) { NIGHTSTAR

NightTrace User’s Guide

Version 7.1
(RedHawk™ Linuxe)

A i
& concurrent “Wrch 2006

y

Copyright 2007 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof isintended for use with Concurrent
products by Concurrent personnel, customers, and end—users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Computer Corporation makes no warranties, expressed or implied, concerning the information contained in this document.

Concurrent Computer Corporation and its logo are registered trademarks of Concurrent Computer Corporation. All other Concurrent product
names are trademarks of Concurrent while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.

NightStar’s integrated help system is based on Qt's Assistant from Trolltech.

Preface

Scope of Manual

This manual is a reference document and user’s guide for NightTrace™ - a graphical,
interactive debugging and performance analysis tool.

Structure of Manual

The manual includes four major parts as shown below:

* Event Logging and Capture — Chapters 2 through 6
* Graphical Analysis— Chapters 7 through 17

* Programmatic Analysis — Chapter 18

¢ Reference — appendices and index

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

Syntax Notation

The following notation is used throughout this guide:

italic
Books, reference cards, and items that the user must specify appear in italic
type. Special terms and commentsin code may also appear in italic.

list bold
User input appearsin 1ist bold type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
encesalso appear in 1ist bold type.

list
Operating system and program output such as prompts and messages and list-
ings of files and programs appearsin 1ist type. Keywords also appear in
list type.

window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

NightTrace RT User’s Guide

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

An éllipsis follows an item that can be repeated.

Contents

Chapter 1 Introduction

User TracePoint Placement. i e 1-2
Kerngl TracePoint Placement i i 1-2
TIMESAIMIDS .« . . ettt e 1-3
L aNgUAgES . . ottt e e e 1-3
Information Displayed.t 1-4

Language-Specific Source Considerationscoiviiiiii 2-1
C ot 2-1
FOrtran ... 2-2
A, .. 2-2

Inter-Process Communication and Library Routines 2-3

Understanding NightTrace Library Calls, 2-4
trace begin. ... 2-6
trace open thread. 2-11
trace eventanditsvariants i 2-12
trace_enable, trace disable, and their variants. 2-18
trace flushandtrace trigger ...t 2-22
trace close thread i 2-24
trace eNd. .. . 2-25
trace diag_ mode.o 2-27
trace diag_func 2-28

Disabling TraCing oo vt e 2-29

Threadsand Logging.o v v ettt et e e 2-29
trace register thread 2-30
Pthread_create 2-31

Compilingand Linking 2-31
C Compilationand Linking 2-32
Fortran Compilationand Linking. oo, 2-32
AdaExample e 2-32

Chapter 3 Capturing User Events with ntraceud

Thentraceud DaemOoNot 31
Ntraceud MOGES e 32
The Default User Daemon Configuration 3-2
Ntraceud OPLIONSot e 3-3
INvoKing Ntraceud oo 3-6

Chapter 4 Capturing Kernel Events with ntracekd

Thentracekd Daemonot e 4-1

NightTrace RT User’s Guide

Nracekd MOOES ot et e e e e 4-1
Ntracekd OPLIONSttt 4-2
Ntracekd INVOCAEIONS . . . ottt e e e e e e e e 4-5

Chapter 5 Application lllumination

OVEIVIBIV ottt et e e e e e e 51
HIUMINGEOr . . oo e 51
Work Flow Hustration e 51
Provided HTUMINators.o 5-2
Detall Levels. . ..o 5-2

Creating and Building an llluminator, 5-4
HluMInator --Create 5-4

--aggregate limit=limt............................... 54
--config=configxml 5-5
--do nodebug, --dont nodebug....................... 5-5
--event _ids=N-[M]...... 55
--install=path....... 5-5
et R e 5-6
--iunderscores, --XundersCoOres.............ouvuuun. 5-6
--iregex=regex, --xregex=legeX...........uouuuenruen... 5-6
--istd, --xSEA . 5-7
illuminator --populate. 5-7
illuminator --build.o 5-7
L et 5-8
2 e e 5-8
P 5-8
next event.txt i 5-8
Huminator . b, .. 5-8
HUMINALOr AP, « . v vttt et e 5-8
illuminator_level . fmt 5-9
luminator_level.o. 5-9
luminator_level .1ist ... 5-9
HUMINALOr 0. o e 5-9
HHUMINaLOr —-FEPOIT . . . oo 5-9

Linking With HHIuminatorst e 5-10
HIUMINGLOr =-gCC .+« o ettt e e 5-11
HIUMINGLOr —-g77 . . o ot e 5-11
Hluminator --CE77 .. . 5-11
lluminator —-ada.o 5-11

Predefined [lluminators 5-11

111 1 512
GlabC . . 5-12
Pthread. e 5-12
LT < o 5-12

Activating HHluminators 5-12

00 =T 5-12

L 5-13

main[, OptioNS]t 5-13
HIUMINALON . . o o 5-13
JaVE L 5-13
Using NightTrace With llluminators it 5-14
Customizing an HIuminatort e 5-14

Vi

Contents

<l cOmMMENt —-> L 5-14
LCONMf g™ . et 5-14
<declare> 5-15
<AefalltS>. . .. 5-16
<exclude>. 5-16
<FUNCHION> ..o 5-17
(0 1010 > 5-17
<levEl> 5-18
caller={yes|no}. ... 5-20
frame={yes|no}. 5-20
aggregate limit=limit, 5-20
args={yes|no} 5-20
addr_args={yes|no} 5-20
return val={yes|no}......... i 5-20
addr_ret={yes|no} ... 5-20
variables={yes|no}..... ... i 5-20
errno={yes|no}. 5-20
exclude={yes|no}o 5-20
QOPLIONS™ . .ot e e 5-21
event ids="N-[M]" 5-21
aggregate limit="limit” 5-22
nodebug={yes|no} ... 5-22
underscores={yes|no}. 5-22
std={yes|no} 5-22
iregex="regex”, XregexX="TeJeX"cuuuirirerirnenuri. 5-22
filename="filename” 5-22
Quariable>. . 5-22
=00 > 5-23
<wrapper_file scope> 5-23
ST APPES POS > . o ettt e 5-23
0] o1 g o = 5-24
SWIaPPEr €Al L 5-24

Chapter 6 Performance Tuning

Preventing TraCe EVeNnt LOSS.o oot 6-1
Daemon Scheduling Adjustment 6-1
Increasing Trace Buffer Size ... 6-2
Programmatic Flushing i i 6-3

Conserving Disk SPaceo vt 6-3

Conserving Memory and Acceleratingntrace.coovvi e, 6-3

Chapter 7 Invoking NightTrace

Command-lineOptioNst 7-1
Summary Criteria.o e 7-6
Command-line ArgumeENtS.t e e e 7-10
TraceBvent Files 7-11
Event Map Files. e 7-11
TableFiles 7-14
TablES .o 7-14

String Tables. 7-15

Pre-Defined StringsTables 7-17

Vii

NightTrace RT User’s Guide

Format Tables. 7-20
Session Configuration Files 7-24
TraceDataSegmentst 7-25

Chapter 8 The NightTrace Main Window

MENU Bar e e 8-2
File . 8-2
VBV .o 8-6
DaEMONS . . . o e e e 8-8
S CN . .t e 8-9
SUMMANY . et e e e e e e e 811
Profiles ... 8-13

Export Profilesto NightTrace APl SourceFile. 8-14
TIMENES. . ..o e 8-17
TO0IS . et 8-20
Help. o e 8-22

TOOIDAIS . . vt e 8-23

PagES . .. 8-25

PanElS. . .o e 8-28

Chapter 9 Daemons Panel

ConteXt MBNU. . ..o e 9-2
Control BULLONS 9-8
Edit Daemon Definition. i 9-9
General SEttiNgSt 9-10
Trace Buffer Settings. 9-11

Trace Daemon Runtime Settings, 9-15
Enabled EVents.o 9-16

Chapter 10 Trace Segments Panel

TraceSegmentsTable i 10-1
CoNtEXE MBNU. . . oo e e e 10-2
Control BULLONSo 10-4

Chapter 11 Events Panel

Textual Event TableS oot 111
ConMtEXE MBNUot e e e 11-3

Chapter 12 Timeline Panels

Default TImeline e e 12-1
Current TimelinelIndicator. i e 12-2
Global RUIEr. e 12-2
Interval RUlEr 12-3
Event Graphs 12-5
Event DesCription Ar€ao v it e 12-6
Keyboard Traversal e e e 12-7
Creating TimelineObjects. i e 12-8

viii

Bvent Grapho 12-10
State Graph. . ..o 12-11
DataGraph 12-12
Data Graph OptionsDialog.o oo 12-13
Drawing and Coloring Examples, 12-16
Color SelectionDidog oo 12-17
Standard Color Namest 12-19
Interval Ruler 12-20
Global RUler 12-20
LabEl . . 12-20
DataBOX. . ..o 12-20

Chapter 13 Profiles Panels

Profile Definition Panel i 13-1
Control BULONS oo e e 13-8
Summarizing Statistical Information.o i 13-10
Condition SUMMANES. . ..o ottt e ettt 13-10
Sate SUMMANIES. . .. ottt e e e et 13-10
SUMMANY SCHPLS .. et e e e e 13-10
Summary Script Environment Variables. 13-11
ProfileStatusList Panel. 13-12
ProfileStatusList Table. e 13-12
Context MENU.o e e e 13-13

Chapter 14 Event Descriptions Panel

Chapter 15 Tags List Panel

CrEaliNg TS, . o ot i ettt e 151
TagsListTable.o 15-2
Context MeNU e e 15-2
Control BUHONSo e e 15-3

Chapter 16 Using Expressions

O VIV B .« ot e 16-1
L0 67 1= 0 £ 16-1
O AN . . . ot e 16-1
CONS ANES . . . e 16-2
FUNCLIONS 16-4
Function Parameters. it 16-9
Function Terminologycco i 16-11
StiNG FUNCLIONSo e 16-16
SCMP() .« v oo e e 16-16
SNCMP() . o e e 16-17

Trace Bvent FUNCtions 16-18

o 16-20

A0 e e 16-21

arg dbl() .. 16-22
aAgIoNg() ..o 16-23

NightTrace RT User’s Guide

arg long 1ong() . .. v oot 16-25
BIK arg() ..o 16-26
blk arg bits(). . ..o 16-27
blk_arg char() ... 16-28
blk arg dbl()o 16-29
blk arg flt). ... 16-30
blk arg 1ong() oo 16-31
blk_arg long bits() ... 16-32
blk_arg long dbl()ccvvii 16-33
blk_arg long long()covvvii 16-34
blk_arg long ubits()ccovv i 16-35
blk_arg short() ... 16-36
blk_arg string()ovove 16-37
blk_arg ubits().o 16-38
blk arg uchar() ... 16-39
blk arg uint()covi 16-40
blk arg ulong long()cooiii 16-41
blk arg ushort() 16-42
LW T = (0 1 16-43
PIA)) . oot 16-44
thread id() 16-45
task (). .o 16-46
() o 16-47
CPU) .« e e e e e e 16-48
OffSEE() . oo e 16-49
HME() . o 16-50
node id() ... oo e 16-51
pid table name(). 16-52
tidtable name() ... 16-53
node NamMe()vv i 16-54
Process NAME() . ..o vttt et 16-55
task NamMe() . .o e 16-56
thread name() ...t 16-57
Multi-Event Functions. i 16-58
EVENE gaD() . - o e 16-58
event_ matches() 16-59
SAe FUNCLIONSo 16-60
Start FUNCLIONS. 16-60
start id)) ... 16-62
Start arg() .. 16-63
sat arg dbl() ... 16-64
sat arg long() ..o 16-65
gat arg long dbl()...........co 16-66
gart arg long long()........co oo 16-67
sat blk arg() ..o 16-68
start_ blk_arg bits(). 16-69
gat blk arg char()........... 16-70
start blk_arg dbl(). . ..o 16-71
start blk arg flt()..........co i 16-72
slart blk arg long(). ... 16-73
start blk arg long bits()............ 16-74
start blk arg long dbl() 16-75
start blk arg long long()cooviiiiiii 16-76
start blk arg long ubits() L 16-77

start_ blk_arg short() ... 16-78
start_ blk_arg string(). . ..o oo 16-79
start_ blk_arg ubits() 16-80
start_ blk_arg uchar(). ... 16-81
start blk_arg uint() 16-82
start_ blk_arg ulong long() 16-83
start_ blk_arg ushort() ... 16-84
start NUM_args() - ..o e 16-85
Start Pid(). .. 16-86
gtart thread id(). ... 16-87
start task id().o 16-88
start tid() ... e 16-89
St CPUQ) vt 16-90
start_ offset(). 16-91
start time(). ... 16-92
slat node id() 16-93
start pid table name(). 16-94
sart tid table name() 16-95
slat node Nname() e 16-96
End FUnctions. 16-97
eNA Id() ..o e 16-99
eNAd_arg() - . o e 16-100
end arg dbl(). ... 16-101
end arg long(). ..o 16-102
end arglong dbl()co i 16-103
end arg long long() ... 16-104
end bk arg(). .o oo 16-105
end blk_ arg bits() ... 16-106
end blk arg char() 16-107
end blk arg dbl()ccoviii 16-108
end blk arg flt)) ..o 16-109
end blk arglong()ccoiiii 16-110
end blk arg long bits() 16-111
end blk arg long dbl()............, 16-112
end blk arg long long()..............cc i, 16-113
end blk arg long ubits() 16-114
end blk arg short()............... L, 16-115
end blk arg string() ... 16-116
end blk_arg ubits() 16-117
end blk arg uchar() L 16-118
end blk arg uint()............. 16-119
end blk arg ulong long()..............c i, 16-120
end blk arg ushort()................ i 16-121
end_NUM_args() - .o« oo et 16-122
end pid]) ... 16-123
end thread id()coo i 16-124
end task id()ovi i 16-125
end tid(). ... 16-126
ENA CPU() - - oo 16-127
end Offset() 16-128
end time() ... 16-129
end node id() 16-130
end pidtable name() i 16-131
end_tid table name(). 16-132

Xi

NightTrace RT User’s Guide

end node name() 16-133
Multi-State Functions o 16-134
SAE GAD() « 16-134
State dUr(). .. 16-135
state matches(). ... 16-136
state StatuS(). . oo 16-137
Offset FUNCiONS o 16-138
offset 1d() ...ovii i e 16-140
offset_arg(). . oo 16-141
offset_arg dbl(). ..o 16-142
offset_arg 1ong()o oo 16-143
offset_arg long_dbl() 16-144
offset_arg long_long()ccovieniiiii 16-145
offset_ blk arg().......ccoiiii 16-146
offset_ blk arg bits()o i 16-147
offset blk arg char()........... ... i 16-148
offset_ blk arg dbl()cc i 16-149
offset_ blk arg flt) ... 16-150
offset blk arglong()coiiii i 16-151
offset blk_arg long bits().t 16-152
offset_ blk arg long dbl()..........cco i, 16-153
offset blk arg long long().............cciiiii... 16-154
offset blk_arg long ubits().............. 16-155
offset blk arg short()............. i 16-156
offset blk arg string() ... 16-157
offset_blk arg ubits() 16-158
offset blk arg uchar()................. 16-159
offset blk arg uint()............. i 16-160
offset blk arg ulong long()............cciiiii... 16-161
offset blk arg ushort()..............oiiiiii i 16-162
offset num args() ... 16-163
offset_ pid() «..ovv 16-164
offset_thread id()cco i 16-165
offset_task_ id() .. .vvier 16-166
Offset_tid() ..o vve e 16-167
offset cpu() ... oo e 16-168
offset time() ... 16-169
offset node id()........... i 16-170
offset pid table name() i 16-171
offset_tid table name(). 16-172
offset node name()........... .. i 16-173
offset process name().c i 16-174
offset task name() i 16-175
offset thread name(). i 16-176
Summary FUNCLIONSo e e 16-177
MIN() ot e 16-177
072 16-178
AVO() . 16-179
SUM) ot ettt e e 16-180
min_ offset(). ... 16-181
max_offset(). ... 16-182
summary_ matches().o i 16-183
Format and Table Functions 16-184
get String(). . .o i e 16-184

Xii

et Item() ..o 16-186
get_format(). 16-188

format() . ..o 16-190
[OOKUP_PC() -+ o v v et et e 16-191
ProfileReferences 16-193

Chapter 17 Kernel Tracing

Primary Kernel TraCe EVENtS.ot 17-1
Context Switch Trace Event. e 17-2
Interrupt Trace Events 17-2
Exception Trace BEVentSot 17-3
Syscall TraCe BVeNtS. oo 17-4
Kernel Work Eventsot 17-5
Additional Kernel Events i 17-7
Logging Custom Kernel Events.t 17-8
FromUser Programs. e 17-9

From Kernel Modules. 17-9
Retrieving CustomEvents. 17-10
Viewing Kernel TraceEvent Files.t 17-11
Kernel TImelineso e 17-12
Nodeand CPU Information., 17-13

Context Switch Information 17-13
Interrupt Information. 17-14
Exception Information. i 17-14

System Call Information., 17-15

Process Information. 17-16

Kernel BVentS 17-16

Color Informationt 17-17

Kernel String Tables.o 17-17

Chapter 18 Using the NightTrace Analysis API

NightTrace Analysis Application Programming Interface 18-1
DalaSIrUCIUNESo e e e e 18-2
L = S 18-2

L o T 18-3
trcond cb func t....... 18-3
trcond func t 184
trcond t. ... 184

L o 1 184

tr offset t ... 184

tr state action t 18-5

tr state cb func t...... 185

tr state info t......... i 18-6

I Stae b 18-7
trostream event t..... ...t e e 18-7

tr stream func t....... 18-7
trstring node t 18-7

11 L 18-8
FUNCLIONSo 18-9
API Initialization and Destruction.t 18-14
it . .o 18-14

Xiii

NightTrace RT User’s Guide

Xiv

tr destroy() . .. oo 18-14
Error Detection, Collection, and Reporting. 18-16
treror_clear() 18-16
trerror_check() ... 18-17
Input Specification and Streaming Control 18-18
tropen file() ... 18-18
troopen stream(). 18-19
tr ClOSE(). .o 18-20
tr_stream_notify(). 18-21
trstream_read() 18-22
trostream_Size() ..o 18-23
trfree(). ..o 18-24
Event Offset Positioningo i, 18-25
trnext event() 18-25
trnext event ()........ooiiiiiiii e 18-26
trprev event(). ..o e 18-26
trprevevent ().....cooiii i e 18-27
trsearch(). ... 18-28
I SEEK() v o 18-29
Basic Event Attribute Functionso ool 18-30
A e 18-32
id () e 18-32
trtime) ..o e 18-33
trtime () .o 18-34
I nargs)) - oo 18-35
I nargs () oo e 18-35
trarg int()cooii 18-36
trarg int ()o e 18-37
trarg dol(). ... 18-38
trarg dol (.. .ot 18-38
trarg long(). . ..covii 18-39
trarg long (). ..oovi 18-40
trarglong dbl()cco 18-41
trarglong dbl ()o o 18-41
trarglong long() ... 18-42
trarglong long () ...cvvven i 18-43
trarg int ()o 18-44
trarg dol(). ... 18-45
trarg dol (.. .o 18-45
trarg long(). . ..o 18-46
trarg long (). ..o 18-47
trarglong dbl()cco i 18-48
trarglong dbl ().......cooii 18-48
trarglong long() ... 18-49
trargtype(). ..o 18-50
trargtype (..o 18-51
trblk arg). ... 18-51
trblk arg (..o 18-52
trblk arg bits(). ... 18-53
trblk arg bits (). ... 18-54
trblk aggchar() 18-55
trblk aggchar () o i 18-55
trblkagdbl()..........co 18-56
trblkagdbl ()......coo 18-57

tr bk arg flt). ... 18-58
trblk arg flt ()......covvii 18-58
trblk arg long()......ccovvii 18-59
trblk aglong ()....covvviii 18-60
tr_blk arg long bits() ... 18-61
tr_blk arg long bits () ..o 18-62
tr blk arg long dbl()coooiii 18-63
tr bk arg long dbl_() ... 18-63
tr_ blk arg long long()ccovveiiiii 18-64
tr blk arg long long ()coovvii 18-65
tr_blk_arg long ubits() 18-66
tr_blk_arg long ubits () ... 18-67
tr blk arg short() ... 18-68
tr blk arg short ()ccoiiiii 18-68
tr blk arg string() 18-69
tr blk arg string_ ().oovivi i 18-70
tr blk arg ubits()............ 18-71
tr blk arg ubits ().t 18-72
trblk alguchar() ... 18-73
trblk alguchar () ... 18-74
tr blk arg ushort()coi i 18-75
trblk algushort () ... 18-75
tr pid) .. 18-76
tr pid (). e 18-77
T tid) e 18-78
rtid () oo 18-78
trthread id().........cooiiii 18-79
trthread id () ... 18-80
trtask id() . oo 18-81
trtask id (). 18-81
L) 18-82
I CPU (). o 18-83
tr node(). ..o 18-84
trnode (). . oo e 18-84
tr process Name() ... vov it 18-85
tr process NaMe () . ovv v e e e 18-86
trtask name() 18-86
trtask name () ..o 18-87
tr thread name()c i 18-88
trthread name () ... e 18-88
ConditioNS.o 18-90
trcond create). . ..o 18-91
trcond reset()o 18-92
trcond find()) 18-92
trecond id() ... 18-93
trcondidrange()........cooviiii i 18-94
trcondidclear() i 18-95
trcond Cpu(). ..o oii 18-96
trcondcpuclear().........cooiii i 18-97
trcond pid])ovii 18-98
tr cond pid name()..........co i 18-99
trcond pidclear()oiiiiii i 18-100
trcond tid(). ...t 18-101

trcond tidname() i 18-102

NightTrace RT User’s Guide

trcond tid clear()...........oo i 18-103
trcond node() 18-104
tr_cond node clear() ... 18-105
tr_cond func_or(). ... 18-106
trcond func_and() ... 18-108
tr_cond func clear() i 18-110
trcond exprand() ... 18-111
tr_cond_expr_or(). ... ovi e 18-112
trcond NOE() .. ovv v 18-113
tr Cond Or() ..o v 18-114
trcond and() 18-115
tr_cond COPY() -« v vvo e 18-116
tr_cond Name().oov i 18-118
tr_cond Satisfy(). 18-118
tr cond satisfy (). ..o 18-119
tr cond register(). ..o 18-120
trcond offset() 18-121
State-oriented Interfaces 18-122
tr state create() ...t e 18-122
tr state find). ... 18-123
tr state name(). ... 18-124
tr state start id() 18-125
tr_state start id range(). 18-126
tr state start id clear() il 18-127
tr state end id().......... 18-127
trstate end idrange()coiiii i 18-128
tr state end id clear(). i 18-129
tr state start cond()......... ... 18-130
tr_state start cond clear() ..., 18-131
trstateend cond() 18-131
tr state end cond clear(), 18-132
tractivate). ... e 18-133
tr state info().cc 18-134
trstate inffo (). 18-135
tr state active() 18-136
tr state active () ... 18-137
Output FUNCLION. e e 18-138
tr copy inpUEt(). .. .o 18-138
tr copy input_ range() 18-139
String TableFunctions. i 18-140
trget string(). ..o e 18-140
trgetitem().......... 18-141
tr create table() 18-142
tr append table() 18-143
Callback Interfaces 18-145
triterate). . ..o e 18-145
trhalt(). ... 18-146
tr cancel_ cb()........o i 18-146
trcond cb()......... 18-147
trstate cb() ... 18-148

Contents

Appendix A NightStar Licensing

LiCENSE K Y S . ot A-1
LiceNSE REQUESES . . . o .ot e A-2
LI CENSE S VY . . oot A-2
LiCENSE REPOMS . . oo et A-3
Firewall Configuration for Floating Licenses., A-3
LiCENSE SUPPOIT . . o o ettt e e A-4

Appendix B Kernel Dependencies

Advantagesfor NightView i i B-1
Advantagesfor NightTracet e e B-1
Advantagesfor NightProbe. B-2
Advantagesfor NightTune. i e B-2
Frequency Based Scheduler. i B-3
PClBarFile System e e e B-3

Appendix C Privileged Access

Capabilities e C-1

Appendix D NightTrace Logging APl Examples

SingleThreaded CExamplet e D-1
Multi-Threaded C++ Example. e D-3
Fortran EXampleo D-5
Rare Occurrence Example.o D-6

Appendix E NightTrace Analysis API Examples

S E-2
S o E-2
SBAICN . o o e e E-4
SBAICN. G, oot e e E-4
WaChAOg . . .o e E-6
WatChdOQ.C . . oo e E-6
Pl . e E-9
PUIME.C .o e E-10
DrOWSE . . o e E-12
DrOWSE.C . oo e E-12
JEEECt . o E-23
JELECE.C . .o e E-24

XVii

NightTrace RT User’s Guide

Appendix F Answers to Common Questions

Appendix G Glossary

Index

lllustrations

Xviii

Figure 2-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 8-14.
Figure 8-15.
Figure 8-16.
Figure 8-17.
Figure 8-18.
Figure 8-19.
Figure 8-20.
Figure 8-21.
Figure 8-22.
Figure 8-23.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.

Inter-Process Communication and Library Routines. 2-4
NightTraceMainWindow 81
FileMenu ... 8-2
VIeW MENU ... 8-6
ToolbarsMenut 8-7
DaemonsMenu 8-8
Search MenU 89
Summary Menut 8-12
ProfilesMenu 8-13
Export ProfilesDialogcvvvi i 8-14
TimelinesMenu 8-17
Default User Timelinet 8-18
Create Custom Kernel TimelineDialog 8-19
TOOISMENU ... 8-20
HelpMenu i 8-22
TabContext Menut 8-26
RenamePageDialogccoviiii i 8-26
MovePageDialogo 8-27
Pagewith ProfilePanels i 8-28
Panel DetachesfromPage oot 8-29
Panel Movement inProgress 8-30
Profile Status List Panel on Top of Profile Definition Panel ... 8-31
Event Descriptions Panel addedtoPage 8-32
Panel in Motion Creating Tabt 8-33
DaemonsPanel 9-1
DaemonsPanel Context Menu 9-2
Import Daemon DefinitionsDialogcoov i 9-3
Attach to Running DaemonsDiaog 9-4
Edit TriggersDialogovii i 9-6
Add TriggersEntry Dialog 9-7
Edit Daemon Definition Dialogcoiiiia... 9-9
Trace SegmentsPanel i, 10-1
Trace Segment Panel ContextMenu 10-2
Trace Data Segment Properties Description Dialog 10-3
EventsPanel 111
EventsPanel Context Menu 11-3
Search Eventsfor TextDialogcoiviiii ... 11-4
Edit Event DescriptionDialog 11-6
Default User Timeline 12-1
Global Ruler 12-2
Interval Ruler 12-3
Event GraphwithLabels.......... it 12-5
Event DesCription Areao vvvi e 12-6
TimelineEditing 12-8

Figure 12-7. TimelineContext Menuco i, 12-9
Figure 12-8. Edit Event Graph ProfileDidog 12-10
Figure 12-9. Edit State Graph ProfileDialogocoun... 12-11
Figure 12-10. Edit DataGraph ProfileDiadlog 12-12
Figure 12-11. Data Graph OptionsDialog.............ccovviiieenn. .. 12-13
Figure 12-12. Data Graph Options Dialog Color Mode Selector 12-14
Figure 12-13. DataGraphExamples, 12-17
Figure 12-14. Color SelectionDialogt 12-18
Figure 12-15. Edit DataBox Profile i ... 12-21
Figure 13-1. Profile DefinitionPanel il 13-2
Figure 13-2. ProfileStatusListPanel o ... 13-12
Figure 13-3. Profile Status List Panel ContextMenu 13-13
Figure 14-1. Event DescriptionsPanel o i 14-1
Figure 14-2. Event DescriptionDialogo vvii i 14-2
Figure15-1. TagsListPanel 151
Figure 15-2. TagsListPanel ContextMenu 15-3
Figure 16-1. Function Terminology Illustrated 16-12
Figure16-2. Statesand Events i, 16-12
Figure17-1. SampleKerneltimeline 17-12
Figure17-2. Nodeand CPUBOX . ..ottt et 17-13
Figure 17-3. Context SwitchLines 17-13
Figure 17-4. Interrupt Box and Interrupt Graph. 17-14
Figure 17-5. Exception Box and ExceptionGraph. 17-14
Figure 17-6. System Call Box and System Call Graph 17-15
Figure 17-7. Process InformationRow i, 17-16
Figure17-8. Kernel EVentSROW i 17-16
Figure17-9. Color Keyt e e e 17-17
Figure D-1. Automatically Generated DataDisplay Page D-5
Tables
Table 3-1. NightTrace Configuration Defaults.o, 33
Table5-1. Character Entities e 5-15
Table5-2. System Defaults.o e 5-19
Table 12-1. TimelineKeyboard Traversal, 12-7
Table 12-1. Standard Color Names.ot 12-19
Table 16-1. Time Units and Constant Suffixes.ot 16-3
Table 16-1. NightTrace FUNCLIONSot 16-5
Table17-1. PROCESSEventCodesooiviiii i 17-6
Table 17-2. NETWORK Kernel Event Sub-ID Codes.t 17-6
Table 17-3. MEMORY Kernel Event Sub-ID Codes.t 17-7
Table C-1. Recommended /etc/pam.d Configuration. C-2

XiX

NightTrace RT User’s Guide

1
Introduction

NightTrace is amember of the NightStar™ family of tools. NightTrace provides an inter-
active debugging and performance analysis tool, trace data collection daemons, and two
Application Programming Interfaces (APIs) allowing user applications to log data values
as well as analyze data collected from user or kernel daemons. NightTrace allows you to
graphically display information about important events in your application and the kernel,
including event occurrences, timings, and data values. NightTrace consists of the follow-
ing parts:

ntrace

a graphical tool that controls daemon sessions and presents user and kernel
trace eventsfor interactive analysis

ntraceud

a daemon program that copies user applications’ trace events from shared
memory to trace event files

ntracekd

a daemon program that copies operating system kernel trace events from ker-
nel memory to trace event files

NightTrace Logging API

libraries and include files for use in user applications that log trace events to
shared memory

NightTrace Analysis API

libraries and include files for usein user applications that want to analyze data
collected from user or kernel daemons

illuminator

acommand linetool for generating code to log trace events at subroutine entry
and return points

illuminate

a command line tool for turning on and off the code generated by the i11u-
minator tool

NightTrace operates in conjunction with other members of the NightStar RT family.
NightView, a multi-process and multi-thread application debugger, provides for dynamic
insertion of trace pointsin programs being debugged. The NightProbe data recording util-
ity allows sampled data to be passed directly to NightTrace for graphic or textual display.

NightTrace uses the NightStar License Manager (NSLM) to control access to the

1-1

NightTrace RT User’s Guide

NightStar tools. See “NightStar Licensing” on page A-1 for more information.

IMPORTANT

Kernel tracing is only supported on some operating system distri-
butions. See “Kernel Dependencies’ on page B-1 for more infor-
mation.

User Trace Point Placement

A user trace point is a place of interest in application source code. At each user trace
point, you make your application log some user-specified information. This logged infor-
mation is collectively called atrace event. Each trace event has a user-defined trace event
ID number and optional user-supplied arguments.

Sometypical user trace-point locations include:

* Suspected bug locations

* Process, subprogram, or loop entry and exit points
* Timing points

* Synchronization points for multi-process interaction

* Endpoints of atomic operations

The Application Illumination facility can be used to automatically generate user trace
points for function entry and return. These trace events can include return address, param-
eter values, return values, etc. as arguments.

In addition to the user-supplied information, trace events automatically contain informa-
tion identifying the process ID of the program generating the trace event. For
multi-threaded applications, the thread 1D of the specific thread generating the trace is
recorded.

Kernel Trace Point Placement

1-2

Operating system distributions which support NightTtrace kernel tracing build their trace
and debug kernel s with trace points inserted at various points throughout the kernel source
code. These trace point provide information relating to:

e System call entry and exit
* Interrupt entry and exit
* Exception entry and exit

* Kernd service routines

Timestamps

Languages

Introduction

* Process creation, termination, and signalling

* Network activity

Analysis of kernel trace events can provide significant insight into the operation of the
system and interactions between user applications. In addition to graphical displays,
NightTrace provides textual description of kernel trace events which reveal useful infor-
mation even for those not familiar with kernel programming.

For kernel programmers, additional custom trace events can be logged with simple kernel
utility routines which can be inserted into the kernel source or in kernel module source
routines.

Each trace event is tagged with a timestamp with sub-microsecond precision. This allows
you to view and comprehend complex interactions between multiple processes and the
operating system, executing on single or multiple CPU systems.

By default, an architecture-specific timing source is utilized. For Intel and AMD64, the
Intel Time Stamp Counter (TSC register) is used.

If your operating system supports the Real-Time Clock and Interrupt Module (RCIM),
that clock can be also used as a timestamp source.

The RCIM is a hardware module available from Concurrent Computer Corpration which
provides a variety of clocks and interrupt sources, including two high-resolution timers
which may be synchronized between multiple systems. Use of the RCIM timing source
by NightTrace is advantageous when gathering data from multiple systems simulta-
neously. NightTrace can then present a synchronized view of user and kernel activity on
multiple systems from a single session.

For more information about the RCIM, please see the clock_synchronize (1M),
rcim(7), rcimconfig (1M), and sync_clock (7) man pages.

The application programming interface for logging trace events is provided in C and For-
tran for use with the following compilers:

* Concurrent Ada
* GNU C/C++

¢ GNU Fortran

* Intel C/C++

¢ |ntel Fortran

1-3

NightTrace RT User’s Guide

* Concurrent Fortran 77

The application programming interface for trace event analysisis provided solely in C for
use with C and C++ programs.

Information Displayed

1-4

Thentrace display utility lets you examine trace events. Data appear as numerical sta-
tistics and as graphical images. You can create and configure the graphical components
called display objects or use the defaults. By creating your own display objects, you can
make the graphical displays more meaningful to you. You can customize display objectsto
reflect your preferences in content, labeling, position, size, color, and font.

With thentrace display utility, you can perform customized searches and summaries for
individual events or user-defined states. Summaries can be generated via command line
invocation of ntrace for generating automated reports.

2

Using the NightTrace Logging API

This chapter describes language-specific considerations for using NightTrace with user
applications.

Sample programs using these functions are also provided (see “NightTrace Logging API
Examples’ on page D-1).

Language-Specific Source Considerations

NightTrace applications can be written in C, C++, Ada, or Fortran.

The NightTrace Logging API can be used with the following compilers:

Concurrent Ada (MAXAda)
Concurrent Fortran 77
GNU C/C++

GNU Fortran

Intel C/C++

Intel Fortran

For your applications to trace events, you must edit your source code and insert Night-
Trace library routine calls. Thisis called instrumenting your code. (The Application Illu-
mination facility (see “Application lllumination” on page 5-1) can aso be used to instru-
ment your code without making any source changes.) Before you begin this task, read the

following section that applies to the language in which your application is written.

NightTrace applications written in C or C++ include the NightTrace header file
/usr/include/ntrace.h with the following line:

#include <ntrace.h>

Thentrace.h file contains the following:

Function prototypes for all NightTrace library routines
Return values for all NightTrace library routines

Macros (described in “Disabling Tracing” on page 2-29)

2-1

NightTrace RT User’s Guide

Fortran

Ada

2-2

The library routine return values identify the type of error, if any, the NightTrace routine
encountered.

Programs that are multi-thread can also be traced with the NightTrace library routines. For
multi-thread programs, a thread identifier is stored in each trace event, uniquely identify-
ing which thread was running at the time the trace event was logged.

IMPORTANT

To fully utilize the features of NightTrace with multi-threaded
applications, additional considerations must be taken into account.
See the description of “Threads and Logging” on page 2-29 for
more information.

Minimally, a C or C++ program can log trace points using the following sequence of
library routine invocations:

trace begin(“file” ,NULL); // Called once

trace event(11l,2) // Log Event ID 11 with argument 2

All NightTrace library routines return INTEGERS, but because they begin with a“t”, For-
tran implicitly types them as REAL. You must include the NightTrace-provided file

/usr/include/ntrace_.h or explicitly type them as INTEGER so that return values
areinterpreted correctly.

Minimally, a Fortran program can log trace points using the following sequences of library
cals:

call trace begin(“data”,0) (called once)

call trace_ event (11)

Ada applications can access the NightTrace library routines via the Ada package
night trace bindings whichisincluded with the MAXAda product. The bindings
can be found in the bindings/general environment in the source file

night trace.a.

Thenight trace bindings package contains the following:

* An enumeration type consisting of the return values for all NightTrace
library routines

Using the NightTrace Logging API

* The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return val ues.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Adatask was running at the time the trace event was logged.

For moreinformation on Ada, see the section titled “NightTrace Binding” in the MAXAda
for Linux Reference Manual.

Inter-Process Communication and Library Routines

Your application logs trace events to a shared memory area. A user daemon copies trace
events from shared memory buffers to the trace event file or to the NightTrace graphical
analysis tool. The relationship between your application and the user daemon and the
seguence of library calls needed to maintain this relationship appears in the figure bel ow.

2-3

NightTrace RT User’s Guide

Parent processes follow this sequence: Child processes and threads follow this sequence:
e trace_begin() e trace_open_thread()
e log trace events e |og trace events
e trace_end() e trace_close_thread()

Thread 1
Process A <: Thread 2

Process B \
Child of B Shared
\ Memory |-¢—p| user

chidofB L ———P Buffer daemon

Task 1 / l
Process C <:
Task 2 Trace File

or
ntrace GUI

Figure 2-1. Inter-Process Communication and Library Routines

Understanding NightTrace Library Calls

There are C, Ada, and Fortran versions of each NightTrace library routine. These routines
perform the following functions:

¢ [nitialize atracing session
* Open the current thread for trace event logging
¢ | og trace events to shared memory

* Enable and disable specified trace events

2-4

Using the NightTrace Logging API

¢ Explicitly notify the daemon to copy shared memory to disk
¢ Control how diagnostics are generated
* Closethe current thread for trace event logging

* Terminate atracing session

The next sections describe these routines in detail.

2-5

NightTrace RT User’s Guide

trace _begin

The trace_begin routineinitializes the tracing session and acquires resources for your

process.
SYNTAX
C:
int trace begin(char *trace file,
ntconfig t * config) ;
Fortran:
integer function trace begin (trace file, config)
character * (*) trace file
integer config(NTC SIZE)
Ada
function trace_begin (
trace file : string;
num buffers : integer; -- default is 8
buffer length : integer; -- default is 32768
lock_pages : boolean := true;
clock : ntclock t := NT USE ARCHITECTURE CLOCK;
shmid perm : integer := 8#666#;
inherit : boolean := true)
return ntrace_error;
PARAMETERS
trace file
The user daemon logs trace events to an output file, trace file. When you
invoke the user daemon, you must specify this file's name. For the user dae-
mon to log your process' trace eventsto thisfile, the trace event file parameter
inyour trace begin cal must correspond to the key file value on the dae-
mon invocation. The names do not have to exactly match textually, but they
do haveto refer to the same actual pathname; for example, one path name may
begin at your current working directory and the other may begin at the root
directory. When a user daemon is sending trace data directly to the NightTrace
graphical analysis tool, this file name serves only a handle so that the user
daemon and the application can communicate -- no data is transferred to the
filein this case.
config

For C, either aNULL pointer, in which case the default settings are used, or a
pointer to antconfig t structure.

The following function can also be used to initialize config to appropriate
default values:

Using the NightTrace Logging API

void trace default config (ntconfig t * config) ;
Therefore, the following code sequence:

ntconfig t config;
trace default config(&config);
trace begin(“file”, &config) ;

is equivaent to:
trace begin(“file”,NULL) ;

Thisis most useful when you wish to change just afew specific configuration
parameters without having to explicitly define all parameters. For example:

ntconfig t config;

trace default config(&config);
config.ntc _num buffers = 64;
trace begin(“file”, &config) ;

For Ada, the individual members of the structure are supplied directly as
parameters to the routine, with appropriate default values. Both the user
application and the user daemon associated with it must agree on the configu-
ration settings (or indicate that the other’s settings may be preferred).

For Fortran, the config record must be represented by an array of NTC_SIZE

integer items. Member of the array must be provided as described below.

The following describe the individual parameters:

C:

Fortran:

C:
Ada

Fortran:

C:
Ada

Fortran:

ntc_version
config (ntc_version)

The value of the NTC_VERSION macro fromntrace.h

ntc_lock pages
lock_pages
config (ntc_lock pages)

One of the following values: ntp_default, which specifies that page
locking should default; ntp_lock, which specifies that critical pages
areto belocked in memory; or ntp_no_lock, which specifiesthat crit-
ical pages shall not be locked in memory. ntp_default does not
request page locking, but does conflict with a user daemon configu-
ration setting of ntp_lock or ntp_no_lock.

ntc_clock
clock
config (ntc_clock)

Specifies which clock to use as atiming source. This value must be
NT USE ARCHITECTURE CLOCK or

2-7

NightTrace RT User’s Guide

Ada

Fortran:

C.
Ada

Fortran:

C:
Ada

Fortran:

C.

Fortran:

C.

Fortran:

2-8

NT USE RCIM TICK CLOCK. The user daemon default valueis
NT USE_ARCHITECTURE CLOCK.

ntc_shmid_perm
shmid_perm
config (ntc_shmid perm)

Specifies the permissions to use when creating the shared memory
segment. The user daemon default value is 0666.

ntc_daemon_preferred
inherit
config (ntc_daemon_preferred)

When set to TRUE, this parameter causes conflicts between the con-
figuration as specified by the user and by the corresponding user dae-
mon to be resolved in favor of the daemon. Otherwise, conflicts will
be resolved in favor of the first configuration that executes, which
will cause the subsequent user daemon invocation or
trace begin call to fail.

ntc_num_buffers, ntc_buffer_length
num_buffers, buffer_length
config (ntc_num buffers), config(ntc_buffer length)

These two parameters define the amount of memory used to hold
trace events. The user daemon configuration defaults to 8 buffers
which individually hold 32768 events. The values as specified here
will be rounded up to the closest power of two. The units of
ntc_buffer_length are in units of minimally-sized events. Some trace
event interfaces with additional user-specified arguments require
additional space. The default daemon values for these fields are 8
buffers of length 32768.

ntc_daemon_wait_usec
config (ntc_daemon wait usec)

Specifies the number of microseconds the user daemon should pause
between busy-wait contention for control of the shared memory buff-
ers when flushing buffers to the output device. The user daemon
configuration for this parameter defaults to 100 us. This value
should be kept relatively short to prevent data loss if massive user
application trace activity prevents the daemon from flushing the
shared memory buffers.

ntc_reserved
config (ntc_reserved)

Using the NightTrace Logging API

These parameters are reserved for future use; currently, they must be
set to zero to proper future operation.

DESCRIPTION
The trace_begin routine performs the following operations:

* Verifies that the version of the NightTrace library linked with the
application is compatible with the version used by the user daemon if
itisaready running

¢ Verifies the supplied configuration settings are not in conflict with a
pre-existing daemon or defines the configuration with these settings
if the user daemon does not yet exist.

* Verifies that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

¢ Attachesthe shared memory buffer (after creating it if needed)

* Locks critical NightTrace library routine pages in memory as
directed. Note that you must have the CAP_SYS NICE capability to
lock pagesin memory (see “Privileged Access’ on page C-1 for
details).

* [nitializes trace event tracing in this process

A process that results from the execve (2) system service does not inherit atrace
mechanism. Therefore, if that process isto log trace events, it must initialize the
trace with trace begin. Processesthat result from afork in a process that has
aready initialized the tracing session need not call trace begin.

The trace begin routine must be called only once per parent process (unless an
intervening trace end call has been made).

If Application Illumination isused, themain i1luminator (See“Application Illu-
mination” on page 5-1) will perform atrace begin() cadl. The illuminate
tool (see “Activating Illuminators’ on page 5-12) can be used to set some of the
parameters to this call.

RETURN VALUES

Upon successful operation, the trace begin routine returns NTNOERROR Orf
NTLISTEN; the latter in the case where no daemon has yet been started. A list of
trace_ begin return codes follows.

[NTNOERROR]

A daemon has already been started that matches the filename passed as
key file. The application can begin to log trace events after calling
trace open thread.

[NTLISTEN]

All operations where successful, but no user daemon matching the filename
passed as key_file could be found. The application can continue to make

2-9

NightTrace RT User’s Guide

NightTrace API calls but attempts to log events will fail until a daemon is
started, at which point logging of events will succeed.

[NTALREADY]

The application has already initialized the trace without an intervening
trace_end. Tracing can continue in spite of this error. Solution: Remove
redundant trace begin calls.

[NTBADVERSION]

The calling application is linked with the static NightTrace library and the
static library is not compatible with the NightTrace library being used by the
user daemon. Solution: Relink the application with the static library version
which matches the library version being used by the daemon.

[NTMAPCLOCK]

The selected event timestamp source could not be attached. Solution: If read
access is lacking, see your system administrator.

This can aso occur if the RCIM synchronized tick clock is selected as the
event timestamp source but the tick clock is not counting. Solution: Start the
synchronized tick clock by using the clock_synchronize (1M) com-
mand and restart the application.

[NTPERMISSION]

The calling application lacks permission to attach the shared memory buffer.
Solution: Make sure that the same user who started the user daemon is the
current user logging trace eventsin the application.

[NTPGLOCK]

Permission to lock the text and data pages of the NightTrace library routines
was denied. If the user isnot privileged to lock pages, see your system admin-
istrator or set ntc_lock pagesto FALSE.

[NTNOSHMID]

This can occur if the size of the shared memory buffer exceeds the system lim-
its or the shared memory buffer already exists but the size required by
num_buffers and ntc_buffer_length parameters exceeds the current size. To
increase the system limits on shared memory, adjust the kernel.shmmni, ker-
nel.shmall, and kernel.shmmax parameters using systcl(8). Use
iperm (1) to remove the existing shared memory segment if it is not being
used by another application.

SEE ALSO

® trace open thread()

® trace end()

2-10

trace_open_thread

Using the NightTrace Logging API

The trace open_ thread routine associates the current Ada task or C thread with a
user-specified name. Use of thislibrary routineisoptional. By default, atrace thread con-
text called “main” is associated with the main program. You can override this name by
cdling trace open thread from the main program.

SYNTAX

C:

int trace open thread (char +*thread name) ;

Fortran:

Ada

integer function trace open thread (thread name)
character * (*) thread name

function trace open thread (thread name : string)
return ntrace_error;

PARAMETERS

thread name

NightTrace’s graphical displays and textual summary information indicate
which threads logged trace events. If the trace open thread thread
name is null, the ntrace display utility uses an internal thread ID as alabel
in these displays.

Naming your threads can make the displays much more readable.
trace open_thread lets you associate a meaningful character string
name with the current threads' more cryptic numeric ID. If you provide a
character string as the thread name, the ntrace display utility usesit as a
label initsdisplays. Because ntrace may be unableto display long stringsin
the limited screen space available, keep thread names short.

Thread names should be limited to alpha-numeric characters and should con-
tain at least one non-numeric character. Names that are entirely numeric may
be discarded if a more descriptive name is available (including the default
thread name “main”). Some special characters are allowed, but their use is not
recommended. Do not use the names “ALL” or “NONE” as they are used
internally within NightTrace and may cause unexpected results .

DESCRIPTION

For multi-threaded applications, C threads and Ada tasks automatically inherit the
current thread name of their parent when they are created. You can create additional
thread names by calling trace open thread once per thread or task. Events
subsequently generated by these threads or tasks are marked with the specified
name, making event analysis much more meaningful.

-1

NightTrace RT User’s Guide

IMPORTANT

In order to identify the thread that logged a trace eventsin
multi-threaded applications, you must register your threads with
calls to trace_register_ thread or
trace open_ thread or create your threads with the
Pthread create wrapper routine provided in the
/usr/lib/libntrace thr.a library. Seethe description of
“Threads and Logging” on page 2-29 for more information.

RETURN VALUES

The trace _open_ thread routine returns a zero value (NTNOERROR) 0n suc-
cessful completion. Otherwise, it returns a non-zero value to identify the error con-
dition. A list of trace_open_thread error codes follows.

[NTINIT]

The NightTrace library routines were not initialized or they were initialized
but no user daemon has yet been initiated.

Ensure a trace_begin call precedes this call. If the preceding
trace_ begin call returned NTLISTEN, then avalue of NTINIT isnot a
failure condition and once a user daemon is started, subsequent attempts at
logging events will succeed.

[NTINVALID]
Aninvalid thread name was specified.
[NT ALREADY]

The thread-aware version of the NightTrace logging API library,
libntrace thr.a, was not used when linking or . See the description of
“Threads and Logging” on page 2-29 for more information.

SEE ALSO
® trace begin()

® trace close thread()

trace_event and its variants

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

SYNTAX
C:

int trace_event (int ID);

2-12

Using the NightTrace Logging API

int trace event arg (int ID, int arg);

int trace event two arg (int ID, int argl, int arg2);

int trace event three arg (int ID, int argl, int arg2, int arg3);
int trace event four arg(int ID, int argl, int arg2, int arg3, int

arg4) ;

int trace event long (int ID, long arg) ;

int trace event two long (int ID, long argl, long arg2);
int trace event long long (int ID, long long arg) ;
int trace event two long long (int ID, long long argl, long long

arg2) ;

int trace event flt (int ID, float arg);

int trace event two flt (int ID, float argl, float arg2);

int trace event dbl (int ID, double arg);
int trace event two dbl (int ID, double argl, double arg2);

int trace event long dbl (int ID, long double arg) ;

int trace event blk(int ID, void *args, int bytes);

int trace event string(int ID, char *str);

Fortran:

Ada

integer function trace_event (ID)

integer ID

integer function trace_event_arg (ID, arg)

integer function trace_event two_arg(ID, argl, arg2)
integer function trace_event three arg (ID,argl, arg2, arg3)
integer function trace_event four arg (ID,arglarg2arg3,arg4)
integer ID, arg, argl, arg2, arg3, argd

integer function trace_event_long (ID, arg)

integer function trace_event two long (ID, argl, arg2)
integer ID

integer arg, argl, arg2 (32-bit O

integer*8 arg, argl, arg2 (64-bit 09

integer f unction trace_event_ long long (ID, arg)

integer function trace_event two long long (ID, argl, arg2)
integer ID

integer*8 arg, argl, arg2

integer function trace_event dbl (ID, arg)
integer function trace_event_ two_dbl (ID,argl, arg2)

integer ID
double precision arg,argl, arg2

type event type is range 0.4095;

2-13

NightTrace RT User’s Guide

2-14

(procedures)

procedure trace_event

procedure trace_event

procedure trace_event

procedure trace_event

procedure trace_event

procedure trace_event

procedure trace_event

(functions)

function trace event

return ntrace_error;

function trace event

return ntrace_error;

function trace event

return ntrace_error;

function trace event

return ntrace_error;

function trace event

return ntrace_error;

function trace_event

return ntrace_error;

(ID :
arg

(ID
argl
arg2

(ID
arg

(1D
argl
arg2

event type) ;

event_ type;

integer) ;

event_ type;
float) ;

event_ type;
float;
float) ;

event_ type;

long float) ;

event_ type;
long float;
long_ float) ;

event_ type;
integer;
integer;
integer;

integer) ;

event_type)

event_type; arg

event_type;
float)

event_type;
float;
float)

event_type;

long float)

event_type;
long float;
long_float)

integer)

Using the NightTrace Logging API

function trace event (ID : event type;
argl : integer;
arg2 : integer;
arg3 : integer;
argd : integer)

return ntrace_error;

PARAMETERS
ID

Each trace event has a user-defined trace event ID, ID. ThisID isavalid inte-
ger in the range reserved for user trace events (0-4095, inclusive). See
“Pre-Defined Strings Tables’ on page 7-17 for more information about trace
event IDs.

argN

Sometimesit is useful to log the current value of avariable or expression, arg,
along with your trace event. The trace event logging routines provide this
capability. They differ by how many and what types of numeric arguments
they accept. If you want the ntrace display utility to display these trace
event arguments in anything but decimal integer format, you can enter the
trace event in an event-map file. See“Event Map Files’ on page 7-11 for more
information on event-map files and formats. Alternatively, you could call the
format function. See “format()” on page 16-190 for details.

DESCRIPTION

A trace point is a place in your application’s source code where you call a trace
event logging routine. Usually this location marks a line that is important to debug-
ging or performance analysis.

TIP

To save time re-editing, recompiling, and relinking your applica-
tion, consider beginning with many trace points in the source
code. You can dynamically enable or disable specific trace events.

Some typical trace points include the following:
® Suspected bug locations
* Process, subprogram, or loop entry and exit points
* Timing points, especially for clocking 1/0O processing
* Synchronization points for multi-process interaction
* Endpoints of atomic operations

* Endpoints of shared memory access code

2-15

NightTrace RT User’s Guide

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached, the
user daemon wakes up and copies the trace event to the trace event file on disk.

By convention, each trace event logging invocation should log a different trace
event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in.
However, it is sometimes useful to log the same trace event ID in multiple places.
This makes it possible to group trace events from related, but not identical, activi-
ties. In this case, a change of trace event ID usually separates or subdivides groups.

Probably the most common use of trace eventsis to identify states. Typically, two
different trace event 1Ds delimit the boundaries of a state. Most applications log
recurring states with different time gaps (from the end of one instance of a state to
the start of another) and different state durations (from the start of one instance of a
state to its end).

TIP

Consider putting related trace event IDs within arange. Library
routines and user daemon options let you manipul ate trace events
by using trace event ID ranges.

By default, all trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
user daemon has options that provide similar control. Attempting to log a disabled
trace event has no effect. See “trace_enable, trace_disable, and their variants’ on
page 2-18 for more information.

TIP

Consider using symbolic constants instead of numeric trace event
IDs. This would make your calls to NightTrace routines more
readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with State Graphs, Event Graphs, and Data Graphsin the
ntrace display utility. See “ State Graph” on page 12-11, “Event Graph” on page
12-10, and “Data Graph” on page 12-12 for more information about these display
objects.

RETURN VALUES

2-16

These routines return a zero value (NTNOERROR) on successful completion. Other-
wise, they return a non-zero value to identify the error condition. A list of error
codes for these routines follows.

Using the NightTrace Logging API

[NTINVALID]

An invalid trace event |D has been supplied. Solution: Use trace event IDs
only in the range 0-4095, inclusive.

[NTINIT]

The NightTrace library routines were not initialized or they were initialized
but no user daemon has yet been initiated. Ensure atrace begin call pre-
cedes the trace event logging routine call. Once auser daemon is started, sub-
sequent attempts at logging events will succeed.

For multi-threaded applications, if the thread-aware version of the NightTrace
logging API library, 1ibntrace thr.a, was used when linking and the
calling thread was not created with the Pthread create NightTrace API
call this error will occur and all subsequent attempts to log trace events with
this thread will fail. See the description of “ Threads and Logging” on page
2-29 for more information.

[NTLOSTDATA]

The trace event was lost because the shared memory buffers were full. This
can occur if the user daemon cannot empty the shared memory buffer quickly
enough. Increase the priority of the user daemon and/or schedule it on a CPU
with less activity. Additionaly, the size of the shared memory buffers can be
increased using the - -num_bufs and - -buflen optionsto ntraceud, the
User Event Buffer settings on the User Trace tab of the Daemon Def-
inition dialog in ntrace tool, or the ntc_num buffers and ntc_buffer_length
fieldsof thentconfig_t configuration buffer passed to trace begin.

SEE ALSO

trace flush()

trace trigger()

trace enable ()

trace enable range()
trace enable all()
trace disable()

trace disable range()

trace disable all()

2-17

NightTrace RT User’s Guide

trace_enable, trace_disable, and their variants

2-18

By default, al trace events are enabled for logging to the shared memory buffer. The
trace disable, trace disable range, and trace disable all routines
respectively make your application ignore requests to log one or more trace events. The
trace_enable, trace enable range, and trace_enable all routines
respectively make your application notice previously disabled requeststo log one or more

trace events.

SYNTAX

C:

int trace enable (int ID);

int trace_enable range (int ID_low, int ID_high) ;

int trace enable all ();

int trace disable (int ID);

int trace disable range (int ID_low, int ID_high) ;

int trace disable all ();

Fortran:

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Ada:

function trace_enable
1D

function trace_enable_

ID_low, ID_high

(ID)

function trace_enable_all ()

function trace_disable (ID)

1D

function trace disable range (ID_low, ID_high

ID_low, ID_high

function trace_disable_all ()

type event type is range 0..4095;

(procedures)

procedure trace_enable (ID : event type);

procedure trace enable (ID_low :
ID_high :

procedure trace_enable_all;

procedure trace_disable (ID :

event_type;

event_type) ;

event_type) ;

range (ID_low, ID_high)

Using the NightTrace Logging API

procedure trace disable (ID_low : event type;

ID_high : event type);
procedure trace disable all;

(functions)

function trace_enable (ID : event_type)

return ntrace_error;

function trace_enable (ID_low : event type;
ID_high : event type)

return ntrace_error;

function trace_enable_all

return ntrace_error;

function trace_disable (ID : event_type)

return ntrace_error;

function trace disable (ID_low : event type;
ID_high : event type)

return ntrace_error;

function trace_disable_all

return ntrace_error;

PARAMETERS
ID

Each trace event has a user-defined trace event ID, ID. ThisID isavaid inte-
ger in the range reserved for user trace event IDs (0-4095, inclusive). See
“trace_event and its variants’ on page 2-12 for more information.

ID_low

It is possible to manipulate groups of trace event 1Ds by specifying a range of
trace event IDs. ID_low isthe smallest trace event ID in the range.

ID_high

It is possible to manipulate groups of trace event 1Ds by specifying a range of
trace event IDs. ID_high isthe largest trace event 1D in the range.

DESCRIPTION

The enable and disable library routines allow you to select which trace events are
enabled and which are disabled for logging. A discussion of disabling trace events
appears first because initially all trace events are enabled.

Sometimes, so many trace events that it is hard to understand the ntrace display.
Occasionally you know that a particular trace event or trace event range is not inter-
esting at certain times but is interesting at others. When either of these conditions

2-19

NightTrace RT User’s Guide

exist, it isuseful to disable the extraneous trace events. You can disable trace events
temporarily, where you disable and later re-enable them. You can also disable them
permanently, where you disable them at the beginning of the process or at a later
point and never re-enable them.

NOTE

These routines enable and disable trace eventsin all processes that
rely on the same user daemon to log to the same trace event file.

All disable library routines make your application start ignoring requeststo log trace
event(s) to the shared memory buffers. The disable routines differ by how many
trace events they disable. trace disable disables one trace event ID.
trace disable range disables arange of trace event IDs, including both
range endpoints. trace disable all disablesall trace events. Disabling an
aready disabled trace event has no effect.

All enable library routines let you re-enable a trace event that you disabled with a
disable library routine or user daemon. The effect is that your application resumes
noticing requests to log the specified trace event to the shared memory buffers. The
enable routines differ by how many trace events they enable. trace enable
enables one trace event ID. trace enable range enables arange of trace
event | Ds, including both range endpoints. trace enable all enablesall trace
events. Enabling an already enabled trace event has no effect.

TIP

Consider invoking the user daemon with events disabled instead
of calling the trace_enable and trace disable routines.
Using these options saves you from re-editing, recompiling and
relinking your application.

TIP
If youwant to log only afew of your trace events, disable all trace

events with trace disable_all and then selectively enable
the trace events of interest.

RETURN VALUES

2-20

The trace disable, trace disable range, trace disable all,
trace_enable, trace enable range, and trace enable all routines
return azero value (NTNOERROR) on successful completion. Otherwise, they return
anon-zero value to identify the error condition. A list of error codes for these rou-
tinesfollows.

Using the NightTrace Logging API

[NTINIT]

The NightTrace library routines were not initialized. Solution: Be sure a
trace begin cal precedesthe cal to the disable or enable routine.

[NTINVALID]

An invalid trace event ID has been supplied. Solution: Use trace event IDs
only intherange 0-4095, inclusive.

SEE ALSO

* trace_event anditsvariants

2-21

NightTrace RT User’s Guide

trace _flush and trace_trigger

The trace flush and trace trigger routines asynchronously wake the user dae-
mon and direct it to copy trace events from the shared memory buffers to the trace event
fileon disk. Note: These routines do not wait for the copy to complete.
SYNTAX

C:

int trace_ flush();
int trace_trigger();

Fortran:

integer function trace flush()
integer function trace_ trigger ()

Ada
(procedures)

procedure trace flush;
procedure trace_ trigger;

(functions)

function trace flush
return ntrace_error;

function trace trigger
return ntrace_error;

DESCRIPTION

When the user daemon isidle, it sleeps. The process of copying trace events from
the shared memory buffers to a trace event file is called flushing the buffers. The
user daemon wakes up and flushes when any of these conditions exist:

* At least one of theindividual buffersisfilled with trace events

* Your application calls trace flush, trace trigger, Of
trace_end

* ntraceud isinvoked with the - - £lush-now option

* The NightTrace graphical analysis tool requests a flush for immedi-
ately analysis of the latest trace events

2-22

Using the NightTrace Logging API

TIP

trace_ trigger isidentical to trace flush, except
trace_trigger worksonly in buffer-wraparound mode. Call
trace trigger instead of trace_ flush so that only
buffer-wraparound’s performance is affected.

When you run in buffer-wraparound mode, you are telling NightTrace to intention-
ally discard older or less-vital trace events when the shared memory buffer getsfull.
In buffer-wraparound mode, you must explicitly call trace flush or
trace_trigger. Only then, does the user daemon copy the remaining trace
events from the shared memory buffer to the trace event file. However, do not call
trace flushor trace_trigger too often or you will reduce the effectiveness
of this mode. See “ntraceud Options” on page 3-3 for more information on
buffer-wraparound mode.

RETURN VALUES

The trace flush and trace trigger routines return azero value
(NTNOERROR) on successful completion. Otherwise, they return a non-zero value
to identify the error condition. A list of trace flush and trace trigger
error codes follows.

[NTFLUSH]
A failure occurred while attempting to flush the shared memory buffer. Solu-

tion: Verify the status of the user daemon; if necessary, restart it and rerun the
trace.

SEE ALSO

* trace_event anditsvariants

2-23

NightTrace RT User’s Guide

trace close thread

The trace close thread routine disables trace event logging for the current thread
or process. Use of this routine is not strictly required, unless a subsequent
trace open_threadcal isdesired.

SYNTAX
C
int trace close_ thread;
Fortran:
integer function trace close_ thread
Ada
function trace close thread return
ntrace_error;
DESCRIPTION

Terminate tracing for the calling thread or Ada task. Subsequent calls to
trace event Or trace event arg and its variants will fail unless an inter-
vening call to trace open thread ismade.

RETURN VALUES

The trace close_ thread routine returns a zero value (NTNOERROR) On suc-
cessful completion. Otherwise, it returns a non-zero value to identify the error con-
dition. A list of trace close thread error codesfollows.

[NTINIT]

The NightTrace library routines were not initialized. Solution: Call
trace close thread only once if you previously called
trace open thread.

SEE ALSO

® trace open thread()

® trace end()

2-24

Using the NightTrace Logging API

trace_end

The trace_end routine frees resources and terminates the trace session in your process.
Use of this routine is not strictly necessary, since all tracing resources are automatically
freed when the application exits. However, for applications that may continue to execute
but have no need for subsequent tracing, calling this routine is appropriate.

SYNTAX
C
int trace_end;
Fortran:
integer function trace_ end
Ada
function trace_ end
return ntrace error;
DESCRIPTION

This routine performs the following operations:

* Terminates trace event tracing in this process

* Flushes trace events from the shared memory buffer to the trace
event file

¢ Detaches the shared memory buffer

* Notifies the user daemon that the current process has finished log-
ging trace events

RETURN VALUES

The trace_end routine returns a zero value (NTNOERROR) on successful comple-
tion. Otherwise, it returns a non-zero value to identify the error condition. A list of
trace_end error codes follows.

[NTFLUSH]

A failure occurred while attempting to flush the shared memory buffer. Solu-
tion: Verify the status of the user daemon; if necessary, restart it and rerun the
trace.

[NTNODAEMON]

There is no user daemon with atrace event file name that matches the one on
thetrace begin cal attached to the shared memory region. This condition
is not always detectable. Solution: Usethentrace display utility to analyze
your logged trace events.

2-25

NightTrace RT User’s Guide

SEE ALSO
* trace begin()

®* trace close thread()

2-26

Using the NightTrace Logging API

trace_diag_mode
Thetrace diag mode routine controlsthe generation of diagnosticsfor critical Night-
Trace API routines.

The NightTrace API diagnostic routineis called when critical errors occur for some Night-
Trace API routines if the diagnostic mode is set to TRUE (on).

SYNTAX
C
void trace diag mode (int on) ;
Fortran:
external trace diag mode
Ada

procedure trace diag mode;

DESCRIPTION

Specify a zero value to set the diagnostic mode to FALSE (off) or a non-zero value
to set it to TRUE (on).

The NightTrace API diagnostic routine may be changed via the
trace_diag_func routine.

Additionally, setting the NTRACE _SILENT environment variable to a non-null
value will prevent diagnostics routines from being called, regardless of the diagnos-
tic mode setting.

SEE ALSO

® trace diag func()

2-27

NightTrace RT User’s Guide

trace _diag_func

The trace diag func routine replaces the default NightTrace API diagnostic routine
with one supplied with the function invocation.

SYNTAX
C:

void trace diag mode (void(*func) (char*,int)) ;

DESCRIPTION

The specified function is invoked when critical errors occur for some NightTrace
API routines if the trace diagnostic mode is set to TRUE.

NOTE
Setting the NTRACE_SILENT environment variable to a non-null

value will prevent diagnostics routines from being called, regard-
less of the diagnostic mode setting.

SEE ALSO

® trace diag mode()

2-28

Disabling Tracing

Using the NightTrace Logging API

There are four ways to disable tracing in your application:

* For C applications that include /usr/include/ntrace.h, you must

recompile your application with the -DNNTRACE preprocessor option or
insert the following preprocessor control statement before the #include
<ntrace.h>.

#define NNTRACE

The NightTrace header file, ntrace.h, contains macro counterparts for each
NightTrace library routine. When you define NNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status.

Cal thetrace disable all routine near the top of the source, recom-
pile, and relink your application. (For more information about this routine,
see “trace_enable, trace_disable, and their variants’ on page 2-18.) If your
application calls any of the enable routines, this method is not entirely
effective.

Start a user daemon with all events disabled.

Do not start a user daemon.

The trace library routines have been highly optimized to have minimal overhead,
especially when no user daemon has been initiated.

Threads and Logging

In order to distinguish between multiple threads in a multi-threaded application, the fol-
lowing steps must be taken:

1. The application must be linked with the thread-aware version of the Night-

Trace logging APl by specifying the -1ntrace_thr link option.

2. Threads must be registered via cals to trace register thread or

trace open_thread or be created viathe Pthread create wrap-
per function which automatically registers newly created threads.

If the thread-aware version of the library is not used or threads are not registered , calsto
log trace events from threads will succeed but cannot be distinguished from other threads
or the main thread.

2-29

NightTrace RT User’s Guide

trace_register_thread

The trace _register thread routine registers the calling thread with the Night-

Trace API
Registration is necessary in order to be able distinguish between threads during event
anaysis.
SYNTAX
#include <ntrace_ thr.h>
int trace_register thread (void);
DESCRIPTION

Once registered, the thread’s ID can be determined in subseguent event analysis.

In order to associate a textual name with the calling thread, use
trace open_thread instead.

Alternatively, threads created using the Pthread create wrapper function are
automatically registered.

If Application Illuminationisused (see“Application lllumination” on page 5-1), the
pthread illuminator will insert code to perform atrace register thread
cal on every pthread create cal.

RETURN VALUES

The trace register thread routine returns a zero value (NTNOERROR) oOn
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A list of trace end error codes follows.

[NT_THREAD ERR]

A failure occurred while attempting to create thread-private data.

SEE ALSO

® trace open thread()

* Pthread create()

2-30

Using the NightTrace Logging API

Pthread_ create
The Pthread create function is a wrapper around the POSIX
pthread create(3) function.
This function has the same semantics and syntax aspthread create with the addition

that the newly created thread is automaticaly registered via an implicit call to
trace register thread.

SYNTAX
C:

int Pthread create (pthread t *,
pthread attr_ t =,
void * (*) (void*),
void *);

DESCRIPTION

Create a new thread and automatically register it via an implicit call to
trace register thread.

To associate a name with the newly created thread, you must subsequently call
trace open_thread from the new thread.

RETURN VALUES
Thereturn values are identical to those defined by pthread create(3).

In the unlikely event that the thread registration fails because thread-private data
cannot be created, the registration is skipped.

SEE ALSO

® trace open thread()

Compiling and Linking

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events.

For single-threaded applications, specify the /usr/lib/libntrace.a library.

For multi-threaded applications, specify the /usr/lib/libntrace_ thr.a library.

2-31

NightTrace RT User’s Guide

C Compilation and Linking

Single-threaded example:
S cc app.c -lntrace
Multi-threaded example:
$ cc app.c -lntrace thr -lpthread

See “NightTrace Logging APl Examples’ on page D-1 for more demonstrative examples.

Fortran Compilation and Linking

RedHawk Linux:
S c£77 app.f -lntrace
or

$ g77 app.f -lntrace

See “NightTrace Logging APl Examples’ on page D-1 for more demonstrative examples.

Ada Example

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in the MAXAda for Linux Reference
Manual.

2-32

3
Capturing User Events with ntraceud

A user daemon is required in order to capture trace events logged by user applications.
There are two methods for controlling user daemons:

¢ Use the graphical user interface provided in the ntrace didog as
described in “Edit Daemon Definition” on page 9-9.

* Usethe command linetool ntraceud.

Theinteractive interface is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the application continues to log trace data; this
optional feature is called streaming. Alternatively, the ntraceud command line tool is
useful in scripts where automation is required.

This chapter describes the ntraceud command line tool broken down into the following
topics:

* “The ntraceud Daemon” on page 3-1

* “ntraceud Modes’ on page 3-2

¢ “The Default User Daemon Configuration” on page 3-2
* “ntraceud Options’ on page 3-3

* “Invoking ntraceud” on page 3-6

The ntraceud Daemon

When you start up ntraceud, it creates a daemon background process and then returns
control to the invoking program, normally the shell. The daemon creates a shared mem-
ory buffer in global memory. Your application writes trace events into this buffer, and the
daemon copies these trace events to the output device, usually afile.

You supply the name of the trace event file on your ntraceud invocation and in the
trace begin () library call in your application. If this file does not exist, ntraceud
creates it; otherwise, ntraceud overwritesit.

A single ntraceud daemon may service severa running applications or processes. Sev-
era ntraceud daemons can run simultaneousdly; the system identifies them by their dis-
tinctive trace event file names. The ntraceud daemon resides on your system
under/usr/bin/ntraceud.

The daemon remains idle until one of the following conditions exist:

* One of the shared memory buffersfills

31

NightTrace RT User’s Guide

* You terminate execution of ntraceud

* Your application calls trace flush(), trace trigger(), or
trace end()

¢ A subsequent invocation of ntraceud explicitly requests aflush

ntraceud Modes

By default, ntraceud operates in an expansive mode, continually increasing the size of
the output file as events are copied from the shared memory buffersto disk.

ntraceud aso offersafile-wrap mode. This mode essentially places alimit on the max-
imum size the file can grow to. Once the limit is reached, the oldest eventsin the file are
overwritten.

ntraceud also offers a buffer-wrap mode. In this mode, the shared memory buffers are
filled without waking the daemon. When all buffers have been filled, the oldest events are
overwritten with the newest ones. No disk activity occurs until ntraceud isterminated,
or an explicit flush operation is requested, at which time, all buffers are copied to the out-
put file.

Both file-wrap and buffer-wrap modes may be used together.

The Default User Daemon Configuration

3-2

Invoking ntraceud with atrace event file argument and without any options will
attempt to start a user daemon with the default user daemon configuration. You can over-
ride defaults by invoking ntraceud with particular options. Table 3-1 summarizes these
options. Detailed descriptions of these options are described in the following section.

However, if a user application has already been initiated, it may have specified a
non-default configuration viathe trace begin() cal. If thecritical settingsin the con-
figuration defined by the user application differ from those specified by ntraceud, then
ntraceud will fail to initialize with an appropriate diagnostic.

In the default configuration, all trace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, an architecture-specific timing
source is utilized, which for Intel and AMD Opteron based machines is the Time Stamp
Counter (TSC register). On operating systems that support the Real-Time Clock and
Interrupt Module (RCIM), the RCIM’s clock can be used as a timestamp source by using
the - -rcim option to ntraceud (see “ntraceud Options’ on page 3-3).

ntraceud and the NightTrace library routines optionally use page locking to prevent
page faults during trace event logging.

A summary of NightTrace configuration defaults follows.

Capturing User Events with ntraceud

Table 3-1. NightTrace Configuration Defaults

Characteristic Default Modifying Option

Number of buffers 8 - -numbu £s=number

Size of each buffer 32768 raw events --buflen=len

Buffer wrap mode No wrapping --bufferwrap

Trace event file size Indefinite - -filewrap=bytes

Trace events enabled for logging | All --disable =ID and
--enable=ID

Page Locking No Page Locking --lock

ntraceud Options

ntraceud copies trace events from shared memory buffersto the output device, whichis
normally afile.

Thentraceud invocation syntax is:
ntraceud [optionsg] tracefilename

The trace-filename parameter is required for al ntraceud invocations. When starting a
daemon, it defines the shared memory identifier that the daemon and application will use
to communicate. When requesting statistics for a running daemon or when stopping a dae-
mon, it identifies the running daemon. Finally, unless run in streaming mode, the
trace-filename defines the output file which will hold trace events as they are copied from
memory.

The command-line optionsto ntraceud are:

--bufferwrap
-b

Collect events in the shared memory buffers, but do not output them to the
output device until ntraceud is terminated or an explicit flush request
occursviaan ntraceud invocation or from the NightTrace Logging API.

When the shared memory buffers are completely filled, the oldest trace events
are overwritten by the newest events.

--buflen[=buflen]
-B1 buflen

Sets the length of each of the shared memory buffers used by ntraceud to
buflen. The value represents the number of parameterless events that can be
stored in each buffer. The value buflen should be a power of 2 -- otherwise the

3-3

NightTrace RT User’s Guide

34

value isautomatically adjusted by ntraceud. Usethisoptionin conjunction
with - -numbufs to control the amount of shared memory to be used. The
default value for buflen is 32768. Note that trace event arg API calls
(and other similar interfaces which include parameters) consume more space
than those without parameters.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel .shmmax and kernel .shmall variablesviathe sysctl (8) command.

--cpu=Cpu

Causes the daemon to run on the CPUs specified by cpu. The cpu parameter
must be a comma-separated list of logical CPUs or CPU ranges.

--disable=ID[-ID]
--enable=ID[-ID]
-d ID[-ID]

-e ID[-ID]

Disable or enable one trace event 1D or arange of trace event I1Ds, as defined
by ID or the range ID-1D, from being logged. Any number of these options
may be specified. Upon the first invocation of ntraceud that creates the
daemon process, the first - -enable option disables all other trace events.
When ntraceud isinvoked subsequently to adjust status of events for the
current session, --enable options only enable the specified trace events.
By default, all trace events are enabled.

--filewrap=hytes
-fw bytes

Start the ntraceud daemon in file-wrap mode such that the maximum trace
file size will be bytes bytes. A K or M suffix indicates that the sizeisin kilo-
byte or megabyte units, respectively. Once the maximum size has been
reached, ntraceud overwrites the oldest trace events logged by the applica-
tion.

--flush

This option forces a flush of all shared memory buffers that contain trace
events. Thisisespecialy useful when the daemon is operating in bufferwrap
mode or ntraceud is stream data to an application linked with the Night-
Trace Analysis APl when the rate of eventsisrelatively low.

--help

-h

Display abrief description of ntraceud options to stdout and exit.

--info

-i

Display summary information about a running ntraceud daemon. The dis-
play includes information about the number of events generated, eventsin the

Capturing User Events with ntraceud

shared memory buffers, events written to the output device and any data loss
that has occurred.

Dataloss usually occurs because your application is writing trace events to the
shared memory buffers faster than ntraceud can copy them to the
trace-event file. Limit data loss by increasing the - -numbufs and
--buflen option settings or using - -bufferwrap and by executing
ntraceud with urgent priority.

--join
-3

Allow the initiation of an ntraceud daemon even if a user application has
already initiated a trace session using the specified trace-filename argument.

--lock
--nolock

Specify whether critical pages are to be locked in memory or should not be
locked in memory. Note that you must have the CAP_IPC LOCK capability
to lock pagesin memory (see“Privileged Access’ on page C-1 for details).

- -numbu £ s[=numbufs]
-Bn numbufs

Sets the number of shared memory buffers used by ntraceud to humbufs.
The value numbufs should be a power 2 -- the value is automatically adjusted
by ntraceud if thisis not the case. Use this option in conjunction with
--buflen to control the amount of shared memory to be used. The default
value of numbufsis 8.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel.shmmax and kernd.shmall variablesviathe sysctl (8) command.

--policy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with - -priority
and - -cpu to adjust the scheduling attributes of ntraceud. See
sched_setscheduler (2) for moreinformation on scheduling policies.
Note that you must have the CAP_SYS NICE capability to set areal-time
scheduling policy (see “Privileged Access’ on page C-1 for details).

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
--policy option. By default, priois 0 and the scheduling policy is other
which dictates normal interactive scheduling. See
sched setscheduler (2) for moreinformation on scheduling priorities.
Note that you must have the CAP_SYS NICE capability to set areal-time
scheduling priority (see “Privileged Access’” on page C-1 for details)

35

NightTrace RT User’s Guide

--processor=hias

The bias parameter must be a comma-separated list of logical cpu numbers or
ranges. This option restricts the daemon to only run on the specified cpu(s).

--quit
-q

After all processes associated with the ntraceud session defined by
trace-filename have exited or called trace end, flush all remaining events
in the shared memory buffers, terminate the corresponding ntraceud dae-
mon, remove the corresponding shared memory identifier, and close the file.
This option causes ntraceud to wait for all processes to either exit or call
trace_end before tracing is terminated, whereas the - - quit-now option
terminates the daemon without waiting.

--quit-now
-qn

Immediately flush all remaining events in the shared memory buffers, termi-
nate the corresponding ntraceud daemon, remove the corresponding shared
memory identifier, and close thefile.

--rcim

Specify use of the RCIM synchronized tick clock as the timing source. This
option is useful when simultaneously capturing data from multiple systems
since the RCIM tick clock can be synchronized between systems.

This option isonly available on operating systems that support the RCIM.
--stream

This option causes binary trace data to be output to stdout. This option is
intended to provide streaming data to applications using the NightTrace Anal-
ySisAPIl; eg. ntraceud --stream /tmp/key | a.out. Inthiscase
the trace-filename specified is not modified (although it will be created if it
does not aready exist).

--version
-v

Display the current ntraceud version to stdout and exit.

Invoking ntraceud

3-6

This section describes afew common ntraceud invocation examples. 1n each example,
thetrace file argument corresponds to the trace event file name you supply on your call to
the trace begin () library routine.

Normally, your first ntraceud invocation looks something like the following sample.

Capturing User Events with ntraceud

ntraceud trace file

The following invocation might be used when tuning your NightTrace configuration
because you lost trace events last time.

ntraceud --numbufs=16 --buflen=65536 trace file

To eliminate any disk activity, or to run for long periods of time and only capture the |atest
data, the following invocation might be used.

ntraceud - -bufferwrap trace file
To conserve disk space for long runs, the following invocation might be used.
ntraceud - -filewrap=bytestrace file

The following invocation should be used when the user application is already running and
you wish to start collecting trace data from it.

ntraceud --join trace file

To obtain information on the status of an active daemon, the following invocation could be
used:

ntraceud --info trace file

The following invocation waits for all user applications associated with the running
ntraceud daemon to terminate, flushes remaining trace events to the trace event file,
closes the file, removes the shared memory buffer, then terminates the running ntra-
ceud.

ntraceud --quit trace file

Similarly, the following invocation immediately flushes remaining trace events to the
trace file, closes the file, and terminates the running ntraceud daemon. User applica-
tions can continue to run and make NightTrace Logging API calls, but no trace eventswill
be logged. Subsequently, a new user daemon can be initiated and trace events will start
being logged again:

ntraceud - -quit-now trace file

To provide streaming trace data to an application written using the NightTrace Analysis
API, the following information could be used:

ntraceud --stream trace file|./a.out

Note that in the above invocation, the trace file parameter serves only as a handle for
communication between the daemon and the user application that is logging the events; no
datais written to the file. The - - stream option instructs that the binary data stream be
redirected to stdout. See “NightTrace Analysis Application Programming Interface” on
page 18-1 for more information.

3-7

NightTrace RT User’s Guide

3-8

4
Capturing Kernel Events with ntracekd

A kernel daemon is required in order to capture trace events logged by the operating sys-
tem kernel. There are two methods for controlling kernel daemons:

¢ Using the graphical user interface provided in NightTrace Main Window

* Using the command linetool ntracekd

The interactive method is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the kernel continues to log trace data; this
optional feature is called streaming. Alternatively, the ntracekd command line tool is
useful in scripts where automation is required.

This chapter describes the ntracekd command line tool and consists of the following
sections:

* “The ntracekd Daemon” on page 4-1
* “ntracekd Modes’ on page 4-1
* “ntracekd Options’ on page 4-2

* “ntracekd Invocations’ on page 4-5

The ntracekd Daemon

When you initiate ntracekd, it creates a daemon background process and returns while
that daemon process executes. Once it returns to the invoking process, usually the shell,
the background process has already initiated kernel tracing.

You supply the name of the trace event output file on your ntracekd invocation. Since
the capture of kernel data can quickly consume vast quantities of disk space, the
ntracekd tool requires that you specify alimit on the size of the output file. Once the
limit is reached, older kernel data in the file will be overwritten with newer data. The
interface does allow you to specify an unlimited file size; however, this is not recom-
mended.

The ntracekd daemon resides on your system under /usr/bin/ntracekd.

ntracekd Modes

ntracekd essentially always operatesin afile-wraparound mode, sinceit requires you to
put alimit on the maximum size of the output file. If the limit is reached, then kernel trac-

4-1

NightTrace RT User’s Guide

ing continues, but newer kernel events overwrite older eventsin the file. When viewed by
the NightTrace analyzer, the events will be appropriately displayed in chronological order.

ntracekd aso offers a buffer-wraparound mode. This mode stipulates that the kernel
continuesto log kernel eventsto itsinternal bufferslocated in kernel memory, overwriting
the oldest kernel trace events with the newest ones. No disk activity occurs until
ntracekd isterminated or an explicit flush request is made via a subsequent ntracekd
invocation, at which time, all kernel trace buffers are copied to the output file.

ntracekd Options

4-2

The full ntracekd invocation syntax is:
ntracekd [optiong] filename

The filename parameter is required for al ntracekd invocations. When starting a dae-
mon, it defines the output file. When requesting statistics for a running daemon or when
stopping adaemon, it identifies the running daemon.

The command-line optionsto ntracekd are:

--bufferwrap
-b

Collect events in kernel bufferwrap mode, delaying output to filename until
stopped or flushed. This delaysthe disk activity normally involved in copying
kernel buffersto the output file as they become full.

- -cpu=cpu

Causes the daemon to run on the CPUs specified by cpu. The cpu parameter
must be a comma-separated list of logical CPUs or CPU ranges.

- -events=events
-e events

Set the state for the events listed in the list events to enabled or disabled.
Eventsis a comma-separated list of event numbers or names preceded with a+
(meaning enabled) or - (meaning disabled). A + or - without a number or
name means enable or disable all, respectively. Thisoption can be used after a
daemon is already running to dynamically disable or enable events.

For example, to disable all events except those representing context switches,
you could enter:

ntracekd --events=-,+schedchange
--flush

This option flushes all kernel buffers. It is particularly useful in conjunction
with the - - stream option when streaming binary datato a NightTrace Anal-
ysis API application.

Capturing Kernel Events with ntracekd

--help

-H

Prints a description of the available options and exits.

--info

-i

This option can be specified to obtain statistics about a kernel daemon already
initiated by a previous ntracekd command. |t prints statistics to stdout.

--kill

-k

Kill any active kernel daemon without regard to proper shutdown procedures.
This will allow subsequent kernel daemons to be initiated but data from the
previous daemon may be lost.

--policy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with - -priority
and - -cpu to adjust the scheduling attributes of ntracekd. See
sched setscheduler (2) for moreinformation on scheduling policies.

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
--policy option. By default, priois 0 and the scheduling policy is other
which dictates normal interactive scheduling. See
sched setscheduler (2) for moreinformation on scheduling priorities.

--processor=hias

The bias parameter must be a comma-separated list of logical cpu numbers or
ranges. This option restricts the daemon to only run on the specified cpu(s).

--quit

-q

Stop an existing kernel daemon. Once kernel tracing has been stopped, all
remaining trace events already logged in the kernel buffers are copied to the
output file. The ntracekd command will not return until the copy is com-
plete.

-=-raw

-X

Disable automatic filtration of the kernel data leaving the format of the output
fileasaraw kernel file. Raw kernel files can be passed directly to NightTrace
which will execute the filtration process on the fly. By default, ntracekd

4-3

NightTrace RT User’s Guide

filters the raw data to avoid otherwise unnecessary repetitive filtration by
NightTrace. Thisoption isnot normally used.

--rcim
-r

Use the RCIM tick clock as the timing source instead of the default timing
source.

This option can only be used on operating systems that support the RCIM.

--size=Sze
-s Sze

This option specifies the maximum size of the output file. It is required when
initiating a daemon unlessthe - -wait or - -buf ferwrap options are used.
Size may be specified as an integer number optionally followed by ak, M, or G
which indicates kilobytes, megabytes, or gigabytes, respectively. If no letter
is specified, the units are assumed to be in bytes. size may also be +, which
indicates that the output may grow without limit. Use of + is not recom-
mended as kernel tracing can quickly consume vast quantities of disk space.

--stream

This option causes output to be sent to stdout in binary form for use asinput to
aNightTrace Analysis APl application. When this option is used, the filename
parameter still required, but no datawill be writtento it. With - -stream the
filename serves solely as a communication handle between ntracekd invo-
cations.

--verbose
-v

When this option is used in conjunction with - -info, it includes the list of
enabled events.

- -wait=seconds
-w seconds

Start the daemon and begin kernel tracing for seconds before stopping the dae-
mon.

--bufsize=xz
-Bs &Z

This option defines the size of each kernel buffer. sz may be specified as an
integer number optionally followed by ak, M, or G, which indicates kilobytes,
megabytes, or gigabytes, respectively. If no letter is specified, the units are
assumed to bein bytes. The default size of akernel buffer is 250000 bytes.

--numbufs=n
-Bn n

This option defines the number of kernel buffers. n must be an integer num-
ber. The number of kernel buffers defaultsto 4.

4-4

Capturing Kernel Events with ntracekd

ntracekd Invocations

A typical invocation of ntracekd to initiate kernel tracing would be:
> ntracekd --size=10M kernel-data

This starts a kernel trace daemon in the background and specifies a maximum size limit
for the output file kernel -data of 10 megabytes. The command returns as soon as ker-
nel tracing has begun.

To check on the status of the running daemon, the following command might be used:

> ntracekd --info kernel-data

status: running
events lost: 0
events captured: 13465
events written: 13465
events in buffer: 1493

To terminate the running daemon, the following command would be used:
> ntracekd --quit kernel-data

To initiate a daemon to capture kernel data while a user application executes, then to ter-
minate the daemon and view the data, the following sequence of commands might be
used:

ntracekd --size=10M kernel-data
./a.out

ntracekd --quit kernel-data
ntrace kernel-data

V V. V V

To initiate adaemon to capture kernel data for five seconds and then terminate the daemon
and view the data, the following sequence of commands might be used:

> ntracekd --wait=5 kernel-data
> ntrace kernel-data

NightTrace RT User’s Guide

4-6

5
Application lllumination

The challenge of debugging real-time programsis that problems are often time sensitive.
Stepping through the program one statement at a time with a traditional debugger is little
help in debugging such problems. Even the expedience of inserting printf () state-
ments may introduce sufficient 1/0 overhead to interfere with the behavior of areal-time
program. NightTrace's trace points have little overhead, but can be tedious to insert large
numbers of them into the source code.

Application Illumination is a set of tools to automatically generate trace points for func-
tion calls and returns. It patches them into the object code, and thus requires no source
changes.

This chapter describes the Application Illumination facility and consists of the following
sections:

* “Overview” on page 5-1

* “Creating and Building an Illuminator” on page 5-4
¢ “Linking With llluminators’ on page 5-10

* “Predefined Illuminators’ on page 5-11

* “Activating Illuminators’ on page 5-12

* “Using NightTrace With llluminators’ on page 5-14

® “Customizing an Illuminator” on page 5-14

Overview

[lluminator

Anilluminator is a directory that contains an object file with a set of “wrapper” routines,
an event map and format tables for ntrace to use, and some other support files. Callsto
the routines that are going to be traced will be diverted to their corresponding “wrapper”
functions, which record the entry event, call the real function, record the return event, and
then return to the original call sites.

Work Flow lllustration

The following transcript illustrates illuminating the code of a simple user program.

51

NightTrace RT User’s Guide

. Build your code with debug information so that Application Illumination

knows the signatures of your functions:

$ gee -g -c *.c
$ gecec *.o

. Build anilluminator called a_ai for thea . out program:

$ illuminator --build=a ai a.out

. Build your program with the illuminator that was constructed in step 2,

along with an illuminator called main that performs the
trace begin () operation. At this point, although the illuminators are
linked into the program, they areinert. Callsto the routinesto be traced are
still called directly. [lluminators may sit in your program unused and not
interfering with performance at al until you need them.

$ gcc *.0 -o a.outAI ‘illuminator main a_ai‘

. Activate the illuminators in a.outAI. Calls to the routines to be traced

are now diverted to the “wrapper” functions.

$ illuminate a.outAI main a ai

. Start up a daemon to record the events, run the program, shut the daemon

down, and run ntrace, which finds the trace file and illuminator support
files from paths embedded in a. outAI:

$ ntraceud trace file

S a.outAl

$ ntraceud -q trace file
S ntrace a.outAl

Provided llluminators

[lluminators are provided for some system libraries: glibc, pthread, and ccur_rt.
Since the construction of illuminators depends on DWARF debug information which is
not in system libraries, creating custom illuminators for system libraries requires the

installation of appropriate debug-info RPMs.

An illuminator for main () is also provided that will perform the trace begin ()
operation for programs that aren’t already using NightTrace (see “trace_begin” on page
2-6).

Detail Levels

When activating an illuminator, a named detail level may be specified (the default oneis
called 2). A detail level may be customized to trace a particular subset of the functions

that can be traced and to log more or less information with the events.

5-2

Application Illumination

3. Relink the previous example to include the glibe illuminator:

$ gcec *.o0 -o a.outAI ‘illuminator main a ai glibc‘

4. Activatethea ai illuminator specifying the higher level of detail than we
used above, and glibc with alow level of detail:

$ illuminate a.outAI main a ai=3 glibec=1

5. Start up a daemon to record the events, run the program, shut the daemon
down, and run ntrace, which finds the trace file and illuminator support
filesfrom paths embedded in a.outAI:

$ ntraceud tracefile

$ a.outAI

$ ntraceud -q tracefile
$ ntrace a.outAI

Here is some sample output of afew events with detail level 3:

9: cpu=?? ENTER regcomp test illuminato
main 0.010745903
calling
regcomp (preg=0x60£120, pattern=0x60£170, cflags=9)
*preg={

buffer=0x0,
allocated=0,
used=0,
syntax=0,

)
*pattern=""mains$"
caller=0x478f44
frame=0x7fbff£5870

10: cpu=?? RETURN regcomp test illuminato

main 0.010800482
returning from regcomp ()=0
errno=0
11: cpu=?? ENTER strlen test illuminato
main 0.010801628
calling strlen(s=0x4bb374)
g="_\.internal io\.ada"

caller=0x478£07
frame=0x7fbff£5870

12: cpu=?? RETURN strlen test illuminato
main 0.010802240
returning from strlen()=20
errno=0

5-3

NightTrace RT User’s Guide

Creating and Building an llluminator

The illuminator program is used to construct illuminators. Anilluminator that isonly
created, but not built, is adirectory with just asingle fileinit: config.xml. Thisfile
may be modified to customize the illuminator (See “ Customizing an Illuminator” on page
5-14). Building the illuminator builds al the “wrapper” functions, NightTrace tables, and
other support files. Whenever you change the signatures of the functionsin your code, its
illuminator should be rebuilt.

illuminator --create

Usage:
$ illuminator --create=illuminator [options] [object files]

Create a directory called illuminator and placein it a config.xm1 file that reflects the
options and object files specified on the remainder of the command line. If illuminator
already exists, it will be modified it to include the additional options and object files that
are specified.

The following options may be specified:

--aggregate limit=limit
- -config=config.xml
--do_nodebug
--dont_nodebug
--event_ids=N-[M]
--install=path
--iunderscores

- -iregex=regex
--istd
--xunderscores

- -Xregex=regex
--xstd

The object filesthat may be specified are those containing the code to be traced. They may
be a whole program, archives, shared objects, individual object files, or debug-info files.
If the DWARF debug information has been placed in a separate debug-info file, it must be
listed immediately after its corresponding object file.

--aggregate limit=limit

54

Limit the recording of aggregate valuesto limit bytes. Aggregates might get recorded with
an event if afunction’s parameter or return value is a C/C++ struct type, for example.
Only thefirst limit bytes of the aggregate are recorded.

This option may also be set in a config.xml file:
<defaults><options aggregate limit=limit/></defaultss>

(See“aggregate limit=limit” on page 5-20).

- -config=config.xml

Application Illumination

Thelimit must be at least 16 bytes. The default limit is 16 bytes.

Read configuration from an XML file. More than one instance of this option may be spec-
ified to merge several such files together. Options specified on the command line after the
--config option will override options set in the config.xml file. One use of this might be
to generate a customized glibc illuminator.

$ illuminator --create=myglibc \
--config=/usr/lib/NightTrace/illuminators/glibc/config
.xml \
--aggregate limit=64

Thiswould initializemyglibe/config.xml with /usr/1ib/NightTrace/illu-
minators/glibc/config.xml, but change the aggregate limit from 16 to 64.

--do_nodebug, --dont nodebug

--event ids=N-[M]

--install=path

Create or don’t create trace events for functions that have no DWARF debug information.
The default is to not create such trace events. Only entry events are generated for func-
tions without debug information. An alternativeto - -do_nodebug is to use a config.xml
fileto provide asignature for the function (See “<declare>" on page 5-15).

This option may aso be set in a config.xml file:
<defaults><options nodebug={yes|no}></defaults>

(See “nodebug={yes|no}” on page 5-22).

Specify the range of NightTrace event IDs to use for the function entry and return events.
If the range is exceeded, awarning is generated.

This option may aso be set in a config.xml file:
<defaults><options event ids=N-[M]></defaults>
(See“event _ids="N-[M]"" on page 5-21).

The defaults for N and M are 12000 and 32767 respectively. The highest possible event
ID is 32767.

Specify an installed location for an illuminator, in contrast to the place it is actually built.
This path is recorded in the object files for ntrace to find the event map and format
tables (see “Using NightTrace With Illuminators’ on page 5-14).

55

NightTrace RT User’s Guide

--i*, --x
Include or exclude functions from getting entry and return events based on the functions
names. Multiple instances of these options may be specified. The last one specified that
matches a function’s name determines whether that function is included or excluded.
Excluded functions are not included in the - -populate output.

--iunderscores, --xunderscores

Include or exclude functions whose names start with an underscore character. All aliases
of afunction and the fully qualified C++ name (if applicable) must begin with an under-
score in order to match these options (in contrast to --iregex=_.* or
--xregex=_.*). A fully qualified C++ name matches if the function name or name of
any containing classes start with an underscore.

Therationale for thisis that functions and class names that begin with underscores are typ-
ically vendor implementation routines that are of lessinterest. But it isaso common prac-
ticeto create a strongly defined function that starts with an underscore, then weakly define
aliases to that function that do not. These functions, like many in Glibc (see NOTE), are
likely to be interesting, and so aren’t matched by these options.

NOTE

Many functionsin Glibc for which all aliases begin with an under-
score do not follow standard function call conventions, and so
should never be traced via Appplication Illumination.

These options may also be specified in a config.xml file:
<defaults><options underscores={yes|no}/></defaults>
(See“underscores={yes[no}” on page 5-22).

The default is - -xunderscores.

--iregex=regex, --xregex=regex

Include or exclude functions whose names match a POSIX regular expression (see
regex (7)). A function name matches the regular expression if any alias or fully qual-
ifed C++ name (if applicable) matchesit. The regular expresssion must match the whole
name (an implicit * and $ is placed before and after the regular expression respectively).

These options may also be specified in a config.xml file:
<defaults>
<option iregex=regex/>
<option xregex=regex/>
</defaults>
(See“iregex="regex” , xregex="regex”” on page 5-22).

By default

5-6

--istd,

--xstd

Application Illumination

main,
.*\.internal io.ada, and
.*\.internal io\.ada\.\..*
are excluded.
To include only functions matching a particular regex, first exclude al functions:

--Xregex=.* --iregex=regex

Include or exclude C++ functions in the std namespace.

These options may a so be specified in a config.xml file:
<defaults><option std={yes|no}/></defaults>

(See“std={yes[no}” on page 5-22).

The default is to exclude C++ functions in the std namespace. Such functions are often
inlined and so tracing them usually doesn’t provide alot of useful information.

illuminator --populate

Usage:
$ illuminator --populate=illuminator [options] [object files]

Create or update (like - -create) theilluminator’'s config.xml file to reflect the
options and object files specified. Then populate the config.xml file with alist of all
the functions found on the object filesthat it will generate trace points for and all the global
variables it can record as arguments to return events. This can be a great convenience
when you want to create a number of function-specific customizations by editing the
config.xml file. If such customizations are made, they will be retained if you run the
illuminator --populate command again, which you will likely want to do any-
time you add or remove functions or change the function’s signatures that you are illumi-
nating.

illuminator --build

Usage:
$ illuminator --build=illuminator [options] [object files]

Create or update (like - -create) theilluminator’'s config.xml file to reflect the
options and object files specified. Then build the “wrapper” functions, event map, format
tables, etc. You will want to do this any time you change the types or function signatures
that Application Illumination usesto create trace points.

By default, three detail levels are created for the illuminator:

5-7

NightTrace RT User’s Guide

next event.txt

illuminator . h

illuminator . map

5-8

Record return address on function entry return points; record return value on function
return points.

Record return address, caller’s frame pointer, and arguments on function entry points;
record return value and out arguments on function return points.

Record return address, caller’s frame pointer, arguments, and indirection through pointer
arguments on function entry points; record return value, indirection through pointer return
value, out arguments, indirection through pointer out arguments, and errno on function
return points.

You may edit the config.xml file to modify these detail levels or to create custom detail
levels.

The following files are create in the illuminator directory:

The next event number after the last one assigned. Its purpose isto assist in creating mul-
tiple wrapper libraries that use contiguous ranges of events.

$ illuminator --build=fred --event ids=1000-2000
$ illuminator --build=barney \
--event ids=‘cat fred/next event.txt'-2000

Header file that #def inesaname for each event for usein calling the NightTrace analy-
sisAPI. The names are of the form:

TRACE EVENT illuminator ENTER function and
TRACE EVENT illuminator RETURN_function.

When afunction has been aliased to have multiple names (usually a strongly and aweakly
defined name), only asingle event pair isalocated for it. The function name used to build
the event name is the shortest alias (then lexically earliest if there are two or more shortest
aliases). Each aias will get its own wrapper function, but they will each record the same
entry and return event IDs.

NightTrace event map naming the events. The names are of the form:

Application Illumination

ENTER_function and
RETURN_function.

illuminator_level . fmt

NightTrace format table. There is one for each detail level so NightTrace knows what
details were recorded in the tracefile.

[luminator_level . o

Object file that gets copied into the user program by i1luminate to control the level of
detail recorded by each function in the wrapper library.

[luminator_level . 1ist

The list of functions to wrap or not wrap for each detail level. It isused by the illuminate
command.

illuminator . o

Relocatable object file containing all the “wrapper” functions.

illuminator --report

Usage:
$ illuminator --report=illuminator

Generate areport about an illuminator on functions, function groups, global variables, etc.
For example:

$ illuminator --report=pthread
The following global variables were found:
The following subroutines had no debug information or
<declares>:

___preadé64

__pwriteé64

lseeké64

pread

preade64

pwrite

pwriteé64
The following subroutines were excluded because of their
names:

__errno_location

__h errno_location

__libc_allocate rtsig

pthread cleanup pop
_pthread cleanup pop_restore

NightTrace RT User’s Guide

pthread cleanup push
_pthread cleanup push defer
The following subroutines are in group "glibc":
_T0 flockfile
_I0 ftrylockfile
_I0 funlockfile

wait
waitpid
write
The following subroutines are in group "pthread":
_ pthread _atfork
___pthread getspecific

pthread testcancel
pthread timedjoin np
pthread tryjoin np
pthread yield
sem_close
sem_destroy
sem_getvalue
sem_init
sem_open
sem_post
sem_timedwait
sem_trywait
sem_unlink
sem_wait

The following subroutines are in no group:

$

Linking With llluminators

5-10

Once built, an illuminator’s “wrapper” functions must be linked into your program with
the -Wl, - -emit-relocs and either -1ntrace oOr -1lntrace thr options. The
illuminator program can be used between back-quotes to conveniently generate all
the options to reference the needed object files and options. When an illuminator is speci-
fied with a relative path, the program will search for it first relative to the current direc-
tory, and then relativeto /usr/lib/NightTrace/illuminators. Alternatively, an
absol ute path to the illuminator directory may be given.

When an illuminator is first linked into your program, it isinert. It does not intercept any
function calls or interfere with your program’s performance at all until it is activated with
the illuminate command (see “Activating [lluminators’ on page 5-12).

Application Illumination

illuminator --gcc

Usage:
$ gee ... ‘illuminator [--gcc] [-t] illuminator_list®

Generate options suitable for gce to link in alist (separated by whitespace) of illumina-
tors. The -t option specifies the use of the threaded ntrace library.

This generates the following options:

* illuminator_path/illuminator .o (for each illuminator)
® -Wl,--emit-relocs

* -lntrace[thr]

illuminator --g77

Generate options suitable for g77. See “illuminator --gcc” on page 5-11.

illuminator --cf77

Generate options suitable for c£77. See“illuminator --gcc” on page 5-11.

illuminator --ada

Generate options suiltablefor a.1ink. See“illuminator --g77” on page 5-11.
This generates the following options:

® -14 illuminator_path/illuminator .o (for each illuminator)
® --emit-relocs

® -so=ntrace[_ thr]

Predefined llluminators

Four predefined illuminators are provided by Application Illumination:

51

NightTrace RT User’s Guide

main

glibc

pthread

ccur rt

Thisilluminator is special. It provides awrapper function for main () only, but does not
record any events. Instead, it performsatrace begin () call (see “trace_begin” on
page 2-6). If you are using illuminatorsin a program that is already doing its own tracing,
you don’'t need to link thisilluminator in.

This illuminator illuminates the Gnu C library. If you wish to customize it, you must
install the appropriate debug-info RPMs.

Thisilluminator illuminates the POSIX threads library. It isspecia intwo ways.

First, it modifies the “wrapper’ routine for pthread create () to register the newly
created thread with the NightTrace library (using trace register thread())
before the new thread executes the user’s code. (See “trace_begin” on page 2-6 and
“trace register_thread” on page 2-30).

Second, it adds an additional detail level called 0 that only illuminates the
pthread create () function, allowing you to get your threads automatically regis-
tered without having to clutter up your tracing with the rest of the pthread events. If
you wish to customize it, you must install the appropriate debug-info RPMs.

Thisilluminator illuminates the Concurrent real-time library. 1f you wish to customizeit,
installing appropriate debug-info RPMs is not necesary at thistime. However, this might
change in future releases of RedHawk or SLERT real-time operating systems.

Activating Illluminators

program

5-12

Once theilluminators are linked into a program, they can be activated by usingthe i11u-
minate program. This program scans the user program for calls to the subroutines to be
traced, and redirects them to the “wrapper” functions in the illuminator that record the
entry event, call the real function, record the return event, and return.

Usage:

$ illuminate program [[!]main[options]] \
[['Tiluminator[=level]] ...

The program you linked with illuminators. i1luminate may be ran on the program
multiple times to turn on and off various illuminators and to change their detail levels.

main[, options|

illuminator

level

Application Illumination

Deactivate the illuminator the“ 1" is prefixed to. When deactivated, an illuminator has no
run-time overhead.

Specify themain illuminator. Thisilluminator is special. It “wraps’ only themain ()
routine, and records no events. Instead, it performsatrace_begin () call (see
“trace_begin” on page 2-6). Rather specifying a detail level, you may specify a
commea-separated list of optionsto the trace begin () call:

* TRACE_ FILE=filename

Specify the name of the file that will hold the trace events. The default is
trace file.

* NUM BUFFERS=count
Specify the number of buffers used for recording trace events. The default is 8.
* BUFFER LENGTH=Sze

Specify the length in bytes of each buffer used for recording trace events. The
default is 32768.

Specify the name of the illuminator. This can be an absolute or relative path to the direc-
tory containing the illuminator’s files. Relative paths will be searched for relative to the
current directory and then relativeto /usr/lib/NightTrace/illuminators. The
following illuminators are provided in /usr/1ib/NightTrace/illuminators:

® main
® glibc
® pthread

¢ ccur rt

In addition to main described above, the pthread illuminator is specia in that it inserts
codeto do atrace register thread() into pthread create () (see
“trace_begin” on page 2-6 and “trace register_thread” on page 2-30) and has a detail level
caled 0.

Specify the level of detail to be recorded by the illuminator’s events. The defaultis2. By
default, illuminators have detail levels 1, 2, and 3. These levels may be customized, or
custom details may be created, for any illuminator. The provided pthread illuminator
has a custom detail level 0 that only tracespthread create ().

5-13

NightTrace RT User’s Guide

Using NightTrace With Illuminators

[1luminators have a NightTrace event map and, for each detail, a NightTrace format table,
within them. The absolute path to these files are embedded in executables that have the
illuminator linked in. If themain illuminator is used, the (possibly relative) path to the
trace file is also embedded in the executable. The user may specify an executable on the
ntrace command line, and NightTrace will extract these embedded paths and use them.

Usage:
$ ntrace a.outAl

Note that because the path to the trace file may be arelative path, the ntrace command
should be run with the current working directory being the same as when a.outAl was run.

Customizing an Illluminator

The config.xml filein theilluminator directory may be edited to customize the illumi-
nator. This section providesa brief dictionary for the supported XML elements. Each ele-
ment is documented in alphabetical order and is headed with a brief synopsis that shows
the context in which it appears, as well as other elementsin may contain.

<l--comment -->

<config>

5-14

Comments may be placed amonst the XML using standard XML comment syntax. Ele-
ments that enclose text (such as <declares, <wrappers> and <wrapper_ *> may not
have comments embedded in the text. Comments are lost when a config.xml fileis
repopulated with the i1luminator --populate command. Thereisno guarantee on
the order of the elements, so thereis no way to know exactly where to place the comments
in the repopulated file. The three-way diff tool, di££3 (1), may often be used to help
reinsert them into the approximate correct place.

<config>

[<defaults>

[<level ../> ..]

[<options ../> ..]

[<variable name=[*]variable name/> ..]
</defaultss> ..]
[<variable name=variable name

[type=type name ptr={yes|no}]/> ..]

[<group name=group _name-

[<variable name=[*]variable name/> ..]

<declare>

Application Illumination

</group> ..]

[<function name=function_name>
[<exclude/>]
[<level .. /> ..]
[<group name=group_name/> ..]
[<wrapper>wrapper function< /wrappers>]
[<wrapper file scope>Somecode</wrapper file scopes]
[<wrapper pre>somecode</wrapper pres]
[<wrapper_ realscall toreal function</wrapper reals]
[<wrapper post>Somecode</wrapper posts]
[<declaresdeclaration</declares]
[<variable name=[*]variable name/> ..]

</function> ...]

</config>

Encloses the entire file. 1t may contain four types of elements: “<defaults>" on page
5-16), “<variable>" on page 5-22, “<group>" on page 5-17, and “<function>" on page
5-17.

<function ...>
<declares>declaration</declare>
</functions>

Provides a C language declaration for functions (see “ <function>" on page 5-17) that do
not have DWARF debug information (perhaps the function was written in assembly, for
example). Thiselement isignored if the function has DWARF debug information. The
declaration may be preceded by #includes and type definitions. The declaration itself
should not include an extern, nor be terminated by a semi-colon. Hereisan example:

<declare>
#include <sys/types.h>
pid_t getpgid(pid t pid)
</declare

Certain characters are special in XML and must be replaced with “character entities’:

Table 5-1. Character Entities

& &
< <
> ; >
" ; A
' N

5-15

NightTrace RT User’s Guide

<defaults>

<exclude>

5-16

<config>
<defaultss>
[<level name=levd_name
[caller={yes|no}]
[frame={yes|no}]
[aggregate limit=limif]
[args={yes|no}]
[addr args={yes|no}]
[return val={yes|no}]
[addr ret={yes|no}]
[variables={yes|no}]
[errno={yes|no}]
[exclude={yes|no}]>
[<options [underscores={yes|no}]
[std={yes|no}]
[xregex=regex]
[iregex=regex]/> ..]
</levels ..]
[<options ../> ..]
[<variable name=[*]variable name/> ..]
</defaultss>
</config>

Defines the defaults for all functions and groups (see “<config>" on page 5-14). It may
contain zero or more <level > elements (see “<level>" on page 5-18) to customize the
detail levels 1, 2, or 3, or to define a user-named custom detail level. It may contain zero
or more <options> elements (see “<options>" on page 5-21) to specify values for cer-
tain command line options.

Finally, it may contain zero or more <variable> elements (see “<variable>" on page
5-22) to specify global variables to be recorded with the return event for any function
whose DWARF defines the global variables when the detail level includes variables.

<function ...>
<exclude/>
</functions>

Excludes a function (see “<function>" on page 5-17) from all detail levels without having
to list separate <levels> (see “<level>" on page 5-18) elements. If both the
<exclude/> element and an exclude attribute (see “exclude={yesino}” on page
5-20) for a specific <level> are specified in a <function> element, the exclude
attribute takes precedence. Thus:

Application Illumination

<function name=hello>

<exclude/>
<level=3 exclude=no>
</functions>
will exclude hello () from all detail levels except 3.
<function>
<configs>
<function name=function_name-
[<exclude/>]
[<level .. /> ..]
[<group name=group _name/> ..
[<wrapper>wrapper function< /wrapper>]
[<wrapper file scope>Somecode</wrapper file scope>]
[<wrapper pres>somecode</wrapper pres]
[<wrapper realscall toreal function</wrapper reals]
[<wrapper post>S0mecode</wrapper posts]
[<declarexdeclaration</declares]
[<variable name=[*]variable hame/> ..]
</functions>
</config>
Defines settings for a specific function (see “<config>" on page 5-14). It may contain:

* zero or more <level > elements (see“<level>" on page 5-18) to override
the defaults for the detail levels for function_name;

® zero or more <group> elements (see “<group>" on page 5-17) to desig-
nate function_name as a member of a group of functions;

* an optiona <wrapper> element (see “<wrapper>" on page 5-23) to pro-
vide a hand written “wrapper” function;

* optiona <wrapper *> elements (see “<wrapper_file_scope>" on page
5-23, “<wrapper_post>" on page 5-23, “<wrapper_pre>" on page 5-24,
and “<wrapper_real>" on page 5-24) to provide some code to insert into or
replace parts of the machine generated “wrapper” function;

* an optional <declare> element (see “<declare>" on page 5-15) to pro-
vide the declaration of the function being “wrapped”;

® zero more more <variable> elements (see “<variable>" on page 5-22)
to specify global variables to be recorded with return events if the func-
tion's DWARF defines the global variables when the detail level includes
variables.

<group=

<configs>

5-17

NightTrace RT User’s Guide

<level>

5-18

<group name=(group_name-
[<level .. /> ..]
[<variable name=[*]variable name/> ..]
</group>
</config>

Defines settings for a named group of functions (see “<config>" on page 5-14). It may
contain zero or more <level> elements (see “<level>" on page 5-18) to specify settings
for particular detail levels for the named group of functions. The named levels must be
one of the three predefined levels, or a user-named custom level defined in a defaults ele-
ment.

It may also contain zero or more more <variable> elements (see “<variable>" on page
5-22) to specify global variables to be recorded with return events for al functionsin the
group whose DWARF defines the global variables when the detail level includes vari-
ables.

<function ...>
<group name=group_name/ >
</functions>

Designatesin a <function> element (see “<function>" on page 5-17) that the subject
function isamember of group_name. In this context it may not contain any <levels or
<variable> elements.

<defaultss>
<level name=level_name
[caller={yes|no}]
[frame={yes|no}]
[aggregate limit=limit]
[args={yes|no}]
[addr args={yes|no}]
[return val={yes|no}]
[addr ret={yes|no}]
[variables={yes|no}]
[errno={yes|no}]
[exclude={yes|no}]>
[<options [underscores={yes|no}]
[std={yes|no}]
[xregex=regex]
[iregex=regex]/>]
</levels>
</defaults>

Modifies the default settings (see “<defaults>" on page 5-16) for predefined detail levels
or defines a custom detail level. The attributes and elements control whether afunctionis
traced, and what details are recorded with the trace eventsif it is.

<options> elements (see“ <options>" on page 5-21) correspondingto --x* and - -i*
command line options may also be specified in a <1evel> element when it appearsin a

Application Illumination

<defaults> element. These may not be used to include any functions that were
excluded at the command line level or by the corresponding <options> element within
a<defaults> element, but may be used to restrict alevel to a smaller subset for a spe-
cific detail level. One way of creating anew level that exludes all functions but oneis:

<defaults>
<level name=0>
<options xregex=".*" iregex="pthread create”/>
</levels>
</defaults>

The effective value of each attribute for a given function and detail level is determined by
searching for adefinition of the attribute in the following places in the following order:

* a<levelseementinthefunction’'s <functions> element;

* a<levels> element in each of the function’s group memberships, in the
order the <group> elements were listed;

* a<levelseementinthe <defaults> element;

¢ the system defaullts.

The system defaults for the attributes are:

Table 5-2. System Defaults

Attribute Level 1 Level 2 Level 3 Custom
Levels
caller yes yes yes no
frame no yes yes no
aggregate limit | 16 16 16 16
args no yes yes no
addr_args no no yes no
return val yes yes yes no
addr_ret no no yes no
variables no no yes no
errno no no yes no
exclude no no no no

The details that can be recorded are partitioned into several named classes. To turn on one
of those classes, specify classname=yes as an attribute to the <1evel> element. For
example, to create a custom detail level to record only the function arguments you would
code the following element in a <defaults> element:

<level name=“argsonly” args=yes/>

To turn off an attribute specify classname=no.

5-19

NightTrace RT User’s Guide

caller={yes|no}

frame={yes|no}

The return address in the caller is recorded on entry events.

The address of the frame of the caller is recorded on entry events.

aggregate limit=limit

args={yes|no}

addr_args={yes|no}

return val={yes|no}

addr_ret={yes|no}

variables={yes|no}

errno={yes|no}

exclude={yes|no}

5-20

A limit is set on the number of bytes of an aggregate that can be recorded with an entry or
return event. The limit must be at least 16 bytes.

The arguments passed to the traced function are recorded on entry events, and out argu-
ments are recorded on return events..

The variables pointed to by arguments that are pointers are recorded on entry events. The
variables pointed to by out arguments that are pointers are recorded on return events.
When these are aggregates (strings, arrays, structures, or unions), the number of bytes that
may be recorded is limited by the aggregate 1limit setting.

The return value of the function (if it has one) is recorded on return events.

The variable pointed to by the return value, if it is a pointer, is recorded on return events.
When thisis an aggregate (string, array, structure, or union), the number of bytes that may
be recorded islimited by the aggregate limit setting.

Variables or indirection through variables specified with <variable> elements (see
“<variable>" on page 5-22) in <defaultss>, <group>, and <functions> elementsare
recorded on return events.

The value of errno isrecorded on return events..

Functions are entirely excluded from being recorded. Normally this would be set to yes
only on individual functions or groups of functions. Or, one could set it to yes in

<options>

event ids="N-[M]”

Application Illumination

<defaults>, then override that on individual functions or groups of functions in order
to only include those functions. For example, the following creates a new detail level that
excludes all but one function:

<defaults>
<level name=0 exclude=yes/>
</defaultss>
<function name=pthread createx>
<level name=0 exclude=no/>
</functions>

See also “<exclude>" on page 5-16 for a shorthand way to exclude a function from all
detail levels.

<defaultss>
<options [event ids=“N-[M]”]
[aggregate limit="“limit”]
[nodebug={yes|no}]
[underscores={yes|no}]
[std={yes|no}]
[xregex="regex”]
[iregex="regex”]
[£ilename=“filename”]
/>
</defaults>

Specifies values for several command line options (see “<defaults>" on page 5-16, “illu-
minator --create” on page 5-4). Options specified after a - -con£ig option on the com-
mand line will override those set in the config.xml file.

<defaults>
<level name=level_name...>
[<options [underscores={yes|no}]
[std={yes|no}]
[xregex=regex]
[iregex=regex]/>]
</levels>
</defaults>

Specifies level-specific overrides for command line options that exclude or include func-
tions by their name (see “<level>” on page 5-18, “ --i*, --x*" on page 5-6).

Specifies the range of event_ids to be mapped to entry and return events (see
“--event ids=N-[M]" on page 5-5).

5-21

NightTrace RT User’s Guide

aggregate limit="limit”

nodebug={yes|no}

Limits the number of bytes of an aggregate that may be recorded with an event (see
“--aggregate limit=limit” on page 5-4). Thelimit must be at least 16 bytes.

Specifies whether function names that have no debug information are to be included or
excluded respectively (see”--do_nodebug, --dont nodebug” on page 5-5).

underscores={yes|no}

std={yes|no}

Specifies whether function names that start with an underscore are to be included or
excluded respectively (see“--iunderscores, --xunderscores” on page 5-6).
This may also be specified for aparticular level (see“<level>" on page 5-18).

Specifies whether function names in the C++ std namespace are to be included or
excluded respectively (see“--istd, --xstd” onpage5-7). This may also be speci-
fied for aparticular level (see“<level>" on page 5-18).

iregex="regex”, xregex="“regex”

filename="filename”

<variable>

5-22

Specifies whether function names that match the POSIX regular expression are to be
included or excluded respectively (see“ - - iregex=regex, --xregex=regex” on page
5-6). This may also be specified for aparticular level (see“<level>" on page 5-18).

To specify multiple instances of these attributes, you must use separate <optionss> ele-
ments since XML syntax does not allow duplicate attribute names.

Specifies an object file, shared object file, debug-info file, archive, or executable to read
DWARF from to generate “wrapper” functions. These filenames may also be specified as
arguments to the illuminator - -create command (see “illuminator --create” on page
5-4).

To specify more than one filename, you must use multiple <options> elements since
XML syntax does not allow duplicate attribute names.

<config>
<variable name=variable name [type=type name ptr={yes|no}l/>
</config>

Definesaaglobal variable (see“<config>" on page 5-14). illuminator does not actu-
aly usethiselement. Itispopulated by the illuminator - -populate command (see
“illuminator --populate” on page 5-7). You may wish to consult thislist (or - -report

Application Illumination

output, see “illuminator --report” on page 5-9) to get the exact correct spelling of certain
variable names in name-mangling languages. The fully qualified name is reconstructed
from the mangled name, and may include elements that are implicit in the original source.

<{defaults|group|function}>
<variable name=[*]variable name/>
</{defaults|group|function}>

Names a variable (with optional indirection), when it appearsin a <defaultss>,
<group>, Of <function> element (see “<defaults>" on page 5-16, “<group>" on page
5-17, “<function>" on page 5-17), that will be recorded on return events at detail levels
that have the variables=yes attribute set (see “variables={yesno}” on page
5-20). Depending on which element it appearsin, it may apply to all functions, all func-
tionsin agroup, or aparticular function (for <defaults>, <group>, of <functions
elements respectively). The function’s DWARF must include a definition of the variable
in question. No error message is generated if it is absent from the DWARF.

<wrapper>
<function ...>
<wrapper>assambly “ wrapper” function</wrappers>
</functions>

Specifies a hand coded “wrapper” function for a specific function (see “<function>" on
page 5-17). The text between the opening and closing tags is copied verbatim into the
“wrapper” function assembly language source file. It may not be used with the other
<wrapper_*> elements.

<wrapper_file_scope>

<function ...>
<wrapper file scope>Somecode</wrapper file scopes
</functions>

Specifies assembly languages code to be inserted in “file scope” just before the “wrapper”
function (see “<function>" on page 5-17). It may not be used with a <wrapper> ele-

ment.
<Wrapper_post>
<function ...>
<wrapper_post>s0meassembly code</wrapper post>
</functions>

Specifies assembly code to insert into a generated “wrapper” function after the return
event is recorded but just before actually returning (see “<function>" on page 5-17). One
use might be to insert some debug code into the application. 1t may not be used with a
<wrapper> €lement.

5-23

NightTrace RT User’s Guide

<wrapper_pre>

<wrapper_real>

5-24

<function ...>
<wrapper_ pre>S0meassenbly code</wrapper pres
</functions>

Specifies assembly language code to insert into a generated “wrapper” function before the
entry event is recorded (see “<function>" on page 5-17). One use might be to test for a
situation where the user doesn’t want an event to be recorded. It may not be used with a
<wrapper> €lement.

<function ...>
<wrapper realsassembly code call to real function</wrapper reals>
</functions>

Specifies assembly language code to call the real function in place of the default codein a
generated “wrapper” function (see “<function>" on page 5-17). It may not be used with a
<wrapper> eement.

Here’'s an example of intercepting a function called through a pointer parameter in
pthread create() inordertocal trace register thread() inthenewly cre-
ated thread:

<function name=pthread creates
<wrapper file scope>

S s s s s S e s s s s

Set up a function that gets called by the new
thread instead of start_routine. This function
gets an arg that informs it of the original
function and its arg.

HE#HHHHHH A R R
.type prestart_routine,@function
prestart_routine:

pushg %$rdi; # save the arg while I do a call
call trace_register_ thread
movqg (%rsp), $rax # get the arg back

movqg 8 (%$rax), %rdi # get the original arg

movg (%rax),%rll # get the original start_ routine
call *%rll # call it

pushg %rax # save return value

movqg 8 (%rsp),%rdi #
call free

free myarg

popg %rax;

addg $8,%rsp

ret

.size prestart routine, .-prestart routine
</wrapper_file scopes>
<wrapper_real>

allocate arg for the interceptor routine (thread safe)

movg $16,%rdi

call malloc

store the original start_routine
and arg into the new arg
movqg -24 (%$rbp), %rll # start routine

Application Illumination

movg %rll, (%$rax)
movqg -32 (%rbp),%rll # arg
movg %rll, 8 (%rax)

set up parameters to the interceptor routine
movqg -8 (%rbp), $rdi # newthread

movqg -16 (%$rbp), $rsi # attr

lea prestart routine (%rip), %$rdx # interceptor start
routine

movg %rax, %rcx # myarg

call the real function passing my interceptor routine
call _ real pthread create
</wrapper reals
</function>

Note that to call the real function from a“wrapper” you call _ real function, other-
wise, the call to function would be divertedto wrap function and become an infi-
nite recursion.

5-25

NightTrace RT User’s Guide

5-26

6
Performance Tuning

The NightTrace default configuration is often sufficient for most tracing needs, however,
situations with exceptionally high trace event rates or those requiring precise control over
disk activity may require adjustment. This chapter discusses the following:

* “Preventing Trace Event Loss’ on page 6-1
® “Conserving Disk Space” on page 6-3

* “Conserving Memory and Accelerating ntrace” on page 6-3

Preventing Trace Event Loss

By default, NightTrace copies all user trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events as long as it can copy the shared memory buffers to the output device faster than
the application or kernel can fill up all remaining shared memory buffers.

NightTrace reports lost trace events in several ways:

* The --info options to ntraceud and ntracekd describe the number
of lost events

* TheDaemon Control areain ntrace displays event |oss counts

* NightTrace display pagesinclude avisual indicator on the ruler, acapital L
character, indicating where event |oss started to occur

* Aninternal trace point, NT LOST DATA, isincluded in the trace data out-
put at the point where trace events began to be lost

NOTE

Events that are overwritten in file-wrap and buffer-wrap modes
are not considered lost events and are not reported.

Daemon Scheduling Adjustment

The scheduling policy, priority, and CPU bias of daemons can be adjusted using the fol-
lowing methods:

6-1

NightTrace RT User’s Guide

* |Invoke ntraceud and ntracekd with the --priority=P, --pol-
icy=P, and - -processor=C command line options to select scheduling
priority, policy and CPU binding.

* Select the scheduling policy, scheduling priority and CPU bias from the
Runtime tab of the Daemon Definition dialog inthentrace tool.

Increasing Trace Buffer Size

The number of trace buffers and the size of trace buffers can be adjusted using the follow-
ing methods:

* Specify larger values using the - -numbufs and --buflen options to
ntraceud. The default values for these options are 8 and 32768, respec-
tively.

* Specify larger values for the ntc_num buffers and ntc_buffer_length fields
inthentconfig_t configuration record passed to trace begin. The
default values for these fields are 8 and 32768, respectively. Note that
these configuration values will be ignored if the corresponding user dae-
mon has already started and the value of ntc_daemon_preferred is set to
TRUE.

* Specify larger values using the - -numbufs and --bufsize options to
ntracekd. Thedefault valuesfor these options are 4 and 50000, respec-
tively.

* Specify larger values for Number of Buffers and Buffer Size in the
User Trace tab of the Daemon Definition dialog in thentrace tool.
The default values for these settings are 8 and 32768, respectively.

* Specify larger valuesfor Number of Trace Buffers and Trace Buffer
Size using the Other tab of the Daemon Definition dialog in the
ntrace tool. The default values for these settings are 4 and 50000,
respectively.

When increasing user trace buffer sizes, your request may be rejected if the total trace
buffer shared memory size exceeds system limitations. You can increase the system
shared memory limits by adjusting the kernel.shmmax and kernel.shmall variables using
the systctl (8) command.

For user trace buffers, the number of buffers and buffer length must be individually a
power of two. These values are automatically increased to the next highest power of two
if thisis not the case.

Since daemons are notified immediately when a single trace buffer fills, adding additional
buffersis sometimes as effective asincreasing the size of buffers. The kernel and applica-
tions continue to log trace events to the next shared memory buffer while the daemon
flushes the filled buffer.

6-2

Performance Tuning

Programmatic Flushing

For applications which log trace events, the trace £lush API routine can be used to
cause the associated user daemon to wake up and flush al filled buffers.

Modifying the sizes and number of trace buffers as described in the previous section is
usually more effective than relying on trace flush, since the daemon automatically
wakes and empties buffers asindividual buffers are filled.

Conserving Disk Space

If disk space is an important consideration and you are most interested in the latest events
that are logged, use of file-wrap and buffer-wrap modes is hel pful.

In buffer-wrap mode, no disk activity occurs until the daemon is terminated or an explicit
flush isrequested. When all trace buffers are filled, the oldest events are overwritten by
the newest events.

In file-wrap mode, a file size maximum is imposed and the oldest events are overwritten
by the newest events when the maximum size is reached.

Both of these options can be useful when desiring to obtain trace data from a situation
which rarely appears.

For example, the following commands might be used to capture kernel and user trace data
for an extended period of time (even hours or days) until your application detects a spe-
cific situation:

> ntracekd --size=20M kernel-data

> ntraceud --filewrap=10M user-data
> ./a.out

> ntraceud --quit user-data

> ntracekd --quit kernel-data

When capturing kernel data from the ntrace graphical analysistool and streaming the data
for immediate analysis, buffer-wrap mode is also very useful.

The Linux kernel can generate huge numbers of events on busy systems. Use of buffer-
wrap mode allows you to take snapshots of kernel data for immediate analysis or to be
saved for future analysis. Select the Buffer Wrap option on the General tab of the
Daemon Definition dialog and subsequently press the Flush button in the Daemon
Control area of the NightTrace Main window when you wish to sample kernel data.

Conserving Memory and Accelerating ntrace

ntrace can be amemory-intensivetool. By default, when ntrace startsup, it loads all
trace event information into memory; therefore, the more trace events in your trace event

6-3

NightTrace RT User’s Guide

6-4

file(s), the more memory ntrace uses. When you move the scroll bar on a display page
to change the displayed interval, ntrace processes al trace events between the last inter-
val and this one; if there are many trace events, the display update (or search) may be

dow. To conserve memory and accelerate ntrace:

Log only trace events you are really interested in.

Disable uninteresting events via the --disable option to ntraceud,
the - -events option to ntracekd command lines or viathe Events
tab of the Daemon Definition dialoginthentrace tool.

Invoke ntrace only with the trace event files that are essentia to your
analysis.

Once ntrace is launched, select a data region of interest and discard all
other events to reduce the working set size by selecting the Discard
Events... option from the Events menu of adisplay page.

Operate the daemons in file-wrap or buffer-wrap modes to reduce data set
sizein favor of keeping the most recent events.

7
Invoking NightTrace

NightTraceisinvoked using ntrace whichisnormally installed in /usr/bin.

The full command syntax for ntraceiis:

ntrace [-h] [--help] [--help-summary]
[-v] [--version] [-1] [--listing]
[--stats] [-n] [--notimer]

[-s val] [--start={offset | time{ s | u } | percents }]
[-e val] [--end={ oOffset | time{ s | u } | percents }]
[-x] [--nopages]

[-u] [--use-session] [--summary=criteria]
[--import=a.out | a.out]

[--verbose]

[--crash=crash options]

[file ...] [program file]

Depending on the options and arguments specified to ntrace, NightTrace:

loads all trace event information into memory

checks the syntax of specifications in each file argument
processes each file argument

loads any display pages and their objects into memory

presents any timeline panels (see “ Timeline Panels’ on page 12-1)

displays the NightTrace Main Window (see “The NightTrace Main Win-
dow” on page 8-1)

Command-line Options

The command-line optionsto ntrace are:

-h

--help

Displays ntrace invocation syntax and a list of all command line options to stan-
dard output.

--help-summary

Displays help specific to the - - summary option to standard output.

See “Summary Criteria’ on page 7-6 for more information.

7-1

NightTrace RT User’s Guide

7-2

-V

--version

Displays the current version of NightTrace to standard output and exits.

--crash=crash_options

-1

Displays available kernel trace data at the time of system crash. This option is use-
ful if kernel tracing was running when the system crashed. |t extracts kernel trace
data from the in-memory kernel buffers at the time of the crash.

The crash option parameter may be either the time-date format of the crash dump
under /var/crash/save (or /var/kdump) or the full paths of the namelist and
vmcore filesif the default crash path has been changed. For example:

--crash=08.02.06-19.11.47
- -crash=/crashfiles/vmlinux-33,/crashfiles’/vmcore-33.9z

The - -crash option is only supported under Redhawk 4.1 or later and may not be
available on AMD64 systems.

--listing

Displays achronological listing of al trace events and their arguments from al sup-
plied trace-event data files to standard output and exits.

The output includes the following information about a trace event:

* relative timestamp

* traceevent ID

* any trace event argument(s)

* theprocessidentifier (PID), process name, or thread name

* theCPU

The timestamp for the first trace event is zero seconds (0s). All other timestamps
arerelative to thefirst one.

If you supply an event map file on the invocation line, NightTrace displays symbolic
trace event names instead of humeric trace event |Ds, and displays trace event argu-
ments in the format you specify in the file, rather than the hexadecimal default for-
mat. For more information on event map files, see “ Event Map Files’ on page 7-11.

NOTE

The CPU field is only meaningful for kernel trace events; for user
trace events, the CPU field is displayed as cPU=>?>.

Invoking NightTrace

--stats

Displays simple overall statistics about the trace-event data files to standard output
and exits.

The statistics are grouped by trace event file, with cumulative statistics for all trace
event files.

The dtatistics include:
¢ the number of trace event files
¢ their names
¢ the number of trace eventslogged

* the number of trace events lost
For example, the following command:
ntraceud /tmp/data

collects trace data from any user applications which are logging the data to
/tmp/data. (see “ Capturing User Events with ntraceud” on page 3-1).

I ssuing the command:
ntrace --stats /tmp/data

results in the output similar to the following (assuming user application were actu-
ally logging data):

Read 1 trace event segment timestamped with Intel TSC.
(1) User trace event log file: /tmp/data.

2268 trace events saved.

0 trace events lost.

2.9707482s time span, from 0.0000000s to 2.9707482s.

2268 total events read from disk.

2268 total events saved in memory.

0 total trace events lost.

2.9707482s total time span saved in memory.

Detailed summary information about a trace data set is available via the
- - summary option.

-n
--notimer

Excludes from analysis trace events for system timer interrupts in the kernel trace
file

NightTrace RT User’s Guide

-s va
--start={ offset |timg{ s |u} | percents }

Excludes from analysis trace events before the specified trace-event offset, relative
time in seconds (s) or microseconds (u), or percent of total trace events.

The specified values can be:
offset

L oad trace events after the specified trace event offset.
time{ s |u}

L oad trace events after the specified relative time in seconds () or microsec-
onds (u).

percent%

Load trace events after the specified percent of total trace events. The % is
required.

If you invoke NightTrace with several - -start options, NightTrace pays attention
only to the last one.

-e va
--end={ offset |[time{ s |u} | percents }

Excludes from analysis trace events after the specified trace-event offset, relative
time in seconds (s) or microseconds (u), or percent of total trace events.

The specified values can be:
offset

L oad trace events before the specified trace event offset.
time{ s |u}

Load trace events before the specified relative time in seconds (s) or micro-
seconds (u).

percents

Load trace events before the specified percent of total trace events. The % is
required.

If you invoke NightTrace with several - -end options, NightTrace pays attention
only to the last one.

-x
--notimelines

Starts NightTrace but does not include any timeline panels.

7-4

-u

Invoking NightTrace

--use-session

Automatically loads the last session used in a previous invocation of NightTrace.
All files associated with the previous session are automatically loaded.

- -summary=criteria

Provides a textual summary of specified trace events using the supplied criteria.
Summary results are sent to standard output.

See “Summary Criteria’ on page 7-6 for details regarding valid criteria.

--import=a.out
a.out

These options specify the executable file containing daemon definitions and the
location of format tables and event description files. This information is embedded
in executable files when they contain instrumented code generated by the Night-
Trace illuminator tool.

A daemon definition is created with the number of buffers, buffer length, and trace
key file information extracted from the file. If the executable file does not include
such information, ntrace queries the user for the name of the trace key file, and uses
default values for other daemon settings.

NightTrace loads all event description and format table files gleaned from the exe-
cutable.

Specifying a . out as a standalone argument processes executable files in the same
manner as those specified with - -import. In addition, NightTrace loads the user
trace data file as specified by information embedded by the built-in “main” illumi-
nator if it was included in the program. NightTrace also records the pathname of the
specified file and associates it with any references to the base name of the file in
lookup pc () references during the NightTrace session. For example:

ntrace /tmp/a.out

References to “a.out” in lookup pc () expressions in the session will use
/tmp/a.out asthe path to the file from which PC descriptions (routine, file and
line number) are read.

--verbose

file...

In addition to the cumulative statitistics normally output, this option provides
detailed information about each occurrence of the item being summarized.

You can invoke NightTrace with arguments such as trace event files, event map
files, page configuration files, session configuration files, or trace data segments.

See “Command-line Arguments’ on page 7-10 for a description of these types of
files.

7-5

NightTrace RT User’s Guide

By default, when NightTrace starts up, it reads and loads all trace events from all trace
event filesinto memory. The --process, --start, and - -end options let you pre-
vent the loading (but not the reading) of certain trace events.

For exampl e, the following invocation displays only those trace eventslogged 0.5 seconds
or more after the start of the data set.

ntrace --start=0.5s /tmp/data

Summary Criteria

The - - summary option is supplied with criteria for command-line usage without ever
using the GUI to perform summaries.

NOTE

The - -verbose option provides detailed information about each
occurance of the item being summarized in addition to the cumu-
lative statitistics normally output.

This criteria consists of a comma-separated list of any of the following:
crit

This allows previously-defined profiles to be referenced when doing com-
mand line summaries.

To use previoudly-defined profiles when executing a summary from the com-
mand line, specify the desired profile name (crit) on the command line along
with the NightTrace session configuration file which contains that profile

ev:event
Summarizes the number of occurrences of the specified event.
P:process
Summarizes al events associated with the specified process.
t:thread
Summarizes all events associated with the specified thread.
s:call

Summarizes all events associated with the entry or resumption of the specified
system call.

sl:call

Summarizes all events associated with the exit or suspension of the specified
system call.

7-6

Invoking NightTrace

se:call
Summarizes all events associated with the specified system call.
ss:call

Summarizes all occurrences of a state defined by system call activity for the
specified system call.

izintr

Summarizes all events associated with the entry or resumption of the specified
interrupt intr.

il:intr

Summarizes all events associated with the exit or interruption of the specified
interrupt intr.

ie:intr
Summarizes all events associated with the specified interrupt intr.
is:intr

Summarizes all occurrences of a state defined by interrupt activity for the
specified interrupt intr.

e:exc

Summarizes all events associated with the entry or resumption of the specified
exception exc.

el:exc

Summarizes all events associated with the exit or interruption of the specified
exception exc.

ee:exc
Summarizes all events associated with the specified exception exc.
es:exc

Summarizes all occurrences of a state defined by exception activity for the
specified exception exc.

skip:on

Suppresses summarization for al subsequent criteria in the list (or until a
skip:of£ criteriais seen) if there are no summarization matches for the cri-
teria

skip:off

Reactivates summarization for all subsequent criteriain the list (or until a
skip:on criteriais seen) if there are no summarization matches for the crite-
ria

7-7

NightTrace RT User’s Guide

st:sart-end

Summarizes al occurrences of the state defined by the starting event start and
terminated by the ending event end.

These may be combined together along with tagged criteria from the Summarize
NightTrace Events dialog in acomma-separated list.

Consider the following example:
ntrace --summary=ev:5,ss:read,ss:alarm,crit 0 event file my session

Using the trace event file event file asthe trace data source (see “ Trace Event Files’
on page 7-11), NightTrace will:

1. summarize the number of occurrences of user events with atrace event 1D
of 5 aswell asinformation about the gaps between the events (min, max,
avg)

2. summarize the number of occurrences of read and alarm system call
states that occur in the data source; provide information pertaining to the
duration of each state (min, max, avg, sum); and provide information
related to the gaps between each state (min, max, avg, sum)

3. perform a summary using the profile defined by crit 0 in the
my session session file (see “ Session Configuration Files” on page
7-24)

NOTE

In order to use a summary criteria tag on the command line, the
NightTrace session configuration file in which it was defined
must be specified on the command line aswell (see “ Session Con-
figuration Files’ on page 7-24).

The following criteria may be specified alone (not part of acomma-separated list):
k[: proc]

Summarize kernel states: system calls, exceptions, and interrupts. If :procis
provided, only those states involving process proc are summarized.

ksc[:proc]

Summarize kernel system call durations. If :procis provided, only those sys-
tem calls involving process proc are summarized.

kexc|:proc]

Summarize kernel exception durations. If :proc is provided, only those
exceptions involving process proc are summarized.

7-8

Invoking NightTrace

kintr[:proc]

Summarize kernel interrupt durations. If :proc is provided, only those inter-
rupts involving process proc are summarized.

evt[:proc|

Summarize the number of occurrences of all events named in event map files.
User events which are not named in event map files are not shown. If :procis
provided, only those events associated with proc are summarized.

proc

Summarize the number of events for each process.

7-9

NightTrace RT User’s Guide

Command-line Arguments

You can supply filenames as arguments to the ntrace command when invoking Night-
Trace. These files may contain trace event data, display page layouts, additional configu-
ration information, or information related to a previously-saved session.

These arguments can be:

7-10

* trace event files

Trace event files are captured by a user or kernel trace daemon and contain
sequences of trace events logged by your application or the operating system kernel.

See “Trace Event Files’ on page 7-11 for more information.
event map files

Event map files map short mnemonic trace event names to numeric trace event IDs
and associate data types with trace event arguments. These ASCII files are created
by the user.

See“Event Map Files’ on page 7-11 for more information.
session configuration files

Session configuration files define alist of daemon sessions and their individual con-
figurations. In addition, session configuration files contain definitions of profiles
and search and summary configurations from previous uses of the session. Also,
session configuration files contain alist of any files the user associated with the ses-
sion, such as event map files and trace datafiles.

See “ Session Configuration Files’ on page 7-24 for more information.
trace data segments

Trace data segments are conglomerations of all trace data saved in amuch more effi-
cient format than raw trace event files providing for faster initialization at startup.
These files are created using the Save Trace Segments... menu choice of the
File menu on the NightTrace Main Window.

See “Trace Data Segments’ on page 7-25 for more information.
program file

Application Illumination embeds in executable object files paths to various support
filesthat ntrace can extract:

¢ event map files defining names for the events generated for function
entry and return points;

¢ configuration files containing format tables to neatly format the
events and their arguments generated for function entry and return
points;

Invoking NightTrace

atrace event file if the main illuminator is used (this file may be recorded using a
relative path; if thisisthe case, ntrace must be invoked with the same current work-
ing directory that the program file was executed with).

See“ Application lllumination” on page 5-1 for more information.

Trace Event Files

Trace event files are created by user and kernel trace daemons. They consist of header
information and individual trace events and their arguments as logged by user applications
or the operating system. NightTrace detects trace event files as specified on the command
line and does the required initialization processing so that the trace events contained in the
files are available for display.

To load atrace event file, either:

¢ gpecify the trace event file as an argument to the ntrace command when
you invoke NightTrace, or

* select the Open Files... menu option from the File menu of the Night-
Trace main window and select the trace event file from the file selection
dialog

Event Map Files

NightTrace does not require you to use event map files. However, using these files can
improve the readability of your NightTrace displays.

An event map file allows you to associate meaningful names with the more cryptic trace
event ID numbers. It also allows you to associate additional information with a trace
event including the number of arguments and the argument conversion specifications or
display formats. Although NightTrace does not require you to use event map files, labels
and display formats can make graphical NightTrace displays and textual summary infor-
mation much more readable.

To load an existing event map file, perform any of the following:

¢ gpecify the event map file as an argument to the ntrace command when
you invoke NightTrace

* select the Open Files... menu item from the File menu on the Night-
Trace Main Window

You can create an event map file with atext editor before you invoke NightTrace.

There is one trace event name mapping per line. White space separates each field except
the conversion specifications; commas separate the conversion specifications. NightTrace
ignores blank lines and treats text following a # as comments.

The syntax for the trace event mappings in the event map file follows:

7-1

NightTrace RT User’s Guide

event: ID “event_ name” [nargs [conv_spec, ...]]
Fieldsin thisfile are:
event:

The keyword that begins all trace event name mappings.

ID
A valid integer in the range reserved for user trace events (0-4095, inclusive).
Each time you call a NightTrace trace event logging routine, you must supply
atrace event ID.

event_name

A character string to be associated with event_ID. Trace event names must
begin with aletter and consist solely of aphanumeric characters and under-
scores. Keep trace event names short; otherwise, NightTrace may be unable
to display them in the limited window space available.

The following words are reserved in NightTrace and should not be used in
uppercase or lowercase as trace event names:

- NONE

- ALL

- ALLUSER

- ALLKERNEL
- TRUE

- FALSE

- CALC

TIP

Consider giving your trace events uppercase hames in event map
files and giving any corresponding profile referring to those
events the same name in lowercase. For more information about
profiles of events, see “Profile References’ on page 16-193.

If your application logs a trace event with one or more numeric arguments, by default
NightTrace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs

The number of arguments associated with a particular trace event. If nargsis
too small and you invoke NightTrace with the event map file and the
--listing option, NightTrace shows only nargs arguments for the trace
event.

7-12

Invoking NightTrace

conv_spec

A conversion specification or display format for a trace event argument.
NightTrace uses conversion specification(s) to display the trace event’s argu-
ment(s) in the designated format(s). There must be one conversion specifica-
tion per argument. Valid conversion specifications for displays include the fol-
lowing:

oe

d

signed decimal integer (default)

o\°
(6]

unsigned octal integer

unsigned hexadecimal integer

signed double precision, decimal floating point
For more information on these conversion specifications, seeprint£ (3).
The following line is an example of an entry in an event map file:
event: 5 “Error” 2 %x %1f

NightTrace displays trace event 5 and labels the trace event “Error”. Trace event 5 also
has two (2) arguments. NightTrace displays the first argument in unsigned hexadecimal
integer (%x) format and the second argument in signed double precision decimal floating
point (¥1£) format. (You may override these conversion specifications when you config-
ure display objects.)

For more information on event map files, see “ Pre-Defined Strings Tables’” on page 7-17.

7-13

NightTrace RT User’s Guide

Table Files

A table file contains information used to obtain verbose descriptions of events or argu-
ments associated with events..

A tablefileisan ASCII file containing such definitions as:
* gtring table definitions (see “ String Tables’ on page 7-15)
¢ format table definitions (see “Format Tables’ on page 7-20)

NOTE

Any tables found in page configuration files are imported into the
session; when the session is saved, these tables are saved with the
session. Tables are no longer saved as part of the page configura-
tionfiles.

NOTE

If you define a string table or format table more than oncein a
configuration file, NightTrace merges the two tables; if there are
duplicate entries, values come from the last definition.

To load an existing tablefile, either:

* gpecify the configuration file as an argument to the ntrace command
when you invoke NightTrace

* Select the Open Files... menu option from the NightTrace menu of the
NightTrace Main window and select the configuration file from the file
selection dialog

Tables

The table file may contain two types of tables, both of which can improve the readability
of your NightTrace displays:

* dtring tables (see “ String Tables” on page 7-15)
¢ format tables (see “Format Tables’ on page 7-20)

A table lets you associate meaningful character strings with integer values such as trace
event arguments. These character strings may appear in NightTrace displays.

The following table names are reserved in NightTrace and should not be redefined in
uppercase or lowercase:

- event

- pid

7-14

String Tables

Invoking NightTrace

- tid

- boolean

- name pid

- name_tid

- node_ name

- pid_nodename

- tid_nodename

- vector

- syscall

- device

- vector nodename
- syscall nodename

- device_ nodename

The results are undefined if you supply your own version of these tables.

NOTE

The only way to put tables into your configuration file is by text
editing the file before you invoke NightTrace. To avoid any for-
ward-reference problems, define all string tables before any for-
mat tables.

For more information on pre-defined tables, see “ Pre-Defined Strings Tables’ on page
7-17, and page 17-17.

If you define a string table or format table more than once in a configuration file, Night-
Trace merges the two tables; if there are duplicate entries, values come from the last defi-
nition.

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of values. A string table associates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for astring tableis:

string table (table name) = {
item = int_const, “str_const” ;

[default item = “sr_const” ; 1]

}i

7-15

NightTrace RT User’s Guide

Include all special charactersfrom the syntax except the ellipsis (. . .) and square brackets
([1).

The fieldsin astring table definition are:
string table

The keyword that starts the definition of all string tables.

table name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric valuesin this string table.

An itemline associates an integer value with a character string. This line extends from the
keyword item through the ending semicolon. You may define any number of item lines
inasingle string table. Thefieldsin an item line are;

item
The keyword that begins all item lines.
int_const

An integer constant that is unique within table_name. It may be decimal, octal,
or hexadecimal. Decimal values have no special prefix. Octal values begin
with azero (0). Hexadecimal values begin with 0x.

str_const

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \n for a newline, not a carriage return in the middle of the
string.

The optional default item line associates all other integer values (those not explicitly refer-
enced) with asingle string.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get_string() call with
this table name as the first parameter needs no second parameter.

NightTrace returns a string of the item number in decimal if:

* thereisno default item line, and the specified item is not found

¢ the string table is not found (The first time NightTrace cannot find a
particular string table, NightTrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.
string table (curr state) = {

item = 3, “Processing Data”;

7-16

Invoking NightTrace

item = 1, “Initializing”;
item = 99, “Terminating”;
default item = “Other”;

}i

In this example, your application logs a trace event with a numeric argument that identi-
fiesthe current state (curr_state). Thisargument has three significant values (3, 1,
and 99). When curr_state hasthe value 3, the NightTrace display shows the string
“Processing Data.” Whenit hasthevalue 1, the display shows“Initializing.”
When it has the value 99, the display shows “ Terminating.” For all other numeric
values, the display shows“Other.”

For moreinformation on string tablesand theget _string () function, see page 16-184.

Pre-Defined Strings Tables

The following string tables are pre-defined in NightTrace:

event

pid

The event string table is a dynamically generated table which contains all trace
event names.

This table isindexed by an event code or an event code name. Examples of using
thistable are:

get string(event, 4306)
get item(event, “IRQ EXIT”)

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates global process ID numbers with process names of the processes being traced.
In kernel tracing, it associates process |D numbers with all active process names and
resides in the dynamically generated vectors file.

NOTE

When analyzing trace event files from multiple systems, process
identifiers are not guaranteed to be unigue across nodes. There-
fore, accessing the pid table may result in an incorrect process
name being returned for a particular process ID. To get the cor-
rect process name for a process ID, the pid table for the node on
which the process identifier occurs should be used instead. The
pid tableis maintained for backwards compatibility.

Thistable isindexed by a process identifier or a process name. Examples of using
thistable are:

get string(pid, pid())
get item(pid, “ntraceud”)

7-17

NightTrace RT User’s Guide

7-18

tid

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates NightTrace thread I|D numbers with thread names. In kernel tracing, thistable
is not used.

Thistableisindexed by athread identifier or athread name. Examples of using this
table are:

get string(tid, tid())
get _item(tid, “cleanup thread”)

boolean

A string table which associates 0 with false and all other values with true.

name pid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node's process D table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get string(name pid, node_ id())
get item(name pid, “systeml23”)

Consider the following example:
get string(get string(name pid,node_id()),pid)

The nested call to get _string(name pid,node id()) returns the name of
the process | D table on the system where this trace point waslogged. We then index
that table with the current process ID (since processes IDs are guaranteed to be
unique when analyzing mutipile trace event files obtained from multiple systems) to
obtain the name of the current process.

NOTE

The predefined process name () function is equivalent to the
expression above - and much simpler to write! (See
“process_name()” on page 16-55 for more information.)

name_tid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node'sthread ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get string(name_tid, 1)

Invoking NightTrace

get item(name tid, “charon”)
node_name

A dynamically generated string table internal to NightTrace. It associates node ID
numbers (which are internally assigned by NightTrace) with node names.

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get string(node name, node_id())
get_ item(node name, “gandalf”)

pid_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, it
associates process ID numbers with all active process names for a particular node
and residesin that node’'svectors file. In user tracing, it associates global process
ID numbers with process names of the processes being traced for a particular node.

This table is indexed by a process identifier or a process name. Examples of using
thistable are:

get string(pid sbcl, pid())
get item(pid engsim, “nfsd”)

tid nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, this
table is not used. In user tracing, it associates NightTrace thread ID numbers with
thread names for a particular node.

Thistableisindexed by athread identifier or athread name. Examples of using this
table are:

get string(tid harpo, 1234567)
get item(tid shark, “reaper thread”)

vector

See page 17-17.
syscall

See page 17-17.
device

See page 17-17.
vector_nodename

See page 17-17.
syscall nodename

See page 17-17.

7-19

NightTrace RT User’s Guide

Format Tables

7-20

device_ nodename
See page 17-17.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get_string () function to look up valuesin string tables.

Like string tables, format tables let you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for aformat tableis:
format table (table name) = {
[index type = “event”;]

item = int_const, “format string” [, “valuel” 1 ... ;

[default item = “format_string” [, v“valuel” 1 ... ;]

¥

Include all special characters from the syntax except the ellipses (. . .) and square brack-
ets([1).

Thefieldsin aformat table are:
format table
The keyword that begins the definition of all format tables.
table name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric valuesin this format table.

An index_type of “event” may be specified to direct ntrace to use this table to format
events and their arguments. More than one table may have the event index_type.

An item line associates a single integer value with a character string. This line extends
from the keyword item through the ending semicolon. You may have any number of
item linesin asingle format table.

Thefieldsin anitem line are:
item
The keyword that begins all item lines.
int_const

An integer constant that is unique within table_name. This value may be deci-
mal, octal, or hexadecimal. Decimal values have no special prefix. Octal val-
ues begin with a zero (0). Hexadecimal values begin with 0x.

Invoking NightTrace

format_string

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \n for anewline, not a carriage return in the middle of the
string.

The string contains zero or more conversion specifications or display formats.
Valid conversion specifications for displays include the following:

o\°

i

Signed integer

oe
o

Unsigned decimal integer

o\°
Q.

Signed decimal integer

Unsigned octal integer

Unsigned hexadecimal integer

Signed double precision, decimal floating point

Signed decimal floating point, exponential notation

Single character

Character string

o
o°

Percent sign
\n
Newline
For more information on these conversion specifications, seeprint£ (3).

format_string may contain any number of conversion specifications. Thereisa
one-to-one correspondence between conversion specifications and quoted val-

7-21

NightTrace RT User’s Guide

ues. A particular conversion specification-quoted value pair must match in
both data type and position. For example, if format_string containsa $s and a
%4, the first quoted value must be of type string and the second one must be of
type integer. If the number or data type of the quoted value(s) do not match
format_string, the results are not defined.

valuel

A value associated with the first conversion specification in format_string.
The value may be a constant string (literal) expression or a NightTrace expres-
sion. A string literal expression must be enclosed in double quotes. An
expressionmay beaget string() call (seepage 16-184). For moreinfor-
mation on expressions, see “Using Expressions’ on page 16-1.

Theoptional default_item lineassociates all other integer values with a single format
item. NightTrace flagsit as an error if an expression evaluates to a value that is not on an
item line and you omit the default item line.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get _format () call with
this table name as the first parameter needs no second parameter.

The following lines provide an example of a string table and format table in a
configuration file.

string table (curr state) = {
item = 3, “Processing Data”;
item = 1, “Initializing”;
item = 99, “Terminating”;
default item = “Other”;
}i
format table (event info) = {
item = 186, “Search for the next time we process data”;
item = 25, “The current state is %s”,

“get string (curr state, argl())”;

item = 999, “Current state is %s, current trace event is
$d”,
“get string (curr state, argl())”,
“offset ()”;
default item = “Other”;

}i

In this example, the first numeric argument associated with a trace event represents the
current state (curr_state), and the event _info format table represents information
associated with the trace event IDs. When trace event 186 occurs, a
get format (event info, 186) makes NightTrace display:

Search for the next time we process data

7-22

Invoking NightTrace

When trace event 25 occurs, NightTrace replaces the conversion specification (%s) with
theresult of theget string() cal. If argl () hasthevaue 1, then NightTrace dis-

plays:
The current state is Initializing

When trace event 999 occurs, NightTrace replaces the first conversion specification ($s)
with the result of the get string () call and replaces the second conversion
specification ($d) with the integer result of the numeric expression offset (). If
arg (1) hasthevalue 99 and offset () hasthe value 10, then NightTrace displays:

Current state is Terminating, current trace event is
10

For al other trace events, NightTrace displays “Other”.
For moreinformation on get _string (), see“get_string()” on page 16-184.

For more information on format tables and the get format () function, see
“get_format()” on page 16-188.

For more information about argl (), see “arg()” on page 16-21.

For more information about of £set (), see “offset()” on page 16-49.

7-23

NightTrace RT User’s Guide

Session Configuration Files

7-24

A session configuration file defines a Night Trace session.

NOTE

NightTrace remembers the last session loaded or saved on a
per-user basis. To simplify restarting NightTrace at another time
to analyze the same data, the usage of the - -use-session (-u)
command line option (see“-u --use-session” on page 7-5)
is strongly encouraged to invoke NightTrace with the last session
loaded or saved.

A session configuration may include:

daemon definitions
See “Edit Daemon Definition” on page 9-9 for more information.
display page configurations
See “Table Files’ on page 7-14 for more information.
string tables
- event names specified for user event IDs
- any user-defined string tables

- string tables imported from generated Ada display page configura
tionfiles

- any modifications to default NightTrace string tables, or string tables
embedded in trace datafiles

profiles of conditions and states

See “Using Expressions’ on page 16-1 for more information.
named tags

See “Tags List Panel” on page 15-1 for more information.

previously-executed searches
previously-executed summaries

references to saved trace data segment files
See “Trace Data Segments’ on page 7-25 for more information.

referencesto kernel trace files generated by ntracekd (see “ The ntracekd
Daemon” on page 4-1), or a kernel daemon defined in the GUI (see “Dae-
mons Panel” on page 9-1)

Invoking NightTrace

* references to user trace files generated by ntraceud (see “The ntraceud
Daemon” on page 3-1), or a user daemon defined in the GUI (see “Dae-
mons Panel” on page 9-1)

Session configuration files can be generated by the following menu items in the File
menu of the NightTrace Main Window:

Upon exiting when there are unsaved changes to the session, the user is given the chance
to save the changes before NightTrace exits.

The user may load the session on a subsequent invocation of NightTrace by either:

- gpecifying the session configuration filename on the command-line when
invoking ntrace (see “Invoking NightTrace” on page 7-1)

- using the Load Session dialog to open the session configuration file
from the NightTrace Main Window

Trace Data Segments

Trace data segments are conglomerations of all trace data saved in a much more efficient
format than raw trace event files providing for faster initialization at startup.

Trace data segments are saved using the Save Trace Data button on the Trace Seg-
ments panel (see “ Trace Segments Panel” on page 10-1 for more information).

7-25

NightTrace RT User’s Guide

7-26

8
The NightTrace Main Window

The NightTrace GUI isinvoked using ntrace (see “Invoking NightTrace” on page 7-1).

By default, the NightTrace main window is presented as shown in the figure below.

lhd NightTrace - New Session == %

Eile View Daemons Search Summary Profiles Timelines Tools Help

PE TR =w"P@0 = O =y &2 2 a

Daemons

Type | Daemon Target Logged Lost State Attached Buffer

kernel_trace_to_gui raptor Halted

[(DLaunch [Resume [Pause [Halt] FElush H Display [Triggers... [Enable Events... Delete
Trace Segments
| Type ¥ |Trace Segment | Targetl Lnggedl Lnstl Durﬂtinrl(sec)lUnsaved|

Close Trace Data

Save Trace Data... l

4

Figure 8-1. NightTrace Main Window

The NightTrace main window consists of the following components:
¢ Menu Bar
* Toolbars

* Pagesand Panels

NightTrace RT User’s Guide

Menu Bar

The menu bar provides access to session configuration services, additional tools, and help.
The menu bar provides the following menus:

* File

* View

¢ Daemons
* Search

* Summary
* Profiles
* Timelines
* Tools

* Help

Each menu is described in the sections that follow.

File

Accdlerator: Alt+F

The File menu contains session-related items such asinitiating a new session, saving the
current session, and opening a previously-saved session or datafile.

A session includes daemon configurations, trace data sets, configuration options, display
pages, and user-defined profiles.

{}_‘] MNew Session

Open Session...
[Save Session Ctrl+5
E Save Session As...

Save Session Copy...

E}' Open Files... Ctrl+0

Close All Trace Data Alt+W
(ly Exit Ctrl+Q
M1

Exit Immediately A+

Figure 8-2. File Menu

8-2

The NightTrace Main Window

The following paragraphs describe the options on the File menu in more detail.

New Session
Mnemonic: N
Creates a new session.
If an existing session is open, itisfirst closed by this operation.

If changes have been made to the current session but have not yet been saved, Night-
Trace will ask you if you wish to save the current session before proceeding.

Load Session...
Mnemonic: L

This option launches a standard file selection dialog which allows you to specify a
previously-saved session file. Filenames displayed in the file selection dialog are
relative to the host system.

If changes have been made to the current session but have not yet been saved, Night-
Trace will ask you if you wish to save the current session before proceeding.

NOTE

NightTrace will automatically load the last session used when
invoked with the -u option. See “Invoking NightTrace” on page
7-1 for more information.

Save Session

Mnemonic: S
Accdlerator: Ctrl+S

Save Session savesthe current session to a session configuration file.

Save Session allows for quickly saving a session. The user is hot prompted for
the filenames where the session, trace data, or display pages are to be saved. These
are automatically saved in appropriately named files in the current working direc-
tory.

If the current session has not been saved to afilein the past, the session is automati-
cally saved to a new session configuration file. The new filename appearsin the
window title,

If the current session was |oaded from or previously saved to a session configuration
file, the session is saved to that file.

Trace data that has been touched is saved by Save Session. Touched trace data
includes trace data modified by discarding events. In addition, trace data from a
trace data segment file where one or more segments have been saved to another
trace data segment file or closed is saved.

8-3

NightTrace RT User’s Guide

If the trace data was |oaded from a previously saved trace data segment file, the data
is saved to that file. If the trace data has never been saved to a trace data segment
file, the datais automatically saved to a newly created trace data segment file

If the display pages were loaded from a previoudy saved display page file, the page
is saved to that file.

If the display page has never been saved to a display pagefile, the page is automati-
cally saved to anewly created display pagefile.

Save Session As...

Mnemonic: A

This option launches a standard file selection dialog which allows you to specify the
afilename where the session will be saved. Filenames displayed in the file selection
dialog are relative to the host system.

Save Session Copy

Mnemonic: C

Save Session Copy savesthe current session to a newly created session config-
uration file (see “ Session Configuration Files” on page 7-24 for a complete descrip-
tion of the contents of a session).

In addition, all trace data and display pages are saved to new file names using a
common session file name prefix.

Save Session Copy alowsfor quickly saving one or more copies of asession at
certain stages. The user is not prompted for the filenames where the session, trace
data, or display pages are to be saved. These are saved in appropriately named files
in the current working directory.

Open Files...

8-4

Mnemonic: O
Accdlerator: Ctrl+O

Presents the user with a standard file selection dialog so that they may select a trace
event file, event map file, or configuration file to load.

The trace event file can be a user trace data file or a kernel trace data file. See
“Trace Event Files’ on page 7-11 for more information.

An event map file provides ASCII names for specific trace event values. See“Event
Map Files’ on page 7-11 for more information.

Configuration files contain string and format tables as well as display page defini-
tions. See“Table Files’ on page 7-14 for more information.

The NightTrace Main Window

Close All Trace Data

Mnemonic: D
Accelerator: Alt+W

Closes the trace data segments currently selected in the Trace Segments area. The
events associated with the closed segments are immediately removed from the cur-
rent data set being analyzed.

Data segments that were not associated with a trace file and that have not yet been
saved will be lost when closed.

Exit

Mnemonic; X
Accderator: Ctrl+Q

Closes the session and exits NightTrace completely.

If changes have been made to the current configuration but have not yet been saved,
NightTrace will ask you if you wish to save the session before proceeding.

Exit Immediately

Closes the session and exits NightTrace without prompting to save changes that
have been made. Any changes will be lost.

8-5

NightTrace RT User’s Guide

View

Accdlerator: Alt+V

The View menu allows you to add, rename, or delete pages and controls which panelsin
pages are visible.

Add Page Ctri+A
Rename Current Page...

Delete Current Page
4, Toolbars 3
Events
Daemaons

Trace Segments

= [W

Profile Status List
H Profile Definition
Ll Event Descriptions
1 Tags List

Figure 8-3. View Menu

Add Page

Mnemonic: A
Accelerator: Ctrl+A

This option adds a new page to theright of the last page in the main window.

Rename Current Page...
Mnemonic: R
This option launches a dialog that allows you to change the name of the current
page. The current page is the page which is currently being displayed in the main

window.

This option is also available from the context menu which appears when you
right-click on a page's tab.

Delete Current Page
Mnemonic: D

This option deletes the current page and all panelsit contains. The current page is
the page which is currently being displayed in the main window.

8-6

The NightTrace Main Window

This option is also available from the context menu which appears when you
right-click on a pages's tab.

Toolbars

Mnemonic: B

| Eile Toolbar

% Search Toaolbar

| Daemons Toolbar

% Panels Toolbar
Show All Toolbars
Hide All Toolbars

Figure 8-4. Toolbars Menu

This menu allows you to hide or show individual Toolbars on the main window.
You can a'so hide or show toolbars using the context menu that appears when you
right-click atoolbar.

Events

This checkbox controls whether the Events panel isdisplayed. See“Events Panel”
on page 11-1 for information its operation.

Daemons

This checkbox controls whether the Daemons panel is displayed. See “Daemons
Panel” on page 9-1 for information on its operation.

Trace Segments

This checkbox controls whether Trace Segments panel isdisplayed. See “Trace
Segments Panel” on page 10-1 for information on its operation.

Profile Status List

This checkbox controls whether the Profile Status List panel is displayed. See
“Profile Status List Panel” on page 13-12 for information on its operation.

Profile Definition

This checkbox controls whether the Profile Definition panel is displayed. See
“Profile Definition Panel” on page 13-1 for information on its operation.

8-7

NightTrace RT User’s Guide

Event Descriptions

This checkbox controls whether the Event Descriptions panel isdisplayed. See
“Event Descriptions Panel” on page 14-1 for information on its operation.

Tags List

This checkbox controls whether the Tags List panel isdisplayed. See“Tags List
Panel” on page 15-1 for information on its operation.

Timelines and Panels

When timelines or other panels are added, an entry for each is added to the View
menu. These entryes are checkboxes which toggle the visiblity of the panel in the
current page.

Daemons

Accdlerator: Alt+D

The Daemons menu provides functionality for configuring new and existing daemon
definitions, as well as attaching to and detaching from running daemons.

Mew Kernel Dasmaon...

Mew Usar Dasmaon...

Import...
Attach...

Properties...
Delets

!y Launch Ctri+L

Refresh Rate...
Triggers...
Stream Buffer Size Threshhold...
¥ Halt Daemons at Stream Buffer Size

Figure 8-5. Daemons Menu

8-8

Search

The NightTrace Main Window

Thismenu isidentical to the context menu shown when right-clicking inside the Daemons
panel, as described in “Daemons Panel” on page 9-1.

Accdlerator: Alt+R

The Search menu contains search-related items such as opening the Profile Definition
panel to define search criteria, executing a forward or backward search with the most
recent search criteria, or modifying search options.

Text Search... Ctrl+T
Change Search Profile. .. Ctrl+F
t Search Backward Ctrl+B
?‘; Search Forward Ctrl+G

t Search Backward within Timeline Interval Alt+B

?‘; Search Forward within Timeline Interval Alt+3

1) Goto Mext Tag |
1) Goto Previous Tag [

= Go Back to Previous Interval Ctrl+W
& Goto... Ctrl+l

[Goto First Event Alt+Left
¥ Goto Last Event Alt+Right

¥| Ask Before Wrapping for Search
Zoom to Search Match

Figure 8-6. Search Menu

Text Search

This option launches the Search Events for Text dialog which allows you to
specify textual search criteria for searching the contents of an Events panel. See
“Text Search” on page 11-3 for a description of this dialog and its actions.

Change Search Profile...

Mnemonic: S
Accdlerator: Ctrl+F

DisplaysaProfiles Definition panel allowing you to define the search criteriaand

to execute a search for an event or conditioninaTimeline panel. See“Profile Def-
inition Panel” on page 13-1 for more information.

89

NightTrace RT User’s Guide

If aProfiles Definition panel aready exists on a page, that page is raised; other-
wise, anew pageis created that contains a Profiles Definition panel.

Search Forward

Mnemonic: R
Accelerator: Ctrl+G

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, aforward search for the next event is executed.

Search Backward

Mnemonic: K
Accelerator: Ctrl+B

Executes a backward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed.

Search Forward withinTimeline Interval

Accdlerator: Alt+G

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a forward search for the next event is executed. The searchis
bounded by the events in the current timeline interval.

Search Backward within Timeline Interval

Accdlerator: Alt+B

Executes a backward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed. The
search is bounded by the events in the current timeline interval.

Halt Search

This option terminates an active search and leaves the current timeline unchanged.

Goto Next Tag
Goto Previous Tag

Mnemonics:] and [

These options search forward or backward, respectively, to the next or previous
tagged event or time in the data set.

Go Back to Previous Interval

8-10

Accdlerator: Ctrl+V

The NightTrace Main Window

This option toggles the current timeline between its current position and its last posi-
tion. Using this option or accelerator, you can easily revert back to alocation in the
data set after executing a search or clicking elsewhere in atimeline or ruler.

Goto...

Mnemonic: G
Accelerator: Ctrl+1

This option launches the Goto event or time dialog which allows you to specify
an integer value specifying an event offset or a floating point value specifying a
time. When pressing OK in the dialog, the current timeline is moved to the speci-
fied location.

Goto First Event

Mnemonic: F
Accelerator: Alt+LeftArrow

This option searches to the first event in the data set.

Goto Last Event

Mnemonic: L
Accderator: Alt+RightArrow

This option searches to the last event in the data set.

Ask Before Wrapping for Search

When checked, this causes a dialog to pop up when either end of the data set is
reached during a search operation; it allows you to continue searching at the other
end or to cancel the search.

Zoom to Search Match

When checked and a search criteriais found, the timeline is zoomed to include the
number of events specified by the Limit Number of Events Displayed...
option of the Timelines menu.

Summary

Accelerator: Alt+U

The Summary menu provides for defining profiles for summaries, executing summaries,
and controlling summary options.

81

NightTrace RT User’s Guide

Change Summary Profile... Ctrl+L
¥ Summarize Ctri+Z
¥ Summarize within Timeline Interval Alt+Z

Graph State Durations...
Graph State Gaps...

Figure 8-7. Summary Menu

Change Summary Profile...

Mnemonic: U
Accdlerator: Ctrl+U

This option opensthe Profile Status List and Profiles Definition panels allow-
ing you to select a profile to summarize or define a new profile to summarize. |If
these panels already exist on a page, that page is raised; otherwise a new pageis
added which contains these panels. See “Profiles Panels’ on page 13-1 for more
information.

Summarize

Accdlerator: Ctrl+Z

This option executes a summary on the current profile. If no profiles have been
defined, a summary of all eventsis executed. For each summary of a specific pro-
file, a new page is created to hold the summary results, including any required data
graphs as directed by the Graph State Durations... or Graph State Gaps...
options of the Summary menu.

Summarize within Timeline Interval
Accelerator: Alt+Z
This option isidentical to the Summarize option except that the list of events to
summary is constrained by those in the current timeline interval.

Graph State Durations...

This option displays the Graph State Durations dialog which allows you to
select whether you want a data graph generated when summarizing the current pro-
file. The data graph shows the individual durations of each instance of the state as
defined by the profile, plotted vertically.

The dialog also allows you to specify a standard deviation value which instructs the

summary action to graph values that fall outside the specified domain as the maxi-
mum defined by that domain.

8-12

The NightTrace Main Window

Graph State Gaps...
Thisoption isidentical to the Graph State Durations option except that it con-
trols the graphing of the gaps between instances of states as defined by the current
profile.

Prevents the current timeline from being moved, but the summary results are still
displayed in page text areas.

Profiles

Accelerator: Alt+P

The Profiles menu manipulates the list of profiles shown in the Profile Status List
panel.

A profileis a set of criteria either defining a state with beginning and end conditions, or
simply acondition. Profiles are used for searches, summaries, and graphs.

& MNew Profile... Ctrl+P
String Tables 3
Format Tables 3

Figure 8-8. Profiles Menu

New Profile...

Mnemonic: N
Accelerator: Ctrl+P

This option shows the Profile Status List and Profile Definition panels. If
these panels aready exist on a page, the page is raised; otherwise, a new pageis cre-

ated which contains these panels. See “Profiles Panels’ on page 13-1 for more
information on using profiles.

Delete
Mnemonic: D

This menu choice deletes all profiles currently selected in the Profile Status List
panel.

8-13

NightTrace RT User’s Guide

Move Up
Move Down

Accelerator: Ctrl+UpArrow and Ctrl+DownArrow

These options move the currently selected profilesin the Profile Status List
panel towards the beginning or end of the list, respectively.

Export to API Source...

This option opensthe Export Profiles to NightTrace APl Source File diaog
to automatically generate source code defining and referencing profiles, for use with
applications using the NightTrace Analysis API (see “Using the NightTrace Analy-
sisAPI” on page 18-1).

String Tables

This option expands to a sub-menu which allows you to select an existing string
table for modification, or to create a new string table.

Format Tables

This option expands to a sub-menu which allows you to select an existing format
table for modification, or to create a new format table.

Export Profiles to NightTrace APl Source File

The Export Profiles to NightTrace APl Source File dialog is presented when the
Export to API Source... menu item is selected from the Profiles menu.

ﬂ Export Profile(s) to MightTrace APl Source File XX

[%] Define maini) function [%] State start callbacks
[%| Define callback functions [%] State end callbacks

[%] Default printfi)'s in callbacks || State active callbacks
[%| Reportanalysis APlerrors [| State inactive callbacks

[%| Read trace data from stdin

Trace Data File []

Profiles Source [export_analysis_0.c]

Callbacks Source [export_analysis_0.c]

RN = T | -

Figure 8-9. Export Profiles Dialog

8-14

The NightTrace Main Window

This dialogs generates C source code using the NightTrace Analysis API to define and
install listener callback functions for the profiles selected from the Profile Status List
panel when the dialog was launched.

Define main() function

When checked, this option generates source code for amain C program which cre-
ates an instance of the Analysis API and installs all definitions and callbacks
selected in this dialog.

Define callback functions

When checked, this option generates stub routines for all callback functions that are
defined by this dialog. The stub routines are empty unless the Include default
printf() output in callbacks option is checked. If thisoption is not checked, the
function profiles are still generated, but no definitions are generated.

Default printf()’s in callbacks

When checked, this option generates source code to print information about
instances of the selected profilesin the callback function definitions.

Report analysis API errors

When checked, this function will report al errors from API calsto stderr; other-
wise, errors are ignored.

Read trace data from stdin

This option controls theinitial API callswhich either open a pre-existing datafile or
read datafrom stdin in streaming mode.

State start callbacks

When checked, a callback profile is generated and registered with the API for the
start event of the selected state profiles.

State end callbacks

When checked, a callback profile is generated and registered with the API for the
end event of the selected state profiles.

State active callbacks

When checked, a callback profile is generated and registered with the API for any
event that occurs when selected state profiles are active.

State inactive callbacks

When checked, a callback profile is generated and registered with the API for any
event that occurs when selected state profiles are inactive.

8-15

NightTrace RT User’s Guide

8-16

Trace Data File
When Read trace data from stdin is not checked, this text field defined the
data file from which pre-existing datawill be read.

Profiles Source
This text area defines the name of the source file for all source code generated
except for callback definitions.

Callbacks Source

Thistext area defines the name of the source file for all source code that define call-
back routines.

By default, the dialog is set to create a fully functional program that you can compile and
link using acommand similar to the following:

cc export analysis 0.c -lntrace analysis

You could subsequently feed live NightTrace data to the program using an invocation sim-
ilar to the following:

ntraceud --stream /tmp/key-file | ./a.out

See “Using the NightTrace Analysis API” on page 18-1 for more information.

The NightTrace Main Window

Timelines

Accelerator: Alt+M

The Timelines menu allows to create new timeline panels and provides controls for
moving and changing timeline intervals.

Mew 3

Limit Mumber of Events Displayed. ..

Zoom 3
Shift Left Ctrl+Left
Shift Right Ctrl+Right

Set Shift Percentage. ..

Center Current Time Home
Discard Selected...

Discard Unselectad. ..

Distinguish Process Mame by PID

Edit Current Event Description... Ctrl+D

Figure 8-10. Timelines Menu

The Timelines menu in the main window menu bar is essentially identical to the context
menu available from all Timeline panels, with the addition of the New submenu which
alows you to create new timelines.

This section will describe the New sub-menu; see “Timeline Panels’ on page 12-1 for a
description of the remaining menu items.

New

Empty Timeline
Mnemonic: T

This menu choice opens a hew timeline so that the user may configure it from
scratch. The grid must be populated with display objects before trace infor-
mation can be analyzed or graphically examined. See “Timeline Panels’ on
page 12-1.

Default User Timeline
Mnemonic: U

This menu choice opens the default user timeline which is automatically
pre-configured to show all user events and specific descriptions of the event
ID and the first argument of each event.

8-17

NightTrace RT User’s Guide

b4 NightTrace - New Session (Unsaved

The default user timeline includes a row that includes events for each regis-
tered thread in the application, as well as a row that includes events for all
threads.

File

View Daemons

Search

Summary Profiles

PO 2B -FPP:

Timelines Tools Help

User Trace

Thread: cos(5516)

Thread: sin{5515)

User Events:

Start Time 0.000000000)
Current Time 1.698013552
End Time 3396027103
Duration 3396027103

|

S S B

[

s ’1.15
IIII|IIIIIIII|I

A R I S

Current offset=31 id=1 proc=app thr=sin time(s
argl=0.026177

Interval : 100 events (0 to 99), 3396027103 seconds (0.000000000 to 3.396027103)

Current Time : 1.698013552

8-18

Figure 8-11. Default User Timeline

Default Ada Timeline
Mnemonic: A

This menu choice builds a user timeline which is automatically configured to
show task-information displays for every Adatask in the current trace data
Set.

A task-information display includes the following information: the task name,
the pid and Adatask ID, and a state graph indicating various Ada language
events and states, especially as related to tasking and exceptions.

The NightTrace Main Window

Custom Kernel Timeline...
Mnemonic: K

Presentsthe Build Custom Kernel Page dialog to quickly build a custom-
ized kernel page based on choices of nodes, CPUs, and graphs. When loading
kernel trace eventsin NightTrace, default kernel display pages are displayed
for each node where trace data originated. These pages show each CPU for
each node, aswell as afixed number of graphs and data boxes per CPU.

However, there may be cases where the default display page for kernel datais
not desirable:

- on multi-CPU nodes, the vertical height of the default kernel
page may be too large

- when shielding a CPU, or running a process with a CPU bias, it
may be desirable to see only datafor that CPU

- one or more of the default graphs per CPU may not be of inter-
est

b d Create Custom Kernel Tim

raptor Kernel Events |§| |§| |§| I%I %
raptor PIDs |§| |§| |§| I%I %
raptor Syscalls |§| |§| |§| I%I %
: o1 2 3 Al

raptor Exceptions
X (% x| [[x
o1 2 3 Al

raptor Interrupts
X (% x| [[x
raptor Thread Names |§| |§| |§| I%I %
[Reset | [Cancel

J

Figure 8-12. Create Custom Kernel Timeline Dialog

The checkboxes allow you to select which event and state graphs you wish to build for
which CPUs.

See“Kernel Tracing” on page 17-1 for more information.

Per Process Kernel Timeline...

Mnemonic: P

8-19

NightTrace RT User’s Guide

Tools

Presents alist of processes in the current kernel data set which alowsyou to
quickly build a customized kernel timeline that is filtered to display specific
processes.

NOTE
Support for kernel tracing is only available under some operating

system distributions. See “Kernel Dependencies’ on page B-1 for
more information.

Mnemonic: Alt+L

a3 MNightProbe Maonitor

= MightSim Scheduler
%, NightTune Tuner

#E NightView Debugger

Figure 8-13. Tools Menu

The following describe the options on the Tools menu:

NightProbe Monitor

Mnemonic: P

Opens the NightProbe Data Monitoring tool. NightProbe is a real-time graphical
tool for monitoring, recording, and altering program data within one or more execut-
ing programs without significant intrusion. NightProbe can be used in a develop-
ment environment as a tool for debugging or in a production environment for data
capture or to create a“control panel” for program input and outpuit.

NightSim Scheduler

8-20

Mnemonic: S

Opens the NightSim Application Scheduler. NightSim is atool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the
periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

The NightTrace Main Window

NOTE

NightSim is not available on some systems. NightSim depends on
the Frequency Based Scheduler. See “Kernel Dependencies’ on
page B-1 for more information.

NightTune Tuner
Mnemonic: U

Opens the NightTune Tuner. NightTune is a graphical tool for analyzing the status
of the system in terms of processes, interrupts, context switches, interrupt CPU
affinity, processor shielding and hyper-threading control as well as network and disk
activity. NightTune can adjust the scheduling attributes of individual or groups of
processes, including priority, policy, and CPU affinity.

For systems that support CPU shielding, NightTune provides a handy interface for
controlling shielding, including downing sibling hyper-threaded CPUs to avoid
interference.

NightView Debugger

Mnemonic: V

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications and multi-threaded applications. NightView can monitor, debug, and
patch multiple real-time processes running on multiple processors with minimal
intrusion.

8-21

NightTrace RT User’s Guide

Help

Mnemonic: Alt+H

? On Context...

B NightTrace User's Guide

¥ MightStar Tutorial
License Report...

m On Version...

¥ Check for Updates...

Figure 8-14. Help Menu

The following describe the options on the Help menu:

On Context
Mnemonic: C

Gives context-sensitive help on the various menu options, dialogs, or other parts of
the user interface.

Help for aparticular item is obtained by first choosing this menu option, then click-
ing the mouse pointer on the object for which help is desired (the mouse pointer will
become a floating question mark when the On Context menu item is selected).
The cursor turns to the a circle with a backslash when the item under the cursor has
no help description associated with it.

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. NightStar’s online help system, will open with the

appropriate topic displayed.
NightTrace User’s Guide
Mnemonic: G

Opens the online version of the NightTraceRT User’s Guide in the online help
viewer.

NightStar RT Tutorial
Mnemonic: T

Opens the online version of the NightSar RT Tutorial in the online help viewer.

8-22

../nstar/nstar-tutorial.html

The NightTrace Main Window

License Report
Mnemonic: T

Opens a license dialog which indicates the current license server and the number of
licenses available on the system.

On Version
Mnemonic: V

Displays a short description of the current version of NightTrace.

Check for Updates...
Mnemonic: U

Launches NUU (Network Update Utility) enabling you to update your system with
the latest NightStar software. This requires network access to Concurrent’s Updates
web site. Updates require a login and user 1D issued by Concurrent. Refer to
http://redhawk.ccur.com/updates for complete information.

Toolbars

NightTrace includes four toolbars which can be dragged and placed on any corner or side
of the main window. Theseinclude:

¢ theFile Toolbar
* the Search Toolbar
¢ the Daemons Toolbar

* the Panels Toolbar

File Toolbar

7 3

This toolbar consists of two icons.

Open Files

When pressed, this icon invokes the action associated with the Open
Files.... option of the File menu.

8-23

http://redhawk.ccur.com/updates

NightTrace RT User’s Guide

Save Session

When pressed, this icon invokes the action associated with the Save Ses-
sion option of the File menu. Thisicon is disabled if no changes have been
made to the current session since it was last loaded or saved.

Search Toolbar

8-24

® % = F ﬁ'} }'E} T

This toolbar consists of seven icons.

Search Backward

When pressed, this icon searches backward in the data set from the current
timeline for the nearest occurrence of the profile selected in the Profile Sta-
tus List panel. If no profileis selected, it searches backward for the nearest
event.

Search Forward

When pressed, thisicon searches forward in the data set from the current time-
line for the nearest occurrence of the profile selected in the Profile Status
List panel. If no profileis selected, it searches forward for the nearest event.

Go Back To Previous Interval

When pressed, thisicon invokesthe Go Back to Previous Interval option
of the Search menu, allowing you to switch back and forth between the cur-
rent timeline and the last value of the current timeline.

Goto

When pressed, this icon invokes the Goto... option of the Search menu,
allowing you to typein an event offset or time of interest.

Zoom In

When pressed, thisicon causes the time interval to be reduced by the zoom
factor set using the Set Zoom Factor... option of the Zoom submenu of
the Timelines menu.

Zoom Out

When pressed, thisicon causes the time interval to be increased by the zoom
factor set using the Set Zoom Factor... option of the Zoom submenu of
the Timelines menu.

The NightTrace Main Window

Summarize
When pressed, thisicon invokes the Summarize option of the Summary
menu which operates on the profile currently selected in the Profile Status

List panel. If no profileis currently selected, a summary of all eventsis exe-
cuted.

Daemons Toolbar

This toolbar consists of four icons.

Launch

When pressed, thisicon launches all daemons currently selected in the Dae-
mons panel.

Resume

When pressed, this icon resumes all daemons currently selected in the Dae-
mons panel.

Pause

When pressed, this icon pauses all daemons currently selected in the Dae-
mons panel.

Halt

When pressed, thisicon halts all daemons currently selected in the Daemons
panel.

Panels Toolbar

@ﬂﬁ%ﬂ%a

This toolbar consists of seven icons, representing each of the available panel types
in NightTrace. When pressed, the icon toggles the visibility of the corresponding
panel in the current page.

Pages

The remaining area of the main window is reserved for various tabbed pages which can
contain any of the seven panel types available within NightTrace.

8-25

NightTrace RT User’s Guide

Each page has atab which contains the pagetitle. When clicked or right-clicked, the page
israised to the top and becomes the current page.

Each tab has a context menu which allows you to manipulate the page position and title.

Delete Current Page
Rename Current Page...

Move Current Page...

Figure 8-15. Tab Context Menu

Delete Current Page
Mnemonic: D

This option deletes the current page.

Rename Current Page
Mnemonic: R

This option launches a dialog which allows you to rename the current page.

Rename Page

| Page &4|

| DK [Cancel |

- -

Figure 8-16. Rename Page Dialog

If the page title contains an ampersand character (&), it causes the next character to
be underlined, provides a keyboard shortcut for that page, and the ampersand
becomes invisible in the title that is shown for the page. In the example above, the
keyboard shortcut for this page will be Alt+4 and the displayed title will become
Page 4. Activating the shortcut for a page causes it to be raised to the top and it
becomes the current page. Care should be taken when choosing shortcuts for pages
so they do not conflict with other shortcuts. |f you desire to have an ampersand dis-
played in the actual page title (as opposed to defining a shortcut), use two amper-
sand characters, back to back inthe Rename Page dialog.

8-26

The NightTrace Main Window

Move Current Page
Mnemonic: M

This option launches a dialog which allows you to reposition the current page
among other pages. This option will be disabled unless at least two viewing pages
exist.

L4 Move Page x

—Move To Page

[| After Page
Page: | Page &4 3

Ok [Cancel |

- -

Figure 8-17. Move Page Dialog

8-27

NightTrace RT User’s Guide

Panels

NightTrace providesflexibility in configuring the graphical user interface to suit your needs through the
use of resizable and movable panels.

Consider the following page which contains a Profile Definition panel and aProfile Status List
panel:

NightTrace - New Session (Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help

PR TR3-F=pPpP: 0O

[l
=C_=
&
=]
=]
&3
£]

Profile Definition Profile Status List
TypelName | Status | Couml L.ast|
Key [Value [Ccndirion ‘v] [Reset cond True 0
Events [ALL] [Erowse...] my_state True 0
Exclude Events [NONE | [Browse... |
Condition [TRUE]
Processes [ALL] [Browse...]
Threads [ALL] [Browse...]
Output Script [fusrflib/NightTrace/bin/event-summary.sh || Browse.. |

012345678 9101112131415 Al
(3¢] [3¢] (3¢ (3¢] [3¢] (] [3¢] [3¢] [3¢] [¢] (%]] [3¢] [3¢] [%¢] % (%]

Name [rmy_state]

IE Search Backward I [& Search Forward I [H.lh Se.ll'chl [¥ Summarize

CPUs

4] | Kl

Interval : 2 events (0 to 1), 0.008000000 seconds (0.000000000 to 0.008000000) Current Time : 0.004000000 a

Figure 8-18. Page with Profile Panels

Panels are moved by left-clicking the title bar, dragging them to a new location, and then releasing the
mouse button. Depending on the location of the panel when the mouse button is released, the panel will
either remain detached or will be inserted into the page again.

8-28

The NightTrace Main Window

To detach the panel from the page without inserting it, click the left-most control box in the upper
right-hand corner of the panel.

| 4 NightTrace - New, Session (Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help
PE RR=FPL: O E ol %(ii]2
Prefile Definition
Prafile Status List
Key /Value [Ccndition |'] [Reset] |Type|Na|r|e | Status | Couml Las
Events [ALL][Browse...] cond True 0
Exclude Events [NONE] [Browse...] iy siaie o &
Condition [TRUE]
Processes [ALL][Browse...]
Threads [ALL][Browse...]
Output Script [.fusr.ﬂibeightTrace!bin!evem—summary.sh][Browse...]
i 012 3 456 7 8 9101112131415 Al
3¢ [3¢] (3¢ (3] [3¢] (] [3¢] [3¢] (] 3¢ [3¢] @] [3¢] (3¢ (%] 3] [x]
Name [my_sme]
[E Search Backward I [% Search Forward l IH.:LII Se:u'ch] I ¥ Summarize
E1l | KD\

Figure 8-19. Panel Detaches from Page

TheProfile Status List panel detachesfrom the page and becomesfreefloating. |f moved outsidethe
boundaries of the main window and released, the panel will remain detached from the main window.
However, even in detached mode, if the main window isiconified, the detached panel will beiconified
with it.

8-29

NightTrace RT User’s Guide

8-30

Toinsert a panel into the page at a new location, drag the panel using the left mouse button on itstitle
bar and move it until it approaches a boundary of the page. NightTrace will respond by creating space
indicating where the panel will be inserted.

» NightTrace - New Session (Unsaved)

Figure 8-20. Panel Movement in Progress

The figure above shows space being created above the Profile Definition panel asthe Profile
Status List panel isdragged towards the upper horizontal boundary of the page.

File View Daemons Search Summary Profiles Timelines Tools Help
= == L 3
PO 23 =wPP: O = o5 [A]1]® o
Profile Status List
|Type | Name | Status | Count Las
cond True
my_state True 0

Key [/ Value [Ccnd\tion |v] [Reset Choose Profile...
Events [ALL] [Browse...
Exclude Events [NONE][Browse...

Condition [TRUE]
Processes [ALL] [Browse...
Threads [ALL][Browse...
Output Script [.fusrﬂibeightTrace!binfevent—summary‘sh] [Browse...

012 3 456 7 8 0910111
CPUs
3¢ (] (3¢) (%] (] [3¢] %] [%¢] %] %] 3] % [
Name [my,state]
App ward Halt Search
£l [0 4

The NightTrace Main Window

At this point, rel easing the mouse button will causethe Profile Status List panel to be inserted into
the page, consuming the recently created space.

[NightTrace - New Session (Unsaved)

File Miew Daemons Search Summary Profiles Timelines Tools Help

PH 2R=PP: O =L@l -

Profile Status List
|Type | Name | Status | Cnuml Lastl Oﬁsel|
cond True
my_state True 0
Profile Definition
Key [Value [Candirion |v] [Reset
Events [ALL] [Browse...]
Exclude Events [NONE] [Browse...]
Condition [TRUE]
Processes [ALL] [Browse...]
Threads [ALL] [Browse...]
Output Seript [fusr/lib/NightTrace/bin/event-summary.sh [Browse.. |

012 3 456 7 8 9101112131415 Al
CPUs

(3] [3¢] [3e] (3¢ [3¢] (3] [] (] [¢] [3¢] [3¢] [3¢] 3¢ [3¢] | (%] (]

Name [my_state]

[2 Search Backward] [QSeaLch Forward I [Hﬂh SE.]\Eh]

Figure 8-21. Profile Status List Panel on Top of Profile Definition Panel

IMPORTANT

When attempting to move panels inside of a page, if an empty
space does not appear where you desire it, try increasing the size
of the main window, decreasing the size of the undocked panel,
and moving an alternative edge of the undocked panel near where
you want to placeit.

8-31

NightTrace RT User’s Guide

In the following figure, an Event Descriptions panel has been added to the right-hand side of the
Profile Definition and Profile Status List panels.

NightTrace - New Session (Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help

PH t3=-"pPR: O 2 ol [W[E]E] -
Profile Status List Event Descriptions
|Type|Na|r|e | S | Couml L“tl Oﬁset| Code ¥ Name | Description
cond True
my_state True 0 22 B o
Profile Definition
Key [Value [Condiﬁon |v] [Reset]
Events [ALL] [Browse...
Exclude Events [NONE] [Browse...
Condition [TRUE J
Processes [ALL] [Browse...
Threads [ALL] [Browse...
Output Script [jus/ib/NightTrace/bin/event-summary.sh | [Browse...

012345678 9101112131415 Al
] [x] [3¢] [3¢] [3¢] [3¢] (3] [¢] (%] (%] [x] 3¢ [3¢] [3¢] [3¢] (%] (]

CPUs

Name [my_sme

lt Search Backward] [E Search Forward] [H.thE.:uchl

[¥ Summarize

8-32

2 total events, 0.008 seconds

V.|

Figure 8-22. Event Descriptions Panel added to Page

Panels can be resized by left-clicking on the separator between the panels and dragging it to the desired

Size.

Another feature of the graphical user interface is the use of tabbed panels. Tabbed panels allow you to
maximize your GUI real estate by placing two or more panels in the same location by stacking them on
top of each other. Y ou can then raise a panel to the top by clicking on its tab.

The NightTrace Main Window

To create atabbed panel, move a panel to the lower horizontal edge of another panel until atab appears
at the bottom of the panel still connected to the page.

I NightTrace - New Session (Unsaved)

File View Daemons Search Summary Profiles Timelines Tools Help
- ==| L
PH R =-F@Px O = o) [aana
Profile Definition Event Descriptions
Key /Value [Ccnd\tion |v] [Reset] Choose Profile... HEE ameyilesspan
Events [ALL][Browse...] 2 B 2l
Exclude Events [NONE][Browse...]
Condition [TRUE]
Processes [ALL][Browse...]
Prafile Status List
|Type|Name | Status | Couml L.ls[l 0ﬁ'se[|
cond True
my_state True 0
Profile Definition [

4

Figure 8-23. Panel in Motion Creating Tab

In the figure above, the Profile Status List panel is being dragged from its original
position on top of the Profile Definition panel towards the bottom of the Profile Defi-
nition panel. A tab appearson the Profile Definition panel indicating that if the mouse
button is released, the Profile Definition and Profile Status List panelswill be

8-33

NightTrace RT User’s Guide

tabbed and therefore consume the same area of the page.

NightTrace - New Session (Unsaved)

File View Daemons Search

Summary Profiles Timelines Tools Help

PH ®B="pPPp: O Z o) % [B[a]w] -
Profile Definition Event Descriptions
Key /Value [Condition [+][Reset | Code ¥ Name | Description
Events [ALL | [Browse... | = e argl
Exclude Events [NONE][Browse... I
Condition [TRUE]

Processes [ALL][Browse... I
Threads [ALL] [Browse...]
Ourtput Script [.fusr.ﬂib.FNightTrace.fbinkuent—summary.sh][Browse... I

012 3 45 6 7 8 9101112131415 Al
CPUs

x| [x] [3¢] [3¢] [3¢] [3¢] (3] [] (%] %] [x] 3] [3¢] [3¢] [3¢] %] (]

Name [my_state

lE Search Backward] [E Search Forward] [H.lh Sealchl

[¥ Summarize

Profile Status List Profile Definition

IMPORTANT

To move a panel above another panel, move the desired panel to
the top boundary of the other panel. If you move a panel to the
bottom boundary of another panel, it will become a tabbed panel

instead.

The orientation and size of panels within pagesis saved as part of a NightTrace session.

9
Daemons Panel

The Daemons panel provides for the creation and control of user and kernel daemons
which are used to collect data from user applications and the operating system, respec-
tively.

It is often more convenient to use the Daemons panel to launch and run daemons as
opposed to relying solely on the ntraceud and ntracekd command line invocations as
described in “Capturing User Events with ntraceud” on page 3-1 and “ Capturing Kernel
Events with ntracekd” on page 4-1.

Additionally, the Daemons panel aidsin locating user applications that are attempting to
log trace data yet have no trace daemons currently associated with them. You can also
gain control of a previously-executed command line daemon by using the Attach feature
of the Daemons panel.

Daemons

Type | Daemon Target Logged Lost State Attached Buffer

kernel_trace_to_gui raptor

[L'JLaunch H Resume H Pause H Halt] l FElush H Display l l Triggers... l [Enable Events... H Delete l

Figure 9-1. Daemons Panel

All daemons defined in the current session are shown as individual rows in the panel.

Using the buttons at the bottom of the panel, you can control the execution of the daemons
aswell as bring datainto NightTrace Timeline panels for immediate viewing.

NightTrace RT User’s Guide

Context Menu

The panel’s context menu provides a super-set of the activities controlled by the buttons at
the bottom of the panel, including the ability to create and edit daemon definitions.

Mew Kernel Dasmaon...

Mew Usar Dasmaon...

Import...
Attach...

Properies...
Delets

¢!y Launch Ctrl+L

Refresh Rate...
Triggers...
Stream Buffer Size Threshold...
¥ Halt Daemons at Stream Buffer Size
Display Fields 3

Figure 9-2. Daemons Panel Context Menu

New Kernel Daemon...
Mnemonic: K

Opens the Edit Daemon Definition dialog (see “Edit Daemon Definition” on
page 9-9) allowing the user to configure a new kernel daemon definition.

NOTE
Support for kernel tracing is only available on some operating

system distributions. See “Kernel Dependencies’ on page B-1 for
more information.

9-2

New User Daemon...

Mnemonic: U

Daemons Panel

Opens the Edit Daemon Definition dialog (see “Edit Daemon Definition” on
page 9-9) allowing the user to configure a new user daemon definition.

Import...

Mnemonic: |

Presents a dialog which lists all user applications on the target system that are
attempting to log trace data but that do not currently have user daemons associated

with them.
[!mport Daemon Definitions x
Target [raptor l Refresh ListEJ
‘Program D ¥ |ngran1 |U5er ||(1a).|I File ‘
14838 app jeffh frmpfirh
Import Sr.-lr.--:tr;d] l Cancel l [Help I

Figure 9-3. Import Daemon Definitions Dialog

Each application that has called trace begin (), but that does not yet have a daemon,
islisted in arow in the table.

The table includes the Process ID, Program name, User, and the name of the Key
File aspassed to trace begin().

To import any daemon configuration information specified by the user application (the
second parameter to trace begin ()), click the row of interest and press the Import
Selected button.

This causes a daemon definition to be automatically created and the Edit Daemon Def-

inition dialog is launched so you can make any required adjustments, as described in
“Edit Daemon Definition” on page 9-9.

Attach...

Mnemonic: A

9-3

NightTrace RT User’s Guide

94

Y Attachito RUNNINADAEMONE C il

Allows the user to query any target system for user application trace daemons and
displaysthe resultsin adialog.

Target I ‘ [Reﬁesh Listl

Program ID ¥ |U5er |Key File

14975 jefth frmpfrh

Attach to Selected] l Cancel l [Help I

=

Figure 9-4. Attach to Running Daemons Dialog

The user may then attach to the desired daemon and control it, by selecting a dae-
mon from the list and pressing the Attach to Selected button.

A daemon definition is created for the daemon and it is added to the list of daemons
in the panel.

Properties...
Mnemonic: O

Opens the Edit Daemon Definition dialog (see “Edit Daemon Definition” on
page 9-9) allowing the user to configure the currently selected daemon.

Delete
Mnemonic: D

Deletes the daemon definition currently selected in the panel.

Launch
Mnemonic: L

Starts execution of the daemon(s) currently selected in the panel.

Daemons Panel

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Launch operations are time consuming and involve possibly connecting to a target
system, user authentication, etc. Once the daemon islaunched, it is more efficient to
utilize the Pause and Resume operations which require less time and resources.

Resume
Mnemonic: R
Resumes execution of the daemon(s) currently selected in the panel. Once resumed,

incoming events are placed into the daemon buffer for subsequent processing by the
daemon.

Pause
Mnemonic: P

Pauses the execution of the daemon(s) currently selected in the panel.

NOTE
When a daemon is paused, incoming trace events are discarded
without notice.
Flush
Mnemonic: F

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the panel to either the NightTrace display buffer or to the output file.

Halt
Mnemonic: H

Stops execution of the daemon(s) currently selected in the panel.

Detach
Relinguishes control of the running daemon(s) currently selected in the panel. Dae-
mons writing to afile will continue to execute and will continue to write eventsto a
file. If the file has no size limit associated with it, it could consume large amounts
of disk space.

You cannot detach from a daemon which is streaming events directly to NightTrace.

9-5

NightTrace RT User’s Guide

Refresh Rate...
Mnemonic: S
Provides a dialog which controls the refresh interval of statistics for active daemons
as shown in the panel.
Triggers...
Mnemonic: T

Triggers allow you to set a condition which is used to automatically stop an execut-
ing daemon. Daemons with triggers must be streaming datainto NightTrace -- dae-
mons writing to files are not eligible for triggers.

NightTrace continually evaluates the triggering condition as data sent from the dae-
mon to NightTrace. When the triggering condition becomes true, NightTrace halts
the daemon and sets the current timeline to the associated event that caused the con-
tinue to evaluate to true. Note that events subsequent to the triggering event may
aso be included in the NightTrace data, due to the buffering nature of trace events.

v gg x

[%] Enable Triggers

[%] Logical And

Profile ¥ | Count

’AddHEdnH Remove H Close H Help]

L J

Figure 9-5. Edit Triggers Dialog

Trigger conditions are specified using NightTrace profiles (see “ Profiles Panels’ on
page 13-1).

Enable Triggers

When checked, triggers are enabled for the associated daemon.

9-6

Daemons Panel

Logical And
When checked, all profiles listed in the dialog must be true for the triggering

condition to be evaluated to true. When unchecked, only one of the conditions
must be true.

Add

Pressing the Add button launches a dialog which allows you to select an
existing profile and optionally apply a count criteriato it.

Trigger Profile | my_state -

Count ‘l

Cancel

L =)

Figure 9-6. Add Triggers Entry Dialog

Stream Buffer Size Threshold...

For streaming daemons, the Stream Buffer Size Threshold defines the limit of
memory that NightTrace should use to hold streaming data.

Selection of this option alows you to set that threshold in units of bytes.

Once the threshold is reached, a warning dialog is issued from NightTrace. If the
Halt Daemons at Stream Buffer Size option is selected, the streaming dae-
mon is automatically halted, otherwise, NightTrace will continue to consume more
system memory to hold streaming data.

Halt Daemons at Stream Buffer Size

When checked, NightTrace automatically halts streaming daemons when the
amount of memory required to hold streaming data exceeds the threshold defined by
the Stream Buffer Size Threshold option; otherwise, NightTrace will continue
to consume system memory to hold streaming data.

Display Fields
The Display Fields submenu provides checkboxesfor each of the column headers

that can be displayed in the panel. When checked, the column is present; otherwise
the column is hidden.

9-7

NightTrace RT User’s Guide

Control Buttons

9-8

At the bottom of the panel there are a series of buttons that operate on daemons that are
currently selected in the panel.

Most of the buttons execute obvious actions, as described in detail in the panel’s Context
Menu. The descriptions below provide a brief summary of those actions as well as
detailed descriptions of actions not available in the Context Menu.

Launch

Launches the currently selected daemons. See “Launch” on page 9-4 for more
information.

Resume

Resumes the currently selected daemons. See “Resume” on page 9-5 for more
information.

Pause

Pauses the currently selected daemons. See “Pause” on page 9-5 for more informa-

tion.
Halt
Halts the currently selected daemons. See “Halt” on page 9-5 for more information.
Flush
Flushes the internal buffers of the currently selected daemons, forcing the datato be
sent to the output device (file or stream attached to NightTrace). See “Flush” on
page 9-5 for more information.
Display
This option is equivalent to flush except in the case of a daemon writing to afile.
Once such a daemon is stopped, pressing Display will load the contents of the file
containing the trace data.
Triggers...

Launches the Triggers dialog to allow you to set a condition which will cause Night-
Trace to automatically halt an executing daemon. See “Triggers...” on page 9-6 for
more information.

Enable Events

Launches a dialog which allows you to enable or disable events while the daemon is
executing.

Delete

Deletes the currently selected daemons; daemons cannot be deleted until halted.

Daemons Panel

Edit Daemon Definition

The Edit Daemon Definition dialog allows the user to create and modify the various
aspects of a daemon configuration.

DO L i o 1 3 D T e

—General Settings ~Enabled Events
Name [kernel_daemon] |:| RCIM Clock | State ¥ |Cnde| MName ﬂ
Target [raptor] User [jeffh l Disabled 4100 4100

Disabled 4101 4101
Qutput () File @ Stream () Consumer
Disabled 4102 4102

Disabled 4103 4103

—Stream Settings
Disabled 4104 4104

Stream Buffer Size (bytes) [8388608)
Disabled 4105 4105

Disabled 4106 4106

~Trace Buffer Settings

Disabled 4107 4107
[Buffer Wrap 1sabie

Disabled 4108 4108
(| Specify Non-Default Number Buffers :]

Disabled 4109 4109
W i L o S :] Disabled 4110 4110

012 3 45 6 7 8 9 101112131415 Al .
T Disabled 4111 4111
53 303 3] 33 ¢ 130 0 0 [Dot 4112 4110
~Trace Daemon Runtime Settings Disabled 4113 4113
Policy @ FIFO () RoundRobin () Other (Interactive) Disabled 4114 4114

Enabled 4115 EVENT_LOST
Disabled 4116 4116

123456 7 809101112131415 Al Disabled 4117 4117
@@@@@@@@@@@@@@@@ [/ Disabled 4118 4118 @

CPU Bias

[Reset H Cancel H Help]

L

Figure 9-7. Edit Daemon Definition Dialog

The Edit Daemon Definition dialogisdivided into a number of areas that contain spe-
cific information about the current configuration, including:

* “General Settings’ on page 9-10

* Trace File, Stream, and Consumer Output Settings (see “ General Settings’
on page 9-10)

* “Trace Buffer Settings’ on page 9-11
* “Trace Daemon Runtime Settings’ on page 9-15
¢ “Enabled Events’ on page 9-16

9-9

NightTrace RT User’s Guide

General Settings

9-10

The General area of the dialog contains information such as the name of the daemon
configuration, the target system on which the daemon will run, the user name, and the out-
put method.

Name

This field is automatically populated with the name user_daemon or
kernel_daemon for each new daemon definition. A..x notation is appended
when required, starting at 1, in order to keep the daemon names unique within a
NightTrace session.

The Name is merely alabel to aid the user in identifying specific daemons with a
session. It has no external meaning and is unrelated to the NightTrace API. The
user may change thisto a name of their choosing.

Target

The system on which this trace daemon will run.

RCIM Clock

When checked, the RCIM tick clock will be used to timestamp data. By default, the
system’s architecture clock is used as a timing source. Use of the RCIM tick clock
is advantageous when multiple systems are being traced at the same time and their
RCIM clocks are synchronized through an RCIM cable.

User

The name of the user on the specified target system responsible for running this
daemon.

Output

These radio buttons define the output method.

File

When selected, al trace datais written directly to adisk file. You cannot ana-
lyze the data until the daemon has stopped collecting data and you load it into
NightTrace using the Display button in the Daemons panel or the Open
Files... option of the File menu in the main window.

Use of the File method requires you to enter information in the Trace File
Settings group area which appears immediately below the General Set-
tings areawhen thismethod is selected. For kernel daemons, this can be any
filename. For user daemons, this must be the pathname the user application
specified to the trace begin () call to initiate tracing.

Daemons Panel

If you check the File Wrap checkbox, the file size will be limited by the
valueinthe Size Limit (bytes) field. When the limit is reached, the oldest
trace data is overwritten with newer trace data.

Stream

When selected, all trace datais streamed directly into the current NightTrace
session for immediate analysis. You can analyzetrace dataasit is collected or
saveit to afile for subsequent analysis.

You can adjust the Stream Buffer Size (byte) valuein the Stream Set-
tings group area which appears immediately below the General Settings
group area when this mode is selected. You may wish to increase the size of
the internal buffer NightTrace uses to pass data between the daemon and the
analysis modules of NightTrace. If this buffer istoo small, NightTrace itera-
tively pauses and resumes the daemon to catch up with processing (in which
case you will see P and R markersin timeline rulers indicating the Pause and
Resume operations). Normally, the default value is sufficient for most data
rates.

This buffer isonly used during the transfer of data blocks between the daemon
and the analysis modules. It is unrelated to the Stream Buffer Size
Threshold... which sets alimit on the amount of memory used to hold all
trace datafor all active streams.

Consumer

When selected, all trace datais streamed directly into a user application of
your choice. It is assumed that the user application is written using the
“NightTrace Analysis Application Programming Interface” on page 18-1.

You must specify the command that launches your application in the Con-
sumer Application field which appearsin the Consumer Application
Settings group areaimmediately below the General Settings area when
thismodeis selected. You may specify argumentsin the field aswell.

When launched, the stdin file descriptor associated with your program is
associated with the stream of trace data being generated by the daemon.

Key File

Thisisrequired for user daemons. This field does not appear for kernel daemons
and it is also hidden for user daemons that specify File output, in which case the
filename is specified in the Trace File field as described under File above.

This must be the pathname the user application specified to the trace begin ()
call toinitiate tracing.

Trace Buffer Settings

The contents of the Trace Buffer Settings area differ depending on whether the daemon is
auser or kernel daemon.

o-11

NightTrace RT User’s Guide

User Daemons

9-12

Buffer Wrap

When checked, events remain in memory and are not written to the output
device until an explicit flush operation is executed. When al buffers are full,
the oldest trace events are overwritten with new trace events.

Bufferwrap can be extremely useful in the following situations:

* When an event of interest occurs very infrequently and the
trace data of interest is that only leading up to the event.

* When even the activity of writing events from memory to the
output device can adversely affect system or application condi-
tions.

* When the trace data rate is so intense that capturing all events
overloads the network or NightTrace. Using bufferwrap and
examining snapshots using the Flush button can still be useful
in these situations.

Default Page Policy

When checked, the default page-locking policy isin effect. The default policy
isto leave pages in their default state (which would normally be unlocked
unless the user application has taken some action outside of the NightTrace
API, suchasmlock (2)).

Lock Critical Pages

When checked, pages in use by the NightTrace API, as well as the shared
memory pages associated with daemon buffers and control structures, will be
locked in memory.

NOTE

Locking pages requires the user application to run as root or to
have privileged capabilities. See pam capability(3) for
more information on granting privileged access to non-root users.

Inherit Settings

When checked, the daemon will defer to any configuration settings the user
application may have specified on the trace_begin () call, if the user
application has already started.

When unchecked and the user application has already started, any critical con-
figuration mismatches (e.g. use of an alternative clock, ability to lock pages,
etc.) will cause the daemon invocation to fail with an appropriate diagnostic.

Daemons Panel

Number Buffers

This setting controls the number of shared memory buffersin use between the
user application and the daemon. This number, combined with the setting for
Buffer Size, defines the total number of raw events that can be held in mem-
ory. In default operating mode (i.e. not buffer-wrap), when a single buffer
fills, the user application automatically informs the NightTrace daemon and
the daemon wakes up and copies the buffer to the output device.

Reducing the number of buffers reduces the number of wakeup events the user
application needs to make to the daemon (although these are very short and
efficient). However, reducing the number of buffersto avalue lessthan 8 can
cause loss of datawhen trace data rates are high.

The value specified is automatically rounded up to a power of two if it is not
already a power of two.

A raw event is the amount of storage required to hold an event without argu-
ments. Events with arguments require two or more raw events to hold their
data

Buffer Size

This setting controls the number of raw events that an individual buffer can
hold. This setting, combined with the setting for the number of buffers,
defines the total number of raw events that can be held in memory.

Increasing the Buffer Size setting is recommended if you have high trace data
rates or are losing trace events.

A raw event is the amount of storage required to hold an event without argu-

ments. Events with arguments require two or more raw events to hold their
data.

Shared Mem Perms

This area allows you to set the permissions to be applied on the shared mem-
ory buffer which is used to hold events logged by the user application before
they are written to the output device by the user daemon.

Kernel Daemons

Buffer Wrap

When checked, events remain in memory and are not written to the output
device until an explicit flush operation is executed. When all buffers are full,
the oldest trace events are overwritten with new trace events.

Bufferwrap can be extremely useful in the following situations:

* When an event of interest occurs very infrequently and the
trace data of interest is that only leading up to the event.

9-13

NightTrace RT User’s Guide

9-14

* When even the activity of writing events from memory to the
output device can adversely affect system or application condi-
tions.

* When the trace data rate is so intense that capturing all events
overloads the network or NightTrace. Using bufferwrap and
examining snapshots using the Flush button can still be useful
in these situations.

Specify Non-Default Number Buffers

This setting controls the number of kernel memory buffersin use between the
kernel and the daemon. This number, combined with the setting for Specify
Non-Default Buffer Size, defines the total number of bytes that can be held in
memory. In default operating mode (i.e. not buffer-wrap), when a single
buffer fills, the kernel automatically informs the NightTrace daemon and the
daemon wakes up and copies the buffer to the output device.

Reducing the number of buffers to a value less than 8 can cause loss of data
when trace datarates are high.

The value specified is automatically rounded up to a power of two if it is not
already a power of two.

Specify Non-Default Buffer Size

This setting controls the number of bytes that an individual buffer can hold.
This setting, combined with the setting for the number of buffers, defines the
total number of bytes that can be held in memory.

Increasing the setting is recommended if you have high trace data rates or are
losing trace events.

Trace CPUs

These checkboxes specify which CPUs should be traced. Normally, it isbest
to trace all CPUs in the kernel.

Specifying just asingle CPU or a small set of CPUs may be helpful in situa-
tions where user applications of interest are bound to otherwise shielded
CPUs.

NOTE

Support for kernel tracing is only available on some operating
system distributions. See “Kernel Dependencies’ on page B-1 for
more information.

Daemons Panel

Trace Daemon Runtime Settings

The Trace Daemon Runtime Settings areaallows the user to specify the scheduling
policy, CPU bias, and memory binding policies for the daemon.

Policy

POSIX defines three types of policiesthat control the way a process is scheduled by
the operating system. They are SCHED FIFO (FIFO), SCHED RR (Round
Robin), and SCHED OTHER (Other). Each of these scheduling policiesis associ-
ated with one of the System V scheduler classes.

FIFO

The FIFO (first-in—first—out) policy (SCHED FIFO) is associated with the
fixed-priority class in which critical processes can run in predetermined
sequence. Fixed priorities never change except when a user requests a
change.

This policy is aimost identical to the Round Robin (SCHED RR) policy.
The only difference is that a process scheduled under the FIFO policy does
not have an associated time quantum. As a result, as long as a process sched-
uled under the FIFO poalicy isthe highest priority process scheduled on a par-
ticular CPU, it will continue to execute until it voluntarily blocks.

Round Robin

The Round Robin policy (SCHED RR), like the FIFO policy, is associated
with the fixed-priority class in which critical processes can run in predeter-
mined sequence. Fixed priorities never change except when a user requests a
change.

A process that is scheduled under this policy (as opposed to the FIFO policy)
has an associated time quantum.

Other (Interactive)
The Time-Sharing policy (SCHED OTHER) is associated with the
time-sharing class, changing priorities dynamically and assigning time slices

of different lengths to processes in order to provide good response time to
interactive processes and good throughput to CPU-bound processes.

Priority

The Priority isrelative to the selected Scheduling Policy and the range of
alowable valuesis dependent on the operating system.

On most Linux systems, the priority values for the FIFO class include 1..99, where
99 is the most urgent user priority available on the system.

9-15

NightTrace RT User’s Guide

Enabled Events

9-16

It is recommended that a reasonable urgent priority is specified when using the
FIFO scheduling policy to prevent event |oss.

CPU Bias

Selection of a specific CPU or set of CPUs can be advantageous to prevent event
loss and reduce daemon intrusion on the rest of the system.

All CPUs

Selects al CPUs on the target system.

The Enabled Events areaallows you to specify which trace event types will be handled
by the daemon.

You may also change this list dynamically while the daemon is executing by pressing the
Enable Events buttonin the panel.

User Tracing

By default, all user trace events are enabled.

Kernel Tracing

For kernel trace daemons, the default set of enabled eventsis highly recommended.
You may wish to enable additional events that you may have added to the kernel, a
kernel module, or through a kernel event logged through an ioctl (2) call. See
“Additional Kernel Events’ on page 17-7 for more information about adding kernel
events.

You should not disable kernel events that are enabled by default unless you are an
expert in kernel tracing, as it may have an adverse affect on the default kernel dis-
play pages generated by NightTrace.

NOTE

Support for kernel tracing is only available on some operating system distributions.
See “Kernel Dependencies’ on page B-1 for more information.

10
Trace Segments Panel

The Trace Segments panel describes individual trace data segments that are loaded into
the current NightTrace session.

Trace Segments Table

Trace Sagmerts

Logged Losti Duralion (sec) | Unsaved

Type W | Trace Segment Targei
' 99335 7.550766167

i kernel_trace_to_gui : 52780

Save Trace Data... l [Close Trace Data

Figure 10-1. Trace Segments Panel

A trace data segment represents data collected from a single user or kernel daemon.

Type

This column provides an icon which indicates whether the daemon is a user daesmon
or kernel daemon (U or K), and whether it is a streaming daemon (a horizontal line

through the letter).

NOTE

Kernel tracing is on support under certain operating system distri-
butions. See “Kernel Dependencies’ on page B-1 for more infor-
mation.

Trace Segment

This column provides the name of the segment which is used merely for identifica-
tion purposes within a NightTrace session.

10-1

NightTrace RT User’s Guide

Target

This column indicates the target system name where the data was collected.

Logged

This column provides a count of the actual number of events present in the data set.
This number almost always differs from the statistics shown in the Daemons panel.
The event counts in that panel are raw events. Processed events often consume
more than one raw event.

Lost

This column displays a count of the number of raw events that have been lost
between the logging agent (kernel or user application) and the daemon.

Event loss can occur for avariety of reasons. See“Preventing Trace Event Loss’ on
page 6-1 for more information.

When events are lost, an L character appears on trace display Timelines indicating
the time at which the loss was recorded.

Duration

This column displays the duration of the data segment.

Unsaved

This column displays an icon indicating the data segment has not yet been saved to
disk. Thisoccurswhen streaming trace datainto NightTrace.

Context Menu

The Trace Segment panel’s context menu is shown below:

Open Trace File...
Save Trace Data...

Froperties...
Close Trace Data

Display Fields 3

Figure 10-2. Trace Segment Panel Context Menu

10-2

Trace Segments Panel

Open Trace File...

This option launches a standard file browser that allows you to select a NightTrace
datafile to be loaded into the current session.

Save Trace Data...

This option saves all the selected data segments to a NightTrace segment file which
can be reloaded in subsequent NightTrace sessions. While the segment fileis saved
as a single entity, the distinction of the individual data segments is not lost when
reloading.

Properties...

This option displays a simple dialog with details of the internal header information
embedded in the NightTrace data segment.

It is primary intended for use by NightTrace developers, but it does include gener-
ally useful information about the data segment, including the system name, the
clock used for timing, and the rate at which the clock ticks.

Trace Segment Header Description x

@ NighfTrace description for frace data set kernel_irace_io_gui:

Time Range:
Time of first event: 0.000000000
Time of last event: 7.55076E167

Timestamped with Intel TSC

FRaw NightTrace Header:

magic = 0x0o00001leb
version = 0x00000700
aborted =0

modes =0
first_event = 0x00000000
last_event = 0X00000000
los=t_events = 93335
gtart_time_ high = 0x00012238
start_time low = ox5d32a1fa
first_event_time_high = 0x00012238
first_event_ time_ low = ox5d32alfa
un=olicited_flushe= =0
event_start offset =0

arch_id = 26
Cpu_count = 4

cleck_id = 0X00010009
node_name = raptor
clock format = 0x00000001
clock_ticks per_second = 2392382B03.E92083

current_ticks_per_second = 2.3322552e+02

Figure 10-3. Trace Data Segment Properties Description Dialog

10-3

NightTrace RT User’s Guide

Close Trace Data

This option deletes the selected data segments from the current session. All events
associated with them are discarded. |If the events were streamed into NightTrace
and have not yet been saved, a dialog will give you the opportunity to save them
before closing them.

Display Fields

This option displays a sub-menu which alows you to customize which columns are
visiblein the Trace Segments panel.

Type

Trace Segment
Target

Loaged

Lost

Diuration (sac)

Unsaved

Control Buttons

The buttons at the bottom of the panel provide save and close operations on the selected
trace segments, as described in “ Save Trace Data...” on page 10-3 and “ Close Trace Data”
on page 10-4.

10-4

11
Events Panel

The Events panel provides atextual table describing all trace eventsin all trace segments
in chronological order.

Textual Event Tables

Everts

cmm| Euen1| cpu| Process | Thmdl Time (:e::.| Tag | Descriplion F;l

7315 SCHEDCHANGE 1 idle 0 1213767075 ksoftingdi1 (7) switched out (slegping); idle switched in

7316 SCHEDCHANGE 3 pythaon 12979 1213768626 idle switched out (runnable); python (12979) switched in

7317 SYSCALL RESUME 3 python 12979 1213788627 Resuming system call _newselect

7318 SYSCALL_EXIT 3 pythion 12979 1213770945 Exited system call _newsalect |:|

7319 SYSCALL_ENTRY 3 python 12979 1213773756 Entering system call gettimeofday from pc=0xb7efbid1

7320 SYSCALL_EXIT 3 pythion 12879 1213774739 Exited system call gettimeofday

7321 SYSCALL_ENTRY 3 python 12979 1.2137 76585 Entering system call _newselect from pc=0xb7f38c88

7322 SYSCALL_EXIT 3 python 12979 1213780595 Exited system call _newselect

7323 SYSCALL_ENTRY 3 python 12979 1213782561 Enfering system call getimeofday from pc=0xb7efobd1

7324 SYSCALL_EXIT 3 pythaon 12979 1.213783479 Exited system call gettimeofday

7325 SYSCALL_ENTRY 3 python 12979 1213785548 Entering system call _newselect from pc=0xb7f38c58

7326 TIMER 3 pythion 12979 1213787474 Timer timed out (timeout = 20ms)

7327 SYSCALL SUSPEMD 3 python 12979 1213790180 Suspended while in system call _newselect

7328 SCHEDCHANGE 3 idle 0 1.213790181 python (12979) switched out (sleeping); idle switched in

7329 IRQ_ENTRY 0 idle 0 1.214658838 Interrupt timer (IRG=1)

7330 KERMNEL_TIMER 0 idle 0 1.214661468

7331 IRQ_EXIT 0 idle 0 1.214604314 Imterrupt handling for timer (IRQ=0) exited

7332 IRQ_ENTRY 0 idle 0 1.214748438 Interrupt local_timer (IRQ=1)

7333 IRQ_ENTRY £l idle 0 1.214749422 Imterrupt local_timer (IRQ=1)

7334 IRQ_ENTRY 2 idle 0 1214750554 tag.1 Interrupt local_timer (IRQ=1)

7335 IRQ_ENTRY 1 idle 0 1214751735 Interrupt local_timer (IRQ=1)

7336 IRQ_EXIT 0 idle 0 1.214753040 Imterrupt handling for local_timer (IRQ=0) exited

7337 IRQ_EXIT gl idle 0 1214754956 Interrupt handling for local_timer (IRQ=0) exited

7338 IRQ_EXIT 2 idle 0 1.214755855 Imterrupt handling for local_timer (IRQ =0} exited

7339 IRQ_EXIT 1 idle 0 1.214756542 Interrupt handling for local_timer (IRQ=0) exited

7340 IRQ_ENTRY 0 idle 0 1215658556 Interrupt timer (IRQ=1)

7341 KERMNEL_TIMER 0 idle 0 1.215661089

Figure 11-1. Events Panel

The current timeline is displayed in the panel as the selected event. By selecting a new
event in the panel, the current timeline is changed. Thus the Events panel is synchro-
nized with all Timeline panels.

The Events panel table consists of the following columns:

NightTrace RT User’s Guide

Offset

This column displays the ordinal event offset number within the combined trace
data set for the session. The first event in chronological time order has offset zero,
the second offset one, and so on.

Thisisthe same value as would be returned by the NightTrace of £set () function.

Event

CPU

This column displays the event ID as a numeric value, or using the corresponding
event name, if one exists. Event IDs maybe assigned event names by using the Edit
Current Event Description... option of the Event panel context menu, or
using the Event Descriptions Panel panel.

This column displays the CPU where the event was logged for kernel dataonly. For

user events, the CPU information is not available and the value will be displayed as
.

Process

This column displays the process name that logged the trace event. If a process
name is not available, the process ID is used.

Thread

Time

Tag

This column displays the thread name or thread ID associated with the trace event.
Kernel trace events normally do not have thread names associated with them, unless
the a user trace data segment is loaded with the kernel trace data and individual
threads within the user application registered themselves with the NightTrace API
(see “trace_open_thread” on page 2-11 and “trace _register_thread” on page 2-30 for
more information on registering threads within user applications).

This column displays the time of the event, in seconds, relative to the first event in
the combined data set.

This column displays an event’s tag name, if present. Events of interest can be
tagged by double-clicking any cell in the row of an event. You can also create atag
by double-clicking an event in a Timeline panel or double-clicking in aruler in a
Timeline panel

Tags allow you to quickly locate events of interest. Tag names are saved as part of a
NightTrace session so you can refer to them subsequently. You can annotate a tag
with descriptive text using the Tags List Panel or using the context-menu of atag
inarulerinaTimeline panel (see“Timeline Panels’ on page 12-1 for more infor-
mation).

Context Menu

Description

Events Panel

This column displays an event’s description. By default, kernel event descriptions
are already associated with all kernel event IDs. For events without descriptions,

the values of any arguments are displayed.

You can customize an event’s description using the Event Descriptions Panel
or by invoking the Edit Current Event Description... option of the Events

panel’s context menu.

The Events panel context menu is shown below.

Text Search... Ctrl+T
‘; Search Forward Ctrl+G
t Search Backward Cirl+B
& Golo...

[] Distinguish Process Mame by PID
Edit Current Event Description... Ctrl+D
Close All Trace Data Alt+W

Display Fields

Figure 11-2. Events Panel Context Menu

Text Search

Accdlerator: Ctrl+T

This option launches the Search Events for Text dialog which allows you to
search for specific entries in the Events panel. It does not search for text in Time-

line panels.

NightTrace RT User’s Guide

Search Events for Text »

|:| Treat ssarch text as regular expression

Search text :

| =)

Event attribute s to match against:

CPU [Process [
Description 3] Thread 3|
Event Name (| Time [
[E Search Backward l IE Search Forward] [Hall Sear-:hl [Close

Figure 11-3. Search Events for Text Dialog

Searching occurs for the specified text in cells within the table as controlled by the
selected attributesin the dialog.
Treat search text as regular expression

When checked, the text entered in the Search Text field isinterpreted asareg-
ular expression as defined by regex (3) ; otherwise, the search is executed
for the exact text entered.

Search Text

Thetext to search for or the regular expression to search for, dependent on the
Treat search text as regular expression checkbox.

Event attributes to match against
The search is limited to text associated with table cells corresponding to the
attributes checked in this section.
Search Forward

Mnemonic: R
Accdlerator: Ctrl+G

Executes a forward search on the previously defined text search. If no such text
search has been defined, it searches for the immediately following event.

11-4

Events Panel

IMPORTANT

When the focus is in an Events panel, Ctrl+G execute a textual
search of that panel. However, when the focusisin a Timeline
panel, Ctrl+G executes an event search as defined by the cur-
rently selected profile.

Search Backward

Mnemonic: K
Accelerator: Ctrl+B

Executes a backward search on the previously defined text search. If no such text
search has been defined, it searches for the immediately preceding event.

IMPORTANT

When the focus is in an Events panel, Ctrl+B execute a textual
search of that panel. However, when the focusisin a Timeline
panel, Ctrl+B executes an event search as defined by the cur-
rently selected profile.

Goto...

This option launches a dialog which allows you to type in an integer event offset
value or afloating point number which isinterpreted as atime stamp. Pressing OK
on the dialog causes the current timeline to move to the specified location.

Distinguish Process Name by PID
This option changes the description of process names to append their process ID.

This can be useful when you have multiple processes of interest that have the same
simple name.

Edit Current Event Description...

This option launches the Edit Event Description dialog which alows you to define
or change the name of an event and its description.

NightTrace RT User’s Guide

| Edit Event Description »

Cude[?]

Mame [something_cool_happened]

Description

format ("A funny thing happened on the way to the forumn: % s",
get_string(things,arg3))|

oK H Cancel H Help

Figure 11-4. Edit Event Description Dialog

Code

Thisfield contains the event ID of interest.

Name

This field defines the textual name that will be displayed in lieu of the event
ID.

Description

This field allows you to use the NightTrace format () function to define a
(possibly complex) textual description of the event and its arguments.

Close All Trace Data

This option closes all trace data segments; if some segments have not yet been
saved, adialog gives you the opportunity to cancel the operation.

Events Panel

Display Fields

This option presents the following sub-menu which allows you to select the columns
to be displayed in the table:

%] Offset

[Event
% CPU

[%| Process
[%| Thread

[%] Time (sec)
(%] Tag

[%€| Crescription

NightTrace RT User’s Guide

11-8

12

Timeline Panels

A timeline panel allows you to analyze trace events both graphically and textually.

Default Timeline

There are two basic types of default timelines; user timelines and kernel timelines. Both
operate in essentialy the same manner, but akernel timeline is automatically tailored to

aid in viewing kernel events.

Thefigure below is an example of a default user timeline (see “Kernel Timelines’ on page

17-12 for akernel timeline example).

app_data
Thread: cos(13705)
Thread: sin(13704)
Usar Events:
ps f01s F015 |30.15 s 0.1s s
""l""|"'.'|"" | T S R RS EE RS R RS F RN AR
SarTime 18003777735 4 events around offset 828 Hover offset=828 id=2 proc=app thr=9Current offset=1628 id=2 proc=app thr=cos time(sec)=2123002
- arg1=-0 976296 arg1=6239552
Current Time 21258522362
End Time 2954487 4680
Duration 1064109624 5)
< [«]r)

Figure 12-1. Default User Timeline

A default user timeline consists of the following areas.

* Current Timeline Indicator

* Global Ruler

12-1

NightTrace RT User’s Guide

* |nterval Ruler
* Event Graphs

* Event Description Area

Thetimelineislaid out horizontally and displays trace events as they occurred over time.
Events to the left occurred chronologically before eventsto the right.

Thetimeline display isinteractive. It reacts to zoom, search, and positioning operations.

Current Timeline Indicator

Global Ruler

12-2

The Current Timeline Indicator isavertical dashed line which spans much of the ver-
tical area of atimeline. It represents the current time and is synchronized with all other
panels throughout the current NightTrace session.

Clicking anywhere within aruler or event graph in atimeline moves the current timeline.
It also responds to search operations throughout NightTrace.

The Global Ruler isthe bottom-most ruler in the timeline.

pis

f01s FL’HS |30.1s s ’50.15 Fﬂ.‘ls
Lo v bbb b b b b b b s oo Laa

Figure 12-2. Global Ruler

Thisruler is the basic mechanism used for moving throughout the entire trace data set with
the mouse.

Theruler is annotated with hash marks with time values in units of seconds. It represents
the entire data set, not just the data that is currently viewed (also known as the current
interval).

The portion of theruler that has a gray background represents the section of the entire data
set that comprises the current interval -- that is, the events that are currently visible in the
timeline. Inside the gray areais a single vertical black line which extends through the
entire height of the ruler. It represents the location of the current timeline within the cur-
rent interval.

Interval Ruler

Timeline Panels

NOTE

If the current interval is sufficiently small, the width of the gray
area may be indistinguishable from the vertical black line within
it.

To change the current interval, simply click anywhere in the global ruler. Hence, to look
at data near the end of the data set, click very near the end in the global ruler.

See “Keyboard Traversal” on page 12-7 for valuable information on how to use the key-
board to traverse within the current interval and throughout the entire data set.

The Interval Ruler istheruler just above the Global Ruler.

D.1s |

Figure 12-3. Interval Ruler

The Internal Ruler representsthe current interval. It is annotated with hash marks with
time valuesin seconds.

Clicking anywhere in the ruler changes the current timeline to that location.

See “Keyboard Traversal” on page 12-7 for valuable information on how to use the key-
board to traverse within the current interval and throughout the entire data set.

The interval ruler can also contain additional objects, as described bel ow.

Tags

A tag icon is displayed on the ruler for any tag associated with that time. Tags are
convenient ways of marking events of interest. They can be annotated with user
comments and are saved across NightTrace sessions.

To create atag using the timeline, double-click alocation in the Interval Ruler. You
can then annotate the tag by right-clicking on itsicon and selecting Annotate...
from the context menu.

See “Tags List Panel” on page 15-1 for more information.

Daemon Paused E

Thisicon is displayed when a daemon is Paused. Events are no longer collected
until the daemon is resumed.

12-3

NightTrace RT User’s Guide

NOTE

If the incoming data rate in streaming mode exceeds NightTrace's
ability to pass data from the daemon to the display buffer, Night-
Trace automatically pauses and resumes the daemon in order to
catch up. You can increase the Stream Buffer Size using the Dae-
mons Definition dialog to avoid this.

Daemon Resumed E

Thisicon is displayed when a daemon isResumed.

Lost Data E

Thisicon is displayed when event loss is detected. It is associated with an
NT_LOST_DATA event, which isnot normally displayed in event graphs; however,
you can explicitly search for this event. The first argument to the event contains the
number of eventsthat were lost.

When event loss occurs, all states currently active in state graphs are terminated and
all knowledge of which processes were executing on which CPUs are lost until the
next context switch event occurs on each CPU, respectively. (See “Primary Kernel
Trace Events’ on page 17-1 for more information on kernel event and state graphs).

Event loss can occur for avariety of reasons. See“Preventing Trace Event Loss’ on
page 6-1.

Time Warp ﬂ

12-4

Thisiconisdisplayed when an internal inconsistency is detected within timestamps.
This is most often indicative of a system problem or an internal operating system
issue. Thisisessentially an internal operating system or hardware error, but instead
of throwing all data away, NightTrace marks the data set and continues as best it
can.

Event Graphs

Timeline Panels

An Event Graph isarectangular area within a timeline which contains vertical lines
representing events of interest.

Thread: cos(14079)

Thread: sin(14078)

Thread: main{14077)

Usar Events:

Figure 12-4. Event Graph with Labels

The graphic above shows data boxes on the left hand side which react to changes in the
current timeline.

The event graphs on the right display a vertical line when at least one event occurs at that
location. Zooming in may provide more detail and the single vertical line may expand to
indicate individual events.

Event graphs can be tailored to display events meeting only certain criteria. See* Creating
Timeline Objects’ on page 12-8 for information on creating and modifying event graphs.

In adefault user timeline, an event graph is created for each thread that has registered
itself viatrace open thread() or trace register thread(). Each of these
graphs only displays events logged by their respective thread. The bottom-most event
graph in auser timeline represents all user events -- those logged by any thread, registered
or not.

A textual description of the closest event immediately preceding the current timelineis
displayed in right-hand portion of the Event Description Area at the bottom of the
panel.

Asyou hover the mouse cursor over any event in the event graphs, atextual description of
the event under the mouse cursor is displayed in the left-hand portion of the Event
Description Area at the bottom of the panel.

12-5

NightTrace RT User’s Guide

Event Description Area

12-6

The Event Description Area provides atextual description of the events.

Hover offset=17147 id=1 proc=app thr=sin time(sec)=17848214Current offset=17145 id=2 proc=app thr=sin time(sec)=173.430
arg1=0622515

Figure 12-5. Event Description Area

The area consists of two rectangular text areas.

Hover Event Description

The area on the left-hand side describes the event immediately under the mouse cur-
sor. Asyou move the mouse throughout the timeline and hover over an event, this
area updates. If multiple events reside under the mouse cursor, the hover area indi-
catesthis. You must zoom in to obtain individual event information in such cases.

The detailed textual description in this areaincludes the timespan between the hover
event and the current timeline.

TIP

To determine the amount of time between two events within the
current interval, set the current timeline on one event and then
hover the mouse cursor over the second event of interest.

To determine the amount of time between two events which are
not both visible in the current timeline, either zoom out so both
events are visible or tag each event and use the Tags List Panel
to examine the timespans.

Current Event Description

The area on the right-hand side describes the current event. The current event isthe
event immediately at the current timeline or the event most closely preceding it in
time.

Event descriptions are provided by default by NightTrace. You can control how events are
described by providing customized event descriptions using the Event Descriptions
Panel.

Timeline Panels
Keyboard Traversal

Timelines are designed to be efficiently traversed through keyboard shortcuts when the
window focusisin atimeline.

The following table describes keyboard traversal.

Table 12-1. Timeline Keyboard Traversal

Key Sequence Action

RightArrow Moves the current timeline to the next event in time
LeftArrow Moves the current timeline to the previous event in time
UpArrow Zooms Out

DownArrow Zooms|In

Alt+UpArrow

Zooms all the way out

Alt+DownArrow

Zooms al theway in

Alt+LeftArrow

Goesto thefirst event in the data set

Alt+RightArrow

Goesto the last event in the data set

Ctrl+RightArrow

Shifts the current interval to the right

Ctrl+LeftArrow

Shifts the current interval to the left

Ctrl+F

Displaysthe Profile Definition Panel to allow you to define or select a search cri-
teria

Ctrl+G Executes a forward search using the currently selected profile in the Profile Status
List Panel. If no profileisselected, it searches for the next event.

Ctrl+B Executes a backward search using the currently selected profile in the Profile Sta-
tus List Panel. If no profileis selected, it searches for the previous event.

Ctri+l Launches the Goto dialog which allows you to enter times or offsets that control
which events are displayed in the interval.

Alt+G Identical to Ctrl+G except that the search is constrained by the bounds of the current
interval.

Alt+B Identical to Ctrl+B except that the search is constrained by the bounds of the current
interval.

Alt+V Toggles between the current timeline and the last location of the current timeline.

Thisisespecially useful for returning to the previous location after executing a search.

In addition to keyboard shortcuts, moving the mouse wheel back and forth causes the
timeline to zoom in and out.

12-7

NightTrace RT User’s Guide
Creating Timeline Objects

Timeline objects can be created or modified by entering Edit mode using the context menu
of aTimeline panel.

* [Thread: cos(14079)

: [Thread: sin{14078)

* [Thread: main(14077)

- |User Events:

. . = id= = =mai = id= = =sin ti 1=
GaiTme T ooooooaoal - Hover offset=146 id=10 proc=app thr=main t{Current offset=1080 id=2 proc=app thr=sin time(ssci=1.

. - .. arg1=0.719340

= [Current Time 16906568081} - -

« [End Tima 3.381312161} « -

- [Duration 3.381312161} - - @
T T

Figure 12-6. Timeline Editing

In edit mode, the background of the timeline turnsinto agrid. Objects can be created and
inserted into the grid using the context menu.

12-8

Timeline Panels

[/ Edit Mode Ctrl+E
[%] Show Grid

Select All

Deselect All

Delete Cirl+X

Add Graph Container

Add Lakel State Graph
Add Data Box Data Graph
Adjust Colors in Selected » Ruler
Canvas Color... Locator
Adjust Font/Alignment in Selected 3

[Stick To Right Edge

Figure 12-7. Timeline Context Menu

Most timeline objects must be inserted into a Graph Container. By default, a user timeline
contains one large graph container consuming the center and largest portion of the time-
line.

To insert an event graph, state graph, data graph, ruler, or locator into a graph container,
select the graph container by clicking on it and then select the appropriate option from the
context menu.

NOTE
If you cannot select the graph container because its edges are

obscured by graphs within the container, click on any object in the
container, then Shift+Click to select that container.

Once selected, the mouse cursor will change. Click inside the graph container and drag
the mouse up or down and release the mouse button. The new object isinserted.

NOTE

Graph containers, and objects in general, can be resized using the
mouse. Position the cursor over an edge or corner, wait for the
cursor to change to a resizing cursor, then left click and drag to
resize.

Double-click the new object to bring up its editing dialog, as described in the sections
bel ow.

12-9

NightTrace RT User’s Guide

Event Graph

An Event Graph displays vertical lines for each event that matches the criteria of the
event graph.

N EdiLEventGranh Profile i

Key/Value | Condition '»|[Reset |
Events [ALL | [Browse... |
Exclude Events [NONE | [Browse... |
Condition [TRUE |
Processes [ALL | [Browse.. |
Threads [ALL | [Browse... |
Event Color [#ce263c

001 2 3 45 6 7 8 9101112131415 Al
CPUs

(3¢ [3¢] [3¢] (€] [3¢] [o¢] [3¢] [3¢] [3¢] (] (€] [3¢] [3¢] [x¢] [¢] (%] ~[x¢]

[o |[cancel |[neb |

-

12-10

Figure 12-8. Edit Event Graph Profile Dialog

The definition of an event graph is essentially identical to defining a condition profile
using the Profile Definition Panel.

Only events matching the conditions set within this dialog will be shown in the event
graph.

Colors can be specified in the Event Color field by clicking on the color bar to the right
of the text field and selecting a color from the Color Selection dialog or by entering in
the text field a standard color name (see “ Standard Color Names’ on page 12-19) or RGB
notation (i.e., #rrggbb wherer, g and b are hexadecimal characters representing the red,
green and blue color components, respectively).

Additional adjustments can be made by selecting various options from the context menu
when the event graph is selected.

State Graph

NdEditState GraphProfile i

Timeline Panels

A State Graph isan Event Graph that can optionally display states aswell.

Kew’VaIue[State |v][Reset]

Start Events [NONE][Browse...]

End Events

Start Condition

End Condition

Processes
Threads
Ewvent Color

(
|
|
|
Events Condition | TRUE |
|
(
|
State Color [

NONE][Browse...]

ALLUSER |[Browse.. |
TRUE |
TRUE |

Ewvents

ALL][Browse...]

main][Browse...]

| —
| —

012 3 456 7 8 9101112131415 Al
CPUs

) (%] %] 3] > (%]] 3] 3 %] (%] 3] % %] (%] % [x]

L

|| cancel || hep |

)

Figure 12-9. Edit State Graph Profile Dialog

The definition of a state graph is essentially identical to defining a state profile using the
Profile Definition Panel, with the additional capability of selecting individual events
to be displayed asin an Event Graph.

During the time in which a state is active, a solid bar appears in the lower vertical half of
the state graph. Events as selected by the Events field in this dialog appear as vertical
lines spanning the entire vertical space of the graph.

Colors can be specified in the Event Color and State Color fields by clicking on the
color bar to theright of thetext field and selecting a color from the Color Selection dia
log or by entering in the text field a standard color name (see “ Standard Color Names™ on
page 12-19) or RGB notation (i.e., #rrggbb where r, g and b are hexadecimal characters
representing the red, green and blue color components, respectively).

Additional adjustments can be made by selecting various options from the context menu
when the state graph is sel ected.

12-11

NightTrace RT User’s Guide

Data Graph

12-12

A Data Graph issimilar to aState Graph, except that a data block or lineis shownin
lieu of the solid state bar of a state graph. The height of the line or block indicates the
value of the data.

v T e %

Key /Value [Condiﬁon |v][Reset]

Ewvents [1][Browse...]

Exclude Events | NONE][Browse...]
TRUE]

ALL][Browse...]

Condition

Processes

[
[
[
[

Threads |ALL][Browse...]

01 2 3 45 6 7 8 0 101112131415 Al
CPUs

(3] (3] [a¢] [3¢] [2¢] [2¢] [2¢] [3¢] [>¢] (] [a¢] [3¢] [3¢] [3¢] [(] [x¢]
Value[NDNE]

Min Value [calc |

Max Value [calc]

[Drawing and Colaring Options...

[Cancel H Help l

Figure 12-10. Edit Data Graph Profile Dialog

The definition of a data graph is essentially identical to defining a condition profile using
the Profile Definition Panel, with the addition of three fields which define how the
dataisto be displayed.

Value

Thisfield must be a valid NightTrace expression which defines avalue. Typically
thiswill be something simple like an argument associated with the events as defined
in the Events field; e.g. argl. See “Using Expressions’ on page 16-1 for more
information on expressions.

Min Value
Max Value

If set to CALC, NightTrace automatically calculates the minimum and/or maximum
values of all dataitems matching the profile's criteriaand adjusts the vertical scaling
appropriately such that the largest data value consumes the entire vertical space of
the graph and the smallest consumes a single pixel.

Timeline Panels

You may change the fields to specific values and NightTrace will adjust the scaling
accordingly. Data values that fall outside the specified minimum or maximum val-
ues will be plotted as the minimum or maximum value specified, respectively.

Drawing and Coloring Options...

Pressing this button displays the Data Graph Options dialog that allows you to
select the color of datavalues and their boundaries and select attributes which affect

how the data graph is drawn.

Additional adjustments can be made by selecting various options from the context menu
when the data graph is selected.

Data Graph Options Dialog

The Data Graph Options dialog islaunched from the Edit Data Graph Profile dia-
log when the Drawing and Coloring Options... button is pressed.

[l Data Graph Options x

~ Drawing Attributes

[%| Connect Data Values

[¥] Extend Data Values

~Coloring

[Gradient |vl

Primary Color | #bd0000 _
High Color [#2e75d1 [

‘ Calar | Threshold =l

5

| ok || cancel || el |

L =

Figure 12-11. Data Graph Options Dialog

The dialog consists of two areas which control how data graphs are drawn and the colors
used for the data values and boundaries.

Combining the various Drawing and Coloring options provides a wide variety of graph
types, as shown in “Drawing and Coloring Examples’ on page 12-16.

12-13

NightTrace RT User’s Guide

Drawing Attributes

Connect Data Values
This option draws a line between all consecutive data items. Each dataitemis
drawn as a small point on the graph.
Extend Data Values
This option causes a polygon to be drawn, which extends from the X coordi-
nate of the last data item up to the X coordinate of the current data item.
Coloring

The Coloring area defines the color mode used to draw the data graph and the col-
ors associated with the mode sel ected from the dropdown:

[Gradient -

Single Color

Discrete Thresholds
Auto Differentiated

Figure 12-12. Data Graph Options Dialog Color Mode Selector

The color mode selector provides four options:

Single Color

In Single Color mode, asingle color is used to draw all data values. The color
isdefined by the Primary Color itemin the diaog.

Gradient

In Gradient mode, alinear color gradient is used to draw all data values and
data value boundaries. The end-points of the gradient are defined by the Pri-
mary Color and High Color itemsin the dialog. The color gradient is
strictly vertical, reflecting the value of each dataitem. Primary Color repre-
sents the smallest data value whereas High Color represents the largest data
value.

Discrete Thresholds

In Discrete Thresholds mode, a set of colorsis used to reflect various value
thresholds of the data. An arbitrary number of thresholds can be entered, using
the Color Thresholds tablein the dialog.

12-14

Timeline Panels

The Primary Color isused asthe default threshold -- the threshold matching
all values not covered by specific thresholds entered in the table.

The portions of the dataitems and boundaries that are drawn that fall into each
threshold will be of the corresponding threshold color.

Auto Differentiated

In Auto Differentiated mode, a unique color is randomly assigned to each data
value encountered in the data graph. You cannot predict which color will be
assigned to which data value, but once the color is shown it will remain asso-
ciated with only that data value.

This option is not recommended for data sets which have alarge range of val-
ues, since individual colors become hard to distinguish as the number of col-
ors required increases dramatically.

An interesting application of this color mode combines its use with Extend
Data Values and a strict application of graph Minimum and Maximum
boundaries.

Consider a data set consisting of non-negative integers, such asthe PID value
of aset of processes. Setting the Minimum and Maximum graph boundaries
inthe Data Graph dialog to zero and one, respectively, combined with
Extend Data Values and Auto Differentiated will cause a single block
of data to be drawn for each data value of the same height, but with a unique
color. Kernel display pages use this technique to show process activities on
each CPU.

Primary Color

The Primary Color is used for the Single Color, Gradient, and Discrete
Thresholds color modes.

A color may be selected by clicking on the color bar to the right of the text field and
selecting a color from the Color Selection dialog or by entering in the text field a
standard color name (see “ Standard Color Names® on page 12-19) or RGB notation
(i.e., #rrggbb wherer, g and b are hexadecimal characters representing the red,
green and blue color components, respectively).

When a color is entered in the text field and the dialog focus moves away from the
text field, the color bar is updated with the new color (unlessit isinvalid, in which
caseit turns black).

High Color
The High Color is only used with the Gradient color mode.

Colors may be selected by clicking on the color bar to the right of the text field and
selecting a color from the Color Selection dialog or by entering in the text field a
standard color name (see “ Standard Color Names® on page 12-19) or RGB notation
(i.e., #rrggbb wherer, g and b are hexadecimal characters representing the red,
green and blue color components, respectively).

12-15

NightTrace RT User’s Guide

When a color is entered in the text field and the dialog focus moves away from the
text field, the color bar to the text field is updated with the new color (unlessit is
invalid, in which case it turns black).

Color Thresholds

The Color Thresholds table is only used with the Discrete Thresholds color
mode.

The table automatically expands as you enter individual thresholds.

Enter a color by clicking or entering a cell in the Color column. This launches a
Color Selection diaog.

Enter a threshold value as an integer or floating-point numeric literal in the
Threshold column by double-clicking in the cell or typing while positioned in the
cell.

The value entered for a threshold is the inclusive lower bound of the threshold. The
exclusive upper bound is defined by the closest threshold above it by value, not nec-
essarily by visual position in the table. If no threshold exists, the upper bound
extends to the maximum val ue that can be plotted.

Traverse the cellsin the table by clicking with the mouse or using the arrow keys.
Using the Tab key will cause the focus to leave the table.

Remove cells by selecting the cells to be removed and pressing the Delete key (or
Crtl+X).

Thresholds are automatically sorted in ascending order by NightTrace before and
after the dialog is shown.

The Primary Color is used for the default threshold, which matches all values
lower than the lowest threshold entered in the table.

Drawing and Coloring Examples

Figure 12-13 shows several different data graphs reflecting the same data, but using differ-
ent combinations of Drawing and Coloring attributes.

12-16

Timeline Panels

NightTrace - lhomeljeffh/work/ntrace/session_|

ns Search Summary Profiles Timelines Tools Help

2R 2FwmEmELLLOL r E ol H E B a

User Trace

Color Mode: Gradient
Extend Values: true
Connect Values: false

Color Mode: Gradient

Extend Values: false

Connect Values: false HH ‘
‘||I|. .|IHHHH HH““H. .|I|HHHH

Color Mode: Gradient
Extend Values: false
Connect Values: true

Color Mode: Gradient
Extend Values: true
Connect Values: true

Color Mode: Thresholds. s
e . il i il

Connect Values: false

st I AL AN
Color Mode: Thresholds) - ’
Extend Values: false

Connect Values: true

Color Mode: Thresholds.
Extend Values: true
Connect Values: false

wos , ., . povos ., pops |, POOOS |, pOMPs |,

A | 1D}

Interval : 106 events (1658 to 1763), 0.000030344 seconds (0.002543483 to 0.002573827) Current Time : 0.002553806

Figure 12-13. Data Graph Examples

Color Selection Dialog

The Color Selection Dialog aids you in selecting a color by allowing you to select
from alist of basic or customized colors, enter RGB values, or select a color from a spec-
trum.

It is launched when clicking on a colored button to the right of a color selection text field,
or when clicking in cellsin the Color column of the Color Thresholds table.

12-17

NightTrace RT User’s Guide

12-18

»

0 Select color

Basic colors

ENEEEENEO
ENEEEENEO
EEEEEEEO

EEEEEO®EC
EEEEECO0O

Custom colors

mOOO0000
Ooo0oodod

[[Define Custom Colors ==

e |
u
.

=
o
=
N
~J
@
=
T
=
N
~J

l oK H Cancel] l Add to Custom Colors]

Figure 12-14. Color Selection Dialog

When using the mouse to select a color from the spectrum, be sure to choose an Alpha
value from the slider at the right-hand side of the dial og.

A common error isto click in the spectrum area and click on OK, expecting to get the
exact color associated with your mouse click in the spectrum, but effectively getting black
instead due to the Alphasetting. The color in the spectrum is modified by the Alphavalue
associated with the vertical slider setting. The actual color you are selecting is always
shown in the medium-sized rectangle beneath the lower-left corner of the spectrum.

Standard Color Names

NightTrace supports the standard color names shown in Table 12-1.

Table 12-1. Standard Color Names

Timeline Panels

aliceblue darkslategray lightpink pal eturquoise
antiquewhite darkslategrey lightsalmon palevioletred H
aqua darkturquoise lightseagreen papayawhip
aguamarine darkviolet lightskyblue peachpuff
azure deeppink lightslategray peru -
beige deepskyblue lightdlategrey pink
bisque dimgray lightsteelblue plum
black dimgrey lightyellow powderblue
blanchedalmond dodgerblue lime purple
blue firebrick limegreen red
blueviolet floralwhite linen rosybrown
brown forestgreen magenta royablue
burlywood fuchsia maroon saddlebrown
cadetblue gainsboro mediumaguamarine salmon
chartreuse ghostwhite mediumblue sandybrown
chocolate gold mediumorchid seagreen
coral goldenrod mediumpurple seashell
cornflowerblue gray mediumseagreen sienna
cornsilk grey mediumsl ateblue silver
crimson green mediumspringgreen skyblue
cyan greenyellow mediumturquoise slateblue
darkblue honeydew mediumvioletred slategray
darkcyan hotpink midnightblue . slategrey
darkgol denrod indianred mintcream snow
darkgray indigo mistyrose springgreen
darkgreen ivory moccasin steelblue
darkgrey khaki navajowhite tan
darkkhaki lavender navy teal
darkmagenta lavenderblush oldlace thistle
darkolivegreen lawngreen olive tomato
darkorange lemonchiffon olivedrab turquoise
darkorchid lightblue orange violet
darkred lightcoral orangered wheat
darksalmon lightcyan orchid white
darkseagreen lightgoldenrodyellow palegoldenrod whitesmoke
darkslateblue lightgray palegreen yellow

12-19

NightTrace RT User’s Guide

Interval Ruler

Global Ruler

Label

Data Box

12-20

You can add an Interval Ruler to agraph container using the Ruler option of the Add
to Selected Graph Container sub-menu of the timeline’s context menu.

You can add a Global Ruler to agraph container using the Locator option of the Add
to Selected Graph Container sub-menu of the timeline’s context menu.

Labels are static text areas that can be placed anywhere within atimeline. They do not
have to be inserted into a graph container.

You can add alabel by using the Add Label option of the timeline's context menu.
Once added, double-click the label to set itstext.

Once defined, you can adjust attributes of the label by selecting various options from the
context menu when the label is selected, for example:

Adjust Font/Alignment in Selected

This menu item allows you to select afont for the label, and to adjust its vertical and
horizontal alignment.

Adjust Colors in Selected

This menu item allows you to select the color of the text and the color of the label’s
background.

A Data Box isadynamic label that can be placed anywherein atimeline. Thevaluedis-
played in the box is dependent on the current timeline.

Edit Data Box Profile

Key / Value | Condition |*][Reset |

Timeline Panels

Choose Profile...

Events [ALL

][Browse...]

Exclude Events | NONE

][Browse...]

Condition [TRUE

Processes [ALL

][Browse...]

Threads [ALL

][Browse...]

01 2 3 4 5 6 7 8 9 1011 12 13 14 15
CPUs

] (3 (%] (% (% (% (% (] %]] (%] (3¢ 3¢ (] (3]]

Output [NONE

[Cancel H Help

Figure 12-15. Edit Data Box Profile

The definition of aData Box isessentially identical to defining a condition profile using
the Profile Definition Panel, with the addition of the following field:

Output

Thisfield must be avalid NightTrace string expression. Typically, it involves use of
the format () function. For example:

format (“The current value is: %f”, arg dbl())
See “Using Expressions’ on page 16-1 for more information.

Once defined, you can adjust the box by selecting various options from the context menu
when the data box is selected; for example:

Adjust Font/Alignment in Selected

This menu item allows you to select font for the text to be displayed and to adjust its
vertical and horizontal alignment.

Adjust Colors in Selected

This menu item allows you to select the color of the text and the color of the label’s
background.

12-21

NightTrace RT User’s Guide

12-22

13
Profiles Panels

Profiles include any condition or state you use within a NightTrace session, including
those used in search and summary operations.

In NightTrace, acondition isthe "logical and" of severa criteria such as event codes, pro-
cesses, and threads. Conditions may be used to examine matching events of interest.

A state profile is a combination of two conditions which identify the start and end require-
ments of a state. All other profiles are simply condition profiles, although they can be as
complex as you need them to be.

Profiles can be used in:

* searches

* summaries
* graphs

Profiles are managed using the Profile Status List and the Profile Definition panels.

Profile Definition Panel

This panel allows you to define new profiles using drop-down option lists for commonly
reguested conditions and states. Profiles can be further customized providing you com-
plete control over detailed profile conditions.

13-1

NightTrace RT User’s Guide

Profile Definition
Key [Value | State |*|[Resst | [Choose Profile.. |
Start Events [ALL || Browse.. |
End Events [ALL || Browse. |
Start Condition [TRUE |
End Condition [TRUE |
Processes [ALL || Browse.. |
Threads [ALL || Browse. |
Cutput Script [Iusn’lib.l'NightTracerin.fstate-summary.sh || Browse. |

123 45 67 8 9101112131415 Al
@@@@@@@@@@@@@@@@]

Name [state]

CPUs

[Applyl [E Search Backward l [E Search Forward] [Halt Seal'-:h] [}'_‘_ Summarize

Figure 13-1. Profile Definition Panel

Key/Value

TheKey/Value option list provides a starting point for profile definition. Selecting
items from the option list populates the individual condition fields below with the
values and expressions required to specify the key (and value) you have selected.

The option list provides the following items:

Condition

State

System Call All Events
System Call Enter Events
System Call Leave Events
System Call State
Exception All Events
Exception Enter Events
Exception Leave Events
Exception State

Interrupt All Events
Interrupt Enter Events
Interrupt Leave Events
Interrupt State

Tagged Events

Condition

This option populates the condition fields to create a condition profile which
will match any event, unconditionally. It isuseful when you wish to manually
enter conditions starting from a clean template.

13-2

State

Profiles Panels

This option populates the condition fields to create a state profile which starts
on any event and ends on any event. It is useful when you wish to manually
enter state conditions starting from a clean template.

System Call All Events
System Call Enter Events
System Call Exit Events
System Call State

Exce
Exce
Exce
Exce

These options desensitized if kernel trace datais not loaded.

These options populate the condition fields such that the profile detects the
existence of a specific system call, asindicated by the specific option selected.
After selecting one of these options, a system call list will launch allowing
you to select an individual system call.

Selecting System Call All Events will match events representing the
entry, suspension, resumption, and exit of a system call.

Selecting System Call Enter Events or System Call Exit Events will
match events representing entry and resumption of a system call, or suspen-
sion and exit, respectively.

Selecting System Call State defines a state which begins when a system
callsis entered or resumed, and terminates when the system call is suspended
or exits.

When a specific system call is selected, the name of the system call will
appear in aread-only text field beneath the Key/Value option list. The spe-
cific system call associated with the profile can be changed by pressing the
Values... button and selecting a different value from the list.

NOTE

Multiple system calls may be selected from the Key/Value pop-up
menu.

ption All Events
ption Enter Events
ption Exit Events
ption State

These options desensitized if kernel trace datais not oaded.

These options populate the condition fields such that the profile detects the
existence of a specific machine exception, as indicated by the specific option
selected. After selecting one of these options, an exception list will launch
alowing you to select an individual exception.

Selecting Exception All Events will match events representing the entry,
suspension, resumption, and exit of an exception.

13-3

NightTrace RT User’s Guide

13-4

Selecting Exception Enter Events or Exception Exit Events will
match events representing entry and resumption of an exception, or suspen-
sion and exit, respectively.

Selecting Exception State defines a state which begins when an exception
is entered or resumed, and terminates when the exception is suspended or
exits.

When a specific exception is selected, the name of the exception will appear
in aread-only text field beneath the Key/Value option list. The specific
exception associated with the profile can be changed by pressing the Val-
ues... button and selecting a different value from the list.

NOTE

Multiple exceptions may be selected from the Key/Value pop-up
menu.

Interrupt All Events
Interrupt Enter Events
Interrupt Exit Events
Interrupt State

These options desensitized if kernel trace datais not loaded.

These options populate the condition fields such that the profile detects the
existence of a specific machine interrupt, as indicated by the specific option
selected. After selecting one of these options, an interrupt list will launch
allowing you to select an individual interrupt.

Selecting Interrupt All Events will match events representing the entry,
suspension, resumption, and exit of an interrupt.

Selecting Interrupt Enter Events or Interrupt Exit Events will match
events representing entry and resumption of an interrupt, or suspension and
exit, respectively.

Selecting Interrupt State defines a state which begins when an interrupt is
entered and terminates when the interrupt exits.

When a specific interrupt is selected, the name of the interrupt will appear in a
read-only text field beneath the Key/Value option list. The specific interrupt
associated with the profile can be changed by pressing the Values... button
and selecting a different value from the list.

NOTE

Multiple interrupts may be selected from the Key/Value pop-up
menu.

Profiles Panels

Tagged Events

This option populates the condition fields such that the profile detects the
event associated with the tag that you select from the list that is launched
when choosing this option.

When a specific tag is selected, the name of the tag will appear in aread-only
text field beneath the Key/Value option list. The specific tag associated with
the profile can be changed by pressing the Values... button and selecting a
different value from the list.

If no tagged events exist, this menu option is desensitized.

NOTE

Multiple tags may be selected from the Key/Value pop-up menu.

Choose Profile...

You can select from previoudy-defined profiles using the Choose Profile... but-
ton.

Selecting an entry from the list displayed by this button populates the Profile Def-
inition panel with the conditions associated with that profile. The current profile
becomes the profile you selected. Subsequent changes will be applied to the profile
if you pressthe Apply, Search/Close, or Summarize buttons. A new profile
will be created if you press the Add button.

Alternatively, when checking the Import by Reference checkbox in the
Choose Profile dialog, the Profile Definition panel will be populated with a
condition that references the selected profile. This technique allows you to add
additional conditions to the selected profile while preserving the named association.
Thus subsequent changes to the selected profile will be reflected in the new profile
you create.

After choosing a Key/Value pair or previously defined profile using the Choose Pro-
file... button, you can further customize the condition or state by using the individual text
fields and selection listsin the dial og.

Any customized changes which are subsequently made appear in the criteria text fields
with a salmon-colored background. Pressing the Reset button restores the default condi-
tions that were populated when you selected the profile.

Events
Start Events
End Events

The Events, Start Events and End Events criteriaallows you restrict the con-
dition to events listed in the text fields. Valuesin the text fields are required to be a
comma-separated list of numeric event numbers or ranges or event names. The
Browse... buttons to the right of the text fields allows you to select from alist of
known event names. ThevaluesALL, ALLADA, ALLKERNEL, and ALLUSER
are specia entries referring to classes of events, asindicated by their name.

13-5

NightTrace RT User’s Guide

Start Events and End Events are only shown for state profileswhereas Events
is only shown for condition profiles. Start Events and End Events refersto
events which are candidates for the beginning or end of a state, respectively.
Events refersto all events.

Exclude Events

Exclude Events allows you restrict the condition to events that are not listed in
the text field. Itisonly shown for condition profiles.

Values in the text field are required to be a comma-separated list of numeric event
numbers or ranges or event names. The Browse... button to the right of the text
field alows you to select from alist of known event names. The value NONE isa
special entry referring to null set of events, which means that no events are
excluded.

Condition
Start Condition
End Condition

The Condition, Start Condition, and End Condition criteria allows you
restrict the profile using NightTrace's expression language. Valuesin the text fields
are required to be a boolean NightTrace expressions whose syntax is roughly that of
the C language, with built-in functions for accessing attributes of events. See
“Using Expressions” on page 16-1 for more information on expression syntax and
semantics.

Start Condition and End Condition are only shown for state profiles whereas
Condition isonly shown for condition profiles. Start Condition and End Con-
dition refersto the conditions which must be met for the beginning or end of a state,
respectively, whereas Condition applies globally to the profile.

Processes

13-6

The Processes criterion allows you restrict the condition to events generated by
processes that are specified in the text field.

Vduesin thetext field are required to be acomma-separated list of process names or
PIDs (see getpid (2) and gettid(2)). The Browse... button to the right of
the text field allows you to select from alist of known processes.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the process identifier
isthethread’s TID (seegettid (2)).

If multiple processes have the same name (perhaps two unrelated programs both
called a. out) selecting that name from the list or placing that text in the text field

Profiles Panels

will match both processes. Similarly, for multi-threaded processes, the specified
process name will match all threads within the process.

Placing a process name in the Processes list is equivalent to adding a condition
restriction using the following NightTrace expression:

process name == “a.out”

Threads

The Threads criterion allows you restrict the condition to events generated by
threads that are specified in the text field.

Values in the text field are required to be a comma-separated list of thread IDs (see
gettid(2)). The Browse... button to the right of the text field allows you to
select from alist of known threads by name. Thislist is only available when user
trace data from registered threads is loaded. See “Threads and Logging” on page
2-29 for more information.

If multiple threads with the same name exist, specifying the thread name will match
all such threads.

Placing athread nameinthe Threads listis equivalent to adding to adding a condi-
tion restriction using the following NightTrace expression:

thread name == “mythread”

Nodes

The Nodes criterion allows you restrict the condition to events generated on the
systems that are specified in the text field.

Values in the text field are required to be a comma-separated list of system names
(see hostname (1)). The Browse... button to the right of the text field allows
you to select from alist of known hosts present in the loaded trace data sets by
name.

Use of the Nodes condition is only useful when capturing and analyzing data from
multiple systems using the Real-time Clock and Interrupt Module (RCIM) as a syn-
chronized timing source. See the Real-Time Clock and Interrupt Module User’s
Guide (0891082) for more information.

Placing a node namein the Nodes list is equivalent to adding to adding a condition
restriction using the following NightTrace expression:

node name == “a.out”

Output Script

This text field does not impose a constraint on the profile. It allows you to specify
an aternative shell script that is executed for summary operations. By default, the
following scripts are executed for condition and state profile summaries, respec-
tively:

®* /usr/lib/NightTrace/bin/event-summary.sh

13-7

NightTrace RT User’s Guide

Control Buttons

13-8

¢ /usr/lib/NightTrace/bin/state-summary.sh

All script output generated to stdout will be displayed in the Profiles Result panel
which is automatically created when a summary is executed for anew profile. Out-
put from stderr is not captured.

Summary data is passed to the specified script via environment variables. See
“Summary Script Environment Variables” on page 13-11 for more information.

The path to the summary output script is saved as part of a NightTrace session and
can be utilized in subsequent ntrace invocations, including batch mode summary
execution via command line options.

CPUs

The CPUs selector area allows you to place CPU restrictions on the profile. Use
the checkboxes to select the CPUs of interest.

Name

The Name text field defines the name of the profile. The profile's name is auto-
matically set when selecting a previously-defined profile or when creating a new
profile. You can change the name by typing in a modified name in the text field.
Changing the name of a profile does not, in and of itself, create a new profile. A
new profile is created if you press the Add button. Pressing the Apply,
Search/Close, or Summaries buttons applies the name change (and all other
outstanding profiles changes) to the current profile as well as executes the associ-
ated action, if any.

The buttons at the bottom of the panel operate on the profile as defined by the remainder
of the panel.

Add

The Add button creates a new profile based on the conditions in the Profile Defi-
nition panel. If another profile with the same name already exists, the name of the
new profile is automatically adjusted to be unique by appending a numeric value to
the name.

Apply

The Apply button modifies an existing profile based on the conditions in the Pro-
file Definition panel. If the profile did not previously exist, it adds the profile.

Search Backward

Executes a backward search for the selected profile.

Profiles Panels

Search Forward

Executes a forward search for the selected profile.

Halt Search

Halts a currently active search.

Summarize
The Summarize button executes a summary action based on the current profile.

Summaries can also be executed by pressing the Summary icon on the tool bar or
selecting the Summarize option from the Summary menu.

See “ Summarizing Statistical Information” on page 13-10 for more information.

13-9

NightTrace RT User’s Guide
Summarizing Statistical Information

A variety of statistics are available for summaries of condition and state profiles.

Condition Summaries

The following statistics are provided for condition profile summaries:
* The number of matches summarized

* The minimum time gap between matches and the ordinal trace event
number (offset) where it began

* The maximum time gap between matches and the ordinal trace event
number (offset) where it began

* The average time gap between matches

State Summaries

The following statistics are generated for state profile summaries:

* The number of matches summarized

* The minimum time gap between matches and the ordinal trace event
number (offset) where it began

* The maximum time gap between matches and the ordina trace event
number (offset) where it began

* The average time gap between matches
* The sum of the time gaps between matches

* The minimum time duration of a match and the ordinal trace event number
(offset) where it began

* The maximum time duration of a match and the ordinal trace event number
(offset) where it began

* The average time duration of a match

* The sum of the time durations of matches

Summary Scripts

Summary results are printed by invoking summary scripts to display the statistical infor-
mation. By default, NightTrace provides an event summary and a state summary script
that print the statistics as described above.

13-10

Profiles Panels

User-define scripts may be used in place of the default scripts. See “Output Script” on
page 13-7 for more information on specifying user-defined scripts.

Summary Script Environment Variables

The following summary environment variables are passed to summary scripts

Table 13-1. Summary Script Environment Variables

Variable

Meaning

NT_SUM_TYPE

Contains text describing the type of summary:
“Event Summary” or “ State Summary”.

NT_SUM_NUM

The number of occurrences of the state or
event, expressed in decimal integer format.

NT_SUM_MIN_GAP

The minimum gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_MAX_GAP

The maximum gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_AVG_GAP

The average gap between occurrences of the
state or event, expressed in seconds in decimal
floating point format.

NT_SUM_TOTAL_GAP

Thetotal timefor al gaps between occurrences
of the state or event, expressed in secondsin
decimal floating point format.

NT_SUM_MIN_GAP_OFFSET

The offset at which the minimum gap between
occurrences of the state or event occurred
expressed in decimal integer format.

NT_SUM_MAX_GAP_OFFSET

The offset at which the maximum gap between
occurrences of the state or event occurred
expressed in decimal integer format.

NT_SUM_MIN_DURATION

For states, the minimum state duration
expressed in seconds in decimal floating point
format.

NT_SUM_MAX_DURATION

For states, the maximum state duration
expressed in seconds in decimal floating point
format.

NT_SUM_AVG_DURATION

For states, the average state duration expressed
in seconds in decimal floating point format.

13-11

NightTrace RT User’s Guide

Table 13-1. Summary Script Environment Variables

Variable M eaning

NT_SUM_TOTAL_DURATION For states, the total of all state durations,
expressed in seconds in decimal floating point
format.

NT_SUM_MIN_DURATION_OFFSET | For states, the offset at which the minimum
state duration occurred, expressed in decimal
integer format.

NT_SUM_MAX_DURATION_OFFSET | For states, the offset at which the maximum
state duration occurred, expressed in decimal
integer format.

Profile Status List Panel

The Profile Status List panel displays all profilesin the current NightTrace session.

Profile Status List
Type' Na me Status Count Lu1| Crl‘l'lei|
cond True 0
H imy_state False 1] 1]

Figure 13-2. Profile Status List Panel

Profile Status List Table

The profiles are displayed in atable with the following columns:

Type
This column displays a stateicon for state profiles; otherwise nothing is displayed.

Name

This column displays the profile’s name.

13-12

Profiles Panels

Status

This column indicates whether the event at or immediate previous to the current
timeline satisfies the conditions of the profile.

Count

This column displays a count of the number of instances of events that satisfy the
conditions of the profile.

Last

This column displaysthe last event offset before the current timeline which satisfied
the conditions of the profile.

Offset

This column displays the last event offset that concluded the profile's state -- thisis
only valid for states.

Context Menu

The Profile Status List panel’s context menu is shown below.

5 Mew Profile.. Ctrl+P
Delets

'& Search Backward Ctrl+B

"_"E Search Forward Ctrl+G

'& Search Backward within Timeline Interval Alt+B

"_"E Search Forward within Timeline Interval Alt+s

¥ Summarize Ctri+Z

¥ Summarize within Timeline |nterval Alt+Z

5 Move Up Ctrl+Up

G Move Down Ctrl+Down
Display Fields 3

Figure 13-3. Profile Status List Panel Context Menu

New Profile

This option raises the page which contains a Profile Definition panel, or creates
such apanel on the current page if no such panel already exists.

13-13

NightTrace RT User’s Guide

Delete

This option deletes the profile definitions currently selected in the panel.

Search Forward

This option executes a forward search for the currently selected profile.

Search Backward

This option executes a backward search for the currently selected profile.

Search Forward within Timeline Interval

This option executes aforward search for the currently selected profile; the range of
eventsto search is constrained by the current Timeline interval.

Search Backward within Timeline Interval

This option executes a backward search for the currently selected profile; the range
of eventsto search is constrained by the current Timeline interval.

Summarize

This option executes a summary action on the currently selected profile.

Summarize within Timeline Interval

This option executes a summary action on the currently selected profile; the range of
events to summary is constrained by the current Timeline interval.

Move Up

This option movesthe currently selected profiles one position towards the beginning
of thetable.

Move Down

This option moves the currently selected profiles one position towards the end of the
table.

Display Fields

This option displays a sub-menu which allows you to select which columns are visi-
ble within the table.

13-14

Profiles Panels

[Mame
[%| Status

[Count

% Last
%] Offset

13-15

NightTrace RT User’s Guide

13-16

14
Event Descriptions Panel

The Event Descriptions panel presents a table with arow for each known event ID.
The table describes the event name and description associated with each event ID.

Event Desiptions

Code & Mame | Description F;]

4519 intr_hard_detach_task format("Detaching interrupt vector %d from task %os".arg2.get_stringitask_id.arg1))

4520 intr_hard_ignored format"Interrupt (vector %d) delivery cancelled: {ignore in effect)",arg1)

4521 intr_hard_receipt format("Interrupt (vector %d) received".angl)

4522 intr_notify_courier format("Natifying courier of interrupt”)

format("Interrupt issuing protected procedure call")

4524 intr_rend format("Interrupt rendezvous with %s.%s begun,get_stringitask_id.arg1),get_string(get_. ..

4525 intr_rend_trivial format("Interrupt trivial rendezvous with %s % s complete" get_stringitask_id,arg1),get_stri. ..

4526 intr_signal_blocked format"Interrupt (signal %d) delivery blocked: pending (%d)".arg1,arg2)

4527 intr_signal_busy format("Interrupt (signal %d) delivery delayed (handler not ready): pending (%d)",arg1,arg2)

4528 intr_signal_ignored format("Interrupt (signal %d) delivery cancelled: (ignore in effect).ang1)

4529 intr_soft_attach_po formati"Attachment of signal %d to protected procedure % s (0x%x) complete” ang1,get_stri. ..

4530 intr_soft_attach_task format("Attachment of signal %d to task % s complete",arg2,get_string(task_id,arg1))

4531 intr_soft_detach_po formati"Detaching signal %d from protected procedure %s (0x%x)"arg1,get_stringipo_sub. ..

4532 intr_soft_detach_task format("Detaching signal %d from task %4 s",arg2,get_string(task_id,arg1})) @

4533

intr_soft_receipt formati"Interrupt (signal %d) received (%d)".arg1,arg2)

[Md...l [Edit...] [Delete]

Figure 14-1. Event Descriptions Panel

The table can be sorted by clicking on a column header. Subsequent clicks on a column
header cell that is already defined as the sort key (as indicated by the dark-red chevron),
causes the sort direction to reverse.

The table consists of the following columns.

Code

This column contains the event ID of interest.

Name

This column defines the textual name that will be displayed in lieu of the event ID.

Description
This column describes the format of the textual description used for the event.

Pressing the Add... or Edit buttons launchesthe Event Description dialog which allows
you to change these values.

14-1

NightTrace RT User’s Guide

| Edit Event Description »

Cude[?]

Mame [something_cool_happened]

Description

format ("A funny thing happened on the way to the forumn: % s",
get_string(things,arg3))|

oK H Cancel H Help

Figure 14-2. Event Description Dialog

The Description field allows you to use the NightTrace format () function to define a
(possibly complex) textual description of the event and its arguments.

14-2

15
Tags List Panel

The Tags List panel presents atable of all tagged events in the current NightTrace ses-

sion.
Tags List
To add tags, double-click on events in Events fab, ar double click within timeline
Tag ¥ | |n| Tag Time [:e:)l Mear O‘I‘f:eil From Current (:e::ul Notation |
tag.3 3 0002212964 138 0.000009726 Mote the overrun that cccurred here.
tag.2 2 0.002203238 137 0.000000000
tag.1 1 0000930943 14 0.001272295 What in the world does this mean?

[.Pannotate... l [Delete l [Delete Al l

Figure 15-1. Tags List Panel

Tags are a convenient mechanism of identifying an event or time of interest.
Tags appears as small yellow notes with the tag's number on the ruler of Timelines.

Tags are saved as part of NightTrace sessions, so they can be useful in quickly locating an
event of interest in subsequent execution of NightTrace on the same data set.

The notation capability allows you to add explanatory text for atag and to share it with
others by saving the session and directing another user to look for a specific tag name.

You can search for tags by name using the Profile Search dialog (see “Profiles Panels’
on page 13-1 for more information on profile searching).

Creating Tags

You can create atag using one of the following three methods:

1. Double-click on any row in an Events panel; the tag will be associated
with the time of the event whose row you double-clicked.

2. Double-click on any eventin an EventGraph inaTimeline; the tag will
be associated with the time of the event you double-clicked.

15-1

NightTrace RT User’s Guide

3. Double-click onarulerinaTimeline -- the tag will be associated with the
time associated with the location you clicked in the ruler.

Tags List Table

Clicking on arow in the Tags List table causes the current timeline to be moved to the
time associated with the tag.

The Tags List table consists of the following columns:

Tag

This column shows the name of the tag.

This column shows the tag’s integer 1D value.

Tag Time

This column shows the time of the tag.

Near Offset

This column shows the ordinal offset of the nearest event.

From Current
This column shows the time between the tag and the current timeline.
Since the current timeline is always moved to the time associated with the tag you
click inthetable, itsFrom Current value will often be zero (unless you change the

location of the current timeline with some other operation -- e.g. executing a search
or clickinginaTimeline panel).

Notation

The notation field is free-form text which you can provide.

Context Menu

The Tags List panel context menu is shown below.

15-2

TagsList Panel

Annctate...
Delete
Delete All

Display Fields »

Figure 15-2. Tags List Panel Context Menu

Annotate...
This option opens a simple dialog which lets you add or change the notation associ-

ated with the selected tag. This option is disabled if multiple tags are currently
selected.

Delete

This option deletes all currently selected tags.

Delete All

This option deletes all tags in the current session.

Display Fields

This option displays a sub-menu which allows you to select which columns are visi-
ble within the table.

x| Tag

® 1D

¥ Tag Time (s=2c)

¥ Mear Offset

¥ From Current (sec)

®| Motation

Control Buttons

The Annotate... and Delete buttons operate on the currently selected tags in the table
(the Annotate... button isdisabled if more than one tag is selected).

The Delete All button deletes all tags from the current session.

15-3

NightTrace RT User’s Guide

15-4

16
Using Expressions

Overview

NightTrace allows you to use expressionsto aid in the analysis of trace data.

NightTrace expressions are comprised of a combination of operators and operands and
can evaluate to numbers, strings, or boolean values.

See “Operators’ on page 16-1 for alist of valid operators and “Operands’ on page 16-1
for adiscussion of valid operands.

Operators

Operatorsin NightTrace expressions include:
¢ arithmetic operators: (), *, /, % (modulo), +, -, unary -
* shift operators: <<, >>
* hitwise operators: ~ (not), & (and), * (exclusive or), | (or)
* |ogical operators: ! (not), && (and), | | (or)
* relational operators. <, <=, >, >=, == (equivalence), ! = (non-equivalence)
¢ conditional operator: expr ?true value: false value

* unary cast operations for the following supported data types (where the
parentheses are required):

- (longlong)

- (long double)

- (unsigned long)

- (unsigned long long)

NightTrace operators follow the operator precedence rules of the C programming lan-
guage.

Operands

Operands include:

* “Constants’ on page 16-2

16-1

NightTrace RT User’s Guide

Constants

16-2

* “Functions’ on page 16-4
* “Profile References’ on page 16-193 (in functions only)

Operand types are largely based on the C programming language and include:
* integer
* |ong integer
¢ |ong long integer
* double-precision floating point
* |ong double-precision floating point
* character
* dtring
* boolean

¢ bitfields

Constants are one type of operand that may be used in NightTrace expressions.
Integer literals may be expressed using typical C language notation:

¢ decimad literals have no special prefix
¢ octd literals begin with a zero

* hexadecimal literals begin with a 0x
Floating point literals are aways considered to be double-precision floating point literals.
Standard C decimal floating point literals are supported and have the following syntax:
fore. aft[E |e[+ |-]exp]

fore. aft

any combination of decimal digits O through 9
Eore

can optionally precede an optional sign and exponent
+or-

optional sign

Using Expressions

adecimal number specifying the power of 10 to which fore. aft is multiplied

Alternatively, floating point literals following the C99 standard are also supported and
have the following syntax:

oxfore.aft [P | p[+ |-]exp]

0x

definesthis as a hexadecimal literal
fore. aft

any combination of hexadecimal digits 0 through 9, athrough f, or A through F.
Porp

can optionally precede an optional sign and exponent
+or-

optional sign

adecimal number specifying the power of 2 to which fore. aft is multiplied

String literals must be enclosed within double quotes; to include a double quote in a con-
stant string literal, precede the double quote with a backslash character. For example:

“possible \"meltdown\” alert”

The case-insensitive boolean constants TRUE and FALSE have the values 1 and 0,
respectively.

Table 16-1 shows units and suffixes for time constants.

Table 16-1. Time Units and Constant Suffixes

Time Unit Suffix
Seconds (Thisisthe default) s
Milliseconds (10e-3 seconds) ms
Microseconds (10e-6 seconds) us
Nanoseconds (10e-9 seconds) ns

16-3

NightTrace RT User’s Guide

Functions

Functions are pre-defined NightTrace entities that may be used in an expression. Night-
Trace defines five classes of functions:

* “String Functions’ on page 16-16

* “Trace Event Functions’ on page 16-18

* “Sate Functions’ on page 16-60

¢ “Offset Functions’ on page 16-138

* “Summary Functions’ on page 16-177

* “Format and Table Functions’ on page 16-184

The general syntax of all function calls except summary, format, and table functionsis as
follows. (Optional parts of function callsarein brackets ([]).)

function_name[([parameter])]
The prefix of the function_name determines its class as follows:
offset

Functions with this prefix provide information about the trace event at the specified
offset (or ordinal trace event number). See“Offset Functions’ on page 16-138.

start_

Functions with this prefix provide information about the start event of the most
recent instance of a state. See“Start Functions’ on page 16-60.
end

Functions with this prefix provide information about the end event of the last com-
pleted instance of a state See “End Functions’ on page 16-97.

state

Functions with this prefix provide information about instances of states. See
“Multi-State Functions’ on page 16-134.

event

Functions with this prefix provide information about instances of events. See
“Multi-Event Functions’ on page 16-58.

Some functions can be optionally suffixed by a number, N, which specifies the Nth argu-
ment logged with the trace event. N defaults to 1 and can have the values 1 through the
maximum argument logged. For example,

arg ()

Returns the first argument

16-4

argl ()

Returns the first argument
arg3 ()

Returns the third argument
start_id()

Returns atrace event ID

state _gap()

Using Expressions

Returns the time between instances of a state

Table 16-1 contains a complete list of functions sorted by general catagories. For an alpha-

betic list of all functions, refer to the Index.

Table 16-1. NightTrace Functions
Syntax Return Type
stremp (sl, S2) | Aninteger indicating lessthan, equal to, or
strncmp (Sl, $2, n) | greater than zero as sl, or thefirst n bytes
thereof, is compared to 2.
id [([PR])] | Theinteger trace event ID.

start_id [([PR])]
end_id [([PR])]
offset id (offset_expr)

arg[N] [([PR])]
start_arg[N] [([PR])]

end_arg[N] [([PR])]
offset_arg[N] (offset_expr)

The integer trace event argument.

arg[N]_db1 [([PR])]
start_arg[N] dbl [([PR])]
end_arg[N] dbl [([PR])]
offset_arg[N] dbl (offset_expr)

The double-precision floating point trace
event argument.

arg[N]_long [([PR])]
start_arg[N]_long [([PR])]

end_arg[N] long [([PR])]
offset_arg[N] long (offset_expr)

Thelong integer trace event argument.

arg[N] long dbl [([PR])]
start_arg[N] long dbl [([PR])]
end_arg[N] long dbl [([PR])]
offset_arg[N] long dbl (offset_expr)

The long doubl e-precision trace event argu-
ment.

arg[N] long long [([PR])]
start_arg[N] long long [([PR])]
end_arg[N] long long [([PR])]
offset _arg[N] long long (offset_expr)

The long long integer trace event argument.

16-5

NightTrace RT User’s Guide

Table 16-1. NightTrace Functions

Syntax

Return Type

blk arg (byte offset], PR])
start_blk arg (byte offset], PR])
end blk arg (byte offset[, PR])

offset Dblk_ arg (byte offset, offsef_expr)

The integer trace event argument at a partic-
ular byte offset in the argument space.

blk arg bits

(byte_offset, bit_offset, bit_size[, PR])
start _blk arg bits

(byte_offset, bit_offset, bit_size[, PR])

end blk arg bits

(byte_offset, bit_offset, bit_size[, PR])
offset blk arg bits

(byte offset, bit_offset, bit_size, offset_expr)

The integer trace event argument extracted
asasigned hit field with a particular byte
offset, bit offset, and bit sizein the argument
space.

blk arg char (byte offset], PR])
start _blk arg char (byte offset[, PR])

end blk _arg char (byte offset], PR])

offset blk _arg char (byte offset, offset_expr)

The signed character trace event argument
at a particular byte offset in the argument
space.

blk arg_dbl (byte offset], PR])
start_blk arg_ dbl (byte offset], PR])

end blk arg dbl (byte offset], PR])

offset blk_arg dbl (byte offset, offset_expr)

The double-precision trace event argument
at a particular byte offset in the argument
space.

blk arg_ flt (byte offset], PR])
start_blk arg flt (byte offset], PR])

end blk arg flt (byte offset], PR])

offset blk _arg flt (byte offset, offset_expr)

The single-precision trace event argument
at a particular byte offset in the argument
space.

blk arg long (byte offset], PR])

start_blk arg long (byte offset[, PR])

end blk _arg long (byte offset], PR])
offset blk _arg long (byte offset, offset_expr)

The long integer trace event argument at a
particular byte offset in the argument space.

blk arg long bits (byte offset], PR])
start_blk arg long bits (byte offset], PR])

end blk arg long bits (byte offset], PR])

offset blk arg long bits (byte offset, offset_expr)

Thelong integer trace event argument
extracted as asigned bit field with a particu-
lar byte offset, bit offset, and bit sizein the
argument space.

blk arg long dbl (byte offset[, PR])

start _blk arg long dbl (byte offset[, PR])

end blk arg long dbl (byte offset], PR])

offset blk arg long_ dbl (byte offset, offset_expr)

The long doubl e-precision trace event argu-
ment at a particular byte offset in the argu-
ment space.

blk arg long long (byte offset], PR])
start_blk arg long long (byte offset], PR])

end blk arg long_ long (byte offset], PR])

offset blk arg long long (byte offset, offset_expr)

The long long integer trace event argument
at a particular byte offset in the argument
space.

blk arg long ubits (byte offset[, PR])

start _blk arg long ubits (byte offset[, PR])

end blk arg long ubits (byte offset], PR])

offset blk arg long ubits (byte offset, offset_expr)

Thelong integer trace event argument
extracted as an unsigned bit field with a par-
ticular byte offset, bit offset, and bit sizein
the argument space.

16-6

Table 16-1. NightTrace Functions

Using Expressions

Syntax

Return Type

blk arg short (byte offset], PR])
start _blk arg short (byte offset], PR])

end blk arg short (byte offset], PR])

offset blk arg short (byte offset, offset_expr)

The short integer trace event argument at a
particular byte offset in the argument space.

blk arg_ string (byte offset, max size[, PR])
start_blk arg string (byte offset, max size[, PR])
end blk arg_ string (byte offset, max size[, PR])
offset_blk arg string

(byte offset, max_size, offset_expr)

The null-byte terminated string trace event
argument at a particular byte offset in the
argument space.

blk _arg ubits

(byte_offset, bit_offset, bit_size[, PR])
start _blk arg ubits

(byte_offset, bit_offset, bit_size[, PR])

end blk arg ubits

(byte_offset, bit_offset, bit_size[, PR])

offset blk arg ubits

(byte offset, bit_offset, bit_size, offset_expr)

The integer trace event argument extracted
as an unsigned bit field with a particular
byte offset, bit offset, and bit sizein the
argument space.

blk arg uchar (byte offset], PR])
start _blk arg uchar (byte offset], PR])
end blk arg uchar (byte offset], PR])
offset blk arg uchar (byte offset, offset_expr)

The unsigned character trace event argu-
ment at a particular byte offset in the argu-
ment space.

blk arg uint (byte offset], PR])
start _blk arg uint (byte offset[, PR])
end blk arg uint (byte offset], PR])

offset blk arg uint (byte offset], PR])

The unsigned integer trace event argument
at aparticular byte offset in the argument
space, converted to type long.

blk arg ulong long (byte offset[, PR])
start_blk arg ulong long (byte offset[, PR])
end blk arg ulong long (byte offset[, PR])
offset blk arg ulong long (byte offset], PR])

The unsigned long long integer trace event
argument at a particular byte offset in the
argument space.

blk arg ushort (byte offset], PR])
start_blk arg ushort (byte offset], PR])

end blk arg ushort (byte offset], PR])

offset blk arg ushort (byte offset, offset_expr)

The unsigned short integer trace event argu-
ment at a particular byte offset in the argu-
ment space.

num_args [([PR])]
start _num args [([PR])]

end _num_args [([PR])]
offset num_args (offset_expr)

The number of arguments associated with a
trace event.

pid [([PR])]

start_pid [([PR])]

end pid[([PR)]
offset pid (offset_expr)

Theinteger global processidentifier (PID)
associated with atrace event.

thread_id [([PRI])]
start_thread id[([PR])]
end_thread_id [([PR])]

offset thread id (offset_expr)

The integer thread identifier (thread D)
associated with atrace event.

16-7

NightTrace RT User’s Guide

Table 16-1. NightTrace Functions

Syntax

Return Type

task_id[([PRI)]
start_task_id[([PR])]
end_task_id [([PR])]
offset task_id (offset_expr)

The integer Adatask identifier associated
with atrace event.

tid [([PR])]

start_tid [([PR])]
end_tid[([PR)]
offset tid (offset_expr)

The integer NightTrace thread identifier
(TID) associated with atrace event.

cpu [([PR])]

start_cpu [([PR])]
end_cpu [([PR])]
offset cpu (offset_expr)

The integer logical CPU number associated
with atrace event. Thisfunctionisonly
valid when applied to events from Night-
Trace kernel trace event files.

time [([PR])]
start_time [([PR])]
end_time [([PR])]
offset_time (Offset_expr)

The double-precision floating point time,
expressed in units of seconds, between a
trace event and the earliest trace event from
all trace event files currently in use.

node_1d [([PRI])]
start_node id[([PR])]

end node_id [([PR])]
offset node_id (offset_expr)

The internally-assigned integer node i denti-
fier associated with atrace event.

pid _table name [([PR])]

start _pid table name [([PR])]

end pid table name [([PR])]
offset pid table name (offset_expr)

The string describing the name of the pro-
cess identifier table (PID table) associated
with atrace event.

tid table name [([PR])]
start_tid table name [([PR])]
end tid table name [([PR])]
offset tid table name (offset_expr)

The string describing the name of the inter-
nally-assigned thread identifier table (TID
table) associated with atrace event.

node_name [([PR])]
start_node name [([PR])]
end_node_ name [([PR])]

offset node name (offset_expr)

The string describing the name of the sys-
tem from which atrace event was logged.

process_namne [([PR])]
offset process name (offset_expr)

The string describing the name of the pro-
cess (PID) associated with atrace event.

task_name [([PR])]
offset task_name (offset_expr)

The string describing the name of the Ada
task associated with a trace event.

thread_name [([PR])]
offset thread name (offset_expr)

The string describing the name of the C
thread associated with atrace event.

event_gap [([PR])]
state_gap [([PR])]

The double-precision floating point time,
expressed in units of seconds, between the
instances of either atrace event or a state.

16-8

Table 16-1.

NightTrace Functions

Using Expressions

Syntax

Return Type

state dur [([PR])]

The double-precision floating point time,
expressed in units of seconds, of an instance
of adtate.

event_ matches [([PR])]
state_matches [([PR])]
summary matches [()]

The integer number of instances of either a
trace event or a state.

state_status [([PR])]

The boolean status of a state; trueif the cur-
rent time line is within an instance of the
state, false otherwise. See*“ state status()”
on page 16-137 for important details.

offset [([PR])]
start_offset [([PR])]
end offset [([PR])]

Theinteger ordinal number (offset) of a
trace event.

min offset (expr)
max_offset (expr)

The integer ordinal number (offset) of a
trace event associated with a minimum or
maximum occurrence of expr.

min (expr)
max (expr)
avg (expr)
sum (expr)

The minimum, maximum, average, or sum
of expr values before the current time. The
return typeisthat of expr.

get_string (table_name, int_expr])

The character string associated with item
int_expr in string table table_name.

get_item (table_name, “str_const”)

The first integer item number associated
with string str_const in string table
table_name.

get format (table_name, int_expr])

The character string associated with item
int_expr in format table table_name.

format (“format_string” [, arq] ...)

A character string to format and display.

Function Parameters

If the function has a parameter, the parentheses are required. Otherwise, they are optional .

For example,
argz

No parentheses are required
arg2 ()

No parentheses are required

16-9

NightTrace RT User’s Guide

16-10

arg2 (Myprof)
Parentheses are required

In many functions, the parameter is optional because it can be inferred from context. For
trace event functions, the current trace event is used if the parameter is omitted. For state
functions, the state being defined is used if the parameter is omitted. (Thus, state func-
tions without parameters can only be used inside state definitions). For example,

argl ()

Operates on the current trace event
argl (my_ cond)

Operates on the profile referencemy cond
end argl ()

Operates on the last completed instance of the state being defined and can only
appear within a state definition

end argl (my_ state)

Operates on the last completed instance of the state defined by the profile reference
my state

This manual uses the following conventions for function parameters:

PR
A user-defined profile reference. If supplied, the function applies to the specified
profile. For moreinformation, see “Profile Definition Panel” on page 13-1.

offset_expr
An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

expr
Any valid NightTrace expression (see “ Overview” on page 16-1).

table_name
An unquoted character string that represents the name of a string table or format
table.

int_expr
An integer expression that acts as an index into the specified string table or format
table. int_expr must either match an identifying integer value in the table_name
table, or the table_ name table must have adefault itemline

str_const

A string constant literal that acts as an index into the specified string table.

Using Expressions

format_string

A character string that contains literal characters and conversion specifications.
Conversion specifications modify zero or more args.

arg

An optional expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined profile references.

Function Terminology
In order to use the NightTrace functions effectively, it may be useful to understand some
of the concepts associated with them.

A trace event represents a user-defined or kernel-defined event, logged with optional data
arguments. Events are given discrete numbers to identify them; this number is called the
trace event ID. A state isdefined to be theinterval of time between two specific events.

The descriptions of the functions further speak in terms of “instances’ of states. These are
best defined as:

current instance

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

last completed instance

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

most recent instance

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it isthe last completed instance of a state.

Figure 16-1 illustrates some of these concepts with a State Graph.

16-11

NightTrace RT User’s Guide

Event Gap

State
Duration

L |
1,6308= % f 1,630 1,6310=
TR N R R I | R N T T R | I N I T T R | L1

\Current

Time
State Gap Line

Figure 16-1. Function Terminology lllustrated

A more detailed example isillustrated in Figure 16-2.

> & [~ I &
& & & & & &
= & & & &
/ I I
- A B X
|
1.6315= 1.6217s T.6318s | | L.631%

time line z
time line y
time line x

Figure 16-2. States and Events

The following discusses the terminology with respect to timeline x, timeliney, and time
linez

Assuming the current time line was positioned at time line x in Figure 16-2, the various
“instances’ would be defined as:

current instance

16-12

Using Expressions

No current instance is defined since the current time line is not positioned within

any instance of a state.

last completed instance

Instance B

most recent instance

Instance B. Since the current time line is not positioned within any instance of a
state, the most recent instance is the last completed instance.

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line x in Figure 16-2.

state status()

false

The current time line was not posi-
tioned within a current instance of a
state.

state_gap ()

~0.000020

The duration of time in seconds
between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

state dur()

~0.000090

The duration of time in seconds
between event ¢ and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state matches ()

Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time()

~1.631750

The time associated with event c. The
function operated on the most recent
instance of the state (instance B).

end_time ()

~1.631840

The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).

Assuming the current time line was positioned at time liney in Figure 16-2, the various
“instances’ would be defined as:

current instance

Instance C

16-13

NightTrace RT User’s Guide

last completed instance
Instance B

most recent instance
Instance C

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time liney in Figure 16-2.

state_status() true The current time line was positioned
inside a current instance of the state
(instance C).

state_gap () ~0.000030 The duration of time in seconds

between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur () ~0.000090 The duration of time in seconds
between event ¢ and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_matches () 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time () ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time () ~1.631840 The time associated with event d. The
function operated on the last com-
pleted instance of the state (instance
B).

Assuming the current time line was positioned at time line z in Figure 16-2, the various
“instances’ would be defined as:

current instance

No current instance is defined since the current time line is positioned on the end
event of an instance of a state.

last completed instance

Instance C

16-14

Using Expressions

most recent instance
Instance C

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line z in Figure 16-2.

state status() false The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an end event of
the state (event f), the corresponding
instance is said to have already com-
pleted.

state_gap () ~0.000030 The duration of time in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur () ~0.000040 The duration of time in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

state_matches () 3 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

start_time () ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_time () ~1.631910 The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
C).

16-15

NightTrace RT User’s Guide

String Functions

The string functions compare two strings. They include the following:

® gstremp ()

® strncmp ()

strcmp()

DESCRIPTION

The strcmp () function compares the two strings, sl and s2. It returns an integer
less than, equal to, or greater than zero if sl isfound, respectively, to be less than, to
match, or be greater than 2.

SYNTAX

stremp (1, 2);

PARAMETERS
sl

The string to be compared to s2

The string to be compared to s1

RETURN TYPE

integer

SEE ALSO

* “strncmp()” on page 16-17

16-16

Using Expressions

strncmp()

DESCRIPTION

The strncmp () functionissimilar to strcemp () inthat it compares two strings,
sl and s2, and returns an integer less than, equal to, or greater than zero if sl is
found, respectively, to be less than, to match, or be greater than s2. However,
strncmp () only comparesthefirst (at most) n bytes of sl and 2.

SYNTAX

strncmp (sl, S2) n;

PARAMETERS
sl

The string to be compared to 2

The string to be compared to s1

The maximum number of bytesin sl and s2 to be compared

RETURN TYPE

integer

SEE ALSO

* “strcmp()” on page 16-16

16-17

NightTrace RT User’s Guide

Trace Event Functions

The trace event functions operate on either the profile reference specified to that function
or the current trace event. They include the following:

* id

® arg

* arg dbl()

®* arg long()

* arg long dbl()

®* arg long long()

* blk arg()

* blk arg bits()

® blk arg char()

* blk arg dbl()

* blk _arg flt()

* blk arg long()

® blk arg long bits()
* blk arg long dbl ()
* blk arg long long()
® blk arg long ubits()
* blk _arg short()

®* blk arg string()

®* blk arg ubits()

* blk _arg uchar()

® blk arg uint()

* blk arg ulong long()
* blk_arg ushort ()

* num args()

* pid()

* cpu()

® thread id()

* task id()

e tid()

16-18

offset ()

time ()

node_id()

pid table name()
tid table name ()
node_ name ()
process_name ()
task name ()
thread name ()

Multi-event functions

Using Expressions

16-19

NightTrace RT User’s Guide

id()

16-20

DESCRIPTION

The id () function returns the trace event ID of the last instance of atrace event.

SYNTAX

id [([PR]]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the trace event 1D

of the last instance of the trace event which satisfies the conditions of the specified

specified profile. 1f omitted, the function returns the trace event ID of the current

trace event. For more information, see “Profile References’ on page 16-193.
RETURN TYPE

integer

SEE ALSO
e “start_id()” on page 16-62
e “end id()” on page 16-99
* “offset_id()” on page 16-140

arg()

Using Expressions

DESCRIPTION

The arg () function returnsthe value of a particular trace event argument.

SYNTAX

arg[N] [([PR])]

PARAMETERS

N

PR

Specifies the Nth argument logged with the trace event. Defaultsto 1.

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “ Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO

“arg_long()" on page 16-23
“arg_dbl()" on page 16-22
“arg_long_long()” on page 16-25
“arg_long_dbl()" on page 16-24
“num_args()” on page 16-43
“start_arg()” on page 16-63
“end_arg()” on page 16-100
“offset_arg()” on page 16-141

16-21

NightTrace RT User’s Guide

arg_dbl()

16-22

DESCRIPTION

Thearg_dbl () function returns the value of a particular trace event argument.

SYNTAX

arg[N]_db1 [([PR])]

PARAMETERS

N

PR

Specifies the Nth argument logged with the trace event. Defaultsto 1.

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

double-precision floating point

SEE ALSO

“arg()” on page 16-21
“arg_long()” on page 16-23
“num_args()” on page 16-43
“start_arg_dbl()” on page 16-64
“end_arg_dbl()” on page 16-101
“offset_arg_dbl()” on page 16-142

arg_long()

Using Expressions

DESCRIPTION

Thearg long () function returns the value of aparticular trace event argument.

SYNTAX

arg[N]_long [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “ Profile References’ on page 16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg()” on page 16-21
* “num_args()” on page 16-43
e “start arg long()” on page 16-65
* “end arg long()” on page 16-102
e “offset_arg_long()” on page 16-143

16-23

NightTrace RT User’s Guide

arg_long_dbl()

16-24

DESCRIPTION

Thearg long dbl () function returns the value of a particular trace event argu-
ment.

SYNTAX

arg[N] _long_dbl [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

long double-precision floating point

SEE ALSO
* “arg()” on page 16-21
* “num_args()” on page 16-43
e “start arg long_dbl()” on page 16-66
e “end arg long dbl()” on page 16-103
* “offset_arg_long_dbl()” on page 16-144

arg_long_long()

Using Expressions

DESCRIPTION

The arg_long_ long () function returns the value of a particular trace event
argument.

SYNTAX

arg[N]_long_long [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “ Profile References’ on page 16-193.

RETURN TYPE

long long integer

SEE ALSO
* “arg()” on page 16-21
* “num_args()” on page 16-43
e “start arg long_long()” on page 16-67
¢ “end arg long long()" on page 16-104
e “offset_arg_long_long()” on page 16-145

16-25

NightTrace RT User’s Guide

blk_arg()

16-26

DESCRIPTION

Theblk arg() function returnsthe value of atrace event argument located at a
particular byte offset in the argument space associated with an event.

SYNTAX

blk arg (byte offset], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg()” on page 16-68
* “end_blk_arg()” on page 16-105
o “offset_blk_arg()” on page 16-146

blk_arg_bits()

Using Expressions

DESCRIPTION

Theblk arg bits () function returns the value of a trace event signed bit field
argument located at a particular byte and bit offset with a particular bit size in the
argument space associated with an event.

SYNTAX

blk_arg bits (byte offset, bit_offset, bit sizel, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
bit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg bits()” on page 16-69
* “end_blk_arg hits()” on page 16-106
e “offset_blk_arg_bits()” on page 16-147

16-27

NightTrace RT User’s Guide

blk_arg_char()

16-28

DESCRIPTION

Theblk_arg char () functionreturnsthe value of a trace event signed character
argument located at a particular byte offset in the argument space associated with an
event.

SYNTAX

blk arg char (byte offset], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg char()” on page 16-70
* “end blk_arg char()” on page 16-107
e “offset_blk _arg_char()” on page 16-148

blk_arg_dbl()

Using Expressions

DESCRIPTION

Theblk arg dbl () function returnsthe value of a trace event double-precision
floating point argument located at a particular byte offset in the argument space
associated with an event.

SYNTAX

blk arg dbl (byte offse, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “start blk_arg dbl()” on page 16-71
* “end blk_arg dbl()” on page 16-108
e “offset_blk_arg_dbl()” on page 16-149

16-29

NightTrace RT User’s Guide

blk_arg_flt()

16-30

DESCRIPTION

Theblk arg f1t () function returnsthe value of atrace event single-precision
floating point argument located at a particular byte offset in the argument space
associated with an event.

SYNTAX

blk arg flt (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg flt()” on page 16-72
* “end blk _arg flt()” on page 16-109
e “offset_blk_arg_flt()” on page 16-150

blk_arg_long()

Using Expressions

DESCRIPTION

Theblk arg long () function returnsthe value of atrace event long integer
argument located at a particular byte offset in the argument space associated with an
event.

SYNTAX

blk arg long (byte offset], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
e “sart blk arg long()” on page 16-73
* “end_blk_arg long()” on page 16-110
* “offset_blk_arg_long()” on page 16-151

16-31

NightTrace RT User’s Guide

blk_arg_long_bits()

DESCRIPTION

Theblk_arg long bits () function returns the value of atrace event signed
long bit field argument located at a particular byte and bit offset with a particular bit
sizein the argument space associated with an event.

SYNTAX

blk arg long bits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “Profile References’ on page 16-193.
RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg long bits()” on page 16-74
* “end_blk_arg long_hits()” on page 16-111
e “offset_blk_arg_long_bits()” on page 16-152

16-32

Using Expressions

blk_arg_long_dbl()

DESCRIPTION
Theblk arg long dbl () function returns the value of atrace event long dou-

ble-precision floating point argument located at a particular byte offset in the argu-
ment space associated with an event.

SYNTAX

blk arg long dbl (byte offse[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

long double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “start blk_arg long_dbl()” on page 16-75
* “end blk_arg long_dbl()” on page 16-112
e “offset blk _arg_long_dbl()” on page 16-153

16-33

NightTrace RT User’s Guide

blk_arg_long_long()

DESCRIPTION
Theblk arg long long () function returnsthe value of atrace event longlong

integer argument located at a particular byte offset in the argument space associated
with an event.

SYNTAX

blk arg long long (byte offsel], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “Profile References’ on page 16-193.
RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
e “sart blk arg long long()” on page 16-76
* “end blk_arg long_long()” on page 16-113
* “offset_blk_arg_long_long()" on page 16-154

16-34

Using Expressions

blk_arg_long_ubits()

DESCRIPTION

Theblk _arg long ubits () function returns the value of a trace event
unsigned long integer bit field argument located at a particular byte and bit offset
with a particular bit size in the argument space associated with an event.

SYNTAX

blk arg long ubits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg long ubits()” on page 16-77
* “end_blk_arg long_ubits()” on page 16-114
e “offset_blk_arg_long_ubits()” on page 16-155

16-35

NightTrace RT User’s Guide

blk_arg_short()

16-36

DESCRIPTION

Theblk arg short () function returns the value of atrace event short integer
argument located at a particular byte offset in the argument space associated with an
event.

SYNTAX

blk arg short (byte offsef[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg short()” on page 16-78
* “end blk_arg short()” on page 16-115
e “offset_blk_arg_short()” on page 16-156

blk_arg_string()

Using Expressions

DESCRIPTION

Theblk _arg string() function returns the value of atrace event null termi-
nated string argument located at a particular byte offset in the argument space asso-
ciated with an event.

SYNTAX

blk arg string (byte offset, max_size, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. |If the arguments
were recorded with trace_event_blk, thisis aso the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “Profile References’ on page 16-193.
RETURN TYPE

string

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg string()” on page 16-79
* “end_blk_arg_string()” on page 16-116
e “offset_blk_arg_string()” on page 16-157

16-37

NightTrace RT User’s Guide

blk_arg_ubits()

16-38

DESCRIPTION
Theblk_arg ubits () function returns the value of atrace event unsigned bit

field argument located at a particular byte and bit offset with a particular bit sizein
the argument space associated with an event.

SYNTAX

blk arg ubits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg ubits()” on page 16-80
* “end blk_arg ubits()” on page 16-117
e “offset_blk_arg_ubits()” on page 16-158

blk_arg_uchar()

Using Expressions

DESCRIPTION

Theblk_arg uchar () function returnsthe value of atrace event unsigned char-
acter argument located at a particular byte offset in the argument space associated
with an event.

SYNTAX

blk arg uchar (byte offsef[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg uchar()” on page 16-81
* “end blk_arg uchar()” on page 16-118
e “offset_blk _arg_uchar()” on page 16-159

16-39

NightTrace RT User’s Guide

blk_arg_uint()

DESCRIPTION

Theblk_arg uint () function converts the unsigned integer trace event argu-
ment at a particular byte offset in the argument space to along.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) blk arg uint (0) > 0x80000000

SYNTAX

blk arg uint (byte offset], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “Profile References’ on page 16-193.
RETURN TYPE

long

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg uint()” on page 16-82
* “end_blk_arg uint()” on page 16-119
e “offset_blk_arg_uint()” on page 16-160

16-40

Using Expressions

blk_arg_ulong_long()

DESCRIPTION
Theblk _arg ulong long () function returns the value of atrace event

unsigned long long integer argument located at a particular byte offset in the argu-
ment space associated with an event.

SYNTAX

blk arg ulong long (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-

ment for the last instance of the trace event which satisfies the conditions for the

specified profile. If omitted, the function returns the specified argument for the cur-

rent trace event. For more information, see “ Profile References’ on page 16-193.
RETURN TYPE

unsigned long long integer

SEE ALSO

* “num_args()” on page 16-43

e “sart blk arg ulong_long()” on page 16-83

* “end_blk_arg ulong_long()” on page 16-120

e “offset_blk_arg_ulong_long()” on page 16-161

16-41

NightTrace RT User’s Guide

blk_arg_ushort()

16-42

DESCRIPTION

Theblk_arg ushort () function returns the value of a trace event unsigned
short integer argument located at a particular byte offset in the argument space asso-
ciated with an event.

SYNTAX

blk arg ushort (byte offsel], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, the function returns the specified argu-
ment for the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the specified argument for the cur-
rent trace event. For more information, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start blk arg ushort()” on page 16-84
* “end blk_arg ushort()” on page 16-121
e “offset_blk _arg_ushort()” on page 16-162

Using Expressions

num_args()

DESCRIPTION
Thenum_args () function returns the number of arguments logged with atrace

event. For events recorded with trace event blk (), it returns the number of
bytes recorded in the argument space.

SYNTAX

num_args [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the number of
arguments of the last instance of the trace event which satisfies the conditions for
the specified profile. If omitted, the function returns the number of arguments of the
current trace event. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “arg()” on page 16-21
e “start num_args()” on page 16-85
* “end_num_args()” on page 16-122
* “offset_num_args()” on page 16-163

16-43

NightTrace RT User’s Guide

pid()

DESCRIPTION

Thepid () function returns the global processidentifier (PID) associated with a
trace event.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the processidentifier
isthe actually thethread’s TID (seegettid (2)).

SYNTAX

pid [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the global process
identifier of the last instance of the trace event which satisfies the conditions for the
specified profile. 1f omitted, the function returns the global process identifier of the
current trace event. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
e “start pid()” on page 16-86
¢ “end pid()" on page 16-123
* “offset_pid()” on page 16-164

16-44

thread_id()

Using Expressions

DESCRIPTION

The thread id () function returnsthe thread identifier associated with a trace
event. Thethread identifier isthe value of the system call gettid (2).

SYNTAX

thread_id [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the thread identi-
fier of the last instance of the trace event which satisfies the conditions for the spec-
ified profile. If omitted, the function returns the thread identifier of the current trace
event. For moreinformation, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
e “start thread id()” on page 16-87
* “end_thread id()" on page 16-124
* “offset_thread id()” on page 16-165

16-45

NightTrace RT User’s Guide

task_id()

DESCRIPTION

Thetask_id () function returns the Ada task identifier associated with atrace
event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

task_id [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the Ada task iden-
tifier of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the Ada task identifier of the cur-
rent trace event. For more information, see “Profile References” on page
16-193Profile References.

RETURN TYPE

integer

SEE ALSO
e “start task_id()” on page 16-88
e “end task_id()" on page 16-125
e “offset_task_id()" on page 16-166

16-46

tid()

Using Expressions

DESCRIPTION

The tid () function returns the internally-assigned NightTrace thread identifier
(TID) associated with atrace event.

SYNTAX

tid [([PR)]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the NightTrace
thread identifier of the last instance of the trace event which satisfies the conditions
for the specified profile. If omitted, the function returns the NightTrace thread iden-
tifier of the current trace event. For more information, see “ Profile References’ on
page 16-193.

RETURN TYPE

integer

SEE ALSO
* “start tid()” on page 16-89
e “end tid()” on page 16-126
* “offset_tid()” on page 16-167

16-47

NightTrace RT User’s Guide

cpu()

16-48

DESCRIPTION

The cpu () function returns the logical CPU number associated with a trace event.
CPUs are logically numbered starting at 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating system distributions. See “Kernel Dependencies’ on
page B-1 for more information.

SYNTAX

cpu [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the logical CPU
number of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the logical CPU number of the
current trace event. For more information, see “ Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
e “start_cpu()” on page 16-90
¢ “end cpu()” on page 16-127
* “offset_cpu()” on page 16-168

Using Expressions

offset()

DESCRIPTION

Theoffset () function returnsthe ordinal number (offset) of atrace event.

SYNTAX

offset [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, the function returns the ordinal number
(offset) of the last instance of the trace event which satisfies the conditions for the
specified profile. 1f omitted, the function returns the ordinal number (offset) of the
current trace event. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
e “start offset()” on page 16-91
¢ “end offset()” on page 16-128
* “min_offset()” on page 16-181
* “max_offset()” on page 16-182

16-49

NightTrace RT User’s Guide

time()

16-50

DESCRIPTION

The time () function returns the time, in seconds, associated with atrace event.
Times are relative to the earliest trace event from all trace datafiles currently in use.

SYNTAX

time [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the time, in sec-
onds, of the last instance of the trace event which satisfies the conditions for the
specified profile. If omitted, the function returns the time, in seconds, of the current
trace event. For more information, see “ Profile References’ on page 16-193.

RETURN TYPE

double-precision floating point

SEE ALSO

* “event_gap()” on page 16-58
e “start time()” on page 16-92
* “end_time()” on page 16-129
* “state gap()” on page 16-134
e “state dur()” on page 16-135
* “offset_time()” on page 16-169

Using Expressions

node_id()

DESCRIPTION

Thenode_1id () function returns the internally-assigned node identifier associated
with atrace event.

NOTE

Thenode 1id () function isof limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. The node_name () function is more useful, as it
returns the name of the system from which atrace event was
logged. (See“node_name()” on page 16-54 for more information
about this function.)

SYNTAX

node_1id [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, the function returns the node identifier
of the last instance of the trace event which satisfies the conditions for the specified

profile. If omitted, the function returns the node identifier of the current trace event.
For more information, see “Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO
* “start node id()” on page 16-93
e “offset_node id()” on page 16-170
* “end_node id()” on page 16-130

16-51

NightTrace RT User’s Guide

pid_table_name()

16-52

DESCRIPTION

Thepid table name () function returnsthe name of the internally-assigned
NightTrace process identifier table (PID table) associated with atrace event.

SYNTAX

pid table name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the name of the
process identifier table (PID table) of the last instance of the trace event which satis-
fies the conditions for the specified profile. 1f omitted, the function returns the name
of the process identifier table (PID table) of the current trace event. For more infor-
mation, see “Profile References’ on page 16-193.

RETURN TYPE

string

SEE ALSO
e “start pid table name()” on page 16-94
¢ “offset_pid_table name()” on page 16-171

* “end pid table name()” on page 16-131

tid_table_name()

Using Expressions

DESCRIPTION

The tid _table name () function returnsthe name of the internally-assigned
NightTrace thread identifier table (TID table) associated with atrace event.

SYNTAX

tid table name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the name of the
thread identifier table (TID table) of the last instance of the trace event which satis-
fies the conditions for the specified profile. 1f omitted, the function returns the name
of the thread identifier table (TID table) of the current trace event. For more infor-
mation, see “Profile References’ on page 16-193.

RETURN TYPE

string

SEE ALSO
e “start tid_table name()” on page 16-95
e “offset_tid table name()” on page 16-172
* “end_tid table name()” on page 16-132

16-53

NightTrace RT User’s Guide

node_name()

DESCRIPTION

The node_name () function returns the name of the system from which a trace
event was logged.

SYNTAX

node_name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the name of system
from which the last instance of the trace event which satisfies the conditions for the
specified profile was logged. If omitted, the function returns the name of the system
from which the current trace event was logged. For more information, see “Profile
References’ on page 16-193.

RETURN TYPE

string

SEE ALSO

* “start node name()” on page 16-96
¢ “offset_node name()” on page 16-173
* “end_node name()” on page 16-133

16-54

process_name()

Using Expressions

DESCRIPTION

Theprocess name () function returns the name of the process associated with a
trace event.

SYNTAX

process_name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the name associ-
ated with the PID of the last instance of the trace event which satisfies the condi-
tions for the specified profile. If omitted, the function returns the name associated
with the PID of the current trace event. For more information, see “Profile Refer-
ences’ on page 16-193.

RETURN TYPE

string

SEE ALSO

* “offset_process name()” on page 16-174

16-55

NightTrace RT User’s Guide

task_name()

16-56

DESCRIPTION

The task_name () function returns the name of the task associated with a trace
event.

NOTE

This function is only meaningful for trace events which were
logged from Adatasking programs.

SYNTAX

task_name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the name of the
task associated with the last instance of the trace event which satisfies the conditions
for the specified profile. If omitted, the function returns the name of the task associ-
ated with the current trace event. For more information, see “Profile References’
on page 16-193.

RETURN TYPE

string

SEE ALSO

e “offset_task_name()” on page 16-175

Using Expressions

thread_name()

DESCRIPTION

The thread_name () function returns the thread name associated with a trace
event.

Thread names are only available when user trace data is |oaded and then only for
threads registered with the NightTrace Logging API.

See “Threads and Logging” on page 2-29 for a discussion of the threads and the
NightTrace Logging API.

SYNTAX

thread name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function returns the thread name
associated with the last instance of the trace event which satisfies the conditions for
the specified profile. If omitted, the function returns the thread name associated
with the current trace event. For more information, see “Profile References’ on
page 16-193.

RETURN TYPE

string

SEE ALSO

e “offset_thread name()” on page 16-176

16-57

NightTrace RT User’s Guide

Multi-Event Functions

Multi-event functions return information about one or more instances of an event:
* event gap()

®* event matches|()
event_gap()

DESCRIPTION

The event _gap () function returns the time, in seconds, between the most recent
occurrence of a specific event and itsimmediately preceding occurrence.

SYNTAX

event gap [([PRD)]

PARAMETERS
PR

A user-defined profile reference. If supplied, the function cal cul ates the gap between
the two most recent occurrences of events which satisfy the conditions of the speci-
fied profile. If omitted, the function calculates the gap between the current trace
event and the event immediately preceding it. For more information, see “Profile
References’ on page 16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “time()” on page 16-50
e “state gap()” on page 16-134
e “state dur()” on page 16-135

16-58

Using Expressions

event_matches()

DESCRIPTION

The event_matches () function returns the number of occurrences of atrace
event on or before the current time line.

SYNTAX

event matches [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, the function cal culates the number of
occurrences of events which satisfy the conditions of the specified profile on or
before the current time line. If omitted, the function cal culates the number of occur-

rences of all events on or before the current time line. For more information, see
“Profile References’ on page 16-193.

RETURN TYPE

integer

SEE ALSO

* “summary_matches()” on page 16-183

16-59

NightTrace RT User’s Guide

State Functions

Start Functions

16-60

Inits simplest form, a state is aregion of time bounded by two trace events. A state defi-
nition requires the specification of two trace events, a start event and an end event, respec-
tively. Additional conditions may be specified in a state definition to further constrain the
state. The state functions include the following:

* “Sart Functions” on page 16-60
¢ “End Functions’ on page 16-97
* “Multi-State Functions’ on page 16-134

NOTE

Currently, NightTrace does not supported nesting of states. Thus,
once the conditions which satisfy a start event are met, no other
instances of that state can begin until the end condition has been
met.

The start functions provide information about the start event of the most recent instance of
a state. The state to which the start function appliesis either the profile reference specified
to the function, or the state being currently defined. Thus, if a profile is not specified, start
functions are only meaningful when used in expressions associated within a state defini-
tion. In addition, start functions should not be used in arecursive manner in a Start
Expression; astart function should not be specified in aStart Expression that applies
to the state definition containing that Start Expression. Conversely, an End Expres-
sion may include start functions that apply to the state definition containing that End
Expression.

NOTE

Start functions provide information about the most recent instance
of a state, whereas end functions (see “End Functions’ on page
16-97) provide information about the last completed instance of a
State.

Start functions include the following:
® start _id()
® start_arg()
* start _arg dbl()
* start arg long()

® start _arg long()

start _arg long dbl ()
start _arg long long()
start _blk arg()
start blk arg bits()
start blk arg char()
start _blk arg dbl()
start _blk arg flt()
start blk arg long()
start blk arg long bits()
start _blk arg long dbl ()
start blk arg long long()
start blk arg long ubits()
start blk arg short()
start blk arg string()
start blk arg ubits()
start blk arg uchar()
start blk arg uint ()
start blk arg ulong long()
start blk arg ushort ()
start num args ()
start_pid()

start thread id()

start task id()
start_tid()

start_cpu()

start offset ()

start_ time ()

start node 1id()

start pid table name()
start _tid table name()

start node name ()

Using Expressions

16-61

NightTrace RT User’s Guide

start_id()

DESCRIPTION

The start_id () function returnsthe trace event ID of the start event of the most
recent instance of a state.

SYNTAX

start_id [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “id()” on page 16-20
* “end_ id()” on page 16-99
¢ “offset_id()” on page 16-140

16-62

start_arg()

Using Expressions

DESCRIPTION

The start_arg () function returns the value of a particular trace event argument
associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the start event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “arg()” on page 16-21
e “start arg dbl()” on page 16-64
e “start num_args()” on page 16-85
* “end arg()” on page 16-100
* “offset_arg()” on page 16-141

16-63

NightTrace RT User’s Guide

start_arg_dbl()

16-64

DESCRIPTION

The start_arg dbl () function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] dbl [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the start event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg dbl()" on page 16-22
e “start arg()” on page 16-63
e “start num_args()” on page 16-85
* “end_arg dbl()” on page 16-101
e “offset_arg_dbl()” on page 16-142

start_arg_long()

Using Expressions

DESCRIPTION

The start_arg long() function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] long [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the start event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg dbl()" on page 16-22
e “start arg()” on page 16-63
e “start num_args()” on page 16-85
* “end_arg dbl()” on page 16-101
* “offset_arg long()” on page 16-143

16-65

NightTrace RT User’s Guide

start_arg_long_dbl()

16-66

DESCRIPTION

The start_arg long dbl () function returns the value of a particular trace
event argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] long dbl [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

long double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
* “arg_long_dbl()" on page 16-24
* “end_arg long_dbl()” on page 16-103
* “offset_arg_long_dbl()” on page 16-144

start_arg_long_long()

Using Expressions

DESCRIPTION

The start_arg long long () function returns the value of a particular trace
event argument associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] long long[([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaults to 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long long integer

SEE ALSO
* “arg long_long()” on page 16-25
* “num_args()” on page 16-43
* “end_arg long_long()” on page 16-104
e “offset_arg_long_long()” on page 16-145

16-67

NightTrace RT User’s Guide

start_blk_arg()

16-68

DESCRIPTION

The start_blk arg() function returns the value of atrace event argument
located at a particular byte offset in the argument space associated with the event
associated with the start event of the most recent instance of a state.

SYNTAX

start blk_ arg (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg()" on page 16-26
* “end_blk_arg()” on page 16-105
* “offset_blk_arg()” on page 16-146

start_blk_arg_bits()

Using Expressions

DESCRIPTION

The start_blk arg bits () function returnsthe value of a trace event signed
bit field argument located at a particular byte and bit offset with a particular bit size
in the argument space associated with the event associated with the start event of the
most recent instance of a state.

SYNTAX

start blk arg bits (byte offset, bit offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg hits()” on page 16-27
¢ “end blk arg bits()” on page 16-106
e “offset_blk_arg_bits()” on page 16-147

16-69

NightTrace RT User’s Guide

start_blk_arg_char()

16-70

DESCRIPTION

The start_blk arg char () function returnsthe value of a trace event signed
character argument located at a particular byte offset in the argument space associ-
ated with the event associated with the start event of the most recent instance of a
State.

SYNTAX

start blk arg char (byte offset[, PR])

PARAMETERS

byte offset

PR

Specifies the byte offset of the argument recorded with trace _event_blk.

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO

“num_args()” on page 16-43

“blk_arg _char()” on page 16-28
“end_blk_arg_char()” on page 16-107
“offset_blk_arg_char()” on page 16-148

start_blk_arg_dbl()

Using Expressions

DESCRIPTION

The start_blk arg dbl () function returns the value of a trace event dou-
ble-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the start event of the most
recent instance of a state.

SYNTAX

start blk arg dbl (byte offset], PR])

PARAMETERS

byte offset

PR

Specifies the byte offset of the argument recorded with trace _event_blk.

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO

“num_args()” on page 16-43

“blk_arg _dbl()” on page 16-29
“end_blk_arg dbl()” on page 16-108
“offset_blk_arg_dbl()” on page 16-149

16-71

NightTrace RT User’s Guide

start_blk_arg_flt()

16-72

DESCRIPTION

The start_blk arg f£1t () function returns the value of atrace event sin-
gle-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the start event of the most
recent instance of a state.

SYNTAX

start blk arg flt (byte offset], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg flt()" on page 16-30
* “end blk _arg flt()” on page 16-109
e “offset_blk_arg_flt()" on page 16-150

start_blk_arg_long()

Using Expressions

DESCRIPTION

The start_blk_arg long() function returns the value of atrace event long
integer argument located at a particular byte offset in the argument space associated
with the event associated with the start event of the most recent instance of a state.

SYNTAX

start_blk arg long (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
¢ “blk_arg long()” on page 16-31
* “end_blk_arg long()” on page 16-110
e “offset_blk_arg_long()” on page 16-151

16-73

NightTrace RT User’s Guide

start_blk_arg_long_bits()

16-74

DESCRIPTION

The start_blk arg long bits () function returns the value of atrace event
signed long bit field argument located at a particular byte and bit offset with a partic-
ular bit size in the argument space associated with the event associated with the start
event of the most recent instance of a state.

SYNTAX

start blk arg long bits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifies the size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long_bits()” on page 16-32
* “end_blk_arg_long_bits()” on page 16-111
e “offset_blk_arg_long_bits()” on page 16-152

start_blk_arg_long_dbl()

Using Expressions

DESCRIPTION

The start _blk arg long_ dbl () function returns the value of atrace event
long double-precision floating point argument located at a particular byte offset in
the argument space associated with the event associated with the start event of the
most recent instance of a state.

SYNTAX

start blk arg long dbl (byte offset[, PR])

PARAMETERS

byte offset

PR

Specifies the byte offset of the argument recorded with trace_event_blk.

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long double-precision floating point

SEE ALSO

“num_args()” on page 16-43
“blk_arg_long_dbl()" on page 16-33
“end_blk_arg long_dbl()” on page 16-112
“offset_blk_arg_long_dbl()” on page 16-153

16-75

NightTrace RT User’s Guide

start_blk_arg_long_long()

DESCRIPTION
The start_blk arg long long () function returns the value of atrace event
long long integer argument located at a particular byte offset in the argument space

associated with the event associated with the start event of the most recent instance
of a state.

SYNTAX

start blk arg long long (byte offse[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg long_long()” on page 16-34
* “end blk_arg long_long()” on page 16-113
e “offset_blk_arg_long_long()” on page 16-154

16-76

Using Expressions

start_blk_arg_long_ubits()

DESCRIPTION

The start_blk arg long ubits () function returnsthe value of a trace
event unsigned long integer bit field argument located at a particular byte and bit
offset with a particular bit sizein the argument space associated with the event asso-
ciated with the start event of the most recent instance of a state.

SYNTAX

start blk arg long ubits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long_ubits()” on page 16-35
¢ “end blk arg long ubits()” on page 16-114
e “offset_blk_arg_long_ubits()” on page 16-155

16-77

NightTrace RT User’s Guide

start_blk_arg_short()

16-78

DESCRIPTION

The start_blk arg short () function returns the value of atrace event short
integer argument located at a particular byte offset in the argument space associated
with the event associated with the start event of the most recent instance of a state.

SYNTAX

start blk arg short (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg short()” on page 16-36
* “end blk_arg short()” on page 16-115
* “offset_blk_arg_short()” on page 16-156

start_blk_arg_string()

Using Expressions

DESCRIPTION

Thestart blk _arg string() function returnsthe value of atrace event null
terminated string argument located at a particular byte offset in the argument space
associated with the event associated with the start event of the most recent instance
of a state.

SYNTAX

start blk arg string (byte offset, max_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, thisis also the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

string

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg string()” on page 16-37
* “end blk_arg string()” on page 16-116
* “offset_blk_arg_string()” on page 16-157

16-79

NightTrace RT User’s Guide

start_blk_arg_ubits()

16-80

DESCRIPTION

The start_blk _arg ubits () function returns the value of atrace event
unsigned bit field argument located at a particular byte and bit offset with a particu-
lar bit size in the argument space associated with the event associated with the start
event of the most recent instance of a state.

SYNTAX

start blk arg ubits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifies the size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg_ubits()” on page 16-38
e “end blk arg ubits()” on page 16-117
e “offset_blk_arg_ubits()” on page 16-158

start_blk_arg_uchar()

Using Expressions

DESCRIPTION

The start_blk_arg uchar () function returns the value of a trace event
unsigned character argument located at a particular byte offset in the argument space
associated with the event associated with the start event of the most recent instance
of a state.

SYNTAX

start blk _arg uchar (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg uchar()” on page 16-39
* “end blk_arg uchar()” on page 16-118
e “offset_blk_arg_uchar()” on page 16-159

16-81

NightTrace RT User’s Guide

start_blk_arg_uint()

DESCRIPTION

Thestart _blk arg uint () function convertsthe unsigned integer trace event
argument at a particular byte offset in the argument space associated with the start
event of the most recent instance of a state to along.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) start blk arg uint (0) > 0x80000000

SYNTAX

start blk arg uint (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

unsigned integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg uint()” on page 16-40
* “end_blk_arg uint()” on page 16-119
e “offset_blk_arg_uint()” on page 16-160

16-82

Using Expressions

start_blk_arg_ulong_long()

DESCRIPTION
The start_blk arg ulong long () function returnsthe value of atrace
event unsigned long long integer argument located at a particular byte offset in the

argument space associated with the event associated with the start event of the most
recent instance of a state.

SYNTAX

start blk arg ulong_ long (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

unsigned long long integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg ulong_long()” on page 16-41
* “end_blk_arg ulong_long()” on page 16-120
e “offset_blk_arg_ulong_long()” on page 16-161

16-83

NightTrace RT User’s Guide

start_blk_arg_ushort()

DESCRIPTION

The start_blk_arg ushort () function returns the value of atrace event
unsigned short integer argument located at a particular byte offset in the argument
space associated with the event associated with the start event of the most recent
instance of a state.

SYNTAX

start blk arg ushort (byte offsa[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg ushort()” on page 16-42
* “end blk_arg ushort()” on page 16-121
e “offset_blk_arg_ushort()” on page 16-162

16-84

Using Expressions

start_num_args()

DESCRIPTION

The start_num_args () function returns the number of arguments associated
with the start event of the most recent instance of a state. For events recorded with
trace_event blk (), it returns the number of bytes recorded in the argument
space.

SYNTAX

start num args [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
e “start arg()” on page 16-63
* “num_args()” on page 16-43
* “end_num_args()” on page 16-122
e “offset_num_args()” on page 16-163

16-85

NightTrace RT User’s Guide

start_pid()

16-86

DESCRIPTION

The start_pid () function returns the PID associated with the start event of the
most recent instance of a state.

NOTE

All Linux threads within the same program share the same PID
value. For trace events generated with the NightTrace Logging
API, the value logged as the process identifier is the common
PID. For kernel events, the value logged for the processidentifier
isthe actually thethread's TID (seegettid (2)).

SYNTAX

start pid [([PRI)]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 16-44
* “end_pid()” on page 16-123
e “offset pid()” on page 16-164

start_thread_id()

Using Expressions

DESCRIPTION

The start_thread_id () function returns the thread identifier associated with
the start event of the most recent instance of a state. The thread identifier is the
value of the system call gettid (2).

SYNTAX

start thread id[([PR))]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “thread_id()" on page 16-45
* “end_thread id()” on page 16-124
e “offset_thread id()” on page 16-165

16-87

NightTrace RT User’s Guide

start_task_id()

DESCRIPTION

The start_task_id () function returns the Ada task identifier associated with
the start event of the most recent instance of a state.

NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

start task 1d[([PR)]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “task id()” on page 16-46
* “end_task_id()" on page 16-125
e “offset_task _id()" on page 16-166

16-88

start_tid()

Using Expressions

DESCRIPTION

The start_tid () function returns the internally-assigned NightTrace thread
identifier (TID) associated with the start event of the most recent instance of a state.

SYNTAX

start tid[([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “tid()” on page 16-47
* “end tid()” on page 16-126
e “offset_tid()” on page 16-167

16-89

NightTrace RT User’s Guide

start_cpu()

16-90

DESCRIPTION
Thestart cpu () function returns the logical CPU number associated with the

start event of the most recent instance of a state. CPUs are logically numbered start-
ing a 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating systems. See “Kernel Dependencies’ on page B-1
for more information.

SYNTAX

start_cpu [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “cpu()’ on page 16-48
* “end_cpu()” on page 16-127
e “offset_cpu()” on page 16-168

start_offset()

Using Expressions

DESCRIPTION

The start_offset () function returns the ordinal number (offset) of the start
event of the most recent instance of a state.

SYNTAX

start offset [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO

* “offset()” on page 16-49
* “end_offset()” on page 16-128

16-91

NightTrace RT User’s Guide

start_time()

16-92

DESCRIPTION

Thestart_time () function returnsthetime, in seconds, associated with the start
event of the most recent instance of a state. Times are relative to the earliest trace
event from all trace datafiles currently in use.

SYNTAX

start_time [([PR])]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. 1f omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 16-50
“end_time()” on page 16-129
“state_gap()” on page 16-134
“state dur()” on page 16-135
“offset_time()” on page 16-169

start_node_id()

Using Expressions

DESCRIPTION

The start_node_id () function returns the internally-assigned node identifier
associated with the start event of the most recent instance of a state.

SYNTAX

start node 14 [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* ‘“node_id()" on page 16-51
* “offset_node id()” on page 16-170

¢ “end node id()" on page 16-130

16-93

NightTrace RT User’s Guide

start_pid_table_name()

DESCRIPTION
The start_pid table name () function returns the name of the inter-

nally-assigned NightTrace process identifier table (PID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start pid table name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

string

SEE ALSO
* ‘“pid_table name()” on page 16-52
e “offset_pid table name()” on page 16-171
* “end pid table name()” on page 16-131

16-94

Using Expressions

start_tid_table_name()

DESCRIPTION
The start_tid table name () function returns the name of the inter-

nally-assigned NightTrace thread identifier table (TID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start tid table name [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

string

SEE ALSO
* “tid_table name()” on page 16-53
e “offset_tid_table name()” on page 16-172
e “end tid table name()” on page 16-132

16-95

NightTrace RT User’s Guide

start_node_name()

16-96

DESCRIPTION

The start_node name () function returns the name of the system from which
the start event of the most recent instance of a state was logged.

SYNTAX

start node name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

string

SEE ALSO

* ‘“node_name()” on page 16-54
* “offset_node _name()” on page 16-173

¢ “end node name()” on page 16-133

End Functions

Using Expressions

The end functions provide information about the end event of the last completed instance
of a state. The state to which the end function appliesis either the profile reference speci-
fied to the function, or the state being currently defined. Thus, if a profile is not specified,
end functions are only meaningful when used in expressions associated within a state def-
inition.

NOTE

End functions provide information about the last completed
instance of a state, whereas start functions (see “ Start Functions”
on page 16-60) provide information about the most recent
instance of a state.

End functions include:

end id()

end arg()

end arg dbl ()

end arg long dbl ()

end arg long long()

end blk arg()

end blk arg bits()

end blk arg char()

end blk arg dbl ()

end blk arg flt()

end blk arg long()

end blk arg long bits()
end blk arg long dbl ()
end blk arg long long()
end blk arg long ubits()
end blk arg short ()

end blk arg string()
end blk arg ubits()

end blk arg uchar ()

end blk arg uint ()

end blk arg ulong long()

16-97

NightTrace RT User’s Guide

16-98

end blk arg ushort ()
end num args ()

end pid()

end thread id()

end task_id()

end tid()

end_cpu ()

end offset ()

end time()

end node_id()

end pid table name ()
end tid table name()

end node_ name ()

end_id()

Using Expressions

DESCRIPTION

Theend_id () function returnsthe trace event ID associated with the end event of
the last completed instance of a state.

SYNTAX

end_id [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “id()” on page 16-20
e “start_id()” on page 16-62
e “offset_id()” on page 16-140

16-99

NightTrace RT User’s Guide

end_arg()

16-100

DESCRIPTION

The end _arg () function returns the value of a particular trace event argument
associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N] [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “arg()” on page 16-21
e “start arg()” on page 16-63
* “end arg()” on page 16-100
* “end_num_args()” on page 16-122
* “offset_arg()” on page 16-141

end_arg_dbl()

Using Expressions

DESCRIPTION

Theend arg_dbl () function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX

end_arg[N] dbl [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg dbl()" on page 16-22
e “start arg dbl()” on page 16-64
* “end_num_args()” on page 16-122
* “offset_arg_dbl()” on page 16-142

16-101

NightTrace RT User’s Guide

end_arg_long()

16-102

DESCRIPTION

Theend arg long() function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX

end _arg[N] long [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg long()” on page 16-23
e “start arg long()” on page 16-65
* “end_num_args()” on page 16-122
* “offset_arg_long()” on page 16-143

end_arg_long_dbl()

Using Expressions

DESCRIPTION

Theend arg long dbl () function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX

end arg[N] long dbl [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaults to 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
* “arg_long_dbl()" on page 16-24
e “start arg long_dbl()” on page 16-66
* “offset_arg_long_dbl()” on page 16-144

16-103

NightTrace RT User’s Guide

end_arg_long_long()

16-104

DESCRIPTION

The end_arg long long () function returnsthe value of a particular trace
event argument.

SYNTAX

end arg[N] long long [([PR])]

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

long long integer

SEE ALSO

* “arg long_long()” on page 16-25

* “num_args()” on page 16-43

e “start arg long_long()” on page 16-67

e “offset_arg_long_long()” on page 16-145

end_blk_arg()

Using Expressions

DESCRIPTION

Theend blk arg() function returns the value of a trace event argument located
at a particular byte offset in the argument space associated with the event associated
with the end event of the most recent instance of a state.

SYNTAX

end blk_ arg (byte offsef[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg()" on page 16-26
e “start blk arg()” on page 16-68
* “offset_blk_arg()” on page 16-146

16-105

NightTrace RT User’s Guide

end_blk_arg_bits()

16-106

DESCRIPTION

Theend blk arg bits () function returnsthevalue of a trace event signed bit
field argument located at a particular byte and bit offset with a particular bit sizein
the argument space associated with the event associated with the end event of the
most recent instance of a state.

SYNTAX

end blk arg bits (byte offset, bit offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifies the size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg hits()” on page 16-27
e “start blk arg bits()” on page 16-69
e “offset_blk_arg_bits()” on page 16-147

end_blk_arg_char()

Using Expressions

DESCRIPTION

The end blk arg char () function returnsthe value of a trace event signed
character argument located at a particular byte offset in the argument space associ-
ated with the event associated with the end event of the most recent instance of a
State.

SYNTAX

end blk arg char (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg char()” on page 16-28
e “start blk arg char()” on page 16-70
* “offset_blk_arg_char()” on page 16-148

16-107

NightTrace RT User’s Guide

end_blk_arg_dbl()

16-108

DESCRIPTION

Theend blk arg dbl () function returnsthe value of a trace event double-pre-
cision floating point argument located at a particular byte offset in the argument
space associated with the event associated with the end event of the most recent
instance of a state.

SYNTAX

end blk arg dbl (byte offset][, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg dbl()" on page 16-29
e “start blk_arg dbl()” on page 16-71
e “offset_blk_arg_dbl()” on page 16-149

end_blk_arg_flt()

Using Expressions

DESCRIPTION

Theend blk arg flt () function returnsthe value of atrace event single-pre-
cision floating point argument located at a particular byte offset in the argument
space associated with the event associated with the end event of the most recent
instance of a state.

SYNTAX

end blk arg flt (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg flt()" on page 16-30
e “start blk arg flt()” on page 16-72
e “offset_blk_arg_flt()" on page 16-150

16-109

NightTrace RT User’s Guide

end_blk_arg_long()

16-110

DESCRIPTION

Theend blk arg long() function returnsthe value of atrace event long inte-
ger argument located at a particular byte offset in the argument space associated
with the event associated with the end event of the most recent instance of a state.

SYNTAX

end blk arg long (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
¢ “blk_arg long()” on page 16-31
e “start blk arg long()” on page 16-73
e “offset_blk_arg_long()” on page 16-151

Using Expressions

end_blk_arg_long_bits()

DESCRIPTION

The end_blk arg long bits () function returnsthe value of atrace event
signed long bit field argument located at a particular byte and bit offset with a partic-
ular bit size in the argument space associated with the event associated with the end
event of the most recent instance of a state.

SYNTAX

end blk arg long bits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset
Specifies the byte offset of the argument recorded with trace event_blk.
bit offset
Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size
Specifiesthe size in bits of the argument record with trace_event_blk.
PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long bits()” on page 16-32
e “start blk arg long bits()” on page 16-74
e “offset_blk_arg_long_bits()” on page 16-152

16-111

NightTrace RT User’s Guide

end_blk_arg_long_dbl()

DESCRIPTION

Theend blk arg long dbl () function returnsthe value of atrace event long
double-precision floating point argument located at a particular byte offset in the
argument space associated with the event associated with the end event of the most
recent instance of a state.

SYNTAX

end blk arg long dbl (byte offsa[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

long double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg long_dbl()" on page 16-33
e “start blk_arg long_dbl()” on page 16-75
e “offset_blk_arg_long_dbl()” on page 16-153

16-112

Using Expressions

end_blk_arg_long_long()

DESCRIPTION
The end_blk arg long long () function returnsthe value of atrace event
long long integer argument located at a particular byte offset in the argument space

associated with the event associated with the end event of the most recent instance of
a state.

SYNTAX

end blk arg long long (byte offset], PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long_long()" on page 16-34
e “sart blk arg long long()” on page 16-76
e “offset_blk_arg_long_long()” on page 16-154

16-113

NightTrace RT User’s Guide

end_blk_arg_long ubits()

16-114

DESCRIPTION

Theend blk arg long ubits () function returns the value of a trace event
unsigned long integer bit field argument located at a particular byte and bit offset
with a particular bit size in the argument space associated with the event associated
with the end event of the most recent instance of a state.

SYNTAX

end blk arg long ubits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifies the size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long_ubits()” on page 16-35
e “start blk arg long ubits()” on page 16-77
e “offset_blk_arg_long_ubits()” on page 16-155

end_blk_arg_short()

Using Expressions

DESCRIPTION

The end_blk_arg_ short () function returns the value of a trace event short
integer argument located at a particular byte offset in the argument space associated
with the event associated with the end event of the most recent instance of a state.

SYNTAX

end blk arg short (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg short()” on page 16-36
e “start blk arg short()” on page 16-78
* “offset_blk_arg_short()” on page 16-156

16-115

NightTrace RT User’s Guide

end_blk_arg_string()

16-116

DESCRIPTION

Theend blk arg string() functionreturnsthe value of atrace event null ter-
minated string argument located at a particular byte offset in the argument space
associated with the event associated with the end event of the most recent instance of
a state.

SYNTAX

end blk arg string (byte offset, max size, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, thisis also the total number of bytes allocated
in the block for the string, regardiess of its actual lenght.

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

string

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg string()” on page 16-37
e “start blk arg string()” on page 16-79
o “offset_blk_arg_string()” on page 16-157

end_blk_arg_ubits()

Using Expressions

DESCRIPTION

Theend blk arg ubits () function returnsthe value of atrace event unsigned
bit field argument located at a particular byte and bit offset with a particular bit size
in the argument space associated with the event associated with the end event of the
most recent instance of a state.

SYNTAX

end blk arg ubits (byte offset, bit_offset, bit_size[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
bit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg_ubits()” on page 16-38
e “start blk arg ubits()” on page 16-80
e “offset_blk_arg_ubits()” on page 16-158

16-117

NightTrace RT User’s Guide

end_blk_arg_uchar()

16-118

DESCRIPTION

Theend blk arg uchar () function returnsthe value of atrace event unsigned
character argument located at a particular byte offset in the argument space associ-
ated with the event associated with the end event of the most recent instance of a
State.

SYNTAX

end blk arg uchar (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg uchar()" on page 16-39
e “start blk arg uchar()” on page 16-81
e “offset_blk_arg_uchar()” on page 16-159

Using Expressions

end_blk_arg_uint()

DESCRIPTION

Theend blk_arg uint () function converts the unsigned integer trace event
argument at a particular byte offset in the argument space associated with the end
event of the most recent instance of a state to along.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) end blk arg uint (0) > 0x80000000

SYNTAX

end blk arg uint (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

unsigned integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg uint()” on page 16-40
e “start blk arg uint()” on page 16-82
e “offset_blk_arg_uint()” on page 16-160

16-119

NightTrace RT User’s Guide

end_blk_arg_ulong_long()

16-120

DESCRIPTION
Theend blk _arg ulong long () function returns the value of atrace event
unsigned long long integer argument located at a particular byte offset in the argu-

ment space associated with the event associated with the end event of the most
recent instance of a state.

SYNTAX

end blk arg ulong long (byte offsef[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

unsigned long long integer

SEE ALSO
* “num_args()” on page 16-43
¢ “blk_arg ulong_long()” on page 16-41
e “sart blk arg ulong_long()" on page 16-83
e “offset_blk_arg_ulong long()” on page 16-161

end_blk_arg_ushort()

Using Expressions

DESCRIPTION

The end_blk arg ushort () function returns the value of atrace event
unsigned short integer argument located at a particular byte offset in the argument
space associated with the event associated with the end event of the most recent
instance of a state.

SYNTAX

end blk arg ushort (byte offset[, PR])

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace _event_blk.
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg ushort()” on page 16-42
e “start blk arg ushort()” on page 16-84
e “offset_blk_arg_ushort()” on page 16-162

16-121

NightTrace RT User’s Guide

end_num_args()

16-122

DESCRIPTION

The end _num_args () function returns the number of arguments associated with
the end event of the last completed instance of a state. For events recorded with
trace_event blk (), it returns the number of bytes recorded in the argument
space.

SYNTAX

end_num_args [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “start num_args()” on page 16-85
¢ “end arg()” on page 16-100
e “offset_num_args()” on page 16-163

Using Expressions
end_pid()

DESCRIPTION

The end_pid () function returns the PID associated with the end event of the last
completed instance of a state.

NOTE

All Linux threads within the same program share the same PID value. For trace
events generated with the NightTrace Logging AP, the value logged as the process
identifier is the common PID. For kernel events, the value logged for the process
identifier isthe actually thethread’'s TID (seegettid (2)).

SYNTAX

end pid [([PR))]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 16-44
e “start pid()” on page 16-86
e “offset pid()” on page 16-164

16-123

NightTrace RT User’s Guide

end_thread_id()

16-124

DESCRIPTION

Theend thread id () function returns the thread identifier associated with the
end event of the last completed instance of a state. The thread identifier is that
returned by the system call gettid (2).

SYNTAX

end_thread id [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “thread_id()" on page 16-45
e “start thread id()” on page 16-87
e “offset_thread id()" on page 16-165

Using Expressions

end_task_id()

DESCRIPTION

Theend task_id() function returns the Adatask identifier associated with the
end event of the last completed instance of a state.

NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.
SYNTAX

end task_id [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “task id()” on page 16-46
e “start task_id()” on page 16-88
e “offset_task _id()” on page 16-166

16-125

NightTrace RT User’s Guide

end_tid()

16-126

DESCRIPTION

Theend tid () function returns the internally-assigned NightTrace thread identi-
fier (TID) associated with the end event of the last completed instance of a state.

SYNTAX

end_tid [(PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “tid()” on page 16-47
* “start tid()” on page 16-89
e “offset_tid()” on page 16-167

Using Expressions

end_cpu()

DESCRIPTION
The end_cpu () function returns the logical CPU number associated with the end

event of the last completed instance of a state. CPUs are logically numbered start-
ing a 0 and monotonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating systems. See “Kernel Dependencies’ on page B-1
for more information.

SYNTAX

end_cpu [([PR))]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* “cpu()’ on page 16-48
e “start cpu()” on page 16-90
e “offset_cpu()” on page 16-168

16-127

NightTrace RT User’s Guide

end_offset()

16-128

DESCRIPTION

The end_offset () function returns the ordinal number (offset) of the end event
of the last completed instance of a state.

SYNTAX

end offset [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO

* “offset()” on page 16-49
e “start offset()” on page 16-91

end_time()

Using Expressions

DESCRIPTION

The end_time () function returns the time, in seconds, associated with the end
event of thelast completed instance of a state. Timesare relativeto the earliest trace
event from all trace data files currently in use.

SYNTAX

end_time [([PR))]

PARAMETERS

PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO

“time()” on page 16-50
“start_time()” on page 16-92
“state_gap()” on page 16-134
“state dur()” on page 16-135
“offset_time()” on page 16-169

16-129

NightTrace RT User’s Guide

end_node_id()

DESCRIPTION

Theend node_id() function returns the internally-assigned node identifier asso-
ciated with the end event of the last completed instance of a state.

SYNTAX

end node_ id [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

integer

SEE ALSO
* ‘“node_id()" on page 16-51
* “start node id()” on page 16-93
e “offset_node id()” on page 16-170

16-130

Using Expressions

end_pid_table_name()

DESCRIPTION
The end _pid table name () function returns the name of the inter-

nally-assigned NightTrace process identifier table (PID table) associated with the
end event of the last completed instance of a state.

SYNTAX

end pid table name [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

string

SEE ALSO
* ‘“pid_table name()” on page 16-52
e “start pid table name()” on page 16-94
e “offset_pid_table name()” on page 16-171

16-131

NightTrace RT User’s Guide

end_tid_table_name()

16-132

DESCRIPTION

The end_tid table name () function returns the name of the inter-
nally-assigned NightTrace thread identifier table (TID table) associated with the end
event of the last compl eted instance of a state.

SYNTAX

end tid table name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

string

SEE ALSO
* “tid_table name()” on page 16-53
e “start tid_table name()” on page 16-95
e “offset_tid table name()” on page 16-172

end_node_name()

Using Expressions

DESCRIPTION

The end_node name () function returns the name of the system from which the
end event of the last completed instance of a state was logged.

SYNTAX

end_node_name [([PR])]

PARAMETERS
PR

A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and
then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

string

SEE ALSO

* ‘“node_name()” on page 16-54
* “start node name()” on page 16-96
e “offset_node name()” on page 16-173

16-133

NightTrace RT User’s Guide

Multi-State Functions

Multi-state functions return information about one or more instances of a state:
* state gap()
® state dur()
* state matches()

* state status()

For restrictions on usage, see “ State Graph” on page 12-11.
state_gap()

DESCRIPTION
The state_gap () function returns the time in seconds between the start event of

the most recent instance of the state and the end event of the instance immediately
preceding it or zero if there was no previous instance.

SYNTAX

state_gap [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifiesthe state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’ on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO
e “start time()” on page 16-92
* “end_time()” on page 16-129
* “event_gap()” on page 16-58
e “state dur()” on page 16-135

16-134

state_dur()

Using Expressions

DESCRIPTION

The state_dur () function returns the time in seconds between the start event and the
end event of the last completed instance of a state. Thus, if the current time line occurs
within an instance of the state but before it hasended, state dur () returnsthe duration
of the previous instance or zero if there was no previous instance.

SYNTAX

state_dur [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

double-precision floating point

SEE ALSO

e “state gap()” on page 16-134

16-135

NightTrace RT User’s Guide

state_matches()

DESCRIPTION

The state _matches () function returns the number of completed instances of a
state on or before the current time line.

SYNTAX

state matches [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References’” on page
16-193.

RETURN TYPE

integer

SEE ALSO

* “Sart Functions” on page 16-60
* “summary_matches()” on page 16-183

16-136

state_status()

Using Expressions

DESCRIPTION
The state_status () function indicates whether the current time line resides
within a current instance of a state. Thus, if the current timelineis positioned in the

region from the start event up to, but not including, the end event of an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX

state status [([PR])]

PARAMETERS

PR
A user-defined profile reference. If supplied, it specifies the state to which the func-
tion applies. If omitted, the function may only be used within a state definition and

then applies to that state. For more information, see “Profile References” on page
16-193.

RETURN TYPE

boolean

16-137

NightTrace RT User’s Guide

Offset Functions

All offset functions take an expression that evaluates to an ordinal trace event (offset) asa
parameter. (Offsets begin at zero.) These functions include the following:

* offset id()

¢ offset _arg()

¢ offset _arg dbl()

* offset arg long()

* offset arg long dbl()

* offset arg long long()

* offset blk arg()

* offset blk arg bits()

* offset blk arg char()

* offset blk arg dbl()

¢ offset blk arg flt()

* offset blk arg long()

* offset blk arg long bits()
* offset blk arg long dbl ()
* offset blk arg long long()
* offset blk arg long ubits()
¢ offset blk arg short ()

* offset blk arg string()

* offset blk arg ubits()

¢ offset blk arg uchar()

* offset blk arg uint()

* offset blk arg ulong long()
¢ offset blk arg ushort()

* offset num args()

* offset pid()

¢ offset thread id()

* offset task id()

* offset tid()

* offset cpul)

16-138

Usually, these functions take one of the following functions as a parameter:

Using Expressions

offset time ()

offset node id()
offset pid table name()
offset tid table name()
offset node name ()
offset process name ()
offset task name ()

offset thread name ()

offset ()

start offset ()
end offset ()
min offset ()

max offset ()

For information about these functions, see “offset()” on page 16-49, “start_offset()” on
page 16-91, “end_offset()” on page 16-128, “min_offset()” on page 16-181, and
“max_offset()” on page 16-182.

16-139

NightTrace RT User’s Guide

offset_id()

DESCRIPTION

Theoffset_id() function returns the trace event ID of the ordinal trace event
(offset).

SYNTAX

offset id(offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “id()” on page 16-20
e “start id()” on page 16-62
* “end_ id()” on page 16-99

16-140

offset_arg()

DESCRIPTION

for the ordinal trace event (offset).

SYNTAX

offset_arg[N] (offset_expr)

PARAMETERS

N

Using Expressions

Theoffset arg() function returnsthe value of aparticular trace event argument

Specifies the Nth argument logged with the trace event. Defaultsto 1.

offset_expr

event.

RETURN TYPE

integer

SEE ALSO

“arg()” on page 16-21

“start_arg()” on page 16-63
“end_arg()” on page 16-100
“offset_arg_dbl()” on page 16-142
“offset_num_args()” on page 16-163

An expression that evaluates to the offset (or ordinal trace event number) of atrace

16-141

NightTrace RT User’s Guide

offset_arg_dbl()

16-142

DESCRIPTION

The offset_arg dbl () function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N] dbl (offset_expr)

PARAMETERS

N
Specifies the Nth argument logged with the trace event. Defaultsto 1.

offset_expr
An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

double-precision floating point

SEE ALSO
e “arg dbl()" on page 16-22
e “start arg dbl()” on page 16-64
* “end_arg dbl()” on page 16-101
* “offset_arg()” on page 16-141

* “offset_num_args()” on page 16-163

offset_arg_long()

Using Expressions

DESCRIPTION

Theoffset_arg long () function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N] long (offset_expr)

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

double-precision floating point

SEE ALSO
e “arg long()" on page 16-23
e “start arg long()” on page 16-65
* “end_arg long()” on page 16-102
* “offset_arg()” on page 16-141

e “offset_num_args()” on page 16-163

16-143

NightTrace RT User’s Guide

offset_arg_long_dbl()

DESCRIPTION

Theoffset_arg long dbl () function returns the value of a particular trace
event argument for the ordinal trace event (offset).

SYNTAX

offset _arg[N] long dbl (offset_expr)

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
* “arg long_dbl()" on page 16-24
e “start arg long_dbl()” on page 16-66
e “end arg long dbl()” on page 16-103

16-144

Using Expressions

offset_arg_long_long()

DESCRIPTION

Theoffset arg long long() function returnsthe value of a particular trace
event argument for the ordinal trace event (offset).

SYNTAX

offset_arg[N] long long (offset_expr)

PARAMETERS
N

Specifies the Nth argument logged with the trace event. Defaultsto 1.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long long integer

SEE ALSO

* “num_args()” on page 16-43

* “arg long_long()” on page 16-25

e “start arg long_long()” on page 16-67
¢ “end arg long long()" on page 16-104

16-145

NightTrace RT User’s Guide

offset_blk_arg()

16-146

DESCRIPTION

The offset_blk_arg () function returns the value of atrace event argument
located at a particular byte offset in the argument space associated with the ordinal
trace event (offset).

SYNTAX

offset blk arg (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg()" on page 16-26
e “start blk arg()” on page 16-68
e “end blk arg()” on page 16-105

Using Expressions

offset_blk_arg_bits()

DESCRIPTION

Theoffset_blk arg bits () function returns the value of a trace event
signed hit field argument located at a particular byte and bit offset with a particular
bit size in the argument space associated with the event associated with the ordinal
trace event (offset).

SYNTAX

offset blk arg bits (byte offset, bit offset, bit_size, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg_hits()” on page 16-27
e “start blk arg hits()” on page 16-69
* “end_blk_arg hits()” on page 16-106

16-147

NightTrace RT User’s Guide

offset_blk_arg_char()

DESCRIPTION

Theoffset_blk arg char () function returns the value of a trace event
signed character argument located at a particular byte offset in the argument space
associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk _arg char (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg char()” on page 16-28
e “start blk arg char()” on page 16-70
e “end blk arg char()” on page 16-107

16-148

Using Expressions

offset_blk_arg_dbl()

DESCRIPTION
Theoffset _blk arg dbl () function returns the value of a trace event dou-

ble-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk _arg dbl (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg dbl()" on page 16-29
e “start blk_arg dbl()” on page 16-71
e “end blk arg dbl()” on page 16-108

16-149

NightTrace RT User’s Guide

offset_blk_arg_flt()

DESCRIPTION
Theoffset blk arg flt () function returnsthe value of atrace event sin-

gle-precision floating point argument located at a particular byte offset in the argu-
ment space associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk_arg flt (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

double-precision floating point

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg flt()" on page 16-30
e “start blk arg flt()” on page 16-72
e “end blk arg flt()” on page 16-109

16-150

Using Expressions

offset_blk_arg _long()

DESCRIPTION
Theoffset blk _arg long () function returns the value of atrace event long

integer argument located at a particular byte offset in the argument space associated
with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk _arg long (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long()” on page 16-31
e “sart blk arg long()” on page 16-73
e “end blk arg long()” on page 16-110

16-151

NightTrace RT User’s Guide

offset_blk_arg_long_bits()

DESCRIPTION

Theoffset_blk arg long bits () function returnsthe value of atrace
event signed long bit field argument located at a particular byte and bit offset with a
particular bit size in the argument space associated with the event associated with
the ordinal trace event (offset).

SYNTAX
offset blk arg long bits (byte offset, bit_offset, bit_size,
offset_expr)
PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg long bits()” on page 16-32
e “start blk arg long bhits()” on page 16-74
* “end_blk_arg long_hits()” on page 16-111

16-152

Using Expressions

offset_blk_arg_long_dbl()

DESCRIPTION
Theoffset blk arg long dbl () function returns the value of atrace event
long double-precision floating point argument located at a particular byte offset in

the argument space associated with the event associated with the ordinal trace event
(offset).

SYNTAX

offset blk arg long dbl (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long double-precision floating point

SEE ALSO

* “num_args()” on page 16-43

* “blk_arg long_dbl()" on page 16-33

e “start blk_arg long_dbl()” on page 16-75
* “end_blk_arg long_dbl()" on page 16-112

16-153

NightTrace RT User’s Guide

offset_blk_arg long_long()

DESCRIPTION
Theoffset_blk arg long long () function returnsthe value of atrace

event long long integer argument located at a particular byte offset in the argument
space associated with the ordinal trace event (offset).

SYNTAX

offset blk arg long_ long (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg long_long()” on page 16-34
e “sart blk arg long long()” on page 16-76
* “end_blk_arg_long_long()” on page 16-113

16-154

Using Expressions

offset_blk_arg_long_ubits()

DESCRIPTION

The offset_blk arg long ubits () function returnsthe value of a trace
event unsigned long integer bit field argument located at a particular byte and bit
offset with a particular bit size in the argument space associated with the ordinal
trace event (offset).

SYNTAX
offset blk arg long ubits (byte offset, bit_offset, bit_size,
offset_expr)
PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
hit size

Specifiesthe size in bits of the argument record with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

long long integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg long ubits()” on page 16-35
e “start blk arg long_ubits()” on page 16-77
* “end_blk_arg long_ubits()” on page 16-114

16-155

NightTrace RT User’s Guide

offset_blk_arg_short()

DESCRIPTION
Theoffset blk arg short () function returnsthe value of atrace event short

integer argument located at a particular byte offset in the argument space associated
with the ordinal trace event (offset).

SYNTAX

offset blk arg short (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg short()” on page 16-36
e “start blk arg short()” on page 16-78
e “end blk arg short()” on page 16-115

16-156

Using Expressions

offset_blk_arg_string()

DESCRIPTION

The offset_blk_arg string() function returnsthe value of atrace event
null terminated string argument located at a particular byte offset in the argument
space associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk arg string (byte offset, max _size, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk or
trace_event_string.

max_size

Specifies the maximum length of string that might be returned. If the arguments
were recorded with trace_event_blk, thisis aso the total number of bytes allocated
in the block for the string, regardless of its actual lenght.

offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg string()” on page 16-37
e “start blk arg string()” on page 16-79
* “end blk_arg string()” on page 16-116

16-157

NightTrace RT User’s Guide

offset_blk_arg_ubits()

16-158

DESCRIPTION

The offset_blk _arg ubits () function returns the value of atrace event
unsigned bit field argument located at a particular byte and bit offset with a particu-
lar bit size in the argument space associated with the ordinal trace event (offset).

SYNTAX

offset blk _arg ubits (byte offset, bit_offset, bit_size, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace event_blk.
hit offset

Specifies the bit offset of the argument recorded with the trace_event_blk.
bit size

Specifiesthe size in bits of the argument record with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “blk_arg ubits()” on page 16-38
e “start blk arg ubits()” on page 16-80
* “end blk_arg ubits()” on page 16-117

Using Expressions

offset_blk_arg_uchar()

DESCRIPTION
The offset_blk_arg uchar () function returns the value of atrace event

unsigned character argument located at a particular byte offset in the argument space
associated with the event associated with the ordinal trace event (offset).

SYNTAX

offset blk arg uchar (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg uchar()” on page 16-39
e “start blk arg uchar()” on page 16-81
¢ “end blk arg uchar()” on page 16-118

16-159

NightTrace RT User’s Guide

offset_blk_arg_uint()

DESCRIPTION
Theoffset blk arg uint () function converts the unsigned integer trace

event argument at a particular byte offset in the argument space associated with the
ordinal trace event (offset) to along.

NOTE

You can convert the long return value to an unsigned value using
the cast operator. For example:

(unsigned long) offset blk arg uint (0) > 0x80000000

SYNTAX

offset blk _arg uint (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

unsigned integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg uint()” on page 16-40
e “start blk arg uint()” on page 16-82
e “end blk arg uint()” on page 16-119

16-160

Using Expressions

offset_blk_arg _ulong_long()

DESCRIPTION
The offset _blk arg ulong long() function returnsthe value of atrace

event unsigned long long integer argument located at a particular byte offset in the
argument space associated with the ordinal trace event (offset).

SYNTAX

offset blk arg ulong long (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

unsigned long long integer

SEE ALSO

* “num_args()” on page 16-43

* “blk_arg ulong_long()” on page 16-41

e “sart blk arg ulong_long()” on page 16-83
¢ “end blk arg ulong long()” on page 16-120

16-161

NightTrace RT User’s Guide

offset_blk_arg_ushort()

DESCRIPTION
The offset_blk_arg ushort () function returns the value of atrace event

unsigned short integer argument located at a particular byte offset in the argument
space associated with the ordinal trace event (offset).

SYNTAX

offset blk arg ushort (byte offset, offset_expr)

PARAMETERS
byte offset

Specifies the byte offset of the argument recorded with trace_event_blk.
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
* “blk_arg ushort()” on page 16-42
e “start blk arg ushort()” on page 16-84
¢ “end blk arg ushort()” on page 16-121

16-162

Using Expressions

offset_num_args()

DESCRIPTION

Theoffset num args () function returns the number of arguments logged with
the ordinal trace event (offset). For events recorded with trace event blk(),
it returns the number of bytes recorded in the argument space.

SYNTAX

offset num_args (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “num_args()” on page 16-43
e “start num_args()” on page 16-85
* “end_num_args()” on page 16-122
* “offset_arg()” on page 16-141
e “offset_arg_dbl()” on page 16-142

16-163

NightTrace RT User’s Guide

offset_pid()

DESCRIPTION
Theoffset pid() function returns the PID from which the ordinal trace event
(offset) was logged.
NOTE
All Linux threads within the same program share the same PID value. For trace
events generated with the NightTrace Logging AP, the value logged as the process

identifier is the common PID. For kernel events, the value logged for the process
identifier isthe actually thethread’'s TID (seegettid (2)).

SYNTAX

offset pid (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 16-44
e “start pid()" on page 16-86
* “end_pid()” on page 16-123

16-164

Using Expressions

offset_thread _id()

DESCRIPTION

Theoffset thread id() function returns the thread identifier from which the
ordinal trace event (offset) was logged. The thread identifier is the value returned
fromthe system call gettid(2).

SYNTAX

offset thread id (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “thread_id()" on page 16-45
e “start thread id()” on page 16-87
* “end_thread id()” on page 16-124

16-165

NightTrace RT User’s Guide

offset_task_id()

DESCRIPTION
Theoffset task_id() function returns the Ada task identifier from which the
ordinal trace event (offset) was logged.
NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.
SYNTAX

offset task_id (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “task id()” on page 16-46
e “start task_id()" on page 16-88
* “end_task_id()" on page 16-125

16-166

Using Expressions

offset_tid()

DESCRIPTION

Theoffset tid() function returns the internally-assigned NightTrace thread
identifier (TID) from which the ordinal trace event (offset) was logged.

SYNTAX

offset tid (offset_expr)

PARAMETERS
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “tid()” on page 16-47
e “start tid()” on page 16-89
* “end tid()” on page 16-126

16-167

NightTrace RT User’s Guide

offset_cpu()

DESCRIPTION
Theoffset cpu() function returnsthelogical CPU number on which the ordinal

trace event (offset) occurred. CPUs are logically numbered starting at 0 and mono-
tonically increase thereafter.

NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files. Kernel tracing is not supported on
all operating systems. See “Kernel Dependencies’ on page B-1
for more information.
SYNTAX

offset_cpu (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* “cpu()’ on page 16-48
e “start cpu()” on page 16-90
* “end_cpu()” on page 16-127

16-168

Using Expressions

offset_time()

DESCRIPTION

Theoffset_time () function returns the time in seconds between the beginning
of the trace run and the ordinal trace event (offset).

SYNTAX

offset_time (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

double-precision floating point

SEE ALSO
* “time()” on page 16-50
e “start time()” on page 16-92
* “end_time()” on page 16-129

16-169

NightTrace RT User’s Guide

offset_node_id()

DESCRIPTION

Theoffset node id () function returns the internally-assigned node identifier
from which the ordinal trace event (offset) was logged.

SYNTAX

offset node_ id (offset_expr)

PARAMETERS
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

integer

SEE ALSO
* ‘“node_id()" on page 16-51
e “start node id()” on page 16-93
* “end_node id()” on page 16-130

16-170

Using Expressions

offset_pid_table_name()

DESCRIPTION
The offset pid table name () function returns the name of the inter-

nally-assigned NightTrace process identifier table (PID table) for the ordinal trace
event (offset).

SYNTAX

offset pid table name (offset_expr)

PARAMETERS
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO
* ‘“pid_table name()” on page 16-52
e “start pid table name()” on page 16-94
* “end pid table name()” on page 16-131

16-171

NightTrace RT User’s Guide

offset_tid_table_name()

DESCRIPTION
The offset tid table name () function returns the name of the inter-

nally-assigned NightTrace thread identifier table (TID table) for the ordinal trace
event (offset).

SYNTAX

offset tid table name (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO
* “tid_table name()” on page 16-53
e “start tid table name()” on page 16-95
* “end tid table name()” on page 16-132

16-172

Using Expressions

offset_node_name()

DESCRIPTION

The offset _node name () function returns the name of the system from which
the ordinal trace event (offset) was logged.

SYNTAX

offset _node name (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO

* ‘“node_name()” on page 16-54
e “start node name()” on page 16-96
* “end_node name()” on page 16-133

16-173

NightTrace RT User’s Guide

offset_process_name()

DESCRIPTION

The offset _process _name () function returns the name of the process (PID)
from which the ordinal trace event (offset) was logged.

SYNTAX

offset process name (offset_expr)

PARAMETERS
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO

* “process_name()” on page 16-55

16-174

Using Expressions

offset_task_name()

DESCRIPTION
Theoffset task name () function returns the name of the task from which the
ordinal trace event (offset) was logged.
NOTE
This function is only meaningful for trace events which were

logged from Adatasking programs.

SYNTAX

offset_task_ name (offset_expr)

PARAMETERS
offset_expr

An expression that eval uates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO

* “task_name()” on page 16-56

16-175

NightTrace RT User’s Guide

offset_thread_name()

DESCRIPTION

Theoffset thread name () function returns the thread name from which the
ordinal trace event (offset) was logged.

SYNTAX

offset thread name (offset_expr)

PARAMETERS
offset_expr

An expression that evaluates to the offset (or ordinal trace event number) of atrace
event.

RETURN TYPE

string

SEE ALSO

* “thread_name()” on page 16-57

16-176

Using Expressions

Summary Functions

You usually use summary functions on the Summarize Form. Except for
summary matches (), al of these functions take another expression as a parameter.
They include the following:

®* min()
* max()
* avg()
® sum()
* min offset ()
* max offset ()

®* summary matches ()

min()

DESCRIPTION

Themin () function returns the minimum value of all occurrences of expr within a
time range. When used inaSummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

min (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

* “Summary Functions’ on page 16-177

16-177

NightTrace RT User’s Guide

max()

DESCRIPTION

Themax () function returns the maximum value of all occurrences of expr within a
time range. When used in aSummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

max (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

* “Summary Functions’ on page 16-177

16-178

Using Expressions

avg()

DESCRIPTION

The avg () function returns the average value of all occurrences of expr within a
time range. When used in aSummarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

avg (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

* “Summary Functions’ on page 16-177

16-179

NightTrace RT User’s Guide

sum()

DESCRIPTION

The sum () function returns the sum value of all occurrences of expr within atime
range. When used inaSummarize Form, the timerangeis defined by that form.
When used elsewhere, the time range is defined as the region starting with the first
trace event and ending with the current trace event.

SYNTAX

sum (expr)

PARAMETERS

expr

A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

* “Summary Functions’ on page 16-177

16-180

min_offset()

Using Expressions

DESCRIPTION
Themin offset () function returns the ordinal trace event (offset) where the
minimum value of the parameter occurred for matches in the time range. Thus, if

the same minimum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

min offset (expr)

PARAMETERS
expr
A numeric expression.

RETURN TYPE

integer

NOTE
Thereis no function that returns the trace event D where the minimum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset id(min offset(argl()))

SEE ALSO

* “Summary Functions’ on page 16-177

16-181

NightTrace RT User’s Guide

max_offset()

DESCRIPTION

Themax offset () function returns the ordinal trace event (offset) where the
maximum value of the parameter occurred for matches in the time range. Thus, if
the same maximum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

max_offset (expr)

PARAMETERS
expr
A numeric expression.

RETURN TYPE

integer

NOTE
Thereis no function that returns the trace event ID where the maximum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset id(max offset(argl()))

SEE ALSO

* “Summary Functions’ on page 16-177

16-182

Using Expressions

summary_matches()

DESCRIPTION

The summary matches () function returns the number of times the summary cri-
teriawas matched in the time range.

SYNTAX

summary matches ()

RETURN TYPE

integer

SEE ALSO

* “event_matches()” on page 16-59
* “state matches()” on page 16-136

16-183

NightTrace RT User’s Guide

Format and Table Functions

get_string()

16-184

The format function allows you to display a string. The table functions allow you to
extract information from user-defined and pre-defined string and format tables. These
functions include the following:

get string()
get _item()
get_format ()
format ()

lookup pc ()

For more information about tables, see “Tables” on page 7-14 and “Kernel String Tables”
on page 17-17.

Theget_string() routine dynamically looks up astring in astring table.

SYNTAX

get string (table namel, int_expr])

PARAMETERS

table_name

table_nameis an unquoted character string that represents the name of a string table.
To avoid possible forward reference problems, try to make your get _string()

calls refer to previously-defined string tables. The following string table names are
pre-defined in NightTrace: event, pid, tid, boolean, name pid,

name_tid, node name, pid_nodename, tid nodename, vector,

syscall, and device. For moreinformation on these tables, see “ Pre-Defined
Strings Tables” on page 7-17 and “Kernel String Tables’ on page 17-17.

int_expr

int_expr is an integer expression that acts as an index into the specified string table.
int_expr must either match an identifying integer value in the table_name string
table, or the table_name string table must have a default item line; otherwise
get _string () returnsastring of int_expr in decimal. Often int_expr is based on a
NightTrace function.

If your table consists of only a default item line, omit this parameter.

Using Expressions

DESCRIPTION

The following NightTrace constructs can call get _string () to dynamically
locate a static string in a string table:

* A Condition, Start Condition, or End Condition of a display
object configuration

* A Condition, Start Condition, or End Condition of aProfile
configuration

* An Output Text field of aData Box

* A valuefield of aformat table
For eachget string () call, NightTrace follows these steps:

Evaluatesint_expr
Uses this value as an index into table_name

Retrieves the associated string from table_name

A W DN P

Returns a string
The following lines provide a brief example of acall toget string().

string table (conditions) =
item = 1, “normal”;
item = 50, “YELLOW ALERT”;
item = 99, “RED ALERT”;
default item = “N/A";

}i

In this example the numeric argument associated with a trace event represents the
current conditions (conditions). If the argument has the value 99, NightTrace:

1. Usesthevalue99 asinindex into conditions
2. Retrievesthe associated string (“RED ALERT") from conditions

3. Returns“RED ALERT”

RETURN TYPES

On successful completion, get _string () returnsastring from a string table.
NightTrace returns a string of the item number, int_expr, in decimal if table nameis
not found, or if int_expr is not found and there is no default item line. The first time
table_name is not found, NightTrace issues an error message. Because
get_string () returns astring, you can use it anywhere a string expression is

appropriate.

For more information on string tables, see “String Tables’ on page 7-15.

16-185

NightTrace RT User’s Guide

get_item()

Theget item() routinelooks up an item number in astring table.

SYNTAX

int get_ item (table name, “str_const”)

PARAMETERS

table name

table_name is an unquoted character string that represents the name of a string table.
To avoid possible forward reference problems, try to make your get _item() cals
refer to previously-defined string tables. The following string table names are
pre-defined in NightTrace: event, pid, tid, boolean, name pid,
name_tid, node name, pid_nodename, tid nodename, vector,
syscall, and device. For more information on these tables, see “Kernel
String Tables” on page 17-17.

str_congt

str_const is a string constant literal that acts as an index into the specified string
table. str_const must either exactly match a string value in the table_name string
table, or the table_name string table must have a default item line; otherwise the
results are undefined. A table name may contain several item lines with the same
str_const value.

DESCRIPTION

16-186

Typically, aget _item() call is used in conditional expressions for profiles,
searches, summaries, or display object configurations.

Theget item() call returns an index number into the specified string table
(table_name) for the first item in the table which matches the specified string
(str_const).

For example, assume that the following string table definition isin your page con-
figuration file (see “ String Tables” on page 7-15):

string table (fruit) = {
item = 3, “apple”;
item = 4, “orange”;
item = 5, “cherry”;
item = 6, “banana”;
default item = “Unknown”;

}i

A get_item() call can beused in an Condition when configuring a Data Box
(see “Data Graph” on page 12-12):

Condition

argl = get item(fruit, "cherry")

Using Expressions

requiring the first argument of the associated trace event to be the same as the index
value matching the entry for cherry in the fruit string table (which, in our
example, is5).

RETURN TYPES

On successful completion, get item() returnsan item number from a string
table. If several item lines within the string table have the same string value as
str_const, get_item() returns the first item number from one of these item lines.
If table_name is not found, NightTrace issues an error message, and the results are
undefined. If str_const is not found and there is no default item line, the results are
undefined. Because get _item () returns aninteger, you can use it anywhere an
integer expression can be used.

For more information on string tables, see “ String Tables” on page 7-15.

16-187

NightTrace RT User’s Guide

get_format()

Theget format () routinedynamically looks up astring in aformat table.

SYNTAX

get_format (table_name], int_expr])

PARAMETERS
table name

table_name is an unquoted character string that represents the name of a format
table. To avoid possible forward reference problems, try to make your
get format () callsrefer to previously-defined format tables.

int_expr

int_expr is an integer expression that acts as an index into the specified format table.
int_expr must either match an identifying integer value in the table_name format
table, or the table_name format table must have a default item line; otherwise, the
results are undefined. Often int_expr is based on a NightTrace function.

If your table consists of only a default item line, omit this parameter.

DESCRIPTION

A call toget format () must be the first function call in an expression. You
must not nest callsto get format ().

The Output Text field of aData Box configuration can call get _format () to
dynamically locate astring in aformat table. For each get format () call, Night-
Trace follows these steps:

Evaluatesint_expr
Uses this value as an index into table_name
Retrieves the associated string from table_name

Replaces any conversion specifications in the associated string

a ~ W d P

Returns a string

Assume that the following format table definition isin your configuration file.

format table (what pid) = {
item = 1, “Trace event 1 logged by pid %d’%d”, “raw pid()”,
“lwpid () ”;
default_item = “Unaccounted for event ID (%d)”, “id()”;

Vi
Assume that you make the following call in the Then-Expression of aData Box.

get format (what pid, id())

16-188

Using Expressions

In this example, the what pid format table associates one dynamically-generated

string with trace event ID 1 (id ()

== 1) and another string with all other trace

events (default_item). When NightTrace processes a trace event for the display
object with the above get format (), it:

1

2
3.
4

Evaluates the NightTrace id () function. (Assumeit evaluatesto 1)

. Cdlsget format ()

Usesthisvalue (1) asan index into the what pid format table

. Retrieves the associated string (*Trace event 1 logged by

pid %d’%d”)fromthewhat pid format table

Evaluates the NightTrace raw pid() and lwpid() functions.
(Assume they evaluate to 213 and 1 respectively)

Replaces the $d conversion specifiers with the raw pid () and
lwpid () vaues

Displays “Trace event 1 logged by pid 213’1”

RETURN TYPES

On successful completion, get format () returns aformat table string. Other-
wise, it returns an empty string.

For more information on format tables, see “Format Tables’ on page 7-20.

16-189

NightTrace RT User’s Guide

format()

16-190

The format () routine displays astring.

SYNTAX

format (“format_string” [, arg] ...)

PARAMETERS

format_string

arg

format_string controls how the optional args are displayed. format_string is based on
the format parameter used in the printf (3) routinein C. It is a character string
enclosed in double quotes that contains literal characters and conversion specifica-
tions. The literals are copied as is to the display object. Conversion specifications
modify zero or more args.

arg isan optional expression to be formatted and displayed.

DESCRIPTION

Call the format () function to display astring. You can do thisonly from the Out-
put Text field of aData Box. A call to format () must be the first function call
in an expression. You must not nest callsto format ().

The following lines provide examples of format () statements and what they dis-
play. Assume all variables have avalue of 10 (decimal).

format ("Error”) Error
format ("Event=%d”, id()) Event=10
format ("Argument is %X”, argl()) Argument is A

RETURN TYPES

On successful completion, format () returns a string. Otherwise, it returns an
empty string.

lookup_pc()

Using Expressions

The lookup_pc () routine returns the location of aprogram counter in the specified exe-
cutablefile.

SYNTAX

char * lookup pc (long pc value, char * executable file path)

PARAMETERS
pc value

the address pointer value of the instruction to be located.
executable file path

the path of the executable file containing the pc.

DESCRIPTION
This function can be used in expressions, typically in format () statements.

Given a PC value, it returns a string describing the location of the PC in the speci-
fied executable file. The string returned includes the name of the routine containing
it and the file and line number associated with the PC, depending on how much
symbolic and debug information is availablein the file.

NightTrace attempts to locate the executable using the specified
executable file path. If the specified path is a simple file name without a directory
indication, NightTrace will first attempt to match the file's specified simple name
with those of any executables given on the command line. Otherwise, NightTrace
will attempt to locate the file exactly as specified. For example,

ntrace /tmp/a.out

fc%J;mat (“My PC is %s”, lookup pc(argl,”a.out”))
will refer to /tmp/a . out, whereas

format (“My PC is %s”, lookup pc(argl,”./a.out”))
will reference $PWD/ . /a. out.

A handy way to use lookup pec is to use the built-in NightTrace function
process_name (). For example:

format (“My PC is %s”, lookup pc(argl,process name()))

substitutes the name of the process associated with the current trace event.

16-191

NightTrace RT User’s Guide

RETURN TYPES
A string is always returned from Lookup pc () regardless of whether it can locate

the specified file or can obtain symbolic information from it. At a minimum, the
string returned includes the address passed in as pc_valuein hexadecimal notation.

16-192

Using Expressions

Profile References

Profile references provide a means for referencing a set of one or more trace events which
may be restricted by conditions specified by the user.

Profile references can be used within trace event functions (see “Trace Event Functions”
on page 16-18).

A profile reference is simply the name of the profile.

Profiles are created and managed using the Profiles Definition panel (see“Profile Def-
inition Panel” on page 13-1 for more information).

16-193

NightTrace RT User’s Guide

16-194

17
Kernel Tracing

This chapter provides an introduction to kernel tracing. It also discusses the steps required
to produce a highly detailed picture of kernel activity with NightTrace. You can customize
the default NightTrace kernel timelines or combine kernel information with user-applica-
tion trace information.

NOTE

Not all operating system distributions support NightTrace kernel
tracing. See “Kernel Dependencies’ on page B-1 for more infor-
mation.

NightTrace transforms the raw kernel events as defined in
/usr/include/linux/tracer.h to NightTrace events. The raw kernel event num-
bers are biased by the value 4300 to form the NightTrace event ID number. Normally, the
arguments logged with the raw kernel events are directly converted to integer-sized Night-
Trace arguments. There are some exceptions which are noted in this chapter.

Primary Kernel Trace Events

The following kernel trace events are of primary interest:

¢ SCHEDCHANGE

¢ SYSCALL ENTRY,SYSCALL EXIT, SYSCALL SUSPEND,
and SYSCALL RESUME

* IRQ ENTRY, IRQ EXIT, SOFT_ IRQ ENTRY,
and SOFT IRQ EXIT

¢ TRAP_ENTRY, TRAP EXIT, TRAP_SUSPEND, and TRAP_RESUME

® PROCESS, NETWORK, and MEMORY

These trace events and several others are enabled by default when starting a kernel trace
daemon. You can change the default enabled event set in ntrace in the Enabled
Events area of the Edit Daemon Definition dialog or using -events command line
option to ntracekd.

The following sections discuss the primary trace events.

17-1

NightTrace RT User’s Guide

Context Switch Trace Event

There is only one context switch trace event:
SCHEDCHANGE argl

This trace event is logged whenever a process has been switched in and is ready to
be run on a specific CPU. Because only one process can run on a given CPU at a
time, this trace event also signifies that the process that was running on the CPU
immediately prior to the context switch trace event has been switched out and can
no longer run. Thistrace event has one argument:

argl

The process identifier (PID) of the process being switched in. Thisinforma-
tion is somewhat redundant, sinceit isidentical to the PID that is aready asso-
ciated with the trace event. A PID of 0 indicates that the CPU isidle.

Thisidentifier isidentical to the return value of the gettid (2) system call.
See “pid()” on page 16-44.

NOTE:

The SCHEDCHANGE event argument differs from the argument
logged with the corresponding raw kernel event as described in
/usr/include/linux/tracer.h.

Interrupt Trace Events

There are two trace events associated with machine interrupts:
IRQ ENTRY argl arg2 arg3
This trace event is logged whenever an interrupt occurs. It has three arguments:
argl
Reserved for future use
arg2

The interrupt nesting level used by the pre-defined kernel pages to graph the
different heights associated with the nesting level. This argument will be 1 for
the first interrupt, 2 for a second interrupt that interrupted the first interrupt, 3
for athird interrupt that interrupted the second interrupt, etc.

arg3

The interrupt vector number that indicates the type of interrupt. Thisis an
index into the vector string table that is contained within the vectors file
generated by NightTrace when consuming kernel data. For more information
about the vector string table, see “Kernel String Tables” on page 17-17.

17-2

Kernel Tracing

IRQ EXIT arglarg2arg3

This trace event is logged whenever an interrupt is exited. Its arguments are identi-
cal to those of the IRQ_ENTRY trace event.

NOTE:

The IRQ_ENTRY and IRQ EXIT event arguments differ from
their raw kernel counterparts as described in
/usr/include/linux/tracer.h.

Additional exception processing is done on behalf of the kernel by kernel daemons
that run as user-level processes. Such exception processing is identified by the fol-
lowing two events:

SOFT_IRQ ENTRY arglarg?
SOFT IRQ EXIT

These event pairs surround soft interrupt processing and are usually associated with
aksoftirqg daemon process.

The arguments logged with SOFT_IRQ ENTRY areinternal kernel parameters
which areexplained in /usr/include/linux/tracer.h.

Exception Trace Events

There are four trace events associated with exceptions:
TRAP ENTRY arglarg2arg3

This trace event is logged whenever a machine exception occurs. It has three argu-
ments:

argl

This argument contains the value of the exception vector number that indi-
cates the type of exception. Thisis an index into the vector string table that
is contained within the vectors file. For more information about the vector
string table, see “Kernel String Tables” on page 17-17.

arg2

This argument contains the value of the program counter where the exception
occurred.

arg3

This argument contains the value of the faulting address, for those exception
types which involved virtual memory faults.

17-3

NightTrace RT User’s Guide

TRAP EXIT argl

This trace event is logged whenever exception processing is completed. It has one
argument that isidentical to the first argument that islogged with the TRAP_ENTRY
trace event.

TRAP SUSPEND argl
TRAP RESUME argl

These trace events are logged when exception processing is suspended before it is
completed, and subseguently resumed. A TRACE _SUSPEND event will be followed
immediately by a SCHEDCHANGE event which signifies a context switch to another
process while the process that caused the exception is blocked pending exception
processing completion. The single argument logged for both events is the exception
vector number associated with the originating TRAP_ENTRY event.

Syscall Trace Events

There are four trace events associated with system calls:

17-4

SYSCALL ENTRY argl arg2 arg3
This trace event islogged whenever a system call is entered. It has three arguments:
argl

This argument is the value of the program counter from which the system call
was made. Depending on the system type, this value may not be particularly
useful as many system calls occur from the same page in virtual memory,
commonly referred to asthe fast system call page.

arg2

Thisargument is the value of the system call number that identifies the system
cal. Thisisan index into the pre-defined syscall string table.

arg3

This argument is the value of the device number that indicates the type of
device that is associated with the system call, if any. Thisis an index into the
pre-defined device string table.

For more information about the pre-defined syscall and device string tables,
see “Kernel String Tables” on page 17-17.

SYSCALL EXIT argl arg2 arg3

This trace event is logged whenever a system call is completed. It has three argu-
ments; the second and third arguments are identical to the second and third argu-
ments logged with the originating SYSCALL ENTRY trace event. The first argu-
ment is the value returned by the system call.

Kernel Tracing

NOTE:

The return value of the system call is only available on RedHawk
version 2.3 and beyond. On previous versions, the value will be
zero, regardless of the success or failure of the system call.

SYSCALL SUSPEND argl arg2 arg3
SYSCALL RESUME argl arg2 arg3

These trace events are logged when system call processing is suspended beforeiit is
completed, and subsequently resumed. A SYSCALIL_SUSPEND event will be fol-
lowed immediately by a SCHEDCHANGE event which signifies a context switch to
another process while the process that executed the system call is blocked pending
system call processing completion. The arguments logged for both events are identi-
cal to the arguments associated with the originating SYSCALL _ENTRY event.

NOTE:

The SYSCALL ENTRY and SYSCALL_ EXIT event arguments
differ from their raw kernel counterparts as described in
/usr/include/linux/tracer.h.

Kernel Work Events

Kernel work events occur during system calls, exceptions, and interrupt processing. They
include the following events:

PROCESS arglarg2arg3

The PROCESS event represents process creation, exit, and signalling events. The
following arguments provide detail:

argl

17-5

NightTrace RT User’s Guide

This argument is an event code specific to PROCESS events as defined by
/usr/include/linux/tracer.h. The codes and their mean-

ings are described in the Table 17-1:

Table 17-1. PROCESS Event Codes

Code Meaning

1 Kernel thread creation

2 Process creation (fork or
clone)

3 Process exit

4 Process wait

5 Process signal

6 Process wake-up

arg2

The meaning of this argument is dependent on the value of argl. Normally,
this argument is the process ID of the process associated with the event. How-
ever, when asignal is sent, this argument is the signal number.

arg3

The meaning of this argument is dependent on the value of argl. Normally,
this argument is the value of an internal kernel function pointer. However,
when asignal is sent, this argument is the process ID of the process being sig-

nalled.

NETWORK

This event islogged to indicate networking activity.

This argument is an event code specific to NETWORK events as defined
by /usr/include/linux/tracer.h. The codes and their mean-

ings are described in Table 17-2:

Table 17-2. NETWORK Kernel Event Sub-ID Codes

Meaning

A packet was received

A packet was sent

argl
Code
1
2
arg2

Thisargument isan internal kernel data value associated with the event.

17-6

Kernel Tracing

MEMORY

This event islogged to indicate a variety of virtual memory events.

argl
Thisargument is an event code specific to MEMORY events as defined by
/usr/include/linux/tracer.h. The codes and their meanings
are described in Table 17-3:
Table 17-3. MEMORY Kernel Event Sub-ID Codes
Code Meaning
1 Allocating pages
2 Freeing pages
3 Swapping in pages
4 Swapping out pages
5 Start to wait for page
6 End waiting for page
arg2

This argument isan internal kernel data val ue associated with the event.

Additional Kernel Events

There are many more kernel events that occur other than those described in the sections
above. They are defined by the enumerated type event id in the
/usr/include/linux/tracer.h header file. Not all events defined in that file are
enabled by default.

For many kernel events, a corresponding structure is defined. The content of the structure
contains additional detail describing the event. The structure is unpacked into individual
arguments which are logged with the event. As many integer arguments are logged as
required to cover the size of the structure.

For example, an I1pC kernel event includes data in the following structure, as defined by
/usr/include/linux/tracer.h:

17-7

NightTrace RT User’s Guide

/* TRACE EV_IPC */

typedef struct {
unsigned int event sub id;
unsigned int event datal;
unsigned int event_ data2;

} trace ipc;

The following arguments are logged with an IPC event:
argl
Thisfirst word of the structure -- event _sub_id
arg2
The second word of the structure -- event _datal
arg2
Thethird word of the structure -- event _data?2
The kernel includes a cusTOM event which can contain dynamically-sized data. This flex-

ible unpacking scheme allows new dynamically-sized events to be created and logged
effectively by NightTrace.

Logging Custom Kernel Events

The cusTOM event is not enabled by default in kernel trace daemons. You can change the
default enabled event set in ntrace in the Events area of the Edit Daemon Defini-
tion dialog or using the - -events command line option to ntracekd, e.g:

ntracekd --size=20M --events=+CUSTOM data-file

17-8

Kernel Tracing

From User Programs
User programs can log cUSTOM kernel trace events with ioct1 calls.
Thefollowing structureis defined in /usr/include/ntrace.h:

typedef struct {

unsigned int id; // Custom event ID
unsigned int data_size; // Size of optional data
void * data; // Optional data

} nt_trace custom;

The following code fragment provides an example of how to log a custom kernel event
from auser application:

#include <ntrace.h>
#include <fcntl.h>

{ int f4;
int err;
typedef struct
int 1i;
int j;
double d;
} my data t;
my data t data = { 47, 0, 3.14159 };
nt trace custom event;
event.id = 17;
event.data size = sizeof (data) ;
event.data = &data;
fd = open (“/dev/tracer”, O _RDWR, O0);
err = ioctl (fd,NT TRACER LOG CUSTOM EVENT, &event)==-1;
close (£4d) ;

From Kernel Modules

The following code fragment provides an example of how to insert CuUsTOM kernel trace
events inside kernel code; for example, akernel module.

17-9

NightTrace RT User’s Guide

#include <linux/tracer.h>

typedef struct {
int i;
int j;
double d;
} my data_t;
my data t data = { 47, 0, 3.14159 };
TRACE_CUSTOM (17, &data, sizeof (data))

Retrieving Custom Events

17-10

Custom events are always logged with the trace event ID of “CUSTOM”, which is the
value 4319.

A minimum of three data values are always logged with it; these correspond to the compo-
nents of the following structure defined in /usr/include/linux/tracer.h:

typedef struct {

unsigned int id; // Custom Event ID
unsigned int data size; // Size of data recorded by event
void * data; // Data recorded by event

} trace custom;

This structure corresponds directly to nt_trace_custom from the example under
“From User Programs” on page 17-9 and the arguments to the TRACE_cUSTOM call in the
example under “From Kernel Modules’ on page 17-9 (although the order of the arguments
in the Kernel Modules example differs from the order of the components).

The additional data logged with the event immediately follows as additional values. The
entire set of values, those from the trace custom structure and those from additional
supplied dataitems if any, are logged as a continual block of memory.

Note that the actual value of the trace custom.data component is not very interest-
ing from within ntrace. The actually data it originally pointed to now immediately fol-
lowsthe trace custom.data component in memory.

Extracting the values of interest withinntrace isbest donewith theblk arg family of
NightTrace functions. These functions all take a byte offset as their first argument. The
function name itself defines the type (and therefore the size) of the data value to be
extracted; for example, b1k arg dbl extracts double-precision floating point.

The following table shows NightTrace expressions and their corresponding value for the
event logged in both examples above (the examples were constructed so that they effec-
tively logged the same data val ues):

Kernel Tracing

Expressions
1386 x86_64 Value Comment
blk arg(0) blk arg(0) 17 This corresponds to the event . 1d component in
the User Program example and the first argument to
TRACE_CUSTOM in the Kernel Modules example.
blk arg(12) blk arg(16) 47 This corresponds to the data . i component in both
examples.
blk arg dbl(20) | blk arg dbl(24) 3.14159 | This corresponds to the data . d component in both
examples.

The offsets supplied in the b1k arg* expressions differ between architectures; the size
of the void* component of trace custom is4 bytes on i386 systems but 8 bytes on
x86_64 systems.

NOTE

By default within ntrace, the entire block of memory is dis-
played as a series of integer-sized arguments since the layout of
the additional dataitemsis unknown to NightTrace.

Viewing Kernel Trace Event Files

NightTrace automatically builds kernel timelines when ntrace isinvoked with kernel
data (see“Kernel Timelines’ on page 17-12). The number of CPUs is detected from the
kernel trace data and controls how the page is built.

In addition, you may customize a kernel timeline using the Build Custom Kernel
Timeline dialog (see “Custom Kernel Timeline...” on page 8-19) which is accessed by
selecting the Custom Kernel Timeline... menuitem fromthe Timelines menu onthe
NightTrace Main Window (see “ Custom Kernel Timeline...” on page 8-19).

17-11

NightTrace RT User’s Guide

Kernel Timelines

Figure 17-1.

Figure 17-1 shows a sample kernel timeline for a quad CPU system.

Sample Kernel timeline

raptor Timeline

raptor CPU O

local_timer

_newselect

idle

IRQ_EXIT

raptor CPU 1

local_timer

write socket

xpmxterm

SYSCALL_EXIT

raptor CPU 2

eth

read socket

sshd:

SYSCALL_ENTRY

raptor CPU 3

local_timer

_newselect

idle

IRGQ_EAIT

Interrupt

Exception

Syscall

KernelEven

. 74631 . 74661 (. 74691
ol b P o P o o T Ly

p.1s il.1s F.‘Is |3.1s [l.‘ls-
o b b b g v b b e b L b

Start Time

1.746016242

Current Time

1.7465293 64

End Time

1.747281942

Cruration

0.001265700

Hower offset=21767 cpu=1 id=NETWORK proc=ksoftirgd/1 thr=7 time(sec)=1.746771921 (0.000245129 from curren
Packet sent (protocol=IP)

Current offset=21676 cpu=1 id=5%YSCALL_EXIT proc=xpmxterm thr=7434 time(sec)=1.746526792
Exited system call write (Success) returnad 0x15¢ @

(1)

17-12

For each CPU, several rows of information are displayed. The position of the current time
line determines the values that appear on the kernel timelines. Moving the current time
line within the current interval does not change the graphical displays. However, the tex-
tual displays always reflect the last values prior to or at the current time line.

The following sections discuss all of the different pieces of information in detail
* “Node and CPU Information” on page 17-13
* “Context Switch Information” on page 17-13
* “Interrupt Information” on page 17-14
* “Exception Information” on page 17-14
* “System Call Information” on page 17-15

Kernel Tracing

* “Process Information” on page 17-16
* “Kernel Events’ on page 17-16
* “Color Information” on page 17-17

Node and CPU Information

Figure 17-2 shows the Grid Label (see “Label” on page 12-20) that appears on kernel
timelines which displays information about the node and CPU corresponding to the trace
data being displayed.

|nstar CPU 1 | :

Figure 17-2. Node and CPU Box

The node identifies the node from which the displayed data was obtained.

The CPU identifies the logical CPU to which the displayed data corresponds. Logical
CPU numbers are related to, but not necessarily identical to, physical CPU numbers.

The epu (1) command displays the relationship of physical CPU numbers to logical
CPU numbers, but since most all interfaces use logical CPU numbers, it is not normally of
significant interest.

Context Switch Information

| | O
C M= =TT

Figure 17-3. Context Switch Lines

Figure 17-3 shows an example of several context switch lines. Context switch lines are
superimposed on the exception and system call graphs. They indicate that the kernel has
switched out the process that was previously running on the CPU and switched in a new
process. There is a direct correlation between context switch lines and the Process Infor-
mation box: the Process Information box shows the process associated with the context
switch line that immediately precedes the current time line.

17-13

NightTrace RT User’s Guide

Interrupt Information

fb=ched

Figure 17-4. Interrupt Box and Interrupt Graph

Figure 17-4 shows an interrupt box and an interrupt graph. The interrupt graph displays a
state that is drawn whenever an interrupt is executing on the associated CPU. Interrupts
can be interrupted while executing, and the interrupt graph shows this interrupt nesting by
increasing the height of the state bar. Although interrupts can nest, all interrupts must
complete before the process they interrupt can be switched out. Therefore, you will never
see a context switch occur in the middle of an interrupt.

The interrupt box displays the name of the last interrupt prior to or immediately at the cur-
rent time line that executed (and may still be executing) on the associated CPU. It can be
used with the interrupt graph to identify any interrupts that are currently visible on the
graph. Simply move the current time line onto a graphed interrupt, and the interrupt box
will update to display the name of the interrupt.

Because the interrupt box displays the name of the last interrupt that executed, it is possi-
blefor there to be no interrupts visible on the interrupt graph even though the interrupt box
contains a valid interrupt name. This signifies that the last interrupt on the CPU ended
prior to the beginning of the current interval.

An interrupt that is seen very often is the timer interrupt, usually once every 10 millisec-
onds. Theinterrupt box is a Data Box (“Data Box” on page 12-20) and the interrupt graph
isaData Graph (“Data Graph” on page 12-12). See “Creating Timeline Objects’ on page
12-8 for more information on configuring Data Boxes and Data Graphs.

Exception Information

Fage-Fault I

Figure 17-5. Exception Box and Exception Graph

17-14

Figure 17-5 shows a exception box and an exception graph. The exception graph displays
a state that is drawn whenever an exception is executing on the associated CPU. Unlike
interrupts, exceptions cannot nest, so they are always graphed with the same height.

Context switch lines are superimposed on exception graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of an exception. Usually, this
does not indicate that the exception has ended, only that it has been suspended because the
process that originated the exception has switched out. The exception resumes when the
process is switched back in again. An example of an exception being suspended and
resumed can be seen at the left end of the exception graph in Figure 17-5.

Kernel Tracing

The exception box displays the last exception prior to or at the current time line that
executed (and may still be executing) on the associated CPU. It can be used with the
exception graph to identify any exceptions that are currently visible on the graph. Simply
move the current time line onto a graphed exception, and the exception box will update to
display the name of the exception.

Because the exception box displays the name of the last exception that executed, it is pos-
sible for there to be no exceptions visible on the exception graph even though the excep-
tion box contains avalid exception name. This signifies that the last exception on the CPU
ended prior to the beginning of the current interval.

The exception box isaData Box (“Data Box” on page 12-20) and the last exception graph

is a State Graph (see “ State Graph” on page 12-11). See “Creating Timeline Objects’ on
page 12-8 for more information on creating and configuring Data Boxes and State Graphs.

System Call Information

=il s —— .

Figure 17-6. System Call Box and System Call Graph

Figure 17-6 shows a system call box and a system call graph. The system call graph dis-
plays a state that is drawn whenever a system call is executing on the associated CPU.
Unlike interrupts, system calls cannot nest, so they are always graphed with the same
height.

Context switch lines are superimposed on system call graphs. It is common to see a con-
text switch line at what looks like the very end (or beginning) of a system call. Usually,
this does not indicate that the system call has ended, only that it has been suspended
because the process that originated the system call has switched out. The system call
resumes when the process is switched back in again. An example of a system call being
suspended and resumed can be seen at the right end of the system call graph in the figure.

The system call box displays the last system call prior to or at the current time line that
executed (and may still be executing) on the associated CPU. If the system call is associ-
ated with a device, the name of the device is shown after the name of the system call.

The system call box can be used with the system call graph to identify any system calls
that are currently visible on the graph. Simply move the current time line onto a graphed
system call, and the system call box will update to display the name of the system call.

Because the system call box displays the name of the last system call that executed, it is
possible for there to be no system calls visible on the system call graph even though the
system call box contains avalid system call name. This signifies that the last system call
on the CPU ended prior to the beginning of the current interval.

It is possible for the first system call logged by a process since kernel tracing began to be
unknown. This can occur if the process is switched in and immediately resumes a system
call that was previously suspended. If this occurs, the system call box will display “can’ t
determine” for the name of the system call.

17-15

NightTrace RT User’s Guide

The system call box is a Data Box (see “Data Box” on page 12-20), and the last system
call graph is a State Graph (see “ State Graph” on page 12-11). See “Creating Timeline
Objects’ on page 12-8 for more information on configuring Data Boxes and State Graphs.

Process Information

pam—panel-icon

Kernel Events

Figure 17-7. Process Information Row

Figure 17-7 shows the Process Information row which includes a process data box (see
“Data Graph” on page 12-12) and a process state graph (see “ State Graph” on page 12-11).
See “Creating Timeline Objects’ on page 12-8 for more information on creating and con-
figuring Data Boxes and State Graphs.

The data box indicates the name of the process (other than /id1le) that last executed on
the CPU prior to or at the current timeline.

The state graph uses multi-colored states to indicate when a process other than /idle is
executing on a CPU. The colors are assigned by NightTrace using a heuristic that takes
into account all processes represented by the data set. You cannot predict which color will
be associated with a specific process, but once the color is assigned, it remains constant
throughout the current NightTrace session.

SYSCALL _EMTRY

17-16

Figure 17-8. Kernel Events Row

Figure 17-8 shows the Kernel Events row which includes a kernel event data box (see
“Data Box” on page 12-20) and a kernel event graph (see “Event Graph” on page 12-10).
See “Creating Timeline Objects’ on page 12-8 for more information on creating and con-
figuring Data Boxes and Event Graphs.

The data box indicates the name of the last kernel event logged for that CPU prior to or at
the current timeline.

The event graph shows a vertical line for every kernel event.

Color Information

Kernel Tracing

Interrupt | Exception
Syzcall kernelEvent

Figure 17-9. Color Key

Figure 17-9 shows the color key that is located on the bottom left of the grid on the
pre-defined kernel timelines.

The text in the color key is color-coded. By default, the word “Interrupt” isred, and all
display objects on the kernel timeline that display information about interrupts are also
red. By default, the word “Exception” isgreen, and al display objectsthat display infor-
mation about exceptions are also green. By default, the word “Syscall” is blue, and all
display objects that display information about system calls are also blue. By default, the
word “KernelEvent” isdark red, and al display objectsthat display kernel eventsin that
row are dark red.

Currently, the default colors cannot be modified. Setting color preferences will be pro-
vided in afuture update.

Kernel String Tables

There are nine kernel related pre-defined string tables. They are:
vector

This string table contains the interrupt and exception vector names associated with
the system that the kernel tracing was performed on. It is contained in the vectors
file

Thistable isindexed by an exception/interrupt vector number or an exception/inter-
rupt vector name. Examples of using thistable are:

get string(vector, arg3())
get string(vector, 15)
get item(vector, “ide0”)

syscall

This string table contai ns the names of all the possible system calls that can occur on
the system. It is contained in the vectors file.

This table is indexed by a system call number or a system call name. Examples of
using thistable are:

17-17

NightTrace RT User’s Guide

get string(syscall, 44)
get string(syscall, arg2())
get item(syscall, “fork”)

device

This string table contains the names the devices that are currently configured in the
kernel. It iscontained in the vectorsfile.

Thistable isindexed by a device number or adevice name. Examples of using this
table are:

get _string(device, arg3())
get string(device, 720900)
get item(device, “gd”)

name pid

This string table contains the name of each node's process ID table. It is dynami-
cally built as the trace event files are processed upon initialization.

node_name

This string table contains the names of all nodes that have a trace event file associ-
ated with them. It is dynamically built as the trace event files are processed upon
initialization.

pid_nodename

This string table contains the names associated with all process identifiers found in
trace event files for node name nodename. It is dynamically built as the trace event
files are processed upon initialization. It is contained in the vectors file. Because
process identifiers are not guaranteed to be unigue across nodes, using the pre-
defined string table pid to get the process name for a process ID may result in an
incorrect name being returned from the table. Using the node process ID tables
ensures that the correct process nameis returned for a process ID unless the process
name is not unique on that particular node.

These tables are indexed by a process identifier or a process name. Examples of
using these tables are:

get string(pid hal, pid())
get item(pid simulator, “odyssey”)

Note that using the NightTrace function process_name () is more convenient
than having to dynamically locate and index the correct pid nodename table to
get the current process name.

For example, the following two expressions are equivalent:

process_name ()
get string(get string(name pid,node_id()),pid())

syscall nodename

17-18

This string table contains the names of all possible system calls that can occur in
trace event files for node name nodename. It is contained in the vectorsfile.

Kernel Tracing

Thistable is indexed by a system call number or a system call name. Examples of
using thistable are:

get string(syscall systemx, 31)
get string(syscall systemy, arg2())
get item(syscall systemz, “read”)

vector nodename

This string table contains the interrupt and exception vector names associated with
trace event files for node name nodename. It is contained in the vectorsfile.

Thistable isindexed by an exception/interrupt vector number or an exception/inter-
rupt vector name. Examples of using thistable are:

get string(vector machinel, arg3())
get string(vector machine2, 585)
get item(vector system3, “data access”)

device nodename

This string table contains the names of devices configured in the kernel for trace
event files from node name nodename. It is contained in the vectorsfile.

Thistableisindexed by a device number or a device name. Examples of using this
table are:

get string(device simulatorl, arg3())
get string(device simulator4, 3604484)
get item(device controller, “rtc”)

The pid string table is also used by the kernel timelines. For more information on the
pid string table, see “ Pre-Defined Strings Tables” on page 7-17.

17-19

NightTrace RT User’s Guide

17-20

18
Using the NightTrace Analysis API

The NightTrace graphical user interface is one of the primary tools for analyzing trace
data (see “ The NightTrace Main Window” on page 8-1). However, the NightTrace Analy-
sis Application Programming Interface provides users with even further control in sum-
marizing or monitoring trace data.

The NightTrace Analysis API provides a basic interface to the data produced by Night-
Trace alowing users to process NightTrace data programmatically. It allows usersto cus-
tomize their analysis of NightTrace data, both expressly via user-written programs and as
customized batch summaries.

For instance, a user may want to provide customized reports on user application activity,
monitor a user application or the operating system itself and take action when a specific
situation occurs, or filter a trace data file (to significantly reduce its size) for subsequent
use with the GUI or API.

The NightTrace Analysis APl can use either NightTrace data files generated by Night-
Trace kernel or user daemons or may reference afile descriptor connected to a streaming
daemon as the input source.

The API allowsthe user to control the order in which the datais accessed and provides for
event filtration as well as customized event and state definition specification using condi-
tions currently provided in the NightTrace GUI tool.

In addition, all functions supported by the NightTrace GUI expression language are pro-
vided as user-callable functions.

The following sections describe the data structures and functions that comprise the Night-
Trace Analysis API.

Sample programs using these data structures and functions are also provided (see “Night-
Trace Analysis APl Examples’ on page E-1).

NightTrace Analysis Application Programming Interface

The NightTrace Analysis Application Programming Interface consists of a number of data

structures (see “Data Structures’ on page 18-2) and functions (see “Functions’ on page

18-9).

These data structures and functions are accessible viathe C header file:
/usr/include/ntrace analysis.h

and the Clibrary:

/usr/lib/libntrace analysis.a

and can be called by C and C++ programs.

18-1

NightTrace RT User’s Guide

Data Structures

tr_arg_t

18-2

The following data structures are part of the NightTrace Analysis Application Program-
ming Interface:

- tr_arg t(see“tr_arg_t" on page 18-2)

- tr cb_t(see“tr_cb_t” onpage18-3)

- tr cond cb func_t (see“tr_cond_cb_func_t" on page 18-3)
- tr cond func t (see“tr_cond func_t” on page 18-4)

- tr cond_t (see“tr_cond_t” on page 18-4)

- tr dir t (see“tr_dir_t” on page 18-4)

- tr offset t (see“tr_offset_t” on page 18-4)

- tr state action_t (See“tr_state action_t" on page 18-5)

- tr state cb func_t (see“tr_state cb func_t” on page 18-5)
- tr state info_ t (see“tr_state info_t” on page 18-6)

- tr_ state_ t (see“tr_state t” on page 18-7)

- tr stream event t (See“tr_stream_event_t” on page 18-7)
- tr stream func_t (see“tr_stream_func_t" on page 18-7)

- tr_ string node_t (see“tr_string_node t” on page 18-7)

- tr_ t(see"tr_t” on page 18-8)

See “Functions’ on page 18-9 for information about the functions available in the Night-
Trace Analysis API.

tr arg t isdefined as:

typedef enum { int arg,
long arg,
dbl arg,
long dbl arg,
string arg,
long long arg } tr arg t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

Using the NightTrace Analysis API

tr cb_t
tr cb_t isanopaque handle that identies a particular callback. It isdefined as:
typedef int tr cb t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
AnalysisAPI.

tr_cond_cb_func_t

tr cond cb func t isdefined as:

typedef void (*tr cond cb func t) (tr t t,
tr _cond_t C,
tr offset t offsat,

int occurrence,
void * oontext,
int * disable) ;
PARAMETERS
t
data set handle
c

handle of the condition associated with this call
offset

offset of the trace event satisfying the condition
occurrence

number of times the condition has been satisfied thus far
context

user-defined field specified when the callback is defined
disable

pointer to an integer; if the user setsthe integer to a non-zero value, the registration
of this function for the specified condition will be disabled for the remainder of the
iteration pass

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

18-3

NightTrace RT User’s Guide

tr_cond_func_t

tr_cond _t

tr_dir_t

tr_offset t

18-4

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr offset t” on page 18-4

tr cond_ func t isdefined as:
typedef int (*tr cond func t) (tr_t t,
tr offset t event offset,
void *context) ;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

tr cond_t isanopague handle used to identify a particular condition. It isdefined as:
typedef long tr cond t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
AnalysisAPI.

tr dir t isdefinedas:
typedef enum {tr forward, tr backward} tr dir t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

tr offset t isdefinedas:
typedef int tr offset t;

Values of type tr offset t represent the offset (aka position) of atrace event within
the data set. Event offsets are assigned as monotonically increasing integers, starting with
zero asthe offset of the first event in the data set.

Functionswhich return tr_offset t may return TR_EOF, which indicates exceeding
past either the beginning or end of the data set, respectively.

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

Using the NightTrace Analysis API

tr_state_action_t

tr state action_ t isanenumerated type which is used to specify when a certain
function will be called. It is defined as:

typedef enum { tr state start action,
tr state end action,
tr state active action,
tr state inactive action }
tr state action t;

where:
tr state start action
called for every event which starts the state
tr state_end action
called for every event which ends an active state
tr state active action
called for every event for which the state is active
tr state inactive action

called for every event for which the state is inactive

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

tr_state cb_func_t

tr state cb_ func tisdefined as.

typedef void (*tr state cb func t) (tr t t,
tr state t date,
tr offset t offsat,

int occurrence,
void * context,
int * disable) ;
PARAMETERS
t
data set handle
State

handle of the state associated with this call

18-5

NightTrace RT User’s Guide

tr_state info_t

18-6

offset

offset of the trace event satisfying the condition
occurrence

number of times the condition has been satisfied thus far
context

user-defined field specified when the callback is defined
disable

pointer to an integer; if the user setsthe integer to a non-zero value, the registration
of thisfunction for the specified state will be disabled for the remainder of the itera-
tion pass

See “Data Structures’” on page 18-2 for other data structures included in the NightTrace
Analysis API.

tr state_info t isdefined as:

typedef struct {
tr offset t start offset;
tr offset t end offset;
double gap;
double duration;
int count;

} tr state info t;

where:
start_offset
offset of the event that started the specified state
end offset

offset of the event that ended the specified state

gap
time in seconds between the beginning of the last instance of the specified
state and the end of the previous instance (or zero if no previous instance
exists)

duration
time in seconds during which the specified state was active

count

number of completed instances of the specified state

tr_state_t

tr_stream_event_t

tr_stream_func_t

tr_string_node_t

Using the NightTrace Analysis API

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
AnalysisAPI.

tr state_ t isanopague handle used to identify a particular state. It isdefined as:
typedef long tr state t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
AnalysisAPI.

tr stream event t isdefined as.

typedef enum { tr stream overflow,
tr stream stall } tr stream event t;

NOTE

The tr_stream overflow event has been deprecated and no
longer occurs.

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
AnalysisAPI.

tr stream func t isdefined as.

typedef void (*tr_stream func t) (tr_t t,
tr stream event t event);

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

tr string node t isdefined as:

typedef struct {
int item;
char * wvalue;

} tr string node t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
Analysis API.

18-7

NightTrace RT User’s Guide

tr_t
tr t isan opague handle used to identify a particular data set. It is defined as:
typedef long tr t;

See “Data Structures’ on page 18-2 for other data structures included in the NightTrace
AnalysisAPI.

18-8

Functions

Using the NightTrace Analysis API

The functions that comprise the NightTrace Analysis Application Programming Interface
are broken down into the following categories:

“API Initialization and Destruction” on page 18-14

“Error Detection, Collection, and Reporting” on page 18-16
“Input Specification and Streaming Control” on page 18-18
“Event Offset Positioning” on page 18-25

“Basic Event Attribute Functions” on page 18-30
“Conditions’ on page 18-90

“ State-oriented Interfaces” on page 18-122

“Qutput Function” on page 18-138

“String Table Functions’ on page 18-140

“Callback Interfaces’ on page 18-145

The following is acomplete list of functionsincluded in the NightTrace Analysis API:

tr activate () (see“tr_activate()” on page 18-133)

tr append table () (see“tr_append_table()” on page 18-143)
tr arg_dbl () (see“tr_arg_dbl()” on page 18-38)

tr arg dbl () (see“tr_arg dbl_()” on page 18-45)

tr_arg int () (see“tr_arg_int()" on page 18-36)

tr arg_int () (see“tr_arg_int_()” on page 18-44)

tr argtype () (see“tr_argtype()” on page 18-50)

tr argtype () (see“tr_argtype ()" on page 18-51)

tr blk arg() (see“tr_blk_arg()” on page 18-51)

tr blk arg () (see“tr_blk_arg_()” on page 18-52)

tr blk arg bits() (see“tr_blk_arg bits()” on page 18-53)
tr blk arg bits () (see“tr_blk_arg_bits ()" on page 18-54)
tr blk arg char () (see“tr_blk_arg char()” on page 18-55)
tr blk _arg char () (see“tr_blk_arg_char_()" on page 18-55)
tr blk arg dbl () (see“tr_blk_arg_dbl()" on page 18-56)

tr blk arg dbl () (see“tr_blk_arg dbl_()” on page 18-57)

tr blk arg flt() (see“tr_blk_arg_flt()" on page 18-58)

18-9

NightTrace RT User’s Guide

18-10

tr blk arg flt () (see“tr_blk_arg flt ()" on page 18-58)
tr blk arg long() (see“tr_blk_arg long()” on page 18-59)
tr blk arg long_ () (see“tr_blk_arg_long_()" on page 18-60)

tr blk arg long bits() (see “tr_blk_arg_long bits()" on page
18-61)

tr blk arg long bits () (see “tr_blk_arg_long_bits ()" on page
18-62)

tr blk arg long dbl() (see “tr_blk_arg long dbl()" on page
18-63)

tr blk arg long dbl () (see “tr_blk_arg long dbl_()" on page
18-63)

tr blk arg long long() (see “tr_blk_arg_long_long()" on page
18-64)

tr blk arg long long () (see “tr_blk_arg_long_()" on page
18-60)

tr blk arg long ubits () (see “tr_blk_arg_long_ubits()” on page
18-66)

tr blk arg long ubits () (see “tr_blk_arg_long ubits ()" on
page 18-67)

tr blk arg_short () (see”tr_blk_arg_short()” on page 18-68)

tr blk arg short () (see“tr_blk_arg_short ()" on page 18-68)
tr blk arg string() (see“tr_blk_arg_string()” on page 18-69)
tr blk arg string () (see“tr_blk_arg_string_()" on page 18-70)
tr blk arg ubits() (see“tr_blk_arg ubits()” on page 18-71)

tr blk arg ubits () (see“tr_blk_arg ubits ()" on page 18-72)
tr blk _arg uchar () (see“tr_blk_arg_uchar()” on page 18-73)

tr blk arg uchar () (see“tr_blk_arg uchar_()" on page 18-74)
tr blk arg ushort () (see“tr_blk_arg_ushort()” on page 18-75)
tr blk arg ushort () (see“tr_blk_arg_ushort ()" on page 18-75)
tr cancel cb () (see“tr_cancel_cb()” on page 18-146)

tr close () (see“tr_close()” on page 18-20)

tr_cond_and () (see“tr_cond_and()” on page 18-115)

tr cond cb () (see“tr_cond_ch()" on page 18-147)

tr cond_ copy () (see“tr_cond_copy()” on page 18-116)
tr_cond_cpu () (see“tr_cond_cpu()” on page 18-96)

tr cond cpu clear () (see“tr_cond_cpu_clear()” on page 18-97)

Using the NightTrace Analysis API

tr cond create () (see“tr_cond_create()” on page 18-91)

tr cond expr and() (see“tr_cond_expr_and()” on page 18-111)
tr cond _expr_ or () (see“tr_cond_expr_or()” on page 18-112)

tr cond find() (see“tr_cond_find()” on page 18-92)

tr cond func and () (see“tr_cond_func_and()” on page 18-108)
tr cond func clear () (see“tr_cond func_clear()" on page 18-110)
tr cond func or () (see“tr_cond_func_or()” on page 18-106)

tr cond id() (see“tr_cond_id()" on page 18-93)

tr cond_id clear () (see“tr_cond_id_clear()” on page 18-95)

tr cond id range () (see“tr_cond_id range()” on page 18-94)
tr cond name () (See“tr_cond_name()” on page 18-118)

tr cond node () (see“tr_cond_node()" on page 18-104)

tr cond node clear () (see“tr_cond_node clear()” on page 18-105)
tr cond not () (see“tr_cond_not()” on page 18-113)

tr cond offset () (see“tr_cond offset()” on page 18-121)

tr cond or () (see“tr_cond_or()” on page 18-114)

tr cond pid() (see“tr_cond_pid()” on page 18-98)

tr cond pid clear () (see“tr_cond_pid_clear()" on page 18-100)
tr cond pid name () (see“tr_cond_pid_name()” on page 18-99)
tr cond register () (see“tr_cond_register()” on page 18-120)
tr cond reset () (see“tr_cond_reset()” on page 18-92)

tr cond satisfy () (see“tr_cond_satisfy()” on page 18-118)

tr cond satisfy () (see“tr_cond_satisfy ()" on page 18-119)
tr cond tid() (see“tr_cond_tid()" on page 18-101)

tr cond tid clear () (see“tr_cond_tid clear()” on page 18-103)
tr cond tid name () (see“tr_cond_tid_name()” on page 18-102)
tr copy_ input () (see“tr_copy_input()” on page 18-138)

tr copy input range() (See “tr_copy_input_range()” on page
18-139)

tr cpu() (see”tr_cpu()” on page 18-82)
tr_cpu_ () (see“tr_cpu_()" on page 18-83)
tr create table() (see“tr_create table()” on page 18-142)

tr destroy () (see“tr_destroy()” on page 18-14)

18-11

NightTrace RT User’s Guide

18-12

tr error check () (see“tr_error_check()" on page 18-17)
tr error clear () (see“tr_error_clear()” on page 18-16)
tr free () (see“tr_free()” on page 18-24)

tr get item() (see“tr_get_item()” on page 18-141)

tr get string() (see“tr_get_string()” on page 18-140)

tr _halt () (see“tr_hat()” on page 18-146)

tr_id () (see“tr_id()” on page 18-32)

tr id () (see”tr_id_()” on page 18-32)

tr_init () (see“tr_init()” on page 18-14)

tr iterate () (see“tr_iterate()” on page 18-145)

tr nargs () (see“tr_nargs()” on page 18-35)

tr nargs () (see“tr_nargs ()" on page 18-35)

tr next event () (see"“tr_next_event()” on page 18-25)

tr next event () (see“tr_next_event ()" on page 18-26)
tr node () (see“tr_node()” on page 18-84)

tr node () (see“tr_node ()" on page 18-84)

tr open file () (see“tr_open_file()” on page 18-18)

tr open_ stream() (See“tr_open_stream()” on page 18-19)
tr pid() (see“tr_pid()” on page 18-76)

tr pid_ () (see“tr_pid ()" on page 18-77)

tr prev_event () (see“tr_prev_event()” on page 18-26)

tr prev_event () (see“tr_prev_event_()” on page 18-27)
tr process name () (see“tr_process name()” on page 18-85)
tr process name () (See“tr_process name_()" on page 18-86)
tr search () (see“tr_search()” on page 18-28)

tr seek () (see"tr_seek()" on page 18-29)

tr state active() (see“tr_state active()” on page 18-136)
tr state active () (see“tr_state active ()" on page 18-137)
tr state cb() (see“tr_state ch()" on page 18-148)

tr state create() (See“tr_state create()” on page 18-122)
tr state end cond() (see“tr_state end_cond()” on page 18-131)

tr state end cond clear () (see “tr_state end cond_clear()” on
page 18-132)

Using the NightTrace Analysis API

tr state end id() (see“tr_state end id()” on page 18-127)

tr state end id clear () (see “tr_state end id_clear()” on page
18-129)

tr state end id range () (see “tr_state end id range()” on page
18-128)

tr state find () (see“tr_state find()” on page 18-123)
tr state info () (see"“tr_state_info()” on page 18-134)
tr state _info () (see“tr_state info_()” on page 18-135)
tr state name () (see“tr_state name()” on page 18-124)

tr state start cond() (see “tr_state start_cond()” on page
18-130)

tr state start cond clear() (see “tr_state start_cond_clear()”
on page 18-131)

tr state start id() (see“tr_state start id()” on page 18-125)

tr state start id clear() (see “tr_state start_id _clear()” on
page 18-127)

tr state start id range() (see “tr_state start_id_range()” on
page 18-126)

tr stream notify () (see“tr_stream_notify()" on page 18-21)
tr stream read() (see“tr_stream read()” on page 18-22)
tr stream size () (see“tr_stream_size()" on page 18-23)

tr task_id() (see“tr_task_id()” on page 18-81)

tr task_id () (see“tr_task_id()" on page 18-81)

tr task name () (see“tr_task_name()” on page 18-86)

tr task name () (see“tr_task_name ()" on page 18-87)

tr thread id() (see“tr_thread_id()" on page 18-79)

tr thread id () (see“tr_thread id ()" on page 18-80)

tr thread name () (see“tr_thread_name()” on page 18-88)
tr thread name () (see“tr_thread_name ()" on page 18-88)
tr_tid() (see“tr_tid()" on page 18-78)

tr tid () (see”tr_tid_()” on page 18-78)

tr time () (see”tr_time()” on page 18-33)

tr time () (see“tr_time ()" on page 18-34)

18-13

NightTrace RT User’s Guide

API Initialization and Destruction

tr_init()

tr_destroy()

18-14

The functions related to API initialization and destruction are:
- tr_init () (seepage 18-14)
- tr destroy () (seepage 18-14)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr init () returns an opaque handle that is required for all subsequent API functions
and which identifies the data set.

SYNTAX

extern tr t tr init (void);

RETURN VALUES

Returns an opaque handle that is required for all subsequent API functions and
which identifies the data set; in the event there is insufficient memory,
TR _NO HANDLE will be returned.

See “API Initialization and Destruction” on page 18-14 for related functions. See “Func-
tions” on page 18-9 for a complete list of functions included in the NightTrace Analysis
API.

SEE ALSO

* “tr_t" on page 18-8

tr destroy () freesup any remaining memory associated with a handle returned by
tr init ().

Using the NightTrace Analysis API

NOTE
tr destroy () expectsa pointer to a handle, whereas all other

functions expect the handle itself.

SYNTAX

extern void tr destroy (tr t * t);

PARAMETERS
t

data set handle

See “API Initialization and Destruction” on page 18-14 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_init()” on page 18-14

18-15

NightTrace RT User’s Guide

Error Detection, Collection, and Reporting

tr_error_clear()

18-16

Most individual functions within the API return an indiciation of whether the requested
operation was successful. Most often, zero indicates success, and non-zero indicates fail-
ure. Exceptionsto thisrule are indiciated for each function.

Errors are collected by the APl and can be retreived after calling a series of functions.
The functions related to error detection, collection, and reporting are:

- tr error clear () (Seepage 18-16)

- tr error check () (seepage 18-17)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

tr error clear () isused toflush any collected errors and set the internal error state
to zero, meaning success.

SYNTAX

extern void tr error clear (tr_t t);

PARAMETERS
t

data set handle

See “Error Detection, Collection, and Reporting” on page 18-16 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_error_check()” on page 18-17

tr_error_check()

Using the NightTrace Analysis API

tr error_ check () isused to determine the errors that have occurred since the begin-
ning of the program or since the last time the error list was cleared.

SYNTAX

extern int tr error check (tr t ft,
tr string node t*x*ligt) ;

PARAMETERS
t

data set handle
list

thelist of errors that have occurred (sincethelast call to tr error clear() or
the beginning of the program). For each entry in the list, value describes the error
and item refersto errno (if appropriate). (See “tr_string_node_t” on page 18-7
for more information.)

RETURN VALUES

Returns zero if no errors have occurred (sincethelast call to tr_error clear()

or the beginning of the program); otherwise, returns the number of errorsin the list
of errors pointed to by list. If the user passesin aNULL value for the address of list,
listis not set.

See “Error Detection, Collection, and Reporting” on page 18-16 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr string_node t" on page 18-7

* “tr_error_clear()” on page 18-16

18-17

NightTrace RT User’s Guide

Input Specification and Streaming Control

tr_open_file()

18-18

The functions related to input specification and streaming control are:
- tr _open file() (seepage 18-18)
- tr open stream() (Seepage 18-19)
- tr close() (seepage 18-20)
- tr stream notify () (Seepage18-21)
- tr stream read() (Seepage 18-22)
- tr_stream size () (seepage 18-23)
- tr free() (Seepage 18-24)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr open file () opensthe specified NightTrace datafile and initializes the API for
operation on the contained data set.

NOTE
Currently, only one input source is allowed per handle (until it is

closedviatr close()).

SYNTAX

extern int tr open file (tr t t,
char * filename) ;

PARAMETERS
t

data set handle
filename

the pathname of the NightTrace datafile

RETURN VALUES

Returns zero on success; returns -1 if there is an error opening the datafile.

See “Input Specification and Streaming Control” on page 18-18 for related functions.

tr_open_stream()

Using the NightTrace Analysis API

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO

* “tr_t" on page 18-8

e “tr close()” on page 18-20

tr open stream() associates the specified file descriptor with a stream of raw trace
data. The stream is normally generated by invoking ntraceud or ntracekd with the
- -stream option and piping stdout to the user application's stdin. Alternatively, the
NightTrace GUI can launch a user application providing stdin asthe data stream.

NOTE

Currently, only one input source is allowed per handle (until it is
closedviatr close()).

SYNTAX
extern int tr open stream tr t ft,
int fd,
int unused,
int flags) ;
PARAMETERS
t
data set handle
fd

file descriptor providing streaming raw data
unused

this parameter is not used
flags

may contain the following value:

TR _STREAM SAVE - thisinstructs the API to retain all streamed events in memory
even after they have been consumed. By default, for streaming data, once an event
has been consumed by an API call, its memory will be (eventually) released and it
cannot be referenced subsequently.

18-19

NightTrace RT User’s Guide

tr_close()

18-20

RETURN VALUES

Returns zero on success; returns -1 if there is an error opening the data stream.

See “Input Specification and Streaming Control” on page 18-18 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr stream size()” on page 18-23
* “tr_close()” on page 18-20

tr close () closesthe specified data set and associated datafile or stream file descrip-
tor. Inthe case of a data stream, if the associated daemon is till running, the daemon will
terminate with an error.

NOTE

Currently, only one input source is allowed per handle (until it is
closedviatr close()).

SYNTAX

extern void tr close (tr_t t);

PARAMETERS
t
data set handle

See “Input Specification and Streaming Control” on page 18-18 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO

* “tr_t" on page 18-8

* “tr open_file()” on page 18-18

* “tr_open_stream()” on page 18-19

tr_stream_notify()

Using the NightTrace Analysis API

tr stream notify () definesacallback which will occur when astream event occurs
asdefined by tr_stream event t.

SYNTAX

extern int tr stream notify (tr t f,
tr stream event t event,
tr stream func t func) ;

PARAMETERS
t

data set handle
event

can be:

tr_stream overflow - Thisevent has been deprecated and no longer occurs.
Seetr stream read () for control over stream I/O operations.

tr stream stall - A stall occurswhen thereisan insufficient number of events
available to form a segment for consumption.

func

callback function

RETURN VALUES

Returns zero on success; returns -1 if the specified arguments are invalid or thereis
insufficient memory available to register the callback function.

See “Input Specification and Streaming Control” on page 18-18 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
e “tr_t" on page 18-8
* “fr_stream event_t” on page 18-7
* “tr_stream func t” on page 18-7
* “tr stream size()” on page 18-23
® “tr_stream read()” on page 18-22

18-21

NightTrace RT User’s Guide

tr_stream_read()

18-22

tr stream read () reads eventsfrom the input stream until no events are currently
available or until the specified maximum isreached. A segmented input approach is uti-
lized so that the actual number of events read may exceed the specified maximum (by the
minimum segments size).

This function need not be called at all. The stream of datais read automatically as events
areconsumed (by tr next event (), tr_ iterate(),Or tr copy input ()).

This function is provided for situations where the rate at which events are generated
exceeds that at which they are currently being consumed. If the consumption rateis sig-
nificantly lower than the generation rate, the daemon writing the data to the stream could
otherwise stall (block on the write) and data would be lost when the daemon’s buffersfill.
Calling tr_stream_read () in such situations ensures that data is read and stored
internally for use when events are subsequently consumed by tr next event (),
tr iterate(),Ortr copy input ().

SYNTAX

extern int tr stream read (tr t t,
int max_events) ;

PARAMETERS
t

data set handle
max_events

maximum number of eventsto be read

RETURN VALUES

Returns the number of events read.

See “Input Specification and Streaming Control” on page 18-18 for related functions.
See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
* “tr_t" on page 18-8
* “tr_next_event()” on page 18-25
* “tr_iterate()” on page 18-145

* “tr copy_input()” on page 18-138

tr_stream_size()

Using the NightTrace Analysis API

tr stream size () dynamicaly changes the memory limit originally specified via
tr_open stream(). It controlsthe amount of memory used to hold events that have
been read from the stream file descriptor but have not yet been consumed.

SYNTAX

extern int tr stream size (tr t ft,

int Sze);

PARAMETERS
t

data set handle
sze

memory limit associated with streaming events
RETURN VALUES

Returns zero on success; returns -1 if the specified sizeisinvalid.

See “Input Specification and Streaming Control” on page 18-18 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8

* “tr open_stream()” on page 18-19

18-23

NightTrace RT User’s Guide

tr_free()

18-24

tr free () releases the memory associated with events whose offsets are |ess than or
equal to the specified offset, if those events have been consumed.

This function has no effect if the events have not been consumed or if events are not being
saved (e.g., tr_open stream() called without the TR _STREAM SAVE flag value).

SYNTAX

extern int tr free (tr t t,
int event offset) ;

PARAMETERS
t

data set handle
event_offset

specifies that the memory associated with events whose offsets are |ess than or equal
to this value will be released when this function is called

RETURN VALUES

Returns zero on success; returns -1 if the specified offset isinvalid.

See “Input Specification and Streaming Control” on page 18-18 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_open_stream()” on page 18-19

Using the NightTrace Analysis API

Event Offset Positioning

tr_next_event()

The functions related to event offset positioning are:

- tr next event () (seepage 18-25)
- tr next event () (Seepage 18-26)
- tr prev_event () (seepage 18-26)
- tr_prev_event_ () (seepage 18-27)
- tr_search() (seepage 18-28)

- tr_seek() (seepage 18-29)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

tr next event () advances the offset to the next consecutive trace event.

SYNTAX

extern tr offset t tr next event (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is after the last trace event in the data set.

See “Event Offset Positioning” on page 18-25 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

18-25

NightTrace RT User’s Guide

tr_next_event_ ()

tr_prev_event()

18-26

tr next event () advancesto the next consecutive trace event meeting the specified
condition in the data set.

SYNTAX

extern tr offset t tr next event (tr t ft,
tr cond t condition) ;

PARAMETERS
t

data set handle
condition

handle of the desired condition

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is after the last trace event in the data set.

See “Event Offset Positioning” on page 18-25 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr offset t” on page 18-4

tr_prev_event () advances to the previous trace event.

SYNTAX

extern tr offset t tr prev event (tr t t);

PARAMETERS
t

data set handle

tr_prev_event_()

Using the NightTrace Analysis API

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is before the first event in the data set.

See “Event Offset Positioning” on page 18-25 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr prev_event () advancesto the next consecutive trace event meeting the specified
condition in the data set.

SYNTAX

extern tr offset t tr prev event (tr t ft,
tr cond t condition) ;

PARAMETERS
t

data set handle
condition

handle of the desired condition

RETURN VALUES

Returns the offset of the trace event or TR_EOF if the end of the data set has been
reached in which case the current position is before the first event in the data set.

See “Event Offset Positioning” on page 18-25 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

e “tr_t" on page 18-8

18-27

NightTrace RT User’s Guide

tr_search()

18-28

* “tr_cond_t" on page 18-4

* “tr offset t” on page 18-4

tr search () searchesfor the trace event matching the specified condition in the direc-
tion specified. The current position remains unchanged.

SYNTAX
extern tr offset t tr search(tr t t,
tr dir t direction,
tr cond_t condition) ;
PARAMETERS
t
data set handle
direction
direction in which to search

condition

handle of the desired condition

RETURN VALUES

Returns the position of the matching trace event; if no matching event is found,
TR _EOF isreturned.

See “Event Offset Positioning” on page 18-25 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
* “tr_t" on page 18-8
* “tr_dir_t" on page 18-4
* “tr_cond_t” on page 18-4
* “tr offset t” on page 18-4

tr_seek()

Using the NightTrace Analysis API

tr seek () setsthe position to the specified offset. If the offset specifies a position that
exceeds the offset of the last trace event, the position is set to the last event in the data set.

SYNTAX

extern tr offset t tr seek (tr t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

The offset of the trace event at the resultant position is returned.

See “Event Offset Positioning” on page 18-25 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

18-29

NightTrace RT User’s Guide

Basic Event Attribute Functions

The functions that deal with the basic attributes of trace events are:
- tr_id() (seepage 18-32)
- tr_id () (seepage18-32)
- tr_time () (Seepage 18-33)
- tr_time () (Seepage 18-34)
- tr nargs() (seepage 18-35)
- tr_nargs_() (seepage 18-35)
- tr _arg int () (seepage 18-36)
- tr _arg int () (seepage 18-37)
- tr_arg dbl () (seepage18-38)
- tr arg dbl () (seepage 18-38)
- tr blk arg() (seepage18-51)
- tr_blk arg () (seepage 18-52)
- tr blk arg bits() (seepage 18-53)
- tr blk arg bits () (seepage 18-54)
- tr blk arg char() (seepage 18-55)
- tr blk arg char () (seepage 18-55)
- tr blk arg dbl () (seepage 18-56)
- tr _blk arg dbl () (seepage18-57)
- tr blk arg flt () (seepage 18-58)
- tr blk arg flt () (seepage 18-58)
- tr blk arg long() (seepage 18-59)
- tr blk arg long () (seepage 18-60)
- tr blk arg long bits() (Seepage 18-61)
- tr _blk arg long bits () (Seepage 18-62)
- tr blk arg long dbl () (seepage 18-63)
- tr blk arg long dbl () (seepage 18-63)
- tr _blk arg long ubits () (See page 18-66)
- tr blk arg long ubits () (seepage 18-67)
- tr blk arg short () (seepage 18-68)

- tr _blk arg short () (seepage 18-68)

18-30

Using the NightTrace Analysis API

tr blk arg string() (seepage 18-69)
tr blk arg string () (seepage 18-70)
tr blk arg ubits() (seepage18-71)
tr blk arg ubits () (seepage18-72)
tr blk arg uchar () (seepage 18-73)
tr blk arg uchar () (seepage18-74)
tr_blk arg ushort () (see page 18-75)
tr blk arg ushort () (seepage 18-75)
tr _pid() (seepage 18-76)

tr pid () (seepage 18-77)

tr tid() (seepage 18-78)

tr_tid () (seepage 18-78)

tr thread id() (seepage 18-79)

tr thread id () (see page 18-80)
tr_task_id() (seepage 18-81)

tr task_id () (seepage 18-81)

tr cpu() (seepage 18-82)

tr cpu () (seepage 18-83)

tr node () (seepage 18-84)

tr node () (seepage 18-84)

tr process name () (Seepage 18-85)
tr process name () (Seepage 18-86)
tr task name () (See page 18-86)
tr_task name_ () (seepage 18-87)

tr thread name () (See page 18-88)

tr thread name () (Seepage 18-88)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-31

NightTrace RT User’s Guide

tr_id()

tr_id_J()

18-32

tr_id () returnsthetrace ID associated with the current trace event.

SYNTAX

extern int tr id (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the trace | D associated with the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

tr_id_ () returnsthetrace |D associated with the trace event at the specified offset.

SYNTAX

extern int tr id (tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the trace ID associated with the trace event at the specified offset; returns
zero if aninvalid offset is specified.

tr_time()

Using the NightTrace Analysis API

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

tr time () returnsthetimestamp (in seconds) of the current trace event.

NOTE
A timestamp is relative to the beginning of the trace logging dae-

mon.

SYNTAX

extern double tr time (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the timestamp (in seconds) of the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

18-33

NightTrace RT User’s Guide

tr_time_()

18-34

tr time_ () returnsthetimestamp (in seconds) of the trace event at the specified offset.

NOTE

A timestamp is relative to the beginning of the trace logging dae-
mon.

SYNTAX

extern double tr time (tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the timestamp (in seconds) of the trace event at the specified offset; returns
zero if aninvalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_nargs()

tr_nargs_()

Using the NightTrace Analysis API

tr nargs () returnsthe number of arguments associated with the current trace event.

SYNTAX

extern int tr nargs (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the number of arguments associated with the current trace event. In the case
of a trace event recorded with trace event string() or
trace event blk (), it returns the number of four-byte integers that would be
required to hold the data.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

e “tr_t" on page 18-8

tr nargs_ () returnsthe number of arguments associated with the trace event at the
specified offset.

SYNTAX

extern int tr nargs_(tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

18-35

NightTrace RT User’s Guide

tr_arg_int()

18-36

RETURN VALUES

Returns the number of arguments associated with the trace event at the specified off-
set; returns zero if aninvalid offset is specified. 1n the case of atrace event recorded
with trace event string() or trace_event blk(), it returnsthe num-
ber of four-byte integers that would be required to hold the data.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr arg_int () returnsthe desired integer argument of the current trace event.

SYNTAX

extern int tr arg int (tr_t t,
int arg_number) ;

PARAMETERS
t

data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired integer argument of the current trace event; returns zero if an
invalid offset is specified or aninvalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

tr_arg_int_()

Using the NightTrace Analysis API

tr arg_int () returnsthe desired integer argument of the trace event at the specified
offset.

SYNTAX
extern int tr arg int (tr_t t,

int arg_number,
tr offset t offsat) ;

PARAMETERS
t
data set handle
arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired integer argument of the trace event at the specified offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

18-37

NightTrace RT User’s Guide

tr_arg_dbl()

tr_arg_dbl ()

18-38

tr_arg dbl () returnsthe desired double argument of the current trace event.

SYNTAX

extern double tr arg dbl (tr t t,
int arg number) ;

PARAMETERS
t

data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr arg dbl () returnsthe desired double argument of the trace event at the specified
offset.

SYNTAX
extern double tr _arg dbl (tr t t,

int arg_number,
tr offset t offsat) ;

PARAMETERS
t

data set handle

tr_arg_long()

Using the NightTrace Analysis API

arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr arg_ long () returnsthe desired long integer argument of the current trace event.

SYNTAX
extern long int tr arg long (tr t f,
int arg_number) ;
PARAMETERS
t
data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed off set;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

18-39

NightTrace RT User’s Guide

tr_arg_long_()

18-40

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “fr_t" on page 18-8

tr arg long_ () returnsthe desired long integer argument of the trace event at the
specified offset.

SYNTAX
extern long int tr arg long (tr_t t,

int arg_number,
tr offset t offsat) ;

PARAMETERS
t
data set handle
arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_arg_long_dbl()

tr_arg_long_dbl ()

Using the NightTrace Analysis API

tr_arg long dbl () returnsthe desired double argument of the current trace event.

SYNTAX
extern long double tr arg long dbl (tr_t t,
int arg_number) ;
PARAMETERS
t
data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired long double argument of the current trace event; returns zero if
aninvalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr arg _dbl () returnsthe desired long double argument of the trace event at the spec-
ified offset.

SYNTAX
extern long double tr arg long dbl (tr t t,

int arg_number,
tr offset t offsa) ;

PARAMETERS
t

data set handle

18-41

NightTrace RT User’s Guide

tr_arg_long_long()

18-42

arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES
Returns the desired long double argument of the trace event at the specifed offset;

returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr arg long long () returnsthe desired long long integer argument of the current
trace event.

SYNTAX

extern long long int tr arg long long (tr t ft,
int arg_number) ;

PARAMETERS
t

data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired long long integer argument of the current trace event; returns
zero if aninvalid offset is specified or an invalid argument number is specified.

tr_arg _long _long ()

Using the NightTrace Analysis API

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr_arg long long () returnsthe desired double argument of the trace event at the
specified offset.

SYNTAX
extern long long int tr arg long long (tr t t,

int arg_number,
tr offset t oOffsat) ;

PARAMETERS
t
data set handle
arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset t” on page 18-4

18-43

NightTrace RT User’s Guide

tr_arg_int_()

18-44

tr _arg_int () returnsthe desired integer argument of the trace event at the specified
offset.

SYNTAX
extern int tr arg int (tr_t t,

int arg_number,
tr offset t offsat) ;

PARAMETERS
t
data set handle
arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired integer argument of the trace event at the specified offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

tr_arg_dbl()

tr_arg_dbl ()

Using the NightTrace Analysis API

tr_arg dbl () returnsthe desired double argument of the current trace event.

SYNTAX

extern double tr arg dbl (tr t t,
int arg_number) ;

PARAMETERS
t

data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr arg dbl () returnsthe desired double argument of the trace event at the specified
offset.

SYNTAX
extern double tr _arg dbl (tr t t,

int arg_number,
tr offset t offsat) ;

PARAMETERS
t
data set handle

arg_number

18-45

NightTrace RT User’s Guide

tr_arg_long()

18-46

number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if aninvalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

tr _arg long () returnsthe desired long integer argument of the current trace event.

SYNTAX
extern long int tr arg long (tr t f,
int arg _number) ;
PARAMETERS
t
data set handle
arg_number

number of the desired argument

RETURN VALUES
Returns the desired long integer argument of the trace event at the specifed offset;

returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

tr_arg_long_()

Using the NightTrace Analysis API

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “tr_t" on page 18-8

tr arg long_ () returnsthe desired long integer argument of the trace event at the
specified offset.

SYNTAX
extern long int tr arg long (tr_t t,

int arg_number,
tr offset t offsat) ;

PARAMETERS
t
data set handle
arg_number
number of the desired argument
offset

offset of the trace event

RETURN VALUES
Returns the desired long integer argument of the trace event at the specifed offset;

returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

18-47

NightTrace RT User’s Guide

tr_arg_long_dbl()

tr_arg_long_dbl ()

18-48

tr_arg long dbl () returnsthe desired double argument of the current trace event.

SYNTAX
extern long double tr arg long dbl (tr_t t,
int arg_number) ;
PARAMETERS
t
data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired long double argument of the current trace event; returns zero if
aninvalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr arg _dbl () returnsthe desired long double argument of the trace event at the spec-
ified offset.

SYNTAX
extern long double tr arg long dbl (tr t t,

int arg_number,
tr offset t offsa) ;

PARAMETERS
t
data set handle

arg_number

tr_arg _long_long()

Using the NightTrace Analysis API

number of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired long double argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument number is speci-
fied.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset t” on page 18-4

tr arg long long () returnsthe desired long long integer argument of the current
trace event.

SYNTAX
extern long long int tr arg long long (tr t ft,
int arg_number) ;
PARAMETERS
t
data set handle
arg_number

number of the desired argument

RETURN VALUES

Returns the desired long long integer argument of the current trace event; returns
zero if an invalid offset is specified or an invalid argument number is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

18-49

NightTrace RT User’s Guide

tr_argtype()

18-50

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “fr_t" on page 18-8

tr argtype () returnsthe type of arguments associated with the current event.

SYNTAX

extern tr arg t tr argtype (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the type of arguments associated with the current event. For events recorded
with trace event blk(),thisfunctionreturns int arg.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_arg t" on page 18-2

tr_argtype ()

tr_blk_arg()

Using the NightTrace Analysis API

tr argtype_ () returnsthetype of arguments associated with the event at the specified
offset.

SYNTAX

extern tr arg t tr argtype (tr t t, tr offset t offsdt) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the type of arguments associated with the current (or optionally specified)
event. For events recorded with trace event blk (), this function returns
int_arg.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr blk arg() returnstheinteger argument at a particular byte offset in argument space
of the current trace event.

SYNTAX
extern long tr blk arg (tr_t t,
int byte offset) ;
PARAMETERS
t
data set handle

18-51

NightTrace RT User’s Guide

tr_blk_arg_()

18-52

byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired integer argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

tr blk_arg () returnstheinteger argument at a particular byte offset in argument
space of the trace event at the specified offset.

SYNTAX
extern long tr blk arg (tr t t,
int byte offset,
tr offset t offsat) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired integer argument of the trace event at the specifed offset; returns
zero if aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

tr_blk_arg_bits()

Using the NightTrace Analysis API

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr blk arg bits() returnstheinteger bit field argument of a particular bit size at a
particular byte and bit offset offset in argument space of the current trace event.

SYNTAX
extern long tr blk arg bits (tr t f,
int byte offset,
int bit_offset,
int bit_size) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument
hit_offset

bit offset of the desired argument
hit_size

bit size of the desired argument

RETURN VALUES

Returns the desired integer hit field argument of the current trace event; returns zero
if aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

e “tr_t" on page 18-8

18-53

NightTrace RT User’s Guide

tr_blk_arg_bits_()

18-54

tr blk arg bits_ () returnstheinteger bit field argument of aparticular bit sizeat a
particular byte and bit offset offset in argument space of the trace event at the specified
offset.

SYNTAX
extern long tr blk arg bits (tr t f,
int byte offset,
int bit_offset,
int bit_size,

tr offset t offsat) ;

PARAMETERS
t

data set handle
byte offset

byte offset of the desired argument
hit_offset

bit offset of the desired argument
bit_size

bit size of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired integer bit field argument of the trace event at the specifed off-
set; returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_blk_arg_char()

tr_blk_arg_char_()

Using the NightTrace Analysis API

tr blk_arg_char () returnsthe character argument at a particular byte offset in argu-
ment space of the current trace event.

SYNTAX
extern long tr blk arg char (tr t f{,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired character argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “tr_t" on page 18-8

tr blk_arg char () returnsthe character argument at a particular byte offset in
argument space of the trace event at the specified offset.

SYNTAX
extern long tr blk arg char (tr t t,

int byte offset,
tr offset t offsa) ;

PARAMETERS
t

data set handle

18-55

NightTrace RT User’s Guide

tr_blk_arg_dbl()

18-56

byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired character argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8

* “tr_offset_t” on page 18-4

tr blk arg dbl () returnsthe double argument at a particular byte offset in argument
space of the current trace event.

SYNTAX
extern double tr blk arg dbl (tr_t t,
int byte offsat) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired double argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

tr_blk_arg_dbl_()

Using the NightTrace Analysis API

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr blk arg _dbl () returnsthe double argument at a particular byte offset in argu-
ment space of the trace event at the specified offset.

SYNTAX
extern double tr blk arg dbl (tr t t,
int byte offset,
tr offset t offsat) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired double argument of the trace event at the specifed offset; returns
zero if aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset t” on page 18-4

18-57

NightTrace RT User’s Guide

tr_blk_arg_flt()

tr_blk_arg_flt_()

18-58

tr blk arg f£lt () returnsthe float argument at a particular byte offset in argument
space of the current trace event.

SYNTAX
extern double tr blk arg flt (tr_t t,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired float argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr blk arg flt () returnsthe float argument at a particular byte offset in argument
space of the trace event at the specified offset.

SYNTAX
extern double tr blk arg flt (tr t t,
int byte offsgt,
tr offset t offsat) ;
PARAMETERS
t

data set handle

tr_blk_arg_long()

Using the NightTrace Analysis API

byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired float argument of the trace event at the specifed offset; returns
zero if aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr blk arg long () returnsthelong integer argument at a particular byte offset in
argument space of the current trace event.

SYNTAX
extern long tr blk arg long (tr t f,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired long integer argument of the current trace event; returns zero if
aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

18-59

NightTrace RT User’s Guide

tr_blk_arg_long ()

18-60

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “fr_t" on page 18-8

tr blk arg long () returnsthelong integer argument at a particular byte offset in
argument space of the trace event at the specified offset.

SYNTAX
extern long tr blk arg long (tr t f,
int byte offset,
tr offset t offsat) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

Using the NightTrace Analysis API

tr_blk_arg_long_bits()

tr blk _arg long bits () returnsthelong integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the current trace

event.
SYNTAX
extern long tr blk arg long bits (tr t t,
int byte offset,
int bit_offset,
int bit_size) ;

PARAMETERS
t

data set handle
byte offset

byte offset of the desired argument
hit_offset

bit offset of the desired argument
hit_size

bit size of the desired argument

RETURN VALUES

Returns the desired long integer bit field argument of the current trace event; returns
zero if aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

e “tr_t" on page 18-8

18-61

NightTrace RT User’s Guide

tr_blk_arg_long_bits ()

18-62

tr blk _arg long bits () returnsthelong integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the trace event at the
specified offset.

SYNTAX
extern long tr blk arg long bits (tr t t,
int byte offset,
int bit_offset,
int bit_size,

tr offset t offsat) ;

PARAMETERS
t

data set handle
byte offset

byte offset of the desired argument
hit_offset

bit offset of the desired argument
bit_size

bit size of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired long integer bit field argument of the trace event at the specifed
offset; returns zero if an invalid offset is specified or an invalid argument byte offset
is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_blk_arg_long_dbl()

tr_blk_arg_long_dbl_()

Using the NightTrace Analysis API

tr blk _arg long_dbl () returnsthelong double argument at a particular byte offset
in argument space of the current trace event.

SYNTAX
extern long double tr blk arg long dbl (tr t t,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired long double argument of the current trace event; returns zero if
aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “tr_t" on page 18-8

tr blk arg long dbl () returnsthelong double argument at a particular byte off-
set in argument space of the trace event at the specified offset.

SYNTAX
extern long double tr blk arg long dbl (tr t t,
int byte offset,
tr offset t oOffsat) ;
PARAMETERS
t

data set handle

18-63

NightTrace RT User’s Guide

byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired long double argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_blk_arg_long_long()

tr blk arg long long() returnsthelong long integer argument at a particular byte
offset in argument space of the current trace event.

SYNTAX
extern long long tr blk arg long long (tr t ft,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired long long argument of the current trace event; returns zero if an
invalid offset is specified or an invalid argument byte offset is specified.

18-64

Using the NightTrace Analysis API

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr_blk_arg_long_long_ ()

tr blk _arg long long () returnsthelong long integer argument at a particular
byte offset in argument space of the trace event at the specified offset.

SYNTAX
extern long long tr blk arg long long (tr t t,
int byte offset,
tr offset t oOffsat) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument

offset

offset of the trace event

RETURN VALUES

Returns the desired long long integer argument of the trace event at the specifed off-
set; returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset t” on page 18-4

18-65

NightTrace RT User’s Guide

tr_blk_arg_long_ubits()

18-66

tr blk _arg long_ubits () returnstheunsigned long integer bit field argument of a
particular bit size at a particular byte and bit offset offset in argument space of the current
trace event.

SYNTAX
extern long tr blk arg long ubits (tr t ft,
int byte offset,
int bit_offset,
int bit_size) ;

PARAMETERS
t

data set handle
byte offset

byte offset of the desired argument
hit_offset

bit offset of the desired argument
hit_size

bit size of the desired argument

RETURN VALUES

Returns the desired unsigned long integer bit field argument of the current trace
event; returns zero if an invalid offset is specified or an invalid argument byte offset
is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

Using the NightTrace Analysis API

tr_blk_arg_long_ubits_()

tr blk _arg long ubits_() returnstheunsigned long integer bit field argument of
aparticular bit size at a particular byte and bit offset offset in argument space of the trace
event at the specified offset.

SYNTAX
extern long tr blk arg long ubits (tr t ft,
int byte offset,
int bit_offset,
int bit_size,

tr offset t offsat) ;

PARAMETERS
t

data set handle
byte offset

byte offset of the desired argument
hit_offset

bit offset of the desired argument
hit_size

bit size of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned long integer bit field argument of the trace event at the
specifed offset; returns zero if an invalid offset is specified or an invalid argument
byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

18-67

NightTrace RT User’s Guide

tr_blk_arg_short()

tr_blk_arg_short_()

18-68

tr blk _arg short () returns the short integer argument at a particular byte offset in
argument space of the current trace event.

SYNTAX
extern long tr blk arg short (tr t t,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired short integer argument of the current trace event; returns zero if
aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr blk arg short () returnsthe shortinteger argument at aparticular byte offset in
argument space of the trace event at the specified offset.

SYNTAX
extern long tr blk arg short (tr t t,
int byte offsgt,
tr offset t offsat) ;
PARAMETERS
t

data set handle

Using the NightTrace Analysis API

byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired short integer argument of the trace event at the specifed offset;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_blk_arg_string()

tr blk arg string() returnsa pointer to the null terminated string argument at a
particular byte offset in argument space of the current trace event and limited to a particu-
lar string size.

SYNTAX
extern char *tr blk arg string (tr_t t,
int byte offset,
int sring size) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument
gring_size

the maximum length of the string

18-69

NightTrace RT User’s Guide

tr_blk_arg_string ()

18-70

RETURN VALUES

Returns the desired string argument of the current trace event; returns NULL if an
invalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “tr_t" on page 18-8

tr blk arg string () returnsa pointer to the null terminated string argument at a
particular byte offset in argument space of the trace event at the specified offset and lim-
ited to a particular string size.

SYNTAX
extern char *tr blk arg string (tr t t,
int byte offset,
int dgring_size,
tr offset t offsat) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument
gring_size
the maximum length of the string

offset

offset of the trace event

RETURN VALUES

Returns the desired string argument of the trace event at the specifed offset; returns
zero if aninvalid offset is specified or an invalid argument byte offset is specified.

tr_blk_arg_ubits()

Using the NightTrace Analysis API

See “Basic Event Attribute Functions’ on page 18-30 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr blk arg ubits () returnsthe unsigned integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the current trace
event.

SYNTAX
extern long tr blk arg ubits (tr_t t,
int byte offset,
int bit_offset,
int bit_size) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument
bit_offset

bit offset of the desired argument
bit size

bit size of the desired argument

RETURN VALUES

Returns the desired unsigned integer bit field argument of the current trace event;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-71

NightTrace RT User’s Guide

SEE ALSO

* “fr_t" on page 18-8

tr_blk_arg_ubits_()

tr blk arg ubits () returnsthe unsigned integer bit field argument of a particular
bit size at a particular byte and bit offset offset in argument space of the trace event at the

specified offset.
SYNTAX
extern long tr blk arg ubits (tr t t,
int byte offset,
int bit_offset,
int bit_size,

tr offset t offsat) ;

PARAMETERS
t

data set handle
byte offset

byte offset of the desired argument
bit_offset

bit offset of the desired argument
bit_size

bit size of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned integer bit field argument of the trace event at the
specifed offset; returns zero if an invalid offset is specified or an invalid argument
byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-72

tr_blk_arg_uchar()

Using the NightTrace Analysis API

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr blk_arg_uchar () returnsthe unsigned character argument at a particular byte off-
set in argument space of the current trace event.

SYNTAX
extern long tr blk arg uchar (tr_t t,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired unsigned character argument of the current trace event; returns
zero if aninvalid offset is specified or an invalid argument byte offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

18-73

NightTrace RT User’s Guide

tr_blk_arg_uchar_()

18-74

tr blk arg uchar_ () returnsthe unsigned character argument at a particular byte
offset in argument space of the trace event at the specified offset.

SYNTAX
extern long tr blk arg uchar (tr t t,
int byte offset,
tr offset t offsat) ;
PARAMETERS
t
data set handle
byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES

Returns the desired unsigned character argument of the trace event at the specifed
offset; returns zero if an invalid offset is specified or an invalid argument byte offset
is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

tr_blk_arg_ushort()

tr_blk_arg_ushort_()

Using the NightTrace Analysis API

tr blk_arg ushort () returnsthe unsigned short integer argument at a particular
byte offset in argument space of the current trace event.

SYNTAX
extern long tr blk arg ushort (tr_t ft,
int byte offset) ;
PARAMETERS
t
data set handle
byte offset

byte offset of the desired argument

RETURN VALUES

Returns the desired unsigned short integer argument of the current trace event;
returns zero if an invalid offset is specified or an invalid argument byte offset is
specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “tr_t" on page 18-8

tr blk arg ushort () returnsthe unsigned short integer argument at a particular
byte offset in argument space of the trace event at the specified offset.

SYNTAX
extern long tr blk arg ushort (tr t t,
int byte offset,
tr offset t offsat) ;
PARAMETERS
t

data set handle

18-75

NightTrace RT User’s Guide

tr_pid()

18-76

byte offset
byte offset of the desired argument
offset

offset of the trace event

RETURN VALUES
Returns the desired unsigned short integer argument of the trace event at the spec-

ifed offset; returns zero if an invalid offset is specified or an invalid argument byte
offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr pid() returnsthe processidentifier (PID) associated with the current trace event.

SYNTAX

extern int tr pid (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the process ID of the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_pid_()

Using the NightTrace Analysis API

SEE ALSO

* “tr_t" on page 18-8

tr pid_ () returns the processidentifier (PID) associated with the trace event at the
specified offset.

SYNTAX

extern int tr pid (tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the process identifier (PID) associated with the trace event at the specified
offset; returns zero if aninvalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr offset t” on page 18-4

18-77

NightTrace RT User’s Guide

tr_tid()

tr_tid_()

18-78

tr tid() returnsthe internally-assigned NightTrace thread identifier (TID) associated
with the current trace event.

SYNTAX

extern int tr tid (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the internally-assigned NightTrace thread identifier (TID) associated with
the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

tr tid_ () returnsthe internally-assigned NightTrace thread identifier (TID) associated
with the trace event at the specified offset.

SYNTAX

extern int tr tid (tr t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

tr_thread_id()

Using the NightTrace Analysis API

RETURN VALUES

Returns the internally-assigned NightTrace thread identifier (TID) associated with
the trace event at the specified offset; returns zero if aninvalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr thread id() returnsand NightTrace internal thread identifier associated with the
current trace event.

SYNTAX

extern int tr thread id (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the thread identifier associated with the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

18-79

NightTrace RT User’s Guide

tr_thread_id_()

18-80

tr thread_id () returnsthe NightTraceinternal thread identifier associated with the
trace event at the specified offset.

SYNTAX

extern int tr thread id (tr t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the thread identifier associated with the trace event at the specified offset;
returns zero if an invaid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr_task_id()

tr_task_id_()

Using the NightTrace Analysis API

tr_task_id() returnsthe Adatask identifier associated with the current trace event.

NOTE
This function is only meaningful for trace events logged by Ada

tasking programs.

SYNTAX

extern int tr task id (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the Adatask identifier associated with the current trace event; returns zero
if aninvalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

e “tr_t" on page 18-8

tr task_id_ () returnsthe Adatask identifier associated with the trace event at the
specified offset.

SYNTAX

extern int tr task id (tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle

18-81

NightTrace RT User’s Guide

tr_cpu()

18-82

offset

offset of the trace event

RETURN VALUES

Returns the Adatask identifier associated with the trace event at the specified offset;
returns zero if aninvalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

tr cpu () returnsthe CPU where the current trace event waslogged. CPUs arelogically
numbered starting at O and monotonically increase thereafter.

NOTE

The CPU isonly recorded for trace events logged by the operating
system kernel. Kernel tracing is not supported on all operating
system distributions. See “Kernel Dependencies’ on page B-1 for
more information.

SYNTAX

extern int tr cpu (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the CPU where the current trace event was logged. For trace events not
logged by the operating system kernel, avalue of -1 isreturned (which indicates any
CPU).

tr_cpu_()

Using the NightTrace Analysis API

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr _cpu_ () returnsthe CPU where the current trace event was logged. CPUs are |ogi-
cally numbered starting at 0 and monotonically increase thereafter.

NOTE

The CPU isonly recorded for trace events logged by the operating
system kernel. Kernel tracing is not supported on all operating
system distributions. See “Kernel Dependencies’ on page B-1 for
more information.

SYNTAX

extern int tr cpu_ (tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the CPU where the current trace event was logged. For trace events not
logged by the operating system kernel, avalue of -1 isreturned (which indicates any
CPU). If aninvalid offset is specified, avalue of -1 isreturned.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-83

NightTrace RT User’s Guide

tr_node()

tr_node ()

18-84

SEE ALSO
* “fr_t" on page 18-8
e “tr_offset_t” on page 18-4

tr node () returnsthe name of the system where the current trace event was logged.

SYNTAX

extern char * tr node (tr t t);

PARAMETERS

data set handle

RETURN VALUES

Returns the name of the system where the current trace event was logged.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

tr node_ () returnsthe name of the system where the trace event at the specified offset
was logged.

SYNTAX

extern char * tr node (tr_t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle

tr_process_name()

Using the NightTrace Analysis API

offset

offset of the trace event

RETURN VALUES

Returns the name of the system where the trace event at the specified offset was
logged; returns NULL if an invalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr offset t” on page 18-4

tr process name () returnsthe name of the process associated with the current trace
event.

SYNTAX

extern char * tr process name (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the name of the process associated with the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

18-85

NightTrace RT User’s Guide

tr_process_name_ ()

tr_task_name()

18-86

tr_process name_ () returnsthe name of the process associated with the trace event
at the specified offset.

SYNTAX

extern char * tr process name (tr t t,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the name of the process associated with the trace event at the specified off-
set; returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_offset_t” on page 18-4

tr task_name () returnsthe name of the task associated with the current trace event.

SYNTAX

extern char * tr task name (tr t t);

PARAMETERS
t

data set handle

tr_task_name_()

Using the NightTrace Analysis API

RETURN VALUES

Returns the name of the task associated with the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

e “tr_t" on page 18-8

tr task name () returnsthe name of the task associated with the trace event at the
specified offset.

SYNTAX

extern char * tr task name (tr t t,
tr offset t offsa) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

RETURN VALUES

Returns the name of the task associated with the trace event at the specified offset;
returns zero if aninvalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr offset t” on page 18-4

18-87

NightTrace RT User’s Guide

tr_thread_name()

tr_thread_name_()

18-88

tr_thread name () returnsthe thread name associated with the current trace event.

SYNTAX

extern char * tr thread name (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns the thread name associated with the current trace event.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

tr thread name () returnsthe thread name associated with the trace event at the
specified offset.

SYNTAX

extern char * tr thread name (tr_t ft,
tr offset t offsat) ;

PARAMETERS
t

data set handle
offset

offset of the trace event

Using the NightTrace Analysis API

RETURN VALUES

Returns the thread name associated with the trace event at the specified offset;
returns zero if an invalid offset is specified.

See “Basic Event Attribute Functions’ on page 18-30 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
e “tr offset t" on page 18-4

18-89

NightTrace RT User’s Guide

Conditions

The functions that deal with the creation and manipulation of conditions and their require-
ments are:

- tr cond create () (Seepage 18-91)

- tr cond reset () (Seepage 18-92)

- tr cond find() (seepage 18-92)

- tr cond id() (seepage 18-93)

- tr cond id range () (seepage 18-94)

- tr cond id clear () (seepage 18-95)

- tr cond cpu() (seepage 18-96)

- tr cond cpu clear () (seepage 18-97)
- tr cond pid() (seepage 18-98)

- tr cond pid name () (seepage 18-99)

- tr_cond pid clear () (seepage 18-100)
- tr_cond tid() (seepage 18-101)

- tr cond tid name () (Seepage 18-102)

- tr cond tid clear () (seepage 18-103)
- tr cond node () (seepage 18-104)

- tr cond node clear () (seepage 18-105)
- tr_cond func or () (seepage 18-106)

- tr_cond func and() (seepage18-108)
- tr cond func clear () (seepage 18-110)
- tr cond expr and() (seepage 18-111)

- tr cond expr or () (Seepage 18-112)

- tr cond not () (seepage 18-113)

- tr_cond or() (seepage 18-114)

- tr cond and() (seepage 18-115)

- tr cond copy () (seepage 18-116)

- tr_ cond name () (seepage 18-118)

- tr cond satisfy () (Seepage 18-118)

- tr_cond satisfy () (seepage18-119)

- tr_cond register () (seepage18-120)

- tr cond offset () (seepage 18-121)

18-90

tr_cond_create()

Using the NightTrace Analysis API

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr cond_create () createsanew condition which will (initially) match all events.

SYNTAX

extern tr cond t tr cond create (tr t ft,
char * name) ;

PARAMETERS
t

data set handle
name

name to subsequently reference newly-created condition; if the nameis non-null, the
condition may be retrieved viatr cond find () subsequently; if a condition
with the same name already exists, the existing condition will become unnamed but
will not be otherwise modified.

RETURN VALUES

Returns an opaque handle which identifies the condition; in the event there is insuf-
ficient memory to create the condition, TR_NO_COND will be returned.

See “Conditions’ on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
e “tr_cond_find()" on page 18-92

18-91

NightTrace RT User’s Guide

tr_cond_reset()

tr_cond_find()

18-92

tr cond reset () resetsthe condition to match all events; all previous modifications
to the specified condition are discarded.

SYNTAX

extern void tr cond reset (tr t ft,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of condition to reset

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
* “tr_cond_create()” on page 18-91

tr cond find () locates an existing condition (perhaps imported from afile) and
returnsits handle.

SYNTAX

extern tr cond t tr cond find (tr_ t t,
char * name) ;

PARAMETERS
t

data set handle
name

name used to reference the desired condition asdefined in tr _cond_create ()

Using the NightTrace Analysis API

RETURN VALUES

Returns the handle of the desired condition; returns TR_NO_COND if the named con-
dition does not exist.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_create()” on page 18-91

tr_cond_id()

tr cond_id () appends the specified trace ID to the list of required trace IDs that must
be matched for a particular condition to evaluate to TRUE.

NOTE

Before thefirst tr_cond id() or tr_cond_ id range ()
call, or after calling tr_cond_id clear (), thetrace ID
requirement is empty which matches any ID.

SYNTAX

extern int tr cond id (tr_t t,
tr cond t cond,
int id) ;
PARAMETERS
t
data set handle

cond

handle of the condition with which the given trace ID isto be associated

trace ID to add to those that must be matched for the given condition to evaluate to
TRUE

18-93

NightTrace RT User’s Guide

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
theID.

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_create()” on page 18-91
e “tr_cond_id range()” on page 18-94
e “tr cond_ id clear()” on page 18-95

tr_cond_id_range()

tr cond id range () appends the trace IDs included in the given trace ID range to
the list of required trace IDs that must be matched for the given condition to evaluate to

TRUE.
NOTE
Beforethefirst tr_cond id() or tr cond id_ range ()
call, or after calling tr_cond id clear(), thetrace ID
requirement is empty which matches any ID.
SYNTAX

extern int tr cond id range (tr t f{,
tr cond t cond,
int idl,
int id2) ;
PARAMETERS
t
data set handle

cond

handl e of the condition with which the given trace ID range is to be associated

18-94

Using the NightTrace Analysis API

idl

minimum value in the range of trace IDs to be associated with the given condition
id2

maximum value in the range of trace IDs to be associated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr cond t" on page 18-4
* “tr_cond_id()" on page 18-93
* “tr_cond_id clear()” on page 18-95

tr_cond_id_clear()

tr cond _id clear () removesall trace ID requirements from aparticular condition.

NOTE
Before thefirst tr_cond id() or tr_cond id range ()
call, or after calling tr_cond id clear (), thetrace ID
requirement is empty which matches any 1D.

SYNTAX

extern void tr cond id clear (tr t t,
tr cond t cond) ;

PARAMETERS
t

data set handle

18-95

NightTrace RT User’s Guide

tr_cond_cpu()

18-96

cond

handle of the condition from which al trace ID requirements will be removed

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
e “tr_cond_id()" on page 18-93
e “tr_cond_id range()” on page 18-94

tr cond cpu () setsthe CPU requirement to any of the CPUs defined in the specified
CPU bias.

SYNTAX
extern void tr cond cpu (tr_t t,
tr cond t cond,
int cpu_bias) ;
PARAMETERS
t
data set handle
cond
handle of the condition with which to associate the given CPU hias
cpu_bias

CPU bias to apply to the given condition

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

Using the NightTrace Analysis API

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_cpu_clear()” on page 18-97

tr_cond_cpu_clear()

tr cond _cpu_clear () clearsthe CPU requirement for the given condition.

NOTE

This function is equivalent to calling tr_cond_cpu () with -1
asthe CPU bias.

SYNTAX

extern void tr cond cpu clear (tr t t,
tr cond_t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
e “tr cond cpu()”’ on page 18-96

18-97

NightTrace RT User’s Guide

tr_cond_pid()

tr cond pid() appends the specified process ID to the list of required processes that
must be matched for the given condition to evaluate to TRUE.

NOTE

Before the first tr _cond pid() call or
tr cond pid name (), or after calling
tr cond pid_ clear (), the process requirement is empty
which matches any process.

SYNTAX
extern int tr cond pid (tr_t t,
tr cond t cond,
int pid) ;
PARAMETERS
t
data set handle
cond
handle of the condition
pid
process ID to be added to the list of processes associated with the given condition
RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified process ID.

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
e “tr_cond_pid_name()” on page 18-99
e “tr cond pid clear()" on page 18-100

18-98

Using the NightTrace Analysis API

tr_cond_pid_name()

tr cond_pid_name () appends the process with the specified name to the list of
required processes that must be matched for the given condition to eval uate to TRUE.

NOTE

Before the first tr cond pid() call or
tr cond pid name (), or after calling
tr cond pid_clear (), the process requirement is empty
which matches any process.

SYNTAX

extern int tr cond pid name (tr t f,
tr cond t cond,
char * process _name) ;

PARAMETERS
t
data set handle
cond
handle of the condition
process_name

name of the process to be added to the list of processes associated with the given
condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the process with the specified name.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-99

NightTrace RT User’s Guide

tr_cond_pid_clear()

18-100

SEE ALSO
* “fr_t" on page 18-8
e “tr cond t" on page 18-4
* “tr_cond_pid()" on page 18-98
e “tr cond pid clear()" on page 18-100

tr cond pid clear () removesall processrequirementsfrom aparticular condition.

NOTE

Before the first tr cond pid() call or
tr cond pid name (), or after calling
tr cond pid clear (), the process requirement is empty
which matches any process.

SYNTAX

extern void tr cond pid clear (tr_t t,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_pid()" on page 18-98
e “tr_cond_pid_name()” on page 18-99

tr_cond_tid()

Using the NightTrace Analysis API

tr cond_tid() appends the specified thread ID to the list of required threads IDs that
must be matched for the given condition to evaluate to TRUE.

NOTE
Before the first tr cond_tid() «call or
tr cond _tid_name (), or after calling
tr cond_ tid clear (), the thread requirement is empty

which matches any thread.

SYNTAX
extern int tr cond tid (tr_t t,
tr cond t cond,
int tid) ;
PARAMETERS
t
data set handle
cond
handle of the condition
tid
thread ID to be added to the list of threads associated with the given condition
RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified thread ID.

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_tid name()” on page 18-102
e “tr cond tid clear()” on page 18-103

18-101

NightTrace RT User’s Guide

tr_cond_tid_name()

18-102

tr cond tid_ name () appends the thread with the specified name to the list of
required threads that must be matched for the given condition to evaluate to TRUE.

NOTE
Before the first tr_ cond_ tid() call or
tr cond _tid_name (), or after calling
tr cond_tid clear (), the thread requirement is empty

which matches any thread.

SYNTAX

extern int tr cond tid name (tr t f{,
tr cond t cond,
char * tid name) ;

PARAMETERS
t
data set handle
cond
handle of the condition
tid name
name of the thread to be added to the list of threads associated with the given condi-

tion

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the thread with the specified name.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
e “tr_cond_tid()” on page 18-101

e “tr cond tid clear()” on page 18-103

tr_cond_tid_clear()

Using the NightTrace Analysis API

tr cond tid_ clear () removesall thread requirementsfrom aparticular condition.

NOTE
Before the first tr_ cond tid() call or
tr cond_tid_name (), or after calling
tr cond_ tid_ clear (), the thread requirement is empty

which matches any thread.

SYNTAX

extern void tr cond tid clear (tr_t t,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4

18-103

NightTrace RT User’s Guide

tr_cond_node()

tr cond node () appends the specified system node name to the list of regquired node
names that must be matched for the given condition to evaluate to TRUE.

NOTE

Before the first tr_cond_node () call or after calling
tr cond node_ clear (), the node requirement is empty
which matches any node.

SYNTAX

extern int tr cond node (tr t ft,
tr cond t cond,
char * node) ;

PARAMETERS
t
data set handle
cond
handle of the condition
node

name of the node to be added to the list of nodes associated with the given condition

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the specified node.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
* “tr_cond_node clear()” on page 18-105

18-104

tr_cond_node_clear()

Using the NightTrace Analysis API

tr_cond node clear () removes all node name requirements from a particular con-
dition.

NOTE

Before the first tr _cond _node () call or after calling
tr cond node_ clear (), the node requirement is empty
which matches any node.

SYNTAX

extern void tr cond node clear (tr t t,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
* “tr_cond_node()” on page 18-104

18-105

NightTrace RT User’s Guide

tr_cond_func_or()

tr cond_func or () modifiesthe specified condition to include an additional require-
ment as specified by the user-callable function. The context parameter will be passed to
the specified user function.

NOTE

Multiple requirements may be appended by calling
tr cond or() /tr cond and () multipletimeson the same
condition.

SYNTAX

extern int tr cond func or (tr t t,
tr cond t cond,
tr cond func t func,
void *context) ;

PARAMETERS
t
data set handle
cond
handle of the condition
func
user-callable function to be associated with the given condition
context

user-defined field to be passed to the specified user function

ADDITIONAL INFORMATION

When the API evaluates the condition, it first ensures that the following require-
ments (if they exist) are met:

- event's trace ID matches or is within any specified trace ID or trace
ID range

- event's process ID matches one of the specified process IDs
- event'sthread |D matches one of the specified thread IDs

- event'stask ID matches one of the specified task IDs

- event's node name matches one of the specified node names

- event's CPU intersects the specified CPU bias

18-106

Using the NightTrace Analysis API

If and only if these requirements are met, then the user's function is called.

The user function should return 1 (true) if the user's requirement is met or O (false) if
it isnot met.

Beforecalling tr cond func_or (), the condition will evaluate to TRUE if all
other requirements have been met.

User-defined functions may not be called by the API if the initial requirements are
not met or if the left hand side of short circuit boolean condition aready resolves the
condition.

User-defined functions are invoked in reverse order from which they are specified
with the following parenthetical relationship:

last_function OPERATOR (previous_function)
Thus caling:

tr cond func or(cond,3) ;
tr cond func and(cond,B) ;
tr cond func or(cond,C) ;
tr cond func and(cond,D) ;

would result in the following evaluation:

return D && (C || (B && A))

RETURN VALUES

Returns zero on success and non-zero if insufficient memory is available to register
the user function with the specified condition.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

“tr_t" on page 18-8

“tr_cond_t" on page 18-4
“tr_cond_func_t" on page 18-4
“tr_cond_or()” on page 18-114
“tr_cond_and()” on page 18-115
“tr_cond_func_and()” on page 18-108
“tr_cond_func_clear()” on page 18-110

18-107

NightTrace RT User’s Guide

tr_cond_func_and()

tr cond func_and () modifies the specified condition to include an additional
reguirement as specified by the user-callable function. The context parameter will be
passed to the specified user function.

NOTE

Multiple requirements may be appended by calling
tr cond or() /tr cond and () multipletimeson the same
condition.

SYNTAX

extern int tr cond func and (tr t f,
tr cond t cond,
tr cond func t func,
void *context) ;

PARAMETERS
t
data set handle

cond

handle of the condition
func

user-callable function to be associated with the given condition
context

user-defined field to be passed to the specified user function

ADDITIONAL INFORMATION

When the API evaluates the condition, it first ensures that the following require-
ments (if they exist) are met:

- event's trace ID matches or is within any specified trace ID or trace
ID range

- event's process ID matches one of the specified process IDs
- event'sthread |D matches one of the specified thread IDs

- event'stask ID matches one of the specified task IDs

- event's node name matches one of the specified node names

- event's CPU intersects the specified CPU bias

18-108

Using the NightTrace Analysis API

If and only if these requirements are met, then the user's function is called.

The user function should return 1 (true) if the user's requirement is met or O (false) if
it isnot met.

Before calling tr_cond_func_and (), the condition will evauate to TRUE if all
other requirements have been met.

User-defined functions may not be called by the API if the initial requirements are
not met or if the left hand side of short circuit boolean condition aready resolves the
condition.

User-defined functions are invoked in reverse order from which they are specified
with the following parenthetical relationship:

last_function OPERATOR (previous_function)
Thus caling:

tr cond func or(cond,) ;
tr cond func and(cond,B) ;
tr cond func or(cond,C) ;
tr cond func and(cond,D) ;

would result in the following evaluation:

return D && (C || (B && A))

RETURN VALUES

Returns zero on success and non-zero if insufficient memory is available to register
the user function with the specified condition.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

“tr_t" on page 18-8

“tr_cond_t" on page 18-4
“tr_cond_func_t" on page 18-4
“tr_cond_or()” on page 18-114
“tr_cond_and()” on page 18-115
“tr_cond_func_or()” on page 18-106
“tr_cond_func_and()” on page 18-108

18-109

NightTrace RT User’s Guide

tr_cond_func_clear()

18-110

tr cond func clear () clearsall previoudy specified user function requirements.

SYNTAX

extern void tr cond func clear (tr t t,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
e “tr_cond_func_or()” on page 18-106
e “tr_cond func_clear()” on page 18-110

tr_cond_expr_and()

Using the NightTrace Analysis API

tr cond expr_ and () modifies the specified condition to include an additional
requirement as specified by avalid NightTrace expression.

NOTE

Multiple requirements may be appended by calling
tr cond or() /tr cond and () multipletimeson the same
condition.

SYNTAX

extern char * tr cond expr and (tr t t,
tr cond t cond,
char * expr) ;

PARAMETERS
t
data set handle
cond
handle of the condition
expr
string containing the NightTrace expression to be associated with the given condi-
tion
RETURN VALUES

Returns zero on success or a character string describing why the specified expres-
sionisinvalid.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
* “tr_cond_expr_or()” on page 18-112

18-111

NightTrace RT User’s Guide

tr_cond_expr_or()

tr cond_expr_ or () modifiesthe specified condition to include an additional require-
ment as specified by avalid NightTrace expression.

NOTE

Multiple requirements may be appended by calling
tr cond or() /tr cond and () multipletimeson the same
condition.

SYNTAX

extern char * tr cond expr or (tr_t ft,
tr cond t cond,
char * expr) ;

PARAMETERS
t
data set handle
cond
handle of the condition
expr
string containing the NightTrace expression to be associated with the given condi-
tion
RETURN VALUES

Returns zero on success or a character string describing why the specified expres-
sionisinvalid.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
e “tr_cond_expr_and()” on page 18-111

18-112

Using the NightTrace Analysis API

tr_cond_not()

tr cond_not () createsanew condition which evaluates to TRUE only if the specified
condition evaluates to FALSE.

NOTE

The new condition will still reference the specified condition; thus
subsequent changes to the specified condition will affect the out-
come of the created condition.

SYNTAX

extern tr cond t tr cond not (tr_t t,
char* name,
tr cond t cond) ;

PARAMETERS
t

data set handle
name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if nameis NULL, the newly-created condition will be unnamed

cond

existing condition on which to base the newly-created condition

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-113

NightTrace RT User’s Guide

SEE ALSO
* “fr_t" on page 18-8
e “tr cond t" on page 18-4
* “tr_cond_or()” on page 18-114
e “tr_cond_and()” on page 18-115

tr_cond_or()

tr cond or () createsanew condition which evaluates to TRUE if either of the speci-
fied conditions eval uate to TRUE.

NOTE

The new condition will still reference the specified conditions;
thus subsequent changes to the specified conditions will affect the
outcome of the created condition.

SYNTAX

extern tr cond t tr cond or (tr t f,
char * name,
tr cond t left,
tr cond_t right);

PARAMETERS
t

data set handle
name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if name isNULL, the newly-created condition will be unnamed

one of two existing conditions either of which must evaluate to TRUE for the
newly-created condition to evaluate to TRUE

right

one of two existing conditions either of which must evaluate to TRUE for the
newly-created condition to evaluate to TRUE

18-114

Using the NightTrace Analysis API

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_not()” on page 18-113
* “tr_cond_and()” on page 18-115

tr_cond_and()

tr cond and() createsanew condition which evaluates to TRUE only if both of the
specified conditions evaluate to TRUE.

NOTE

The new condition will still reference the specified conditions;
thus subsequent changes to the specified conditions will affect the
outcome of the created condition.

SYNTAX

extern tr cond t tr cond and (tr t t,
char * name,
tr cond t left,
tr cond t right) ;

PARAMETERS
t

data set handle
name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if nameis NULL, the newly-created condition will be unnamed

18-115

NightTrace RT User’s Guide

tr_cond_copy()

18-116

left

one of two existing conditions which must both evaluate to TRUE for the newly-cre-
ated condition to evaluate to TRUE

right

one of two existing conditions which must both evaluate to TRUE for the newly-cre-
ated condition to evaluate to TRUE

RETURN VALUES

Returns the handle of the newly-created condition; returns TR_NO_COND if insuffi-
cient memory is available to create the new condition.

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_cond_not()” on page 18-113
* “tr_cond_or()” on page 18-114

tr cond copy () createsacopy of the root of specified condition.

NOTE

If the specified condition contains references to other conditions,
(e.g.itwascreated by atr cond or () /tr cond and()
call), the referencesremain (i.e. this operation only copies the root
and not all conditions it may reference).

Using the NightTrace Analysis API

SYNTAX

extern tr cond t tr cond copy (tr t t,
char * name,
tr cond_t cond) ;

PARAMETERS
t

data set handle
name

name to reference the newly-created condition; if an existing condition already
exists with the specified name, it becomes unnamed but remains otherwise
unchanged; if nameis NULL, the newly-created condition will be unnamed

cond

handle of existing condition to copy to create new condition

RETURN VALUES

Returns the handle of the newly-created copy of the specified condition; returns
TR_NO_COND if insufficient memory is available to create the new condition.

See “Conditions” on page 18-90 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
* “tr_cond_or()" on page 18-114
* “tr_cond_and()” on page 18-115

18-117

NightTrace RT User’s Guide

tr_cond_name()

tr_cond_satisfy()

18-118

tr cond name () returnsthe name of the specified condition.

SYNTAX

extern char * tr cond name (tr t t,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

RETURN VALUES

Returns the name of the specified condition (for debugging purposes) or NULL if it
is unnhamed.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t" on page 18-4

tr cond satisfy () isusedto determineif the current event satisfies the specified
condition.

SYNTAX

extern int tr cond satisfy (tr t t,
tr cond t cond) ;

PARAMETERS
t

data set handle

tr_cond_satisfy ()

Using the NightTrace Analysis API

cond

handle of the condition

RETURN VALUES

Returns TRUE if the current event satisfies the specified condition; returns FALSE
otherwise.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t” on page 18-4

tr cond satisfy () isusedtodetermineif thetrace event at the specified offset sat-
isfies the specified condition.

SYNTAX

extern int tr cond satisfy (tr t t,
tr cond t cond,
tr offset t offsa) ;

PARAMETERS
t
data set handle
cond
handle of the condition
offset

offset of the trace event

RETURN VALUES

Returns TRUE if the trace event at the specified offset satisfies the specified condi-
tion; returns FALSE otherwise.

18-119

NightTrace RT User’s Guide

tr_cond_register()

18-120

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
e “tr offset t" on page 18-4

tr cond register () registersthe specified condition so that it is evaluated for every
event.

NOTE

Registration of conditions increases processing time.

SYNTAX

extern void tr cond register (tr_t t,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of condition to register

ADDITIONAL INFORMATION

Thisis the implementation of NightTrace “profiles” which are basically conditions
that are evaluated as each event is consumed.

tr activate () should be called after all desired conditions are registered.

Registering conditions is only necessary if you wish to refer to the offset at which
the specified condition was last active.

Failureto call tr_activate () after registration of conditions will result in erro-
neous stati stics about such conditions.

See “Conditions” on page 18-90 for related functions.

Using the NightTrace Analysis API

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t" on page 18-4
* “tr_activate()” on page 18-133
* “Profile References’ on page 16-193

tr_cond_offset()

tr cond offset () returnsthe offset at which the specified condition last evaluated to
TRUE.

SYNTAX

extern tr offset t tr cond offset (tr t ft,
tr cond t cond) ;

PARAMETERS
t

data set handle
cond

handle of the condition

RETURN VALUES

Returns the offset at which the specified condition last evaluated to TRUE; returns
TR _EOF if the condition has not yet evaluated to true up to the current offset.

See “Conditions” on page 18-90 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t” on page 18-4
* “tr_offset_t” on page 18-4

18-121

NightTrace RT User’s Guide

State-oriented Interfaces

tr_state_create()

18-122

The functions that deal with the creation, configuration, and activation of states are;

tr state create() (Seepage 18-122)

tr state find() (seepage 18-123)

tr_ state name () (Seepage 18-124)

tr state start id() (seepage18-125)

tr state start id range () (Seepage 18-126)
tr state start id clear() (seepage 18-127)
tr state end id() (seepage 18-127)

tr state end id range () (Seepage 18-128)
tr state end id clear () (seepage 18-129)
tr state start cond() (seepage 18-130)

tr state start cond clear () (seepage 18-131)
tr state end cond() (Seepage 18-131)

tr state end cond clear () (Seepage 18-132)
tr activate () (seepage 18-133)

tr state info() (Seepage 18-134)

tr state info () (seepage 18-135)

tr state active () (seepage 18-136)

tr state active () (seepagel18-137)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

tr state create () createsanew state with the following attributes:

Start Events:

ALL

End Events:

ALL

Start Condition:

TRUE

tr_state_find()

Using the NightTrace Analysis API

End Condition:

TRUE

SYNTAX

extern tr state t tr state create (tr t ft,
char * name) ;

PARAMETERS
t

data set handle
name

name to reference the newly-created state; if an existing state already exists with the
specified name, it becomes unnamed but remains otherwise unchanged; if nameis
NULL, the newly-created state will be unnamed

RETURN VALUES

Returns an opaque handle which identifies the newly-created state; returns
TR_NO_STATE if thereisinsufficient memory available to create the state.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO

* “tr_t" on page 18-8

tr state find() locates an existing state (perhaps imported from afile) and returns
its handle.

SYNTAX

extern tr state t tr state find (tr t t,
char * name) ;

PARAMETERS
t

data set handle

18-123

NightTrace RT User’s Guide

tr_state_name()

18-124

name

name used to reference the desired state as defined in tr_state create()

RETURN VALUES

Returns the handle of the desired state; returns TR_NO_STATE if the named state
does not exist.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
¢ “fr_state t” on page 18-7
* “tr state create()” on page 18-122

tr state name () returnsthe name of the specified state.

SYNTAX

extern char * tr state name (tr t f,
tr state t date);

PARAMETERS
t

data set handle
State

handle of the state

RETURN VALUES

Returns the name of the specified state (for debugging purposes) or NULL if the state
is unnamed.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

tr_state_start_id()

Using the NightTrace Analysis API

SEE ALSO
* “tr_t" on page 18-8
* “fr_state t” on page 18-7

tr state start id() appendsthe specified trace ID to thelist of required trace IDs
that must be matched for the start event that defines the state.

SYNTAX

extern int tr state start id (tr_t t,
tr state t date,
int id);
PARAMETERS
t
data set handle

state

handle of the state

trace ID to add to the list of required trace IDs for the start event that defines the
State

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7

18-125

NightTrace RT User’s Guide

tr_state_start_id_range()

18-126

tr state start id range () appendsthe trace IDsincluded in the given trace ID
range to the list of required trace IDs that must be matched for the start event that defines
the state.

SYNTAX

extern int tr state start id range (tr_t t,
tr state t date,
int idl,
int id2) ;
PARAMETERS
t
data set handle
Sate
handle of the state
idl
minimum value in the range of trace IDs to be associated with the given state
id2

maximum value in the range of trace IDs to be associated with the given state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7

Using the NightTrace Analysis API

tr_state_start_id_clear()

tr_state_end_id()

tr state start id clear() removesal trace ID requirements related to the start
event that defines a particular state (such that that all events are candidates to start a state).

SYNTAX

extern void tr state start id clear (tr t f{,
tr state t date) ;

PARAMETERS
t

data set handle
Sate

handle of the state

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7

tr state end id() appends the specified trace ID to the list of required trace IDs
that must be matched for the end event that defines the state.

SYNTAX

extern int tr state end id (tr_t t,
tr state t date,
int id) ;
PARAMETERS
t
data set handle

state

handle of the state

18-127

NightTrace RT User’s Guide

id
trace ID to add to the list of required trace IDs for the end event that defines the state

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the ID.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
¢ “fr_state t” on page 18-7

tr_state_end_id_range()

18-128

tr state end id range () appends the trace IDsincluded in the given trace ID
range to the list of required trace IDs that must be matched for the end event that defines
the state.

SYNTAX
extern int tr state end id range (tr t t,
tr state_t date,
int idl,
int id2) ;
PARAMETERS
t
data set handle
state
handle of the state
idl
minimum value in the range of trace IDs to be associated with the given state
id2

maximum value in the range of trace IDsto be associated with the given state

Using the NightTrace Analysis API

RETURN VALUES

Returns zero on success or non-zero if insufficient memory is available to register
the IDs.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “fr_state t” on page 18-7

tr_state_end_id_clear()

tr state end id clear () removesall trace ID requirements related to the end
event that defines a particular state (such that that all events are candidates to end a state).

SYNTAX

extern void tr state end id clear (tr t ft,
tr state t date) ;

PARAMETERS
t

data set handle
State

handle of the state

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
e “tr_t" on page 18-8
* “fr_state t” on page 18-7

18-129

NightTrace RT User’s Guide

tr_state_start_cond()

18-130

tr state start cond () associates a certain condition with start of a particular
state.

SYNTAX

extern void tr state start cond (tr t ft,
tr state t date,
tr cond t cond) ;

PARAMETERS
t

data set handle
Sate

handle of the state
cond

handle of the condition to associate with the start of the specified state

See “ State-oriented Interfaces’ on page 18-122 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.
SEE ALSO
* “tr_t" on page 18-8
e ‘“tr_state t” on page 18-7

* “tr_cond_t" on page 18-4

Using the NightTrace Analysis API

tr_state_start_cond_clear()

tr_state_end_cond()

tr state start cond clear () clears any conditions associated with start of a
particular state.

SYNTAX

extern void tr state start cond clear (tr t t,
tr state t date);

PARAMETERS
t

data set handle
Sate

handle of the state

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7

tr state _end cond () associates acertain condition with end of a particular state.

SYNTAX

extern void tr state end cond (tr_t ft,
tr state t date,
tr cond t cond) ;

PARAMETERS
t

data set handle
State

handle of the state

18-131

NightTrace RT User’s Guide

cond

handl e of the condition to associate with the end of the specified state

See “ State-oriented Interfaces’ on page 18-122 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
* “tr_t" on page 18-8
* “fr_state t” on page 18-7

* “tr_cond_t” on page 18-4

tr_state_end_cond_clear()

18-132

tr state end cond clear () clearsany conditions associated with end of a partic-
ular state.

SYNTAX

extern void tr state end cond clear (tr t f{,
tr state t date) ;

PARAMETERS
t

data set handle
Sate

handle of the state

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7

tr_activate()

Using the NightTrace Analysis API

tr activate () must be called after the configuration of all states and the registration
of al conditionsis complete. It may be called multiple times.

NOTE
Failure to call this function will result in undefined state evalua-

tion and false conditions.

SYNTAX

extern int tr activate (tr_t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns zero upon successful activation or -1 if a circular dependency between
states is detected.

ADDITIONAL INFORMATION

If the current position is other than the beginning of the data set, user-defined func-
tions associated with conditions in states may be called during the invocation of
tr state active().

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_state active()” on page 18-136

18-133

NightTrace RT User’s Guide

tr_state_info()

18-134

tr state_info () returnsastructure containing the current values associated with the
last completed instance of the specified state

SYNTAX

extern void tr state info (tr t ft,
tr state_ t date,
tr state _info t * info);
PARAMETERS
t
data set handle
state
handle of the state
info

pointer to a structure which will contain the current values associated with the last
completed instance of the specified state

RETURN VALUES

The return values are contained in the tr_state info_t structure (see
“tr_state info_t” on page 18-6).

If the state has never been active, start _offset and end_offset are set to
TR_EOF and gap and duration are set to zero.

See “ State-oriented Interfaces’ on page 18-122 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
* “tr_t" on page 18-8
* “fr_state t” on page 18-7

* “tr state info_t” on page 18-6

tr_state_info_()

Using the NightTrace Analysis API

tr state info_ () returnsa structure containing the current values associated with
the given state at the specified offset.

NOTE

Caling tr_state_info_ () isan expensive operation if the
specified offset is not the current position.

SYNTAX

extern void tr state info (tr t t,
tr state t date,
tr state info t * info,
tr offset t offsat) ;
PARAMETERS
t
data set handle
state
handle of the state
info

pointer to a structure which will contain the current values associated with the given
state at the specified offset

offset

offset of the specifed state

RETURN VALUES

The return values are contained in the tr_state info_t structure (see
“tr_state info_t” on page 18-6).

If the state has never been active, start offset and end offset are set to
TR _EOF and gap and duration are set to zero.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

18-135

NightTrace RT User’s Guide

tr_state_active()

18-136

SEE ALSO
* “fr_t" on page 18-8
* “fr_state t” on page 18-7
* “tr state info_t” on page 18-6
* “tr_offset_t” on page 18-4

tr state active() isused to determineif the specified state is active at the current
offset.

SYNTAX

extern int tr state active (tr _t t,
tr state t date);

PARAMETERS
t

data set handle
Sate

handle of the state

RETURN VALUES

Returns TRUE if the specified state is active at the current offset; returns FALSE oth-
erwise.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7

tr_state_active ()

Using the NightTrace Analysis API

tr state active_ () isused to determineif the given state is active at the specified
offset.
NOTE
Cdlingtr_state_active () isanexpensive operation if the

specified offset is not the current position.

SYNTAX

extern int tr state active_ (tr t f{,
tr state t date,
tr offset t offsat) ;

PARAMETERS
t

data set handle
State

handle of the state
offset

offset of the specified state

RETURN VALUES

Returns TRUE if the given state is active at the specified offset; returns FALSE oth-
erwise.

See “ State-oriented Interfaces’ on page 18-122 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
e “fr_state t” on page 18-7
* “tr offset t” on page 18-4

18-137

NightTrace RT User’s Guide

Output Function

tr_copy_input()

18-138

The function dealing with the output of trace dataiis:
- tr_copy_ input () (seepage 18-138)
- tr copy input range () (Seepage 18-139)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr copy_ input () consumes the entire input data set and copies all events which sat-
isfy the specified condition to the output file.

SYNTAX
extern int tr copy input (tr t t,
char * output_file,

tr cond t cond,
int mode) ;

PARAMETERS
t

data set handle
output_file

pathname of the output file
cond

handle of the condition
mode

parameter passed to the system call invoked to open/create the specified output file

RETURN VALUES

Returns zero upon success; returns -1 upon error in which case errno will be set to
avalueasper open (2) or read(2).

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4

Using the NightTrace Analysis API

tr_copy_input_range()
tr copy input range () copiesal the eventsin the data set whose offsets liein the
range specified.
SYNTAX

extern int tr copy input range (tr t t,
char * output_file,

int mode) ;
int dart) ;
int end) ;
PARAMETERS
t
data set handle
output_file

pathname of the output file
mode

parameter passed to the system call invoked to open/create the specified output file
Sart

start of the range
end

end of the range

RETURN VALUES

Returns zero upon success; returns -1 upon error in which case errno will be set to
avaueasper open (2) Or read (2).

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “tr_cond_t” on page 18-4

18-139

NightTrace RT User’s Guide

String Table Functions

tr_get_string()

18-140

The following functions are provided to create, manage, and search NightTrace string
tables:

- tr get string() (seepage 18-140)

- tr get item() (seepage 18-141)

- tr_create table() (seepage 18-142)
- tr_append table() (seepage 18-143)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr get string() returnsthe string associated with the number of the desired item in
the specified table.

SYNTAX
extern char * tr get string (tr t f,
char * table name,
int item) ;
PARAMETERS
t
data set handle
table_name
name of the string table
item
position of the desired item in the specified table
RETURN VALUES

Returns the string associated with the number of the desired item in the specified
table; returns“” if no match is found.

See “ String Table Functions’ on page 18-140 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr_get_item()

Using the NightTrace Analysis API

SEE ALSO
* “tr_t" on page 18-8
® “String Tables’ on page 7-15

tr get item() returnsthe item number associated with the string entry in the speci-
fied table that matches the specified value.

SYNTAX

extern int tr get item (tr_t t,
char * table name,
char * value) ;

PARAMETERS
t
data set handle
table_name
name of the table to search for the specified string
value

string entry to search for in the specified table

RETURN VALUES

Returns the item number associated with the string entry in the specified table that
matches the specified value; returns zero if no match is found.

See “ String Table Functions’ on page 18-140 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
* “tr_t" on page 18-8
* “String Tables’ on page 7-15

18-141

NightTrace RT User’s Guide

tr_create_table()

18-142

tr create_ table () isused to create astring table.

SYNTAX

extern int tr create table (tr t t,
char * table name,
char * default value,
tr string node t * list,
int count) ;

PARAMETERS
t
data set handle
table_name
name to subsequently reference the newly-created table
default_value
string to associate with integer values that are not explicitly referenced in the table
list
pointer to alist of string table entries
count

number of entriesin the list of string table entries

RETURN VALUES

Returns zero on success; returns -1 if insufficient memory is available to complete
the request or invalid values are specified.

ADDITIONAL INFORMATION

All strings referenced by value fields are copied during the operation; therefore the
source of the strings need not remain allocated after the call completes.

See “ String Table Functions’ on page 18-140 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

* “tr_t" on page 18-8

Using the NightTrace Analysis API

* “tr _string_node t" on page 18-7
* “String Tables’ on page 7-15

tr_append_table()

tr append table () associates a particular string with a certain position in a given
string table.

NOTE

If the position specified is already associated with a string,
tr append table () will overwrite the previous entry.

SYNTAX
extern int tr append table (tr_t t,
char * table name,
char * value,
int item) ;
PARAMETERS
t
data set handle
table name
name of the table to modify
value
character string to assign to the given item number
item
position in the table to associate with the given string
RETURN VALUES

Returns zero on success; returns -1 if insufficient memory is available to complete
the request or invalid values are specified.

ADDITIONAL INFORMATION

All strings referenced by value fields are copied during the operation; therefore the
source of the strings need not remain allocated after the call completes.

See “ String Table Functions’ on page 18-140 for related functions.

18-143

NightTrace RT User’s Guide

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “fr_t" on page 18-8
* “String Tables” on page 7-15

18-144

Using the NightTrace Analysis API

Callback Interfaces

tr_iterate()

The following functions deal with the callback capabilities of the NightTrace Analysis
Application Programming Interface:

- tr iterate () (seepage 18-145)

- tr _halt () (seepage 18-146)

- tr cancel cb() (seepage 18-146)
- tr_cond cb() (seepage 18-147)

- tr state cb() (seepage 18-148)

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

tr iterate () iteratively processes all events starting at the current position through
the end of the data set. For each event, user-defined callback functions registered with
tr_cond cb() ortr state cb () will beinvoked as required.

SYNTAX

extern int tr iterate (tr t t);

PARAMETERS
t

data set handle

RETURN VALUES

Returns zero on success and non-zero if an error occurs. Currently, the only error is
to reach the memory limit specified on the tr_open stream() cal if the input
source is streaming data.

See “Callback Interfaces’ on page 18-145 for related functions.
See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.
SEE ALSO
e “tr_t" on page 18-8
e “tr cond ch()” on page 18-147
* “tr state cb()” on page 18-148
* “tr_open_stream()” on page 18-19

18-145

NightTrace RT User’s Guide

tr_halt()

tr_cancel_cb()

18-146

tr halt () haltstheiteration process, causing tr_iterate () toreturn.

SYNTAX

extern void tr halt (tr t t);

PARAMETERS
t

data set handle

See “Callback Interfaces’ on page 18-145 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

SEE ALSO
* “tr_t" on page 18-8
* “tr_iterate()” on page 18-145

tr cancel cb () cancelsthe specified callback.

SYNTAX

extern void tr cancel cb (tr t t,
tr cb t cb);

PARAMETERS
t

data set handle
cb

handle of the callback to be cancelled

See “Callback Interfaces’ on page 18-145 for related functions.

See “Functions’ on page 18-9 for a complete list of functions included in the NightTrace
AnalysisAPI.

tr_cond_ch()

Using the NightTrace Analysis API

SEE ALSO
* “tr_t" on page 18-8
* “tr cb t” onpage 18-3

tr cond_cb () registers a user-defined callback function which will be iteratively
called for every event that satisfies the specified condition.

SYNTAX

extern tr cb t tr cond cb (tr t t,
tr cond t cond,
tr cond cb func t func,
void * context) ;

PARAMETERS
t

data set handle
cond

handle of the condition that must be satisfied in order for the callback function to be
called

func
function to be called if the given condition is satisfied for a particul ar event
context

user defined value which is passed to the specified callback function

RETURN VALUES
Returns an opague handle which identifies the callback; returns TR_NO_CB if the

specified arguments are invalid or there is insufficient memory available to register
the callback function.

See “Callback Interfaces’ on page 18-145 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO
e “tr_t" on page 18-8
* “tr_cond_t” on page 18-4

18-147

NightTrace RT User’s Guide

tr_state_chb()

18-148

e “tr cond_cb func t” on page 18-3
* “tr cb t” onpage 18-3

tr state_ cb() registers a user-defined callback function which will be iteratively
invoked for every event that affects the given state in the manner specified.

SYNTAX

extern tr cb t tr state cb (tr _t t,
tr state_t date,
tr state action_t action,
tr state cb func t func,
void * context) ;

PARAMETERS
t

data set handle
state

handle of the state
action

specifies the manner in which the given function will be called (see
“tr_state action_t” on page 18-5)

func

function which will beiteratively invoked for every event that affects the given state
in the specified manner

context

user defined value which is passed to the specified callback function

RETURN VALUES

Returns an opague handle which identifies the callback; returns TR_NO_CB if the
specified arguments are invalid or there is insufficient memory available to register
the callback function.

See “ Callback Interfaces’ on page 18-145 for related functions.

See “Functions” on page 18-9 for a complete list of functions included in the NightTrace
Analysis API.

SEE ALSO

“tr_t" on page 18-8

“tr_state t” on page 18-7
“tr_state action_t” on page 18-5
“tr_state cb_func_t” on page 18-5
“tr_cb_t” on page 18-3

Using the NightTrace Analysis API

18-149

NightTrace RT User’s Guide

18-150

License Keys

A
NightStar Licensing

NightStar RT uses the NightStar License Manager (NSLM) to control access to the Night-
Star RT tools.

Licenseinstallation requires alicence key provided by Concurrent (see “License Keys' on
page A-1).The NightStar RT tools request alicence (see “License Requests’ on page A-2)
from alicense server (see “License Server” on page A-2).

Two license modes are available, fixed and floating, depending on which product option
you purchased. Fixed licenses can only be served to NightStar RT users from the local sys-
tem. Floating licenses may be served to any NightStar RT user on any system on a net-
work.

Tools are licensed per system, per concurrent user. A single license is shared among any or
all of the NightStar RT tools for a particular user on a particular system. The intent isto
allow n developers to fully utilize all the tools at the same time while only requiring n
licenses. When operating the tools in remote mode, where atool is launched on alocal
system but is interacting with a remote system, licenses are required only from the host
system.

You can obtain a license report which lists all licenses installed on the local system, cur-
rent usage, and expiration date for demo licenses (see “ License Reports’ on page A-3).

The default configuration includes a strict firewall which interferes with floating licenses.
See “Firewall Configuration for Floating Licenses” on page A-3 for information on han-
dling such configurations.

See “License Support” on page A-4 for information on contacting Concurrent for addi-
tional assistance with licensing issues.

Licenses are granted to specific systems to be served to either local or remote clients,
depending on the license model, fixed or floating.

License installation requires a license key provided by Concurrent. To obtain a license
key, you must provide your system identification code. The system identification code is
generated by thens1lm_ admin utility:

nslm admin --code

System identification codes are dependent on system configurations. Reinstalling Linux
on a system or replacing network devices may require you to obtain new license keys.

To obtain alicense key, use the following URL :

A-1

NightTrace RT User’s Guide

http://www.ccur.com/NightSar RTK eys

Provide the requested information, including the system identification code. Your license
key will beimmediately emailed to you.

Install the license key using the following command:
nslm admin --install=X0X-X0X-XX-XK-XXXX

Where Y0000 X000-x000- XXX S the key included in the license acknowledgment email.

License Requests

By default, the NightStar RT tools request a license from the local system. If no licenses
are available, they broadcast a license request on the local subnet associated with the sys-
tem’s hosthame.

You can control the license requests for an entire system using the /ete/nslm.config
configuration file.

By default, the /etc/nslm.config file contains aline similar to the following:
:server @default

The argument @default may be changed to a colon-separated list of system names, system
I P addresses, or broadcast | P addresses. Licenses will be requested from each of the enti-
tiesfound in thelist, until alicenseis granted or al entriesin the list are exhausted.

For example, the following setting prevents broadcast requests for licenses, by only speci-
fying the local system:

:server localhost

The following setting requests a license from server1l, then server2, and then a
broadcast request if those fail to serve alicense:

:server serverl:server2:192.168.1.0

Similarly, you can control the license requests for individual invocations of the tools using
the NSLM SERVER environment variable. If set, it must contain a colon-separated list of
system names, system |P addresses, or broadcast | P addresses as described above. Use of
the NSLM_SERVER environment variable takes precedence over settings defined in
/etc/nslm.config.

License Server

A-2

The NSLM license server isautomatically installed and configured to run when you install
NightStar RT.

http://www.ccur.com/NightStarRTKeys

NightStar Licensing

Thenslm serviceisautomatically activated for runlevels 2, 3, 4, and 5. You can check on
these settings by issuing the following command:

/sbin/chkconfig --list nslm
In rare instances, you may need to restart the license server viathe following command:
/sbin/service nslm restart

Seens1m (1) for moreinformation.

License Reports

A license report can be obtained using thenslm admin utility.
nslm admin --list

listsall licenses installed on the local system, current usage, and expiration date (for demo
licenses). Use of the - -verbose option aso listsindividual clientsto which licenses are
currently granted.

Adding the - -broadcast option will list thisinformation for all servers that respond to
abroadcast request on the local subnet associated with the system’s hostname.

Seenslm_admin (1) for more options and information.

Firewall Configuration for Floating Licenses

RedHawk does not support afirewall configuration by default, because iptables support is
disabled. However, it is possible to build a custom kernel with iptables support enabled. If
that is done, and floating licenses are used, the iptables firewall rules must be configured
to allow the license requests and responses to pass.

If the system with iptables support and firewall rules is serving licenses, then the firewall
rules must be arranged to allow license requests on UDP port 25517 and TCP port 25517
from any systems that will make license requests. For example, in asimple firewall, rules
like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subne/mask --dport 25517 -j ACCEPT
iptables -A INPUT -p tcp -m tcp -s subne/mask --dport 25517 -3j ACCEPT

If the system with iptables support and firewall rules is running NightStar RT tools and
receiving floating licenses, then the firewall rules must be arranged to allow license
responses on UDP port 25517 from any system serving licenses. For example, in asimple
firewall, rules like the following, inserted before any DROP or REJECT rules, might work:

iptables -A INPUT -p udp -m udp -s subne/mask --sport 25517 -j ACCEPT

A-3

NightTrace RT User’s Guide

License Support

A-4

For additional aid with licensing issues, contact the Concurrent Software Support Center
at our toll free number 1-800-245-6453. For calls outside the continental United States, the
number is 1-954-283-1822. The Software Support Center operates Monday through Fri-
day from 8 am. to 5 p.m., Eastern Standard Time.

You may also submit a request for assistance at any time by using the Concurrent Com-
puter Corporation web site at http://www.ccur.com/isd_support_contact.asp or by send-
ing an email to support@ccur.com.

http://www.ccur.com/isd_support_contact.asp
mailto:support@ccur.com

B
Kernel Dependencies

Concurrent’s RedHawk kernel provides features and performance gains that are critical
for the optimal operation of the NightStar RT tools.

The NightStar RT tools can operate in a host-only mode on Red Hat systems without Con-
current’s RedHawk kernel, cross-targeting to RedHawk systems.

Additionally, the NightStar RT tools can function on Red Hat systems without the
RedHawk kernel, but will lack the numerous advantages afforded by running with it.

The following sections describe the additional functionality and capabilities of the Night-
Star RT tools when running Concurrent’s RedHawk kernel

Advantages for NightView

The following advantages are afforded NightView when Concurrent’s RedHawk kernel is
running:

¢ Application speed conditions
Provides “ execution-speed” patches, conditions, and ignore counts.
* Signal handling

Allows NightView to pass signals directly to a particular process, avoiding context
switching.

Advantages for NightTrace

The following advantage is afforded NightTrace when Concurrent’s RedHawk tracing
kernel isrunning:

* Kernel tracing

Users of NightTrace gain the ability to obtain kernel trace data and combine that
with user trace data. Kernel tracing is an incredibly powerful feature that not only
provides insight into the operating system kernel but also provides useful informa-
tion relating to the execution of user applications.

The RedHawk kernel is provided in three flavors:

* Tracing

B-1

NightTrace RT User’s Guide

* Debug
* Plain

The Tracing and Debug flavors provide the features required for NightTrace kernel
tracing. These kernels can be selected at boot-time from the boot-loader menu.

Advantages for NightProbe

The following advantages are afforded NightProbe when Concurrent’s RedHawk a
RedHawk or SLERT kernel is running:

* Minimal intrusion

Allows NightProbe to read and write variables without stopping the process for each
sample or write operation.

* Sampling performance

Allows NightProbe to use direct memory fetches for data sampling (as opposed to
programmed 1/O) which isimportant for high-rate data acquisition.

* Concurrent debugging/probing

Allows NightProbe to probe programs already under the control of a debugger or
another NightProbe session.

* PCI Device probing

Allows NightProbe to probe PCI device memory via the Base Address Register
(BAR) file system.

Advantages for NightTune

The following advantage is afforded NightTune when Concurrent’s RedHawk a RedHawk
or SLERT kernel is running:

* Context switch rate

Allows NightTune user to display the context switch counts per CPU instead of for
the overall system.

* CPU shielding

Individual CPUs can be shielded from interrupts and processes allowing CPUs to be
dedicated solely to specific interrupts and processes that are bound to the CPU.

B-2

Kernel Dependencies

* CPU sibling interference

Individual CPUs can be marked down to avoid interfering with hyperthreaded sib-
ling CPUs and dual-core sibling CPUs. Hyperthreaded CPUs share al the resources
of their sibling CPU. Dual-core CPUs share the CPU cache and a path to memory
with their sibling CPU.

¢ Detailed memory information
Detailed process memory descriptions include the residency and lock state of any

pagein aprocess, and their association with physical memory poolsfor NUMA sys-
tems.

Frequency Based Scheduler

The Frequency Based Scheduler is only available on RedHawk systems from Concurrent
Computer Corporation. Itisrequired for all NightSim usage.

NightSim is only included in NightStar distributions intended for use on RedHawk sys-
tems.

PCI Bar File System

The PCI Bar File System is only available with the RedHawk kernel from Concur-
rent Computer Corporation and SLERT versions 1.0-1.6 kernel from Novell.

On other systems, PCI Device probing will be disabled within NightProbe.

B-3

NightTrace RT User’s Guide

B-4

C
Privileged Access

Some features of NightTrace require either root access or privileged access as described
bel ow.

This chapter provides an overview of the capabilities mechanism support by some operat-
ing systems.

The following operating system kernels support the capabilities mechanism:

¢ RedHawk Linux (all versions)

® SUSE Linux Enterprise Real Time (versions 1.0-1.6 only)

Capabilities

The following capabilities may be required when using NightTrace:
®* CAP SYS NICE

If you wish to run the ntraceud daemon with a real-time scheduling policy and
priority, you must have this capability. For example:

ntraceud --policy=fifo --priority=50 data-file
* CAP_IPC LOCK

If you wish to run the ntraceud daemon and force shared pages between the user
application and the daemon to be locked in memory, you must have this capability.
Similarly, this capability is required if you specify page locking when configuring a
daemon viathe API. For example:

ntraceud --lock data-file
or

ntconfig t config;

trace default config(&config) ;
config.ntc lock pages = ntp lock;
config.ntc_daemon_preferred = false;
trace begin(“data-file”, &config) ;

Linux provides ameansto grant otherwise unprivileged users the authority to perform cer-
tain privileged operations. The Pluggable Authentication Module (see
pam capability (8)) isused to manage sets of capabilities, called roles, required for
various activities.

C-1

NightTrace RT User’s Guide

Linux systems should be configured with an ntraceuser role which provides the
CAP_SYS NICE and CAP IPC LOCK capabilities.

Edit /etc/security/capability.conf and define the ntraceuser role (if itis
not already defined) in the “ROLES” section:

role ntraceuser CAP_SYS NICE CAP IPC LOCK

Additionally, for each NightTrace user on the target system, add the following line at the
end of thefile:

user username ntraceuser

where username is the login name of the user.

If the user requires capabilities not defined in the ntraceuser role, add a new role
which contains ntraceuser and the additional capabilities needed, and substitute the
new role name for ntraceuser in the text above.

In addition to registering your login namein /etc/security/capability.conf,
certain filesunder the /etec/pam. d directory must aso be configured to alow capabili-
ties to be activated.

To activate capabilities, add the following line to the end of selected filesin /etc/pam.d
if itisnot already present:

session required pam_ capability.so

The list of files to modify is dependent on the list of methods that will be used to access
the system. The following table presents a recommended configuration that will grant
capabilities to users of the services most commonly employed in accessing a system.

Table C-1. Recommended /etc/pam.d Configuration

C-2

letc/pam.d File | Affected Services Comment
remote telnet Depending on your system, the remote file may
rlogin not exist. Do not create the remote file, but edit it
rsh (when used w/o a command) if itis present.
login local login (e.g. console) *On some versions of Linux, the presence of the
telnet* remote file limits the scope of the login fileto
rlogin* local logins. In such cases, the other services listed
rsh* (when used w/o a command) here with Login are then affected solely by the
remote configuration file.
rsh rsh (when used with a command) eg. rsh system name a.out
sshd ssh You must also edit /etc/ssh/sshd _config
and ensure that the following line is present:
UsePrivilegeSeparation no
gdm gnome sessions
kde kde sessions

Privileged Access

If you modify /etc/pam.d/sshd or /ete/ssh/sshd_config, you must restart the
sshd service for the changes to take effect:

service sshd restart
bash /etc/init.d/sshd restart

In order for the above changes to take effect, the user must log off and log back onto the
target system.
NOTE

To verify that you have been granted capabilities, issue the
following command:

/usr/sbin/getpcaps $$
/sbin/getpcaps $$

The output from that command will list the roles currently
assigned to you.

C-3

NightTrace RT User’s Guide

c-4

D
NightTrace Logging APl Examples

This chapter provides several examples using the NightTrace Logging API.

Single Threaded C Example

This example uses demonstrates a minimalist approach to tracing, foregoing any error
checking and logging very simple events.

#include <ntrace.h>

main ()

{

volatile double x = 0.0;
int i,3;

trace_begin ("data",0);

for (j=0; 3j<100; ++j) {
trace event (1);
for (i=0; 1<1000; ++1i) {
X = X * X;
}

trace event (2);

}
Thecall to trace begin() initializes tracing with default parameters.

Wecall trace event() with different event identifiersimmediately before and after our
application’s workload, represented by the inner loop.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace
$ ntraceud data; ./a.out; ntraceud -q data

Using the command line summary option to ntrace, print a summary of each execution of
the outer loop:

$ ntrace --summary=st:1-2 data

Summary: States starting with event 1, ending with event 2:

State Summary Results

D-1

NightTrace RT User’s Guide

D-2

Number of states found:

Maximum state duration:
Minimum state duration:
Average state duration:
Total of state durations:

Number of state gaps found:

Maximum state gap:
Minimum state gap:
Average state gap:
Total of state gaps:

100

.000027722
.000012817
.000014569
.001456897

o O O o

100

.000000430
.000000303
.000000306
.000030604

o O O o

at
at

at
at

offset:
offset:

offset:
offset:

13

NightTrace Logging APl Examples

Multi-Threaded C++ Example

This example demonstrates using NightTrace event logging from multiple threads.

#include <stdio.h>

#include <stdlib.h>
#include <ntrace.h>
#include <time.h>...

#define Start 100
#define End 200

volatile int done = 0;

int work (int input)
// do something
return input;

void *
thread a (void * ptr)
{
int i = 0;
int result;
trace register thread();
trace open thread ("romeo");
struct timespec ts = { 0, 20000000};
while (!done) {
trace_event arg (Start, i);
result = work (i++) ;
trace event arg(End, result);
nanosleep (&s,0) ;

void *
thread b (void * ptr)
{
int 1=9999999;
int result;
trace register_ thread();
trace_open_thread ("juliet");
struct timespec ts = { 0, 20000000};
while (!done)
trace event arg (Start, i);
result = work(i--);
trace_event_arg(End, result);
nanosleep (&s,0) ;

int

main (int argc, char * argvl[])
pthread t thread;
pthread attr t attr;
int status;

status = trace_begin ("data",NULL);

switch (status) {
case NTLISTEN:

D-3

NightTrace RT User’s Guide

}

printf ("No daemon is listening -- ™
“proceeding in case one shows up\n");
break;
case NTNOERROR:
break;
default:
printf ("An error occurred during ntrace initialization (%d)\n",
status) ;
exit(1);

}

pthread_attr_ init (&attr);
pthread create (&thread, &attr, thread a, NULL);

pthread_attr_ init (&attr);
pthread create (&thread, &attr, thread b, NULL);

sleep (1) ;

done = 1;

Thecall to trace begin() initiaizes tracing with default parameters.

Immediately within the thread routines, each thread registers itself with the NightTrace
APl viaatrace register thread() cal, and then identifies itself with a unique
nameviathe trace open thread() cal.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ cc -g file.c -lntrace thr -lpthread
$ ntraceud data; ./a.out; ntraceud -q data

NOTE

Note the use of the thread-aware version of the NightTrace log-
ging API library, -1ntrace thr. Thisisrequired for use with
multi-threaded programs if you want to be able to distinguish
between individual threads in trace events. See “Threads and
Logaing” on page 2-29 for more information).

The following command invokes ntrace to graphically view the events. A customized
page is automatically built which distinguishes events between the two threads: romeo
and juliet:

NightTrace Logging APl Examples

$ ntrace data

|;l |Eage Search Summary Graph Event Edit Zoom View Help

H wa 2[] D &£=1 1 0k @+ x| GBI &aQR

2 Search match: offzet=FE id=2 pid=app thr=juliet cpu="? time=2,553419834 argl=0x9blfZecb arg2=(xbfebdZf2

1 Search match: offzet=F5 id=1 pid=app thr=romeo cpu="? time=2,553412969 argl=0x43f433cf arg2=0x3febbdd3 :j
£

o
X

- |offset = 76 ‘f lid=2 ‘f

- |arsl = -1692455189 ‘f

oL TIITIIiiinii it | :
[R QS
: : | :
. . | .

Figure C-1. Automatically Generated Data Display Page

Fortran Example

This example uses demonstrates a simple Fortran program logging atrace event.

program ftrace
include "/usr/include/ntrace_ .h"
integer void

void trace start("data")
void = trace open thread("fmain")

do 10 i=1,10
void = trace_ event arg(l,i)
10 continue

void = trace_end()

end
Thecall to trace start() initializes tracing with default parameters.
Wecall trace event arg() with theloop iterator for each iteration.

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

$ g77 -g file.c -lntrace
$ ntraceud data; ./a.out; ntraceud -q data

D-5

NightTrace RT User’s Guide

Using the command line listing option to ntrace, we see the values of the iterator as event
points are logged:

$ ntrace --listing data

0: cpu=?? 1 pid=a.out thr=fmain time=0.000000000s argl=0x1l
1: cpu=?? 1 pid=a.out thr=fmain time=0.000002481s argl=0x2
2: cpu=?? 1 pid=a.out thr=fmain time=0.000003103s argl=0x3
3: cpu=?? 1 pid=a.out thr=fmain time=0.000003536s argl=0x4
4: cpu=?? 1 pid=a.out thr=fmain time=0.000003976s argl=0x5
5: cpu=?? 1 pid=a.out thr=fmain time=0.000004386s argl=0x6
6: cpu=?? 1 pid=a.out thr=fmain time=0.000004882s argl=0x7
7: cpu=?? 1 pid=a.out thr=fmain time=0.000005302s argl=0x8
8: cpu=?? 1 pid=a.out thr=fmain time=0.000005820s argl=0x9
9: cpu=?? 1 pid=a.out thr=fmain time=0.000006294s argl=0xa

Rare Occurrence Example

This example uses demonstrates how one might use buffer-wrap mode to catch a rare
occurrence of bug.

#include <ntrace.h>
#include <time.h>

void
incredibly rare event (void)
{
trace event(2);
time t t = time(0);
printf ("a.out: Badness occurred at %s", asctime(localtime(&t)));
trace flush();

}
main ()
{
volatile double x = 0.0;
int j;
unsigned i1 = 0;
trace begin ("data",0);
for (;;) {
trace event arg (1,1);
for (j=0; j<100; ++j) x = x * Xx;
if ((++1i % 10000000) == 0) {
incredibly rare event () ;
}
}
}

Thecall to trace begin() initiaizes tracing with default parameters.

Wecall trace event arg() withtheloop iterator for each iteration of the outer loop to
simulate logging useful data.

D-6

NightTrace Logging APl Examples

When the process detects something has gone wrong, it logs a new trace event and then
flushes the trace buffers with acall to trace flush().

The following commands could be used to compile, link, and execute the application
using command-line daemon execution:

cc -g file.c -1lntrace

ntraceud --bufferwrap data

./a.out &

.out: Badness occurred at Fri Oct 7 18:00:26 2005
.out: Badness occurred at Fri Oct 7 23:12:55 2005
ntraceud --quit-now data

jobs

[1] + Running a.out

a.out: Badness occurred at Sat Oct 8 02:45:01 2005
a.out: Badness occurred at Sat Oct 8 08:21:17 2005

R/ 7 BRI 7 R 7

The program continues to execute despite the detection of the condition, but on each
detection, the history of events that were still in the trace shared memory buffers are writ-
ten to the output file.

The latter invocation of ntraceud to stop the daemon, indicates is should not wait for
the logging application to compl ete.

We can now analyze the data from the two occurrences of the problematic event.

Alternatively, we could have started the program without an ntraceud daemon running,
and subsequently used the ntrace, the NightTrace GUI to start a daemon, and immedi-
ately analyze the trace data as more datais being collected.

D-7

NightTrace RT User’s Guide

D-8

E
NightTrace Analysis APl Examples

The following programs are given as examples of how to use the NightTrace Analysis
Application Programming Interface (see “Using the NightTrace Analysis API” on page
18-1).

NOTE

The source files for these programs are installed in
/usr/lib/NightTrace/examples.

- list (see“list” on page E-2)

This program simply lists each NightTrace event using a simple main loop to posi-
tion to the next event.

- search (see“search” on page E-4)

This program utilizes the callback features of the API to locate and describe all
events which satisfy a specified condition.

- watchdog (see “watchdog” on page E-6)

This program illustrates how to monitor a certain condition in real-time and then act
upon it accordingly.

- ptime (see“ptime’ on page E-9)

This program illustrates how to use the NightTrace GUI to export complex condi-
tions and states to a source file which uses the API.

- browse (See“browse” on page E-12)

This program contains a collection of code segments which might be useful for ref-
erence.

- detect (see “detect” on page E-23)

This program monitors live kernel trace data looking for a user-specified event in
the form of a NightTrace expression.

E-1

NightTrace RT User’s Guide

list
Usage
./list trace data file
This program simply lists each NightTrace event using a simple main loop to position to
the next event.
See “NightTrace Analysis APl Examples’ on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.
list.c

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <ntrace analysis.h>

// Simple example to list all events in a trace data file
// Usage: ./list data file
static void print (tr t t, tr offset t offset);

int
main (int argc, char * argv(])
{
tr t t;
tr string node t * list;
tr offset t offset;
int 1i;
int errs;

if (argc != 2) {
printf ("Usage: list data file\n");
exit (1) ;

t = tr_init();
tr _open file(t,argv[l]);

errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++1i)
printf (" $s (%s)\n", list[i] .value, strerror(list[i].item)) ;
exit (1) ;

E-2

}

for (;;) {
offset = tr next event(t);
if (offset == TR _EOF) break;
print (t, offset);

}

tr close(t);
tr destroy(&t) ;

static
void
print (tr t t, tr offset t offset)

{

int i;

printf ("%5d pid=%5d 1d=%4d %8.9f nargs=%1d",
offset,
tr pid(t),
tr_id(t),
tr time(t),
tr nargs(t));

for (i=1; i<=tr nargs(t); ++i) ({

printf (" %5d", tr_arg int(t,i));
}

printf ("\n");

NightTrace Analysis APl Examples

E-3

NightTrace RT User’s Guide

search

search.c

E-4

#include
#include
#include
#include

Usage
./search trace data file "NightTrace Expression”

This program utilizes the callback features of the API to locate and describe all events
which satisfy the specified condition.

The NightTrace Expression is avalid NightTrace expression (see “NightTrace allows you
to use expressions to aid in the analysis of trace data.” on page 16-1) enclosed by double
quotes.

The search program builds a condition object and assigns the specified expression to
that condition. It then registers a callback to the print function for every event that sat-
isfies the condition. It then invokes the iterate function to process the entire
trace data file.

To call the search program with atrace data file named my trace data and the
NightTrace Expression:

num args>l && arg2==
you would issue the following command:
./search my trace data "num args>l && arg2==0"

See “NightTrace Analysis APl Examples’ on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

<stdlib.h>
<stdio.h>
<string.h>
<ntrace_analysis.h>

// Simple example to search for all events in a trace data file
// which satisfy the specified condition.

// Usage:

// Example:

./search data file "expression"

./search data_file "num args>l && arg2 == 1"

static void print (tr t, tr cond t c, tr offset t, int, void *, int ¥*);

int

main (int argc, char * argv([])

{

tr t t;

tr string node t * list;
tr offset t offset;

NightTrace Analysis APl Examples

tr cond t cond;
int i;
int errs;

if (argc < 3) {
printf ("Usage: search data file \"expression\"\n");
exit (1) ;

}

// Initialize the API and open the input data file
t = tr_init();
tr open file(t,argv[l]);

// Create a condition using the specified expression and
// register a callback for it.

cond = tr_cond create(t, "search");

tr cond expr and(t,cond,argv(2]);

tr cond cb(t,cond,print,0) ;

// Ensure all is copasetic
errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++i)
printf (" $s (%$s)\n", list[i] .value, strerror(list[i].item)) ;
exit (1) ;

}

// Process all events
tr iterate(t);

tr close(t);

static
void
print (tr t t,

tr cond t c,
tr offset t offset,

int occurrence,

void * context,

int * disable)
int 1i;

printf ("%5d pid=%5d 1d=%4d %8.9f nargs=%1d",
offset,
tr pid(t),
tr_id(t),
tr time(t),
tr nargs(t));

for (i=1; i<=tr nargs(t); ++i) ({

printf (" %5d4d", tr_arg int(t,i));
}

printf ("\n");

E-5

NightTrace RT User’s Guide

watchdog

watchdog.c

E-6

Usage
./watchdog cpu_mask

This program illustrates how to monitor a certain condition in real-time and then act upon
it accordingly.

In this case, the input to the program is the output of a NightTrace kernel daemon. The
program watches for any context switches on the CPU specified in cpu_mask.

This test program make use of kernel tracing which is not available on all operating sys-
tem distributions. See “Kernel Dependencies’ on page B-1 for more information.

For simplicity, this program only lists the time at which the context switch occurred and
the process being switched in.

This program may be invoked with the following command:
ntracekd --stream /tmp/handle | ./watchdog 1

or it can be launched from the NightTrace GUI as part of a streaming kernel daemon defi-
nition. See“Consumer” on page 9-11 for more information.

See “NightTrace Analysis APl Examples’ on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

#include <stdlib.hs>
#include <stdio.h>
#include <unistd.hs>
#include <string.h>
#include <ntrace analysis.h>

// Example watchdog program; detect context switches on
// shielded CPU

// Usage:

./watchdog cpu mask

// stdin is assumed to be the output of ntracekd (or watchdog
// was launched from the NightTrace GUI which set stdin to
// daemon output) .

static void print (tr t, tr cond t ¢, tr offset t, int, void *, int *);

int

main (int argc, char * argv/[])

{

tr t t;

}

NightTrace Analysis APl Examples

tr string node t * list;
tr offset t offset;

tr cond t cond;

int i;

int cpu;

int errs;

if (argc !'= 2) {
printf ("Usage: ntracekd --stream handle | watchdog cpu mask\n") ;
exit (1) ;

}

if (isatty(0)) {
printf ("error: expect stdin to be streaming data from ntracekd\n") ;
exit (1) ;

}

cpu = atoi(argv([1l]);

if (cpu == 0) {
printf ("error: cpu mask must be a MASK of CPU bits\n");
exit (1) ;

}

// Initialize the API
t = tr_init();

// Create a condition detecting context switches on specified CPU
// and register a callback for it.

cond = tr _cond create(t,"switch");

tr cond id(t,cond, 4150) ;

tr cond cpu(t,cond, cpu) ;

tr cond cb(t,cond,print,0) ;

// Open the input stream
tr open stream(t, 0, 1024*1024*50, O0);

// Ensure all is copasetic
errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++1i)
printf (" $s (%s)\n", list[i] .value, strerror(list[i].item)) ;
exit (1) ;

}

// Process all events
tr iterate(t);

errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++1i)
printf (" $s (%$s)\n", list[i] .value, strerror(list[i].item)) ;

tr close(t);

static

void
print (tr t t,

tr cond t c,
tr offset_t offset,

E-7

NightTrace RT User’s Guide

int occurrence,
void * context,
int * disable)

int pid = tr pid(t);
char * name = tr process name(t);

if (!name) name = "<unknowns";

printf ("context switch: %8.9f %$5d %s\n", tr_ time(t), pid, name);

E-8

ptime

NightTrace Analysis APl Examples

This program illustrates how to use the NightTrace GUI to export complex conditions and
states to a source file which uses the API.
Usage

./ptime kerne_trace file

In this case, ptime. c contains the main program and the callback functions; we use the
GUI to export an initialization routine which defines the states and registers the callbacks.

A NightTrace sessionfile, ptime. session, isprovided in this directory which contains
adefinition of astate called ksoftirgd.

In order to build the program ptime, you need to invoke NightTrace and export the state:
ksoftirgd
to generate the source file export 0.c.

1. Issuethe following command:

ntrace ptime.session

2. From the NightTrace menu, select the Export APl Source File...
menu item.

Sdlect ksoftirgdinthelist.

Clear checkbox for Generate main() function.

Clear checkbox for Generate callback function definitions.
Click on Export Selected.

Click on Close.

© N o 0 M W

From the NightTrace menu, select Exit Immediately.

NOTE

Optionally, NightTrace can create a main program and callback
bodies for you as well.

The ksoftirgd state tracks when the process ksoftirqgd/0 isactive on CPU 0.

The ptime program simply collects the durations of each occurrence of the state and
prints the total time at the end of the program.

To generate the kernel_trace file, issue the following command:

ntracekd --wait=5 /tmp/kernel-data

E-9

NightTrace RT User’s Guide

You may then invoke the program:
./ptime /tmp/kernel-data

See “NightTrace Analysis APl Examples’ on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

ptime.c

E-10

#include <unistd.hs>
#include <stdlib.h>
#include <stdio.h>
#include <string.hs>
#include <ntrace analysis.h>

// Example to calculate the amount of time the Kernel daemon
// ksoftirgd/0 spends processing on the CPU.

// The purpose of this example is to demonstrate use of the
// NightTrace GUI export feature to aid in forming conditions,
// states, and registering callbacks.

// Usage: ./ptime kernel data file
static double time = 0.0;
extern void tr session init(tr t);

int
main (int argc, char * argv([])
{
tr t t;
tr string node t * list;
tr offset t offset;
tr cond t cond;
int 1i;
int errs;

if (argc < 2) {
printf ("Usage: search data_ file\n");
exit (1) ;

}

// Initialize the API and open the input data file
t = tr_init();
errs = tr _open file(t,argv[l]);

// Invoke the initialization function generated by the
// NightTrace GUI to form string tables, conditions,
// expressions, and register callbacks.

if (lerrs) {

NightTrace Analysis APl Examples

tr session init (t);
tr activate(t);

// Ensure all is copasetic
errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++1i)
printf (" $s (%s)\n", list[i] .value, strerror(list[i].item)) ;
exit (1) ;

// Process all events
tr iterate(t);

tr close(t);
tr destroy(&t) ;

printf ("ksoftirgd/0 used %9.8f seconds of CPU time\n", time);

void

ksoftirgd start func (tr_t input, tr state t state,
tr offset t offset, int occurrence,
void * context, int * disable)

void
ksoftirgd end func (tr t input, tr state t state,
tr offset t offset, int occurrence,
void * context, int * disable)
tr state info t info;
tr state info(input,state, &info) ;
time += info.duration;

NightTrace RT User’s Guide

browse

Usage
./browse [-e expression] data file
This program contains a collection of code segments which might be useful for reference.

It implements a simple command-line oriented browser.

NOTE

Thebrowse programisincluded mainly for reference; the Night-
Trace GUI is much more suitable for interactive browsing.

See “NightTrace Analysis APl Examples’ on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

browse.c

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "ntrace analysis.h"

// This test program implements a command-line orienter

// browser. It is provided because some of the code

// segments may be useful for reference. The NightTrace

// GUI tool is *much* more suitable for interactive browsing.

tr t t;
static char buffer[128];
static char * c;

static FILE * input;

#define get line(x) \

write (1, x, sizeof(x)); \
¢ = fgets(buffer, sizeof (buffer), input); \
_c[strlen(c)-1] = '\0'

static

void

print (tr offset t offset)

{

int 1i;

E-12

double time = tr_time(t);
char * process = tr process name(t) ;

if (process && process[0])
$3d %8.9f %1d", offset

printf ("%5d pid=%s
tr nargs(t));
} else {
printf ("$5d pid=%d %3d %8.9f %1d", offset

tr nargs(t));
1
for (i=1; i<=tr nargs(t); ++i) ({
printf (" %5d4d", tr_arg int(t,i));
1

printf ("\n");

static
void
print event

{

(tr_offset t offset)

int i;
double time = tr_ time (t,offset);

printf ("%5d %54 %3d %8.9f %1d", offset,

for (i=1; i<=tr nargs_ (t,offset); ++i) ({
printf (" %5d4d", tr_arg int (t,i,offset));

1

printf ("\n");

}

typedef enum { CMD LIST,
CMD_NEXT,
CMD_PREV,
CMD_SEEK,
CMD_SEARCH,
CMD COPY FILE,
CMD STATE,
CMD_CONDITION,
CMD_CALLBACK,
CMD_ITERATE,
CMD REWIND,
CMD QUIT,
CMD_UNKNOWN }

commands ;

static commands last_cmd = CMD_QUIT;

static int condl

{
}

static int cond2

{
}

static int cond3

{

(tr_t t, tr offset t offset, void *
return tr nargs (t,offset)
(tr_ t t, tr offset t offset, void *
return tr_time (t,offset) < 0.03712;
(tkr_ t t, tr offset t offset, void *

return tr nargs (t,offset)

> 0 && tr arg int (t,1,

> 0 && tr arg int (t,1,

NightTrace Analysis APl Examples

, process, tr id(t), time,

, tr pid(t), tr id(t), time,

tr pid (t,offset),
tr id (t,offset),

time, tr nargs (t,offset));

V)

offset) > 10;
V)
V)
offset) > 10;

E-13

NightTrace RT User’s Guide

}

static int cond4 (tr t t, tr offset t offset, void * v)

static int cond5 (tr t t, tr offset t offset, void * v)

{
}

return tr nargs (t,offset) == 4;

return tr_id (t,offset) % 2 == 0;

static

void

event cb (tr t t, tr cond t c, tr offset t offset,
int count, void * context, int * disable)

{

printf ("event callback function\n") ;
print (offset) ;

static

void

state cb (tr t t, tr state t s, tr offset t offset, int count, void * context,
int * disable)

{

tr state info t info;

print (offset);

printf ("state callback function\n") ;

tr state info (t, s, &info);

printf (" active = %d\n", tr_state active(t,s));

printf (" start offset = %d\n", info.start offset);
printf (" end offset = %d\n", info.end offset);
printf (" gap = %$12.9fs\n", info.gap);
printf (" duration = %12.9fs\n", info.duration);
}
static
commands
get_cmd (void)
{
get line(": ");
if (strcmp (buffer,"") == 0) {
return last cmd;
} else if (!strcmp (buffer,"list")) {
return last_cmd=CMD_ LIST;
} else if (!strcmp (buffer, "next")) {
return last cmd=CMD NEXT;
} else if (!strcmp (buffer,"prev")) {
return last cmd=CMD PREV;
} else if (!strcmp (buffer, "seek")) {
return last_cmd=CMD_SEEK;
} else if (!strcmp (buffer,"search")) ({
return last cmd=CMD SEARCH;
} else if (!strcmp (buffer,"copy file")) ({
return last cmd=CMD COPY FILE;
} else if (!strcmp (buffer,"iterate")) ({
return last_cmd=CMD_ ITERATE;
} else if (!strcmp (buffer,"state")) {

E-14

return
} else if
return
} else if
return
} else if
return
} else if
return
} else {
return

last _cmd=CMD_STATE;

(!strcmp (buffer, "condition")) {
last_cmd=CMD_CONDITION;
(Istrcmp (buffer, "callback"))
last_cmd=CMD_ CALLBACK;

(1strcmp (buffer, "rewind"))
last _cmd=CMD REWIND;

(1strcmp (buffer, "quit")) {
last_cmd=CMD_QUIT;

last_cmd=CMD_ UNKNOWN;

static
void
do search (void)

{

tr cond t c;
tr dir t dir;
tr offset t o;

NightTrace Analysis APl Examples

")

get_line ("forward or backward (f/b): ");
if (buffer[0] == 'b') {
dir = tr backward;
} else {
dir = tr forward;
1
get line ("enter name of condition to search for:
¢ = tr cond find(t,buffer);
if (c == TR_NO COND) ({
printf ("could not locate condition \"%s\"\n", buffer) ;
return;
1
o = tr search (t, dir, c);

if (o == TR _EOF) {

printf ("Event Not Found\n") ;
} else {

print_event (o) ;
}

static char * expression;

static
void

prime

{

(void)

tr cond t cl1, c2, c3, c4, c5;

char * err;

cl = tr cond create(t," condl");
tr cond func_ and(t,cl,conds,0) ;

c2 = tr cond create(t," cond2");
tr cond func and(t,c2,cond4,0) ;

c3 = tr cond create(t," cond3");

E-15

NightTrace RT User’s Guide

tr cond id range (t, c3, 50, 60);

c4 = tr cond create(t," test");
err = tr cond expr and(t,c4,expression);
if (err) {

printf ("%s\n", err);

c5 = tr cond create(t," cond5");
tr cond pid name (t,c5,"foo") ;

tr activate(t);

#if 0
char * errs;
int i;

tr error clear(t);

tr session init (t);

errs = tr_error check(t,&list);
if (errs) {

1
for (i=0; i<errs; ++1i)
printf (" $s (%$s)\n", list[i] .value, strerror(list[i].item)) ;

printf ("tr session init () failed:\n");

#endif

}

static
void
def state (void)
{
tr state_t s;
int error;
int 1i;
int low[2], high[2];
tr cond t cond[2];

for (i=0; 1i<2; ++1i) {
const char * prompt = (i ? "end: " : "start: ");
write (1, prompt, strlen (prompt)) ;
get line ("enter low bound of id range: ");
low[i] = atoi(buffer) ;
get line ("enter high bound of id range: ");
high[i] = atoi(buffer) ;

for (i=0; 1i<2; ++1) {
const char * prompt = (i ? "end: " : "start: ");
write (1, prompt, strlen(prompt)) ;
get line ("enter condition name or <enter> for none: ");
if (buffer[0] == '\0') {
cond[i] = TR NO COND;

} else {
cond[i] = tr cond find(t,buffer);
if (cond[i] == TR_NO_COND) ({

printf ("no such condition\n") ;

E-16

NightTrace Analysis APl Examples

return;

}

get line ("enter name of state to be defined: ");

s = tr_state create (t, buffer);

if (s == TR _NO_STATE) ({
printf ("state creation failed\n");
return;

error = tr state start id range(t,s,low([0],high[0]);
error |= tr state end id range(t,s,low[l],high[1]);
if (cond[0] != TR _NO COND) {

tr state start cond(t,s,cond[0]);

if (cond[1] != TR NO COND) {
tr state end cond(t,s,cond[1]);

if (error) {
printf ("configuration of state failed\n");
return;

tr activate(t);

printf ("state \"%s\" has been successfully configured\n", buffer) ;

static
void
def condition (void)

{

tr cond t c;

int low, high;

int cpu;

int pid;

int error;

int and_;

tr cond func t func;

get line ("enter low bound of id range or <enter> for none: ");
low = atoi (buffer) ;

get line ("enter high bound of id range or <enter> for none: ");
high = atoi (buffer);

get line ("enter cpu bias or <enter> for none: ");

cpu = atoi (buffer) ;

get line ("enter pid or <enter> for none: ");

pid = atoi (buffer);

get line ("enter name of condition to be defined: ");

¢ = tr cond create (t, buffer);

if (c == TR_NO COND) ({
printf ("condition creation failed\n");
return;

E-17

NightTrace RT User’s Guide

}

error = 0;

if (low) error |: tr cond id range(t,c,low,high);
if (cpu) tr cond cpu(t,c,cpu);
if (pid) error |= tr comnd pid(t,c,pid);

for (;;) {
get line ("enter \"and\", \"or\", or <enter> for function conditions:
if (buffer([0] == '\0') break;
else if (!strcmp(buffer,"and")) and = 1;
else if (!strcmp(buffer,"or")) and = 0;
else {
printf ("illegal response\n") ;
return;

}

get line ("enter condition callback function or expression: ");
func = NULL;

if (!strcmp (buffer,"cond1i")) { func = condl; }
else if (!strcmp(buffer,"cond2")) { func = cond2; }
else if (!strcmp(buffer,"cond3")) { func = cond3; }
else if (!strcmp(buffer,"cond4")) { func = cond4; }
else if (!strcmp(buffer,"conds5")) { func = conds5; }

else func = NULL;

if (func == NULL) ({
char * err;
if (and)
err = tr cond expr and(t,c,buffer);
else
err = tr cond expr or(t,c,buffer);
if (err) {

printf ("invalid expression:\n%s\n",err) ;
error = 1;

}

} else {
if (and) {
error |= tr _cond func and(t,c, func,0);
} else {
error |= tr cond func or(t,c,func,0);

}
}

if (error) {

printf ("configuration of condition failed\n");
} else {

printf ("condition has been successfully configured\n") ;
}

tr activate(t);

static
void
destroy callback (void)

{

E-18

tr cb t id;

get_line ("enter callback id to cancel: ");
id = atoi (buffer) ;

NightTrace Analysis APl Examples

printf ("cancelling callback with ID %d\n", id);
tr cancel cb (t, id);
}
static
void
def callback (void)
{
tr cond t c;
tr state_t s;
int is_ state;
int id;
tr state action t a;
get_line ("create or destroy a callback? (c/d) [cl: ");
if (buffer([0] == 'd') {
destroy callback() ;
return;
}
get_line ("state or condition callback? (s/c): [cl: ");
is state = buffer[0] == 's';
if (is_state) {
get line ("enter state callback trigger: start, end, active, inactive: ");

if (!strcmp (buffer, "start")) a =

(
else if (!strcmp (buffer, "end")) a =
else if (!strcmp (buffer, "active")) a =
else if (!strcmp (buffer, "inactive")) a =
else {
printf ("illegal response\n") ;
return;

}

get line ("enter state name:

")

s = tr state find(t,buffer);
if (s == TR _NO STATE) {
printf ("unable to locate state \"%s\"\n",
return;
1
id = tr _state cb (t, s, a, state cb, 0);
} else {

get line ("enter condition name: ");
¢ = tr_cond find(t,buffer);

if (c == TR _NO COND) ({

printf ("unable to locate condition \"%s\"\n",

return;

}

id = tr _cond cb (t, ¢, event cb, 0);
}
if (id == TR _NO_CB) {

printf ("callback registration failed\n");
} else {

printf

(is_state ? "state"

int

"condition"),

tr state start action;

tr state end action;

tr state active action;
tr state inactive action;

buffer) ;

buffer) ;

("callback for %s \"%s\" was successfully registered as id %d\n",

buffer, id);

E-19

NightTrace RT User’s Guide

main (int argc, char * argv(])
{

int status;

int i;

int done = 0;

int arg = 1;

int streaming = 0;

int cmd;

tr offset t o;

char buffer[100];

expression = "true";

for (;;) {
if (arge < 2) {
printf ("usage: %s [options] trace data file\n", argv[0]);
printf ("options:\n"
" -e expr (expr) Create an expression named \"_ test\"\n"
" using \"expr\" as the expression\n"
Il\nll
"If \"trace data file\" is \"-\", then we assume stdin\n"
"is a stream from a NightTrace daemon\n") ;
exit (1) ;
}
if (argvlarg] [0] == '-') {
if (!strcmp(argvlargl,"-e")) {
--argc;
expression = argv[++arg];
} else if (!strecmp(argvlargl,"-"))
streaming = 1;
break;
} else {
argc = 0;
}

} else {
break;
}

++arg;
--argc;

t = tr_init();

if (streaming) {
input = fopen("/dev/tty","r");
//status = tr_open stream(t,0,1024*1024*20, TR_STREAM SAVE) ;
status = 1;

} else {
input = stdin;
status = tr _open file(t,argvlargl);

if (status) {
tr string node t * list;
int errs;
printf ("tr open *() failed:\n");
errs = tr_error check(t,&list);
for (i=0; i<errs; ++i)
printf (" $s (%s)\n", list[i] .value, strerror(list[i].item)) ;
exit (1) ;

E-20

NightTrace Analysis APl Examples

}

prime() ;

cmd = -1;

while (!done) {
switch (cmd)

case CMD_LIST:
for (;;) {
o = tr next event(t);
if (o == TR_EOF) break;
print (o) ;

}

break;

case CMD NEXT:
o = tr next event(t);
print (o) ;
break;

case CMD PREV:
o = tr prev event(t);
print (o) ;
break;

case CMD_SEEK:
printf ("Input event offset of interest: ");
fflush (stdout) ;
o = atoi(fgets(&buffer[0],sizeof (buffer), input)) ;
printf ("seeking to %d\n", o);
o = tr seek(t,o);
print (o) ;
break;

case CMD SEARCH:
do_search() ;
break;

case CMD_COPY FILE:

{
tr cond t c;
¢ = tr cond find(t, "copy");

if (¢ == TR _NO COND) {
printf ("you must first define a condition called \"copy\"\n");
} else {

get line ("Enter output file name: ");
if (tr copy input (t,buffer,c,0666))

printf ("failed to write events\n") ;
1

}

break;

case CMD_STATE:
def state();
break;

E-21

NightTrace RT User’s Guide

E-22

case CMD CONDITION:
def condition() ;
break;

case CMD CALLBACK:
def callback() ;
break;

case CMD_ITERATE:
tr iterate(t);
break;

case CMD REWIND:
(void) tr_seek(t,-1);
break;

case CMD QUIT:
done = 1;
continue;
//break;

default:

printf ("Commands:\n"
n list\n"
n next\n"
" prev\n"
n seek\n"
n search\n"
" copy_file\n"
" state\n"
n condition\n"
n callback\n"
n iterate\n"
n rewind\n"
" quit\n") ;

cmd = get_cmd() ;

} while (!done) ;

tr close (t);
tr destroy (&t);

return O;

detect

NightTrace Analysis APl Examples

Usage
./detect expression

This program monitors live kernel trace data looking for auser-specified event in the form
of a NightTrace expression. When the event is detected, it writes out a kernel trace data
file which contains the detected event as well as 500 events previous to it. It then termi-
nates.

This program illustrates how to monitor a certain condition in real-time and then save
trace data prior to and including the event when the condition was detected.

This would be useful in order to collect kernel trace data continually until some complex
event occurs - then to save the relevant kernel datafor later analysis.

This program may be invoked with the following command:
ntracekd --stream /tmp/handle | ./detect "process name==\"ntracekd\""

or it can be launched from the NightTrace GUI as part of a streaming kernel daemon defi-
nition. See“Consumer” on page 9-11 for more information.

In this case, the expression provided instructs the program to look for the first kernel event
associated with the daemon that is collecting the kernel data and sending it to our
. /detect program. Thisexampleis used simply for demonstration - it is not very inter-
esting in and of itself.

After executing has stopped, a kernel trace data file called
copy current input.data has been written to the current working directory. You
can invoke ntrace on that data file to view the 500 events just prior to the first
ntracekd event:

ntrace copy current input.data

NOTE

There may be fewer than 500 events saved since we may encoun-
ter ntracekd almost immediately.

See “NightTrace Analysis APl Examples’ on page E-1 for other programs demonstrating
the capabilities of the NightTrace Analysis Application Programming Interface.

E-23

NightTrace RT User’s Guide

detect.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <ntrace analysis.h>

// This program detects the first event where the expression is true
// and saves the desired number of events to the output file.

static char* detect usage =

"Usage: \n"

n \1’1"

" ntracekd --stream output | ./detect 500 \"NightTrace Expression\" \n"

n \nn

n This will detect the first event where the condition is met \n"

" and copy the last 500 events prior to that event to the output \n"
" file. Tracing will be stopped at that point. \n"

n \1’1"

" ntracekd --stream output | ./detect --bracket 500 \"NightTrace Expression\"
\I'l"

n \I'l"

" This will detect the first event where the condition is met \n"

" and copy the 500 events prior to and after that event to the \n"

" output file. Tracing will be stopped at that point. \n"

n \I'l"

’

// IMPORTANT: stdin is assumed to be the output of ntracekd (or detect was
// launched from the NightTrace GUI which set stdin to daemon output) .

// Callbacks

static void copy input range cb
(tr_t t,
tr state_t state,
tr offset_t offset,

int occurrence,
void * context,
int * disable) ;

static void copy current input cb
(tr_ t t,
tr state t state,
tr offset t offset,

int occurrence,
void * context,
int * disable) ;

static int range = 0;

int
main (int argc, char * argv(])

E-24

NightTrace Analysis APl Examples

tr t t;
tr cond t user;

tr cond t start;

tr cond t filter;

tr state t state;

int copy range = 0;
int copy current = 0;
char option [1024];
char range s [1024];
char expr [1024];

if (isatty(0)) {

printf ("error: expect stdin to be streaming data from ntracekd\n") ;

exit (1) ;
1
if (arge == 3) {
sprintf (option, "%s",argv[1l]) ;
if (!strcmp(option, "--bracket")) {
printf (detect usage) ;
exit (1) ;

}

sprintf (expr, "%$s",argv[2]) ;
sprintf (range s, "%s",argv([1l]);
range = atoi(range_s);

copy current = 1;
} else if (argc == 4) {

sprintf (option, "%s",argv[1l]) ;

if (strcmp (option,"--bracket")) ({
printf (detect usage) ;
exit (1) ;

}

sprintf (expr, "%$s",argv[3]) ;
sprintf (range_ s, "%s",argv[2]);
range = atoi(range_s);

if (range <= 0) {
printf ("error: range must be greater than zero\n");

}

copy _range = 1;

} else {
printf (detect usage) ;
exit (1);

// Initialize the API
t = tr_init();

// Create a condition structure representing the users condition
user = tr cond create(t, "user");
tr cond expr and(t,user,expr);

E-25

NightTrace RT User’s Guide

// Create a state which starts when the condition true starts (which
// will be true for the very first event and stops when the user's
// condtion is met.

start = tr cond create(t,"start");

tr cond expr and(t, start, "offset>=0");

state = tr_state create(t,"state");

tr state start cond(t,state,start);

tr state end cond(t,state,user);

// Create a condition which is true when the state becomes inactive
filter = tr cond create(t,"filter");

tr cond expr and(t, filter, "state status(state)==0");

// Open the input stream
tr open stream(t, 0, 1024*1024*5, 0);

if (copy_range) {

tr cond cb(t,filter,copy input range cb,0);
tr iterate(t);

} else if (copy current) {

tr cond cb(t,filter,copy current input cb,0);
tr iterate(t);

tr close(t);

static

void

copy_ input range cb
(tr_t t,

tr state t state,
tr offset t offset,

int occurrence,
void * context,
int * disable)
int i;

int errs;

tr string node t * list;
int start = offset - range;
int end = offset + range;

if (start <= 0) start = 0;
if (end <= 0) end = 1;
if (start == end) end++;

tr copy input range (t,"copy input range.data",60666,start,end) ;
errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++1i)
printf (" $s (%$s)\n", list[i] .value, strerror (list[i].item)) ;

E-26

NightTrace Analysis APl Examples

*disable = 1;

static

void

copy_current input cb
(tr_t t,

tr state_t state,
tr offset_t offset,

int occurrence,
void * context,
int * disable)
int i;

int errs;

tr string node t * list;
int start = offset - range;
int end = offset;

if (start <= 0) start = 0;
if (end <= 0) end = 1;
if (start == end) end++;

tr_copy input range (t,"copy current input.data",0666,start, end) ;
errs = tr_error check(t,&list);
if (errs) {
for (i=0; i<errs; ++i)
printf (" $s (%$s)\n", list[i] .value, strerror (list[i].item)) ;
}

tr_halt(t);

E-27

NightTrace RT User’s Guide

E-28

F
Answers to Common Questions

What can | doif trace events are not logging at al?

Verify that the trace event file name on the trace_begin() call matches the one on the
user daemon invocation. Furthermore, check that the file exists and that you have
permission to read and write it. Check the return codes from the API calls.
Additionally, be sure your thread name, if specified to trace open_thread() contains
no embedded spaces or punctuation, including periods. See “trace begin” on page
2-6 and “trace_open_thread” on page 2-11 for more information.

When should | log a different trace event ID number?

Each endpoint of a state should have a different trace event ID number. Usually each
trace event logging routine logs a different trace event ID number. This lets you eas-
ily identify which source line logged the trace event, how often that source line exe-
cuted, and what order source lines executed in. However, it is sometimes useful to
log the same trace event ID in multiple places. This makes it possible to group trace
events from related, but not identical, activities. For more information, see
“trace_event and its variants’ on page 2-12.

How can | prevent user trace events from being discarded or lost?

Use expansive mode; avoid use of buffer or file wrapping options. Flush the shared
memory buffer more often by tuning:

* The shared memory buffer sizes
* The number of shared memory buffers
* Increase the priority of the user trace daemon
¢ Bind the user trace daemon to a CPU with minimal activity
See “Preventing Trace Event Loss” on page 6-1 and Chapter 3 for more information.
What can | do if trace events are not appearing in an ntrace display?

Press Refresh, fill out the Search Form, fill in valuesin the interval control area, use
the interval scroll bar, keep pressing the Zoom Out icon until you see trace events,
examine adisplay object configuration so you know what it is “listening” for, add or
reconfigure display objects on the grid.

How can | prevent kernel trace events from being lost?

¢ Verify that the raw kernel trace output file (if not streaming) is on a
local file system and not an NFS file system.

* |ncrease the size and number of the kernel trace buffers

F-1

NightTrace RT User’s Guide

* Increase the priority of the kernel trace daemon

¢ Bind the kernel trace daemon to a CPU with minimal activity
See “Preventing Trace Event Loss” on page 6-1 and Chapter 3 for more information.

Why can’t | see my individual thread names?

By default, all threads will share the same thread name (either “main” or the thread
name passed to trace_open_thread()). You can specify a new thread name in indi-
vidual threads using trace_open_thread after registering your thread with the Night-
Trace API. See“Threads and Logging” on page 2-29 for more information.

F-2

G
Glossary

This glossary defines terms used in the documentation. Terms in italics are defined here.

Ada task

argument

boolean table

buffer-wraparound mode

button

click

Close

Column

An Adatask is a construct of statements which logically execute in parallel with
other tasks within an Ada program (process). Tasks communicate asynchronously
via variables whose visibility is defined by normal Ada scoping rules. Tasks
communicate synchronously via rendezvous between a calling and accepting task.

See trace event argument.

A pre-defined string table which associates 0 with £alse and al other values with
true.

The mode that causes the ntraceud daemon to treat the shared memory buffer asa
circular queue and to overwrite the oldest trace events with the newest ones; this
means that ntraceud intentionally discards the oldest trace events to make room
for the newest ones. Invoke ntraceud with the -buf ferwrap option to obtain
this behavior. The two other ntraceud modes are expansive mode and file-wrap-
around mode.

See mouse button, push button, and radio button.

To press and release a mouse button without moving the pointer. Usually you do
thisin NightTrace to select menu items, push buttons, or radio buttons.

A push button that closes adialog box. This can also be a menu item that makes a
window close.

A display object that constrains the width of State Graphs, Event Graphs, Data
Graphs, and Rulers.

Glossary-1

NightTrace RT User’s Guide

configuration

configuration file

context switch

context switch line

control

CPU box

current instance of a state

current time

current time line

current trace event

Glossary-2

The definition of adisplay object or profile.

An NightTrace-generated ASCI|I file that holds display pages, and profile defini-
tions. This can also be ahand-edited table file, containing definition of string tables
and/or format tables.

An action that occurs inside the kernel. Its functions are to save the state of the
processthat is currently executing, to initialize the state of the processto be run, and
to begin execution of the new process.

A vertical line superimposed on an exception graph or a syscall graph on a kernel
display page. It indicates that the kernel has switched out the process that was
previously running on the CPU and switched in a new process.

See mouse button, push button and radio button.

A Grid Label onakernel display page. Itidentifieswhich|ogical central processing
unit the displayed data correspondsto. Logical CPU numbers are related to, but not
necessarily identical to, physical CPU numbers.

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

Thetimein the interval up to which all display objects on a display page have been
updated.

The dashed vertical bar that represents the current time in a Column.

The last trace event on or before the current time line.

cursor

daemon definition

Data Box

Data Graph

Default Kernel Page

Default Page

device table

dialog box

dimmed

disabled

Glossary

See text cursor.

The configuration of a particular trace daemon which includes daemon collection
modes and settings, daemon priorities and CPU bindings, and data output formats,
aswell as which trace event types are handled by that daemon.

A display object that displays possibly variable textual or numeric information.

A scrollable display object that graphically displays a bar chart of an expression’s
value as it changes over the interval.

A menu item that automatically creates a display page to depict context switches,
interrupts, exceptions, and system calls with display objects for each CPU on the
system.

A menu item that automatically creates a display page with a Sate Graph for each
trace event logging process in your trace event file(s).

A pre-defined, dynamically generated string table in the vectors file created by
ntrace when consuming raw kernel trace data files. string table contains the
names of the devices that are currently configured in the kernel.

A transient secondary window that acceptsinput or conveys a message, for example
information, errors, warnings, and questions. This construct is occasionally caled a
pop-up window.

See disabled.

To flag a component, such as a menu item or push button, as temporarily unavail-
able by graying out the label.

Glossary-3

NightTrace RT User’s Guide

discarded trace event

display object

display page

dotted area

drag

duration

Edit mode

ellipses (...)

end function

event

Glossary-4

A trace event that ntraceud intentionally did not log in buffer-wraparound or
file-wraparound mode.

A user-configured graphical component of a display page that shows trace events,
states, trace event arguments, other numeric and text data. Display objects include
the following: Grid Labels, Data Boxes, Columns, Sate Graphs, Event Graphs,
Data Graphs and Rulers.

The NightTrace window that allows you to layout display objects and see trace event
and state information in them. You can store display pages in configuration files.

Seegrid.

To press and hold down a mouse button while moving the mouse. Usually you do
thisin NightTrace to position a display object.

The period of time between the start and end trace events of some state.

The display-page mode that allows you to create, edit, and configure display
objects. The other display-page mode is View mode.

An indicator at the end of a menu item that tells you this selection makes a dialog
box appear. Also, an indicator in command line option summaries and syntax
listings that tells you more than one occurrence of the previous syntactic component
isallowed.

A state function that provides information about the ending trace event of the last
completed instance of a state. The state to which the end function appliesis either
the state specified to the function, or the state being currently defined. Thus, if a
gualfied state is not specified, end functions are only meaningful when used in
expressions associated within a state definition.

See trace event.

Glossary

event_arg_dbl_summary table

event_arg_summary table

Event Graph

event ID

event map file

event table

exception

exception graph

expansive mode

expression

A pre-defined format table which contains formats for statistical displays of trace
event matches and type double arguments.

A pre-defined format table which contains formats for statistical displays of trace
event matches and type long arguments.

A scrollable display object that graphically displays trace events as vertical linesin
a Column.

Seetrace event ID.

User-generated ASCII file that lets you associate or map short mnemonic names
with numeric trace event IDs.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
maps all known numeric trace event | Ds with symbolic trace event names.

An event internal to the currently executing process that stops the current execution
stream. Exceptions can be suspended and resumed.

A Sate Graph on a kernel display page. It displays states representing exceptions
executing on the associated CPU.

The (default) mode that causes the ntraceud daemon to copy all trace events that
ever reach the shared memory buffer to the indefinitely-sized trace event file.
Invoke ntraceud without the - filewrap and -buf ferwrap options to obtain
this behavior. The two other ntraceud modes are buffer-wraparound mode and
file-wraparound mode.

A combination of operators and operands that evaluate to avalue. Operandsinclude
constants, function calls, and profile referneces.

Glossary-5

NightTrace RT User’s Guide

Exit

file-wraparound mode

flushing the buffer

font

format function

format table

function

gap

global process identifier

Global Window

Glossary-6

A menu item that terminates an NightTrace session.

The mode that causes the ntraceud daemon to overwrite the ol dest trace eventsin
the beginning of the trace event file with the newest ones; this means that
ntraceud intentionally discards the oldest trace events to make room for the
newest ones. Invoke ntraceud with the - £ilewrap option to obtain this
behavior. The two other ntraceud modes are expansive mode and buffer-wrap-
around mode.

The process of the ntraceud daemon copying trace events from the shared
memory buffer to atrace event file.

A style of text characters.

A function that allows you to display astring.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding dynamically-formatted
and generated character string. You hand-edit format tables into configuration files.
The related structure isastring table.

A pre-defined NightTrace entity that may be used in an expression. NightTrace pro-
vides several classes of functions: trace event, multi-event, start, end, multi-state,
offset, summary, format, and table functions.

The period of time between two trace events, possibly the end of one state and the
beginning of another.

See PID.

The NightTrace window that displays summary statistics pertaining to your trace
event files and allows you to open NightTrace-related files.

graphical user interface

grid

Grid Label

GUI

Help

host system

icon

instrumented code

interrupt

interrupt graph

Glossary

The mechanism NightTrace usesto receive input and provide displays. It isbased on
the X Window System and Matif.

The region of the display page filled with parallel rows and columns of dots that
holds display objects.

A display object that displays constant textual information.

See graphical user interface.

A menu item that presents the online manual using the HyperHelp viewer.

The system on which the NightTrace GUI is running.

The small graphical image and/or text label that represents a window or window
family when the window is minimized. The text label is either the window title or
an abbreviated form of thetitle. Iconified windows are still active.

Seetrace event ID.

Source code after you have put calls to NightTrace library routinesinto it.

An event external to the currently executing process; an interrupt stops the current
execution stream to begin execution of a higher-priority execution stream. There are
device-related and software-generated interrupts. Interrupts have an associated
priority known as the interrupt priority level (IPL), which allows an interrupt to
interrupt the execution stream of alower-1PL interrupt.

A Data Graph on akernel display page. It displays states representing interrupts
executing on the associated CPU.

Glossary-7

NightTrace RT User’s Guide

interrupt priority level (IPL) register

A system register than can be used by the NightTrace library to prevent rescheduling
and interrupts during trace event logging.

interval

A time period in the trace session delimited by the Start Time and End Time
fields of the interval control area.

interval control area

The region of the display page that holds nine numeric fields that define and
manipulate the interval and the display objects on the grid.

interval timer

The system timer on the NightHawk 6000 Series and TurboHawk systems that
NightTrace uses to timestamp trace events.

Kernel Trace Event File

A trace event fileis generated by akernel trace daemon. Thisfile contains raw ker-
nel data and is automatically transformed into a filtered file (with a new filename
using the “.nt£” suffix) by ntrace. Either araw kernel trace event file or afil-
tered file may be specified to ntrace. The filtering process also creates a vectors
file which is formed by appending a “.vec” suffix to the original trace event file
name.

keyboard

A traditional input device for entering text into fields. In this manual, thisis a
standard 101-key North American keyboard.

last completed instance of a state

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

last exception box

A Data Box on a kernel display page. It displays the last exception prior to the
current time line that executed (and may still be executing) on the associated CPU.

last interrupt box

A Data Box on akernel display page. It displaysthe name of the last interrupt prior
to the current time line that executed (and may still be executing) on the associated
CPU.

Glossary-8

last syscall box

lost trace event

mark

match

menu

menu bar

message display area

Glossary

A Data Box on akernel display page. It displaysthe last syscall prior to the current
time line that executed (and may still be executing) on the associated CPU.

A trace event ntraceud was unableto log. Severa ntraceud options exist to
prevent this trace event loss.

The solid triangle on a Ruler that points to a particular time.

A trace event or state that meets user-defined qualifying configuration criteria.

A list of user-selectable choices.

The horizontal band near the top of a window that contains a list of labeled
pull-down menus.

The scrolling region of the Global Window or the display page that holds textual
statistics, aswell as error and warning messages.

most recent instance of a state

mouse

mouse button

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it isthe last completed instance of a state.

In thismanual, a three-button pointing device for point-and-click interfaces.

A part of the mouse that you can press to alter aspects of the application. Each
mouse button has a different purpose. Button 1 is usually for selecting or dragging.
Button 2 is usually for moving display objects. Button 3 is usually for resizing
display objects. You can make multiple selections by simultaneously pressing
<Shift> and clicking mouse button 1. You may click, drag, press, and release
mouse buttons.

Glossary-9

NightTrace RT User’s Guide

multi-event function

multi-state function

name_pid table

name_tid table

New Page

NightTrace

NightTrace thread

NightTrace thread identifier

NightView

node

Glossary-10

Multi-event functions return information about ocurrences of events, or relation-
ships between occurrences of events, before the current time line.

Multi-state functions return information about instances of states, or relationships
between instances of states, before the current time line.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates node | D numbers with the the name of each node's process ID table.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates node | D numbers with the the name of each node's thread ID table.

A menu item that creates an empty display page.

The interactive debugging and performance analysis tool that is part of the Night-
Star tool kit. It consists of the ntraceud daemon, NightTrace library routines, and
thentrace display utility. This product allows you to log trace events and data
from applications written in C, Ada, or Fortran; these applications may be composed
of one or more processes, running on one or more CPUs. You can then examine
these trace events and those from the kernel through the ntrace display utility.

A process, Ada task, or thread (or a set of any combination of these) that is
associated with a uniquely named trace context. The thread name is derived from
the argument specified to the trace _open_thread () function.

See TID.

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C and
Fortran applications; these applications may be composed of one or more processes,
running on one or more CPUs. Among other things, NightView can automatically
patch trace event logging routines into your executable application.

A system from which atrace event file can come from.

node box

node ID

node name

node_name table

node PID table

node TID table

NT_ASSOC_PID

NT_ASSOC_TID

NT_CONTINUE

ntrace display utility

Glossary

If the RCIM synchronized tick clock is used to timestamp events, thisis a Grid
Label on akernel display page. It identifies which node to which the displayed data
corresponds.

A unique identifier internally assigned by NightTrace to every node that has an trace
event filein atracefile analysis.

The name of a system from which atrace event file can come.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates node ID numbers with node names.

A pre-defined, dynamically generated string table. It isinternal to NightTrace and
associates process identifiers (PIDs) with process names for a particular node. The
name of each node's table ispid nodename where nodename is the node's name. If
kernel tracing, thistableis stored in the vectors file.

A pre-defined, dynamically generated string table. It isinternal to NightTrace. If
user tracing, it associates NightTrace thread |D numbers with thread names for a
particular node. If kernel tracing, thistable is not used. The name of each node's
tableis tid_nodename where nodename is the node's name.

An overhead trace event that ntraceud logs at the beginning and end of each
process.

An overhead trace event that ntraceud logs at the beginning and end of each
thread and Ada task.

An overhead trace event that ntraceud logs for multi-argument trace events.

The part of NightTrace that graphically displays trace events, trace event data, and
states for debugging and performance analysis.

Glossary-11

NightTrace RT User’s Guide

ntraceud

object

offset

offset function

OK

Open

ordinal trace event number

panel

PID

PID table

point

Glossary-12

The NightTrace daemon process that allows you to log user-defined trace events and
datafrom user applications writtenin C, Ada, or Fortran. These applications may be
composed of one or more processes, running on one or more CPUSs.

See display object.

The number that identifies the position of a trace event in the chronologi-
cally-ordered sequence of trace events, regardless of the trace event ID. Counting
starts from zero. For example, if a trace event with trace event ID 71 is the third
trace event in the trace session, then its offset is 2.

A function that takes an expression that evaluates to an offset as a parameter.

A push button that acknowledges the warning in a dialog box.

A menu item and push button that opens an existing file.

See offset.

A window component that groups related buttons, for example push buttons.

A 32-hit integer that represents an operating system process, which is normally the
value returned by getpid(2) for single-threaded applications, and gettid(2) for
multi-threaded application in kernel data.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names. If kernel tracing, the pid
string table in the vectors file.

To move the mouse so the mouse pointer is positioned at the place of interest.

pointer

pop-up window

press

profile

profile reference

pull-down menu

push button

radio button

RCIM

Glossary

A graphical symbol that represents the mouse pointer’s current location in the
window. The shape of the pointer shows the current usage. Usually a pointer is
shaped like an arrow pointing to the upper | eft.

See dialog box.

To hold down a mouse button without releasing it or to depress akeyboard key.

The "logical and" of several criteria such as event codes, processes, and threads.
conditions used to identify an event or a state.

The name of aprofile.

A set of critera defining conditions for an event or state; e.g event 1Ds, argument
values, CPU, process, thread.

A graphic image of alabeled button. Click on a push button to select it.

A graphic, labeled diamond-shape that represents a mutually exclusive selection
from related radio buttons. Click on aradio button to select it.

The Real-Time Clock and Interrupt Module is a multi-function PCl mezzanine card
(PMC) designed for time-critical applications that require rapid response to external
events, synchronized clocks, and/or synchronized interrupts. The RCIM provides
synchronized clocks (tick timer and posix format clock), edge-triggered interrupts,
real-time clocks, and programmable interrupts.

RCIM synchronized tick clock

The primary clock on an RCIM. It is a 64-bit non-interrupting counter that counts
each tick of the clock (400 nanoseconds). When connected to other RCIMs, the
synchronized tick clock provides atime base that is consistent for al connected sin-
gle board computers.

Glossary-13

NightTrace RT User’s Guide

Read

record

region

release

Reset

Restore

Ruler

running process box

Save

Save As

Save Text

Glossary-14

A menu item and push button that read an existing file.

See trace event.

The period of time between the mark and the current time.

To let go of the currently-pressed mouse button.

A push button that cancels (undoes) all unapplied changes.

A push button that cancels all changes since the dial og box was displayed.

A scrollable display object that appears as a hash-marked timeline within a Column.
The Ruler may also contain reverse video “L”s indicating lost trace events and
user-defined marks.

A Data Box that shows the process that is executing at the current time line on the
associated CPU. If the RCIM module is used to timestamp events, this Data Box
will show the process that is executing at the current time line on both the associated
CPU and node.

A menu item and push button that overwrite an existing configuration file with the
current display page.

A menu item that saves the current display page in a new configuration file.

A menu item that overwrites an existing summary text file with text from the
summary display area.

Save Text As

SBC

scroll bar

Search Form

selection

separator

session

shared memory buffer

slider

spin lock

Glossary

A menu item that saves the current summary text from the summary display area
into a new summary text file.

Single-board computer.

The narrow, rectangular graphic device used to change a display that would not
otherwise fit in the window. It consists of atrough, a slider, and arrowhead buttons.
If the slider does nat fill the trough, there is a gap on one or both sides.

The NightTrace form that allows you to define criteria to be used to locate a trace
event in atrace event file by its configured characteristics and itslocation in thefile.

The display object that you clicked on. Alternatively, a selection may be the region
of atext field you dragged the mouse over. For menu items, push buttons, and radio
buttons NightTrace indicates selection by highlighting your choice. For display
objects, NightTrace places handles on the display object. For dragged-over text
fields, NightTrace displays that text in reverse video.

A linethat groups related window components or menu components.

A session consists of daemon definitions, display page configurations, string tables,
profiles, named tags, previously-executed searches, and previously-executed sum-
maries. A session also includes references to saved trace data segment files, kernel
trace files, and user tracefiles. A session can be saved to a session configuration file
and rel oaded in subsequent invocations of NightTrace.

The intermediate destination of trace events before ntraceud copies them to the
trace event file on disk.

The graphic part of a scroll bar that you move in the trough to change the display.
This component is sometimes called athumb.

A device used to protect aresource, for example, the shared memory buffer.

Glossary-15

NightTrace RT User’s Guide

start function

state

state function

State Graph

streaming

string table

Summarize Form

summary display area

Glossary-16

A state function that provides information about the start event of the most recent
instance of a state. The state to which the start function applies is either the state
specified to the function, or the state being currently defined. Thus, if a state is not
specified, start functions are only meaningful when used in expressions associated
within a state definition. In addition, start functions should not be used in a recur-
sive manner in a Start Expression; a start function should not be specified in a
Start Expression that applies to the state definition containing that Start
Expression. Conversely, an End Expression may include start functions that
apply to the state definition containing that End Expression.

A state is a region of time bounded by two trace events, a start event and an end
event. An instance of a state is the period of time between the start event and end
event, including the start and end events themselves. Additional conditions may be
specified in astate definition to further constrain the state. Instances of states do not
nest; that is, once a state becomes active, events that might normally satisfy the con-
ditions for the start event are ignored until the end event is encountered.

The class of NightTrace functions which provide information about states, includ-
ing: start functions, end functions, and multi-state functions.

A scrollable display object that graphically displays states as bars and trace events
asvertical linesin a Column.

The method used by the NightTrace of sending trace data from daemons directly to
the NightTrace display.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding static character string.
You hand-edit string tablesinto configuration files. The related structure is a format
table.

The NightTrace form that allows you to obtain trace event and state statistics, such
as minimum, maximum, average, and total values of gaps, durations, and trace
event arguments.

The scrolling region of the Summarize Form that holds textual summary
statistics.

summary function

summary syscall

syscall

syscall graph

syscall table

table

table function

tag

task

task ID

Glossary

A function that takes another expression as a parameter (except for
summary matches ()).

A system call that is a special type of exception. A syscall is made when a user
program forces atrap into the operating system via a special machine instruction. A
syscall is used to request a given service from the kernel. Many library routines
supplied as part of the operating system make syscalls to accomplish their functions.
Syscalls can be suspended and resumed.

System call.

A Sate Graph on a kernel display page. It displays states representing system calls
(syscalls) executing on the associated CPU.

A pre-defined, dynamically generated string table in the vectors file. This string
table contains the names of all the possible system calls (syscalls) that can occur on
the system.

See format table and string table.

A function that allows you to extract information from user-defined and pre-defined
string tables and format tables.

A uniquely-numbered indicator on a Ruler that represents an individual point of
interest in the trace data (either a particular time or event) and which can be identi-
fied by aname.

See Ada task.

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies an
Ada task within an Ada program.

Glossary-17

NightTrace RT User’s Guide

text cursor

thread

thread ID

TID

TID table

timestamp

time quantum

trace context

trace event

Glossary-18

The blinking vertical bar in an editable text field that shows your current edit
position within the field.

A sequence of instructions and associated data that is scheduled and executed as an
independent entity. Every process linked with the Threads Library contains at |east
one, and possibly many, threads. Threads within a process share the address space of
the process.

A 16-bit integer chosen by the threads library that uniquely identifies a thread
within a given process.

A 32-bit integer that represents an internal NightTrace context to which trace events
can be associated.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates NightTrace thread identifiers (TIDs) with thread names. This table is not
used in kernel tracing.

The time at which a specific trace event was logged. This provides the means by
which the chronology of the trace events logged by multiple processes can be
assembl ed.

The fixed period of time for which the kernel alocates the CPU to a process.

All trace points are associated with alog file (established viatrace start) anda
thread name (established viatrace _open_thread). If two processes (or tasks or
threads) are associated with the same log file and thread name, then they are said to
have the same trace context. If they differ inlog file, thread name, or both, then they
have different trace contexts.

A user-defined point of interest in an application’s source code that NightTrace
represents with an integer trace event ID. Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event ID, NightTrace records the
timestamp when the trace event occurred, any arguments logged with the trace
event, and the logging processidentifier (PID).

trace event argument

trace event file

trace event function

trace event ID

trace point

trough

vector table

View mode

widget

window

Glossary

A user-defined numeric value logged by an application via atrace event.

An ntraceud-created binary file that contains sequences of trace events and data
that your application and the ntraceud daemon logged.

The class of NightTrace functions that provide information about trace events. They
operate on either the profile specified to that function or, if unspecified, the current
trace event. Trace event functionsinclude multi-event functions.

An integer that identifies a trace event. User trace event IDs are in the range
0-4095, inclusive. Kernel trace event IDsareintherange 4100-4300, inclusive.

A place of interest in the source code. In user tracing, at each trace point in your
application you call atrace event logging routine to log a trace event, possibly with
additional data describing part of your program’s state at that time. Kernel trace
points and trace events are already defined and embedded in the kernel source.

The graphic part of a scroll bar that holds the slider.

A pre-defined, dynamically generated string table in the vectors file. This string
table contains the interrupt and exception vector names associated with the system
on which the kernel tracing was performed.

The display page mode that allows you to see, search for, and summarize trace event
information in the message display area, the summary display area, and display
objects on the grid.

A window component, for example a scroll bar or push button.

A rectangular screen area that permits the display and/or entry of data. The Night-
Trace display utility consists of several windows.

Glossary-19

NightTrace RT User’s Guide

window manager

The program that controls window placement, size, and operations.

wraparound mode

The mode that causes the ntraceud daemon to intentionally discard old events.
There are two forms of wraparound mode: buffer-wraparound and file-wraparound.
The other ntraceud modeis expansive mode.

Glossary-20

Symbols

/usr/bin/ntracekd 4-1
/usr/bin/ntraceud 3-1
/usrfinclude/ntrace.h 2-1
/ust/lib/libntrace.a 2-31
/ust/lib/libntrace thr.a 2-31
/ust/lib/NightTrace/illuminators 5-10
“wrapper” routines 5-1
<I-- comment --> 5-14
<configp 5-14

<declare> 5-15

«defaults 5-16

<exclude> 5-16

<«function> 5-17

<group> 5-18

<evel> 5-18

<options 5-21

«variable 5-22
«wrapper_file_scope> 5-23
«wrapper_post> 5-23
«wrapper_pre> 5-24
<wrapper_real> 5-24
«wrappers 5-23

A

alink 5-11

aout 5-14, 7-5

Adalanguage

compiling and linking 2-32

Adatask identifier 16-8, 16-46, 16-88, 16-125, 16-166,
18-81

addr_args 5-19, 5-20

addr_ret 5-19, 5-20

aggregate limit 5-19, 5-20, 5-22

Application Illumination 5-1

arg function 16-4, 16-21

arg_dbl function 16-22, 16-23

arg_long dbl function 16-24

arg_long long function 16-25, 16-67

argl function 7-22, 16-5, 16-190

Index

arg2 function 16-9
args 5-19, 5-20
avg function 16-179

blk arg function 16-26
blk arg bits function 16-27
blk arg char function 16-28
blk arg dbl function 16-29
blk arg flt function 16-30
blk arg long function 16-31
blk arg long bits function 16-32
blk arg long dbl function 16-33
blk arg long long function 16-34
blk arg long ubits function 16-35
blk arg short function 16-36
blk arg string function 16-37
blk arg ubits function 16-38
blk arg uchar function 16-39
blk arg uint function 16-40
blk arg ulong long function 16-41
blk arg ushort function 16-42
boolean table 7-18
Box

interrupt 17-14

syscall 17-15
Box exception 17-14
BUFFER_LENGTH 5-13
Buffer-wraparound mode 2-23

C

C language
compiling and linking 2-32
source considerations 2-1
caller 5-19, 5-20
CAP_IPC_LOCK capability C-1
CAP_SYS NICE capability C-1
Capabilities C-1
ccur_rt 5-2,5-12

Index-1

NightTrace RT User’s Guide

character entities 5-15
clock_synchronize(1M) command 2-10
Comments
event-map file 7-11
Configuration parameters
Then-Expression 16-188
Conserving disk space 6-3
Constant string literals 7-22, 16-10, 16-186
Constant times 16-3
Context switch
lines 17-13, 17-14, 17-15
Context-sensitive help 8-22
cpu function 16-48
Current timeline 17-12, 17-14, 17-15

D

DataBox 16-188, 17-14, 17-15, 17-16
Data Graph 12-12, 17-14
detail level 5-7, 5-13
Detail Levels 5-2
devicetable 7-19, 17-4,17-18
device_nodename table 7-20, 17-19
Disabling
library routines 2-18, 2-29
trace events 2-19
tracing 2-18, 2-29
Discarding trace events 2-23, F-1
Display object
DataBox 16-188, 17-14, 17-15, 17-16
Data Graph 17-14
Event Graph 17-16
State Graph 17-15, 17-16
Display object configuration parameters
Then-Expression 16-188
Display page area
interval scroll bar F-1
Duration
state 16-135

Enabling

trace events 2-19
End functions 16-97
end_arg function 16-100
end arg_dbl function 16-101, 16-102
end arg_ long dbl function 16-103
end arg long long function 16-104
end blk_arg function 16-105

Index-2

end blk arg bits function 16-106
end blk arg char function 16-107
end blk_arg dbl function 16-108
end blk arg flt function 16-109
end blk _arg long function 16-110
end blk arg long bits function 16-111
end blk arg long dbl function 16-112
end blk arg long long function 16-113
end blk arg long ubits function 16-114
end blk arg short function 16-115
end blk arg string function 16-116
end blk arg ubits function 16-117
end blk arg uchar function 16-118
end blk arg uint function 16-119
end blk arg ulong long function 16-120
end blk arg ushort function 16-121
end_cpu function 16-127
end_id function 16-99
end node_id function 16-130
end node name function 16-133
end num_args function 16-122
end offset function 16-128
end_ pid function 16-123
end pid table name function 16-131
end task_id function 16-125
end thread id function 16-124
end_tid function 16-126
end tid table name function 16-132
end_time function 16-129
Environment variable

NSLM_SERVER A-2
errno 5-19, 5-20, 18-138, 18-139
Event

gap 16-58

matches 16-59

qualified 16-193
Event Graph 12-5, 12-10, 17-16
Event ID. see Trace event

ID
event table 7-17
Event. see Trace event
event gap function 16-58
event_ids 5-21
event matches function 16-59
Event-map file 2-15, 7-2, 7-11
Exception 17-3, 17-14, 17-17, 17-19

graph 17-14

resumption 17-14

suspension 17-14
Exception box 17-14
exclude 5-19, 5-20
execve(2) service 2-9
Expressions

constant string literals 7-22, 16-10, 16-186

functions 16-4
operands 16-1
operators 16-1

File
{usr/bin/ntracekd 4-1
{usr/bin/ntraceud 3-1
{usrfinclude/ntrace.h 2-1
{ust/lib/libntrace.a 2-31
{usr/lib/libntrace _thr.a 2-31
event-map 2-15, 7-2, 7-11
trace event 2-6, 3-1, 7-10
vectors 7-17, 17-2, 17-17, 17-18, 17-19
File system
NFS F-1
filename 5-22
Fixed licenses A-1
Floating licenses A-1
Flushing shared memory buffer 2-22
fork(2) service 2-9
Format
functions 16-184
format function 16-190
Format table 7-20, 16-188
get format function 16-188
Fortran language
compiling and linking 2-32
frame 5-19, 5-20
Functions 16-4
arg 16-4, 16-21
arg dbl 16-22, 16-23
arg long dbl 16-24
arg long long 16-25, 16-67
argl 7-22,16-5, 16-190
arg2 16-9
avg 16-179
blk arg 16-26
blk arg bits 16-27
blk arg char 16-28
blk arg dbl 16-29
blk arg flt 16-30
blk arg long 16-31
blk arg long bits 16-32
blk arg long dbl 16-33
blk arg long long 16-34
blk arg long ubits 16-35
blk arg short 16-36
blk arg string 16-37
blk arg ubits 16-38
blk arg uchar 16-39

Index

blk arg uint 16-40

blk arg ulong long 16-41
blk arg ushort 16-42

cpu 16-48

end 16-97

end arg 16-100

end_arg dbl 16-101, 16-102
end arg long dbl 16-103
end_arg long long 16-104
end blk arg 16-105

end blk arg bits 16-106
end blk arg char 16-107
end blk arg dbl 16-108
end blk arg flt 16-109
end blk arg long 16-110
end blk arg long bits 16-111
end blk arg long dbl 16-112
end blk arg long long 16-113
end blk arg long ubits 16-114
end blk arg short 16-115
end blk arg string 16-116
end blk arg ubits 16-117
end blk arg uchar 16-118
end blk arg uint 16-119
end blk arg ulong long 16-120
end blk arg ushort 16-121
end cpu 16-127

end id 16-99

end node_ id 16-130

end node name 16-133

end num_ args 16-122

end offset 16-128

end pid 16-123

end pid table name 16-131
end task_id 16-125

end thread id 16-124

end tid 16-126

end tid table name 16-132
end time 16-129

event gap 16-58

event matches 16-59

format 16-184

format 16-190

get format 16-188

get _item 16-186
get_string 7-22, 16-184

id 16-20, 16-188, 16-190
lookup pc 16-191

max 16-178

max offset 16-182

min 16-177

min offset 16-181
multi-event 16-58

multi-state 16-134

Index-3

NightTrace RT User’s Guide

node_id 16-51

node name 16-54

num_args 16-43

offset 16-138

offset 7-22,16-49

offset _arg 16-141

offset _arg dbl 16-142, 16-143
offset _arg long dbl 16-144
offset_arg long long 16-145
offset blk arg 16-146

offset blk arg bits 16-147
offset blk arg char 16-148
offset blk arg dbl 16-149
offset blk arg flt 16-150
offset blk arg long 16-151
offset blk arg long bits 16-152
offset blk arg long dbl 16-153
offset blk arg long long 16-154
offset blk arg long ubits 16-155
offset blk arg short 16-156
offset blk arg string 16-157
offset blk arg ubits 16-158
offset blk arg uchar 16-159
offset blk arg uint 16-160
offset blk arg ulong long 16-161
offset blk arg ushort 16-162
offset cpu 16-168

offset id 16-140, 16-181, 16-182
offset node_id 16-170

offset node name 16-173
offset num args 16-163
offset pid 16-164

offset pid table name 16-171
offset process name 16-174
offset task_id 16-166

offset task _name 16-175

offset thread id 16-165

offset thread name 16-176
offset tid 16-167

offset tid table name 16-172
offset time 16-169

pid 16-44, 16-188

pid table name 16-52
process_name 16-55

start 16-60

start_arg 16-63

start _arg dbl 16-64, 16-65
start _arg long dbl 16-66
start_blk arg 16-68
start blk arg bits 16-69
start blk arg char 16-70
start blk arg dbl 16-71
start blk arg flt 16-72
start blk arg long 16-73

Index-4

start_blk arg long bits 16-74
start_blk arg long dbl 16-75
start_blk arg long long 16-76
start_blk arg long ubits 16-77
start blk arg short 16-78
start blk arg string 16-79
start blk arg ubits 16-80
start blk arg uchar 16-81
start blk arg uint 16-82
start_blk arg ulong long 16-83
start blk arg ushort 16-84
start cpu 16-90

start_id 16-5, 16-62

start node_ id 16-93

start _node name 16-96

start _num args 16-85
start_offset 16-91

start _pid 16-86
start pid table name 16-94
start task id 16-88

start thread id 16-87
start_tid 16-89

start_tid table name 16-95
start_time 16-92

state dur 16-135

state gap 16-5, 16-134

state matches 16-136
state_status 16-137

string 16-16

sum 16-180

summary 16-177

summary matches 16-183

table 16-184

task_id 16-46

task name 16-56

thread id 16-45

thread name 16-57

tid 16-47

tid table name 16-53

time 16-50

trace event 16-18

G

Gap

event 16-58

state 16-134
get format function 16-188
get_itemfunction 16-186
get string function 7-22, 16-184
glibc 5-2,5-12
Global processidentifier 16-7, 16-44

Graph
data 12-12,17-14
event 12-5, 12-10, 17-16
exception 17-14
interrupt 17-14
state 12-11, 17-15, 17-16
syscall 17-15

H

Hardclock interrupts 17-14
Help
On Context 8-22

id function 16-20, 16-188, 16-190
illuminate 5-12
illuminator 5-1, 5-4

--ada 5-11

--aggregate limit 5-4

--build 5-7

--cf77 5-11

--config 5-5

--cregte 5-4

--do_nodebug 5-5

--dont_nodebug 5-5

--event_ids 5-5

--g77 511

--gcc 5-11

- 56

--ingtall 5-5

--iregex 5-6

--istd 5-7

--iunderscores 5-6

--populate 5-7

--report 5-9

--X 5-6

--Xregex 5-6

--xstd 5-7

--xunderscores 5-6
illuminator.h 5-8
illuminator.map 5-8
illuminator.o 5-9
illuminator_level .fmt 5-9
illuminators 5-10
Inter-process communication 2-4
Interrupt 17-2, 17-14, 17-17, 17-19

graph 17-14

hardclock 17-14

Interrupt box 17-14
Interval
scroll bar F-1
iregex 5-22
IRQ_ENTRY traceevent 17-2
IRQ_EXIT trace event 17-3

Kernel tracing 7-17, 7-18, 17-1

Language
Ada 2-32
C 2-1,2-32
Fortran 2-32
level, detail 5-13
libntrace.a 2-31
libntrace tjr.a 2-31
Library routines 2-1
overloading in Ada 2-3
return values 2-2

Index

trace begin 2-6,2-17, 2-21, 2-25, 3-1, F-1

trace close thread 2-24

trace default config 2-6

trace disable 2-18

trace disable all 2-18, 2-29
trace disable range 2-18

trace enable 2-18
trace enable all 2-18
trace enable range 2-18

trace end 2-10, 2-22, 2-25, 3-2

trace event 2-12
trace flush 2-22, 3-2

trace open thread 2-11, 2-24

trace trigger 2-22, 3-2
licences 1-1
License A-1

fixed A-1

installation A-1

keys A-1

modes A-1

nslm admin A-1, A-3

report A-3

requests A-2

server A-2

support A-4
License manager 1-1
lluminator_level.list 5-9

Index-5

NightTrace RT User’s Guide

[luminator_level.o 5-9
-Intrace 5-10
-Intrace_thr 5-10
Loading

traceevent 7-6
Logging

traceevent 6-4, F-1
lookup_ pc function 16-191
Loss

traceevent 2-17,F-1

M

Macros 16-193
main 5-2,5-12
Map file. see Event-map file
Matches

event 16-59

state 16-136

summary 16-183
max function 16-178
max_offset function 16-182
Maximum value 16-178, 16-182
Menu option

On Context 8-22

OnHelp 8-22, 8-23
min function 16-177
min_offset function 16-181
Minimum value 16-177, 16-181
Mode

buffer-wraparound 2-23
Multi-event functions 16-58
Multi-state functions 16-134

N

name _pid table 7-18, 17-18
name tid table 7-18
next_event.txt 5-8
NFSfilesystem F-1
NightStar Licence Manager 1-1
NightTracethread identifier 16-8, 16-47, 16-89, 16-126,
16-167, 18-78
NLSM 1-1
Nodeidentifer 16-51
Node identifier
ending trace event 16-130
offset 16-170
starting trace event 16-93
Node name 16-54

Index-6

ending trace event 16-133
ordinal trace event 16-173
starting trace event 16-96
node_id function 16-51
node_name function 16-54
node_nametable 7-19, 17-18
nodebug 5-22
nslm admin A-1, A-3
NSLM_SERVER A-2
ntrace 1-4
format tables 7-20
functions 16-4
operands 16-1
operators 16-1
performance considerations 7-6
string tables 7-15
ntrace functions 16-4
ntrace option
--end (load events before constraint) 7-4
--listing (list trace events) 7-12
--start (load events after constraint) 7-4
ntrace qualified states 16-62, 16-63, 16-64, 16-65,
16-66, 16-67, 16-68, 16-69, 16-70, 16-71,
16-72, 16-73, 16-74, 16-75, 16-76, 16-77,
16-78, 16-79, 16-80, 16-81, 16-82, 16-83,
16-84, 16-85, 16-86, 16-87, 16-88, 16-89,
16-90, 16-91, 16-92, 16-93, 16-94, 16-95,
16-96, 16-97, 16-99, 16-100, 16-101, 16-102,
16-103, 16-104, 16-105, 16-106, 16-107,
16-108, 16-109, 16-110, 16-111, 16-112,
16-113, 16-114, 16-115, 16-116, 16-117,
16-118, 16-119, 16-120, 16-121, 16-122,
16-123, 16-124, 16-125, 16-126, 16-127,
16-128, 16-129, 16-130, 16-131, 16-132,
16-133, 16-134, 16-135, 16-136, 16-137
ntraceh 2-1
ntracekd
daemon 4-1
ntraceud
daemon 3-1
invoking 3-6
ntraceud mode
buffer-wraparound 2-23
num_args function 16-43
NUM_BUFFERS 5-13

0]

Offset 7-4, 16-4, 16-9, 16-10, 16-138, 16-140, 16-141,
16-142, 16-143, 16-144, 16-145, 16-146,
16-147, 16-148, 16-149, 16-150, 16-151,
16-152, 16-153, 16-154, 16-155, 16-156,

16-157, 16-158, 16-159, 16-160, 16-161,
16-162, 16-163, 16-164, 16-165, 16-166,
16-167, 16-168, 16-169, 16-170, 16-171,
16-172, 16-173, 16-174, 16-175, 16-176
offset function 7-22, 16-49
Offset functions 16-138
offset_arg function 16-141
offset_arg dbl function 16-142, 16-143
offset _arg long dbl function 16-144
offset_arg long longfunction 16-145
offset _blk argfunction 16-146
offset blk arg bits function 16-147
offset blk arg char function 16-148
offset blk arg dbl function 16-149
offset blk arg_ flt function 16-150
offset blk arg long function 16-151
offset blk arg long bits function 16-152
offset blk arg long dbl function 16-153
offset blk arg long long function 16-154
offset blk arg long ubits function 16-155
offset blk arg_ short function 16-156
offset blk arg_ string function 16-157
offset blk arg ubits function 16-158
offset blk arg uchar function 16-159
offset blk arg uint function 16-160
offset blk arg ulong long function 16-161
offset blk arg ushort function 16-162
offset cpu function 16-168
offset idfunction 16-140, 16-181, 16-182
offset node id function 16-170
offset node name function 16-173
offset num args function 16-163
offset pid function 16-164
offset pid table name function 16-171
offset process name function 16-174
offset task idfunction 16-166
offset task name function 16-175
offset thread idfunction 16-165
offset thread name function 16-176
offset tid function 16-167
offset tid table name function 16-172
offset time function 16-169
On Context menu option 8-22
On Help menu option 8-22, 8-23
Operands
constants 16-2
functions 16-4
qualified states 16-62, 16-63, 16-64, 16-65, 16-66,
16-67, 16-68, 16-69, 16-70, 16-71, 16-72,
16-73, 16-74, 16-75, 16-76, 16-77, 16-78,
16-79, 16-80, 16-81, 16-82, 16-83, 16-84,
16-85, 16-86, 16-87, 16-88, 16-89, 16-90,
16-91, 16-92, 16-93, 16-94, 16-95, 16-96,
16-97, 16-99, 16-100, 16-101, 16-102,

Index

16-103, 16-104, 16-105, 16-106, 16-107,
16-108, 16-109, 16-110, 16-111, 16-112,
16-113, 16-114, 16-115, 16-116, 16-117,
16-118, 16-119, 16-120, 16-121, 16-122,
16-123, 16-124, 16-125, 16-126, 16-127,
16-128, 16-129, 16-130, 16-131, 16-132,
16-133, 16-134, 16-135, 16-136, 16-137

Operandsin expressions 16-1

Operatorsin expressions 16-1

Performance considerations

ntrace 7-6
PID 16-7, 16-44
pid function 16-44, 16-188
pid table 7-17, 17-19
PID table name 16-52
pid_nodenametable 7-19, 17-18
pid table name function 16-52
Pre-defined tables 7-17, 17-4, 17-17
printf(3) routine 7-13, 7-21
printf(3S) routine 16-190
Privileged access C-1
Processidentifier

ending trace event 16-131

offset 16-171

starting trace event 16-94
Processidentifier table name 16-52
Process name 16-55

ordinal traceevent 16-174
process_name function 16-55
pthread 5-2, 5-12
Push button

Zoom Out F-1

Q

Qualified events 16-193

Qualified states 16-62, 16-63, 16-64, 16-65, 16-66,
16-67, 16-68, 16-69, 16-70, 16-71, 16-72,
16-73, 16-74, 16-75, 16-76, 16-77, 16-78,
16-79, 16-80, 16-81, 16-82, 16-83, 16-84,
16-85, 16-86, 16-87, 16-88, 16-89, 16-90,
16-91, 16-92, 16-93, 16-94, 16-95, 16-96,
16-97, 16-99, 16-100, 16-101, 16-102, 16-103,
16-104, 16-105, 16-106, 16-107, 16-108,
16-109, 16-110, 16-111, 16-112, 16-113,
16-114, 16-115, 16-116, 16-117, 16-118,
16-119, 16-120, 16-121, 16-122, 16-123,

Index-7

NightTrace RT User’s Guide

16-124, 16-125, 16-126, 16-127, 16-128,
16-129, 16-130, 16-131, 16-132, 16-133,
16-134, 16-135, 16-136, 16-137

R

Record. see Trace event
Return values 2-2
return_val 5-19, 5-20

S

SCHED_CHANGE trace event 17-2
Scroll bar F-1
Shared memory

failure to attach 2-10

flushing 2-22
SOFT_IRQ_ENTRY trace event 17-3
SOFT_IRQ_EXIT trace event 17-3
Start functions 16-60
start arg function 16-63
start arg_ dbl function 16-64, 16-65
start arg long dbl function 16-66
start blk arg function 16-68
start blk arg bits function 16-69
start blk arg char function 16-70
start blk arg dbl function 16-71
start blk arg flt function 16-72
start blk arg long function 16-73
start blk arg long bits function 16-74
start blk arg long dbl function 16-75
start blk arg long long function 16-76
start blk arg long ubits function 16-77
start blk arg short function 16-78
start blk arg string function 16-79
start blk arg ubits function 16-80
start blk arg uchar function 16-81
start blk arg uint function 16-82
start blk arg ulong_ long function 16-83
start blk arg ushort function 16-84
start cpu function 16-90
start idfunction 16-5, 16-62
start node_ id function 16-93
start node name function 16-96
start num args function 16-85
start offset function 16-91
start pid function 16-86
start pid table name function 16-94
start task_id function 16-88
start thread id function 16-87

Index-8

start_tid function 16-89

start_tid table name function 16-95

start_time function 16-92
State 2-16, 17-14
duration 16-135
gap 16-134
matches 16-136
State Graph 12-11, 17-15, 17-16
state_dur function 16-135
state_gap function 16-5, 16-134
state_matches function 16-136
state_status function 16-137
Statistics
multi-event 16-58
multi-state 16-134
summary 16-177
std 5-22
strcmp function 16-16
String functions
strcmp 16-16
strncmp 16-17
String table 7-15, 16-184, 16-186
boolean 7-18
device 7-19, 17-4, 17-18
device_nodename 7-20, 17-19
event 7-17
get_itemfunction 16-186
get string function 7-22, 16-184
name _pid 7-18, 17-18
name_tid 7-18
node name 7-19, 17-18
pid 7-17, 17-19
pid_nodename 7-19, 17-18
syscall 7-19, 17-4, 17-17
syscall_nodename 7-19, 17-18
tid 7-18
tid_nodename 7-19
vector 7-19, 17-2, 17-3, 17-17
vector_nodename 7-19, 17-19
strncmp function 16-17
sum function 16-180
Summary
matches 16-183
Summary functions 16-177
summary matches function 16-183
Syscall 17-4,17-15, 17-17
graph 17-15
suspension 17-15
Syscall box 17-15
syscall table 7-19, 17-4, 17-17
SYSCALL_EXIT traceevent 17-4
syscall_nodenametable 7-19, 17-18
SYSCALL_RESUME trace event 17-5
SYSCALL_SUSPEND trace event 17-5

System call 17-4, 17-15, 17-17

Table
boolean 7-18
device 7-19, 17-4, 17-18
device _nodename 7-20, 17-19
event 7-17
format 7-20, 16-188
functions 16-184
name pid 7-18, 17-18
name tid 7-18
node name 7-19, 17-18
pid 7-17, 17-19
pid_nodename 7-19, 17-18
pre-defined 7-17, 17-4, 17-17
string 7-15, 16-184, 16-186
syscall 7-19, 17-4, 17-17
syscall_nodename 7-19, 17-18
tid 7-18
tid_nodename 7-19
vector 7-19, 17-2, 17-3, 17-17
vector_nodename 7-19, 17-19
Task name 16-56
ordinal trace event 16-175
task id function 16-46
task name function 16-56
Then-Expression configuration parameter 16-188
Thread event
ordinal 16-172
Thread identifier
ending trace event 16-132
offset 16-172
starting trace event 16-95
Thread identifier table name 16-53
Thread name 16-57
ordinal trace event 16-176
Thread names 7-2, 7-18
thread_idfunction 16-45
thread name function 16-57
TID 16-8, 16-47, 16-89, 16-126, 16-167, 18-78
tid function 16-47
tid table 7-18
TID table name 16-53
tid_nodenametable 7-19
tid table name function 16-53
time function 16-50
timeline panels 12-1
Times
constant 16-3
Timestamp 7-2, 16-50, 16-92, 16-129, 16-169

Index

tr_activate() 18-133
tr_append_table() 18-143
tr_arg_dbl() 18-38, 18-45
tr_arg_dbl_() 18-38, 18-45
tr_arg_int() 18-36

tr_arg_ int_() 18-37,18-44
tr_arg_long() 18-39, 18-46
tr_arg_long () 18-40, 18-47
tr_arg_long_dbl() 18-41, 18-48
tr_arg long dbl () 18-41, 18-48
tr_arg long_long() 18-42, 18-49
tr_arg_long long () 18-43, 18-50
tr_arg t 18-2

tr_argtype 18-50

tr_argtype_ 18-51

tr_blk_arg() 18-51
tr_blk_arg_() 18-52
tr_blk_arg_hits() 18-53
tr_blk_arg_bits () 18-54
tr_blk_arg_char() 18-55, 18-73
tr_blk _arg_char () 18-55
tr_blk_arg_dbl() 18-56
tr_blk_arg_dbl_() 18-57
tr_blk_arg_flt() 18-58
tr_blk_arg_flt () 18-58
tr_blk_arg_long() 18-59

tr_blk _arg_long_() 18-60
tr_blk_arg_long_bits) 18-61
tr_blk_arg_long_bits () 18-62
tr_blk _arg_long_dbl() 18-63
tr_blk_arg_long_dbl_() 18-63
tr_blk_arg_long_long() 18-64
tr_blk _arg_long long () 18-65
tr_blk_arg_long_ubits() 18-66
tr_blk_arg_long_ubits () 18-67
tr_blk_arg_short() 18-68
tr_blk_arg_string() 18-69
tr_blk_arg_string_() 18-70
tr_blk_arg_ubits() 18-71
tr_blk_arg_ubits () 18-72
tr_blk_arg_uchar () 18-74
tr_blk_arg_ushort() 18-75
tr_blk_arg_ushort () 18-68, 18-75
tr_cancel_cb() 18-146

tr cb t 18-3

tr_close() 18-20
tr_cond_and() 18-115
tr_cond_cb() 18-147
tr_cond_cb func t 18-3
tr_cond_copy() 18-116
tr_cond_cpu() 18-96
tr_cond_cpu_clear() 18-97
tr_cond_create() 18-91
tr_cond_expr_and() 18-111

Index-9

NightTrace RT User’s Guide

tr_cond_expr_or() 18-112
tr_cond find() 18-92
tr_cond_func_and() 18-108
tr_cond_func_clear() 18-110
tr_cond_func_or() 18-106
tr_cond func t 18-4
tr_cond_id() 18-93
tr_cond_id clear() 18-95
tr_cond_id range() 18-94
tr_cond_name() 18-118
tr_cond node() 18-104
tr_cond_node clear() 18-105
tr_cond_not() 18-113
tr_cond_offset() 18-121
tr_cond or() 18-114
tr_cond pid() 18-98
tr_cond pid_clear() 18-100
tr_cond _pid name() 18-99
tr_cond register() 18-120
tr_cond _reset() 18-92
tr_cond satisfy() 18-118
tr_cond satisfy () 18-119
tr_cond t 18-4
tr_cond tid() 18-101
tr_cond tid clear() 18-103
tr_cond tid name() 18-102
tr_copy_input() 18-138
tr_copy_input_range() 18-139
tr_cpu() 18-82
tr_cpu () 18-83
tr_create table() 18-142
tr_destroy() 18-14
tr_dir_t 18-4
TR_EOF 18-4, 18-25, 18-26, 18-27, 18-28, 18-121,
18-134, 18-135
tr_error_check() 18-17
tr_error_clear() 18-16
tr_free() 18-24
tr_get_item() 18-141
tr_get_string() 18-140
tr_halt() 18-146
tr_id() 18-32
tr_id () 18-32
tr_init() 18-14
tr_iterate() 18-145
tr_nargs() 18-35
tr_nargs () 18-35
tr_next_event() 18-25
tr_next_event () 18-26
TR_NO_CB 18-147, 18-148
TR_NO_COND 18-91, 18-93, 18-113, 18-115, 18-116,
18-117
TR_NO_HANDLE 18-14
TR_NO_STATE 18-123, 18-124

Index-10

tr_node() 18-84

tr_node () 18-84

tr_offset t 184

tr_open file() 18-18
tr_open_stream() 18-19
tr_pid() 18-76

tr_pid_() 18-77
tr_prev_event() 18-26
tr_prev_event () 18-27
tr_process name() 18-85
tr_process name () 18-86
tr_search() 18-28

tr_seek() 18-29

tr_state action t 18-5

tr_state active() 18-136
tr_state active () 18-137
tr_state cb() 18-148
tr_state cb func t 18-5
tr_state create() 18-122
tr_state end_cond() 18-131
tr_state end_cond clear() 18-132
tr_state end id() 18-127
tr_state end_id clear() 18-129
tr_state end_id range() 18-128
tr_state find() 18-123
tr_state info() 18-134
tr_state info () 18-135
tr_state info_t 18-6

tr_state name() 18-124
tr_state start cond() 18-130
tr_state start cond clear() 18-131
tr_state start_id() 18-125
tr_state start_id_clear() 18-127
tr_state start_id range() 18-126
tr_state t 18-7

tr_stream event t 18-7
tr_stream func t 18-7
tr_stream_notify() 18-21
tr_stream read() 18-22
TR_STREAM_SAVE 18-19
tr_stream_size() 18-23
tr_string_node 18-7
TR_SYSCALL_ENTRY traceevent 17-4
tr_t 18-8

tr_task_id() 18-81
tr_task_id () 18-81
tr_task_name() 18-86
tr_task_name () 18-87
tr_thread id() 18-79

tr_thread id_() 18-80
tr_thread_name() 18-88
tr_thread_name () 18-88
tr_tid() 18-78

tr_tid () 18-78

tr_time() 18-33
tr_time () 18-34
Traceevent 1-2
arguments 2-15, 7-2, 7-12, 7-14, 16-21, 16-22,
16-23, 16-24, 16-25, 16-26, 16-27, 16-28,
16-29, 16-30, 16-31, 16-32, 16-33, 16-34,
16-35, 16-36, 16-37, 16-38, 16-39, 16-40,
16-41, 16-42, 16-43, 16-63, 16-64, 16-65,
16-66, 16-67, 16-68, 16-69, 16-70, 16-71,
16-72, 16-73, 16-74, 16-75, 16-76, 16-77,
16-78, 16-79, 16-80, 16-81, 16-82, 16-83,
16-84, 16-85, 16-100, 16-101, 16-102,
16-103, 16-104, 16-105, 16-106, 16-107,
16-108, 16-109, 16-110, 16-111, 16-112,
16-113, 16-114, 16-115, 16-116, 16-117,
16-118, 16-119, 16-120, 16-121, 16-122,
16-141, 16-142, 16-143, 16-144, 16-145,
16-146, 16-147, 16-148, 16-149, 16-150,
16-151, 16-152, 16-153, 16-154, 16-155,
16-156, 16-157, 16-158, 16-159, 16-160,
16-161, 16-162, 16-163
context switch 17-2
disabling 2-19
discarding 2-23, F-1
enabling 2-19
exception 17-3
file 2-6, 3-1, 7-10
functions 16-18
ID 1-2, 2-15, 2-19, 7-2, 7-10, 7-12, F-1
information 16-18
interrupt 17-2
IRQ_ENTRY 17-2
IRQ_EXIT 17-3
loading 7-6
logging 6-4, F-1
loss 2-17, F-1
node identifer (ending trace event) 16-130
node identifer (offset) 16-170
node identifer (starting trace event) 16-93
node identifier 16-51
node name 16-54
node name (ending trace event) 16-133
node name (ordinal trace event) 16-173
node name (starting trace event) 16-96
offset 16-138
offset. see Offset
ordina 16-170, 16-171, 16-173, 16-174, 16-175,
16-176
ordinal number. see Offset
PID table name 16-52
process identifer (ending trace event) 16-131
process identifer (offset) 16-171
process identifer (starting trace event) 16-94
process identifier table name 16-52

Index

process name 16-55
process name (ordinal trace event) 16-174
SCHED_CHANGE 17-2
SOFT_IRQ_ENTRY 17-3
SOFT_IRQ_EXIT 17-3
syscall 17-4
SYSCALL_EXIT 17-4
SYSCALL_RESUME 17-5
SYSCALL_SUSPEND 17-5
task name 16-56
task name (ordinal trace event) 16-175
thread identifer (ending trace event) 16-132
thread identifer (offset) 16-172
thread identifer (starting trace event) 16-95
thread identifier table name 16-53
thread name 16-57
thread name (ordinal trace event) 16-176
TID table name 16-53
timestamp 7-2, 16-50, 16-92, 16-129, 16-169
TR_SYSCALL_ENTRY 17-4
TRAP_ENTRY 17-3
TRAP_EXIT 17-4
TRAP_RESUME 17-4
TRAP_SUSPEND 17-4
Tracepoint 1-2, 2-15
trace begin 2-6, 2-17, 2-21, 2-25, 3-1, F-1
trace close thread 2-24
trace default config 2-6
trace disable 2-18
trace disable all 2-18, 2-29
trace disable range 2-18
trace enable 2-18
trace enable all 2-18
trace enable range 2-18
trace end 2-10, 2-22, 2-25, 3-2
trace event 2-12
TRACE_FILE 5-13
trace flush 2-22, 3-2
trace open thread 2-11, 2-24
trace trigger 2-22,3-2
Tracing
disabling 2-18, 2-29
kernel 7-17,7-18, 17-1
TRAP_ENTRY traceevent 17-3
TRAP_EXIT traceevent 17-4
TRAP_RESUME traceevent 17-4
TRAP_SUSPEND trace event 17-4

underscores 5-22

Index-11

NightTrace RT User’s Guide

\%

variables 5-19, 5-20

vector table 7-19, 17-2, 17-3, 17-17
vector_nodenametable 7-19, 17-19
vectorsfile 7-17, 17-2, 17-17, 17-18, 17-19

W

-WI,--emit-relocs 5-10

X

xregex 5-22

Zoom Out push button F-1

Index-12

	NightTrace User’s Guide
	Preface
	Contents
	Appendix A NightStar Licensing
	Appendix B Kernel Dependencies
	Appendix C Privileged Access
	Appendix D NightTrace Logging API Examples
	Appendix E NightTrace Analysis API Examples
	Appendix F Answers to Common Questions
	Appendix G Glossary
	Index

	Introduction
	User Trace Point Placement
	Kernel Trace Point Placement
	Timestamps
	Languages
	Information Displayed

	Using the NightTrace Logging API
	Language-Specific Source Considerations
	C
	Fortran
	Ada

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_begin
	trace_open_thread
	trace_event and its variants
	trace_enable, trace_disable, and their variants
	trace_flush and trace_trigger
	trace_close_thread
	trace_end
	trace_diag_mode
	trace_diag_func

	Disabling Tracing
	Threads and Logging
	trace_register_thread
	Pthread_create

	Compiling and Linking
	C Compilation and Linking
	Fortran Compilation and Linking
	Ada Example

	Capturing User Events with ntraceud
	The ntraceud Daemon
	ntraceud Modes
	The Default User Daemon Configuration
	ntraceud Options
	Invoking ntraceud

	Capturing Kernel Events with ntracekd
	The ntracekd Daemon
	ntracekd Modes
	ntracekd Options
	ntracekd Invocations

	Application Illumination
	Overview
	Illuminator
	Work Flow Illustration
	Provided Illuminators
	Detail Levels

	Creating and Building an Illuminator
	illuminator --create
	--aggregate_limit=limit
	--config=config.xml
	--do_nodebug, --dont_nodebug
	--event_ids=N-[M]
	--install=path
	--i*, --x*
	--iunderscores, --xunderscores
	--iregex=regex, --xregex=regex
	--istd, --xstd

	illuminator --populate
	illuminator --build
	1
	2
	3
	next_event.txt
	illuminator.h
	illuminator.map
	illuminator_level.fmt
	lluminator_level.o
	lluminator_level.list
	illuminator.o

	illuminator --report

	Linking With Illuminators
	illuminator --gcc
	illuminator --g77
	illuminator --cf77
	illuminator --ada

	Predefined Illuminators
	main
	glibc
	pthread
	ccur_rt

	Activating Illuminators
	program
	!

	main[,options]
	illuminator
	level

	Using NightTrace With Illuminators
	Customizing an Illuminator
	<!-- comment -->
	<config>
	<declare>
	<defaults>
	<exclude>
	<function>
	<group>
	<level>
	caller={yes|no}
	frame={yes|no}
	aggregate_limit=limit
	args={yes|no}
	addr_args={yes|no}
	return_val={yes|no}
	addr_ret={yes|no}
	variables={yes|no}
	errno={yes|no}
	exclude={yes|no}

	<options>
	event_ids=“N-[M]”
	aggregate_limit=“limit”
	nodebug={yes|no}
	underscores={yes|no}
	std={yes|no}
	iregex=“regex”, xregex=“regex”
	filename=“filename”

	<variable>
	<wrapper>
	<wrapper_file_scope>
	<wrapper_post>
	<wrapper_pre>
	<wrapper_real>

	Performance Tuning
	Preventing Trace Event Loss
	Daemon Scheduling Adjustment
	Increasing Trace Buffer Size
	Programmatic Flushing

	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	Invoking NightTrace
	Command-line Options
	Summary Criteria

	Command-line Arguments
	Trace Event Files
	Event Map Files
	Table Files
	Tables
	String Tables
	Pre-Defined Strings Tables
	Format Tables

	Session Configuration Files
	Trace Data Segments

	The NightTrace Main Window
	Menu Bar
	File
	View
	Daemons
	Search
	Summary
	Profiles
	Export Profiles to NightTrace API Source File

	Timelines
	Tools
	Help

	Toolbars
	Pages
	Panels

	Daemons Panel
	Context Menu
	Control Buttons
	Edit Daemon Definition
	General Settings
	Trace Buffer Settings

	Trace Daemon Runtime Settings
	Enabled Events

	Trace Segments Panel
	Trace Segments Table
	Context Menu
	Control Buttons

	Events Panel
	Textual Event Tables
	Context Menu

	Timeline Panels
	Default Timeline
	Current Timeline Indicator
	Global Ruler
	Interval Ruler
	Event Graphs
	Event Description Area
	Keyboard Traversal
	Creating Timeline Objects
	Event Graph
	State Graph
	Data Graph
	Data Graph Options Dialog
	Drawing and Coloring Examples
	Color Selection Dialog
	Standard Color Names

	Interval Ruler
	Global Ruler
	Label
	Data Box

	Profiles Panels
	Profile Definition Panel
	Control Buttons

	Summarizing Statistical Information
	Condition Summaries
	State Summaries
	Summary Scripts
	Summary Script Environment Variables

	Profile Status List Panel
	Profile Status List Table
	Context Menu

	Event Descriptions Panel
	Tags List Panel
	Creating Tags
	Tags List Table
	Context Menu
	Control Buttons

	Using Expressions
	Overview
	Operators
	Operands
	Constants
	Functions
	Function Parameters
	Function Terminology
	String Functions
	strcmp()
	strncmp()

	Trace Event Functions
	id()
	arg()
	arg_dbl()
	arg_long()
	arg_long_dbl()
	arg_long_long()
	blk_arg()
	blk_arg_bits()
	blk_arg_char()
	blk_arg_dbl()
	blk_arg_flt()
	blk_arg_long()
	blk_arg_long_bits()
	blk_arg_long_dbl()
	blk_arg_long_long()
	blk_arg_long_ubits()
	blk_arg_short()
	blk_arg_string()
	blk_arg_ubits()
	blk_arg_uchar()
	blk_arg_uint()
	blk_arg_ulong_long()
	blk_arg_ushort()
	num_args()
	pid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_arg_long()
	start_arg_long_dbl()
	start_arg_long_long()
	start_blk_arg()
	start_blk_arg_bits()
	start_blk_arg_char()
	start_blk_arg_dbl()
	start_blk_arg_flt()
	start_blk_arg_long()
	start_blk_arg_long_bits()
	start_blk_arg_long_dbl()
	start_blk_arg_long_long()
	start_blk_arg_long_ubits()
	start_blk_arg_short()
	start_blk_arg_string()
	start_blk_arg_ubits()
	start_blk_arg_uchar()
	start_blk_arg_uint()
	start_blk_arg_ulong_long()
	start_blk_arg_ushort()
	start_num_args()
	start_pid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_arg_long()
	end_arg_long_dbl()
	end_arg_long_long()
	end_blk_arg()
	end_blk_arg_bits()
	end_blk_arg_char()
	end_blk_arg_dbl()
	end_blk_arg_flt()
	end_blk_arg_long()
	end_blk_arg_long_bits()
	end_blk_arg_long_dbl()
	end_blk_arg_long_long()
	end_blk_arg_long_ubits()
	end_blk_arg_short()
	end_blk_arg_string()
	end_blk_arg_ubits()
	end_blk_arg_uchar()
	end_blk_arg_uint()
	end_blk_arg_ulong_long()
	end_blk_arg_ushort()
	end_num_args()
	end_pid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_arg_long()
	offset_arg_long_dbl()
	offset_arg_long_long()
	offset_blk_arg()
	offset_blk_arg_bits()
	offset_blk_arg_char()
	offset_blk_arg_dbl()
	offset_blk_arg_flt()
	offset_blk_arg_long()
	offset_blk_arg_long_bits()
	offset_blk_arg_long_dbl()
	offset_blk_arg_long_long()
	offset_blk_arg_long_ubits()
	offset_blk_arg_short()
	offset_blk_arg_string()
	offset_blk_arg_ubits()
	offset_blk_arg_uchar()
	offset_blk_arg_uint()
	offset_blk_arg_ulong_long()
	offset_blk_arg_ushort()
	offset_num_args()
	offset_pid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()
	lookup_pc()

	Profile References

	Kernel Tracing
	Primary Kernel Trace Events
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events
	Kernel Work Events

	Additional Kernel Events
	Logging Custom Kernel Events
	From User Programs
	From Kernel Modules
	Retrieving Custom Events

	Viewing Kernel Trace Event Files
	Kernel Timelines
	Node and CPU Information
	Context Switch Information
	Interrupt Information
	Exception Information
	System Call Information
	Process Information
	Kernel Events
	Color Information

	Kernel String Tables

	Using the NightTrace Analysis API
	NightTrace Analysis Application Programming Interface
	Data Structures
	tr_arg_t
	tr_cb_t
	tr_cond_cb_func_t
	tr_cond_func_t
	tr_cond_t
	tr_dir_t
	tr_offset_t
	tr_state_action_t
	tr_state_cb_func_t
	tr_state_info_t
	tr_state_t
	tr_stream_event_t
	tr_stream_func_t
	tr_string_node_t
	tr_t

	Functions
	API Initialization and Destruction
	tr_init()
	tr_destroy()

	Error Detection, Collection, and Reporting
	tr_error_clear()
	tr_error_check()

	Input Specification and Streaming Control
	tr_open_file()
	tr_open_stream()
	tr_close()
	tr_stream_notify()
	tr_stream_read()
	tr_stream_size()
	tr_free()

	Event Offset Positioning
	tr_next_event()
	tr_next_event_()
	tr_prev_event()
	tr_prev_event_()
	tr_search()
	tr_seek()

	Basic Event Attribute Functions
	tr_id()
	tr_id_()
	tr_time()
	tr_time_()
	tr_nargs()
	tr_nargs_()
	tr_arg_int()
	tr_arg_int_()
	tr_arg_dbl()
	tr_arg_dbl_()
	tr_arg_long()
	tr_arg_long_()
	tr_arg_long_dbl()
	tr_arg_long_dbl_()
	tr_arg_long_long()
	tr_arg_long_long_()
	tr_arg_int_()
	tr_arg_dbl()
	tr_arg_dbl_()
	tr_arg_long()
	tr_arg_long_()
	tr_arg_long_dbl()
	tr_arg_long_dbl_()
	tr_arg_long_long()
	tr_argtype()
	tr_argtype_()
	tr_blk_arg()
	tr_blk_arg_()
	tr_blk_arg_bits()
	tr_blk_arg_bits_()
	tr_blk_arg_char()
	tr_blk_arg_char_()
	tr_blk_arg_dbl()
	tr_blk_arg_dbl_()
	tr_blk_arg_flt()
	tr_blk_arg_flt_()
	tr_blk_arg_long()
	tr_blk_arg_long_()
	tr_blk_arg_long_bits()
	tr_blk_arg_long_bits_()
	tr_blk_arg_long_dbl()
	tr_blk_arg_long_dbl_()
	tr_blk_arg_long_long()
	tr_blk_arg_long_long_()
	tr_blk_arg_long_ubits()
	tr_blk_arg_long_ubits_()
	tr_blk_arg_short()
	tr_blk_arg_short_()
	tr_blk_arg_string()
	tr_blk_arg_string_()
	tr_blk_arg_ubits()
	tr_blk_arg_ubits_()
	tr_blk_arg_uchar()
	tr_blk_arg_uchar_()
	tr_blk_arg_ushort()
	tr_blk_arg_ushort_()
	tr_pid()
	tr_pid_()
	tr_tid()
	tr_tid_()
	tr_thread_id()
	tr_thread_id_()
	tr_task_id()
	tr_task_id_()
	tr_cpu()
	tr_cpu_()
	tr_node()
	tr_node_()
	tr_process_name()
	tr_process_name_()
	tr_task_name()
	tr_task_name_()
	tr_thread_name()
	tr_thread_name_()

	Conditions
	tr_cond_create()
	tr_cond_reset()
	tr_cond_find()
	tr_cond_id()
	tr_cond_id_range()
	tr_cond_id_clear()
	tr_cond_cpu()
	tr_cond_cpu_clear()
	tr_cond_pid()
	tr_cond_pid_name()
	tr_cond_pid_clear()
	tr_cond_tid()
	tr_cond_tid_name()
	tr_cond_tid_clear()
	tr_cond_node()
	tr_cond_node_clear()
	tr_cond_func_or()
	tr_cond_func_and()
	tr_cond_func_clear()
	tr_cond_expr_and()
	tr_cond_expr_or()
	tr_cond_not()
	tr_cond_or()
	tr_cond_and()
	tr_cond_copy()
	tr_cond_name()
	tr_cond_satisfy()
	tr_cond_satisfy_()
	tr_cond_register()
	tr_cond_offset()

	State-oriented Interfaces
	tr_state_create()
	tr_state_find()
	tr_state_name()
	tr_state_start_id()
	tr_state_start_id_range()
	tr_state_start_id_clear()
	tr_state_end_id()
	tr_state_end_id_range()
	tr_state_end_id_clear()
	tr_state_start_cond()
	tr_state_start_cond_clear()
	tr_state_end_cond()
	tr_state_end_cond_clear()
	tr_activate()
	tr_state_info()
	tr_state_info_()
	tr_state_active()
	tr_state_active_()

	Output Function
	tr_copy_input()
	tr_copy_input_range()

	String Table Functions
	tr_get_string()
	tr_get_item()
	tr_create_table()
	tr_append_table()

	Callback Interfaces
	tr_iterate()
	tr_halt()
	tr_cancel_cb()
	tr_cond_cb()
	tr_state_cb()

	NightStar Licensing
	License Keys
	License Requests
	License Server
	License Reports
	Firewall Configuration for Floating Licenses
	License Support

	Kernel Dependencies
	Advantages for NightView
	Advantages for NightTrace
	Advantages for NightProbe
	Advantages for NightTune
	Frequency Based Scheduler
	PCI Bar File System

	Privileged Access
	Capabilities

	NightTrace Logging API Examples
	Single Threaded C Example
	Multi-Threaded C++ Example
	Fortran Example
	Rare Occurrence Example

	NightTrace Analysis API Examples
	list
	list.c

	search
	search.c

	watchdog
	watchdog.c

	ptime
	ptime.c

	browse
	browse.c

	detect
	detect.c

	Answers to Common Questions
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

