scroll to the
bottom of the panel. One of the icons is an arrowhead pointing down. Click that
icon to show more stack frames, until you see the call to main. Then scroll to the top
again and click on the first frame.

Now look at the local variables. Click on the Locals tab. You see the local variables
displayed in tree form. In this case, there is only one local variable, x. The locals panel
tracks the current context, which you set when you clicked in the context panel. The
value of x in this frame is 1. See “Locals Panel” on page 8-64.

Now finish running the program. Click on the Resume button. See “Process Toolbar”
on page 8-20.

This allowed the process to run to completion. The program printed a message, which
appeared in the message panel:

factorial(7) == 5040

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped in the _exit() library
routine. If so, click the Up button until the debugger reports
that the process is in main.

NightView showed the call to exit(0) in the source panel and displayed the following
message in the message panel.

Process local:2347 is about to exit normally

Exit from NightView by selecting the File menu. See “File Menu” on page 8-4. Click on
File or use the F mnemonic. Click on the Exit NightView menu item or use the X
mnemonic.

NightView responds with a warning dialog box. The warning dialog box says:

Kill all processes being debugged?

Finally you click on the OK button to leave the debugger. The fact program had not
fully exited, so NightView prompted, asking if the program should be killed. You
responded by clicking OK, and the sample session ended.
2-6

3
Chapter 3Concepts

3
3
3

This section describes concepts you will need to understand in order to use the debugger
effectively.

Many of the concepts described in this section are also defined in the glossary. The
glossary is an alphabetical list of the concepts — the description here is organized
hierarchically.

Debugging 3

The term debugger is actually a misnomer. A debugger does not remove bugs from your
program. Instead, it is a tool to help you monitor and examine your program so that you
can find the bugs and remove them yourself.

A debugger primarily lets you do two things:

1. start and stop the execution of your program; and,

2. examine and alter the contents of the program's memory.

There are many ways to do these things, so there are lots of debugger commands. Also,
some of the commands control the debugger itself.

NightView is a symbolic debugger. That means that you can talk about your program
using the same high-level language constructs that you use when you write programs.
You can refer to variables, expressions and procedures as they appear in your program
source. You can also refer to source files and line numbers within those files. For
example, you can tell your program to stop at a particular line. In order to use the
symbolic capabilities of the debugger, you must compile and link your program with
options that tell the compiler and linker to save the symbolic information along with your
program.

Sometimes, you want to be able to debug at a lower level, referring to machine language
instructions and registers. NightView lets you do that, too.

Accessing Files 3

During the course of debugging, NightView will likely have to access a number of files:
executable files for programs being debugged, source files for those programs, and
possibly object and library files. Those files must all reside, or be accessible from, the
system on which NightView is executing.
3-1

NightView LX User’s Guide
If you are debugging processes running on some other system, you will probably want to
have some of that system's files mounted via NFSTM on the system running NightView.
Furthermore, your debugging will probably go much easier if the pathnames to those files
(especially the executables) are the same on both systems. This will allow NightView to
find the executable files automatically most of the time. See “Finding Your Program” on
page 3-9. If the pathnames of the executable files are different, you can use the
translate-object-file command to tell how to translate the names. See
“translate-object-file” on page 6-27. In addition, remote files can be specified by using
the form user@host:/path. See “Remote File Access” on page 3-7.

Programs and Processes 3

It is necessary to distinguish between a program and a process. A program is something
that you write, compile and link to form a program file. A process is an instance of
execution of a program. There may be several processes running the same program.

Multiple Processes 3

The most typical use for NightView is debugging a single program running as a single
process, but NightView can also be used to debug an application consisting of multiple
processes, so the debugger has ways to describe multiple processes. If you come to a
section of the manual that describes multiple processes, and you are only debugging one
process, you can usually just ignore the parts about multiple processes.

You may inadvertently create multiple processes, even though you only want to debug
one. This may happen if your program forks. For example, your program may call
system. This call works by using the fork service to create another process, which
then runs a shell. A process created this way is called a child process. Because
NightView has the capability of debugging child processes, you are notified when this
happens. If you don't want to debug the child process, then you should detach from it,
which allows it to run without further interference from the debugger. See “detach” on
page 6-38. If you know in advance that you don't want to debug any child processes, you
can use the set-children command to specify this. See “set-children” on page 6-49.

If you use pipelines in the dialogue shell, or invoke shell scripts which call many other
programs, you are likely to get multiple processes which you are not interested in
debugging. (Dialogues are described in a later section, see “Dialogues” on page 3-4.)
Again, if you don't want to debug those other processes, you should detach from them.

Another way to determine which processes are debugged is to use debug and nodebug,
which let you describe which processes you want to debug by their program names. See
“nodebug” on page 6-26.

Families 3

One of the handy things NightView lets you do is group processes together into families.
3-2

Concepts
You do this by giving the family a name and telling the debugger what processes are in
that family. For example, you might have several processes executing the same program,
and you might want to set a breakpoint at the same source line in all of them. You could
define a family containing all of the processes and then use that family name with the
breakpoint command. See “family” on page 6-48.

Attaching 3

Sometimes you want to debug a process that is already running, rather than starting up a
new process running the same program. You can do this with the attach command (see
“attach” on page 6-37) or with the Attach Dialog Box (see “Attach Dialog Box” on page
8-27.)

In order to attach to a process, you must know its process identifier (or PID). You can get
a list of running processes and their PIDs by clicking on the Attach menu item in the
Process menu (see “Process Menu” on page 8-9) to bring up the Attach Dialog Box.

As an alternative, you can run the ps(1) program. You can use the shell command
(see “shell” on page 6-144) to run ps(1). If you want to attach to a process running on
another machine, you may have to use the remote shell command (/usr/bin/rsh) to
run ps(1) on the right machine.

Once you have attached to a process, you can debug it in the same way you would debug
a process started normally from a dialogue.

For the security restrictions on attach, see “Attach Permissions” on page 3-43.

If the process to which you attach is stopped (<CONTROL Z> stops a foreground process in
most shells), then the attach will not take effect until the process is continued from the
shell.

Detaching 3

Detaching a process is the inverse of attaching one. When you detach a process it starts
running independently of the debugger. Nothing it does will get the debugger's attention.
Any children it forks will also be ignored by the debugger. You have to explicitly attach
to the process again to make the debugger notice it.

Detaching from an exited or terminated process completely removes the process from the
system. See “Exited and Terminated Processes” on page 3-19. Detaching from or killing
a pseudo-process associated with a core file (see “Core Files” on page 3-4) is the only
way to make that pseudo-process go away.

Detaching from a process causes NightView to forget all the eventpoint settings and other
information it remembers about the process.

When detaching from a process under the RedHawk kernel, any patches installed in the
program for patchpoints, etc., will be left in the process and will continue to apply. When
detaching from a process with NightStar LX on a non-RedHawk kernel, any patches
3-3

NightView LX User’s Guide
installed will be removed before the detach occurs; they will not continue to apply after
the patch.

Attaching to a process from which you have detached is not supported on Linux. Avoid
detaching from processes unless you are sure you will not want to debug them further.

Core Files 3

A core file is a snapshot image of a process created by the system when the process
aborts (typical reasons for creating a core file include referencing an address outside the
memory allocated to the process, dividing by zero, floating-point exceptions, etc.).
NightView allows you to debug core files as well as processes (see “core-file” on page
6-39). Since a core file is not actually a running process, all you can do is look at it. None
of the commands which require a running process will work on core files (for example,
you cannot continue a core file and you cannot evaluate any expression containing a
function call).

If a core file is from a process that used dynamic linking, the core file must be debugged
on the same system where the process was running, otherwise information from the
libraries may not match the core file.

Qualifiers 3

If you are not debugging multiple processes, you will probably never need to worry about
command qualifiers, but for multiprocess debugging, they are essential. A qualifier is
used to restrict a command so it operates only on specific processes. There is always a
default qualifier in effect, but any command may be given an explicit qualifier.

Most qualified commands act as though the command was specified once for each
process (for instance, the breakpoint command sets a separate breakpoint in each of
the processes specified in its qualifier).

Some commands treat the qualifier in special ways, and other commands ignore the
qualifier. Any special treatment is described in the section on each command.

Qualifiers are specified as a prefix on the command. The complete description may be
found in “Command Syntax” on page 6-1 and “Qualifier Specifiers” on page 6-15.

Dialogues 3

Dialogues are one of the most important (and unique) concepts in NightView.
Essentially, a dialogue is just an ordinary shell where you run commands as you would
normally run them in the shell (in fact, you are running your normal shell), but in a
dialogue, you have the opportunity to debug any or all of the programs you run in the
dialogue shell. Most debuggers have special commands to tell the debugger which
program to debug and what arguments to give it. In NightView, the way to debug a
3-4

Concepts
program is to run it within a dialogue shell. This means you can debug a program that is a
member of a pipe, or is invoked by some other program, and you can run the program in
the debugger using the exact same invocation you would normally use outside the
debugger.

The environment variable NIGHTVIEW_ENV is set to 1 within a dialogue shell. This
allows you to alter the behavior of programs and scripts running in the dialogue shell. For
example, you may wish to avoid running some programs in a shell initialization file when
the shell is a dialogue shell.

NightView sets the TERM environment variable to dumb in the dialogue shell, to avoid
problems with some shell programs.

Once the shell is started, you can change directory, set environment variables, or set
ulimit(1) parameters just like a normal shell. Any processes you start in the dialogue
will automatically be debugged, except for programs in the standard directories such as
/bin. You may alter this default behavior using the debug and nodebug commands.
See “debug” on page 6-25 and “nodebug” on page 6-26.

When you start a program in a dialogue shell, the debugger prints a message describing
the new process that just started in the dialogue. The information printed includes the
program name, the arguments it received on startup and the process identifier (PID). This
new process is stopped immediately prior to executing any code. At this point you can
decide what to do with the process (set breakpoints, etc.) and tell it to continue, or detach
from it and let it run without being debugged.

At startup, NightView provides an initial dialogue named local. This initial dialogue
shell inherits the current working directory and environment variables in existence at the
time you started the debugger.

You may create additional dialogues at any time (see “login” on page 6-23). Multiple
dialogues allow you to debug distributed systems of processes running on different
computers. Each dialogue has a name. Unless you specify otherwise, the name of a
dialogue is the host name of the system to which it is connected. You may use dialogue
names in command qualifiers to tell NightView to which system you wish to talk, such
as, when you want to run a command in a particular dialogue.

Dialogue I/O 3

You send input to a dialogue shell or to a program you are debugging in the dialogue by
using the ! command (see “!” on page 6-32) or the run command (see “run” on page
6-35). The qualifier on the command determines which dialogue receives the input data.
In the graphical user interface, you can send input to a dialogue with a shell panel (see
“Shell Panel” on page 8-60) for that dialogue.

Since each dialogue is a separate shell, the programs running in separate dialogues may
generate output at any time. In the command-line interface, it would be confusing to have
these print at any time. Instead, all the output generated by each dialogue shell and the
programs running in it is logged by NightView. You can control this log using the set-
show command (see “set-show” on page 6-33), and you can review the log with the
show command (see “show” on page 6-34). In the graphical user interface, dialogue
output goes to the dialogue I/O area for that dialogue.
3-5

NightView LX User’s Guide
Real-Time Debugging 3

By running NightView on a development system and starting a dialogue on a real-time
system you are debugging, you can minimize the impact of the debugger on the real-time
system. Most of the debugger runs on the development system, and only a NightView
control program and the dialogue shell run on the real-time system. You can also control
the CPU, memory, and other resource allocations of debugger processes to help minimize
the impact of the debugger on critical resources. See “Remote Dialogues” on page 3-6.

Monitorpoints provide a means of monitoring the value of variables in your program
without stopping it. See “Monitorpoints” on page 3-12.

NightTraceTM is another tool you may find useful in debugging real-time programs. It
allows you to gather performance information and record limited amounts of data with
minimal overhead. NightView provides facilities for using NightTrace from within the
debugger; see “Tracepoints” on page 3-13.

Remote Dialogues 3

A remote dialogue is a shell, controlled by NightView, running on a system other than the
one on which NightView was initially invoked. We refer to the system where NightView
was invoked as the "local system", while the system where the remote dialogue shell is
running is referred to as the "target" or "remote system".

You may need to use a remote dialogue if:

• you need to debug programs running on multiple target systems simulta-
neously;

• your application uses most of the system's CPU or memory resources, leav-
ing insufficient resources for NightView;

• the source files for your programs are not accessible on the target system;

• you do not wish to install all of NightView on the target system, perhaps to
conserve disk space on the target;

• you need to reduce network traffic on the target system by eliminating
NightView's GUI overhead;

• you need to reduce disk loading on the target system by eliminating Night-
View's reading of source and object files.

When you use a remote dialogue, the NightView user interface runs on the local system,
while another process, named NightView.p, runs on the remote system to access and
control the processes you are debugging. The following activities are performed on the
local system in this case:

• all user interaction, including command input/output and window manipu-
lation and updating;

• reading source and object files, including reading and interpreting debug
information in your program;
3-6

Concepts
• evaluation of expressions in commands such as print and x, except that
retrieving data from a debugged process (such as variable values) is per-
formed on the remote system.

The activities performed on the remote system are limited to storing and retrieving data to
and from a debugged process, controlling execution of a debugged process, and
supplying target-dependent information to the local system portion of NightView.
Additionally, NightView sometimes runs the C compiler on the target system to generate
code for eventpoints. See “Eventpoints” on page 3-9.

You may wish to control how the target system allocates resources to NightView.p and
the dialogue shell, both to prevent them from interfering with your application and to
ensure that they get sufficient resources to give adequate response in NightView. You can
control the allocation of CPU and memory resources as well as the scheduling policy and
priority through either the login command or the remote login dialog. See “login” on
page 6-23. See “Remote Login Dialog Box” on page 8-36.

Note that the parameters you specify for the remote dialogue will be inherited by
processes you execute within that dialogue shell.

There are some things you need to be aware of when you use a remote dialogue. Because
source files and debug information are read on the local system, those files (or copies of
them) need to be accessible on the local system. This is particularly true of the executable
program file, because that is where the debug information resides. When a debugged
process execs a new program, NightView attempts to determine the location of the
executable program file. See “Finding Your Program” on page 3-9. With a remote
dialogue, NightView assumes that the pathname of the executable program file is the
same (or locates identical files) on both systems. If this is not true, then NightView is not
able to read debug information for that program until you specify the correct pathname
with the symbol-file command or use object filename translations. See “symbol-file”
on page 6-39. Also, see “translate-object-file” on page 6-27.

Creating a new dialogue involves logging into a system (see “login” on page 6-23) via
ssh(1). You may login again as yourself, or as another user (subject to a password
check). When a dialogue is created, it executes your login shell (or, more accurately, the
login shell of the user whom you logged in as). For convenience with logging in, you
might want to investigate ssh-agent(1).

Logging in runs your .profile or other initialization file appropriate to your normal
login shell. Your .profile should avoid reading from the standard input if
NIGHTVIEW_ENV has a non-empty value.

Remote File Access 3

Referencing remote files can be useful either during remote debugging or when the files of
interest reside on another host.

For remote debugging, in most situations NightView can find files automatically and you
don’t need to worry about it. However, sometimes you need to provide more information.
In those situations, you need to know the rules used by NightView to find files.
3-7

NightView LX User’s Guide
If NightView cannot find an object file on the local host, including using object transla-
tions, and the download mode is not off , it attempts to download it from the target system.
See “translate-object-file” on page 6-27 and “set-download” on page 6-72.

If NightView cannot find a source file on the local host and the download mode is not off,
it tries to download it from the target system. See “directory” on page 6-79.

NightView always interprets exec-file, core-file, and load filenames relative to
the target system. See “exec-file” on page 6-42, “core-file” on page 6-39, and “load” on
page 6-97.

Filenames on other commands are interpreted relative to the local host by default; how-
ever, you may explicitly refer to files on other hosts using the form user@host:/path. If
you omit the user@ portion, your current user is used. When you use this form, NightView
transfers the file from the host system onto the local host system. (The file is downloaded
into a file cache. You can control the behavior of the file cache with the set-download
command (see “set-download” on page 6-72) or with the Preferences Advanced Page in
the graphical user interface [see “Preferences Advanced Page” on page 8-49].)

As a special case, if exec-file sees the user@host:/path form, the exec-file com-
mand is treated as a symbol-file command (see “symbol-file” on page 6-39).

If you need to refer to remote files but do not want NightView to transfer them, don’t use
the user@host:/path form. Instead, set up another way for NightView to see the files, such
as an NFS mount. NightView automatically sets up object file translations for NFS
mounts. See “translate-object-file” on page 6-27.

The following commands interpret filenames relative to the host by default, but can take
the user@host:/path form:

• symbol-file (see “symbol-file” on page 6-39)

• translate-object-file (see “translate-object-file” on page 6-27)

• directory (see “directory” on page 6-79)

• source (see “source” on page 6-145)

• list (see “list” on page 6-77)

Example:

Assuming you have a remote dialogue to system fred (see “Remote Dialogues” on page
3-6), and the program and its source are on that system, all you need to do is ensure that
the download mode is set (see “set-download” on page 6-72) and then run the program.

set-download temporary

Example:

Suppose that the program is in /usr/biff on system fred, but it has been stripped of
debugging information. The version with the debugging information is in /usr/joe on
system barney. The source is in /usr/bob on system betty. Use the following com-
mands:
3-8

Concepts
set-download temporary
translate-object-file /usr/biff/ barney:/usr/joe/
directory betty:/usr/bob

ReadyToDebug 3

The program /usr/lib/NightView-release/ReadyToDebug is a special
program used by NightView to synchronize with the dialogue shell (release is the
NightView release level). You will probably see this program name echoed when a
dialogue shell starts up. When NightView sees this program run, it knows that the shell is
through with any initialization. NightView then considers any new processes that run in
the shell to be candidates for debugging. This allows the initialization to take place
without debugging the programs that might run during that time.

Finding Your Program 3

When a program is started up from a dialogue, NightView is notified that a new program
is executing, but there is currently no way for NightView to find out exactly what
program is running.

NightView tries to guess the name of your program by looking at the arguments, the
current working directory, and the PATH environment variable of the program. Usually,
these correctly identify the program name, but not always. Then NightView can't tell
what the program name is. Also, sometimes NightView may guess wrong.

NightView prints a message with the name of the program when the program starts up. If
this name is wrong, then you will need to tell NightView the name of the program by
using the exec-file command. See “exec-file” on page 6-42.

Most shells already do this correctly, so you will rarely need to worry about it. The
problem sometimes occurs in programs that run other programs.

Controlling Your Program 3

NightView provides many ways to control the execution of a program you are debugging.

Eventpoints 3

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
tracepoints, watchpoints, heappoints, and syscallpoints. All of these are different ways to
debug or modify the behavior of your program, and all of them are assigned unique
numbers by the debugger when you create them. These numbers are unique across all
3-9

NightView LX User’s Guide
processes. For example, if you use a command qualifier to set a breakpoint in many
processes at once, each breakpoint in each process is assigned a unique eventpoint
number.

Breakpoints, monitorpoints, patchpoints, tracepoints, and heappoints are inserted
eventpoints. They are implemented by inserting code or traps into your process at a user-
specified pc location. Syscallpoints and watchpoints are not inserted eventpoints. This
difference is mostly transparent to the user, but it does cause some minor differences in
behavior. Those differences are noted where appropriate.

NightView allows you to set conditions on eventpoints, so the action associated with the
eventpoint is taken only if the condition is satisfied. For inserted eventpoints, the
condition is an arbitrary expression in the language of the routine where the eventpoint is
set (in other words, if you set a conditional eventpoint in a Fortran subroutine, you would
write the conditional expression in Fortran). Whenever possible, NightView actually
compiles the conditional expressions and patches them into the program, so evaluating
the condition does not require the debugger to take control. This means that setting a
conditional eventpoint only adds the overhead required to evaluate the condition and the
program will run at almost full speed until the condition is satisfied. See “condition” on
page 6-114. However, a condition on a syscallpoint or a watchpoint is evaluated in the
debugger. For syscallpoints and watchpoints, the language of the expression is
determined by your language setting. See “set-language” on page 6-59. Because
syscallpoint and watchpoint conditions are always evaluated in the global scope, if your
language setting is auto, NightView evaluates the condition in the language of the main
program.

You can also specify an ignore count for an eventpoint. This means you must execute
past the eventpoint a certain number of times before it might be taken. The ignore count
is checked prior to the condition, so if you have both ignore counts and conditions, the
condition will not be checked until the ignore count is down to zero. See “ignore” on
page 6-117. Like conditions, the code to implement ignore counts is patched into the
program for inserted eventpoints whenever possible, so the program will execute at
nearly full speed until the ignore count reaches zero. An ignore count on a watchpoint is
evaluated in the debugger.

CUDA does not support patching of debugger-defined code into a CUDA kernel.
Because of this, conditions and ignore counts must be evaluated by NightView and
cannot be evaluated by a patch. See “CUDA Debugging” on page 3-42 for more
information.

There are several commands to manipulate eventpoints, but not every type of manipula-
tion makes sense for every type of eventpoint. Deleting, disabling, enabling, and attaching
3-10

Concepts
ignore counts and conditions works for all types of eventpoints. See “Manipulating Event-
points” on page 6-98.

Inserted eventpoints evaluate their conditions and ignore counts at full program speed, and
may be manipulated while the process is running. However, this is not the case for
inserted eventpoints in CUDA code, because patching is prohibited there. Watchpoint
conditions and ignore counts are evaluated in the debugger. Watchpoints may be enabled
and disabled only while the process is stopped.

Inserted eventpoints always use a user-specified pc location to determine where in the
application they are inserted. These are specified with a location specifier (see “Location
Specifiers” on page 6-13). If the location specified is not a valid location, particularly for
those with line numbers, they may be interpreted as approximations. That is, if an even-
point is set at line 12 and there is no code at line 12, the actual breakpoint may be shifted
to line 14 where there is code. This often is convenient for code-compile-debug cycles
where the lines are moving around slightly. (See “Eventpoint Modifiers” on page 6-100.)
Furthermore, NightView will accept inserted eventpoints for completely nonexistent loca-
tions in case the user’s intention was to set an eventpoint that will appear later during the
execution of the application. (See “Future Eventpoints” on page 8-50 or “set-future-
points” on page 6-74.)

NightView supports detection of shared libraries and CUDA code that appear after
inserted eventpoints already have been set. By default, NightView will consider any
inserted eventpoints in the context of those new shared libraries and CUDA code and will

Table 3-1. Eventpoint Summary

Action
Code is
inserted

May have
commands

breakpoint stop the process when the
breakpoint is reached

X X

heappoint check the heap or config-
ure the heap debugger

X

monitorpoint display the value of
expressions in the moni-
torpoint window

X X

patchpoint execute an expression or
modify the flow of the
program

X

tracepoint record an event when exe-
cution reaches the trace-
point

X

syscallpoint stop the process when a
system call is entered or
existed (optionally restart-
ing it)

X

watchpoint stop the process when the
process reads or writes a
variable in memory

X

3-11

NightView LX User’s Guide
move them to locations within those shared libraries or CUDA code, if those locations are
more appropriate. For instance, if an eventpoint was specified at line 12, but originally
there was no code at line 12 so it was inserted at line 20, then later a shared library or
CUDA kernel was loaded that did have code at line 12, the eventpoint would be moved
from line 20 back to line 12.

Breakpoints 3

A breakpoint is one of the most frequently used features of a debugger. You can set a
breakpoint at any place in a program you are debugging, and when execution reaches that
point, the program will stop. You may then use the debugger to examine the current
values of variables, set additional breakpoints, etc. See “breakpoint” on page 6-101.

You may also specify an arbitrary set of debugger commands to execute each time a
breakpoint is hit (if it is a conditional breakpoint, that means only when the condition is
satisfied). See “commands” on page 6-113.

Monitorpoints 3

If you are debugging a real-time program, you may wish to monitor the value of one or
more variables without interrupting the execution of your program. Monitorpoints allow
you to do this. A monitorpoint is code inserted at a specified location by the debugger
that will save the value of one or more expressions, which you specify. Because the
expressions are evaluated by the program within a specific context, the expressions may
reference local stack variables and machine registers and may call functions in your
program. The saved values are then periodically displayed by NightView in a Monitor
Window (see “Monitor Window” on page 3-28). You can set a monitorpoint using the
monitorpoint command. See “monitorpoint” on page 6-108.

Note that the expressions you specify are evaluated every time execution passes the
location of the monitorpoint (unless the monitorpoint is disabled or has a condition or an
ignore count). However, NightView may not display every value saved by the
monitorpoint. If the monitorpoint location is executed more frequently than NightView
can update the Monitor Window, you will miss seeing some of the values evaluated by
the monitorpoint.

Note that there may be some delay between the time that NightView reads the values
saved by a monitorpoint and the time the values appear on your display. Therefore,
values sampled by different monitorpoints cannot reliably be related in time. However,
you may be sure that all the values sampled by a single monitorpoint were all evaluated at
the same time.

Patchpoints 3

During the course of debugging, you may find a small error you would like to fix, but
you would also like to continue debugging the program without recompiling and
relinking. The patchpoint command (see “patchpoint” on page 6-103) allows you to
patch in a change to the memory image of the process and continue running. (Note that it
does not change the disk copy of the program file; recompiling and relinking is the only
way to make a permanent change.)
3-12

Concepts
A patchpoint can cause an expression (including function calls) to be evaluated, modify a
variable, or cause the program to branch to a new location.

The load command (see “load” on page 6-97) provides the ability to make larger scale
changes by loading in whole object files. This feature may be used to replace defective
routines, or to load custom designed debugging routines that can do things like verify
complex data structures, or search through linked lists.

Tracepoints 3

The manual for the NightTrace tool describes a library that may be used to generate trace
records by calling trace routines in your program. If you didn't initially build a program
with trace calls, (or you did, but decided later additional trace calls were necessary) the
tracepoint command (see “tracepoint” on page 6-106) may be used to patch in
tracepoints. The values traced may then be examined with the ntrace tool. For more
information on NightTrace, see ntrace(1).

Because the program runs at full speed through a tracepoint, you can use tracepoints in
real-time applications where breakpoints are unacceptable.

One significant difference between a tracepoint and a monitorpoint is that values
recorded by a tracepoint are all available for later analysis; values will not be "lost"
because of delays in displaying, as they may with a monitorpoint. Another difference is
that tracepoints provide a reliable means of relating values of expressions at different
points of execution to the times those values were evaluated. Monitorpoints do not.

Heappoints 3

Heappoints can be used to narrow the search for a memory bug. A heappoint either checks
the process's heap or changes the configuration of heap debugging, depending on which
options you specify. Heappoints may be set only after configuring the heap debugger with
the heapdebug command (see “heapdebug” on page 6-53) or from the Process menu
(see “Process Menu” on page 8-9). Heappoints are set with the heappoint command
(see “heappoint” on page 6-110).

Watchpoints 3

A watchpoint stops your program when a particular area of memory is read or written.
This is most useful in determining when a variable (or other program element) is being
changed to a "bad" value during execution. You could set a watchpoint on the variable,
and then the program would stop whenever the variable is modified. Watchpoints are set
with the watchpoint command. See “watchpoint” on page 6-120.

Often you know what the bad value is. If so, you can set a condition on the watchpoint so
that the program will stop only when the variable is changed to the bad value. The condi-
tion is evaluated after the instruction that triggers the watchpoint has completed. Night-
View provides a process-local convenience variable, $is, that is useful in watchpoint
conditional expressions. See “Convenience Variables” on page 3-37. $is contains the
value of the variable (or other program element) after the instruction that triggers the
watchpoint has completed.
3-13

NightView LX User’s Guide
NOTE

In some cases it would be nice to have a $was (the value of the
variable before the instruction began). NightView has no way to
know what the value was immediately before the instruction exe-
cuted. You can approximate $was by adding some code to your
conditional expression. However, note that this picks up the old
value only when the watchpoint is triggered and that there are cir-
cumstances, described below, that can change the value without
triggering the watchpoint.

Example:

This example code assumes the current language is C. Suppose
you want the process to stop if the old value was 1. Set the condi-
tion on the watchpoint to this expression:

$was=$prev, $prev=$is, $was==1

Set these convenience variables before resuming the process:

set $was=0
set $prev=0
set-local $was
set-local $prev

A watchpoint condition is evaluated relative to the global scope of your program. The lan-
guage of the condition is controlled by your current language setting. If the setting is
auto, then the condition is evaluated in the language of the main program.

Unlike other eventpoints, a watchpoint is not associated with a code location. A watch-
point is not an inserted eventpoint. See “Eventpoints” on page 3-9.

You can have many watchpoints per process, but there is a limit on the number of watch-
points that can be enabled at the same time. On an IA-32 or AMD64 system, at most 4
watchpoints can be enabled at one time.

A watchpoint can be set only on a program element in memory, not in a register. You
should be careful about setting a watchpoint on a variable on the stack, because the watch-
point probably will not be meaningful once the routine that contains the variable returns.

For watchpoint restart information, NightView always uses the same address that it calcu-
lates when you originally create the watchpoint. Note that the specific address may or may
not be interesting in another run of your program, depending on exactly what your pro-
gram does. For example, a variable on the heap may always be allocated in the same place
each time your program runs, or it may be allocated at a different address depending on
when it is allocated, what other allocations are done, timing of external events, etc. You
may need to delete a watchpoint that was created by restarting and create a different
watchpoint. See “Restarting a Program” on page 3-16.

When you have a watchpoint set, your process does not incur any performance penalty
until it references the addresses being watched. When that happens, NightView gets con-
trol.
3-14

Concepts
NOTE

If the target system is an IA-32 system, then the mechanism
NightView uses for watchpoints watches 1, 2 or 4 bytes. If the
variable you are watching is 3 bytes long, then you may get some
extraneous triggers on the next byte. If the variable you are watch-
ing is longer than 4 bytes, only the smallest address bytes of the
variable are watched. If you need to watch more bytes of the vari-
able, you can use multiple watchpoints, specifying addresses and
lengths.

If the target system is an AMD64 system, then the mechanism
NightView uses for watchpoints watches 1, 2, 4 or 8 bytes. If the
variable you are watching is 3, 5, 6 or 7 bytes long, then you may
get some extraneous triggers on the trailing bytes. If the variable
you are watching is longer than 8 bytes, only the smallest address
bytes of the variable are watched. If you need to watch more bytes
of the variable, you can use multiple watchpoints, specifying
addresses and lengths.

Because watchpoints are not inserted eventpoints, the debugger evaluates any ignore
count and condition, so the ignore count and condition are not evaluated at full program
speed. See “Eventpoints” on page 3-9.

A watchpoint is not triggered if the variable is accessed by other processes through shared
memory (unless they are also being debugged and have watchpoints set) or if the variable
is accessed through I/O using direct memory access (DMA), such as a low-level read
from disk.

Syscallpoints 3

A syscallpoint stops your program when a system call is entered or exited. It prints the
name of the system call and whether the program is about to enter it, or is exiting from it.
Options are available to resume the process automatically after printing such information
and to control whether entry, exit, or both are trapped.

You can specify a specific set of system calls to trace or trace all of them.

Syscallpoints are set with the syscallpoint command (see “syscallpoint” on page
6-121 or the Syscallpoint Dialog (see “Eventpoint Dialog Boxes” on page 8-29).

Signals 3

Usually, your process is stopped and the debugger gets control if the process receives a
signal. Signals may be generated by error conditions (such as dividing by zero or trying
to write to a write-protected location). Other signals may be generated under program
control (the program can request the system to send it a SIGALRM periodically, or another
program may explicitly send a signal with the kill(2) system service).

Several ways in which to handle a signal are described in the handle command (see
3-15

NightView LX User’s Guide
“handle” on page 6-136).

In addition, you may use the debugger to explicitly send a signal to a process (see
“signal” on page 6-135). This is useful if you need to test the signal handler code in a
program (however, the debugger itself uses SIGTRAP, so it should not be used in any of
your code).

If you specify nostop, noprint, and pass for a signal, then the system will deliver
the signal to the process normally and bypass the debugger. This avoids any performance
penalty to your program if it makes frequent use of signals.

Signals may cause somewhat different behavior when you are single-stepping your
program (see “Controlling Execution” on page 6-123). If a signal occurs while you are
single-stepping, NightView's reaction depends on whether you specified stop or
nostop and pass or nopass in the handle command (see “handle” on page 6-136).
The four possible combinations are explained below.

nostop, pass

The single-step operation continues, but the signal will be passed to the program. If
you have a signal handler in your program, it will be executed without single-step-
ping. When the handler finishes executing, single-stepping will be resumed until it
is complete or another signal occurs.

nostop, nopass

The signal has no effect (other than temporarily interrupting execution). The single-
step operation continues until it is completed or another signal occurs.

stop, pass

The single-step operation is terminated and the process is stopped. If you issue
another single-step command or a continue command, or a resume command
with no argument, the signal is passed on to the process when it resumes execution.

stop, nopass

The single-step operation is terminated and the process is stopped. The signal is dis-
carded.

Some signals can have additional information passed to the signal handler via
siginfo(5). However, NightView has no mechanism for the user to specify this
information, so signals sent to the process using the signal or resume commands will
have no associated siginfo(5) information.

If a process stops with a signal that has associated siginfo(5) information, that
information is preserved by NightView whenever possible. If you specified pass for that
signal and you continue execution using the continue command or the resume
command with no argument, the siginfo(5) information will be delivered to the
process along with the signal. However, no siginfo(5) information is ever delivered
if you explicitly specify a signal number on the signal or resume commands.

Restarting a Program 3

Restarting execution of a program under NightView is different than in many other
3-16

Concepts
debuggers, because instead of being executed directly by the debugger, programs are
executed from a dialogue shell, or by other programs. The typical way you restart a
program is to invoke it again in the dialogue shell. See “run” on page 6-35.

When NightView recognizes that a program is being run again, it automatically applies
the same eventpoints, and other information, to the new instance of the program.
NightView considers two programs to be the same if they have the same full pathname.

This method of restarting programs was chosen because of NightView's multi-process
nature. You may actually want to debug multiple copies of the same program, and in that
case you may or may not want to have the same eventpoints set in each copy. However, if
you are debugging just one instance of one program, you can easily restart its execution
without having to manually duplicate your eventpoint settings.

Occasionally you may wish to run a program again and again without stopping when it
execs or when it exits. For instance, if a program sometimes dies with a signal, you
could run it repeatedly until the signal occurs and then examine where it occurred. To
avoid having the process stop when it execs, put a resume command (see “resume” on
page 6-126) inside an on program command (see “on program” on page 6-44), like
this:

on program yourprogram do
resume

end on program

The resume command will not actually take effect until after the process has been
initialized, so on program and on restart commands that set eventpoints and
otherwise modify the process work as expected. Note that the process does actually stop
when it execs, but the resume command tells it to start running again as soon as
NightView is finished initializing it.

To avoid having the process stop when it exits, use the set-exit command. See “set-
exit” on page 6-50. These two mechanisms, in combination, allow you to run a program
repeatedly and only stop it if it hits a breakpoint or a watchpoint or gets a signal.

The following sections describe the details of how restarting works. Most users will not
need to know these details. The normal automatic mechanism handles most situations.

Restart Mechanism 3

At certain times in the execution of a program, NightView takes a checkpoint on that
program. A checkpoint saves information about the eventpoints, signal disposition, etc.
This information is called the restart information. Each checkpoint replaces the previous
restart information.

The restart information is stored as a sequence of commands associated with your
program name via an on restart command. See “on restart” on page 6-46. The
commands restore the eventpoints and other information in the new program.

Each time you execute a program, NightView checks to see if an on restart
command matches your program. If one matches, NightView executes the sequence of
commands associated with your program.

Unlike other command streams, execution of an on restart command stream is not
3-17

NightView LX User’s Guide
terminated by an error. See “Command Streams” on page 3-36.

NightView takes a checkpoint on a process when:

• It is about to exit, terminate with a signal, or be killed by NightView.

• It is about to exec a new program.

• You enter a checkpoint command. See “checkpoint” on page 6-47.

It is not possible to turn off checkpoints. However, you can control whether restart
information is applied. See “set-restart” on page 6-64.

Note that if you have a program that has not yet taken a checkpoint and you start a new
instance of that program, then no restart information is applied to the new instance
because there is none for that program.

You can save restart information to a file. See “info on restart” on page 6-166. This
allows you to save the information across debug sessions. Or, you can edit the file to
change the restart information. In either case, you would then source the file to restore
the restart information. See “source” on page 6-145.

Restart Information 3

This section describes the restart information saved during a checkpoint.

• Any memory reservations made with the mreserve command. See “mre-
serve” on page 6-51.

• Eventpoints, including any names, conditions, ignore counts and com-
mands associated with each eventpoint. See “Eventpoints” on page 3-9.

• Directory search path. See “directory” on page 6-79.

• Child disposition. See “set-children” on page 6-49.

• Signal disposition. See “handle” on page 6-136.

• Display list. See “display” on page 6-94.

• Symbol file. See “symbol-file” on page 6-39.

• Default language. See “set-language” on page 6-59.

• Whether or not the process will stop before exiting. See “set-exit” on page
6-50.

• The interest level threshold, the interest level for inline, justlines,
and nodebug, and any explicit interest levels for subprograms. See “inter-
est” on page 6-66.

• Information to reproduce the items in the data panel. See “Data Panel” on
page 8-65. See “data-display” on page 6-93.
3-18

Concepts
Restart Macros 3

If an on restart command is created by a checkpoint, then in addition to commands
to restore eventpoints and other program information, there are two macros:
restart_begin_hook, at the beginning of the commands, and
restart_end_hook at the end of the commands. Both macros are called with the
name of the program being restarted as an argument.

These macros let you customize restart processing. The initial definition of these macros
is

define restart_begin_hook(program_name) apply on program
define restart_end_hook(program_name) echo

This means that on program commands will be applied before any restart processing,
and nothing will be done afterwards. (restart_end_hook is defined as echo because
there is no way to make an empty macro.)

You can define these macros to be anything you wish. See “Defining and Using Macros”
on page 6-173. For example, you could define restart_begin_hook to be echo to
disable the on program processing. See “on program” on page 6-44.

Exited and Terminated Processes 3

When a process terminates normally, it flushes its I/O buffers, closes any open files, then
calls the exit service. By default, NightView automatically arranges for a process to stop
when it calls the exit system service. (You may alter this behavior with the set-exit
command. See “set-exit” on page 6-50.) When a process terminates abnormally, it
receives a signal, which causes the process to stop and NightView to get control. Thus,
you may always examine a program that is about to exit or terminate abnormally. The
process will still exist, so you can examine memory and registers.

If you continue execution of a process in one of these states, the process will cease to
exist and NightView will forget about all the eventpoints set in that process. The PID for
that process will be removed from all families (see “Families” on page 3-2) in which it
appears. Detaching from such a process has the same effect (see “Detaching” on page
3-3).

Process States 3

A process is normally in one of two states; it is either running, or it is stopped. A process
is said to be stopped when it gets a signal (and it is being debugged) or it hits a
breakpoint or watchpoint (meaning that the point of execution reached the breakpoint or
the watchpoint was triggered, and all the conditions on the breakpoint or watchpoint were
satisfied). When it is stopped, the debugger has control. The debugger may continue to
execute commands attached to that breakpoint or watchpoint, but once the debugger
initially gets control, the process is considered to be stopped. (This is not the same type of
stop as job control in the C shell or the Korn shell.)
3-19

NightView LX User’s Guide
Some debugger commands require the process to be stopped. It is meaningful to examine
or modify stack locations or variables only if the process is stopped. Monitorpoints and
tracepoints provide ways to examine variables without stopping a process. See
“Monitorpoints” on page 3-12. See “Tracepoints” on page 3-13. The first inserted
eventpoint in a process must be set while the process is stopped, unless eventpoint
memory preallocation is on. See “Eventpoints” on page 3-9. See “set-preallocate” on
page 6-70. A watchpoint may be enabled or disabled only when the process is stopped.
See “Watchpoints” on page 3-13.

In addition to being stopped or running, a process may be exiting or terminated, or it may
be a pseudo-process associated with a core file. A pseudo-process cannot be continued.
Continuing an exiting or terminated process causes the process to cease existence.

Operations While the Process Is Executing 3

This section lists what you can do while the process is executing.

• Examine and modify statically-allocated variables. This includes static
and global variables in C, and COMMON variables and variables with the
SAVE attribute in Fortran. It does not include variables allocated to regis-
ters or the stack.

• Examine and modify absolute memory locations. This includes accessing
memory referenced by a pointer variable, if the pointer variable is accessi-
ble as noted above.

• Evaluate expressions involving the above items. See “Expression Evalua-
tion” on page 3-21. Note that a function call is not allowed.

For the purposes of establishing the scope and meaning of variable names,
and also the language for the expression, NightView uses the location
where the process was last stopped to determine the context of the expres-
sion (see “Context” on page 3-24). You can use the special forms Night-
View provides to change this context, if you want to access variables local
to a procedure, for instance. See “Special Expression Syntax” on page 6-3.
However, note that the forms that refer to specific stack frames are not
allowed while the process is running, because the state of the stack is inde-
terminate.

• Examine, modify, and disassemble executable code.

• Create, manipulate, and destroy inserted eventpoints (breakpoints, moni-
torpoints, patchpoints, tracepoints, and heappoints). See “Eventpoints” on
page 3-9. These types of eventpoints may be enabled and disabled, have
conditions added or removed, and have ignore counts modified. You may
modify the commands attached to breakpoints, monitorpoints and watch-
points. You may also get information about any type of eventpoint. See
“Manipulating Eventpoints” on page 6-98.

Enabling or disabling watchpoints requires the process to be stopped. Any
of the other operations may be performed on watchpoints while the process
is executing. However, since, by default, watchpoints are enabled when
3-20

Concepts
created, and disabled when destroyed, you cannot ordinarily create or
destroy a watchpoint while the process is executing. See “Watchpoints” on
page 3-13.

If preallocation is on (default), the debugger performs special processing to
support eventpoints and monitorpoints as soon as the program starts. See
“set-preallocate” on page 6-70. If preallocation is off, the following restric-
tions apply to setting the first eventpoint and the first monitorpoint:

- The first inserted eventpoint within a particular text region must be
set while the process is stopped. A text region is either your program
or the dynamic libraries it references.

- The first monitorpoint must be set while the process is stopped,
regardless of whether other eventpoints have been set in that region.
See “Monitorpoints” on page 3-12.

This is necessary because NightView needs to do special processing when the first
eventpoint is created within a text region, or when the first monitorpoint is created.
That special processing requires the process to be stopped.

While the process is executing, you may not use forms of commands that depend on
knowing the program counter or the value of any machine register. See “Predefined
Convenience Variables” on page 6-5.

Note that monitorpoints and tracepoints also provide ways of monitoring your program
without stopping it. See “Real-Time Debugging” on page 3-6.

Examining Your Program 3

If you specify running processes in the qualifier of a command which requires stopped
processes, you get a warning message about each running process, but the command
executes normally on any of the stopped processes in the qualifier.

Expression Evaluation 3

Because NightView is a symbolic debugger supporting multiple languages, you are
allowed to evaluate expressions written in different languages, but this does not mean you
have access to all the features of each language. (Specific language syntax is not
described here; consult the reference manuals for the language for that information.)

One important point to note is that the debugger may not always precisely follow the
language semantics when evaluating an expression. In particular, the results of a floating-
point expression evaluated by the debugger may not be bit for bit identical to the results
the same expression would give if it were compiled and executed in your program. See
“Special Expression Syntax” on page 6-3.

A program written in multiple languages may define identical names for different global
objects. NightView looks first for the name as defined in the language of the current
3-21

NightView LX User’s Guide
context (see “Context” on page 3-24). If there is no current context, it uses the current
language setting to determine which symbols to look at first (see “set-language” on page
6-59).

The debugger can evaluate arithmetic or logical expressions (essentially anything that
may appear on the right hand side of an assignment). The debugger cannot declare new
variables.

In general, the debugger cannot execute statements, it can only evaluate expressions. For
Fortran, the concept of an expression is extended to assignment. (Assignment is an
expression in C and C++.)

In some ways the debugger is more flexible than the compiler. The debugger usually
allows you to evaluate expressions or assign new values to variables without the type
checking done by the compiler. Unless the expression simply makes no sense, the
debugger will evaluate it.

C Expressions 3

All C expressions are supported.

The debugger supports array slices in expressions using the following syntax:

array_name[l..u]

where l is the lower bound and u is the upper bound. The array_name may be any
expression that denotes either an array object or a pointer. The type of an array slice is an
array whose bounds are the values of l and u, respectively.

In addition, to support querying multiple CUDA memory segments, additional keywords
are allowed in type specifiers, particularly for use in type casts. They are:

__code__
__constant__
__generic__
__global__
__local__
__parameter__
__register__
__shared__
__texture__

If a pointer type references a type qualified by one of these keywords, then it implies that
the pointer points to the specified CUDA memory segment. For instance, to obtain the
content of CUDA shared memory at address 0x1000, you may use an expression such as
(__shared__ float)0x1000.

C++ Expressions 3

Most C++ expressions are supported, with a few exceptions noted below.

The debugger supports array slices in C++. See also “C Expressions” on page 3-22.
3-22

Concepts
In function calls and assignments, the debugger copies an object by copying the bytes of
the object. No copy constructor or user-defined assignment operator is called.

These C++ features are not supported:

• Exceptions.

• Templates.

Operator and function overloading is supported with additional input from the user used
to select the desired function. See “Overloading” on page 3-23.

A special case form of the dynamic_cast<> function is supported. You may use
dynamic_cast<>, spelled exactly this way (with no type name given as a template
argument inside the <>). This form of dynamic casting will cast an object or a pointer to
the actual type of that object as determined by run time type information provided by the
compiler.

The additional CUDA segment keywords supported for C also are supported for C++. See
“C Expressions” on page 3-22.

Fortran Expressions 3

All Fortran expressions are supported.

Fortran subroutines are treated as if they were functions with no return value. Fortran
assignments are supported except for Concurrent Fortran array assignments.

The debugger cannot execute statements of any kind (except assignments and procedure
calls), including Fortran I/O statements.

Overloading 3

Overloading means that more than one entity with the same name is visible at the same
point in the program. Overloading is allowed for location specifiers and for expressions.
In C++ language mode, overloading of functions and operators is allowed. See “set-
language” on page 6-59. NightView refers to the appropriate entity if it has enough
context to determine that there is only one choice. Otherwise, you need to provide
NightView with additional information in the form of special syntax added to the
expression or location specifier where the overloaded name is used.

This is typically a two step process. You run the command once and get an error which
displays the possible choices. Then you run the command again with additional syntax to
request the specific candidate number from that list.

The special syntax used to request candidates from the list is described in “Selecting
Overloaded Entities” on page 6-2. Overloaded names are supported in language
expressions (see “Expression Evaluation” on page 3-21) and location specifiers (see
“Location Specifiers” on page 6-13), and the same syntax is used for both.

The set-overload command (see “set-overload” on page 6-69) may also be used to
make NightView automatically generate overload candidate lists by turning on either of
3-23

NightView LX User’s Guide
the two separate overload modes for routine names and language operators. This
automates the first step of the two step process. The special syntax may be used to
request overload candidate information for a single function or operator even when the
corresponding overload mode is off.

If overloading is on, NightView interprets overloaded entities according to the current
language. If overloading is off, NightView uses the built-in meaning of all operators, if
possible, and interprets all function and procedure calls as referring to one function or
procedure it arbitrarily picks from the list of candidates. If operator overloading is off and
the built-in operator does not make sense in the context in which it is used, NightView
gives an error.

If overloading is on, but a unique meaning for an overloaded operator or routine cannot
be determined, NightView gives an error that includes the list of the possible overload
candidates. You may then run the command again, adding the syntax to select the correct
candidate.

The numbers assigned to the choices are unique for the specific context (see “Context” on
page 3-24) where the expression or location specifier appears. If, for example the 5th
item in a list of choices refers to a particular instance of the overloaded function
funcname when you are stopped at one point in your program, you may not assume the
5th item will refer to that same instance when you are stopped at a different location.

The one number you can rely on is 1 for overloaded operators. The built in language
operator is always number 1, and any user or library defined operators have numbers
greater than 1.

Program Counter 3

When a process is stopped, it has stopped at one specific place in the program, which is
the address of the next instruction to be executed. This place is where the program counter
points. Different machines have different sets of registers, but the program counter is
always referred to as $pc.

If the currently selected frame is not the most recently called frame, then the $cpc register
points to the instruction that made the call and the $pc register points to the place where
execution will return after the call. In the most recently called frame, $cpc and $pc point
to the same place.

Context 3

The location pointed to by $cpc implies a specific context for evaluating expressions.
$cpc is located in some procedure (or routine, or function — the terms are used inter-
changeably throughout this document). This procedure was coded in some language (C,
C++, Fortran, or assembler). By default, the language of the routine containing the $cpc
is the language used to evaluate any expressions.

Another component of the context is the current stack frame (see “Current Frame” on
page 3-25). It establishes which instance of a given local variable you are actually
referring to in an expression. NightView provides special syntax (see “Special Expression
3-24

Concepts
Syntax” on page 6-3) for referencing variables in other contexts besides the current one.

Scope 3

Most languages have scoping rules, with local variables visible only in inner blocks and
more widely visible variables in outer blocks. Often the same name is used for different
variables in different scopes. Just as the $cpc is located in a particular routine, it is also
located in a particular block of the routine. The variables that are directly visible to the
debugger are determined by the language rules and current block nesting structure of the
program at that point.

When debugging, you may need to look at other variables which would normally not be
visible by the strict language rules. NightView makes every effort to make any additional
variables visible for use in expressions (as long as the names do not conflict). If you
cannot reference a variable due to a naming conflict, NightView provides special syntax
(see “Special Expression Syntax” on page 6-3) for referencing variables visible in other
scopes.

Stack 3

When a process stops, it not only stops at a particular program counter, but it also has a
current stack. The stack is used to hold local variables and return address information for
each routine. As a routine calls another routine, new entries (called frames) are made on
the stack. The stack can be examined to show the routines which were called to get to the
current routine using the backtrace command (see “backtrace” on page 6-86).

The debugger assigns numbers to each frame. The most recent frame is always frame
zero.

In a program with multiple threads, each thread has its own stack. See “select-context” on
page 6-141.

Frames corresponding to uninteresting subprograms are not numbered and they are not
shown in a backtrace. See “Interesting Subprograms” on page 3-27.

Current Frame 3

When a process stops, the current frame is initially the stack frame associated with the
most recently called routine (where $cpc points). This frame contains the local variables
for that routine, and these variables may be referenced in expressions you evaluate. Each
frame also contains the return address indicating the specific point in the older routine
where the $pc will be located when the current frame returns.

You may wish to examine the variables in one of the routines that called the current rou-
tine. To do that, you may use the up command (“up” on page 6-140) or the frame com-
mand (“frame” on page 6-138) to change the current frame. As you move up the stack
(towards older routines, or in the same direction a return will go), the new stack frame
3-25

NightView LX User’s Guide
becomes the current frame. Any variables referenced are now evaluated in the context of
this new frame and new $cpc indicated by the called frame.

NightView also provides special syntax in expressions as an alternative to using the up or
frame commands. See “Special Expression Syntax” on page 6-3.

Registers 3

Each stack frame also contains locations where registers are saved while in one routine so
they can be restored when returning to the calling routine. As the current frame is moved,
the debugger notices which registers will be saved and restored. If you look at registers
using the info registers command, or examine local variables which are being kept
in registers, you see the values as they will be restored when the process finally returns to
that frame. Referencing a specific register using the predefined convenience variable also
refers to the register relative to the current frame.

When examining a variable allocated to a register, you must be aware that the variable
may exist in that register for only a short time. Therefore, the contents of the register may
not accurately reflect the value of the variable. See “Optimization” on page 3-39 for more
information.

Inline Subprograms 3

C++ programs can have inline subprograms. The code for these subprograms is expanded
directly into the calling program rather than being called with a transfer of control. There
is usually a time savings, sometimes at a cost in the size of the code.

NightView generally treats inline subprogram calls the same as non-inline calls. Although
an inline call does not create a stack frame, NightView creates a frame for it to match the
semantics of the language and to simplify the model of debugging. You can use the usual
commands to move up and down the stack frames and view variables within each frame.
See “Current Frame” on page 3-25.

You can use single step commands to step into inline subprograms, to step over them, or
to finish them. See “step” on page 6-127, “next” on page 6-129, and “finish” on page
6-132.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

If you set an eventpoint within an inline subprogram, NightView modifies each instance
of the subprogram. If there are a lot of calls to the subprogram, this may take a long time.
3-26

Concepts
If execution is stopped in an inline subprogram and you set an eventpoint using the default
location specifier (which corresponds to $pc), the location specifier refers only to that
particular instance of the inline subprogram as opposed to all instances. See “Location
Specifiers” on page 6-13.

You can set an interest level for individual inline subprograms. The interest level applies
to all instances of an inline. You can also set an interest level to avoid seeing any inline
subprograms. See “Interesting Subprograms” on page 3-27. This may be desirable
depending on how your program uses inline subprograms.

You may not call an inline subprogram in an expression, unless the compiler has created
an out-of-line instance of the subprogram. See “Expression Evaluation” on page 3-21.

Interesting Subprograms 3

NightView considers some subprograms to be interesting and the rest to be uninteresting.
NightView avoids showing you uninteresting subprograms. Single-step commands do not
normally stop in an uninteresting subprogram. See “step” on page 6-127. A stack walk-
back does not display frames corresponding to uninteresting subprograms. See “Stack” on
page 3-25.

In general, subprograms compiled with debug information are usually interesting and the
rest are usually uninteresting. NightView gives you control over which subprograms are
considered interesting by using the interest command. See “interest” on page 6-66.

Each process has a current interest level threshold. The default threshold is 0. NightView
uses rules to decide on the interest level of a subprogram. If the interest level of the sub-
program is greater than or equal to the interest level threshold, then the subprogram is con-
sidered to be interesting.

NightView uses these rules, in order, to determine the interest level for a subprogram:

1. The interest level may be specified for that subprogram with the inter-
est command.

2. If the subprogram is an inline subprogram, the value of the inline inter-
est level is compared to the interest level threshold. If the inline interest
level is less than the interest level threshold, then the interest level for the
subprogram is the minimum value. Otherwise, continue with the next rule.

3. The interest level may be recorded in the debug information for that sub-
program by the compiler. Some compilers have a way of designating an
interest level in the source.

4. If the subprogram has debug information, but no explicit interest level, the
interest level is 0.

5. If the subprogram has line number information, but no other debug infor-
mation, the interest level is the value of the justlines interest level for
that process.

6. If the subprogram has no debug information at all, the interest level is the
value of the nodebug interest level for that process.
3-27

NightView LX User’s Guide
In some situations there may be no interesting subprograms on the stack. In that case, the
most recently called subprogram is considered interesting.

You can make all subprograms interesting by setting the interest level threshold to the
minimum value.

Monitor Window 3

The Monitor Window shows the values of expressions being monitored by monitorpoints
(see “Monitorpoints” on page 3-12). When you set a monitorpoint (see “monitorpoint” on
page 6-108), the Monitor Window is created if it does not already exist, and the
expressions associated with that monitorpoint are automatically displayed in the Monitor
Window. The values in the window are updated approximately once a second to show the
values computed the last time each monitorpoint was executed.

The mcontrol command (see “mcontrol” on page 6-111) controls the monitorpoint
display. You can remove monitorpoint items from the display window (and add them
back in later). You can change the rate at which the window updates take place, and you
can stop updates completely, then start them again later. You can also turn the Monitor
Window off to remove it from your screen, then restore it later.

Note that interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-36.

The Monitor Window is not available in the command-line interface of the debugger.
You must use either the simple full-screen interface (see Chapter 7 [Simple Full-Screen
Interface] on page 7-1) or the graphical user interface (see Chapter 8 [Graphical User
Interface] on page 8-1) in order to take advantage of monitorpoints.

The monitored items are displayed in the Monitor Window using built-in information
about the precision of the data type to decide how many columns to use for the value.
You have some control over this by using the format codes on the print command.

You also have some control over the layout of the items in the window. New items are
added across a line, from left to right, until there is not enough space remaining on the
line to add the current item. Then a new line is started. If you remove some items (by
using mcontrol nodisplay or by removing the monitorpoints), the remaining items
are shifted left and up to pack the display. If you then add the items back, they are added
at the end of the display (not in their original positions).

By default, each item is displayed with an identification string, a stale data indicator, then
the value itself laid out left to right. The stale data indicator can be turned on and off via
mcontrol. There are 3 possible states that this indicator can denote:

Updated

The monitorpoint location was executed and values were saved since the last time
NightView updated the display. Note that the location may have been executed
many times in between successive display updates. The displayed value represents
the value as it existed the last time the monitorpoint location was executed.

Not executed
3-28

Concepts
Execution has not reached the monitorpoint location since the last time NightView
updated the display. This may happen if that location is executed infrequently, if the
process gets suspended for some reason, or if the process is stopped by a signal or
breakpoint. The displayed value still represents the value as it existed the last time
the monitorpoint location was executed.

Executed but not sampled

Execution reached the monitorpoint location, but no values were saved because of
an ignore count or unsatisfied condition. In this case, the displayed value is not nec-
essarily the same as the value of the expression the last time the monitorpoint loca-
tion was executed.

The actual form of the stale data indicator depends on the interface being used. See
“Monitor Window - Simple Full-Screen” on page 7-2. See “Monitorpoint Values Data
Item” on page 8-75.

Debugging the Heap 3

NightView has features to help debug problems with a program's heap (i.e. memory
obtained via malloc, calloc, realloc, etc.). Common problems with a program's
heap include buffer overruns, reads or writes of memory through "dangling" pointers
which reference freed memory, and memory leaks. The debugger can also provide infor-
mation about memory usage, such as the number of blocks that are allocated.

The heap debugger can be enabled and configured with the heapdebug command (see
“heapdebug” on page 6-53), or with the Debug Heap... item in the Process menu. See
“Process Menu” on page 8-9.

Once enabled, the heap debugger intercepts calls to the following heap routines:

• calloc

• free

• malloc

• memalign

• posix_memalign

• pvalloc

• realloc

• valloc

Before allowing the allocator to perform the requested operation, the heap debugger per-
forms some checks for each such call. In addition, it is usually configured to perform a
"heap check" with a specified frequency. Also, depending on the configuration, it may
allocate extra memory for each block or may fill certain regions with fill bytes. See “heap-
debug” on page 6-53 for details on configuration.
3-29

NightView LX User’s Guide
In addition, heappoints may be inserted at user-specified locations in the program. They
can perform heap checks or change the configuration of heap debugging dynamically. See
“Heappoints” on page 3-13.

The heap debugger can remember a walkback list for each allocator operation. The walk-
back list has the program counter for the caller of the heap routine, and the caller of that
routine, and so on. If you encounter a heap error or a memory leak, this tells you which
part of your program allocated the block.

The heap debugger can be used to provoke bugs by filling allocated blocks with trash to
reveal problems with uninitialized fields, or by filling freed blocks with trash to reveal
problems with dangling pointer references. You can also discover how your program
behaves when it runs out of memory by restricting the amount of memory the heap debug-
ger will allocate.

You can also hide the effects of some bugs. This is not intended as a remedy, but rather as
information about what might be wrong with your program. For example, you can allocate
extra memory for each block, which helps determine if your program is not allocating
blocks of the right size, or have malloc zero-fill each block, which helps determine if
your program is not initializing fields before using them.

Levels and Common Errors 3

If you have no interest in the details of heap debugging, you may want to use heap debug-
ging levels. The levels are just a convenient way to configure heap debugging.

Level 0 (Disable) sets the controls so that the heap debugger does as little as possible, but
can still issue errors for invalid heap operations.

Level 1 (Low) sets the heap debugger to do some heap checking with relatively small
overhead, and is the default setting. Level 1 also enables all the features that do not change
the behavior of the system allocator. That is, if you run your program without the heap
debugger and then you run your program with the heap debugger at level 1, you will get
the same pattern of block addresses and block sizes (however, note that some versions of
the operating system vary the address space layout randomly for each process). Enabling
more features may change the pattern.

Level 2 (Medium) sets the heap debugger to do more checking with greater overhead in
memory used and execution time. It may also cause subtle changes in the behavior of the
system allocator which can hide or expose different bugs.

Level 3 (High) does a very high level of checking at the cost of extreme overhead in mem-
ory used and execution time. In particular, the heap is checked before every heap opera-
tion and all freed blocks are retained. It may also cause subtle changes in the behavior of
the system allocator.

Similarly, using the common_errors keyword in the heapdebug command (see
“heapdebug” on page 6-53), or clicking one of the Common Errors buttons in the
graphical user interface, provides a convenient way to configure heap debugging for par-
ticular kinds of errors.

Entering
3-30

Concepts
heapdebug common_errors=block_overrun

or clicking the Block Overrun button in the graphical user interface, configures the heap
debugger to detect if the program references past the end of an allocated block.

Entering

heapdebug common_errors=dangling_pointer

or clicking the Dangling Pointer button in the graphical user interface, configures the
heap debugger to detect if the program references a block after it has been freed.

Entering

heapdebug common_errors=uninitialized_field

or clicking the Uninitialized Field button in the graphical user interface, configures the
heap debugger to detect if the program reads from a block that it has failed to initialize.

Once you have selected a level or a common error, you may then make more detailed cus-
tomizations if you wish. The heap debugging level does not affect error control, fill byte
values, heap size, internal checks or slop.

Fences 3

The heap debugger can set "fences" on either end of each block. The fence before the
beginning of the block is called the pre-fence. The fence after the end of the block is called
the post-fence. The fence bytes are filled with a specified fill pattern. During a heap check,
or when the block is freed, the heap debugger checks that the fence bytes have not been
altered. If the fence bytes have been altered, it is an indication that your program is writing
outside the block, and the heap debugger stops your process with an error status.

As a special case, blocks allocated with a size of zero have no pre-fence, no post-fence,
and no slop.

This figure shows the layout of heap debugger overhead in a block. The pre-fence, slop,
and post-fence are optional. See “slop=n” on page 6-58.
3-31

NightView LX User’s Guide
Hardware Overrun Protection 3

The heap debugger can also set up hardware overrun protection. When enabled, each
block is placed as close as possible to the end of a page, and the following page is pro-
tected from reads and writes. Then if your program tries to read or write past the end of the
block, it gets a signal (SIGSEGV). Note that this is not reported as a heap error in the same
way that errors appear in the info memory report (see “info memory” on page 6-161) or
in a data panel.

The advantage of hardware overrun protection is that it catches stray references immedi-
ately, which makes it easier to find bugs, and it catches both reads and writes. The main
disadvantage of hardware overrun protection is that it uses a great deal of overhead mem-
ory in order to position each block. (The protected page takes up virtual memory in your
address space, but does not use any physical memory or system swap space. However, the
overhead to position the block does take system memory.) It is possible for your program
to exhaust the system's memory. You may need to adjust your "ulimit -v" setting or
talk to your system administrator about increasing the system configuration variables
vm.max_map_count and vm.overcommit_ratio.

This option is useful for small programs, and for large programs that overrun blocks
before they have allocated a lot of memory. This option is also useful if you enable it dur-
ing only part of the process's execution so that only particular blocks are protected. See
“Heappoints” on page 3-13.

Note also that the heap debugger cannot place every block such that it ends right at the end
of a page. The beginning of each block is aligned to an 8-byte boundary on IA-32 and a
16-byte boundary on AMD64. (For some allocation calls, your program may specify a
larger alignment.) If the block's size is not a multiple of this alignment, then there will be
a gap of a few bytes before the protected page. In this case, the program will not get the
SIGSEGV unless it strays outside the block further than the gap.

When hardware overrun protection is turned on, the heap debugger automatically fills the
gap with post-fence fill bytes, to help catch stray references into the gap. The gap is never
made wider than it has to be to accommodate the alignment and size restrictions. For hard-
ware overrun protection, the number of post-fence bytes is 8 on IA-32 (16 on AMD64), or
the number you specify, whichever is larger, but no more than will fit in the gap.
3-32

Concepts
This figure shows the layout of heap debugger overhead in a block with hardware overrun
protection. The pre-fence and slop are optional. See “slop=n” on page 6-58. The gap
may be zero sized; otherwise it typically is filled with the post-fence fill byte.

Retained Free Blocks 3

You can configure the heap debugger to retain some number of free blocks, or even all
free blocks. A retained free block is not available for reuse. Once the desired number of
retained free blocks is reached, blocks are made available for reuse in the same order they
were freed by your program.

Retaining free blocks can help you find dangling pointer bugs. This is particularly effec-
tive when hardware overrun protection also is used, because when your program frees a
block it is protected from reads and writes. However, note that retaining a large number of
free blocks can use a lot more memory than your program would use normally, especially
when you also use hardware overrun protection.

Heap Check 3

Heap checks are scans of allocated blocks, and possibly some free blocks (see “Retained
Free Blocks” on page 3-33), looking for errors that could not be detected immediately as
they occurred. The possible errors are:

• free-fill modified

• post-fence modified

• pre-fence modified

A heap check will be performed in the following circumstances:

• repeated automatically after a specified number of heap operations

• when the heapcheck command with no expression is issued (see
“heapcheck” on page 6-168)

• when selecting the Heap Errors... item from the Debug Display Menu,
and selecting either:

- Check Heap For New Errors First

- Check Heap For All Errors First

• when selecting one of the following menu items from the Data Item Popup
Menu:

- Check Heap and Report New Errors

- Check Heap and Report All Errors

• at a user-specified location with a heappoint check (see “heappoint”
on page 6-110)
3-33

NightView LX User’s Guide
In addition, a limited heap check, pertaining only to a single block, is performed in the fol-
lowing circumstances:

• automatically when free or realloc is called on a block

• when the heapcheck command with an expression is issued

• when selecting the Update Block Errors menu item from the Data Item
Popup Menu

Leak Detection 3

Programs sometimes "leak" blocks, which wastes memory. If NightView's heap debug-
ging functionality is turned on with the heapdebug command (see “heapdebug” on page
6-53) or from the Process menu (see “Process Menu” on page 8-9), then it is possible to
obtain a report of leaked heap blocks. See “info memory” on page 6-161 or “Leak Sets /
Still Allocated Sets Data Items” on page 8-74.

An allocated block is considered leaked if no pointer in your program references it. The
means of detecting leaks generally is conservative. It does not distinguish pointers from
other data types. So if, for example, an integer is encountered which happens to have a
value equivalent to that of a pointer to a leaked block, then leak detection will believe that
it is a pointer to the leaked block, and therefore will not consider the block leaked.

Despite this conservatism, there are ways to disguise pointers which will cause leak detec-
tion to believe that a heap block is leaked when it really is not. Typically this arises when
a pointer to a heap block is stored in some non-standard format. This could happen if a
pointer is stored in big endian format on a little endian machine, or vice versa, or if a
pointer is marshalled or pickled, and the original unmarshalled or unpickled pointer is
destroyed. In practice, these situations occur rarely.

Branch Tracking 3

NightView and the RedHawk kernel contains support for tracking all branches in an appli-
cation. There is significant time overhead with this feature, so it is disabled by default.
But the user can enable it any time it seems likely that the information might be useful. It
is particularly useful when an application bug causes it to branch in totally unexpected
ways, such as calling a function pointer whose value is garbage, or returning from a func-
tion when the return address on the stack has been overwritten with garbage.

The set-branch-tracking command (see “set-branch-tracking” on page 6-74) or
the Process Settings dialogue (see “Branch Tracking” on page 8-51) can be used to
enable or disable this functionality.

For each branch instruction tracked, two addresses are remembered: the address contain-
ing the branch, and the target of the branch, where execution was transferred. Once
branch tracking is enabled, and the process has been allowed to execute, this information
can be displayed with the branch-history command (see “branch-history” on page
6-98) or in the Data panel (see “Branch History Data Item” on page 8-70).
3-34

Concepts
Branch tracking is supported only for host threads, and not for CUDA contexts.

Branch tracking is only supported for RedHawk Linux version 6.0 or later and only on
newer Intel chips.

Errors 3

NightView error messages always have this format:

severity: text [error-message-id]

The severity can be one of:

Caution

Usually just an informational message. It is not serious.

Warning

A little more serious, but NightView tries to finish the current command as
you requested.

Error

A serious error. This level of error terminates the current command. It also ter-
minates a command stream. See “Command Streams” on page 3-36.

Abort

So serious that NightView cannot continue running. This does not usually
indicate that you have done something wrong; either there is a system problem
or there is a bug in NightView.

The text is a brief explanation of the problem.

The error-message-id is a section name you can use with the help command to find out
more about the error and possibly how to fix it. An error-message-id begins with E-.

NOTE

Some libraries used by NightView, such as the X Window Sys-
temTM, issue their own error messages in certain circumstances.
These error messages do not follow the format described above.
You can recognize these messages because they do not have the
[error-message-id] appended to the message.
3-35

NightView LX User’s Guide
Command Streams 3

A command stream is a set of commands that the debugger executes sequentially. There
are three kinds of command streams:

• Interactive command streams. These are commands entered directly by the
user.

• A file of commands being read by the source command is also a com-
mand stream. Execution of the source command suspends execution of
the command stream it appears in and creates a new one that endures until
the file is exhausted.

• Event-driven command streams. For example, commands attached to a
breakpoint are an event-driven command stream. Each instance of hitting a
breakpoint creates a new command stream; the stream terminates when the
commands attached to the breakpoint are finished. These non-interactive
command streams always operate with safety level set to unsafe (see
“set-safety” on page 6-64).

The debugger may interleave the execution of two or more command streams. For
instance, it may execute some of the commands attached to one breakpoint, then execute
some of the commands attached to a different breakpoint (on behalf of a different
process), then execute more of the commands attached to the first breakpoint.

The debugger stops executing a command stream if it encounters a serious error (such as
an unknown command, or a badly formed command). A less severe error (such as a
warning about a process not being stopped) simply generates an error message, but the
debugger continues to execute the remaining commands. If a serious error terminates a
command stream, and that command stream was created by another command stream,
then the older command stream is also terminated. This goes on until the interactive
command stream is reached. The interactive command stream is not terminated.

on restart command streams are an exception to this rule. They continue to execute
even if the commands get errors. See “on restart” on page 6-46.

Interrupting the Debugger 3

The shell interrupt character (normally <CONTROL C>) does not terminate NightView.
Instead, it terminates whatever command is currently executing, if any. You may wish to
use it if you accidentally ask NightView to print a large quantity of information you don't
want. To type <CONTROL C>, press the c key while holding down the control key.

In the graphical user interface, you can interrupt the debugger by clicking the Interrupt
button in the process toolbar. See Chapter 8 [Graphical User Interface] on page 8-1. See
“Process Toolbar” on page 8-20.

If you interrupt the debugger, all command streams except the standard input stream are
terminated. The standard input stream is interrupted, but not terminated, so it will prompt
for the next command immediately.
3-36

Concepts
Furthermore, any output from debugged processes is temporarily halted (it is still
buffered, but not displayed) until after you enter the next debugger command. This gives
you a chance to type a command without interference from the debugger or the debugged
processes. See “Dialogue I/O” on page 3-5 for more information about controlling the
output from debugged processes.

Interrupting the debugger stops the Monitor Window from updating. See “Monitor
Window” on page 3-28.

Macros 3

A macro is a named set of text, possibly with arguments, that can be substituted later in
any NightView command. When you define a macro, you specify its name, the names of
the formal arguments, and the text to be substituted. The text to be substituted is called
the body of the macro.

When you reference the macro in a NightView command, you again specify its name,
along with the actual arguments. Actual arguments are the text you want substituted for
the references to the formal arguments in the macro body. See “Defining and Using
Macros” on page 6-173 for details on how to define and reference macros.

Macro expansion, the process of replacing the reference to a macro with its body, is
simply a textual substitution. Very little analysis is performed on the substituted text, so
macros can be a very powerful facility. Furthermore, a macro reference is expanded only
when it is needed.

Macros provide a way for you to extend the set of NightView commands. They also
provide a way to define shortcuts for things frequently used in commands or expressions.

Convenience Variables 3

NightView provides an unlimited number of convenience variables. These are variables
you can assign values and reference in expressions, but they are managed by the
debugger, not stored in your program. You don't have to declare these variables, just
assign to them. They remember the data type and value last assigned to them.

There are two kinds of convenience variables — global and process local. Variables are
global by default, but by using the set-local command (“set-local” on page 6-65) you
can make a variable local to a process. Once you declare a variable name process local,
each process maintains a separate copy of that convenience variable (a variable cannot be
local in one process, but shared among all other processes). It is possible to imagine other
types of scoping for convenience variables (such as breakpoint local or dialogue local),
but process local and global are the only kinds currently implemented.

Because conditions on inserted eventpoints and the expressions associated with monitor-
points, patchpoints, and tracepoints are compiled code executed in the process being
debugged, references to convenience variables in these expressions always treat the con-
venience variable as a constant, using the value the variable had at the time the expression
3-37

NightView LX User’s Guide
was defined. On the other hand, the commands associated with a breakpoint or watch-
point, and conditions attached to watchpoints, are always executed by the debugger, so a
convenience variable referenced in a command gets the value at the time the command or
condition is evaluated.

Smart Printing 3

NightView supports smart printing, which is the capability of recognizing certain com-
plex data types and presenting them in a simpler conceptual form that hides the details of
their implementation. This is particularly useful for classes like std::string, which
logically contains a string, but where the actual implementation is more complex and
makes determination of the logical string complicated. It also is useful for container
classes like std::list that have a simple logical organization, but where the implemen-
tation is considerably more complicated.

The smart-print command (see “smart-print” on page 6-180) allows definition of
smart printers. A smart printer recognizes a type if its name matches a user-defined pat-
tern. If the type matches, any display of an object of the type is replaced with a simpler
logical description of the object.

Smart printing can be enabled or disabled for a whole process (see “smart-print” on page
6-180), for a single print or output command (see “print” on page 6-86), or for a sin-
gle item in the data panel (see “Data Panel Context Menu” on page 8-75).

Logging 3

Each dialogue retains a buffer showing the output generated by the programs run in that
dialogue shell. This output may also be logged to a file (see “set-show” on page 6-33).

In addition to the output log for each dialogue, you may log the commands you type, or
the entire debug session (see “set-log” on page 6-59).

Value History 3

NightView keeps the results of the print command (see “print” on page 6-86) on a
value history list. There is only one list for all the processes, and all printed values go on
this list regardless of the process. You can review this history (see “info history” on page
6-158), or use previous history values in new expressions (see “Special Expression
Syntax” on page 6-3).
3-38

Concepts
Command History 3

NightView keeps a record of the commands you enter during a debugging session. There
are mechanisms in the simple full-screen interface and in the graphical user interface to
retrieve any of these commands, edit them, and re-enter them if desired. See “Editing
Commands in the Simple Full-Screen Interface” on page 7-2. See “Command Toolbar” on
page 8-20.

NightView does not add a command to the command history if it is the same as the previ-
ous command. Empty lines are never added. Commands are added only from interactive
command streams. See “Command Streams” on page 3-36.

Initialization Files 3

When the debugger starts up, it looks for a file named .NightViewrc in the current
working directory. If it can not find one there, it looks for $home/.NightViewrc. The
file, if found, is then automatically executed as though it appeared as an argument to the
source command (see “source” on page 6-145).

You can specify other initialization files, and you may disable the automatic execution of
the default initialization files, using options on the NightView command line. See
Chapter 5 [Invoking NightView] on page 5-1.

Optimization 3

There are some problems associated with debugging optimized code. These are the most
common problems, but there are others:

• Machine language code may be moved around so that it does not corre-
spond line for line to the source code in your program.

• Variables may not have the values you expect. The most common reason
for this is that the value of the variable is not needed at the current location
in your program and the register storing the value of the variable has been
reused for another value.

Concurrent compilers generate additional debug information that indicates
where variables are (i.e., register or stack) at different locations in your
program. NightView uses this information to access the variables when
their location(s) contain accurate values, and to prevent you from accessing
them when no location contains an accurate value.

In general, you must be alert to the possibility that the compiler has changed things in
your program. It may be easier to debug if you temporarily compile your program
without optimization, provided your bug is still reproducible in that case.
3-39

NightView LX User’s Guide
Compilers generate debugging information at high optimization levels because it is more
useful than to have nothing; however, the debug information is often inadequate to
describe an optimized program. (Future compilers may generate more accurate debug
information.) So, be careful and consult the appropriate manual for details.

Multithreaded Programs 3

NightView gives you facilities for debugging threads. On Linux, threads are implemented
with separate “processes” that share resources, including memory, file descriptors, etc. In
this manual, those processes are referred to as thread processes, or more simply, threads.
When this manual refers to a process, that means all the threads together. See
pthread_create(3).

When a thread stops, NightView stops the entire process (i.e. all other threads that are
still executing are stopped). NightvView shows you the thread that caused the process to
stop -- known as the current thread. To see other threads use the select-context
command (see “select-context” on page 6-141). When using the graphical interface, all
threads are shown in a tree display in a data panel. The “current” thread is shown in
green.

NightView provides you some control over the execution of a thread independently of the
others in that process. When you resume execution (see “resume” on page 6-126), you
can choose whether all threads are allowed to execute, or just a single thread. The
behavior is dependent on the run mode (see “set-run-mode” on page 6-124) and the
options provided to the resume command. The run mode controls whether a single
threads resume execution or all threads resume execution. The mode is consulted when
you use the graphical interface to cause execution to resume, or when you use similar
commands without explicit options that override the mode.

Similarly, if you issue a single-step command (see “step” on page 6-127), the selected
thread will be stepped according to the command, but the other threads may also execute
during that time — depending on the run mode or the options you use with the single-step
command. The next command works similarly (see “next” on page 6-129).

All the commands that cause execution to resume have the following options: /all and
/one. The former indicates that all threads should resume, regardless of the run mode.
The /one option indicates that only the current thread will resume execution, regardless
of the run mode.

It is worth noting that the command step /all does not single step all threads. It
single steps the current thread and all other threads are allowed to execute during the
single step and they are stopped when the current thread’s single step completes. The
command next /all operates in the same manner -- it does not imply that all threads
step over one line of code.
3-40

Concepts
IMPORTANT

The /one option should be used with care. It is not uncommon
for a single thread to block waiting on operations to be completed
by other threads (e.g. by pthread_cond_wait(3) and many
other services that hold resources). If those other threads are not
permitted to resume, the one thread that was resumed may block
indefinitely. In such circumstances, stop the thread and resume
all threads using /all.

Thread Tags 3

NightView provides the ability to associate "tag variables" with individual threads in your
program. An artificial record with the reserved convenience variable name $thr is cre-
ated for any threads in which you set thread specific tag values. The tag values are fields in
the $thr struct and each thread gets a unique $thr struct.

When new tags are created, the $thr structs are automatically reallocated to hold the new
fields, as required.

The tag values are typically created with the special tags syntax of the patchpoint
command, but tags may also created by simply using the $thr record in an expression
and referring to some record field. Any thread which executes through the patch code gets
the new tag values set in that thread's $thr struct. Eventpoints can also test values in the
$thr struct in the eventpoint condition, so thread tags provide a way to make eventpoints
conditional on which threads execute them.

Any tags created without an explicit declaration are always one bit boolean flags with a
default value of false. The declare-thread-tag command may be used to declare
tags of other types (but not all types are allowed: Tag types have to be fixed size types
with no dynamic components). The default value of tags is always all zero bits.

Tag values are shown in the data panel thread descriptions as well as the info threads
command output, so setting unique tag values where unique kinds of threads are created in
your program serves as a way to mark threads to easily locate different threads in your
program. If a program uses general purpose "worker bee" threads that are dispatched on
different tasks as there are things to do, you can set a tags patchpoint in the thread dis-
patching code to mark the thread with a tag that says what it is doing while it is at work,
then clear that tag when it goes back into the pool of worker bees. To keep the output
uncluttered, only tag values with non-zero values are printed, and if you declare tags with
complex aggregate types, those tags are not printed in the thread descriptions. You can
always say print $thr to see the entire set of tags for the current thread.

This is all implemented behind the scenes by calling various library routines such as
pthread_getspecific and pthread_setspecific as well as malloc and
realloc, so tags will only function in programs linked with the normal pthread and libc
libraries and using the pthread threading model. This also means that tags do cause a small
amount of time and memory overhead to be added to your program (but not much more
than any other kind of eventpoint adds). Of course, if you declare lots of tags, or use large
types for tag values, the memory usage can be arbitrarily large. Also note that you should
3-41

NightView LX User’s Guide
never count on the address of $thr to remain fixed. If you define new tags, NightView
may need to realloc the space for the $thr struct and copy the values to a new location.

CUDA Debugging 3

NightView supports debugging NVIDIA CUDA code. CUDA code executes on a sepa-
rate CUDA device which is a wholly different architecture than the host. CUDA code is
arranged into contexts, which are presented as siblings of host threads. Within these con-
texts are individual threads, possibly numbering in the thousands. Logically, they are
organized into blocks of threads. Physically, they are organized onto the computational
resources of the CUDA devices, which are broken down into devices, symmetric multi-
processors (SMs), warps, and lanes. Because the number of CUDA threads potentially
can be very high, they are presented as parts of either a physical or logical hierarchy to
ease understanding.

In many ways, debugging of CUDA threads is similar to debugging host threads, but there
are some differences.

Similar to the way host threads function, when an application with CUDA code stops, all
threads and CUDA devices are stopped. When resuming a CUDA thread, all CUDA
threads are resumed. The /one option is supported, but only insofar as it will avoid start-
ing host threads. The CUDA threads will all start running. This is a technical limitation
of the CUDA architecture.

Stepping CUDA code behaves differently depending on circumstances. It does not
resume any host threads because of isolation of the CUDA contexts from host threads. It
is desirable to step only a single warp, but this is not always possible. NightView will step
a single warp if the following conditions apply:

• The current frame is the innermost frame (i.e. frame 0 if there are no non-
interesting frames).

• You do not step over a __syncthreads() operation.

• You do not step over any called procedures.

There are a number of features which either do not make sense for CUDA code, or which
are not supported, usually because of technical limitations of the CUDA architecture or
driver. Notably, these include:

• Eventpoints other than breakpoints

• Heap debugging

• Thread tags

CUDA code is not loaded or available immediately at the start of the host application. It is
loaded later by the libcudart.so shared library. Because of this, when setting break-
points in CUDA code, the source decorations often are presented on other lines until the
CUDA code actually is loaded. Those breakpoint lines will be changed to appropriate
locations in the CUDA code once that code is loaded. Similarly, attempts to disassemble
or otherwise interact with the CUDA code before it is loaded may result in information
about stubs in the host code.
3-42

Concepts
Eventpoints are implemented differently in CUDA code than in host code. It is not possi-
ble to compile conditions and execute them in the CUDA code, nor to perform ignore
count processing in the CUDA code. So these operations are handled by NightView
directly after hitting a trap in CUDA code. This is a technical limitation of the CUDA
driver.

WARNING

When debugging an application with CUDA code that executes
on a CUDA device, that device should not also be used as an X11
display device. Doing so will cause the display device to hang.
If the device was displaying the NightView windows, it may be
difficult to recover from this situation. Either another display
device or a remote X11 display device should be used.

Limitations and Warnings 3

Setuid Programs 3

Setuid and setgid programs can be run in a dialogue shell. If you are the superuser or the
owner of the setuid program, you may also debug the program. Otherwise, NightView
issues a warning message telling you that it has automatically detached from the process
and the program runs without being debugged. In this case, you also cannot debug any
child processes of such a program.

Note that programs run using the shell command (see “shell” on page 6-144) are not
controlled by the debugger and so may run setuid.

Attach Permissions 3

You are only allowed to attach to processes running as the same user and group as the
dialogue in which the attach command was issued, or, if a qualifier was specified, as
the dialogue in the qualifier. More precisely, the dialogue's effective UID must be the
same as the real and saved UID of the process you want to attach, and the dialogue's
effective GID must be the same as the real and saved GID of the process you want to
attach. However, the root user can attach to any process.

Architecture Interoperability 3

By default, if debugging on a 64-bit system, if a 64-bit application running in a dialogue
execs a 32-bit application, that application cannot be debugged by NightView and it will
be detached automatically.

But NightView does have capabilities for debugging 32-bit applications on 64-bit
systems. If the debugger is started with the --arch=i386 option (see “--
arch=i386” on page 5-1), or if a Remote Shell is started using the Debug 32-bit
applications on the x86_64 target checkbox (see “Debug i386 programs on
3-43

NightView LX User’s Guide
x86_64 target” on page 8-37), then either the initial dialogue or the new remote
dialogue, respectively, will start a 32-bit shell instead of the default 64-bit shell. Any 32-
bit applications run under that shell, directly or indirectly, can be debugged by
NightView. However, if that 32-bit shell or any applications run under it exec a 64-bit
application, it cannot be debugged and will be detached automatically.

Attaching to a 32-bit process is possible from a 32-bit dialogue. However, attaching to
64-bit processes is prohibited from a 32-bit dialogue.

It is possible to debug both 64-bit and 32-bit applications from a single NightView
session by using a Remote Shell, but all 32-bit programs must be launched or attached
from the 32-bit dialogue and its 32-bit shell, while all 64-bit programs must be launched
or attached from the 64-bit dialogue and its normal 64-bit shell.

The 32-bit shell used by NightView resides in:

/usr/lib/NightView-version-i386/nviewsh

This shell is a 32-bit version of pdksh built specially to run on 64-bit systems. It is possi-
ble for the user to override this shell if desired. NightView first searches the
/usr/lib/NightView-version-i386/ directory for a shell with the same name as
the user’s desired login shell as specified in /etc/passwd. Only if no such shell is
found will it use the nviewsh mentioned above. If the user wishes to build a 32-bit shell
capable of running on their 64-bit system and installs it in that path with their login shell
name, it will be executed instead.

NightTrace Daemon 3

The tracepoint command (see “tracepoint” on page 6-106) can be used to trace
variables in a process. Tracing only works if a NightTrace daemon has been started prior
to adding tracepoints to the process.

It is the responsibility of the user to start a NightTrace daemon, using either the command
line tool ntraceud(1) or the Daemons dialog in the tool ntrace(1). See the
NightTrace User’s Guide.

Memory Mapped I/O 3

Special purpose programs often attach to regions of memory mapped to I/O space. This
memory is sometimes very sensitive to the size of reads and writes (often requiring an 8-
bit or 16-bit reference). The debugger may access memory using 8-bit, 16-bit, or 32-bit
references. This means you should probably avoid referencing I/O mapped memory
unless the size of access does not matter.

Be especially careful of printing pointers to strings (e.g., variables declared to be (char *)
in C or C++), because the debugger automatically dereferences these variables to print
the referenced string.

Note that accesses made by tracepoints, monitorpoints, and patchpoints will be made
according to the natural data type of the variable accessed, so those accesses should
normally work correctly.
3-44

Concepts
Blocking Interrupts 3

If you are debugging a program containing sections of code that block interrupts, you can
easily get a CPU hung or crash the system by attempting to single step through this code
(or by hitting a breakpoint or watchpoint in a section of code which executes with
blocked interrupts).

Debugging with Shared Libraries 3

NightView provides the ability to debug programs that reference shared libraries, but
there are a few things you need to know to use this effectively. This section describes
how NightView interacts with shared libraries.

Shared libraries are a mechanism that allows many programs to share libraries of
common code without duplicating that code in each executable file. The executable files
for those programs contain the names of the shared-library files referenced by that
program. These references must be resolved before the program can reference data or
functions in the libraries. When the program first starts executing, a routine called the
dynamic linker gets control and resolves references to shared libraries.

However, NightView gets control of a process before the dynamic linker executes. This
is useful for NightView, but not very useful for you the user, because until the dynamic
linker runs, you cannot reference any of the data or functions in the shared libraries. For
instance, you could not set a breakpoint in a function residing in a shared library.

Therefore, when NightView detects that the process references shared libraries, it lets the
dynamic linker execute before giving you control of the process. This allows you to
debug the entire program, without needing to know which parts reside in which shared
library.

One consequence of this action, however, concerns signals. If your process should
receive a signal while the dynamic linker is running, NightView will detect it and give
you an error message. You will not be able to reference the shared-library parts of your
program, and most likely the process will not be able to continue executing properly. One
source of such a signal is the dynamic linker itself. If it cannot find one or more of the
shared-library files referenced by the program, it will abort the process with a signal.

Some programs require more flexibility in their use of shared libraries. These programs
call the dlopen(3) service to load a shared library when it is needed. Because this
happens after the program has initialized, NightView is unaware that a new shared library
has been brought into the program's address space.

However, it is easy to make NightView aware of any dynamically loaded libraries at any
time. Once your program has loaded a library or libraries using dlopen, you can use the
exec-file command to force NightView to reexamine the list of shared libraries
referenced by the program. See “exec-file” on page 6-42. After your program has called
dlopen, enter the following command:

exec-file program-name

where program-name is the name of the program you are running (the one that calls
dlopen). NightView updates its database of shared libraries, and you can then reference
3-45

NightView LX User’s Guide
data and procedures in the dynamically loaded libraries.

You can issue this exec-file command as often as you wish. If your program loads
several libraries at various points during its execution, you may want to issue the exec-
file command several times.
3-46

4
Chapter 4Tutorials

4
4
4

This chapter is divided into two sections.

The first is a general graphical tutorial which introduces the very basic functions of Night-
View and symbolic program debugging in general.

The second portion is devoted to short tutorials that concentrate on a single feature or con-
cept. These currently include the following.

• The “Thread Tags Tutorial” on page 4-27 discusses the advantages of
using Thread Tags when debugging multi-threaded processes.

• The “Tracing Tutorial” on page 4-33 discusses inserting NightTrace trace
events into user code for timing analysis.

General Graphical Tutorial 4

This is the general tutorial for the graphical user interface (GUI) version of NightView.
NightView’s graphical user interface runs only on X servers. For more information about
the graphical user interface, see Chapter 8 [Graphical User Interface] on page 8-1. There
is a much shorter general tutorial in Chapter 2 [A Quick Start - GUI] on page 2-1. Addi-
tionally, there are short topical tutorials in the second half of this chapter, beginning on
page 27.

About the Tutorial

This tutorial shows only the most common debugger commands and features. It expects
you to know the basics about window system concepts, processes, and signals, but you do
not need to know about NightView and debugging concepts.

The supplied tutorial program spawns a child process. The parent writes a message to std-
out, sleeps, sends signal SIGUSR1 to the child, and loops. The child writes a message to std-
out when it receives the signal.

The source files used in this tutorial are found under the /usr/lib/NightView/
Tutorial directory in tar files, and include the following:

C Fortran

msg.h - Defines constants

main.c main.f Forks a child and calls other rou-
tines
4-1

NightView LX User’s Guide
This tutorial takes significant time to complete and since each section must be performed
in order, it’s not easy (or wise) to skip to later sections. If you want a short general tutorial,
you may want to see Chapter 2 [A Quick Start - GUI] on page 2-1.

RECOMMENDATION

Perform each step as indicated, or your results may differ from
those provided in later steps of the tutorial.

Since this is a live debugging session and NightView is supported on many Linux distri-
butions, the process IDs and hexadecimal program addresses will likely differ from those
shown in the tutorial. Additionally, the line breaks in your output may differ from those
shown because the lengths of displayed data items may vary.

Some messages might not appear, or additional messages might appear, depending on
your environment.

Some of the commands that appear in this tutorial are an abbreviated form of the corre-
sponding canonical NightView command. You may abbreviate NightView commands and
some keywords to the shortest unambiguous prefix. For more information, see “Command
Syntax” on page 6-1. You cannot abbreviate file names, symbolic names, or NightView
construct names.

You could run this entire tutorial with commands and operations from the keyboard. How-
ever, use the mouse whenever possible during this tutorial.

Creating the Program

- Create a directory named nview where you can create files for this tuto-
rial, and move into that directory.

mkdir nview
cd nview

Decide what language program you want to debug.

Make the msg program contain debug information. For the Fortran program, you should
also build the ftint.c interface, but, for this tutorial, do not build it with debug informa-
tion.

-

- For C, you should enter the following:

tar xvf /usr/lib/NightView/Tutorial/C.tar
cc -g -o msg *.c

parent.c parent.f Sends signals to the child

child.c child.f Receives signals from the parent

- ftint.c Provides Fortran interfaces to
system services
4-2

Tutorials
- For Fortran, you should enter:

tar xvf /usr/lib/NightView/Tutorial/Fortran.tar
cc -c ftint.c
g77 -g -o msg ftint.o *.f

You should now have a msg program with debug information in your nview directory.

Starting NightView

- Enter the following command.

nview

Note that in this tutorial msg does not appear on the nview invocation line, although
NightView does accept program invocations and program arguments on the command
line.

Shells in NightView

NightView communicates with a system through a dialogue which contains a shell where
you run shell commands and debug running programs. For information about dialogues,
see “Dialogues” on page 3-4.

The shell is always present but isn’t shown by default. If you’re just debugging a single
program and don’t need to provide terminal-oriented input to it, then you don’t really need
to have a shell panel visible -- since all output the program generates will also be shown in
the NightView Message panel.

In most debug sessions, you simply put the program to debug and any arguments it needs
on the nview command line, or, run the process using the Process menu’s Run...
option. A shell panel is useful when you need to debug multiple programs or perhaps need
to redirect program output or input.

In this tutorial, for demonstration purposes, we will use a shell panel. We will create a
shell panel on a separate page.

- Click on the View menu and select Add Page.

A new tabbed page appears with the name Page 2. The old page now shows a tab with
the name Main.

- Click on the View menu and select New Shell Panel.

We’ll talk about what is displayed in the shell panel in a minute, but it is important to
understand the distinction between a shell panel and a shell. The shell always exists,
whereas a shell panel is simply a view of the existing shell that allows you to interact with
it, just as if you were interacting with a shell in a terminal session.

In a single NightView session, you can create additional shells; normally you do this when
debugging a process on a remote system. When multiple shells exist, NightView always
has you decide which one you mean when you choose to create a shell panel for it, or
attach to a process from it.

Each shell has a name; the default shell is local. The page now has a panel with the title
local shell. For more information about shell panels, see “Shell Panel” on page 8-60.
4-3

NightView LX User’s Guide
The shell panel we created in the step above displays any output generated from your
shell’s initialization routine (e.g. .bash_init or .kshrc) as well as the following text:

/usr/lib/NightView-release/ReadyToDebug
$ /usr/lib/NightView-release/ReadyToDebug

NightView runs the ReadyToDebug program automatically as part of its initialization. It
does this so it knows when your shell’s initialization is complete and when it should start
considering processes spawned by the shell as processes it should debug.

You might see only one echo of /usr/lib/NightView-release/ReadyToDebug,
depending on how quickly the dialogue shell starts (release is the NightView release
level). For information about ReadyToDebug, see “ReadyToDebug” on page 3-9. Note
that in this tutorial the dialogue shell prompt is ‘‘$ ’’. Yours may differ.

Getting Help

NightView has an integrated help system. You can get help on a widget, a command, or
get help on the last error that occurred. Use the Help menu to access help, or type the fol-
lowing command:

help

Starting Your Program

Most NightView features operate on existing processes in a running program. Because
you did not specify a program when you started the debugger, there haven’t been any pro-
cesses to debug. You must start msg now to debug it and to use most of the rest of the
NightView features in this tutorial.

- If the current tabbed page shown is not Page 2, switch to it by clicking
on its tab.

- Click in the shell panel to give it the keyboard focus.

- In the shell panel, you should enter the following command and press
Return:

./msg

- Switch back to the other page by clicking on the tab labeled Main.
4-4

Tutorials
NightView should look similar to the following figure:

Figure 4-1. General Tutorial - NightView after program launch

The status bar at the bottom of the window shows that msg is the executable program the
process is running.

The message panel shows:

New Process: local: 31518 parent pid: 17882
Process local:31518 is executing /raptor/fang/jojo/nview/
msg.
Reading symbols from /raptor/fang/jojo/nview/msg...done
Executable file set to
/raptor/fang/jojo/nview/msg

If msg was dynamically linked, NightView also displays the following messages:

Program was dynamically linked.
Dynamic linking completed.

NightView shows the process ID (PID) of the new process and the path where your execut-
able exists. Your PID and the path where your executable exists will probably differ from
4-5

NightView LX User’s Guide
those in this tutorial (in fact, if they don’t, you should go by a lottery ticket immediately).
For information about processes, see “Programs and Processes” on page 3-2.

The source panel title bar shows the program being debugged, msg, the qualifier,
local:31518, and the name of the source file that is being displayed in the source
panel, main.c, main.f, or main.a.

In the source panel, NightView displays numbered source lines. Executable lines have a
small blue diamond source line decoration beside the line numbers.

For more information about source line decorations, see “Source Line Decorations” on
page 6-83. The vertical and horizontal scroll bars in the source panel let you examine the
rest of the source file.

The status bar shows the status Stopped for exec. This means that the process has just
exec(3)’ed a new program image.

The context panel has an entry for this process. The header shows the qualifier,
local:31518, and the name of the program this process is running, msg. The context
panel entry is for the current stack frame, which is in a start-up routine that gets control
before main. Later, we will see process entries here, but for now there is only one pro-
cess, and the context panel shows process entries only if there is more than once process.
See “Context Panel” on page 8-64.

Note that by appending an ampersand (&) to the ./msg, you could have started your pro-
gram in the background of the shell. This is generally a good idea because it gives you the
flexibility to debug multiple programs in one NightView session; however, in this tutorial,
you will be supplying the program with input, so the program needs to be running in the
foreground.

Note also that although this tutorial does not ask you to do so, you can rerun a program by
invoking it again in the shell panel, or by clicking on the Rerun button in the process
toolbar.

Debugging All Child Processes

By default, NightView debugs child processes only when they have called exec(3). In
the msg program, the child process never calls exec. To be able to debug this child pro-
cess, you must tell NightView to debug children before msg forks the child process. Also,
you have tell NightView to debug children after invoking ./msg so this setting can be
applied to existing processes. See “Multiple Processes” on page 3-2.
4-6

Tutorials
- Click on the Process menu and select the Process Settings... entry.

Figure 4-2. General Tutorial - Process Settings General Page

- In the General page, in the Debug Children area, click on the combo
box and select always.

- Click on the OK button to apply the change and dismiss the dialog box.

NightView echoes a set-children command in the message panel.

Handling Signals

By default, signals stop execution under the debugger. In the msg program, the parent pro-
cess sends signal SIGUSR1 to the child process. It then sleeps as a crude way of synchroniz-
ing the sending and receiving of signals. Having execution stop because of this signal is
not desirable in this case.

- Click on the Process menu and select the Process Settings... entry,
and then click on the Signals tab.

Figure 4-3. General Tutorial - Process Settings Signals Page
4-7

NightView LX User’s Guide
- Scroll down to the entry for SIGUSR1. Turn off the checkbox for Stop, but
leave the checkboxes set for Print and Pass.

- Click on the OK button to apply the change and dismiss the dialog box.

NightView echoes a handle command in the message panel.

Note: you had to change the signal settings after invoking ./msg so they could be
applied to existing processes.

Setting the First Breakpoints

A breakpoint is set on the executable statement where you want program execution sus-
pended. The program stops at the breakpoint before it executes the instruction where the
breakpoint is set.

- Right click on the line 18 line in the source panel.

Right clicking brings up the context menu for the source panel. Clicking on the particular
line identifies it as the target for the subsequent action. This is indicated by changing the
background color of the line.

- Select Set simple breakpoint in the context menu. Repeat this for the
other breakpoints as indicated below.

For the C program, the lines are 18, 25, and 30. NightView displays the following infor-
mation in the message panel.

local:31518 Breakpoint 1 set at main.c:18
local:31518 Breakpoint 2 set at main.c:25
local:31518 Breakpoint 3 set at main.c:30

For the Fortran program, the lines are 18, 26, and 28. NightView displays the following
information in the message panel.

local:31518 Breakpoint 1 set at main.f:18
local:31518 Breakpoint 2 set at main.f:26
local:31518 Breakpoint 3 set at main.f:28

An eventpoint is a generic term which includes breakpoints, patchpoints, monitorpoints,
tracepoints, heappoints, watchpoints, and syscallpoints. NightView gives each eventpoint
an ordinal identification number beginning at 1.

Note that you can put breakpoints only on executable statements. NightView did not give
you an error for attempting to put a breakpoint on a comment line. Instead, it put the
breakpoint on the executable statement that immediately follows the comment line. How-
ever, the message in the message panel has the number of the line you clicked on.
4-8

Tutorials
The Eventpoints panel will look similar to the following figure:

Figure 4-4. General Tutorial - Eventpoint Panel

NightView changes the source panel when you set a breakpoint. Note that each line with a
breakpoint on it now has a stop sign source line decoration.

Continuing Execution

To make use of the breakpoints you set, you must allow the msg program to execute up to
the statement with the breakpoint.

- Click on the Resume button.

The status bar shows the status Stopped at breakpoint 1. This means that the process
hit breakpoint number 1.

NightView changes the source line decoration on the statement with the breakpoint to a
stop sign overlaid with a green triangle pointing to the right . The stop sign still indi-
cates a breakpoint, and the triangle indicates that execution is stopped there.

For the C program, NightView displays the following in the message panel:

local:31518: at Breakpoint 1, 0x10002818 in main() at
main.c line 18

For the Fortran program, NightView displays the following in the message panel:

local:31518: at Breakpoint 1, 0x10003878 in main() at
main.f line 18

Not Entering Functions

Execution is stopped at the line that prompts for the number of signals to send. You don’t
want to enter the code for the output statement (or function) because it is part of the
library, not part of your program.

- Click on the Next button.

In the source panel, NightView changes the source line decoration of the next line to a
green triangle pointing to the right, which shows that execution is stopped there.

The status bar shows the status Stopped after step. This means that the process has
finished a stepping command.

- Switch to Page 2.
4-9

NightView LX User’s Guide
The msg program writes the prompt "How many signals should the parent send the
child?" in the shell panel.

Entering Input

You must respond to the msg program prompt "How many signals should the parent send
the child?".

Remember that you may need to click in the shell panel to put the keyboard focus there.

- In the shell panel, you should enter:

10

and press Return.

- Switch back to the first page by clicking on the tab labeled Main.

Continuing Execution Again

Before you can examine aspects of parent_routine and child_routine, you must
get NightView to stop at the calls to these routines.

- Click on the Resume button.

The status bar shows the status Stopped at breakpoint 3. This means that the process
hit breakpoint number 3.

For the C program, NightView displays the following in the message panel:

local:31518: at Breakpoint 3, 0x1000284c in main() at
main.c line 31

For the Fortran program, NightView displays the following in the message panel:

local:31518: at Breakpoint 3, 0x10003904 in main() at
main.f line 29

The source line decoration is now a stop sign overlaid with a triangle pointing to the right.
The stop sign still indicates a breakpoint, and the triangle indicates that execution is
stopped there.
4-10

Tutorials
The context panel has a new entry for the child process, as shown in the following figure.

Figure 4-5. General Tutorial - Context Panel

The child process is the one with the status New Process. The parent process, 31518, is
the current process, shown with green text. Buttons, menus and commands generally
apply to the current process.

You would like to view the child process as the current process.

- In the context panel, click on the entry for the child process.

Now the source panel is displaying the child process.

The status bar still shows that msg is the executable program the current process is run-
ning. (The child is executing the same program as the parent.) The qualifier in the status
bar now shows the qualifier of the child process.

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped in the fork() library
routine. If so, click the Up button until the debugger reports
that the process is in main.

For the C program, the message panel shows:

New process: local:31575 parent pid: 31518
#0 0x10002838 in main() at main.c line 20

For the Fortran program, the message panel shows:

New process: local:31575 parent pid: 31518
#0 0x100038e4 in main() at main.f line 22

In this example, the child process has process ID 31575, and the parent process has process
ID 31518. Note that your process IDs will differ. Note also that after the fork, only the
parent process continued execution; the child process is still at the fork.

The source panel shows the main program because execution is stopped in a routine
(fork(2)) which is hidden because it is uninteresting. NightView usually does not show
you system library routines. See “Interesting Subprograms” on page 3-27. The source line
4-11

NightView LX User’s Guide
decoration, a gray (rather than green) triangle pointing to the right, indicates that this line
made a subprogram call which has not yet returned.

The status bar shows the status New process. This means that the process has just been
created by a fork(2) call in the parent process. The process is stopped. See “Multiple
Processes” on page 3-2.

The status bar shows the qualifier, local:31575.

The context panel lists entries for processes 31518 and 31575.

Catching up the Child Process

We want to get the child process to continue execution up to the breakpoint on the call to
child_routine (line 25 in main.c, line 26 in main.f).

- With the child as the current process, click on the Resume button.

For the C program, NightView displays in the message panel:

local:31575: at Breakpoint 5, 0x10002840 in main() at mai
n.c line 25

For the Fortran program, NightView displays in the message panel:

local:31575: at Breakpoint 4, 0x100038fc in main() at mai
n.f line 26

The debug source file name is main.c or main.f.

NightView puts a source line decoration of a stop sign overlaid by a green triangle point-
ing to the right in the source panel on line 25 for the C program and line 26 for the
Fortran program.

The status bar shows the status Stopped at breakpoint 5. This means that the process
hit breakpoint number 5. Breakpoint 5 in the child corresponds to breakpoint 2 in the par-
ent. Inherited eventpoints get new identifiers, but the order of the eventpoint identifiers is
unpredictable, so your breakpoint may have a different number.

Verifying Data Values

We want to look at the value of variables in the msg program.

- In the source panel, start at one side of any instance of the total_sig
variable, hold down mouse button 1, drag it across the entire variable
name, and release. (Alternatively, you could double click on the variable
name where it appears surrounded by spaces).

Only the variable name should be highlighted.

- Click on the Print button.

NightView displays in the message panel:
4-12

Tutorials
$1: total_sig = 10

The Print button always prints integers in decimal. NightView keeps a history of printed
values. The $1 means that this is the first value in this history. For more information about
the printed value history, see “Value History” on page 3-38.

Note that if you had looked at the total_sig variable after its last use, you might have
seen gibberish. This happens when the location holding a value gets overwritten. For more
information, see “Optimization” on page 3-39. In the Fortran program, total_sig was
put in COMMON so you could consistently see its value in the tutorial.

Listing the Source

We want to look at the source code for child_routine.

- Switch to the parent process by clicking on the parent process’s entry in
the context panel. (The parent has the status Stopped at breakpoint 3.)

- Click on the Source menu, and select List Function/Unit....

After clicking on the parent process, the status bar shows Stopped at breakpoint
3. The source panel shows that execution is stopped at the call to parent_routine.

After clicking in the Source menu, NightView puts up the Select a Function/Unit
dialog box.

- In the Select a Function/Unit dialog box, you should enter
child_routine as the regular expression, and click on the Filter but-
ton. (For more information about regular expressions, see “Regular
Expressions” on page 6-16.)

NightView finds the child_routine function and puts it in the list.

- In the Select a Function/Unit dialog box, you should click on the
Select button.

NightView closes the Select a Function/Unit dialog box.

The title bar of the source panel changes the file name to child.c or child.f, and the
source panel shows the source code.

Entering Functions

At this point, the parent process is about to run parent_routine, and the child process
is about to run child_routine.

- In the command toolbar, enter the following command:

(all) step

(Remember, you may need to click in the command toolbar to get the keyboard focus to be
there.)

Note that if you had wanted to enter a routine in only one process, you could have quali-
fied the step command with the process ID, or you could have made the process the cur-
rent process before entering the command.
4-13

NightView LX User’s Guide
Because you used the (all) qualifier, the step command causes both processes to step.

For the C program, NightView displays in the message panel:

#0 0x10002884 in child_routine(int total_sig = 10) at c
hild.c line 14
#0 0x10002944 in parent_routine(pid_t child_pid = 31575
, int total_sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the message panel:

#0 0x1000393c in child_routine() at child.f line 17
#0 0x10003a48 in parent_routine(INTEGER child_pid /
31575 /)

at parent.f line 16

NightView tells you when a step command takes you into (or out of) a subprogram call.
The lines that begin with #0 announce that you have entered child_routine in the
child process and parent_routine in the parent process.

Note that the order of the lines displayed may vary.

Both the process entries in the context panel show the status Stopped after step. This
means that the processes have finished a stepping command. The status bar shows the
same status for the parent process.

The source file name in the title bar of the source panel changes to parent.c or par-
ent.f, and the source panel shows the source code. Alternatively, the current context
could be that of the child, in which case child.c or child.f would be shown.

Line 11 of parent.c or line 16 of parent.f in the source panel has the source line
decoration of a green triangle pointing to the right, which indicates that execution is
stopped there.

Examining the Stack Frames

Observe the context panel. You may need to scroll and to expand the frames in the child
process by clicking on the box with the + sign: There are entries for the two processes.
Under each process are entries for the stack frames.

For the C program, NightView displays in the context panel:

31518 msg Stopped after single step
#0 0x10002944 in parent_routine(pid_t child_pid =
31575, int total_sig = 10) at parent.c line 11

#1 0x10002854 in main() at main.c line 31
#2 0xb7dd5879 in __libc_start_main(...

31575 msg Stopped after single step
#0 0x10002884 in child_routine(int total_sig =
10) at

child.c line 14
#1 0x10002848 in main() at main.c line 25
#2 0xb7dd5879 in __libc_start_main(...
4-14

Tutorials
For the Fortran program, NightView displays in the context panel:

31518 msg Stopped after single step
#0 0x10003a48 in parent_routine(INTEGER child_pid /
31575 /) at parent.f line 16

#1 0x10003910 in main() at main.f line 29
31575 msg Stopped after single step
#0 0x1000393c in child_routine() at child.f line 17
#1 0x10003900 in main() at main.f line 26

On lines labeled #0, NightView shows its location within the current routine. On lines
labeled #1, NightView shows the location of the call to the current routine within the call-
ing routine.

Moving in the Stack Frames

You may want to move among the stack frames to examine and modify variables, run
functions, etc., in other frames. For example, suppose that you want to examine the value
of local variable tracefile in main.

- Click on the entry for parent_routine in the parent process in the con-
text panel.

- In the process toolbar, you should click on the Up button.

The file name in the source panel title bar changes to main.c, main.f, or main.a, and
the source panel shows the source code.

For the C program, NightView displays in the message panel:

Output for process local:31518
#1 0x10002854 in main() at main.c line 31

For the Fortran program, NightView displays in the message panel:

Output for process local:31518
#1 0x10003910 in main() at main.f line 29
4-15

NightView LX User’s Guide
The source panel for the C program is shown in the following figure:

Figure 4-6. General Tutorial - Source Panel for C Program

The source line decoration in the source panel is a gray triangle pointing to the right,
which indicates that execution will resume there when the called routine returns. This
source line decoration appears on line 34 of main.c and line 29 of main.f. The source
line decoration may appear on different lines depending on which compiler you used.

Verifying Data Values in Other Stack Frames

From main, you can examine local variables, run functions, etc.

The locals panel may be sharing screen space with the context panel. In that case there will
be tabs at the bottom of those panels. Click the one labeled Locals.
4-16

Tutorials
The Locals panel for the C program is shown in the following figure:

Figure 4-7. General Tutorial - Locals Panel for C Program

For the C program, NightView displays in the locals panel:

pid 31575
total_sig 10
tracefile 0x80487a0 "msg_file"

For the Fortran program, NightView displays in the locals panel:

pid 31575
sigusr1 10
total_sig 10
tracefile "msg_file"

Returning to a Stack Frame

We want to return to parent_routine.

- Click on the entry for parent_routine under the parent process in the
Context panel. This frame becomes the current stack frame.

For the C program, NightView displays in the message panel:

Output for process local:31518
#0 0x10002944 in parent_routine(pid_t child_pid =
31575, int total_sig = 10)

at parent.c line 11

For the Fortran program, NightView displays in the message panel:

Output for process local:31518
#0 0x10003a48 in parent_routine(INTEGER child_pid /
31575 /)

at parent.f line 16

The file name in the title bar of the source panel changes to parent.c or parent.f,
and the source panel shows the source code.
4-17

NightView LX User’s Guide
The green triangle source line decoration in the source panel indicates that execu-
tion stopped there. This source line decoration appears on line 11 of parent.c and line
15 of parent.f.

Resuming Execution

We want to continue the execution of the child process so that it will get signals as soon as
they are sent by the parent process.

- Switch to the child process by clicking on the child process’s entry. Then
you should click on the Resume button.

After clicking the child process’s entry, the file name in the source panel title bar is
child.c or child.f.

After pressing Resume, NightView disables (dims) most of the buttons in the process
toolbar.

Figure 4-8. General Tutorial - Process Toolbar

The status bar status bar shows the status Running. This means that the process is cur-
rently executing.

Removing a Breakpoint

Breakpoint 1 (set in “Setting the First Breakpoints” on page 4-8) is no longer needed.

- Right-click on the entry for breakpoint 1 in the eventpoint panel. The con-
text menu appears. Select Delete.

NightView deletes the breakpoint from the eventpoint panel.

Setting Conditional Breakpoints

It is often useful to suspend execution conditionally.

We will set a breakpoint on the line that displays how long the parent is sleeping in
parent_routine; the breakpoint should suspend execution when the value of isec
equals the value of total_sig.

- In the context panel, click on the parent process.

- In the source panel, click on the line containing the print code. For par-
ent.c, it is line 16. For parent.f, it is line 17. You should click on the
Eventpoint menu. Select Set Breakpoint....
4-18

Tutorials
NightView displays the breakpoint dialog box.

Figure 4-9. General Tutorial - Set New Breakpoint Dialog

Do not press Return after you enter the following text.

For the C program, you should enter in the Condition If: text input area:

isec == total_sig

For the Fortran program, you should enter in the Condition If: text input area:

isec .eq. total_sig

You are ready to finish setting the conditional breakpoint.

- Click on the OK button.

NightView closes the breakpoint dialog box.

For the C program, NightView displays in the message panel:

local:31518 Breakpoint 7 set at parent.c:16

For the Fortran program, NightView displays in the message panel:

local:31518 Breakpoint 7 set at parent.f:17

The indicated line gets a stop sign source line decoration in the source panel.
4-19

NightView LX User’s Guide
Attaching an Ignore Count to a Breakpoint

Sometimes you won’t want to monitor each iteration of a loop. For example, assume that a
loop runs many times, and somewhere during the loop an error occurs. You could ignore
the first half of the loop values to determine in which half of the iterations the error
occurred.

We will set a breakpoint on the line that displays how long the parent is sleeping in
parent_routine, ignoring the next five iterations.

- In the source panel, click on the line containing the print code. For par-
ent.c, it is line 16. For parent.f, it is line 17. You should click on the
Eventpoint menu. Select Set Breakpoint....

NightView displays the breakpoint dialog box.

Enter 5 in the Ignore Count: spin box. Do not press Return.

You are ready to finish attaching an ignore count to a breakpoint.

- Click on the OK button.

NightView closes the breakpoint dialog box.

For the C program, NightView displays in the message panel:

local:31518 Breakpoint 8 set at parent.c:16

For the Fortran program, NightView displays in the message panel:

local:31518 Breakpoint 8 set at parent.f:17

Attaching Commands to a Breakpoint

You can attach arbitrary NightView commands to a breakpoint. They run when that par-
ticular breakpoint is hit.

We will add a command stream that prints out the value of total_sig only when you
hit the breakpoint you set in the previous step (set in “Attaching an Ignore Count to a
Breakpoint” on page 4-20).

- In the eventpoint panel, you should right-click on the entry for breakpoint
8. The context menu appears. Select Edit....

NightView displays the breakpoint dialog box.

Note that 5 is in the Ignore Count: text input area from “Attaching an Ignore Count to a
Breakpoint” on page 4-20.

Do not press Return after you enter the following text.

- In the Commands: text input area, enter the following command:

print total_sig

- Click on the OK button.
4-20

Tutorials
NightView closes the breakpoint dialog box.

Automatically Printing Variables

You can create a list of one or more expressions to be displayed each time execution stops.

We will tell NightView to display the value of the sig_ct variable.

- In the source panel, start at one side of any instance of the sig_ct vari-
able, hold down mouse button 1, drag it across the entire variable name,
and release. (Alternatively, you could double click on the variable name
where it appears surrounded by spaces.) Only the variable name should be
highlighted. Click on the Data Display button.

A data panel appears, with a line for sig_ct. The value displayed is meaningless,
because sig_ct has not yet been initialized by the program.

Note that the data panel is updated every time execution stops, and the print command
from “Attaching Commands to a Breakpoint” on page 4-20 runs only when execution
stops at a specific breakpoint.

Watching Inter-Process Communication

You already resumed the execution of the child process, so NightView did not wait for the
child process.

- Click on the Resume button to continue execute of the parent process.

In the shell I/O area, NightView responds with something like the following:

1. Parent sleeping for 2 seconds
2. Parent sleeping for 2 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #1
3. Parent sleeping for 2 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #2
4. Parent sleeping for 2 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #3
5. Parent sleeping for 2 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #4
Process local:31575 received SIGUSR1
Child got ordinal signal #5

Because of the ignore count on breakpoint 8, the parent process sent only five out of ten
signals to the child process before the breakpoint was hit. The source code is written so
that the lines that begin with a number come from the parent process, and the lines that
begin with the word "Child" come from the child process. The lines that mention signal
SIGUSR1 appear because the signal settings are implicitly set to print and explicitly set
to nostop.
4-21

NightView LX User’s Guide
The status bar status bar shows the status Stopped at breakpoint 8. This means that
the process hit breakpoint number 8.

For the C program, NightView displays something like the following in the message
panel:

local:31518: at Breakpoint 8, 0x10002950 in
parent_routine(

pid_t child_pid = 31575, int total_sig
= 10)

at parent.c line 16
$3: total_sig = 10

For the Fortran program, NightView displays something like the following in the message
panel:

local:31518: at Breakpoint 8, 0x105d0 in parent_routine(
INTEGER child_pid / 31575 /) at

parent.f line 17
$3: total_sig = 10

Initial lines show where execution stopped. One line shows the value of total_sig
from the print command attached to breakpoint 8.

Note that the order of the displayed lines may vary.

The data panel shows the value of sig_ct as 6.

Patching Your Program

You just watched the parent process sleep for 2 seconds between sending signals to the
child process. Look at how this is done in the source.

You will notice that the variable isec always has the value 2. Instead, you could vary the
sleep interval isec by assigning it a value from 1 through 3, based on the signal count
sig_ct.

- Click on the line that displays how long the parent is sleeping, then click on
the Eventpoint menu. Select Set Patchpoint....
4-22

Tutorials
NightView displays the patchpoint dialog box.

Figure 4-10. General Tutorial - Set New Patchpoint Dialog

Do not press Return after you enter the following text.

For the C program, you should enter in the Evaluate: text input area:

isec = sig_ct % 3 + 1

For the Fortran program, you should enter in the Evaluate: text input area:

isec = mod(sig_ct, 3) + 1

You are ready to finish patching your program.

- Click on the OK button.

NightView closes the patchpoint dialog box.

Note that the line in the source panel with a patchpoint on it now has the multiple event-
point source line decoration, because it now has multiple kinds of eventpoints,
breakpoint and patchpoint. This is overlaid with the program counter decoration.

For the C program, NightView displays in the message panel:

local:31518 Patchpoint 9 set at parent.c:16

For the Fortran program, NightView displays in the message panel:

local:31518 Patchpoint 9 set at parent.f:17
4-23

NightView LX User’s Guide
Disabling a Breakpoint

We want to run msg to completion without stopping at breakpoint 8.

- In the eventpoint panel, click the checkbox in the Enabled field of the
entry for breakpoint 8 to clear the checkbox.

Examining Eventpoints

We want to examine the types, locations, and statuses of the eventpoints we have set in
msg.

Observe the eventpoint panel.

Figure 4-11. General Tutorial - Reviewing Eventpoint Panel for C Program

NightView displays all eventpoints for process local:31518 followed by the event-
points for process local:31575.

Breakpoints 1, 2, and 3 were set in “Setting the First Breakpoints” on page 4-8. Breakpoint
1 has no entry because it was deleted in “Removing a Breakpoint” on page 4-18. Break-
points 2 and 3 are still enabled.

When the child process was forked, it inherited the parent process’s breakpoints. The
child’s breakpoints 4, 5, and 6 correspond to the parent’s breakpoints 1, 2, and 3. The
order of the eventpoint numbers for inherited eventpoints is not necessarily the same as in
the parent.

Breakpoint 7 was set in “Setting Conditional Breakpoints” on page 4-18 and is still
enabled.

Breakpoint 8 was set in “Attaching an Ignore Count to a Breakpoint” on page 4-20 and
was disabled in “Disabling a Breakpoint” on page 4-24.

Patchpoint 9 was set in “Patching Your Program” on page 4-22 and is still enabled.

Continuing to Completion

There’s nothing else to look at, so lets run msg to completion.

- If the parent process is not the currently displayed process, switch to it.
4-24

Tutorials
- Click on the Resume button.

NightView displays in the message panel:

6. Parent sleeping for 1 seconds
7. Parent sleeping for 2 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #6
8. Parent sleeping for 3 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #7
9. Parent sleeping for 1 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #8
10. Parent sleeping for 2 seconds
Process local:31575 received SIGUSR1
Child got ordinal signal #9
Process local:31575 received SIGUSR1
Child got ordinal signal #10

The source code is written so that the lines that begin with a number come from the parent
process, and the lines that begin with the word "Child" come from the child process. Note
that the sleep interval varies from 1 through 3 because of the patch you made in “Patching
Your Program” on page 4-22. The lines that mention signal SIGUSR1 appear because the
signal settings are implicitly set to print and explicitly set to nostop.

Note the order of the displayed lines may vary.

NOTE

If your system has debug information installed for system librar-
ies, the process may appear to be stopped in the _exit() library
routine. If so, click the Up button until the debugger reports
that the process is in main.

The source panel shows the main program, at the call to exit.

The status bar status bar shows the status About to exit. This means that the process has
called the exit system service. See “Exited and Terminated Processes” on page 3-19.

NightView displays in the message panel:

Process local:31518 is about to exit normally

The data panel shows that the sig_ct variable is not visible at this point in the parent
process.

Identifier "sig_ct" is not visible in the given context.

Depending on which compiler you used, the value may still be visible.
4-25

NightView LX User’s Guide
Leaving the Debugger

- Click on the File menu. Select Exit NightView.

Neither process has completely exited, so NightView puts up a warning dialog box, asking
the following question:

Kill all processes being debugged?

- In the warning dialog box, click on the OK button.

The main window is removed.

This concludes the general tutorial.
4-26

Tutorials
Topical Tutorials 4

This section contains short tutorials which concentrate on a single topic or feature. A gen-
eral working knowledge of debugging with NightView is assumed.

Thread Tags Tutorial 4

This tutorial demonstrates how to use thread tags to enhance the experience of debugging
a multi-threaded application.

- Compile and link the thread.c file which is located in /usr/lib/Night-
View/Tutorial, with commands similar to the following:

cat /usr/lib/NightView/Tutorial/threads.c > threads.c
cc -g threads.c -lpthread -lm -lrt

NOTE

On some RedHawk Linux systems, if the above command fails to
link the program, you may need to specify -lccur_rt instead of
-lrt.

The example program is written in C and creates a director thread which doles out
work to a set of three worker_bee threads.

- Start the program under NightView, using the following command:

nview ./a.out

- Once NightView starts, add a Data panel with a Threads display, by
using the Data menu and selecting the Threads option.

- Now let the process run for a bit by issuing the following two debugger
commands, separated by a few seconds:

resume
stop
4-27

NightView LX User’s Guide
The program has executed for a few seconds and then stopped. The Threads display in
the Data panel will look similar to the following figure:

Figure 4-12. Thread Tags Tutorial - Threads Automatically Named

For each thread (other than the main program thread), NightView has determined the
name of the start routine for the thread and displays that in parentheses.

The name is derived from the start routine address passed to pthread_create(3),
which is the first user function that executes when a new thread is created.

In our example program, there is a single director thread and three instances of a
worker_bee thread. Using worker threads is a fairly common programming paradigm;
the activities of those threads are dynamically assigned by the application as it executes.

In our application, the director thread creates a workload message and queues the mes-
sage waiting for a worker_bee thread to service the message.

Here’s an excerpt from the source of the worker_bee routine (some lines were deleted
for brevity).

62: for (;;) {
64: mq_receive(q,(char*)&msg,sizeof(msg_t),&priority);
71: switch (msg.job) {
72: case _EXIT:
73: break;
74: default:
75: calc = (*msg.work)(msg.arg);
76: }
81: }

The worker_bee thread receives a message (when one is available) and then starts exe-
cuting the body of work that the message indicates. In this case, it calls a work function
supplied by the message.

It would be convenient to know what job each thread is running whenever we look at the
thread display in NightView.
4-28

Tutorials
To achieve that, we’ll create a thread tag which represents the type of job being executed.
Then we’ll insert a patchpoint into the worker_bee routine to assign the current job to
the current thread whenever it is dispatched.

- Issue the following command in NightView:

declare-thread-tag job jobs

Here we have declared that a thread tag called job to be of type jobs, which in this case
is defined as an enumerated type in the program on line 14.

- Click on line 71 in the source panel and then right-click and select the Set
eventpoint menu option and the Set Patchpoint option from that sub-
menu.

- The Patchpoint dialog appears.

Figure 4-13. Thread Tags Tutorial - Patchpoint Dialog

- Click the Set thread local tags values radio button

- Type the following in the Thread Tags field
4-29

NightView LX User’s Guide
job = msg.job

- Click the OK button to close the dialog

- Resume the process for about five seconds, then stop it again.

When the process stops, the Threads display in the Data panel now includes the value
of the thread tag job for all threads where its value is non-zero.

Figure 4-14. Thread Tags Tutorial - Threads display with job tag

NOTE

Since the directory threads assigns jobs randomly and we are ran-
domly stopping the process, the jobs assigned to each thread will
likely differ from the figure above, as will the current thread,
which is shown in green.

NOTE

If there is no value shown next to the word job in the Threads
display, then perhaps you forgot the declare-thread-tag
step described above (if you forgot, then the default type of job is
boolean; so it only shows up because its value is non-zero -- i.e.
true). If so, execute the declare-thread-tag command
now, remove the patchpoint and then set it again and proceed.

The director thread assigns a priority to each message that it sends; it might be nice to
see which threads are executing the most urgent messages. Here we can set a boolean
thread tag to indicate this.

Since thread tags are of type boolean by default, we don’t need to declare the type of
this new tag we’re going to create, we can just start using it.

- Issue the following command in NightView:

patch threads.c:65 tags urgent = priority > 2
4-30

Tutorials
- Resume the process and let it execute for a few seconds, then stop it again.

Figure 4-15. Thread Tags Tutorial - Urgent Processing Shown

The Threads display in the Data panel will now include the word urgent for any thread
that is executing an urgent message. Tags whose values are all zero are simply omitted
from the list of tags in the Threads display.

NOTE

It is possible you stopped the process when no urgent messages
were being serviced. If you don’t see the urgent tag in the
Threads display, repeatedly resume and stop the process until
you do.

- Click on a thread in the Threads display in the Data panel which does
not have the urgent tag displayed and then enter the following command:

p $thr

This command prints the values of all thread tags for the current thread, even if their value
is zero:

$1: $thr = {
 job = _Pi (3);
 urgent = FALSE
}

You can also declare thread tags to have descriptive text. In our example, the message
received by the worker_bee threads includes a string.

- Issue the following command in NightView:

declare-thread-tag handle char[20]

We’ve declared that the thread tag handle is an array of 20 characters. However, assign-
ing to strings in C requires us to use a syntax other than a simple assignment (=) operator.
As such, an alternative form of patchpoint can be used.
4-31

NightView LX User’s Guide
- Issue the following command in NightView:

patch threads.c:65 eval strcpy($thr.handle,msg.handle)

In this case, we used the standard eval form of a patchpoint, and directly referenced the
handle tag from the convenience variable $thr, which contains all tags.

- Resume the process in NightView, wait a few seconds, and then stop it.

Figure 4-16. Thread Tags Tutorial - String Tag Shown

The list of non-zero thread tags now includes the handle for the worker_bee threads.

Thread tags are not only useful for providing feedback to you on thread activities and
state, you can use thread tags in eventpoint conditions.

- Issue the following command in NightView:

break do_math if $thr.job==_Cosine

Here we’ve referenced a thread tag in a breakpoint, which is a convenient way to set
thread-specific conditions.

- Resume the process and let it hit the breakpoint we just defined.
4-32

Tutorials
Within a few seconds, the process should stop and NightView will show that we’ve
reached the breakpoint on line 115 and that the current thread is one executing the
_Cosine job, as indicated in the following screen shot.

Figure 4-17. Thread Tags Tutorial - Breakpoint Reached

In the figure above, we hovered the mouse cursor over the breakpoint decoration on line
115; this caused NightView to pop-up a tool-tip which summarized the breakpoint, its
condition, and the hit and crossing counts. We can see that the breakpoint was crossed 4
times; 3 times the condition was false, so processing for a message other than _Cosine
must have occurred during that time.

- Terminate the NightView session.

This concludes the Thread Tags tutorial.

Tracing Tutorial 4

This tutorial describes how to use NightTrace tracepoints while debugging an application
with NightView.

NightTrace is part of the NightStar tool suite and allows you to instrument your applica-
tion with function calls which log integer trace identifier values, along with any type of
argument. Each logged trace event is timestamped. You can analyze the data graphically
using the ntrace(1) command, or obtain ASCII listings of the data in chronological
order, or write programs to consume the logged data using the NightTrace Analysis API.

This tutorial does not teach you how to use NightTrace, but will show you the minimal
commands you need to use to collect and report on NightTrace data. The NightStar Tuto-
rial is highly recommended as an introduction to using NightTrace, but you don’t need to
stop and read it to follow along in this tutorial.

In our example, we will insert trace events into an application that does not already use the
NightTrace API.
4-33

NightView LX User’s Guide
- Compile the example program using commands similar to the following:

cat /usr/lib/NightView/Tutorial/tracing.c > tracing.c
cc -g tracing.c -lpthread -lrt -lm

NOTE

On some RedHawk Linux systems you may need to replace -lrt
with -lccur_rt if the cc command above does not successfully
link the program.

The example program is written in C and creates a director thread which doles out
work to a set of three worker_bee threads.

- Start the process under NightView with the following command:

nview ./a.out &

NOTE

Be sure to background the NightView invocation, as we will be
using this terminal session while NightView is still executing.

- Once NightView starts, add a Data panel with a Threads display, by
using the Data menu and selecting the Threads option.

- Now let the process run for a bit by issuing the following two debugger
commands, separated by a few seconds:

resume
stop

The program has executed for a few seconds and then stopped. The Threads display in
the Data panel will look similar to the following figure:

Figure 4-18. Trace Tutorial - director and worker_bee threads
4-34

Tutorials
In our example program, there is a single director thread and three instances of a
worker_bee thread. The director thread creates a workload message with a priority
between 1 and 3, and queues the message waiting for a worker_bee thread to service
the message.

Each worker_bee thread waits for a message, and then executes the work function spec-
ified in the message.

We might be interested in how long it takes to send a message, have it received, and then
serviced.

We can do this by inserting NightTrace tracepoints into the application and use Night-
Trace to report on their instances and the times associated with them.

The director thread sends messages on line 48.

Figure 4-19. Trace Tutorial - snippet of director source code

- Click on line 48 in the source panel and then right-click and select the Set
eventpoint menu option and the Set Tracepoint option from that sub-
menu.

- The Tracepoint dialog appears.

Figure 4-20. Thread Tags Tutorial - Tracepoint Dialog
4-35

NightView LX User’s Guide
- Ensure the Location field says tracing.c:48; if not, make it so.

- Enter the value 10 in the Event ID field.

- Click the OK button to close the dialog.

A tracepoint decoration now appears near the line number in the source display.

Figure 4-21. Trace Tutorial - Source Panel w/ Tracepoint Decoration

Now we’ll add another tracepoint at the point where messages are finished being serviced.

- Enter the following NightView command:

trace 11 at tracing.c:78

Now we’re almost ready to start collecting trace data. However, in order to use tracing,
the application must make a call to the NightTrace Logging API to initialize tracing. Our
application doesn’t use the NightTrace Logging API, so we can have NightView take care
of this for us.

- Enter the following NightView command:

set-trace tracefile=tracing.data

The NightView message panel will respond with text similar to the following:

set-trace tracefile=tracing.data
tracing initialized, but no trace daemon running

NightView has linked in the required modules from /usr/lib/libntrace_thr.so
and inserted a call to trace_begin(3) on the applications’s behalf, passing "trac-
ing.data" as the name of the trace file. NightView also detected that it could not locate
a running NightTrace daemon associated with the tracing.data file.

NightTrace requires that a daemon is run to collect the trace data and either send it to a
file, or send it to a live ntrace(1) analysis session. You can run your application with-
out a daemon being active, but no trace records will be collected, until a daemon is subse-
quently launched.

- Resume process execution in NightView using the resume command.

The process is now executing and it is attempting to log tracepoints at lines 48 and 78, but
since no daemon is active, they are harmlessly discarded.

- In the terminal session used to launch NightView, issue the following three
commands:

ntraceud --join tracing.data
sleep 7
ntraceud --quit-now tracing.data
4-36

Tutorials
These commands initiated a NightTrace daemon to collect the trace events, waited for
seven seconds, and then terminated the daemon.

We can now use NightTrace to summarize the collected events.

IMPORTANT

Remember that this tutorial does not teach general use of Night-
Trace and as such will be only using the most primitive of Night-
Trace features so as not to confuse new users.

- Invoke the following command in the terminal session used in the previous
step:

ntrace --summary=st:10-11 tracing.data

We have told NightTrace to summarize the data in file tracing.data and to report on
a state which represents sending a message and subsequently servicing it.

The start of the state is defined by event 10, which we set at line 48 in the director
thread at the call to mq_send. The end of the state is defined by event 11, which we set at
line 78 in the worker_bee thread after processing the workload defined by the message.

NightTrace will generate output similar to the following:

===
Summary: States starting with event 10, ending with event
11.

State Summary Results
=====================

Number of states found: 3028

Maximum state duration: 0.003980141 at offset:
10201
Minimum state duration: 0.000006065 at offset: 933
Average state duration: 0.001202657
Total of state durations: 3.641646082

Number of state gaps found: 3028

Maximum state gap: 0.006318099 at offset:
10222
Minimum state gap: 0.000004960 at offset: 5043
Average state gap: 0.000668079
Total of state gaps: 2.022944709

Of most significance to us is the average state duration. We can see that on average, it
took 1.2 milliseconds to send and subsequently receive and process a message.

We will now refine our tracepoints to get some more detailed data.
4-37

NightView LX User’s Guide
- In NightTrace, double-click on the tracepoint event in the Eventpoint
panel to launch the Edit Tracepoint dialog.

- Set the Condition text field to the following:

priority==1

- Press the OK button to close the dialog.

- Do the same for the second tracepoint shown in the Eventpoint panel.

- Now issue the following NightView commands; you can copy and paste
these commands from this text into the command field of NightView if you
wish:

trace 20 at tracing.c:48 if priority==2
trace 21 at tracing.c:78 if priority==2
trace 30 at tracing.c:48 if priority==3
trace 31 at tracing.c:78 if priority==3

The Eventpoint panel should now look like the following figure:

Figure 4-22. Tracing Tutorial - 6 Tracepoints

Additionally, the source decorations for lines 48 and 78 should look like the following fig-
ure:

Figure 4-23. Tracing Tutorial - Conditional Tracepoint Decorations

The salmon-colored background shown on the tracing decoration indicates that a condi-
tion has been applied to the tracepoint at that line. The background color is obscured on
line 78 because of the blue background used to indicate line selection.

- Issue the following commands in the terminal session we’ve been using in
this tutorial:

ntraceud --join tracing.data
4-38

Tutorials
sleep 7
ntraceud --quit-now tracing.data

The commands above collected trace data for seven seconds.

- Issue the following command to summarize the trace event data and print
the average state durations.

ntrace --summary=st:10-11,st:20-21,st:30-31 \
fgrep "Average state duration"

That instructed NightTrace to summarize the events collected, in terms of three states;
each state corresponds to messages of priority 1, 2, and 3; since we applied those condi-
tions on the tracepoints in NightView.

The output of the last command should be similar to the following:

Average state duration: 0.001176966
Average state duration: 0.000314065
Average state duration: 0.000309296

Here we see that the average time required to send and subsequently receive and service
messages seems to be affected by the message’s priority.

To give you a glimpse into additional NightTrace capabilities, execute the following com-
mand:

ntrace /usr/lib/NightView/Tutorial/tracing.session \
tracing.data
4-39

NightView LX User’s Guide
Here we have passed a NightTrace session file to ntrace(1) which includes some cus-
tomization of graphs and event and state names. A window containing figures similar to
the following should appear:

Figure 4-24. Tracing Tutorial - NightTrace Graph of Message Servicing

Figure 4-25. Tracing Tutorial - NightTrace Event List

The panel with the three graphs is showing the individual durations of each instance of a
state; the red graph corresponds to priority 1 messages, blue to priority 2, and green to pri-
ority 3.

The data boxes to the left of the graphs show the individual service times of the message
most recently serviced to the left of the "current timeline". The current timeline is defined
4-40

Tutorials
by wherever you click the mouse in the graph. The graphs can be zoomed in and out and
panned left and right.

The textual events panel shows a simple text listing of every event, including the time at
which it was logged. The current timeline in the data graphs is linked to the current row in
the events panel; they always refer to the same event, regardless of which panel you inter-
act with.

- Exit NightTrace.

- Exit NightView.

You can learn more about using NightTrace and its powerful features in the NightStar
Tutorial. You can view the tutorial from the Help menu of any NightStar tool.

This concludes the Tracing tutorial.
4-41

NightView LX User’s Guide
4-42

5
Chapter 5Invoking NightView

5
5
5

This chapter describes how to start a NightView session.

nview 5

You can start NightView without any arguments at all, if you wish. The arguments
available on the NightView command line control the initial state of the debugger, and
optionally allow you to specify the first program to be debugged. The command line to
invoke NightView looks like this:

nview [--arch=i386][-attach pid]
[-config config-file] [-core core-file]
[-help]
[-nogui] [-nolocal] [-nx] [-prompt string]
[-safety safe-mode] [-simplescreen] [-version]
[-Xoption ...] [-x command-file]
[program-name [program-argument ...]]

--arch=i386

The --arch=i386 option instructs NightView to start with the local dialogue
debugging 32-bit applications instead of 64-bit applications. It is meant for use on a
64-bit system when you wish to debug 32-bit applications there. See “Architecture
Interoperability” on page 3-43.

-attach pid

Attach to the process specified by pid in the local dialogue. This is similar to using
the attach command. See “attach” on page 6-37. This option is not meaningful
with -nolocal.

-config config-file

Load the configuration contained in config-file. This is similar to using the
Load Config... item in the File menu. See “File Menu” on page 8-4. This option
is valid only in the graphical user interface.

-core corefile-name

When you supply a -core option, NightView starts out by creating a pseudo-pro-
cess for the given core file. See “Core Files” on page 3-4 and “core-file” on page
6-39.

-help
5-1

NightView LX User’s Guide
Causes NightView to print its command line syntax followed by a brief description
of each option and then exit with code 0.

-nogui

Prevents NightView from automatically invoking the graphical user interface. See
Chapter 8 [Graphical User Interface] on page 8-1.

-nolocal

Prevents NightView from starting a dialogue on the local system. See “Dialogues”
on page 3-4. In the graphical user interface, if -nolocal is used, NightView pops
up a Remote Login Dialog Box (see “Remote Login Dialog Box” on page 8-36).

-nx

Prevents NightView from reading commands from the default initialization file. See
“Initialization Files” on page 3-39.

-prompt string

Sets NightView's initial prompt string to string. See “set-prompt” on page 6-62.

-safety safe-mode

Sets the initial safety level to safe-mode, which can be forbid, verify, or
unsafe. The default level is verify. This controls the debugger's response to
dangerous commands. See “set-safety” on page 6-64.

-simplescreen

Directs NightView to use a simple full-screen interface. This option implies
-nogui. See Chapter 7 [Simple Full-Screen Interface] on page 7-1.

-version

Causes NightView to display its current version and then exit with code 0.

-Xoption

NightView accepts a subset of the standard X Toolkit command line options (see
X(7x)). These options are allowed only when using the graphical user interface.
See below for a list of the options accepted.

-x command-file

Directs NightView to read commands from command-file before reading commands
from the default initialization file or from standard input. You may supply more than
one -x option if you like; the files are read in the order of their appearance on the
command line.

program-name [program-argument . . .]

If program-name is specified, NightView begins debugging that program.

All options may be abbreviated to unique prefixes. For example,
5-2

Invoking NightView
nview -si

invokes NightView with the simple full-screen interface.

If the environment variable DISPLAY is set, or the standard X Toolkit command line
option -display is used, then NightView communicates through a graphical user
interface. In this case, a subset of other standard X Toolkit command line options are also
allowed, e.g., -geometry geometry-string. See Chapter 8 [Graphical User Interface] on
page 8-1.

When using the graphical user interface, the X Toolkit options accepted include:

 -display display

 -geometry geometry

 -fn font or -font font

 -bg color or -background color

 -fg color or -foreground color

 -btn color or -button color

 -name name

 -title title

NightView uses the NightStar License Manager (NSLM) to control access to the
NightStar tools. See “NightStar LX Licensing” on page A-1 for more information.

All NightView command line options are case-insensitive. However, note that X Toolkit
options are case-sensitive.

When NightView starts execution, it first attempts to read commands from any files
specified in -x options. It then looks for any initialization files to read (see “Initialization
Files” on page 3-39), unless the -nx option was specified. When those files have all been
processed, NightView reads commands from standard input until it encounters the end of
the file or the quit command is executed (see “quit” on page 6-22).

nview-save-core-file 5

When transporting a core file to another system for analysis, it is important to take all the
shared libraries related to its execution. Locating them can be a cumbersome task that
NightView can do for you more easily.

This command is provided as a convenience. It invokes NightView and saves all files
associated with a core file in a compressed tar file for subsequent analysis and then exits.

The options are similar to the save-core-file command (see “save-core-file” on page
6-41).

nview-save-core-file [Options] core-file [core-args]
5-3

NightView LX User’s Guide
--nozip

Do not compress the tar archive used to save the core file (the default is to
generate a compressed file).

--nodebuginfo

Do not include the debuginfo files (if there are any). The default is to include
them. Debuginfo files are special files that are optionally installed on systems
which provide debug information for standard libraries. NightView knows
how to locate these files, and by default, automatically consults them when
they are present.

--replace

If the output file already exists, do not terminate the save operation, but
instead to try to overwrite it.

--keep

If there are errors during the writing of the output file, keep the possibly bro-
ken file rather than removing it.

--include=file

Add file to the directory of information being packaged with the core file. The
specified file can be of any type -- perhaps some data files used as input to
your program or maybe just some notes you make so you can remember the
circumstances relating to the core file. You can use multiple include
options to include multiple files.

--note=string

Add the string as a note in the generated script that will be used to debug the
core file subsequently. This note will be echoed at the end of the execution of
the script that this script creates and places in the tar file.

--output=file

Defines the name of the output file; the final file will be named file.tar.gz or
file.tar, depending on whether --nozip is specified. If this option is omitted,
file defaults to corefile.

--quiet

Hide all output from the NightView session that is invoked as part of this
script; that session is used to actually implement this script.

core-file [core-args]

Specifies the name of the core-file to be saved and passes core-args as argu-
ments to the NightView core-file command which is invoked as part of
the operation of this script.

This command will take a single core file and will generate the (optionally) compressed
tar file. This can be useful if there is limited access time available on the current system or
you wish to send the core file off to another person.
5-4

Invoking NightView
The tar file can then be transferred to another system for subsequent analysis. The system
must be of the same architecture as the original system (i.e. 32-bit or 64-bit).

Th e t a r f i l e w i l l co n ta in a l l r equ i r ed f i l e s a s we l l a s a s c r i p t ed ca l l ed
debug-core-file. Simply executing that script while positioned in the extracted
directory will allow you to debug the core file.
5-5

NightView LX User’s Guide
5-6

6
Chapter 6Command-Line Interface

6
6
6

This chapter describes how to interact with NightView through commands.

In some cases, this may be your only means of directing the debugger's actions. If you are
using the graphical user interface (see Chapter 8 [Graphical User Interface] on page 8-1),
however, commands are only one of several ways to control the debugger and your
programs.

Command Syntax 6

This section describes the general syntax and conventions of NightView commands.
Most commands have three parts. An optional qualifier appears first (in parentheses) and
is used to restrict the command to a certain set of processes or dialogues. Next comes the
keyword indicating which command is to be executed. The command arguments follow
as the third part. In general, you must separate syntactic items (like keywords and
argument values) with white space, unless they are separated by punctuation characters.
White space consists of one or more blank or tab characters. These rules may be different
within expressions, where the rules of the programming language apply.

Some commands apply to individual processes; others apply to dialogues. The qualifier is
a prefix that determines the dialogues and/or processes to which the following command
applies. A qualifier is simply a list of dialogues and/or processes enclosed in parentheses.
If a command applies only to dialogues, and the qualifier includes specific processes, the
command applies to the dialogues containing the processes. If a command applies only to
processes, but the qualifier includes dialogues, the command applies to all processes in
those dialogues. If a command affects neither dialogues nor processes, the qualifier is
ignored. You can set a default qualifier that will be applied when you don't provide one.
For more information on the syntax and operation of qualifiers, see “Qualifier Specifiers”
on page 6-15.

On startup, NightView provides you with a dialogue, local, for debugging on the local
machine. The initial default qualifier is set to all to indicate all dialogues and processes.

After the qualifier, if any, all commands start with a keyword, which may be abbreviated
to the shortest unambiguous prefix. Many frequently used commands also have special
abbreviations. Most commands have one or more arguments; some arguments are also
keywords, while others are information you supply. A keyword argument can usually be
abbreviated if it is unambiguous; any exceptions to this rule are noted in the section
describing the command. Both command and argument keywords are case-insensitive;
they can be entered in either upper or lower case. You cannot abbreviate file names,
symbolic names, or NightView construct names.

Commands are terminated by the end of the input line.

If you enter a line interactively consisting solely of a newline, NightView will usually
6-1

NightView LX User’s Guide
repeat the previous command. This is explained more fully later; see “Repeating
Commands” on page 6-19.

You can include comment lines with your commands. A comment line starts with the #
character, which must be the first non-blank character on the line, and terminates at the
end of the input line. Comments are most useful when you write debugger source files or
macros (see “Defining and Using Macros” on page 6-173 and “source” on page 6-145).

NightView prompts you for input. The format of the prompt may be controlled by the
set-prompt command (see “set-prompt” on page 6-62). The default prompt includes
the names of all the dialogues in the default qualifier and looks like this:

(local)

Some NightView commands require multiple lines of input. For these commands, the
command-line and simple full-screen interfaces change the prompt to > to remind you
that you are entering a multi-line command.

>

To terminate NightView, use the quit command, which can be abbreviated q (see “quit”
on page 6-22).

The subsections below explain some common syntactic constructs that are used in a
variety of NightView commands.

Selecting Overloaded Entities 6

For general information about function and operator overloading, see “Overloading” on
page 3-23.

The special overloading syntax used in both expressions and location specifiers is always
introduced by a number sign character (#) used as a suffix directly following the entity (an
operator in an expression or a function or procedure name). The # is followed by addi-
tional information indicating the specific kind of overload request. There are three forms
of # syntax:

1. #?

A number sign followed by a question mark is a query. It always makes the
command it appears in fail, but the error message shows all the possible
choices for overloading the name or operator (even if there is only 1
choice). The choices will be numbered starting at 1, and the number may
be used to select the specific function.

2. ##

Two number signs in a row act just as if set-overload were on for that
one name. If there is only one possible choice, it is used; if there are multi-
ple choices, the command fails and the error message shows the list.

3. #<digits>
6-2

Command-Line Interface
A number sign followed by a number is the syntax used to pick a specific
overloaded function or operator from the list printed in the error message.

In C++, the function call and subscript operators don’t appear in a single location, but are
"spread out" with arguments or subscripts between the parenthesis or brackets. In these
cases the final bracket or parenthesis is the character which should be suffixed with the #.
For example:

function#5(12,3)

This picks the 5th instance of the name function from a list of overloaded functions.

object(12,3)#5

This, on the other hand, picks the 5th version of an overloaded operator() function
call operator applied to the object variable.

Special Expression Syntax 6

For general information about expression evaluation, see “Expression Evaluation” on
page 3-21. In addition to the standard language syntax, NightView offers a special syntax
for referencing convenience variables and variables from other scopes or stack frames.

The special constructs all start with ’$’ as shown in the following table.

Table 6-1. Special ’$’ Constructs

$

A simple ’$’ by itself is a special convenience variable which always refers to the
last value history entry (see “print” on page 6-86). See “Value History” on page
3-38.

$$

The name ’$$’ refers to the value history entry immediately prior to ’$’. See “Value
History” on page 3-38.

$number

A ’$’ followed by a number refers to that number entry in the value history. See
“Value History” on page 3-38.

${-number}

A ’$’ followed by a negative number enclosed in braces refers to value history
entries prior to the most recent one. ’${-0}’ is a complicated way to refer to the
same thing as ’$’, and ’${-1}’ is the same as ’$$’. This syntax is useful when you
want to reference values farther back than -1. See “Value History” on page 3-38.

$identifier

This is the standard syntax for convenience variables. Many names are predefined
(for instance, all the machine registers may be referenced using predefined conve-
6-3

NightView LX User’s Guide
nience variables). See “Convenience Variables” on page 3-37, and “Predefined
Convenience Variables” on page 6-5.

${file:line expression}

This syntax is used to evaluate the expression in the context specified by the given
file and line number. This is most useful for referencing static variables which are
not visible in the current context. If you reference a local stack or register variable
from some other context, the results are not defined.

${+number:routine expression}

This syntax is used to go up the stack (see “up” on page 6-140) until you see number
previous occurrences of routine relative to the current frame. (It does not matter
what the current routine name is, this construct always backs up the frame first, then
starts looking for frames associated with the given routine.) The given expression is
then evaluated in that context. For example, ’${+1:fred x}’ refers to the variable
named ’x’ in the first routine named fred above the current routine.

${+number expression}

This syntax simply refers to previous stack frames, regardless of the routine name.
The immediately previous frame is ’+1’.

${-number:routine expression}

This syntax is useful only if you have changed your current frame with the up com-
mand. This allows you to refer to frames down the stack and is analogous to the ver-
sion above which uses the ’+’ syntax.

${-number expression}

This is also analogous to the corresponding ’+’ syntax, but refers to frames down,
rather than up the stack.

${=number expression}

This syntax evaluates the expression in the context of the given absolute frame num-
ber, regardless of the current frame. You can determine absolute frame numbers by
using the backtrace command (see “backtrace” on page 6-86).

${*frame-addr expression}

This syntax uses frame-addr, which must be a numeric constant, as an absolute
frame address. It evaluates expression in the context of this frame address, regardless
of the current frame. If there is no frame on the current stack with this address, the
results are undefined.

You may wish to use this form in display expressions (see “display” on page 6-94) to
refer to a specific stack frame regardless of where it appears relative to the current frame.
You can use the info frame command (see “info frame” on page 6-157) to get the
frame address for any stack frame.

The above constructs may be used freely in any language expression. This means they
may be nested (in case you want to do something like back up the stack frame, then shift
to a different local scope in that routine). Because different frames may be associated
6-4

Command-Line Interface
with routines in different languages, the expressions evaluated in any given context may
be expressions in different languages. This might not always make sense because
different languages support different data types. If NightView cannot figure out how to
evaluate a mixed language expression, it returns an error.

If you use any of these constructs in a conditional expression for an inserted eventpoint
(breakpoint, monitorpoint, patchpoint, tracepoint, or heappoint), or in a monitorpoint,
patchpoint or tracepoint expression, they are evaluated at the time you establish the
expression, not when the expression is evaluated within the eventpoint. This is because
the eventpoint expressions are compiled into your program by the debugger, and these
constructs must be evaluated at compile time.

In the rare case of a user program which contains variables that have a ’$’ in their name,
the user program variable is always referenced in preference to the convenience variable.

Predefined Convenience Variables 6

You may create any number of convenience variables simply by assigning values to new
names, but some variables are predefined and have special values. The ’$’ and ’$$’
variables have already been documented (see “Special Expression Syntax” on page 6-3).
The following special variables are all automatically defined on a per process basis.

Table 6-2. Predefined Convenience Variables

$_

This variable holds the address of the last item dumped with the x command (see
“x” on page 6-89). It is also set by the eventpoint status commands to the address of
the last eventpoint listed, and the info line command to the address of the first
executable instruction in the line. If you were dumping words, it holds the address of
the last word. If you were dumping bytes, it holds the address of the last byte, etc.
See “x” on page 6-89, “info eventpoint” on page 6-149, “info breakpoint” on page
6-150, “info tracepoint” on page 6-151, “info patchpoint” on page 6-152, “info mon-
itorpoint” on page 6-153, “info heappoint” on page 6-154, and “info line” on page
6-172.

$__

This variable holds the contents of the last item printed by the x command. If you
were dumping words, it holds the last word. If you were dumping bytes, it holds the
last byte, etc.

$pc

This variable provides access to the program counter. This is a machine register, but
every machine has a $pc, so this name is common to all machines. When a program
is stopped, $pc is the location where it stopped. On any given machine, $pc may
not map directly onto a specific machine register (RISC machines often have multi-
ple program counters), but it always represents the address at which the program
stopped. See “Program Counter” on page 3-24.
6-5

NightView LX User’s Guide
$cpc

$cpc is similar to $pc. In frame 0, if there are no hidden frames below frame 0
(because of uninteresting subprograms), $cpc has the same value as $pc. See
“Interesting Subprograms” on page 3-27. In other frames (including frame 0 if there
are hidden frames below it), $cpc is the address of the instruction that is currently
executing. In most cases, this is the call instruction that caused the frame immedi-
ately below the current frame to be created. For the frame immediately above a sig-
nal-handler stack frame, $cpc is the address of the instruction that was executing
when the signal occurred.

$sp

Most machines have a stack pointer. The stack pointer is always called $sp.

$fp

Most machines either have a frame pointer, or have an implicit frame pointer
derived from information in the program. The $fp variable always represents the
frame address (even if it is not a specific hardware register), and local variables are
always described with some offset from the frame pointer (see “info address” on
page 6-170 and “info frame” on page 6-157).

$cfa

$cfa is the canonical frame address. This is how the debug information describes
the locations of the return address and the low-level registers saved in a frame. This
may or may not be the same as $fp. See “info frame” on page 6-157.

$is

$is is defined when a watchpoint is triggered. See “Watchpoints” on page 3-13.
$is is the value of the variable being watched after the instruction that causes the
trigger has completed.

IA-32 Registers 6

IA-32 machines are based on the Intel IA-32 architecture (see IA-32 Intel Architecture
Software Developer's Manual for architectural details). See “info registers” on page
6-159.

In addition to the common register definitions for stack pointer ($sp), frame pointer
($fp), and program counter ($pc), the IA-32 machines support the registers shown in the
following table.

Table 6-3. IA-32 Registers

$eax, $ebx, $ecx, $edx, $esi, $edi, $ebp, $esp

These names map onto the 8 general purpose registers. Note that $sp is the same as
$esp, and $fp may be the same as $ebp, depending on how the compiler gener-
ates code.
6-6

Command-Line Interface
$ax, $bx, $cx, $dx, $si, $di, $bp, $sp16

These names map onto the lower 16 bits of each of the 8 general purpose registers
mentioned above, respectively. Note that the lower 16 bits of the ESP register is
more commonly known as simply SP. But the name $sp is reserved for an architec-
ture-independent stack pointer in NightView. So the name $sp16 is used for the
lower 16 bits of the ESP register, instead.

$al, $bl, $cl, $dl

These names map onto the low order 8 bits of each of the AX, BX, CX, and DX regis-
ters, respectively. In other words, they map onto bits 0-7 of each of the EAX, EBX,
ECX, and EDX registers, respectively.

$ah, $bh, $ch, $dh

These names map onto the high order 8 bits of each of the AX, BX, CX, and DX regis-
ters, respectively. In other words, they map onto bits 8-15 of each of the EAX, EBX,
ECX, and EDX registers, respectively.

$eflags

The program status and control register. NightView and thekernel use the TF flag of
this register to implement stepping. See “step” on page 6-127, “stepi” on page
6-130, “next” on page 6-129, and “nexti” on page 6-131. Users should not modify
the TF field of the $eflags register. Other flags in this register are used by the ker-
nel. Care should be taken if modifying this register.

$eip

The instruction pointer register. This is the same as the $pc register.

$cs

The code segment register. The IA-32 architecture uses this register to determine the
location of the executable code in memory. Users should not modify this register.
Modification of this register in patchpoints and eventpoint conditions is prohibited.

$ss

The stack segment register. The IA-32 architecture uses this register to determine
the location of the process stack. Users should not modify this register.

$ds, $es, $fs, $gs

The data segment registers. The IA-32 architecture uses the $ds register to deter-
mine the location of the process data. Users should not modify that register. Care
should be taken if modifying $es, $fs, or $gs.

$csbase, $dsbase, $esbase, $fsbase, $gsbase, $ssbase

These names map onto internal processor and kernel LDT data structures which
hold the base addresses associated with the $cs, $ds, $es, $fs, $gs, and $ss
registers, respectively. They are useful particularly for determining the location of
thread-specific data. For instance, if a disassembly address mode references mem-
ory with %fs:8 or %gs:(%eax), then the location can be determined in Night-
View with $fsbase+8 or $gsbase+$eax, respectively.
6-7

NightView LX User’s Guide
$st0 through $st7

These names map onto the 8 floating point registers. The floating point registers on
the IA-32 always hold 80 bit double extended precision (i.e. long double) values.
Note that the architecture defines these registers as a stack. Also note that these reg-
isters are aliases of the registers $mm0 through $mm7.

$r0 through $r7

These names map onto $st0 through $st7, but always referenced as though the
floating point stack pointer were zero.

$cwd and $fctrl

These names map onto the floating point control register. They are synonyms.

$swd or $fstat

These names map onto the floating point status register. They are synonyms.

$twd or $ftag

These names map onto the floating point tag word register. They are synonyms.
These names may be used in the info registers command or in expressions in
the set and print commands, but not in patchpoints or eventpoint conditions.
This register may be read, but not modified. See $fxtag.

$fxtag

This name maps to the floating point tag word register, but in a different form from
$ftag. The form of this register is one byte with each bit corresponding to a float-
ing point register. This name does not have the restrictions of $ftag.

$fip or $fioff

These names map onto the lower 32 bits of the floating point last instruction pointer
register. They are synonyms.

$fcs or $fiseg

These names map onto the upper 16 bits of the floating point last instruction pointer
register. They are synonyms.

$fop

This name maps onto the floating point opcode register.

$foo or $fooff

These names map onto the lower 32 bits of the floating point last data (operand)
pointer register. They are synonyms.

$fos or $foseg

These names map onto the upper 16 bits of the floating point last data (operand)
pointer register. They are synonyms.
6-8

Command-Line Interface
$dr0 through $dr3

These names map onto the debug address registers. NightView uses these registers
to implement watchpoints. See “Watchpoints” on page 3-13. Users should not mod-
ify these registers.

$dr6

This name maps onto the debug status register. NightView uses this register to
implement watchpoints and single step. See “Watchpoints” on page 3-13, “step” on
page 6-127, “stepi” on page 6-130, “next” on page 6-129, and “nexti” on page
6-131. Users should not modify this register.

$dr7

This name maps onto the debug control register. NightView uses this register to
implement watchpoints. See “Watchpoints” on page 3-13. Users should not modify
this register.

$mm0 through $mm7

These names map onto the 64 bit vector registers available with Intel MMX Tech-
nology. Note that these registers are aliases of the registers $st0 through $st7.
However, the $mm0 through $mm7 registers are not defined as a stack.

$xmm0 through $xmm7

These names map onto the 128 bit vector registers available with the Streaming
SIMD Extensions (SSE).

$mxcsr

This name maps onto the SSE MXCSR control and status register.

Note that the floating point, debug, MMX, and SSE registers are not normally displayed
by the info registers command (see “info registers” on page 6-159). If you want to
display those registers, you can do so with the following commands:

AMD64 Registers 6

AMD64 machines are based on the AMD AMD64 architecture (see AMD64 Architecture
Programmer's Manual for architectural details). See “info registers” on page 6-159.

In addition to the common register definitions for stack pointer ($sp), frame pointer
($fp), and program counter ($pc), the AMD64 machines support the registers shown in
the following table.

info registers st.* displays floating point registers

info registers dr.* displays debug registers

info registers mm.* displays MMX registers

info registers xmm.* displays SSE registers

info registers .* displays all registers
6-9

NightView LX User’s Guide
Table 6-4. AMD64 Registers

$rax, $rbx, $rcx, $rdx, $rsi, $rdi, $rbp, $rsp, $r8 through $r15

These names map onto the 16 general purpose registers. Note that $sp is the same
as $rsp, and $fp may be the same as $rbp, depending on how the compiler gener-
ates code.

$eax, $ebx, $ecx, $edx, $esi, $edi, $ebp, $esp, $r8d through $r15d

These names map onto the lower 32 bits of each of the 16 general purpose registers
mentioned above, respectively.

$ax, $bx, $cx, $dx, $si, $di, $bp, $sp16, $r8w through $r15w

These names map onto the lower 16 bits of each of the 16 general purpose registers
mentioned above, respectively. Note that the lower 16 bits of the RSP register is
more commonly known as simply SP. But the name $sp is reserved for an architec-
ture-independent stack pointer in NightView. So the name $sp16 is used for the
lower 16 bits of the RSP register, instead.

$al, $bl, $cl, $dl, $sil, $dil, $bpl, $spl, $r8b through $r15b

These names map onto the low order 8 bits of each of the AX, BX, CX, DX, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, and R15W registers, respec-
tively. In other words, they map onto bits 0-7 of each of the RAX, RBX, RCX,
RDX, RSI, RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14 and R15 registers,
respectively.

$ah, $bh, $ch, $dh

These names map onto the high order 8 bits of each of the AX, BX, CX and DX reg-
isters, respectively. In other words, they map onto bits 8-15 of each of the RAX,
RBX, RCX, and RDX registers, respectively.

$eflags

The program status and control register. NightView and the kernel use the TF flag of
this register to implement stepping. See “step” on page 6-127, “stepi” on page
6-130, “next” on page 6-129, and “nexti” on page 6-131. Users should not modify
the TF field of the $eflags register. Other flags in this register are used by the ker-
nel. Care should be taken if modifying this register.

$rip, $eip

$rip is the instruction pointer register. This is the same as the $pc register. $eip
is the lower 32 bits of the $rip.

$fs, $gs

The data segment registers. Care should be taken if modifying $fs or $gs.

$fsbase, $gsbase

These names map onto the FS.base and GS.base model-specific registers or
internal processor and kernel LDT data structures which hold the base addresses
associated with the $fs and $gs registers, respectively. They are useful particularly
6-10

Command-Line Interface
for determining the location of thread-specific data. For instance, if a disassembly
address mode references memory with %fs:8 or %gs:(%eax), then the location
can be determined in NightView with $fsbase+8 or $gsbase+$eax, respec-
tively.

$st0 through $st7

These names map onto the 8 floating point registers. The floating point registers on
the AMD64 always hold 80 bit double extended precision (i.e. long double) values.
Note that the architecture defines these registers as a stack. Also note that these reg-
isters are aliases of the registers $mm0 through $mm7.

$fpr0 through $fpr7

These names map onto $st0 through $st7, but always referenced as though the
floating point stack pointer were zero.

$cwd and $fctrl

These names map onto the floating point control register. They are synonyms.

$swd or $fstat

These names map onto the floating point status register. They are synonyms.

$twd or $ftag

These names map onto the floating point tag word register. They are synonyms.
These names may be used in the info registers command or in expressions in
the set and print commands, but not in patchpoints or eventpoint conditions.
This register may be read, but not modified. See $fxtag.

$fxtag

This name maps to the floating point tag word register, but in a different form from
$ftag. The form of this register is one byte with each bit corresponding to a float-
ing point register. This name does not have the restrictions of $ftag.

$frip

This name maps onto the 64-bit floating-point last instruction pointer register.

$fioff

This name maps onto the lower 32 bits of the floating-point last instruction pointer
register.

$frdp

This name maps onto the 64-bit floating-point last data (operand) pointer register.

$fcs or $fiseg

These names map onto the upper 16 bits of the floating point last instruction pointer
register. They are synonyms.
6-11

NightView LX User’s Guide
$fop

This name maps onto the floating point opcode register.

$foo or $fooff

These names map onto the lower 32 bits of the floating point last data (operand)
pointer register. They are synonyms.

$fos or $foseg

These names map onto the upper 16 bits of the floating point last data (operand)
pointer register. They are synonyms.

$dr0 through $dr3

These names map onto the debug address registers. NightView uses these registers
to implement watchpoints. See “Watchpoints” on page 3-13. Users should not mod-
ify these registers.

$dr6

This name maps onto the debug status register. NightView uses this register to
implement watchpoints and single step. See “Watchpoints” on page 3-13, “step” on
page 6-127, “stepi” on page 6-130, “next” on page 6-129, and “nexti” on page
6-131. Users should not modify this register.

$dr7

This name maps onto the debug control register. NightView uses this register to
implement watchpoints. See “Watchpoints” on page 3-13. Users should not modify
this register.

$mm0 through $mm7

These names map onto the 64 bit vector registers available with Intel MMX Tech-
nology. Note that these registers are aliases of the registers $st0 through $st7.
However, the $mm0 through $mm7 registers are not defined as a stack.

$xmm0 through $xmm15

These names map onto the 128 bit vector registers available with the Streaming
SIMD Extensions (SSE).

$xmm0gf through $xmm15gf

These names map onto the single low-order 8-byte floating-point value for each of
the $xmm0 through $xmm15 registers, respectively.

$xmm0wf through $xmm15wf

These names map onto the single low-order 4-byte floating-point value for each of
the $xmm0 through $xmm15 registers, respectively.

$mxcsr

This name maps onto the SSE MXCSR control and status register.
6-12

Command-Line Interface
Note that the floating point, debug, MMX, and SSE registers are not normally displayed
by the info registers command (see “info registers” on page 6-159). If you want to
display those registers, you can do so with the following commands:

CUDA Registers 6

The CUDA architecture is used by CUDA code running on CUDA devices under the con-
trol of a host application. In addition to the common register definitions for stack pointer
($sp), frame pointer ($fp), and program counter ($pc), the CUDA architecture supports
a uniform set of registers named $Rn.. Note that case is significant in these register
names. The number of such registers is determined by the particular CUDA architecture.
For instance, Tesla (1.x) and Fermi (2.x) architectures support $R0 through $R63,
whereas Kepler (3.x) architectures support $R0 through $R255.

CUDA registers are only available when the process is stopped and the current context is a
CUDA thread. When the current context is a CUDA thread, registers for the host architec-
ture are unavailable.

See “CUDA Debugging” on page 3-42 for a description of NightView’s CUDA support.

Location Specifiers 6

A location-spec is used in various commands to specify a location in the executable
program. It can be any of the following:

function_name or unit_name

specifies the beginning of the named function

file_name:line_number

specifies the first instruction generated for the given line in the given file

line_number:function_name or line_number:unit_name

specifies the first instruction for the given line in the file containing the given func-
tion or unit

file_name:function_name

specifies the beginning of the specified function declared in the given file (this is
required for static functions that are not globally visible)

info registers st.* displays floating point registers

info registers dr.* displays debug registers

info registers mm.* displays MMX registers

info registers xmm.* displays SSE registers

info registers .* displays all registers
6-13

NightView LX User’s Guide
line_number

specifies the first instruction generated for the given line in the current file

*expression

specifies the address given by expression

If a location specifier is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

Function names always refer to the location of the first instruction following any
prologue code (the prologue is code that allocates local stack space, saves the return
address, etc.). To refer to the actual entry point of a function, use the *expression form
and write an expression that evaluates to the function entry point address (in C language
mode, this would look like *&function).

NOTE

A location specifier may sometimes designate multiple locations;
for instance, a line number within a procedure that has been
expanded inline several times will designate every location where
that procedure was expanded. If such a location specifier is used
to set an eventpoint (see “Manipulating Eventpoints” on page
6-98), NightView will set the eventpoint at each of the corre-
sponding locations. An eventpoint set at multiple locations is still
considered to be a single eventpoint. If you wish to set an event-
point at some subset of the locations that are implied by a particu-
lar location specifier, the info line command (see “info line”
on page 6-172) may be used to determine the locations corre-
sponding to the particular location specifier. The *expression
form of location specifier may then be used to designate the
proper location.

Wherever a file_name appears, it may be enclosed in double quotes. This is necessary if
the file_name contains special characters.

Wherever a function name appears in a location specifier, it may also appear with an over-
loading suffix to distinguish between multiple functions with the same name (see “Select-
ing Overloaded Entities” on page 6-2). The names of operator functions in C++ may also
be used as function names. In C++ the keyword operator should be followed by the
operator name (the same syntax used to declare operator functions in the language).
Because the function name form of operator functions is always used in location specifi-
ers, the only set-overload mode which affects location specifiers is the routine mode
(see “set-overload” on page 6-69).

All commands that accept a location-spec argument allow the keyword at to precede the
location-spec. In most cases, the at keyword is optional, but a few commands require it
to be present. The syntax of each command indicates whether the keyword is required or
optional.
6-14

Command-Line Interface
Qualifier Specifiers 6

Qualifiers are used to apply NightView commands to specific processes or dialogues. A
qualifier is simply a list of qualifier specifiers, each specifier representing one or more
processes or dialogues. You can supply a qualifier explicitly, in parentheses as a prefix to
the command, or implicitly, by using the set-qualifier command (see “set-
qualifier” on page 6-60). In a prefix qualifier, the list of specifiers is separated by either
blanks or tabs.

Each qualifier specifier can be any one of the following items:

family-name

A name given by you to a set of processes, called a family. See “family” on page
6-48.

dialogue-name

The name of a dialogue in your NightView session. This is usually the name of the
system on which the dialogue is running, but you may also specify a different name
(see “login” on page 6-23). In contexts where the qualifier is being used to specify a
set of processes, a dialogue-name refers to all the processes being debugged in that
dialogue.

PID

The numeric value of the process ID of one of the processes being debugged by
NightView. You can use this form only if the process ID is unique among all the pro-
cesses being debugged. This may not be true if you have multiple dialogues, but it is
always true if you have only one dialogue.

If your process is threaded, the threads are implemented as multiple processes shar-
ing resources (thread processes). See “Multithreaded Programs” on page 3-40. You
may use the PID of any of those thread processes in a qualifier. NightView consid-
ers them all to refer to the same process.

dialogue-name:PID

This is how you specify a particular process when processes in different dialogues
have the same process ID.

all

This keyword designates all processes or dialogues known to NightView.

auto

This keyword designates the one process that is currently stopped and has been
stopped for the longest time. You may want to specify auto as your default quali-
fier if you want to work on only one process at a time (see “set-qualifier” on page
6-60). NightView gives you an error message if you use auto when there are no
processes stopped.

Note that, because a qualifier specifier can be either a family name or a dialogue name,
you cannot have a dialogue with the same name as a process family.
6-15

NightView LX User’s Guide
In general, the specifiers in a qualifier are not evaluated until a qualified command
requests the information. A qualifier is evaluated when a command qualified by it needs
the information; that is, when the command is applied to the processes or dialogues in the
qualifier. Certain NightView commands ignore their qualifier, so they do not request
evaluation of the specifiers in the qualifier. This has several effects on you:

• A family-name appearing in a qualifier may remain undefined until a com-
mand requires evaluation of the qualifier. You may also change the defini-
tion of a family-name currently in use in a qualifier; such a change will
affect the next command that evaluates that qualifier.

• Evaluating a dialogue-name yields all the processes in the dialogue at the
time of the evaluation. Since evaluation is generally delayed until the last
possible moment, using a dialogue-name is usually a good way to refer-
ence all the currently-existing processes in a dialogue.

• The specifiers all and auto are evaluated at the time a command is actu-
ally executed.

Eventpoint Specifiers 6

Eventpoints may be grouped together and assigned a name (see “name” on page 6-100).
In addition, the name ’.’ is a reserved name that always refers to the set of eventpoints
most recently created by a single command. (If an eventpoint creation command fails, the
definition of ’.’ is cleared.) Eventpoint numbers and eventpoint names are two types of
eventpoint specifiers.

Another kind of eventpoint specifier is a location-spec. The location-spec must begin
with the keyword at. See “Location Specifiers” on page 6-13. A location-spec
eventpoint specifier with a line number refers only to eventpoints set at the beginning of
that source line, not to any eventpoints that may be set on addresses within the line. Note
also that a location-spec eventpoint specifier may refer to multiple locations, such as
when a breakpoint is set in an inline function that is expanded multiple times.

Some commands expect more arguments after the eventpoint specifier. These commands
do not accept a location-spec as an eventpoint specifier, because a location-spec
eventpoint specifier must be the last argument.

Eventpoint specifiers that refer only to breakpoints may also be called breakpoint
specifiers (tracepoint specifiers, patchpoint specifiers, monitorpoint specifiers, heappoint
specifiers, watchpoint specifiers and syscallpoint specifiers are similarly defined).

Regular Expressions 6

A regexp is used by many of the commands to specify a pattern used to match against a set
of names (like variable names or register names in the info commands). Regular expres-
sions may be case-sensitive or case-insensitive depending on the set-search command
(see “set-search” on page 6-70).

Regular expressions are similar to wildcard patterns, but are more flexible. Regular
expressions and wildcard patterns are used for different things in the debugger (see
6-16

Command-Line Interface
“Wildcard Patterns” on page 6-18). The descriptions of the commands tell if they take a
regular expression or a wildcard pattern.

The regular expression syntax recognized is similar to that recognized by many other
common tools, but the details (as always) vary somewhat.

Table 6-5. Regular Expressions

.

A dot matches any character except a newline.

*

A star matches zero or more occurrences of the preceding regular expression. For
example, .* matches zero or more of any character except a newline.

+

A plus matches one or more occurrences of the preceding regular expression.

{m}

Matches exactly m occurrences of the preceding regular expression.

{m,}

Matches m or more occurrences of the preceding regular expression.

{m,n}

Matches from m to n occurrences of the preceding regular expression.

^

A caret matches at the beginning of a string.

$

A dollar sign matches at the end of a string.

()

Parentheses are used to group regular expressions.

[]

Brackets define a set of characters, any one of which will match. Within the brack-
ets, additional special characters are recognized:

^

If the first character inside the brackets is a caret, then the set of characters
matched will be the inverse of the set specified by the remaining characters in
the brackets.
6-17

NightView LX User’s Guide
-

A range of characters may be matched by specifying the starting and ending
characters in the range separated by a dash.

To define a set that includes a - character, specify the dash as the first or last
character in the set.

Any other character matches itself.

To literally match one of the special characters defined above, use a backslash (\)
character in front of it (to literally match a backslash, use two of them (\\)).

The m and n match counts above must be positive integers less than 256.

Most commands that use regular expressions do not require the use of ’^’ and ’$’ because
they implicitly assume that an anchored match is called for. Other commands (such as
the forward-search and reverse-search commands) assume that only a partial
match is called for (and does not imply an anchored match). The description of each
command that uses regular expressions specifies whether or not it implicitly assumes its
regular expressions are to be anchored.

If you do not need the full expressive power of regular expressions, you can just use a
normal string.

Examples:

r[1-5]

This example matches the strings 'r1', 'r2', 'r3', 'r4', and 'r5'. This might be a good
expression to match register names.

child_pid

This example matches only the string 'child_pid'. This might be a good expression to
match a program variable name.

Wildcard Patterns 6

Wildcard patterns are used by the commands debug, nodebug and on program. See
“debug” on page 6-25, “nodebug” on page 6-26, and “on program” on page 6-44.

Wildcard patterns are similar to regular expressions, but are usually more convenient for
representing file names. See “Regular Expressions” on page 6-16.

If the wildcard pattern starts with a /, it is assumed to be a pattern that must match a
complete absolute path name. Otherwise the pattern is matched against the rightmost
(trailing) components of the program name. Patterns are always matched to component
boundaries. Spaces and tabs are not allowed in wildcard patterns.

Wildcards are similar to wildcards in sh.
6-18

Command-Line Interface
Table 6-6. Wildcard Patterns

*

Matches zero or more characters (but does not match a /).

{[chars]}

Matches any of the characters in the set. A dash (-) can be used to separate a range
of characters and a leading bang (!) matches any characters except the ones in the
set (but not a /).

?

Matches any single character (except a /).

Any other character matches itself.

Unlike sh, a * matches a leading dot (.) in a file name.

If you do not need the full expressive power of wildcards, you can just use the file name.

Examples:

/bin/*

This matches any file in the directory /bin.

test*

This matches any file that begins with the letters test, in any directory.

*.c

This matches any source file that ends with .c, in any directory. This might be a good
expression to match file names.

/usr/bob/myprog

This matches only the file /usr/bob/myprog.

Repeating Commands 6

A line typed from an interactive terminal consisting solely of a newline (no other
characters, including blanks) generally causes NightView to repeat the previous
command. Note that the blank line must come from an interactive device; a blank line in
a macro or in a disk file read by the source command does not cause repetition. The
command that gets repeated may, however, come from a macro.

Not all commands can be repeated in this manner. In general, commands whose result
would not be any different when repeated will not repeat. Typing a blank line after a non-
repeating command has no effect; it acts the same as a comment. If the description of a
command does not say it is repeatable, then it isn't.
6-19

NightView LX User’s Guide
A few commands, such as list or x, alter their behavior slightly when repeated: instead
of exactly repeating the command, they typically repeat the action on a different set of
data. These differences in behavior are documented in the description of the command.

In the following examples, assume all commands were entered interactively.

(local) list 20:func
(local)
(local)

In this example, lines 16-25 (approximately) of function func would be listed by the
list command. Repeating this command lists the next set of 10 lines, lines 26-35. Note
that list is one of the commands whose behavior changes when it is repeated.

(local) define mac(ln) as
> list @ln:func
> end define
(local) @mac(20)
(local)
(local)

This example is equivalent to the previous one. It demonstrates that the repeated
command may come from a macro.

(local) define mac(vn) as
> x/20x @vn
> echo
> end define
(local) @mac(xstruct)
(local)
(local)

This example demonstrates how to write a macro that does not repeat at all. Since echo
is a non-repeating command, entering a blank line after the @mac(xstruct) line does
nothing.

Replying to Debugger Questions 6

This section describes how to respond when the debugger asks you a question.

Certain forms of some debugger commands are considered unsafe and will check the
debugger's safety level (see “set-safety” on page 6-64) before executing. When the safety
level is verify, these commands will ask a question of the user and wait for
verification. The possible responses to the question are always "yes" and "no" (case
insensitive). These responses may be abbreviated to their first letter if desired. The
response must be terminated by a carriage return.

A "yes" response indicates that the unsafe action is to be performed.

A "no" response indicates that the unsafe action is not to be performed.

In the graphical user interface, the debugger pops up a warning dialog box.
6-20

Command-Line Interface
Controlling the Debugger 6

This section describes how to exit NightView, and the commands used to control
debugged processes and your interaction with them.
6-21

NightView LX User’s Guide
Quitting NightView 6

quit 6

Stop everything. Exit the debugger.

quit

Abbreviation: q

This command terminates the debugger. If the safety level (see “set-safety” on page 6-64)
is forbid, you will not be allowed to quit unless there are no processes being debugged.
In other safety levels, any active processes will be killed when you quit. If the safety level
is verify, you will be prompted for confirmation before quitting causes any debugged
processes to be killed (see “Replying to Debugger Questions” on page 6-20).

The processes killed include all active processes started in any dialogue shell and not
explicitly detached. NightView detaches from any processes that are being controlled but
are not being debugged by you because of a nodebug command. See “Detaching” on
page 3-3. See “nodebug” on page 6-26.

Processes started using the shell command are independent of the debugger, and are
not affected by a quit.
6-22

Command-Line Interface
Managing Dialogues 6

A dialogue is an interaction with a particular host system for the purpose of debugging
one or more processes on that system under a particular user name. You may have as
many dialogues as you wish; there can even be more than one dialogue with a particular
host system. Dialogues are described in more detail in the Concepts chapter (see
“Dialogues” on page 3-4).

login 6

Login to a new dialogue shell.

login [/conditional] [/popup] [name=dialogue name]
[user=login name] [others ...] machine

NOTE

If present, the options /conditional and /popup must appear
before the machine name and before any keywords.

The login command takes many keyword parameters. The most commonly used are:

/conditional

Ignore this login command if a dialogue with this name already exists. This
is useful from macros (see “Defining and Using Macros” on page 6-173) and
for other programs that communicate with NightView.

/popup

Pop up the Remote Login Dialog Box (see “Remote Login Dialog Box” on
page 8-36) initialized with the machine name and the values of the name= and
user= keywords. No other keywords are allowed with this option. This
option is meaningful only in the graphical user interface.

name=dialogue name

Give this parameter to specify a name for the dialogue you are creating. If you
leave it off, the dialogue name is the same as the name of the machine running
the dialogue. To run multiple dialogue shells on the same machine you must
give them unique names. No dialogue name may be the same as a family
name (see “family” on page 6-48). A dialogue name must start with an alpha-
betic character and may be followed by any number of alphabetic, numeric or
underscore characters.

user=login name

Login as this user. Normally your current user name is used, but you may
login as any user.
6-23

NightView LX User’s Guide
machine

Specify the machine where the programs to be debugged are located and the
dialogue shell will run. This is a required parameter. It may be a host name,
with or without domain qualification, or it may be an IP address.

The following parameters are less frequently used, but are provided to allow you to
control the execution environment of the remote dialogue.

nice=nice value

The dialogue normally runs with normal interactive priority. A positive nice
value lowers the priority (makes other programs seem more important). You
must have special privileges to specify a negative nice value.

cpu=cpu list

Set the CPU bias for the dialogue. cpu list is a comma-separated list of CPU
IDs or CPU ID ranges. For example: "0,2-4,6". cpu list may also be
active or boot to specify all active processors or the boot processor,
respectively.

priority=value

Specify the priority of the remote dialogue processes. The scheduling policy
determines what values may be specified for the priority. value must be an
integer value that is valid for the current scheduling policy. Higher numerical
values represent more favorable scheduling priorities.

scheduling=sched_keywords

Control the scheduling policy that will be used for the dialogue. The allowed
keywords are: sched_fifo, fifo, sched_rr, rr, sched_other, and
other.

quantum=time

Control the time slice quantum size for the process. A quantum value is mean-
ingful only under the sched_rr and sched_other scheduling policies.
time is specified either as a nice value or a millisecond value corresponding to
a nice value. Nice values must be between -20 and 19 inclusive. By default, a
quantum value of -20 results in a ~300ms slice, and a quantum value of 19
results in a ~10ms slice. Millisecond values are in the form numberms and
must reflect the times defined in the system for the nice values. If a non-
defined millisecond value is supplied, an "unsupported quantum" error
message is returned.

Any programs started in the dialogue shell will inherit all the above parameters.

When you use the login command you are asked for a password. See “Remote
Dialogues” on page 3-6 for a general discussion of how to use remote dialogues.

Example:

(afamily) login fred
To begin a remote debug session on 'fred', enter the
6-24

Command-Line Interface
password for user 'wilma'.
Password: enter wilma's password
(afamily) login user=barney name=fredII fred
To begin a remote debug session on 'fred', enter the
password for user 'barney'.
Password: enter barney's password
(afamily)

The above example shows the creation of two new dialogues. The first login command
starts a dialogue on a machine named fred and logs in as the current user (wilma in this
example). This dialogue is named fred, because no explicit name was given.

The second creates a dialogue on machine fred named fredII. In this case the user
logged into fred is barney.

The login command is creating a new dialogue, so the qualifier has no effect on this
command.

debug 6

Specify names for programs you wish to debug.

debug pattern ...

pattern

A wildcard pattern matching the name of a program to be debugged. Spaces
and tabs are not allowed in pattern. See “Wildcard Patterns” on page 6-18.

This command and its inverse (see “nodebug” on page 6-26) allow you to control which
programs get debugged. The list of programs applies to the individual dialogues specified
in the debug command qualifier (different dialogues may have different lists of
programs to be debugged).

The debug and nodebug commands work by remembering the list of debug and
nodebug commands. When a new file needs to be checked to see if it should be
debugged, the name is first compared to the pattern in the most recent command, then the
pattern in the next most recent command, and so on.

The first pattern that matches the file name determines what to do with the associated
process. If the matching pattern is on a debug command, then the process will be
debugged. If it was on a nodebug command, then the process will not be debugged.

The pattern * matches everything, so the list of patterns is always reset when * appears
as an argument. Since each dialogue always starts with either debug * or nodebug *
in the list, it is impossible to pick a file name that does not match at some point in the list.

The default pattern list for a dialogue is:

nodebug /bin/* /sbin/* /usr/X11R6/bin/* /usr/ada/*/bin/*
/usr/ada/bin/* /usr/bin/* /usr/bin/X11/* /usr/ccs/*/*
/usr/ccs/*/*/*/* /usr/kerberos/bin/* /usr/kerberos/sbin/*
/usr/lib/* /usr/lib/*/* /usr/lib/*/*/* /usr/lib/*/*/*/*
/usr/lib/*/*/*/*/* /usr/lib/*/*/*/*/*/*
/usr/lib/*/*/*/*/*/*/* /usr/local/bin/* /usr/local/sbin/*
6-25

NightView LX User’s Guide
/usr/sbin/* /usr/ucb/* /usr/ucblib/*
debug *

To print the list of debug and nodebug patterns, see “info dialogue” on page 6-164.

nodebug 6

Specify names for programs you do not wish to debug.

nodebug pattern ...

pattern

A wildcard pattern matching the name of a program to avoid debugging.

This command is typically used in combination with the debug command to control
which programs are debugged in a dialogue. The complete syntax of wildcards and the
algorithm used to match files is described in the debug command (see “debug” on page
6-25).

Example:

(afamily) nodebug *
(afamily) debug x*

This example uses nodebug * to turn off all debugging. It then uses debug to turn on
debugging for any programs started where the basename begins with the letter x.

Note that even if one command is not debugged, its children may be debugged. To avoid
debugging a command as well as any children, you must use the detach command (see
“detach” on page 6-38).

To print the list of debug and nodebug patterns, see “info dialogue” on page 6-164.

set-debug-file-directory 6

Tell NightView where to look for .debug files.

set-debug-file-directory [path]

path

The name of the directory in which to find .debug files.

The set-debug-file-directory sets the directory to use when searching for
.debug files associated with shared libraries, for each dialogue in the qualifier. With no
argument, NightView prints the current setting.

The default path is /usr/lib/debug which is where .debuginfo rpms usually install
their files.

If you don’t care about debugging libraries, you can improve performance by setting this
to a directory that does not exist.
6-26

Command-Line Interface
translate-object-file 6

Translate object filenames for a remote dialogue.

translate-object-file [from [to]]

Abbreviation: xl

from

The filename or filename prefix as seen by the remote system.

to

The filename or filename prefix as seen by the local system.

A file residing on a system other than the target system can be specified using
the form user@host:/path. NightView will download this file from the speci-
fied system to the host. See “Remote File Access” on page 3-7.

If both from and to are present, a translation is added. If only from is present, the
translation exactly matching from is removed. If neither is present, all translations are
removed.

NOTE

from and to are not wildcard patterns or regular expressions. See
“Wildcard Patterns” on page 6-18. See “Regular Expressions” on
page 6-16.

The translate-object-file command manages translations for object filenames
for each dialogue in the qualifier. Translations are useful when:

• An object file is visible from both systems, but its position in the file sys-
tem is different. For example, /usr on system fred may be mounted as
/fred/usr on the local system.

• An object file is not visible from the local system, but you have a copy of
the file. For example, you might have a development directory from which
the image on the remote system is created.

• The object file on the remote system has been stripped, but you have a copy
with debugging information.

Object filenames from exec-file and load commands are subject to object filename
translation. See “exec-file” on page 6-42. See “load” on page 6-97. Dynamic library
names are also subject to object filename translation. See “Debugging with Shared
Libraries” on page 3-45. Object filenames from symbol-file commands are not
subject to object filename translation. See “symbol-file” on page 6-39.

NightView attempts to match translations to the initial characters of the filename.
Filename component boundaries are not treated as a special case. If you want to match to
component boundaries, include slashes in the strings. NightView tries all translations that
6-27

NightView LX User’s Guide
match the strings, beginning with the longest matching translation, until it finds a
translated filename with the same text segment contents as the executing program. If no
file is found with the same text segment contents, NightView gives a warning and uses
the first translation that matched the object filename.

NightView automatically supplies a default set of translations when a remote dialogue is
created. The default set is made by inspecting the local system mount table and by
considering the set of cross-development environments on the local system. In many
cases, these translations are sufficient; additional translations are not necessary.

Translate-object-file commands take effect in existing processes as well as
future ones.

Examples:

Suppose the object files that exist on the remote system under the directory
/wilma/pebbles exist on the local system under the directory pebbles (relative to
your current working directory).

(fred) xl /wilma/pebbles/ pebbles/

This command translates any object filename beginning with the string
/wilma/pebbles/ to the same filename with /wilma/pebbles/ replaced by
pebbles/. For example, /wilma/pebbles/hair becomes pebbles/hair. Note
that pebbles/hair will be evaluated relative to NightView's current working
directory. See “pwd” on page 6-76.

Suppose the object files that exist on the remote system under /betty exist on the local
system under /barney. However, the files under /betty whose name begins with bam
should be found under /dino.

(fred) xl /betty/ /barney/
(fred) xl /betty/bam /dino/bam

These commands translate any object filename beginning with the string /betty/ to the
same filename with /betty/ replaced by /barney/ and any object filename
beginning with the string /betty/bam to the same filename with /betty/bam
replaced by /dino/bam. NightView picks /betty/bam in preference to /betty/
because /betty/bam is longer. For example,

/betty/dress becomes /barney/dress
/betty/bambam becomes /dino/bambam
/betty/bambino becomes /dino/bambino

A good place to put a translate-object-file command is in an on dialogue
command in your .NightViewrc file. See “on dialogue” on page 6-29. Also, see
“Initialization Files” on page 3-39.

Example:

(all) on dialogue fred.* do
> xl /usr/ /fred/usr/
> end on dialogue

This command translates the directory /usr on the remote system to the directory
/usr/fred on the local system, for dialogues whose name begins with fred.
6-28

Command-Line Interface
logout 6

Terminate a dialogue.

logout

The logout command terminates any dialogues named in the command qualifier. If
your safety level is unsafe then all processes being debugged in the dialogues are killed
(see “set-safety” on page 6-64). If your safety level is verify then you are prompted for
confirmation before the logout causes any debugged processes to be killed (see “Replying
to Debugger Questions” on page 6-20). If your safety level is forbid, then the logout
does not occur. If you want any processes to continue running, you must detach them
prior to using logout (see “detach” on page 6-38). NightView detaches from any
processes that are being controlled but are not being debugged by you because of a
nodebug command. See “Detaching” on page 3-3. Also, see “nodebug” on page 6-26.

If the dialogue shell is still running at logout time, it is killed (you may send an exit
command to the shell to terminate it normally prior to logging out).

Example:

(adialogue) detach
(adialogue) !exit
(adialogue) logout

The example shows how to avoid having any processes killed. The detach command
allows all processes in the dialogue to continue running independently of the debugger.
The !exit command sends an exit command to the dialogue shell to terminate it
normally, then the logout command terminates the debugger dialogue.

on dialogue 6

Specify debugger commands to be executed when a dialogue is created.

on dialogue [regexp]

on dialogue regexp command

on dialogue regexp do

regexp

A regular expression to match against the names of newly created dialogues.
See “Regular Expressions” on page 6-16.

command

A debugger command to be executed when a new dialogue whose name
matches regexp is created.

In the third form of the on dialogue command, the debugger commands to be
executed must begin on the line following the do keyword. The list of debugger
commands to execute is terminated when a line containing only the words end on
dialogue is encountered.
6-29

NightView LX User’s Guide
The on dialogue command allows a user-specified sequence of one or more debugger
commands to be executed immediately after creating a new dialogue within NightView.
When a new dialogue is created, the list of all on dialogue regular expressions is
checked to see if any of them match the name of the new dialogue. The most recently
specified on dialogue command whose regular expression matches the dialogue name
will have its commands executed.

In its first form (given only a regular expression), the on dialogue command will
remove any commands that were associated with the given regular expression. If no
regular expression is given, then all previously defined on dialogue commands are
removed. If your safety level is set to forbid, you are not allowed to remove all on
dialogue commands. If your safety level is set to verify, NightView requests
verification before removing all on dialogue commands. See “set-safety” on page
6-64.

In its second and third forms, the on dialogue command will associate a sequence of
one or more user-specified debugger commands with the given regular expression. Macro
invocations are not expanded when reading the commands to associate with the regular
expression.

If dialogue local is started up automatically by NightView, then it will exist before any
commands in your .NightViewrc file are read. In this case, NightView automatically
runs the on dialogue command after all the initialization files have been processed.
See “apply on dialogue” on page 6-31. See “Initialization Files” on page 3-39.

The default qualifier for all commands associated with the given regular expression will
be the newly created dialogue.

The commands specified by on dialogue are event-triggered commands: they have
an implied safety level (which may be different from the safety level that was set using
set-safety).

If you wish to list all on dialogue commands, or see which on dialogue
commands would be executed for a particular dialogue name, you should use the info
on dialogue command.

Example:

(local)on dialogue ben.* nodebug /usr/bin/*

After issuing the above command, if we now create a new dialogue named ben_hur,
then we will automatically set it up so that programs residing in the directory named
/usr/bin are not debugged by NightView.

Now suppose we do the following:

(local) on dialogue .*jerry do
> nodebug /usr/remote/*
> nodebug /usr/local/*
> end on dialogue

At this point, if we create another dialogue named ben_n_jerry, then this newly
created dialogue will automatically be set up so that programs residing in the directories
/usr/remote and /usr/local are not debugged by NightView. Note that even
though the name ben_n_jerry also matches the regular expression ben.*, this
dialogue will try to debug programs that reside in the directory /usr/bin. This is
6-30

Command-Line Interface
because on dialogue regular expressions are matched in reverse-chronological order
(most recent first), and only the first match found is used.

(local) info on dialogue ben_n_jerry
on dialogue .*jerry do

nodebug /usr/remote/*
nodebug /usr/local/*

end on dialogue

If we were to now issue the command:

(local) on dialogue .*jerry

Then this would remove .*jerry (and its associated commands) from the debuggers
on dialogue command list. Now, if we create yet another dialogue named
benny_and_jerry, then this third dialogue will not automatically debug programs
that reside in the directory /usr/bin, but it will debug programs that reside in
/usr/remote and /usr/local (just like the first one did).

(local) info on dialogue benny_and_jerry
on dialogue ben.* do
nodebug /usr/bin/*
end on dialogue

apply on dialogue 6

Execute on dialogue commands for existing dialogues.

apply on dialogue

The apply on dialogue command allows on dialogue commands to be
executed for existing dialogues. See “on dialogue” on page 6-29. For each dialogue
specified by the qualifier, the on dialogue commands which would match the name
of the dialogue are immediately executed on behalf of the dialogue.

When the debugger automatically creates a local dialogue, it does an on dialogue
command with a qualifier of (local) after processing all the initialization files. See
“Initialization Files” on page 3-39. Because dialogue local exists before the
customization commands in the user's .NightViewrc file are interpreted by the
debugger, the on dialogue command by itself cannot initialize the environment for
dialogue local (since it only applies to dialogues that will be created after the apply on
dialogue command is issued). The automatic on dialogue executes any on
dialogue commands that refer to dialogue local.

Dialogue Input and Output 6

Because each dialogue is a separate shell, each dialogue has its own input and output
streams. NightView has several options for sending input to dialogues and managing the
output data generated by the dialogue shell and the programs being run within it.
6-31

NightView LX User’s Guide
! 6

Pass input to a dialogue.

! [input line]

input line

If input line is specified, it is passed to the dialogue (or dialogues) determined
by the command qualifier.

If input line is not specified, then this command switches to a special dialogue
input mode.

If the qualifier for this command specifies more than one dialogue, then the same input
data is sent to all the dialogues. This can make sense if you are doing something like
debugging two versions of the same program and you want to see where they diverge. It
is up to you to insure that the input is sensible to all the dialogues (or that the command
qualifier only refers to one dialogue).

When you use the ! command without an input line argument to switch to dialogue input
mode, everything you type goes to the specified dialogues. Nothing you type is treated as
a debugger command until a special terminator string is recognized. The default
terminator string is ``-.'' (note that this is not the same as the ``~.'' used by rlogin(1)
or cu(1)). See “set-terminator” on page 6-63, for information on how to change the
terminator string.

The ! command without an input line argument cannot be used inside a macro (see
“Defining and Using Macros” on page 6-173), nor can it be used in the graphical or full-
screen user interfaces.

Macros are not expanded when reading the input (or arguments) to this command.

This command does not care if it is talking to the dialogue shell or to a program running
in the shell. If you start a program that requests input, you can pass the input to it using
this command.

See “Repeating Commands” on page 6-19.

Example:

(afamily) !pwd
(afamily) !
PATH=/extra/progs:$PATH
ulimit -m 200
ulimit -d 100
ulimit -s 100
-.
(afamily)

The first line just sends a pwd command to the dialogue. The second switches to dialogue
input mode and then several lines of input are sent directly to the dialogue to set up
environment variables and limits on the amount of memory subsequent processes will be
allowed to use. The final "-." switches back to normal command input mode.

Note that if you just want to send a program name to the shell and wait for that program
6-32

Command-Line Interface
to start, you may want to use the run command instead. See “run” on page 6-35.

set-show 6

Control where dialogue output goes.

set-show [silent | notify=mode | continuous=mode]
[log[=filename]] [buffer=number]

silent

Just buffer the dialogue output, do not display it. The show command may be
used to see what has accumulated (see “show” on page 6-34).

notify=mode

Do not display the dialogue output, but do print a notice when output first
becomes available.

continuous=mode

Display dialogue output when it is generated.

The notify and continuous modes both accept one of the following keyword
arguments:

immediate

In immediate mode the notification or actual output is displayed as soon as
output becomes available.

atprompt

In the atprompt mode, the output is displayed only when the debugger is not
requesting input. This is typically immediately prior to printing a new prompt
to request additional commands, but it also prints output when the debugger is
waiting for some event and has not yet prompted for new input.

Additional parameters on the set-show command control logging to a file and the size
of the internal buffer.

log[=filename]

The log parameter without the =filename option turns off logging to a file and
resumes buffering a limited amount of output in memory. When a file name is
specified, the output from the dialogue is logged to that file until the log
parameter is changed.

buffer=number

The buffer parameter is used to set the size of the buffer holding all the
most recent output from the dialogue. The default size is 10240 (10K bytes).
When the buffer fills up, the oldest output is discarded. When logging to a file,
this parameter does not have any effect — a log file may grow until disk space
is exhausted.
6-33

NightView LX User’s Guide
This command only logs the output from dialogues. It does not log debugger commands,
nor does it directly log the input to a dialogue; however, the input will normally be
echoed by the system, so it will be logged as output from the dialogue.

To log the entire debug session, see “set-log” on page 6-59.

Each dialogue starts off in the default mode:

(all) set-show buffer=10240 continuous=atprompt

show 6

Control dialogue output.

show [number | all | none] [| shell-command]

number

The number of old output lines you wish to see again.

all

Specifying all instead of a number means show all the buffered output from
the dialogue shell.

none

The none keyword is used to tell the debugger you are not interested in any of
the buffered output. It pretends you have already seen any data currently in the
buffer.

| shell-command

You may use a vertical bar (shell pipe operator) to request the output be sent
to an arbitrary shell command, rather than being displayed. You may use this
to run the output through a pager or filter of some kind.

The debugger always internally buffers output generated by dialogues. The show com-
mand displays any buffered output from a dialogue which you have not yet seen. The num-
ber or all arguments tell the debugger to display that many lines of previous output in
addition to the new output (so the total number of lines displayed may be greater than
number). The set-show command is used to control when dialogue output is printed
without a specific request via the show command (see “set-show” on page 6-33).
6-34

Command-Line Interface
Managing Processes 6

run 6

Run a program in a dialogue and wait for NightView to start debugging it.

run input line

input line

The shell command that will start a program (or programs) to debug.

This command is very similar to the ! command (see “!” on page 6-32): it sends the
specified input line to the dialogue shell (or shells) specified by the qualifier. The
difference between run and ! is that run waits for a new process to be debugged in one
of the dialogues specified by the qualifier.

NOTE

Even if the qualifier specifies multiple dialogues, the run com-
mand terminates as soon as one new process has started.

The run command does not check the given input line for validity; it simply passes it
unchanged to the dialogue shell, just like the ! command. If it does not start a new
process to be debugged, then run will just continue waiting forever (or until you type
<CONTROL C>). If you issue a run command that starts more than one program, run will
only wait until one of them starts up and is noticed by NightView. The other programs
will start up and be debugged, but you probably won't know about them until after you
have entered the next command.

If you just want to send input to a program that is reading from the shell's input terminal,
or you want to start up a program or programs without waiting for them, just use the !
command.

If you want to run the same program again, use the run command again or use the
rerun command. See “Restarting a Program” on page 3-16. If you want multiple
programs to run concurrently, end the shell commands with & (ampersand). (You can't do
this if your program expects input from you.)

rerun 6

Run a program again.

rerun

The qualifier must evaluate to exactly one process or exactly one dialogue and no
process. This command takes no arguments.

Whenever a process starts up, NightView remembers the most recent dialogue input line
and associates it with the new process.
6-35

NightView LX User’s Guide
If the qualifier contains a process, NightView kills the process and sends the associated
dialogue input line again.

If there is no process, NightView sends the dialogue input line associated with the
process that terminated most recently in the specified dialogue.

The method of remembering recent dialogue input lines works for nearly all situations,
but there may be situations of complex process start-up where NightView cannot send an
appropriate dialogue input line and this command should not be used.

set-notify 6

Control how you are notified of events.

set-notify [silent | continuous=mode]

silent

Only report events when explicitly requested.

continuous=mode

Display events when they happen.

The continuous mode accepts one of the following keyword arguments:

immediate

In immediate mode the notification is displayed as soon as the event happens.

atprompt

In the atprompt mode, the notification is displayed only when the debugger is
not requesting input. This is typically immediately prior to printing a new
prompt to request additional commands, but it also prints notifications when
the debugger is waiting for some event and has not yet prompted for new
input.

This command controls how the debugger tells you what is happening to the processes
you are debugging. Individual processes may be set to notify you in different ways (using
the command qualifier).

Events that might cause notification include hitting a breakpoint or watchpoint, getting a
signal (but see “handle” on page 6-136), or ’exec’ing a new program. New processes to
be debugged also cause notification, but this notification is controlled by the notification
setting of the parent of the new process. Processes created directly by the dialogue shell
always cause notification in the default notify mode. When a process exits, you will be
notified by the process' dialogue (but see “show” on page 6-34 and “set-show” on page
6-33).

The output generated by any commands attached to a breakpoint (or watchpoint) or any
automatic display expressions is also controlled by set-notify. If you set notify mode
to silent for a process, all debugger output associated with that process will be
buffered up and saved until you ask to see it.
6-36

Command-Line Interface
Any change to the notify mode of a process takes place immediately, so changing the
mode from silent to continuous may also result in large amounts of accumulated
event notifications and other buffered output being generated.

The notify command (see “notify” on page 6-37) can be used to explicitly request
notification of any events that have been saved up (this is the only way to find out about
events that have happened in a process where the notify mode is silent).

If no arguments are given to the notify command, then the current notify mode of each
process in the qualifier is printed.

The default notify mode is:

(all) set-notify continuous=atprompt

notify 6

Ask about pending event notifications.

notify

If you have been suppressing event notification on certain processes (see “set-notify” on
page 6-36), the notify command may be used to request any notifications that have not
yet been printed. It only tells you about pending events in the processes specified by the
command qualifier.

attach 6

Attach the debugger to a process that is already running.

attach [{/resume | /stop}] PID

/resume

Resume the process when the attach is complete.

/stop

Keep the process stopped when the attach is complete.

PID

The process ID of the running process.

This command allows a program to be debugged even if it was not started from a
debugger dialogue shell (see “Attaching” on page 3-3). The qualifier on this command
must specify a single dialogue indicating which machine is running the specified PID. An
error is reported if the qualifier implies multiple dialogues. It is also an error to attempt to
attach to a program already being debugged, or to attach any of the processes required to
run the debugger.

Since the program to which you are attaching is already running independently of the
debugger, you will not be able to send it input through the normal dialogue input
mechanism (see “!” on page 6-32) or see the output it generates (the input and output for
6-37

NightView LX User’s Guide
the process remain connected to the same streams they were connected to prior to the
attach).

Once you attach to a process, any future children it forks will also be debugged. See “set-
children” on page 6-49. Children created prior to the attach must be explicitly attached if
you want to debug them.

See “Attach Permissions” on page 3-43 for a description of what processes you are
allowed to attach.

Once the attach is complete, the process will stay stopped or will be resumed
depending on the setting from the set-resume command (see “set-resume” on page
6-71). You can override that setting by explicitly giving a /resume or /stop option.

detach 6

Stop debugging a list of processes.

detach

The detach command terminates the debugger's connection to all the processes named
in the command qualifier. Any breakpoints, monitorpoints, heappoints, watchpoints, or
syscallpoints set in those processes are removed, but patchpoints and tracepoints remain
if they are enabled when you execute the detach command. See “breakpoint” on page
6-101, “patchpoint” on page 6-103, “monitorpoint” on page 6-108, “heappoint” on page
6-110, “tracepoint” on page 6-106, “watchpoint” on page 6-120, and “syscallpoint” on
page 6-121.

The processes are allowed to continue running normally and the debugger will not be
notified of any subsequent events that occur in those processes. If any of the processes
fork or exec new programs, the debugger will not see them. If the process has any
patchpoints or tracepoints, then the debugger silently continues to monitor the process to
control these eventpoints.

When the safety level is unsafe (see “set-safety” on page 6-64), detaching a process
that was stopped while evaluating a debugger expression containing a function call aborts
any expression evaluation in progress. This returns the process to the state it was in when
you asked to evaluate the expression. At verify safety level, it asks first, and at safety
level forbid, it refuses to let you detach the process.

For another way of avoiding debugging certain processes, see “nodebug” on page 6-26.
Also, see “set-children” on page 6-49.

kill 6

Terminate a list of processes.

kill

The kill command terminates all the processes named in the command qualifier.

In the graphical user interface, if you use a ’Kill’ button (as opposed to manually typing
the kill command) the debugger will check your safety level (see “set-safety” on page
6-38

Command-Line Interface
6-64) before permitting you to kill the desired processes. If your safety level is forbid
then you will not be permitted to kill the selected processes. If your safety level is
verify then you will be prompted for verification. If your safety level is unsafe then
the processes are terminated with no questions asked.

symbol-file 6

Establish the file containing symbolic information for a program.

symbol-file program-name

program-name

This must be the name of an executable file corresponding to the programs
running in the specified processes. It should contain symbolic debug informa-
tion for the program.

If program-name is a relative pathname, it is interpreted relative to Night-
View's current working directory.

If the program is on a remote system other than the specified target system,
use the form user@host:/path. NightView will download this file from the
remote system to read the debug information. See “Remote File Access” on
page 3-7.

program-name is not subject to object filename translations. See “translate-object-file” on
page 6-27.

A symbol file is an executable file from which NightView obtains information about
symbols in a program being debugged. Normally, the symbol file is the same as the
program's executable file, but it may be different if, for example, you are debugging a
stripped program (see strip(1)). In this case, you need to specify an unstripped
version of the program in the symbol-file command, if you want to access
information symbolically.

The symbol-file command is applied to each process in the qualifier. You should
make sure that each of those processes is running the same program; otherwise, you may
get unpredictable results from the debugger when you examine variables or memory.

Note: If you have not specified a symbol file for a process, NightView attempts to obtain
the information from the executable file (see “exec-file” on page 6-42).

In some situations, such as when debug information is needed from shared libraries, an
object filename translation is more appropriate than a symbol-file command. See
“translate-object-file” on page 6-27.

core-file 6

Create a pseudo-process for debugging an aborted program's core image file.

core-file corefile-name [exec-file=program-name][with-translations]
[interpreter-base=address]
6-39

NightView LX User’s Guide
corefile-name

The name of a core file. When used in a remote dialogue, this file must reside
on the target system.

If corefile-name is a relative pathname, it is interpreted relative to NightView's
current working directory.

exec-file=program-name

Specifies the name of the executable program that created the given core file.
When used in a remote dialogue, this file must reside on the target system.

If program-name is a relative pathname, it is interpreted relative to Night-
View's current working directory.

with-translations

Indicates that the lines following the core-file command are library trans-
lations.

interpreter-base=address

Specify the address of the dynamic loader. This may be useful for a core file
generated on a system different from the target system.

A core file is a copy of a process's memory made when a process is terminated
abnormally. You can examine these core files using NightView by specifying the core
file name in the core-file command. NightView responds with a process ID (PID)
corresponding to a newly-created pseudo-process. This is not a real executing process; a
pseudo-process is merely a mechanism for dealing with core files in NightView. The PID

NightView assigns does not correspond to any running process, but you can use it in
qualifiers, and you can also include it in process families using the family command.
See “family” on page 6-48.

The qualifier for the core-file command is used only to determine with which
dialogue the pseudo-process should be associated. (Among other things, this determines
the type of machine that created the core file. The core file must have been created on the
system the dialogue is running on.) Thus, the qualifier should specify exactly one
dialogue; otherwise, NightView issues an error message and refuses to honor the
command.

If you specify the exec-file=program-name option, it is equivalent to executing an
exec-file command (see “exec-file” on page 6-42) on the pseudo-process created by
the core-file command. This is seldom required, since NightView attempts to
determine the location of the executable program from information saved in the core file
(see “Finding Your Program” on page 3-9). If NightView is unable to correctly determine
the executable program, you will need to specify the exec-file=program-name option
or use the exec-file command to specify the name of the executable program.

When debugging a core file, NightView uses the executable program file for two
purposes. NightView uses this file to obtain symbolic information about variables and
procedures in your program, just as it does when debugging normal processes. For core
files, NightView also must use this file to obtain the contents of read-only memory,
6-40

Command-Line Interface
including the machine instructions of the program. If NightView is unable to locate the
executable program, then you will only be able to examine writable memory by absolute
address. You can specify the file, or files, NightView should use by specifying the
exec-file=program-name option or by using the exec-file and symbol-file
commands (see “exec-file” on page 6-42 and “symbol-file” on page 6-39).

If you specify with-translations, then the lines following the core-file
command are library translations of the form:

from-string to-string

End the translations with a line that contains only:

end translations

This allows debugging core files from dynamically-linked programs on systems where
the installed libraries do not match the libraries that were being used when the core file
was generated. This is not necessary for most users. The translations are similar to the
object file translations in the translate-object-file command, but they refer to
dynamic libraries and are applied only to this process (see “translate-object-file” on page
6-27). For remote debugging, the translations are applied on the target system, not the
host system.

Note that, unlike other debuggers, NightView allows you to examine the core file of a
process at the same time you are executing the program that produced the core file. This
allows you to try executing your program again to try to find the problem, while still
accessing information from the core file. For instance, you may find from the core file
that a certain global variable has an incorrect value. You could then run the program
again, stopping it at interesting points to check the value of that global variable. By using
an appropriate qualifier, you can easily print out the values of variables in both the
running program and the core file for easy comparison.

save-core-file 6

Packages up all files required for subsequent core file analysis into a compressed file.

When transporting a core file to another system for analysis, it is important to take all the
shared libraries related to its execution. Locating them can be a cumbersome task that
NightView can do for you more easily.

save-core-file [/nozip] [/nodebuginfo] [/replace] [/keep]
[include=file] [note=string] savename

/nozip

Do not compress the tar archive used to save the core file (the default is to
generate a compressed file).

/nodebuginfo

Do not include the debuginfo files (if there are any). The default is to include
them. Debuginfo files are special files that are optionally installed on systems
which provide debug information for standard libraries. NightView knows
how to locate these files, and by default, automatically consults them when
they are present.
6-41

NightView LX User’s Guide
/replace

If the output file already exists, do not terminate the save operation, but
instead to try to overwrite it.

/keep

If there are errors during the writing of the output file, keep the possibly bro-
ken file rather than removing it.

include=file

Add file to the directory of information being packaged with the core file. The
specified file can be of any type -- perhaps some data files used as input to
your program or maybe just some notes you make so you can remember the
circumstances relating to the core file. You can use multiple include
options to include multiple files.

note=string

Add the string as a note in the generated script that will be used to debug the
core file subsequently. This note will be echoed at the end of the script.

savename

The name of the file where the (optionally) compressed tar file will be written.
The actual file name will be savename.tar.gz or savename.tar.

This command will take a single core file process and will generate the savename tar file.
This can be useful if there is limited access time available on the current system or if you
wish to send the core file off to another person.

The tar file can then be transferred to another system for subsequent analysis. The system
must be of the same architecture as the original system (i.e. 32-bit or 64-bit).

If you are not already debugging the core file of interest, you can use the command
nview-save-core-file to save the core file. See “nview-save-core-file” on page
5-3 for information on that script.

exec-file 6

Specify the location of the executable file corresponding to a process.

exec-file program-name

program-name

Specifies the file containing the executable program corresponding to the
specified processes.

If program-name is a relative pathname, it is interpreted relative to Night-
View's current working directory.

If program-name is on a remote system other than the specified target system,
use the form user@host:/path. NightView will download this file from the
6-42

Command-Line Interface
specified system to read the debug information. In this case, exec-file is
treated as though you had used symbol-file.

program-name is subject to object filename translations. See “translate-object-
file” on page 6-27.

This command tells NightView where to find the executable file corresponding to the
processes specified by the qualifier. Obviously, you should ensure that all those processes
are, in fact, running the same program; otherwise, you may get strange behavior. (NOTE:
NightView does not do this verification for you because the processes may be executing
different copies of the same program on several different systems. NightView would not
be able to tell that these were the same program.)

You usually use this command in conjunction with the core-file command (see
“core-file” on page 6-39). You may also need to use it if NightView is unable to
determine the executable file corresponding to a new process being debugged. See
“Finding Your Program” on page 3-9.

If you do not explicitly specify a symbol file for a process (see “symbol-file” on page
6-39), NightView uses the executable file. Since the symbolic information is usually
contained in the executable file anyway, this is most often what you want. You can
specify the executable file and symbol file in any order for a given process.

When a new executable file is specified, any on program commands that match the
new file name are executed. See “on program” on page 6-44.

Examples:

(local) core-file ./mycore
New process: local:65536
/users/bob/mycore
was last modified on Wed Nov 18 17:48:38 1992
Core file indicates the executable file is
/users/bob/myprog
Executable file set to
/users/bob/myprog
Pseudo-process assigned PID 65536
Process 65536 terminated with SIGQUIT
(local) family mycore 65536
(local) (mycore) exec-file ./stripped_prog
(local) (mycore) symbol-file ./full_prog

The first command creates a new pseudo-process for the file mycore in NightView's
current directory. NightView assigns this pseudo-process PID number 65536. The
family command then gives the name mycore to this pseudo-process. The exec-
file command then establishes the file stripped_prog as the executable file for that
process, while the symbol-file command establishes full_prog as the name of the
symbol file.

When dealing with shared libraries, an object filename translation is more appropriate
than a exec-file command. See “translate-object-file” on page 6-27.
6-43

NightView LX User’s Guide
on program 6

Specify debugger commands to be executed when a program is ’exec’ed.

on program [pattern]

on program pattern command

on program pattern do

pattern

A wildcard pattern to match against the executable file names of newly
’exec’ed programs. See “Wildcard Patterns” on page 6-18.

command

A debugger command to be executed when a new program whose executable
file name matches pattern is ’exec’ed.

In the third form of the on program command, the debugger commands to be executed
must begin on the line following the do keyword. The list of debugger commands to
execute is terminated when a line containing only the words end on program is
encountered.

The on program command allows a user-specified sequence of one or more debugger
commands to be executed immediately after ’exec’ing a program that is being debugged
by NightView. When a debugged process performs an ’exec’ (or the exec-file
command is used to change the location of the executable file name), the list of on
program patterns for that process's controlling dialogue is checked to see if any of the
patterns match the executable file name of the program that was just ’exec’ed. The most
recently specified on program command whose pattern matches the executable file
name of the newly ’exec’ed program will have its commands executed.

on program processing is related to on restart processing. When a program
execs (or the exec-file command is used), NightView first checks the on restart
patterns. See “on restart” on page 6-46. If a match is found, then the commands
associated with the matching pattern are executed. In this case, no on program patterns
are checked. However, on restart commands created by a checkpoint always begin
with a call to the macro restart_begin_hook. The initial definition of this macro
invokes the apply on program command. So, by default, on program patterns are
checked and matching commands are run before the on restart commands are run.
See “Restarting a Program” on page 3-16.

If no match is found in the on restart patterns, then NightView checks the on
program patterns.

In its first form (given only a pattern), the on program command will remove any
commands that were associated with the given pattern for each dialogue specified in the
qualifier. If no pattern is given, then all previously defined on program commands are
removed from each dialogue specified in the qualifier. If your safety level is set to
forbid, you are not allowed to remove all on program commands. If your safety
level is set to verify, NightView requests verification before removing all on
program commands. See “set-safety” on page 6-64.
6-44

Command-Line Interface
In its second and third forms, the on program command will associate a sequence of
one or more user-specified debugger commands with the given pattern for each dialogue
specified by the qualifier. Macro invocations are not expanded when reading the
commands to associate with the pattern.

The default qualifier for all commands associated with the given pattern will be the
process performing the ’exec’.

The commands specified by on program are event-triggered commands: they have an
implied safety level (which may be different from the safety level that was set using
set-safety), and may be terminated automatically if they resume execution of the
’exec’ing process. See “Command Streams” on page 3-36.

If you wish to list all on program commands, or see which on program commands
would be executed for a particular program name, you should use the info on
program command.

Example:

(local)on program ren* break main.c:24

After issuing the above command, if we now run a program in dialogue local named
ren_n_stimpy, then we will automatically set a breakpoint in it at line 24 of the file
main.c.

Now suppose we do the following:

(local)on program *stimpy do
> handle 5 noprint nostop
> handle 6 noprint nopass
> end on program

At this point, if we run ren_n_stimpy again, then this newly ’exec’ed program will
handle signals 5 and 6 in the specified manner. Note that even though the name
ren_n_stimpy also matches the pattern ren* that a breakpoint will not automatically
be set at line 24 of main.c in this new invocation of ren_n_stimpy. This is because
on program patterns are matched in reverse-chronological order (most recent first),
and only the first match found is used.

(local) info on program ren_n_stimpy
on program *stimpy do

handle 5 noprint nostop
handle 6 noprint nopass

end on program

If we were to now issue the command:

(local)on program *stimpy

Then this would remove *stimpy (and its associated commands) from the on
program list for dialogue local. Now, if we run ren_n_stimpy a third time, then
this third invocation will automatically have a breakpoint set at line 24 of main.c (just
like the first one did).

(local) info on program ren_n_stimpy
on program ren* do
6-45

NightView LX User’s Guide
break main.c:24
end on program

apply on program 6

Execute on program commands for existing processes.

apply on program

The apply on program command allows on program commands to be executed
for existing processes. (See “on program” on page 6-44). For each process specified by
the qualifier, the on program commands which would match the executable file name
of the process are immediately executed on behalf of the process.

Example:

Suppose I want to set a breakpoint at the subroutine named main in all programs both
new and old that are debugged in dialogue local. Using the on program and apply
on program commands, this could be accomplished as follows:

(local) on program * b main
(local) apply on program

on restart 6

Specify debugger commands to be executed when a program is restarted.

on restart [pattern]

on restart pattern command

on restart pattern do

pattern

A wildcard pattern to match against the executable file names of newly
execed programs. See “Wildcard Patterns” on page 6-18.

command

A debugger command to be executed when a new program whose executable
file name matches pattern is execed.

In the third form of the on restart command, the debugger commands to be executed
must begin on the line following the do keyword. The list of debugger commands to
execute is terminated when a line containing only the words end on restart is
encountered.

The on restart command is primarily intended to be used internally by the debugger
as part of the restart processing. See “Restarting a Program” on page 3-16. You may use
on restart explicitly, if desired, but you should be wary of conflicts with the
debugger's use. The debugger creates on restart commands as a result of a
checkpoint.
6-46

Command-Line Interface
on restart is virtually identical to on program in form and function. See “on
program” on page 6-44 for a description of the parameters and functionality of these
commands. That section also describes the interaction of these two commands.

If you wish to list all on restart commands, or see which on restart commands
would be executed for a particular program name, use the info on restart
command. See “info on restart” on page 6-166.

checkpoint 6

Take a restart checkpoint now.

checkpoint

The checkpoint command saves restart information for the program running in each
process in the qualifier.

In most cases, you do not need to use the checkpoint command, because checkpoints
are taken automatically at certain times. See “Restarting a Program” on page 3-16.
checkpoint gives you a way to explicitly take a checkpoint at a time you choose. Note
that any later checkpoints (either explicit or automatic) will replace the restart
information.

Example:

In this example, you are debugging a complex program. You know some good places to
set breakpoints, and you know that you need some more to find the bug, but are not sure
yet where they should be. You set your known breakpoints, take a checkpoint, and save
the restart information to a file. Then you experiment with some different breakpoints.

(local) # set known good breakpoints
(local) breakpoint fred.c:123
set other known breakpoints ...

(local) checkpoint
(local) info on restart output=restart_info

(local) # now try experimental breakpoints
(local) breakpoint pebbles.c:456
set other experimental breakpoints ...

You decide to start the program again and want only the known breakpoints. You kill
your process, which takes a checkpoint, including the experimental breakpoints. Then
you source the file containing the restart information. The restart information is
replaced with only the known breakpoints. When you restart your program, only the
known breakpoints are restored.

(local) kill
(local) source restart_info
restart program
6-47

NightView LX User’s Guide
family 6

Give a name to a family of one or more processes.

family family-name [[-] qualifier-spec] ...

family-name

The family name to be defined. This must not be the same as the name of any
dialogue you currently have. The family-name must consist only of alphanu-
meric characters and underscores and must begin with an alphabetic character.
The family-name may be of arbitrary length.

qualifier-spec

Identifies one or more processes to be included or excluded in the family
named by family-name. See “Qualifier Specifiers” on page 6-15.

The total set of processes is accumulated by scanning the qualifier-spec arguments left to
right. An argument is added to the set unless it is preceded by a ’-’, in which case it is
subtracted from the set accumulated so far.

If no qualifier-spec is included, then this command removes any previous definition of the
family-name. If your safety level is set to forbid, you are not allowed to remove the
definition of a family-name that is present in the default qualifier. If your safety level is
set to verify, NightView requests verification before removing such a definition. See
“set-safety” on page 6-64.

If one or more qualifier-spec arguments are supplied, they are immediately evaluated (see
“Qualifier Specifiers” on page 6-15) and the family-name is defined as the list of
processes indicated by those arguments. Evaluation of the arguments has the following
implications:

• Any family-name appearing in the argument list must be defined. Subse-
quent changes made to the definition of that family-name will have no
effect on the processes implied by the family-name being defined in the
family command.

• The processes denoted by any dialogue-name appearing in the argument list
are just those that exist at the time the family command is executed.

• The argument all denotes only those processes that exist at the time the
family command is executed.

• The argument auto denotes the process that has been stopped the longest
at the time the family command is executed.

Any qualifier applied to this command has no effect.

Note that you may use a family-name in a qualifier before it is actually defined, but you
must define the family-name before executing any command that needs to know what the
family-name refers to.
6-48

Command-Line Interface
Examples:

(local) family fam1 12 25 18
(local) family fam2 fam1 99
(local) family fam1 fam1 16

The first command gives the name fam1 to the processes identified by PIDs 12, 18, and
25. The second command gives the name fam2 to the three processes in fam1 plus
process 99. The third command extends the definition of fam1 to include process 16; thus
fam1 is a synonym for four processes: 12, 16, 18, and 25. Note that extending fam1 has
no effect on fam2, which still consists of processes 12, 18, 25, and 99.

Using the families defined in the previous examples, the use of a minus sign on
arguments can be illustrated by the following examples:

(local) family fam3 fam1 fam2 -12
(local) family fam3 fam1 -12 fam2

The first command defines fam3 to be the processes 16, 18, 25, and 99. In contrast, the
second command defines fam3 to be the processes 12, 16, 18, 25, and 99. In this case, the
argument -12 removed process 12 from the set accumulated from fam1, but the fam2
argument adds that process back in. In general, it is a good idea to put all the subtracted
arguments at the end of the list.

set-children 6

Control whether children should be debugged.

set-children { all [resume] | exec | none }

all

Debug all children. If the optional keyword resume is specified, then a child
process is resumed automatically after NightView has prepared it for debug-
ging. This is useful if your program creates many child processes that you
want to debug, but all you need to do is inherit the eventpoints and debug set-
tings from the parent process. See “Multiple Processes” on page 3-2.

exec

Debug children only when they have called exec(3) (that is, when they are
running a different program). The program name is checked against the
debug/nodebug list for the controlling dialogue to see if the program should be
debugged. See “debug” on page 6-25. This is the default setting for direct chil-
dren of the dialogue shell and processes debugged with the attach com-
mand. See “attach” on page 6-37.

none

Ignore all children.

Sometimes you are not interested in the child processes of the process you are debugging.
For example, your program may make many calls to system(3) which you are not
interested in debugging. The set-children command gives you a way of controlling
which children will be debugged without having to detach from each one individually.
6-49

NightView LX User’s Guide
See “detach” on page 6-38.

The set-children command applies to future children of the processes specified by
the qualifier. Existing children are not affected.

This mode is inherited by future children.

set-exit 6

Control whether a process stops before exiting.

set-exit [stop | nostop]

stop

The process will stop if the exit system service is called.

nostop

The process will not stop before exiting.

The set-exit command controls whether the processes specified by the qualifier will
stop before exiting. The default state for a process is to stop before exiting. See “Exited
and Terminated Processes” on page 3-19.

If no arguments are specified to the command, the command prints the current state for
each process in the qualifier. If an argument is specified, the command changes the state
of each process in the qualifier accordingly and then prints the new state.

Note that the initial set-exit mode for each process comes from the global set-
resume mode. See “set-resume” on page 6-71. Note also that the mode persists for the
entire life of the process, even across an exec system call, until modified by another
set-exit command. In the case of an exec, an on program or on restart
command might specify a set-exit command that changes the mode. See “on
program” on page 6-44 and “on restart” on page 6-46. See also “Restarting a Program”
on page 3-16.

If you also want a process to automatically resume execution after an exec, use the set-
resume command, or put a resume command in an on program specification.

See “set-resume” on page 6-71, “resume” on page 6-126 and “on program” on page 6-44.

set-shared-lib-update 6

Control whether a process stops before exiting.

set-shared-lib-update [on | off]

The default is off, but if you turn it on, then a hidden breakpoint in the dynamic linker
will have its crossing count checked each time the process stops, and if it changes, it will
do the equivalent of an exec-file command to re-read the object including the new
shared libraries.

If this overhead is worrisome, set it to off and use the Refresh Shared Libs option
6-50

Command-Line Interface
from the Process menu manually when you want NightView to re-load shared library
information.

wait 6

Wait for processes to stop.

wait [{all | any} [new]]

all

Wait for all processes in the qualifier to stop.

any

Wait for any process in the qualifier to stop.

new

Implicitly add any new processes that show up to the qualifier.

The wait command waits for processes in the qualifier to stop. See “Process States” on
page 19. That is, no more commands are read from this command stream until the
specified processes stop. See “Command Streams” on page 36. See “Interrupting the
Debugger” on page 36.

If no arguments are specified, the default behavior is wait any new.

mreserve 6

Reserve a region of memory in a process.

mreserve start=address {length=bytes | end=address}

start=address

Specify the start address of the region.

length=bytes

Specify the length of the region in bytes.

end=address

Specify the end address of the region.

The start=address parameter is required. You must specify either a length or an end
address.

The mreserve command reserves a region of memory for each process specified by the
qualifier. This means that NightView will not allocate space for patch areas in that
region. See Appendix E [Implementation Overview] on page E-1.

This command does not directly affect the process. It is only an indication to NightView
to avoid placing patch areas in the specified region, presumably because your program
6-51

NightView LX User’s Guide
will be using that region later in its execution.

mreserve only affects future allocations. You should reserve memory before using any
commands that allocate space in the process, including eventpoint commands, the load
command, or any command with an expression that involves a function call. See
“Eventpoints” on page 3-9. See “load” on page 6-97. See “Expression Evaluation” on
page 3-21.

You should exercise some caution with this command. It is possible to reserve memory in
such a way that NightView cannot function.

For convenience, you are allowed to specify reservations that overlap or contain existing
regions in your process.

Memory reservations are printed as part of the info memory command. See “info
memory” on page 6-161.

Memory reservations are remembered as part of the restart information. See “Restart
Information” on page 3-18. During restart, memory reservations are applied before any
commands that would allocate space in the process.

You cannot reserve a region of CUDA memory. This is a technical limitation of the
CUDA driver. All addresses are treated as host memory addresses by the mreserve
command.
6-52

Command-Line Interface
Heap Debugging 6

heapdebug 6

Specify parameters for heap debugging.

heapdebug [check_free_fill={0|1}]
[common_errors={block_overrun |

dangling_pointer |
uninitialized_field}]

[do_free_fill={0|1}]
[do_malloc_fill={0|1}]
[error-name [{noprint | nostop | print | stop} ...]]
[free_fill_byte={n | trash}]
[frequency=n[{k|m}]]
[heap_size={n[{k|m}] | unlimited}]
[internal_checks={0|1}]
[level={0|1|2|3}]
[malloc_fill_byte={n | trash}]
[off]
[on]
[post_fence_size=n]
[post_fill_byte={n | trash}]
[pre_fence_size=n]
[pre_fill_byte={n | trash}]
[protected={0|1}]
[retain_free_blocks={n[{k|m}] | unlimited}]
[slop=n]
[walkback=n]

Abbreviation: hd

check_free_fill={0|1}

During heap checks, check that the free fill has not been disturbed in retained
free blocks. Setting this to 0 (turning it off) improves performance, but does
not detect as many errors. The default value is 1 (check free fill).

common_errors={block_overrun | dangling_pointer |
 uninitialized_field}

This is a convenient way to set parameters to detect common program errors.

block_overrun

detect program writing past the end of a block

dangling_pointer

detect program referencing a freed block

uninitialized_field

detect program failing to initialize fields in a block
6-53

NightView LX User’s Guide
do_free_fill={0|1}

When a block is freed, fill it with the free_fill_byte. Free fill applies to
free blocks that are retained and also to free blocks that are immediately avail-
able for reuse. Setting this to 0 (turning it off) will disable free filling. The
default value is 1 (fill free blocks).

do_malloc_fill={0|1}

When a block is allocated, fill it with malloc_fill_byte. Setting this to 0
(turning it off) disables malloc filling. The default value is 1 (fill allocated
blocks).

error-name [{noprint | nostop | print | stop} ...]

Specify how the debugger responds when an error condition is detected.

stop

stop the process when the error occurs; implies print

nostop

let the process continue when the error occurs

print

print a message when the error occurs

noprint

do not print a message when the error occurs; implies nostop

error-name can be any of the following:

free_fill_modified
free_not_at_beginning
free_unallocated
internal_error
malloc_zero
memalign_not_power_2
out_of_memory
post_fence_modified
pre_fence_modified
realloc_not_at_beginning
realloc_unallocated

The default for all the errors is stop print, except for malloc_zero,
memalign_not_power_2, and out_of_memory, which are not normally
considered to be heap errors; the defaults for those errors is nostop
noprint.

Blocks are checked for errors during a heap check (see “Heap Check” on page
3-33) and when they are freed or realloc'ed. Other errors are detected dur-
ing heap operations.
6-54

Command-Line Interface
free_fill_modified

The free fill pattern in a retained free block has been modified.

post_fence_modified

The post-fence fill pattern in a block has been modified.

pre_fence_modified

The pre-fence fill pattern in a block has been modified.

free_not_at_beginning

free was called with an address that is within an allocated block, not at
the beginning of a block.

free_unallocated

free was called with an address that does not correspond to any cur-
rently allocated block.

internal_error

An inconsistency was found in the internal data structures. There is a
bug in the heap debugger, or the process has modified the heap debug-
ger's internal data structures.

malloc_zero

The program asked for a block of size 0 bytes. This is not normally con-
sidered to be an error. The default disposition for malloc_zero is
nostop, noprint.

memalign_not_power_2

The program called memalign with an alignment that is not a power of
2. This is not normally considered to be an error. The default disposition
for memalign_not_power_2 is nostop, noprint.

out_of_memory

The process ran out of memory, either because the system could not sat-
isfy the request or because of the setting of the heapsize parameter. This
is not normally considered to be an error. The default disposition for
out_of_memory is nostop, noprint.

realloc_not_at_beginning

realloc was called with an address that is within an allocated block,
not at the beginning of a block.

realloc_unallocated

realloc was called with an address that does not correspond to any
currently allocated block.
6-55

NightView LX User’s Guide
free_fill_byte={n | trash}

The value to put in each byte of each block when i t i s f reed i f
do_free_fill is 1. The default is trash, which, for free_fill_byte,
is 0xc3.

frequency=n[{k|m}]

The heap is checked every n heap operations (mallocs, frees, etc.). You
may append k to multiply n by 1024 or m to multiply by 1048576. If n is zero,
the heap is checked only by a heappoint (see “heappoint” on page 6-110)
or a heapcheck command (see “heapcheck” on page 6-168). The default
value is 10000.

heap_size={n[{k|m}] | unlimited}

The program is not allowed to allocate more than n total bytes. The default
value is unlimited. You may append k to multiply n by 1024 or m to multi-
ply by 1048576.

internal_checks={0|1}

If set to 1 (turned on), then during a heap check, check internal data structures
for integrity. This adds a large overhead to each heap check. The default value
is 0 (do not check internal data structures).

level={0|1|2|3}

This is a convenient way to set many of the other parameters.

0

disable checking

1

minimal checking

2

a medium level of checking

3

extreme checking

See “Levels and Common Errors” on page 3-30 for a discussion of heap
debugging levels.

malloc_fill_byte={n | trash}

The value to put in each byte of a block when i t is a llocated, i f
do_malloc_fill i s 1 . T h e d e f a u l t i s trash , w h i c h , f o r
malloc_fill_byte, is 0xc5.
6-56

Command-Line Interface
off

Turn heap debugging off.

If heap debugging is off when the process makes its first allocation, the heap
debugger adds little or no overhead. If heap debugging is turned off after the
first allocation, the heap debugger still adds overhead, but it no longer checks
for errors.

on

Turn heap debugging on.

Heap debugging may be turned on before the program makes its first alloca-
tion. After the program makes its first allocation, heap debugging may be
turned on only if it was on when the program made its first allocation.

post_fence_size=n

Add n bytes after the end of a block when it is allocated, fill them with
post_fill_byte, and check them during a heap check. The default is zero
(no fence).

In hardware overrun protection mode, there may be a gap between the end of
the block and the protected page, due to alignment requirements and the size
of the block. At most n bytes of the gap are filled and checked. See “Hardware
Overrun Protection” on page 3-32.

post_fill_byte={n | trash}

The value to put in each post-fence byte of a block when it is allocated. The
default is trash, which, for post_fill_byte, is 0xaf.

pre_fence_size=n

Add n bytes before the beginning of a block when it is allocated, fill them with
pre_fill_byte, and check them during a heap check. The default is zero
(no fence).

pre_fill_byte={n | trash}

The value to put in each pre-fence byte of a block when it is allocated. The
default is trash, which, for pre_fill_byte, is 0xbf.

protected={0|1}

If set to 1, turn on hardware overrun protection. Each block is allocated such
that the end of the block is as near as possible to the end of a page. The follow-
ing page is protected from reads and writes. See “Hardware Overrun Protec-
tion” on page 3-32.

The default value is 0 (no hardware overrun protection).
6-57

NightView LX User’s Guide
retain_free_blocks={n[{k|m}] | unlimited}

The number of recently-freed blocks to retain. You may append k to multiply
n by 1024 or m to multiply by 1048576. Retained free blocks are not immedi-
ately available for reuse. See “Retained Free Blocks” on page 3-33.

The default value is 0 (no retained blocks).

slop=n

Add n bytes to the size of each allocation. For example, if n is 4 and the pro-
gram calls malloc(8), the allocation proceeds as though the program had
called malloc(12). The default value is 0 (no slop).

walkback=n

The maximum number of walkback entries to keep for each heap operation
(malloc, free, etc.). More walkback entries may help you identify which
routines are causing heap problems. The default value is 8 entries. This count
refers to physical walkback entries. The number of walkback frames may dif-
fer from this number when displayed in NightView. The number of frames
displayed may include extra inline frames, as they are not physical frames.
The number of frames displayed may be fewer if certain frames are deemed
uninteresting (see “interest” on page 6-66). See “Debugging the Heap” on
page 3-29.

The heapdebug command configures the heap debugger in each of the processes in the
qualifier. See “Debugging the Heap” on page 3-29. Another way to configure the heap in
the graphical user interface is with the Debug Heap... item in the Process menu (see
“Process Menu” on page 8-9).

All arguments may be abbreviated to the shortest unambiguous prefix.

The heap debugger remembers its settings when turned off. This way, it can be turned
back on at a later time and will retain all of its former settings.

NOTE

Heap debugging is not supported on the CUDA architecture.
6-58

Command-Line Interface
Setting Modes 6

set-log 6

Log session to file.

set-log keyword filename

keyword

The keyword parameter must be one of the following:

 all

Log entire session (commands as well as the output generated by com-
mands).

commands

Log just commands typed.

close

Close a log file.

filename

Name of the log file.

This command starts logging the debugger session to a file. If the file already exists, the
log information is appended to it. You may log just the commands (by using the
commands keyword) or the entire session (all keyword) to a file (if the named file is
already an open log file, specifying a different keyword simply changes the mode of the
log). You may open multiple log files (although more than one of each type of log would
be rather redundant).

The close keyword is used to close the log associated with the file. (See “info log” on
page 6-149).

The qualifier does not have any effect on this command. Any logs are global to the debug
session.

Note that this command logs everything that happens during the debug session
(essentially, everything you see on your terminal). The set-show command may be
used to log output from a single dialogue (see “set-show” on page 6-33).

set-language 6

Establish a default language context for variables and expressions.

set-language {auto | c | c++ | fortran}
6-59

NightView LX User’s Guide
auto

Indicates that the default language should be determined automatically.

c

Indicates that the default language should be C.

c++

Indicates that the default language should be C++.

fortran

Indicates that the default language should be Fortran.

The arguments to this command can be in any mixture of upper and lower case.

For each process specified by the qualifier, set-language sets the default language
used to interpret expressions and variables in commands. If a default language has not
been established, or if the default has been set to auto, NightView decides the language
in one of two ways. If the object file contains DWARF, then it contains the language
information. Otherwise, NightView infers the language from the extension (the last few
characters) of the source file name associated with the frame selected when the
expression or variable is mentioned. The following extensions are recognized:

.c

The language is assumed to be C.

.C

The language is assumed to be C++.

.f

The language is assumed to be Fortran.

.s

Although this indicates an assembler source file, NightView uses the C lan-
guage for such files. C expressions include nearly all the operators allowed by
the assembler, plus much more.

The language determines the meaning of operators and constants in expressions;
determines the syntax of some kinds of expressions (e.g., C type casts); controls the
visibility of variable names; and controls the significance of case (upper versus lower) in
variable names. The language also controls the formatting of output from the print
command (see “print” on page 6-86), especially the way the type of an expression is
indicated.

set-qualifier 6

Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept qualifiers.
6-60

Command-Line Interface
set-qualifier [qualifier-spec ...]

qualifier-spec

Specifies a process or dialogue to be included in the default qualifier list (see
“Qualifier Specifiers” on page 6-15). Any family names in the qualifier-spec
are evaluated at the time of each command, not at the time of set-quali-
fier.

If no argument is specified, the default qualifier is set to null, meaning that a qualifier
must be supplied to subsequent commands that require qualification.

set-history 6

Specify the number of items to be kept in the value history list.

set-history count

count

The number of items to be kept in the value history.

The qualifier is ignored on this command. The default history list size is 1000. If more
history items than that are created, the oldest ones are discarded. No matter how many
items are in the list, each new history item gets the next highest number.

set-limits 6

Specify limits on the number of array elements, string characters, or program addresses
printed when examining program data.

set-limits {array=number | string=number | addresses=number |
source=number} ...

array=number

The array keyword parameter specifies the maximum number of array ele-
ments to be printed. If you want unlimited output, specify zero as the limit.

string=number

The string keyword parameter specifies the maximum number of charac-
ters of a string to be printed. If you want unlimited output, specify zero as the
limit.

addresses=number

The addresses keyword parameter specifies the maximum number of
addresses to be printed for a particular location (See “Location Specifiers” on
page 6-13). If you want unlimited output, specify zero as the limit.
6-61

NightView LX User’s Guide
source=number

The source keyword parameter specifies the maximum number of bytes a
source file can have to be displayed in a source panel. This is useful for
extremely large source files which overwhelm NightView due to the overhead
involved in building individual widgets associated with each line. The num-
ber is in units of 1000 bytes. The default value is 4000, which indicates
~4MB. The source for files that exceed the limit are not displayed, but the
assembly associated with the function associated with the current stack frame
within the file is displayed.

The array, string, addresses, and source keywords may be specified in any
order.

The qualifier is ignored on this command. The limits set by set-limits apply to all
output of variables or expressions or program locations. If a printed value is truncated
because of these limits, the value will be followed by ellipses.

Note that the limitation on array elements applies to each dimension of a multi-
dimensional array. If you print a 50 x 20 two-dimensional array, and you have the
array limit set to 5, then you will see the first 5 elements of the each of the first 5 rows
(or columns, for Fortran).

The default limits are 100 array elements, 100 characters, and 10 addresses. To find out
what the current limits are, use the info limits command (See “info limits” on page
6-159).

set-prompt 6

Set the string used to prompt for command input.

set-prompt string

string

Specify the string the debugger uses to prompt for command input. The string
must be enclosed in double quotes. If you include any of the following sub-
strings in the prompt, they will be expanded by the debugger immediately
prior to printing the prompt.

%q

Expands to the current default qualifier. This prints out the same way
the qualifier was defined. If you used a family name, it shows the family
name (not the individual PIDs), etc. If the default qualifier is auto, it
prints the current automatically selected PID.

%p

Expands to the complete list of PIDs implied by the current default qual-
ifier.
6-62

Command-Line Interface
%d

Expands to the complete list of dialogues implied by the current default
qualifier.

%a

Expands to the complete list of dialogues, if the current default qualifier
is all. Otherwise, this expands to the current default qualifier.

%%

Expands to the single character %.

The string argument may also include the escape sequences recognized in C language
strings, such as ’\n’ to indicate a newline.

The string ``(%a)'' is the default prompt.

The qualifier on the set-prompt command is ignored.

Examples:

(afamily) set-prompt "%p> "
local:2047,2048>

The above example shows what happens when the default qualifier is a process family
named afamily assumed to contain two PIDs (2047 and 2048), both in dialogue local.
The initial prompt is "(%q)" and the set-prompt command changes it to expand to a
list of PIDs.

(afamily) set-prompt "Dialogues: %d\nProcesses: %p>"
Dialogues: mach1,mach2
Processes: mach1:15 mach2:15,549,2047,2048>

The above example prints two lines as a prompt, the first containing a list of dialogues
and the second containing a list of processes.

set-terminator 6

Set the string used to recognize end of dialogue input mode.

set-terminator string

string

Define the string used to terminate dialogue input mode (see “!” on page
6-32).

When the ! command is used to switch all input to a dialogue, the terminator string is
recognized to switch input back to the debugger. The terminator string must appear on a
line by itself to be recognized. The default string is "-." (different from rlogin and
cu).

Unlike normal debugger commands, this string must be typed exactly as specified in the
set-terminator command. The case of the letters must match, and the full string
6-63

NightView LX User’s Guide
must be typed.

Only one terminator string is defined. The qualifier on this command is ignored.

Leading and trailing whitespace in the specified terminator string is ignored. Macros are
not expanded when reading the new terminator string.

If no terminator string is given, then the current terminator string is printed, otherwise the
new terminator string is printed.

set-safety 6

Control debugger response to dangerous commands.

set-safety [forbid | verify | unsafe]

forbid

In forbid mode, the debugger simply refuses to execute a dangerous com-
mand and explains why it will not execute. (You may have tried to quit
while processes were still running, etc.).

verify

In verify mode, the debugger tells you what dangerous thing you are about
to do and asks if you really meant that (see “Replying to Debugger Questions”
on page 6-20). If you answer yes, it goes ahead and does it. This is the default
safety level of the debugger.

unsafe

In unsafe mode, the debugger simply tells you what it did. It assumes you
meant what you said and does not try to stop you.

If no mode is specified then the set-safety command prints the current safety level.

The qualifier on the set-safety command is ignored.

set-restart 6

Control whether restart information is applied.

set-restart [always | never | verify]

always

Restart information is unconditionally applied when a program starts. This is
the default mode.

never

Restart information is never applied when a program starts.
6-64

Command-Line Interface
verify

When a program starts, you are asked whether to apply restart information to
it.

If no keyword is specified then the set-restart command prints the current restart
mode.

The restart mode is a global mode, not a per-process or per-dialogue mode. The qualifier
on the set-restart command is ignored.

See “Restarting a Program” on page 3-16.

set-local 6

Define process local convenience variables.

set-local identifier ...

identifier

The name of a convenience variable (the leading ’$’ on each identifier, nor-
mally used to reference convenience variables, is optional).

Each named identifier is defined to be a process local convenience variable.

A process local variable always has a unique value in each process. If the variable was
already defined as a global at the time it appears in a set-local command, then each
process gets a separate copy of the current global value, but future changes will be unique
for each process.

The command qualifier does not have any effect on this command. It is not possible to
define a variable to be local for only one process, but globally shared among other
processes.

set-patch-area-size 6

Control the size of patch areas created in your process.

set-patch-area-size {data=data-size | eventpoint=eventpoint-size |
monitor=monitor-size | text=text-size} ...

data=data-size

The data keyword parameter specifies the size of the data area in kilobytes.

monitor=monitor-size

The monitor keyword parameter specifies the size of the shared memory
region used by all monitorpoints in this dialogue, in kilobytes.

text=text-size

The text keyword parameter specifies the size of the text area in kilobytes.
6-65

NightView LX User’s Guide
eventpoint=eventpoint-size

The eventpoint keyword parameter specifies the size of the eventpoint
areas in kilobytes.

The data, monitor, text, and eventpoint keywords may be abbreviated and may
be specified in any order.

NightView creates some regions in your process, and uses these regions to store text and
data. There is usually one data region, one text region, one or more eventpoint regions,
and, if there are any monitorpoints in the process, one shared memory region for the
monitorpoints. These regions are called patch areas. See Appendix E [Implementation
Overview] on page E-1.

You can adjust the sizes of the patch areas with this command. For example, if you have
a lot of conditional eventpoints, then you may need to make the size of the eventpoint and
text regions larger so that NightView has room to allocate all the code necessary for those
eventpoints. Similarly, if you have a lot of monitorpoints, then you may need to make the
size of the monitorpoint shared memory region larger. On the other hand, if system
memory resources are scarce, then you may need to make some of these regions smaller.

The patch area size values are associated with each dialogue and apply to all processes
within the dialogue. This command sets the values for each dialogue specified in the
qualifier.

Note that these values only apply to patch areas created in the future. Existing regions are
not changed. Therefore, if you want to debug a program and use a large text or data area,
you need to specify that before you run your program (i.e., before the process calls
exec). (For fork, the child process inherits its regions from the parent, so the regions
are the same size in the child and the parent.)

Each process has its own data, eventpoint and text areas, but the monitorpoint shared
memory region is shared by all the processes that have monitorpoints in the dialogue, and
by the dialogue itself. Therefore, if you want to change the size of the monitorpoint
shared memory region, you need to do so before creating any monitorpoints in the
dialogue. See “Monitorpoints” on page 3-12.

The initial values of the patch area sizes are 512 kilobytes each for the data and text patch
areas, 256 kilobytes for the eventpoint areas, and 32 kilobytes for the monitorpoint shared
memory region. This is adequate for most applications.

Use info dialogue to see the current patch area size values. (see “info dialogue” on
page 6-164).

You can see information about the patch areas in an existing process with the info
memory command (see “info memory” on page 6-161).

interest 6

Control which subprograms are interesting.

interest [level] [[at] [location-spec]]

Set or query the interest level for a subprogram.
6-66

Command-Line Interface
interest inline[=level]

interest justlines[=level]

interest nodebug[=level]

interest cuda_syscall[=level]

interest threshold[=level]

Set or query the interest keyword values.

level

Specify a level for the subprogram defined by location-spec, or a value for the
specified keyword. level is a signed integer or the keywords minimum or
maximum. If this argument is not present, then this command queries the level
of the subprogram or the specified keyword.

[at] location-spec

Set or query the interest level for the subprogram specified by location-spec.
See “Location Specifiers” on page 6-13. If no location-spec is present, it
defaults to *$cpc. If the at keyword is present, it must be followed by a
location-spec. If no level is specified, then the at keyword is required to dis-
tinguish some forms of location specifiers from a level.

inline

Set or query the inline interest level. If this level is less than the interest level
threshold, then all inline subprograms have the minimum interest level unless
their interest level has been explicitly set with interest level location-spec.
The initial value of this level is 0.

justlines

Set or query the interest level for subprograms with line number information
but no other debug information. The initial value is -2.

nodebug

Set or query the interest level for subprograms with no debug information
(e.g., system library routines). Without debug information, the interest level
cannot be specified for individual subprograms, so NightView uses the value
specified by this form. The initial value is -4.

cuda_syscall

Set or query the interest level for artificial subprograms defined by the CUDA
runtime for execution of its internal syscalls. The initial value is -4.

threshold

Set or query the interest level threshold NightView uses to decide whether a
subprogram is interesting. The initial value is 0.
6-67

NightView LX User’s Guide
The interest command sets or queries the information NightView uses to decide
which subprograms are interesting for each process in the qualifier. See “Interesting Sub-
programs” on page 3-27.

The minimum keyword specifies the lowest possible interest level. The maximum key-
word specifies the highest possible interest level.

A query prints the interest information requested. If an interest level is being set, the com-
mand prints the new interest level.

Some compilers provide a means to specify the interest level of a subprogram through the
debug information. If the subprogram has debug information, but it does not specify an
interest level, the default level is 0. The interest command overrides an interest level
set at compile time.

The interest levels and the interest level threshold are remembered as part of the restart
information. See “Restart Information” on page 3-18. For a way to see all the interest lev-
els that have been explicitly set, see “info on restart” on page 6-166.

If an interest level or the interest level threshold is changed, then NightView checks the
current frame to see if it has become uninteresting. See “Current Frame” on page 3-25. If
it has, then the current frame is reset to frame 0 of the current context and frame informa-
tion is printed. See “select-context” on page 6-141. Even if the current frame does not
have to be reset, it gets a different frame number if frames below it have become hidden or
unhidden.

Examples:

(local) run fact 7
...process startup information...
(local) interest
local:6729: Interest level is -4 (uninteresting) for 0x100024d0
(nodebug)

You query the interest level, using the default location specifier of *$cpc. The program
begins in the C runtime startup routine, which has no debug information, so it is uninter-
esting.

(local) breakpoint 26
local:6729 Breakpoint 1 set at fact.c:26
(local) continue
local:6729: at Breakpoint 1, 0x10002780 in main(int argc = 2,
unsigned char ** argv = 0x2ff7eae4) at fact.c line 26
26 B=| answer = factorial(x);
(local) step
#0 0x100026f4 in factorial(int x = 7) at fact.c line 6
6 = | if (x <= 1) {
(local) interest -1
local:6729: Interest level set to -1 (uninteresting) for
factorial
#0 0x10002780 in main(int argc = 2, unsigned char ** argv =
0x2ff7eae4 at fact.c line 26S
26 B<>| answer = factorial(x);

You step into the factorial function, then decide that it is not interesting. You mark
factorial uninteresting, using the default location specifier. Your current frame
becomes uninteresting, so it is reset to frame 0. Frame 0 is now the frame for main,
6-68

Command-Line Interface
because factorial is not interesting. The source decorations for line 26 show that $pc
and $cpc are within that line. See “Source Line Decorations” on page 6-83.

(local) interest threshold=-1
local:6729: threshold interest level set to -1
(local) frame
Output for process local:6729
#1 0x10002780 in main(int argc = 2, unsigned char ** argv =
0x2ff7eae4) at fact.c line 26
26 B<>| answer = factorial(x);

You change the interest level threshold, which makes factorial interesting again.
Your current frame is still interesting, so it is not reset to frame 0. The frame command
shows that your current frame is still the frame for main, but now that frame is frame
number 1.

set-auto-frame 6

Control the positioning of the stack when a process stops.

set-auto-frame args ...

The functionality of this command has been subsumed by the interest command. See
“interest” on page 6-66. This command has been retained for compatibility, but it might be
removed in some future release.

set-overload 6

Control how NightView treats overloaded operators and routines in expressions.

set-overload [operator={on | off}] [routine={on | off}]

operator={on | off}

Turn operator overloading on or off.

routine={on | off}

Turn routine overloading on or off.

The set-overload command determines how NightView treats overloaded operators,
functions, and procedures in expressions. See “Expression Evaluation” on page 3-21. This
behavior can be controlled for operators separately from functions and procedures using
the keywords on the command. The specified settings apply to all expressions evaluated
by NightView. The qualifier is ignored by the set-overload command. The routine
mode also controls overloading of function names which appear in location specifiers.

After setting the specified overloading modes, the set-overload command prints the
new settings. If no arguments are specified, the command simply prints the existing
overloading modes.

For a discussion of how overloading works in NightView see “Overloading” on page
3-23. For the details of the syntax used to specify overloading in expressions and location
specifiers see “Selecting Overloaded Entities” on page 6-2.
6-69

NightView LX User’s Guide
When NightView starts, the overloading modes are initially:

set-overload operator=off routine=on

set-search 6

Control case sensitivity of regular expressions in NightView.

set-search [sensitive | insensitive]

sensitive

Make regular expressions case sensitive (this is the default setting).

insensitive

Make regular expressions case insensitive.

The set-search command controls case sensitivity for the regular expressions (see
“Regular Expressions” on page 6-16) used by several commands as well as some dialog
boxes in the graphical interface.

When the set-search command is run with no argument, it reports (but does not
change) the current mode setting.

When the sensitive argument is specified, regular expressions become case sensitive.
The case of alphabetic characters must match exactly as written in the regular expression.
This is the default set-search mode.

When the insensitive argument is specified, regular expressions become case insen-
sitive. Either the upper case or the lower case form of an alphabetic character will match
both the upper and lower case form of that same character.

set-editor 6

Set the mode for editing commands in the simple full-screen interface.

set-editor mode

mode

One of emacs, gmacs or vi.

Determine which kind of keystroke commands are available to edit commands in the sim-
ple full-screen interface.

See “Editing Commands in the Simple Full-Screen Interface” on page 7-2.

set-preallocate 6

Control how NightView preallocates memory for eventpoints and monitorpoint buffers.

set-preallocate [/eventpoint] [/monitorpoint] [{off | on}]
6-70

Command-Line Interface
/eventpoint

Indicates the eventpoint mode should be set or queried.

/monitorpoint

Indicates the monitorpoint buffer mode should be set or queried.

{off | on}

Turn preallocation off or on for eventpoints or monitorpoint buffers as speci-
fied.

The default is for NightView to preallocate space in the user process for eventpoints and
monitorpoint buffers. If these modes are off, then NightView allocates space only when
needed. However, space can be allocated only when the process is stopped. With preallo-
cation, you do not need to worry about whether the process is stopped when you set an
eventpoint. See “Process States” on page 3-19. See “Operations While the Process Is Exe-
cuting” on page 3-20.

Monitorpoints cannot be used in the command-line interface, so in that interface monitor-
point buffers are never preallocated.

If NightView is prevented from preallocating space for eventpoints, then support for
CUDA will be disabled. This is because a hidden patch must be installed at program start
time to detect the presence of CUDA code later in the application execution.

This is a global mode. The qualifier is ignored.

With no arguments, set-preallocate prints the current settings.

set-resume 6

Control NightView’s behavior on events that normally stop a process.

set-resume [/attach] [/exec] [/exit] [/fork] [{off | on}]

/attach

Indicates the attach mode should be set or queried.

/exec

Indicates the exec mode should be set or queried.

/exit

Indicates the exit mode should be set or queried.

/fork

Indicates the fork mode should be set or queried. NightView pays attention to
this for a child only if the parent process has set-children all. See “set-
children” on page 6-49.

{off | on}
6-71

NightView LX User’s Guide
Turn automatic resume off or on for the modes specified.

A process is normally stopped when NightView attaches to it, when it execs, when it is
about to exit, and when it is created (i.e., its parent forks). This command allows you to
control that for each case.

This is a global mode. The qualifier is ignored.

If off or on is not specified, set-resume prints the current settings.

set-download 6

Control how NightView downloads files from remote targets.

set-download [{off | permanent | temporary}]
[directory=path-to-cache]

off

This disables the download feature.

permanent

This enables downloading files to the cache. The files are left in the cache for
future use.

temporary

This enables downloading files to the cache. When NightView exits, it
removes all the files in the cache that were downloaded under temporary
mode. This is the default setting.

directory=path-to-cache

This specifies the directory to use to build the cache. The default directory
name is ~/.NightViewCache. The downloads will be faster if this direc-
tory is local to the system where you are running NightView.

If NightView cannot find an object file on the local system, and this process is in a remote
dialogue, then NightView searches on the target system for the file and copies it to the
cache directory. See “Remote File Access” on page 3-7.

This is a global mode. Any qualifier is ignored.

To manipulate this mode in the graphical user interface, see “Preferences Advanced Page”
on page 8-49.

With no arguments, set-download prints the current download information.

set-disassembly 6

Control how NightView displays disassembled instructions.
6-72

Command-Line Interface
set-disassembly [flavor={att | intel}] [symbols={off | on}]
[comment_level=number]

flavor={att | intel}

Set the flavor of disassembly to the att style or the intel style.

The default flavor is att. The att flavor is the one used by the standard
GNU compilation tools. The intel flavor is the one described in the IA-32
Intel Architecture Software Developer's Manual or the AMD64 Architecture
Programmer's Manual. For a discussion of the differences in the two flavors,
enter this command in a shell outside of NightView:

 info 'gas' 'Machine Dependencies' i386-Dependent

symbols={off | on}

Indicate whether each line of the disassembly should include the name of the
routine being disassembled. If this is set to on, <routine+offset> is appended
to each address, where routine is the name of the routine being disassembled
and offset is the offset (in bytes) from the beginning of routine. If this is set to
off, then the routine name appears once at the beginning of the disassembly,
and <+offset> is appended to each address. References to addresses outside
the routine being disassembled include the name in either mode. The default is
off, which makes the disassembly listing more compact.

comment_level=number

Indicate the kind of comments the disassembler should provide. Comments
provide more information about the instructions.

number is one of:

0

never print comments

1

print operation information for certain instructions

2

print "aka" ("also known as") opcode aliases in addition to the level 1
comments

This command sets the disassembly modes for the debug session. Any qualifier is ignored.
See “x” on page 6-89. See “Source Menu” on page 8-10.

If no arguments are specified, set-disassembly prints the current disassembly infor-
mation.
6-73

NightView LX User’s Guide
set-branch-tracking 6

Control whether or not NightView and the RedHawk kernel are tracking branch instruc-
tions. See “Branch Tracking” on page 3-34.

set-branch-tracking [{on | off}]

on

Enable branch tracking.

off

Disable branch tracking.

There is considerable time overhead while tracking branches, so this mode should not be
enabled without consideration. But it is very useful when attempting to understand bugs
where control of the program has been transferred to totally unexpected places, as might
happen when calling a function pointer whose value has been overwritten with garbage, or
when returning from a function when then return address on the stack has been overwrit-
ten with garbage.

set-futurepoints 6

Control whether or not NightView accepts location specifiers for locations which do not
exist yet.

set-futurepoints [{create | ask | error}]

create

Always will accept location specifiers for locations which do not exist yet.

ask

Ask before accepting location specifiers for locations which do not exist yet.

error

Never accept location specifiers for locations which do not exist yet.

To support setting eventpoints in shared libraries or CUDA object which are not loaded at
program start time and may not be loaded for some time thereafter, NightView can accept
inserted eventpoints at locations which do not exist yet. When a shared library or CUDA
kernel later is loaded, if the eventpoint location is meaningful within the context of that
new code, it will be inserted there.

But the acceptance of locations which do not exist yet can be confusing if a location was
simply mis-specified as a typo. So NightView provides the above three behaviors as
options to the user.

set-cuda-memcheck 6

Enable or disable CUDA memcheck support for more precise memory exceptions.
6-74

Command-Line Interface
set-cuda-memcheck [{off | on}]

{off | on}

Turn CUDA memcheck support off or on as specified.

By default, CUDA memory exceptions are imprecise. If one is detected, the device may
stop at a pc which is a bit removed from the place that performed the incorrect memory
load or store, possibly even in a different thread, and the description of the exception will
be imprecise.

CUDA memcheck support changes memory faults into a more precise form of exception.
They will be reported at the place which caused the exception, and they will contain the
exact address that caused the exception.

The use of CUDA memcheck substantially increases the overhead of the CUDA code,
possibly even to the point of changing the behavior of the CUDA code. It should be used
with caution. But it can be useful in determining the exact thread and pc where a memory
exception occurred.

CUDA memcheck can only be enabled before any CUDA code has executed in the pro-
cess. Usually, this means it must be set as soon as the program starts. Any attempt to turn
CUDA memcheck on after CUDA code has executed will be rejected.
6-75

NightView LX User’s Guide
Debugger Environment Control 6

cd 6

Set the debugger's default working directory.

cd dirname

dirname

The name of the directory.

The cd command changes the working directory of NightView to the specified directory.
You usually use this command to control the search for source files, core files, and
program files. It affects the behavior of the following commands:

• shell (see “shell” on page 6-144)

• list (see “list” on page 6-77)

• directory (see “directory” on page 6-79)

• symbol-file (see “symbol-file” on page 6-39)

• core-file (see “core-file” on page 6-39)

• exec-file (see “exec-file” on page 6-42)

The cd command does not affect commands executed in dialogue shells (see “login” on
page 6-23). Also, the qualifier does not have any effect on this command.

You can use the pwd command to find out what NightView's current working directory
is. See “pwd” on page 6-76.

pwd 6

Print NightView's current working directory.

pwd

This command prints the current working directory of the debugger. Note that this
directory may not be the same as the current working directory of your dialogue shells,
nor need it be the same as the current working directory of any program you are
debugging.

You can use the cd command to set the current working directory. (see “cd” on page
6-76).

The qualifier does not have any effect on this command.
6-76

Command-Line Interface
Source Files 6

This section describes commands to view and edit source files and to search for text in
source files.

Viewing and Editing Source Files 6

list 6

List a source file. This command has many forms, which are summarized below.

list where-spec

List ten lines centered on the line specified by where-spec.

list where-spec1, where-spec2

List the lines beginning with where-spec1 up to and including the where-spec2 line.

list ,where-spec

List ten lines ending at the line specified by where-spec.

list where-spec,

List the ten lines starting at where-spec. Note the comma.

list +

List the ten lines just after the lines last listed.

list -

List the ten lines immediately preceding the lines last listed.

list =

List the last set of lines listed. If the previous command was a search command, list
the ten lines around the line found by the search.

list

If a list command has not been given since the current source file was last estab-
lished (see below), this form lists the ten lines centered around the line where execu-
tion is stopped in the current source file. Otherwise, this form lists the ten lines just
after the last lines listed.

Abbreviation: l

Each where-spec argument can be any one of the following forms.
6-77

NightView LX User’s Guide
[at] location-spec

Specifies a location in the program or a source file (See “Location Specifiers”
on page 6-13). No matter which form of location-spec you use, it is always
translated into a source line specification for this command. If you give two
arguments on the list command, they cannot specify different source files.

[at] file_name

Specifies the first line of the file. The file_name may be a quoted or unquoted
string, but be aware that an unquoted string may be ambiguous. A string with-
out quotes will be interpreted first as a function name; if no such function unit
exists, the string will then be interpreted as a file name.

A fi le name on a remote system can be specified using the form
user@host:/path. See “Remote File Access” on page 3-7.

+n

Specifies the line that is n lines after the last line in the last group listed (see
below). If this is the second where-spec, it specifies the line n lines after the
first argument.

-n

Like +n, except it specifies the line n lines before the last line in the last group
listed (see below). If this is the second where-spec, it specifies the line n lines
before the first argument.

The list command is applied to each process in the qualifier. If the qualifier specifies
more than one process, you get one listing for each process; each listing is preceded by a
notation indicating which process the listing is for. The specified source file is found
using the directory search path you established using the directory command (see
“directory” on page 6-79). Note that each program has its own directory search path.

NightView maintains, for each process, a current source file. The current source file is
usually the most recent file listed or searched. However, when the process stops
execution, the current source file is automatically set to the file where execution stopped.
The context selection commands (see “Selecting Context” on page 6-138) also set the
current source file to the one associated with the selected stack frame. When a process
first starts execution, the current source file is the one containing the main program. If the
first argument to the list command does not explicitly specify a source file, then the
current source file is used.

When you list one or more lines in a source file, NightView remembers the first and last
line of that group. If you subsequently give a list command that uses a relative where-
spec or contains just a + or - argument, those arguments are interpreted relative to the
lines in the last group listed. Arguments containing a + are relative to the last line in the
group, and arguments containing a - are relative to the first line in the group. This also
affects the forward-search and reverse-search commands. See “forward-
search” on page 6-81 and “reverse-search” on page 6-81.

Repeating the list command by entering a blank line behaves differently depending on
the form of list you used last. In most cases, repeating the command lists the next ten
lines following the last line in the last group. However, if you used the list - form
last, then repetition lists the ten lines preceding the first line in the last group.
6-78

Command-Line Interface
The listed source lines are preceded by source decorations. (see “Source Line
Decorations” on page 6-83).

You can use the info line command to determine the location in your program of the
code for a particular source line. (see “info line” on page 6-172).

directory 6

Set the directory search path.

directory [dirname ...]

dirname

The name of a directory to include in the search path. If this is not an absolute
pathname, it is interpreted relative to NightView's current working directory
and transformed into an absolute pathname. Thus, if you later change Night-
View's working directory, the search path will not be affected. See “cd” on
page 6-76 and “pwd” on page 6-76.

The search can be performed on remote systems by specifying dirname in the
form user@host:/dirname. See “Remote File Access” on page 3-7.

The directory command sets the directory search path for the program in each process
in the qualifier. The arguments are used in order as the elements of the directory search
path. Subsequent directory commands contribute directories to the head of the current
search path.

The directory search path is used for displaying source files. When you list a source file
(see “list” on page 6-77), NightView looks for the source file in each of the directories in
the search path, starting at the beginning of the search path each time.

If no directory command has been specified for the program, the search path
implicitly contains the path to the executable file and NightView's current working
directory. Once a directory command is specified for the program, these directories
are no longer implicit in the search path.

If you enter a directory command with no arguments, the search path is reset to its
initial state.

The directory search path is associated with a program, not with a process. If you debug
multiple instances of a program, the directory search path is the same for each instance. If
your process calls exec(3), the directory search path is implicitly set for the new
program.

Use the info directories command to display the directory search path for a
program. See “info directories” on page 6-158.

For ELF programs, the debugging information contains absolute pathnames to source
files, so the directory search path may not be needed. It is still sometimes useful to
indicate that a source tree is not where the debugging information indicates.

Examples:

Suppose your ELF program was compiled from two source files:
6-79

NightView LX User’s Guide
/usr/bob/src/main/main.c and /usr/bob/src/doit/doit.c. You want to
debug your program, but you have moved the source files to
/usr/joe/main/main.c and /usr/joe/doit/doit.c. Enter a directory
command to indicate the new root of the source tree:

(local) directory /usr/joe

Similarly, if the source files are now on system "oursys", use this command:

(local) directory oursys:/usr/joe

edit 6

Edit the current source file.

edit

This command invokes a text editor on the source file currently displayed in the source
panel.

This command can be used only from the graphical user interface. See “Source Panel” on
page 8-53.
6-80

Command-Line Interface
Searching 6

forward-search 6

Search forward through the current source file for a specified regular expression.

forward-search [regexp]

Abbreviation: fo

 regexp

The regular expression to search for. No anchored match is implied. (see
“Regular Expressions” on page 6-16). If regexp is omitted, the previous
regexp is used.

The search command is applied to the current source file of each process specified by the
qualifier.

The search starts at the first line displayed by the last list command, the last place the
process stopped, or the last place a search was satisfied, whichever was most recent, and
proceeds forward through the file to the end. In the graphical user interface, the search
position is not affected by scrolling the source panel. If the regular expression is found,
the containing source line is listed. This will affect subsequent list commands that
specify relative arguments.

If the end of the file is encountered without finding the regular expression, a message is
printed indicating the search was unsuccessful. For a definition of current source file, see
“list” on page 6-77.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

reverse-search 6

Search backwards through the current source file for a specified regular expression.

reverse-search [regexp]

regexp

The regular expression to search for. No anchored match is implied. (see
“Regular Expressions” on page 6-16). If regexp is omitted, the previous
regexp is used.

The search command is applied to the current source file of each process specified by the
qualifier. The search starts at the last line displayed by the last list command, the last
place the process stopped, or the last place a search was satisfied, whichever was most
recent, and proceeds backward through the file to the beginning. In the graphical user
interface, the search position is not affected by scrolling the source panel. If the regular
expression is found, the containing source line is listed. This will affect subsequent list
commands that specify relative arguments.
6-81

NightView LX User’s Guide
If the beginning of the file is encountered without finding the regular expression, a
message is printed indicating the search was unsuccessful. For a definition of current
source file, see “list” on page 6-77.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).
6-82

Command-Line Interface
Source Line Decorations 6

When NightView lists source lines in your program or displays the disassembled
instructions of your program, it precedes each line with decorations providing
information about that line. Every source line gets a line number, which is relative to the
beginning of that file. Each instruction displayed is preceded by the line number of the
source line that generated it (see “x” on page 6-89).

In the serial interface, line numbers precede the decorations. If multiple decorations are
needed, they are concatenated, such as BP=.

In the graphical user interface, line numbers follow the decorations. If multiple
eventpoints are present, that is represented by a separate icon. If the program is stopped
on the line, the program counter icon is overlaid on any other icon. See “Graphical User
Interface” on page 8-1. If you hover the mouse pointer over the icon, a tooltip shows the
eventpoint information for the line.

Also, in the graphical user interface, the icon may indicate additional information. Here
are the rules NightView uses for choosing which icon is displayed:

• If there are different kinds of eventpoints on the line, a generic eventpoint
icon is shown. No other information is represented with this icon.

• If all the eventpoints on the line are disabled, the icon has reduced color.

• If the eventpoint has a non-zero ignore count, or the eventpoint has a condi-
tion, there are multiple eventpoints (of the same kind) on the line, or the
location of the eventpoint is not yet know (see “set-futurepoints” on page
6-74), the icon has a pink background. This indicates that more information
is available.

• Otherwise, this is a single simple eventpoint and the regular icon is used.

The following table lists the source line decorations. The decoration for the serial
interface is listed first, followed by the icon for the graphical user interface.

Table 6-7. Source Line Decorations

’B’

Indicates that one or more breakpoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, this indicates that one or more break-
points are set on this instruction. (See “breakpoint” on page 6-101).

’H’

Indicates that one or more heappoints, possibly disabled, are set somewhere within
this source line. When displaying instructions, this indicates that one or more heap-
points are set on this instruction. (See “heappoint” on page 6-110).
6-83

NightView LX User’s Guide
’M’

Indicates that one or more monitorpoints, possibly disabled, are set somewhere
within this source line. When displaying instructions, this indicates that one or more
monitorpoints are set on this instruction. (See “monitorpoint” on page 6-108).

’P’

Indicates that one or more patchpoints, possibly disabled, have been inserted some-
where within this source line. (See “patchpoint” on page 6-103). When displaying
instructions, this indicates the instruction where the patchpoint was inserted, and the
patched expressions are displayed elsewhere.

’T’

Indicates that one or more tracepoints, possibly disabled, are set within this source
line. When displaying instructions, this indicates a tracepoint immediately preced-
ing this instruction. (See “tracepoint” on page 6-106).

Indicates that multiple kinds of eventpoints, possibly disabled, are set within this
source line. When displaying instructions, this indicates multiple kinds of event-
points immediately preceding this instruction. In the serial interface, eventpoint
characters are concatenated.

’=’

Indicates that execution is stopped somewhere within or at the beginning of this line.
When displaying instructions, this indicates the instruction at which execution is
stopped (the one that will next be executed). In the graphical user interface, this icon
is overlaid over any other icon.

’>’

Indicates the line (or instruction) in the current frame (see “frame” on page 6-138),
where execution will resume when the called routine returns. This is not represented
in the graphical user interface.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the ’=’ decoration will appear in its place.

’<’

Indicates the line (or instruction) in the current frame (see “frame” on page 6-138),
which was executing when the called frame was created, i.e., $cpc. See “Program
Counter” on page 3-24.

This decoration is not displayed if the current frame is frame #0 (with no hidden
frames below frame 0); in this case the ’= ’decoration will appear in its place.

’*’

Indicates that this source line corresponds to executable code. A line that appears
executable may still not have executable code associated with it because of optimi-
zation or conditional compilation. Not used when displaying instructions.
6-84

Command-Line Interface
This decoration is not displayed if there are any other indicators also on that line,
since the other indicators imply there is executable code for the line.

’@’

Used only when displaying instructions, this decoration indicates that the associated
instruction is the first for the corresponding source line.

In the serial interface, NightView reserves enough columns for displaying a 3-digit line
number, 2 decoration characters, and a 2-character separator. If the line number and
decorations fit within this space, the source text displayed lines up in columns just as it
does in the source file. If more space is needed for line number or decorations, the line is
shifted over accordingly. In the graphical user interface, the line numbers are expanded as
necessary and the source decorations always take the same amount of space.

In the serial interface source listing, the 2-character separator is a vertical bar followed by
a space. This helps distinguish decorations from source characters. In the serial interface
disassembly listing, the 2-character separator consists of 2 spaces.

Example source listing, in the serial interface:

20 | void
21 * | main(argc, argv)
22 | int argc;
23 | char ** argv;
24 | {
25 | int i, errors;
26 * | errors = 0;
27 * | for (i = 1; i < argc; ++i) {
28 | long xl;
29 | int x;
30 | int answer;
31 * | char * ends = NULL;
32 T | xl = strtol(argv[i], &ends, 10);
33 B=| x = (int)xl;
34 B | answer = factorial(x);
35 P | printf("factorial(%d) == %d\n", x, answer);
36 | }
37 * | exit(errors);
38 | }

In this example, line 32 has a tracepoint set on it; line 33 has a breakpoint set somewhere
within the line, and execution is stopped on the line (but not necessarily at the
breakpoint). Line 34 has a breakpoint set somewhere within the line (perhaps on the
return from factorial). Line 35 has a patchpoint inserted somewhere within it. Apart
from these lines, the other lines with asterisks on them have executable code associated
with them.

Example instruction listing:

31 @ 0x10002788 <main+52>: li r6,0
31 0x1000278c <main+56>: stw r6,0x40(r1)
32 @T 0x10002790 <main+60>: slwi r5,r16,2
32 0x10002794 <main+64>: lwzx r3,r17,r5
32 0x10002798 <main+68>: addi r4,r1,64
32 0x1000279c <main+72>: li r5,10
32 0x100027a0 <main+76>: bl 0x100010e0 <strtol>
6-85

NightView LX User’s Guide
33 @B= 0x100027a4 <main+80>: mr r20,r3
34 @ 0x100027a8 <main+84>: bl 0x10002700 <factorial>
34 B 0x100027ac <main+88>: mr r5,r3
35 @P 0x100027b0 <main+92>: lis r3,12288
35 0x100027b4 <main+96>: addi r3,r3,12528
35 0x100027b8 <main+100>: mr r4,r20
35 0x100027bc <main+104>: bl 0x10001100 <printf>

This is a partial disassembly listing for the preceding example source listing.

Examining and Modifying 6

backtrace 6

Print an ordered list of the currently active stack frames.

backtrace [number-of-frames]

Abbreviation: bt

number-of-frames

Number of stack frames to print, starting with the currently executing frame.

The backtrace command prints, for each process specified in the qualifier, a summary
of the active stack frames, starting with the currently executing frame. Each subsequent
entry corresponds to the caller of the frame which precedes it in the listing. All active
frames are indicated, unless a value for number-of-frames is given, in which case, the
given number of frames is printed.

Each entry in the backtrace listing includes the frame number (the first frame is num-
bered 0), the program counter, the subprogram name (if known), the arguments of the sub-
program (if known), the source file name (if known), and the line number (if known).

For information on changing the current stack frame, see “frame” on page 6-138, “up” on
page 6-140, or “down” on page 6-140.

Frames corresponding to uninteresting subprograms are not shown in the listing. See
“Interesting Subprograms” on page 3-27.

print 6

Print the value of a language expression.

print [/print-format-letter] expression

Abbreviation: p
6-86

Command-Line Interface
print-format-letter

One of the following letters specifying the format in which to print each com-
ponent value of the expression:

a

Print the value of the expression in hexadecimal and as an address rela-
tive to a program symbol.

c

Treat the rightmost (least significant) eight bits of the value as a charac-
ter constant and print the constant.

d

Print the bit representation of the value in signed decimal.

f

Print the bit representation of the value as a single precision floating-
point number and print using floating-point syntax. If the data type of
the language expression is double precision, however, then the bit repre-
sentation is printed as a double precision floating-point number.

n

Disable smart printing (see “Smart Printing” on page 3-38) for this com-
mand, overriding the smart-printing mode..

o

Print the bit representation of the value in octal.

s

Print the data as a character string. Arrays of characters will print as one
character string (terminated with a zero byte if the language is C or
C++); scalar types will print using their default format plus the bytes of
the value will be printed as a string. (You might want to use this in For-
tran if you put Hollerith data in INTEGER variables.)

See note below about limits on the length of printed strings.

u

Print the bit representation of the value in unsigned decimal.

x

Print the bit representation of the value in hexadecimal.

y

Enable smart printing (see “Smart Printing” on page 3-38) for this com-
mand, overriding the smart-printing mode.
6-87

NightView LX User’s Guide
expression

A language expression (see “Expression Evaluation” on page 3-21).

print displays the value of a language expression in each process specified by the
qualifier. When the expression is an aggregate item, such as an array, record, or union,
each component value of the expression is printed, along with the appropriate subscript,
record field name, etc.

The space between print and / may be omitted. If no print-format-letter is given,
expression is printed in a format corresponding to the data type of the expression in the
currently defined language.

The printed value is given a value history number (see “Value History” on page 3-38),
indicated in the output by $ followed by the history number.

If the value printed contains an array or a character string, the number of array elements
and characters will be limited to the values set by the set-limits command (see “set-
limits” on page 6-61).

NOTE

For ease in debugging C and C++ programs, the print command
treats expressions of type ’char *’ specially. Whenever print
prints the value of a ’char *’ pointer, it also prints the string it
points to, inside double-quote marks; print assumes the string is
terminated by a null byte.

Most other commands that print expressions or variables also treat
’char *’ pointers in this manner.

Examples:

(local) (12) p/x var_name*4
(local) (12) p array_name

The first example prints, in hexadecimal, a number equal to four times the value of
var_name, for process 12. The second example prints the value of each member of the
array array_name in a format based on the data type of array_name, for process 12.

set 6

Evaluate a language expression without printing its value.

set expression

expression

A language expression (see “Expression Evaluation” on page 3-21).

This command is similar to the print command (see “print” on page 6-86), in that it
6-88

Command-Line Interface
evaluates a language expression for each process specified in the qualifier. However, set
does not accept a format specifier, print the value of the expression, or place the value of
the expression in the value history. It is useful for doing assignments to language objects
(e.g., memory addresses preceded by the C language cast syntax, variables, and array
elements) and convenience variables, as well as for performing calls to subprograms
whose return value is unimportant.

Examples:

(local) set $i = 98
(local) (27) set vector[5] = x * 2.5
(local) set *(int *)0x1234 = 0xabcd0123
(local) set routine(3,4)

The first example assigns the value 98 to the convenience variable $i. The second exam-
ple assigns the value of x * 2.5 to element five of array vector, in process 27. The
third example assigns the hexadecimal value abcd0123 to the hexadecimal absolute
memory location 1234. The final example performs a call to the subprogram routine.

x 6

Print the contents of memory beginning at a given address.

x [/[repeat-count][size-letter][x-format-letter]] [addr-expression]

repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by the size-letter and the x-format-letter.

size-letter

One of the following letters specifying the size of each memory unit:

b

Each memory unit is one byte (8 bits) long.

h

Each memory unit is one halfword (two bytes) long.

w

Each memory unit is one word (four bytes) long.

g

Each memory unit is one giant word (eight bytes) long.

p

Each memory unit is the size of a pointer on the target system. On an
IA-32 system, this is 4 bytes. On an AMD64 system, this is 8 bytes.
6-89

NightView LX User’s Guide
t

Each memory unit is the size of a C long double on the target system.
On an IA-32 system, this is 12 bytes. On an AMD64 system, this is 16
bytes. A t memory unit cannot be printed as decimal d or u.

The size-letter may appear either before or after the x-format-letter.

x-format-letter

One of the following letters specifying the format in which to print the con-
tents of memory:

a

Print as an integer in hexadecimal and as an address relative to a pro-
gram symbol. This format ignores size-letter and always uses p.

c

Print as character constants. This format ignores size-letter and always
uses b.

d

Print as signed integers in decimal format.

f

Print as floating-point values.

i

Print as machine instructions in assembler syntax, using the length of
each instruction as the unit size. A repeat-count given with this format
indicates how many instructions to print.

See “set-disassembly” on page 6-72 to control the form of the diassem-
bly.

You can also view disassembly in a source panel (see “Source Menu”
on page 8-10).

o

Print as unsigned integers in octal format.

s

Print as a null-terminated string, using the length of the string (including
the null byte) as the specified unit size; the size-letter, if any, is ignored.
A repeat-count given with this format indicates how many strings to
print.

If the string to be printed is longer than the string limit set by the set-
limits command, the initial characters of the string are printed, with
an ellipsis following the closing quote. (see “set-limits” on page 6-61).
6-90

Command-Line Interface
u

Print as unsigned integers in decimal format.

x

Print as unsigned integers in hexadecimal format.

z

Print as unsigned integers in hexadecimal format with a display of the
corresponding ASCII characters.

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on
page 3-21).

The x command prints the contents of memory beginning at the address specified by
addr-expression in each process specified by the qualifier. If an addr-expression is not
given, the address corresponds to the byte following the end of the memory contents
printed in the last x command.

If an addr-expression is specified and its type is a pointer type, and the current context is
that of a CUDA thread, then any CUDA segment information in that type will be used to
determine the segment of the address. For instance, an expression like
(__shared__ float*)0x1000 will cause the x command to display that address in
CUDA shared memory.

The space between x and / may be omitted. If repeat-count is omitted, one memory unit
is printed. If either size-letter or x-format-letter is omitted, the default is the last value
used in an x command (beginning defaults are p and d, respectively).

If the x command is repeated, memory contents are printed using the same repeat-count,
size-letter, and x-format-letter as in the previous x command, and the beginning address
corresponds to the byte following the end of the memory contents printed in the previous
command.

A 0 precedes octal numbers. A 0x precedes hexadecimal numbers. Thus decimal 64
would appear in hexadecimal as 0x40 and in octal as 0100.

The x-format-letter z produces a hexadecimal display without the leading 0x prefix. The
character display shows non-printable characters replaced by . (period). Here, printable
is determined by the current locale. The display of characters is framed in | and |.

After an x command, the convenience variables $_ and $__ are set and ready to use in
expressions (see “Predefined Convenience Variables” on page 6-5). The convenience
variable $_ is set to the address of the last memory unit examined. The convenience
variable $__ is set to the contents and type of the last memory unit examined.

Examples:

(local) (14544) x/4i $pc
7 @B= 0x1000271c <factorial+28>: li r3,1
7 0x10002720 <factorial+32>: lwz r16,0x40(r1)
7 0x10002724 <factorial+36>: lwz r13,0x58(r1)
7 0x10002728 <factorial+40>: mtlr r13
6-91

NightView LX User’s Guide
For the process with process id 14544, print memory as four machine instructions starting
with the address of the current program counter. See “Source Line Decorations” on page
6-83 for a description of the characters at the beginning of each line of this format.

(local) x /4wx 0x40a188
0x0040a188: 0x77767574 0x73727170 0x6f6e6d6c 0x6b6a6968
(local) x /8bz 4235656
0x0040a188: 77 76 75 74 73 72 71 70 |wvutsrqp|
(local)
0x0040a190: 6f 6e 6d 6c 6b 6a 69 68 |onmlkjih|
(local) p $_ - 4235656
17: $_ - 4235656 = 0xf
(local) p $__
$18: $__ = 104 'h'

Print memory as four words (four-byte memory units) starting at hexadecimal address
0x0040a188 as unsigned integers in hexadecimal format with 0x prefixes.

Print memory as eight bytes (one-byte memory units) starting at the same address
expressed in decimal (4235656) as unsigned integers in hexadecimal format with a
display of the printable characters.

Print in the same format and repeat count starting at the next address (0x0040a190).

Print an expression $_ - 4235656 to show the relative difference between the address
of the last memory unit printed $_ - 4235656 and address of the first memory unit
two commands ago 4235656.

Print expression $__ to show the value of the last memory unit printed.

output 6

Print the value of a language expression with minimal output.

output [/print-format-letter] expression

print-format-letter

A letter specifying the format in which to print the expression, as described in
the print command (see “print” on page 6-86).

expression

A language expression (see “Expression Evaluation” on page 3-21).

output prints the value of a language expression for each process specified by the
qualifier in the same manner as the print command, except that a newline is not
printed, the value is not entered in the value history, and the "$history-number = "
string does not prefix the output.

The space between output and / may be omitted. If no print-format-letter is given,
expression is printed in a format corresponding to the data type of the expression.
6-92

Command-Line Interface
echo 6

Print arbitrary text.

echo text

text

Arbitrary text to be printed, up to the end of the line. Non-printing characters
may be represented with C language escape sequences, such as ’\n’ for new-
line.

This command prints the given text. It is intended as an adjunct to the other commands
which print information about the program, so that the output can be customized to
whatever is desired.

A backslash (’\’) may be used to correctly print leading and trailing spaces. In other
words, a backslash may be used at the beginning of text to print leading spaces appearing
after the backslash, and one may be used at the end of text to print the spaces appearing
before the backslash. The backslash characters themselves are not printed.

Note that a newline is not printed unless the newline sequence (’\n’) is included.

Examples:

(local) echo \ Text with two leading spaces and a newline\n
(local) echo A backslash (\\) and the number three (\063)

The first example prints " Text with two leading spaces and a newline", followed by a
newline. The second example prints "A backslash (\) and the number three (3)", but does
not print a newline.

data-display 6

Control items in a data panel.

data-display [/window="window name"] {/kind=value | expression}

/window="window name"

Determines which data panel is affected by this command.

The default is Data.

/kind=value

value indicates which kind of item to placed in the data panel. value is one of
locals, registers, callstack or threads.

expression

An expression to place in a data window. There should not be a /kind key-
word in this form of the command.
6-93

NightView LX User’s Guide
The data-display command is not intended to be used directly by users. Its main use
is in restart information. See “Restart Information” on page 3-18. A description of all the
forms of this command is beyond the scope of this document. However, users may some-
times have a use for the simplest forms of the data-display command described here.

display 6

Add to the list of expressions to be printed each time the process stops.

display [[/print-format-letter] expression]
display /[repeat-count][size-letter][x-format-letter] addr-expression

print-format-letter

A letter specifying the format in which to print the expression, as in the
print command (see “print” on page 6-86).

expression

A language expression (see “Expression Evaluation” on page 3-21).

repeat-count

Decimal number of consecutive memory units to print, where a unit is defined
by the size-letter and the x-format-letter.

size-letter

A letter specifying the size of each memory unit, as described in the x com-
mand (see “x” on page 6-89). The size-letter may appear either before or after
the x-format-letter.

x-format-letter

A letter specifying the format in which to print the contents of memory, as
described in the x command (see “x” on page 6-89).

addr-expression

An expression yielding a memory address (see “Expression Evaluation” on
page 3-21).

The display item list contains language and memory address expressions which will be
used to print expression values or contents of memory, respectively, each time one of the
specified processes in the qualifier stops (hits a breakpoint, receives a signal, etc.).
display adds a language or memory address expression to the list.

In order to determine whether the given expression is a language or address expression,
the parameters before the expression are first examined. If a repeat-count or size-letter is
given, or if either of the x-format-letters ’s’ or ’i’ is given, then the expression is treated
as an addr-expression. Otherwise, the expression is treated as a language expression.
6-94

Command-Line Interface
If an addr-expression is specified and its type is a pointer type, and the current context is
that of a CUDA thread, then any CUDA segment information in that type will be used to
determine the segment of the address. For instance, an expression like
(__shared__ float*)0x1000 will cause the x command to display that address in
CUDA shared memory.

When one of the processes specified by the qualifier stops, each enabled item in the
display item list is evaluated. The indicated expression value or memory location is
displayed, each item beginning on a new line. Each display item has an item number,
followed by the text of the expression and then the expression's value or the contents of
memory. If a language expression for an item cannot be evaluated in the currently defined
language, output will not appear for that item; however, a summary of the unevaluated
items will appear at the end of the display output.

The space between display and / may be omitted. If no print-format-letter is given for
a language expression, expression is printed in a format corresponding to the data type of
the expression at the time the process stops. If repeat-count is omitted, one memory unit
will be printed. If size-letter or x-format-letter is omitted, the defaults are w and d,
respectively.

If display is entered on a line by itself, the current values of the expressions or
contents of memory for each item on the display list are printed. To simply see the
expressions themselves, use the info display command (see “info display” on page
6-158).

Examples:

(local) (12) display/x var_name
(local) (12) display/4d 0x1234

If these commands are entered, then each time process 12 stops, the value of var_name
will be printed in hexadecimal on one line, and four words of memory starting at
hexadecimal address 1234 will be printed on the next line.

undisplay 6

Disable an item from the display expression list.

undisplay item_number ...

item_number

An item number of an item to be disabled in the list of expressions to be
printed each time the program stops, as specified in previous display com-
mands (see “display” on page 6-94).

The undisplay command disables the given items in each of the processes specified by
the qualifier. The associated expressions or memory locations cease to be displayed when
the corresponding process stops, until you enable them again using the redisplay
command (see “redisplay” on page 6-96). The effect of the qualifier on this command is
to limit the items to be disabled to only those that occur in the specified processes.

Item numbers prefix each displayed language expression and memory section. The item
6-95

NightView LX User’s Guide
numbers also may be viewed by entering the info display command (see “info
display” on page 6-158).

redisplay 6

Enable a display item.

redisplay item_number ...

item_number

An item number of an item to be enabled in the list of expressions to be
printed each time the program stops, as specified in previous display com-
mands (see “display” on page 6-94).

The redisplay command enables the specified display items so that they once again
print data when the corresponding process stops. The redisplay command reverses the
effect of the undisplay command. The effect of the qualifier on this command is to
limit the items to be enabled to only those that occur in the specified processes.

Item numbers prefix each displayed language expression and memory section. The item
numbers also may be viewed by entering the info display command (see “info
display” on page 6-158).

printf 6

Print the values of language expressions using a format string.

printf format-string[, expression ...]

format_string

A string within quotes containing text to be printed and print formats for
expressions to be printed.

expression

A language expression (see “Expression Evaluation” on page 3-21).

printf prints user-specified text plus, optionally, values of language expressions
evaluated in the currently defined language, for each process specified in the qualifier.
This command acts the same as the C language library routine printf(3), with the
exception of the ’%n’ format descriptor. As in that routine, each print format (i.e.,
substring beginning with ’%’ and or width specifier ’*’) in the format-string corresponds
to one language expression in the specified list. The number of language expressions
entered must match the number of print formats.

If a ’%n’ format descriptor is present in the format string, it is considered a syntax error
and the printf command is aborted.
6-96

Command-Line Interface
Example:

(local) (27) printf "The value of var_name = %d.\n", var_name

This example prints "The value of var_name = " followed by the decimal value of
var_name and a newline, for the process with PID 27.

load 6

Dynamically load an object file, possibly replacing existing routines.

load object

object

The name of an object file to be loaded into the program.

object is subject to object filename translations (see “translate-object-file” on
page 6-27).

This command dynamically loads the designated object file into the address space of the
running program. If the loaded file contains any routines which are already defined in the
program, the entry points of the existing routines are patched to jump directly to the new
routines just loaded. If there are any active stack frames for old routines, the return
addresses in the stack still point to the old code. New calls made following the load will
call the new routines.

If you had any breakpoints or other eventpoints set in the old routine, you may need to set
equivalent ones again in the new routine (the old ones are still there, but since the old
routine will never be called again, you will probably never hit any of them).

The primary purpose of this command is to allow you to replace an existing routine with
a new version, avoiding the overhead of forcing you to stop debugging the program,
relink it, and rerun to get back to the point of interest.

This command must be used with care. If the new object file contains any global data
definitions, you are very likely to wind up with an erroneous program in which old
routines refer to the original data locations and new routines refer to the newly loaded
data definitions. Patching the old routine entry points to jump to the new routine
definitions is simple, but it is not possible to locate all the places that might refer to data
items defined in the object file, so loading object files that define static data items is
likely to generate unexpected results.

If the object file refers to other routines or external data items that are not already defined
in the program file, you are told about the undefined symbols, and the object file is not
loaded. If you load an object file that defines new symbols, they are added to the symbol
table for the program, so subsequent loads may refer to the new names.

This command checks for obvious problems with the new object file and warns you of
anything that is likely to be a mistake, but it loads the new object anyway.
6-97

NightView LX User’s Guide

T

branch-history 6

Display the branch history if branch tracking has been enabled. See “Branch Tracking”
on page 3-34.

branch-history [number-of-branches]

Abbreviation: bh

number-of-branches

The maximum number of branches to display.

The branch-history command displays, for each process specified in the qualifier, a
pair of addresses for each branch instruction tracked up to the number-of-branches maxi-
mum. If no maximum was specified, it defaults to 5 branches. The description for each
branch instruction is of the form:

From: address
 To: address

The address description always contains a hex address. If available, it will contain func-
tion name and source file,line information. If that is not available but symbols are, it will
contain <symbol+offset> information.

Branch tracking is only supported for RedHawk Linux version 6.0 or later and only on
newer Intel chips.

Manipulating Eventpoints 6

This subsection describes the various commands that are used to set and modify
eventpoints.

Some of the commands which operate on breakpoints also operate on patchpoints,
tracepoints, monitorpoints, heappoints, watchpoints and syscallpoints as well. The
following table indicates which types of eventpoints may be affected by which
commands:

able 6-8. Eventpoint Commands

Command
Name

What the Command May Apply To

Breakpoints Patchpoints Tracepoints Monitorpoints Watchpoints Heappoints Syscallpoints

name X X X X X X X

clear X X X X X

commands X X X X
6-98

Command-Line Interface

T

condition X X X X X X X

delete X X X X X X X

disable X X X X X X X

enable X X X X X X X

ignore X X X X X X X

tbreak X

tpatch X

able 6-8. Eventpoint Commands

Command
Name

What the Command May Apply To

Breakpoints Patchpoints Tracepoints Monitorpoints Watchpoints Heappoints Syscallpoints
6-99

NightView LX User’s Guide
Eventpoint Modifiers 6

An eventpoint modifier modifies the setting of eventpoints in a program.

The modifiers come after the eventpoint commands as follows:

command [modifier ...]

The eventpoint modifiers are:

/delete

Causes the eventpoint to be deleted after the first hit. This eventpoint modifier is
valid only with the enable command (see “enable” on page 6-116).

/disabled

Causes the eventpoint to be created in a disabled state. You must use the enable
command to activate the eventpoint (see “enable” on page 6-116).

/f

Causes any line numbers appearing in a location specifier for this eventpoint to be
interpreted as fixed. The eventpoint will not be inserted at a later point if the speci-
fied line has no code. For example, by default, if an eventpoint was set at line 12,
but no code was present at line 12, the eventpoint might be inserted at line 14 if
there was code there. This is prevented by use of the /f modifier.

name 6

Give a name to a group of eventpoints.

name [/add] name [[-] eventpoint-spec] ...

/add

Add the eventpoints to the named set, rather than redefining the set.

name

The name of the set of eventpoints to be defined. This must not be the same as
the name of any dialogue you currently have, or of any process family that is
currently defined. The name must consist only of alphanumeric characters and
underscores and must begin with an alphabetic character. The name may be of
arbitrary length.

eventpoint-spec

An eventpoint specifier. See “Eventpoint Specifiers” on page 6-16.

The total set of eventpoints is accumulated by scanning the eventpoint-spec
arguments left to right. An argument is added to the set unless it is preceded
by a ’-’, in which case it is subtracted from the set accumulated so far.
6-100

Command-Line Interface
If no eventpoint-spec is given, then this command removes any previous definition of
name.

Any qualifier applied to this command has the effect of restricting the set of eventpoints
named to those which exist in the processes specified by the qualifier.

Examples:

(local) name evpt1 12 25 18
(local) name evpt2 evpt1 99
(local) name evpt1 evpt1 16

The first command gives the name evpt1 to three eventpoints identified by eventpoints
12, 18, and 25. The second command gives the name evpt2 to the three eventpoints in
evpt1 plus eventpoint 99. The third command extends the definition of evpt1 to include
eventpoint 16; thus evpt1 is a synonym for four eventpoints: 12, 16, 18, and 25. Note that
extending evpt1 has no effect on evpt2, which still consists of eventpoints 12, 18, 25, and
99.

Using the names defined in the previous examples, the use of a minus sign on arguments
can be illustrated by the following examples:

(local) name evpt3 evpt1 evpt2 -12
(local) name evpt3 evpt1 -12 evpt2

The first command defines evpt3 to be the eventpoints 16, 18, 25, and 99. In contrast,
the second command defines evpt3 to be the eventpoints 12, 16, 18, 25, and 99. In this
case, the argument -12 removed eventpoint 12 from the set accumulated from evpt1,
but the evpt2 argument adds that eventpoint back in.

breakpoint 6

Set a breakpoint.

breakpoint [eventpoint-modifier] [/cuda|/process]
[name=breakpoint-name] [[at] location-spec]
[if conditional-expression]

Abbreviation: b

eventpoint-modifier

Specifies the breakpoint modifier. See “Eventpoint Modifiers” on page 6-100.

/cuda or /process

The use of /cuda insists that the breakpoint will apply only to CUDA code.
Similarly, the use of /process insists that the breakpoint will apply only to
host (non-CUDA) code. If neither is specified, then the breakpoint will apply
to CUDA code if there is CUDA code at the specified location; otherwise, it
will apply to host code.
6-101

NightView LX User’s Guide
name=breakpoint-name

Gives a name to the breakpoint for later reference. (see “name” on page
6-100). If breakpoint-name is already defined, then this command adds the
newly created breakpoints to the list of eventpoints associated with the name.

location-spec

Specifies the breakpoint location. (see “Location Specifiers” on page 6-13).

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

if conditional-expression

Specifies a breakpoint condition. The language and scope of the expression is
determined by the location at which the breakpoint is set (see “Scope” on page
3-25 and “Context” on page 3-24). See also “Expression Evaluation” on page
3-21.

NOTE

The at, if, and name keywords may not be abbreviated in this
command.

breakpoint sets a breakpoint in each of the processes specified by the qualifier. This
causes the program to suspend execution at the breakpoint location. An optional
condition may be applied to the breakpoint which causes execution to be suspended only
if the condition evaluates to TRUE. The conditional expression is evaluated in the user
program when the breakpoint location is reached (unless the breakpoint is currently being
ignored, see “ignore” on page 6-117).

If more than one breakpoint is set (through the use of more than one process in the
qualifier) then each breakpoint in each process is assigned a unique breakpoint number.

You can specify debugger commands to be executed when a breakpoint is hit. See
“commands” on page 6-113.

It is possible (and sometimes useful) to set more than one breakpoint at the same location
in a process. Perhaps you have two breakpoints set at the same place and each has its own
set of commands. By enabling only one of the two breakpoints at a time, you can
effectively toggle the set of commands that gets executed when the process reaches that
location.

If more than one breakpoint is set at the same location in a given process, then the oldest
breakpoint with an ignore count of zero and a condition that evaluates to TRUE will be the
first breakpoint responsible for stopping the process. After this breakpoint has stopped
the process, before continuing on to the next instruction, NightView will check for any
remaining breakpoints at that location which may stop the process. If there are any, then
the process will stop at least once more (at the same location) before continuing on to the
next instruction.
6-102

Command-Line Interface
Example:

(local) (441 115) break name=loop sort.c:42

This example sets two breakpoints at line 42 of the file named sort.c and associates
both breakpoints with the name ’loop’. One of the breakpoints is set in process 441 and
the other breakpoint is set in process 115. Each of the two breakpoints is assigned a
unique breakpoint number.

patchpoint 6

Patchpoints can be used to:

• Install a small patch to a routine.

• Insert an expression in the program which modifies the value of a variable
or register or invokes a function.

• Insert a branch in the program.

• Set a thread-specific tag value

patchpoint [eventpoint-modifier] [name=patchpoint-name]
[[at] location-spec] eval expression

patchpoint [eventpoint-modifier] [name=patchpoint-name]
[[at] location-spec] goto location-spec

patchpoint [eventpoint-modifier] [name=patchpoint-name]
[[at] location-spec] tag tag-assignments

eventpoint-modifier

Specifies the patchpoint modifier. See “Eventpoint Modifiers” on page 6-100.

name=patchpoint-name

Patchpoints are assigned event numbers, and the name= syntax as well as the
name command (see “name” on page 6-100) may be used to give them
names. See “Manipulating Eventpoints” on page 6-98.

at location-spec

Specify the exact point in the program to execute the patchpoint (see “Loca-
tion Specifiers” on page 6-13). The patchpoint is executed immediately prior
to any existing code at this location.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

eval expression

This variant of the patchpoint command specifies an expression to insert
in the program at the designated location-spec. C and C++ programmers
should note that this is an expression and not a statement; therefore, it does not
6-103

NightView LX User’s Guide
end with a semicolon. (The concept of expression is extended to include
assignments and procedure calls in Fortran.) See “Expression Evaluation” on
page 3-21.

goto location-spec

This variant of the patchpoint command specifies a location to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

Note that if an expression is used as a location-spec, the expression is evalu-
ated only once for each process in the qualifier. For example, if the location-
spec is *$lr, the value of register lr in the current context is used as the
location to branch to.

tags tag-assignment [, tag-assignment...]

This variant of the patchpoint command creates a patchpoint that sets one
or more tag values in $thr for any thread that executes through the patch-
point (see “Thread Tags” on page 3-41 for more information on $thr).

Following the tags keyword, one or more comma separated tag-assignments
should appear. A tag-assignment has the following syntax:

tagname assign-op expression

• where, tagname is a simple identifier that names the tag value
to be set;

• where assign-op may be one of =, :=, -=, +=, *=, /=. The = and
:= operators are identical and represent simple assignment. The
-=, +=, *=, and /= operators are like the C operators (but in a
tags patch will work even for Ada and Fortran expression).

• where expression is the expression to evaluate and use in the
assignment to the tag. Unless the tagname has been previously
declared using the declare-thread-tag command, the
expression must be a 1-bit boolean value (true, false, 1, or 0).

To set a C string value, you need to copy string characters, so
you should use the alternative eval form of patchpoint,
e.g.:

patchpoint file.c:23 eval strcpy($thr.strtag,"hamster")

assuming strtag was declared with declare-thread-tag
as a C char array.

NOTE

The keywords name, at, eval, and goto and tags may not be
abbreviated in this command.

Once an eval patchpoint is installed, the language expression will be executed each time
6-104

Command-Line Interface
control reaches location-spec in the program. After the patchpoint is executed, the
original instruction will also execute.

Once a goto patchpoint is installed, the branch will be executed before the patched
instruction each time execution reaches location-spec in the program. It is important to
note that the original instruction is not executed if the patchpoint is hit (that is, depending
on the enabled status, the ignore count and any eventpoint condition on the patchpoint). If
the patchpoint is not hit, the original instruction is executed normally.

When patching in a goto, you should be aware that the compiler has probably generated
code which expects certain register contents and altering the flow of control in your pro-
gram can very easily send it to a new location with unexpected values in registers, so the
goto patchpoint should be used only when you are sure you know all the consequences.

You may attach a condition or ignore count to both kinds of patchpoints, using the
condition (see “condition” on page 6-114) or ignore (see “ignore” on page 6-117)
commands. This suppresses execution of the patched expression unless the ignore count
is zero and the conditional expression evaluates to TRUE.

Patchpoints are implemented by modifying the executable code for the program, so they
will remain in effect until the program exits, even if you detach the debugger from the
program, unless the patchpoint was disabled when you detached (see “detach” on page
6-38 and “disable” on page 6-115). Note that the disk copy of the program is not
modified; you must edit your source, recompile and relink to make a permanent
modification to the program.

If multiple patchpoints are made at the same point in the program, they will all be
executed in the order they were applied. This is especially important to note for goto
patchpoints, because once a goto is executed, any subsequent patchpoints (or other
kinds of eventpoints, such as breakpoints and tracepoints) at that same location will not
be executed. If a goto patchpoint is not hit (because it was disabled, or the ignore count
or condition caused it to be skipped), then the branch will not be taken and subsequent
patchpoints will be executed, as well as the original patched instruction.

Example:

(local) patchpoint file.c:12 eval i=0

This C example patches the code to initialize the variable i to zero immediately prior to
executing line 12 in the file file.c. Note that no semicolon appears in this example.

Example:

(local) patchpoint file.c:12 tags working=true

This C example patches the code to define the $tags field working the value true for
each thread that executes line 12 of file.c.

Patchpoints are not supported in CUDA code. This is a technical limitation of the CUDA
driver.
6-105

NightView LX User’s Guide
set-trace 6

The set-trace command is used to specify information that may be useful before any
tracepoints are set in a process (see “tracepoint” on page 6-106).

set-trace [eventmap=event-map-file][tracefile=key-filename]

eventmap=event-map-file

Names the file that contains the mapping between symbolic trace-event tags
and numeric trace-event IDs. This should be the same as the event-map file
passed to ntrace(1).

If you want to use symbolic trace-event tags rather than numeric trace-event
IDs as the event-id parameter of the tracepoint command, then you must
specify an event-map file. You may specify multiple event-map files by
repeating the eventmap parameter. As long as the files do not contain con-
flicting definitions for tags, all the tags will be defined for use as trace-event
identifiers

tracefile=key-filename

This argument causes NightView to initiate application tracing by issuing the
NightTrace API trace_begin call. tracepoints aren’t useful if the
application has not initialized the NightTrace API subsystem. If your applica-
tion already calls trace_begin you should not use this argument.

The key-filename is passed as the first parameter to trace_begin (in the
form of a string constant). The key-filename identifies the daemon session
which collects the NightTrace events that are logged by the application and by
NightView tracepoint eventpoints . See ntraceud(1) and
trace_begin(3) for more information on NightTrace.

To specify a file on a remote system, use the form user@host:key-filename.
See “Remote File Access” on page 3-7.

NightView will automatically linking in the required NightTrace API library
modules if they don’t already exist in the program.

tracepoint 6

Set a tracepoint.

tracepoint [eventpoint-modifier] event-id [name=tracepoint-name]
[[at] location-spec]
[value=logged-expression[,logged-expression...]]
[if conditional-expression]

eventpoint-modifier

Specifies the tracepoint modifier. See “Eventpoint Modifiers” on page 6-100.
6-106

Command-Line Interface
event-id

An identifier for the trace event to be traced by NightTrace. This is either a
numeric trace-event ID or a symbolic trace-event tag obtained from the event-
map file specified by the eventmap parameter of the set-trace command
(see “set-trace” on page 6-106).

name=tracepoint-name

Gives a name to the tracepoint for later reference. See “name” on page 6-100.
If tracepoint-name is already defined, then this command adds the newly cre-
ated tracepoints to the list of eventpoints associated with the name.

location-spec

Specifies the tracepoint location. See “Location Specifiers” on page 6-13.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

value=logged-expression[,logged-expression...]

Specifies that the value of each logged-expression should be recorded with the
trace event. The expressions are separated by commas. (To include a comma
in an expression, surround the expression by parentheses.)

The number of expressions and the type of the expressions must match a
trace_event routine defined by the ntrace library. See the section
"trace_event() and Its Variants" in the "Using the NightTrace Logging API"
chapter of the NightTrace User’s Guide.

The expressions are evaluated in the user program, so they obey the same
rules that conditional and patchpoint expressions do. See “Expression Evalua-
tion” on page 3-21.

if conditional-expression

Specifies a tracepoint condition. The language and scope of the expression is
determined by the location at which the tracepoint is set (see “Scope” on page
3-25 and “Context” on page 3-24). See also “Expression Evaluation” on page
3-21.

NOTE

The name, value, and if keywords may not be abbreviated in
this command.

The tracepoint command sets a tracepoint in each of the processes specified by the
qualifier. This causes the program to emit special tracing output at the tracepoint location.
An optional condition may be applied to the tracepoint which causes tracing to be
performed only if the condition evaluates to TRUE. The conditional expression
conditional-expression is evaluated in the user program when the tracepoint location is
reached (unless the tracepoint is currently being ignored, see “ignore” on page 6-117).
6-107

NightView LX User’s Guide
Tracepoints set in a process remain set even if you detach the debugger from the
program, unless the tracepoint was disabled at the time you detached (See “detach” on
page 6-38 and “disable” on page 6-115).

NOTE

The debugger does not start a NightTrace daemon, which is
required in order to actually collect the events logged with trace-
points. You must do that using ntraceud(1) or the Daemons
panel in ntrace(1) (see “NightTrace Daemon” on page 3-44).

If more than one tracepoint is set (through the use of more than one process in the
qualifier) then each tracepoint in each process is assigned a unique tracepoint eventpoint
number, but all instances will share the same event-id you specified on the command.

It is possible (and sometimes useful) to set more than one tracepoint at the same location
in a process. Perhaps there is more than one noteworthy event that takes place at the same
location in your program. If more than one tracepoint is set at the same location in a
given process, then the tracepoints at that location are recorded in the order they were
defined.

Example:

(local) (441 115) tracepoint 27 name=loop_trace sort.c:42

This example sets two tracepoints at line 42 of the file named sort.c and associates
both tracepoints with the name ’loop_trace’. One of the tracepoints is set in process 441
and the other tracepoint is set in process 115. Each of the two tracepoints is assigned a
unique tracepoint number. The ID of the trace event to trace is given by the number 27.

Tracepoints are not supported in CUDA code. This is a technical limitation of the CUDA
driver.

monitorpoint 6

Monitor the values of one or more expressions at a given location.

monitorpoint [eventpoint-modifier] [name=monitorpoint-name]
[[at] location-spec]

eventpoint-modifier

Specifies the monitorpoint modifier. See “Eventpoint Modifiers” on page
6-100.

name=monitorpoint-name

Gives a name to the monitorpoint for later reference. See “name” on page
6-100. If monitorpoint-name is already defined then this command adds the
newly created monitorpoints to the list of eventpoints associated with the
name.
6-108

Command-Line Interface
location-spec

Specifies the monitorpoint location. See “Location Specifiers” on page 6-13.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

The monitorpoint command sets a monitorpoint in each of the processes specified by
the qualifier. Each line following the monitorpoint command must be a special form
(described later) of print command; each print command specifies an expression to
be evaluated and monitored at the location of the monitorpoint. To end the list of print
commands, type end monitor on a line by itself.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering the attached print commands. See “Command Syntax” on page 6-1.

When the monitorpoint is executed, the expressions specified in the attached commands
will be evaluated and their values saved in a location reserved by NightView. The
monitored values are displayed periodically in a monitor display area; see “Monitor
Window” on page 3-28. For a more detailed description of monitorpoints, see
“Monitorpoints” on page 3-12.

The syntax of the commands attached to a monitorpoint is:

print [/print-format-letter] [id="string"] expression

This syntax is identical to the print NightView command (see “print” on page 6-86),
with the addition of the optional id="string" argument. The string, if specified, is used
to identify the monitored expression in the monitor display area. If you do not specify the
id= parameter, the text of the expression itself is used as the identifying string. Note that
you may not abbreviate the id= keyword to anything shorter (like "i").

Once you have created a monitorpoint, you can change the set of commands attached to it
(and thus the expressions being monitored) using the commands command. See
“commands” on page 6-113.

Example:

(local) monitorpoint file.c:12
> print variable1
> print id="Velocity (ft/sec)" variable2
> end monitor

In this example, two variables will be monitored at line 12 of file.c. The first variable,
variable1, will be displayed using its name as the identifying string. The second
variable, variable2, will be displayed with the string Velocity (ft/sec).

Monitorpoints are not supported in CUDA code. This is a technical limitation of the
CUDA driver.
6-109

NightView LX User’s Guide
heappoint 6

Check the heap for errors, or change the heap debugger settings, at a given location.

heappoint [eventpoint-modifier][name=heappoint-name] [[at] location-spec]
[{check | debug parameters}}] [if conditional-expression]

eventpoint-modifier

Specifies the heappoint modifier. See “Eventpoint Modifiers” on page 6-100.

name=heappoint-name

Gives a name to the heappoint for later reference. See “name” on page 6-100.
If heappoint-name is already defined then this command adds the newly cre-
ated heappoints to the list of eventpoints associated with the name.

location-spec

Specifies the heappoint location. See “Location Specifiers” on page 6-13.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame.

check

Specifies that the heappoint does a heap check. This is the default if neither
check nor debug is specified.

debug parameters

Specifies that the heappoint changes the heap debugger settings. parameters
are the same as the arguments to the heapdebug command (see “heapde-
bug” on page 6-53).

if conditional-expression

Specifies a heappoint condition. The language and scope of the expression is
determined by the location at which the heappoint is set (see “Scope” on page
3-25 and “Context” on page 3-24). See also “Expression Evaluation” on page
3-21.

The heappoint command sets a heappoint in each of the processes specified by the
qualifier. See “Heappoints” on page 3-13.

When the heappoint is executed, the process does a heap check if check was specified, or
changes the heap debugger settings if debug was specified. The check and debug
parameters are mutually exclusive.

Putting check heappoints at various places in your program can help you narrow down
where heap problems are occurring.

Changing the heap debugger settings dynamically within your program can help you get
reasonable performance while still getting strong heap checking. For example, if you have
a suspicious section of code, you could set a heappoint at the beginning of the section to
set automatic heap checks to occur before every heap operation, and set another heappoint
6-110

Command-Line Interface
at the end of the section to set automatic heap checks to occur only every 10,000 heap
operations.

Heappoints are not supported in CUDA code. This is a technical limitation of the CUDA
driver.

mcontrol 6

Control the monitor display window.

mcontrol {display | nodisplay} [monitorpoint-spec ...]

Turn on or off the display of individual monitorpoints in the monitor window.

mcontrol delay milliseconds

Set the milliseconds to delay between monitor window updates.

mcontrol {off | on | stale | nostale | hold | release}

Toggle a monitoring parameter.

Abbreviation: hold

This is an abbreviation for mcontrol hold.

Abbreviation: release

This is an abbreviation for mcontrol release.

display nodisplay

These keywords are used to enable or disable the display of specific monitor-
points in the monitor window. The monitorpoints appearing in the argument
and in the processes specified by the qualifier are either added to or removed
from the monitor window display area. This does not affect the monitorpoint
itself, it simply determines which monitorpoints are shown in the window. See
“monitorpoint” on page 6-108.

on off

These keywords turn the monitor window on or off. You may wish to turn off
the monitor window to reclaim screen space, then turn it back on later. Turn-
ing off the window also does a hold, but turning the window on does not
implicitly do a release.

stale nostale

The monitor window normally displays a stale data indication next to each
value. The nostale keyword causes the monitor window to display blank
space rather than one of the stale data indicators. The indicators may be turned
back on with the stale keyword.
6-111

NightView LX User’s Guide
hold release

The hold and release keywords are used to hold or release updates of the
monitor window. When the window is held, the values displayed in the moni-
tor window will no longer change (the processes containing the values are not
affected, they continue to run). The release keyword allows the monitor
window to start updating the values again.

Interrupting the debugger implicitly causes the Monitor Window to stop
updating. See “Interrupting the Debugger” on page 3-36.

delay

The monitor window normally waits one second (1000 milliseconds) between
updates. A different number of milliseconds may be specified following the
delay keyword. If you tell it to wait zero milliseconds, it updates the monitor
window as fast as it possibly can.

All of the mcontrol parameters allow you to control various aspects of the monitor
display window (see “Monitor Window” on page 3-28).

You may not combine parameters on the mcontrol command. Only one keyword may
be used in one invocation of the command. The command qualifier is only used when the
display or nodisplay keywords are used to specify a list of monitorpoints.

clear 6

Clear all eventpoints at a given location.

clear [[at] location-spec]

location-spec

Specifies the location from which all eventpoints are to be removed. See
“Location Specifiers” on page 6-13.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

clear removes all eventpoints at the specified location in each process. Once an
eventpoint has served its purpose, the eventpoint may be removed by using the clear or
delete commands (see “delete” on page 6-115). Both commands remove an eventpoint.
clear removes eventpoints based on where they are in the process. delete removes
eventpoints specified by name or by eventpoint-number.
6-112

Command-Line Interface
NOTE

A location specifier may sometimes designate multiple locations
(see “Location Specifiers” on page 6-13). Hence, it is possible for
a single eventpoint to be set at multiple locations. If any of the
locations at which an eventpoint is set match any of the locations
implied by the location specifier for the clear command, then
that eventpoint will be removed (from all of its corresponding
locations).

It is unnecessary to clear a breakpoint in order to continue execution after the breakpoint
has stopped the program.

Example:

(local) clear sort.c:42

This example removes all eventpoints set at line 42 of the file named sort.c in each of
the processes specified by the default qualifier.

commands 6

Attach commands to a breakpoint, monitorpoint, or watchpoint.

commands eventpoint-spec

eventpoint-spec

The breakpoints, monitorpoints, or watchpoints to which the given commands
are attached. See “Eventpoint Specifiers” on page 6-16.

The commands command attaches the given list of commands to the given breakpoints,
monitorpoints, or watchpoints in processes specified by the qualifier. Each line following
the commands command-line should be a command to associate with the eventpoints.
To end the list of commands, type ’end’ on a line by itself.

Each of the commands given is implicitly qualified with the PID of the process associated
with the eventpoint.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering this command. See “Command Syntax” on page 6-1.

If the first line given is ’silent’, then the usual message that is printed when a breakpoint
or watchpoint stops the process will be suppressed. Furthermore, the ’silent’ command
will also prevent the current source line from being listed, and will prevent any displays
from being updated. The ’silent’ command is valid only when attached to a breakpoint or
watchpoint and is useful for breakpoints or watchpoints that are intended only to print a
specific message and then resume execution.

Certain commands (such as continue, resume, and signal), once executed, will
automatically terminate the command stream associated with a set of commands that
were attached to a breakpoint or watchpoint using the commands command. See
6-113

NightView LX User’s Guide
“continue” on page 6-124, “resume” on page 6-126, and “signal” on page 6-135.

Although you can use the commands command to attach commands to breakpoints,
monitorpoints, or watchpoints, the eventpoints specified on the command line must be all
of the same type. Also note that the commands allowed for monitorpoints are restricted to
print commands. See “monitorpoint” on page 6-108.

condition 6

Attach a condition to an eventpoint.

condition eventpoint-spec [conditional-expression]

eventpoint-spec

The eventpoints associated with the condition. See “Eventpoint Specifiers” on
page 6-16.

conditional-expression

The condition to be associated with the eventpoints. See “Expression Evalua-
tion” on page 3-21.

The simplest type of breakpoint is one which stops the program each time it is
encountered (an unconditional breakpoint). Often however, you may wish to stop the
program at a given location only after a certain event has occurred or when a specified
condition has been met (a conditional breakpoint). The condition command may be
used to attach a condition to a breakpoint.

In a similar manner, conditions may also be attached to tracepoints, monitorpoints,
heappoints, patchpoints, watchpoints, and syscallpoints, causing the associated action to
take effect only when the attached condition evaluates to TRUE.

The condition command attaches the condition conditional-expression to one or more
eventpoints in the processes specified by the qualifier. If conditional-expression is
omitted, then any condition attached to the specified eventpoint is removed in each of the
processes specified by the qualifier, and the eventpoint becomes an unconditional one. If
the specified eventpoint already has a condition attached to it, the existing condition is
replaced with conditional-expression.

Examples:

(local) breakpoint name=loop at foo.c:12
(local) condition loop (index == 0)
(local) condition loop

The first condition command attaches a condition to the breakpoint named ’loop’ so
that it only stops the program when the variable ’index’ is zero. The second condition
command removes any condition associated with the breakpoint named ’loop’ (thus
making it an unconditional breakpoint).

(local) trace MyEvent name=trace1 at foo.c:12
(local) condition trace1 (x>12)
6-114

Command-Line Interface
In this example, a tracepoint named ’trace1’ is set, and the condition ’x>12’ is attached to
the tracepoint. Therefore, the event will be traced only when ’x’ is greater than 12.

delete 6

Delete an eventpoint.

delete [eventpoint-spec ...]

Abbreviation: d

eventpoint-spec

The eventpoints to be deleted. See “Eventpoint Specifiers” on page 6-16.

delete removes the specified eventpoints in each of the processes specified by the
qualifier. Both delete and clear may be used to delete eventpoints (see “clear” on
page 6-112). The difference is that delete removes eventpoints specified by name or by
eventpoint-number and clear removes eventpoints specified by location.

If eventpoint-spec is omitted and your safety level is unsafe then all eventpoints in the
processes specified by the qualifier are removed (see “set-safety” on page 6-64). If
eventpoint-spec is omitted and your safety level is verify, then you are prompted for
confirmation before the eventpoints are removed (see “Replying to Debugger Questions”
on page 6-20). If eventpoint-spec is omitted and your safety level is forbid then no
eventpoints are removed.

The effect of the qualifier on this command is to limit the eventpoints deleted to be only
those that occur in the processes specified by the qualifier.

Examples:

(local) d loop
(local) d 2 5

The first example removes all eventpoints associated with the name ’loop’. The second
example removes eventpoints 2 and 5.

disable 6

Disable an eventpoint.

disable [eventpoint-spec ...]

eventpoint-spec

The eventpoints to be disabled. See “Eventpoint Specifiers” on page 6-16.

The disable command disables the given eventpoints in each of the processes specified
by the qualifier. Disabling an eventpoint is not quite the same as removing an eventpoint.
When an eventpoint is removed, it is made inoperative and all the information associated
6-115

NightView LX User’s Guide
with the eventpoint is removed. When an eventpoint is disabled, it is simply made
inoperative. It may still be seen, however, if you use the info eventpoint command
(see “info eventpoint” on page 6-149). All information associated with the eventpoint is
still retained so that the eventpoint may later be reactivated using the enable command
(see “enable” on page 6-116).

If eventpoint-spec is omitted and your safety level is unsafe then all eventpoints in the
processes specified by the qualifier are disabled (see “set-safety” on page 6-64). If
eventpoint-spec is omitted and your safety level is verify, then you are prompted for
confirmation before the eventpoints are disabled (see “Replying to Debugger Questions”
on page 6-20). If eventpoint-spec is omitted and your safety level is forbid then no
eventpoints are disabled.

The effect of the qualifier on this command is to limit the eventpoints disabled to be only
those that occur in the processes specified by the qualifier.

Example:

(local) disable 4
(local) (115 441) disable calvin
(local) (549) disable 8 hobbes 12 14

The first example disables eventpoint number 4 in the processes specified by the default
qualifier. The second example disables the eventpoints associated with the name
’calvin’ in process 115 and in process 441. The third example disables the eventpoints
associated with the name ’hobbes’ and disables eventpoints numbered 8, 12, and 14 in
process 549.

enable 6

Enable an eventpoint for a specified duration.

enable [/once|/delete] [eventpoint-spec ...]

/once

Specify whether the given eventpoints are to be enabled once only and then
immediately disabled after the next time they are hit. There need not be a
space between the command name and the ’/’.

/delete

Valid only for breakpoints and watchpoints. Specify whether the given break-
points and watchpoints are to be enabled once only and then immediately
deleted after the next time they are executed. There need not be a space
between the command name and the ’/’.

eventpoint-spec

The eventpoints to be enabled. See “Eventpoint Specifiers” on page 6-16.

The enable command enables for the specified duration each of the eventpoints in the
processes specified by the qualifier. If neither /once nor /delete is specified, then the
given eventpoints are simply enabled. If /once is specified, then the given eventpoints
6-116

Command-Line Interface
are temporarily enabled. The eventpoints will be disabled again after the next time they
are hit. If /delete is specified, then for each process in the qualifier, the given
breakpoints and watchpoints are enabled and also marked for deletion. The breakpoints
and watchpoints will be deleted after the next time they are hit.

If eventpoint-spec is omitted and your safety level is unsafe then all eventpoints in the
processes specified by the qualifier are enabled (see “set-safety” on page 6-64). If
eventpoint-spec is omitted and your safety level is verify, then you are prompted for
confirmation before the eventpoints are enabled (see “Replying to Debugger Questions”
on page 6-20). If eventpoint-spec is omitted and your safety level is forbid then no
eventpoints are enabled.

The effect of the qualifier on this command is to limit the eventpoints enabled to be only
those that occur in the processes specified by the qualifier.

Examples:

(local) enable calvin
(local) enable /once 4 6 23
(local) enable /delete 8 hobbes

The first example enables all eventpoints associated with the name ’calvin’ in the default
qualifier. The second example enables eventpoints number 4, 6, and 23 for once-only
execution (the eventpoints will be disabled after the next time they are hit). The third
example enables breakpoint number 8, and the breakpoints and watchpoints associated
with the name ’hobbes’ for deletion (these breakpoints and watchpoints will be deleted
after the next time they are hit).

ignore 6

Attach an ignore-count to an eventpoint.

ignore eventpoint-spec count

eventpoint-spec

The eventpoints to be ignored. See “Eventpoints” on page 3-9.

count

The number of times to ignore the eventpoint. Specifying an ignore-count of
zero has the effect of causing the eventpoints to no longer be ignored. The
ignore-count is evaluated in the user's process.

The ignore command causes the specified eventpoints to be skipped the next count
times execution reaches them (even if the eventpoint is a conditional eventpoint). This is
accomplished by attaching an ignore-count to the given eventpoints. In the case of a
breakpoint, any NightView commands associated with the breakpoint will not be
executed until the breakpoint is hit.

Example:

(local) ignore calvin 4
6-117

NightView LX User’s Guide
This example causes the eventpoints associated with the name ’calvin’ to be ignored 4
times before they may be hit again.

tbreak 6

Set a temporary breakpoint.

tbreak [name=breakpoint-name] [[at] location-spec]
[if conditional-expression]

name=breakpoint-name

Gives a name to the breakpoint for later reference. See “name” on page 6-100.
If breakpoint-name is already defined then this command adds the newly cre-
ated breakpoints to the list of eventpoints associated with the name.

location-spec

Specifies the breakpoint location. See “Location Specifiers” on page 6-13.

if conditional-expression

Specifies an eventpoint condition. The language and scope of the expression
is determined by the location at which the breakpoint is set (see “Scope” on
page 3-25 and “Context” on page 3-24). See “Expression Evaluation” on page
3-21.

Note: The at, if, and name keywords may not be abbreviated in this command.

Like the breakpoint command (see “breakpoint” on page 6-101), the tbreak
command sets a breakpoint. The difference between the two is that tbreak sets a one-
time-only breakpoint in each of the processes specified by the qualifier. The breakpoint
will be disabled after being hit once.

Example:

(local) (115) tbreak sort.c:48

This example sets a temporary breakpoint in process 115 at line 48 of the source file
sort.c.

tpatch 6

Set a patchpoint that will execute only once.

tpatch [name=patchpoint-name] [[at] location-spec] eval expression

Insert an expression in the program that will be executed the next time the patchpoint is
hit, then never executed again unless explicitly enabled. See “enable” on page 6-116.

tpatch [name=patchpoint-name] [[at] location-spec] goto location-spec
6-118

Command-Line Interface
Overwrite an instruction in the program with a branch that will only be taken once.
Subsequent execution will ignore the patchpoint and execute the original instruction.

name= patchpoint-name

Patchpoints are assigned event numbers, and the name= syntax as well as the
name command (see “name” on page 6-100) may be used to give them
names. See “Manipulating Eventpoints” on page 6-98.

at location-spec

Specify the exact point in the program to execute the patchpoint. See “Loca-
tion Specifiers” on page 6-13. The patchpoint is executed immediately prior to
any existing code at this location.

If location-spec is omitted, then the location used is the next instruction to be
executed in the current stack frame. See “Current Frame” on page 3-25.

eval expression

This variant of the patchpoint command specifies an expression to insert
in the program at the designated location-spec. C and C++ programmers
should note that this is an expression and not a statement; therefore, it does not
end with a semicolon. (The concept of expression is extended to include
assignments and procedure calls in Fortran.) See “Expression Evaluation” on
page 3-21.

goto location-spec

This variant of the patchpoint command specifies a location to branch to
when the program reaches the point of the patchpoint. The instruction origi-
nally at the patchpoint location will not be executed.

NOTE

The keywords name, at, eval, and goto may not be abbrevi-
ated in this command.

The tpatch command is a variant of the patchpoint command. See “patchpoint” on
page 6-103. It works exactly like the patchpoint command, but a temporary patchpoint
will automatically disable itself after executing one time. A temporary patchpoint may be
enabled later, in which case it will act exactly like a normal patchpoint. See “enable” on
page 6-116.

A temporary patchpoint may be useful for patching in initialization code which should
only execute once.
6-119

NightView LX User’s Guide
watchpoint 6

Set a watchpoint.

watchpoint [eventpoint-modifier] [/once] [/read] [/write]
[name=watchpoint-name] [at] lvalue [if conditional-expression]

watchpoint [eventpoint-modifier] [/once] [/read] [/write] /address
[name=watchpoint-name] [at] address-expression {size size-expression | type
expression} [if conditional-expression]

eventpoint-modifier

Specifies the watchpoint modifier. See “Eventpoint Modifiers” on page 6-100.

/once

The watchpoint is enabled only until the first time it is hit.

/read

Watchpoint processing occurs for a read (i.e., a "load") of the specified
address. Either or both of /read and /write may be specified.

/write

Watchpoint processing occurs for a write (i.e., a "store") of the specified
address. Either or both of /read and /write may be specified. If neither is
specified, the default is /write.

Watchpoint processing always occurs for a write, even if /write is omitted,
because it is not possible to create a read-only watchpoint on an IA-32 or
AMD64.

/address

Indicates this is the address-expression form of the command.

name=watchpoint-name

Gives a name to the watchpoint for later reference. (see “name” on page
6-100). If watchpoint-name is already defined, then this command adds the
newly created watchpoints to the list of eventpoints associated with the name.

lvalue

An expression that yields an addressable item to watch. For example, lvalue
may be a variable name or an array element.

address-expression

An expression that yields an address to watch.

size size-expression

The size of the item to watch, in bytes.
6-120

Command-Line Interface
type expression

An expression whose type indicates the size of the item to watch. type is
used only in restart information.

if conditional-expression

Sets a condition on the watchpoint. The watchpoint is considered to be hit
only if conditional-expression evaluates to TRUE. The conditional-expression
is always evaluated in the global scope. conditional-expression is evaluated
after the process has executed the instruction causing the trap.

conditional-expression may refer to the process-local convenience variable
$is. $is is the value of the watched item after the process has executed the
instruction causing the trap. See “Watchpoints” on page 3-13.

NOTE

The at, if, name, size and type keywords may not be abbre-
viated in this command.

watchpoint sets a watchpoint in each of the processes specified by the qualifier. This
causes the process to stop when it accesses the lvalue or address-expression. See “Watch-
points” on page 3-13.

You can specify commands to be executed when the watchpoint is hit. See “commands”
on page 6-113.

Watchpoints are not supported on CUDA memory locations. This is a technical
limitation of the CUDA architecture.

syscallpoint 6

Print system call information on entry and exit from system calls.

syscallpoint [eventpoint-modifiers][name=eventpoint-name] [syscall-list] [if
conditional-expression]

eventpoint-modifiers:

/disabled
/delete
/once

These modifiers have their standard meaning, as described in “Event-
point Modifiers” on page 6-100.

/before
/after
6-121

NightView LX User’s Guide
The /before and /after modifiers control when the syscallpoint applies
(before the syscall is executed, after, or both). If both options are omit-
ted, then the syscallpoint applies to both entry and exit of the service
call.

/nostop

The /nostop modifier causes the debugger to automatically resume exe-
cution of the process after it prints the system call information; thus
manual intervention is not required. Regardless, the process *is*
stopped while the debugger gets control and prints a message (and
resumes the process unless /nostop is specified). Note that all threads
are stopped during this time.

/except

The /except modifier changes the meaning of the syscall-list. Instead of
matching those system calls, it matches all except those system calls.
The syscall-list must be non-empty if you use /except (because an empty
syscall-list implies all system calls -- and using /except in such a circum-
stance would be useless).

name=eventpoint-name

Gives a name to the syscallpoint for later reference. See “name” on page
6-100. If eventpoint-name is already defined then this command adds the
newly created syscallpoints to the list of eventpoints associated with the name.

syscall-list

Specifies the list of system calls that you are interested in tracing. If syscall-
list is omitted, it implies all system calls. Otherwise, syscall-list should be one
or more valid system call names, separated by commas or spaces.

The list of valid system call names can be found using the graphical interface
in the Syscallpoint Dialog by pressing the Select... button (see “System
Call Selection Dialog” on page 8-34).

It is possible while debugging multiple processes from different target sys-
tems at the same time in the same NightView session that the list of valid sys-
tem calls can differ between processes; although, the majority of system call
names are common between Linux kernel versions.

if conditional-expression

Specifies a syscallpoint condition. If specified, the expression is evaluated to
see if the syscallpoint applies or not. This can test more complex conditions
that merely the service call number. Since NightView cannot predict ahead of
time where a syscallpoint might stop, the condition is always evaluated in the
global scope.

The commands command (see “commands” on page 6-113) can be used to add com-
mands to be executed when the process stops on an eventpoint. No commands are
allowed if the /nostop modifier is specified.
6-122

Command-Line Interface
Special Restrictions

The combination of /before and /after modifiers as well as the list of system calls
must be unique across the entire process. You are not allowed to define multiple
syscallpoints which have overlapping system calls. The /except option may be use-
ful to define a catch-all syscallpoint that does not apply to any of the other syscall-
points already defined.

Due to the way the Linux kernel implements system call tracing, NightView is lim-
ited when stopped at a syscallpoint. Anything that requires NightView to execute
the process will not work at a syscallpoint. This means that you cannot call func-
tions in expressions (which may mean you can’t do some operations internally
implemented as functions that aren’t obvious).

These restrictions also apply to the syscallpoint condition and any commands you
may want to execute when the syscallpoint stops. For the same reason, you can’t do
things like modify the program counter in an expression and prevent the service call
from completing.

Due to Linux internals, the system call number on exit from a system call is some-
times reported as -1 rather than the actual service number. This behavior is typically
limited to special service calls used to do things like return from signal handlers.

Controlling Execution 6

This section describes commands used to control the execution of a process.

Most of the commands described in this section cause the processes specified in the
qualifier to resume execution and then wait for something to happen. (This is what you
usually want when you are debugging a single process.) Only resume resumes
execution and then returns immediately for another command.

Some of the commands continue until something special happens. For example, step
continues until control crosses a source line boundary. However, you should be aware
that another event, such as a signal or hitting a breakpoint, may cause the process to stop
sooner.

If the process stopped because of a signal, then it will receive that signal when the
process resumes, subject to the setting of the handle command, see “handle” on page
6-136. If you want the process to receive a different signal, or no signal at all, then use
the signal command. See “signal” on page 6-135.

NOTE

On Linux, there is no way to pass SIGSTOP to a process being
debugged.

If you ask to continue execution of a process with any of the commands here, and that
process is already executing, then you get a warning message. Any other processes
6-123

NightView LX User’s Guide
specified by the qualifier are continued.

If a process is stopped at a breakpoint or watchpoint, it is not necessary to remove the
breakpoint or watchpoint before continuing.

set-run-mode 6

Controls whether all threads in a multi-threaded process resume execution when a single
thread is told to resume execution.

set-run-mode mode

one

In this mode, commands or actions that cause a single thread to resume execu-
tion have no effect on other threads in the process. Just the current thread exe-
cutes.

all

In this mode, commands or actions that cause a thread to resume execution
cause all other threads in the process to resume execution as well.

The run mode is consulted when a thread’s execution is resumed by an action in the graph-
ical interface (e.g. pressing the resume icon, using a keyboard shortcut in a source panel,
etc.) or when a command is typed that does not supply overriding run mode options (e.g.
/one or /all).

When using the one mode on a CUDA context, host threads will remain stopped but all
CUDA code will resume execution. This is a technical limitation of the CUDA driver.

IMPORTANT

The one mode should be used with care. It is not uncommon for a
single thread to block waiting on operations to be completed by
other threads (e.g. by pthread_cond_wait(3) and many
other services that hold resources). If those other threads are not
permitted to resume, the one thread that was resumed may block
indefinitely. In such circumstances, stop the blocked thread and
resume all threads using /all on your command or change the
run mode to all.

continue 6

Continue execution and wait for something to happen.

continue [/one | /all] [count]
6-124

Command-Line Interface
Abbreviation: c

count

If the count argument is specified, the processes will not stop at the current
breakpoint or watchpoint again until they have hit it count times. This argu-
ment is ignored for any processes that are not stopped at breakpoints or watch-
points.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. If both this option and /all are omit-
ted, the current run mode controls which threads execute (see “set-run-mode”
on page 6-124). This option is redundant for single-threaded processes.
When applied to a CUDA context, all CUDA code will execute. See “set-run-
mode” on page 6-124.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

continue causes the processes specified by the qualifier to resume execution at the
point where they last stopped. Processes run concurrently. Each process will execute until
some event, such as hitting a breakpoint, causes it to stop.

If this command is entered interactively, the debugger does not prompt for any more
commands until one of the processes specified by the qualifier stops executing for some
reason. Note that only one of the specified processes has to stop for the continue
command to complete; it does not wait for all of the processes to stop. Note also that a
process is considered to be stopped the moment it hits a breakpoint or watchpoint; if the
breakpoint or watchpoint has commands attached to it, they probably will not execute
before you receive a prompt for another command.

If a continue command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a continue
command continues execution of a process that is currently executing another breakpoint
(or watchpoint) command stream, the continue command does not take effect until
that command stream has completed execution. See “Command Streams” on page 3-36.

If a continue command continues execution of a process that is currently executing an
on program or on restart command stream, the continue command does not
take effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

continue is similar to resume. See “resume” on page 6-126.

Example:

(local) c 5

The processes specified by the default qualifier are resumed and will not stop again at the
6-125

NightView LX User’s Guide
current breakpoint or watchpoint until it has been hit 5 times.

resume 6

Continue execution.

resume [/one | /all] [sigid]

sigid

The processes receive the specified signal when they resume execution. sigid
is a signal name or number. You may specify a signal name with or without
the SIG prefix; the name is case-insensitive. If sigid is 0, then the processes
receive no signal when they resume execution. See “signal” on page 6-135.

If this argument is not present, then the processes are resumed with the signal
that caused them to stop, similar to continue.

NOTE

On Linux, there is no way to pass SIGSTOP to a process being
debugged.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. If both this option and /all are omit-
ted, the current run mode controls which threads execute (see “set-run-mode”
on page 6-124). This option is redundant for single-threaded processes.
When applied to a CUDA context, all CUDA code will execute. See “set-run-
mode” on page 6-124.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

resume causes the processes or threads specified by the qualifier to resume execu-
tion at the point where they last stopped. The processes or threads run concurrently.
Each process will execute until some event, such as hitting a breakpoint or watch-
point, causes it to stop.

If a resume command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a resume command
continues execution of a process that is currently executing another breakpoint (or
watchpoint) command stream, the resume command does not take effect until that
command stream has completed execution. See “Command Streams” on page 3-36.
6-126

Command-Line Interface
If a resume command continues execution of a process that is currently executing an on
program or on restart command stream, the resume command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

The difference between resume and continue is that resume does not wait for the
processes to stop. The debugger continues to read and process commands. See “continue”
on page 6-124.

Example:

(local) resume 0

The processes specified by the default qualifier are resumed with no signal.

Example:

(local) resume 2

The processes specified by the default qualifier are resumed with signal number 2.

step 6

Execute one line, stepping into procedures.

step [/one | /all] [repeat]

Abbreviation: s

repeat

The repeat argument specifies the number of lines to single step. The default
is one line.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. When applied to a CUDA context, all
CUDA code will execute. See “set-run-mode” on page 6-124. If both this
option and /all are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

It is worth noting that the /all option does not imply that all threads will
single step. All threads will execute while the current thread steps and then all
threads will be stopped when the step operation completes. The other threads
may execute many source lines or only a few instructions.
6-127

NightView LX User’s Guide
step causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With a repeat count, this happens repeat times.

step follows execution into called procedures. That is, if the current line is a procedure
call, and you step, then the process will execute until it is in that new procedure and
then stop. If you want to step over the procedure, use next. See “next” on page 6-129.

If a step command causes execution to enter or leave a called procedure, then the output
includes the equivalent of a frame 0 command to show this. See “frame” on page
6-138.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-15 for a discussion of the interactions between single-stepping and
signals.

step is interpreted relative to the current frame. See “Current Frame” on page 3-25. That
is, any lower frames are automatically finished before stepping.

There are also commands to single step individual instructions. See “stepi” on page 6-130
and “nexti” on page 6-131.

When the program has just started, step steps to the beginning of the procedure that calls
static initializers or library-level elaboration procedures, if any. If there are none, step
steps to the beginning of the main procedure.

Because of optimization and other considerations, a process may appear to stop multiple
times in the same line or not at all in some lines. The decorations that appear when you
list the source can help you decide which lines are executable (see “Source Line
Decorations” on page 6-83). Also, disassembly can help you determine the flow of
control through your program (see “x” on page 6-89 and “Source Menu” on page 8-10).

If the step command causes execution to enter a procedure which is uninteresting, the
step acts like next. See “Interesting Subprograms” on page 3-27. See “next” on page
6-129.

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

When stepping in CUDA code, special rules apply with regard to how much of the CUDA
device state may change during the step operation. You will step only a single warp if
the current frame is the innermost frame (i.e. frame 0 if there are no non-interesting
frames), and you do not step over a __syncthreads() operation. Otherwise, the step opera-
tion will resume execution of all CUDA devices until the step completes.
6-128

Command-Line Interface
next 6

Execute one line, stepping over procedures.

next [/one | /all] [repeat]

Abbreviation: n

repeat

The repeat argument specifies the number of lines to single step. The default
is one line.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. When applied to a CUDA context, all
CUDA code will execute. See “set-run-mode” on page 6-124. If both this
option and /all are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

It is worth noting that the /all option does not imply that all threads will
step over a single line. All threads will execute while the current thread steps
over its current line and then all threads will be stopped when the step opera-
tion completes. The other threads may execute many source lines or only a
few instructions.

next causes the processes specified by the qualifier to continue execution until they
have crossed a source line boundary. With a repeat count, this happens repeat times.

next steps over called procedures, including "inline" procedures. See “Inline
Subprograms” on page 3-26. That is, if the current line is a procedure call, and you single
step with next, then the process will execute until that new procedure has returned. If
you want to follow execution into the procedure, use step. See “step” on page 6-127.

If a next command causes execution to leave a called procedure, then the output
includes the equivalent of a frame 0 command to show this. See “frame” on page
6-138.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-15 for a discussion of the interactions between single-stepping and
signals.

next is interpreted relative to the current frame. See “Current Frame” on page 3-25. That
is, any lower frames are automatically finished before stepping.
6-129

NightView LX User’s Guide
There are also commands to single step individual instructions. See “nexti” on page
6-131 and “stepi” on page 6-130.

When the program has just started, next steps to the beginning of the main procedure.

Because of optimization and other considerations, each process may appear to stop
multiple times in the same line or not at all in some lines. The decorations that appear
when you list the source can help you decide which lines are executable (see “Source
Line Decorations” on page 6-83). Also, disassembly can help you determine the flow of
control through your program (see “x” on page 6-89 and “Source Menu” on page 8-10).

NOTE

If you step to a source line, and the instructions corresponding to
that line begin with an inline call, NightView positions you at the
beginning of the inline subprogram, rather than on the line with
the call.

When stepping in CUDA code, special rules apply with regard to how much of the CUDA
device state may change during the step operation. You will step only a single warp if
the current frame is the innermost frame (i.e. frame 0 if there are no non-interesting
frames), you do not step over a __syncthreads() operation, and you do not step over any
called procedures. Otherwise, the step operation will resume execution of all CUDA
devices until the step completes.

stepi 6

Execute one instruction, stepping into procedures.

stepi [/one | /all] [repeat]

Abbreviation: si

repeat

The repeat argument specifies the number of instructions to single step. The
default is one instruction.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. When applied to a CUDA context, all
CUDA code will execute. See “set-run-mode” on page 6-124. If both this
option and /all are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
6-130

Command-Line Interface
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

It is worth noting that the /all option does not imply that all threads will
single step an instruction. All threads will execute while the current thread
steps and then all threads will be stopped when the step operation completes.
The other threads may execute many source lines or only a few instructions.

stepi executes a single machine instruction in each of the processes specified by the
qualifier.

This is very similar to step, except that step executes lines and stepi executes
individual instructions. See “step” on page 6-127.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-15 for a discussion of the interactions between single-stepping and
signals.

stepi is interpreted relative to the current frame. See “Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

Sometimes, when stepping by instructions, it is useful to set up a display command to
show the instruction that is just about to be executed each time the process stops. To do
that, say

(local) display/i $pc

See “display” on page 6-94.

If the stepi command causes execution to enter a procedure which is uninteresting, the
stepi acts like nexti. See “Interesting Subprograms” on page 3-27. See “nexti” on
page 6-131.

When stepping in CUDA code, special rules apply with regard to how much of the CUDA
device state may change during the step operation. You will step only a single warp if
the current frame is the innermost frame (i.e. frame 0 if there are no non-interesting
frames), and you do not step over a __syncthreads() operation. Otherwise, the step opera-
tion will resume execution of all CUDA devices until the step completes.

nexti 6

Execute one instruction, stepping over procedures.

nexti [/one | /all] [repeat]

Abbreviation: ni

repeat

The repeat argument specifies the number of instructions to single step. The
default is one instruction.
6-131

NightView LX User’s Guide
/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. When applied to a CUDA context, all
CUDA code will execute. See “set-run-mode” on page 6-124. If both this
option and /all are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

It is worth noting that the /all option does not imply that all threads will
step over a single instruction. All threads will execute while the current
thread steps and then all threads will be stopped when the step operation com-
pletes. The other threads may execute many source lines or only a few
instructions.

nexti executes a single machine instruction in each of the processes specified by the
qualifier, except that nexti steps over procedure calls and inlined procedures. See
“Inline Subprograms” on page 3-26.

This is very similar to next, except that next executes lines and nexti executes
individual instructions. See “next” on page 6-129.

This command completes only when all of the processes specified by the qualifier have
completed the single step or stopped for some other reason (like receiving a signal). See
“Signals” on page 3-15 for a discussion of the interactions between single-stepping and
signals.

nexti is interpreted relative to the current frame. See “Current Frame” on page 3-25.
That is, any lower frames are automatically finished before stepping.

When stepping in CUDA code, special rules apply with regard to how much of the CUDA
device state may change during the step operation. You will step only a single warp if
the current frame is the innermost frame (i.e. frame 0 if there are no non-interesting
frames), you do not step over a __syncthreads() operation, and you do not step over any
called procedures. Otherwise, the step operation will resume execution of all CUDA
devices until the step completes.

finish 6

Continue execution until the current function finishes.

finish [/one | /all]
6-132

Command-Line Interface
/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. When applied to a CUDA context, all
CUDA code will execute. See “set-run-mode” on page 6-124. If both this
option and /all are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

It is worth noting that the /all option does not imply that all threads will
finish out of their current routines. All threads will execute while the current
thread finishes executing the current routine and then all threads will be
stopped. The other threads may execute only a few instructions, many source
lines, or many functions.

finish causes a process to continue execution until the current frame returns. This
happens in each process specified by the qualifier.

Note that this may cause the process to finish multiple procedures, depending on which
frame is the current frame. See “frame” on page 6-138. If the current frame is in the
context of a thread or thread process chosen by the select-context command,
execution continues until that thread or thread process completes execution of that
procedure, or until the process stops for some other reason. See “Multithreaded
Programs” on page 3-40.

In general, the exact action of this command is dependent on the language being
debugged.

The finish command causes execution to leave a called procedure, so the output
includes the equivalent of a frame 0 command to show this.

This command completes only when all of the processes specified by the qualifier have
completed the function execution or stopped for some other reason (like receiving a
signal). The discussion in “Signals” on page 3-15 concerning interactions between single-
stepping and signals also applies to the finish command.

When stepping in CUDA code, special rules apply with regard to how much of the CUDA
device state may change during the step operation. You will step only a single warp if
the current frame is the innermost frame (i.e. frame 0 if there are no non-interesting
frames), you do not step over a __syncthreads() operation, and you do not step over any
called procedures. Otherwise, the step operation will resume execution of all CUDA
devices until the step completes.

stop 6

Stop a process.
6-133

NightView LX User’s Guide
stop

The stop command stops each of the processes specified by the qualifier. In many cases
(such as setting breakpoints), NightView requires a process to be stopped before a
command may be applied to the process.

The stop command does not complete until all of the specified processes have been
stopped. If a specified process is already stopped, this command silently ignores that
process.

WARNING

It is possible, though unlikely, that the process will stop of its own
accord (say by hitting a breakpoint) while NightView is trying to
stop it. If that happens, your process may receive a spurious
SIGTRAP signal the next time you resume its execution. This signal
should be harmless; resuming your process after this signal occurs
should get everything back to normal.

Example:

(local) (addams) stop

This example stops each of the processes in the process family named ’addams’.

jump 6

Continue execution at a specific location.

jump [/one | /all] [at] location-spec

location-spec

The location-spec specifies where to continue execution. See “Location Speci-
fiers” on page 6-13.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. If both this option and /all are omit-
ted, the current run mode controls which threads execute (see “set-run-mode”
on page 6-124). This option is redundant for single-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
6-134

Command-Line Interface
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

It is worth noting that the /all option does not imply that all threads will
begin execution at the specified location. Only the current thread will resume
execution at the specified location; all other threads will resume execution
from their current PC.

jump causes execution to continue at the specified location. This happens for each
process specified in the qualifier.

jump does not modify the stack frames or registers, it just modifies the program counter
and continues execution. Unless you are sure the registers have the right contents for the
new location, you are cautioned to avoid using this command.

You must be in frame 0, with no hidden frames below frame zero, to use jump. See
“Interesting Subprograms” on page 3-27.

The jump command is not supported in CUDA code.

signal 6

Continue execution with a signal.

signal [/one | /all] sigid

sigid

Specifies the name or number of the signal with which to continue. If sigid is
0, then the processes are continued without a signal. You may specify a signal
name with or without the SIG prefix; the name is case-insensitive.

/one

This option causes only the current thread to resume execution. All other
threads in the process remain stopped. If both this option and /all are omit-
ted, the current run mode controls which threads execute (see “set-run-mode”
on page 6-124). This option is redundant for single-threaded processes.

/all

This option causes all threads in the process to resume execution. If both this
option and /one are omitted, the current run mode controls which threads
execute (see “set-run-mode” on page 6-124). This option is redundant for sin-
gle-threaded processes.

signal resumes execution of the processes specified in the qualifier, passing them a
signal.

signal is useful if a process has received a signal (causing it to stop and be recognized
by the debugger), but you don't want it to see the signal. Then, rather than using
continue to continue the process, use signal 0.

Or, perhaps you want the process to receive a different signal. signal can resume your
6-135

NightView LX User’s Guide
process with any signal.

If a signal command in a breakpoint (or watchpoint) command stream continues
execution of the process stopped at that breakpoint or watchpoint, the command stream is
terminated; no further commands are executed from that stream. If a signal command
continues execution of a process that is currently executing another breakpoint (or
watchpoint) command stream, the signal command does not take effect until that
command stream has completed execution. See “Command Streams” on page 3-36.

If a signal command continues execution of a process that is currently executing an on
program or on restart command stream, the signal command does not take
effect until the affected process has been completely initialized by NightView and is
ready to be debugged.

If a signal command continues execution of a CUDA context, then the signal number
or name is ignored, because signals are not a meaningful concept for CUDA contexts.
The CUDA devices are resumed, however.

For a way to have the debugger deal with signals automatically, see “handle” on page
6-136. signal overrides the pass setting of handle.

NOTE

On Linux, there is no way to pass SIGSTOP to a process being
debugged.

Type info signal to get a list of all of the signals on your system. See “info signal”
on page 6-160.

Example:

(local) signal 2

The processes resume with signal number 2.

handle 6

Specify how to handle signals in the user process.

handle [/signal] sigid keyword ...

/signal

Specifies handling of a signal. This is the default.

sigid

Specifies the name or number of a signal to handle. You may specify a signal
name with or without the SIG prefix; the name is case-insensitive.
6-136

Command-Line Interface
keyword

keyword is one of stop, nostop, print, noprint, pass or nopass.
Multiple keywords may be specified.

handle tells the debugger how to deal with signals sent to the user program.

Here are the meanings of the keywords:

stop

The process stops when it gets this signal. print is implied with this key-
word.

nostop

The process continues executing automatically after the signal. You may still
use print to tell you when the signal has occurred.

print

NightView notifies you that the signal has occurred. In the command-line
interface, a message is printed to your terminal. In the graphical user interface,
a message is printed in the Debug Message Area. See Chapter 8 [Graphical
User Interface] on page 8-1. See “Message Panel” on page 8-61.

noprint

You do not receive notification when the signal occurs. nostop is implied
with this keyword.

pass

The signal will be passed to your process the next time it executes.

NOTE

There is no way to pass SIGSTOP to a process being debugged.

nopass

The signal is discarded, after stopping and printing if that's appropriate.

In most cases, a signal sent to a debugged program will cause that program to be stopped
and NightView to be notified of the signal. NightView's normal action for most signals is
to notify you of the signal and save it to be passed to the process the next time it is
continued. For example, the default setting for SIGQUIT would be described as:

(local) handle sigquit stop print pass

This default behavior can be altered by the handle command. Some settings allow the
system to avoid stopping your process and notifying NightView of the signal. See
“Signals” on page 3-15 for more information about this.

The default action for a few signals is different than the behavior described above.
6-137

NightView LX User’s Guide
Consider SIGALRM, which is not usually an error; it is used in the normal functioning of
the program. You usually don't want to know when your program gets a SIGALRM (but
your program does) so the default setting for SIGALRM is:

(local) handle sigalrm nostop noprint pass

This says that if NightView discovers that your process has been sent a SIGALRM, it will
automatically resume execution and pass the signal to the process without notifying you.
(NightView may not even be aware of the signal with these settings of the handle
command. See “Signals” on page 3-15.)

SIGINT is handled a little differently; when the process receives a SIGINT, the process stops
and NightView notifies you, but the signal is discarded, so that the process never sees it.
The normal setting for SIGINT is:

(local) handle sigint stop print nopass

For a way to deal with signals one at a time, see “signal” on page 6-135.

To find out the current settings for all the signals, see “info signal” on page 6-160.

If two conflicting keywords are specified, they are both applied, in the order they appear.
For example, if the initial setting for signal number 1 is stop, print, pass, and you
say:

(local) handle 1 noprint print

then the new setting is nostop, print, pass, because noprint implies nostop.

handle applies to all the processes specified in the qualifier.

Selecting Context 6

frame 6

Select a new stack frame or print a description of the current stack frame.

frame [frame-number]

frame *expression [at location-spec]

Abbreviation: f

frame-number

Frame number selected as the new current stack frame. Frame number zero
corresponds to the currently executing frame. Frame numbers for all the cur-
rently available stack frames may be obtained with the backtrace com-
mand (see “backtrace” on page 6-86).
6-138

Command-Line Interface
*expression

Expression which yields an address at which the stack frame should start. This
is the value that $cfa would have, not the value of $sp.

location-spec

Specifies a location in the program to use to interpret the stack frame at the
address given by *expression. See “Location Specifiers” on page 6-13. If you
do not supply this argument, the default is the current value of $cpc.

NOTE

The at keyword may not be abbreviated in this command.

If no argument is given, a brief description of the current stack frame is printed. If
multiple processes are specified in the command qualifier, each of them is described
separately. For a more complete description of a frame, see “info frame” on page 6-157.

If a frame-number is given, the chosen stack frame is selected as the current frame (see
“Current Frame” on page 3-25).

The *expression form of this command is provided for those occasions in which the stack
is in an inconsistent state, or you wish to examine some memory whose contents look like
stack frames. You should be very careful when using this form, observing the following
cautions.

• A stack frame cannot be interpreted except in the context of some program-
counter value. Therefore, you must be sure that the location-spec you give
(or the value of $cpc) is consistent with the stack frame you are examin-
ing.

• The values of the machine registers are not altered by this form of the
frame command. This means that variables that reside in registers cannot
be reliably examined.

• The up, down, and backtrace commands are executed relative to the
given frame address and program-counter value. However, the register
contents for calling frames may still be incorrect, since only the registers
saved in the stack can be restored by NightView.

• Modifying a register (or a variable stored in a register) may alter the cur-
rent value of a machine register, or it may alter the value of that register
stored on the stack. You must be very careful when doing this.

• Unless you have modified $pc or other machine registers, resuming exe-
cution of the process will resume with the state the process was in before
the frame command was issued.

Once you have issued a frame command with a *expression argument, you can restore
the previous view of the stack by issuing a frame command with a frame-number
argument. This restores NightView's view of the stack to what it was before you issued
the frame *expression command.
6-139

NightView LX User’s Guide
We recommend that, while you have the frame set using the *expression form, you
should restrict yourself to just using the up, down, backtrace, and print commands,
and that you print only global variables or variables stored on the stack.

up 6

Move one or more stack frames toward the caller of the current stack frame.

up [number-of-frames]

number-of-frames

Number of stack frames to advance toward the oldest calling frame. The num-
ber zero may be used to restore the current source position in the current frame
(see “Current Frame” on page 3-25). If a negative number is specified, then
frames are advanced toward the newest stack frame (see “down” on page
6-140).

If number-of-frames is not given, the number defaults to one, corresponding to the
caller of the current frame.

This command is applied to each process in the qualifier.

down 6

Move one or more stack frames toward frames called by the current stack frame.

down [number-of-frames]

number-of-frames

Number of stack frames to advance toward the currently executing (newest)
stack frame. The number zero may be used to restore the current source posi-
tion in the current frame (see “Current Frame” on page 3-25). If a negative
number is specified, then frames are advanced toward the oldest stack frame
(see “up” on page 6-140).

If number-of-frames is not given, the number defaults to one, corresponding to the
frame called by the current frame.

This command is applied to each process in the qualifier.
6-140

Command-Line Interface
select-context 6

Select the context ofa thread or a thread process.

select-context default

select-context thread=expression

select-context pid=pid

select-context name=name

select-context stackaddress=expression

select-context cuda context context

select-context cuda sm sm

select-context cuda warp warp

select-context cuda lane lane

select-context cuda block x[,y[,z]]

select-context cuda thread x[,y[,z]]

default

This keyword selects the stack frame for the context where the process has
stopped. If the process has threads, the default context is the thread process
that stopped the process. See “Multithreaded Programs” on page 3-40.

thread=expression

The thread= keyword selects the context of a thread created by
thr_create(3thread). The expression must be the thread_t value
returned by thr_create for a currently active thread.

pid=pid

The pid= keyword selects the context of a specific thread process. The pid is
the ID of the thread process whose context is selected.

name=name

The name= keyword selects the context of a specific thread by matching the
supplied name; name must identify a single thread in the current process. See
“set-thread-name” on page 6-146 for more information on thread names.

stackaddress=address

The stackaddress= keyword selects the context of a specific thread by
matching the supplied address; address must be a process address value inside
some thread’s stack.
6-141

NightView LX User’s Guide
This can be useful if you know the pthread_self() values reported by
threads, but you are looking at a core file which has lost the thread associa-
tions. For all but the main thread, the pthread_self() value is normally
contained within the stack segment for the associated thread.

cuda context context

The cuda context keywords change the current debugger context to that
of the specified CUDA context.

cuda sm sm

The cuda sm keywords change the current context to that of the specified
CUDA symmetric multiprocessor (sm) within the current CUDA context.

cuda warp warp

The cuda warp keywords change the current context to that of the specified
warp within the current CUDA symmetric multiprocessor (SM).

cuda lane lane

The cuda lane keywords change the current context to that of the specified
lane within the current CUDA warp.

cuda block x[,y[,z]]

The cuda block keywords change the current context to that of the speci-
fied (x,y,z); (x,y); or x block coordinates within the current CUDA context.

cuda thread x[,y[,z]]

The cuda thread keywords change the current context to that of the speci-
fied (x,y,z); (x,y); or x thread coordinates within the current CUDA block.

The select-context command allows you to examine the context (see “Examining
Your Program” on page 3-21) of a thread or a thread process. Using select-context,
you can get a backtrace (see “backtrace” on page 6-86) and examine registers and
variables in the context of the selected thread or thread process.

When a process that contains multiple threads or thread processes stops, the current
context becomes that of one specific thread or thread process. (For a discussion of how
this choice is made, see “Multithreaded Programs” on page 3-40.) You can use the
select-context command to temporarily change the context to that of some other
thread or thread process.

Once a context has been selected, all frame, up, down, and backtrace commands
apply to that context. All expressions and references to registers also refer to that context.

Note that execution control is on a process basis: if you resume execution, all threads are
allowed to execute. If you enter a finish, step, next, stepi, or nexti command,
the process executes until the selected thread or thread process completes the stepping
operation, but other threads or thread processes may execute as well.

If you request evaluation of an expression containing a function call, the process is
allowed to execute and all threads are allowed to run. If another thread hits a breakpoint,
or stops for some other reason, the function call is terminated prematurely and an error
6-142

Command-Line Interface
message is issued.

To get a list of the threads and thread processes in a process, see “info threads” on page
6-167.

Miscellaneous Commands 6

help 6

Access the online help system.

help [section]

section

The name of a section in this manual (anything in the table of contents).

You can read any section in this document by giving the section name (or a unique prefix
of the section name) as an argument to the help command.

If you type help without arguments, the help system displays the document section most
relevant to the last error you received. Type help again to see help on the previous error
you received, and so on.

Error message identifiers are section names, so you can get help for a specific error by
giving the help command with the error message identifier. An error message identifier,
beginning with E-, is printed with each error message. See “Errors” on page 3-35.

In the non-graphical user interfaces, help prints to the terminal. In the graphical user
interface, help uses another program to display the documentation in a separate window.
See “GUI Online Help” on page 8-1.

NOTE

In the non-graphical user interfaces, help is available only for
error messages.

The help command ignores the command qualifier.

Examples:

(local) help Summary of Commands

The above example displays the section of the document that contains a brief description
of each command.

(local) help backtrace

Display the description of the backtrace command.
6-143

NightView LX User’s Guide
(local) help E-command_proc003

Display help for the error with error message identifier E-command_proc003.

refresh 6

Re-read source files and refresh the terminal screen.

refresh

NightView normally notices when source files have changed when it switches the current
source display. If you want to update the display without switching files, or if you suspect
that a system problem has fooled the automatic mechanism, you can force source files to
be read again with the refresh command.

In the simple full-screen interface, the refresh command also clears the terminal
screen and redraws it. This is helpful when the screen becomes garbled, such as with a
modem and noisy phone lines. See Chapter 7 [Simple Full-Screen Interface] on page 7-1.

shell 6

Run an arbitrary shell command.

shell [shell-command]

The shell command is used to execute a single line in a subshell. This command has
nothing to do with debugging and the qualifier is ignored. It is simply provided because it
is sometimes convenient to have a way to execute a shell command without having to
suspend or exit the debugger.

If you just type shell without arguments, the debugger puts you in a shell where you
can execute arbitrary commands until you exit the shell, at which time the debugger will
get control again. You cannot use this form of the shell command inside a macro (See
“Defining and Using Macros” on page 6-173).

The programs run by this command run on the local system only (the same one you are
running NightView on) and inherit the current working directory of the debugger (see
“cd” on page 6-76).

If you start background processes via shell, they will continue to run normally even if
you quit out of the debugger.

The shell used is determined by looking for the SHELL environment variable, and if that is
not found, by using your login shell.

In the simple full-screen interface, NightView does not have control over the terminal
while you are executing a shell command, so after the command has completed you are
asked to press return. This gives you a chance to view the command output before
NightView redraws the screen. See Chapter 7 [Simple Full-Screen Interface] on page 7-1.
6-144

Command-Line Interface
source 6

Input commands from a source file.

source command-file

command-file

The file to read.

To specify a file on a remote system, use the form user@host:/path. See
“Remote File Access” on page 3-7.

This command reads the designated file and treats each line in the file as though it were a
command you typed in. After reading all the commands in the file, the debugger returns
to reading commands from the keyboard again. (If source commands are nested, ending
one file returns to reading from the previous file.)

If NightView encounters any serious error, it stops reading from a source file. See
“Command Streams” on page 3-36.

The qualifier on the source command has no effect. The default qualifier is applied to
any commands in the source file which do not have explicit qualifiers.

declare-thread-tag 6

Declare the type of a thread tag.

declare-thread-tag tagname typespec

A thread tag that is used without being declared is always a 1 bit boolean flag value. Use
declare-thread-tag to give the tag a different type before assigning to the tagname in a
patchpoint command, or manually via

set $thr.tagname = ...

The typespec consists of one or two parts. The first part names the type, and the second
(optional) part declares it to be a simple one dimensional array with a fixed size.

The name of the type can be specified two different ways:

It can be a type from the program, as long as it is a type that can be referenced with a name
(where compound names are allowed). The compound name syntax will accept either . or
:: to separate the name components. The leading components should name scopes to look
in for the next component. The last component should be the name of a type.

It can also be a simple C-like type composed of some (sensible) combination of the key-
words: bool, char, short, int, long, float, double, signed, unsigned.

The optional array declaration consists of a C-like open bracket [followed by a positive
integer constant, followed by a close bracket].

For example,
6-145

NightView LX User’s Guide
declare-thread-tag foo int
declare-thread-tag bar char[20]
declare-thread-tag zort TypesClass::VectorType
declare-thread-tag color MyPackage.Types.Colors

The latter two invocations referring to types declared in a source code present in your pro-
gram; for example:

// C++ Example
class TypesClass {
public:

typedef float VectorType[10];
};

-- Ada Example
package MyPackage is

type Colors is (blue, green, chartreuse, vermilion);
end MyPackage;

See “Thread Tags” on page 3-41 for more information.

set-thread-name 6

Set the name of a thread.

set-thread-name [modifier] "name"

Where modifier, if supplied, is one of the following:

name="current_name"

The name= keyword selects the thread that matches the supplied
current_name. This command will fail if the specified current_name is not
unique among the current list of threads. In this form of the command, two
names are specified: the current_name which is used to identify the thread;
and name, the thread’s new name. Both names must be specified as quoted
strings.

task=task_name_or_id

The task= keyword selects the thread by it’s Ada task name or its Ada task
ID, which is a pointer value assigned by the Ada runtime.

thread=thread_id

The thread= keyword selects the thread by it’s thread ID value, as returned
by pthread_self(3) and pthread_create(3).

pid=pid

The pid= keyword selects the thread by its gettid(2) value; displayed as
its pid in NightView. Under Linux, the main thread’s getpid(2) and
gettid(2) values are identical; all other threads in the process share the
same getpid(2) value, but have unique gettid(2) values.
6-146

Command-Line Interface
If modifier is omitted, then the command applies to the current thread.

The set-thread-name command allows you to change the thread name used by
NightView to further identify the thread in info-thread commands and in the
Context Panel and in Context, Process, and Thread displays in Data Panels.

By default, NightView automatically assigns names to threads using the name of the start
routine whose address is passed to pthread_create(3) when the thread is created.

This command overrides that default name.

User defined names are not preserved on restart, so any names assigned to threads using
the set-thread-name command are not automatically reassigned when rerunning the
process. For a way to identify threads across restart, see “Thread Tags” on page 3-41.

This command does not select a thread to be the "current thread" in NightView; it merely
changes the specified thread’s name.

The set-thread-name command may not be used on CUDA contexts or threads.

delay 6

Delay NightView command execution for a specified time.

delay [milliseconds]

milliseconds

The number of milliseconds to delay command execution. If not specified, the
default is 1.

This command delays the execution of NightView commands for at least the specified
time period, expressed in milliseconds. The actual delay may be longer than the specified
period. The command following a delay command in the same command stream will
not execute until at least the specified time has elapsed.

The primary use of the delay command is in command scripts, when you may want to
prevent a command from executing immediately after the preceding one. For instance,
you may wish to allow time for your program to execute for some length of time between
the execution of two NightView commands.

The qualifier on the delay command has no effect.

Info Commands 6

The info commands all start with the word info, which may always be abbreviated to
the single character i. The keyword following info identifies one of the many topics for
which info is available. Each info command may also have additional arguments specific
to the individual command.
6-147

NightView LX User’s Guide
The info commands can be broadly divided into two basic categories:

• Status queries, returning information about the current state of the debug-
ger and the processes being debugged.

• Symbol table queries, returning information about program variables and
type definitions.
6-148

Command-Line Interface
Status Information 6

The status info commands allow you to query various information about the current state
of the debugger (e.g., what breakpoints are set, how many dialogues are active, etc.).

info log 6

Describe any open log files.

info log

Describes any open log files currently in use by the debugger. The log files may be
created by set-log (see “set-log” on page 6-59) or by set-show (see “set-show” on
page 6-33).

info eventpoint 6

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints, heappoints,
watchpoints, and syscallpoints.

info eventpoint [/verbose] [eventpoint-spec] ...

/verbose

Specify that the locations of all eventpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the eventpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 6-61). The
verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command describes eventpoints associated with the processes in the command
qualifier. An eventpoint is any of a breakpoint, tracepoint, patchpoint, monitorpoint,
heappoint, watchpoint, or syscallpoint. See “breakpoint” on page 6-101, “tracepoint” on
page 6-106, “patchpoint” on page 6-103, “monitorpoint” on page 6-108, “watchpoint” on
page 6-120, “syscallpoint” on page 6-121, and “heappoint” on page 6-110.

The information printed includes:

• The eventpoint ID.

• The eventpoint type.

• Current state of eventpoint (enabled, disabled, temporary).

• The eventpoint location. If /verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
6-149

NightView LX User’s Guide
which it was specified when the eventpoint was created. For watchpoints,
information is printed about the address being watched.

• The number of times program execution has crossed the eventpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the eventpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to the eventpoint.

• The current ignore count.

• Any commands attached to the eventpoint (if it is a breakpoint, monitor-
point, watchpoint, or syscallpoint).

• For heappoints, the word check if the heappoint does a heap check, or the
word debug followed by the new settings if the heappoint changes the
heap debugger settings.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last eventpoint listed. See “x” on page 6-89
and “Predefined Convenience Variables” on page 6-5.

info breakpoint 6

Describe current state of breakpoints.

info breakpoint [/verbose] [eventpoint-spec] ...

Abbreviation: i b

/verbose

Specify that the locations of all breakpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the breakpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 6-61). The
verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command normally describes all breakpoints associated with the processes indicated
by the command qualifier. If you specify a list of eventpoint names or numbers, only
those events are described. If any of the specified eventpoints are not breakpoints, they
are ignored. Breakpoints are created with the breakpoint command. See “breakpoint”
on page 6-101.

The information printed includes:
6-150

Command-Line Interface
• The breakpoint ID.

• Current state of breakpoint (enabled, disabled, temporary).

• The breakpoint location. If /verbose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the breakpoint was created.

• The number of times program execution has crossed the breakpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the breakpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to the breakpoint.

• The current ignore count.

• Any commands attached to the breakpoint.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last breakpoint listed. See “x” on page 6-89
and “Predefined Convenience Variables” on page 6-5.

info tracepoint 6

Describe current state of tracepoints.

info tracepoint [/verbose] [eventpoint-spec] ...

/verbose

Specify that the locations of all tracepoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the tracepoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 6-61). The
verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command describes tracepoints in the processes indicated by the qualifier. Normally
all tracepoints are described, but if an argument is given, only those named are described.
Any eventpoints specified in the argument list which are not tracepoints are ignored.
Tracepoints are created with the tracepoint command. See “tracepoint” on page
6-106.

The information printed includes:

• The tracepoint ID.
6-151

NightView LX User’s Guide
• Current state of tracepoint (enabled, disabled, temporary).

• The tracepoint location. If /verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the tracepoint was created.

• The tracepoint event ID.

• The number of times program execution has crossed the tracepoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the tracepoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to tracepoint.

• The current ignore count.

• The expression being recorded at the tracepoint.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last tracepoint listed. See “x” on page 6-89 and
“Predefined Convenience Variables” on page 6-5.

info patchpoint 6

Describe current state of patchpoints.

info patchpoint [/verbose] [eventpoint-spec] ...

/verbose

Specify that the locations of all patchpoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the patchpoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 6-61). The
verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command describes patchpoints in the processes indicated by the qualifier. Normally
all patchpoints are described, but if an argument is given, only those named are
described. Any eventpoints specified in the argument list which are not patchpoints are
ignored. Patchpoints are created using the patchpoint command. See “patchpoint” on
page 6-103.

The information printed includes:

• The patchpoint ID.
6-152

Command-Line Interface
• Current state of patchpoint (enabled, disabled, temporary).

• The patchpoint location. If /verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the patchpoint was created.

• The number of times program execution has crossed the patchpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the patchpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to patchpoint.

• The current ignore count.

• The expression patched in at that point, or a description of where the pro-
gram will branch.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last patchpoint listed. See “x” on page 6-89
and “Predefined Convenience Variables” on page 6-5.

info monitorpoint 6

Describe current state of monitorpoints.

info monitorpoint [/verbose] [eventpoint-spec] ...

/verbose

Specify that the locations of all monitorpoints displayed will be in verbose
format. Verbose location format includes the program counter address (or
addresses) of the monitorpoint and, where possible, the corresponding func-
tion name, file name, and line number. The number of PC addresses printed is
subject to the limit on printing addresses (see “set-limits” on page 6-61). The
verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command describes monitorpoints in the processes indicated by the qualifier.
Normally all monitorpoints are described, but if an argument is given, only those named
are described. Any eventpoints specified in the argument list which are not monitorpoints
are ignored. Monitorpoints are created with the monitorpoint command. See
“monitorpoint” on page 6-108.

The information printed includes:

• The monitorpoint ID.
6-153

NightView LX User’s Guide
• Current state of monitorpoint (enabled, disabled, temporary).

• The monitorpoint location. If /verbose was specified, then the location
will be printed in verbose format. Otherwise it will be printed in the format
in which it was specified when the monitorpoint was created.

• The number of times program execution has crossed the monitorpoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the monitorpoint has been hit since the program
started execution (this count is incremented only if the condition and
ignore count are satisfied).

• Any conditions attached to monitorpoint.

• The current ignore count.

• The commands attached to the monitorpoint.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last monitorpoint listed. See “x” on page 6-89
and “Predefined Convenience Variables” on page 6-5.

info heappoint 6

Describe the current state of heappoints.

info heappoint [/verbose] [eventpoint-spec] ...

/verbose

Specify that the locations of all heappoints displayed will be in verbose for-
mat. Verbose location format includes the program counter address (or
addresses) of the heappoint and, where possible, the corresponding function
name, file name, and line number. The number of PC addresses printed is sub-
ject to the limit on printing addresses (see “set-limits” on page 6-61). The
verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command describes heappoints in the processes indicated by the qualifier. Normally
all heappoints are described, but if an argument is given, only those named are described.
Any eventpoints specified in the argument list which are not heappoints are ignored.
Heappoints are created with the heappoint command. See “heappoint” on page 6-110.

The information printed includes:

• The heappoint ID.

• Current state of heappoint (enabled, disabled, temporary).
6-154

Command-Line Interface
• The heappoint location. If /verbose was specified, then the location will
be printed in verbose format. Otherwise it will be printed in the format in
which it was specified when the heappoint was created.

• The number of times program execution has crossed the heappoint since
the program started execution (even if the ignore count or condition was
not satisfied, this count is incremented).

• The number of times the heappoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to heappoint.

• The current ignore count.

• The word check if this heappoint does a heap check, or the word debug
followed by the new settings if this heappoint changes the heap debugger
settings.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the last heappoint listed. See “x” on page 6-89 and
“Predefined Convenience Variables” on page 6-5.

info watchpoint 6

Describe current state of watchpoints.

info watchpoint [/verbose] [eventpoint-spec] ...

/verbose

The verbose keyword is accepted for compatibility with other watchpoints,
but is ignored. The verbose keyword may be abbreviated.

eventpoint-spec

An eventpoint specifier, which is an eventpoint name, an eventpoint number,
or the keyword at followed by a location specifier. See “Eventpoint Specifi-
ers” on page 6-16.

This command describes watchpoints in the processes indicated by the qualifier. Normally
all watchpoints are described, but if an argument is given, only those named are described.
Any eventpoints specified in the argument list which are not watchpoints are ignored.
Watchpoints are created with the watchpoint command. See “watchpoint” on page
6-120.

The information printed includes:

• The watchpoint ID.

• Current state of the watchpoint (enabled, disabled, temporary).

• The address being watched.

• The number of times the process accessed the address being watched since
the program started execution. This count is incremented even if the ignore
6-155

NightView LX User’s Guide
count or condition was not satisfied. This number is displayed as #cross-
ings (for consistency with other eventpoint types).

• The number of times the watchpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to the watchpoint.

• The current ignore count.

• Any commands attached to the watchpoint.

info syscallpoint 6

Describe current state of watchpoints.

info syscallpoint [eventpoint-spec] ...

eventpoint-spec

An eventpoint specifier, which is an eventpoint name or an eventpoint num-
ber. See “Eventpoint Specifiers” on page 6-16.

This command describes syscallpoints in the processes indicated by the qualifier. Nor-
mally all syscallpoints are described, but if an argument is given, only those named are
described. The name or number identifies the syscallpoint and not the system calls them-
selves.

Any eventpoints specified in the argument list which are not syscallpoints are ignored.
Syscallpoints are created with the syscallpoint command. See “syscallpoint” on page
6-121.

The information printed includes:

• The syscallpoint ID.

• Current state of the syscallpoint (enabled, disabled, temporary).

• The system call(s) being traced.

• The number of times the process encountered a matching system call since
the program started execution. This count is incremented even if the ignore
count or condition was not satisfied. This number is displayed as #cross-
ings (for consistency with other eventpoint types).

• The number of times the syscallpoint has been hit since the program started
execution (this count is incremented only if the condition and ignore count
are satisfied).

• Any conditions attached to the syscallpoint.

• The current ignore count.

• Any commands attached to the syscallpoint.
6-156

Command-Line Interface
info frame 6

Describe a stack frame.

info frame [/v] [*expression [at location-spec]]

/v

If this option is supplied, NightView prints detailed, machine-specific, infor-
mation about the requested stack frame. You are seldom likely to be interested
in this information; it is provided primarily for detecting problems with the
generated debugging information.

*expression

The address of a stack frame. This is the value that $cfa would have, not
$sp.

location-spec

Specifies a location in the program to use to interpret the stack frame at the
address given by *expression. See “Location Specifiers” on page 6-13. If you
do not supply this argument, the default is the current value of $cpc.

NOTE

The at keyword may not be abbreviated in this command.

This command describes all available information about the current stack frame for a
process (see “Current Frame” on page 3-25). See also “frame” on page 6-138.

If multiple processes are specified in the command qualifier, each of them is described
separately. An error message is printed if any of the processes are running.

If the optional *expression is given, then the frame at that address is described (but the
current frame is not changed). If you supply the location-spec argument, the frame is
interpreted as a frame for the routine at the resulting address. If you omit this argument,
the current value of $cpc is used in decoding the frame.

If *expression does not evaluate to a valid frame address, or the frame at that address
does not correspond to the given program location, the information printed will probably
be nonsense.

The information printed about a frame includes:

• The address of the frame.

• The addresses of the adjacent frames (if any).

• The frame size.

• The saved return address and its location on the stack (or in a register).

• Any saved registers and their locations on the stack.
6-157

NightView LX User’s Guide
• Which registers are currently in use as stack and/or frame pointers and their
relation to the current frame.

• The name of the subroutine associated with the frame along with the source
line and file name (if known).

• How $fp is computed for the frame.

info directories 6

Print the search path used to locate source files.

info directories

Print the search path used to locate source files. If multiple processes are given in the
qualifier, print the list of directories for each process. See “directory” on page 6-79, for
the command used to set the search path.

info convenience 6

Describe convenience variables.

info convenience

This command describes all the convenience variables that have been defined.
Convenience variables may be global or process local (see “set-local” on page 6-65). This
command first describes the global variables, then (for each process specified by the
command qualifier) describes the process local variables. The name, data type, and value
of each variable is listed.

The convenience variables that correspond to the process registers are not described by
this command (see “info registers” on page 6-159).

info display 6

Describe expressions that are automatically displayed.

info display

This command describes the set of expressions that are automatically displayed each time
a program stops (see “display” on page 6-94).

info history 6

Print value history information.

info history [number]
6-158

Command-Line Interface
number

Specifies an item in the value history list (each value has a unique sequence
number). The default value is the most recent history list entry.

This command prints ten history-list values centered around the specified entry. It also
prints information about how many history items currently exist. See “set-history” on
page 6-61.

info limits 6

Print information about limits on expression and location output.

info limits

The command prints the limits on array elements and character-string elements printed by
expression output commands, and the limits on program locations printed by other info
commands. See “set-limits” on page 6-61.

The qualifier is ignored by this command.

info registers 6

Print information about registers.

info registers [regexp]

regexp

A regular expression matching register names. An anchored match is implied.
See “Regular Expressions” on page 6-16.

If the regexp argument is not given, this command prints all the normally accessible
registers that are of general interest to most programmers (such as accumulators, program
counter, stack pointer, etc.). If you give a regular expression argument, any register with a
name matching that regular expression is printed. To print all the registers, you must
specify the regular expression .* as an argument (this includes all the obscure control
registers and any other registers not normally of interest to a programmer). See
“Predefined Convenience Variables” on page 6-5.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

Registers are printed relative to the current frame (see “Current Frame” on page 3-25).
This means that any register saving is logically unwound as you change frames (the
register contents are not actually modified). You see the value the register would have if
you returned to the current frame. (If the current frame is also the most recent frame at
the end of the stack, the current machine register contents are the correct contents relative
to frame zero.)

If the current frame is not frame zero, but you want to see the current active contents of
the machine registers, you have to move to frame zero before running the info
registers command (see “frame” on page 6-138).
6-159

NightView LX User’s Guide
If the command qualifier names multiple processes, the registers from each process are
printed separately. If any of the processes are running, an error is printed.

Since this command operates only on register names, the dollar sign ($) normally used to
refer to registers is optional for this command.

Some registers are defined by the architecture to be composed of various fields. info
registers expands those fields symbolically. If a field is a single bit, NightView prints
an abbreviation for that field only if the value of the field is 1. See the architecture
manual for descriptions of the fields and a list of the abbreviations for each register.

info signal 6

Print information about signals.

info signal [signal ...]

signal

A signal number or signal name.

This command describes how signals will be handled by the process receiving them. If
the command qualifier specifies multiple processes, then the signal information is listed
separately for each process. The information printed includes:

• The signal name.

• The signal number.

• The way the debugger will handle this signal. (see “handle” on page
6-136).

If no signals are specified, then information for all signals is printed.

info process 6

Describe processes being debugged.

info process

This command lists information about all the processes specified in the command
qualifier (qualify with (all) to list all of them). The information includes:

• The process ID (PID).

• The controlling dialogue for the process.

• The arguments passed to the program on startup (argv array).

• The current process state (running, running one thread, stopped).

• When the process state is stopped, list where and why it stopped.

• The current language setting. See “set-language” on page 6-59.
6-160

Command-Line Interface
• The disposition of child processes; that is, under what circumstances a
child process will be debugged. See “set-children” on page 6-49.

• If the current source file resides on a remote system, its name is preceded
by user@host. Local source files will not have that designation. If the cur-
rent source file is different than that recorded in the program’s debug infor-
mation, both source paths are listed.

• The run-mode of the process (see “set-run-mode” on page 6-124).

info memory 6

Print information about memory, which may include information about the virtual address
space, or the heap.

info memory [/ranges] [/heap] [/leaks] [/allocated]
[/all] [/append=filename] [/output=filename]
[/verbose] [expression]

/ranges

If this option is specified, the command prints information about the virtual
address space. If an expression is specified, then it should evaluate to an
address, and only information about the region that contains that address is
displayed. If no expression is specified, then all regions in each process are
displayed. For each region of memory displayed, this command displays the
following information:

• The beginning address and ending address of the region.

• The size, in bytes, of the region.

• If the region is the first region associated with a shared library,
the name of the library is printed.

• Whether the region is readable, writable, executable, shared, or
locked in physical memory.

• Whether the region is being used as the process' stack or mem-
ory heap.

• If the region was created by NightView, what the region is for
and how much space is left in the region. See “Implementation
Overview” on page E-1. If the /verbose option is specified,
NightView prints information about the individual blocks allo-
cated in the region.

The list also includes any regions reserved by the user with the mreserve
command. See “mreserve” on page 6-51.

/heap

If this option is specified, the command prints information about the heap.
This option is supported only for processes which have turned on heap debug-
ging.
6-161

NightView LX User’s Guide
If an expression is specified, then it should evaluate to an address, and the
command displays the following heap information about the memory block
that contains the address, if any:

• its state, which will be one of:

- allocated

- freed, but retained

- freed or never allocated, but owned by heap

- not owned by heap

 In the case of the latter two, no further information is displayed.

• the address range of its memory block

• its size in bytes

• descriptions of any errors detected pertaining to it

• information pertaining to each heap operation (allocation, most
recent realloc, and free) that has happened for the block, includ-
ing this information for each:

- number and address range of post-fence bytes and the post-
fence fill byte

- number and address range of pre-fence bytes and the pre-fence
fill byte

- number of slop bytes

- whether free filling was enabled and the free fill byte

- whether malloc filling was enabled and the malloc fill byte

- whether hardware overrun protection was enabled

- walkback of stack frames at the time of that operation, as
restricted by the walkback setting at that time

If no expression is specified, the command displays the following global heap
information:

• totals, including:

- number of blocks ever allocated

- number of bytes ever allocated

- number of additional bytes of debugger overhead ever allo-
cated

- number of blocks ever freed

- number of bytes ever freed

- number of additional bytes of debugger overhead ever freed

- number of blocks currently allocated
6-162

Command-Line Interface
- number of bytes currently allocated

- number of additional bytes of debugger overhead currently
allocated

- number of blocks currently freed but still retained

- number of bytes currently freed but still retained

- number of additional bytes of debugger overhead currently
freed but still retained

• whether heap debugging is on or off

• number of post-fence bytes and the post-fence fill byte

• number of pre-fence bytes and the pre-fence fill byte

• number of slop bytes

• whether free filling is enabled and the free fill byte

• whether malloc filling is enabled and the malloc fill byte

• whether hardware overrun protection is enabled

• frequency of automatic heap checks (i.e. the number of heap opera-
tions between automatic heap checks)

• maximum heap size, which may be "unlimited"

• maximum number of retained free blocks, which may be "unlimited"

• maximum number of walkback frames per heap operation

• whether or not to check fill bytes of free blocks

/leaks

If this option is specified, the command prints information about heap blocks
which very likely have leaked. See “Leak Detection” on page 3-34 for accu-
racy limitations on leak detection. An expression may not be specified with
this option. This option is supported only for processes which have turned on
heap debugging.

If the /all option is specified, then all leaks will be displayed. Otherwise,
only new leaks since the last leak report will displayed.

If the /verbose option is omitted, then heap blocks are reported as sets. A
set contains all heap blocks with identical sizes and walkbacks at the time of
their allocations (or most recent reallocs), regardless of other characteris-
tics. For each set, the following information is reported:

• number of blocks in the set

• block size of the blocks in the set

• walkback of stack frames, as restricted by the walkback setting
at that time of the allocation (or most recent realloc) opera-
tion, of the blocks in the set
6-163

NightView LX User’s Guide
If the /verbose option is specified, then each heap block is reported individ-
ually. For each block, the following information is reported:

• its beginning address

• its size in bytes

• walkback of stack frames at the time of the allocation (or most
recent realloc) operation, as restricted by the walkback set-
ting at that time

/allocated

If this option is specified, the command prints information about heap blocks
which are still allocated. An expression may not be specified with this option.
This option is supported only for processes which have turned on heap debug-
ging.

If the /all option is specified, then all blocks still allocated will be dis-
played. Otherwise, only blocks still allocated and allocated since the last still
allocated blocks report will displayed.

The format of the output is identical to that for the /leaks option. The only
difference is that all allocated blocks are reported, instead of only those which
are determined to be leaks.

/all

This option is meaningful only with the /leaks or /allocated options.
See the descriptions of those options for its effect.

/append=filename

Write the output of the command to the specified filename, appending to any
existing contents.

/output=filename

Write the output of the command to the specified filename, replacing any
existing contents.

/verbose

Indicates that extra information should be printed.

This command displays information about the virtual address space, or about the heap, for
each process specified in the command qualifier. If no options are specified, the default
behavior is like that for the /ranges and /heap options.

info dialogue 6

Print information about active dialogues.

info dialogue

This command lists information about all the dialogues specified in the command
6-164

Command-Line Interface
qualifier (qualify with (all) to list all of them). The information includes:

• The machine running the dialogue.

• The sizes that will be used for patch areas created in the future. See “set-
patch-area-size” on page 6-65.

• The list of debug and nodebug patterns for this dialogue. See “debug”
on page 6-25.

• The processes being debugged under control of the dialogue.

• The user running the dialogue.

• The status of any dialogue output (see “set-show” on page 6-33).

• The list of object filename translations for this dialogue. See “translate-
object-file” on page 6-27.

info family 6

Print information about an existing process family.

info family [regexp]

regexp

A regular expression matching family names. An anchored match is implied.
See “Regular Expressions” on page 6-16.

For each family name that matches regexp this command lists each process that is a
member of that family (see “family” on page 6-48). If regexp is omitted, then the contents
of all process families are printed.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

info name 6

Print information about an existing eventpoint-name.

info name [regexp]

regexp

A regular expression matching eventpoint-names. An anchored match is
implied. See “Regular Expressions” on page 6-16.

For each eventpoint-name that matches regexp, this command lists each eventpoint that is
a member of that eventpoint-name (see “name” on page 6-100). If regexp is omitted, then
the contents of all eventpoint-names are printed.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).
6-165

NightView LX User’s Guide
Each eventpoint is identified by a dialogue-name, a process-id (PID), and an eventpoint-id
that is unique for that process.

info on dialogue 6

Print on dialogue commands.

info on dialogue [name]

name

The name of a prospective dialogue.

If no arguments are given, then all existing on dialogue commands are printed. If a
dialogue name is given, then only the on dialogue commands that would be executed
if a dialogue named name were to be created are printed. See “on dialogue” on page 6-29

info on program 6

Print on program commands.

info on program [program]

program

The path name of a prospective executable file.

If no arguments are given, then info on program prints all existing on program
commands for each dialogue specified by the qualifier. If a program path is given, then
info on program prints the on program commands that would be executed if
program were run in each dialogue specified by the qualifier. See “on program” on page
6-44.

info on restart 6

Print on restart commands.

info on restart [output=outname | append=outname] [program]

output=outname

Write the information to outname.

append=outname

Append the information to outname.

program

The path name of a prospective executable file.

If no program is given, then info on restart prints all existing on restart
commands for each dialogue specified by the qualifier. If a program path is given, then
6-166

Command-Line Interface
info on restart prints the on restart commands that would be executed if
program were run in each dialogue specified by the qualifier. See “on restart” on page
6-46.

If no outname is specified, then the output is to the terminal or to the GUI message area.

info on restart may be used to preserve restart information in a file for use in a
later debug session. See “source” on page 6-145. See “Restarting a Program” on page
3-16. For an example, see “checkpoint” on page 6-47.

info threads 6

Describe C threads and thread processes.

info threads [/verbose] [/cuda]
[/partition { physical | logical | pc }]

/verbose

Show all thread tags for each thread, using a multi-line display. By default,
only values for non-zero simple thread tag types are shown.

/cuda

Show all threads within any CUDA contexts.

/partition physical | logical | pc

If showing all threads within a CUDA context, specify the partitioning
method used to group the threads. The physical method organizes the
threads by physical characteristics of the CUDA device: SM, warp, and lane.
The logical method organizes the threads by block coordinates and then by
thread coordinates. The pc method organizes the threads into groups that
have common values of the program counter ($pc).

This command describes the C threads and thread processes for the processes specified by
the qualifier. If CUDA code is present in the application, it also describes CUDA contexts
and optionally the threads therein. The identifiers listed for each thread type may be used
with the select-context command to switch to that thread. See “select-context” on
page 6-141.

The current thread is marked with the leading characters =>.

If only one thread is running (see “set-run-mode” on page 6-124) then the leading charac-
ters => are followed by the word Running for the running thread.

For each host thread, the following information is printed:

• The process ID (PID) for the thread. This is the value that would be
returned by the gettid() system call (which is not available as a library
call). It is also the value you would see for the PID in a ps(1) listing if
you asked to see thread information. For Linux threads, all threads share
the same value as returned by getpid(2), but each thread has its own
gettid() value.
6-167

NightView LX User’s Guide
• The pthread_t value for the thread, which is assigned by
pthread_create(3) and returned by pthread_self(3).

• The name of the start routine of the thread, if NightView is able to locate it.
This is the name of the user’s function whose address is passed to
pthread_create(3).

• A list of all simple Thread Tags which have non-zero values. See
“Thread Tags” on page 3-41 for information on setting user-defined,
thread-specific values. Only tags with simple types and those which are
similar to a C char[] are shown by default; to see all thread tag values,
using the /verbose option.

In the graphical user interface, you can also see this thread information from the Display
menu. See “Data Menu” on page 8-14.

heapcheck 6

Check the heap for errors.

heapcheck [/all] [/append=filename] [/output=filename] [expression]

/all

Report all existing heap errors. Without this option, the only errors shown are
the ones that have occurred since the most recent heapcheck command,
automatic heap check performed by the process during heap operations (see
“Heap Check” on page 3-33), or heappoint check (see “heappoint” on page
6-110).

/append=filename

Write the output of the command to the specified filename, appending to any
existing contents.

/output=filename

Write the output of the command to the specified filename, replacing any
existing contents.

The heapcheck command checks the heap for errors, such as overwritten fences, for
each process in the qualifier. See “Fences” on page 3-31. If an expression is specified,
then it should evaluate to a heap address, and only the block that contains that address is
checked. If no expression is specified, then all heap blocks are checked. Heap debugging
must have been turned on already, via the heapdebug command (see “heapdebug” on
page 6-53) or the Debug Heap... item in the Process menu (see “Process Menu” on
page 8-9).

The output is identical to error reporting when heap errors are discovered by automatic
heap checks, or by a heappoint check. Possible errors are:

- post-fence modified in allocated block (value=address)

- pre-fence modified in allocated block (value=address)

- free-fill modified in free block (value=address)
6-168

Command-Line Interface
Symbol Table Information 6

The info commands in this section are used to lookup and report on information recorded
in the debug tables of program files. This includes the names and declarations of
variables, the address of generated code for source lines, etc.

info args 6

Print description of current routine arguments.

info args

This command prints a description of each argument of the subroutine associated with the
current frame (see “Current Frame” on page 3-25).

info locals 6

Print information about local variables.

info locals [regexp]

regexp

A regular expression matched against local variable names. An anchored
match is implied. See “Regular Expressions” on page 6-16.

Print a description of every local variable visible in the current context. If the regexp
argument is given, print only the variables with names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

The term local variables is defined to include all variables with any sort of restricted
scope. External variables visible throughout the program are never listed by this
command.

The information listed for each variable includes:

• The name of the variable.

• The type of the variable.

• The current value of the variable.

• The location of the variable.

• The scope of the variable (directly visible, inherited from an outer block,
etc.).

info variables 6

Print global variable information.
6-169

NightView LX User’s Guide
info variables [regexp]

regexp

A regular expression matched against global variable names. An anchored
match is implied. See “Regular Expressions” on page 6-16.

This command prints information about global variables. When the regexp argument is
given, it prints only variable names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

info address 6

Determine the location of a variable.

info address identifier

identifier

The name of the variable to be described.

Print out information about where the given variable (visible in the current context) is
located. If the variable is in a register, it prints the register name. If it is on the stack, it
prints the stack frame offset. If it is in static memory, it prints the absolute location.

To determine the absolute address of a particular instance of a stack variable you must
use the print command to evaluate an expression which returns the address (for the C
language, this would be something like print &name, see “print” on page 6-86).

info sources 6

List names of source files.

info sources [/v] [pattern]

pattern

Wildcard pattern to match against source file names. See “Wildcard Patterns”
on page 6-18.

This command lists the names of the source files recorded in the debug tables. If a
wildcard pattern is given, it lists only file names matching the wildcard pattern.

If the /v option is supplied, it lists the full pathnames of the files as recorded in the
debug tables.

If multiple processes are specified in the command qualifier, the source files for each
process are listed separately.
6-170

Command-Line Interface
info functions 6

List names of functions, subroutines.

info functions [regexp]

regexp

A regular expression to match against function names. An anchored match is
implied. See “Regular Expressions” on page 6-16.

This command lists the names of functions or subroutines recorded in the debug tables. If
a regular expression is given, it lists only names matching the regular expression.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

info types 6

Print type definition information.

info types [regexp]

regexp

A regular expression to match against type names. An anchored match is
implied. See “Regular Expressions” on page 6-16.

This command prints information about type definitions. When the regexp argument is
given, it prints only type names matching the regular expression; otherwise, it prints all
the types defined in the program.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

info whatis 6

Describe the result type of an expression visible in the current context.

info whatis expression

Abbreviation: whatis

expression

An expression for which the data type is to be determined. See “Expression
Evaluation” on page 3-21.

Describe the result type of the expression. The expression is not normally evaluated, but
operations which require run time type determination may require portions of the expres-
sion to be evaluated. If the expression includes the C++ dynamic_cast<> function, the
operands must be evaluated in order to determine the actual type of the result.
6-171

NightView LX User’s Guide
info representation 6

Describe the storage representation of an expression.

info representation expression

Abbreviation: representation

expression

An expression for which the data type is to be determined. See “Expression
Evaluation” on page 3-21.

Describe the storage representation of the result type of the expression. The expression is
not evaluated.

info declaration 6

Print the declaration of variables or types.

info declaration regexp

Abbreviation: ptype

regexp

A regular expression to match against type names and variable names. An
anchored match is implied. See “Regular Expressions” on page 6-16.

The regexp parameter may specify type or variable names visible in the current context.
This command prints the complete declaration of all matching names.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

info files 6

Print the names of the executable, symbol table and core files.

info files

For each process specified in the command qualifier, print the names of the executable
file, symbol table file, and core file associated with the process (the executable and
symbol table files are usually the same). If the file resides on a remote system, its name is
preceded by user@host. Local files will not have that designation.

info line 6

Describe location of a source line.

info line [at] location-spec
6-172

Command-Line Interface
location-spec

Query the source line number associated with this location.

Describe the location of the source line implied by the location-spec argument (see
“Location Specifiers” on page 6-13). The information printed includes:

• The address of the location-spec.

• The ranges of addresses occupied by the generated code for the line. The
number of address ranges printed is subject to the current limit on
addresses (see “set-limits” on page 6-61). If this is the first range for an
instance of the line, the address range is preceded by @.

• The source file and line number.

• The function containing the line.

This command sets the default x command dump address as well as the $_ predefined
convenience variable to the address of the first instruction in the line. See “x” on page
6-89 and “Predefined Convenience Variables” on page 6-5.

Defining and Using Macros 6

NightView provides a macro facility so you can augment the NightView commands with
your own features. Macros can either be used as part of another command, or as a new
command.

A macro is a named set of text, possibly with arguments, that can be substituted later in
any NightView command. The arguments allow macros to expand to different text in
different circumstances. Macros are useful in extending the command set available in
NightView; they can also serve as shortcuts for frequently used constructs in commands
or expressions.

define 6

Define a NightView macro.

define macro-name[(arg-name [, arg-name] ...)] [text]

define macro-name [(arg-name [, arg-name] ...)] as

macro-name

This is the name of the macro. Macro names follow the usual rules for identi-
fiers in most languages: they must begin with an alphabetic character, fol-
lowed by zero or more alphanumeric characters or underscore. There is no
limit to the length of a macro name.
6-173

NightView LX User’s Guide
A macro name can be the same as a NightView command name, but this may
render the command unusable. See “Referencing Macros” on page 6-176 for
more information.

arg-name

A formal argument name. These names follow the same rules as macro-name.

text

The text to be substituted when the macro is invoked. In this form, the substi-
tuted text will not contain any newline characters, so the text becomes part of
whatever command the macro invocation appears in.

NOTE

There must not be any blanks separating the macro-name from the
left parenthesis that introduces the formal arguments.

In the second form of the define command, the text of the macro begins on the line
following the define command and extends until a line containing only the words end
define is encountered. Except for the newline character immediately following the as
keyword and the newline immediately preceding the end define command, the
newline characters within the body of the macro will be retained in the substituted text.
Thus, each line of text in the macro body must normally be a complete NightView
command.

Comments appearing in the body of the macro become part of the body. Thus, they
appear in the text that is substituted for a reference to the macro. You should avoid
having a comment as the last line of a macro, because it may cause any text following the
macro invocation to be ignored.

In the command-line and simple full-screen interfaces, the prompt changes to > while
you are entering the second form of the define command. (See “Command Syntax” on
page 6-1.)

The define command associates a body of text with the given macro-name. When the
macro is invoked (see “Referencing Macros” on page 6-176), the macro name and its
actual arguments are replaced by the associated text. The text of the macro, called the
macro body, may contain references to other macros (in particular, they will want to
reference their formal arguments). A macro may not reference itself, either directly or
indirectly; that is, macros cannot be recursive.

Within the body of a macro, each arg-name becomes a macro without arguments that
expands to its corresponding actual argument. “Referencing Macros” on page 6-176
describes the syntax of macro invocations and actual arguments.

A macro body should not contain another define command.

The define command ignores any qualifier supplied for it.

If the given macro-name was previously defined as a macro, the new definition replaces
the old one. If you omit the text in a one-line definition, or the end define command
appears on the line immediately following the define...as command, any prior
6-174

Command-Line Interface
definition of macro-name is removed.

Examples:

(local) define printhex(str,x) printf "The value of %s is 0x%x\n",
@str, @x

The above example defines a macro that prints a descriptive string and the value of an
arbitrary variable, using the printf command.

(local) define advance(p) as
> set @p = @p->next
> print *@p
> end define

The preceding example defines a macro that advances a pointer to the next item in a
linked list, then prints the item. Note that this macro requires the language context to be C
or C++, but the type of the argument pointer can be a pointer to any structure that
contains an appropriately-typed field named "next".

(local) define short (VERY_LONG_NAME(INDEX*2,INDEX-1)*SOME_CONSTANT)

This example simply defines a shorthand for a long Fortran expression. Note that it does
not have any arguments; the parentheses surround the substituted text to make sure that
precedence of operators is preserved when the macro is invoked.
6-175

NightView LX User’s Guide
Referencing Macros 6

Macros are usually referenced by preceding the macro name with the @ character, and
following the macro name with a parenthesized list of arguments, if the macro was
defined with arguments. If you wish, you may enclose the macro name inside of ’{’ and
’}’ (but any argument list must appear outside of the braces). The number of arguments
you supply must be the same as the number of formal arguments (i.e., the arg-names)
specified in the define command; otherwise, NightView issues an error. Arguments are
matched with each formal argument name by position.

A reference to a macro without any arguments consists solely of the @ character
followed (without intervening blanks) by the macro name. A reference to a macro with
one or more arguments consists of the @ character, the macro name, and a list of actual
arguments. The actual arguments begin with a left parenthesis and end with a matching
right parenthesis. If more than one argument is given, a comma must separate them. If an
actual argument contains a left parenthesis, then the argument extends until a matching
right parenthesis is encountered, irrespective of any other characters, including commas,
in the intervening text. Note that an unmatched right parenthesis appearing in an actual
argument prematurely ends the list of actual arguments; this may cause an error, or it may
produce unexpected results.

An actual argument may contain an invocation of another macro; that invocation is
expanded immediately when the actual argument is read during the processing of the
enclosing macro invocation. This can lead to some surprising results, because NightView
expands these actual arguments without regard to the context in which they will
ultimately appear.

For example:

(local) define abc xyz
(local) define printit(x) printf "The value is %s\n", @x
(local) printf "The value is %s\n", "@abc"
(local) @printit("@abc")

The print command will print "The value is @abc", because macros are not normally
expanded within string literals. However, the @printit command will print "The value
is xyz", because NightView expands the macro @abc when it is processing the
invocation of macro @printit. At that time, it does not know that the double quotes
imply a string literal.

String literals as actual arguments can cause other problems as well. For example:

(local) define mymac body_does_not_matter
(local) # Illegal reference:
(local) @mymac("This has a left-parenthesis(")
(local) # Okay:
(local) @mymac("This has two parentheses()")

The first invocation of mymac is invalid because the actual argument contains an
unmatched left parenthesis. Since NightView attempts to balance parentheses without
regard to any other text (including quotes), the right parenthesis matches the left
parenthesis in the argument, leaving the argument list without a closing right parenthesis.
6-176

Command-Line Interface
If a macro invocation appears where a command keyword is expected, then you can leave
off the @ prefix character (but the macro name may not be enclosed between ’{’ and ’}’).
This allows macros to be used conveniently as command shortcuts. However, if the
macro requires arguments, these must still be placed within parentheses after the macro
name.

Macros take precedence over commands when the macro name appears in place of a
command keyword. This means that if you name a macro the same as a built-in
NightView command, you may not be able to reference the built-in command anymore.
However, you cannot abbreviate the macro name in an invocation, so you may be able to
use an abbreviation for the built-in command. If you name a macro the same as a built-in
command abbreviation, you won't be able to use that particular abbreviation for the built-
in command later, but you can still use the full form, or a different abbreviation. If you
accidentally name a macro the same as a built-in command, you can remove the
definition by entering

(local) # Note, no text given in definition.
(local) define macro-name

You may want to refer to the Summary of Commands (see Appendix C [Summary of
Commands] on page C-1) for a complete list of the NightView commands, so you can
avoid these kinds of conflicts.

Macro references can generally appear anywhere within a NightView command, but you
should be aware of the following rules:

• NightView never expands macros that appear within command comments.

• NightView usually does not expand macros that appear within string liter-
als. However, if the literal appears as an actual argument in another macro
invocation, macros within the string literal may be expanded.

• Macros are not expanded in the format-string argument to the printf
command. See “printf” on page 6-96.

• Macros appearing in an echo command are expanded. See “echo” on page
6-93.

• Macros appearing in a ! (see “!” on page 6-32), run (see “run” on page
6-35), or shell (see “shell” on page 6-144) command are not expanded.

• A macro referenced within a language expression must expand to text that
makes sense as part of that expression.

• A macro can be used to form part of a syntactic item, or token, in a Night-
View command. For example, you could form a variable name in an
expression from the results of two macro invocations. However, you can-
not use this technique to construct the name of a macro to be invoked.

• If the @ character is preceded by a non-whitespace character, the macro is
expanded only if the macro name is enclosed between ’{’ and ’}’.

Examples:

(local) define short (VERY_LONG_NAME(INDEX*2,INDEX-1)*SOME_CONSTANT)
(local) set $x=i + @{short}*10

The above example uses a macro in an expression.
6-177

NightView LX User’s Guide
(local) define printhex(str,x) printf "The value of %s is 0x%x\n", @str, @x

(local) printhex("ptr1", ptr1)

(local) printhex("ptr1->next", (ptr1=ptr1->next, ptr1))

This example invokes the macro ’printhex’ twice. The second invocation demonstrates
how an expression containing a comma can be included as a formal argument.

(local) directory user@{host}:/mydir # a macro invocation

(local) directory user@host:/mydir # not a macro invocation

In this example, the @ character is preceded by "r", so you must use ’{’ and ’}’ to have
the macro expanded.

The following C fragment defines some data types for use in the next example:

struct list_element {
struct list_element * next ;
struct data * the_data ;

};
extern struct list_element * hd ;

Example NightView commands:

(local) define printdata(p) as
> printf "The data is:\n"
> print *(@p)->the_data
> end define
(local) define next(p) as
> set @p = (@p)->next
> end define

info macros 6

Print a description of one or more NightView macros.

info macros [regexp]

regexp

A regular expression matching macro names. An anchored match is implied.
See “Regular Expressions” on page 6-16.

If the regexp argument is not given, the info macros command prints a description of
every macro you have defined. If you give a regexp argument, a description of every
macro whose name matches the regular expression is printed.

The regular expression case sensitivity depends on the current search mode (see “set-
search” on page 6-70).

The description of each macro includes:

• The name of the macro.

• The formal argument names, if any, of the macro.
6-178

Command-Line Interface
• The macro body text, exactly as it will appear when substituted, except that
the last line of the macro will be followed by a newline.

Smart Printing 6

NightView supports smart printing, which is the capability of recognizing certain com-
plex data types and presenting them in a simpler conceptual form that hides the details of
their implementation. See “Smart Printing” on page 3-38.

A smart printer is a definition that matches types based on a pattern (which also can
simply be a string). For any type that it matches, attempts to display an object of that
type will be based on the content of the smart printer. There are several types of smart
printers:

• replace, which replaces the entire content of the object with the result of
a user-defined expression (most likely based on the original object).

• struct, which is used for struct types and which allows some fields to be
hidden, others to be displayed with particular formats, and allows control
over which fields are automatically expanded or collapsed in the data
panel.

• container, which usually is used for container types (e.g. lists, vectors,
sets). It defines a number of convenience variables which instruct Night-
View how to iterate through elements of the container. Objects of these
types are displayed as abstract containers with each of the elements deter-
mined from the convenience variables.

Smart printers are associated with a single process. Different processes or applications
with totally different types that happen to have the same names can have completely dif-
ferent smart printers for those types.

Predefined smart printers are provided with NightView for many C++ STL container
types, and for many Qt types (see “Predefined Smart Printers” on page 6-183).
6-179

NightView LX User’s Guide
smart-print 6

Define, undefined, view, enable, or disable smart printers.

smart-print info [pattern]

smart-print { [on | off] }

smart-print replace pattern
 replace-definition
end-smart-print

smart-print struct pattern
 struct-definition
end-smart-print

smart-print container pattern
 container-definition
end-smart-print

smart-print undef pattern

smart-print reload

pattern

This is a pattern used to identify types to which this smart printer applies. It
may be a simple string which matches only a type with the same exact name,
or it may contain the * wildcard character which matches zero or more char-
acters in the type name. Because smart printers are used so often on C++ tem-
plate types, the * wildcard is required to have balanced < and > characters in
the matching substring (where no < or > character at all also is considered bal-
anced).

struct-definition

replace-definition

container-definition

These definitions are explained in subsequent sections.

With the info keyword, the command displays the pattern string for each smart printer
defined for the process. If a pattern is specified, it displays only the smart printer that
matches that pattern.

With the on or off keyword, all smart printing can be enabled or disabled for the pro-
cess. This is a convenient way to disable smart printing temporarily to actually look at the
complicated details of a type that has a smart printer. While off, all smart printers remain
defined but are disabled. When on, those smart printers function normally. The default
mode is on.

With the struct, replace, or container keywords, new smart printers are defined.
They match the pattern as specified in the command. The syntax and meanings of the def-
initions are explained in subsequent sections.
6-180

Command-Line Interface
With the undef keyword, an existing smart printer with the given pattern is removed
from the process.

With the reload keyword, NightView re-loads all the predefined smart printers into the
current process. It has no effect on smart printers defined by the user, so long as their pat-
terns do not conflict with the reloaded patterns.

replace Smart Printers 6

A replace smart printer can be used to modify the display of any object. It replaces the
entirety of the object with the result of a single expression. The replace-definition contains
at most one of each of the following lines:

replacement expression
format format-letter

The replacement line is required and provides the expression which replaces the
object. That expression is evaluated and its result will be displayed in lieu of the original
object. Within that expression, the original object can be referenced using the special
$val convenience variable.

The format line is optional and can be used to specify the format letter that should be
used to display the replacement expression.

struct Smart Printers 6

A struct smart printer is used to modify the display of a struct object. The struct-definition
in such a smart printer is a sequence of lines of the form:

self action
field name action
default action

The set of possible actions is:

hide
show
format format-letter
expand
collapse

The self keyword describes the smart printer modification applied to the whole struct.
Likely the most common action here is expand, so that it always is expanded by default
in the data panel. The self keyword should be used at most once in a smart printer defi-
nition.

The field keyword describes the smart printer modification applied to the field name.

The default keyword describes the smart printer modification applied to every field in
the struct that is not otherwise explicitly named by a field definition.

The hide action causes the given object or field to be hidden from display. The show
action causes the given object or field to be shown.
6-181

NightView LX User’s Guide
The format action causes the given object or field’s format to be changed from the
default to the specified format-letter.

The expand action causes the given object or field to be expanded automatically in the
data panel. The collapse action causes it to be collapsed automatically in the data
panel.

container Smart Printers 6

A container smart printer is used to describe container types. Objects with these smart
printers are described as abstract containers with a sequence of elements. The smart
printer describes a number of convenience variables which instruct NightView how to
iterate through the elements of the container.

The container-definition in such a smart printer is in two parts. Its syntax is:

initialize-line
...
iterate
iterate-line
...

The first part is a sequence of initialize-lines. Each line declares and initializes a user-
defined convenience variable which describes the first element in the container, and which
will be reused in the second part. The second part is a sequence of iterate-lines which
instruct NightView how to iterate from one element in the container to the next element in
the container. The names of the convenience variables are entirely user-defined and can
be anything the user wishes. There is one convenience variable that is predefined: $val,
which contains the original object being smart printed.

An initialize-line is one of the following:

element $variable = expression

Declare the $variable convenience variable. It is interpreted by NightView as the
value of the first element. In the iterate section, it is interpreted as the value of each
subsequent element.

index $variable = expression

Declare the $variable convenience variable. It is interpreted by NightView as the
index for the first element. In the iterate section, it is interpreted as the index of each
subsequent element. For containers which have no index concept (e.g. std::set),
this should still be defined, but it may be arbitrary such as initializing its value to 0
in the initialize section and incrementing it by 1 in the iterate section.

endflag $variable = expression

There should be exactly one line with the endflag keyword. It declares the $vari-
able convenience variable, which is interpreted as a boolean value. If it evaluates to
true (or any non-zero value if it isn’t strictly boolean), this tells NightView that the
iterator has reached the end of the container and that there are no more elements. In
the initialize section, if it evaluates to true, this tells NightView that the container
is empty. If it evaluates to true in the iterate section, this tells NightView that it
6-182

Command-Line Interface
has run out of elements. In any event, no further computations will be performed
once this evaluates to true.

temp $variable = expression

Declare the $variable convenience variable with the initial value expression. This
convenience variable is never used directly by NightView, but it may be used indi-
rectly in any of the expressions for the other keywords.

The values of the convenience variables above determine the display of the first element
(or lack thereof in the case of an empty container). The display of each subsequent ele-
ment is determined by evaluating the full set of iterate-lines. An iterate-line is of the form:

$variable = expression

The $variable convenience variable should be one defined in an initialize-line. Their
meanings to Nightview already are specified by the appropriate keyword in the initialize-
line that declared them. That is, the value of the convenience variable declared with
index will be displayed as the subsequent index. The value of the convenience variable
declared with element will be displayed as the subsequent value. The value of the con-
venience variable declared with endflag will be used to determine if the end of the con-
tainer has been reached.

Smart Printing Limitations 6

Function calls are not allowed in any of the expressions in a smart printer definition. How-
ever, intrinsic operations which happen to look like function calls are permitted (see
“Intrinsics for Smart Printing” on page 6-184).

For container smart printers, attempting to display high-numbered elements requires iter-
ating through all previous elements. Naturally, if the expressions are complex, this can be
quite slow, so expect delays. The debugger can be interrupted if this is taking longer than
expected.

Predefined Smart Printers 6

NightView provides predefined smart printers for types from the C++ STL and for types
from the Qt toolkit. These smart printers are defined in the following files:

/usr/lib/NightView/lib/stl.print
/usr/lib/NightView/lib/qt.print

NightView loads these files automatically. However, it will load any other file whose
name is of the form /usr/lib/NightView/lib/anything.print. If the user has
other smart printer definitions that they want accessible universally on the system, they
can be installed in a new file in that same directory.
6-183

NightView LX User’s Guide
The predefined set of smart printers includes support for the following STL types:

std::auto_ptr<*>
std::basic_string<char,*,*>
std::dequeu<*,*>
std::list<*,*>
std::map<*,*,*,*>
std::multimap<*,*,*,*>
std::multiset<*,*,*>
std::queue<*,*>
std::set<*,*,*>
std::stack<*,*>
std::vector<*,*>

The predefined set of smart printers includes support for the following Qt types:

QAtomicPointer<*>
QCache<*,*>
QHash<*,*>
QLinkedList<*,*>
QList<*>
QMap<*,*>
QMultiHash<*,*>
QMultiMap<*,*>
QPointer<*>
QQueue<*>
QSet<*>
QStack<*>
QString
QVector<*>

Intrinsics for Smart Printing 6

A number of intrinsics are implemented in NightView. They actually are available for
general-purpose use, but their primary purpose is for use in smart printing expressions:

__typeof__(expression)

Because smart printers can match many different types because of pattern matching
and templates, this allows the determination of the type of any expression. It emu-
lates the GNU C __typeof__ intrinsic.

__alignof__(expression-or-type)

This returns the default alignment for the expression or type. It does not necessarily
know about special options that affect alignment passed to the compiler, so it could
return surprising result if any such options were used.

__nview_iconv__(buffer,size,fromcode[,tocode])

This uses the iconv library routine to convert a block of data pointed to by buffer
and of the specified size from the character size specified by fromcode to the charac-
ter set specified by tocode. If tocode is not specified, it converts to the native locale.
The result of this intrinsic is a char array containing the converted bytes. The pri-
6-184

Command-Line Interface
mary purpose of this intrinsic is to convert data stored in a program in a form incon-
venient to read (e.g. UTF-16) to a human-readable character array.

__nview_v1_rb_tree_increment__(nodeptr)

This is a very specialized intrinsic designed to advance from one element to the next
in the red-black trees used by STL map and set containers. It expects that nodeptr
will be a pointer to a struct with fields _M_left, _M_right, and _M_parent and
knows how to advance to the next element.

__nview_ne__(array,numelt,eltsize,match)

This searches the given array and returns the index of the first element that is not
equal to match. The number of elements in the array is numelt, and the size of each
element in bytes is eltsize (which must be 1, 2, 4, or 8). If every element in the array
matches, then it returns -1. This is useful for searching hash tables for non-empty
cells.
6-185

NightView LX User’s Guide
6-186

7
Chapter 7Simple Full-Screen Interface

7
7
7

NightView is designed to be able to debug multiple processes asynchronously. That
means your processes may be running and producing output or hitting breakpoints, all at
the same time. You might be entering NightView commands at the same time as well.

This can be a little confusing. It would be especially confusing if NightView were to write
to your terminal at the same time you are trying to enter a command For this reason,
NightView doesn't usually show you output or event notifications while it is reading your
commands (It will do that if you want it to, though. See “set-show” on page 6-33.)

This means that NightView may have output or event notifications to show you, but it will
not show them to you because it is waiting for you to type a command. You can press car-
riage return a few times to see output you are expecting, but that can be annoying

A full-screen interface gives NightView a way to show you output and event notifications
as soon as they are available without interfering with your typing

The simple full-screen interface has the same basic functionality as the command-line
interface. All the commands are the same. In fact, the simple full-screen interface looks a
lot like the command-line interface. The main difference is that NightView has control
over the entire screen, so it can print output to you while you are "at a prompt".

Using the Simple Full-Screen Interface 7

To use the simple full-screen interface, you should have your TERM environment variable
set to the type of your terminal. If you are using a full-screen editor, such as vi(1), you
probably have already taken care of this.

Invoke NightView with the -simplescreen option:

nview -simplescreen

NightView clears the screen before it writes its welcome message. Then the prompt is
written to the bottom line and you can type a command.

NightView does not have control over the terminal while you are executing a shell com-
mand, so after the command has completed you are asked to press return This gives you a
chance to view the command output before NightView redraws the screen. See “shell” on
page 6-144.

The simple full-screen interface creates a special window when you use monitorpoints.
See “Monitor Window - Simple Full-Screen” on page 7-2 for more information about this
window.
7-1

NightView LX User’s Guide
Editing Commands in the Simple Full-Screen Interface 7

You can use special key sequences to edit your commands. The key sequences are based
on the line editing modes of ksh(1). NightView implements the emacs, gmacs and vi
modes of ksh. In particular, you can use the various key sequences to retrieve previously
entered commands.

The initial editor mode is set from your VISUAL or EDITOR environment variables. If
NightView cannot determine the mode from those variables, then the default mode is
emacs. You can explicitly set the editor mode with the set-editor command. See
“set-editor” on page 6-70.

Monitor Window - Simple Full-Screen 7

The Monitor Window is created when you use monitorpoints while running NightView
with the simple full-screen interface. See “Monitor Window” on page 3-28.

In the simple full-screen interface, the Monitor Window appears at the top of the screen
and takes up as many lines as it needs for the number of items displayed, plus one status
line, while leaving at least ten lines for other debugger operations at the bottom of the
screen.

Only the items that fit in the space available at the top of the screen are displayed. Any fur-
ther items are left in the same state they would be in following an mcontrol nodis-
play command (See “mcontrol” on page 6-111)

The stale data indicators used in the simple full-screen Monitor Window are simple char-
acters used to indicate each state. A space () is used to indicate updated values. A period
(.) is used for monitorpoints that have not been executed. An exclamation point (!) is
used for monitorpoints which have executed but not taken a sample. For more information
about stale data indicators, see “Monitor Window” on page 3-28.

A status line at the bottom of the simple full-screen Monitor Window divides it from the
remainder of the screen. The status line indicates the state of the Monitor Window (held
or running) and shows the current delay time in milliseconds between updates of the
window.
7-2

8
Chapter 8Graphical User Interface

8
8
8

This chapter describes the graphical user interface (GUI) for NightView. The GUI provides
more flexibility and functionality than either the command-line interface or the simple
full-screen interface.

The graphical user interface for NightView is based on the Qt toolkit. NightView runs in
the environment of the X Window SystemTM Version 11, Release 6 (or later).

This chapter assumes that you have a basic understanding of window system concepts
such as selecting objects by clicking with the mouse and working with dialog boxes and
standard controls. Use mouse button 1 when you are told to click, drag, press, and select.

Sample debug sessions showing how to use the NightView graphical user interface are
available. See Chapter 2 [A Quick Start - GUI] on page 2-1. See Chapter 4 [Tutorials] on
page 4-1.

NightView GUI Concepts 8

This section explains concepts that you need to understand so that you can use the
NightView graphical user interface to its fullest advantage.

GUI Online Help 8

The graphical user interface provides several ways of providing help on particular topics.

• Context-sensitive help is available in the main window and all the dialogs.
See “Context-Sensitive Help” on page 8-2.

• The main window has a Help menu. See “Help Menu” on page 8-18.

• Pressing the F1 function key displays help for the part of the window that
has the current focus.

• The dialog boxes have help buttons that pop up help for the particular dia-
log box.

• You can use the help command from the command-line interface. See
“help” on page 6-143.

Help information is displayed in a help window. NightView uses a separate program to
display the help window. Once a help window is displayed, you can move around in the
help system in a variety of ways. You can keep the help window on your screen, or
dismiss it. You can also iconify it, and it redisplays itself the next time you ask for help.
See “Help Window” on page 8-93.
8-1

NightView LX User’s Guide
Context-Sensitive Help 8

Context-sensitive help is available through the Help menu. See “Help Menu” on page
8-18. In addition, the F1 function key displays help information for the currently selected
window component.

Generally, help is not provided on individual graphical items, such as individual buttons.
Instead, you are given help for the region you have selected. For example, if you select
help on the Kill button, the help window displays information about the process toolbar.
See “Process Toolbar” on page 8-20.

To get context-sensitive help using the Help menu, select the On Context... menu
item. The pointer changes to a question mark with an arrow. Place the point of the arrow
over the graphical region for which you want help and click mouse button 1. The help
window is displayed with information about that region. The pointer changes back to its
original shape.

To get context-sensitive help using the F1 key, select a window component that you have
a question about. Press the F1 key. A help window is displayed with information about
that region.

Help Buttons 8

Dialog boxes include a Help button in the lower right corner. You can click on this
button to receive help on the dialog box. See “Dialogues and Dialog Boxes” on page 8-2.

Help Command 8

You can type the help command, followed by the topic you want help on, into the
command toolbar to obtain online help. See “help” on page 6-143. A help window is
displayed that contains information about the requested topic. See “Help Window” on
page 8-93. See “Command Toolbar” on page 8-20.

If a help window does not exist, NightView displays one for you. Otherwise, the text of
the existing help window changes to show you the information that you requested.

If NightView cannot find the information you requested, a warning dialog box and a help
window are displayed.

Dialogues and Dialog Boxes 8

NightView has a concept called a dialogue, which is a way of communicating with an
ordinary command shell. See “Dialogues” on page 3-4. Note that this kind of dialogue is
spelled with a "ue" at the end.

The graphical user interface uses another term: dialog box. This is not related to the
NightView concept of a dialogue. Dialog box refers to a particular type of window that
may appear during your session. A dialog box usually appears only briefly and typically
allows you to specify a particular item, such as a file name.

These two concepts are distinct and unrelated, even though they sound alike.
8-2

Graphical User Interface
Context Menu 8

Each panel has a context menu with entries appropriate for that panel type. You show the
context menu by right-clicking in the panel.

In the source panel, where you click may affect the operation of the menu items by setting
the source panel target line. See “Source Panel Context Menu” on page 8-55 and “Source
Panel Target Line” on page 8-54.

In the data panel and related panels, different context menu entries appear depending on
where you click. In some cases the menu entry’s operation is directed to the data item on
which you click. See “Data Panel Context Menu” on page 8-75.

In the eventpoint panel, you may select one or more eventpoints (rows) and then right-
click. If you right-click on a row that is not selected, the selection is cleared and the row
you clicked on becomes selected. If you right-click on a row that is selected, the selection
does not change. The context menu’s entries are enabled or disabled based on which rows
are selected.

Current Process 8

In the graphical user interface, NightView has the concept of a current process. When you
click on toolbar buttons, or enter commands, the operation is performed on the current
process. (If you are debugging only one process, that process is the current process.)

The status bar shows the status of the current process. See “Status Bar” on page 8-24. A
locals panel shows variables in the current frame of the current process. See “Locals
Panel” on page 8-64. If you have more than one process, a context panel shows the current
process with green underlined text. See “Context Panel” on page 8-64.

You can switch to a different process by clicking on the other process in a context panel or
by clicking on a source panel displaying source for the other process.

GUI Configuration 8

NightView can save your current GUI configuration. The configuration includes the
geometry of the main window, the positions of the toolbars, which pages are present,
which panels are present on each page, and the geometry and other information about each
panel.

When NightView starts up, it looks for a configuration in the following places, in order.

• filename supplied with the -config option

• .NightView_config in the current directory

• $HOME/.NightView_config

• /usr/lib/NightView/lib/config
8-3

NightView LX User’s Guide
You can explicitly load or save a configuration from the File menu. See “File Menu” on
page 8-4.

Main Window 8

The main window has a menu bar, toolbars and a status bar. The remaining space is for
docking various panels. See “Panels” on page 8-53. NightView can remember the
arrangement of the panels. See “GUI Configuration” on page 8-3.

Menu bar 8

From the menu bar you can perform global NightView actions, perform actions on a shell
or a process, choose source to display or edit, manipulate eventpoints, change the way
you view the window, select items to display, invoke other NightStar tools, and obtain
online help.

File Menu 8

Mnemonic: F

The File menu has the following items.

Load Config File...

Mnemonic: O

This brings up a file selection dialog to load a configuration. See “GUI Configura-
tion” on page 8-3.

Load System Default Config

Mnemonic: D

This loads the default configuration in /usr/lib/NightView/lib/config.
This is useful if you have modified your configuration and want to return to the
default state. See “GUI Configuration” on page 8-3.

Save Config File

Mnemonic: S

Accelerator: Ctrl+S

If the configuration was loaded from the default, /usr/lib/NightView/lib/
config, then this saves the configuration to $HOME/.NightView_config.
Otherwise, this saves the configuration to the configuration file previously loaded or
saved. See “GUI Configuration” on page 8-3.
8-4

Graphical User Interface
Save Config File As...

Mnemonic: A

This brings up a file selection dialog to save the configuration. See “GUI Configura-
tion” on page 8-3.

Preferences...

Mnemonic: F

This brings up a dialog that lets you set preferences, such as fonts. See “Preferences
Dialog Box” on page 8-39.

Save Preferences

Mnemonic: V

This saves the current preference settings to disk.

Print Window...

Mnemonic: P

This brings up a dialog that lets you print an image of the main window to a printer.

Exit (Quit NightView)

Mnemonic: X

Accelerator: Ctrl+Q

Selecting this menu item causes NightView to exit. This has the same effect as the
quit command. See “quit” on page 6-22.

Depending on the safety level (see “set-safety” on page 6-64), NightView displays a
warning dialog box when you click the Exit menu item if there are any active pro-
cesses.

View Menu 8

Mnemonic: V

The View menu lets you create new panels, modify pages, change the size of text in
panels, or modify which toolbars are shown.

New Context Panel

Mnemonic: C

Selecting this menu item creates a new context panel. See “Context Panel” on page
8-64.

New Locals Panel

Mnemonic: L
8-5

NightView LX User’s Guide
Selecting this menu item creates a new locals panel. See “Locals Panel” on page
8-64.

New Source Panel

Mnemonic: S

Selecting this menu item creates a new source panel. See “Source Panel” on page
8-53.

New Data Panel

Mnemonic: D

Selecting this menu item creates a new data panel. See “Data Panel” on page 8-65.

New Monitor Panel

Mnemonic: M

Selecting this menu item creates a new monitor panel. See “Monitor Panel” on page
8-65.

New Shell Panel

Mnemonic: H

Selecting this item creates a new shell panel. See “Source Panel” on page 8-53.

If there is more than one shell, then this item opens a sub-menu from which you can
choose which shell the new panel represents.

New Message Panel

Mnemonic: G

Selecting this item creates a new message panel. See “Message Panel” on page 8-61.

New Eventpoint Panel

Mnemonic: E

Selecting this item creates a new eventpoint panel for the current shell. See “Event-
point Panel” on page 8-62.

New CUDA Panel

Mnemonic: U

Selecting this item opens a sub-menu that lets you select a particular kind of CUDA-
specific panel.

Coordinates

Mnemonic: C

Selecting this item creates a new CUDA Coordinates panel. See “CUDA
Coordinates Panel” on page 8-90.
8-6

Graphical User Interface
Lanes

Mnemonic: L

Selecting this item creates a new CUDA Lanes panel. See “CUDA Lanes
Panel” on page 8-90.

Warp Locals

Mnemonic: W

Selecting this item creates a new CUDA Warp Locals panel. See “CUDA
Warp Locals Panel” on page 8-92.

Add Page

Mnemonic: A

Accelerator: Ctrl+A

Selecting this item creates a new tabbed page.

Rename Current Page...

Mnemonic: R

Selecting this item brings up a dialog box that lets you give the current page a new
name. See ““handle” on page 6-136Rename Page Dialog Box” on page 8-52. You
can create a mnemonic that switches to the page: put an ampersand (&) in front of
one of the characters of the name. The page’s tab will have an underscore under that
character. To get a real &, use &&.

Delete Current Page

Mnemonic: T

Selecting this item deletes the current page.

Text Size

Mnemonic: Z

Selecting this item opens a sub-menu that lets you select the size of text in the pan-
els.

Increase

Mnemonic: I

Accelerator: Ctrl++

Selecting this item increases the size of the text in the panels. Panels that use a
fixed-width font and panels that use a variable-width font are adjusted sepa-
rately.

Decrease

Mnemonic: D
8-7

NightView LX User’s Guide
Accelerator: Ctrl+-

Selecting this item decreases the size of the text in the panels. Panels that use a
fixed-width font and panels that use a variable-width font are adjusted sepa-
rately.

Normal

Mnemonic: N

Accelerator: Ctrl+0 (zero)

Selecting this item resets the size of the text in the panels to normal.

Toolbars

Mnemonic: B

Selecting this item opens a sub-menu that lets you choose which toolbars are shown.
See “Toolbars” on page 8-19.

Shell Menu 8

Mnemonic: L

The Shell menu lets you start a remote shell, terminate a shell, or create a new shell
panel.

Start Remote Shell...

Mnemonic: R

Selecting this menu item allows you to create a remote dialogue on a target system
of your choice. A dialog box is displayed that allows you to choose parameters for
the remote dialogue. See “Remote Login Dialog Box” on page 8-36.

Terminate shell

Mnemonic: T

Selecting this item terminates the dialogue. This is similar to using the logout
command. See “logout” on page 6-29.

If there is more than one shell, then this item opens a sub-menu from which you can
choose the shell to terminate.

Depending on the safety level (see “set-safety” on page 6-64) and whether there are
any active processes, NightView may display a warning dialog box when you use
the Terminate shell menu item.

New Shell Panel

Mnemonic: H

Selecting this item creates a new shell panel for the current shell. See “Source
Panel” on page 8-53.
8-8

Graphical User Interface
If there is more than one shell, then this item opens a sub-menu from which you can
choose which shell the new panel represents.

Process Menu 8

Mnemonic: P

This menu is used to perform actions on processes.

Run...

Mnemonic: R

Use this item to run a program. Selecting this item pops up a dialog box for you to
enter a shell command line. See “Run Program in Shell Dialog Box” on page 8-27.
If your program takes no input and you want to debug more than one program at a
time, end the command with &.

If there is more than one shell, then this item opens a sub-menu from which you can
choose in which shell to run the program.

Another way to run a program is to type a command into a shell panel. See “Shell
Panel” on page 8-60.

Attach...

Mnemonic: A

Selecting this item pops up a dialog box you can use to view the processes on the
system and attach to one of them. See “Attach Dialog Box” on page 8-27.

If there is more than one shell, then this item opens a sub-menu from which you can
choose in which shell to attach.

Detach

Mnemonic: D

Selecting this item causes NightView to detach from the current process. See “Cur-
rent Process” on page 8-3.

This is similar to using the detach command. See “detach” on page 6-38.

Depending on the safety level (see “set-safety” on page 6-64), NightView may dis-
play a warning dialog box when you use the Detach menu item.

Kill

Mnemonic: K

Selecting this item causes NightView to terminate the current process. See “Current
Process” on page 8-3.

This is similar to using the kill command. See “kill” on page 6-38.
8-9

NightView LX User’s Guide
Depending on the safety level (see “set-safety” on page 6-64), NightView may dis-
play a warning dialog box when you use the Kill menu item.

Debug Heap...

Mnemonic: H

Selecting this item pops up the Debug Heap dialog box, which allows you to turn on
and adjust heap debugging for the current process. See “Debug Heap Dialog Box”
on page 8-35. See “Debugging the Heap” on page 3-29. See “Current Process” on
page 8-3.

Process Settings...

Mnemonic: S

Selecting this item pops up the Process Settings dialog box, which allows you to
change how NightView treats the current process. See “Process Settings Dialog
Box” on page 8-50. See “Current Process” on page 8-3.

Refresh Shared Libs

Mnemonic: L

Selecting this item causes NightView to re-read the list of shared libraries in use by
the process and to refresh any debug information that may have changed or is new.
This is not normally necessary, however, if your process dynamically loads libraries
via dlopen(2), NightView needs to be informed.

You can also set a mode to have NightView automatically detect this; there is some
overhead involved however when that mode is set to automatic. See “Debugging
with Shared Libraries” on page 3-45 and “set-shared-lib-update” on page 6-50 for
more information.

Source Menu 8

Mnemonic: S

This menu provides ways of changing the program code displayed in source panels and
editing source files that are listed. See “Source Panel” on page 8-53.

The items that change which source file is displayed act on all source panels displaying
the current process. The items that select source or disassembly are enabled only if there is
exactly one source panel, or if there is a source panel that has a target line. See “Source
Panel Target Line” on page 8-54.

List Function/Unit...

Mnemonic: U

Selecting this menu item pops up a dialog box that allows you to list the program
code of a function in the debug source display. See “Source Panel” on page 8-53.

This dialog box is titled Select a Function/Unit. The title bar also displays the
process's qualifier specifier. See “Qualifier Specifiers” on page 6-15. It allows you
8-10

Graphical User Interface
to optionally enter a regular expression that is used to search for function names that
NightView knows about. (An anchored match is not implied.) See “Regular
Expressions” on page 6-16. For example, enter set$ to search for function names
ending with 'set'. A list of functions is displayed, and one function can be selected
for display in the debug source display. For C++, the regular expression is only
applied to the final component of a name.

The regular expression case sensitivity depends on the current search mode (see
“set-search” on page 6-70).

The Select a Function/Unit dialog box is one variation of the debug source
selection dialog box, which is also used by the List Source File... menu item. See
“Source Selection Dialog Box” on page 8-27.

List Source File...

Mnemonic: S

Selecting this menu item pops up a dialog box that allows you to list a source file in
the source panels. See “Source Panel” on page 8-53.

This dialog box is titled Select a Source File. The title bar also displays the pro-
cess's qualifier specifier. See “Qualifier Specifiers” on page 6-15. It allows you to
optionally enter a wildcard pattern which is used to search for source file names that
NightView knows about. See “Wildcard Patterns” on page 6-18. For example, enter
mod*.c to search for source file names that start with 'mod' followed by any num-
ber of characters and ending with '.c'. A list of source files is displayed, and one
source file can be selected for display in the debug source display.

The Select a Source File dialog box is one variation of the debug source selec-
tion dialog box, which is also used by the List Function/Unit... menu item. See
“Source Selection Dialog Box” on page 8-27.

List Any File...

Mnemonic: A

Selecting this menu item pops up a file selection dialog box that allows you to
choose any file you wish and list it in the source panels displaying the current pro-
cess. See “Source Panel” on page 8-53.

This dialog box is titled Select a File.

List Location...

Selecting this menu item pops up a dialog box in which you can enter arguments for
a list command, to apply to any source panels displaying the current process. See
“List Location Dialog Box” on page 8-52 and “list” on page 6-77.

Edit

Mnemonic: I

Selecting this item lets you edit the current process’s current source. See “Source
Panel” on page 8-53.
8-11

NightView LX User’s Guide
Note that once you have edited the source file, NightView displays the new con-
tents, but the debugging information still refers to the old contents. For this reason,
the source decorations may no longer match. Also, you might get confusing results
from using the special keys in the debug source display or from entering commands
based on the new contents.

Show Source

Mnemonic: O

Accelerator: Ctrl+O

Selecting this menu item causes the source panel to list source, if possible. If the
debugger tries to show a position, such as a library routine, that does not have a cor-
responding source file, then the source panel shows disassembly instead.

When switching between display modes, NightView uses the position of the text
cursor to determine the line or address to show in the new mode.

This item is enabled only if there is exactly one source panel, or if a source panel has
a target line. See “Source Panel Target Line” on page 8-54. Each source panel has
its own display mode, so, for example, you can show source in one source panel and
disassembly in another source panel.

Show Mixed Source and Disassembly

Mnemonic: M

Accelerator: Ctrl+M

In this mode the debugger shows a line of source followed by the instructions that
correspond to that line. Source lines that do not produce code are not shown. Only
one source line is shown for each group of instructions, so statements that span lines
are only partially shown. Note that because of inlining and optimization, not all the
instructions that follow a line are generated by that line. Also note that lines from
multiple files may be shown in this mode.

See the description of the Show Source menu item for more information.

Show Disassembly

Mnemonic: D

Accelerator: Ctrl+D

Selecting this menu item causes the source panels to list assembly instructions.

The range of instructions displayed usually corresponds to a single subprogram.

See the description of the Show Source menu item for more information.

Eventpoint Menu 8

Mnemonic: E

This menu provides ways to set eventpoints and to see a summary of eventpoints. See
8-12

Graphical User Interface
“Eventpoints” on page 3-9.

Before selecting one of the eventpoint menu items, select the line of interest in a source
panel. See “Source Panel” on page 8-53. NightView uses this line to initialize the
location specifier for you. See “Location Specifiers” on page 6-13.

Set Breakpoint...

Mnemonic: B

Accelerator: Ctrl+B

Selecting this menu item pops up a breakpoint dialog box that allows you to set a
new breakpoint at a given location and apply eventpoint attributes to it. See “Manip-
ulating Eventpoints” on page 6-98. See “breakpoint” on page 6-101.

For information on using the breakpoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Monitorpoint...

Mnemonic: M

Selecting this menu item pops up a monitorpoint dialog box that allows you to set a
new monitorpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints” on page 6-98. See “monitorpoint” on page 6-108.

For information on using the monitorpoint dialog box, see “Eventpoint Dialog
Boxes” on page 8-29.

Set Patchpoint...

Mnemonic: P

Accelerator: Ctrl+P

Selecting this menu item pops up a patchpoint dialog box that allows you to set a
new patchpoint at a given location and apply eventpoint attributes to it. See “Manip-
ulating Eventpoints” on page 6-98. See “patchpoint” on page 6-103.

For information on using the patchpoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Tracepoint...

Mnemonic: T

Selecting this menu item pops up a tracepoint dialog box that allows you to set a
new tracepoint at a given location and apply eventpoint attributes to it. See “Manip-
ulating Eventpoints” on page 6-98. See “tracepoint” on page 6-106.

For information on using the tracepoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Heappoint...

Mnemonic: H
8-13

NightView LX User’s Guide
Selecting this menu item pops up a heappoint dialog box that allows you to set a
new heappoint at a given location and apply eventpoint attributes to it. See “Manip-
ulating Eventpoints” on page 6-98. See “heappoint” on page 6-110.

For information on using the heappoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Watchpoint...

Mnemonic: W

Selecting this menu item pops up a watchpoint dialog box that allows you to set a
new watchpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints” on page 6-98. See “watchpoint” on page 6-120.

For more information on using the watchpoint dialog box, see “Eventpoint Dialog
Boxes” on page 8-29.

Set Syscallpoint...

Mnemonic: S

Selecting this menu item pops up a syscallpoint dialog box that allows you to set a
new syscallpoint and apply eventpoint attributes to it. See “Manipulating Event-
points” on page 6-98. See “syscallpoint” on page 6-121.

For more information on using the syscallpoint dialog box, see “Eventpoint Dialog
Boxes” on page 8-29.

New Eventpoint Panel

Mnemonic: E

Selecting this menu item creates a new eventpoint panel. See “Eventpoint Panel” on
page 8-62.

Eventpoint Panels Update Interval...

Mnemonic: U

Clicking this menu item brings up a dialog box that lets you set the interval between
eventpoint panel automatic updates. See “Eventpoint Panel Update Interval Dialog
Box” on page 8-52.

Data Menu 8

Mnemonic: D

Use this menu to select a data item to place in a data panel or to load or save a data panel
layout.

When you add a data item, if there is no data panel, then one is created. If there is one data
panel, then the data item goes to that panel. If there is more than one data panel, then
NightView pops up a dialog box to ask you which data panel to add the new item to. For
Expression..., the dialog box is always popped up and also has a field for entering the
8-14

Graphical User Interface
expression. See “Data Panel” on page 8-65. The Save Snapshot button lets you save
the current contents of the panel. The Save Layout... and Load Layout... buttons let
you save the current data panel layout or restore an old layout.

Most data items are added for the current process. See “Current Process” on page 8-3.
Shells items, processes items and monitorpoint items are global, not just for one process.

The items in this menu are similar to some of the items in the data panel context menu. See
“Data Panel Context Menu” on page 8-75.

The menu items are:

Expression...

Mnemonic: E

Accelerator: Ctrl+E

The dialog box allows you to enter an expression. A data item for that expression is
placed in the data panel. See “Data Panel Add Expression” on page 8-84. See
“Expression Data Item” on page 8-67.

Local Variables...

Mnemonic: L

A local-variables data item is placed in the data panel. See “Local Variables Data
Item” on page 8-68.

Registers...

Mnemonic: R

A registers data item is placed in the data panel. See “Registers Data Item” on page
8-68.

Stack...

Mnemonic: S

A stack data item is placed in the data panel. See “Stack Data Item” on page 8-69.

Threads...

Mnemonic: T

A threads data item is placed in the data panel. See “Threads Data Item” on page
8-71.

Processes...

Mnemonic: C

A processes data item is placed in the data panel. See “Processes Data Item” on page
8-72.
8-15

NightView LX User’s Guide
Shells...

Mnemonic: H

A shells data item is placed in the data panel. See “Shells Data Item” on page 8-72.

Heap Information...

Mnemonic: H

A heap information data item is placed in the data pane. See “Heap Information
Data Item” on page 8-73.

Heap Errors...

Mnemonic: P

A heap errors data item is placed in the data panel. See “Data Panel Add Heap
Errors” on page 8-84. See “Heap Errors Data Item” on page 8-74.

Heap Leaks...

Mnemonic: K

A heap leaks data item is placed in the data panel. See “Data Panel Add Heap
Leaks” on page 8-84. See “Leak Sets / Still Allocated Sets Data Items” on page
8-74.

Still Allocated Blocks

Mnemonic: A

A still allocated blocks data item is placed in the data panel. See “Data Panel Add
Still Allocated Blocks” on page 8-85. See “Leak Sets / Still Allocated Sets Data
Items” on page 8-74.

Monitorpoint Values

A monitorpoint values data item is placed in the data panel. See “Monitorpoint Val-
ues Data Item” on page 8-75.

Save Snapshot...

Mnemonic: V

This menu item lets you save the current contents of the data panel to a text file.
Clicking on this button brings up a dialog box that lets you specify the name of a file
in which to save the data. You can also record a comment in the file to describe the
data that is being saved. See “Data Panel Save Snapshot” on page 8-87.

Save Layout...

Mnemonic: A

Selecting this menu item pops up a dialog box that lets you save the layout of all the
data items for a particular process in all the data panels. The information saved
8-16

Graphical User Interface
includes the type and format of each data item, and to which data panel the item
belongs. See “Data Panel Save Layout” on page 8-86.

Load Layout...

Mnemonic: O

Selecting this menu item pops up a dialog box that lets you load a saved layout for
one or more processes. Any data panels mentioned in the layout are created if they
do not exist. See “Data Panel Load Layout” on page 8-86.

Set Stack Frames...

Clicking on this button pops up a dialog box that lets you set the number of stack
frames displayed in a context panel or data panel. See “Data Panel Call Stack
Frames” on page 8-85.

Set Pointer as Array Indices...

Clicking on this button pops up a dialog box that lets you set the number of elements
to show when displaying a pointer as an array. See “Data Panel Pointer Array
Dimension” on page 8-86.

Tools Menu 8

Mnemonic: T

The Tools menu may be used to invoke other NightStar tools. The tools are invoked on
the same display as NightView.

NightView makes a menu entry only for those tools that are installed on your system.

NightProbe Monitor

Mnemonic: P

Opens the NightProbe Data Monitoring application.

NightProbeTM is a real-time graphical tool for monitoring, recording, and altering
program data within one or more executing programs without significant intrusion.
NightProbe can be used in a development environment as a tool for debugging, or in
a production environment to create a “control panel” for program input and output.

See the NightProbe User’s Guide for more information.

NightTrace Analyzer

Mnemonic: T

Opens the NightTrace Analyzer.

NightTraceTM is a graphical tool for analyzing the dynamic behavior of single and
multiprocessor applications. NightTrace can log application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems and can
combine these application events with kernel events to present a synchronized view
of the entire system. NightTrace allows users to zoom, search, filter, summarize, and
8-17

../nprobe/nprobe.html

NightView LX User’s Guide
analyze events in a wide variety of ways. In addition, NightTrace allows users to
manage user and kernel NightTrace daemons, providing the user with the ability to
start, stop, pause, and resume execution of any of the daemons under its manage-
ment.

See the NightTrace User’s Guide for more information.

NightTune Tuner

Mnemonic: U

Opens the NightTune Tuner.

NightTuneTM is a graphical tool that can be used to tune an application or to monitor
various aspects of the system. NightTune monitors CPU utilization, context switch-
ing levels, virtual memory paging activity, disk I/O activity, interrupt activity, and
network traffic levels. In addition, NightTune can monitor processes and threads,
and can change their scheduling parameters and CPU binding. NightTune can also
change interrupt CPU affinities.

See the NightTune User’s Guide for more information.

Help Menu 8

Mnemonic: H

The Help menu has the following items.

On Context

Mnemonic: C

This item provides help about a particular graphical region of a window. See “Con-
text-Sensitive Help” on page 8-2.

On Last Error

Mnemonic: E

If NightView just displayed an error message, you can get help on that error by
selecting this menu item.

Selecting this item is similar to using the help command with no argument. See
“help” on page 6-143.

On Commands

Mnemonic: M

This item gives a summary of NightView commands.
8-18

../ntrace/ntrace.html
../ntune/ntune.html

Graphical User Interface
On Keys

Mnemonic: K

This item gives help about using special keys in NightView. See “List of Shortcuts”
on page 8-26.

A Quick Start

Mnemonic: Q

This item takes you to the beginning of the GUI quick start chapter. See Chapter 2
[A Quick Start - GUI] on page 2-1.

NightView Tutorial

Mnemonic: R

This item takes you to the beginning of the GUI tutorial chapter. See Chapter 4
[Tutorials] on page 4-1.

NightView User’s Guide

Mnemonic: U

The item opens the online version of the NightView User’s Guide in the help win-
dow.

NightStar Tutorial

Mnemonic: T

This item opens the online version of the NightStar Tutorial in the help window.
This tutorial incorporates the use of NightProbe, NightView, NightTrace, and
NightTune in one complete example.

License Report...

Mnemonic: L

Opens a dialog box with information about how many licenses are in use and how to
get licenses.

On Version

Mnemonic: V

This item pops up an information dialog box that describes which version of Night-
View you are running.

Toolbars 8

Most of the controls in the toolbars apply to the current process. See “Current Process”
on page 8-3. Some buttons may be disabled (dimmed) under certain circumstances. For
example, when the process is running, the Resume button is disabled.
8-19

../nview/nview.html
../nstar/nstar-tutorial.html

NightView LX User’s Guide
A toolbar may be moved to different areas around the main window by dragging on the
drag handle.

Toolbars may be hidden or shown by clicking on an area of a toolbar that has no controls.
This brings up a menu of the toolbars. Choose which toolbars you want shown. Another
way to choose which toolbars are shown is to select the Toolbars... entry in the View
menu.

Command Toolbar 8

The command toolbar has a label Command: and a combo box, and is initially near the
bottom of the main window. The combo box is used to enter NightView commands. All
the command-line interface commands, except for shell, can be entered in the
command toolbar.

Input to this area is similar to using the command-line interface. For example, you can
enter an explicit qualifier followed by a command. If you do not specify a qualifier, the
command is implicitly qualified by the current process. See “Current Process” on page
8-3.

The combo box has entries for older commands. To retrieve older commands, press the
down arrow key. To see the whole list, click on the downward-pointing triangle.

Process Toolbar 8

Resume

Clicking on this button is similar to using the resume command with no argument.
See “resume” on page 6-126.

Stop

Clicking on this button is similar to using the stop command, except that the but-
ton also interrupts any pending commands for the current process. See “stop” on
page 6-133.

Next

Clicking on this button is similar to using the next command with no argument.
See “next” on page 6-129.

Step

Clicking on this button is similar to using the step command with no argument.
See “step” on page 6-127.

Finish

Clicking on this button is similar to using the finish command. See “finish” on
page 6-132.
8-20

Graphical User Interface
Run to Here

Run the process until it reaches the target line in the source panel. See “Source Panel
Target Line” on page 8-54. See “Source Panel” on page 8-53. This allows you to use
the Run to Here button to quickly skip past chunks of code without single step-
ping through each line.

Clicking on this button combines the actions of three commands: First, it sets a
breakpoint at the target line. Next, it runs enable/delete on that breakpoint
(which will cause it to be deleted when it is hit). Finally, it resumes the process.
See “breakpoint” on page 6-101. See “enable” on page 6-116. See “resume” on page
6-126.

When you press the button, you will see the source line decoration for the break-
point appear and the message area will print a message about the new breakpoint.
When the process finally stops at that breakpoint, the breakpoint will be deleted, and
the decoration will disappear. See “Message Panel” on page 8-61.

Nexti

Clicking on this button is similar to using the nexti command with no argument.
See “nexti” on page 6-131.

Stepi

Clicking on this button is similar to using the stepi command with no argument.
See “stepi” on page 6-130.

Up

Clicking on this button advances one stack frame toward the oldest calling frame.
This action is similar to using the up command with no argument. See “up” on page
6-140.

Down

Clicking on this button advances one stack frame toward the currently executing
(newest) stack frame. This action is similar to using the down command with no
argument. See “down” on page 6-140.

Kill

Clicking this button causes NightView to terminate the current process. See “Cur-
rent Process” on page 8-3.

This is similar to using the kill command. See “kill” on page 6-38.

Depending on the safety level (see “set-safety” on page 6-64), NightView may dis-
play a warning dialog box when you use the Kill menu item.

Rerun

Clicking this button causes NightView to terminate the current process, if there is
one, and issue the shell command associated with this process. If there is no current
process, then NightView issues the shell command associated with the process that
terminated most recently. This action is similar to using the rerun command with
no argument. See “down” on page 6-140.
8-21

NightView LX User’s Guide
Interrupt

Clicking on this button interrupts whatever the debugger is doing. This is similar to
using the shell interrupt character in the command-line interface. See “Interrupting
the Debugger” on page 3-36.

Run Mode Toolbar 8

Run Mode

This option list reflects the current run mode and allows you to change it. See “set-
run-mode” on page 6-124 for a description of run mode.

Eventpoint Toolbar 8

Before clicking on a button in the eventpoint toolbar, you may want to click on a target
line in a source panel. The Location: field of the dialog box is initialized from the target
line, if there is one. See “Source Panel Target Line” on page 8-54.

Set Breakpoint

Clicking on this button pops up a breakpoint dialog box that allows you to set a new
breakpoint at a given location and apply eventpoint attributes to it. See “Manipulat-
ing Eventpoints” on page 6-98. See “breakpoint” on page 6-101.

For information on using the breakpoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Patchpoint

Clicking on this button pops up a patchpoint dialog box that allows you to set a new
patchpoint at a given location and apply eventpoint attributes to it. See “Manipulat-
ing Eventpoints” on page 6-98. See “patchpoint” on page 6-103.

For information on using the patchpoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Monitorpoint

Clicking on this button pops up a monitorpoint dialog box that allows you to set a
new monitorpoint at a given location and apply eventpoint attributes to it. See
“Manipulating Eventpoints” on page 6-98. See “monitorpoint” on page 6-108.

For information on using the monitorpoint dialog box, see “Eventpoint Dialog
Boxes” on page 8-29.

Set Tracepoint

Clicking on this button pops up a tracepoint dialog box that allows you to set a new
tracepoint at a given location and apply eventpoint attributes to it. See “Manipulat-
ing Eventpoints” on page 6-98. See “tracepoint” on page 6-106.
8-22

Graphical User Interface
For information on using the tracepoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Heappoint

Clicking on this button pops up a heappoint dialog box that allows you to set a new
heappoint at a given location and apply eventpoint attributes to it. See “Manipulat-
ing Eventpoints” on page 6-98. See “heappoint” on page 6-110.

For information on using the heappoint dialog box, see “Eventpoint Dialog Boxes”
on page 8-29.

Set Watchpoint

Clicking on this button pops up a watchpoint dialog box that allows you to set a new
watchpoint at a given location and apply eventpoint attributes to it. See “Manipulat-
ing Eventpoints” on page 6-98. See “watchpoint” on page 6-120.

For more information on using the watchpoint dialog box, see “Eventpoint Dialog
Boxes” on page 8-29.

Set Syscallpoint

Clicking on this button pops up a syscallpoint dialog box that allows you to set a
new syscallpoint and apply eventpoint attributes to it. See “Manipulating Event-
points” on page 6-98. See “syscallpoint” on page 6-121.

For more information on using the syscallpoint dialog box, see “Eventpoint Dialog
Boxes” on page 8-29.

Clear

Clicking on this button is similar to using the clear command for the target line.
See “clear” on page 6-112. You must have set the target line to the source line where
you want to clear eventpoints. See “Source Panel Target Line” on page 8-54. When
you press this button, any eventpoints that are set at the first instruction of this line
are removed. (If you have eventpoints set at instructions within the line, they will
not be cleared.) You see the source line decoration change and a message is dis-
played in the message panel. See “Message Panel” on page 8-61.

Value Toolbar 8

Data Display

Clicking on this button is similar to using the Expression... button in the Data
menu. See “Data Menu” on page 8-14. You must have selected an expression in a
source panel (or another panel) before pressing this button. See “Source Panel” on
page 8-53. When you press the button, the selected expression is added to the
default data panel. See “Data Panel” on page 8-65.
8-23

NightView LX User’s Guide
Print

Clicking on this button is similar to using the print command. See “print” on page
6-86. You must have selected an expression in a source panel (or another panel)
before pressing this button. See “Source Panel” on page 8-53. When you press the
button, the value of the selected expression is printed using the default format for the
type of the expression.

Source Display Toolbar 8

The buttons in this toolbar let you change the source display between source, mixed
source and disassembly and just disassembly. These act the same as the corresponding
menu items in the Source menu. See “Source Menu” on page 8-10.

Status Bar 8

This area shows the name of the executable program that the current process is running,
the qualifier specifier for the current process, and the current process’s current status. See
“Current Process” on page 8-3. See “Qualifier Specifiers” on page 6-15. For threaded
programs, the process ID in the qualifier indicates which of the thread processes last
stopped. See “Multithreaded Programs” on page 3-40.

A progress bar is shown here when the debugger is doing some lengthy operations, such
as processing debugging information, or during commands that wait, such as the run
command.

Here are the values that may appear as the process status:

About to exit

The process called the _exit(2) system service. See “Exited and Terminated Pro-
cesses” on page 3-19.

Calling function

The process is executing to evaluate a function call.

Exited

The process has exited. See “Exited and Terminated Processes” on page 3-19. This
status does not normally appear, because the process is removed from the window
when the process exits.

Finish frame

The process is executing until a designated instance of a subprogram returns to its
caller. See “finish” on page 6-132.

New process

This process has just been created by a fork() call in the parent process. The pro-
cess is stopped. See “Multiple Processes” on page 3-2.
8-24

Graphical User Interface
Running

The process is currently executing.

Stepping

The process is executing because of a stepping command. See “step” on page 6-127.

Stopped after finish

The process has completed a finish command. See “finish” on page 6-132.

Stopped after step

The process has finished a stepping command. See “step” on page 6-127.

Stopped at breakpoint number

The process hit breakpoint number number. See “Breakpoints” on page 3-12.

Stopped at watchpoint number

The process stopped because of watchpoint number. See “Watchpoints” on page
3-13.

Stopped for watchpoint error

The process stopped because of an error during watchpoint processing. An error
message in the message panel should explain the problem. See “Watchpoints” on
page 3-13. See “Message Panel” on page 8-61.

Stopped after unexpected trap

The process stopped due to an int3 instruction at a location that NightView was
not expecting. Either the user program has an int3 instruction in it, which would
be unusual, or else there is an internal error in NightView.

Stopped by attach

The process has just been attached by the debugger. See “Attaching” on page 3-3.

Stopped by user

The process stopped because of a stop command. See “stop” on page 6-133.

Stopped for exec

The process has just exec()'ed a new program image. See “Programs and Pro-
cesses” on page 3-2.

Stopped due to CUDA exception

The process has stopped because a CUDA exception was raised. Most CUDA
exceptions are fatal.
8-25

NightView LX User’s Guide
Stopped due to CUDA error

The process has stopped because of some problem with the CUDA device, CUDA
driver, or CUDA intermediary process.

Stopped with signal

The process stopped with signal signal. See “Signals” on page 3-15.

Terminated with signal

The process terminated with signal signal. See “Exited and Terminated Processes”
on page 3-19. This status appears only for core files. See “Core Files” on page 3-4.

List of Shortcuts 8

These shortcut keys work when the focus is in any panel except a shell panel. In a shell
panel, control keys are passed to the shell. See “Shell Panel” on page 8-60. There are extra
keys you can type into a source panel. See “Source Panel Keystrokes” on page 8-59.

Ctrl+A New page. See “View Menu” on page 8-5.

Ctrl+B Breakpoint dialog. See “Eventpoint Menu” on page 8-12.

Ctrl+C Copy in a text field.

Ctrl+D Show disassembly. See “Source Menu” on page 8-10.

Ctrl+E Add expression to data panel. See “Data Menu” on page 8-14.

Ctrl+F Find. See “Find Bar” on page 8-53.

Ctrl+G Find again. See “Find Bar” on page 8-53.

Ctrl+M Show mixed source and disassembly. See “Source Menu” on page
8-10.

Ctrl+O Show source. See “Source Menu” on page 8-10.

Ctrl+P Patchpoint dialog. See “Eventpoint Menu” on page 8-12.

Ctrl+Q Exit the debugger. See “File Menu” on page 8-4.

Ctrl+S Save config. See “File Menu” on page 8-4.

Ctrl+V Paste in a text field.

Ctrl+X Cut in a text field.

Ctrl+Z Undo in a text field.

Ctrl++ Increase font size. See “View Menu” on page 8-5.

Ctrl+- Decrease font size. See “View Menu” on page 8-5.

Ctrl+0 (zero) Restore default font size. See “View Menu” on page 8-5.
8-26

Graphical User Interface
Main Window Dialog Boxes 8

This section describes the dialog boxes you might use while debugging, except for the dia-
log boxes related to the data panel. See “Data Panel Dialog Boxes” on page 8-83.

Run Program in Shell Dialog Box 8

This dialog box pops up when you click Run... in the Process menu. See “Process
Menu” on page 8-9. This dialog box lets you enter a program to debug. You may enter the
program name yourself or click Browse... to find the program in a file browser. Then
enter any arguments to the program and click OK. The command is sent to the dialogue
shell. See “Dialogue I/O” on page 3-5.

Attach Dialog Box 8

This dialog box pops up when you select the Attach... item in the Process menu. See
“Process Menu” on page 8-9. This dialog box lets you view the processes on the system
and select one or more to attach to.

Check the box to indicate whether you want the processes to continue to run after the
attach. The initial value for this is from the global mode, set with the set-resume com-
mand or the preferences dialog box. See “set-resume” on page 6-71 and “Preferences Dia-
log Box” on page 8-39.

Select which processes you want to see with the filter fields, then click on Refresh.
Select the processes you want to attach to by clicking on them, then click on Attach.

The filter has three text input areas. The text input areas each take a regular expression.
When you click on the Refresh button, the Processes list is filled in with the pro-
cesses that match all three regular expressions: one for the process identifier (PID), one for
the User and one for the Program name. See “Regular Expressions” on page 6-16. Each
regular expression must match the entire corresponding string (that is, each one uses an
anchored match). The initial value of the PID and Program regular expressions is ".*",
which match all processes. The initial value of the User regular expression is the name of
the user logged in to the dialogue.

The Processes list indents the program names to show the parent/child relationship.
Each process appears below its parent process and indented relative to the parent process.

The Attach button closes the dialog box and attaches to the selected processes.

Click on Cancel to dismiss the dialog box without attaching to any processes. Click on
Help to get help for this dialog box.

Source Selection Dialog Box 8

This dialog box pops up when you ask to list a function or ask to list a source file from
the Source menu. See “Source Menu” on page 8-10. It allows you to change the
program code that is listed in the source panel by selecting a function or source file name
from a list. You can interact with other NightView windows while this dialog box is
8-27

NightView LX User’s Guide
displayed.

This dialog box is titled Select a Function/Unit or Select a Source File,
depending on which menu item you selected, and displays the qualifier of the current
process.

Enter search criteria.

Enter the regular expression (if you are searching for functions) or wildcard pattern
(if you are searching for source files) you want to search for, then either press
Return or click on Search. (For a regular expression, an anchored match is not
implied.) See “Regular Expressions” on page 6-16. See “Wildcard Patterns” on
page 6-18.

If you do not want to enter a regular expression or wildcard pattern, you can simply
press Return or click on Search and all functions or files are displayed.

For C++, the regular expression is only applied to the final component of a name.

The next time you use this dialog box, this text is redisplayed.

Select a list item.

If NightView finds any functions or source files, their names are displayed in the list
area. If no functions or files are found, a message is displayed in the message panel.
See “Message Panel” on page 8-61.

Select an item in the list. If you double-click on an item in the list, the OK button is
activated.

Choose an action button.

Click on OK to list that function or source file in the source display area. See
“Source Panel” on page 8-53. This button is disabled (dimmed) if the list is empty.

You can cancel the listing of the selected function or source file by clicking on
Cancel.

You can get help for this dialog box by clicking on Help.

File Selection Dialog Box 8

This dialog box pops up when you select List Any File... from the Source menu. It
allows you to list a file of your choice in a source panel.

Select a file name.

Select the file you want to list. If you double-click on a file name in the Files list,
the OK button is activated.

Choose an action button.

If you are satisfied with the file you selected, click on OK.

Clicking on Cancel cancels the action and closes this dialog box.
8-28

Graphical User Interface
You can get help for this dialog box by clicking on Help.

Eventpoint Dialog Boxes 8

NightView provides a dialog box for each type of eventpoint. See “Eventpoints” on page
3-9. These dialog boxes pop up when you use the Eventpoint menu, the source panel
context menu, or the eventpoint panel to set or change an eventpoint. See “Eventpoint
Menu” on page 8-12.

All types of eventpoints share common traits; some eventpoints have additional optional
or required information.

The eventpoint dialog boxes generally present the common eventpoint information first,
followed by any data that is specific to a given eventpoint. The watchpoint dialog box
first presents information specific to watchpoints, followed by the common eventpoint
information. Similarly, the syscallpoint dialog first presents widgets allowing you to
specify the system calls of interest, followed by the common eventpoint information.

For inserted eventpoints, NightView provides default settings for new eventpoints,
including a default location specifier. See “Location Specifiers” on page 6-13. In
addition, you can enter other information to define the eventpoint. Required data that
must be provided by you before NightView can set the eventpoint is visually emphasized.

Depending on whether you are setting a new eventpoint, or changing an existing
eventpoint, NightView allows or disallows access to certain fields in the eventpoint
dialog boxes.

Define the eventpoint.

Description (display only)

The title bar of each eventpoint dialog box indicates which kind of eventpoint
the dialog box deals with and whether the dialog box allows you to set a new
eventpoint or to change an existing eventpoint.

Location

This field is displayed only for inserted eventpoint dialog boxes, not for
watchpoint dialog boxes.

When the dialog box appears, the Location field contains a location speci-
fier.

When setting a new eventpoint, NightView determines this value from the tar-
get line in the source panel. See “Source Panel Target Line” on page 8-54.
You can edit this text input area.

When changing an existing eventpoint, NightView displays the location spec-
ifier associated with this eventpoint. You cannot change this location.
8-29

NightView LX User’s Guide
Line numbers in location must match exactly

This may be checked to indicate that any line number specified in the location
will be interpreted as fixed. That is, if the specified line contains no code, a
subsequent line that does contain code will not be selected instead. See /f
under “Eventpoint Modifiers” on page 6-100.)

Watchpoint options (watchpoint dialog box only)

These controls let you indicate whether you want to specify an L-value (e.g., a
variable name) or an explicit program address and size. You can also control
whether you want the watchpoint to be for memory reads, memory writes, or
both. If the target is an IA-32 or AMD64, watchpoints always trap on memory
writes, but you can control whether they also trap on memory reads.

When changing an existing watchpoint, these controls cannot be changed.

Watchpoint target (watchpoint dialog box only)

This text input area lets you enter an L-value or an explicit program address,
depending on the setting of the controls in the watchpoint options area.

When changing an existing watchpoint, this field cannot be changed.

Watchpoint size (watchpoint dialog box only)

This combo box lets you select the size, in bytes, of the watchpoint target if
you have selected Watch address and size in the watchpoint options
area. If you have not selected Watch address and size, then this area is
not enabled.

When changing an existing watchpoint, this field cannot be changed.

Syscallpoint selection (syscallpoint dialog box only)

This text input area lets you enter one or more system call names, separated by
commas or spaces. Leaving the list empty, or the word All, refers to all sys-
tem calls.

To the right of the text input area is a Select... button; pressing it launches a
dialog which aids you in selecting system call names. See “System Call
Selection Dialog” on page 8-34 for information on this dialog.

Below the text input area is a checkbox, which, when checked, negates the
specified list of system calls. Thus you can easily use the selection area to
match all system calls but a select few. This can be especially useful in situa-
tions where you already have a syscallpoint that matches one system call, but
want to take different actions for all other system calls with a new syscallpoint
event.

When changing an existing syscallpoint, these fields cannot be changed.
8-30

Graphical User Interface
Syscallpoint actions and modifiers (syscallpoint dialog box only)

The action to be taken when a syscallpoint is hit is specified by selection of
one of the two radio buttons:

• Print only; do not stop

• Stop and print

Further, the modifiers to the right allow you to match a system call on entry,
exit, or both.

When changing an existing syscallpoint, these fields cannot be changed.

Eventpoint Number (display only)

When changing an existing eventpoint, NightView displays the eventpoint
number.

Enable Options

When setting a new eventpoint, you can choose from several enable options.
By default, the eventpoint is created enabled. This is similar to using the
enable or disable commands. See “enable” on page 6-116. See “disable”
on page 6-115.

When changing an existing eventpoint, NightView displays the eventpoint's
enabled state. You can select a different enable option by clicking on one of
the choices.

Enable

This is the default choice when setting a new eventpoint. The eventpoint
is enabled.

Enable, disable after next hit

You can have the eventpoint be disabled automatically after the next hit.

For breakpoints, this is similar to using the tbreak command, or the
enable/once command. See “tbreak” on page 6-118.

For patchpoints, this is similar to using the tpatch command, or the
enable/once command. See “tbreak” on page 6-118.

For other eventpoint types, this is similar to using the enable/once
command.

Enable, delete after next hit

Valid for breakpoints and watchpoints only. You can have the event-
point be deleted automatically after the next hit. This is similar to using
the enable/delete command.

Disable
8-31

NightView LX User’s Guide
You can disable the eventpoint.

Condition

You can attach a condition to this eventpoint, or change an existing condition,
by editing this text input field. This is similar to using the condition com-
mand. See “condition” on page 6-114.

If you delete an existing condition, the eventpoint becomes unconditional.

Ignore Count

You can attach an ignore count to this eventpoint, or change an existing ignore
count, by entering a number in this text input area. This is similar to using the
ignore command. See “ignore” on page 6-117.

The default ignore count is zero and is represented by a blank field.

Name

When setting a new eventpoint, you can assign a name to it by entering text in
this text input area. The name must consist only of alphanumeric characters
and underscores and must begin with an alphabetic character. The name may
be of arbitrary length. This is similar to using the name command. See
“name” on page 6-100.

You cannot change an existing eventpoint's name using the dialog box. Use
the name command to change eventpoint names.

Commands

Valid for breakpoints, syscallpoints, and watchpoints only. You can attach
commands to this eventpoint, or change existing commands, by entering one
command per line in this multi-line text input area. This is similar to using the
commands command. See “commands” on page 6-113.

There are additional restrictions for commands when used with watchpoints
and syscallpoints; see “watchpoint” on page 6-120 and “syscallpoint” on page
6-121 for more information.

Monitorpoint Expressions

This area is shown for monitorpoints only. One or more expressions are
required to set a monitorpoint. Enter an expression in the first column.

The default format to print the is determined by the type of the expression. If
you want a different format, click on the format field. The field changes to a
combo box. Select the desired format.

Enter a label if desired. If no label is entered, then the expression string is used
as the label.
8-32

Graphical User Interface
Click on New to make another entry in the expression table. You can also use
the Tab key in the label field to make a new entry.

Patchpoint Action

Valid for patchpoints only; you are required to enter either an expression, a
location specifier, or a Thread Tags assignment to set a patchpoint. Select the
appropriate choice by clicking on it. The radio button appears filled for your
selection, and the label for the text input area changes to either Evaluate, Go
to, or Tag. Enter the expression or location specifier in the text input area.

Insert an expression at this location

This field represents the eval argument of one variant of the patch-
point command. See “patchpoint” on page 6-103. This is the default
choice.

Branch to a different location

This field represents the goto argument of one variant of the patch-
point command.

Set thread local tag values

This field must contain the tag assignment(s) to be executed. See the
tag assignment description of the patchpoint command for more
information.

NightTrace Event (for tracepoints only)

ID

You are required to supply an ID number to set a tracepoint. This field
represents the event-id argument of the tracepoint command. You
must enter a trace-event number or symbolic name. See “tracepoint” on
page 6-106.

Value

This optional field represents the value= argument of the trace-
point command. You can enter an expression whose value should be
logged with the trace event.

Once set, these fields cannot be changed.

Heappoint Action -- Check - Debug Settings

This area is shown for heappoints only. Select whether you want to perform a
heap check or change the heap debugger settings by clicking on one of the
radio buttons. If you want to change the heap debugger settings, enter the
arguments in the Settings: text input area. Valid arguments are the same as
for the heapdebug command. See “heapdebug” on page 6-53.
8-33

NightView LX User’s Guide
Show/Hide Advanced Controls

This button controls whether or not additional advanced controls are dis-
played. If they are displayed, a few more options are available.

Address Space

You may restrict the address space to which the given eventpoint applies:

Cuda only

The eventpoint may only be inserted into a CUDA address space.

Process only

The eventpoint may only be inserted in the host address space.

Cuda or Process

The eventpoint may be inserted into either the host address space or a
CUDA address space. If a CUDA location applies, it will be selected
over a host location.

Dialog Buttons

Click on OK to set or change the eventpoint. The dialog box is dismissed.

Click on Delete to delete this eventpoint. The dialog box is dismissed. This
button is present only for an existing eventpoint.

Clicking on Cancel cancels the action and closes this dialog box.

You can get help for this dialog box by clicking on Help. The dialog box is
not dismissed.

If you are setting a new eventpoint or deleting an existing one, you see the source line
decoration change and the eventpoint panel change. NightView displays a message in the
message panel to tell you if the eventpoint was set.

If you make an error while entering data, NightView may display an error dialog box and
allow you to re-enter the data. Other warnings or errors associated with setting or
changing this eventpoint are displayed in the message panel. See “Message Panel” on
page 8-61.

You can use the info eventpoint command or the eventpoint panel to check the
eventpoint settings. See “info eventpoint” on page 6-149. See “Eventpoint Panel” on page
8-62.

System Call Selection Dialog 8

This dialog aids in selecting one or more system calls for the Syscallpoint Dialog.
You can use the search facility to quickly locate a specific call, or you can scroll and select
individual items. This dialog supports multiple selection; use Ctrl+<click> to select
multiple non-contiguous system calls, or Shift+Ctrl+<click> to select a range of system
calls.
8-34

Graphical User Interface
When focus is in the list of displayed system calls, keystrokes entered take you to the next
system call that starts with the letter associated with your keystroke.

Debug Heap Dialog Box 8

This dialog box pops up when you use the Debug Heap... item in the Process menu
(see “Process Menu” on page 8-9). This dialog box allows you to turn on heap debugging
and control the heap debugger. The effect of using this dialog box is similar to using the
heapdebug command (see “heapdebug” on page 6-53).

Enable Heap Debugging

The most important control is the checkbox to turn heap debugging on and off. If
you are a casual user of heap debugging, you may want to restrict your attention to
this control and the level buttons and common error buttons. See “heapdebug” on
page 6-53 for information about turning heap debugging on and off.

Debugging Level buttons

The level buttons provide a convenient way of setting some of the other controls.
See “Levels and Common Errors” on page 3-30.

Common Errors Detection buttons

The common error buttons provide a convenient way of setting some of the other
controls to configure the heap debugger to detect a particular kind of program error.
See “Levels and Common Errors” on page 3-30.

General Settings

If Hardware Overrun Protection is checked, each block is placed at the end of
a page and the following page is protected from reads and writes. See “Hardware
Overrun Protection” on page 3-32.

Check Specify check heap freq to enable automatic heap checking. In the text
field, set the number of heap operations between heap checks. Uncheck the box to
turn off automatic heap checks.

Check Specify retained free blocks to give the number of free blocks that
should be retained. Uncheck the box retain all free blocks. See “Retained Free
Blocks” on page 3-33.

Check Specify heap size to limit the size of the heap to the specified number of
bytes. Uncheck the box to indicate that the total size of the heap is limited only by
system resources.

Enter the number of extra bytes to add to each allocation size in Slop size.

Enter the number of walkback entries to keep for each heap operation in Walkback
Entries Per Block. This number refers to physical walkback entries. The number
of walkback frames may differ from this number when displayed in NightView. The
number of frames displayed may include extra inline frames, as they are not physi-
cal frames. The number of frames displayed may be fewer if certain frames are
deemed uninteresting (see “interest” on page 6-66).
8-35

NightView LX User’s Guide
Pre-fence size is the number of bytes to fill and check before each block. Post-
fence size is the number of bytes to fill and check after each block. See “Fences”
on page 3-31.

NOTE

When specifying a number of heap operations, blocks, or bytes,
you may append the letter k to multiply the number by 1024, or
the letter m to multiply by 1048576.

Fill Settings

If Fill malloc space is checked, blocks are filled with the Malloc fill byte when
they are allocated.

If Fill free space is checked, blocks are filled with the Free fill byte when they
are freed.

If Check free fill is checked, retained free blocks are checked for the Free fill
byte during a heap check.

Pre-fence fill byte is the value used to fill the pre-fence. Post-fence fill byte
is the value used to fill the post-fence.

Error Control

These controls specify how the debugger responds when an error condition is
detected. Each error has a Stop checkbox and a Print checkbox. If Stop is
checked, the process will stop when it gets that error. If Print is checked, the debug-
ger prints a message when the process gets that error.

Action buttons

Click the OK button to configure heap debugging with these settings and dismiss
the dialog box. Click the Reset button to restore the settings to be the same as
when the dialog box popped up. Click the Cancel button to dismiss the dialog box
without making any changes to the heap debugging configuration. Click the Help
button to get help about the dialog box.

Remote Login Dialog Box 8

This dialog box pops up when you use the Shell menu's Start Remote Shell... item.
See “Shell Menu” on page 8-8. This dialog box allows you to specify the parameters for
creating a remote NightView session. See “Remote Dialogues” on page 3-6. Some of
these parameters are required, but most are optional.

The parameters specified in this dialog apply to the NightView processes that execute on
the remote system. These processes include a NightView target program, a dialogue
shell, and all the processes started by that dialogue shell.
8-36

Graphical User Interface
Remote Login General Page 8

Target

This is the name or address of the remote system on which you want a remote
dialogue. This field is required information.

Login name

This specifies the user name to use to log into the remote system. This field is
required, but it defaults to the user running NightView.

After you click on Login, you will be prompted for the passphrase for this
user in another dialog box. If you leave the passphrase empty, then you will be
prompted for the password for this user. For security, the passphrase or pass-
word you type is not echoed in the window; instead, an asterisk (*) replaces
each character.

Shell Name

This field specifies the name to give to the dialogue. See “Qualifier Specifi-
ers” on page 6-15. If you leave this field empty, the name of the dialogue will
default to be the same as the Target field. If the remote system name is not a
valid dialogue name, an error dialog will appear. A common reason for the
remote system to be an invalid dialogue name is that the remote system name
contains period (.) characters (e.g., it includes domain names), or it is an IP
address instead of a name.

Show the remote shell in a new shell panel

Indicate with the checkbox whether you want a new shell panel to be created
for this shell. See “Shell Panel” on page 8-60.

Debug i386 programs on x86_64 target

Indicate with the checkbox if you want to start a 32-bit shell instead of the
default shell. Use of this checkbox allows you to debug 32-bit applications in
this shell, but prohibits debugging of 64-bit applications. See “Architecture
Interoperability” on page 3-43.

Remote Login Advanced Page 8

This area allows you to set scheduling attributes which will be applied to the Night-
View processes which will run on the specified target system.

Scheduling Class

This combo box allows you to select the POSIX scheduling class for the
NightView processes:

- Other

This class corresponds to the SCHED_OTHER scheduling policy which
provides for general process scheduling with urgency less favorable
8-37

NightView LX User’s Guide
than the other two classes. Processes in this class have their priority
adjusted by the operating system based on CPU usage.

- Round Robin

This class corresponds to the SCHED_RR scheduling policy which pro-
vides real-time process scheduling using a time-slicing algorithm to
share CPU resources with other SCHED_RR processes of the same pri-
ority.

- First In First Out

This class corresponds to the SCHED_FIFO scheduling policy which
provides the strictest real-time process scheduling. Processes are not
time-sliced with other SCHED_RR or SCHED_FIFO processes of the
same priority.

See sched_setscheduler(2) for more information on these scheduling
classes.

Class Attributes

Depending on the scheduling class chosen, the following attributes can be
selected:

- Nice Value

You can use this spin-box to set the initial nice value to be associated
with the NightView processes. A nice value provides a bias to the
default priority of a process, thereby affecting the effective priority.
Positive values correspond to less favorable scheduling urgency. This
attribute is only available when the Other class is selected. See
nice(1) for more information on the effect of nice values.

- Real-time Priority

You can use this spin-box to set the real-time priority of the NightView
processes. Priority values are constrained to be between 1..99. Selecting
a priority value exceeding 90 is not recommended as it may interfere
with kernel daemon processing. A priority of one is sufficient to give
the process more urgency than any process in the SCHED_OTHER
class. Higher priority numbers correspond to more favorable scheduling
urgency.

- Time Quantum

You can use this spin-box to set the duration of the time-slice for pro-
cesses using the SCHED_RR class. This attribute is not applicable to
any other scheduling class.

CPU List

NightView server process execution will be constrained to the CPUs listed
here. Additionally, the remote shell being created and all programs you run in
8-38

Graphical User Interface
it will be similarly constricted, unless you specifically change their interrupt
affinity programmatically or with the run(1) command.

By default, the list is all, which means the server process can run on any
CPU on the target system which isn’t shielded from process execution (con-
sult the shield(1) man page for more information on shielding).

The list can either be the word all, or a comma-separated list of CPU num-
bers or ranges of CPU numbers; for example: 0,2-3.

To the right of the text field a description of the resultant CPU mask is shown.
Some system interfaces require CPU affinity to be specified as a mask, with
each bit in the mask representing a CPU. The mask is shown to remind you
that the numbers you enter into the text field here are logical CPU numbers,
not hexadecimal characters in a CPU mask.

If you enter something invalid into the text field, the description to the right
changes to the word invalid, shown in red. Ultimately, syntactically-
invalid CPU lists are automatically replaced with a list indicating all.

NOTE

Selection of the Round Robin or First In First Out schedul-
ing class or a non-default CPU bias requires privileged access.

Remote Login Action Buttons 8

Login

When you press the Login button, the remote dialogue is created and the
remote login dialog box is dismissed. If the remote dialogue cannot be cre-
ated, either an error dialog box will appear or the remote login dialog disap-
pears and a message is displayed in the message panel. See “Message Panel”
on page 8-61.

Reset

Set all the fields back to their default values.

Cancel

Pressing the Cancel button dismisses the dialog box without creating a
remote dialogue.

Help

Pressing the Help button brings up the online help with information about the
remote login dialog box.

Preferences Dialog Box 8

This dialog box pops up when you click on Preferences... in the File menu. See “File
Menu” on page 8-4. With it you can adjust things such as fonts and how you interact with
8-39

NightView LX User’s Guide
the debugger. Preferences you set here apply only to this debug session unless you save
them to disk. You can save your preferences to disk by clicking the Save button in this
dialog box or with the Save Preferences item in the File menu.

Many of these preferences may be set by commands. This dialog box and the commands
refer to the same preferences, so, for example, if you change a preference with a com-
mand, you can see the same value when you bring up this dialog box.

For a way to change settings that relate to a process, see “Process Settings Dialog Box” on
page 8-50.

Click OK to apply the preferences and dismiss the dialog.

Click Apply to apply the preferences and leave the dialog up.

Click Reset to set the preferences back the way they were when the dialog popped up (or
when Apply the button was clicked).

Click Save to apply the preferences, save them to disk and dismiss the dialog.

Click Cancel to dismiss the dialog without applying any changes.

Click Help to get help about the dialog.
8-40

Graphical User Interface
Preferences General Page 8

Safety 8

Select a safety level. This is similar to using set-safety. See “set-safety” on page
6-64. If the level is verify, you can say whether you want to be warned if you ask to exit
when you are still debugging processes.

Automatically Resume On 8

The debugger normally stops a process when it is first attached, when it execs, when it is
about to exit, or when it forks. Check the conditions for which you want the process to
continue running. See “set-resume” on page 6-71.

Searching 8

Indicate whether you want searching to be case-sensitive. This affects the forward-search
and reverse-search commands, and is the initial setting for find bars. See “set-search” on
page 6-70.
8-41

NightView LX User’s Guide
Data Panel 8

Select the default number of stack frames to display in a data panel (assuming at least that
many stack frames exist). Select the number of indices to show when treating a pointer as
an array. See “Data Panel Call Stack Frames” on page 8-85 and “Data Panel Pointer Array
Dimension” on page 8-86.

Display Limits 8

Select the display limits for array elements, string characters and addresses in location
specifier listings. These limits are to prevent large amounts of output from overwhelming
the display. See “set-limits” on page 6-61.

Source Panel Keystrokes 8

You can perform many actions by pressing keys when the keyboard focus is in the source
panel. Use this control to turn source panel keystrokes on or off. See “Source Panel Key-
strokes” on page 8-59.

Source File Size 8

Select the maximum number of bytes a source file can have to be displayed in a source
panel. This is useful for extremely large source files which overwhelm NightView due to
the overhead involved in building individual widgets associated with each line. The num-
ber is in units of 1000 bytes. The default value is 4000, which indicates ~4MB. The
source for files that exceed the limit are not displayed, but the assembly associated with
the function associated with the current stack frame within the file is displayed. See “set-
limits” on page 6-61.
8-42

Graphical User Interface
Preferences Appearance Page 8

Source Display 8

Choose whether you want the source to be colored based on syntax and whether you want
to see line numbers in the source panel. See “Source Panel” on page 8-53.

Disassembly 8

Choose how you want to see disassembled code. See “set-disassembly” on page 6-72.

Source Editor 8

This section determines how to run the editor when you select the Edit... item in the
Source menu or use the e key in the source panel. Enter the command you want to use to
edit files. The combo box is already loaded with two popular editor commands, and one is
selected based on your EDITOR environment variable. You can pass information about
the file and the current position with % specifiers.

%
8-43

NightView LX User’s Guide
Replaced by %. That is, to get a %, use %%.

s

Replaced by the name of the source file.

l

Replaced by the line number of the current position.

p

Replaced by the offset, in characters, of the current position from the beginning of
the file.

c

Replaced by the column of the current position.

A % followed by any other character is ignored.

If your editor can communicate with the X Window System display directly, then you
should clear the check box for Run this command in an xterm. The editor runs on
the same display as NightView.

Preferences Fonts Page 8

NightView uses multiple fonts to present text in the most effective manner throughout the
various display areas of the tool.

Variable-width fonts are most commonly used; these fonts most closely resemble how
people write or print words.

Fixed-width fonts require that all characters and numbers have the same width (visual
footprint). Fixed-width fonts are of benefit when source code is being displayed or manip-
ulated or when columns of numbers are viewed.

NightView further divides the use of fonts into the following categories; default and panel.

Default fonts are used for text associated with operational description and control, includ-
ing: menus, buttons, selection devices, labels, tool tips, status bar messages, and generally
descriptive verbiage.

Panel fonts are used in NightView panels, which display the data of highest importance.

Fonts are selected by querying font preferences from the following sources until a prefer-
ence is found:

• Your NightView preference

• Your NightStar-wide preference

• The system’s NightView preference

• The system’s NightStar-wide preference

• NightView’s ultimate default
8-44

Graphical User Interface
Figure 8-1. Font Preferences Page

This page is divided into three sections.

Global NightStar Fonts 8

The Change... button in this area launches the NightStar Global Fonts dialog which
allows you to set your Nightstar-wide preferences, your preferences for another specific
NightStar tool, or the system’s tool or NightStar-wide preferences.

Note:

Setting a NightStar preference for the system typically requires
root access.
8-45

NightView LX User’s Guide
Changes saved in the NightStar Global Fonts dialog are always saved to disk and
apply to the current and subsequent NightView invocations.

See “NightStar Global Fonts Dialog” on page 8-47 for more information.

My NightView Fonts 8

This area allows you to set or clear your user’s preferences for NightView.

Selection of the checkboxes for the individual font categories control whether or not your
preferences are to be consulted. Clearing a checkbox effectively removes your user pref-
erence for that category. Setting a checkbox allows you to select specific fonts within the
category.

Changes to any of the settings in this area, including individual fonts or category check-
boxes, are immediately reflected in the Effective NightView Fonts area at the bottom
of the page so you can see the ultimate effect a change will have.

To change a specific font, ensure that the corresponding category’s checkbox is checked
and then press the Change... button. This will launch a standard font selection dialog.
When you select a font from the dialog and press OK, the name of the font family is dis-
played to the left of the Change... button and is displayed in the selected font as well.

Effective NightView Fonts 8

This area shows you the effective fonts that will be used based on your user settings and
consultation of global settings which aren’t shown in the page.

The values in this area immediately change to reflect the effective font whenever any
change is made within the page.

Your changes in the My NightView Fonts area are applied to the current invocation of
NightView when you press the OK button. However, your changes are not saved to disk
and will not affect subsequent invocations of NightView unless you press the Save but-
ton.

Separation of apply and Save operations make it easy to experiment with fonts in the cur-
rent invocation without affecting long-term usage.

Note:

Changes to font preferences in the NightStar Global Fonts
dialog are always saved to disk and apply to the current and sub-
sequent NightView invocations; i.e. there is no way to experiment
with a global font preference without affecting subsequent Night-
View invocations.
8-46

Graphical User Interface
NightStar Global Fonts Dialog 8

The NightStar Global Fonts dialog allows you to set your Nightstar-wide preferences,
your preferences for another specific NightStar tool, or the system’s tool or NightStar-
wide preferences.

Figure 8-2. NightStar Global Fonts Dialog

Keep in mind that fonts are selected by querying font preferences from the following
sources until a preference is found:

• Your NightView preference

• Your NightStar-wide preference

• The system’s NightView preference

• The system’s NightStar-wide preference

• NightView’s ultimate default
8-47

NightView LX User’s Guide
This dialog has two control areas which define the scope of font preference application.

Changes Fonts For... 8

By default, the dialog is set up to apply font preferences to your user account. Select the
Entire System button if you wish to set the system’s preferences.

Note:

Changing font preference for the system typically requires root
access.

Apply Fonts To... 8

This area additionally controls the scope of font preference application. You can change a
preference for a specific NightStar tool or change the NightStar-wide preference.

If you wish to change the font for more than one tool from this dialog, but not change the
NightStar-wide preference, select the first tool of interest, make your preference change in
the areas below, and then press the Save button. Then select the second tool of interest
and repeat.

Set Default Fonts
Set Panel Fonts 8

These areas contain the variable and fixed-width font preferences for each of the font cat-
egories, identified by the label next to each checkbox.

To remove the preferences in a category, clear its checkbox.

To change a specific font, ensure that the category’s checkbox is checked and then press
the Change... button. This will launch a standard font selection dialog. When you
select a font from the dialog and press OK, the name of the font family is displayed to the
left of the Change... button and is displayed in the selected font as well.

The buttons at the bottom of the page control the application of your changes.

Save & Close 8

Saves any changes made in this dialog to disk, thus affecting subsequent tool invocations,
and closes the dialog.

These changes may affect the effective font preferences for the current invocation of
NightView. When the dialog is closed, the fonts shown in the Effective NightView
Fonts section of the Preferences dialog are updated. If you apply the changes in that
dialog, they will take effect in the current invocation of NightView.

Save 8

Applies the preferences from the dialog to the current invocation of NightView, saves the
preferences to disk thereby affecting subsequent NightView invocations.

These changes may affect the effective font preferences for the current invocation of
NightView. When this dialog is subsequently closed, the fonts shown in the Effective
8-48

Graphical User Interface
NightView Fonts section of the Preferences dialog are updated. If you apply the
changes in that dialog, they will take effect in the current invocation of NightView.

Cancel 8

Cancels any unsaved changes and closes the dialog.

Help 8

Opens the help system to display this section.

Preferences Advanced Page 8

Remote Object File Cache 8

Control how NightView downloads files from remote targets. See “set-download” on page
6-72.
8-49

NightView LX User’s Guide
Eventpoint Memory Preallocation 8

Control how NightView preallocates memory for eventpoints and monitorpoint buffers.
See “set-preallocate” on page 6-70.

Restart 8

Control whether restart information is applied. See “set-restart” on page 6-64.

Value History 8

Specify the number of items to be kept in the value history list. See “set-history” on page
6-61.

Expression Evaluation Automatic Overloading 8

Control how NightView treats overloaded operators and routines in expressions. See “set-
overload” on page 6-69.

Future Eventpoints 8

Control how NightView treats location specifiers in eventpoint commands when the loca-
tions specified do not exist yet. See “set-futurepoints” on page 6-74.

Restore Defaults 8

Click this button to give all the preferences their default values. The preferences on all the
tabs of the preferences dialog are affected.

Process Settings Dialog Box 8

This dialog box pops up when you click on Process Settings... in the Process menu.
See “Process Menu” on page 8-9. With it you can adjust things such as whether children
are debugged and how signals are handled.

Many of these settings may be set by commands. This dialog box and the commands refer
to the same settings, so, for example, if you change a setting with a command, you can see
the same value when you bring up this dialog box.

For a way to change user preferences that do not relate to individual processes, see “Pref-
erences Dialog Box” on page 8-39.

Click OK to apply the settings and dismiss the dialog.

Click Apply to apply the settings and leave the dialog up.

Click Reset to put the settings back the way they were when the dialog popped up (or
when Apply the button was clicked).

Click Cancel to dismiss the dialog without applying any changes.

Click Help to get help about the dialog.
8-50

Graphical User Interface
Process Settings General Page 8

Debug Children 8

Control whether children of this process should be debugged. See “set-children” on page
6-49.

Set Run Mode 8

Controls the execution of threads in a multi-threaded process when resuming a thread --
does one thread run or do all threads run. See “set-run-mode” on page 6-124 for a full
description.

Branch Tracking 8

Control whether NightView and the RedHawk kernel are tracking branch instructions in
this process. See “Branch Tracking” on page 3-34.

Stop Before Exiting 8

Control whether this process stops before exiting. See “set-exit” on page 6-50.

Expression Language 8

Establish a default language context for variables and expressions. See “set-language” on
page 6-59.

Refresh debug info when shared libs change 8

When this option is checked, NightView automatically detects when shared libraries are
loaded (e.g. use of the dlopen(2) service) after the process starts. There is some over-
head in using this option. Alternatively, you can use the Refresh Shared Libs option
from the Process menu manually when you wish NightView to re-read the shared
library list.

Program 8

Type the name of the executable program or use the Browse... button to find the execut-
able program with a file browser. See “exec-file” on page 6-42.

Process Settings Interest Page 8

Control which subprograms are interesting. See “interest” on page 6-66.

Process Settings Signals Page 8

Specify how to handle signals in the user process. For each signal, specify whether you
want the process to stop when it receives the signal, whether you want NightView to print
a message when the process receives the signal, and whether you want the signal to be
passed to the process when it resumes. Note that stop implies print. See “handle” on
page 6-136.
8-51

NightView LX User’s Guide
“handle” on page 6-136Rename Page Dialog Box 8

This dialog box pops up when you click Rename Current Page... in the View menu.
See “View Menu” on page 8-5.

Type the new name for the page. You can create a mnemonic for the page by preceding
one of the characters with an ampersand (&). The page’s tab will have an underscore
under that character. To get a real &, use &&.

Print Dialog Box 8

This dialog box pops up when you click on Print Window... in the File menu. Click
Print to print the main window.

List Location Dialog Box 8

This dialog box pops up when you click on List Location... in the Source menu or in
the source panel context menu.

Enter a where-spec as you would for the list command. See “list” on page 6-77. If you
clicked on List Location... in the Source menu, any source panels displaying the cur-
rent process are affected (see “Source Menu” on page 8-10). If you clicked on List Loca-
tion... in the source panel context menu, the source panel in which you clicked is the only
one affected (see “Source Panel Context Menu” on page 8-55).

If desired, you can specify a file on another host with the form user@host:/path. See
“Remote File Access” on page 3-7.

Eventpoint Panel Update Interval Dialog Box 8

This dialog box pops up when you click on Eventpoint Panels Refresh Rate... in
the Eventpoint menu.

NightView can discover some of the eventpoint information only by querying the process.
To reduce overhead, this is done only every few seconds.

Select the number of seconds between updates and whether you want automatic updates.
You can use the eventpoint context panel to do updates manually. The eventpoint panel is
updated when you make any eventpoint change regardless of whether you have automatic
updates on.

The eventpoint panel update interval is not related to the monitorpoint update interval. See
“Monitorpoint Update Interval Dialog Box” on page 8-89.
8-52

Graphical User Interface
Panels 8

NightView shows different kinds of information in different panels. The panels are
docked within the main window or may be undocked, separate windows. See “Main Win-
dow” on page 8-4.

Find Bar 8

In most panels you can use the find bar to search for text in that panel. The find bar shows
up at the bottom of the panel when you use the Find... item in the panel’s context menu.
See “Context Menu” on page 8-3. You can also make the find bar appear by typing
Ctrl+F when the focus is in the panel. (However, typing Ctrl+F in a shell panel does not
show the find bar. Instead, the character is sent to the shell.)

The find bar has a button with an X you can use to close the find bar. Next is a text field
where you can enter a search string. The search string is a regular expression. See “Regu-
lar Expressions” on page 6-16. As you type in more characters, the search progresses. If a
matching line is found, the line is highlighted. If no match is found, the background color
of the text entry field changes. A label at the end of the find bar shows the status of the
search. You can press the Escape key here to close the find bar. You can press Enter to
move to the next matching text.

The find bar has a button to find the next matching text and one to search backwards for
the previous matching text. There is a check box to indicate whether you want the search
to pay attention to case. The initial state of the check box comes from the Searching sec-
tion of the preferences dialog box. See “Preferences Dialog Box” on page 8-39.

Once you have a search text in a panel, you can use the Find Again item in the panel’s
context menu, or you can type Ctrl+G when the focus is in the panel, to find the next
matching text. (However, typing Ctrl+G in a shell panel does not search. Instead, the
character is sent to the shell.)

Source Panel 8

The source panel lists the program source code or the disassembled instructions
corresponding to the current frame in the current process. See “Current Frame” on page
3-25. See “Current Process” on page 8-3. You can select various display modes to display
source or disassembly with the Source menu. See “Source Menu” on page 8-10. See
“list” on page 6-77, for information on how the current source file is determined.

The text in this area includes the program source or disassembled instructions along with
line numbers and source decorations. See “Source Line Decorations” on page 6-83. You
can turn off the line numbers with the preferences dialog box. See “File Menu” on page
8-4. If you hover the mouse pointer over the source line decoration, a tooltip shows any
eventpoint information for the line.

The text in this area changes if you use the Source menu to list other functions or files,
if you use the list command (see “list” on page 6-77), and when the process stops or
8-53

NightView LX User’s Guide
you change the current context.

The titlebar of the source panel shows the name of the program, the qualifier of the pro-
cess associated with this source panel, and the name of the source file displayed in the
panel.

If the source panel is in disassembly display mode, the title bar shows information about
the region displayed, such as Function main.

Source Panel Target Line 8

When you click on a line in a source panel, that line becomes the target line. The source
panel shows the target line with a different background. (This is independent of text selec-
tion, which has a different highlighting background.) At most one line in one source panel
can be the target line.

Buttons and keystrokes that deal with eventpoints use the target line to identify the source
file and line number to operate on. If the button brings up a dialog box, then the target line
is used to initialize the location field. Otherwise, the target line is acted on immediately.
See “Source Panel Keystrokes” on page 8-59. See “Eventpoint Menu” on page 8-12. See
“Source Panel Context Menu” on page 8-55.

If there is more than one source panel, the target line also indicates which source panel to
operate on in some items in the Source menu. See “Source Menu” on page 8-10.

In addition to setting the target line, clicking in a source panel also sets the current process
to be the process currently associated with the source panel. See “Current Process” on
page 8-3. If the current process changes, the target line is cleared.

Source Panel Expression Tooltip 8

If you select the text of an expression in the source panel, and then hover the mouse
pointer over the selection, NightView displays a tooltip showing the value of the expres-
sion. (This is text selection, not the same as clicking to set the source panel target line. See
“Source Panel Target Line” on page 8-54.) If there is some error, such as that the selected
text is not a valid expression, the tooltip shows the error instead. If the process is stopped,
then NightView evaluates the expression with respect to the current frame. See “Current
Frame” on page 3-25. If the process is running, the evaluation is done in the global scope.

The surrounding text is ignored, so, for example, if you have a line that includes a.b.c
and you select and hover over only the c, NightView tries to find a variable named c, not
the member named c from a.b.

The expression is not evaluated if it would modify the process or cause the process to run,
so you will get an error if you select and hover over "i = 1" or "factorial(x)".

To select text, either drag the mouse pointer over it, or move the text cursor to one end of
the expression and then hold down Shift and press the Right or Left arrow key until the
whole expression is selected.
8-54

Graphical User Interface
Source Panel Context Menu 8

Right-click in the source panel to bring up the context menu. This menu provides ways of
changing the program code displayed in the panel, manipulating eventpoints, and editing
source files that are listed. See “Source Panel” on page 8-53.

Note that the right-click also sets the target line. See “Source Panel Target Line” on page
8-54.

The items that change which source file is displayed, and the items that select source or
disassembly act on this panel only.

Set simple breakpoint

Mnemonic: B

Sets a simple breakpoint on the target line.

Clear eventpoint

Mnemonic: L

Clears all the eventpoints on the target line.

Run to Here

Mnemonic: H

Runs the process until it reaches the target line (by setting a breakpoint and deleting
the breakpoint when it is hit).

Set eventpoint

Mnemonic: E

Brings up a sub-menu of eventpoint types. Click on an entry in the sub-menu to
bring up a dialog to set an eventpoint on the target line.

Set Breakpoint...

Mnemonic: B

Accelerator: Ctrl+B

Set Monitorpoint...

Mnemonic: M

Set Patchpoint...

Mnemonic: P

Accelerator: Ctrl+P

Set Tracepoint...

Mnemonic: T
8-55

NightView LX User’s Guide
Set Heappoint...

Mnemonic: H

Set Watchpoint...

Mnemonic: W

Set Syscallpoint...

Mnemonic: S

Edit eventpoint

If there is a single eventpoint on the target line, this item appears as Edit event-
point n, where n is the eventpoint number. If there are multiple eventpoints on the
target line, this item brings up a sub-menu that lists the eventpoints. Selecting any
of these items brings up a dialog box allowing you to edit the eventpoint attributes.

List Function/Unit...

Mnemonic: U

Selecting this menu item pops up a dialog box that allows you to list the program
code of a function in the source panel. See “Source Panel” on page 8-53.

This dialog box is titled Select a Function/Unit. The title bar also displays the
process's qualifier specifier. See “Qualifier Specifiers” on page 6-15. It allows you
to optionally enter a regular expression that is used to search for function names that
NightView knows about. (An anchored match is not implied.) See “Regular
Expressions” on page 6-16. For example, enter set$ to search for function names
ending with 'set'. A list of functions is displayed, and one function can be selected
for display in the source panel. For C++, the regular expression is only applied to the
final component of a name.

The regular expression case sensitivity depends on the current search mode (see
“set-search” on page 6-70).

The Select a Function/Unit dialog box is one variation of the source selection
dialog box, which is also used by the List Source File... menu item. See “Source
Selection Dialog Box” on page 8-27.

List Source File...

Mnemonic: S

Selecting this menu item pops up a dialog box that allows you to list a source file in
the source panels. See “Source Panel” on page 8-53.

This dialog box is titled Select a Source File. The title bar also displays the pro-
cess's qualifier specifier. See “Qualifier Specifiers” on page 6-15. It allows you to
optionally enter a wildcard pattern which is used to search for source file names that
NightView knows about. See “Wildcard Patterns” on page 6-18. For example, enter
mod*.c to search for source file names that start with 'mod' followed by any num-
ber of characters and ending with '.c'. A list of source files is displayed, and one
source file can be selected for display in the source panel.
8-56

Graphical User Interface
The Select a Source File dialog box is one variation of the source selection dia-
log box, which is also used by the List Function/Unit... menu item. See “Source
Selection Dialog Box” on page 8-27.

List Any File...

Mnemonic: A

Selecting this menu item pops up a file selection dialog box that allows you to
choose any file you wish and list it in the source panel. See “Source Panel” on page
8-53.

This dialog box is titled Select a File.

List Location...

Brings up a dialog box in which you can enter arguments for a list command, to
apply only to this source panel. See “List Location Dialog Box” on page 8-52 and
“list” on page 6-77.

List History

Mnemonic: R

Selecting this menu item brings up a sub-menu with entries for source files you have
viewed recently. The most recently viewed files are listed first. (If you were viewing
disassembly, then the entry describes the address region you were viewing.) Click
on an entry in the sub-menu to view that file again.

If you view different parts of the same file, separate entries are kept in the list so you
can easily switch back and forth.

A separate list is kept for each dialogue and program name. If you debug the same
program again, the list is still available.

Find...

Mnemonic: F

Accelerator: Ctrl+F

Brings up the find bar and sets the keyboard focus there. See “Find Bar” on page
8-53.

Find again

Mnemonic: G

Accelerator: Ctrl+G

Finds the search string in the find bar again. The search begins from the text cursor
position. At the end of each search the text cursor is left at the end of the found
string.
8-57

NightView LX User’s Guide
Edit

Mnemonic: I

Selecting this item lets you edit the source file that is currently displayed in the
source panel. See “Source Panel” on page 8-53. This item is disabled (dimmed) if
the source panel is displaying disassembly.

Note that once you have edited the source file, NightView displays the new con-
tents, but the debugging information still refers to the old contents. For this reason,
the source decorations may no longer match. Also, you might get confusing results
from using the special keys in the source panel or from entering commands based on
the new contents.

Show Source

Mnemonic: O

Accelerator: Ctrl+O

Selecting this menu item causes the source panel to list source, if possible. If the
debugger tries to show a position, such as a library routine, that does not have a cor-
responding source file, then the source panel shows disassembly instead.

When switching between display modes, NightView uses the position of the text
cursor to determine the line or address to show in the new mode.

Each source panel has its own display mode, so, for example, you can show source
in one source panel and disassembly in another source panel.

Show Mixed Source and Disassembly

Mnemonic: M

Accelerator: Ctrl+M

In this mode the debugger shows a line of source followed by the instructions that
correspond to that line. Source lines that do not produce code are not shown. Only
one source line is shown for each group of instructions, so statements that span lines
are only partially shown. Note that because of inlining and optimization, not all the
instructions that follow a line are generated by that line. Also note that lines from
multiple files may be shown in this mode.

Show Disassembly

Mnemonic: D

Accelerator: Ctrl+D

Selecting this menu item causes the source panel to list assembly instructions.

The range of instructions displayed usually corresponds to a single subprogram.

See the description of the Show Source menu item for more information.

Track any process
8-58

Graphical User Interface
Mnemonic: Y

The panel changes whenever another process becomes the current process. See
“Source Panel Tracking” on page 8-59.

Track one process

Mnemonic: N

The panel ignores changes for other processes. See “Source Panel Tracking” on
page 8-59.

Panel locked

Mnemonic: K

The panel ignores changes for all processes. See “Source Panel Tracking” on page
8-59.

Source Panel Tracking 8

A source panel usually shows source for the current process and changes when the process
stops or you select a different frame. When another process becomes the current process,
the source panel also changes to show the new process. We say the source panel tracks any
process. See “Current Process” on page 8-3.

You can restrict a source panel to track a particular process. To do this, select the process
as the current process in the context panel, right-click in the source panel to get the source
panel’s context menu, then select Track One Process. See “Context Panel” on page
8-64. See “Source Panel Context Menu” on page 8-55. In this mode the source panel
responds only to events for that process, such as clicking on frames for that process in the
context panel, or the process stopping.

You can also lock a source panel. Right-click in the source panel to get the context menu,
then select Panel Locked. In this mode the panel does not respond to the process stop-
ping or changing frames.

In any mode, the source panel still responds to things you explicitly tell it to do, such as
displaying a different file by using the source panel’s context menu.

If a source panel is tracking one process or locked, and the associated process terminates,
the source panel goes back to tracking any process.

Source Panel Keystrokes 8

There are several special keys that may be used when the keyboard focus is in a source
panel. The function of most keys is independent of the target line. Some keys, like b and
h, do depend on the target line so that NightView can determine the source line of
interest. See “Source Panel Target Line” on page 8-54. Note that the meaning of these
keys does not change between source display mode and disassembly display mode. For
example, s means step one line in any display mode.

In addition to these keys that work only in a source panel, there are shortcuts that work in
8-59

NightView LX User’s Guide
any panel (except for a shell panel). See “List of Shortcuts” on page 8-26.

Shell Panel 8

This area allows you to interact with the dialogue shell and with your programs. See
“Dialogues” on page 3-4. You can run your program here, just as you would normally
run it, providing any arguments that it needs. Shell and program output is displayed here.
You can also enter input to the shell and to your programs. This panel acts something like
a little terminal. If your shell lets you do command-line editing, then you can do that in

b This key sets a breakpoint. It performs the same action as the Breakpoint
button (see “Process Toolbar” on page 8-20).

d This key changes the current frame to the callee. This is similar to using the
down command with no argument. See “down” on page 6-140.

Enter Sets the line with the text cursor to be the target line. See “Source Panel Tar-
get Line” on page 8-54.

e This key is similar to selecting the Edit item in the Source menu. See
“Source Menu” on page 8-10. This key is disabled in disassembly display
mode.

f This key runs the process until it returns from the current frame. It is similar
to using the finish command. See “finish” on page 6-132.

h Run the process until it reaches the target line. This key is identical to the
Run to Here button. See “Process Toolbar” on page 8-20. It combines the
actions of breakpoint, enable/delete, and resume.

N Step one instruction without entering called routines. This key is similar to
using the nexti command with no argument. See “nexti” on page 6-131.

n Step one line without entering called routines. This key is similar to using the
next command with no argument. See “next” on page 6-129.

p Print the result of evaluating the current selection. This key performs the
same action as the Print button in the process toolbar. See “Process Toolbar”
on page 8-20).

r Resume the process. This key is similar to using the resume command with
no argument. See “resume” on page 6-126.

S Step one instruction, entering a called routine. This key is similar to using the
stepi command with no argument. See “stepi” on page 6-130.

s Step one line, entering any called routine. This key is similar to using the
step command with no argument. See “step” on page 6-127.

u This key changes the current frame to the caller. This is similar to using the
up command with no argument. See “up” on page 6-140.

= Move to the newest stack frame. This key is similar to using the frame 0
command. See “frame” on page 6-138.

> Print information about the current frame. This key is similar to using the
frame command with no arguments. See “frame” on page 6-138.
8-60

Graphical User Interface
this panel, too. In addition to passing escape sequences and control keys that you type,
NightView also passes standard escape sequences for the arrow keys (Right, Left, Up
and Down) and the Home and End keys, for shells that recognize those sequences.

NightView shortcuts cannot be used here because the keystrokes are passed to the shell.

Any programs that you run in the shell can be debugged and manipulated by NightView.

Alternatives to using the shell panel are the Run... item in the Process menu, the run
command, and giving the program and program arguments as arguments when invoking
NightView. See “Process Menu” on page 8-9. See “run” on page 6-35.

Right-click in the panel to bring up the context menu. The shell panel’s context menu
contains these entries:

Find...

Mnemonic: F

Brings up the find bar and sets the keyboard focus there. See “Find Bar” on page
8-53.

Find again

Mnemonic: G

Finds the search string in the find bar again. The search begins from the text cursor
position. At the end of each search the text cursor is left at the end of the found
string.

Message Panel 8

This panel displays messages including process status messages, error messages, output
from commands, and output from processes and the shell. All message panels have the
same contents.

Right-click in the panel to bring up the context menu. The message panel’s context menu
contains these entries:

Find...

Mnemonic: F

Accelerator: Ctrl+F

Brings up the find bar and sets the keyboard focus there. See “Find Bar” on page
8-53.

Find again

Mnemonic: G

Accelerator: Ctrl+G
8-61

NightView LX User’s Guide
Finds the search string in the find bar again. The search begins from the text cursor
position. At the end of each search the text cursor is left at the end of the found
string.

Eventpoint Panel 8

The eventpoint panel shows you a table of existing eventpoints for all processes. It also
provides ways for you to change eventpoints. See “Eventpoints” on page 3-9.

The table has a row for each eventpoint. The columns show:

• the type of the eventpoint (breakpoint, heappoint, monitorpoint, patch-
point, tracepoint, syscallpoint, or watchpoint), with an icon for the type.

• the eventpoint ID number. Each eventpoint has a unique ID.

• the location of the eventpoint in the program. Watchpoints and syscall-
points do not have a location in the program: for watchpoints, this area
describes the location being watched; for syscallpoints, this area describes
the system calls being traced.

• the ID of the process this eventpoint is in.

• whether the eventpoint is enabled.

• the ignore count.

• the hit count.

• the crossing count.

• whether the eventpoint has commands (only breakpoints, monitorpoints,
syscallpoints, and watchpoints can have commands).

• any condition on the eventpoint.

If the program is stopped at a breakpoint, syscallpoint, or watchpoint, the eventpoint icon
is overlaid with a green triangle pointing to the right, as it is in the source panel.

You can sort on the various columns in the table by clicking on the headers. You can rear-
range the columns by dragging the headers.

One way to change eventpoints in this panel is to edit the fields in the table directly. The
Enabled, Ignore and Condition fields can be edited by clicking on them. The field
changes to a control appropriate for changing that field.

NOTE

It is important to click somewhere else after changing the fields in
the table directly. The eventpoint will not be changed until you
click somewhere else.
8-62

Graphical User Interface
Right-click in the panel to bring up the context menu. You may select one or more event-
points (rows) and then right-click. If you right-click on a row that is not selected, the
selection is cleared and the row you clicked on becomes selected. If you right-click on a
row that is selected, the selection does not change. The context menu’s entries are enabled
or disabled based on which rows are selected.

The eventpoint panel’s context menu contains these entries:

Edit...

Mnemonic: I

Brings up a dialog box to change the attributes of the selected eventpoint. See
“Eventpoint Dialog Boxes” on page 8-29.

Enable

Mnemonic: E

Enable the selected eventpoints. This is similar to using the enable command. See
“enable” on page 6-116.

Disable

Mnemonic: D

Disable the selected eventpoints. This is similar to using the disable command.
See “disable” on page 6-115.

Delete

Mnemonic: L

Delete the selected eventpoints. This is similar to using the delete command. See
“delete” on page 6-115.

Once deleted, you cannot refer to these eventpoints again. If you think you may
want to "turn off" an eventpoint temporarily, then use it again later, you should dis-
able the eventpoint and enable it when you are ready to use it.

Clear Ignore Count

Mnemonic: G

Set the ignore count to zero for the selected eventpoints.

Clear Commands

Mnemonic: M

Remove any commands on the selected eventpoints.

Clear Condition

Mnemonic: N

Remove any condition on the selected eventpoints.
8-63

NightView LX User’s Guide
List Source

Mnemonic: S

Show the source corresponding to the location of the selected eventpoint.

Resize Columns to Data

Mnemonic: Z

Adjust the width of the columns of the table to fit the data.

Update Now

Refresh the data in the table.

Warnings or errors associated with changing eventpoints are displayed in the message
panel. See “Message Panel” on page 8-61.

You can also use the info eventpoint command to check eventpoint settings. See
“info eventpoint” on page 6-149.

Context Panel 8

The context panel is a special data panel that lets you browse within the processes you are
debugging and their stack frames. See “Data Panel” on page 8-65.

A context panel is essentially a specialized data panel that shows you shells, processes,
threads, CUDA contexts, stack frames, and local variables within stack frames.
However, it hides some of these panel components if they are uninteresting; shells are
shown if you only multiple shells, process entries appear only if you have multiple
processes, etc.

The current stack frame is shown in green underlined text. If threads and CUDA contexts
are shown, the current thread or CUDA context is shown in green underlined text. If
processes are shown, the current process is shown in green underlined text. If shells are
shown, the shell that contains the current process is shown in green underlined text.

To change the current context, click on a stack frame, process or shell. The source panels
and the status bar are updated for that context and the items related to that context
become green underlined text.

Locals Panel 8

A locals panel is a special data panel that has a single local variables data item. (The root
of the data item is hidden.) This panel always shows the local variables for the current
frame for the current process. See “Data Panel” on page 8-65. See “Local Variables Data
Item” on page 8-68. See “Current Frame” on page 3-25. See “Current Process” on page
8-3.
8-64

Graphical User Interface
Monitor Panel 8

A monitor panel is a special data panel that has a single monitorpoint values data item.
(The root of the data item is hidden.) This panel always shows monitorpoint values. See
“Data Panel” on page 8-65. See “Monitorpoint Values Data Item” on page 8-75. See “Cur-
rent Frame” on page 3-25. See “Current Process” on page 8-3.

Data Panel 8

A data panel displays various information about your process. Each data panel has a name.
If there is more than one data panel, then you are prompted for the name of a data panel
when you place an item in the panel. If no panel of that name exists, then one is created
with that name. There is no limit on the number of data panels.

Items are placed into a data panel by using the Data menu, or by using the Data Dis-
play button, or by using the data panel’s context menu, or by invoking the data-dis-
play command. See “Data Menu” on page 8-14. See “Value Toolbar” on page 8-23. See
“Data Panel Context Menu” on page 8-75. See “data-display” on page 6-93.

Monitor Bar 8

The monitor bar appears when you select Show Monitor Bar in the context menu for a
monitorpoint values item or in a monitor panel. See “Data Panel Context Menu” on page
8-75.

This area contains a button to hide the monitor bar, the Hold/Release button, and a
spinbox with the update interval in milliseconds.

Use the Hold/Release button to hold or release monitorpoint updates. The button is
labeled Hold when updates are running, and Release when updates are held. You can
also hold and release updates with the mcontrol command or its aliases hold and
release. See “mcontrol” on page 6-111.

If you modify the update interval spinbox, you need to click somewhere else to have the
value take effect.

Data Items 8

Each data item shows one piece of data from your process. The data items are arranged in
a tree. A data item has a label and a value field. The format of the value field depends on
the kind of data item.

If the data item has sub-items, then it appears with a small button to the left. If the button
is shown with a +, then any sub-items the data item has are currently collapsed (not cur-
rently displayed). You can expand the sub-items by clicking on the + button.

If the button is shown with a - , then any sub-items the data item has are currently
expanded (displayed). You can collapse the sub-items by clicking on the - button.
8-65

NightView LX User’s Guide
If there is no button with + or -, then the data item has no sub-items.

You can right-click on the data item to pop up a context menu for the data item. See “Data
Panel Context Menu” on page 8-75.

You can change the size of scroll regions in this panel with the Data menu or the data
panel context menu. See “Data Menu” on page 8-14.

For expression data items showing arrays, and for stack data items, you can extend the
number of items shown by clicking on the arrowhead items . See “Expression
Data Item” on page 8-67 and “Stack Data Item” on page 8-69.

NightView may present the value field with the term "(invalid)" appended and using a
red foreground. This happens with expression data items for pointer expressions, and for
block data items and for some of the sub-items therein. For a pointer data item, this indi-
cates that the pointer references nonexistent, freed, or never allocated memory (although
NULL always is considered valid). For block data items, which are available if heap
debugging is turned on, this indicates a heap block for which an error has been detected.
For sub-items therein, it indicates the nature of the error.

Top-level data items may be moved by dragging them with the mouse. They may be
moved to a different top-level position in the same data panel or to another data panel.
Items in a context, locals or monitor panel may not be moved.
8-66

Graphical User Interface
Expression Data Item 8

An expression data item displays the value of an expression, such as a variable.

The expression is re-evaluated whenever the process stops.

The expression is re-evaluated in the context that was current at the time the data item was
created, or in the context that is current at the time of the re-evaluation, depending on the
setting when you created the data item. See “Data Panel Add Expression” on page 8-84.

Figure 8-3. Expression Data Items

In the figure above, several different kinds of expressions have been added to the data
panel.

If the value is a C struct, then the sub-items are the members of the struct.

If the value is an array, the sub-items are the elements of the array. A limited number of
elements is shown.

If the value is a pointer, the sub-item is the result of indirecting through the pointer.

Pointers can be treated as arrays or linked lists. When treated as a linked list, sub-items
represent nodes in the linked list. See “Data Panel Linked List Expression Dialog” on
page 8-88 on how linked lists are interpreted.
8-67

NightView LX User’s Guide
If the value is an array, or is being treated as an array, there are special arrowhead items on
either end. Click on the arrowhead items to reveal more array elements. (Night-
View lets you reference elements beyond the ends of an array.) Linked lists can be manip-
ulated the same way, although such lists terminate when the link is NULL.

If heap debugging is turned on, and the value is a pointer which references heap memory,
then it will have an additional sub-item named "(heap info)", which is a block data
item describing the heap block containing the memory referenced by the pointer. See
“Block Data Item” on page 8-74.

Local Variables Data Item 8

A local variables data item has sub-items for all the local variables visible in the current
scope, including subprogram arguments. For C++ member functions, this is also
included in the local variables.

This data item is updated whenever the process stops or you change the current context,
e.g., by clicking on Up or Down in the process toolbar. See “Process Toolbar” on page
8-20.

Registers Data Item 8

A registers data item has sub-items for all of the registers.

This data item is updated whenever the process stops or you change the current context,
e.g., by clicking on Up or Down in the process toolbar. See “Process Toolbar” on page
8-20.
8-68

Graphical User Interface
Stack Data Item 8

A stack data item has sub-items for each frame on the stack. Initially, the number of
frames shown is limited to the default number of stack frames. See “Data Menu” on page
8-14. The highest numbered stack frame is followed by an item with an arrowhead .
Click on the arrowhead item to reveal more stack frames. Once you have reached the end
of the stack, the arrowhead item goes away.

Expanding a frame shows the local variables in that frame.

The current frame is shown in green underlined text. See “Current Frame” on page 3-25.

If branch tracking has been enabled (see “Branch Tracking” on page 3-34), a stack data
item has an additional Branch History sub-item to display the branch history. This infor-
mation is independent of stack frames and may cover branches within the current frame,
any previous frames, and even frames which have completed and returned.

Figure 8-4. Stack Data Item
8-69

NightView LX User’s Guide
Branch History Data Item 8

A branch history data item appears only as a sub-item of a Stack data item if branch track-
ing has been enabled (see “Branch Tracking” on page 3-34). It has sub-items for each
branch that was tracked. Initially, the number of branches shown is limited to 5. The high-
est numbered branch shown is followed by an item with an arrowhead . Click on the
arrowhead item to reveal more branches. Once you have reached the total number of
branches tracked, the arrowhead item goes away.

The most recent branch is displayed first, with each subsequent branch being the next
most recent.

Each branch is displayed with a From address location and a To address location.
The address description always contains a hex address. If available, it will contain func-
tion name and source file,line information. If that is not available but symbols are, it will
contain <symbol+offset> information.
8-70

Graphical User Interface
Threads Data Item 8

A threads data item has sub-items to describe C threads, and CUDA contexts. Expanding a
sub-item shows the stack for that thread. If the program is not threaded, then it is consid-
ered to have one thread.

Figure 8-5. Threads Data Item

When only a single thread is running (see “Multithreaded Programs” on page 3-40 for a
description of thread control), the thread’s icon will be green with a small arrow wrapped
around it, as shown in the figure above.

When the process is stopped, the current thread is shown in green underlined text.

Figure 8-6. Threads Data Item -- Expanded
8-71

NightView LX User’s Guide
Expanding a thread will show its stack frames -- expanding a stack frame will show the
local variables associated with the stack frame.

Expanding a CUDA context will show the threads in that context partitioned into a hierar-
chy, which the user can specify with the context menu. By default, it shows the physical
hierarchy.

Figure 8-7. Threads Data Item with CUDA context and threads

You can switch context between threads by simply clicking on them in the panel. Switch-
ing context means that the current thread changes. The source panel will react to the
change. Subsequent actions that cause the thread to run will cause the current thread to
run, by itself when the run mode is one, or in tandem with all threads if the run mode is
all. See “Run Mode Toolbar” on page 8-22 and “resume” on page 6-126.

Processes Data Item 8

A processes data item has sub-items to describe the processes you are debugging. The sub-
items are the program’s threads. If the program is not threaded, then it is considered to
have one thread. The current process is shown in green underlined text.

Shells Data Item 8

A shells data item has sub-items to describe the shells you have. The sub-items are the
processes you are debugging in each shell. The shell that has the current process is shown
in green underlined text.

Normally you only have one shell active, but at times multiple shells are useful. You can
open up a remote shell and debug processes on the remote system at the same time you
debug processes on the local system. This is useful when debugging client and server pro-
cesses that communicate across a network.

Note that you always have at least one shell, but by default, the local shell panel isn’t dis-
played. You can view that shell panel by selecting New Shell Panel from the View menu.
8-72

Graphical User Interface
Shell panels are used to invoke programs, provide input to programs that read from
stdin, and to see output generated by such programs.

Shell data items simply represent the active shells in your NightView session in a data
panel, and show you the current processes in each shell in tree form.

Heap Information Data Item 8

A heap information data item has the following sub-items:

• Totals

• Configuration

The Totals data item has the following sub-items which show totals for the heap:

• number of blocks ever allocated

• number of bytes ever allocated

• number of additional bytes of debugger overhead ever allocated

• number of blocks ever freed

• number of bytes ever freed

• number of additional bytes of debugger overhead ever freed

• number of blocks currently allocated

• number of bytes currently allocated

• number of additional bytes of debugger overhead currently allocated

• number of blocks currently freed but still retained

• number of bytes currently freed but still retained

• number of additional bytes of debugger overhead currently freed but still
retained

The Configuration data item has the following sub-items which show the current
configuration of heap debugging:

• whether heap debugging is on or off

• number of post-fence bytes and the post-fence fill byte

• number of pre-fence bytes and the pre-fence fill byte

• number of slop bytes

• whether free filling is enabled and the free fill byte

• whether malloc filling is enabled and the malloc fill byte

• whether hardware overrun protection is enabled

• frequency of automatic heap checks (i.e. the number of heap operations
between automatic heap checks)
8-73

NightView LX User’s Guide
• maximum heap size, if any

• maximum number of retained free blocks

• maximum number of walkback frames per heap operation

• whether or not to check fill bytes of free blocks

Heap Errors Data Item 8

A heap errors data item describes the set of heap errors most recently reported (see “Heap
Check” on page 3-33). The set of errors is updated whenever new errors are discovered by
a heap operation, by an automatic heap check, or by a heappoint check. Additionally, the
set of errors is updated whenever a heap check is requested explicitly by the user, regard-
less of whether or not it detects any errors.

The heap errors data item has one sub-item for each block with any errors in the last
report. Each block item has sub-items for each separate error in the block.

Leak Sets / Still Allocated Sets Data Items 8

A leak sets data item contains a snapshot of any allocated blocks which likely leaked at the
time that the data item is created. See “Leak Detection” on page 3-34 for accuracy limita-
tions on leak detection.

A still allocated sets data item contains a snapshot of all allocated blocks at the time that
the data item is created.

Note that these data items do not update automatically. In most programs, the determina-
tion of these sets can take a considerable amount of time, and this would impose an unac-
ceptable delay if the sets were recomputed automatically.

For both of these data items, there is a sub-item for every set of heap blocks. A set con-
tains all heap blocks with identical sizes and walkbacks at the time of their allocations (or
most recent reallocs), regardless of other characteristics.

For each set data item, the following sub-items exist:

• walkback

• blocks

The walkback data item has a sub-item for each stack frame in the walkback at the time of
the allocation (or most recent realloc) operation.

The blocks data item has a block sub-item for each individual block in the set.

Block Data Item 8

A block data item has the following sub-items:

• its state, which will be one of:

- allocated

- freed, but retained
8-74

Graphical User Interface
- freed or never allocated, but owned by heap

- not owned by heap

In the case of the latter two, no further sub-items are available.

• its address range

• its size in bytes

• an errors item

• an item for each heap operation (allocation, most recent realloc, and
free) that has happened for the block

An errors data item contains a sub-item for each distinct error detected in the block, if any.

A heap operation (allocation, most recent realloc, or free) data item contains the fol-
lowing sub-items:

• configuration

• walkback

A heap operation's configuration data item contains the following sub-items:

• number and address range of post-fence bytes and the post-fence fill byte

• number and address range of pre-fence bytes and the pre-fence fill byte

• number of slop bytes

• whether free filling was enabled and the free fill byte

• whether malloc filling was enabled and the malloc fill byte

• whether hardware overrun protection was enabled

A heap operation’s walkback data item has a sub-item for each stack frame in the walk-
back at the time of its allocation (or most recent realloc) operation.

Monitorpoint Values Data Item 8

A monitorpoint values data item has a sub-item for each monitorpoint value. See “Moni-
torpoints” on page 3-12.

Data Panel Context Menu 8

This menu pops up when you right-click in a data panel (or a context, locals or monitor
panel). The menu lets you operate on the data item or its sub-items. In a data panel, the
lower portion of the menu is the same as the Data menu and lets you add new data items
or do other operations on the panel. See “Data Menu” on page 8-14. In a context, locals or
monitor panel, you cannot add new items, so those menu entries do not appear.

Where you click determines which menu items appear. The menu items below appear only
if they are appropriate for the type of the data item.
8-75

NightView LX User’s Guide
Collapse

Mnemonic: L

Expand

Mnemonic: X

Either Collapse or Expand is shown depending on whether the sub-items are cur-
rently expanded. Clicking on this button is the same as clicking on the + or - button.

Treat as Pointer to Single Item

Mnemonic: P

Click this radio button to consider the pointer as pointing to a single program ele-
ment. The sub-item is the result of indirecting through the pointer.

Treat as Pointer to Array

Mnemonic: A

Click this radio button to consider the pointer as pointing to an array of elements, so
that the sub-items are the elements of the array. The value column changes to show
{array}.

Treat as Pointer to Linked List...

Mnemonic: K

Click this radio button to consider the pointer as pointing to a linked list of elements,
so that the sub-items are the elements of the linked list. Clicking this radio button
brings up a dialog so you can enter an expression that the debugger can use to get to
successive elements. See “Data Panel Linked List Expression Dialog” on page 8-88.

The initial number of elements shown is the same as the number of indices to show
when treating a pointer as an array. See “Data Panel Context Menu” on page 8-75.
See “Preferences General Page” on page 8-41. As with an array, you can click on
the arrowhead item to show the next element. You can also use the Show nth
Element... item in the data panel context menu to get to a particular element. The
value column changes to show {linked list: next-expression}.

The list is considered to terminate if a next pointer is NULL or points to an item
already displayed, or causes some error.

Overriding Segment

Use this to open a sub-menu to allow you to override the default segment for a
CUDA pointer. CUDA memory logically has multiple address spaces. By default,
an appropriate segment will be deduced from pointer type information. But if this is
not available, you may override the segment to reference a different address space.
The available segments are:

• None: Use the default segment as determined from the pointer type.

• Code: Treat this as a pointer into __code__ memory.
8-76

Graphical User Interface
• Constant: Treat this as a pointer into __constant__ memory.

• Generic: Treat this as a pointer into __generic__ memory.

• Global: Treat this as a pointer into __global__ memory.

• Local: Treat this as a pointer into __local__ memory.

• Parameter: Treat this as a pointer into __parameter__ memory.

• Shared: Treat this as a pointer into __shared__ memory.

• Texture: Treat this as a pointer into __texture__ memory.

Expand Tree...

Mnemonic: T

Expand all the sub-items of this data item and their sub-items, etc. Clicking on this
button pops up a dialog box to ask you how many levels of sub-items to expand. See
“Data Panel Expand Tree” on page 8-85.

Collapse Tree

Mnemonic: R

All the sub-items of this data item and their sub-items, etc., are collapsed.

Re-evaluate

Mnemonic: V

The data item is re-evaluated. The new value is displayed in the value field.

Describe...

Pop up a dialog box with additional information about this data item. See “Data
Panel Describe” on page 8-85.

Show Subscript...
Show nth Element...

Mnemonic: B (Show Subscript...)
Mnemonic: H (Show nth Element...)

This button is meaningful for arrays and linked lists. If the data item is a pointer, it is
treated as an array. This menu item becomes Show nth Element... when the
selected item is a linked list or when an array or linked list is filtered. You are
prompted for a subscript or an element number. When you click on OK, the range of
sub-items displayed is increased to include the subscript and the display is scrolled
to make that sub-item visible. See “Data Panel Subscript Array” on page 8-87.

Copy line to clipboard

Copies the selected line to the clipboard. The line is then available to be pasted into
a text entry field, such as the command toolbar, with Ctrl-V. You may also click on
either the label field or the value field and then use Ctrl-C to copy just that field to
the clipboard.
8-77

NightView LX User’s Guide
Filter Elements with a Condition...
Change Condition Filter...

Use this to search for elements in an array or a linked list. Selecting this menu item
brings up a dialog allowing you to enter a condition expression. When you click on
OK, only elements matching the condition are displayed. See “Data Panel Condi-
tion Filter Expression Dialog” on page 8-88. If you already have a condition filter,
this menu entry changes to Change Condition Filter...

CUDA Partitioning

Mnemonic: C

Use this to open a sub-menu with radio buttons for each of the supported CUDA
thread partitioning methods. They are:

• Physical: Partition according to physical compute units. Specifi-
cally, this arranges threads into SM (symmetric multiprocessor),
Warp, and Lane.

• Logical: Partition according to blocks and threads within those
blocks.

• PC: Partition according to threads which are stopped at a common
PC.

Select Frame

Mnemonic: S

This button is meaningful only for a local variables data item (including sub-items
of stack items). The frame becomes the current frame. See “Current Frame” on page
3-25.

Show Source

Mnemonic: H

This button is meaningful only for a local variables data item (including sub-items
of stack items), a heap operation data item, a walkback data item or one of its sub-
items. The location indicated by the data item is listed. See “list” on page 6-77.

Check Heap and Report New Errors

Mnemonic: N

This button is meaningful only for heap errors data items. It causes a heap check to
be performed, searching for new errors since the last heap check was performed. See
“Heap Check” on page 3-33.

Check Heap and Report All Errors

Mnemonic: A

This button is meaningful only for heap errors data items. It causes a heap check to
be performed, searching for all errors. See “Heap Check” on page 3-33.
8-78

Graphical User Interface
Update Block Errors

Mnemonic: U

This button is meaningful only for a block data item or block errors data item. It
causes a heap check to be performed searching for all errors in the corresponding
single block. See “Heap Check” on page 3-33.

Edit...

Mnemonic: E

This button pops up a dialog box that lets you modify the expression in this data
item. See “Data Panel Edit Expression” on page 8-85.

Delete

Mnemonic: D

The data item is removed from the data panel.

Overriding Format

Mnemonic: F

This button pops up a sub-menu to allow you to control how the data item is printed
in the value field. The Overriding Format applies to the data item and to each
sub-item which does not override its own format.

None
None (use format from parent)
None (use format from monitorpoint)

Mnemonic: N

The value is normally displayed according to its type. See “print” on page
6-86. However, the format may be overridden by the item, by a parent item, or
for a monitorpoint item, by the monitorpoint.

The precedence for choosing the format to display an item is:

1. the overriding format on the item

2. the overriding format on a parent item

3. the overriding format on the monitorpoint expression, for mon-
itorpoint items only

4. the natural format for the type of the item

The label for this menu item varies depending on whether the format is cur-
rently overridden by a parent (or by the monitorpoint for a monitorpoint item).

Address + Offset

Mnemonic: A
8-79

NightView LX User’s Guide
The value is displayed in hexadecimal and as an address relative to a program
symbol. See “print” on page 6-86.

Character

Mnemonic: C

The value is displayed in character format. See “print” on page 6-86.

Decimal

Mnemonic: D

The value is displayed in decimal format. See “print” on page 6-86.

Float

Mnemonic: F

The value is displayed in float format. See “print” on page 6-86.

Hexadecimal

Mnemonic: H

The value is displayed in hexadecimal format. See “print” on page 6-86.

Octal

Mnemonic: O

The value is displayed in octal format. See “print” on page 6-86.

String

Mnemonic: S

The value is displayed in string format. See “print” on page 6-86.

Unsigned Decimal

Mnemonic: U

The value is displayed in unsigned decimal format. See “print” on page 6-86.

Default Smart Print

This item does not specify whether smart printing is enabled or disabled. It
will be determined by any override setting for any parent item, or by the pro-
cess-wide smart printing mode (see “smart-print” on page 6-180).

Never Smart Print

This item disables smart printing, overriding any override setting for the par-
ent and overriding the smart printing mode (see “smart-print” on page 6-180).
8-80

Graphical User Interface
Always Smart Print

This item enables smart printing, overriding any override setting for the parent
and overriding the smart printing mode (see “smart-print” on page 6-180).

Find...

Mnemonic: F

Accelerator: Ctrl+F

Brings up the find bar and sets the keyboard focus there. See “Find Bar” on page
8-53.

Find again

Mnemonic: G

Accelerator: Ctrl+G

Finds the search string in the find bar again. The search begins from the selected
data item. At the end of each search item found is selected.

The following menu items are similar to the items in the Data menu. See “Data Menu” on
page 8-14.

New Expression...

The dialog box allows you to enter an expression. A data item for that expression is
placed in the data panel. See “Data Panel Add Expression” on page 8-84. See
“Expression Data Item” on page 8-67.

New Local Variables...

A local-variables data item is placed in the data panel. See “Local Variables Data
Item” on page 8-68.

New Registers...

A registers data item is placed in the data panel. See “Registers Data Item” on page
8-68.

New Stack...

A stack data item is placed in the data panel. See “Stack Data Item” on page 8-69.

New Threads...

A threads data item is placed in the data panel. See “Threads Data Item” on page
8-71.

New Processes...

A processes data item is placed in the data panel. See “Processes Data Item” on page
8-72.
8-81

NightView LX User’s Guide
New Shells...

A shells data item is placed in the data panel. See “Shells Data Item” on page 8-72.

New Heap Information...

A heap information data item is placed in the data panel. See “Heap Information
Data Item” on page 8-73.

New Heap Errors...

A heap errors data item is placed in the data panel. See “Data Panel Add Heap
Errors” on page 8-84. See “Heap Errors Data Item” on page 8-74.

New Heap Leaks...

A heap leaks data item is placed in the data panel. See “Data Panel Add Heap
Leaks” on page 8-84. See “Leak Sets / Still Allocated Sets Data Items” on page
8-74.

New Still Allocated Blocks

A still allocated blocks data item is placed in the data panel. See “Data Panel Add
Still Allocated Blocks” on page 8-85. See “Leak Sets / Still Allocated Sets Data
Items” on page 8-74.

New Monitorpoint Values

A monitorpoint values data item is placed in the data panel. See “Monitorpoint Val-
ues Data Item” on page 8-75.

Save Snapshot...

This menu item lets you save the current contents of the data panel to a text file.
Clicking on this button brings up a dialog box that lets you specify the name of a file
in which to save the data. You can also record a comment in the file to describe the
data that is being saved. See “Data Panel Save Snapshot” on page 8-87.

Save Layout...

Selecting this menu item pops up a dialog box that lets you save the layout of all the
data items for a particular process in all the data panels. The information saved
includes the type and format of each data item, and to which data panel the item
belongs. See “Data Panel Save Layout” on page 8-86.

Load Layout...

Selecting this menu item pops up a dialog box that lets you load a saved layout for
one or more processes. Any data panels mentioned in the layout are created if they
do not exist. See “Data Panel Load Layout” on page 8-86.

Set Stack Frames...

Clicking on this button pops up a dialog box that lets you set the number of stack
frames displayed for items in this panel. See “Data Panel Call Stack Frames” on
page 8-85.
8-82

Graphical User Interface
Set Thread Name...

Selecting this menu item pops up a dialog box which allows you to set the thread’s
name. See “set-thread-name” on page 6-146 for more information. This option is
only shown for context menus associated with thread items.

Set Pointer as Array Indices...

Clicking on this button pops up a dialog box that lets you set the number of elements
to show when displaying a pointer as an array. See “Data Panel Pointer Array
Dimension” on page 8-86.

The remaining menu items appear only in a monitor panel or in a data panel when clicking
on a monitorpoint value item.

Hold Monitor Updates

Clicking on this button causes monitorpoint items to stop updating. See “mcontrol”
on page 6-111. When monitorpoint updates are held, this button reads Release
Monitor Updates and clicking it causes monitorpoint items to resume updating.

Change Update Interval...

Mnemonic: I

Selecting this menu item pops up a dialog box that lets you change the interval
between monitorpoint updates. See “Monitorpoint Update Interval Dialog Box” on
page 8-89.

Show Monitor Bar

Clicking on this button causes the monitor bar to be shown. See “Monitor Bar” on
page 8-65.

Data Panel Dialog Boxes 8

This section describes the dialog boxes related to the data panel. For other dialog boxes,
see “Main Window Dialog Boxes” on page 8-27.

Data Panel Item Dialog Box 8

This section describes common information for several of the data panel dialog boxes.
These dialog boxes all contain controls to set the data panel name, plus OK, Cancel and
Help buttons.

Data Panel Name

Enter the name of the data panel to receive the data item, or select a name from the
list by clicking on the arrow.

If no data panel exists with this name, one is created. The default name is "Data".

OK

Click on this button to perform the operation and dismiss the window.
8-83

NightView LX User’s Guide
Cancel

Click on this button to dismiss the window without performing any operation.

Help

Click on this button to get help about the specific dialog box.

Data Panel Add Expression 8

This dialog box pops up when you click on Expression... in the Data menu. See “Data
Menu” on page 8-14.

Enter an expression and click on OK to add the expression to the data panel.

Radio buttons let you select the context for later re-evaluation.

When the expression is re-evaluated, it can be evaluated in the current context at the time
of the re-evaluation ("Always evaluate in context where process stops"), or it
can be evaluated with the context saved when the expression data item is created
("Always evaluate in context saved with expression.").

This is a Data Panel Item Dialog Box. See “Data Panel Item Dialog Box” on page 8-83.

Data Panel Add Heap Errors 8

This dialog box pops up when you click on Heap Errors... in the Data menu. See
“Data Menu” on page 8-14.

Click on OK to add a heap errors data item to the data panel.

This dialog box contains 3 mutually exclusive buttons which may be used to perform a
heap check before displaying the heap errors data item. If Don't Check Heap First, the
default, is selected, then no heap check is performed and the last reported heap errors are
displayed. If Check Heap for New Errors First is selected, then a heap check is per-
formed looking for new errors since the last heap check, and those errors are displayed. If
Check Heap for All Errors First is selected, then a heap check is performed looking
for all errors, and those errors are displayed. See “Heap Errors Data Item” on page 8-74.

This is a Data Panel Item Dialog Box. See “Data Panel Item Dialog Box” on page 8-83.

Data Panel Add Heap Leaks 8

This dialog box pops up when you click on Heap Leaks... in the Data menu or in the
data panel context menu. See “Data Menu” on page 8-14.

Click on OK to add a leak sets data item to the data panel.

This dialog box contains 2 mutually exclusive buttons. If New is selected, then only new
leaks since the last leak report will displayed. If All is selected, then all leaks will be dis-
played. See “Leak Sets / Still Allocated Sets Data Items” on page 8-74.

This is a Data Panel Item Dialog Box. See “Data Panel Item Dialog Box” on page 8-83.
8-84

Graphical User Interface
Data Panel Add Still Allocated Blocks 8

This dialog box pops up when you click on Still Allocated Blocks... in the Data menu
or in the data panel context menu. See “Data Menu” on page 8-14.

Click on OK to add a still allocated sets data item to the data panel.

This dialog box contains 2 mutually exclusive buttons. If New is selected, then only
blocks still allocated and allocated since the last still allocated blocks report will dis-
played. If All is selected, then all blocks still allocated will be displayed. See “Leak Sets /
Still Allocated Sets Data Items” on page 8-74.

This is a Data Panel Item Dialog Box. See “Data Panel Item Dialog Box” on page 8-83.

Data Panel Call Stack Frames 8

This dialog box pops up when you click on Call Stack Frames... in the Data menu or
in the data panel context menu. See “Data Menu” on page 8-14.

Use the spin box to enter the number of frames you would like to see for items in this data
panel.

Click on the check button if you want to change the number of frames displayed for all the
existing items in this data panel. Otherwise, only future data items use the new number of
frames.

Click on OK to complete the operation.

Data Panel Edit Expression 8

This dialog box pops up when you click on Edit... in the data panel context menu. See
“Data Panel Context Menu” on page 8-75.

Change the expression as desired.

The controls are the same as the Data Panel Add Expression dialog box. See “Data Panel
Add Expression” on page 8-84.

Click on OK to complete the operation.

Data Panel Expand Tree 8

This dialog box pops up when you click on Expand... in the data panel context menu.
See “Data Panel Context Menu” on page 8-75.

Use the spin box to enter how many levels of sub-items you want expanded.

Click on OK to complete the operation.

Data Panel Describe 8

This dialog box pops up when you click on Describe... in the data panel context menu.
See “Data Panel Context Menu” on page 8-75.

The dialog box contains additional information about the data item.
8-85

NightView LX User’s Guide
Click on OK to complete the operation.

Data Panel Load Layout 8

This dialog box pops up when you select Load Layout... in the Data menu or the data
panel context menu. See “Data Menu” on page 8-14.

It allows you to select a file from which to load data item layout information for the cur-
rent process.

This is a file selection dialog box.

Select a filename.

Use the file selection controls to select a file. If you double-click on a filename in
the Files section, the OK button is activated.

Choose an action button.

Click on Open to load the data items and close the window.

Clicking on Cancel cancels the action and closes this dialog box.

Data Panel Pointer Array Dimension 8

This dialog box pops up when you click on Pointer Array Dimension... in the Data
menu or the data panel context menu. See “Data Menu” on page 8-14.

Use the spin box to enter the number of array elements you would like to see for pointers
being treated as arrays in this data panel.

Click on the check button if you want to change the number of elements displayed for all
the existing items in this data panel. Otherwise, only future data items use the new number
of elements.

Click on OK to complete the operation.

Data Panel Save Layout 8

This dialog box pops up when you select Save Layout... in the Data menu or the data
panel context menu. See “Data Menu” on page 8-14.

It allows you to select a file in which to save the layout information for all data items for a
particular process, for use in a future debug session.

This is a file selection dialog box with an additional list for selecting a process.

Select a filename.

Use the file selection controls to select a file. If you double-click on a filename in
the Files section, the OK button is activated.

Select a process from the list.

Choose an action button.
8-86

Graphical User Interface
Click on OK to save the layout and close the window.

Clicking on Cancel cancels the action and closes this dialog box.

Click on Filter to update the files displayed based on the current filter string.

You can get help for this dialog box by clicking on Help.

Data Panel Save Snapshot 8

This dialog box pops up when you select Save Snapshot... in the Data menu or the
data panel context menu. See “Data Menu” on page 8-14. It allows you to select a file in
which to save a snapshot of the data panel.

The items are saved at their current level of expansion. For example, if a struct is shown in
the data panel, but it is not expanded (i.e., the members of the struct are not shown), then
the struct is saved in the snapshot, but the members of the struct are not.

This is a file selection dialog box.

Select a filename.

Use the file selection controls to select a file. If you double-click on a filename in
the Files section, the OK button is activated.

Enter comments.

Enter some comments to save with this file. For example, "Stopped in blarg just
before error occurs." The comments are saved at the beginning of the snapshot, fol-
lowed by a timestamp.

Select append or overwrite.

Use the radio buttons to indicate whether the snapshot should overwrite the file or
append to it if it already exists.

Choose an action button.

Click on OK to save the snapshot and close the window.

Clicking on Cancel cancels the action and closes this dialog box.

Data Panel Subscript Array 8

This dialog box pops up when you click on Show Subscript... or Show nth Ele-
ment... in the data panel context menu. See “Data Panel Context Menu” on page 8-75.

Use the spin box to enter the subscript of the array element, linked list element or filter
element you want to see.

If the array or linked list is filtered, then the subscript you specify is applied to the filter,
not to the underlying array or linked list. Enter 7 to see the 8th item that matches the filter.

Click on OK to show the element.
8-87

NightView LX User’s Guide
Data Panel Linked List Expression Dialog 8

This dialog pops up when you click on the Treat as Pointer to Linked List... radio
button in data panel context menu (see “Data Panel Context Menu” on page 8-75).

Enter an expression in the combo box. The debugger uses this expression to get to the next
element in the linked list. Note that any side effects in the expression, such as assignment,
will affect your process. When the expression is evaluated, a temporary convenience vari-
able (“Convenience Variables” on page 3-37), $p, holds the address of the current ele-
ment. For example, if you have a linked list made of structures like this:

struct foo {
struct foo * next;
int value;

};

you would enter this as the expression:

$p->next

NightView is often able to supply a suitable expression. If there are multiple pointers in
the structure, there may be multiple entries in the combo box.

Click on OK to complete the operation.

Clicking on Cancel cancels the action and closes this dialog box.

Data Panel Condition Filter Expression Dialog 8

This dialog pops up when you click on Filter Elements with a Condit ion... or
Change Condition Filter... in the data panel context menu.

Enter an expression in the combo box. The debugger evaluates this expression for each
element of the array or linked list. The debugger displays only the elements for which the
expression value is true.

When the expression is evaluated, some temporary convenience variables are available to
be used in the expression. See “Convenience Variables” on page 3-37.

$i is the index of the element
$p is the address of the element. This is not available for some element types.
$v is the element.

Setting a condition filter does not increase the number of elements displayed for the
underlying array or linked list. If you want to see more filtered elements after you set the
filter, you can click on the arrowhead items if they are available, or use Show
nth Element... in the context menu (see “Data Panel Context Menu” on page 8-75). If
no elements match, then none are displayed.

The combo box holds expressions you have entered previously.

Note that your process can be affected by side effects in the condition expression.

Example:
8-88

Graphical User Interface
Stop in a main program that uses argv. In a local variables panel, right-click on
argv to bring up the data panel context menu. Click on Treat as Pointer to
Array. Then right-click on argv again and then click on Filter Elements with a
Condition... Enter this condition:

$v != 0 && strstr($v, "HOME") != 0

You probably see only the up and down arrows. Click on the down arrow. You
should see your HOME environment variable. (When your program starts, the envi-
ronment variables are stored just beyond the program arguments.)

If you are having trouble getting your condition right, try an expression like this
(note the comma after the printf call):

printf("%p\n", $v), $v != 0 && strstr($v, "HOME") != 0

This causes the program to print each pointer as the condition is evaluated.

Example:

If you have an array of structures like this:

struct foo {
int value;

};

you might use this condition:

$v.value > 5

Example:

To see every fifth element, use this condition:

($i % 5) == 0

There is a limit on the number of array (or linked-list) elements NightView will search to
find the next element to display. The limit is imposed to prevent NightView from using
excessive resources and time in a fruitless search. You can adjust the limit here. You may
also use the Interrupt button to stop a search. See “Process Toolbar” on page 8-20.

Click on OK to complete the operation. The value column for the array or linked list
changes to show {filtered: condition}. Filtered elements are displayed in blue. The label
field shows "..." at the end if the following element is not displayed due to not matching
the condition.

Click on Cancel to cancel the action and close the dialog box.

Monitorpoint Update Interval Dialog Box 8

This dialog box pops up when you select Change Update Interval... in the context
menu of the monitor panel or the data panel. See “Monitor Panel” on page 8-65. See “Data
Panel” on page 8-65.

Enter the number of milliseconds to delay between updates.
8-89

NightView LX User’s Guide
Click on OK to change the interval and close the dialog box.

Click on Cancel to cancel the action and close the dialog box.

The update interval can also be changed with the mcontrol command. See “mcontrol”
on page 6-111.

The monitorpoint update interval is not related to the eventpoint panel update interval. See
“Eventpoint Panel Update Interval Dialog Box” on page 8-52.

CUDA Coordinates Panel 8

A CUDA coordinates panel displays the physical and logical coordinates for the current
thread when stopped in a CUDA context. It is greyed out when stopped in a host thread.
The physical coordinates are the SM, Warp, and Lane on the CUDA device that are exe-
cuting the given thread. The logical coordinates are the block (x,y,z) and thread (x,y,z)
coordinates as declared by the application. If the application did not declare y or z values
for either the block or thread, they will be greyed out.

Figure 8-8. CUDA Coordinates Panel

All these values are spin boxes allow the user to enter new values or adjust the current val-
ues with arrow buttons. If the user changes the values in the physical section, the values in
the logical section will change to reflect the corresponding thread executing on that physi-
cal unit. If the physical coordinates end up specifying a compute unit that is not executing
any thread at the moment, the logical section will be greyed out. Similarly, if the user
changes the values in the logical section, the values in the physical section will change to
reflect the corresponding compute unit executing that thread. If no compute unit is exe-
cuting that thread, the physical section will be greyed out.

Changing the physical or logical coordinate values in this panel does not immediately
change the current thread. But if you do wish to change it, you may use the Apply button
to do so. If the currently displayed coordinates specify a valid thread executing on a com-
pute unit, then the current thread will be changed to that thread. The Reset button may
be used to reset the values in this panel back to those for the current thread.

CUDA Lanes Panel 8

The CUDA lanes panel allows you to quickly see which threads are being executing by
the current warp. The display is broken into cells, with one cell for each lane in the warp.
It displays the lane number and the logical thread coordinates for the thread being exe-
8-90

Graphical User Interface
cuted on that lane. Necessarily, all threads in the warp are executing from the same block,
so this information is not reiterated in each block. It is available in the panel’s title,
though.

Figure 8-9. CUDA Lanes Panel with Divergent and Unused Lanes

If a lane is executing the current thread, the text of its cell will be displayed in green
underlined text.

If a lane is executing a thread which has diverged from the current thread, then it is display
ed in pink.

If a lane is not executing any thread, then it will be greyed out.

CUDA Lanes Context Menu 8

The CUDA lanes panel has a context menu which allows you specify the configuration of
lanes in the panel. The options are:

Arrange horizontally

Mnemonic: H

Arrange the lanes in one horizontal line. It is very likely that this will exceed the
width of the display, necessitating scrolling.

Arrange as wide grid

Mnemonic: W

Arrange the lanes in a grid with 8 cells along the horizontal and 4 cells along the
vertical. This usually is the most space-efficient approach that shows all lanes at
once, so it is the default.

Arrange as tall grid

Mnemonic: T

Arrange the lanes in a grid with 4 cells along the horizontal and 8 cells along the
vertical. This may be desirable in some user-defined panel configurations.
8-91

NightView LX User’s Guide
Arrange vertically

Mnemonic: V

Arrange the lanes in one vertical line.

CUDA Warp Locals Panel 8

The CUDA warp locals panel shows the values of local variables for all lanes in the cur-
rent warp in one panel. It is arranged as a table with one column for each local variable,
and one row for each lane in the warp. The special value threadIdx is included as the first
local variable to give some context for the thread executing there.

Figure 8-10. CUDA Warp Locals Panel

If any lane in the warp is divergent, values will not be displayed for it and instead a red
label indicating its divergent status will be displayed.

CUDA Warp Locals Panel Context Menu 8

The CUDA warp locals panel has a context menu with this item:

Configure Locals

Mnemonic: C

This opens a dialogue box. Displayed in the dialog box is a checkbox for each local
variable in the routine. If you wish to prune the set of local variables because you
only wish to view a few of them, you may uncheck the undesired local variables.
8-92

Graphical User Interface
These changes will be applied when you press the OK button. Pressing the Cancel
button cancels the operation and there is no effect on the panel.

Help Window 8

NightView displays online help in the help window. The help window allows you to
display any section of the NightView User’s Guide and provides different methods to
allow you to navigate from one section to another.

For a general discussion of NightView's online help, see “GUI Online Help” on page 8-1.
8-93

NightView LX User’s Guide
8-94

A
Appendix ANightStar LX Licensing

I
I
I

NightStar LX uses the NightStar License Manager (NSLM) to control access to the Night-
Star LX tools.

License installation requires a licence key provided by Concurrent (see “License Keys” on
page A-1).The NightStar LX tools request a licence (see “License Requests” on page A-2)
from a license server (see “License Server” on page A-2).

Two license modes are available, fixed and floating, depending on which product option
you purchased. Fixed licenses can only be served to NightStar LX users from the local
system. Floating licenses may be served to any NightStar LX user on any system on a net-
work.

Tools are licensed per system, per concurrent user. A single license is shared among any
or all of the NightStar LX tools for a particular user on a particular system. The intent is to
allow n developers to fully utilize all the tools at the same time while only requiring n
licenses. When operating the tools in remote mode, where a tool is launched on a local
system but is interacting with a remote system, licenses are required only from the host
system.

You can obtain a license report which lists all licenses installed on the local system, cur-
rent usage, and expiration date for demo licenses (see “License Reports” on page A-3).

The default configuration includes a strict firewall which interferes with floating licenses.
See “Firewall Configuration for Floating Licenses” on page A-3 for information on han-
dling such configurations.

See “License Support” on page A-6 for information on contacting Concurrent for addi-
tional assistance with licensing issues.

License Keys 1

Licenses are granted to specific systems to be served to either local or remote clients,
depending on the license model, fixed or floating.

License installation requires a license key provided by Concurrent. To obtain a license
key, you must provide your system identification code. The system identification code is
generated by the nslm_admin utility:

nslm_admin --code

System identification codes are dependent on system configurations. Reinstalling Linux
on a system or replacing network devices may require you to obtain new license keys.

To obtain a license key, use the following URL and click on the Licenses link:
A-1

NightView LX User’s Guide
http://www.ccur.com/NightStarKeys

Provide the requested information, including the system identification code. Your license
key will be immediately emailed to you.

Install the license key using the following command:

nslm_admin --install=xxxx-xxxx-xxxx-xxxx-xxxx

where xxxx-xxxx-xxxx-xxxx-xxxx is the key included in the license acknowledgment email.

License Requests 1

By default, the NightStar LX tools request a license from the local system. If no licenses
are available, they broadcast a license request on the local subnet associated with the sys-
tem’s hostname.

You can control the license requests for an entire system using the /etc/nslm.config
configuration file.

By default, the /etc/nslm.config file contains a line similar to the following:

:server @default

The argument @default may be changed to a colon-separated list of system names, system
IP addresses, or broadcast IP addresses. Licenses will be requested from each of the enti-
ties found in the list, until a license is granted or all entries in the list are exhausted.

For example, the following setting prevents broadcast requests for licenses, by only speci-
fying the local system:

:server localhost

The following setting requests a license from server1, then server2, and then a
broadcast request if those fail to serve a license:

:server server1:server2:192.168.1.0

Similarly, you can control the license requests for individual invocations of the tools using
the NSLM_SERVER environment variable. If set, it must contain a colon-separated list of
system names, system IP addresses, or broadcast IP addresses as described above. Use of
the NSLM_SERVER environment variable takes precedence over settings defined in
/etc/nslm.config.

License Server 1

The NSLM license server is automatically installed and configured to run when you install
NightStar LX.
A-2

http://www.ccur.com/NightStarKeys

NightStar LX Licensing
The nslm service is automatically activated for run levels 2, 3, 4, and 5. You can check on
these settings by issuing the following command:

/sbin/chkconfig --list nslm

In rare instances, you may need to restart the license server via the following command:

/sbin/service nslm restart

See nslm(1) for more information.

License Reports 1

A license report can be obtained using the nslm_admin utility.

nslm_admin --list

lists all licenses installed on the local system, current usage, and expiration date (for demo
licenses). Use of the --verbose option also lists individual clients to which licenses are
currently granted.

Adding the --broadcast option will list this information for all servers that respond to
a broadcast request on the local subnet associated with the system’s hostname.

See nslm_admin(1) for more options and information.

Firewall Configuration for Floating Licenses 1

The default operating system configuration includes a strict firewall which interferes with
floating licenses.

If such a system is used to serve licenses, then at least one port must be opened in its fire-
wall to allow server requests to pass. See “Serving Licenses with a Firewall” on page A-3
for more information.

Similarly, if such a system is host to the NightStar LX tools, then at least one port must be
opened in its firewall so that it can receive licenses from the license server. If this is not
done, a tool requesting a floating license will not receive it and will not function properly.
See “Running NightStar LX Tools with a Firewall” on page A-5 for more information.

Serving Licenses with a Firewall 1

Following are a few approaches for allowing the NSLM license server to serve floating
licences when the system on which it is running is configured with a firewall:

• disable the firewall on the system entirely
A-3

NightView LX User’s Guide
• allow NSLM license requests from a specific system (or one of several)

• allow NSLM license requests from any system on a particular subnet (or
one of several)

• allow NSLM license requests from any system

NOTE

You must be root in order to modify the firewall configuration.

To disable the firewall entirely, execute:

service iptables stop

and then remove the /etc/sysconfig/iptables file:

rm -f /etc/sysconfig/iptables

This option may not be as dangerous as it seems. Often, whole networks are protected
with a firewall so it is not necessary for individual systems on the network to be protected
further. If unsure, check with your network administrator.

Fo r t h e r ema in i ng cases , a s im p le m od i f i ca t ion shou ld be m ade to t he
/etc/sysconfig/iptables file to allow license requests on UDP port 25517 and
TCP port 25517. By default, that file should contain a line like the following:

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited

To allow NSLM license requests from a specific system, insert the following lines before
the REJECT line:

-A RH-Firewall-1-INPUT -p udp -m udp -s system --dport 25517 -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp -s system --dport 25517 -j ACCEPT

Those lines can be repeated for multiple systems.

To allow NSLM license requests from any system on a particular subnet, insert the follow-
ing lines before the REJECT line:

-A RH-Firewall-1-INPUT -p udp -m udp -s subnet/mask --dport 25517 -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp -s subnet/mask --dport 25517 -j ACCEPT

The subnet might be of a form like 192.168.1.0 and the mask could be a traditional
network mask like 255.255.255.0 or a single number like 24, which indicates the
n u m b e r o f b i t s f r o m t h e l e f t t h a t a r e p a r t o f t h e m a s k . F o r e x a m p l e ,
192.168.1.0/255.255.255.0 and 192.168.1.0/24 are equivalent.

Those lines can be repeated for multiple subnets.
A-4

NightStar LX Licensing
To allow NSLM license requests from any system, insert the following lines before the
REJECT line:

-A RH-Firewall-1-INPUT -p udp -m udp --dport 25517 -j ACCEPT
-A RH-Firewall-1-INPUT -p tcp -m tcp --dport 25517 -j ACCEPT

After modifying /etc/sysconfig/iptables, execute:

service iptables restart

Running NightStar LX Tools with a Firewall 1

Following are a few approaches for allowing a NightStar LX tool to receive floating
licenses from a license server, when the system running the NightStar LX tool is config-
ured with a firewall:

• disable the firewall on the requesting system entirely

• allow NSLM licenses from a specific license server (or one of several)

• allow NSLM licenses from any system on a particular subnet (or one of
several)

• allow NSLM licenses from any system

NOTE

You must be root in order to modify the firewall configuration.

To disable the firewall entirely, execute:

service iptables stop

and then remove the /etc/sysconfig/iptables file:

rm -f /etc/sysconfig/iptables

This option may not be as dangerous as it seems. Often, whole networks are protected
with a firewall so it is not necessary for individual systems on the network to be protected
further. If unsure, check with your network administrator.

Fo r t h e r ema in i ng cases , a s im p le m od i f i ca t ion shou ld be m ade to t he
/etc/sysconfig/iptables file to allow license responses from UDP port 25517.
By default, that file should contain a line like the following:

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited

To allow NSLM licenses from a specific system running a license server, insert the fol-
lowing line before the REJECT line:

-A RH-Firewall-1-INPUT -p udp -m udp -s server --sport 25517 -j ACCEPT

That line can be repeated for multiple servers.
A-5

NightView LX User’s Guide
To allow NSLM licenses from any system running a license server on a particular subnet,
insert the following before the REJECT line:

-A RH-Firewall-1-INPUT -p udp -m udp -s subnet/mask --sport 25517 -j ACCEPT

The subnet might be of a form like 192.168.1.0 and the mask could be a traditional
network mask like 255.255.255.0 or a single number like 24, which indicates the
n u m b e r o f b i t s f r o m t h e l e f t t h a t a r e p a r t o f t h e m a s k . F o r e x a m p l e ,
192.168.1.0/255.255.255.0 and 192.168.1.0/24 are equivalent.

That line can be repeated for multiple subnets.

To allow NSLM licenses from any system running a license server, insert the following
line before the REJECT line:

-A RH-Firewall-1-INPUT -p udp -m udp --sport 25517 -j ACCEPT

After modifying /etc/sysconfig/iptables, execute:

service iptables restart

License Support 1

For additional aid with licensing issues, contact the Concurrent Software Support Center
at our toll free number 1-800-245-6453. For calls outside the continental United States,
the number is 1-954-283-1822. The Software Support Center operates Monday through
Friday from 8 a.m. to 5 p.m., Eastern Standard Time.

You may also submit a request for assistance at any time by using the Concurrent Com-
puter Corporation web site at http://www.ccur.com/isd_support_contact.asp or by
sending an email to support@ccur.com.
A-6

http://www.ccur.com/isd_support_contact.asp
mailto:support@ccur.com

B
Appendix BKernel Dependencies

A
A
A

Additional features and benefits are granted the NightStar tools when operating with
real-time kernels from Concurrent Computer Corporation.

RedHawk Linux

The RedHawk Linux kernel f rom Concurrent Computer Corporat ion
(http://www.ccur.com) provides real-time capabilities over and above the Red Hat
kernel. RedHawk Linux operates on top of a Red Hat distribution.

Advantages for NightView 2

The following advantages are afforded NightView when a RedHawk kernel is running:

• Application speed conditions

Provides “execution-speed” patches, conditions, and ignore counts.

• Signal handling

Allows NightView to pass signals directly to a particular process, avoiding context
switching and stopping the process if the signal is handled.

• Branch tracking

Allows NightView to show you a history of branches. This is especially useful for
programs that end up in unexpected locations, usually the result of returning from a
routine with a corrupted stack frame. The branch history often allows you to locate
where the program execution went awry.

Advantages for NightTrace 2

The following advantages are afforded NightTrace when a RedHawk tracing kernel is run-
ning:

• Kernel tracing

Users of NightTrace gain the ability to obtain kernel trace data and combine that
with user trace data. Kernel tracing is an incredibly powerful feature that not only
provides insight into the operating system kernel but also provides useful informa-
tion relating to the execution of user applications.
B-1

NightView LX User’s Guide
The RedHawk real-time kernel is provided in three flavors:

• Tracing

• Debug

• Plain

The Tracing and Debug flavors provide the features required for NightTrace kernel
tracing. These kernels can be selected at boot-time from the boot-loader menu.

• CUDA Application Tracing

While not specifically a RedHawk kernel feature, RedHawk provides an optimized
NVidia driver along with a pre-built NightTrace Illuminator for the CUDA API
library. This illuminator automatically instruments user applications that utilize the
CUDA API so that you can see all API function entries and returns. This includes
the execution of user routines on the GPU itself along with the amount of time spent
executing on the GPU.

Advantages for NightProbe 2

The following advantages are afforded NightProbe when a RedHawk kernel is running:

• Minimal intrusion

Allows NightProbe to read and write variables without stopping the process for each
sample or write operation.

• Sampling performance

Allows NightProbe to use direct memory fetches for data sampling (as opposed to
programmed I/O) which is important for high-rate data acquisition.

• Concurrent debugging/probing

Allows NightProbe to probe programs already under the control of a debugger or
another NightProbe session.

• PCI Device probing

Allows NightProbe to probe PCI device memory via the Base Address Register
(BAR) file system.

The PCI BAR File System is only available with the RedHawk kernel from Concur-
rent Computer Corporation. On other systems, PCI Device probing will be disabled
within NightProbe.
B-2

Kernel Dependencies
Advantages for NightTune 2

The following advantages are afforded NightTune when a RedHawk kernel is running:

• Context switch rate

Allows NightTune to display the context switch counts per CPU instead of for the
overall system.

• CPU shielding

Individual CPUs can be shielded from interrupts and processes allowing CPUs to be
dedicated solely to specific interrupts and processes that are bound to the CPU.

• CPU sibling interference

Individual CPUs can be marked down to avoid interfering with hyperthreaded sib-
ling CPUs and dual-core sibling CPUs. Hyperthreaded CPUs share all the resources
of their sibling CPU. Dual-core CPUs share the CPU cache and a path to memory
with their sibling CPU.

• Detailed memory information

Detailed process memory descriptions include the residency and lock state of any
page in a process, and their association with physical memory pools for NUMA sys-
tems.

• Kernel Activity and Single Process Activity panels

Provides non-intrusive monitoring of kernel or process/thread activity, including
percent of time spent in individual routines in the kernel, in shared libraries, and in
user processes. Routines are described using their symbolic name.

• Single Process Counter

Provides non-intrusive monitoring of low-level CPU operations, such as cpu cycles,
instructions, bus cycles, branches, cache hits and misses, page faults, cpu migra-
tions, and context switches for individual processes/threads.

• CUDA Configuration and Activity

While not specifically a RedHawk kernel feature, RedHawk provides an optimized
NVidia driver that allows NightTune to show detailed CUDA configuration infor-
mation as well as CUDA device activity, including GPU usage, fan speed, GPU
memory usage, etc.

Frequency Based Scheduler 2

The Frequency Based Scheduler is only available on RedHawk systems from Concurrent
Computer Corporation. It is required for all NightSim usage.
B-3

NightView LX User’s Guide
FBS Process Deadlines are only available for use on RedHawk 5.2.1 and later systems.

On systems without FBS Process Deadline support, the “Apply Deadline” group box will
appear shaded and disabled.

NightSim is only included in NightStar distributions intended for use on RedHawk sys-
tems.
B-4

C
Appendix CSummary of Commands

2
2
2

This section gives a summary of all the commands in NightView. The table is organized
alphabetically by command. The abbreviations for the commands are included with the
corresponding commands, rather than alphabetically.

Also, remember that you can abbreviate commands by using a unique prefix.

!

Pass input to a dialogue. See “!” on page 6-32 for more information.

apply on dialogue

Execute on dialogue commands for existing dialogues. See “apply on dialogue”
on page 6-31 for more information.

apply on program

Execute on program commands for existing processes. See “apply on program”
on page 6-46 for more information.

attach

Attach the debugger to a process that is already running. See “attach” on page 6-37
for more information.

backtrace
bt

Print an ordered list of the currently active stack frames. See “backtrace” on page
6-86 for more information.

branch-history

Display the branch history if branch tracking has been enabled. See “branch-his-
tory” on page 6-98 for more information.

breakpoint
b

Set a breakpoint. See “breakpoint” on page 6-101 for more information.

cd

Set the debugger’s default working directory. See “cd” on page 6-76 for more infor-
mation.

checkpoint

Take a restart checkpoint now. See “checkpoint” on page 6-47 for more informa-
tion.
C-1

NightView LX User’s Guide
clear

Clear all eventpoints at a given location. See “clear” on page 6-112 for more infor-
mation.

commands

Attach commands to a breakpoint or monitorpoint. See “commands” on page 6-113
for more information.

condition

Attach a condition to an eventpoint. See “condition” on page 6-114 for more infor-
mation.

continue
c

Continue execution and wait for something to happen. See “continue” on page
6-124 for more information.

core-file

Create a pseudo-process for debugging an aborted program’s core image file. See
“core-file” on page 6-39 for more information.

data-display

Control items in a data panel. See “data-display” on page 6-93 for more information.

debug

Specify names for programs you wish to debug. See “debug” on page 6-25 for more
information.

declare-thread-tag

Declare the type of a thread tag. See “declare-thread-tag” on page 6-145 for more
information.

define

Define a NightView macro. See “define” on page 6-173 for more information.

delay

Delay NightView command execution for a specified time. See “delay” on page
6-147 for more information.

delete
d

Delete an eventpoint. See “delete” on page 6-115 for more information.

detach

Stop debugging a list of processes. See “detach” on page 6-38 for more information.
C-2

Summary of Commands
directory

Set the directory search path. See “directory” on page 6-79 for more information.

disable

Disable an eventpoint. See “disable” on page 6-115 for more information.

display

Add to the list of expressions to be printed each time the process stops. See “dis-
play” on page 6-94 for more information.

down

Move one or more stack frames toward frames called by the current stack frame. See
“down” on page 6-140 for more information.

echo

Print arbitrary text. See “echo” on page 6-93 for more information.

edit

Edit the current source file. See “edit” on page 6-80 for more information.

enable

Enable an eventpoint for a specified duration. See “enable” on page 6-116 for more
information.

exec-file

Specify the location of the executable file corresponding to a process. See “exec-
file” on page 6-42 for more information.

family

Give a name to a family of one or more processes. See “family” on page 6-48 for
more information.

finish

Continue execution until the current function finishes. See “finish” on page 6-132
for more information.

forward-search
fo

Search forward through the current source file for a specified regular expression.
See “forward-search” on page 6-81 for more information.

frame
f

Select a new stack frame or print a description of the current stack frame. See
“frame” on page 6-138 for more information.
C-3

NightView LX User’s Guide
handle

Specify how to handle signals in the user process. See “handle” on page 6-136 for
more information.

heapcheck

Check the heap for errors. See “heapcheck” on page 6-168 for more information.

heapdebug

Specify parameters for heap debugging. See “heapdebug” on page 6-53 for more
information.

heappoint

Check the heap for errors, or change the heap debugger settings, at a given location.
See “heappoint” on page 6-110 for more information.

help

Access the online help system. See “help” on page 6-143 for more information.

ignore

Attach an ignore-count to an eventpoint. See “ignore” on page 6-117 for more infor-
mation.

info address

Determine the location of a variable. See “info address” on page 6-170 for more
information.

info args

Print description of current routine arguments. See “info args” on page 6-169 for
more information.

info breakpoint
i b

Describe current state of breakpoints. See “info breakpoint” on page 6-150 for more
information.

info convenience

Describe convenience variables. See “info convenience” on page 6-158 for more
information.

info declaration
ptype

Print the declaration of variables or types. See “info declaration” on page 6-172 for
more information.
C-4

Summary of Commands
info dialogue

Print information about active dialogues. See “info dialogue” on page 6-164 for
more information.

info directories

Print the search path used to locate source files. See “info directories” on page 6-158
for more information.

info display

Describe expressions that are automatically displayed. See “info display” on page
6-158 for more information.

info eventpoint

Describe current state of breakpoints, tracepoints, patchpoints, monitorpoints, heap-
points, and watchpoints. See “info eventpoint” on page 6-149 for more information.

info family

Print information about an existing process family. See “info family” on page 6-165
for more information.

info files

Print the names of the executable, symbol table and core files. See “info files” on
page 6-172 for more information.

info frame

Describe a stack frame. See “info frame” on page 6-157 for more information.

info functions

List names of functions or subroutines. See “info functions” on page 6-171 for more
information.

info heappoint

Describe the current state of heappoints. See “info heappoint” on page 6-154 for
more information.

info history

Print value history information. See “info history” on page 6-158 for more informa-
tion.

info limits

Print information about limits on expression and location output. See “info limits”
on page 6-159 for more information.

info line

Describe location of a source line. See “info line” on page 6-172 for more informa-
tion.
C-5

NightView LX User’s Guide
info locals

Print information about local variables. See “info locals” on page 6-169 for more
information.

info log

Describe any open log files. See “info log” on page 6-149 for more information.

info macros

Print a description of one or more NightView macros. See “info macros” on page
6-178 for more information.

info memory

Print information about memory, which may include information about the virtual
address space, or the heap. See “info memory” on page 6-161 for more information.

info monitorpoint

Describe current state of monitorpoints. See “info monitorpoint” on page 6-153 for
more information.

info name

Print information about an existing eventpoint-name. See “info name” on page
6-165 for more information.

info on dialogue

Print on dialogue commands. See “info on dialogue” on page 6-166 for more
information.

info on program

Print on program commands. See “info on program” on page 6-166 for more
information.

info on restart

Print on restart commands. See “info on restart” on page 6-166 for more infor-
mation.

info patchpoint

Describe current state of patchpoints. See “info patchpoint” on page 6-152 for more
information.

info process

Describe processes being debugged. See “info process” on page 6-160 for more
information.

info registers

Print information about registers. See “info registers” on page 6-159 for more infor-
mation.
C-6

Summary of Commands
info representation
representation

Describe the storage representation of an expression. See “info representation” on
page 6-172 for more information.

info signal

Print information about signals. See “info signal” on page 6-160 for more informa-
tion.

info sources

List names of source files. See “info sources” on page 6-170 for more information.

info syscallpoint

List information about syscallpoints. See “info syscallpoint” on page 6-156 for more
information.

info threads

Describe C threads and thread processes. See “info threads” on page 6-167 for more
information.

info tracepoint

Describe current state of tracepoints. See “info tracepoint” on page 6-151 for more
information.

info types

Print type definition information. See “info types” on page 6-171 for more informa-
tion.

info variables

Print global variable information. See “info variables” on page 6-169 for more infor-
mation.

info watchpoint

Describe current state of watchpoints. See “info watchpoint” on page 6-155 for
more information.

info whatis
whatis

Describe the result type of an expression visible in the current context. See “info
whatis” on page 6-171 for more information.

interest

Control which subprograms are interesting. See “interest” on page 6-66 for more
information.
C-7

NightView LX User’s Guide
jump

Continue execution at a specific location. See “jump” on page 6-134 for more infor-
mation.

kill

Terminate a list of processes. See “kill” on page 6-38 for more information.

list
l

List a source file. See “list” on page 6-77 for more information.

load

Dynamically load an object file, possibly replacing existing routines. See “load” on
page 6-97 for more information.

login

Login to a new dialogue shell. See “login” on page 6-23 for more information.

logout

Terminate a dialogue. See “logout” on page 6-29 for more information.

mcontrol
hold
release

Control the monitorpoint value display. See “mcontrol” on page 6-111 for more
information.

monitorpoint

Monitor the values of one or more expressions at a given location. See “monitor-
point” on page 6-108 for more information.

mreserve

Reserve a region of memory in a process. See “mreserve” on page 6-51 for more
information.

name

Give a name to a group of eventpoints. See “name” on page 6-100 for more informa-
tion.

next
n

Execute one line, stepping over procedures. See “next” on page 6-129 for more
information.
C-8

Summary of Commands
nexti
ni

Execute one instruction, stepping over procedures. See “nexti” on page 6-131 for
more information.

nodebug

Specify names for programs you do not wish to debug. See “nodebug” on page 6-26
for more information.

notify

Ask about pending event notifications. See “notify” on page 6-37 for more informa-
tion.

on dialogue

Specify debugger commands to be executed when a dialogue is created. See “on dia-
logue” on page 6-29 for more information.

on program

Specify debugger commands to be executed when a program is execed. See “on
program” on page 6-44 for more information.

on restart

Specify debugger commands to be executed when a program is restarted. See “on
restart” on page 6-46 for more information.

output

Print the value of a language expression with minimal output. See “output” on page
6-92 for more information.

patchpoint

Install a small patch to a routine. See “patchpoint” on page 6-103 for more informa-
tion.

print
p

Print the value of a language expression. See “print” on page 6-86 for more informa-
tion.

printf

Print the values of language expressions using a format string. See “printf” on page
6-96 for more information.

pwd

Print NightView’s current working directory. See “pwd” on page 6-76 for more
information.
C-9

NightView LX User’s Guide
quit
q

Stop everything. Exit the debugger. See “quit” on page 6-22 for more information.

redisplay

Enable a display item. See “redisplay” on page 6-96 for more information.

refresh

Re-read source files and refresh the terminal screen. See “refresh” on page 6-144 for
more information.

rerun

Run a program again. See “rerun” on page 6-35 for more information.

resume

Continue execution. See “resume” on page 6-126 for more information.

reverse-search

Search backwards through the current source file for a specified regular expression.
See “reverse-search” on page 6-81 for more information.

run

Run a program in a dialogue and wait for NightView to start debugging it. See “run”
on page 6-35 for more information.

save-core-file

Saves the core file and any required shared library files needed for subsequent core
file analysis in a compressed file. See “save-core-file” on page 6-41 for more infor-
mation.

select-context

Select the context of a thread a thread process, or a CUDA context. See “select-con-
text” on page 6-141 for more information.

set

Evaluate a language expression without printing its value. See “set” on page 6-88
for more information.

set-auto-frame

Control the positioning of the stack when a process stops. See “set-auto-frame” on
page 6-69 for more information.

set-branch-tracking

Control whether or not NightView and the RedHawk kernel are tracking branch
instructions. See “set-branch-tracking” on page 6-74 for more information.
C-10

Summary of Commands
set-children

Control whether children should be debugged. See “set-children” on page 6-49 for
more information.

set-cuda-memcheck

Enable or disable CUDA memcheck, which makes CUDA exceptions more precise
at the expensive of very high overhead. See “set-cuda-memcheck” on page 6-74 for
more information.

set-debug-file-directory

Tell NightView where to look for .debug files. See “set-debug-file-directory” on
page 6-26 for more information.

set-disassembly

Control how NightView displays disassembled instructions. See “set-disassembly”
on page 6-72 for more information.

set-download

Control how NightView downloads files from remote targets. See “set-download”
on page 6-72 for more information.

set-editor

Set the mode for editing commands in the simple full-screen interface. See “set-edi-
tor” on page 6-70 for more information.

set-exit

Control whether a process stops before exiting. See “set-exit” on page 6-50 for more
information.

set-futurepoints

Control whether or not NightView accepts location specifiers for locations which do
not exist yet. See “set-futurepoints” on page 6-74 for more information.

set-history

Specify the number of items to be kept in the value history list. See “set-history” on
page 6-61 for more information.

set-language

Establish a default language context for variables and expressions. See “set-lan-
guage” on page 6-59 for more information.

set-limits

Specify limits on the number of array elements, string characters, or program
addresses printed when examining program data. See “set-limits” on page 6-61 for
more information.
C-11

NightView LX User’s Guide
set-local

Define process local convenience variables. See “set-local” on page 6-65 for more
information.

set-log

Log session to file. See “set-log” on page 6-59 for more information.

set-notify

Control how you are notified of events. See “set-notify” on page 6-36 for more
information.

set-overload

Control how NightView treats overloaded operators and routines in expressions. See
“set-overload” on page 6-69 for more information.

set-patch-area-size

Control the size of patch areas created in your process. See “set-patch-area-size” on
page 6-65 for more information.

set-preallocate

Control how NightView preallocates memory for eventpoints and monitorpoint
buffers. See “set-preallocate” on page 6-70 for more information.

set-prompt

Set the string used to prompt for command input. See “set-prompt” on page 6-62 for
more information.

set-qualifier

Specify the default list of processes or dialogues that will be affected by subsequent
commands which accept qualifiers. See “set-qualifier” on page 6-60 for more infor-
mation.

set-restart

Control whether restart information is applied. See “set-restart” on page 6-64 for
more information.

set-resume

Control NightView’s behavior on events that normally stop a process. See “set-
resume” on page 6-71 for more information.

set-safety

Control debugger response to dangerous commands. See “set-safety” on page 6-64
for more information.
C-12

Summary of Commands
set-search

Control case sensitivity of regular expressions in NightView. See “set-search” on
page 6-70 for more information.

set-show

Control where dialogue output goes. See “set-show” on page 6-33 for more informa-
tion.

set-terminator

Set the string used to recognize end of dialogue input mode. See “set-terminator” on
page 6-63 for more information.

set-thread-name

Set the name of a thread. See “set-thread-name” on page 6-146 for more informa-
tion.

set-trace

Establish tracing parameters. See “set-trace” on page 6-106 for more information.

shell

Run an arbitrary shell command. See “shell” on page 6-144 for more information.

show

Control dialogue output. See “show” on page 6-34 for more information.

signal

Continue execution with a signal. See “signal” on page 6-135 for more information.

smart-print

Define, undefined, view, enable, or disable smart printers. See “smart-print” on page
6-180 for more information.

source

Input commands from a source file. See “source” on page 6-145 for more informa-
tion.

step
s

Execute one line, stepping into procedures. See “step” on page 6-127 for more infor-
mation.

stepi
si

Execute one instruction, stepping into procedures. See “stepi” on page 6-130 for
more information.
C-13

NightView LX User’s Guide
stop

Stop a process. See “stop” on page 6-133 for more information.

symbol-file

Establish the file containing symbolic information for a program. See “symbol-file”
on page 6-39 for more information.

syscallpoint

Set an eventpoint to trace one or more system calls. See “syscallpoint” on page
6-121 for more information.

tbreak

Set a temporary breakpoint. See “tbreak” on page 6-118 for more information.

tpatch

Set a patchpoint that will execute only once. See “tpatch” on page 6-118 for more
information.

tracepoint

Set a tracepoint. See “tracepoint” on page 6-106 for more information.

translate-object-file
xl

Translate object filenames for a remote dialogue. See “translate-object-file” on page
6-27 for more information.

undisplay

Disable an item from the display expression list. See “undisplay” on page 6-95 for
more information.

up

Move one or more stack frames toward the caller of the current stack frame. See
“up” on page 6-140 for more information.

wait

Wait for processes to stop. See “wait” on page 6-51 for more information.

watchpoint

Set a watchpoint. See “watchpoint” on page 6-120 for more information.

x

Print the contents of memory beginning at a given address. See “x” on page 6-89 for
more information.
C-14

D
Appendix DQuick Reference Guide

3
3
3

Invoking NightView 4

nview [-attach pid] [-config config-file] [-core core-file] [-help]
[-nogui] [-nolocal] [-nx] [-prompt string]
[-safety safe-mode] [-simplescreen] [-version]
[-Xoption ...] [-x command-file]
[program-name [program-argument ...]]

Controlling the Debugger 4

Quitting NightView 4

quit

Abbreviation: q

Managing Dialogues 4

login [/conditional] [/popup] [name=dialogue name]
 [user=login name] [others ...] machine

debug pattern ...

nodebug pattern ...

set-debug-file-directory [path]

translate-object-file [from [to]]

Abbreviation: xl

logout

on dialogue [regexp]
D-1

NightView LX User’s Guide
on dialogue regexp command

on dialogue regexp do

apply on dialogue

Dialogue Input and Output 4

! [input line]

set-show [silent | notify=mode | continuous=mode]
 [log[=filename]] [buffer=number]

show [number | all | none] [| shell-command]

Managing Processes 4

run input line

rerun

set-notify [silent | continuous=mode]

notify

attach [{/resume | /stop}] pid

detach

kill

symbol-file program-name

core-file corefile-name [exec-file=program-name]
 [with-translations]

save-core-file [/nozip] [/nodebuginfo] [/replace] [/keep]
[include=file] [note=string] savename

exec-file program-name

on program [pattern]

on program pattern command

on program pattern do

apply on program
D-2

Quick Reference Guide
on restart [pattern]

on restart pattern command

on restart pattern do

checkpoint

family family-name [[-] qualifier-spec] ...

set-children { all [resume] | exec | none }

set-exit [stop | nostop]

wait [{all | any} [new]]

mreserve start=address {length=bytes | end=address}

Heap Debugging 4

heapdebug [check_free_fill={0|1}]
 [common_errors={block_overrun |
 dangling_pointer |
 uninitialized_field}]
 [do_free_fill={0|1}]
 [do_malloc_fill={0|1}]
 [error-name [{noprint |
 nostop |
 print |
 stop } ...]]
 [free_fill_byte={n | trash}]
 [frequency=n[{k|m}]]
 [heap_size={n[{k|m}] | unlimited}]
 [internal_checks={0|1}]
 [level={0|1|2|3}]
 [malloc_fill_byte={n | trash}]
 [off]
 [on]
 [post_fence_size=n]
 [post_fill_byte={n | trash}]
 [pre_fence_size=n]
 [pre_fill_byte={n | trash}]
 [protected={0|1}]
 [retain_free_blocks={n[{k|m}] | unlimited}]
 [slop=n]
 [walkback=n]
D-3

NightView LX User’s Guide
error-name can be any of the following:

free_fill_modified
free_not_at_beginning
free_unallocated
internal_error
malloc_zero
memalign_not_power_2
out_of_memory
post_fence_modified
pre_fence_modified
realloc_not_at_beginning
realloc_unallocated

Abbreviation: hd

Setting Modes 4

set-log keyword filename

set-language {auto | c | c++ | fortran}

set-qualifier [qualifier-spec ...]

set-history count

set-limits {array=number | string=number |
 addresses=number} ...

set-prompt string

set-terminator string

set-safety [forbid | verify | unsafe]

set-restart [always | never | verify]

set-local identifier ...

set-patch-area-size {data=data-size |
 eventpoint=eventpoint-size |
 monitor=monitor-size |
 text=text-size} ...

interest [level] [[at] [location-spec]]

interest inline[=level]

interest justlines[=level]

interest nodebug[=level]

interest cuda_syscall[=level]
D-4

Quick Reference Guide
interest threshold[=level]

set-auto-frame args...

set-overload [operator={on | off}]
 [routine={on | off}]

set-search [sensitive | insensitive]

set-editor mode

set-preallocate [/eventpoint] [/monitorpoint] [{off | on}]

set-resume [/attach] [/exec] [/exit] [/fork] [{off | on}]

set-download [{off | permanent | temporary}]
 [directory=path-to-cache]

set-disassembly [flavor={att | intel}]
 [symbols={off | on}]
 [comment_level=number]

set-branch-tracking [{on | off}]

set-futurepoints [{create | ask | error}]

set-cuda-memcheck [{off | on }]

Debugger Environment Control 4

cd dirname

pwd

Source Files 4

Viewing and Editing Source Files 4

list where-spec

list where-spec1, where-spec2

list ,where-spec

list where-spec,
D-5

NightView LX User’s Guide
list +

list -

list =

list

Abbreviation: l

directory [dirname ...]

edit

Searching 4

forward-search [regexp]

Abbreviation: fo

reverse-search [regexp]

Examining and Modifying 4

backtrace [number-of-frames]

Abbreviation: bt

print [/print-format-letter] expression

Abbreviation: p

set expression

x [/[repeat-count][size-letter][x-format-letter]] [addr-expression]

output [/print-format-letter] expression

echo text

data-display [/window="window name"]
 {/kind=value | expression}

display [[/print-format-letter] expression]
D-6

Quick Reference Guide
display /[repeat-count][size-letter][x-format-letter] addr-expression

undisplay item-number ...

redisplay item-number ...

printf format-string[, expression ...]

load object

branch-history [number-of-branches]

Manipulating Eventpoints 4

name [/add] name [[-] eventpoint-spec] ...

breakpoint [eventpoint-modifier] [/cuda | /process]
 [name=breakpoint-name] [[at] location-spec]
 [if conditional-expression]

Abbreviation: b

patchpoint [eventpoint-modifier] [name=patchpoint-name]
 [[at] location-spec] eval expression

patchpoint [eventpoint-modifier] [name=patchpoint-name]
 [[at] location-spec] goto location-spec

set-trace [eventmap=event-map-file]

tracepoint [eventpoint-modifier] event-id [name=tracepoint-name]
 [[at] location-spec]
 [value=logged-expression[,logged-expression...]]
 [if conditional-expression]

monitorpoint [eventpoint-modifier] [name=monitorpoint-name]
 [[at] location-spec]

heappoint [eventpoint-modifier][name=heappoint-name]
 [[at] location-spec]
 [{check | debug parameters}}]
 [if conditional-expression]

mcontrol {display | nodisplay} [monitorpoint-spec ...]

mcontrol delay milliseconds
D-7

NightView LX User’s Guide
mcontrol {off | on | stale | nostale | hold | release}

Abbreviation: hold

Abbreviation: release

clear [[at] location-spec]

commands eventpoint-spec

condition eventpoint-spec [conditional-expression]

delete [eventpoint-spec ...]

Abbreviation: d

disable [eventpoint-spec ...]

enable [/once|/delete] [eventpoint-spec ...]

ignore eventpoint-spec count

tbreak [name=breakpoint-name] [[at] location-spec]
 [if conditional-expression]

tpatch [name=patchpoint-name]
 [[at] location-spec] eval expression

tpatch [name=patchpoint-name]
 [[at] location-spec] goto location-spec

watchpoint [eventpoint-modifier] [/once] [/read] [/write]
 [name=watchpoint-name] [at] lvalue
 [if conditional-expression]

watchpoint [eventpoint-modifier] [/once] [/read] [/write]
 /address
 [name=watchpoint-name]
 [at] address-expression
 {size size-expression | type expression}
 [if conditional-expression]

syscallpoint [eventpoint-modifier] [/nostop] [/before] [/after]
 [name=patchpoint-name][syscall-list]
 [if conditional-expression]
D-8

Quick Reference Guide
Controlling Execution 4

continue [count]

Abbreviation: c

resume [sigid]

step [repeat]

Abbreviation: s

next [repeat]

Abbreviation: n

stepi [repeat]

Abbreviation: si

nexti [repeat]

Abbreviation: ni

finish

stop

jump [at] location-spec

signal sigid

handle [/signal] sigid keyword ...

Selecting Context 4

frame [frame-number]

frame *expression [at location-spec]

Abbreviation: f

up [number-of-frames]
D-9

NightView LX User’s Guide
down [number-of-frames]

select-context default

select-context thread=expression

select-context pid=pid

select-context cuda context context

select-context cuda sm sm

select-context cuda warp warp

select-context cuda lane lane

select-context cuda block x[,y[,z]]

select-context cuda thread x[,y[,z]]

Miscellaneous Commands 4

help [section]

refresh

shell [shell-command]

source command-file

delay [milliseconds]

Info Commands 4

Status Information 4

info log

info eventpoint [/verbose] [eventpoint-spec] ...

info breakpoint [/verbose] [eventpoint-spec] ...

Abbreviation: i b
D-10

Quick Reference Guide
info tracepoint [/verbose] [eventpoint-spec] ...

info patchpoint [/verbose] [eventpoint-spec] ...

info monitorpoint [/verbose] [eventpoint-spec] ...

info heappoint [/verbose] [eventpoint-spec] ...

info syscallpoint [eventpoint-spec] ...

info watchpoint [/verbose] [eventpoint-spec] ...

info frame [/v] [*expression [at location-spec]]

info directories

info convenience

info display

info history [number]

info limits

info registers [regexp]

info signal [signal ...]

info process

info memory [/ranges] [/heap] [/leaks] [/allocated]
 [/all] [/append=filename] [/output=filename]
 [/verbose] [expression]

info dialogue

info family [regexp]

info name [regexp]

info on dialogue [name]

info on program [program]

info on restart [output=outname|append=outname] [program]

info threads [/verbose] [/cuda]
[/partition { physical | logical | pc }]

heapcheck [/all] [/append=filename] [/output=filename] [expression]
D-11

NightView LX User’s Guide
Symbol Table Information 4

info args

info locals [regexp]

info variables [regexp]

info address identifier

info sources [pattern]

info functions [regexp]

info types [regexp]

info whatis expression

Abbreviation: whatis

info representation expression

Abbreviation: representation

info declaration regexp

Abbreviation: ptype

info files

info line [at] location-spec

Defining and Using Macros 4

define macro-name[(arg-name [, arg-name] ...)] [text]

define macro-name [(arg-name [, arg-name] ...)] as

info macros [regexp]
D-12

Quick Reference Guide
Smart Printing 4

smart-print info [pattern]

smart-print { [on | off] }

smart-print replace pattern
 replace-definition
end-smart-print

smart-print struct pattern
 struct-definition
end-smart-print

smart-print container pattern
 container-definition
end-smart-print

smart-print undef pattern

smart-print reload
D-13

NightView LX User’s Guide
D-14

E
Appendix EImplementation Overview

4
4
4

This section gives a very high-level description of how the debugger is implemented.

The user invokes nview. nview is a script that runs either snview or xnview.
snview implements the command-line and simple full-screen interfaces. xnview imple-
ments the graphical user interface. (Users are discouraged from invoking snview or
xnview directly.) The user interface programs deal with all aspects of the user interface
and with managing the symbolic debugging information from executable files. See
Chapter 5 [Invoking NightView] on page 5-1.

NightView runs NightView.p for each dialogue. If the dialogue is on the local
machine, then NightView communicates with NightView.p via a shared memory
region. There is one such shared memory region per invocation of NightView. See “Dia-
logues” on page 3-4. For remote dialogues, NightView establishes a socket connection
with NightView.p.

NightView.p is responsible for controlling the user processes by a combination of the
/proc file system and the ptrace system service.

Monitorpoints communicate with NightView.p via a shared memory region created in
your process. There is one shared memory region for each dialogue using monitorpoints.
See “Monitorpoints” on page 3-12. The shared memory region is placed in your process at
a preferred address if that address is available. Otherwise, it is placed anywhere Night-
View can find space. On IA-32, the preferred address is 0xafe78000. On AMD64, the
preferred address is 0x15aaaa2000.

Each dialogue runs a shell and controls it using /proc and ptrace. This is not to get
control of the shell, but so that the debugger is notified of the shell's children, which are
the processes to be debugged. The shell runs at a pseudo-terminal controlled by the
debugger, so that the debugger can capture the program I/O.

Watchpoints are implemented by setting the DRn registers on IA-32 or AMD64 systems.
Other eventpoints are implemented by replacing the instruction at the target address by a
trap instruction. When your program hits the trap, the debugger translates this into a
branch to a patch area. The patch area contains instructions to implement the particular
eventpoint, emulate the replaced instruction, and return to the target address.

Space for a patch area is acquired by using mmap or by creating a shared memory region
in the process's address space. The debugger usually creates one data patch area, one text
patch area, and one or two eventpoint patch areas. The user can adjust the sizes of the
patch areas. See “set-patch-area-size” on page 6-65. Each region is only created in the
process if necessary.

On IA-32, NightView tries to put all the patch areas between 0xa0000000 and
0xb0000000.

On AMD64, an eventpoint patch area may need to be placed near the instruction being
patched. NightView tries to put all the other patch areas between 0x15aaaab000 and
0x2000000000.
E-1

NightView LX User’s Guide
You can see where NightView has placed patch areas with the info memory command
(see “info memory” on page 6-161).

The user process is sometimes forced to execute code on behalf of the debugger. This is
how function calls work in evaluated expressions, and it is also used to do some of the
housekeeping chores, e.g., creating memory regions. On AMD64, NightView may need
to create additional memory areas to hold this code.

To implement heap debugging, NightView patches a heap debugger module into your
program and arranges for calls to malloc, free, and other heap functions, to be
intercepted by this module. The heap debugger modifies each allocation request to allow
for slop and fences and then passes the new request to the system allocator. The heap
debugger remembers where each block is and what attributes it has.

To implement CUDA support, NightView sets a hidden trap to detect the dlopen() of
libcudart.so, if any should occur. If such a dlopen() does occur, NightView sets
flags in the debugged process to inform the CUDA library that it is to be debugged. This
causes it to create a clone process which acts as an intermediary between the debugged
CUDA code running on the device and NightView.p. Communication with this
intermediary is established using named pipes and all interactions with the CUDA code
take place through this intermediary.

Reporting Bugs 5

To report a problem or request software assistance, contact Concurrent Computer Corpo-
ration via the web, email, or by phone.

Support URL

http://real-time.ccur.com/support

Email

support@ccur.com

Phone

800.245.6453 (954.283.1822 for customers outside the United States).
E-2

F
Appendix FTutorial Files

5
5
5

The following sections show source listings for the files used in the tutorials. These
files all reside under the /usr/lib/NightView/Tutorial directory.

 C Files 6

msg.h 6

1 #include <stdlib.h>
2 #include <stdio.h>
2 #include <sys/types.h>
3 #include <signal.h>

main.c 6

1 #include "msg.h"
2
3 /* This program spawns a child process and sends
4 * signals from the parent to the child.
5 *
6 */
7
8 main()
9 {
10 int total_sig;
11 pid_t pid;
12 char *tracefile = "msg_file";
13 extern void parent_routine();
14 extern void child_routine();
15 extern void signal_handler();
16
17 signal(SIGUSR1, signal_handler);
18 printf("How many signals should the parent send the child?\n");
19 scanf("%d", &total_sig);
20 pid = fork();
21
22 if(pid == 0)
23 {
24 /* It’s the child */
25 child_routine(total_sig);
26 }
27
28 else
F-1

NightView LX User’s Guide
29 {
30 /* It’s the parent */
31 parent_routine(pid, total_sig);
32 }
33
34 exit(0);
35 }

parent.c 6

1 #include "msg.h"
2
3 /* Every time the parent sends the child a signal,
4 * the parent writes a message.
5 */
6
7 void parent_routine(child_pid, total_sig)
8 pid_t child_pid;
9 int total_sig;
10 {
11 int isec = 2;
12 int sig_ct;
13
14 for(sig_ct = 1; sig_ct <= total_sig; ++sig_ct)
15 {
16 printf("%d. Parent sleeping for %d seconds\n", sig_ct, isec

);
17 sleep(isec);
18 kill(child_pid, SIGUSR1);
19 }
20 }

child.c 6

1 #include "msg.h"
2
3 /* Every time the child receives a signal from
4 * the parent, the child writes a message.
5 */
6
7 int sig_ct_child = 0;
8
9 void child_routine(total_sig)
10 int total_sig;
11 {
12 extern void signal_handler();
13
14 signal(SIGUSR1, signal_handler);
15
16 while(sig_ct_child < total_sig)
17 {
18 pause();
19 printf("Child got ordinal signal #%d\n", sig_ct_child);
F-2

Tutorial Files
20 }
21 }
22
23
24
25 /* Count how many signals have been received */
26
27 void signal_handler(sig_num)
28 int sig_num;
29 {
30 signal(SIGUSR1, signal_handler);
31 ++sig_ct_child;
32 }

Fortran Files 6

main.f 6

1 C This program spawns a child process and sends
2 C signals from the parent to the child.
3 C
4 program main
5 common /msg_comm/ total_sig
6 common /usr1_comm/ sigusr1
7 integer total_sig
8 integer sigusr1
9 integer pid
10 integer ftfork
11 integer ftsigusr1
12 character *8 tracefile
13 external parent_routine
14 external child_routine
15
16 sigusr1 = ftsigusr1()
17 tracefile = "msg_file"
18 write(6, FMT='(A)')
19 X "How many signals should the parent send the child?"
20
21 read(5,*) total_sig
22 pid = ftfork()
23
24 if(pid .eq. 0) then
25 C It's the child
26 call child_routine()
27 else
28 C It's the parent
29 call parent_routine(pid)
30 end if
31
32 call exit
33 end
F-3

NightView LX User’s Guide
parent.f 6

1 C Every time the parent sends the child a signal,
2 C the parent writes a message.
3
4 subroutine parent_routine(child_pid)
5 common /msg_comm/ total_sig
6 common /usr1_comm/ sigusr1
7 integer child_pid
8 integer total_sig
9 integer sigusr1
10 integer isec
11 integer ireturn
12 integer sig_ct
13 integer kill
14 data isec/2/
15
16 do 10 sig_ct = 1, total_sig
17 write(6, FMT='(I3, A, I2, X, A)') sig_ct,
18 X ". Parent sleeping for", isec, "seconds"
19 call sleep(isec)
20 ireturn = kill(child_pid, sigusr1)
21 10 continue
22
23 return
24 end

child.f 6

1 C Every time the child receives a signal from
2 C the parent, the child writes a message
3
4 subroutine child_routine()
5 common /msg_comm/ total_sig
6 common /sig_comm/ sig_ct_child
7 common /usr1_comm/ sigusr1
8 integer total_sig
9 integer sig_ct_child
10 integer sigusr1
11 integer ireturn
12 integer ftpause
13 integer ftsignal
14 external signal_handler
15 integer signal_handler
16
17 ireturn = ftsignal(sigusr1, signal_handler)
18
19 do while (sig_ct_child .lt. total_sig)
20 ireturn = ftpause()
21 ireturn = ftsignal(sigusr1, signal_handler)
22 write(6, FMT='(A, I3)') "Child got ordinal signal #",
23 X sig_ct_child
24 end do
25
26 return
27 end
F-4

Tutorial Files
28
29
30
31 C Count how many signals have been received
32
33 integer function signal_handler()
34 common /sig_comm/ sig_ct_child
35 integer sig_ct_child
36 data sig_ct_child /0/
37
38 sig_ct_child = sig_ct_child + 1
39 return
40 end

ftint.c 6

1 /*
2 * C routines to provide simple Fortran interfaces
3 * to some system services, so that the tutorial
4 * works the same way on different systems.
5 */
6
7 #include <signal.h>
8 #include <unistd.h>
9
10 int
11 ftfork_()
12 {
13 int status = fork();
14 return status;
15 }
16
17 int
18 ftpause_()
19 {
20 int status = pause();
21 return status;
22 }
23
24 typedef void (*sig_handler)(int);
25
26 int
27 ftsignal_(int * signum, sig_handler handler)
28 {
29 int status = (int)signal(*signum, handler);
30 return status;
31 }
32
33 int
34 ftsigusr1_()
35 {
36 return SIGUSR1;
37 }
F-5

NightView LX User’s Guide
F-6

Glossary

This glossary defines terms used in NightView. Terms in italics are defined here.

accelerator

A special key used to select a menu item quickly in the graphical user interface. See also
mnemonic. See “List of Shortcuts” on page 8-26.

anchored match

The entire string must match the regular expression. Put another way, a ^ is implied at the
beginning of the regular expression, and a $ is implied at the end of the regular expression.
See “Regular Expressions” on page 6-16.

application

A group of related processes. The processes may be running the same program or different
programs.

attaching

Attaching to a process means that the debugger will have control over it. This is how you
debug processes that already exist. See “attach” on page 6-37.

breakpoint

A breakpoint is a place in your program where execution will stop. You can set a break-
point with the breakpoint command. See “Breakpoints” on page 3-12. Breakpoints
may be conditional, see conditional breakpoint. Breakpoints may have debugger com-
mands associated with them, see breakpoint commands.

breakpoint commands

A set of debugger commands to be executed when a breakpoint is hit. See breakpoint.

checkpoint

A checkpoint saves information about the eventpoints, signal disposition, and other infor-
mation, for a program. This information is used when a program is restarted. See “Restart-
ing a Program” on page 3-16.

child process

When a process forks, a new process is created that looks just like the old process. The
new process is called a child process and the old process is called the parent process. A
process may have many child processes, but only one parent process. You can control
Glossary-1

NightView LX User’s Guide
whether the child process is debugged with the set-children command. See “set-chil-
dren” on page 6-49.

command history

NightView keeps a history of all the commands you enter. You can retrieve commands,
edit them, and re-enter them. See “Command History” on page 3-39.

command-line interface

A command-line interface deals with only one line at a time. This kind of interface can be
used from a terminal or from other programs that expect simple behavior, such as a shell
running in emacs. Contrast this with a full-screen interface and a graphical user interface.
See Chapter 6 [Command-Line Interface] on page 6-1.

command stream

A command stream is a set of commands executed sequentially by NightView. The com-
mands attached to a breakpoint form a command stream, as do the commands you type as
input to NightView. Execution of commands in one command stream may be interleaved
with the execution of commands from another command stream. See “Command
Streams” on page 3-36.

conditional breakpoint

A breakpoint may have a language expression associated with it. The breakpoint is ``hit’’
only if the expression evaluates to TRUE when the breakpoint is encountered. See break-
point.

context

Context refers to the information the debugger uses to determine how to evaluate an
expression. The main components of the context are the program counter, which deter-
mines the scope, and the stack. Context determines the language (i.e., C, C++ or Fortran)
as well as the type and location of variables in the program. NightView allows you to
specify the context to be used in interpreting an expression. See “Context” on page 3-24.

context menu

In the graphical user interface, a context menu pops up when you right-click in a window.
“Context” here refers to the position of the mouse in the window and has nothing to do
with the debugging concept of context. See “Context Menu” on page 8-3.

context panel

In the graphical user interface, a context panel is a convenient way to navigate in your pro-
cess’s stack, and also to navigate between processes and between shells. See “Context
Panel” on page 8-64.
Glossary-2

Glossary
convenience variables

A convenience variable is a variable maintained by the debugger to hold the value of an
expression. The type of a convenience variable is determined by the type of the expression
assigned to it. See “Convenience Variables” on page 3-37.

core file

A core file is a snapshot of a process’s memory created by the operating system when the
process is aborted. You can examine this process state using NightView. See “Core Files”
on page 3-4.

crossing count

A crossing count is the number of times program execution has crossed an eventpoint
since the program has started execution. This count is updated even if the ignore count or
condition was not satisfied. The crossing count is not updated if the eventpoint is disabled.

CUDA

CUDA refers to CUDA contexts and threads running on a separate CUDA device. See
“CUDA Debugging” on page 3-42.

current frame

The current frame is one of the frames on the stack of a stopped process. It is often the
same as the currently executing frame, but other frames can be selected using the up,
down, and frame commands. The current frame is used to determine the context for eval-
uating an expression. See “Current Frame” on page 3-25.

current process

In the graphical user interface, one process is the current process. Button clicks and com-
mands apply to that process. If there is more than one process, the context panel indicates
the current process with green text. See “Current Process” on page 8-3.

currently executing frame

The currently executing frame is the stack frame associated with the most recently called
routine in a stopped process. Contrast this with current frame.

data item

Each data item shows one piece of data from your process in the data panel. A data item
can show an expression, local variables, registers, the stack, or the process threads. See
“Data Items” on page 8-65

data panel

In the graphical user interface, a data panel allows you to view data items in your process.
See “Data Panel” on page 8-65.
Glossary-3

NightView LX User’s Guide
data panel layout

The organization of data items in the data panel in your debug session. This information
can be saved and reused in future debug sessions. See “Data Menu” on page 8-14.

debugger

A debugger is a tool to help you debug programs. A debugger lets you control the execu-
tion of your program and look at your program’s memory.

debug session

A debug session is one invocation of NightView; it lasts until you exit from the debugger.
See Chapter 5 [Invoking NightView] on page 5-1. See “Quitting NightView” on page
6-22.

default font

The default font is specified by the Motif fontList resource and applies only to the
graphical user interface. See “Preferences Dialog Box” on page 8-39.

detaching

Detaching from a process means that the debugger no longer has control over that process
and any future children that are created by that process. The debugger still has control over
previously created children. See “detach” on page 6-38.

dialogue

NightView provides dialogues as a means of starting processes, via a shell, and communi-
cating with those processes. See “Dialogues” on page 3-4. See also remote dialogue.

disassembly

A symbolic representation of the raw machine language that makes up your program. To
disassemble part of your program, use the x command with the i format. See “x” on page
6-89. In the graphical user interface, you can view disassembly in the source panels by
using the Source menu. See “Source Menu” on page 8-10.

display item

A display item is an expression or memory location whose value or contents are to be
printed out whenever the associated process stops. NightView assigns a unique number to
each display item in each process. See “display” on page 6-94 and “info display” on page
6-158.

DWARF

DWARF is the standard format for symbolic debugging information used with ELF files. See
ELF.
Glossary-4

Glossary
ELF

Executable and Linking Format. This is a standard for the format and contents of an exe-
cutable file. It also determines the form and content of information about your program
available to the debugger.

event-map file

An event-map file lets you associate or map symbolic trace-event tags and numeric trace-
event IDs. This file appears on the ntrace invocation line when performing NightTrace
tracing. See trace.

eventpoint

An eventpoint is a generic name given to the various kinds of modifications NightView
can insert at a particular location of a process. The different kinds of eventpoints are:
breakpoint, monitorpoint, heappoint, tracepoint, patchpoint, and watchpoint. See “Event-
points” on page 3-9.

eventpoint modifier

An eventpoint modifier modifies the meaning of an eventpoint command. The only
eventpoint modifiers are /delete and /disabled. The modifier /delete is valid
only for breakpoints and watchpoints, and tells NightView to delete the eventpoint after
the next time it is hit. The modifier /disabled tells NightView to create the eventpoint,
but leave it disabled initially. See “Eventpoint Modifiers” on page 6-100.

eventpoint panel

In the graphical user interface, an eventpoint panel is a convenient way to view and mod-
ify information about eventpoints. See “Eventpoint Panel” on page 8-62.

family

A group of related processes. See “family” on page 6-48.

fence

A region of memory preceding or following a block, when heap debugging is turned on. It
can be used to detect block overrun bugs. See “Fences” on page 3-31.

find bar

In the graphical user interface, you can use the context menu to bring up a find bar in a
panel to search for text in that panel. See “Find Bar” on page 8-53.

focus

See keyboard focus.
Glossary-5

NightView LX User’s Guide
fork

Create a new process. The debugger informs you when your process forks. See child pro-
cess.

frame

See stack frame.

full-screen interface

A full-screen interface uses the capabilities of a terminal to control the display of informa-
tion on the entire screen, rather than just writing to the terminal one line at a time. Contrast
this with a command-line interface and a graphical user interface. See Chapter 7 [Simple
Full-Screen Interface] on page 7-1.

graphical user interface

A graphical user interface may be used on a graphics display. This kind of display allows
much more flexibility and functionality than a text display. Contrast this with a command-
line interface and a full-screen interface. See Chapter 8 [Graphical User Interface] on
page 8-1.

GUI

A graphical user interface.

heap

Memory allocated and deallocated dynamically via calls to malloc and free. Night-
View can help you debug problems with heap usage. See “Debugging the Heap” on page
3-29.

heap check

A complete check of all allocated and retained free blocks in the heap, when heap debug-
ging is turned on. It can detect numerous heap-related bugs. See “Heap Check” on page
3-33.

heap debugger

A module that NightView loads into your process to monitor memory allocation and deal-
location. See “Debugging the Heap” on page 3-29.

heappoint

An eventpoint that checks the heap or changes the heap debugging parameters. See
“Heappoints” on page 3-13.
Glossary-6

Glossary
Help Window

In the graphical user interface, the Help Window displays NightView’s online help infor-
mation. You can choose to look at any part of the NightView User’s Guide. See also online
help system. See “Help Window” on page 8-93.

hit a breakpoint

A breakpoint is hit when execution reaches the breakpoint location and the ignore count
and conditions, if any, are satisfied. Thus, hitting a breakpoint stops the process. See
“Breakpoints” on page 3-12.

hit an eventpoint

An inserted eventpoint is hit when execution reaches the eventpoint location and the
ignore count and conditions, if any, are satisfied. A watchpoint is hit when the specified
addresses are referenced, and the ignore count and conditions are satisfied. Thus, hitting
an eventpoint causes that eventpoint to perform its specified action; e.g., a breakpoint
stops the process, a monitorpoint evaluates its expressions and saves their values, a trace-
point logs a trace event, and so on. See eventpoint, breakpoint, monitorpoint, tracepoint,
heappoint, and watchpoint.

ignore count

An ignore count causes NightView to skip an eventpoint the next count times that execu-
tion reaches the eventpoint. You use the ignore command to attach an ignore count to an
eventpoint. See “ignore” on page 6-117.

initialization file

An initialization file is a file containing NightView commands that are executed before
NightView reads commands from standard input. NightView has a default initialization
file, and you can specify others on the NightView invocation line. See “Initialization
Files” on page 3-39.

inline subprogram

A subprogram that is expanded directly into the calling program. See “Inline Subpro-
grams” on page 3-26.

inline interest level

The level that determines if any inline subprograms are interesting. You may set an inter-
est level for individual inline subprograms to override this level. See “Inline Subpro-
grams” on page 3-26. You can change or query this level with the interest command.
See “interest” on page 6-66.

inserted eventpoint

An eventpoint that is associated with a location in your program. Inserted eventpoints are
implemented by inserting code into your process. See “Eventpoints” on page 3-9.
Glossary-7

../nview/nview.html

NightView LX User’s Guide
interest level

Each subprogram has an associated interest level. NightView compares the interest level
to the interest level threshold to determine if the subprogram is interesting. NightView
generally avoids showing you uninteresting subprograms. See “Interesting Subprograms”
on page 3-27. You can change or query the interest level with the interest command.
See “interest” on page 6-66.

interest level threshold

Each process has an interest level threshold. If the interest level of a subprogram is less
than the interest level threshold, the subprogram is considered to be uninteresting. See
“Interesting Subprograms” on page 3-27.

keyboard focus

The keyboard focus determines which field receives keyboard input in the graphical user
interface.

lane

A lane is a physical component of a CUDA device which executes a CUDA thread. See
“CUDA Debugging” on page 3-42.

leaked block

A block which was allocated from the heap, which was never freed, and which the pro-
gram no longer references. See “Leak Detection” on page 3-34.

locals panel

In the graphical user interface, a locals panel displays the local variables in the current
frame of the current process. See “Locals Panel” on page 8-64.

macro

A macro is a named set of text, possibly with arguments, that can be substituted in a
NightView command by referencing the name. This is a means of extending the facilities
provided by NightView. See “Defining and Using Macros” on page 6-173.

message panel

In the graphical user interface, a message panel displays process status, command output,
error messages and process and shell output. See “Message Panel” on page 8-61.

mnemonic

A mnemonic is a way of selecting a menu or a menu item quickly in the graphical user
interface. See also accelerator. See “List of Shortcuts” on page 8-26.
Glossary-8

Glossary
monitorpoint

A monitorpoint is a location in a debugged process where one or more expressions are
evaluated and the values saved. The saved values are displayed periodically by Night-
View. Monitorpoints thus provide a means of viewing program data while the program is
executing. See “Monitorpoints” on page 3-12 and “monitorpoint” on page 6-108.

monitor bar

In the graphical user interface, in the monitor panel, you can use the context menu to bring
up a monitor bar to control the display of monitorpoint values. See “Monitor Bar” on page
8-65.

monitor panel

In the graphical user interface, a monitor panel displays the values of monitorpoints. See
“Monitor Panel” on page 8-65.

NightTrace

An interactive debugging and performance analysis tool that lets you examine trace events
logged by user applications and the kernel. See trace. See the NightTrace Manual for
details.

NightView

A pretty good debugger.

online help system

All of the NightView User’s Guide is available to you, online, through NightView’s online
help system. In the graphical user interface, help information is displayed in the Help
Window. See also Help Window. See “help” on page 6-143. See “GUI Online Help” on
page 8-1.

overloading

Overloading means that more than one entity with the same name is visible at some point
in the program. See “Overloading” on page 3-23.

patch

A patch is an expression (or a branch) inserted into a debugged process to alter its behav-
ior (usually to fix a bug). See patchpoint. See “Patchpoints” on page 3-12.

patch area

NightView creates regions, known as patch areas, in your process. This is where Night-
View puts code and data that is inserted into your process. See Appendix E [Implementa-
tion Overview] on page E-1. See “set-patch-area-size” on page 6-65.
Glossary-9

../nview/nview.html

NightView LX User’s Guide
patchpoint

A patchpoint is a location in a debugged process where a patch is inserted. See patch. See
“Patchpoints” on page 3-12.

pattern

A pattern is used in the debug and nodebug commands to control which programs will
be debugged in a particular dialogue. Patterns are similar to shell wildcard patterns. See
“debug” on page 6-25.

PID

A process identifier. This is an integer from 1 to 30000 which uniquely identifies a process
on a particular system. In some situations, NightView may create false PIDs, outside the
normal range, to identify false processes, e.g., core files.

procedure

See routine.

process

The execution of a program. Many processes may be executing the same program. See
“Programs and Processes” on page 3-2.

process state

A process state describes whether the process is actively executing and what you can do
with the process using NightView. The two most common process states are running and
stopped. See “Process States” on page 3-19.

program

A file containing instructions and data. A program is usually created with the ld(1) pro-
gram. An executing program represents a process. See “Programs and Processes” on page
3-2.

program counter

The program counter is a register that locates the instruction that is to be executed next.
See “Program Counter” on page 3-24.

qualifier

A qualifier specifies the set of processes or dialogues that a command affects. See “Quali-
fiers” on page 3-4.

registers

Registers are special storage locations in the CPU for holding frequently accessed data. In
NightView, you can access most of these registers using specially-named convenience
variables. See “Predefined Convenience Variables” on page 6-5.
Glossary-10

Glossary
remote dialogue

A remote dialogue is a dialogue started on a system other than the one on which Night-
View was invoked. See “Remote Dialogues” on page 3-6.

restarted

When a program is run again in the same debug session, it is considered to be restarted.
Information from the most recent checkpoint is applied to the process. See “Restarting a
Program” on page 3-16.

retained free block

A block which was freed by the user, but which the heap debugger has not yet made avail-
able for reuse. It can be used to detect dangling pointer bugs. See “Retained Free Blocks”
on page 3-33.

routine

Routine is a generic term denoting a function or subroutine in a program. Different lan-
guages use different terms for this concept; other similar terms are subprogram and proce-
dure.

scope

A scope is a section of your program where a particular set of variables can be referenced.
Scope forms a part of the context. See “Scope” on page 3-25.

shell

The shell is the program the system normally executes when you log in. There are several
varieties of shell: Bourne shell, C shell, and Korn shell are some examples. In NightView,
each dialogue you create executes an instance of your login shell.

shell panel

In the graphical user interface, a shell panel provides a way to interact with your dialogue
shell. See “Shell Panel” on page 8-60.

signal

A signal is a notification of some event to your process. This event may be external to
your process, or it may be the result of an erroneous action by the process itself. Night-
View allows you to control how signals are delivered to your process. See “Signals” on
page 3-15.

SM

A SM, or symmetric multiprocessor, is a physical component of a CUDA device which
executes a number of CUDA warps. See “CUDA Debugging” on page 3-42.
Glossary-11

NightView LX User’s Guide
smart printer

A smart printer is a definition which recognizes types by their names and replaces descrip-
tions of their objects with a user-defined form. See “Smart Printing” on page 3-38.

source panel

In the graphical user interface, a source panel displays program source or disassembly.
You can also interact with the process through the source panel. See “Source Panel” on
page 8-53.

source panel target line

In the graphical user interface, When you click on a line in a source panel, that line
becomes the source panel target line. Some buttons and keystrokes use the target line to
identify the source file and line number to operate on. See “Source Panel Target Line” on
page 8-54.

stack

An area of memory used to hold local variables and return information for each active rou-
tine. The stack consists of a sequence of stack frames. Calling a routine pushes a new
frame onto the stack; returning from the routine removes that frame from the stack. See
“Stack” on page 3-25.

stack frame

A stack frame is a contiguous set of locations in the process’ stack that corresponds to the
execution of an active routine. The stack frame holds the local automatic variables of the
routine, and it also holds information needed to return to the calling routine. See “Stack”
on page 3-25.

stale data indicator

A stale data indicator is a character or icon displayed with a monitored value to indicate
the validity and reliability of that value. See monitorpoint.

symbol file

An executable file containing symbolic debug information. Normally, the symbol file is
the same as the program’s executable file, but it may be different if, for example, you are
debugging a stripped program. See “symbol-file” on page 6-39.

syscallpoint

An eventpoint that informs you of system call entry and exit. See “Heappoints” on page
3-13.

thread

Each instance of execution of a program contains one or more threads of execution. Some
programs have a single thread. See “Multithreaded Programs” on page 3-40.
Glossary-12

Glossary
thread processes

Threaded programs are implemented with multiple processes that share resources, includ-
ing memory. This manual refers to these processes as thread processes.

trace

The collection of data produced by executing tracepoints in a process is called a trace. See
NightTrace.

trace-event ID

An integer that identifies a NightTrace trace event. User trace event IDs are in the range 0
through 4095, inclusive. See event-map file and trace-event tag.

trace-event tag

A symbolic name that identifies a NightTrace trace event. It is mapped to a numeric trace-
event ID in an event-map file.

tracepoint

A tracepoint is a call to one of the ntrace(3X) library routines for recording the time
when execution reached the tracepoint. You can insert a tracepoint in your source, or you
can use NightView to insert them after starting your process. See “Tracepoints” on page
3-13.

value history

The value history is a list of values you have printed in your NightView session. You can
view this list, and you can reference the values in other expressions. See “Value History”
on page 3-38.

warp

A warp is a physical component of a CUDA device which executes a number of CUDA
threads. See “CUDA Debugging” on page 3-42.

watchpoint

A watchpoint stops the process when the process reads or writes a variable in memory.
See “Watchpoints” on page 3-13.
Glossary-13

NightView LX User’s Guide
Glossary-14

Index
Symbols

! 1-3, 3-5, 6-32, 6-35, 6-63, 6-177
!exit 6-29
(comment) 6-2
$ 6-3, 6-65, 6-88
$ prompt 1-3, 4-4
$$ 6-3
$_ 6-5
$__ 6-5
$cfa 6-6, 6-139, 6-157
$cpc 3-24, 3-25, 6-6, 6-67, 6-84, 6-139, 6-157
$fp 6-6, 6-158
$is 6-6
$pc 3-21, 3-24, 3-25, 6-5, 6-92, 6-139
$sp 6-6
$was 3-14
& 4-6, 6-14, 6-35, 6-170
(local) prompt 1-3
* (source line decoration) 6-84
+ (list argument) 6-77, 6-78
. 6-16
-. (input terminator) 6-32, 6-63
.NightViewrc file 3-39, 6-28, 6-30, 6-31
.profile file 3-7
/disabled eventpoint modifier 6-100, Glossary-5
/f eventpoint modifier 6-100
/proc 3-3, 3-44, E-1
/usr/lib/NightView-release/ReadyToDebug

1-3, 3-9, 4-4
/usr/ucb/rsh 3-3
< (source line decoration) 6-84
<= 8-71
= (list argument) 6-77
= (source line decoration) 6-84
= key 8-60
> prompt 6-2, 6-109, 6-113, 6-174
> (source line decoration) 6-84
@ (macro invocation) 6-176
@ (source line decoration) 6-85, 6-173
\ 6-93
\n 6-93
| (show argument) 6-34
’specification 6-13

A

Abbreviations
b (breakpoint) 6-101, D-7
bh (branch-history) 6-98
bt (backtrace) 6-86, D-6
c (continue) 6-125, D-9
command 6-1, 6-177
d (delete) 6-115, D-8
f (frame) 6-138, D-9
fo (forward-search) 6-81, D-6
hd (heapdebug) 6-53, D-4
hold (mcontrol hold) 6-111, D-8
i b (info breakpoint) 6-150, D-10
l (list) 6-77, D-6
n (next) 6-129, D-9
ni (nexti) 6-131, D-9
p (print) 6-86, D-6
ptype (info declaration) 6-172, D-12
q (quit) 6-22, D-1
release (mcontrol release) 6-111, D-8
representation (info representation)

6-172, D-12
s (step) 6-127, D-9
si (stepi) 6-130, D-9
whatis (info whatis) 6-171, D-12
xl (translate-object-file) 6-27, D-1

Abnormal termination 6-40
Abort 3-35
Accelerator Glossary-1

Ctrl+B 8-13
Ctrl+P 8-13
Ctrl+Q 8-5
Ctrl+S 8-4

Accessing files 3-1, 3-7
Actual argument

macro 6-174, 6-176, 6-177
Address

printing 6-170
Addresses limits 6-159

printing 6-61
addr-expression 6-91, 6-94
Aggregate item 6-88, 6-159
AMD64 registers 6-9
Index-1

NightView LX User’s Guide
Anchored match 6-18, 6-81, 6-159, 6-165, 6-169, 6-171,
6-172, 6-178, 8-11, 8-27, 8-28, 8-56,
Glossary-1

Application 3-2, Glossary-1
apply on dialogue 6-30, 6-31
apply on program 6-46
--arch option 5-1
Argument

actual 6-174
command 6-1
macro 6-174, 6-176
printing 6-160, 6-169

Array 6-88, 6-159, 8-67
printing 6-61

Array slices 3-22
Assembly listing 8-12, 8-58
Assignment 3-22, 6-103
attach 3-3, 3-43, 5-1, 6-37, 6-49
Attach button 8-27
Attach Dialog Box 3-3, 8-27
-attach option 5-1
Attaching 3-3, 3-43, 5-1, 6-37, 8-9, 8-25, 8-27,

Glossary-1
Attaching commands to a dialogue 6-29
Attaching commands to a program 6-44, 6-46

B

b (breakpoint) 1-4, 2-5, 6-101, D-7
B (source line decoration) 6-83
b key 8-60
Background process 6-144
backtrace 1-5, 2-6, 3-25, 6-4, 6-86, 6-138, 6-139,

6-140, 6-142, 6-147
bh (branch-history) 6-98
Blank line 6-19, 6-78
Body

macro 3-37, 6-174, 6-179
Branch instruction 6-103, 6-119
branch-history 6-98
Breakpoint 3-9, 3-12, 3-19, 6-83, 6-85, 6-98, 6-105,

6-126, 6-136, 8-22, 8-25, 8-60, Glossary-1,
Glossary-5

changing 8-29
clearing 6-112, 6-113
commands on 3-18, 3-36, 3-37, 4-20, 6-113, 6-150,

6-151, 8-32, Glossary-1
condition on 3-18, 4-18, 6-102, 6-114, 6-150,

6-151, 8-32, Glossary-2
deleting 4-18, 6-38, 6-115, 8-34
disabling 4-24, 6-115, 8-31
displaying 4-24, 6-149, 6-150

enabling 6-116, 8-31
hitting 3-19, 6-36, 6-94, 6-123, 6-125, 6-151, 8-31,

Glossary-7
ignoring 3-18, 4-20, 6-102, 6-117, 6-150, 6-151,

8-32, Glossary-7
named 3-18, 6-101, 6-102, 6-118, 8-32
saving 3-18
setting 1-4, 2-5, 4-8, 4-18, 4-20, 6-97, 6-101, 6-118,

8-22, 8-29, 8-60
state 6-151, 8-31
temporary 6-118, 8-31

breakpoint 1-4, 2-5, 3-2, 3-4, 6-101, 6-118, 6-150,
8-21, 8-22, 8-60

Breakpoint button 8-22, 8-60
Breakpoint crossing count Glossary-3
Breakpoint Dialog Box 4-19, 4-20, 8-13, 8-22, 8-29
Browse selection policy 8-28
bt 1-5, 2-6
bt (backtrace) 6-86, D-6
Buffered output 3-37
Building a program 1-2, 2-2
Button

Attach 8-27
Breakpoint 8-22, 8-60
Cancel 8-27, 8-28, 8-34, 8-83, 8-86, 8-87, 8-88,

8-89, 8-90
Clear 8-23
Data Display 8-23
Delete 8-34
dimmed 4-18, 8-28, 8-34
disabled 4-18, 8-28, 8-34
Dismiss 8-2
Down 4-17
Down 8-21
Filter 8-27
Finish 8-20
Help 8-2, 8-27, 8-28, 8-29, 8-34, 8-83, 8-87
Hold 8-65
Interrupt 8-22
Kill 6-38, 8-21
Next 8-20
Nexti 8-21
OK 2-6, 8-28, 8-34, 8-83, 8-84, 8-85, 8-86, 8-87,

8-88, 8-90
Print 2-6, 8-24, 8-60
radio 8-33, 8-84
Release 8-65
Rerun 8-21
Resume 2-5, 2-6, 8-20
Run to Here 8-21, 8-60
Search 8-28
Step 8-20
Stepi 8-21
Stop 8-20
Index-2

Index
toggle 8-33
Up 4-15
Up 8-21

C

C 4-2
c (continue) 1-5, 6-125, D-9
C language i-iii, 3-22, 3-24, 3-44, 6-59, 6-63, 6-87, 6-88,

6-93, 6-96, 6-103, 6-119, 6-170, 6-175,
Glossary-2

C string 3-44, 6-88
C thread 6-167, 8-71
C++ i-iii, 3-22, 3-24, 3-44, 6-59, 6-87, 6-103, 6-119,

6-175, 8-11, 8-28, 8-56, Glossary-2
Calling macros 6-176
Cancel button 8-27, 8-28, 8-34, 8-83, 8-86, 8-87, 8-88,

8-89, 8-90
Canonical frame address 6-6, 6-139, 6-157
Cautions 3-35
cc option

-g 1-2, 2-2
cd 6-76
Changing a breakpoint 8-29
Changing a heappoint 8-29
Changing a monitorpoint 8-29
Changing a patchpoint 8-29
Changing a tracepoint 8-29
Changing a watchpoint 8-29
Changing an eventpoint 8-29
Changing eventpoints 8-29, 8-62
Character string 6-88, 6-159

printing 6-61
Checkpoint 3-17, 3-18, 6-44, 6-46, 6-47, Glossary-1,

Glossary-11
checkpoint 3-18, 6-47
Child process 3-2, 3-3, 4-1, 4-6, 4-11, 6-26, 6-38, 6-49,

Glossary-1
clear 6-98, 6-112, 6-115, 8-23
Clear button 8-23
Clearing breakpoints 6-112
Clearing eventpoints 6-112, 8-23
Clearing heappoints 6-112
Clearing monitorpoints 6-112
Clearing patchpoints 6-112
Clearing terminal 6-144
Clearing tracepoints 6-112
Clicking

double 8-28, 8-86, 8-87
Clicking on objects 4-2, 4-4
Command abbreviations 6-1, 6-177

b (breakpoint) 6-101, D-7

bh (branch-history) 6-98
bt (backtrace) 6-86, D-6
c (continue) 6-125, D-9
d (delete) 6-115, D-8
f (frame) 6-138, D-9
fo (forward-search) 6-81, D-6
hd (heapdebug) 6-53, D-4
hold (mcontrol hold) 6-111, D-8
i b (info breakpoint) 6-150, D-10
l (list) 6-77, D-6
n (next) 6-129, D-9
ni (nexti) 6-131, D-9
p (print) 6-86, D-6
ptype (info declaration) 6-172, D-12
q (quit) 6-22, D-1
release (mcontrol release) 6-111, D-8
representation (info representation)

6-172, D-12
s (step) 6-127, D-9
si (stepi) 6-130, D-9
whatis (info whatis) 6-171, D-12
xl (translate-object-file) 6-27, D-1

Command arguments 6-1
Command case 6-1
Command execution

delaying 6-147
Command file 6-145
Command history 3-39
Command input 6-145, 6-147
Command qualifier 3-4, 6-1, 6-15, 6-61, Glossary-10
Command repetition 6-1, 6-19, 6-78
Command replacement 6-177
Command stream 3-36, 3-39, 6-125, 6-126, 6-136,

6-145, 6-147, Glossary-2
event-driven 3-36

Command summary 8-18, C-1
Command syntax 6-1
Command toolbar 8-20
Command-line interface i-iii, 1-1, 3-28, 4-1, 6-2, 6-109,

6-113, 6-137, 6-174, 7-1, 8-1, 8-20, Glossary-2
Command-line user interface 6-143
Commands

! 6-32
apply on dialogue 6-31
apply on program 6-46
attach 5-1, 6-37
backtrace 6-86
branch-history 6-98
breakpoint 6-101
cd 6-76
checkpoint 6-47
clear 6-112
commands 6-113
condition 6-114
Index-3

NightView LX User’s Guide
continue 6-124
core-file 6-39, 6-41
data-display 3-18, 6-93
debug 6-25
declare-thread-tag 6-145
define 6-173
delay 6-147
delete 6-115
detach 6-38
directory 6-79
disable 6-115
display 6-94
down 6-140
echo 6-93
edit 6-80
enable 6-116
exec-file 6-42
family 6-48
finish 6-132
forward-search 6-81
frame 6-138
handle 6-136
heapcheck 3-33, 6-56, 6-168
heapdebug 3-13, 3-29, 3-30, 3-34, 6-53, 6-110,

6-168, 8-33, 8-35
heappoint 3-13, 3-33, 6-56, 6-110, 6-154
help 6-143
ignore 6-117
info address 6-170
info args 6-169
info breakpoint 6-150
info convenience 6-158
info declaration 6-172
info dialogue 6-164
info directories 6-158
info display 6-158
info eventpoint 6-149
info family 6-165
info files 6-172
info frame 6-157
info functions 6-171
info heappoint 6-154
info history 6-158
info limits 6-159
info line 6-172
info locals 6-169
info log 6-149
info macros 6-178
info memory 6-161
info monitorpoint 6-153
info name 6-165
info on dialogue 6-166
info on program 6-166
info on restart 6-166

info patchpoint 6-152
info process 6-160
info registers 6-159
info representation 6-172
info signal 6-160
info sources 6-170
info tracepoint 6-151
info types 6-171
info variables 6-169
info watchpoint 6-155, 6-156
info whatis 6-171
interest 6-66
jump 6-134
kill 6-38
list 6-77
load 6-97
login 6-23
logout 6-29
mcontrol 6-111
monitorpoint 6-108
mreserve 6-51
name 6-100
next 6-129
nexti 6-131
nodebug 6-26
notify 6-37
on dialogue 6-29
on program 6-44
on restart 6-46
output 6-92
patchpoint 6-103
print 6-86, 6-96
pwd 6-76
quit 6-22
redisplay 6-96
refresh 6-144
rerun 6-35
resume 6-126
reverse-search 6-81
run 6-35
select-context 6-141, 6-146
set 6-88
set-auto-frame 6-69
set-children 6-49
set-cuda-memcheck 6-74
set-debug-file-directory 6-26
set-disassembly 6-72
set-download 6-71, 6-72
set-editor 6-70
set-exit 6-50
set-futurepoints 6-74
set-history 6-61
set-language 6-59
set-limits 6-61
Index-4

Index
set-local 6-65
set-log 6-59
set-notify 6-36
set-overload 6-69
set-patch-area-size 6-65
set-preallocate 6-70
set-prompt 6-62
set-qualifier 6-60
set-restart 6-64
set-safety 6-64
set-search 6-70
set-show 6-33
set-terminator 6-63
set-trace 6-106
shell 6-144
show 6-34
signal 6-135
smart-print 6-180
source 6-145
step 6-127
stepi 6-130
stop 6-133
symbol-file 6-39
syscallpoint 6-121
tbreak 6-118
tpatch 6-118
tracepoint 6-106
translate-object-file 6-27
undisplay 6-95
up 6-140
wait 6-51
watchpoint 6-120
x 6-89

commands 3-12, 6-98, 6-113
Commands attached to a dialogue 6-29
Commands attached to a program 6-44, 6-46
Commands on breakpoint 3-18, 4-20, 6-101, 6-102,

6-113, 8-32, Glossary-1
Commands on eventpoint 8-32
Commands on monitorpoint 3-18, 6-108, 6-113, 8-32
Commands on watchpoint 3-18
Comments 6-2, 6-174
Compilation

by debugger 3-10, 3-37
Compiling 1-2, 2-2, 3-13, 3-39
Condition

breakpoint 3-18, 4-18, 6-150, 6-151, 8-32,
Glossary-2

eventpoint 3-10, 3-18, 6-114, 6-117, 6-118, 6-150,
8-32

heappoint 3-18, 6-150, 6-155, 8-32
monitorpoint 3-18, 6-150, 6-154, 8-32
patchpoint 3-18, 6-150, 6-153, 8-32
syscallpoint 6-156

tracepoint 3-18, 6-150, 6-152, 8-32
watchpoint 3-14, 3-18, 6-150, 6-156, 8-32

condition 6-98, 6-105, 6-114
Condition removal 6-114, 8-32
conditional-expression 3-14, 3-22, 6-101, 6-107, 6-114,

6-118, 6-120
-config option 5-1
-config option 5-1
Configuration 5-1, 8-3, 8-4, 8-5
Context 3-20, 3-24, 3-40, 6-4, 6-59, 6-78, 6-133, 6-160,

6-170, 6-171, 6-172, Glossary-2, Glossary-8
Context Menu 8-3
context panel 4-6, 4-11, 4-12
Context-sensitive help 8-2, 8-18
continue 1-5, 3-4, 3-16, 6-124, 6-126, 6-127, 6-135
Continuing execution 1-5, 2-5, 2-6, 3-40, 4-9, 4-18,

4-24, 6-124, 6-126, 6-132, 6-134, 6-135, 6-142,
8-60

Convenience variable 3-37, 6-3, 6-5, 6-88, Glossary-3
global 3-37, 6-65, 6-158
predefined 3-26, 6-3, 6-5, 6-150, 6-151, 6-152,

6-153, 6-154, 6-155, 6-159, 6-173
process local 3-37, 6-5, 6-65, 6-158

Core file 3-3, 3-4, 3-20, 5-1, 6-40, 6-172, 8-26,
Glossary-3

-core option 5-1
core-file 6-39, 6-41, 6-76
CPU bias 6-24
CPU hang 3-45
Crossing count Glossary-3
CUDA Glossary-3
CUDA registers 6-13
Cuda_syscall interest level 6-67
Current frame 3-25, 6-128, 6-129, 6-131, 6-132, 8-21
Current Process 8-3
Current process Glossary-3
Current source file 6-78, 6-81, 6-82
Current stack frame 3-24, 3-25, 4-15, 4-17, 4-24, 6-84,

6-102, 6-103, 6-107, 6-109, 6-110, 6-112,
6-119, 6-133, 6-138, 6-140, 6-157, 6-159,
Glossary-3

Current working directory 6-76

D

d (delete) 6-115, D-8
d key 8-60
Data definitions

global 6-97
static 6-97

Data Display button 8-23
Data item 8-65, Glossary-3
Index-5

NightView LX User’s Guide
Data menu 8-14
Data Panel

saving contents 8-16, 8-82
Data panel 8-14
Data Panel Add Heap Errors Dialog Box 8-84
Data Panel Add Heap Leaks Dialog Box 8-84
Data Panel Add Still Allocated Blocks Dialog Box 8-85
Data Panel Condition Filter Expression Dialog Box 8-88
Data Panel Describe Dialog Box 8-85
data panel layout Glossary-4
Data Panel Linked List Expression Dialog Box 8-88
Data type

printing 6-171, 6-172
Data Window 3-18, 4-21, 4-22, 4-25, 6-93, 8-23, 8-65

loading layout 8-17, 8-82
saving layout 8-16, 8-82

Data Window Add Expression Dialog Box 8-84
Data Window Call Stack Frames Dialog Box 8-85
Data Window Edit Expression Dialog Box 8-85
Data Window Expand Tree Dialog Box 8-85
Data Window Item Dialog Box 8-83
Data Window layout 8-16, 8-17, 8-82, 8-86
Data Window Load Layout Dialog Box 8-86
Data Window Pointer Array Dimension Dialog Box

8-86
Data Window Save Layout Dialog Box 8-86
Data Window Save Snapshot Dialog Box 8-87
Data Window Subscript Array Dialog Box 8-87
data-display 3-18, 6-93
debug 3-2, 3-5, 6-18, 6-25, 6-26, 6-165
Debug command area 2-3, 2-6
Debug Eventpoint Dialog Boxes 8-29
Debug Eventpoint menu 8-29
Debug file directory 6-26
Debug File Selection Dialog Box 8-28
Debug group area 4-9, 4-10, 4-14, 4-18, 4-22, 4-25
Debug identification area 2-3, 4-11
Debug information 4-3, 6-39, 6-72
Debug Interrupt button 8-22
Debug menu bar 8-4
Debug message area 2-3, 2-6, 4-7, 4-8, 4-9, 4-10, 4-11,

4-12, 4-17, 4-19, 4-20, 4-22, 4-23, 8-28
Debug NightView menu 2-6
Debug session Glossary-4
Debug source display 2-3, 2-5, 2-6, 4-9, 4-14, 4-15,

4-17, 4-19, 4-23, 8-10, 8-11, 8-12, 8-24, 8-28,
8-29, 8-53, 8-56, 8-57, 8-58

Debug source file name 2-3, 4-11, 4-15, 4-17, 4-25
Debug Source menu 8-10, 8-27, 8-53, 8-60
Debug Source Selection Dialog Box 8-11, 8-27, 8-56
Debug status area 2-3, 4-9, 4-10, 4-14, 4-18, 4-22, 4-25
Debug status message 8-61
Debug table 6-169, 6-170, 6-171
Debug View menu 4-24

Debug Window 2-3, 4-14, 8-4, 8-24, 8-27, 8-28
Debugger 3-1, Glossary-4

gdb 1-1, 1-4
NightView i-iii, 3-1
symbolic 3-1

Debugging
multiple processes 3-2
real-time 3-6
single process 3-2

Declaration
printing 6-172

declare-thread-tag 6-145
Default font Glossary-4
define 6-173, 6-176
Defining a macro 6-174
delay 6-147
delete 6-98, 6-113, 6-115
Delete button 8-34
Deleting breakpoints 4-18, 6-115, 8-34
Deleting eventpoints 6-115, 8-34
Deleting heappoints 6-115, 8-34
Deleting monitorpoints 6-115, 8-34
Deleting patchpoints 6-115, 8-34
Deleting tracepoints 6-115, 8-34
Deleting watchpoints 6-115, 8-34
detach 6-26, 6-29, 6-38, 8-9
Detaching 3-2, 3-19, 6-22, 6-29, 6-38, 6-108, 8-9,

Glossary-4
Dialog Box 2-3, 2-6, 8-2

Attach 3-3, 8-27
Breakpoint 4-19, 4-20, 8-13, 8-22, 8-29
Data Panel Add Heap Errors 8-84
Data Panel Add Heap Leaks 8-84
Data Panel Add Processes 8-15, 8-81
Data Panel Add Shells 8-16, 8-82
Data Panel Add Still Allocated Blocks 8-85
Data Panel Condition Filter Expression 8-88
Data Panel Describe 8-85
Data Panel Linked List Expression 8-88
Data Window Add Expression 8-15, 8-81, 8-84
Data Window Add Heap Errors 8-16, 8-82
Data Window Add Heap Information 8-16, 8-82
Data Window Add Heap Leaks 8-16, 8-82
Data Window Add Local Variables 8-15, 8-81
Data Window Add Registers 8-15, 8-81
Data Window Add Stack 8-15, 8-81
Data Window Add Still Allocated Blocks 8-16,

8-82
Data Window Add Threads 8-15, 8-16, 8-17, 8-81,

8-82
Data Window Call Stack Frames 8-85
Data Window Edit Expression 8-85
Data Window Expand Tree 8-85
Data Window Item 8-83
Index-6

Index
Data Window Load Layout 8-86
Data Window Pointer Array Dimension 8-86
Data Window Save Layout 8-86
Data Window Save Snapshot 8-87
Data Window Subscript Array 8-87
Debug Eventpoint 8-29
Debug File Selection 8-28
Debug Heap 8-35
Debug Source Selection 8-11, 8-27, 8-56
Eventpoint 8-29
File Selection 8-11, 8-57
Heappoint 8-14, 8-23, 8-29
Monitorpoint 8-13, 8-22, 8-29
Monitorpoint Update Interval 8-89
Patchpoint 4-23, 8-13, 8-22, 8-29
Remote Login 8-36
Select a Function/Unit 4-13, 8-11, 8-28, 8-56
Select a Source File 8-11, 8-28, 8-56, 8-57
Tracepoint 8-13, 8-22, 8-29
Warning 4-26, 8-2, 8-5, 8-8, 8-9, 8-10, 8-21
Watchpoint 8-14, 8-23, 8-29

Dialogue 3-4, 3-5, 3-6, 4-3, 4-9, 4-12, 6-15, 6-23, 6-24,
6-37, 6-166, 8-2, 8-8, 8-36, E-1, Glossary-4

commands on 6-29
local 3-5, 5-1, 6-1
local - with on dialogue 6-30, 6-31
printing 6-164
remote 3-6, 6-24, 8-8, 8-36
starting 6-23
terminating 6-29

Dialogue I/O area 2-2, 2-3, 3-5, 4-21, 4-25
Dialogue input 6-31, 6-32, 6-35, 6-63
Dialogue name 6-25
Dialogue NightView menu 2-6
Dialogue output 3-5, 6-31, 6-33
Dialogue prompt 5-2
Dialogue shell 1-2, 2-2, 3-4, 3-5, 8-60, E-1

login 6-23
logout 6-29

Dialogue Window 2-3
Dimmed button 4-18, 8-28, 8-34
Dimmed label 8-31
Directory

current 6-76
debug file 6-26

directory 3-18, 6-76, 6-78, 6-79
Directory searching 3-18, 6-78, 6-79, 6-158
disable 6-98, 6-115
Disabled button 4-18, 8-28, 8-34
Disabling a breakpoint 4-20, 4-24, 6-115, 6-117, 8-31
Disabling a heappoint 6-117, 8-31
Disabling a monitorpoint 6-117, 8-31
Disabling a patchpoint 6-117, 8-31
Disabling a tracepoint 6-117, 8-31

Disabling a watchpoint 6-117, 8-31
Disabling an eventpoint 6-115, 6-117, 8-31
Disassembly 6-72, 6-90, 6-128, 6-130, 6-131, 8-53,

Glossary-4
Disassembly display mode 8-11, 8-53, 8-54, 8-58, 8-60
Dismiss button 8-2
display 3-18, 6-4, 6-94, 6-95, 6-96, 6-131, 6-158
Display addresses limits 6-61, 6-159
Display arguments 6-160, 6-169
Display array 6-61
Display breakpoint 4-24, 6-149, 6-150
Display checkpoint information 6-166
Display convenience variables 6-158
Display declaration 6-172
Display dialogue information 6-164
Display display variables 6-158
DISPLAY environment variable 5-3
Display eventpoint 4-24, 6-149, 6-165
Display expression 6-158, 6-171, 6-172, 8-15, 8-81
Display expression limits 6-159
Display family information 6-165
Display file names 6-172
Display function names 6-171
Display global variable 6-169
Display heap errors 8-16, 8-82
Display heap information 8-16, 8-82
Display heap leaks 8-16, 8-82
Display heappoint 6-149, 6-154
Display item Glossary-4
Display line number 6-172
Display local variables 6-169, 8-15, 8-68, 8-81
Display log file information 6-149
Display macro 6-178
Display mode

disassembly 8-11, 8-53, 8-54, 8-58, 8-60
source 8-53

Display monitorpoint 6-149, 6-153
Display monitorpoint values 8-16, 8-82
Display on program commands 6-166
Display on restart commands 6-166
Display patchpoint 4-24, 6-149, 6-152
Display process information 6-160, 8-15, 8-81
Display registers 8-68
Display search path 6-158
Display shell information 8-16, 8-82
Display source file 6-77, 6-144
Display source file names 6-170
Display stack frame

all 6-86, 6-93, 8-15, 8-81
one 6-157

Display still allocated blocks 8-16, 8-82
Display string limits 6-61
Display thread information 8-15, 8-81
Display tracepoint 6-149, 6-151
Index-7

NightView LX User’s Guide
Display type 6-172
Display type information 6-171
Display value history 6-158
Display variable 1-5, 2-6, 3-18, 4-12, 4-16, 4-21, 6-86,

6-172
Display variable address 6-170
Display watchpoint 6-149, 6-155, 6-156
Documentation

online 1-1, 1-4, 2-1, 2-3, 6-143, 8-1, Glossary-7,
Glossary-9

Double clicking 8-28, 8-86, 8-87
down 6-139, 6-140, 6-142, 8-21, 8-60
Down button 4-17
Down button 8-21
DWARF 3-40, 6-59, Glossary-4
dynamic library translations 6-41
Dynamic linker 3-45
Dynamically loaded library 3-4, 3-21, 3-45, 6-27

E

e key 8-60
echo 6-20, 6-93, 6-177
edit 6-80
Edit source file 6-80, 8-11, 8-58, 8-60
Editor

emacs 6-70, 7-2
gmacs 6-70, 7-2
vi 6-70, 7-2

EDITOR environment variable 7-2
ELF 3-40, 6-79, Glossary-5
emacs editor 6-70, 7-2
enable 6-98, 6-100, 6-115, 6-116, 8-21, 8-60
Enabling a breakpoint 6-116, 8-31
Enabling a heappoint 6-116, 8-31
Enabling a monitorpoint 6-116, 8-31
Enabling a patchpoint 6-116, 8-31
Enabling a tracepoint 6-116, 8-31
Enabling a watchpoint 3-14, 6-116, 8-31
Enabling an eventpoint 6-116, 8-31
end define 6-174
end on dialogue 6-29
end on program 6-44
end on restart 6-46
Enter key 8-60
Entry point 6-97
Environment variable

DISPLAY 5-3
EDITOR 7-2
NIGHTVIEW_ENV 3-5, 3-7
NSLM_SERVER A-2
PATH 3-9

SHELL 6-144
TERM 3-5, 7-1
VISUAL 7-2

Error
abort 3-35
caution 3-35
warning 3-35

Error message 6-157, 8-61
Errors 1-4, 2-3, 3-35, 8-18
Evaluation of expressions 3-20, 6-88, 6-93
Event notification 6-36, 6-37
Event-driven command streams 3-36
Event-map file 6-106, 6-107, Glossary-5
Eventpoint 3-9, 3-17, 3-18, 3-19, 6-16, 6-97, 6-98,

6-105, 6-115, 6-151, 6-152, 6-153, 6-154, 8-12,
8-29, 8-62, Glossary-5

changing 8-29
clearing 6-112, 8-23
commands on 8-32
condition on 3-10, 3-18, 3-37, 6-114, 6-117, 6-118,

6-150, 8-32
deleting 6-115, 8-34
disabling 6-115, 8-31
displaying 4-24, 6-149
enabling 6-116, 8-31
hitting 6-150, 8-31, Glossary-7
ignoring 3-10, 3-18, 6-117, 6-150, 8-32
inserted 3-10, 3-11, 3-14, 3-15, 3-20, 3-37, 6-5,

Glossary-7
named 3-18, 8-32
naming 6-16, 6-101
printing 6-165
removing 6-113
saving 3-18
setting 3-3, 8-29
state 6-149, 8-31

Eventpoint crossing count Glossary-3
Eventpoint Dialog Boxes 8-29
Eventpoint ID 8-31
Eventpoint menu 8-12, 8-29

Debug 8-29
Eventpoint modifier 6-100, Glossary-5

/delete 6-100
/disabled 6-100, Glossary-5
/f 6-100

Eventpoint number 3-9, 8-31
Eventpoint state 8-62
Eventpoint summary 8-29, 8-62
Eventpoints

changing 8-29, 8-62
Event-triggered commands 6-30, 6-45
Exception handling 6-136
exec 3-18, 4-6, 6-38, 6-44, 6-46, 6-49, 6-50, 8-25
exec-file 3-9, 3-45, 6-27, 6-40, 6-42, 6-44, 6-76
Index-8

Index
Executable
stripped 6-27, 6-39

Executable and linking format Glossary-5
Executable file 3-1, 6-39, 6-40, 6-43, 6-169, 6-172
Execution

continuing 1-5, 2-5, 2-6, 3-40, 4-9, 4-18, 4-24,
6-124, 6-126, 6-132, 6-134, 6-135, 6-142,
8-60

restarting 3-17, 3-18, 6-44, 6-46, 6-47, 6-50,
Glossary-1, Glossary-11

resuming 1-5, 2-5, 2-6, 4-9, 4-18, 4-24, 6-123,
6-124, 8-20

starting 1-2, 2-2, 3-17
stopping 1-4, 2-5, 3-40, 4-8, 4-18, 4-20, 6-101,

6-120
Exit messages 4-26
Exiting 1-6, 2-6, 3-18, 6-22, 6-50
Expression 3-24, 6-60

conditional 3-22, 4-18, 6-102, 6-107
displaying 6-93, 6-158, 8-15, 8-23, 8-81
evaluation 3-20, 3-21, 6-88, 6-93
floating-point 3-21
insertion 6-103, 6-118
language 6-94, 6-95, 6-96, 6-104
logging 6-107
memory address 6-94
patchpoint 6-107, 8-33
printing 1-5, 4-12, 4-16, 4-21, 6-86, 6-94, 6-153,

6-171, 6-172, 8-24
regular 6-16, 6-29, 6-70, 6-81, 6-159, 6-165, 6-169,

6-171, 6-172, 6-178, 8-11, 8-28, 8-56
regular examples 6-18
syntax 6-3

Expression Evaluation 3-24
Expression limits 6-159
Expressions

monitoring 6-109
External data definitions 6-97
External variable 6-140

printing 6-169

F

f (frame) 6-138, D-9
f key 8-60
F1 key 8-1, 8-2
fact program 1-1, 2-1
Family 3-2, 3-19, 6-15, 6-23, 6-48, 6-61, 6-100, 6-134,

6-165, Glossary-5
printing 6-165

family 6-40, 6-43, 6-48
File

.NightViewrc 3-39, 6-28, 6-30, 6-31

.profile 3-7
commands 6-145
core 3-3, 3-4, 3-20, 5-1, 6-40, 6-172, 8-26,

Glossary-3
event-map 6-106, 6-107, Glossary-5
executable 3-1, 6-39, 6-40, 6-43, 6-169, 6-172
initialization 5-2, 5-3, 6-145, Glossary-7
library 3-1
log 6-59, 6-149
object 3-1, 3-13, 6-97
ReadyToDebug 1-3, 3-9, 4-4
source 3-1, 4-1, 4-6, 4-9, 4-12, 4-14, 4-15, 4-17,

4-19, 4-23, 6-77, 6-78, 6-79, 6-80, 6-145,
6-158, 6-170, 6-173, 8-10, 8-11, 8-53, 8-56

symbol 6-39, 6-43
trace event-map 6-106, 6-107, Glossary-5

File access 3-1, 3-7
File menu 8-4
File name

printing 6-172
File Selection Dialog Box 8-11, 8-57
Filter

PID 8-27
Program 8-27
User 8-27

Filter button 8-27
finish 6-132, 6-142, 8-20, 8-25, 8-60
Finish button 8-20
Fixed licenses A-1
Floating licenses A-1
Floating-point expressions 3-21
fo (forward-search) 6-81, D-6
Focus

keyboard 8-1, Glossary-5, Glossary-8
Font

default Glossary-4
forbid safety level 5-2, 6-22, 6-29, 6-38, 6-48, 6-64,

6-115, 6-116, 6-117
Forking 3-2, 3-3, 4-6, 4-11, 6-38, 8-24, Glossary-6
Formal argument

macro 6-174, 6-176
Fortran i-iii, 3-10, 3-23, 3-24, 4-1, 4-3, 4-8, 4-11, 4-14,

4-15, 4-17, 4-19, 4-20, 6-59, 6-87, 6-88, 6-103,
6-119, 6-175, Glossary-2

forward-search 6-18, 6-78, 6-81
Frame

displaying 6-157
stack 3-24, 3-25, 4-15, 4-17, 4-24, 6-4, 6-78, 6-84,

6-97, 6-102, 6-103, 6-107, 6-109, 6-110,
6-112, 6-119, 6-133, 6-138, 6-140, 6-157,
6-159, 6-170, Glossary-3, Glossary-6,
Glossary-12

stack - printing 6-86, 8-69
Index-9

NightView LX User’s Guide
frame 3-25, 6-128, 6-133, 6-138, 6-142, 8-60
Frame address 6-6, 6-139, 6-157
Frame pointer 6-6, 6-158
Frame zero 6-6, 6-68, 6-84, 6-135, 6-138, 6-140, 6-159
Frames

hidden 6-6, 6-68, 6-84, 6-135
Full-screen interface i-iii, 1-1, 3-28, 5-2, 6-2, 6-109,

6-113, 6-144, 6-174, 7-1, 7-2, 8-1, Glossary-6
Full-screen user interface 6-143
Function 4-9, 4-13, 6-128, 6-129, 6-130, 6-131, 6-132,

6-158
static - location of 6-13

Function arguments
printing 6-169

Function name
list 6-171

G

-g option 1-2, 2-2
gdb 1-1, 1-4
GID 3-43
Global data definitions 6-97
Global variable 3-20, 6-140

printing 6-169
gmacs editor 6-70, 7-2
Graphical user interface i-iii, 2-1, 3-28, 3-36, 5-2, 5-3,

6-1, 6-38, 6-137, 6-143, 8-1, Glossary-6
Group ID 3-43
GUI 2-1, 3-28, 3-36, 5-2, 5-3, 6-1, 6-38, 6-137, 8-1,

Glossary-6
Guide

command summary C-1

H

H (source line decoration) 6-83
h key 8-60
handle 3-15, 3-16, 3-18, 6-123, 6-136, 6-160
hd (heapdebug) 6-53, D-4
Heap 6-161
heapcheck 3-33, 6-56, 6-168
heapdebug 3-13, 3-29, 3-30, 3-34, 6-53, 6-110, 6-168,

8-33, 8-35
Heappoint 3-9, 6-38, 6-83, 6-98, Glossary-5

changing 8-29
clearing 6-112
condition on 3-18, 6-114, 6-150, 6-155, 8-32
deleting 6-115, 8-34
disabling 6-115, 8-31

displaying 6-149, 6-154
enabling 6-116, 8-31
hitting 6-155, 8-31
ignoring 3-18, 6-117, 6-150, 6-155, 8-32,

Glossary-7
named 3-18, 6-101, 6-110, 8-32
saving 3-18
setting 6-97, 8-29
state 6-154, 8-31
temporary 8-31

heappoint 3-13, 3-33, 6-56, 6-110, 6-154
Heappoint crossing count Glossary-3
Heappoint Dialog Box 8-14, 8-23, 8-29
Help

context-sensitive 8-2, 8-18
help 1-1, 1-4, 3-35, 6-143, 8-1, 8-2, 8-18, Glossary-7,

Glossary-9
Help button 8-2, 8-27, 8-28, 8-29, 8-34, 8-83, 8-87
Help menu 2-1, 2-3, 2-4, 4-4, 8-1, 8-2, 8-18
-help option 5-1
Help system

movement 8-1, 8-93
Help Window 2-1, 2-3, 2-4, 8-1, 8-2, 8-93, Glossary-7
Help window

exiting 2-4, 2-5
Hidden frames 6-6, 6-68, 6-84, 6-135
History

command 3-39
value 3-38, 4-13, 6-3, 6-61, 6-88, 6-92, 6-158,

Glossary-13
Hit a breakpoint 8-31
Hit a heappoint 8-31
Hit a monitorpoint 8-31
Hit a patchpoint 8-31
Hit a tracepoint 8-31
Hit a watchpoint 8-31
Hit an eventpoint 8-31
hold (mcontrol hold) 6-111
hold (mcontrol-hold) D-8
Hold button 8-65
Hollerith data 6-87

I

i b (info breakpoint) 6-150, D-10
I/O 3-5
IA-32 registers 6-6
Iconifying windows 8-1
ID

group 3-43
process 3-3, 3-5, 3-19, 4-5, 4-11, 6-15, 8-27,

Glossary-10
Index-10

Index
trace-event 6-106, 6-107, 8-33, Glossary-13
user 3-43

ignore 6-98, 6-105, 6-117, Glossary-7
Ignore count Glossary-7
Ignoring breakpoints 3-18, 4-20, 6-102, 6-117, 6-125,

6-150, 6-151, 8-32, Glossary-7
Ignoring eventpoints 3-10, 3-18, 6-117, 6-150, 8-32
Ignoring heappoints 3-18, 6-117, 6-150, 6-155, 8-32,

Glossary-7
Ignoring monitorpoints 3-18, 6-117, 6-154, 8-32,

Glossary-7
Ignoring patchpoints 3-18, 6-105, 6-117, 6-150, 6-153,

8-32, Glossary-7
Ignoring syscallpoints 6-156
Ignoring tracepoints 3-18, 6-107, 6-117, 6-150, 6-152,

8-32, Glossary-7
Ignoring watchpoints 3-18, 6-117, 6-150, 6-156, 8-32,

Glossary-7
info address 6-170
info args 6-169
info breakpoint 6-149, 6-150
info convenience 6-158
info declaration 6-172
info dialogue 6-26, 6-66, 6-164
info directories 6-79, 6-158
info display 6-95, 6-96, 6-158
info eventpoint 6-115, 6-149
info family 6-165
info files 6-172
info frame 6-4, 6-157
info functions 6-171
info heappoint 6-154
info history 6-158
info limits 6-62, 6-159
info line 6-79, 6-172
info locals 6-169
info log 6-149
info macros 6-178
info memory 6-66, 6-161
info monitorpoint 6-149, 6-153
info name 6-165
info on dialogue 6-30, 6-166
info on program 6-45, 6-166
info on restart 3-18, 6-47, 6-68, 6-166
info patchpoint 6-149, 6-152
info process 6-160
info registers 3-26, 6-9, 6-13, 6-158, 6-159
info representation 6-172
info signal 6-136, 6-160
info sources 6-170
info tracepoint 6-149, 6-151
info types 6-171
info variables 6-169
info watchpoint 6-155, 6-156

info whatis 6-171
Initialization file 5-2, 5-3, 6-145, Glossary-7
Initialize tracing 6-106
Inline interest level 6-67
Inline subprograms 3-26, 6-129, 6-132
Input

dialogue 6-32, 6-35, 6-63
program 1-3, 2-3, 3-5, 4-10, 6-32, 6-63
shell 8-60

Input area 4-19, 4-20, 4-23
Input command 6-145
Input terminator 6-32, 6-63
Inserted eventpoints 3-10, 3-11, 3-14, 3-15, 3-20, 3-37,

6-5, Glossary-7
Instruction

branch 6-103, 6-119
interest 3-27, 6-66, 6-69, Glossary-8
Interest level

cuda_syscall 6-67
inline 6-67
justlines 3-18, 3-27, 6-67
nodebug 3-18, 3-27, 6-67
subprogram 3-18, 3-27, 6-66, Glossary-8

Interest level threshold 3-18, 3-27, 6-67, Glossary-8
Interesting subprograms 3-18, 3-25, 3-27, 4-11, 6-6,

6-67, 6-128, 6-131, Glossary-8
Interface

command-line i-iii, 1-1, 3-28, 4-1, 6-2, 6-109,
6-113, 6-137, 6-174, 7-1, 8-1, 8-20,
Glossary-2

full-screen i-iii, 1-1, 3-28, 5-2, 6-2, 6-109, 6-113,
6-144, 6-174, 7-1, 7-2, 8-1, Glossary-6

graphical user i-iii, 2-1, 3-28, 3-36, 5-2, 5-3, 6-1,
6-38, 6-137, 8-1, Glossary-6

Interrupt button 8-22
Interrupt the debugger 8-22
Interrupting the debugger 3-28, 3-36, 6-112, 8-22
Interrupts 3-45
Invoking NightStar Tools 8-17
Invoking the debugger 1-2, 2-2, 3-39, 5-1
IPL register 3-45

J

Job control 3-19
jump 6-134
Justlines interest level 3-18, 3-27, 6-67
Index-11

NightView LX User’s Guide
K

Key
= 8-60
> 8-60
b 8-60
d 8-60
e 8-60
Enter 8-60
f 8-60
F1 8-1, 8-2
h 8-60
N 8-60
n 8-60
p 8-60
r 8-60
Return 4-19, 4-20, 4-23, 6-19, 6-20, 6-78, 7-1,

8-28
S 8-60
s 8-60
u 8-60

Keyboard focus 8-1, Glossary-8
Kill 8-21
kill 3-15
kill 6-38, 8-9, 8-21
Kill button 6-38, 8-21
Killing processes 3-18, 6-22, 6-38, 8-9, 8-21

L

l (list) 1-4, 6-77, D-6
Label

dimmed 8-31
lane Glossary-8
Language 6-107, 6-133

machine 3-1, 3-39
Language expression 6-94, 6-95, 6-96, 6-104
Language support i-iii, 3-21, 3-25, 4-1, 6-59, 6-160
Library

dynamically loaded 3-4, 3-21, 3-45, 6-27
shared 3-4, 3-21, 3-45, 6-27

Library file 3-1
licences 5-3
License A-1

firewall configurations A-3, A-5
fixed A-1
floating A-3
installation A-1
keys A-1
modes A-1
nslm_admin A-1, A-3

report A-3
requests A-2
server A-2, A-3
support A-6

License manager 5-3
Limits

addresses 6-159
expression 6-159

Line decorations 2-5, 4-6, 4-9, 4-10, 4-12, 4-14, 4-16,
4-18, 4-19, 4-23, 6-79, 6-83, 6-128, 6-130,
8-12, 8-21, 8-22, 8-23, 8-53, 8-58

Line number
printing 6-172

Linking 1-2, 2-2, 6-108
dynamic Glossary-5

Linux 3-40
list 1-4, 6-20, 6-76, 6-77, 6-79, 6-81
List assembly code 8-12, 8-58
List function names 6-171
List mode 8-53
List source file 6-77
List source file names 6-170
load 3-13, 6-27, 6-97
Loading Data Window layout 8-17, 8-82
local dialogue 1-3, 3-5, 5-1, 6-1, 6-45

with on dialogue 6-30, 6-31
Local system 3-6
Local variable 3-20, 6-4, 6-93, 8-15, 8-68, 8-81

printing 6-169
Location

in executable program 6-13
printing 6-61, 6-170

Location specifier 3-24, 6-13, 6-16, 8-13, 8-21, 8-23,
8-29, 8-33

Log
dialogue 6-33

Log file 6-59, 6-149
Logging

session 6-59
login 3-7, 6-23
logout 6-29, 8-8

M

M (source line decoration) 6-84
Machine language 3-1, 3-39
Macro 3-19, 3-37, 6-19, 6-32, 6-173, Glossary-8

actual arguments 6-176
argument 6-174, 6-176
definition 6-174
example 6-20
formal arguments 6-174, 6-176
Index-12

Index
printing 6-178
recursion 6-174
referencing 6-176
replacing 6-174
restart_begin_hook 3-19, 6-44
restart_end_hook 3-19
string 6-176

Macro body 3-37, 6-174, 6-179
Macro expansion 6-30, 6-45
Manual

online 1-1, 1-4, 2-1, 2-3, 6-143, 8-1, Glossary-7,
Glossary-9

Manual section 6-143
mcontrol 3-28, 6-111, 7-2
Memory 6-139

output 6-91, 6-94
shared 6-65, E-1
static 6-170

Memory address expression 6-94
Memory layout 6-161
Memory mapped I/O 3-44
Menu

context 8-3
Data 8-14
Debug Eventpoint 8-29
Debug NightView 2-6
Debug Source 8-10, 8-27, 8-53, 8-60
Debug View 4-24
Dialogue NightView 2-6
Eventpoint 8-12, 8-29
File 8-4
Help 2-1, 2-3, 2-4, 4-4, 8-1, 8-2, 8-18
Process 8-9
Shell 8-8
Source 8-10, 8-27, 8-53, 8-60
Tools 8-17
View 8-5

Menu bar
Debug 8-4

Message
error 6-157, 8-61
exit 4-26
process status 8-61

Message panel 8-61
message panel 4-5
mmap E-1
Mnemonic Glossary-8

A 8-5, 8-7, 8-9, 8-11, 8-16, 8-57, 8-76, 8-78, 8-79
B 8-8, 8-13, 8-55, 8-77
C 8-5, 8-6, 8-15, 8-18, 8-80, 8-92
D 8-4, 8-6, 8-7, 8-9, 8-12, 8-14, 8-58, 8-63, 8-79,

8-80
E 2-3, 8-6, 8-12, 8-14, 8-15, 8-18, 8-55, 8-63, 8-79
F 8-4, 8-5, 8-57, 8-61, 8-79, 8-80, 8-81

G 8-6, 8-57, 8-61, 8-63, 8-81
H 2-1, 2-3, 2-4, 8-6, 8-8, 8-10, 8-13, 8-16, 8-18,

8-55, 8-56, 8-78, 8-80, 8-91
I 8-7, 8-11, 8-58, 8-63, 8-83
K 8-9, 8-16, 8-19, 8-76
k 8-59
L 8-5, 8-7, 8-8, 8-15, 8-19, 8-55, 8-63, 8-76
M 8-6, 8-12, 8-13, 8-18, 8-55, 8-58, 8-63
m 2-4
N 2-6, 8-8, 8-59, 8-63, 8-78, 8-79
n 2-1
O 8-4, 8-12, 8-58, 8-80
P 8-5, 8-9, 8-13, 8-16, 8-17, 8-55
Q 8-19
R 8-7, 8-8, 8-9, 8-15, 8-57, 8-77
S 8-4, 8-6, 8-10, 8-11, 8-14, 8-15, 8-56, 8-64, 8-78,

8-80
T 8-7, 8-8, 8-13, 8-15, 8-16, 8-17, 8-19, 8-55, 8-76,

8-77, 8-91
U 8-6, 8-10, 8-14, 8-18, 8-19, 8-56, 8-79, 8-80
V 8-5, 8-16, 8-19, 8-77, 8-92
W 8-7, 8-14, 8-56, 8-91
X 2-6, 8-5, 8-76
Y 8-58
Z 8-7, 8-64

Mode
list 8-53

Monitor refresh rate 6-112
Monitor Window 3-28, 6-111, 7-2

simple full-screen 7-2
Monitoring expressions 6-109
Monitorpoint 3-9, 3-12, 3-13, 3-20, 3-22, 3-28, 3-44,

6-38, 6-65, 6-84, 6-98, 6-109, 6-111,
Glossary-5, Glossary-9

changing 8-29
clearing 6-112
commands on 3-18, 6-113, 6-150, 6-154, 8-32
condition on 3-18, 6-114, 6-150, 6-154, 8-32
deleting 6-115, 8-34
disabling 6-115, 8-31
displaying 6-149, 6-153
enabling 6-116, 8-31
hitting 6-154, 8-31
ignoring 3-18, 6-117, 6-150, 6-154, 8-32,

Glossary-7
named 3-18, 6-101, 6-108, 8-32
saving 3-18
setting 6-97, 6-108, 8-29
state 6-154, 8-31
temporary 8-31

monitorpoint 3-12, 3-28, 6-108, 6-153, Glossary-9
Monitorpoint crossing count Glossary-3
Monitorpoint Dialog Box 8-13, 8-22, 8-29
Monitorpoint Update Interval Dialog Box 8-89
Index-13

NightView LX User’s Guide
Motif 8-1
Mouse button 1 2-1, 4-2, 8-1, 8-2, 8-65
Mouse button 3 8-66
mreserve 6-51
msg program 4-3, 4-6, 4-9, 4-18
Multiple processes i-iii, 3-2, 3-4, 6-139, 6-157, 6-158,

6-160, 6-170, 7-1

N

n (next) 6-129, D-9
N key 8-60
n key 8-60
name 6-98, 6-100, 6-103, 6-119
Named breakpoint 3-18, 6-101, 6-102, 6-118, 8-32
Named eventpoint 3-18, 6-16, 6-101, 8-32
Named heappoint 3-18, 6-110, 6-122, 8-32
Named monitorpoint 3-18, 6-108, 8-32
Named patchpoint 3-18, 6-103, 6-119, 8-32
Named tracepoint 3-18, 6-107, 8-32
Named watchpoint 3-18, 6-120
Newline 6-19, 6-78
next 6-128, 6-129, 6-132, 6-142, 8-20, 8-60
Next button 8-20
nexti 6-128, 6-130, 6-131, 6-142, 8-21, 8-60
Nexti button 8-21
NFS 3-2
ni (nexti) 6-131, D-9
nice value 6-24
NightProbe 8-17
NightStar Licence Manager 5-3
NightStar tool set 8-17

NightProbe 8-17
NightTrace 8-17
NightTune 8-18

NightTrace 3-6, 3-13, 6-107, 6-108, 8-17, Glossary-9
NightTune 8-18
NightView i-iii, 3-1, Glossary-9
NightView version 1-2, 5-2, 8-19
NIGHTVIEW_ENV environment variable 3-5, 3-7
NLSM 5-3
nodebug 3-2, 3-5, 6-18, 6-22, 6-25, 6-26, 6-29, 6-30
Nodebug interest level 3-18, 3-27, 6-67
-nogui option 1-2, 5-2
-nolocal option 5-2
Notification of events 6-33, 6-36, 6-37, 6-137, 7-1
notify 6-37
nslm_admin A-1, A-3
NSLM_SERVER A-2
ntrace 3-13, 6-106
ntraceud 3-44, 6-108
nview

invoking 5-1
nview

exiting 1-6, 2-6, 6-22
invoking 1-2, 2-2, 3-39

nview 1-2, 2-2, 7-1
nview option

--arch 5-1
-config 5-1
-core 5-1
-nogui 1-2, 5-2
-nolocal 5-2
-simplescreen 7-1

nview options 5-1

O

Object activation 4-2
Object file 3-1, 6-97
Object filename translations 6-27, 6-39, 6-43, 6-97,

6-165
Object selection 4-2, 4-4
OK button 2-6, 8-28, 8-34, 8-83, 8-84, 8-85, 8-86, 8-87,

8-88, 8-90
on dialogue

with local dialogue 6-30, 6-31
on dialogue 6-28, 6-29, 6-31, 6-166
on program 3-19, 6-18, 6-43, 6-44, 6-46, 6-47, 6-166
on restart 3-17, 3-19, 6-44, 6-46, 6-166
Online documentation 1-1, 1-4, 2-1, 2-3, 6-143, 8-1,

Glossary-7, Glossary-9
Online help system Glossary-9
Optimization 3-39, 6-128, 6-130
Option

--arch 5-1
-attach 5-1
-config 5-1
-core 5-1
-g 1-2, 2-2
-nogui 1-2, 5-2
-nolocal 5-1, 5-2
-simplescreen 7-1
-x 5-3
-xrm 5-3

Options
nview 5-1

Output 3-5
buffered 3-37
dialogue 3-5, 6-33
logging 3-38
memory 6-91, 6-94
program 8-60
session 6-59
Index-14

Index
shell 8-60
suppressed 7-1
text 6-93

output 6-92
Output addresses limits 6-61
Output array 6-61
Output string limits 6-61
Output variable 1-5, 2-6, 4-12, 4-16, 4-21, 6-86
Overloading 3-24, Glossary-9

P

p (print) 1-5, 6-86, D-6
P (source line decoration) 6-84
p key 8-60
Panel

data 8-14
message 8-61

panel
context 4-6, 4-11, 4-12
shell 4-9

Parent process 4-11, 8-27
Patch Glossary-9
patch area Glossary-9
Patchpoint 3-9, 3-22, 3-44, 6-38, 6-84, 6-85, 6-98,

Glossary-5, Glossary-10
changing 8-29
clearing 6-112
condition on 3-18, 6-105, 6-114, 6-150, 6-153, 8-32
deleting 6-115, 8-34
disabling 6-115, 8-31
displaying 4-24, 6-149, 6-152
enabling 6-116, 8-31
hitting 6-153, 8-31
ignoring 3-18, 6-105, 6-117, 6-150, 6-153, 8-32,

Glossary-7
named 3-18, 6-101, 6-119, 8-32
saving 3-18
setting 4-22, 6-97, 6-103, 6-118, 8-29
state 6-153, 8-31
temporary 6-118, 8-31

patchpoint 3-13, 6-103, 6-152
Patchpoint crossing count Glossary-3
Patchpoint Dialog Box 4-23, 8-13, 8-22, 8-29
Patchpoints named 6-103
PATH environment variable 3-9
Pattern

wildcard 6-18, 6-25, 6-44, 6-46, 6-170, 8-11, 8-28,
8-56

wildcard examples 6-19
Pattern matching 6-16, 6-25, 6-26, 6-70, 6-81, 6-165,

Glossary-10

Pattern matching examples 6-18
PID 3-3, 3-5, 3-19, 4-5, 4-11, 6-15, 8-27, Glossary-10
Pipelines 3-2, 3-4
Pointer

question mark 8-2
Predefined convenience variable 3-26, 6-3, 6-5, 6-150,

6-151, 6-152, 6-153, 6-154, 6-155, 6-159,
6-173

Preferences 8-5
print

command attached to monitorpoint 6-109
print 1-5, 3-38, 6-60, 6-86, 6-88, 6-92, 6-94, 6-96,

6-109, 6-140, 6-170, 6-176, 8-24, 8-60
Print addresses limits 6-61, 6-159
Print arguments 6-160, 6-169
Print array 6-61
Print breakpoint 4-24, 6-149, 6-150
Print button 2-6, 8-24, 8-60
Print checkpoint information 6-166
Print convenience variables 6-158
Print current directory 6-76
Print declaration 6-172
Print dialogue information 6-164
Print display variables 6-158
Print eventpoint 4-24, 6-149
Print eventpoint information 6-165
Print expression 1-5, 4-12, 4-16, 4-21, 6-86, 6-94, 6-171,

6-172
Print expression limits 6-159
Print family information 6-165
Print file names 6-172
Print function names 6-171
Print global variable 6-169
Print heappoint 6-149, 6-154
Print line number 6-172
Print local variables 6-169
Print log file information 6-149
Print macro 6-178
Print monitorpoint 6-153
Print on dialogue commands 6-166
Print on program commands 6-166
Print on restart commands 6-166
Print patchpoint 4-24, 6-149, 6-152
Print process information 6-160
Print registers 6-159
Print search path 6-158
Print signal 6-160
Print source file names 6-170
Print stack frame

all 6-86
one 6-157

Print string limits 6-61
Print text 6-93
Print tracepoint 6-149, 6-151
Index-15

NightView LX User’s Guide
Print type information 6-171, 6-172
Print value history 6-158
Print variable 6-172
Print variable address 6-170
Print watchpoint 6-149, 6-155, 6-156
Print Window 8-5
printf 6-175, 6-177
Procedure 4-9, 4-13, 6-128, 6-129, 6-130, 6-131, 6-132,

6-158, Glossary-10
Procedure arguments

printing 6-169
Procedure call 6-103
Procedure name

list 6-171
Process 3-2, 8-9, E-1, Glossary-10

abnormal termination 6-40
attaching to 5-1, 6-37, 8-9, 8-27
background 6-144
child 3-2, 3-3, 4-1, 4-6, 4-11, 6-26, 6-38, 6-49,

Glossary-1
current 8-3
exiting 3-18, 3-20, 6-50
killing 3-18, 6-22
multiple 3-2, 3-4, 7-1
parent 4-11, 8-27
printing 6-160
pseudo 3-3, 3-20, 5-1, 6-40, 6-43
running 3-19, 3-21
single 3-2
stopped 3-19, 3-21, 3-24, 3-25
stopping 6-133, 6-134
stopping debugging 6-38
terminated 3-20
terminating 3-18, 3-19

Process families 3-2
Process ID 3-3, 3-5, 3-19, 4-5, 4-11, 6-15, 8-27,

Glossary-10
Process menu 8-9
Process state 3-19, 6-160, Glossary-10
Processes

multiple i-iii, 6-139, 6-157, 6-158, 6-160, 6-170
Program 3-2, Glossary-10

commands on 6-44
compiling 1-2, 2-2, 3-39
fact 1-1, 2-1
msg 4-3, 4-6, 4-9, 4-18
restarting 3-17, 3-18, 6-44, 6-46, 6-47, 6-50,

Glossary-1, Glossary-11
running 1-2, 6-32, 6-35
setuid 3-3
starting 3-17

Program arguments 5-1
Program counter 3-21, 3-24, 3-25, 6-5, 6-135, 6-159,

Glossary-10

Program I/O E-1
Program input 1-3, 2-3, 3-5, 4-10, 6-32, 6-63
Program location

specifying 6-13
Program name 1-1, 2-1, 3-9, 4-3, 4-6, 5-2, 8-24
Program output 3-5, 3-37, 3-38, 8-60
Program, run 8-9
Prologue 6-14
Prompt 6-2, 6-63

$ 1-3, 4-4
(local) 1-3
> 6-109, 6-113, 6-174
dialogue 5-2, 6-2
shell 1-3, 4-4

ps 3-3
Pseudo process 3-3, 3-20, 5-1, 6-40, 6-43
ptrace 3-3, E-1
ptype (info declaration) 6-172, D-12
pwd 6-76

Q

q (quit) 1-6, 6-2, 6-22, D-1
Qualifier 3-4, 6-1, 6-15, 6-61, Glossary-10
Quick command summary C-1
quit 5-3
quit 1-6, 6-2, 6-22, 8-5
Quitting 1-6, 2-6, 6-22

R

r key 8-60
Radio button 8-33, 8-84
ReadyToDebug 1-3, 3-9, 4-4
Real-time debugging 3-6
Recursion

macro 6-174
redisplay 6-95, 6-96
Referencing macros 6-176
refresh 6-144
Refreshing terminal 6-144
regexp 6-16, 6-81, 6-159, 6-165, 6-169, 6-171, 6-172,

6-178
Register

IPL 3-45
Register variable 6-4
Registers 3-1, 3-21, 3-24, 3-26, 6-3, 6-5, 6-93, 6-135,

6-139, 6-158, 6-170, 8-15, 8-68, 8-81,
Glossary-10

AMD64 6-9
Index-16

Index
CUDA 6-13
display 8-68
IA-32 6-6
printing 6-159

Regular expression 6-16, 6-29, 6-70, 6-81, 6-159, 6-165,
6-169, 6-171, 6-172, 6-178, 8-11, 8-27, 8-28,
8-56

Regular expression examples 6-18
release (mcontrol release) 6-111, D-8
Release button 8-65
Remote dialogue 3-6, 6-24, 8-8, 8-36, Glossary-11
Remote file access 3-7
Remote Login Dialog Box 8-36
Remote system 3-6
Repeating commands 6-1, 6-19, 6-78
Replacing commands 6-177
representation (info representation)

6-172, D-12
rerun 6-35, 8-21
Rerun button 8-21
Rerunning a program 3-17, 3-18, 6-44, 6-46, 6-47, 6-50
Restart

commands on 6-46
restart_begin_hook macro 3-19, 6-44
restart_end_hook macro 3-19
Restarting a program 3-18, 6-44, 6-50
Restarting execution 3-17, 3-18, 6-44, 6-46, 6-47, 6-50,

Glossary-1, Glossary-11
resume 3-16, 3-40, 6-113, 6-123, 6-125, 6-126, 8-20,

8-21, 8-60
Resume button 2-5, 2-6, 8-20
Resuming execution 1-5, 2-5, 2-6, 4-9, 4-18, 4-24,

6-123, 6-124, 8-20
Return key 4-19, 4-20, 4-23, 6-19, 6-20, 6-78, 7-1,

8-28
reverse-search 6-18, 6-78, 6-81
rlogin 6-24
Routine 4-9, 4-13, 6-128, 6-129, 6-130, 6-131, 6-132,

6-158, Glossary-11
trace_open_thread 6-108
trace_start 6-108

Routine arguments
printing 6-169

Routine name
list 6-171

Routine replacement 6-97
run 3-7, 8-36
run 1-2, 3-5, 6-32, 6-35, 6-177
Run a program 1-2, 3-17, 6-32, 6-35, 8-9, 8-21
Run Mode 8-22
Run to Here button 8-21, 8-60

S

s (step) 6-127, D-9
S key 8-60
s key 8-60
Safety level

forbid 5-2, 6-22, 6-29, 6-38, 6-48, 6-64, 6-115,
6-116, 6-117

unsafe 3-36, 5-2, 6-20, 6-29, 6-38, 6-64, 6-115,
6-116, 6-117

verify 5-2, 6-20, 6-22, 6-29, 6-38, 6-48, 6-64,
6-115, 6-116, 6-117

Saving breakpoints 3-18
Saving Data Panel contents 8-16, 8-82
Saving Data Window layout 8-16, 8-82
Saving eventpoints 3-18
Saving heappoints 3-18
Saving monitorpoints 3-18
Saving patchpoints 3-18
Saving tracepoints 3-18
Saving watchpoints 3-18
Scope 3-25, 3-37, 6-102, 6-107, 6-110, 6-122, 6-169,

Glossary-11
Script

debugger 6-145, 6-147
Scroll bar 2-4, 2-5, 4-6, 8-28
Search button 8-28
Searching

function 8-11, 8-56
path 6-78, 6-79, 6-158
regular expression 6-81, 8-28
wildcard pattern 8-11, 8-28, 8-56

Section
manual 6-143

Select a Function/Unit Dialog Box 4-13, 8-11, 8-28,
8-56

Select a Source File Dialog Box 8-11, 8-28, 8-56, 8-57
select-context 3-40, 6-133, 6-141, 6-146
Selection

object 4-2, 4-4
Selection policy

Browse 8-28
Semicolon 6-103, 6-119
Session

debug Glossary-4
Session logging 6-59
set 6-88
set-auto-frame 6-69
set-children 3-2, 3-18, 4-6, 6-49
set-cuda-memcheck 6-74
set-debug-file-directory 6-26
set-disassembly 6-72
set-download 6-71, 6-72
Index-17

NightView LX User’s Guide
set-editor 6-70, 7-2
set-exit 6-50
set-futurepoints 6-74
set-history 6-61
set-language 3-18, 6-59, 6-160
set-limits 6-61, 6-62, 6-88, 6-90, 6-149, 6-150,

6-151, 6-152, 6-153, 6-154
set-local 3-37, 6-65
set-log 6-59, 6-149
set-notify 6-36
set-overload 3-24, 6-69
set-patch-area-size 6-65, 6-165, E-1,

Glossary-9
set-preallocate 6-70
set-prompt 6-2, 6-62
set-qualifier 6-15, 6-60
set-restart 3-18, 6-64
set-safety 6-30, 6-45, 6-64
set-search 6-70
set-show 3-5, 6-33, 6-34, 6-59, 6-149
set-terminator 6-63
Setting a breakpoint 1-4, 2-5, 4-8, 4-18, 4-20, 6-101,

6-118, 8-22, 8-29, 8-60
Setting a conditional breakpoint 3-10, 4-18, 6-150,

6-151, 8-32, Glossary-2
Setting a conditional eventpoint 6-114, 6-117, 6-118,

6-150, 8-32
Setting a conditional heappoint 6-150, 6-155, 8-32
Setting a conditional monitorpoint 6-150, 6-154, 8-32
Setting a conditional patchpoint 6-150, 6-153, 8-32
Setting a conditional tracepoint 6-150, 6-152, 8-32
Setting a conditional watchpoint 6-150, 6-156, 8-32
Setting a heappoint 8-29
Setting a monitorpoint 6-108, 8-29
Setting a patchpoint 4-22, 6-103, 6-118, 8-29
Setting a tracepoint 6-107, 8-29
Setting a watchpoint 6-120, 8-29
Setting an eventpoint 8-29
set-trace 6-106, 6-107
Setuid programs 3-3
Shared library 3-4, 3-21, 3-45, 6-27
Shared memory 6-65, E-1
Shell Glossary-11

dialogue 3-4, 3-5, 8-60, E-1
shell 3-3, 3-44, 6-22, 6-76, 6-144, 6-177, 7-1, 8-20
SHELL environment variable 6-144
Shell I/O 8-60
Shell menu 8-8
shell panel 4-9
Shell prompt 1-3, 4-4
show 3-5, 6-33, 6-34
si (stepi) 6-130, D-9
SIGALRM 6-137
siginfo 3-16

SIGINT 6-138
signal 3-16, 6-113, 6-123, 6-135
Signals 3-15, 3-18, 4-1, 6-36, 6-45, 6-94, 6-123, 6-126,

6-128, 6-129, 6-131, 6-132, 6-133, 6-134,
6-135, 6-137, Glossary-11

printing 6-160
SIGQUIT 6-137
SIGSTOP 6-123, 6-126, 6-136, 6-137
SIGTRAP 3-16, 6-134
SIGUSR1 4-1
Simple full-screen interface i-iii, 1-1, 3-28, 5-2, 6-2,

6-109, 6-113, 6-144, 6-174, 7-1, 7-2, 8-1,
Glossary-6

editing commands 7-2
-simplescreen option 7-1
Single process 3-2
Single stepping 3-16, 3-40, 3-45, 4-9, 4-13, 6-128,

6-129, 6-130, 6-131, 6-133, 8-20, 8-25, 8-60
SM Glossary-11
smart printer Glossary-12
Smart Printing 6-179
smart-print 6-180
source 3-18, 3-36, 3-39, 6-19, 6-145, 6-167
Source display area 8-10, 8-28
Source display mode 8-53
Source file 3-1, 4-1, 4-6, 4-9, 4-12, 4-14, 4-15, 4-17,

4-19, 4-23, 6-145, 6-173, 8-10, 8-11, 8-53, 8-56
current 6-78, 6-81, 6-82
displaying 6-77, 6-144
editing 6-80, 8-11, 8-58, 8-60
list 6-170
search path for 6-78, 6-79, 6-158

Source line decorations 2-5, 4-6, 4-9, 4-10, 4-12, 4-14,
4-16, 4-18, 4-19, 4-23, 6-79, 6-83, 6-128,
6-130, 8-12, 8-21, 8-22, 8-23, 8-53, 8-58

Source listing 1-4, 2-3, 6-20, 6-77
Source menu 8-10, 8-27, 8-53, 8-60

Debug 8-10, 8-27, 8-53, 8-60
source panel 4-6, 4-12
Stack Glossary-12
Stack examination 1-5, 2-6, 6-86
Stack frame 6-4, 6-78, 6-97, 6-170, Glossary-6,

Glossary-12
current 3-24, 3-25, 4-15, 4-17, 4-24, 6-84, 6-102,

6-103, 6-107, 6-109, 6-110, 6-112, 6-119,
6-133, 6-138, 6-140, 6-157, 6-159,
Glossary-3

displaying 6-93, 6-157, 8-15, 8-81
printing 6-86

Stack pointer 6-6, 6-159
Stack variable 3-20
Stale data indicator 3-28, 7-2, Glossary-12
Starting execution 1-2, 2-2, 3-17
Starting the debugger 1-2, 2-2, 3-39, 5-1
Index-18

Index
Starting tracing 6-106
State

breakpoint 6-151, 8-31
eventpoint 6-149, 8-31
heappoint 6-154, 8-31
monitorpoint 6-154, 8-31
patchpoint 6-153, 8-31
process 3-19, 6-160, Glossary-10
tracepoint 6-152, 8-31
watchpoint 6-155, 6-156, 8-31

Static data definitions 6-97
Static function

specifying location of 6-13
Static memory 6-170
Static variable 3-20, 6-4
Status bar 4-5
status bar 4-6, 4-12
Status information 6-148
step 3-27, 3-40, 4-13, 6-123, 6-127, 6-129, 6-131,

6-142, 8-20, 8-60
Step button 8-20
stepi 6-128, 6-130, 6-142, 8-21, 8-60
Stepi button 8-21
stop 6-133, 8-20, 8-25
Stop button 8-20
Stopping a process 6-133, 6-134, 8-20
Stopping execution 1-4, 2-5, 3-40, 4-8, 4-18, 4-20,

6-101, 6-120
Stream

command Glossary-2
String

C 3-44, 6-88
character 6-88, 6-159
macro 6-176

String limits
printing 6-61

strip 6-39
Stripped executable 6-27, 6-39
stty 7-1
Subprogram 4-9, 4-13, 6-128, 6-129, 6-130, 6-131,

6-132, 6-158
Subprogram arguments

printing 6-169
Subprogram interest level 3-18, 3-27, 6-66, Glossary-8
Subprogram name

list 6-171
Subprograms

inline 3-26
interesting 3-18, 3-25, 3-27, 4-11, 6-6, 6-67, 6-128,

6-131, Glossary-8
uninteresting 3-18, 3-25, 3-27, 4-11, 6-6, 6-67,

6-128, 6-131
Subroutine 4-9, 4-13, 6-128, 6-129, 6-130, 6-131, 6-132,

6-158

Subroutine arguments
printing 6-169

Subroutine call 3-23, 6-103
Subroutine name

list 6-171
Substitution

text 6-173
Summary of commands 8-18, C-1
Summary of eventpoints 8-29, 8-62
Symbol file 3-18, 6-39, 6-43, Glossary-12
Symbol table 6-97, 6-148, 6-169, 6-170, 6-171, 6-172
symbol-file 3-7, 3-18, 6-27, 6-39, 6-40, 6-76
Symbolic debug information 6-39
Symbolic debugger i-iii, 3-1
Symbols

undefined 6-97
Syntax

command 6-1
expression 6-3
qualifier 6-1

Syscallpoint
displaying 6-156
hitting 6-156
named 6-122
state 6-156
syscall-list 6-122

syscallpoint 6-121
Syscallpoint Dialog Box 8-23
System

local 3-6
remote 3-6

system 3-2, 6-49
System crash 3-45

T

T (source line decoration) 6-84
Tag

trace-event 6-106, 6-107, Glossary-13
Task 3-40, 6-133, 6-141
tbreak 6-98, 6-118
Temporary breakpoint 6-118, 8-31
Temporary heappoint 8-31
Temporary monitorpoint 8-31
Temporary patchpoint 6-118, 8-31
Temporary tracepoint 8-31
Temporary watchpoint 8-31
TERM environment variable 3-5, 7-1
Terminal refresh 6-144
Terminating a process 3-18, 3-19, 6-38, 8-9, 8-21
Termination

abnormal 6-40
Index-19

NightView LX User’s Guide
Terminator
input 6-32, 6-63

Text
printing 6-93

Text cursor 8-21, 8-23
Text input area 4-19, 4-20, 4-23, 8-29, 8-32
Text substitution 6-173
Thread 3-40, 6-133, 6-141, 8-71, Glossary-12
Thread process 3-40, 6-15, 6-133, 6-141, 6-146, 6-167,

8-71, Glossary-13
Threshold

interest level 3-18, 3-27, 6-67
Toggle button 8-33
Tools menu 8-17
tpatch 6-98, 6-118
Trace Glossary-13
Trace initialization 6-106
trace_open_thread routine 6-108
trace_start routine 6-108
Trace-event ID 6-106, 6-107, 8-33, Glossary-13
Trace-event map file 6-106, 6-107, Glossary-5
Trace-event tag 6-106, 6-107, Glossary-13
Trace-event Value 8-33
Tracepoint 3-9, 3-13, 3-20, 3-22, 3-44, 6-38, 6-84, 6-85,

6-98, 6-105, Glossary-5, Glossary-13
changing 8-29
clearing 6-112
condition on 3-18, 6-114, 6-150, 6-152, 8-32
deleting 6-115, 8-34
disabling 6-115, 8-31
displaying 6-149, 6-151
enabling 6-116, 8-31
hitting 6-152, 8-31
ignoring 3-18, 6-107, 6-117, 6-150, 6-152, 8-32,

Glossary-7
named 3-18, 6-101, 6-107, 8-32
saving 3-18
setting 6-97, 6-107, 8-29
state 6-152, 8-31
temporary 8-31

tracepoint 3-13, 3-44, 6-106, 6-151
Tracepoint crossing count Glossary-3
Tracepoint Dialog Box 8-13, 8-22, 8-29
Tracing 3-6, 3-13, 3-44, 3-45
translate-object-file 3-7, 6-27, 6-39, 6-41,

6-43
Translations

dynamic library 6-41
object filename 6-27, 6-39, 6-43, 6-97, 6-165

Tutorial
command-line 4-1

Type definition
printing 6-171, 6-172

U

u key 8-60
UID 3-43
ulimit 3-5
Undefined symbols 6-97
undisplay 6-95, 6-96
Uninteresting subprograms 3-18, 3-25, 3-27, 4-11, 6-6,

6-67, 6-128, 6-131
unsafe safety level 3-36, 5-2, 6-20, 6-29, 6-38, 6-64,

6-115, 6-116, 6-117
up 3-25, 6-4, 6-139, 6-140, 6-142, 8-21, 8-60
Up button 4-15
Up button 8-21
User 6-165
User ID 3-43
User interface

command-line i-iii, 1-1, 3-28, 4-1, 6-2, 6-109,
6-113, 6-137, 6-143, 6-174, 7-1, 8-1, 8-20,
Glossary-2

full-screen i-iii, 1-1, 3-28, 5-2, 6-2, 6-109, 6-113,
6-143, 6-144, 6-174, 7-1, 7-2, 8-1,
Glossary-6

graphical i-iii, 2-1, 3-28, 3-36, 5-2, 5-3, 6-1, 6-38,
6-137, 6-143, 8-1, Glossary-6

V

Value history 3-38, 4-13, 6-3, 6-61, 6-88, 6-92, 6-158,
Glossary-13

Variable
assignment 3-22
convenience 3-37, 6-3, 6-5, 6-65, 6-88, 6-158,

Glossary-3
declaration 3-22
global 3-20, 6-140
local 3-20, 3-24, 3-25, 3-26, 6-4, 6-93, 8-15, 8-68,

8-81
predefined convenience 3-26, 6-3, 6-5, 6-150,

6-151, 6-152, 6-153, 6-154, 6-155, 6-159,
6-173

printing 6-169, 6-172
register 3-20, 6-4
static 3-20, 6-4

verify safety level 5-2, 6-20, 6-22, 6-29, 6-38, 6-48,
6-64, 6-115, 6-116, 6-117

Version
NightView 1-2, 5-2, 8-19

vi editor 6-70, 7-2
View menu 8-5
Virtual address space 6-161
Index-20

Index
Virtual memory 6-161
VISUAL environment variable 7-2

W

wait 6-51
Warning Dialog Box 4-26, 8-2, 8-5, 8-8, 8-9, 8-10, 8-21
Warnings 3-35
warp Glossary-13
Watchpoint

changing 8-29
commands on 3-18
condition on 3-14, 3-18, 6-150, 6-156, 8-32
deleting 6-115, 8-34
disabling 8-31
displaying 6-149, 6-155
enabling 3-14, 6-116, 8-31
hitting 6-156, 8-31
ignoring 3-18, 6-117, 6-150, 6-156, 8-32,

Glossary-7
named 3-18, 6-120
saving 3-18
setting 6-120, 8-29
state 6-155, 8-31
temporary 8-31

watchpoint 6-120
Watchpoint Dialog Box 8-14, 8-23, 8-29
whatis (info whatis) 6-171, D-12
Wildcard pattern 6-18, 6-25, 6-44, 6-46, 6-170, 8-11,

8-28, 8-56
Wildcard pattern examples 6-19
wildcard_pattern 6-170
Window

Data 3-18, 4-21, 4-22, 4-25, 6-93, 8-23, 8-65
Debug 2-3, 4-14, 8-4, 8-24, 8-27, 8-28
Dialogue 2-3
Help 2-1, 2-3, 2-4, 8-1, 8-2, 8-93, Glossary-7
iconifying 8-1
Monitor 3-28, 6-111, 7-2
print 8-5

X

X 8-1
x 6-5, 6-20, 6-89, 6-94, 6-150, 6-151, 6-152, 6-153,

6-154, 6-155, 6-173
-x option 5-3
X Window System 3-35, 8-1
xl (translate-object-file) 6-27, D-1
-xrm option 5-3
Index-21

NightView LX User’s Guide
Index-22

	NightView User’s Guide
	Preface
	Contents
	Chapter 1 A Quick Start
	Chapter 2 A Quick Start - GUI
	Chapter 3 Concepts
	Chapter 4 Tutorials
	Chapter 5 Invoking NightView
	Chapter 6 Command-Line Interface
	Chapter 7 Simple Full-Screen Interface
	Chapter 8 Graphical User Interface
	Appendix A NightStar LX Licensing
	Appendix B Kernel Dependencies
	Appendix C Summary of Commands
	Appendix D Quick Reference Guide
	Appendix E Implementation Overview
	Appendix F Tutorial Files
	Glossary
	Index

	A Quick Start
	Sample Program
	Starting Up
	Getting Help
	Setting a Breakpoint
	Finishing up

	A Quick Start - GUI
	Sample Program - GUI
	Starting Up - GUI
	Getting Help - GUI
	Setting a Breakpoint - GUI
	Finishing up - GUI

	Concepts
	Debugging
	Accessing Files
	Programs and Processes
	Multiple Processes
	Families
	Attaching
	Detaching
	Core Files
	Qualifiers

	Dialogues
	Dialogue I/O
	Real-Time Debugging
	Remote Dialogues
	Remote File Access
	ReadyToDebug

	Finding Your Program
	Controlling Your Program
	Eventpoints
	Breakpoints
	Monitorpoints
	Patchpoints
	Tracepoints
	Heappoints
	Watchpoints
	Syscallpoints

	Signals
	Restarting a Program
	Restart Mechanism
	Restart Information
	Restart Macros

	Exited and Terminated Processes

	Process States
	Operations While the Process Is Executing
	Examining Your Program
	Expression Evaluation
	C Expressions
	C++ Expressions
	Fortran Expressions

	Overloading
	Program Counter
	Context
	Scope
	Stack
	Current Frame
	Registers

	Inline Subprograms
	Interesting Subprograms
	Monitor Window
	Debugging the Heap
	Levels and Common Errors
	Fences
	Hardware Overrun Protection
	Retained Free Blocks
	Heap Check
	Leak Detection

	Branch Tracking
	Errors
	Command Streams
	Interrupting the Debugger
	Macros
	Convenience Variables
	Smart Printing
	Logging
	Value History
	Command History
	Initialization Files
	Optimization
	Multithreaded Programs
	Thread Tags
	CUDA Debugging
	Limitations and Warnings
	Setuid Programs
	Attach Permissions
	Architecture Interoperability
	NightTrace Daemon
	Memory Mapped I/O
	Blocking Interrupts
	Debugging with Shared Libraries

	Tutorials
	General Graphical Tutorial
	Topical Tutorials
	Thread Tags Tutorial
	Tracing Tutorial

	Invoking NightView
	nview
	nview-save-core-file

	Command-Line Interface
	Command Syntax
	Selecting Overloaded Entities
	Special Expression Syntax
	Predefined Convenience Variables
	IA-32 Registers
	AMD64 Registers
	CUDA Registers

	Location Specifiers
	Qualifier Specifiers
	Eventpoint Specifiers
	Regular Expressions
	Wildcard Patterns

	Repeating Commands
	Replying to Debugger Questions
	Controlling the Debugger
	Quitting NightView
	quit

	Managing Dialogues
	login
	debug
	nodebug
	set-debug-file-directory
	translate-object-file
	logout
	on dialogue
	apply on dialogue

	Dialogue Input and Output
	!
	set-show
	show

	Managing Processes
	run
	rerun
	set-notify
	notify
	attach
	detach
	kill
	symbol-file
	core-file
	save-core-file
	exec-file
	on program
	apply on program
	on restart
	checkpoint
	family
	set-children
	set-exit
	set-shared-lib-update
	wait
	mreserve

	Heap Debugging
	heapdebug

	Setting Modes
	set-log
	set-language
	set-qualifier
	set-history
	set-limits
	set-prompt
	set-terminator
	set-safety
	set-restart
	set-local
	set-patch-area-size
	interest
	set-auto-frame
	set-overload
	set-search
	set-editor
	set-preallocate
	set-resume
	set-download
	set-disassembly
	set-branch-tracking
	set-futurepoints
	set-cuda-memcheck

	Debugger Environment Control
	cd
	pwd

	Source Files
	Viewing and Editing Source Files
	list
	directory
	edit

	Searching
	forward-search
	reverse-search

	Source Line Decorations

	Examining and Modifying
	backtrace
	print
	set
	x
	output
	echo
	data-display
	display
	undisplay
	redisplay
	printf
	load
	branch-history

	Manipulating Eventpoints
	Eventpoint Modifiers
	name
	breakpoint
	patchpoint
	set-trace
	tracepoint
	monitorpoint
	heappoint
	mcontrol
	clear
	commands
	condition
	delete
	disable
	enable
	ignore
	tbreak
	tpatch
	watchpoint
	syscallpoint

	Controlling Execution
	set-run-mode
	continue
	resume
	step
	next
	stepi
	nexti
	finish
	stop
	jump
	signal
	handle

	Selecting Context
	frame
	up
	down
	select-context

	Miscellaneous Commands
	help
	refresh
	shell
	source
	declare-thread-tag
	set-thread-name
	delay

	Info Commands
	Status Information
	info log
	info eventpoint
	info breakpoint
	info tracepoint
	info patchpoint
	info monitorpoint
	info heappoint
	info watchpoint
	info syscallpoint
	info frame
	info directories
	info convenience
	info display
	info history
	info limits
	info registers
	info signal
	info process
	info memory
	info dialogue
	info family
	info name
	info on dialogue
	info on program
	info on restart
	info threads
	heapcheck

	Symbol Table Information
	info args
	info locals
	info variables
	info address
	info sources
	info functions
	info types
	info whatis
	info representation
	info declaration
	info files
	info line

	Defining and Using Macros
	define
	Referencing Macros
	info macros

	Smart Printing
	smart-print
	replace Smart Printers
	struct Smart Printers
	container Smart Printers
	Smart Printing Limitations
	Predefined Smart Printers
	Intrinsics for Smart Printing

	Simple Full-Screen Interface
	Using the Simple Full-Screen Interface
	Editing Commands in the Simple Full-Screen Interface
	Monitor Window - Simple Full-Screen

	Graphical User Interface
	NightView GUI Concepts
	GUI Online Help
	Context-Sensitive Help
	Help Buttons
	Help Command

	Dialogues and Dialog Boxes
	Context Menu
	Current Process
	GUI Configuration

	Main Window
	Menu bar
	File Menu
	View Menu
	Shell Menu
	Process Menu
	Source Menu
	Eventpoint Menu
	Data Menu
	Tools Menu
	Help Menu

	Toolbars
	Command Toolbar
	Process Toolbar
	Run Mode Toolbar
	Eventpoint Toolbar
	Value Toolbar
	Source Display Toolbar

	Status Bar
	List of Shortcuts
	Main Window Dialog Boxes
	Run Program in Shell Dialog Box
	Attach Dialog Box
	Source Selection Dialog Box
	File Selection Dialog Box
	Eventpoint Dialog Boxes
	System Call Selection Dialog

	Debug Heap Dialog Box
	Remote Login Dialog Box
	Remote Login General Page
	Remote Login Advanced Page
	Remote Login Action Buttons

	Preferences Dialog Box
	Preferences General Page
	Safety
	Automatically Resume On
	Searching
	Data Panel
	Display Limits
	Source Panel Keystrokes
	Source File Size

	Preferences Appearance Page
	Source Display
	Disassembly
	Source Editor

	Preferences Fonts Page
	Global NightStar Fonts
	My NightView Fonts
	Effective NightView Fonts

	NightStar Global Fonts Dialog
	Changes Fonts For...
	Apply Fonts To...
	Set Default Fonts Set Panel Fonts
	Save & Close
	Save
	Cancel
	Help

	Preferences Advanced Page
	Remote Object File Cache
	Eventpoint Memory Preallocation
	Restart
	Value History
	Expression Evaluation Automatic Overloading
	Future Eventpoints
	Restore Defaults

	Process Settings Dialog Box
	Process Settings General Page
	Debug Children
	Set Run Mode
	Branch Tracking
	Stop Before Exiting
	Expression Language
	Refresh debug info when shared libs change
	Program

	Process Settings Interest Page
	Process Settings Signals Page

	“handle” on page 6-136Rename Page Dialog Box
	Print Dialog Box
	List Location Dialog Box
	Eventpoint Panel Update Interval Dialog Box

	Panels
	Find Bar
	Source Panel
	Source Panel Target Line
	Source Panel Expression Tooltip
	Source Panel Context Menu
	Source Panel Tracking
	Source Panel Keystrokes

	Shell Panel
	Message Panel
	Eventpoint Panel
	Context Panel
	Locals Panel
	Monitor Panel
	Data Panel
	Monitor Bar
	Data Items
	Expression Data Item
	Local Variables Data Item
	Registers Data Item
	Stack Data Item
	Branch History Data Item
	Threads Data Item
	Processes Data Item
	Shells Data Item
	Heap Information Data Item
	Heap Errors Data Item
	Leak Sets / Still Allocated Sets Data Items
	Block Data Item
	Monitorpoint Values Data Item

	Data Panel Context Menu
	Data Panel Dialog Boxes
	Data Panel Item Dialog Box
	Data Panel Add Expression
	Data Panel Add Heap Errors
	Data Panel Add Heap Leaks
	Data Panel Add Still Allocated Blocks
	Data Panel Call Stack Frames
	Data Panel Edit Expression
	Data Panel Expand Tree
	Data Panel Describe
	Data Panel Load Layout
	Data Panel Pointer Array Dimension
	Data Panel Save Layout
	Data Panel Save Snapshot
	Data Panel Subscript Array
	Data Panel Linked List Expression Dialog
	Data Panel Condition Filter Expression Dialog
	Monitorpoint Update Interval Dialog Box

	CUDA Coordinates Panel
	CUDA Lanes Panel
	CUDA Lanes Context Menu

	CUDA Warp Locals Panel
	CUDA Warp Locals Panel Context Menu

	Help Window

	NightStar LX Licensing
	License Keys
	License Requests
	License Server
	License Reports
	Firewall Configuration for Floating Licenses
	Serving Licenses with a Firewall
	Running NightStar LX Tools with a Firewall

	License Support

	Kernel Dependencies
	Advantages for NightView
	Advantages for NightTrace
	Advantages for NightProbe
	Advantages for NightTune
	Frequency Based Scheduler

	Summary of Commands
	Quick Reference Guide
	Invoking NightView
	Controlling the Debugger
	Quitting NightView
	Managing Dialogues
	Dialogue Input and Output
	Managing Processes
	Heap Debugging
	Setting Modes
	Debugger Environment Control

	Source Files
	Viewing and Editing Source Files
	Searching

	Examining and Modifying
	Manipulating Eventpoints
	Controlling Execution
	Selecting Context
	Miscellaneous Commands
	Info Commands
	Status Information
	Symbol Table Information

	Defining and Using Macros
	Smart Printing

	Implementation Overview
	Reporting Bugs

	Tutorial Files
	C Files
	msg.h
	main.c
	parent.c
	child.c

	Fortran Files
	main.f
	parent.f
	child.f
	ftint.c

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

