RedHawk NightStar Tools Tutorial

@concunnsnr 0898009-020
ORPORATIC December 2003

CORPORATION"

Copyright 2003 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end—users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

RedHawk, NightProbe, NightSim, NightTrace, and NightView are trademarks of Concurrent Computer Corporation.

Linux is a registered trademark of Linus Torvalds.

Printed in U. S. A.

General Information

Scope of Manual

Preface

The RedHawk™ NightStar™ Tools allow users on an iHawk™ system running RedHawk
Linux® to schedule, monitor, debug and analyze the run time behavior of their real-time
applications as well as the RedHawk Linux operating system kernel.

The RedHawk NightStar Tools consist of the NightView™ symbolic debugger, the Night-
Trace™ event analyzer, the NightSim™ frequency-based scheduler, and the NightProbe™

data monitoring tool.

This manual is a tutorial for the RedHawk NightStar Tools.

Structure of Manual

Syntax Notation

This manual consists of one chapter which is the tutorial for the RedHawk NightStar

Tools.

The following notation is used throughout this guide:

italic

list bold

list

emphasis

window

Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

User input appears in 1ist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in 1ist bold type.

Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in 1ist type.
Keywords also appear in 1ist type.

Words or phrases that require extra emphasis use emphasis type.

Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window

type.

RedHawk NightStar Tools Tutorial

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

{ 1} Braces enclose mutually exclusive choices separated by the pipe
(1) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

tr= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0890395 NightView Users Guide
0890398 NightTrace Manual
0890458 NightSim User s Guide
0890465 NightProbe User's Guide

Contents

Contents
Chapter 1 Using the RedHawk NightStar Tools
OVEIVIEW . o oottt e e e e e e e e e e e e e e 1-1
Before youbegin 1-1
Getting Started. 1-3
Building the program 1-3
Using NightSim. e 1-5
Invoking NightSim. i 1-5
Configuring the Scheduler 1-5
Scheduling a processc..viiii i 1-7
Settingup the scheduler 1-9
Using NightViewot 1-10
Setting @ monitorpointottt e 1-11
Resuming eXeCutionvtt et 1-13
Starting the simulation i 1-13
Monitoring the simulation i 1-14
Using NightProbe e 1-16
Invoking NightProbe i 1-16
Configuring NightProbe. i i 1-17
Connecting to the target program.c..ouieineenaen .. 1-19
Starting sampling 1-20
Modifying programdata. 1-21
Using NightTrace.o vttt e e 1-23
Invoking NightTrace.t 1-23
Configuring a user daemonc.oouiiiniiineinaen... 1-24
Creating a customized display page. 1-26
Creating the user applicationdaemon 1-27
Resuming execution of the user application daemon. 1-28
Displaying the user trace data. oo, 1-28
Inserting a patchpoint. 1-29
Viewing streaming trace outputc.vvuneeennein oo, 1-31
Configuring a kernel daemon. 1-32
Creating the kernel daemon 1-33
Resuming execution of the kernel daemon 1-34
Displaying the kernel tracedata. 1-34
Flushing the tracedata 1-35
Stopping the daemons. 1-35
Positioning the current time line, 1-35
Loading aneventmap file........... 1-37
Searching forausertraceevent.c..oeuviniennen. .. 1-37
ZOOMING Il . o vttt et e e e e e e e e e e 1-39
Examining the kernel tracedata., 1-40
Exiting the tools. 1-42
Exiting NightTrace.t 1-42
Exiting NightProbe. 1-42
Exiting NightSim 1-43

RedHawk NightStar Tools Tutorial

Exiting NightView 1-44

Conclusion

Appendix A Tutorial Files

Illustrations

SIINLC . ettt et e A-2
TCIM HMEL.C. o .ottt e et e e e e e A-4
reim_timerh. A-6
Figure 1-1. NightSim Scheduler 1-5
Figure 1-2. NightSim Edit Process i, 1-7
Figure 1-3. Process Scheduling Area 1-9
Figure 1-4. NightView Dialogue i .. 1-10
Figure 1-5. NightView Principal Debug Window 1-11
Figure 1-6. Setting a new monitorpoint 1-12
Figure 1-7. NightView Monitor Window 1-12
Figure 1-8. Resuming eXecutionc..cuiiineuneennen..n 1-13
Figure 1-9. Starting the simulation 1-14
Figure 1-10. NightSim Monitor 1-15
Figure 1-11. NightProbe Data Recording window 1-17
Figure 1-12. Configured NightProbe Data Recording window 1-18
Figure 1-13. NightProbe Spreadsheet Viewer window 1-19
Figure 1-14. User Authenticationdialog 1-20
Figure 1-15. Modified values in NightView Monitor Window 1-21
Figure 1-16. Modified values in NightProbe Spreadsheet Viewer.......... 1-22
Figure 1-17. NightTrace Main Window 1-24
Figure 1-18. Daemon Definitiondialog 1-25
Figure 1-19. Logindialog i, 1-25
Figure 1-20. Import Daemon Definitiondialog 1-26
Figure 1-21. Customized NightTrace displaypage 1-27
Figure 1-22. User trace data in customized NightTrace display page 1-29
Figure 1-23. Setting a new patchpoint 1-30
Figure 1-24. User trace data after patchpoint inserted 1-31
Figure 1-25. Daemon Definition dialog 1-32
Figure 1-26. NightTrace kernel display page 1-33
Figure 1-27. NightTrace kernel tracedata 1-36
Figure 1-28. NightTrace Search dialog 1-38
Figure 1-29. User trace data aftersearch 1-39
Figure 1-30. Zoomed in view of usertracedata 1-40
Figure 1-31. Zoomed in view of kernel display page 1-41
Figure 1-32. Removing the scheduler 1-43
Figure 1-33. Remove Schedulerdialog 1-43

Using the RedHawk NightStar Tools

1
Using the RedHawk NightStar Tools

The RedHawk NightStar Tools allow users on an iHawk system running RedHawk Linux
to schedule, monitor, debug and analyze the run time behavior of their real-time applica-
tions as well as the RedHawk Linux operating system kernel.

The RedHawk NightStar Tools consist of the NightView™ symbolic debugger, the Night-
Trace event analyzer, the NightSim frequency-based scheduler, and the NightProbe data
monitoring tool.

Overview

This is a demonstration of the RedHawk NightStar Tools. In this tutorial, we will use the
following RedHawk NightStar Tools:

NightSim

NightProbe

NightView

NightTrace
integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and con-
siderations.

Before you begin

To automatically ensure that all files your user creates on the RedHawk Linux system are
publicly readable and writeable, include the following command in your shell startup
script:

umask 000

NOTE

This is important for the operation of the tutorial to succeed.

In addition, some of the activities in the RedHawk NightStar Tools Tutorial require either
root access or user registration in the fbscheduser capabilities role. Either execute the

1-1

RedHawk NightStar Tools Tutorial

commands shown in the tutorial as the root user, or have your system administrator reg-
ister you as an FBS user according to the following instructions:

1. Add the following line to the /etc/pam.d/rsh and
/etc/pam.d/login files:

session required /lib/security/pam capability.so

NOTE

For those users that log into their system directly from the Gnome
or KDE graphical desktop environment, it is necessary to add the
above line to /etc/pam.d/gdm or /etc/pam.d/kde,
respectively. In addition, you must restart your X server or reboot
your system before these changes will take effect.

2. Add the following line to the bottom of the
/etc/security/capability. conf file:

user user fbscheduser
where user is the login name of the desired user.

After these activities are complete, you must log off and log back onto the RedHawk sys-
tem.

1-2

Using the RedHawk NightStar Tools

Getting Started

We will start by creating a directory in which we will do all our work. On the RedHawk
Linux system, create a directory and position yourself in it:

To create a working directory
- Use themkdir (1) command to create a working directory.
We will name our directory tutorial using the following command:

mkdir tutorial

- Position yourself in the newly created directory using the e¢d (1) com-
mand:

cd tutorial

Source files, as well as configuration files for the various tools, are copied to
/usr/lib/NightStar/tutorial during the installation of the RedHawk NightStar
Tools. We will copy these tutorial-related files to our tutorial directory.

To copy the tutorial-related files to the working directory

- Copy all tutorial-related files to our local directory.

cp /usr/lib/NightStar/tutorial/*

Building the program
Our example uses a cyclic program which intends to do some work every time an external
event triggers it.

We will use RedHawk Linux’s Frequency Based Scheduler to control the execution of the
program. The Frequency Based Scheduler allows us to field an external interrupt and con-
trol the execution of one or more programs.

1-3

RedHawk NightStar Tools Tutorial

1-4

A portion of one of the source files, sim. ¢, is shown below:

main ()

{

int arg;
counters.SetWorkload(0) ;
trace_ setup ("sim-data")

while (fbswait() == 0) {
timer.start();
counters.Increment (1) ;
trace event arg (cycle start, counters.Get());
counters.Work () ;
timer.stop();

arg = counters.Get() % 10;
trace event arg (cycle end, arg);
counters.cycle time = (float) timer.elapsed();

}

The program calls fbswait () which will cause it to block until the frequency-based
scheduler determines that it is time for this program to execute.

At that time, the program enters the loop where it increments some counters, logs a trace
point with the NightTrace APl trace event arg(), calls the procedure
counters.Work (), logs another trace point to signal the end of the calculations done
by counters.Work (), then returns to fbswait () to await the next cycle.

You only need to make a single FBS API call, fbswait (), to have a program which can
be scheduled on the FBS.

Now that we have the source files, we need to build the program. We will use the g++
compiler.

To build the executable

- From the local tutorial directory, enter the following commands:

g+t+ -¢ -g *.c
g++ -0 sim *.o -lntrace -lccur_ fbsched -lccur_rt

NOTE

The RedHawk NightStar Tools require that the user application is
built with DWARF debugging information in order to read sym-
bol table information from user application program files. For
this reason, the —g compile option is specified. However, when
compiling with releases prior to gce 3.2, it is necessary to use the
-gdwar£f-2 option in place of the —~g option.

Using the RedHawk NightStar Tools

Using NightSim

Because our sample program uses the frequency-based scheduler, we will use the Night-
Sim Scheduler to schedule the process. NightSim is a tool for scheduling and monitoring
real-time applications which require predictable, repetitive process execution. NightSim
provides a graphical interface to the RedHawk Linux frequency-based scheduler and per-
formance monitor. With NightSim, application builders can control and dynamically
adjust the periodic execution of multiple coordinated processes, their priorities, and their
CPU assignments. NightSim’s performance monitor tracks the CPU utilization of individ-
ual processes and provides a customizable display of period times, minimums, maxi-
mums, and frame overruns. For more information on NightSim, refer to the NightSim
User's Guide (0890480).

Invoking NightSim

To invoke the NightSim Scheduler

- From the local tutorial directory, enter the following command:

nsim &

Configuring the Scheduler

The NightSim Scheduler window is opened, ready for us to configure it for our particular
simulation.

CIEIL
N|ghtS|m Scheduler Tools Help
MightSim Host. demo On—Linel
Configuration file: {unnamed) /A

Scheduler key: IW Timing host: |Edemo #‘ Scheduler Simulation Bun Status

Cycles per frame: 5 Distribution: MNone = @@ Setup | | Frame:

hax tasks per cycle: l— Timing source: Realtime clock 2e0 — | i) Femoen | | Cycle:

Inactive Stopped

hlax. tasks in scheduler: Clock perlod: 100000 psec — i On Target: Mo scheduler — |
Permissions: 00 {min=10, max=555350] Rate: |:1.D sec
Target Sched Prio- Soft Halts Start Cycle Execution Schedule
System FID Program Hame CPU EBias Pley, rity Param Lim, ovrn, cycle Per, O

3

i

; i

Edt. N 2

Figure 1-1. NightSim Scheduler

1-5

RedHawk NightStar Tools Tutorial

The FBS schedules processes in a cyclic manner based on some (usually cyclic) interrupt
source.

We use the term cycle, or minor cycle, to represent the smallest amount of time between
occurrences of the interrupt.

We use the term frame, or major frame, as simply a convenience to represent a set of one
or more cycles. Often, the most simple schedulers have 1 cycle per frame. More complex
applications may have different sets of activities that need to be accomplished before the
entire application repeats; such applications would define multiple cycles per frame.

To configure a NightSim Scheduler

- Specify a Scheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
1000.

- Specify the Cycles per frame. This field allows you to specify the num-
ber of cycles that compose a frame on the specified scheduler. We will use
the value 5.

- Specify the Max. tasks per cycle. This field allows you to specify the
maximum number of processes that can be scheduled to execute during one
cycle. Enter 5 for our example.

- Specify the Max. tasks in scheduler. This field allows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the value 5.

- For the Timing host, enter the name of the RedHawk Linux system on
which NightSim is running. For our example, we will enter demo in this
field.

NOTE

When NightSim is operating in On-Line mode, an attempt will
be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSim User s Guide (0890480) for more information.

- Select a Timing source from the list provided. This list contains the set
of devices available on the timing host. We will use Real-time clock
2¢0.

- Specify Clock period.

For our simulation, we would like the real-time clock to “fire” every .001 seconds
(or 100000 microseconds).

For our example, we will specify 100000 for the number of microseconds.

1-6

Using the RedHawk NightStar Tools

Scheduling a process

Once we have properly configured the Scheduler, we can add a process to the fre-
quency-based scheduler.

[B Edit Process

_—
oo sekal
foorasm ———— seka

Figure 1-2. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press the Edit... button on the NightSim Scheduler window. This will
bring up the Edit Process window.

- Press the Select... button next to the Process Name field. This brings
up the Select a Program dialog.

- Choose the program we wish to schedule from the Files list. For our
example, we will select sim from the list.

- Press Select to select the program.

- Ensure that the Working Directory is the same directory that contains
our program (the directory of the Process Name selected in the previous

step).

1-7

RedHawk NightStar Tools Tutorial

- Click on the FBS tab:

- Select Starting Cycle.

This field allows you to specify the first minor cycle in which the specified
program is to be wakened in each major frame.

We will choose the lowest value, 0, for our example.
- Select Period.

This field allows you to establish the frequency with which the specified pro-
gram is to be awakened in each major frame. Enter the number of minor
cycles representing the frequency with which you wish the program to be
awakened.

For our example, we will specify a period of 3, indicating that the specified
program is to be awakened every third minor cycle.

- Click on the Process tab:
- Click on the All CPUs checkbox to deselect all of the CPUs

- Choose a single CPU for this process to run on.

For our example, we will specify CPU 0 by clicking on the checkbox labeled
0.

- Specify the Priority for this process.

The range of priority values that you can enter is governed by the scheduling
policy specified. NightSim displays the range of priority values that you can
enter next to the Priority field. Higher numerical values correspond to more
favorable scheduling priorities.

For our example, we will give the process a priority of 50.

- Click on the I/O and Debug tab:

- Check the Schedule program within a NightView dialogue
checkbox. This will bring the program up in the NightView debug-
ger before the program executes.

- Press Add to add the process to the frequency-based scheduler.

We would also like to measure the idle time on the same CPU. We can do this by schedul-
ing the /idle process.

To schedule the /idle process

- Inthe Edit Process window, enter:
/idle

in the Process Name field.

1-8

Using the RedHawk NightStar Tools

- Press the Add button to add the /idle process.

- Press the Close button to dismiss the Edit Process window.

You will notice that two entries now appear in the Process Scheduling Area of the Night-
Sim Scheduler window as shown below.

Target Sched Prio- Soft Halts Sta-t Cycle Execution Schedule
System FID Progzram MName CPU Bias Plcy, rity Param Lim, ovrn, cuycle Per, O

demo ---- /tutorial/sim Ouvsnvannsan F 50 - 0 Mo 0 N

Figure 1-3. Process Scheduling Area

Setting up the scheduler

To set up the scheduler
- In the NightSim Scheduler window, press the Set up button.
This action:

® creates a scheduler that is configured according to the parameters we
specified

® schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the first foswait () call,
and

¢ attaches the timing source to the scheduler.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-7), the NightView Source Level Debug-
ger will be started.

1-9

RedHawk NightStar Tools Tutorial

Using NightView

1-10

NightView is a graphical source-level debugging and monitoring tool specifically
designed for real-time applications. NightView can monitor, debug, and patch multiple
real-time processes running on multiple processors with minimal intrusion. In addition to
standard debugging capabilities, NightView supports application-speed eventpoint condi-
tions, hot patches, synchronized data monitoring, exception handling and loadable mod-
ules.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-7), NightView is started when the sched-
uler is set up (see “Setting up the scheduler” on page 1-9). A NightView Dialogue win-
dow is presented as well as a Principal Debug Window with the execution of the program
stopped.

fiew Dialogue: local

local hachine: demo

lessages:

Lr | T—

Dialogue /3 Bun your programs in this shell.

Ausrdlib/NightView-5,5/ReadyTolebug

cd Atutorial

Ausrdlib NightSim-2,3, 1 nsim, nview, rtcp —server "top/129,134,30,63:32797 Night5i
[rootBdemo tutoriall# Ausr/lib/MightView-5,5/ReadyTolebug

[root@dena tutoriall# od Atutorial

C Atutorial -onchalt -nAtutorialdsimh 136698872 sp -=1000 -cO -bF -p50 -m0d —f3 -
fpid 0 azsigned to process 1083: Atutorial/sim

[I—]

I~ 1 =
Glualifier: Command: Interrupt |
local _/l

|
Processes for this Dialogue

PID: Program name:

Detach | Kill

Figure 1-4. NightView Dialogue

Using the RedHawk NightStar Tools

Frincipal Debug Window

lessages:

only external symbols will be wizible, =
The file "/lib/i6B6/1ibm,=0,6" does not contain symbolic debug information,

only external symbols will be wizible,

Switched to process local :1300, ‘J
: |

o

sim local:1300
ﬁl sim.c Stopped for exec
2% | int i_counter: A
27 1 int workloads

28 |

29 |

30 #% | Counters counters :

31 % | rcim_timer timer:

22|

33 | static void trace_setup (char #*):

34|

35 | main()

-

ET| int arg:

23| |

29 % | counters, Sethlorkload(0}:

40 |

41 % | trace_setup ("sim-data") :

42 |

43 % | uwhile (fbswait() == 0) {

44 % | timer,start(};

45 % | counters, Inerement (1) -
=4 |

Resume | Step | Next| Stepi | TWexdti | Finish | |
Print | Data Display| Breakpoint| Fun To Here| Clear | [W]] | Down |

Interrupt |

Glualifier: Command:
local:1300 " _/I
]
Group of Processes for this Window Switch To
Dialogue:PID: Exec File: State: gﬁggg:g

Figure 1-5. NightView Principal Debug Window

Setting a monitorpoint

Monitorpoints provide a means of monitoring the values of variables in your program
without stopping it. A monitorpoint is code inserted by the debugger at a specified loca-
tion that will save the value of one or more expressions, which you specify. The saved
values are then periodically displayed by NightView in a Monitor Window.

To set a monitorpoint

- In the NightView Principal Debug Window, click on the line:

while (fbswait() == 0)

1-11

RedHawk NightStar Tools Tutorial

- Select Set Monitorpoint... from the Eventpoint menu. This will open
the Set a New Monitorpoint dialog.

Location: sim.c:41
. Ciptions:
Evenipoint RE
nahle
Rharden:
) Enahle, disable after next hit
) Disable
Condition: If |

Ignore Count: I

Mame: I

Commands: |]

| T— =

Cancell Help |

Figure 1-6. Setting a new monitorpoint

- Enter the following
print counters.cycle_time

in the Commands text box:.

- Press OK.

A NightView Monitor Window is opened containing an entry for the
counters.cycle time variable.

Bl Nigh fonitor R, EiE1H|
Running with 1000 milliseconds hetween samples
Legend: DUpdated Not Executed Not Zampled

counters,cycle_time A

Figure 1-7. NightView Monitor Window

1-12

Using the RedHawk NightStar Tools

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

monitorpoint at line number
print counters.cycle time
end monitor

where line_number coincides with the line:

while (fbswait() == 0) {

See monitorpoint for details on the use of this command.

Resuming execution

Now it’s time to let the program run.

To resume execution in NightView

- Press the Resume button in the NightView Principal Debug Window.

Llmer,starth };

|45 ¥ | zounters, Incren:

|

Fesume | Step | | Ik

Print | Data Displayl

Figure 1-8. Resuming execution

Starting the simulation

Now we need to go back to our NightSim Scheduler window and start the simulation.
When you click on the Start button, NightSim carries out the following actions:

® Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

* Ifareal-time clock is being used as the timing source, sets the clock period
in accordance with the value entered in the Clock period field in the
Scheduler Configuration Area

® Starts the simulation with the values of the minor cycle, major frame, and
overrun counts set to zero

1-13

RedHawk NightStar Tools Tutorial

To start a simulation in NightSim

- Press the Start button on the NightSim Scheduler window.

Simulation

Start Fre
_ san |

Stopped

T i Curcle Fwr

Figure 1-9. Starting the simulation

When the simulation begins, you should notice the values for Frame and Cycle in the
Run Status Area begin to change.

Monitoring the simulation
The performance monitor is a mechanism that enables you to monitor FBS—scheduled
processes’ utilization of a CPU.
The performance monitor provides you with the ability to:

® Obtain performance monitor values by process or processor
¢ Start and stop performance monitoring by process

¢ (Clear performance monitor values by processor

To create a performance monitor window

- Select Create Monitor Window from the NightSim menu on the
NightSim Scheduler window.

1-14

Using the RedHawk NightStar Tools

Target: demo Scheduler Key: 1000 =@] Frame: 95 Cycle: 2

Target CRU Iter— Last Total Ava, Soft Over EPer

System PI1D Program Name Bias ations Time Time Time Owrns runs Used
demo 0 Aidle —-All CPUs— 1867 99980 186021000 99636 - 0 99,64
deno 1083 /tutorial/sim Docoooosooss 1533 121 23522 121 = EBd 0,04

l= i
W Repetitive Guery Rate: |1D sec Resolution of Times 1 psec
——ua——

Figure 1-10. NightSim Monitor

Notice the value under the Last Time column for the process sim. This value shows the
amount of time (in microseconds) that the process has spent running between the last time
that it was wakened by the scheduler and the next time it called fbswait ().

1-15

RedHawk NightStar Tools Tutorial
Using NightProbe

The NightProbe Data Monitoring Tool is a real-time graphical tool for monitoring, record-
ing, and altering program data within one or more executing programs without intrusion.
It can be used in a development environment as a tool for debugging, or in a production
environment to create a “control panel” for program input and output.

NightProbe utilizes a non-intrusive technique of mapping the application’s address space
into its own. Subsequent direct reads and writes by NightProbe allow it to sample and
modify user data without interrupting or otherwise affecting the user process.

There is no API for NightProbe. Applications need only ensure that their debug informa-

tion is generated with the DWARF format by using the -g compilation option. Even with-
out symbols, however, NightProbe can probe processes based on virtual addresses alone.

NOTE

When compiling with releases prior to gee 3.2, it is necessary to
use the ~gdwar£-2 option in place of the —g option. Otherwise,
symbols will not be visible in NightProbe.

For more information on NightProbe, refer to the NightProbe User s Guide (0890465).

Invoking NightProbe

To invoke the NightProbe Data Monitoring Tool

- From the Tools menu of the NightSim Scheduler window, select Night-
Probe Data Recorder/Monitor.

The NightProbe Data Recording window is opened.

1-16

Using the RedHawk NightStar Tools

B& MightProbe - Data Recording . W [=][=1]
File Timer Qutput Tools Help

Configuration File: (unnamed)

Target System: demo

Timing Source Probe Zampling

32 | AL |

Zample on demand

Cutputs

Yariable List
Frogram Yariahle Data Type Slice Address

=

e

| System.. I Programs... | Yariables... | Attributes.. |

Figure 1-11. NightProbe Data Recording window

Configuring NightProbe

Our example will use a configuration file shipped with the RedHawk NightStar Tools to
configure NightProbe. This file, named nprobe.config, was copied to our local
tutorial directory earlier in the step “Getting Started” on page 1-3.

To configure the NightProbe Data Monitoring Tool

- Select Open Config File... from the File menu of the NightProbe Data
Recording window.

You will be presented with a File Selection dialog.
- Maneuver to the local tutorial directory, if necessary.

- Select the file nprobe . config from the list of Files.

- Press OK to load the configuration file and dismiss the dialog.

RedHawk NightStar Tools Tutorial

You should see the following members of the counters class listed in the Vari-
able List area of the NightProbe Data Recording window:

- counters.cycle time
- counters. i_counter

- counters.workload

We will be probing and modifying these variables.

B& NightProbe - Data R ding T [=][=1]
File Timer Qutput Tools Help

Configuration File: futorialinprobe.confiy A

Target System: localhost

Timing Source Probe Zampling

Zystem clock interval: 1 seconds Connect |

Cutputs

honitaring in spreadsheet window

Variable List
Frogram Yariahle Data Type Slice Address
=im counters, cycle_time float 0x02049293 [
=im counters, i_counter int Ox0B0492%9:
=im counters,workload int 008049250

e

| System.. I Programs... | Yariables... | Attributes.. |

Figure 1-12. Configured NightProbe Data Recording window

Since the nprobe. config file specifies that NightProbe is to direct its output to a
spreadsheet window, the Spreadsheet Viewer window is automatically opened as
well.

1-18

Using the RedHawk NightStar Tools

B MightProbe - Sp TR, [=][21]
File Selected Edit Layout Help
Layout file: ftutorial/nprobe layout
FProgram =im 3

cycle_time | cycle_time
i_counter i_counter
worklosad workload
£
R 1 =
W Auto Refresh euerylﬁ seconds DD-

Figure 1-13. NightProbe Spreadsheet Viewer window

Connecting to the target program

When you are ready to perform data recording or monitoring, you must first connect
NightProbe to a real-time NightProbe server on the target system.

The real-time NightProbe server performs initialization during the connection phase -
opening output devices, verifying target processes, and mapping target process variable
addresses.

The probed applications are not affected by this operation.

The real-time NightProbe server is the actual process that will read and write values from
and to the user application’s address space.

To connect to the target program

Press the Connect button on the NightProbe Data Recording window.

When presented with the User Authentication dialog, enter the login
name of the user in the User field along with the corresponding password
in the Password field.

Press the OK button to continue.

1-19

RedHawk NightStar Tools Tutorial

7 User Authentication

Target System: localhost

UserII

Password I

Please enter user and password

014 | Cancel Help

Figure 1-14. User Authentication dialog

Starting sampling

1-20

Once connected, we are ready to begin data recording.

Once started, the NightProbe server process will sample data based on the timing selection
and will send the output to all specified output methods.

When we configured NightProbe (see “Configuring NightProbe” on page 1-17), we
defined the timing selection to be the system clock (which fires once every second) and
selected the Spreadsheet Viewer window as our output method.

To start sampling
- Press the Start button on the NightProbe Data Recording window.

Note that the values in the Spreadsheet Viewer window will begin to change
once a second.

The user application that we are probing independently measures the time it takes
for each cycle and saves that value in counters.cycle time.

Note that the value of counters.cycle time (in units of seconds) is approxi-
mately the same as the Last Time statistic (in units of microseconds) in the Night-
Sim Monitor window. (It will be slightly less than the value shown in the NightSim
Monitor window because the application’s calculations do not include all of its
per-cycle activities.)

Furthermore, the value of counters.cycle time can also be seen in the Night-
View Monitor Window.

Using the RedHawk NightStar Tools

Modifying program data

NightProbe allows you to monitor and modify target locations while the program is run-
ning. We will modify the sim variable counters.workload to increase the amount of
work the program does.

To modify the value of a variable

- Inthe Spreadsheet Viewer window, click on the value next to the label
workload.

- Enter the value 10000.

Notice that the value for cycle time has increased significantly. In our example,
it is now approximately 0.00035 seconds (this value is dependent on your machine
speed). (You can also see this reflected in the Last Time statistic in the NightSim
Monitor window as well as in the counters.cycle time monitorpoint in the
NightView Monitor Window.)

Bl MNig fonitor Window T g@@l
Running with 1000 milliseconds hetween samples
Legend: DUpdated Not Executed Not Zampled

counters, cycle_time 0, 000348000

Figure 1-15. Modified values in NightView Monitor Window

In addition, the color of the cell containing the value of cycle time has changed
to yellow. NightProbe allows you to define caution and danger values for variables
displayed in spreadsheets. Since the attributes for this cell (which were included in
the configuration file nprobe.config - see “Configuring NightProbe” on page
1-17) specify that when the value exceeds 0.0002, the color of the cell will change to
yellow signifying a state of high caution.

1-21

RedHawk NightStar Tools Tutorial

rﬁ NightProbe - Viewer LW (=] [=] [x]
File Selected Edit Layout Help

Layout file: ftutorialinprobe.layout A
Frogram sim 3
cycle_time 0, 00035
i_counter 5
workload 10000
£
R 1 =
W Auto Refresh eueryIE1 seconds DD-

Figure 1-16. Modified values in NightProbe Spreadsheet Viewer

- Change the value of workload to 100000. Notice the color of the cell
containing the cycle time value changes to red, signifying a state of
high danger.

- Change the value of workload back to 1000. Notice the color of the cell
containing the cycle time value changes back to white.

1-22

Using the RedHawk NightStar Tools
Using NightTrace

NightTrace is a graphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log user-defined application data events from simul-
taneous processes executing on multiple CPUs or even multiple systems. In addition,
NightTrace can also log RedHawk Linux kernel events such as individual system calls,
context switches, machine exceptions, page faults and interrupts. By combining applica-
tion events with RedHawk Linux kernel events, NightTrace presents a synchronized view
of the entire system. Furthermore, NightTrace allows users to zoom, search, filter, sum-
marize, and analyze those events in a wide variety of ways.

Using NightTrace, users can manage multiple user and kernel NightTrace daemons simul-
taneously on multiple target systems from a central location. NightTrace provides the user
with the ability to start, stop, pause, and resume execution of any of the daemons under its
management.

NightTrace users can define and save a “session” consisting of one or more daemon defi-
nitions. These definitions include daemon collection modes and settings, daemon priori-
ties and CPU bindings, and data output formats, as well as the trace event types that are
logged by that particular daemon.

Invoking NightTrace

To invoke NightTrace from NightProbe

- From the Tools menu of the NightProbe Data Recording window, select
the NightTrace System Tracing and Analysis menu item.

The NightTrace Main Window is opened.

1-23

RedHawk NightStar Tools Tutorial

[T EET=]
MightTrace Daemons Pages Options Tools Help

Session configuration file: Mew

Daemon Control

Type | Daemon Hame | Target State

Attached | Logged

Buffer |Lost |

i

]

Session Overview

o
Mo events loaded.

Type | Hame Description

x=H Expressions
| String Tables
101, . Event Maps

String tables for session

Open | | Edit...| i [n

Clualified expressions for session

Event name mappings for session

4 I

Figure 1-17. NightTrace Main Window

For more information on the NightTrace Main Window, see the chapter titled “Using the
NightTrace Main Window” in the NightTrace Manual (0890398).

NOTE

If you have previously invoked NightTrace, your last NightTrace
session is automatically loaded. Create a new session by selecting
the New Session... item from the NightTrace menu.

Configuring a user daemon

NightTrace allows the user to configure a user daemon to collect user trace events.

User trace events are generated by:

- user applications that use the NightTrace API

- NightProbe (see the description of the To NightTrace menu item in the
chapter titled “Using the Data Recording Window” in the NightProbe

User s Guide (0890480).

We will configure a user daemon to collect the events that our sim program logs.

1-24

Using the RedHawk NightStar Tools

To configure a user daemon

- From the Daemons menu on the NightTrace Main Window, select the
New... menu item.

The Daemon Definition dialog is displayed.

[Dacmon Demnition T

Figure 1-18. Daemon Definition dialog

- Press the Import... button at the bottom of the Daemon Definition dialog.

You will be presented with a Login dialog.

Login

Figure 1-19. Login dialog

- Enter the name of the system on which the sim application is run-
ning in the Target System field.

1-25

RedHawk NightStar Tools Tutorial

- Enter your login name on that system in the User field.
- Press the OK button.

The Import Daemon Definition dialog is presented.

Scan on target demo complete.

Program ID | Program User Key File
16627 sim root Autorialfsim-data

=

Import | Refreshl Cancell Help |

Figure 1-20. Import Daemon Definition dialog

The Import Daemon Definition dialog allows the user to define daemon attributes
based on a running user application containing NightTrace API calls.

- Select the entry corresponding to the sim application.
- Press the OK button.

The Import Daemon Definition dialog closes and the Daemon Definition dialog is
populated with the imported attributes.

- Press OK on the Daemon Definition dialog to complete the configuration
of the user application daemon.

Creating a customized display page
Now that we have configured our user application daemon, we can create a NightTrace
display page in which we will view our trace data.

For this example, we would like to use a customized display page so we will use the con-
figuration file shipped with the RedHawk NightStar Tools. This file, named
ntrace.config, was copied to our local tutorial directory earlier in the step “Get-
ting Started” on page 1-3.

To create a customized display page

- Press the Open... button at the bottom of the NightTrace Main Window.

1-26

Using the RedHawk NightStar Tools

You will be presented with an Open Display File dialog.

- Select the file ntrace.config from the list of Files.

- Press the OK button to create the display page as specified by the
configuration file.

The customized NightTrace display page is presented.

E3] S L
Page Edit Create Actions Options Help
j
]
—
iy

E Thread: sim

LY | —

E User Events:
- [0.0000s 0,0001= 0,0002s
"::IIIIlIIIIIIIII|IIII|IIII|:
Jod —I
Cegterl Tagl ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgde'
1

wt Time: | {0, 0000000005 Time Length: | 5, 000256000s End Time: | 1, 0002560005 Current Time: | 1, 0001280005
t Event: | Svent Count: |1 End Event: | &

Figure 1-21. Customized NightTrace display page

Creating the user application daemon

Once the user application daemon is configured, it must be created before it can begin col-
lecting events.

To create the user application daemon

- Select the user application daemon in the Daemon Details Area of the
NightTrace Main Window.

- Press Launch.

1-27

RedHawk NightStar Tools Tutorial

The user application daemon is now created and ready to capture data. Note that the
daemon is in a Paused state.

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Resuming execution of the user application daemon

Now that the daemon is configured and created, waiting in a Paused state, we may
resume its execution so that it may begin collecting events.
To resume execution of the user application daemon

- Select the user application daemon in the Daemon Details Area of the
NightTrace Main Window.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

Displaying the user trace data
Now that we have our customized display page, we can display the user trace data.

To display the user trace data

- Press the Zoom Out button on the user display page repeatedly until data
fills the grid area. You should see a saw-toothed pattern similar to the one
shown in the figure below.

1-28

Using the RedHawk NightStar Tools

x] .

L=dl=dic)
Page Edit Create Actions Options

Help

L L o — |

E offset = 3

id = 111 argl = & ‘ :

E Thread: sim

E User Events:

5 oa ::EE ﬁ‘s 3.8 B,z R 12.= é
= ||||||||||||||||||||||||||||||| :

I~ 1
Cegterl EI ﬁarkl Discard Events...' Zoom To Region' Zootm In| Zootm Out|

Refresh| QL Mode'

it Time: |§3‘0000000003 Time Length: |;15 978894259 End Time: |;15 978894259 Current Time: |30 103321713s
t Event: |:30 =vent Count: |;1?5 End Event: |;1?4

Figure 1-22. User trace data in customized NightTrace display page

NOTE

This display page is configured to only display events from the
user application.

Inserting a patchpoint

NightView allows the use of patchpoints while debugging a process. Patchpoints are loca-

tions in the debugged process where a patch, usually an expression that alters the behavior
of the process, is inserted.

In our example, we will insert a patchpoint in the loop to change the value of the arg vari-
able in order to modify the output of the trace data:

arg = counters.Get () % 10;
trace event arg (cycle end, arg);

To insert a patchpoint in a program

- In the NightView Principal Debug Window, click on the line:

1-29

RedHawk NightStar Tools Tutorial

trace event arg (cycle end, arg);

- Select Set Patchpoint... from the Eventpoint menu. This will open
the Set a New Patchpoint dialog.

Set a Mew Patchpoint

Location: sim.c:50
. Ciptions:
Evenipoint RE
nahle
Rharden:
) Enahle, disable after next hit
) Disable
Condition: If |

Ignore Count: I

Mame: I
® Insert an expression at this location
) Branch to a different location
Evaluate: I arg = 10- arg |

| o |

Cancell Help |

Figure 1-23. Setting a new patchpoint
- Enter the expression:
arg = 10 - arg
in the Evaluate field.

- Press OK.

NOTE

You may have also entered the following command in the Com-
mand field of the NightView Principal Debug Window:

patchpoint at line number eval arg = 10 - arg
where line_number coincides with the line:

trace event arg (cycle end, arg);

See patchpoint for details on the use of this command.

1-30

Using the RedHawk NightStar Tools

Viewing streaming trace output

Now that we’ve modified the behavior of the program using patchpoints in NightView

(see “Inserting a patchpoint” on page 1-29), we can see the effect our change has on the
output of the user trace data.

Since the user trace daemon was configured to stream the output directly to the Night-
Trace display buffer, we may view it immediately even while additional trace data is being
collected.

To view streaming data

- On the Interval Control Bar under the grid on the NightTrace display page,
press the right arrowhead continually until you see the shape of the saw-
tooth pattern change from an ascending pattern to a descending pattern as
shown in the figure below. (See the section titled “The Interval Scroll Bar”
in the chapter “Viewing Trace Event Logs with ntrace” in the NightTrace

Manual (0890398).
@ lI-n‘|:|.-|ll jﬂj
Page Edit Create Actions Options Help
j
#
o
X

- |offset = 619 argl = § ‘ :

Thread: sim |

ceaccaanoc 40,5 50,5 B0, : :
"::::|||||||||||||||||||||||||||||||||||:

E User Events:

i .
Cegterl Tagl ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgde'
1
ut Time: | 54,471497714= Time Length: | B4, 4714977135 End Time: | £3,9429954275 Current Time: | £5,213417193s
t Event: | 342 Svent Count: | 511 End Event: | £52

Figure 1-24. User trace data after patchpoint inserted

1-31

RedHawk NightStar Tools Tutorial

NOTE

We've just modified the path and behavior of our real-time appli-
cation without stopping it or causing it to miss any deadlines - just
one of the many features of NightView!

Configuring a kernel daemon

NightTrace allows the user to configure a kernel daemon to collect data about the execu-

tion time of interrupts, exceptions, system calls, context switches, and 1I/O to various
devices.

To configure a kernel daemon

- From the Daemons menu on the NightTrace Main Window, select the
New... menu item.

The Daemon Definition dialog is displayed.

[Dacmon Defnition T

daeman_1;

Figure 1-25. Daemon Definition dialog

1-32

Using the RedHawk NightStar Tools

- Select the Kernel radiobutton located in the Target section on the Gen-
eral page to indicate that we want this daemon to collect kernel events.

- Press OK to complete the configuration of this daemon.

Creating the kernel daemon

Once the daemons are configured, they must be created before they can begin collecting
events.

To create the daemons

- Select the kernel daemon in the Daemon Details Area of the NightTrace
Main Window.

- Press Launch.

The kernel daemon is now created and ready to capture data. Note that the daemon
is in a Paused state.

In addition, a NightTrace kernel display page appears.

] e BTN
Page Edit Create Actions Options Help
j
£
—
A A A A A A | 2]
-+ |demo CPU O o o T
. |
|
|
|
s !
- - [demo CPU1 i ! :
X I .
] .
1 .
1 .
o 1 .
: | Interrupt | Exception | 40,5 50,5 B0, T .
X | Syscall |Ker‘nelEuent | | 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 || 1 1 1

~ i
Cegterl EI ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgdel

o

Start Time: | 24, 4714977145 Time Length: | 24,471497713s End Time: | £5,942995427s Current Time: | £5, 2194171935
Start Event: | 542 Event Count: | 311 End Event: | £52

Figure 1-26. NightTrace kernel display page

1-33

RedHawk NightStar Tools Tutorial

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Resuming execution of the kernel daemon

Now that the kernel daemon is configured and created, waiting in a Paused state, we
may resume its execution so it may begin collecting events.

To resume execution of the kernel daemon

- Select the kernel daemon in the Daemon Details Area of the NightTrace
Main Window.

IMPORTANT
The current activity on the system has a drastic effect on how
much data will be collected. Streaming data for a few seconds on
a busy system may collect hundreds of thousands of kernel events

while on a fairly idle system it may take a few minutes to reach
that level.

- Press Resume.

The state of the daemon changes from Paused to Logging as it begins to collect
trace data.

NOTE

You may display the kernel data as it is streaming. See “Display-
ing the kernel trace data” in the following section.

- When the value in the Logged column reaches around 50000 events,
press the Pause button.

Displaying the kernel trace data

As we are collecting trace data from the RedHawk Linux kernel, we can display that data
in the NightTrace kernel display page.

1-34

Using the RedHawk NightStar Tools

To display the kernel trace data

- Select only the kernel daemon in the Daemon Details Area of the Night-
Trace Main Window (as indicated by the K in the Type column).

- Press Display.

When data from the selected daemon(s) is being streamed to the NightTrace display
buffer (as specified by the setting of the Stream checkbox on the General page of
the Daemon Definition dialog), pressing this button causes a flush of the data cur-
rently in the trace buffer to the NightTrace display buffer.

- When the value in the Logged column reaches around 50000 events,
press the Pause button.

Flushing the trace data

To flush the trace data

- Select both daemons from the Daemon Details Area of the NightTrace
Main Window).

- Press Flush.

This flushes any remaining trace events from the buffers associated with the dae-
mons currently selected in the Daemon Control Area to the NightTrace display
buffer. (If our trace data was being output to output files, the trace events would be
flushed to those files.)

Stopping the daemons
Once we are finished accumulating enough data from the daemons, we can stop them.

To stop the daemons

- Select both daemons from the Daemon Details Area of the NightTrace
Main Window).

- Press Halt.

The state of both daemons changes to Halted.
Positioning the current time line

We will position the current time line to a point somewhere after the kernel trace data
started being generated.

1-35

RedHawk NightStar Tools Tutorial

To position the current time line

- On the Interval Control Bar under the grid on the kernel display page, press
the right arrowhead continually until data appears in the grid area. (See the
section titled “The Interval Scroll Bar” in the chapter “Viewing Trace
Event Logs with ntrace” in the NightTrace Manual (0890398).

- Click in the center of the data displayed in the grid area of the kernel dis-
play page.

Note the information regarding interrupts, exceptions, system calls, and kernel
events on each CPU displayed in the DataBoxes on the left side of the grid area.

==L

Page Edit Create Actions Options Help I
j
#
o

T I |,

N O :

oo |Edmer I | ol ol ul m | ol I

. ¢ [Breakpoint Il I Il Il Il

! [

- pid idle Il

: ; [TR_SULTCHIN [ITEEEECEC Il Il [

- - [demo CPU1 i !

: PESChEdUIe AL LU L L L L L i L i g g i

- Page-Fault ||||

© o |newselect |||| :

;o |pid idle Il ;

- . [TR_INTERRUPT_ENTRY e T TN,

[Int t | E ti 200, 8 20,1 2014 T 2517 252,0 252,3 EJp

S| O N O P O Il)

= 1=

Cegterl Tagl ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgdel
o

Start Titme: | 250, 6715004985 Time Length: | 1,977767293= End Time: | 252, 649267791 Current Time: | 251, 660384145

Start Event: | 28329 Event Count: | 12844 End Event: | 41182

Figure 1-27. NightTrace kernel trace data

The DataBoxes are updated based on the current position of the current timeline and indi-
cate the last value of each data item that occurred on or before the timeline on each CPU.

NOTE

By default, user events are not displayed on this page even though
they may exist in the same interval.

1-36

Using the RedHawk NightStar Tools

Loading an eventmap file
Eventmap files map ASCII trace event names with numeric trace event IDs allowing the
user to reference events based on mnemonic tags or meaningful labels.

An eventmap file, ntrace.eventmap, was copied from the
/usr/1lib/NightStar/tutorial directory to our working directory in the step
“Getting Started” on page 1-3. This file contains a mapping of trace event names to the
trace events IDs logged in our user application.

We will load that eventmap file now so that we can refer to those event names in the next
section, “Searching for a user trace event”.

To load an eventmap file
- Press the Open... button at the bottom of the NightTrace Main Window.
You will be presented with an Open Display File dialog.

- Select the file ntrace.eventmap from the list of Files.

- Press the OK button to load the eventmap file.

Searching for a user trace event

To search for a user trace event

- Select the Search... menu item from the Tools menu on the NightTrace
display page containing the user trace data.

The NightTrace Search dialog is presented.

1-37

RedHawk NightStar Tools Tutorial

Search Nighifrace Fvenis

Vewvnwww ¥

Figure 1-28. NightTrace Search dialog

- Select cycle_start from the list of events in the Value pulldown menu
list.

In sim. c (see “sim.c” on page A-2), we log a trace event immediately when we
start our cycle (exiting fbswait):

trace_event arg (cycle_start, counters.Get());

NOTE

Because we loaded the ntrace.eventmap file (“Loading an
eventmap file” on page 1-37), we are able to specify the more
meaningful event name, cycle_start, in the Event List field
instead of the numeric trace event ID (110).

- Press the search button (represented by the right-hand green arrow.

- Press the Close button to dismiss the Search dialog.

Both display pages are positioned at the first occurrence in our data which meets our
search criteria.

1-38

Using the RedHawk NightStar Tools

==
Page Edit Create Actions Options

1

Search match: offzet=34270% id=cycle_start pid=sim tid=sim time=251,711053146 argl=5

E of fset = 34275 id = cycle_start argl = 5 ‘:
T
|
: |
- |Thread: sim |
Uzer Events: ‘ ‘ ‘ ‘ ‘ ‘ ‘
5600000000000 00000a030aaa 200, 8s 201, 1s 201,45 51?3 252,05 252,35 :
T ||||[|||||[|||||[||||. [|||||[|||||[|||| :
| v
(] 1=
Cegterl Tagl ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgde'
o
ut Time: | 260,671500498: Time Length: | 1,977767293s

End Time: | 252, F49267791s Current Time: | 251, 711053146
t Event: | 28329 Svent Count: | 12844 End Event: | 41182

Figure 1-29. User trace data after search

Zooming in

We can see a finer level of detail by zooming in on the user trace display page

To zoom in

- Press the Zoom In button repeatedly until two black vertical lines with a
green bar between them appears.

1-39

RedHawk NightStar Tools Tutorial

Page Edit Create Actions Options Help

EIEIEIl

1 Search match: offzet=34270% id=cycle_start pid=sim tid=sim time=251,711053146 argl=5

L L o — |

E of fset = 34275 id = cycle_start argl = 5 ‘E
T
|
|
: |
- |Thread: sim
- |User Events: ‘ :
565 60000ananannans 000000 251, 7109 251, 7110s 251, 7111s 251, 71125 -
III|IIII|IIII|IIII|IIII IIII|IIII|IIII|IIII|IIII X
I~ =]
Cegterl Tagl ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgde'
o
wt Time: | 2651, 710811719 Time Length: |), 0004828535 End Time: | 251,7112945735 Current Time: | 251, 711053146

t Event: | 34767 Svent Count: |17 End Event: | 24283

Figure 1-30. Zoomed in view of user trace data

Remember that our program logs a trace event immediately when we start our cycle (exit-
ing fbswait), then it performs some calculations using counters.work, and finally it
logs another trace event when it is finished before returning to the fbswait call at the top
of the loop. (See “sim.c” on page A-2.)

The black lines represent the individual events logged in the application by the
trace event arg() APIcalls. The green bar is a state graph; the start of the state is
defined to be the cycle start event logged when we begin our cycle (event #110) and
the end of the state is defined by cycle end (event #111) which is logged when we
complete our cycle.

The red line that appears at the end of the state graph is an entry in a datagraph whose
value is that of the argument logged with the cycle end event in the second
trace event arg() call. (This value which ranges from 1 to 9).

Examining the kernel trace data

1-40

Now let’s take a look at the kernel trace data to see how it coincides with the user trace
data.

Using the RedHawk NightStar Tools

NOTE

NightTrace automatically synchronizes all display pages so that
every display page shows the same time frame. Thus, our kernel
display page reflects the system activity corresponding to the time
period displayed in our user trace display page.

==
Page Edit Create Actions Options Help
1 Search match: offzet=34270% id=cycle_start pid=sim tid=sim time=251,711053146 argl=5 'J\
£
o
A A A A A A | 2]
-+ |demo CPU O o o T
2 o | ml |
o Breakpoint | 1 ||
_:Fbsched |
::pidsim
- [TR_SYSCALL _EXIT [T
- - |
© o |demo CPU 1 - |
- |local_timer |
- Page-Fault N
© o |newselect |
::pididle |
- |TR_INTERRUPT_EXIT | o
: | Interrupt | Exception | 201, 7109s 251, 71105 T 201, 7111s 201,7112s .
:|Sysca11|Ker‘nelEuent|"'""l""l""|""|I""|""|""""l"'l:

R~]
Cegterl EI ﬁarkl Discard Events...' Zoom To Regi_on' Zootm In| Zootm Out| Eefresh' QL Mgdel

o

Start Titme: | 251, 710811719 Time Length: | ©, 000482853 End Time: | 251,7112945735 Current Time: | 251, 711053146
Start Event: | 54267 Event Count: |47 End Event: | 24283

Figure 1-31. Zoomed in view of kernel display page

NOTE

The following analysis of the kernel trace data is based on
Figure 1-31. If you are analyzing live data, your kernel display
page may look different. You may see additional activity, most
likely interrupt activity, between the exit and reentry to the
fbswait API call (which corresponds to the fbsched system
call on CPU 0 in Figure 1-31).

In Figure 1-31, the first red bar displayed on the grid for CPU 0 indicates the interrupt
from the RCIM device. (Note that if you collected your own kernel data, the CPU where
the interrupt occurred could be on either CPU.)

1-41

RedHawk NightStar Tools Tutorial

A context-switch then occurs as indicated by the first black vertical line to the left of the
current time. The blue bar following that first black line is the fbsched system call. In
our source code, this is when we exit the fbswait call.

The application then performs its calculations (as indicated by the expanse of white space)
on the system call row and the green colored bar on the pid row) before it comes back to
the fbswait call (the second blue bar).

The lack of any activity in the white space in the interrupt and system call rows indicates
that the user application did not make any intervening system calls and was not disturbed
by some other interrupt.

The solid green bar in the pid row indicates the time where the process sim was assigned
to the CPU (executing in the kernel during the system call and executing in user space oth-
erwise).

In a real-life scenario, we would tune and shield the system for optimal real-time perfor-
mance.

Exiting the tools

In conclusion of our tutorial, we will exit each of the tools.

Exiting NightTrace

To exit NightTrace

- From the NightTrace Main Window, select Exit from the NightTrace
menu.

- When NightTrace presents the warning dialog asking if you would like to
save changes to the new session, press No.

- When NightTrace presents the warning dialog asking to remove temporary
trace data, press Yes.

Exiting NightProbe

To exit NightProbe

- From the NightProbe Data Recording window, press the Stop button to
stop sampling data.

- Press the Disconnect button to disconnect from the application.

- From the File menu, select Exit.

1-42

Using the RedHawk NightStar Tools

- When NightProbe presents the warning dialog asking if you would like to
save configuration changes, press No.

Exiting NightSim

To exit NightSim

- In the NightSim Scheduler window, press the Stop button.

- Press the Remove button.

Scheduler
@ Femowve
Active Sio

Figure 1-32. Removing the scheduler

You will be presented with the following dialog:

Remay

Kill the processes that are
runhing on this scheduler?

Yes | Mo | Cancell Helpl

Figure 1-33. Remove Scheduler dialog

- Press Yes to kill the processes that are currently scheduled on the sched-
uler.

- From the NightSim menu, select Exit.

- When NightSim presents the warning dialog asking if you would like to
save the current configuration, press No.

1-43

RedHawk NightStar Tools Tutorial

Exiting NightView

To exit NightView
- From the NightView Principal Debug Window, select
Exit (Quit NightView)

from the NightView menu.

Conclusion

This concludes our tutorial for the RedHawk NightStar Tools.

1-44

Tutorial Files

A
Tutorial Files

The following sections show the source listings for the files used in the RedHawk Night-
Star Tools Tutorial.

A-1

RedHawk NightStar Tools Tutorial

sim.C

#include <unistd.h>
#include <stdio.h>
#include <ntrace.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#include <fbsched.h>
#include "rcim timer.h"

#define cycle start 110
#define cycle end 111

class Counters ;

class Counters {

public:
Counters (int i=0, int load=10000);
void Increment (int i) { i counter = (i counter + i) %

void SetWorkload (int load);
int Calculate (void);

int Get(void);

void Work (void);

float cycle time;
private:

int i counter;

int workload;

bi

Counters counters ;
rcim timer timer;

static void trace setup (char *);

main ()
{

int arg;
counters.SetWorkload(0) ;
trace setup ("sim-data")

while (fbswait() == 0) {
timer.start ();
counters.Increment (1) ;
trace_event arg (cycle start, counters.Get());
counters.Work() ;
timer.stop();
arg = counters.Get() % 10;
trace event arg (cycle end, arg);
counters.cycle time = (float) timer.elapsed();

Counters::Counters (int i, int load)
{

i counter = i;

workload = load;

A-2

void
Counters: :Work (void)
{
int i;
volatile int x = 0;
for (i=0; i<workload; ++1i) {
x = x * Calculate();
}
timer.spin (100);

int
Counters::Calculate (void)

{

return i counter*2;

int
Counters: :Get (void)
{

return i counter;

void
Counters::SetWorkload (int load)
{

workload = load;

static

void

trace setup (char * key)

{
struct pgm2 ds ds;
ntconfig t config;
char thread name[20];
char dont care[2048];
int status;

config.ntc_buffer size = 1024*16;
config.ntc use spl = 0;
config.ntc use resched = 0;
config.ntc lock pages = 0;
config.ntc clock = 0;
config.ntc_shmid perm = 0666;

config.ntc_daemon preferred = 1;

trace begin (key, &confiq);
trace open thread ("sim");

Tutorial Files

A-3

RedHawk NightStar Tools Tutorial

rcim_timer.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <errno.h>
#include <ntrace.h>

#include "rcim timer.h"
rcim timer::rcim timer (void)
{

char * rcim tick addr;

int rcim tick fd;

#define PAGE SIZE 4096
#define PATH "/dev/rcim/sclk"

clock = NULL ;

rcim tick fd = open(PATH, O RDONLY, 0);

if (rcim tick fd == -1) {
//printf ("failed to open RCIM \n")
return ;
}
rcim tick addr = (caddr_t) mmap (
NULL, (size t) PAGE_SIZE, PROT READ, MAP SHARED, rcim tick fd, 0);
if (rcim tick addr == (caddr t) -1) {

//printf ("failed to mmap RCIM \n")
close(rcim tick fd);
return;

}

close(rcim tick fd);

clock = (timestamp t *) rcim tick addr;

void
rcim timer::start (timestamp t * stamp)
{
if (!stamp) {
stamp = &start time;
}
for (;;) |
stamp->high = clock->high ;
stamp->low = clock->low ;
if (clock->high == stamp->high) {
return ;

void
rcim timer::stop (timestamp t * stamp)
{
if (!stamp) {
stamp = &stop time;
}
for (;;) |

A-4

stamp->high = clock->high ;

stamp->low = clock->low ;

if (clock->high stamp->high) {
return ;

#define SECONDS PER TICK 0.000000400 // 400 ns

double
rcim timer::elapsed (timestamp t * start, timestamp t * stop)

{

if (!start && !stop) {
start = &start _time;
stop = &stop time;

}
int upper
int lower =

= stop->high - start->high;
stop->low - start->low;

* SECONDS_PER TICK * 4294967296.0 +
* SECONDS_PER TICK ;

return double (upper)
double (lower)

rcim timer::~rcim timer (void)
{
((caddr_t)clock,PAGE_SIZE);

(void) munmap

void
rcim timer::spin

{

(int micro seconds)
timestamp t start, stop;
rcim timer::start (&start);
for(;:) |
rcim timer::stop (&stop);
if (elapsed(&start, &stop) >= (double)micro seconds/1000000
return;

Tutorial Files

-0) o

A-5

RedHawk NightStar Tools Tutorial

rcim_timer.h

A4-6

class rcim timer {

typedef struct {
int high ;
int fill ;
int low ;

} timestamp t ;

public:

rcim timer (void);

~rcim_timer (void);

void start (timestamp t * stamp = NULL);

void stop (timestamp t * stamp = NULL);

double elapsed (timestamp t * start = NULL,
timestamp t * stop = NULL);

void spin (int micro_ seconds) ;

private:

volatile timestamp t * clock ;
timestamp t start time ;
timestamp t stop_ time ;

Spine for 1/2” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

NMEHPaY

<
(o]
=
-
»
-
Q
q
)
o
7))

Tutorial

0898009

Illustrations

Copy the contents of this chapter into the Table of Contents.

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.
Figure 1-18.
Figure 1-19.
Figure 1-20.
Figure 1-21.
Figure 1-22.
Figure 1-23.
Figure 1-24.
Figure 1-25.
Figure 1-26.
Figure 1-27.
Figure 1-28.
Figure 1-29.
Figure 1-30.
Figure 1-31.
Figure 1-32.
Figure 1-33.

NightSim Scheduler 1-5
NightSim Edit Process 1-7
Process Scheduling Area 1-9
NightView Dialogue 1-10
NightView Principal Debug Window 1-11
Setting a new monitorpoint 1-12
NightView Monitor Window 1-12
Resuming executionccoiitirireninennenan.. 1-13
Starting the simulation 1-14
NightSim Monitor i 1-15
NightProbe Data Recording window 1-17
Configured NightProbe Data Recording window 1-18
NightProbe Spreadsheet Viewer window 1-19
User Authentication dialog 1-20
Modified values in NightView Monitor Window 1-21
Modified values in NightProbe Spreadsheet Viewer 1-22
NightTrace Main Window 1-24
Daemon Definitiondialog 1-25
Logindialogot 1-25
Import Daemon Definitiondialog 1-26
Customized NightTrace displaypage 1-27
User trace data in customized NightTrace display page 1-29
Setting anew patchpoint 1-30
User trace data after patchpointinserted 1-31
Daemon Definitiondialog 1-32
NightTrace kernel display page 1-33
NightTrace kernel trace data 1-36
NightTrace Search dialog 1-38
User trace data aftersearch 1-39
Zoomed in view of user tracedata 1-40
Zoomed in view of kernel display page 1-41
Removing the scheduler 1-43
Remove Schedulerdialog 1-43

Do not include this document in the final book.

Copy the contents of this chapter into the Table of Contents.

Do not include this document in the final book.

	RedHawk NightStar Tools Tutorial
	Preface
	Chapter 1 Using the RedHawk NightStar Tools
	Appendix A Tutorial Files
	Illustrations

	Using the RedHawk NightStar Tools
	Overview
	Before you begin

	Getting Started
	Building the program

	Using NightSim
	Invoking NightSim
	Configuring the Scheduler
	Scheduling a process
	Setting up the scheduler

	Using NightView
	Setting a monitorpoint
	Resuming execution
	Starting the simulation
	Monitoring the simulation

	Using NightProbe
	Invoking NightProbe
	Configuring NightProbe
	Connecting to the target program
	Starting sampling
	Modifying program data

	Using NightTrace
	Invoking NightTrace
	Configuring a user daemon
	Creating a customized display page
	Creating the user application daemon
	Resuming execution of the user application daemon
	Displaying the user trace data
	Inserting a patchpoint
	Viewing streaming trace output
	Configuring a kernel daemon
	Creating the kernel daemon
	Resuming execution of the kernel daemon
	Displaying the kernel trace data
	Flushing the trace data
	Stopping the daemons
	Positioning the current time line
	Loading an eventmap file
	Searching for a user trace event
	Zooming in
	Examining the kernel trace data

	Exiting the tools
	Exiting NightTrace
	Exiting NightProbe
	Exiting NightSim
	Exiting NightView

	Conclusion
	Tutorial Files
	sim.c
	rcim_timer.c
	rcim_timer.h
	Illustrations

