) NIGHTSTAR"

NightTrace User’s Guide

Version 7.6
(RedHawk™ Linux®)

£ concurrent

REAL-TIIVIE July 2018

Copyright 2013, 2014, 2018 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for use with Con-
current products by Concurrent Real-Time personnel, customers, and end—users. It may not be reproduced in any form without the written permis-
sion of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change without notice. Concurrent
Real-Time makes no warranties, expressed or implied, concerning the information contained in this document.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent Real-Time product names are
trademarks of Concurrent Real-Time while all other product names are trademarks or registered trademarks of their respective owners.

Linux® is used pursuant to a sublicense from the Linux Mark Institute.
NightStar’s integrated help system is based on Assistant, a Qt® utility. Qt is a registered trademark of Digia Plc and/or its subsidiaries.

NVIDIA® CUDA™ is a trademark of NVIDIA Corporation.

Preface

Scope of Manual

This manual is a reference document and user’s guide for NightTrace™ - a graphical,
interactive debugging and performance analysis tool.

Structure of Manual

The manual includes four major parts as shown below:

¢ Event Logging and Capture — Chapters 2 through 6
¢ Graphical Analysis — Chapters 7 through 17
® Programmatic Analysis — Chapter 18

® Reference — appendices and index

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

Syntax Notation

The following notation is used throughout this guide:
italic

Books, reference cards, and items that the user must specify appear in italic
type. Special terms and comments in code may also appear in italic.

list bold

User input appears in | i st bol d type and must be entered exactly as
shown. Names of directories, files, commands, options and man page refer-
ences also appear in | i st bol d type.

list

Operating system and program output such as prompts and messages and list-
ings of files and programs appears in | i St type. Keywords also appear in
[ist type.

window

Keyboard sequences and window features such as push buttons, radio buttons,
menu items, labels, and titles appear in window type.

NightTrace RT User’s Guide

Brackets enclose command options and arguments that are optional. You do
not type the brackets if you choose to specify such option or arguments.

Braces enclose mutually exclusive choices separated by the pipe (|) character,
where one choice must be selected. You do not type the braces or the pipe
character with the choice.

An ellipsis follows an item that can be repeated.

Contents

Chapter 1 Introduction

User Trace Point Placement. 1-2
Kernel Trace Point Placement 1-2
TIMEStAMPS .« . . o oottt et et e e e 1-3
Languageso ot 1-3
Information Displayed. 1-4

Chapter 2 Using the NightTrace Logging API

Language-Specific Source Considerations 2-1
o 2-1
Fortran 2-2
Ada . 2-2

Inter-Process Communication and Library Routines 2-3

Understanding NightTrace Library Calls 2-4
trace DeGINot 2-6
trace_open thread.......... 2-11
trace_event and its variants 2-12
trace_enable, trace_disable, and their variants. 2-18
trace_flush and trace trigger 2-22
trace close thread 2-24
trace end. 2-25
trace_diag mode. 2-27
trace_diag func 2-28

Disabling Tracing ittt 2-29

Threads and Logging. 2-29
trace_register thread 2-30
Pthread create 2-31

Compilingand Linking 2-31
C Compilation and Linking 2-32
Fortran Compilation and Linking. 2-32
AdaExample 2-32

Chapter 3 Capturing User Events with ntraceud

The ntraceud Daemon 3-1
ntraceud Modes 3-2
The Default User Daemon Configuration 3-2
Ntraceud OPtioNSttt e e 33
Invoking ntraceud 3-6

Chapter 4 Capturing Kernel Events with ntracekd

The ntracekd Daemon 4-1

NightTrace RT User’s Guide

ntracekd Modesot 4-1
ntracekd Options 4-2
ntracekd Invocations 4-5

Chapter 5 Application lllumination

OVEIVIEW & & ittt ettt et ettt e et et 5-1
Tuminator e 5-1
Work Flow Illustration, 5-1
Provided Illuminatorst e 5-2
Detail Levels.o e 5-2

Creating and Building an [lluminator 5-3
illuminator --Createt 5-4

--aggregate limt=limt................... ..o, 54
--config=configxml..........co i 54
--do_nodebug, --dont_nodebug. 5-5
--event _ids=N-[M] ... 55
--install=path ... 55
C R X 55
--iunderscores, --xunderscores. 5-6
--iregex=regex, --Xregex=regeXueeeeuiueeunn.. 56
--istd, --xstd.b-7
illuminator --populate. 5-7
illuminator --build. 5-7
1. . 5-7
2 . . 5-8
3. 5-8
next _event. txt. . 5-8
illuminator. h . . 5-8
illuminator. map . . . 5-8
illuminator_level. f nt . . 5-8
[luminator_level. o . . 5-9
[luminator_level. | i st . . 5-9
illuminator. o . . 5-9
Hluminator --reportot 5-9

Linking With [lluminators i 5-10
Hluminator --gCCo 5-10
illuminator --g77o 5-11
illuminator --Cf77 5-11
illuminator --ada 5-11

Predefined Illuminators ottt i 5-11

min. 511
glibc b-11
pthread b1
ccur_rt b-12

Activating [lluminators 5-12
0] 0o =T 512

! Co 5-12

Mai N[, options]o o 512
HUMINGLON e 513
LoVl 513
Using NightTrace With [lluminators 5-13
Customizing an [lluminator 5-14

Vi

Contents

< COMMIENE - . . L 5-14
CONEI g™ . . o 5-14
<declare™ 5-15
<defaults™>. 5-15
<exclude™. 5-16
<fUNCHION™ 5-16
CEIOUD ™ . ottt ettt e e e e e 5-17
<level> . .. 5-18
cal ler={yes|no}.......ooi i 519
frame={yes|no}....... .. 519
aggregate limt=limt..............., 519
args={yes N0} 519
addr _args={yes|no}........... i 520
return_val ={yes|no}.......... 520
addr _ret={yes|no} ... 520
variabl es={yes[no} ... 520
errnoO={yes| N0}o 520
exclude={yes|no} ... 520
OPHIONS™ & Lttt ettt 5-21
event 1 ds="N-[M]” ... i 5-21
aggregate limt="limt" 5-21
nodebug={yes|no} ... 521
under scores={yes|no} ... 521
std={yes|no} ... 522

i regex="regex’, xregex="regex’ b5-22
fil enane="filename b5-22

<variable>. .. 5-22
S 10 01 5-23
<wrapper_file scope> 5-23
SWIAPPET POSE™ . oottt e e e 5-23
SWIAPPET PIE™ . o vttt ettt et e e e et e e e e e 5-23
<wrapper_real> 5-24

Chapter 6 Performance Tuning

Preventing Trace Event Loss. 6-1
Daemon Scheduling Adjustmento, 6-2
Increasing Trace Buffer Size 6-2
Programmatic Flushing 6-3

Conserving Disk Space i 6-3

Conserving Memory and Acceleratingntrace oL, 6-4

Chapter 7 Invoking NightTrace

Command-line Optionsttt ittt 7-1
Summary Criteria ov ettt ettt et 7-6
Command-line Arguments.vuntneren et 7-10
Trace Event Files 7-11
EventMap Files e 7-11
Table Fileso 7-14
Tableso 7-14

String Tables.t 7-15

Pre-Defined Strings Tables 7-17

Vii

NightTrace RT User’s Guide

Format Tables............ .. i, 7-20
Session Configuration Files 7-24
Trace Data Segments i 7-25

Chapter 8 The NightTrace Main Window

Menu Bar 8-2
File .o 8-2
VW e 8-6
Daemons 8-8
Search 8-9
SUMMATY. . . 8-11
Profiles 8-12

Export Profiles to NightTrace API Source File.................. 8-14
TIMElINeS. 8-17
TO0IS . .o 8-20
Help. .o 8-22

Toolbars 8-23

Pages . 8-25

Panels. 8-28

Chapter 9 Daemons Panel

ConteXt MENUL. . ..ot e 9-2
Control Buttons 9-8
Edit Daemon Definition. 9-10
General Settingst 9-11
Trace Buffer Settings. 9-12

Trace Daemon Runtime Settings 9-16
Enabled Events 9-17

Chapter 10 Trace Segments Panel

Trace Segments Table 10-1
ConteXt MENU. 10-2
Control Buttons 10-4

Chapter 11 Events Panel

Textual Event Tables i 11-1
ConteXt MENUttt e 11-3

Chapter 12 Timeline Panels

Default TImelinettt 12-1
Current Timeline Indicator. 12-2
Global Ruler. 12-2
Interval Ruler. 12-3
Event Graphsot 12-5
Event Description AT€a vvt ettt e 12-6
Keyboard Traversalttt 12-7
Creating Timeline Objectsottt et 12-8

viii

Contents

Event Graph 12-10
State Graph. 12-11
Data Graph 12-12
Data Graph Attributes Dialog 12-13
Drawing and Coloring Examples 12-16
Color Selection Dialog i 12-17
Standard Color Namescoiiiniiuninninnenn... 12-19
Interval Ruler 12-20
Global Ruler. 12-20
Label. .. 12-20
Data Box. 12-20

Chapter 13 Profiles Panels

Profile Definition Panel. 13-1
Control Buttons 13-8
Summarizing Statistical Information. 13-10
Condition SUMmMaries.ttt 13-10
State SUMMATICS. ottt e e 13-10
Summary SCriptsot 13-10
Summary Script Environment Variables. 13-11

Profile Status List Panel 13-12
Profile Status List Table 13-12
ConteXt MeNU. e 13-13

Chapter 14 Event Descriptions Panel

Chapter 15 Tags List Panel

Creating Tags. . .. oottt 15-1
Tags List Table.o e 15-2
ConteXt MENUt e 15-2
Control Buttons 15-3

Chapter 16 Using Expressions

OVEIVIEW .« o ettt e e e e e e e e e e e e 16-1
(0155 110 P 16-1
Operands 16-1
CONSLANESot e 16-2
Functions 16-4
Function Parameters. 16-9
Function Terminology i, 16-11
String Functions 16-16
SEECINP() .+« e v et e e e e 16-16
SNCIP() -+ v o v et e 16-17

Trace Event Functions 16-18

[16-20

0 () 16-21

arg dbl() 16-22

arg long() . ..o 16-23

arg long dbl(). ... 16-24

NightTrace RT User’s Guide

arg long long(). ... 16-25
blk arg() . ..o 16-26
blk arg bits(). . .o oot 16-27
blk arg char()......... 16-28
blk arg dbl(). ... 16-29
blk arg flt(). 16-30
blk arg long()ooii i 16-31
blk arg long bitS()ottt 16-32
blk arg long dbl() 16-33
blk arg long long() it 16-34
blk arg long ubits()o utii 16-35
blk arg short() 16-36
blk arg String()covni i 16-37
blk arg ubits(). oot 16-38
blk arg uchar() 16-39
blk arg wint() 16-40
blk arg ulong long()ot 16-41
blk arg ushort() 16-42
NUML_ATES() e - v v e et et e e e e e e 16-43
PIA) - e 16-44
thread id()o 16-45
task 1d(). ..o o 16-46
()« 16-47
CPU) - e e et e 16-48
OffSet() . . o 16-49
M) o o et 16-50
node id()o 16-51
pid_table name(). 16-52
tid table name() 16-53
Node NAME()ottt 16-54
Process NAME() « . v vv v vttt e e e e 16-55
task name() 16-56
thread name() o 16-57
Multi-Event Functions. i i 16-58
EVENE AP() . - o ottt 16-58
event matches()couiii 16-59
State Functionst 16-60
Start Functions.t 16-60
start 1d() . ..o 16-62
Start arg() . ..ot 16-63
start_arg dbl() 16-64
start_arg long()o 16-65
start_arg long dbl()........ 16-66
start_arg long long()....... ... 16-67
start blk arg() 16-68
start_blk arg bits(). 16-69
start blk arg char()........ 16-70
start blk arg dbl()......... 16-71
start blk arg fIt()......... 16-72
start blk arg long()............ i 16-73
start_blk arg long bits()........... 16-74
start_blk arg long dbl() 16-75
start_blk arg long long() 16-76
start_blk arg long ubits().............. 16-77

Contents

start blk arg short() 16-78
start_blk arg string(). 16-79
start blk arg ubits() 16-80
start blk arg uchar()........... 16-81
start blk arg uint() 16-82
start_blk arg ulong long() 16-83
start blk arg ushort() 16-84
start nUM_args() « . ..o it 16-85
start pid(). .. oo 16-86
start_thread id()............ 16-87
start_task id(). 16-88
start tid() - ... 16-89
StArt CPU() .« .ot 16-90
start offset().t 16-91
Start time(). . ..o vt 16-92
start node id(). 16-93
start_pid table name()........... 16-94
start_tid table name()............. 16-95
start node name() 16-96
EndFunctions i 16-97
end 1d() ... o 16-99
end arg() ... 16-100
end arg dbl()...... ... 16-101
end arg long(). 16-102
end arg long dbl() 16-103
end arg long long() i 16-104
end blk arg().. 16-105
end blk arg bits()............ 16-106
end blk arg char() 16-107
end blk arg dbl() 16-108
end blk arg flt()......... 16-109
end blk arg long() 16-110
end blk arg long bits() 16-111
end blk arg long dbl()..........., 16-112
end blk arg long long()............. 16-113
end blk arg long ubits() 16-114
end blk arg short().......... 16-115
end blk arg string() 16-116
end blk arg ubits().......... 16-117
end blk arg uchar() 16-118
end blk arg wint()......... 16-119
end blk arg ulong long().............. 16-120
end blk arg ushort()........... 16-121
end num _args()t 16-122
end pid() ... 16-123
end thread id() 16-124
end task id() 16-125
end tid(). i 16-126
end Cpu() . .ot 16-127
end offset() 16-128
end time() 16-129
end node id() 16-130
end pid table name() L. 16-131
end tid table name(). 16-132

Xi

NightTrace RT User’s Guide

end node name().oi i 16-133
Multi-State Functions 16-134
state gap() - oo 16-134
state dur(). 16-135
state matches(). 16-136
state Status().o vt 16-137
Offset Functionst e 16-138
offset id()o v 16-140
offset arg().ot 16-141
offset arg dbl()...... 16-142
offset arg long() 16-143
offset arg long dbl() 16-144
offset arg long long() 16-145
offset blk arg().......... 16-146
offset blk arg bits() 16-147
offset blk arg char()............., 16-148
offset blk arg dbl() 16-149
offset blk arg fIt() 16-150
offset blk arg long() i 16-151
offset blk arg long bits()............ 16-152
offset blk arg long dbl().......... 16-153
offset blk arg long long()............. 16-154
offset blk arg long ubits()............. 16-155
offset blk arg short()............, 16-156
offset blk arg string() 16-157
offset blk arg ubits() 16-158
offset blk arg uchar()............, 16-159
offset blk arg wint()......... 16-160
offset blk arg ulong long()............ 16-161
offset blk arg ushort()........... 16-162
offset num args() ..ot 16-163
offset pid()o 16-164
offset thread id() 16-165
offset task id() 16-166
offset tid().o 16-167
offset cpu() .. oo v 16-168
offset time()ot 16-169
offset node id()............ oo 16-170
offset pid table name() 16-171
offset tid table name()............ 16-172
offset node name().......... 16-173
offset process name().oiiiiii 16-174
offset task name() 16-175
offset thread name()............. 16-176
Summary Functions 16-177
MIN() oot e e 16-177
MAX() + ottt 16-178
AVE() e e 16-179
SUIM() .+ v ettt et e e e et e e e e 16-180
min_offset() 16-181
max_offset(). 16-182
summary matches(). 16-183
Format and Table Functions o, 16-184
et StNG(). -« vt 16-184

Xii

Contents

get Item() ..o 16-186

get format(). 16-188

format() 16-190

LoOKUDP PC() - v v o et e e e 16-191

Profile References i 16-193

Chapter 17 Kernel Tracing

Primary Kernel Trace Events. i, 17-1
Context Switch Trace Event. 17-2
Interrupt Trace Events i 17-2
Exception Trace Events i 17-3
Syscall Trace Events.t 17-4
Kernel Work Events 17-5
Additional Kernel Events 17-7
Logging Custom Kernel Events. 17-8
From User Programs i 17-9

From Kernel Modules. 17-9
Retrieving Custom Events. ou... 17-10
Viewing Kernel Trace Event Files. 17-11
Kernel TImelineso 17-11
Node and CPU Information. 17-13

Context Switch Information 17-13
Interrupt Information. 17-13
Exception Information. i 17-14

System Call Information. 17-15

Process Information. 17-16

Kemnel Events i 17-16

Color Information 17-17

Kernel String Tables. i 17-17

Chapter 18 Using the NightTrace Analysis API

NightTrace Analysis Application Programming Interface. 18-1
Data Structureso e 18-2
13 G 5 P 18-2

13 o] o JE T 18-3

tr cond cb func t....... 18-3

tr cond func t 18-4

tr cond t. 18-4

13 G« 8 o P 18-4

tr offSet t ... 18-4
trostate action tuoii it 18-5

tr state cb func t....... 18-5

tr state Info t. 18-6

I StAte b ..ttt 18-7
trostream _eVentttt 18-7

tr stream func t......... 18-7
trostring node t 18-7

13 P 18-8
Functionst 18-9
API Initialization and Destruction. 18-14
tANIE0) . . e e e 18-14

Xiii

NightTrace RT User’s Guide

Xiv

tr destroy(). . v v e 18-14
Error Detection, Collection, and Reporting. 18-16
tr error clear() 18-16
tr error check() 18-17
Input Specification and Streaming Control 18-18
tr open file() 18-18
tr_open_Stream().o 18-19
tr Close(). - v 18-20
tr_stream notify()............. . 18-21
tr stream read() 18-23
trostream SIZe() . ..o it 18-24
trfree(). ..o 18-25
Event Offset Positioning 18-26
tr next event() 18-26
tr next event ().t 18-27
tr prev_event().t 18-27
tr prev_event ().iii 18-28
tr search(). i 18-29
tr SEeK() - o 18-30
Basic Event Attribute Functions 18-31
o dd() e 18-33
trid () oo 18-33
t tME() - o 18-34
tr tmMe () ..o 18-35
T NAIES() « v e e e 18-36
tNArES () oot 18-36
troarg int()o 18-37
troarg int () . ..o 18-38
tr arg dbl(). 18-39
tr arg dbl (). ... 18-39
troarg long(). ... oot 18-40
trarg long (). .. ooo i 18-41
tr arg long dbl() 18-42
tr arg long dbl ()o 18-42
tr arg long long()co i 18-43
tr arg long long ()o 18-44
troarg int () . ..o 18-45
tr arg dbl(). 18-46
trarg dbl (). ..o 18-46
troarg long(). . ..o ot 18-47
troarg long (). ...ovrii 18-48
tr arg long dbl() 18-49
tr arg long dbl () ... 18-49
tr arg long long()co i 18-50
trargtype(). . o v 18-51
trargtype (). v vi e 18-51
tr blk arg().o 18-52
tr blk arg (). .. ooi 18-53
tr blk arg bits().o 18-54
tr blk arg bits (). ... oov i 18-55
tr blk arg char() 18-56
tr blk arg char () 18-56
tr blk arg dbl() 18-57
tr blk arg dbl ()..... ... 18-58

Contents

tr blk arg fIt()....... ... 18-59
tr blk arg fIt ()...... ..o 18-59
tr blk arg long(). ... 18-60
tr blk arg long (). . ..o i 18-61
tr blk arg long bits()............ 18-62
tr blk arg long bits ()........... i 18-63
tr blk arg long dbl() 18-64
tr blk arg long dbl () 18-64
tr blk arg long long() 18-65
tr blk arg long long ()co i 18-66
tr_blk arg long ubits() 18-67
tr blk arg long ubits ().......... 18-68
tr blk arg short() 18-69
tr blk arg short () 18-69
tr blk arg string()........... 18-70
tr blk arg string ().c. 18-71
tr blk arg ubits(). 18-72
tr blk arg ubits (). 18-73
tr blk arg uchar()....... 18-74
tr blk arg uchar ()........ 18-75
tr blk arg ushort() 18-76
tr blk arg ushort () 18-76
tr pid() . 18-77
tr pid (). 18-78
tr td() . 18-79
trtid () oo 18-79
tr thread id()............ o 18-80
tr thread id ().........co i 18-81
tr task id(). ... 18-82
tr task id (). ... 18-82
T CPU() . - e et 18-83
T CPU () ettt 18-84
tr N0de(). ..ot 18-85
tr N0de (). v o vt 18-85
tr process NamMe() . .. vovvn e 18-86
tr process NamMe () . ..o veinen e 18-87
tr task name() 18-87
tr task name ()........... 18-88
tr thread name() 18-89
tr thread name () i 18-89
ConditionSo vttt e 18-91
tr cond create().t 18-92
tr cond 1eset(). 18-93
tr cond find() 18-93
tr cond id() 18-94
tr cond id range(). i 18-95
tr cond id clear() 18-96
tr cond Cpu(). ..ot 18-97
tr cond cpu clear().......... 18-98
tr cond pid() . ..o 18-99
tr cond pid name(). 18-100
tr cond pid clear() 18-101
tr cond tid()...... 18-102
tr cond tid name() 18-103

NightTrace RT User’s Guide

tr cond tid clear()........... 18-104
tr cond node()ot 18-105
tr cond node clear() 18-106
tr cond func or()........... . 18-107
tr cond func and() 18-109
tr cond func clear(), 18-111
tr cond expr and() i 18-112
tr cond exXpr Or(). . ..ot 18-113
tr cond NOt()ot 18-114
tr cond or() ..o 18-115
tr cond and() 18-116
tr cond COPY() -« o v v 18-117
tr cond name(). 18-118
tr cond satisfy(). 18-119
tr cond satisfy ()........... ... 18-120
tr cond register(). i 18-121
tr cond offset() 18-122
State-oriented Interfaces 18-123
tr state create() 18-123
tr state find()........ ... 18-124
trostate Name(). . ..o it 18-125
tr_state start id() 18-126
tr_state_start id range(). i 18-127
tr_state start id clear() 18-128
tr state end id()........... .. 18-128
tr state end id range() 18-129
tr state end id clear().............. 18-130
tr_state_start cond(). 18-131
tr_state_start cond clear().............., 18-131
tr state end cond() 18-132
tr_state end cond clear() 18-133
troactivate(). . . .o 18-134
tr state info()........ ... 18-135
tr state info ().......... 18-136
tr state active()ot 18-137
tr state active () ..o it 18-138
Output Function. 18-139
tr copy Input(). . ..ot 18-139
tr_copy_input range()o 18-140
String Table Functions. 18-141
troget String(). ..o oo r 18-141
troget item(). . ..o 18-142
tr create table() 18-143
tr_append table() 18-144
Callback Interfaces, 18-146
tr Gterate(). - o vt 18-146
tr halt(). 18-147
tr cancel cb(). 18-147
tr cond cb(). ... i 18-148
trstate cb() . ..o 18-149

Contents

Appendix A NightStar LX Licensing

License Keys . ..ot e A-1
License Requestsou it e A-2
License Server.t A-3
License Reportst A-3
Firewall Configuration for Floating Licenses A-3
Serving Licenses witha Firewall A-4
Serving Licenses witha Firewall A-5
Running NightStar LX Tools with a Firewall A-7
Running NightStar RT Tools witha Firewall........................ A-8
License Support. . ..o ovt e A-10

B Kernel Dependencies

Advantages for NightView B-1
Advantages for NightTracet B-2
Advantages for NightProbe B-2
Advantages for NightTune. i, B-3
Frequency Based Scheduler. i, B-3
PCIBarFile Systemiiii it B-3

Appendix C NightTrace Logging APl Examples

Single Threaded C Example C-1
Multi-Threaded C++ Example. i C-3
Fortran Example C-5
Rare Occurrence Example. C-6

Appendix D NightTrace Analysis APl Examples

LSt L D-2
LSt C oo D-2
SearCh. D-4
SearCh.C. D-4
Watchdogo D-7
Watchdog.C . ..o D-7
PN o D-10
PN, C ottt e D-11
DrOWSE . . .o D-13
DrOWSE.C . . oot D-13
detect . ..o D-24
detect.C . oo D-25

NightTrace RT User’s Guide

Appendix E Answers to Common Questions

Appendix F Glossary

Index

Illustrations

Xviii

Figure 2-1. Inter-Process Communication and Library Routines. 2-4
Figure 8-1. NightTrace Main Window 8-1
Figure 8-2. FileMenu 8-2
Figure 8-3. View Menu i 8-6
Figure 8-4. Toolbars Menu 8-7
Figure 8-5. Daemons Menu i, 8-8
Figure 8-6. SearchMenu i 8-9
Figure 8-7. Summary Menu 8-11
Figure 8-8. Profiles Menu i 8-13
Figure 8-9. Export Profiles Dialog 8-14
Figure 8-10. TimelinesMenu 8-17
Figure 8-11. Default User Timeline 8-18
Figure 8-12. Create Custom Kernel Timeline Dialog 8-19
Figure 8-13. ToolsMenu 8-20
Figure 8-14. HelpMenu i 8-22
Figure 8-15. Tab Context Menuottt enennen.. 8-26
Figure 8-16. Rename Page Dialog 8-26
Figure 8-17. Move Page Dialog 8-27
Figure 8-18. Page with Profile Panels 8-28
Figure 8-19. Panel Detaches fromPage 8-29
Figure 8-20. Panel Movement in Progress 8-30
Figure 8-21. Profile Status List Panel on Top of Profile Definition Panel ... 8-31
Figure 8-22. Event Descriptions Panel addedtoPage 8-32
Figure 8-23. Panel in Motion Creating Tab 8-33
Figure 9-1. Daemons Panel 9-1
Figure 9-2. Daemons Panel ContextMenu 9-2
Figure 9-3. Import Daemon Definitions Dialog 9-3
Figure 9-4. Attach to Running Daemons Dialog 9-4
Figure 9-5. Edit Triggers Dialog 9-6
Figure 9-6. Add Triggers Entry Dialog 9-7
Figure 9-7. Edit Daemon Definition Dialog 9-10
Figure 10-1. Trace Segments Panel 10-1
Figure 10-2. Trace Segment Panel Context Menu 10-2
Figure 10-3. Trace Data Segment Properties Description Dialog 10-3
Figure 11-1. Events Panel 11-1
Figure 11-2. Events Panel Context Menu 11-3
Figure 11-3. Search Events for Text Dialog 11-4
Figure 11-4. Edit Event Description Dialog 11-6
Figure 12-1. Default User Timeline 12-1
Figure 12-2. GlobalRuler i 12-2
Figure 12-3. IntervalRuler......... 12-3
Figure 12-4. Event Graph with Labels 12-5
Figure 12-5. Event Description Areaouiiuiinenenae. . 12-6

Contents

Figure 12-6. Timeline Editing 12-8
Figure 12-7. Timeline Context Menu cooou.... 12-9
Figure 12-8. Edit Event Graph Profile Dialog 12-10
Figure 12-9. Edit State Graph Profile Dialog 12-11
Figure 12-10. Edit Data Graph Profile Dialog 12-12
Figure 12-11. Edit Data Box Profile 12-14
Figure 13-1. Profile Definition Panel 13-2
Figure 13-2. Profile Status List Panel 13-12
Figure 13-3. Profile Status List Panel Context Menu 13-13
Figure 14-1. Event Descriptions Panel 14-1
Figure 14-2. Event Description Dialog 14-2
Figure 15-1. Tags ListPanel 15-1
Figure 15-2. Tags List Panel Context Menu 15-3
Figure 16-1. Function Terminology Illustrated 16-12
Figure 16-2. Statesand Events 16-12
Figure 17-1. Sample Kernel timeline 17-10
Figure 17-2. Nodeand CPUBOXot 17-11
Figure 17-3. Context Switch Lines 17-11
Figure 17-4. Interrupt Box and Interrupt Graph. 17-12
Figure 17-5. Exception Box and Exception Graph. 17-12
Figure 17-6. System Call Box and System Call Graph 17-13
Figure 17-7. Process InformationRow 17-14
Figure 17-8. Kernel Events Row 17-14
Figure 17-9. ColorKey i 17-15
Figure B-1. Automatically Generated Data Display Page C-5
Tables
Table 3-1. NightTrace Configuration Defaults. 33
Table 5-1. Character Entities 5-15
Table 5-2. System Defaults. i i 5-19
Table 12-1. Timeline Keyboard Traversal 12-7
Table 16-1. Time Units and Constant Suffixes.............. 16-3
Table 16-1. NightTrace Functions i, 16-5
Table 17-1. PROCESS EventCodest .. 17-6
Table 17-2. NETWORK Kernel Event Sub-ID Codes. 17-6
Table 17-3. MEMORY Kernel Event Sub-ID Codes 17-7

XiX

NightTrace RT User’s Guide

1
Introduction

NightTrace is a member of the NightStar™ family of tools. NightTrace provides an inter-
active debugging and performance analysis tool, trace data collection daemons, and two
Application Programming Interfaces (APIs) allowing user applications to log data values
as well as analyze data collected from user or kernel daemons. NightTrace allows you to
graphically display information about important events in your application and the kernel,
including event occurrences, timings, and data values. NightTrace consists of the follow-
Ing parts:

ntrace

a graphical tool that controls daemon sessions and presents user and kernel
trace events for interactive analysis

nt raceud

a daemon program that copies user applications’ trace events from shared
memory to trace event files

nt r acekd

a daemon program that copies operating system kernel trace events from ker-
nel memory to trace event files

NightTrace Logging API

libraries and include files for use in user applications that log trace events to
shared memory

NightTrace Analysis API

libraries and include files for use in user applications that want to analyze data
collected from user or kernel daemons

nli ght

a command line tool for generating code to log trace events at function entry
and return points

NightTrace operates in conjunction with other members of the NightStar RT family.
NightView, a multi-process and multi-thread application debugger, provides for dynamic
insertion of trace points in programs being debugged. The NightProbe data recording util-
ity allows sampled data to be passed directly to NightTrace for graphic or textual display.

NightTrace uses the NightStar License Manager (NSLM) to control access to the
NightStar tools. See “NightStar RTLicensing” on page A-1 for more information.

1-1

NightTrace RT User’s Guide

IMPORTANT

Kernel tracing is only supported on some operating system distri-
butions. See “Kernel Dependencies” on page B-1 for more infor-
mation.

User Trace Point Placement

A user trace point is a place of interest in application source code. At each user trace
point, you make your application log some user-specified information. This logged infor-
mation is collectively called a trace event. Each trace event has a user-defined trace event
ID number and optional user-supplied arguments.

Some typical user trace-point locations include:

* Suspected bug locations

® Process, subprogram, or loop entry and exit points

¢ Timing points

* Synchronization points for multi-process interaction

¢ Endpoints of atomic operations

The Application Illumination facility can be used to automatically generate user trace
points for function entry and return. These trace events can include return address, param-
eter values, return values, etc. as arguments.

In addition to the user-supplied information, trace events automatically contain informa-
tion identifying the process ID of the program generating the trace event. For
multi-threaded applications, the thread ID of the specific thread generating the trace is
recorded.

Kernel Trace Point Placement

Operating system distributions which support NightTtrace kernel tracing build their trace
and debug kernels with trace points inserted at various points throughout the kernel source
code. These trace point provide information relating to:

System call entry and exit

Interrupt entry and exit

Exception entry and exit

Kernel service routines

* Process creation, termination, and signalling

1-2

Timestamps

Languages

Introduction

* Network activity

Analysis of kernel trace events can provide significant insight into the operation of the
system and interactions between user applications. In addition to graphical displays,
NightTrace provides textual description of kernel trace events which reveal useful infor-
mation even for those not familiar with kernel programming.

For kernel programmers, additional custom trace events can be logged with simple kernel
utility routines which can be inserted into the kernel source or in kernel module source
routines.

Each trace event is tagged with a timestamp with sub-microsecond precision. This allows
you to view and comprehend complex interactions between multiple processes and the
operating system, executing on single or multiple CPU systems.

By default, an architecture-specific timing source is utilized. For Intel and AMDG64, the
Intel Time Stamp Counter (TSC register) is used.

If your operating system supports the Real-Time Clock and Interrupt Module (RCIM),
that clock can be also used as a timestamp source.

The RCIM is a hardware module available from Concurrent Computer Corpration which
provides a variety of clocks and interrupt sources, including two high-resolution timers
which may be synchronized between multiple systems. Use of the RCIM timing source
by NightTrace is advantageous when gathering data from multiple systems simultane-
ously. NightTrace can then present a synchronized view of user and kernel activity on
multiple systems from a single session.

NightTrace can also present such a synchronized view of activity between systems if the
systems utilize an alternative method of time synchronization, such as NTP or PTP.
RCIM time synchronization is extremely accurate; other solutions often are not as accu-
rate, or may take a long time to actually synchronize system time.

For more information about the RCIM, please see the cl ock_synchroni ze(1M,
rcim7),rcinmconfig(1lM,andsync_cl ock(7) man pages.

The application programming interface for logging trace events is provided in C and For-
tran for use with the following compilers:

® Concurrent Ada
* GNU C/C++

® GNU Fortran

NightTrace RT User’s Guide

* Intel C/C++
* Intel Fortran
® Concurrent Fortran 77

¢ CUDA - a mechanism for executing C/C++ code on an NVIDIA Graphical
Processing Unit

The application programming interface for trace event analysis is provided solely in C for
use with C and C++ programs.

Information Displayed

1-4

The nt r ace display utility lets you examine trace events. Data appear as numerical sta-
tistics and as graphical images. You can create and configure the graphical components
called display objects or use the defaults. By creating your own display objects, you can
make the graphical displays more meaningful to you. You can customize display objects to
reflect your preferences in content, labeling, position, size, color, and font.

With the nt r ace display utility, you can perform customized searches and summaries for
individual events or user-defined states. Summaries can be generated via command line
invocation of Nt r ace for generating automated reports.

2
Using the NightTrace Logging API

This chapter describes language-specific considerations for using NightTrace with user
applications.

Sample programs using these functions are also provided (see “NightTrace Logging API
Examples” on page C-1).

Language-Specific Source Considerations

NightTrace applications can be written in C, C++, Ada, Fortran, or Java.
The NightTrace Logging API has been tested with the following compilers:

- Concurrent Ada (MAXAda)

- Concurrent Fortran 77

- GNU C/C++

- GNU Fortran

- Intel C/C++

- Intel Fortran

- Sun Java 1.5 or later

- Aonix Perc Ultra Java 5.1 or later

- NVIDIA nvce CUDA preprocessor

Generally, for your applications to trace events, you must edit your source code and insert
NightTrace library routine calls. This is called instrumenting your code. Alternatively, the
Application Illumination facility (see “Application Illumination” on page 5-1) can be used
to instrument your code without making any source changes. Before you begin the task of
inserting trace event calls, read the following section that applies to the language in which
your application is written.

NightTrace applications written in C or C++ include the NightTrace header file
/usr/include/ ntrace. h with the following line:

2-1

NightTrace RT User’s Guide

#i ncl ude <ntrace. h>
The nt r ace. h file contains the following:

¢ Function prototypes for all NightTrace library routines
® Return values for all NightTrace library routines

® Macros (described in “Disabling Tracing” on page 2-34)

The library routine return values identify the type of error, if any, the NightTrace routine
encountered.

Programs that are multi-thread can also be traced with the NightTrace library routines. For
multi-thread programs, a thread identifier is stored in each trace event, uniquely identify-
ing which thread was running at the time the trace event was logged.

IMPORTANT

To fully utilize the features of NightTrace with multi-threaded
applications, additional considerations must be taken into account.
See the description of “Threads and Logging” on page 2-34 for
more information.

Minimally, a C or C++ program can log trace points using the following sequence of
library routine invocations:

trace _begin(“file”,NULL); // Called once

trace_event(11,2) // Log Event ID 11 with argunment 2

Fortran

All NightTrace library routines return | NTEGERS, but because they begin with a “t”, For-
tran implicitly types them as REAL. You must include the NightTrace-provided file
/usr/include/ ntrace_. h or explicitly type them as | NTEGER so that return values
are interpreted correctly.

Minimally, a Fortran program can log trace points using the following sequences of library
calls:

call trace_begin(“data”, 0) (cal l ed once)

call trace_event(11)

Ada

Ada applications can access the NightTrace library routines via the Ada package
ni ght _t race_bi ndi ngs which is included with the MAXAda product. The bindings

2-2

Java

Using the NightTrace Logging API

can be found in the bi ndi ngs/ gener al environment in the source file
ni ght _trace. a.

The ni ght _t race_bi ndi ngs package contains the following:

* An enumeration type consisting of the return values for all NightTrace
library routines

¢ The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Ada task was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” in the MAXAda
for Linux Reference Manual.

Java applications can access the NightTrace library routines via classes in the
nt race. | oggi ng package. Java NightTrace class files are located in / usr/ i b; be
sure to add this path when using the - cl asspat h java option or CLASSPATH environ-
ment variable. The Java bindings are provided via the Java Native Interface (JNI). The
JNI component of the NightTrace bindings is provided in | i bnt r ace- j ava. so, which
will be automatically loaded by the Java Virtual Machine. | i bntrace-java. so
resides in the / usr/ | i b directory.

The nt race. | oggi ng package contains the Tr ace class, along with two nested static
classes which are used by routines in the outer Tr ace class:

Trace. Config

Defines a configuration object, which can be specified to the Tr ace. begi n() call
to define daemon logging options.

Trace. Error

Exception class to hold NightTrace error returns and accessor functions to describe
the specific error.

Minimally, a Java program can log trace points using the following sequences of code:
i mport ntrace. |l ogging;
Trace.Begin(“data”); // (called once)

Trace. Event (11) ;

NightTrace RT User’s Guide

The Java Trace Class

Unlike C, Ada and Fortran, the files associated with the Java API do not contain a

header-like file which you can refer to when coding.

The relevant public portions of the Trace class and its nested classes are described in

the following sections for each routine.

However, for convenience, a listing of all relevant public portions of the Trace class

is shown below:

public class Trace {

public static class Error extends Runti meException {

public enum Msg {

}

public final

}

public static class Config {

NTNCERROR,
NTNCDAEMON,
NTNOTRACEFI LE,
NTI NVALI D,
NTPERM SSI ON,
NTALREADY,
NTNOSHM D,
NTRESCURCE,
NTINT,
NTLOSTDATA,
NTPGLOCK,
NTNOVEM
NTMAPCLOCK,
NTBADVERSI ON,
NTLI STEN,
NT_THREAD ERR,
DEFAULT;

Msg getError();

public enum O ockSource { Defaultd ock, RC Mrickd ock; }

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

}

Config();

OO0 000000000000

enum PagelLocki ng { Default,

PagelLocki ng get PagelLocki ng() ;

bool ean get DaenonSetti ngsPreferred();

int getBufferLength();

int getNunBuffers();

int get SharedMenoryPer m ssi ons();

O ockSour ce get d ockSource();

voi d set PagelLocki ng(PageLocki ng pl);

voi d set DaenonSetti ngsPref erred(bool ean dsp);
voi d setBufferLength(int bl);

voi d set NunBuf fers(int nb);

voi d set Shar edMenor yPer m ssi ons(int snp);
voi d set d ockSour ce(d ockSource c¢s);

Locked, Unl ocked; }

2-4

public static void begin(String file, Config config);
public static void begin(String file);

public static void set ThreadNane(String nane);

stati
stati

publ i
publ i

public stati

c c void event(int id);
c c void event(int id, int argl);
public static void event(int id, int argl, int arg2);
c c void event(int id, int argl, int arg2, int

arg3);

publ i
arg4);
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i
publ i
publ i
publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i

Error Handling

C

c

C

stati

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

stati
stati
stati
stati
stati
stati

stati
stati

stati

stati

stati

OO0 0000000000000

OO0 o000o0

c

c

c

c

voi d

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

voi d
voi d
voi d
voi d
voi d
voi d

voi d
voi d

voi d

voi d

voi d

Using the NightTrace Logging API

event(int id, int argl, int arg2, int arg3, int

event(int id, float argl);

event(int id, float argl, float arg2);
event(int id, double argl);

event(int id, double argl, double arg2);
event(int id, long argl);

event(int id, long argl, long arg2);
event(int id, String argl);

event (int id, boolean[] argl);
event(int id, byte[] argl);

event(int id, char[] argl);

event(int id, short[] argl);

event(int id, int[] argl);

event(int id, long[] argl);

event(int id, float[] argl);

event(int id, double[] argl);

disable(int id);

disable(int id_low, int id_high);
di sabl e();

enabl e(int id);

enable(int id_low, int id_high);
enabl e();

flush();
trigger();

cl oseThread();
end();

enabl eDi agnosti cs(bool ean on);

Unlike the other language interfaces, error conditions in the Java API are handled by
throwing a Trace.Error object.

Objects of that class can be caught and queried for a specific enumerated reason

associated with the error.

The public members of the Error class are shown in “The Java Trace Class” on page

2-4.

The following snippet of code demonstrates how you might use this class:

try {

Trace. event (5);

} catch (Trace.Error e) {

if (e.getError() == Trace.Error.Msg. NTINIT) {

Systemout. println("Cops; forgot to start ntraceud!");

}

NightTrace RT User’s Guide

CUDA

CUDA applications that wish to include trace points in GPU-executed code should
include the following header files:

#i ncl ude <ntrace_cuda. h>
#i ncl ude <ntrace_cuda_device. h>

The former is required for calls that setup the NightTrace session in CPU-executed code,
while the latter is for calls that actually log trace points in GPU-executed code.

Minimally, a CUDA program can use tracing with the following sequence of library rou-
tine invocations in CPU-executed code:

ntrace_cuda_context *ncc =
ntrace_cuda_begin(“file”, NULL); // Called once

gpu_code<<<x, y>>>(ntrace_cuda_sync(ncc));
/* ntrace_cuda_sync called once for each GPU kernel
i nvocation */

ntrace_cuda flush(); // Called once to flush events
ntrace_cuda_end(); // Called once to term nate tracing

To actually log trace points in code executed by an NVIDIA GPU, use the following func-
tions:

ntrace_cuda_event(ncs, 1);

ntrace_cuda event(ncs, 2,int_arg);
ntrace_cuda_evnet(ncs, 3,float_argl, fl oat _arg2);
ntrace_cuda_event(ncs3, ptr, bytes);

where Nncs is the return value from nt r ace_cuda_sync that was passed into your
GPU-executed code.

There are additional overloaded functions named ntrace_cuda_event in
ntrace_cuda_devi ce. h.

For a complete description of CUDA-related NightTrace interfaces, please see “Night-
Trace CUDA Tracing API” on page 2-35

Inter-Process Communication and Library Routines

2-6

Your application logs trace events to a shared memory area. A user daemon copies trace
events from shared memory buffers to the trace event file or to the NightTrace graphical
analysis tool. The relationship between your application and the user daemon and the
sequence of library calls needed to maintain this relationship appears in the figure below.

Using the NightTrace Logging API

Parent processes follow this sequence: Threads follow this sequence:
e trace_begin() e trace_set_thread_name() [optional]
e log trace events ® |og trace events
e trace_end() [optional] e trace_close_thread() [optional]

Thread 1
Process A <: Thread 2

Process B \
Child of B Shared
\ Memory |-<—{ USEr

chidofB bL———— ———P Buffer daenon

Task 1 /
Process C <:
Task 2 Trace File

or
ntrace GUI

Figure 2-1. Inter-Process Communication and Library Routines

Understanding NightTrace Library Calls

There are C, Ada, Fortran, and Java versions of each NightTrace library routine. These
routines perform the following functions:

¢ Initialize a tracing session
® Log trace events to shared memory
¢ Enable and disable specified trace events

¢ Explicitly notify the daemon to copy shared memory to disk

NightTrace RT User’s Guide

¢ Control how diagnostics are generated

¢ Terminate a tracing session

trace_begin, Trace.begin

The t race_begi n and Tr ace. begi n routines initialize the tracing session and
acquire resources for your process.

SYNTAX
C:
int trace_begin(char *trace file
ntconfig_ t * cfg);
Fortran:

i nteger function trace_begi n(trace file, cfg)
character *(*) trace file
i nt eger cfg(NTC_SI ZE)

Ada:
function trace_begi n(
trace file . string;
num buffers : integer; -- default is 8
buffer_length : integer; -- default is 32768
lock pages : bool ean : = true;
clock : ntclock_t := NT_USE ARCH TECTURE CLOCK;
shmid_perm : integer := 8#666%#;
inherit : bool ean : = true)
return ntrace_error;
Java:

package ntrace. | oggi ng;
public class Trace {
static class Config {
Config();
enum O ockSour ce {
Def aul t d ock,
RCI MTi ckd ock; }
enum PagelLocki ng {
Def aul t,
Locked,
Unl ocked; }
PageLocki ng get PageLocki ng();
bool ean get DaenonSetti ngsPreferred();
int getBufferLength();
i nt get NunBuf fers();
i nt get Shar edMenor yPer m ssi ons()
Cl ockSour ce get d ockSource();

2-8

Using the NightTrace Logging API

voi d set PagelLocki ng(PageLocki ng) ;
voi d set DaenonSetti ngsPreferred(bool ean);
voi d setBufferLength(int);
voi d set NunBuffers(int);
voi d set Shar edMenor yPer m ssi ons(int);
voi d set d ockSour ce(d ockSource);
b
static void begin (String trace _file);
static void begin (String trace file, Config cfg);
1

PARAMETERS

trace file

cnf

The user daemon logs trace events to an output file, trace file. When you
invoke the user daemon, you must specify this file’s name. For the user dae-
mon to log your process’ trace events to this file, the trace event file parameter
in your t r ace_begi n call must correspond to the key file value on the dae-
mon invocation. The names do not have to exactly match textually, but they
do have to refer to the same actual pathname; for example, one path name may
begin at your current working directory and the other may begin at the root
directory. When a user daemon is sending trace data directly to the NightTrace
graphical analysis tool, this file name serves only as a handle so that the user
daemon and the application can communicate -- no data is transferred to the
file in this case.

cfg must be either a NULL pointer, in which case the default settings are
used, or a pointer to a nt confi g_t structure.

The following function can also be used to initialize cfg to appropriate
default values:

void trace_default_config (ntconfig t * config);

Therefore, the following code sequence:

ntconfig t config;
trace _default config(&config);
trace _begin(“file”, &onfig);

is equivalent to:
trace _begin(“file”, NULL);

This is most useful when you wish to change just a few specific config-
uration parameters without having to explicitly define all parameters.
For example:

ntconfig_t config;
trace_default_config(&config);

NightTrace RT User’s Guide

2-10

Ada

config.ntc_numbuffers = 64;
trace_begin(“file”, &onfig);

The individual members of the structure are supplied directly as param-
eters to the routine, with appropriate default values. Both the user appli-
cation and the user daemon associated with it must agree on the config-
uration settings (or indicate that the other’s settings may be preferred).

Fortran

Java

The cfg record must be represented by an array of NTC_SIZE integer
items. Member of the array must be provided as described below.

The cfg parameter is optional. If specified, it must be an instance of the
Trace. Confi g class. You can use the mutator methods within that
class to set options in the Tr ace. Conf i g object.

The following describe the individual parameters or mutator Java functions:

C:
Fortran:
Java:

C:

Ada:
Fortran:
Java:

C:

Ada:
Fortran:
Java:

ntc_version
config(nt c_ver si on)
n/a

The value of the NTC_VERSI ONmacro from nt race. h

ntc_lock pages

lock pages

cfg(nt c_I| ock_pages)

cfg. set PageLocki ng(PageLocki ng)

For C, Ada, and Fortran, one of the following values: ntp_default,
which specifies that page locking should default; ntp_lock, which
specifies that critical pages are to be locked in memory; or
ntp_no_lock, which specifies that critical pages shall not be locked in
memory. ntp_default does not request page locking, but does conflict
with a user daemon configuration setting of ntp_lock or ntp_no_lock.

For Java, one of the values:

PageLocking.Default
PageLocking.Locked
PageLocking.Unlocked

which specifies that page locking should default, be locked, or be
unlocked, respectively.

ntc_clock

clock

cfg(nt c_cl ock)

cfg.set O ockSour ce(C ockSour ce)

C:
Ada:

Fortran:

Java:

C:
Ada:

Fortran:

Java:

C:
Ada:

Fortran:

Java:

C:

Fortran:

Java:

Using the NightTrace Logging API

Specifies which clock to use as a timing source.

For C, Ada, and Fortran, this value must be NT USE_ARCHITECTURE _-
CLOCK or NT_USE_RCIM_TICK_CLOCK. The user daemon default value
is NT_USE_ARCHITECTURE_CLOCK.

For Java, one of the following values:

ClockSource.Default
ClockSource. RCIMTickClock

The daemon default is to use the Default (Architecture) clock.

ntc_shmid_perm

shmid_perm

cnf(nt c_shm d_pernm

cnf.set Shar edMenor yPer i ssi ons(i nt)

Specifies the permissions to use when creating the shared memory
segment. The user daemon default value is 0666.

ntc_daemon_preferred

inherit

cnf(nt c_daenmon_pr ef err ed)

cnf.set DaenmonSet t i ngsPr ef err ed(bool ean)

When set to TRUE, this parameter causes conflicts between the con-
figuration as specified by the user and by the corresponding user dae-
mon to be resolved in favor of the daemon. Otherwise, conflicts will
be resolved in favor of the first configuration that executes, which
will cause the subsequent user daemon invocation or trace_be-
gi n (or Tr ace. begi n) call to fail.

ntc_num_buffers, ntc_buffer_length

num_buffers, buffer_length

cnf(nt c_num buffers),cnf(ntc_buffer I ength)
cnf.set NumBuf fers(int), cnf.set Buf fer Lengt h(i nt)

These two parameters define the amount of memory used to hold
trace events. The user daemon configuration defaults to 8 buffers
which individually hold 32768 events. The values as specified here
will be rounded up to the closest power of two. The units of buffer
length are in units of minimally-sized events. Some trace event inter-
faces with additional user-specified arguments require additional
space. The default daemon values for these fields are 8 buffers of
length 32768.

ntc_daemon_wait_usec
config(nt c_daenon_wai t _usec)
n/a

NightTrace RT User’s Guide

2-12

Specifies the number of microseconds the user daemon should pause
between busy-wait contention for control of the shared memory buf-
fers when flushing buffers to the output device. The user daemon
configuration for this parameter defaults to 100 us. This value
should be kept relatively short to prevent data loss if massive user
application trace activity prevents the daemon from flushing the

shared memory buffers.

C: ntc_reserved
Fortran: cnf(nt c_reserved)
Java: n/a
These parameters are reserved for future use; currently, they must be
set to zero for proper future operation.
DESCRIPTION

The t race_begi n and Tr ace. begi n routines perform the following opera-
tions:

Verify that the version of the NightTrace library linked with the
application is compatible with the version used by the user daemon if
it is already running

Verify the supplied configuration settings are not in conflict with a
pre-existing daemon or define the configuration with these settings if
the user daemon does not yet exist.

Verify that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

Attach the shared memory buffer (after creating it if needed)

Lock critical NightTrace library routine pages in memory as directed.
Note that you must have the CAP_SYS_NI CE capability to lock
pages in memory (see “Privileged Access” on page B-1 for details).

Initialize trace event tracing in this process

A process that results from the execve(2) system service does not inherit a trace
mechanism. Therefore, if that process is to log trace events, it must initialize the
trace witht race_begi n or Tr ace. begi n. Processes that result from a fork in a
process that has already initialized the tracing session need not call t r ace_begi n.

The t race_begi n or Tr ace. begi n routine must be called only once per parent
process (unless an intervening t r ace_end or Tr ace. end call has been made).

If Application Illumination is used, the main illuminator (see “Application Illumina-
tion” on page 5-1) will perform at race_begi n() call. The nl i ght tool (see
“Settings For “main” [lluminator” on page 5-55) can be used to set some of the
parameters to this call.

RETURN CONDITIONS

C, Ada, and Fortran:

Using the NightTrace Logging API

Upon successful operation, the t r ace_begi n routine returns NTNOERROR
or NTLI STEN, the latter in the case where no daemon has yet been started.
Otherwise, an error value as defined in nt race. h and ntrace_. his
returned, as shown in the Error Code section below.

Java:

The Tr ace. begi n() routine has no return value. It returns if the call is
successful (including the case of where no daemon has yet been started). Oth-
erwise, a Trace. Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s get Err or ()
routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:
NTNCERRCOR

A daemon has already been started that matches the filename passed as key -
file

NTLI STEN

All operations were successful, but no user daemon matching the filename
passed as key file could be found. The application can continue to make
NightTrace API calls but attempts to log events will fail until a daemon is
started, at which point logging of events will succeed.

NOTE

This error enumeration is not ever thrown by the Java API. Calls to
Trace. begi n() will silently succeed even if a matching daemon has not
yet been started.

NTALREADY

The application has already initialized the trace without an intervening
trace_end or Tr ace. end call. Tracing can continue in spite of this error.

NTBADVERSI ON

The calling application is linked with the static NightTrace library and the
static library is not compatible with the NightTrace library being used by the
user daemon. Solution: Relink the application with the static library version
which matches the library version being used by the daemon.

NTMAPCLCOCK

The selected event timestamp source could not be attached. Solution: If read
access is lacking, see your system administrator.

This can also occur if the RCIM synchronized tick clock is selected as the
event timestamp source but the tick clock is not counting. Solution: Start the

2-13

NightTrace RT User’s Guide

synchronized tick clock by using the cl ock_synchroni ze(1M com-
mand and restart the application.

NTPERM SSI ON

The calling application lacks permission to attach the shared memory buffer.
Solution: Make sure that the same user who started the user daemon is the
current user logging trace events in the application.

NTPGLOCK

Permission to lock the text and data pages of the NightTrace library routines
was denied. If the user is not privileged to lock pages, see your system admin-
istrator or change the page locking configuration setting to FALSE. (See
nt c_| ock_pages or Confi g. set PageLocki ng() above).

NTNOSHM D

This can occur if the size of the shared memory buffer exceeds the system lim-
its or the shared memory buffer already exists but the size required by the
parameters defining the number of buffers and buffer length exceeds the cur-
rent size. To increase the system limits on shared memory, adjust the ker-
nel .shmmni, kernel.shmall, and kernel.shmmax parameters using syst cl (8) .
Use i pcrm(1) to remove the existing shared memory segment if it is not
being used by another application.

SEE ALSO

* trace_end(), Trace.end()

trace_event, Trace.event and their variants

2-14

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

SYNTAX

C:

int trace_event (int ID);

int trace_event_arg (int ID, int arg);

int trace_event_two_arg (int ID, int argl, int arg2);

int trace_event_three_arg (int ID, int argl, int arg2, int arg3);
int trace_event _four_arg(int ID, int argl, int arg2, int arg3, int
arg4);

int trace_event_long (int 1D, long arg);
int trace_event_two_long (int 1D, long argl, long arg2);

int trace_event_long_long (int ID long long arg);

Using the NightTrace Logging API

int trace_event_two_long long (int 1D long long argl, long |ong
arg2);

nt trace_event flt (int ID, float arg);
int trace_event _two flt (int ID float argl, float arg2);

int trace_event_dbl (int 1D, double arg);
int trace _event_two_dbl (int 1D double argl, double arg2);

int trace_event_long_dbl (int 1D, 1ong double arg);

int trace_event_blk(int ID, void *args, int bytes);
int trace_event_string(int 1D char *str);

Fortran:

Ada:

nteger function trace_event (ID)
nteger ID

nteger function trace_event_arg (ID, arg)
nteger function trace_event _two_arg(ID, argl, arg2)

nteger function trace_event _three_arg (ID,argl, arg2, arg3)

nteger function trace_event four_arg (ID,argl,arg2,arg3,arg4)
nteger ID, arg,argl, arg2, arg3, argd

nteger function trace_event _|long (ID, arg)

nteger function trace_event_two_|long (ID, argl, arg2)
nteger ID

nteger arg, argl, arg2 (32-hit 09

nteger*8 arg, argl, arg2 (64-hitOY

nteger f unction trace_event_|long |ong (ID, arg)

nteger function trace_event_two_long long (ID, argl, arg2)
nteger ID
nteger*8 arg, argl, arg2

nteger function trace_event _dbl (ID, arg)

nteger function trace_event _two_dbl (ID,argl, arg2)
i nteger ID

doubl e precision arg,argl, arg2

type event _type is range O..4095;

(procedures)

procedure trace_event (ID : event_type);

procedure trace_event (ID : event_type;
arg : integer);

procedure trace_event (ID : event_type;
arg : float);

2-15

NightTrace RT User’s Guide

2-16

procedure trace_event

procedure trace_event

procedure trace_event

procedure trace_event

(functions)

Java:

function trace_event
return ntrace_error;

function trace_event
return ntrace_error;

function trace_event

return ntrace_error;

function trace_event

return ntrace_error;

function trace_event

return ntrace_error;

function trace_event

return ntrace_error;

function trace_event

return ntrace_error;

(ID :

argl :
arg2 :

(ID :

arg :

(ID :

argl :
arg2 :

(ID :

argl :
arg2 :
arg3 :
argd

(ID :

(ID :

(ID:
arg :

(ID :

argl :

arg2

(ID :
arg :

(ID :
argl :
arg2

(1D

argl :
arg2
arg3
argd

package ntrace. | oggi ng;

class Trace {
static void event(

int

event _type;
float;
float);

event _type;
long_float);

event _type;
long_fl oat;
long_float);

event _type;
i nteger;
i nteger;
i nteger;
i nteger);

event _type)

event _type;

event _type;

float)

event _type;
float;
float)

event _type;
| ong_fl oat)

event _type;
I ong_fl oat;
I ong_float)

event _type;
i nteger;
i nteger;
i nteger;
i nteger)

ID);

arg :

i nt eger)

Using the NightTrace Logging API

static void event(int ID, int arg);

static void event(int ID, int argl, int arg2);

static void event(int ID, int argl, int arg2, int arg3);
static void event(int ID, int argl, int arg2, int arg3, int argd);
static void event(int ID, long arg);

static void event(int ID, long argl, |ong arg?);

static void event(int ID, double arg);

static void event(int ID, double argl, double arg2);
static void event(int ID, String arg);

static void event(int ID, char[] arg);

static void event(int ID, int[] arg);

static void event(int ID, double[] arg);

static void event(int ID, byte[] arg);

static void event(int ID, float[] arg);

static void event(int ID, long[] arg);

static void event(int ID, short[] arg);

static void event(int ID, boolean[] arg);

}
PARAMETERS
ID
Each trace event has a user-defined trace event ID, ID. This ID is a valid inte-
ger in the range reserved for user trace events (0- 4095, and
3,000,000-3,999,999). See “Pre-Defined Strings Tables” on page 7-17 for
more information about trace event IDs.
IMPORTANT
Trace event IDs in the range 3,000,000 through 3,999,999 cannot
be disabled (“Disabling Tracing” on page 2-34) and can only be
used with the functiont race_event _arg_bl k().
argN
Sometimes it is useful to log the current value of a variable or expression, arg,
along with your trace event. The trace event logging routines provide this
capability. They differ by how many and what types of numeric arguments
they accept. If you want the nt r ace display utility to display these trace
event arguments in anything but decimal integer format, you can enter the
trace event in an event-map file. See “Event Map Files” on page 7-11 for more
information on event-map files and formats. Alternatively, you could call the
f or mat function. See “format()” on page 16-192 for details.
DESCRIPTION

A trace point is a place in your application’s source code where you call a trace
event logging routine. Usually this location marks a line that is important to debug-
ging or performance analysis.

2-17

NightTrace RT User’s Guide

2-18

TIP

To save time re-editing, recompiling, and relinking your applica-
tion, consider beginning with many trace points in the source
code. You can dynamically enable or disable specific trace events.

Some typical trace points include the following:

* Suspected bug locations

® Process, subprogram, or loop entry and exit points

¢ Timing points, especially for clocking I/O processing
® Synchronization points for multi-process interaction
¢ Endpoints of atomic operations

¢ Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached, the
user daemon wakes up and copies the trace event to the trace event file on disk.

By convention, each trace event logging invocation should log a different trace
event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in.
However, it is sometimes useful to log the same trace event ID in multiple places.
This makes it possible to group trace events from related, but not identical, activi-
ties. In this case, a change of trace event ID usually separates or subdivides groups.

Probably the most common use of trace events is to identify states. Typically, two
different trace event IDs delimit the boundaries of a state. Most applications log
recurring states with different time gaps (from the end of one instance of a state to
the start of another) and different state durations (from the start of one instance of a
state to its end).

TIP

Consider putting related trace event IDs within a range. Library
routines and user daemon options let you manipulate trace events
by using trace event ID ranges.

By default, all trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
user daemon has options that provide similar control. Attempting to log a disabled
trace event has no effect. See “trace _enable, trace_disable, and their variants” on
page 2-21 for more information.

Using the NightTrace Logging API

TIP

Consider using symbolic constants instead of numeric trace event
IDs. This would make your calls to NightTrace routines more
readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with State Graphs, Event Graphs, and Data Graphs in the
nt r ace display utility. See “State Graph” on page 12-11, “Event Graph” on page
12-10, and “Data Graph” on page 12-12 for more information about these display
objects.

RETURN CONDITIONS
C, Ada, and Fortran:

These routines return a zero value (NTNOERROR) on successful completion.
Otherwise, an error value as defined in nt race. h and ntrace_. h is
returned, as shown in the Error Code section below.

Java:

On successful completion, these routines return without any value. Other-
wise, a Trace. Err or exception object is thrown, which further describes
the error. When caught, you can use the exception object’s get Err or ()
routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTI NVALI D

An invalid trace event ID has been supplied. Solution: Use trace event IDs
only in the range 0-4095 (or 3,000,000-3,999,999 when used with
trace_event _arg_bl k()).

NTINIT

The NightTrace library routines were not initialized or they were initialized
but no user daemon has yet been initiated. Ensure a t r ace_begi n or
Tr ace. begi n call precedes the trace event logging routine call. Once a user
daemon is started, subsequent attempts at logging events will succeed.

NTLOSTDATA

The trace event was lost because the shared memory buffers were full. This
can occur if the user daemon cannot empty the shared memory buffer quickly
enough. Increase the priority of the user daemon and/or schedule it on a CPU
with less activity. Additionally, the size of the shared memory buffers can be
increased using the - - num buf s and - - buf | en options to nt r aceud, the
User Event Buffer settings on the User Trace tab of the Daemon dialog
in Nt r ace tool, or the number of buffers or buffer length can be adjusted as
part of thet race_begi n or Tr ace. begi n calls.

2-19

NightTrace RT User’s Guide

SEE ALSO

e trace_flush(), Trace.flush()

e trace_trigger(), Trace.trigger()
* trace_enabl e(), Trace.enable()

* trace_enabl e_range()

* trace_enable_all ()

* trace_disable(), Trace.disable()
e trace_di sabl e_range()

e trace_disable_all()

2-20

Using the NightTrace Logging API

trace_enable, trace _disable, and their variants

By default, all trace events are enabled for logging to the shared memory buffer. The
trace_di sable,trace_di sabl e _range,trace_di sable_all, and
Trace. di sabl e routines respectively make your application ignore requests to log one
or more trace events. The t race_enabl e, trace_enabl e_range, trace_en-
abl e_al | and Tr ace. enabl e routines respectively make your application notice pre-
viously disabled requests to log one or more trace events.

SYNTAX
C:

int trace_enable (int ID);

int trace_enable_range (int ID_low, int ID_high);
int trace_enable_all ();

int trace_disable (int ID);

int trace_di sable_range (int ID_low, int ID_high);
int trace_disable_all ();

Fortran:

nteger function trace_enable (ID)
nteger ID

nteger function trace_enabl e_range (ID_low, ID_high)
nt eger ID_low, ID_high

nteger function trace_enable_all ()

nteger function trace_di sable (ID)
nteger ID

nteger function trace_di sabl e_range (ID_low, ID_high)
nt eger ID_low, ID_high

nteger function trace_disable_all ()

Ada:

type event _type is range O..4095;

(procedures)

procedure trace_enable (ID : event_type);

procedure trace_enable (ID_low : event_type;
ID_high : event _type);

procedure trace_enable_all;

procedure trace_disable (ID : event_type);

2-21

NightTrace RT User’s Guide

procedure trace_di sable (ID_low : event_type;
ID_high : event _type);

procedure trace_di sable_all;

(functions)

function trace_enable (ID : event_type)
return ntrace_error;

function trace_enable (ID_low : event_type;
ID_high : event _type)
return ntrace_error;

function trace_enable_all
return ntrace_error;

function trace_disable (ID : event_type)
return ntrace_error;

function trace_disable (ID_low : event_type;
ID_high : event _type)
return ntrace_error;

function trace_disable_all
return ntrace_error;

Java:

package ntrace. | oggi ng;

class Trace {
static void enable(int ID);
static void enable(int ID low, int ID_high);
static void enable();
static void disable(int ID);
static void disable(int ID low, ID_high);
static void disable();

PARAMETERS
ID

Each trace event has a user-defined trace event ID, ID. This ID is a valid inte-
ger in the range reserved for user trace event IDs (0- 4095, inclusive). See
“trace_event, Trace.event and their variants” on page 2-14 for more informa-
tion.

IMPORTANT

Trace event IDs in the range 3,000,000-3,999,999 cannot be used
with these functions. Such event IDs are always enabled.

2-22

Using the NightTrace Logging API

ID_low

It is possible to manipulate groups of trace event IDs by specifying a range of
trace event IDs. ID_low is the smallest trace event ID in the range.

ID_high

It is possible to manipulate groups of trace event IDs by specifying a range of
trace event IDs. ID_high is the largest trace event ID in the range.

DESCRIPTION

The enable and disable library routines allow you to select which trace events are
enabled and which are disabled for logging. A discussion of disabling trace events
appears first because initially all trace events are enabled.

Sometimes, so many trace events that it is hard to understand the nt r ace display.
Occasionally you know that a particular trace event or trace event range is not inter-
esting at certain times but is interesting at others. When either of these conditions
exist, it is useful to disable the extraneous trace events. You can disable trace events
temporarily, where you disable and later re-enable them. You can also disable them
permanently, where you disable them at the beginning of the process or at a later
point and never re-enable them.

NOTE

These routines enable and disable trace events in all processes that
rely on the same user daemon to log to the same trace event file.

All disable library routines make your application start ignoring requests to log trace
event(s) to the shared memory buffers. The disable routines differ by how many
trace events they disable. trace_di sabl e, and Tr ace. di sabl e with a single
argument, disable one trace event ID. trace_di sabl e_range, and
Trace. di sabl e with two arguments, disable a range of trace event IDs, includ-
ing both range endpoints. t race_di sabl e_al | , and Tr ace. di sabl e without
any arguments, disable all trace events. Disabling an already disabled trace event
has no effect.

All enable library routines let you re-enable a trace event that you disabled with a
disable library routine or user daemon. The effect is that your application resumes
noticing requests to log the specified trace event to the shared memory buffers. The
enable routines differ by how many trace events they enable. t r ace_enabl e, and
Tr ace. enabl e with a single argument, enable one trace event ID. trace_en-
abl e_range, and Tr ace. enabl e with two arguments, enable a range of trace
event IDs, including both range endpoints. trace_enabl e_al |, and
Tr ace. enabl e without arguments, enable all trace events. Enabling an already
enabled trace event has no effect.

2-23

NightTrace RT User’s Guide

TIP

Consider invoking the user daemon with events disabled instead
of calling the enable and disable routines. Using these options
saves you from re-editing, recompiling and relinking your appli-
cation.

TIP

If you want to log only a few of your trace events, disable all trace
events and then selectively enable the trace events of interest.

RETURN CONDITIONS
C, Ada, and Fortran:

These routines return a zero value (NTNOERROR) on successful completion.
Otherwise, an error value as defined in nt race. h and ntrace_. h is
returned, as shown in the Error Code section below.

Java:

On successful completion, these routines return without any value. Other-
wise, a Trace. Err or exception object is thrown, which further describes
the error. When caught, you can use the exception object’s get Err or ()
routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:
NTIN T

The NightTrace library routines were not initialized. Solution: Be sure a
trace_begi n or Trace. begi n call precedes the call to the disable or
enable routine.

NTI NVALI D

An invalid trace event ID has been supplied. Solution: Use trace event IDs
only in the range 0- 4095, inclusive.

SEE ALSO

* trace_event, Trace. event and its variants

2-24

Using the NightTrace Logging API

trace_flush, Trace.flush, trace_trigger, and Trace.trigger

The flush and trigger routines asynchronously wake the user daemon and direct it to copy
trace events from the shared memory buffers to the trace event file on disk. Note: These
routines do not wait for the copy to complete.

SYNTAX
C:
int trace_flush();
int trace_trigger();
Fortran:
i nteger function trace_flush()
i nteger function trace_trigger()
Ada:
(procedures)

procedure trace_flush;
procedure trace_trigger;

(functions)

function trace_flush
return ntrace_error;

function trace_trigger
return ntrace_error;

Java:

package ntrace. | oggi ng;
class Trace {
static void flush();
static void trigger();

DESCRIPTION

When the user daemon is idle, it sleeps. The process of copying trace events from
the shared memory buffers to a trace event file is called flushing the buffers. The
user daemon wakes up and flushes when any of these conditions exist:

® At least one of the individual buffers is filled with trace events

®* Your application calls trace_flush, trace_trigger,
trace_end, Trace.flush, Trace.trigger, or
Trace. end

* ntraceud is invoked with the - - f | ush- nowoption

2-25

NightTrace RT User’s Guide

® The NightTrace graphical analysis tool requests a flush for immedi-
ately analysis of the latest trace events

TIP

The trigger functions work identically to the flush functions,
except that the trigger functions work only in buffer-wraparound
mode. Calltrace_tri gger instead oftrace_f| ush so that
only buffer-wraparound’s performance is affected.

When you run in buffer-wraparound mode, you are telling NightTrace to intention-
ally discard older (and therefore presumably less-vital) trace events when the shared
memory buffer gets full. In buffer-wraparound mode, you must explicitly call
trace_flush, Trace. flush,trace_trigger,or Trace.trigger. Only
then, does the user daemon copy the remaining trace events from the shared memory
buffer to the trace event file. However, do not call these functions too often or you
will reduce the effectiveness of this mode. See “ntraceud Options” on page 3-3 for
more information on buffer-wraparound mode.

RETURN CONDITIONS
C, Ada, and Fortran:

Thetrace_flushandtrace_trigger routines returna zero value
(NTNOERROR) on successful completion. Otherwise, an error value as
defined in ntrace. h and ntrace_. h is returned, as shown in the Error
Code section below.

Java:

On successful completion, these routines return without any value. Other-
wise, a Trace. Err or exception object is thrown, which further describes
the error. When caught, you can use the exception object’s get Err or ()
routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:
NTFLUSH
A failure occurred while attempting to flush the shared memory buffer. Solu-

tion: Verify the status of the user daemon; if necessary, restart it and rerun the
trace.

SEE ALSO

* trace_event, Trace. event and its variants

2-26

Using the NightTrace Logging API

trace_set_thread name, Trace.setThreadName

Thetrace_set thread_nane and Tr ace. set Thr eadNane routines associate the
current C thread, Ada task, or Java thread with a user-specified name. Use of this library
routine is optional, as described in the Description paragraph below.

SYNTAX
C:
int trace_set_thread_name(const char *thread name);
Fortran:
i nteger function trace_set _thread_nane(thread name)
character *(*) thread name
Java:
package ntrace. | oggi ng;
class Trace {
static void set ThreadName(String thread name);
}
PARAMETERS
thread name
NightTrace’s graphical displays and textual summary information indicate
which threads logged trace events.
Naming your threads can make the displays much more readable. This func-
tion lets you associate a meaningful character string name with the current
threads’ more cryptic numeric ID. If you provide a character string as the
thread name, the nt r ace display utility uses it as a label in its displays.
Because nt r ace may be unable to display long strings in the limited screen
space available, keep thread names short.
Thread names should be limited to alpha-numeric characters and should con-
tain at least one non-numeric character. Names that are entirely numeric may
be discarded if a more descriptive name is available (including the default
thread name “main”). Some special characters are allowed, but their use is not
recommended. Do not use the names “ALL” or “NONE” as they are used
internally within NightTrace and may cause unexpected results.
DESCRIPTION

When using Java or when linking with the thread-aware version of the NightTrace
Logging API library (I i bnt race_t hr), the default thread name is formed
directly from the thread’s internal get t i d(2) value.

2-27

NightTrace RT User’s Guide

For C and Ada programs, if not using the thread-aware version of the library, you
cannot distinguish which threads logged which trace events -- all threads share the
same name.

By default, the main program thread is called “main”.

Callingtrace_set _t hread_nane or Tr ace. set Thr eadNane sets the name
of the calling thread to the specified name, overriding any previous name, default or
otherwise, given to the thread.

Calling t race_set _t hread_nane or Tr ace. set Thr eadName multiple
times for the same thread is not recommended, as it can cause confusion. Depend-
ing on the mode of trace event collection, some trace event may have the prior name
and some may have the new name -- or, all trace events may have the name associ-
ated with the last calltot race_set _t hr ead_narre.

RETURN CONDITIONS

C, Ada, and Fortran:

The trace_set _t hread_name routine returns a zero value (NTNOER-
ROR) on successful completion. Otherwise, an error value as defined in
ntrace. h and ntrace_. h is returned, as shown in the Error Code section
below.

Java:

On successful completion, Tr ace. set Thr eadNane returns without any
value. Otherwise, a Tr ace. Er r or exception object is thrown, which further
describes the error. When caught, you can use the exception object’s get Er -
ror () routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:
NTI NVALI D

An invalid thread name was specified.

SEE ALSO

* trace_begin(), Trace. begin()

* trace_close_thread(), Trace.closeThread()

trace_close_thread, Trace.closeThread

Thetrace_cl ose_t hread and Trace. cl oseThr ead routines inform the Night-
Trace Logging API library that the calling thread will no longer log trace events. These
functions are only useful when you have a multi-threaded application which has been
linked with the thread-aware version of the NightTrace Logging API library (I i bn-
trace_t hr) or you have a multi-threaded Java program.

2-28

Using the NightTrace Logging API

SYNTAX
C:
int trace_close_ thread,
Fortran:
i nteger function trace_cl ose_thread
Ada:
function trace_cl ose_thread return
ntrace_error;
Java:
package ntrace. | oggi ng;
class Trace {
static void closeThread();
}
DESCRIPTION

Use of this function is optional, but it is good practice to call this function for all
threads which have logged trace events.

If you do not call t race_cl ose_t hread or Trace. cl oseThr ead and you
have logged trace events from a thread other than the main program thread, then the
shared memory resources associated with the NightTrace logging API session will
remain attached to the process even after a call totrace_end or Tr ace. end is
made.

RETURN CONDITIONS
C, Ada, and Fortran:

The trace_cl ose_t hr ead routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the
error condition. A list of t race_cl ose_t hr ead error codes follows.

Java:

On successful completion, Tr ace. cl oseThr ead returns without any
value. Otherwise, a Tr ace. Err or exception object is thrown, which further
describes the error. When caught, you can use the exception object’s get Er -
ror () routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:
NTIN T

The NightTrace library routines were not initialized by a call to t r ace_be-
gi nor Trace. begi n.

2-29

NightTrace RT User’s Guide

SEE ALSO

* trace_begin(), Trace. begin()

e trace_end(), Trace.end()

trace_end, Trace.end

2-30

Thetrace_end and Tr ace. end routines free resources and terminate the trace session
in your process. Use of these routines is not strictly necessary, since all tracing resources
are automatically freed when the application exits. However, for applications that may
continue to execute but have no need for subsequent tracing, calling these routines is
appropriate.

SYNTAX
C:
int trace_end;
Fortran:
i nteger function trace_end
Ada:
function trace_end
return ntrace_error;
Java:
package ntrace. | oggi ng;
class Trace {
static void end();
}
DESCRIPTION

This routine performs the following operations:

¢ Terminates trace event tracing in this process

¢ Flushes trace events from the shared memory buffer to the trace
event file

® Detaches the shared memory buffer

NOTE

If you have a multi-threaded program linked with the
thread-aware version of the NightTrace logging API, the shared
memory will not be detached from the process if you have logged
trace events from threads which have not yet called t r ace_ -
cl ose_t hread.

Using the NightTrace Logging API

Notifies the user daemon that the current process has finished log-
ging trace events

RETURN CONDITIONS

C, Ada, and Fortran:

Java:

The t r ace_end routine returns a zero value (NTNOERROR) on successful
completion. Otherwise, an error value as defined in ntrace. h and
ntrace_. h is returned, as shown in the Error Code section below.

On successful completion, Tr ace. end returns without any value. Other-
wise, a Trace. Error exception object is thrown, which further describes
the error. When caught, you can use the exception object’s get Err or ()
routine to obtain the specific error enumeration value from the
Trace. Error. Msg enumerated type; relevant error code descriptions are
shown below.

Error Code Enumerations:

NTFLUSH

A failure occurred while attempting to flush the shared memory buffer. Solu-
tion: Verify the status of the user daemon; if necessary, restart it and rerun the
trace.

NTNCDAEMON

There is no user daemon with a trace event file name that matches the one on
the t race_begi n or Trace. begi n call attached to the shared memory
region. This condition is not always detectable. Solution: Use the nt r ace
display utility to analyze your logged trace events.

SEE ALSO

* trace_begin(), Trace. begin()

* trace_cl ose_thread(), Trace.closeThread

2-31

NightTrace RT User’s Guide

trace_diag_mode

Thet r ace_di ag_node routine controls the generation of diagnostics for critical Night-
Trace API routines.

The NightTrace API diagnostic routine is called when critical errors occur for some Night-
Trace API routines if the diagnostic mode is set to TRUE (on).

SYNTAX
C:
voi d trace_di ag node (int on);
Fortran:
external trace_di ag_node
Java:
package ntrace. | oggi ng;
class Trace {
static void enabl eD agnosti cs(bool ean);
}
DESCRIPTION

These functions control whether diagnostic text is sent to St der r by NightTrace
logging API routines when significant or critical errors are encountered. Regardless
of the setting of the diagnostic mode, individual functions within the NightTrace
logging API will use return values (or exceptions in the case of Java) to inform you
of error conditions.

For C and Fortran, specify a zero value to turn diagnostics off, or a non-zero value
to enable diagnostics.

For Java, pass t r ue to enable diagnostics, and f al se to disable them.

For C, the NightTrace API diagnostic routine may be changed via the t race_di -
ag_f unc routine.

NOTE
Setting the NTRACE_SI LENT environment variable to a non-null

value will prevent diagnostics routines from being called, regard-
less of the diagnostic mode setting.

SEE ALSO

e trace_diag_func()

2-32

Using the NightTrace Logging API

trace_diag_func

The t race_di ag_f unc routine replaces the default NightTrace API diagnostic routine
with one supplied with the function invocation.

SYNTAX
C:

void trace_diag _func (void(*func)(char*,int));

DESCRIPTION

The specified function is invoked when critical errors occur for some NightTrace
API routines if the trace diagnostic mode is set to TRUE. If this function is not
called, an internal NightTrace library routine is invoked when significant errors
occur, which prints a diagnostics to St der r, unless the diagnostics have been
turned off viat race_di ag_node() .

NOTE
Setting the NTRACE_SI LENT environment variable to a non-null

value will prevent diagnostics routines from being called, regard-
less of the diagnostic mode setting.

SEE ALSO

* trace_di ag_node()

2-33

NightTrace RT User’s Guide
Disabling Tracing

There are five ways to disable tracing in your application:

® For C applications that include / usr/i ncl ude/ ntrace. h, you must
recompile your application with the - DNNTRACE preprocessor option or
insert the following preprocessor control statement before the #i ncl ude
<ntrace. h>.

#def i ne NNTRACE

The NightTrace header file, nt r ace. h, contains macro counterparts for each
NightTrace library routine. When you define NNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status.

® Callthetrace_di sabl e_al | routine near the top of the source, recom-
pile, and relink your application. (For more information about this routine,
see “trace_enable, trace disable, and their variants” on page 2-21.) If your
application calls any of the enable routines, this method is not entirely
effective.

NOTE

Event IDs in the range 3,000,000-3,999,999 cannot be disabled by
this mechansim.

® Start a user daemon with all events disabled.

* Do not start a user dacmon.

The trace library routines have been highly optimized to have minimal overhead,
especially when no user daemon has been initiated.

¢ If you application trace instrumentation was done solely via Application
[llumination, you can make the instrumentation 100% inert with zero over-
head to the application by deactivating it using the nlight tool. You can
then reactivate instrumentation (without relinking) at a subsequent time.
See “Command for Activating and Deactivating Illuminators” on page
5-74 for more information.

Threads and Logging

In order to distinguish between multiple threads in a multi-threaded application, the fol-
lowing step must be taken:

¢ C applications must be linked with the thread-aware version of the Night-
Trace logging API by specifying the - | nt race_t hr link option.

2-34

Using the NightTrace Logging API

® Ada tasking applications automatically include the -|ntrace_thr
option when using the Ada NightTrace bindings.

® Threaded Java applications automatically include the - | ntrace_t hr
library when using the nt r ace. | oggi ng. Tr ace class.

If the thread-aware version of the library is not used, calls to log trace events from threads
will succeed but cannot be distinguished from other threads or the main thread.

By default, when using the thread-aware version of the library, threads are named using
their internal get ti d(2) value. You can explicitly set the name of a thread to some-
thing more useful by calling t race_set _t hr ead_namne or Tr ace. set Thr ead -
Nane.

NightTrace CUDA Tracing API

The API for CUDA tracing consists of functions found in the following include files:

/usr/include/ntrace_cuda. h
/usr/include/ntrace_cuda_device. h

ntrace_cuda.h

This include file defines the functions and types used to initiate a tracing session for a
CUDA application and to flush any trace data from memory to the collecting daemon.

See “ntrace cuda_device.h” on page 2-38 for information on functions used to actually
generate trace points in GPU-executed code.

SYNTAX

ntrace_cuda_cont ext ntrace_cuda_begi n(
const char * fil enane,
ntconfig_t * config = NULL,
unsi gned flags = 0,
i nt buf fer _size events = 0x1000);

ntrace_cuda_handl e * ntrace_cuda_sync(
ntrace_cuda_cont ext ncc);

int ntrace_cuda _fl ush(
ntrace_cuda_cont ext ncc);

vooi d ntrace_cuda_end(
ntrace_cuda_cont ext ncc);

2-35

NightTrace RT User’s Guide

2-36

PARAMETERS

filename

This parameter to nt r ace_cuda_begi n identifies the tracing session and
enables inter-process communication between a NightTrace collection dae-
mon and the application generating trace events. This parameter would also
be passed to the invocation of a NightTrace daemon as a command line argu-
ments. See “The ntraceud Daemon” on page 3-1 for more information.

The file must be writable and may already exist, but its contents will be over-
written.

config

flags

This optional parameter to nt r ace_cuda_begi n allows you to specify
daemon collection parameters. See / usr/i ncl ude/ ntrace. h for more
information.

This optional parameter to nt r ace_cuda_begi n is reserved for future use.
If specified, its value must currently be zero.

buffer_size events

This optional parameter defines the size of the memory block which is allo-
cated out of GPU memory to hold trace events. It is specified in units of a
minimally sized event (an event with no arguments, which is 24 bytes).

Trace events logging in GPU-executed code reside completely in GPU mem-
ory until flushed out to the collection daemon by a call to nt race_cuda_ -
flush().

If the memory buffer fills during GPU execution, it will overwrite the oldest
events, preserving the latest events.

ncc
This parameter is used with many of the API functions. It defines the context
of the NightTrace CUDA session.
It is returned from nt r ace_cuda_begi n and must be passed to the other
functions described above.
SEMANTICS

ntrace_cuda_begin

This function initiates a NightTrace CUDA session. No other NightTrace
CUDA API calls can be made until this function is called and completes suc-
cessfully.

It creates or attaches to a shared memory segment based on the name of the
filename parameter. This shared memory segment allows a NightTrace dae-
mon to collect data from the application.

Using the NightTrace Logging API

It also allocates a memory buffer in CUDA device memory. This buffer is
used to hold all CUDA trace events until nt r ace_cuda_f | ush is called.

This function also initiates a normal NightTrace session, in the same manner
astrace_begi n (see “trace begin, Trace.begin” on page 2-8). Thus after
ntrace_cuda_begi n completes, you can log trace events in CPU-exe-
cuted code as well as in GPU-executed code.

ntrace_cuda_sync

This function synchronizes the GPU clocks with the system timing device and
returns a handle which must be passed through to user code that executes on
the GPU. The handle is a required parameter for logging all trace points in
GPU-executed code.

IMPORTANT

Do not make copies or otherwise reuse the return value of
ntrace_cuda_sync in CPU-executed code. Only pass the
return value through to GPU- executed code on each kernel launch
(kerndl is this context is a CUDA term representing a segment of
user code that is executed by the GPU).

ntrace_cuda_fl ush

This function transfers all the events from the buffer in CUDA device memory
to the shared memory buffer so that a NightTrace daemon may collect the
events.

IMPORTANT

No CUDA trace events will be passed to the NightTrace daemon
until this function is called. Typically, you will launch a kernel,
wait for the GPU to finish its execution, and then call this function
to copy the events from GPU memory into the shared memory
buffer.

ntrace_cuda_end

This function terminates the NightTrace CUDA session. While it is not
strictly necessary to call this function, it does free up the memory resources it
allocated and detaches from the shared memory buffer created or attached in
ntrace_cuda_begi n.

RETURN VALUES

ntrace_cuda_begin

2-37

NightTrace RT User’s Guide

A non-zero ntrace_cuda_context value is returned on success. Otherwise, a
zero value is returned and a diagnostic is printed to St der r describing the
problem.

ntrace_cuda_sync

An ntrace_cuda_handle* is returned. This value should be passed to a kernel
invocation as it is required as a paramter to all nt r ace_cuda_event func-
tions. See “ntrace cuda device.h” on page 2-38 for more information.

ntrace_cuda_fl ush

A zero value is returned on success. Otherwise, a diagnostic is printed to
st derr describing the problem.

ntrace_cuda_device.h

SYNTAX

voi d ntrace_cuda_event (
ntrace_cuda_handl e * h,
int id);
voi d ntrace_cuda_event (
ntrace_cuda_handl e * h,
int id,
int argl [,arg2[,arg3[,arg4[,arg5]]]1]);
voi d ntrace_cuda_event (
ntrace_cuda_handl e * h,
int id,
long argl [,arg2]);
voi d ntrace_cuda_event (
ntrace_cuda_handl e * h,
int id
float argl [,arg2[,arg3[,arg4[,arg5]]]]);
voi d ntrace_cuda_event (
ntrace_cuda_handl e * h,
int id
doubl e argl [,arg2]);
voi d ntrace_cuda_event (
ntrace_cuda_handl e * h,

i nt id,

voi d * data,

i nt byt es);
SEMANTICS

The required ntrace_cuda_handle* parameter should be the value returned from
ntrace_cuda_sync that was passed as an argument during the CUDA kernel
launch.

An trace event is logged into GPU device memory with the specified id and optional
arguments. Valid values of id include 0-4095 and 3,000,000-3,999,999.

2-38

Using the NightTrace Logging API

The following information is automatically logged with the event; you do not need
to pass this information as arguments:

¢ The symmetric processor ID
¢ The thread dimensions

¢ The block dimensions

¢ The lane ID

¢ The warp ID

® The raw clock time

See “cuda functions” on page 16-45 for a description on how you can retrieve this
information from events within nt r ace.

As indicated in the pseudo-syntax above, you can pass from 1 to 51 nt arguments, 1
to 5 f | oat arguments, and 1 to 2 | ong or doubl e arguments.

The last form of the function allows you to pass an arbitrary number of bytes as
arguments, as defined by the data and bytes parameters.

The events are stored into the buffer in wrap-around mode. Thus if the buffer fills,
the newest events overwrite the oldest events in the buffer.

The buffer is flushed by a call to nt race_cuda_f | ush in CPU-executed code
only.

Some example source code can be found in the section entitled “CUDA Example”
on page C-11.

Compiling and Linking

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events.

For single-threaded applications, specify the /usr/ i b/1ibntrace. a library.

For multi-threaded applications, specify the /usr/li b/l ibntrace_thr. a library
(Multi-threaded Java and Ada applications will automatically use the threaded NightTrace
library).

C Compilation and Linking

Single-threaded example:
$ cc app.c -Intrace

Multi-threaded example:

2-39

NightTrace RT User’s Guide

$ cc app.c -Intrace_thr -|pthread

See “NightTrace Logging API Examples” on page C-1 for more demonstrative examples.

Fortran Compilation and Linking

Ada Example

Java Example

CUDA Example

2-40

RedHawk Linux:
$ cf77 app.f -Intrace
or

$ g77 app.f -Intrace

See “NightTrace Logging API Examples” on page C-1 for more demonstrative examples.

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in the MAXAda for Linux Reference
Manual.

Ensure that a path to a valid Java development environment bi n directory is in your
$PATH variable.

$ javac -classpath /fusr/lib:. app.java

See “NightTrace Logging API Examples” on page C-1 for more demonstrative examples.

Single-threaded example:

$ nvce \

- -gencode=ar ch=conput e_11, code=\"sm 11, code=conpute_11\" \
- - gencode=ar ch=conput e_20, code=\"sm 20, code=conput e_20\ " \
--conpiler-options -DUNI X -g -G -1/usr/include \

-c device_code. cu

$ cc nmain.c device_code.o ... -Intrace_cuda -lntrace

Multi-threaded example:

Using the NightTrace Logging API

$ nvce \

- - gencode=ar ch=conput e_11, code=\"sm 11, code=conpute_11\" \
- - gencode=ar ch=conput e_20, code=\"sm 20, code=conput e_20\ " \
--conpiler-options -DUNI X -g -G -1/usr/include \

-c device_code. cu

$ cc main.c device code.o ... -Intrace_cuda -Intrace_thr

See “NightTrace Logging API Examples” on page C-1 for more demonstrative
examples.

Kernel Trace API

There is a small kernel tracing API that provides for logging trace events into the kernel
trace event stream and for programatically shutting down tracing. This is discussed in the
chapter entitled Kernel Tracing

2-41

NightTrace RT User’s Guide

2-42

3
Capturing User Events with ntraceud

A user daemon is required in order to capture trace events logged by user applications.
There are two methods for controlling user daemons:

¢ Use the graphical user interface provided in the ntrace dialog as
described in “Daemon Dialog” on page 9-9.

® Use the command line tool nt r aceud.

The interactive interface is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the application continues to log trace data; this
optional feature is called streaming. Alternatively, the nt r aceud command line tool is
useful in scripts where automation is required.

This chapter describes the nt r aceud command line tool broken down into the following
topics:

® “The ntraceud Daemon” on page 3-1

* “ntraceud Modes” on page 3-2

¢ “The Default User Daemon Configuration” on page 3-2
* “ntraceud Options” on page 3-3

* “Invoking ntraceud” on page 3-6

The ntraceud Daemon

When you start up nt r aceud, it creates a daemon background process and then returns
control to the invoking program, normally the shell. The daemon creates a shared mem-
ory buffer in global memory. Your application writes trace events into this buffer, and the
daemon copies these trace events to the output device, usually a file.

You supply the name of the trace event file on your nt r aceud invocation and in the
trace_begi n() library call in your application. If this file does not exist, nt r aceud
creates it; otherwise, Nt r aceud overwrites it.

A single nt r aceud daemon may service several running applications or processes. Sev-
eral nt r aceud daemons can run simultaneously; the system identifies them by their dis-
tinctive trace event file names. The nt r aceud daemon resides on your system
under/ usr/ bi n/ ntraceud.

The daemon remains idle until one of the following conditions exist:

¢ One of the shared memory buffers fills

31

NightTrace RT User’s Guide

* You terminate execution of nt r aceud

* Your application calls trace_flush(), trace_trigger(), or
trace_end()

* A subsequent invocation of nt r aceud explicitly requests a flush

ntraceud Modes

By default, nt r aceud operates in an expansive mode, continually increasing the size of
the output file as events are copied from the shared memory buffers to disk.

nt r aceud also offers a file-wrap mode. This mode essentially places a limit on the max-
imum size the file can grow to. Once the limit is reached, the oldest events in the file are
overwritten.

nt r aceud also offers a buffer-wrap mode. In this mode, the shared memory buffers are
filled without waking the daemon. When all buffers have been filled, the oldest events are
overwritten with the newest ones. No disk activity occurs until nt r aceud is terminated,
or an explicit flush operation is requested, at which time, all buffers are copied to the out-
put file.

Both file-wrap and buffer-wrap modes may be used together.

The Default User Daemon Configuration

3-2

Invoking nt r aceud with a trace event file argument and without any options will
attempt to start a user daemon with the default user daemon configuration. You can over-
ride defaults by invoking nt r aceud with particular options. Table 3-1 summarizes these
options. Detailed descriptions of these options are described in the following section.

However, if a user application has already been initiated, it may have specified a
non-default configuration via the t r ace_begi n() call. If the critical settings in the con-
figuration defined by the user application differ from those specified by nt r aceud, then
nt r aceud will fail to initialize with an appropriate diagnostic.

In the default configuration, all trace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, an architecture-specific timing
source is utilized, which for Intel and AMD Opteron based machines is the Time Stamp
Counter (TSC register). On operating systems that support the Real-Time Clock and
Interrupt Module (RCIM), the RCIM’s clock can be used as a timestamp source by using
the - - r ci moption to nt r aceud (see “ntraceud Options” on page 3-3).

nt r aceud and the NightTrace library routines optionally use page locking to prevent
page faults during trace event logging.

A summary of NightTrace configuration defaults follows.

Capturing User Events with ntraceud

Table 3-1. NightTrace Configuration Defaults

Characteristic Default Modifying Option

Number of buffers 8 - - nunbuf s=number

Size of each buffer 32768 raw events - - bufl en=len

Buffer wrap mode No wrapping --bufferwap

Trace event file size Indefinite --fil ew ap=bytes

Trace events enabled for logging | All --di sabl e =ID and
- - enabl e=ID

Page Locking No Page Locking --lock

ntraceud Options

nt r aceud copies trace events from shared memory buffers to the output device, which is
normally a file.

The nt r aceud invocation syntax is:
nt raceud [options] tracefilename

The trace-filename parameter is required for all nt r aceud invocations. When starting a
daemon, it defines the shared memory identifier that the daemon and application will use
to communicate. When requesting statistics for a running daemon or when stopping a dae-
mon, it identifies the running daemon. Finally, unless run in streaming mode, the
trace-filename defines the output file which will hold trace events as they are copied from
memory.

The command-line options to nt r aceud are:

--bufferwap
-b

Collect events in the shared memory buffers, but do not output them to the
output device until nt r aceud is terminated or an explicit flush request
occurs via an Nt r aceud invocation or from the NightTrace Logging API.

When the shared memory buffers are completely filled, the oldest trace events
are overwritten by the newest events.

- - buf | en=buflen
- Bl buflen

Sets the length of each of the shared memory buffers used by nt r aceud to
buflen. The value represents the number of parameterless events that can be
stored in each buffer. The value buflen should be a power of 2 -- otherwise the

NightTrace RT User’s Guide

34

value is automatically adjusted by nt r aceud. Use this option in conjunction
with - - nunbuf s to control the amount of shared memory to be used. The
default value for buflen is 32768. Note thatt race_event _ar g API calls
(and other similar interfaces which include parameters) consume more space
than those without parameters.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel .shmmax and kernel.shmall variables via the sysct | (8) command.

- - di sabl e=ID[-ID]
- - enabl e=ID[-ID]
-d ID[-ID]

-e ID[-ID]

--fi
-fw

Disable or enable one trace event ID or a range of trace event IDs, as defined
by ID or the range ID-ID, from being logged. Any number of these options
may be specified. Upon the first invocation of nt r aceud that creates the
daemon process, the first - - enabl e option disables all other trace events.
When nt r aceud is invoked subsequently to adjust status of events for the
current session, - - enabl e options only enable the specified trace events.
By default, all trace events are enabled.

| ewr ap=bytes
bytes

Start the nt r aceud daemon in file-wrap mode such that the maximum trace
file size will be bytes bytes. A K or M suffix indicates that the size is in kilo-
byte or megabyte units, respectively. Once the maximum size has been
reached, nt r aceud overwrites the oldest trace events logged by the applica-
tion.

ush

This option forces a flush of all shared memory buffers that contain trace
events. This is especially useful when the daemon is operating in bufferwrap
mode or nt r aceud is stream data to an application linked with the Night-
Trace Analysis API when the rate of events is relatively low.

--help

-h

Display a brief description of nt r aceud options to stdout and exit.

--info

Display summary information about a running nt r aceud daemon. The dis-
play includes information about the number of events generated, events in the
shared memory buffers, events written to the output device and any data loss
that has occurred.

Data loss usually occurs because your application is writing trace events to the
shared memory buffers faster than nt r aceud can copy them to the
trace-event file. Limit data loss by increasing the - - nunbuf s and

Capturing User Events with ntraceud

- - buf | en option settings or using - - buf f er wr ap and by executing
nt r aceud with urgent priority.

--join
-

Allow the initiation of an nt r aceud daemon even if a user application has
already initiated a trace session using the specified trace-filename argument.

--l ock
--no-1 ock

Specify whether critical pages are to be locked in memory or should not be
locked in memory. Note that you must have the CAP_| PC_LOCK capability
to lock pages in memory (see “Privileged Access” on page B-1 for details).

- - nunbuf s=numbufs
- Bn numbufs

Sets the number of shared memory buffers used by nt r aceud to numbufs.
The value numbufs should be a power 2 -- the value is automatically adjusted
by nt r aceud if this is not the case. Use this option in conjunction with
- - buf | en to control the amount of shared memory to be used. The default
value of numbufsis 8.

Specifying a large value may exceed the system limitation on the maximum
size of shared memory. You can adjust the system limitation by changing the
kernel .shmmax and kernel.shmall variables via the sysct | (8) command.

--pol i cy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with - -priority
and - - processor to adjust the scheduling attributes of nt r aceud. See
sched_set schedul er (2) for more information on scheduling policies.
Note that you must have the CAP_SYS_NI CE capability to set a real-time
scheduling policy (see “Privileged Access” on page B-1 for details).

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
- - pol i cy option. By default, prio is 0 and the scheduling policy is other
which dictates normal interactive scheduling. See sched_set sched-
ul er (2) for more information on scheduling priorities. Note that you must
have the CAP_SYS_NI CE capability to set a real-time scheduling priority (see
“Privileged Access” on page B-1 for details)

- - processor =hias

The bias parameter must be a comma-separated list of logical CPU numbers
or ranges. This option restricts the daemon to only run on the specified
CPU(s).

NightTrace RT User’s Guide

--quit

-q

After all processes associated with the nt r aceud session defined by
trace-filename have exited or called t r ace_end, flush all remaining events
in the shared memory buffers, terminate the corresponding nt r aceud dae-
mon, remove the corresponding shared memory identifier, and close the file.
This option causes nt r aceud to wait for all processes to either exit or call
t race_end before tracing is terminated, whereas the - - qui t - now option
terminates the daemon without waiting.

--quit-now

_qn

Immediately flush all remaining events in the shared memory buffers, termi-
nate the corresponding nt r aceud daemon, remove the corresponding shared
memory identifier, and close the file.

--rcim

Specify use of the RCIM synchronized tick clock as the timing source. This
option is useful when simultaneously capturing data from multiple systems
since the RCIM tick clock can be synchronized between systems.

This option is only available on operating systems that support the RCIM.

--stream

This option causes binary trace data to be output to stdout. This option is
intended to provide streaming data to applications using the NightTrace Anal-
ysis APL; e.g. ntraceud --stream /tnp/key | a.out. Inthis case,
the trace-filename specified is not modified (although it will be created if it
does not already exist).

--version

-V

Invoking ntraceud

Display the current nt r aceud version to stdout and exit.

This section describes a few common nt r aceud invocation examples. In each example,
the trace file argument corresponds to the trace event file name you supply on your call to
thet race_begi n() library routine.

Normally, your first nt r aceud invocation looks something like the following sample.

nt r aceud trace file

The following invocation might be used when tuning your NightTrace configuration
because you lost trace events last time.

3-6

Capturing User Events with ntraceud

ntraceud - - nunbuf s=16 - - buf | en=65536 trace file

To eliminate any disk activity, or to run for long periods of time and only capture the latest
data, the following invocation might be used.

nt r aceud - - buf f er wr ap trace file
To conserve disk space for long runs, the following invocation might be used.
ntraceud - -fi | ew ap=bytestrace file

The following invocation should be used when the user application is already running and
you wish to start collecting trace data from it.

ntraceud - -j oi n trace file

To obtain information on the status of an active daemon, the following invocation could be
used:

ntraceud - - i nf o trace file

The following invocation waits for all user applications associated with the running
nt r aceud daemon to terminate, flushes remaining trace events to the trace event file,
closes the file, removes the shared memory buffer, then terminates the running nt r a -
ceud.

ntraceud - - qui t trace file

Similarly, the following invocation immediately flushes remaining trace events to the
trace file, closes the file, and terminates the running nt r aceud daemon. User applica-
tions can continue to run and make NightTrace Logging API calls, but no trace events will
be logged. Subsequently, a new user daemon can be initiated and trace events will start
being logged again:

ntraceud - - qui t - nowtrace file

To provide streaming trace data to an application written using the NightTrace Analysis
API, the following information could be used:

ntraceud --stream trace file|./a. out

Note that in the above invocation, the trace_file parameter serves only as a handle for
communication between the daemon and the user application that is logging the events; no
data is written to the file. The - - St r eamoption instructs that the binary data stream be
redirected to stdout. See “NightTrace Analysis Application Programming Interface” on
page 18-1 for more information.

NightTrace RT User’s Guide

3-8

4
Capturing Kernel Events with ntracekd

A kernel daemon is required in order to capture trace events logged by the operating sys-
tem kernel. There are two methods for controlling kernel daemons:

¢ Using the graphical user interface provided in NightTrace Main Window

® Using the command line tool nt r acekd

The interactive method is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the kernel continues to log trace data; this
optional feature is called streaming. Alternatively, the nt r acekd command line tool is
useful in scripts where automation is required.

This chapter describes the nt r acekd command line tool and consists of the following
sections:

® “The ntracekd Daemon” on page 4-1
* “ntracekd Modes” on page 4-1
¢ “ntracekd Options” on page 4-2

* “ntracekd Invocations” on page 4-5

The ntracekd Daemon

When you initiate nt r acekd, it creates a daemon background process and returns while
that daemon process executes. Once it returns to the invoking process, usually the shell,
the background process has already initiated kernel tracing.

You supply the name of the trace event output file on your nt r acekd invocation. Since
the capture of kernel data can quickly consume vast quantities of disk space, the
nt r acekd tool requires that you specify a limit on the size of the output file. Once the
limit is reached, older kernel data in the file will be overwritten with newer data. The
interface does allow you to specify an unlimited file size; however, this is not recom-
mended.

The nt r acekd daemon resides on your system under/ usr / bi n/ nt r acekd.

ntracekd Modes

nt r acekd essentially always operates in a file-wraparound mode, since it requires you to
put a limit on the maximum size of the output file. If the limit is reached, then kernel trac-

41

NightTrace RT User’s Guide

ing continues, but newer kernel events overwrite older events in the file. When viewed by
the NightTrace analyzer, the events will be appropriately displayed in chronological order.

nt r acekd also offers a buffer-wraparound mode. This mode stipulates that the kernel
continues to log kernel events to its internal buffers located in kernel memory, overwriting
the oldest kernel trace events with the newest ones. No disk activity occurs until
nt r acekd is terminated or an explicit flush request is made via a subsequent nt r acekd
invocation, at which time, all kernel trace buffers are copied to the output file.

ntracekd Options

4-2

The full nt r acekd invocation syntax is:
nt racekd [options] filename

The filename parameter is required for all nt r acekd invocations. When starting a dae-
mon, it defines the output file. When requesting statistics for a running daemon or when
stopping a daemon, it identifies the running daemon.

The command-line options to nt r acekd are:

--bufferwap
-b

Collect events in kernel bufferwrap mode, delaying output to filename until
stopped or flushed. This delays the disk activity normally involved in copying
kernel buffers to the output file as they become full.

- - cpu=cpu

Set the mask of CPUs to trace to those specified by cpu. The cpu parameter
must be a comma-separated list of logical CPUs or CPU ranges. If this option
is omitted, then all processors are trace. If provided, tracing will not occur on
processors that are not specified.

- - event s=events
-e events

These options are applicable to RedHawk 6.3 and prior. See - - gr oups for
the corresponding options for RedHawk 6.5 and later.

Set the state for the events listed in the list events to enabled or disabled.
Eventsis a comma-separated list of event numbers or names preceded with a +
(meaning enabled) or - (meaning disabled). A + or - without a number or
name means enable or disable all, respectively. This option can be used after a
daemon is already running to dynamically disable or enable events.

For example, to disable all events except those representing context switches,
you could enter:

ntracekd --events=-, +schedchange ...

Capturing Kernel Events with ntracekd

--flush

This option flushes all kernel buffers. It is particularly useful in conjunction
with the - - st r eamoption when streaming binary data to a NightTrace Anal-
ysis API application.

- - gr oups=gr oups
-g groups

These option are applicable to RedHawk 6.5 and later. See the - - event s
option for RedHawk 6.3 and prior.

RedHawk 6.5 enables and disables trace points using groups of events, instead
of individual events. See/ usr/i ncl ude/ ntrace_events. h for a list of
group numbers, group names, and the kernel events contained in each group.

These options set the state for the event groups listed in the list groups to
enabled or disabled. Groupsis a comma-separated list of group numbers or
names preceded with a + (meaning enabled) or - (meaning disabled). A + or -
without a number or name means enable or disable all, respectively. This
option can be used after a daemon is already running to dynamically disable or
enable event groups. Group names may be entered in lower case.

For example, to enable all events in the SMI group, you could enter:
ntracekd --events=+sni

--hel p
-H

Prints a description of the available options and exits.

--info
-

This option can be specified to obtain statistics about a kernel daemon already
initiated by a previous nt r acekd command. It prints statistics to stdout.

--kill
-k

Kill any active kernel daemon without regard to proper shutdown procedures.
This will allow subsequent kernel daemons to be initiated but data from the
previous daemon may be lost.

- - pol i cy=pol

This option sets the scheduling policy under which the daemon will operate.
The pol parameter must be other, fifo, or rr, indicating standard interactive,
real-time first-in first-out or real-time round-robin scheduling, respectively.
By default, pol is other. Use this option in conjunction with - -priority
and - - processor to adjust the scheduling attributes of nt r acekd. See
sched_set schedul er (2) for more information on scheduling policies.

NightTrace RT User’s Guide

4-4

--priority=prio

This option sets the scheduling priority under which the daemon will operate.
The prio parameter must be an integer priority value which is consistent with
the range of priorities allowed by the associated scheduling class set via the
- - pol i cy option. By default, prio is 0 and the scheduling policy is other
which dictates normal interactive scheduling. See sched_set sched-
ul er (2) for more information on scheduling priorities.

- - processor =bias

The bias parameter must be a comma-separated list of logical CPU numbers
or ranges. This option restricts the daemon to only run on the specified
CPU(s). This is unrelated to the - - cpu option which specifies the CPUs to
trace.

--quit

-q

Stop an existing kernel daemon. Once kernel tracing has been stopped, all
remaining trace events already logged in the kernel buffers are copied to the
output file. The nt r acekd command will not return until the copy is com-
plete.

--raw

-X

Disable automatic filtration of the kernel data leaving the format of the output
file as a raw kernel file. Raw kernel files can be passed directly to NightTrace
which will execute the filtration process on the fly. By default, nt r acekd
filters the raw data to avoid otherwise unnecessary repetitive filtration by
NightTrace. This option is not normally used.

--rcim

-r

Use the RCIM tick clock as the timing source instead of the default timing
source.

This option can only be used on operating systems that support the RCIM.

--Si ze=size
-ssze

This option specifies the maximum size of the output file. It is required when
initiating a daemon unless the - - wai t or - - buf f er wr ap options are used.
Sizemay be specified as an integer number optionally followed by a K, M or G
which indicates kilobytes, megabytes, or gigabytes, respectively. If no letter
is specified, the units are assumed to be in bytes. Size may also be +, which
indicates that the output may grow without limit. Use of + is not recom-
mended as kernel tracing can quickly consume vast quantities of disk space.

--stream

This option causes output to be sent to stdout in binary form for use as input to
a NightTrace Analysis API application. When this option is used, the filename

Capturing Kernel Events with ntracekd

parameter still required, but no data will be written to it. With - - St r eamthe
filename serves solely as a communication handle between nt r acekd invo-
cations.

--ver bose
-V

When this option is used in conjunction with - - i nf 0, it includes the list of
enabled events.

- - wai t =seconds
- W seconds

Start the daemon and begin kernel tracing for seconds before stopping the dae-
mon.

--buffer-size=sz
-Bs &«

This option defines the size of individual trace buffers which are allocated out
of kernel memory space.

On RedHawk 6.5 and later there is a single trace buffer allocated for each
traced CPU in the system (see the - - cpu option). Prior to RedHawk 6.5,
there are - - num buf f er s of this size, shared by all CPUs. If not specified,
the size defaults to IMB for RedHawk 6.5 and later; prior to that, the default
value is 250000.

Sz may be specified as an integer number optionally followed by a K, M or G
which indicates kilobytes, megabytes, or gigabytes, respectively. If no letter
is specified, the units are assumed to be in bytes.

--buffer-scal e=s

This option provides a generic mechanism for increasing or decreasing the
default buffer values, regardless of RedHawk version. S must be a floating
point value; it is used as a multiplier against the default buffer values. Thus to
increase trace buffer memory usage, specify a value greater than 1.0.

- - nunbuf s=n
-Bn n

This option is only applicable to versions of RedHawk prior to 6.5. It is com-
pletely ignored on more recent version of RedHawk.

n defines the number of kernel buffers system wise; its default value is 4.

ntracekd Invocations

A typical invocation of nt r acekd to initiate kernel tracing would be:

> ntracekd --size=10M ker nel -dat a

NightTrace RT User’s Guide

This starts a kernel trace daemon in the background and specifies a maximum size limit
for the output file ker nel - dat a of 10 megabytes. The command returns as soon as ker-
nel tracing has begun.

To check on the status of the running daemon, the following command might be used:

> ntracekd --info kernel -data
st at us: r unni ng
events | ost: 0

events capt ur ed: 13465
events witten: 13465

events in buffer: 1493
To terminate the running daemon, the following command would be used:
> ntracekd --quit kernel -data

To initiate a daemon to capture kernel data while a user application executes, then to ter-
minate the daemon and view the data, the following sequence of commands might be
used:

> ntracekd --size=10M ker nel -dat a

> ./a.out

> ntracekd --quit kernel-data

> ntrace kernel -data

To initiate a daemon to capture kernel data for five seconds and then terminate the daemon
and view the data, the following sequence of commands might be used:

> ntracekd --wai t=5 kernel -data
> ntrace kernel -data

Kernel Buffer Usage

46

As mentioned in the description of nt r acekd options above, the implementation of ker-
nel trace buffering is dependent on RedHawk version.

Prior to RedHawk version 6.5, all traced CPUs shared trace memory, configured as a con-
tiguous set of trace buffers of the same size. Individual options control the number of
trace buffers and the size of those buffers, - - num buf f er s and - - buf f er - si ze,
respectively.

Starting with RedHawk version 6.5 and later, every traced CPU has a single trace buffer
which is private to that CPU. You can specify the size of those buffer via the - - buf -
f er-si ze option. The - - cpu option control which CPUs are traced (the default is all).

If you want a generic solution for increasing or decreasing the default amount of trace buf-
fer memory, use the - - buf f er - scal e option, which works on all RedHawk versions.

5
Application lllumination

The challenge of debugging real-time programs is that problems are often time sensitive.
Stepping through the program one statement at a time with a traditional debugger is little
help in debugging such problems. Even the expedience of inserting pri nt f () state-
ments may introduce sufficient I/O overhead to interfere with the behavior of a real-time
program. NightTrace’s trace points have little overhead, but it can be tedious to insert
large numbers of them into the source code.

Application Illumination is a facility to automatically generate trace points for function
calls and returns. It patches them into the object code, and thus requires no source
changes.

This chapter describes the Application Illumination facility and consists of the following
sections:

* “Overview” on page 5-2

® “The nlight Graphical User Interface” on page 5-6

* “Wizard” on page 5-17

® “Session Manager” on page 5-40

* “Console” on page 5-63

¢ “Predefined Illuminators” on page 5-64

¢ “Illuminator Files” on page 5-66

* “nlight Command Line Mode” on page 5-68

¢ “Customizing an Illuminator with the Editor” on page 5-77

¢ “Customizing an Illuminator by Editing the config.xml File” on page 5-100

51

NightTrace RT User’s Guide

Overview

lHluminator

An illuminator is a directory that contains an object file with a set of “wrapper” routines,
an event map and format tables for nt r ace to use, and various other support files. Calls
to the routines that are going to be traced will be diverted to their corresponding “wrap-
per” functions, which record the entry event, call the real function, record the return event,

and then return to the original call site.

nlight

nl i ght is the tool used to create, manipulate, and use illuminators. It can be used via

command line options or in GUI mode.

Work Flow lllustration

The following transcript illustrates illuminating the code of a simple user program using

nl i ght command line options.

1.

5-2

Build your code with debug information so that Application Illumination
knows the signatures of your functions:

$ gcc -g -c *.c
$ gcec *.o

Create and build an illuminator called a. ai for the a. out program:

$ nlight --build=a.ai a.out

Relink your program with the illuminator that was constructed in step 2,
along with a predefined illuminator called mai n that performs the
trace_begi n() operation. At this point, although the illuminators are
linked into the program, they are inert. Calls to the routines to be traced are
still called directly. Illuminators may sit in your program unused and not
interfering with performance at all until you need them.

$ gcc *.0 -0 a.outAl ‘nlight --gcc main a.ai’

Activate the illuminators in a. out Al . Calls to the routines to be traced
are now diverted to the “wrapper” functions.

$ nlight --illuminate=a.outAl main a.ai

Start up a daemon to record the events, run the program, shut the daemon
down, and run nt r ace, which finds the trace file and illuminator support
files from paths embedded in a. out Al :

Application Illumination

$ ntraceud trace_file

$ a.outAl

$ ntraceud -g trace _file
$ ntrace a.outAl

Provided llluminators

Detail Levels

Illuminators are provided for some system libraries: gl i bc, pt hread, ccur _rt, and
cuda (on some systems). Since the building of illuminators depends on DWARF debug
information which is not normally in system libraries, creating custom illuminators for
system libraries requires the installation of appropriate debug-info RPMs or versions of
the system libraries with debug information still in them (different Linux distributions take
differing approaches to this).

An illuminator for mai n() is also provided that will perform the t r ace_begi n()
operation for programs that aren’t already using NightTrace (see “trace begin,
Trace.begin” on page 2-8).

When activating an illuminator, a named detail level may be specified (the default one is
called 2). A detail level may be customized to trace a particular subset of the functions
that can be traced and to log more or less information as arguments to the events. By
default, illuminators have detail levels called 1, 2, and 3, providing increasing amounts of
detail recorded in the arguments of the events. Custom detail level names are not limited
to numbers.

1. Relink the previous example to include the gl i bc illuminator:

$ gcc *.0 -0 a.outAl ‘nlight --gcc main a.ai glibc

2. Activate the a. ai illuminator specifying a higher level of detail than we
used above, and gl i bc with a low level of detail:

$ nlight --illum nate=a.outAl main a.ai=3 glibc=1

3. Start up a daemon to record the events, run the program, shut the daemon
down, and run nt r ace, which finds the trace file and illuminator support
files from paths embedded in a. out Al :

$ ntraceud tracefile

$ a.out Al

$ ntraceud -q tracefile
$ ntrace a.out Al

NightTrace RT User’s Guide

Here is some sample output of a few events with detail level 3:

9:

10:

11:

12:

54

cpu=?? ENTER_r egconp test_illum nator main

0. 010745903

cal ling regconp(preg=0x60f 120, patt er n=0x60f 170, cf | ags=9)

*preg={
buf f er =0x0,
al | ocat ed=0,
used=0,
synt ax=0,
..}
*pat t er n=""nai n$"
cal | er=0x478f 44
f rane=0x7f bf f f 5870

cpu=?? RETURN regconp test_illumnator main
returning fromregconp()=0
errno=0

cpu=?? ENTER strlen test_illum nator nain
calling strlen(s=0x4bb374)

*s="_ *\.internal _io\.ada"

cal | er=0x478f 07

f rame=0x7f bf f f 5870

cpu=?? RETURN strlen test_illum nator nain
returning fromstrlen()=20
errno=0

0. 010800482

0.010801628

0. 010802240

Limitations

Application Illumination

nl i ght automatically instruments the function entry and return of the following types of
functions:

¢ Functions at the global scope in statically linked portions of a program

¢ Function entry points in shared libraries (those functions accessed from
outside the shared library)

nl i ght does not illuminate the following types of functions:

* Functions within a shared library that are not called from outside the shared
library

* Functions defined with the C/C++ keyword st ati c
¢ Inlined functions

* Functions without compiler debug information (this can be overridden as
explained below)

Functions that take a variable number of arguments (often called var ar gs functions)
only have their entry point instrumented. There will be no trace point logged for their
return due to a limitation in the Application Binary Interface (ABI). Note that a Night-
Trace string table is generated automatically by nl i ght which identifies these functions.
It is automatically included when analyzing the resultant data in nt r ace. The name of
the string table is var ar g_f uncti ons. See “Tables” on page 7-14 for more informa-
tion about using string tables.

nl i ght uses debug information generated by compilers to automatically describe the
arguments passed to functions in detail. When debug information is not available, this
argument information is absent. However, function entry events can still generated if you
explicitly tell nl i ght to pay attention to such functions. Use the - - do_nodebug
option to nl i ght or override the default behavior in the graphical user interface. See
“Commands for Manipulating an Illuminator” on page 5-68 and “Include Functions with-
out Dwarf Debug Info” on page 5-81 for more information. Since there is no description
available as to the number of arguments or their type, nlight treats these functions as
vararg_functions. No trace event will be associated with the return of such func-
tions.

NightTrace RT User’s Guide

The nlight Graphical User Interface

To invoke the nl i ght graphical user interface, invoke nl i ght without any options:
$ nlight &

This will open the New Session window:

File View Tools Help

[Manager |leard| Editor | Console]

E1EEIED
@ Select Programs
() Define llluminators
() Select Illuminators

() Relink Programs

Select Programs with Debug Information

One or more programs may be instrumented with trace points at function calls. By building the
executable file with debug information, function returns may also be instrumented, and
information about function arguments, return values, and glebal variables may be recorded as
arguments to the events.

Program: |v]
() Activate llluminators Browse... l [Delete l
() Run Scripts
NightLight will use the Build Command te build any missing programs. The Build and Build All
buttons may be used to build the current program or all programs respectively at any time.
Build Command: []
Buid || Build Al |
As an advanced feature, the Manager may be used to identify object files, archives, shared
objects, and programs, and to create illuminators for them.
Advanced... Prev l [Next l [Help
Ready

Figure 5-1. nlight Main Window

5-6

You may also specify a previously saved session or the path to an illuminator on the com-

mand line.

The first five radio buttons on the left side of the Wizard page correspond to the five steps
outlined in the “Work Flow Illustration” on page 5-2. The Wizard guides you with

step-by-step instructions on how to use the most common features of the tool.

There is also a Manager page that contains five similar nodes in a tree. Most actions
within it are taken through context menus by right clicking on the various items in the tree.

The menu bar provides access to session configuration services, additional tools, and help.

The menu bar provides the following menus:

* File

File

Application Illumination

* View
* Tools
* Help

Each menu is described in the sections that follow:

Accelerator: Alt+F

The File menu contains session-related items such as creating a new session, saving the
current session or illuminator, and opening a previously-saved session or illuminator.

MNew Session Ctri+M
Dpen Session Ctri+0
Save Session Ctri+5
Save Session As Ctri+A

Open lluminator

Sawve llluminator

Save llluminator As

Exit Ctri+Q

Exit Immediately Alt+Q

CCNOIYWNOT @

Figure 5-2. File Menu

The following paragraphs describe the options on the File menu in more detail.

New Session

Mnemonic: N
Accelerator: Ctrl+N

Creates a new Session.
If an existing session is open, it is first closed by this operation.

If changes have been made to the current session but have not yet been saved,
nl i ght will ask you if you wish to save the current session before proceeding.

NightTrace RT User’s Guide

Open Session

Mnemonic: O
Accelerator: Ctrl+O

Launches a standard file selection dialog which allows you to specify a previ-
ously-saved session file.

If changes have been made to the current session but have not yet been saved,
nl i ght will ask you if you wish to save the current session before proceeding.

Save Session

Mnemonic: S
Accelerator: Ctrl+S

Saves the current session to a session configuration file quickly.

You are not prompted for the filenames where the session is to be saved. It is auto-
matically saved to the same file it was opened from or previously saved to.

If the current session has not been saved to a file in the past, a Save Session As
action will be done.

Save Session As

Mnemonic: A
Accelerator: Ctrl+A

Launches a standard file selection dialog which allows you to specify the filename
where the session will be saved

Open llluminator

Launches a standard file selection dialog which allows you to specify an illumina-
tor’s confi g. xm file to edit.

If changes have been made to the current illuminator but have not yet been saved,
nl i ght will ask you if you wish to save the current illuminator before proceeding.

The illuminator is opened in the Editor page (or window), but is not added to the
session. To add an illuminator to the session, open the illuminator through the con-
text menu on the Create, Customize, and Build branch of the Manager page
(or window).

Save llluminator

5-8

Saves the current illuminator to a confi g. xml file quickly (see “Illuminator
Files” on page 5-66).

You are not prompted for the filename where the illuminator is to be saved. It is
automatically saved to its previously associated filename.

Application Illumination

Save llluminator As

Launches a standard file selection dialog which allows you to specify the filename
where the illuminator’s confi g. xm will be saved (see “Illuminator Files” on
page 5-66).

Exit

Mnemonic: X
Accelerator: Ctrl+Q

Closes the session and exits nl i ght completely.

If changes have been made to the current session or illuminator but have not yet
been saved, nl i ght will ask you if you wish to save the session or illuminator
before exiting.

Exit Immediately

Mnemonic: |
Accelerator: Alt+Q

Closes the session and illuminator and exits nl i ght without prompting to save
changes that have been made. Any changes will be lost.

NightTrace RT User’s Guide

View

5-10

Accelerator: Alt+V

The View menu contains items for controlling the appearance of Console, Editor, and
Wizard pages (or windows) of the graphical user interface. The Console page (or win-
dow) captures output from external commands that nl i ght invokes. The Editor page
(or window) is used to customize an illuminator. The Wizard page (or window) provides
a simplified guide through the work flow.

¥ Console in Page Alt+EK
Show Console Ctri+kK

Clear Console

¥ Editorin Page Alt+E
Show Editor Ctri+E
Search Editor Ctri+F

Search Editor Again Ctrl+G

® Wizard in Page Alt+wW
®| Show Wizard Ctri+W
| Verbose Wizard Ctrl+y

Figure 5-3. View Menu

Console in Page
Accelerator: Alt+K

Toggles placing the Console window (the window to which output from invoked
commands is logged) in a tabbed page within the main window.

Show Console

Mnemonic: C
Accelerator: Ctrl+K

Toggles showing or hiding the Console window (or page).

Clear Console

Clears the contents of the Console window (or page).

Application Illumination

Editor in Page
Accelerator: Alt+E

Toggles placing the Editor window (the window in which an individual illuminator
may be customized) in a tabbed page within the main window.

Show Editor

Mnemonic: E
Accelerator: Ctrl+E

Toggles showing or hiding the Editor window (or page).

Search Editor

Mnemonic: S
Accelerator: Ctrl+F

Toggles displaying the search bar in the Editor window (or page).

Search Editor Again

Mnemonic: A
Accelerator: Ctrl+G

Repeats the search in the search bar in the Editor window (or page).

Wizard in Page
Accelerator: Alt+W

Toggles placing the Wizard window (the window that provides a simpler guided
interface through the workflow) in a tabbed page within the main window.

Wizard Console

Mnemonic: W
Accelerator: Ctrl+W

Toggles showing or hiding the Wizard window (or page).

Verbose Wizard
Accelerator: Alt+V

Toggles whether the Wizard window (or page) includes verbose instructions guid-
ing you through the workflow.

NightTrace RT User’s Guide

The figure below shows the main window if the Console and Editor are shown in
tabbed pages, the search bar is displayed on the Editor page, and the Wizard is hidden:

aaa

File View Tools Help

I Manager J Editar I Console]

lﬁopen... HDEave HBSaueAs...]

| Setting | Value

B pthread
-- Options
Detail Levels
Variables to Record
Groups
-- Functions

[fF‘reuious

o

4

Search: [] lerext

Figure 5-4. Console and Editor in Tabbed Pages with Search Bar Displayed

5-12

Application Illumination

Tools

Mnemonic: Alt+L

4 NightProbe Monitor
B Nightsim Scheduler
W MightTrace Analyzer
% NightTune Tuner

EE MightView Debugger

Figure 5-5. Tools Menu

The following describe the options on the Tools menu:

NightProbe Monitor
Mnemonic: P

Opens the NightProbe Data Monitoring tool. NightProbe is a real-time graphical
tool for monitoring, recording, and altering program data within one or more execut-
ing programs without significant intrusion. NightProbe can be used in a develop-
ment environment as a tool for debugging or in a production environment for data
capture or to create a “control panel” for program input and output.

NightSim Scheduler
Mnemonic: S

Opens the NightSim Application Scheduler. NightSim is a tool for scheduling and
monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the
periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

NOTE

NightSim is not available on some systems. NightSim depends on
the Frequency Based Scheduler. See “Kernel Dependencies” on
page B-1 for more information.

NightTune Tuner
Mnemonic: U

Opens the NightTune Tuner. NightTune is a graphical tool for analyzing the status
of the system in terms of processes, interrupts, context switches, interrupt CPU
affinity, processor shielding and hyper-threading control as well as network and disk

5-13

NightTrace RT User’s Guide

activity. NightTune can adjust the scheduling attributes of individual or groups of
processes, including priority, policy, and CPU affinity.

For systems that support CPU shielding, NightTune provides a handy interface for
controlling shielding, including downing sibling hyper-threaded CPUs to avoid
interference.

NightView Debugger
Mnemonic: V

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications and multi-threaded applications. NightView can monitor, debug, and
patch multiple real-time processes running on multiple processors with minimal
intrusion.

5-14

Help

Application Illumination

Mnemonic: Alt+H

)

1

? On Context...

MightTrace User's Guide
MightStar Tutorial
License Report...

On Version...

Check for Updates...

Figure 5-6. Help Menu

The following describe the options on the Help menu:

On Context

Mnemonic: C

Gives context-sensitive help on dialogs and various items within dialogs, pages, and
windows.

Help for a particular item is obtained by first choosing this menu option, then click-
ing the mouse pointer on the object for which help is desired (the mouse pointer will
become a floating question mark when the On Context menu item is selected).
The cursor turns to a circle with a backslash when the item under the cursor has no
help description associated with it.

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. NightStar’s online help system will open with the
appropriate topic displayed.

NightTrace User’s Guide

Mnemonic: G

Opens the online version of the NightTrace User’s Guide in the NightStar help
viewer.

NightStar RT Tutorial

Mnemonic: T

Opens the online version of the NightStar RT Tutorial in the online help viewer.

5-15

../nstar/nstar-tutorial.html

NightTrace RT User’s Guide

License Report
Mnemonic: L
Opens a license dialog which indicates the current license server and the number of
licenses available on the system.
On Version
Mnemonic: V

Displays a short description of the current version of nl i ght .

Check for Updates...
Mnemonic: U

Launches NUU (Network Update Utility) enabling you to update your system with
the latest NightStar software. This requires network access to Concurrent’s Updates
web site. Updates require a login and user ID issued by Concurrent. Refer to
http://redhawk.ccur.com/updates for complete information.

5-16

http://redhawk.ccur.com/updates

Application Illumination

Wizard

The wizard guides you through the basic functionality of the nl i ght tool with more
descriptive on-screen text than the session manager provides. It consists of a sequence of
six pages that may be accessed in any order via the navigation panel on the left edge of
each page, or sequentially via the Prev and Next buttons at the bottom of each page.

Navigation Panel

8|z 38| #F
@ Select Programs
) Define llluminataors
) select lluminators
() Relink Programs
() Activate llluminators

() Run Scripts

Figure 5-7. Wizard Navigation Panel

The four buttons at the top are for creating, opening, and saving sessions. These com-
mands may also be accessed through the File menu (see “File” on page 5-7).

New Session

Creates a new session. If the current session has unsaved modifications, you will
will be prompted to save it before the new session is created.

Open Session

Opens a saved session. Ifthe current session has unsaved modifications, you will be
prompted to save it before the saved session is opened.

Save Session

Saves the current session. If the session has never been saved to a file, you will be
prompted for a filename to save it to.

Save Session As

Saves the current session to a new filename that you will be prompted for.

5-17

NightTrace RT User’s Guide

5-18

The next six buttons are radio buttons that select which of the six Wizard pages to dis-
play.

Select Programs

Goes directly to the Select Programs with Debug Information page. In this
dialog, you will tell nl i ght about the programs you wish to instrument with trace
events. See “Select Programs with Debug Information” on page 5-20.

Define llluminators

Goes directly to the Define an llluminator for each Program page. On this
page, you will optionally create an illuminator for the statically linked portion of
each program. See “Define an Illuminator for each Program” on page 5-22.

Select llluminators

Goes directly to the Select Predefined Illuminators for each Program
page. On this page, you will select from the illuminators provided with NightTrace
(mai n, gl i bc, pt hread, and ccur _rt) to link with each program. See “Select
Predefined Illuminators for each Program” on page 5-26.

Relink Programs

Goes directly to the Relink Illuminated Programs page. On this page, you will
tell NightTrace how to relink your programs to include the user-defined and pro-
vided illuminators. See “Relink Illuminated Programs” on page 5-29.

Activate llluminators

Goes directly to the Activate Illuminators in each Program page. On this
page, you will select the illuminators to activate, the trace file name, and the amount
of detail to record with each illuminator’s events. See “Activate Illuminators in
each Program” on page 5-32.

Run Scripts

Goes directly to the Run Scripts to Launch Programs and NightTrace
page. On this page, you will create scripts to run your programs and analyze the
resulting events with NightTrace. See “Run Scripts to Launch Programs and Night-
Trace” on page 5-35.

Application Illumination

Common Buttons
These buttons are found at the bottom of each page.

‘Advanced... Frev Mext Help

Figure 5-8. Wizard Common Buttons

Advanced...
Opens the appropriate spot in the Manager to perform more advanced operations

related to the current page. On the Define an llluminator for each Program
page, this button is actually a menu of advanced operations.

Prev

Goes to the previous page in the workflow.

Next

Goes to the next page in the workflow.

Help

Gets help on the current page.

5-19

NightTrace RT User’s Guide

Select Programs with Debug Information

Informs nl i ght about the programs that you wish to instrument with trace points.

(8/z|B]E]

@ Select Programs

) Define Nluminators
) Select lluminators
() Relink Programs

) Activate llluminators

{0 Run Scripts

Select Programs with Debug Information

One or more programs may be instrumented with trace points at function calls. By building the
executable file with debug information, function returns may also be instrumented, and
information about function arguments, return values, and global variables may be recorded as
arguments to the events.

Program: |myapp |v]

: Browse... l [Delete l

NightLight will use the Build Command to build any missing programs. The Build and Build All
buttons may be used to build the current program or all programs respectively at any time.

Build Command: | make myapp l

[Build H BuiIdAIIl

As an advanced feature, the Manager may be used to identify object files, archives, shared
objects, and programs, and to create illuminators for them.

(o [e [v

Figure 5-9. Select Programs with Debug Information Page

5-20

Program

Selects which program is the current program. Add or remove programs from this

list with the Browse... and Delete buttons.

Browse...

Browses for another program to add to the list of programs using the standard file
selection dialog. The program does not have to be built already (see Build Com-

mand, below).

Delete

Removes the current program from the list of programs. The program’s executable

file is not deleted.

Build Command

Specifies a command that may be used to build the current program. If the program
isn’t already built, nl i ght will automatically invoke this command when it needs
to access the program. To explicitly rebuild a program, build it at a shell prompt or

use the Build or Build All buttons.

Application Illumination

Build

Builds the current program by invoking the Build Command.

Build All

Builds all programs listed in the Program list by invoking their Build Com-
mands.

Advanced...

Brings the session manager to the top and expands the Select Code with Debug
Information branch down to the current program (see “Select Code with Debug
Information” on page 5-42). There, object files, archives, and shared objects may
also be selected. Illuminators may be constructed for any of these. In most situa-
tions, creating illuminators for whole programs is what you will want to do.

=- Application lllumination
El- Select Code with Debug Information
B myapp
i Build Command make myapp
Bl Create, Customize, and Build llluminators
- Relink Programs
- Activation Sets
L. Seripts

Figure 5-10. Select Programs Advanced Settings

5-21

NightTrace RT User’s Guide

Define an llluminator for each Program

Optionally defines an illuminator for the functions in the statically linked portion of each
program. The default is to create the illuminator. Clear the check box to delete the illumi-
nator. Regular expressions may be used to control which functions the illuminator will
trace.

2/z]B]E]

() Select Programs

@ Define lluminators
) Select llluminators
) Relink Programs

() Activate llluminators

() Run Scripts

Define an llluminator for each Program

An illuminator is a directory containing object code to record trace events for functions in the
statically linked portion of each program, descriptions of those events for NightTrace, and
various other files, An illuminator may be created for each program and will be called
programiName . ai.

Program: [myapp |v]

[%| Define an illuminator for this program.

Functions may be included or excluded from being traced by matching their names against
regular expressions. The inclusions and exclusions in the list below are applied in order from
top to bottom. By default, all functions are included except those beginning with underscore,
those in C++ std namespace, main, and Ada's internal I/O routines.

Functions Included or Excluded from Being Traced:

add

. Delete :

Down

As advanced features: (1) the Editor may be used to customize the user-defined illuminator, (2)
the Manager may be used to customize additional illuminators, including the predefined ones,
(3) to assist with doing advanced customizations, the user-defined illuminator may be populated
with all functions and global variables found in the program, and (4) a detailed report about the
user-defined illuminator may be written to the Console.

Advanced,][Build] [Prev H Next H Help]

Figure 5-11. Define an llluminator for each Program Page

Program

Selects the current program. To add or remove programs from this list, see “Select
Programs with Debug Information” on page 5-20.

Define an illuminator for this program

5-22

Creates an illuminator to hold the code to record trace events on function entry and
return for functions defined in the statically linked portion of the current program.
This item will be selected by default. Clearing the checkbox will delete the illumi-

Application Illumination

nator. To temporarily disable the illuminator, see “Activate Illuminators in each
Program” on page 5-32. The name of illuminator will be currentProgramName. ai .

Functions Included or Excluded from Being Traced

Add

Controls which functions are traced with a list of regular expressions that are
applied in sequence from top to bottom. To restrict instrumentation to a small list of
functions, first exclude all functions matching the POSIX regular expression . *”,
then include those functions you wish to trace. See “Add” on page 5-23 for docu-
mentation on the various regular expressions available. By default, all functions are
included except those beginning with underscore, those in the C++ st d namespace,
mai n, and Ada’s internal routines (see “Regular Expressions” on page 5-82).

Adds a regular expression that will include or exclude functions from being traced.
Select the expression from the menu of choices that pop up when this button is
clicked.

Include functions beginning with an underscore
Exclude functions beginning with an underscore

Includes or excludes functions whose names start with an underscore charac-
ter. All aliases of a function and the fully qualified C++ name (if applicable)
must begin with an underscore in order to match these criteria. A fully quali-
fied C++ name matches if the function name or the name of any containing
classes start with an underscore.

The rationale for this is that functions and class names that begin with under-
scores are typically vendor implementation routines that are of less interest.
But it is also common practice to create a strongly defined function that starts
with an underscore, then weakly define aliases to that function that do not.
These functions, like many in Glibc, are likely to be interesting, and so aren’t
matched by these expressions.

The default is to exclude functions beginning with an underscore.

Include functions in the C++ std namespace
Exclude functions in the C++ std namespace

Includes or excludes C++ functions in the St d namespace.

The default is to exclude C++ functions in the st d namespace. Such func-
tions are often inlined; inlined instances cannot be traced.

Include functions matching POSIX regex
Exclude functions matching POSIX regex

Includes or excludes functions whose names match a POSIX regular expres-
sion (see r egex(7)). A function name matches the regular expression if
any alias or fully qualified C++ name (if applicable) matches it. The regular
expression must match the whole name (an implicit and $ are placed before
and after the regular expression respectively).

5-23

NightTrace RT User’s Guide

By default mai n and Ada’s internal I/O routines are excluded.

You will be prompted for a POSIX regular expression to type in when this
menu item is selected.

Edit...

Edits the POSIX regular expression of the currently selected regular expression.

Delete

Deletes the currently selected regular expression.

Up

Moves the currently selected regular expression up one place in the list.

Down

Moves the currently selected regular expression down one place in the list.

Advanced

Provides a menu of advanced actions to choose from.

Edit...

Opens the illuminator for the current program in the Editor window (or page)
to perform advanced customization. See “Customizing an Illuminator with
the Editor” on page 5-77

Manage...

Brings the session manager to the top and expand the Create, Customize,
and Build llluminators branch. Additional custom illuminators may be
created and customized here. The provided illuminators (mai n, gl i bc,
pt hr ead, and ccur _rt) may also be customized (requires that the
debuginfo packages for Glibc be installed). See “Create, Customize, and
Build Illuminators” on page 5-45.

5-24

Application Illumination

- Application lllumination
- Select Code with Debug Information
i main
.. glibe
.. pthread
L. myapp.ai
- Relink Programs
-- Activation Sets
- Scripts

Figure 5-12. Define llluminators Advanced Settings

Populate

Populates the illuminator for the current program with the functions and vari-
ables found in the program. It is not necessary to populate an illuminator to
customize, build, or use it. Populating an illuminator can be convenient for
making lots of customizations to it. See “Populate” on page 5-47 and “nlight
--populate” on page 5-71.

Report

Creates a report about the functions being traced by the illuminator for the
current program. The report is written to the Console window (or page).
See “nlight --report” on page 5-72.

Build

Builds the illuminator. If an illuminator’s confi g. xm file or the program or
object files it illuminates have changed, nl i ght will update the illuminator any-
time it needs to access its files. So, it is normally not necessary for you to use this
button. However, initiating the build manually is useful to verify that customiza-
tions done through the Editor window (or page) will build successfully.

5-25

NightTrace RT User’s Guide

Select Predefined llluminators for each Program

Selects predefined illuminators to link into the illuminated program (in addition to the
user-defined illuminator created in the previous page). See “Predefined Illuminators” on
page 5-64.

CICIEE]

(0 Select Programs

() Define llluminators
@ Select llluminators
() Relink Programs

() Activate llluminators

() Run Scripts

Select Predefined llluminators for each Program

Some predefined illuminators are provided with NightTrace and may be linked into each program.

Program: | myapp -

The main illuminator initiates tracing with a trace_begini) call before main() begins running.
Programs that already initiate tracing on their own should not include this illuminator.

(%] main

These illuminators trace calls to functions in the corresponding shared system libraries.

[%] glibc

As an advanced feature, the Manager may be used to link additional illuminators into the
program and to customize the predefined ones. Glibc's debuginfo package(s) must be installed
to customize glibc and pthread.

e [wee][b

Figure 5-13. Select Predefined llluminators for each Program Page

5-26

Program

Selects the current program. To add or remove programs from this list, see “Select
Programs with Debug Information” on page 5-20.

Links the mai n illuminator into the current program, which does not record any
events, but calls t race_begi n() before mai n() is called. This is necessary if
the traced program does not do its own t race_begi n() call. Do not use the
mai n illuminator in programs that already call t r ace_begi n() on their own.
See “main” on page 5-64.

Links the gl i bc illuminator into the current program, which illuminators calls to
the system C library. See “glibc” on page 5-64.

pthread

Links the pt hr ead illuminator into the current program, which illuminates calls to
the system POSIX threads library. See “pthread” on page 5-65.

Application Illumination

ccur_rt

Links the ccur _rt illuminator into the current program, which illuminates calls to
the Concurrent real-time library. See “ccur_rt” on page 5-65.

NOTE

This illuminator will only appear in the list if it is available.

cuda

Links the cuda illuminator into the current program, which illuminates calls to the
CUDA libraries.

NOTE

This illuminator will only appear in the list if it is available.

Advanced...

Brings the session manager to the top and expands the Create, Customize, and
Build llluminators branch and the Relink Programs branch down to the Illu-
minators list of the current program. Additional illuminators may be created or

linked with programs. See “Create, Customize, and Build Illuminators” on page
5-45 and “Relink Programs” on page 5-49.

El- Application llumination
#- Select Code with Debug Information
Bl Create, Customize, and Build llluminators
Lo main
ghbe
i pthread
L Myapp.ai
=k Relink Programs
£} myapp
i Path myappAl
i Relink Command make %RELINK ILLUMINATOR_OP”

= lluminatars
i MEIN

ghbe

. pthread
- Activation Sets

- Scripts

Figure 5-14. Select llluminators Advanced Settings

5-27

NightTrace RT User’s Guide

NOTE

The list of predefined illuminators (those in italics) may differ on
your system. On Concurrent RedHawk systems, additional illu-
minators may be available.

5-28

Application Illumination

Relink llluminated Programs

Links a copy of each program to include the code from their illuminators to record the
events.

2le|B]8]

() Select Programs
() Define llluminators

) Select llluminators

() Activate llluminators

() Run Scripts

Relink llluminated Programs

lNuminators have object files that must be linked with programs along with libntrace. Each
program is relinked with these files and library as a separate executable file. The illuminators
are initially not activated. Unactivated illuminators have zero run-time overhead.

Program: | myapp |']

By default, the copy of the program with the illuminators and libntrace linked in is named
originalNameAl.

llluminated Program Path: | myappAl l

The command to relink the program with illuminators may be specified using some
substitution variables ($keyword) for the illuminated program path, the options that must be
passed to the compiler, and the dependency list. Click on the View buttons for further
assistance,

Relink Command: l View Typical Makefile Target] l View Substitution Variables l

[make %RELINK ILLUMINATOR_OPTIONS="%GCC" ILLUMINATORS="%Al"]

[Default Make] [Default a.linkl l Relink H Relink All l

There are no additional advanced features available on the Manager, but it may be used to
make the same settings.

e [v [

Program
Selects the current program. To add or remove programs from this list, see “Select
Programs with Debug Information” on page 5-20.

llluminated Program Path

Specifies the path name of the illuminated copy of the program. The original pro-
gram is relinked with the illuminators specified for it in the previous two pages and
is given a distinct name. By default, it is called originalProgramPathAl . See “Path”
on page 5-50.

Browse

Browses the file system using the standard file selection dialog for the Illuminated
Program Path.

5-29

NightTrace RT User’s Guide

Relink Command

Specifies the external command to relink the program. By default, it is a nake
command using the llluminated Program Path as the target name. There are a
number of substitution variables that may be specified in the command. These
begin with the “98’ character and are replaced by nl i ght when the command is
invoked. See “Relink Command” on page 5-50

View Typical Makefile Target

Displays a typical Makef i | e target assuming the default make command. You
will need to modify your Makef i | e to include the Illuminated Program Path
as a target.

View Substitution Variables

Displays a list and brief description of the available substitution variables for the
Relink Command.

%RELINK

Substituted with the Relink Path value. It is handy to use as a make target
or as the operand of a - 0 option in a. | i nk, gcc, or other compiler.

%Al

Substituted with the full paths of the illuminators to be linked in for use as a
make file target’s dependency list. The default make command passes %Al
to make using the variable | LLUM NATORS.

%GCC, %G77, %CF77, %ADA

Substituted with the options, files, and libraries that are need to link with the
illuminators using the gcc, g77, cf 77, or a. | i nk commands (respec-
tively). This includes the NightTrace library. The default rake command
passes %6GCC to mak e using the variable | LLUM NATOR_COPTI ONS.

Default Make

Sets the Relink Command to the default make command.

Default a.link

Sets the Relink Command to the default a. | i nk command (for Ada programs).

Relink

5-30

Relinks the current program by invoking the Relink Command. nl i ght will
automatically relink your program (and apply the default activation set to it) when-
ever it is out-of-date and the relinked program is needed. The Relink button is use-
ful to test changes to the Relink Command right away.

Application Illumination

Relink All

Relinks all programs listed in the Program list by invoking their Relink Com-
mands.

Advanced...

Brings the session manager to the top and expands the Relink Programs branch
down to the current program. There are no additional features here to access. See
“Relink Programs” on page 5-49.

El- Application llumination
- Select Code with Debug Information
Bl Create, Customize, and Build llluminators
£ Relink Programs
- Path myappAl
E . Relink Command make %RELINK ILLUMINATOR_OP1
_ - lluminators
i Activation Sets
L. Scripts

Figure 5-15. Relink Programs Advanced Settings

5-31

NightTrace RT User’s Guide

Activate llluminators in each Program

Activates illuminators so that they record events. Illuminators are “inert”, having no
run-time overhead and recording no events, when first linked into a program. They must
first be activated. Check the box next to each illuminator you want activated. Only those
illuminators that are actually linked into the program will appear on this page.

@@ Activate llluminators in each Program

Use the check box to activate or deactivate the illuminators linked into each program.

() Select Programs Deactivated illuminators have zero execution-time overhead. Options may be specified for each

) Define Nluminators illuminator.

) Select llluminators Program: [myapp |v]
() Relink Programs The main illuminator calls to trace begin() before main() runs.

@ Activate lluminators (| main Trace File: |trace file]

L Detail Level controls how much detail is recorded as arguments to events.

The glibe illuminator traces function calls to the system C library

(%] glibc Detail Level:

The pthread illuminator traces function calls to the POSIX threads library

[%| pthread Detail Level:

This illuminator is the user-defined illuminator for the current program.
[%] myapp.ai Detail Level:

As an advanced feature, the Manager may be used to configure multiple activation sets, set
additional options, and select a different default activation set (if no default activation set
existed, the wizard created one called Wizard).

e [e [s

Figure 5-16. Activate llluminators in each Program Page

main

glibc

pthread
currentProgram.ai

Enables (if checked) or disables (if not checked) an illuminator. Only predefined or
the user-defined illuminators that are actually linked into the illuminated program
are listed. Additional custom illuminators added as an advanced feature in the ses-
sion manager can only be enabled or disabled from the session manager. A notice
will appear in the page if such illuminators exist.

5-32

Application Illumination

Lse Manager to activate and deactivate additional advanced illuminators.

Figure 5-17. Notice That Additional llluminators Are Linked In

Trace File

Specifies the file that events will be recorded in. This is a parameter to the
trace_begi n() call that the mai n illuminator does.

Browse...

Browses for the Trace File using the standard file selection dialog.

Detail Level

Specifies the level of detail that will be recorded as arguments to the events recorded
by each illuminator. See “Detail Levels” on page 5-64 and “Detail Levels” on page
5-85.

Advanced...

Brings the session manager to the top and expands the Activation Sets branch
down through the default activation set. A different activation set may be desig-
nated as the default. The Wizard always manipulates the default activation set. If
no default activation set has been designated, the Wizard will create one called
Wizard. See “Activation Sets” on page 5-54.

5-33

NightTrace RT User’s Guide

=- Application lllumination
El- Select Code with Debug Information
El- Create, Customize, and Build llluminators
- Relink Programs
El- Activation Sets

[B Wizard
El- main
.. Activated =
.. TRACE_FILE trace file
- NUM_BUFFERS 16
.. BUFFER_LENGTH 65536
El- myapp.ai
L. Activated yes
L. Detail Level 2
=- glibc
L. Activated yes
L. Detail Level 2
£ pthread
... Activated =
L. Detail Level 2
- Scripts

Figure 5-18. Activation Sets Advanced Settings

Application Illumination

Run Scripts to Launch Programs and NightTrace

Runs scripts for collecting and analyzing trace data. NightTrace may collect data from
programs in two ways. In File mode, your programs communicate with daemons to log
events to a file on disk, then NightTrace is used to analyze those events. In Stream mode,
your programs stream events directly to a running NightTrace. Simple scripts are auto-
matically generated, and may then be customized, to run NightTrace and your programs in
these two modes. See “Scripts” on page 5-60.

(2/2B]8]

() Select Programs
() Define llluminators
() Select lluminators
() Relink Programs

() Activate llluminators

Run Scripts to Launch Programs and NightTrace

File mode provides a single script to launch the programs to collect data in a trace file and then
launch NightTrace to analyze the file.

Stream mode provides two separate scripts: one to launch NightTrace in streaming mode and
the other to launch the programs separately, so they can send their trace data directly to
NightTrace for analysis.

Mode: |File |'l

Script to Run Programs and NightTrace in File Mode:
Start NightTrace user daemons Run
ntraceud --numbufs=16 --buflen=65536 trace_file

Default

Run programs
. /myappAI

Halt NightTrace user daemons
ntraceud -q trace_file

Invoke MightTrace Terminal Session:
ntrace myappAl & @

Console |v

As an advanced feature, the Manager may be used to create an unlimited number of named
scripts. The wizard's scripts are Wizard, Wizard Stream, and Wizard Launch.

l Prev H I ext: H Help l

Figure 5-19. Run Scripts to Launch Programs and NightTrace Page in File Mode

5-35

NightTrace RT User’s Guide

(2lzB]2]
() Select Programs

() Define llluminators
() Select lluminators
() Relink Programs

() Activate llluminators

(® Run Scripts

Run Scripts to Launch Programs and NightTrace

File mode provides a single script to launch the programs to collect data in a trace file and then
launch MightTrace to analyze the file.

Stream mode provides two separate scripts: one to launch NightTrace in streaming mode and
the other to launch the programs separately, so they can send their trace data directly to
NightTrace for analysis.

Mode: |Stream |'l

Script to Launch NightTrace in Stream Mode:

Invoke NightTrace importing daemons from the programs l Run l
ntrace --import=myappAI &
l Default l
Wait a few seconds for messages from ntrace to go to
console
sleep 3
Script to Launch Programs:
Launch Programs l Run l
/myappAI
l Default l
Terminal Session:
Console |v]

As an advanced feature, the Manager may be used to create an unlimited number of named
scripts. The wizard's scripts are Wizard, Wizard Stream, and Wizard Launch.

[Prev H I\ et H Help l

Figure 5-20. Run Scripts to Launch Programs and NightTrace Page in Stream Mode

5-36

Mode

Selects between File mode and Stream mode. The page reconfigures itself to
show the scripts appropriate to each mode.

In File mode, a single script (called Wizard in the session manager) is generated
that will start daemons to record events in files, run your programs, stop the dae-
mons, and run NightTrace on the trace files.

In Stream mode, two scripts (called Wizard Stream and Wizard Launch in
the session manager) are generated. The first will run NightTrace in stream mode,
and the second will run your programs.

Application Illumination

Script to Run Programs and NightTrace in File Mode

Launches (for File mode) user daemons for all your programs, runs your programs
in sequence, halts the daemons, and runs NightTrace on the resulting trace files.
nl i ght only knows the daemons to launch for programs that use the nai n illumi-
nator to do the t race_begi n() call. For other programs, you will need to modify
the script to launch them yourself.

If you add or remove programs, change the path to any of the relinked programs, or
change the file events are recorded in, you can recreate the script by clicking on the
Default button. Any edits you’ve done will be lost when you do this. In the ses-
sion manager, this is the Wizard script.

Script to Launch NightTrace in Stream Mode

Launches (for Stream mode) NightTrace in stream mode. You may then launch,
start, and stop the daemons from within NightTrace. NightTrace will know the dae-
mons needed only for programs linked with the mai n illuminator. For other pro-
grams, it will prompt for the daemon name. Events will stream directly into Night-
Trace when your programs are launched with the following script.

If you add or remove programs, change the path to any of the relinked programs, or
change the file events are recorded in, you can recreate the script by clicking on the
Default button. Any edits you’ve done will be lost when you do this. In the ses-
sion manager, this is the Wizard Stream script.

Script to Launch Programs

Run

Launches (for Stream mode) your programs in sequence. If NightTrace has been
launched and used to start the daemons, events from these programs will stream
directly into NightTrace.

If you add or remove programs or change the path to any of the relinked programs,
you can recreate the script by clicking on the Default button. Any edits you’ve
done will be lost when you do this. In the session manager, this is the Wizard
Launch script.

Runs the adjacent script using / bi n/ sh. The output from the script is written to
the Console page (or window) by default. The scripts that launch your programs
may optionally be run in other terminal sessions, such as an Xt er mby using the
Terminal Session setting next to the script.

Default

Resets the adjacent script to a default value that is based on the current list of pro-
grams defined and options set for them. Any edits you’ve done will be lost when
you do this.

5-37

NightTrace RT User’s Guide

Terminal Session

Selects from a menu of terminal sessions that the adjacent script may be run in.

Terminal Session:

Console -

X Terminal

Gnome Terminal
KDE Terminal

Custom

Figure 5-21. Terminal Session Menu

5-38

Console

Captures all output from the adjacent script in the Console page (or win-
dow). This is inconvenient if the program needs to get input from the user.

X Terminal
Gnome Terminal
KDE Terminal

Selects various kinds of virtual terminals to run the adjacent script in. These

are convenient if the program needs to get input from the user or must run in a
terminal emulator.

Custom

Selects running the adjacent script using the Custom Terminal Session

Command (which may only be modified through the Advanced... button).
It defaults to being an X Terminal.

Application Illumination

Advanced...

Brings the session manager to the top and expands the Scripts branches for the cur-
rent mode’s scripts. See “Scripts” on page 5-60.

Bl Application lllumination

-- Select Code with Debug Information
Create, Customize, and Build llluminators
" Relink Programs
Activation Sets
E\‘ Scripts
= wed .
Script
- Run Scriptin Terminal Session Console

: i Custom Terminal Session Command xterm -e Jnlight_script
Wizard Stream
- Wizard Launch

Figure 5-22. Run Scripts Advanced Settings

5-39

NightTrace RT User’s Guide

Session Manager

The session manager guides you through the five-step work flow. Each branch of the tree
structure represents one step. Hovering over each step will bring up a tool tip describing
the step. Use context menus on each item of the tree to configure and execute each step.
Click on the [+| symbol to expand branches of the tree. Values in the Value column may
be edited in place by clicking on them. Settings with Edit items in their context menus
can usually be edited by double clicking on them.

NightLight - New Session

File WView Tools Help

Manager Wizard | Editor | Console

Setting Value |

9---§Application lllumination Step 1: Select code to
: be illuminated with

Select Code with Debug Information

Create, Customize, and Build llluminators debug information (-g
option)

Relink Programs

o Activation Sets Step 2: Create, customize, and build

e Seripts illuminators for the code to be illuminated

(Mote: An ilfuminator may also be created
by right clicking on a program above and

selecting Create Illuminator)

Step 4: Activate Step 3: Relink programs with the
illuminators with illuminators for the code to be
desired options and illuminated
detail levels))
Right click on I1luminators below
Step 5: Scripts to start/stop daemons, run to select illuminators to link with
programs, and run NightTrace each program

A script for a activation set may be created
by right clicking on the activation set
above and selecting Create Default
Script

Figure 5-23. Tool Tips in the Session Manager

Application Illumination

The Application lllumination Root Item

The root item in the Application Illumination tree displays a context menu when you
right click on it.

NightLight - New Session

Eile Wiew Tools Help

Build All Object, lluminators, Programs

Kill Invoked Program

Create, Customize, and Build lluminators

Relink Programs
i Activation Sets
- Scripts

[B8 |[Running Scri
i | | |Runn|ng 5cr|pt| -

Figure 5-24. Application lllumination Context Menu

Build All Objects, llluminators, Programs

Update steps 1-3 of the work flow. Also, if there is a default activation set (see
“Make Default Activation Set” on page 5-58), that is applied to each relinked pro-
gram.

Kill Invoked Program

Kill any program that nl i ght has invoked to perform a task. This might be neces-
sary if a user program or script (as in the illustration above) has entered an infinite
loop. Note the busy indicator in the above illustration at the bottom of the window.

5-41

NightTrace RT User’s Guide

Select Code with Debug Information

Context Menus

5-42

The first step in the nl i ght workflow is to select the code to have function entry and
return events generated (that is, to be illuminated). nl i ght uses debug information to
generate the illuminators and descriptions of the events that will be traced. These events
can record values of parameters, global variables, return values, etc. The debug informa-
tion is needed to know the names, types, and locations of these values.

Right click on Select Code with Debug Information to inform nl i ght about
objects and to build them.

- Application llumination New Object File

Select Code with Debug Information

Create, Customize, and Build lllumin

Mew Archive

Relink Programs New Shared Object

- Activation Sets Mew Program

- Seripts Build All

Figure 5-25. Build Code with Debug Information Context Menu

New Object File
New Archive

New Shared Object
New Program

Tells nl i ght about the various kinds of objects that you will be creating illumina-
tors for.

Build All

Builds all the objects. Each object must have a Build Command configured for it
for this to work, else you should build the objects outside of nl i ght control.

Associated with each object is a build command. The default command that is filled in is
a simple make command. Shared objects may optionally have a separate object file con-
taining the debug information, called a debug info file. Programs also automatically get
an entry in the Relink Programs section (step 3 of the workflow, see “Relink Pro-
grams” on page 5-49).

Application Illumination

£+ Application lllumination

= Select Code with Debug Information

- myapp

=k WL ftestfload

= Relink Programs

- lluminators
B Activation Sets

.. Build Command make myapp

0

.. Build Command make ../../..ftest/load.0
&l Create, Customize, and Build llluminators

& myapp
i Path myappAl
Relink Command make %RELINK ILLUMINATOR_OPTIONS="%GCC" ILLUMINATORS="%Al"

Figure 5-26. Various Objects Added to the Session Manager

The context menu for each object may be used to create an illuminator for the functions in
that object, build that object, rearrange that object, or remove that object from the session
manager (removing does not delete the file).

E}- Application lllumination

£ Select Code with Debug Information
| B myapp

{ i Build Command
.!..!..ftest!load.:*
.- Build Command
- Create, Customize, and Build lllu
E}- Relink Programs
| B-myapp
.. Path
Relink Command
: B} llluminators
B} Activation Sets
E}- Scripts

Create llluminator

Add to Existing llluminator
Build
Move Up

Mowve Down

ATOR_OPTIONS="%GCC" ILLUMINATORS="%Al"

Remove Object

Figure 5-27. Context Menu on an Object

Create llluminator

Creates an illuminator for the functions in this object.

Add to Existing llluminator
Causes an existing illuminator (selected in a page from those listed in the Create,

Customize, and Build llluminators section) to also illuminate the functions in
this object.

Build

Builds this object using the Build Command.

Move Up
Move Down

Changes the order of objects in this branch.

5-43

NightTrace RT User’s Guide

Remove Object

Removes all references to this object in nl i ght . It does not remove the actual file,
nor does it remove references to the object in any illuminators.

To edit the build command, you may double click on the command itself and edit it in
place, double click on Build Command and edit it in a dialog, or use the Edit Build
Command item in Build Command’s context menu.

Enter a build command:

make myapp

| ok || cancel |

Figure 5-28. Build Command Dialog

Building Object

5-44

When nl i ght performs an action that requires accessing an object, such as building an
illuminator for it, and that object has not been built yet, nl i ght will invoke its Build
Command automatically.

However, since nl i ght knows nothing about the build dependencies of an object, it will
not automatically rebuild an object if it is stale. You must do this manually. This may be
done several ways:

* Build the object outside of nl i ght ;

* Right click on the object in the Select Code with Debug Information
section and select Build from the context menu that pops up;

* Right click on Select Code with Debug Information and select
Build All from the context menu that pops up; or,

* Right click on Application lllumination (the root item in the tree) and
select Build All Objects, Illuminators, and Programs from the con-
text menu that pops up.

Application Illumination

Create, Customize, and Build llluminators

Context Menu

The Create, Customize, and Build Illuminators section is pre-populated with the
predefined illuminators:

* main, whichsetsup atrace_begi n() call.

® ccur_rt, glibc and pthread, which trace functions in the corresponding
system libraries.

* cuda (when available), which traces functions in the corresponding sys-
tem library.

The predefined illuminators are displayed in an italic font unless they have been custom-
ized. A customized predefined illuminator is copied to the current working directory and
is displayed using a plain roman font.

When building illuminators, nl i ght will automatically adjust illuminator event ranges
so that they do not overlap with each other, unless you have explicitly specified a
non-default range of event numbers. A default range of event numbers is one that ends in
29,999,999.

The context menu on the root item of this section may be used to create, open, populate, or
build illuminators.

B Application lllumination

- Select Code wi New llluminator
= Create, EUEtgr

... glibc Open Existing luminator
... pthread
. L. myapp.ai
[Relink Progra Build All llluminators
B} Activation Sets
- Scripts

Mew llluminator from Object

Populate All lluminators

Figure 5-29. Create, Customize, and Build llluminators Context Menu

New llluminator

Creates a new illuminator. A file dialog will prompt you for the illuminator’s name.
A directory of that name will be created with a confi g. xm file in it.

This illuminator must be customized and built before it can be used because the cre-
ated confi g. xm file will not specify any object file to search for functions to illu-
minate.

5-45

NightTrace RT User’s Guide

New llluminator from Object

Creates a new illuminator. A dialog will prompt for an object containing the func-
tions to be illuminated. Then a file dialog will prompt for the illuminator’s name. A
directory of that name will be created with a conf i g. xm file in it.

An easier way to achieve the same result is to right click on the object in the Select
Code with Debug Information section and select Create Illuminator from
the context menu that pops up.

Select an Object

myapp =

A0 festfload.o

Figure 5-30. New llluminator from Object Dialog

Open Existing llluminator

Opens an illuminator created in another session, or with a command line option, or
by manually creating a directory containing a conf i g. xm file.

Populate All llluminators

Populates all non-predefined illuminators with functions and variables found in their
objects. It is not necessary to populate an illuminator to customize, build, or use it.
Populating an illuminator can be convenient for making customizations to it.

Build All llluminators

Builds all non-predefined illuminators. An illuminator must be built before using it.
It is not necessary to explicitly build illuminators. They will be updated if necessary
when they are used. This context menu item is useful mainly for convenience when
debugging customizations (it is possible for a customization to result in an error at
build time).

5-46

Application Illumination

Context Menu on Individual llluminators

The context menu on an individual illuminator may be used to populate, edit (that is, cus-
tomize), build, rearrange, or delete the illuminator.

- Application llumination
G- Select Code with Debug Information
El- Create, Customize, and Build lluminators

L. main
- glibc
... pthread Add Object
myapp.al Populate
& Relink Programs R =+
G- Activation Sets Report
G- Scripts Edit
Build
Mowve Up
Mowve Down
Delete lluminator

Figure 5-31. Context Menu on an Individual llluminator

Add Object

Brings up a standard file browsing dialog which allows you to add additional object
files to the illuminator.

Populate

Populates a non-predefined illuminator with functions and variables found in its
objects. It is not necessary to populate an illuminator to customize, build, or use it.
Populating an illuminator can be convenient for making customizations to it.

Report

Creates a report about all variables and functions found, and what groups the func-
tions are in, on the Console window (or page).

Edit

Customizes an illuminator by editing its conf i g. xm file in the Editor window
(or page). If the illuminator is a predefined illuminator, a copy of it is made in the
current working directory and it is this copy that is customized. The italic font used
for predefined illuminators is changed to a plain roman font.

5-47

NightTrace RT User’s Guide

Build

Builds a non-predefined illuminator. An illuminator must be built before using it. It
is not necessary to explicitly build illuminators. They will be updated if necessary
when they are used. This context menu item is useful mainly for convenience when
debugging customizations (it is possible for a customization to result in an error at
build time).

Move Up,
Move Down

Rearranges the order of the illuminators in this section.

Delete llluminator

For customized predefined illuminators

Deletes the customized illuminator from the current working directory. All
references to this illuminator revert to the pre-defined illuminator and the font
used to display the name of this illuminator is changed back to italic.

For predefined illuminators

Deletes all references to the pre-defined illuminator. The predefined illumina-
tor will remain in the list.

For non-predefined illuminators

Deletes the illuminator from the disk and removes all references to it from the
session manager, including from this section.

Application Illumination

Relink Programs

Context Menus

The third step in the workflow is to relink the programs, this time including the illumina-
tors that have been built. The Relink Programs section is populated automatically with
the programs that are in the Select Code with Debug Information section (see
“Select Code with Debug Information” on page 5-42).

The context menus for Relink Programs and for individual programs under that are
fairly simple. You can relink all the programs or relink individual ones. Programs are
relinked if they are stale when they are needed, so it should rarely be necessary to explic-
itly relink them unless you are using the relinked programs outside of the control of the
nl i ght GUI. All programs may also be relinked by choosing the Build All Object,
[lluminators, Programs item in the context menu on the root Application Illlumina-
tion item. If there is a default activation set, it will be applied when the program is
relinked (see “Activation Sets” on page 5-54).

El- Application lllumination
k- Select Code with Debug Information
&} Create, Customize, Relink all
= Relink Programs
E- myapp
.. Path myappal
... Relink Command make %RELINK ILLUMINAT
- llluminators

myapp.ai
.. glibc

... pthread
E- Activation Sets

G- Scripts

Figure 5-32. Relink Programs Context Menu

Relink All

Relinks all the programs and applies the default activation set (if there is one).

5-49

NightTrace RT User’s Guide

B Application lllumination
G- Select Code with Debug Information
G- Create, Customize, and Build llluminators
El- Relink Programs

B myapp y
Path myappAl
.- Relink Command make %RELINK ILLUMINA
(- llluminators

main

myapp.ai

g,l’;'bc

... pthread
B Activation Sets
G+ Scripts

Figure 5-33. Individual Relinked Program Context Menu

Relink

Relinks this single program and applies the default activation set.

Path

The Path setting under individual programs is the file name of the relinked copy of the
program. By default, it is the path of the original program (without illuminators linked in)
with the capital letters “Al ”” appended.

The Path setting may be edited by double clicking on it or by right clicking on it and
choosing the Edit Relink Path context menu item. A file selection dialog will display
allowing you to select a new file path.

Relink Command

The Relink Command is the external command that will be used to relink the program. By
default it is a make command. There are a number of substitution variables that may be
specified in the command. These begin with the “%’ character and are replaced by
nl i ght when the command is invoked (see below for details).

There are a number of ways the Relink Command can be edited:

® Double click on the value of the Relink Command: this allows the com-
mand to be edited in place;

Relink Command UMINATOR_OPTIONS="%GCC" ILLL.IMINATDF?.E‘:"%AI"]

Figure 5-34. Editing Relink Command In Place

5-50

Application Illumination

* Double click on the Relink Command label: this pops up a line editing
dialog;

Relink Command E]

Enter a command to relink program with illuminators:

(Relink Path = % RELINK
Options for compilers = % GCC, %CF77, G777, “ADA
lluminator Dependency List= %Al)

The default make command assumes a make target something like this:
mypgmhl = mypgm.o ${ILLUMINATORS)
goe -o mypgmAl mypgm.o § (TLLUMINATOR OPTICHS)

make %RELINK ILLUMINATOR_OPTIONS="%GCC" ILLUMINATORS="%Al" ‘

Figure 5-35. Edit Relink Command Dialog

* Right click on the Relink Command and select Edit Relink Com-
mand from the context menu: this also pops up a line editing dialog;

2l application

Edit Relink Command

Relink Command

: Setto Default make Command
- Hluminators

. Activation Sets Setto Defaulta.link Command

Figure 5-36. Relink Command Context Menu

* Right click on the tree item and select Set to Default make Com-
mand: this sets it to:

make YRELI NK | LLUM NATOR_OPTI ONS=" %3CC’ \
| LLUM NATORS=" %Al ”

or,

* Right click on the tree item and select Set to Default a.link Com-
mand: this sets it to:

a.link -o YRELI NK Y%ADA program

There are a number of substitution variables that may be specified in the Relink Com-
mand:

5-51

NightTrace RT User’s Guide

%RELINK

%Al

This is substituted with the Relink Path value. It is handy to use as a make target
or as the operand of a - 0 option in a. | i nk, gcc, or other compiler.

This is substituted with the full paths of illuminators to be linked in. This is conve-
nient for adding to a make file target’s dependency list. The default make com-
mand passes this to make using the variable | LLUM NATORS.

%GCC, %G77, %CF77, %ADA

lHluminators

This is substituted with the options, files, and libraries that are needed to link with
the illuminators using the gcc, g77, cf 77, or a. | i nk commands (respectively).
This includes the NightTrace library. The default make command passes %GCC to
make using the variable | LLUM NATOR_COPTI ONS.

The llluminators branch allows you to select which illuminators are linked into the pro-
gram:

&-

Application lllumination

- Select Code with Debug Information

[} Create, Customize, and Build llluminators

= Relink Programs

El- myapp
... Path myappal
- Relink Command & %RELINK ILLUMINA
= llluminators

Select llluminators

myapp.ai
- glibc

... pthread
E Activation Sets

El- Scripts

Figure 5-37. llluminators Context Menu

5-52

Application Illumination

By default the predefined mai n illuminator and any illuminator you create for the pro-
gram are linked into it. You may select others:

~Select llluminators

(% glibc
(¥ main
(% myapp.ai
(% pthread

| QK H Cancel l

Figure 5-38. Select llluminators Dialog

NOTE

The list of illuminators shown in the dialog may differ on your
system. Concurrent RedHawk systems have additional pre-
defined illuminators now shown in the dialog above.

Remove illuminators from the list of illuminators linked in by unchecking them in the
Select Illluminators Dialog, or by using the context menu to remove them:

- Application llumination
G- Select Code with Debug Information
G- Create, Customize, and Build llluminators
- Relink Programs

Eh myapp
... Path myappal
.. Relink Command make %RELINK ILLUMINA
= llluminators

Mowve Up

myapp. ai
i ghibc
... pthread Remove llluminator

Mowve Down

[Activation Sets

G- Scripts

Figure 5-39. Relinked llluminator Context Menu

5-53

NightTrace RT User’s Guide

Activation Sets

5-54

When illuminators are first linked with a program, they are inert. The fourth step in the
work flow is to activate one or more of them. An activation set is a named set of activa-
tions that may be applied to your programs. During the course of analyzing a performance
problem, you will typically turn on and off various illuminators, and adjust their options
and detail levels. This can be done with one or more activation sets.

To create an activation set, right click on Activation Sets and select New Activation
Set from the context menu that pops up:

B llluminato Mew Activation Set

Activation Sets

Query Current Activations

Scripts

Figure 5-40. Creating New Activation Set

You will be prompted to provide a name for the new activation set. By default every pro-
gram will be included in the set and every illuminator in the program will be activated.
The below figure illustrates the default values given to settings on each illuminator:

- Application lllumination
& Select Code with Debug Information
k- Create, Customize, and Build llluminators
& Relink Programs
= Activation Sets

= Default Set
El- myapp

= main
- Activated yes
- TRACE_FILE trace file
- MUM_BUFFERS 16
- BUFFER_LEMNGTH 65536

EL- myapp. ai
- Activated yes
- Detail Level 2

E- ghbc

G} pthread

- Scripts

Figure 5-41. Default Options on llluminators

Application Illumination

To see a list of the current activations and options set for them, right click on Activation
Sets and select Query Current Activations. You will get a dialog box showing the
current activations:

i myappAl
main, TRACE_FILE=trace_file, NUM_BUFFERS=16,BUFFER_LENGTH=65536
pthread=2
glibc=2
myapp_ai=2

Figure 5-42. Query Current Activations Results

The “! ” preceding an illuminator name indicates it is not activated. Periods in illuminator
names are transformed to an underscore since internally these are parts of C symbol
names.

Settings For “main” Illluminator

The main illuminator is special. It does not generate any trace events, but it does do a
trace_begi n() call before mai n() begins executing. The settings allow you to spec-
ify parameters to pass to thatt r ace_begi n() .

Activated

Controls whether the illuminator will be activated (yes) or deactivated (no). It
defaults to yes.

TRACE_FILE

Sets the path to the file that the NightTrace events will be recorded in. It defaults to
“t race_fil e in the current working directory.

NUM_BUFFERS

Sets the number of buffers that the NightTrace library will use for recording events.
It defaults to 16 buffers.

BUFFER_LENGTH

Sets the number of bytes in each buffer that the NightTrace library will use for
recording events. It defaults to 65536 bytes.

5-55

NightTrace RT User’s Guide

Settings For Ordinary llluminators

All other illuminators record events. By default, there are three detail levels for each illu-
minator, named 1, 2, and 3. Each record more detail than the next lower numbered one.
Customized illuminators may have additional detail levels, whose names are not limited to
numbers, but may be anything.

Activated

Controls whether the illuminator will be activated (yes) or deactivated (no). It
defaults to yes.

Detail Level

Sets the name of the detail level that the activated illuminator will use to record
events. It defaults to 2.

Context Menu for an llluminator

Right clicking on an illuminator in the Activation Sets section brings up a context
menu:

El- Application lllumination
El- Select Code with Debug Information
El- Create, Customize, and Build llluminators
B+ Relink Programs
- Activation Sets
- Default Set

£ myapp
= main
. yes
trace file
LE

; Apply Activation
= myapp.ai :
Remaove llluminator

2

El- pthread
[Scripts

Figure 5-43. Context Menu on an llluminator in an Activation Set

Apply Activation

Activates (or deactivates) a single illuminator in a single program. The other illumi-
nators and other programs are not effected.

5-56

Application Illumination

Remove Illluminator

Removes an illuminator from the activation set. Once removed from the activation
set, that activation set will neither activate nor deactivate that illuminator. The illu-
minator remains linked with the program in whatever activation state it already has.
For example, you can set up a collection of activation sets that control the activation
of the gl i bc illuminator and another collection of activation sets that control all
illuminators but gl i bc.

Context Menu for a Program

Right clicking on a program in the Activation Sets section brings up a context menu:

- Application lllumination
El- Select Code with Debug Information
- Create, Customize, and Build lluminators
El- Relink Programs
- Activation Sets

£ Default Set Apply Activations
Select llluminators
B Scripts L -
Mowve Up
Mowve Down

Bemowve Program

Figure 5-44. Context Menu on a Program in an Activation Set

Apply Activations

Applies the activations to just this program’s illuminators, but does not modify any
other program.

Select llluminators

Brings up a dialog that allows selecting which illuminators that are linked in to this
program are to be activated (or deactivated). Deselected illuminators will remain
linked with the program in whatever activation state they are already in.

Move Up,
Move Down

Rearranges the order of the programs. This is purely cosmetic.

Remove Program

Removes the program from this activation set. No changes to the activations of the
program will be made by this activation set.

5-57

NightTrace RT User’s Guide

Context Menu for an Activation Set

Right clicking an activation set name in the Activation Sets section brings up a context
menu:

£l Application lllumination
G- Select Code with Debug Information
G- Create, Customize, and Build llluminators
& Relink Programs
Bl Actil Apply Activation Set h

Select Programs

.. Scrif Copy Activation Set

Make Default Activation Set

Forget Default Activation Set

Create Default Script (NightTrace in File Mode)
Create Default Script (NightTrace in Stream Mode)
Create Default Script (Launch Programs)

Mowve Up

Mowve Down

Fename Activation Set

Bemove Activation Set

Figure 5-45. Context Menu on an Activation Set

Apply Activation Set

Applies all the activations (or deactivations) of all the illuminators in all the pro-
grams that are in this activation set.

Select Programs

Brings up a dialog that allows you to choose which programs are in this activation
set. By default, all programs are selected.

Copy Activation Set

Brings up a dialog asking for the name of a new activation set, and creates a copy of
this activation set with that name.

Make Default Activation Set
Designates a single activation set as the default activation set. It immediately

applies it. Then, whenever a program gets relinked, this activation set is immedi-
ately applied to it.

5-58

Application Illumination

Whenever a change is made to a setting in the default activation set, that change is
immediately applied to that illuminator in that program. This means if you apply a
different activation set, then modify the default activation set, the current activations
will be a mixture of the two activation sets.

The Wizard window (or page) will modify the default activation set. If there isn’t
one, it will create one called Wizard.

The default activation set is displayed in a bold font.

EI Activation Sets

- pefault Set

- More Detail

Figure 5-46. Default Activation Set in Bold

Forget Default Activation Set

Removes the default activation set designation. It does not change the current acti-
vations, but whenever a program is relinked in the future, it will default to having no
illuminators activated.

Create Default Script (NightTrace in File Mode),
Create Default Script (NightTrace in Stream Mode),
Create Default Script (Launch Programs)

Creates scripts based on the programs and settings in an activation set. See “New
Script from Activation Set (NightTrace in File Mode)” on page 5-61 and “New
Script from Activation Set (NightTrace in Stream Mode), New Script from Activa-
tion Set (Launch Programs)” on page 5-62 for details on these actions.

Move Up,
Move Down

Changes the order of the activation sets. This is purely cosmetic.

Rename Activation Set

Prompts you for a new name for an activation set.

Remove Activation Set

Deletes an activation set from the session. No changes are made to the current acti-
vations.

5-59

NightTrace RT User’s Guide

Scripts

The fifth and final step in the workflow is to run your instrumented programs and Night-
Trace. The Scripts section of nl i ght allows you to set up scripts for automating this
process. Right click on Scripts to get a context menu for creating a script:

[l Activation Sets
! - pefault Set
- More Details

New Script

Mew Script from Activation Set (NightTrace in File Mode)
Mew Script from Activation Set (MightTrace in Stream Mode)

Mew Script from Activation Set (Launch Programs)

Figure 5-47. Scripts Context Menu

New Script

Selecting New Script prompts for a name for the script. The script has some settings for
controlling how it is invoked. When nl i ght invokes a script, it places it in a file called
.nlight_script_ninthe current working directory. By default, output from the
script is directed to the Console window (or page). If it is necessary to interact with the
script, you can run it under an X Terminal, Gnome Terminal, KDE Terminal, or invoke it
by a custom method.

= Scripts
E- Do It
Script

Run Scriptin Terminal Session Console

“ Custom Terminal Session Command

X Terminal

Gnome Terminal
KDE Terminal
Custom

Figure 5-48. Run Script in Terminal Session

When Custom is selected, the script is invoked by the Custom Terminal Session
Command. By default, this is an xt er mcommand for illustration purposes. The Cus-
tom Terminal Session Command can be used to invoke the script any arbitrary way
or to pass an option to the script:

5-60

El- Do It
- Script

> Run Scriptin Terminal Session Custom

‘.. Custom Terminal Session Command Jnlight_script —test=5

Figure 5-49. Invoking a Script on the Console While Passing an Option

Application Illumination

Double click on Script or select Edit Script from its context menu to bring up an editor

dialog for editing the script.

New Script from Activation Set (NightTrace in File Mode)

As a convenience, Nl i ght can use the information in an activation set to create a first
draft of a script. nl i ght prompts you for an activation set and then scans the “nai n”
illuminators for trace files and creates commands to start a user daemon for each one, run
each of the programs in succession, stop the daemons, and invoke NightTrace. As a short-
cut, you can also right click on an activation set and select Create Default Script
(NightTrace in File Mode) from the context menu (see “Create Default Script (Night-
Trace in File Mode), Create Default Script (NightTrace in Stream Mode), Create Default
Script (Launch Programs)” on page 5-59). You can then edit the script to add options to

the commands, control the order your programs are run, etc:

Start NightTrace user daemons
ntraceud --numbufs=16 --buflen=65536 trace file

Run programs
L/myappAI

Halt NightTrace user daemons
ntraceud -q trace file

Invoke NightTrace
ntrace myappAl &

Wait a few seconds for messages from nirace to go to console
sleep 3

| ok || cancel |

Figure 5-50. Default Script created for an Activation Set

(NightTrace in File Mode)

5-61

NightTrace RT User’s Guide

New Script from Activation Set (NightTrace in Stream Mode),

New Script from Activation Set (Launch Programs)

5-62

If you want to use NightTrace in its streaming mode, you can create a pair of scripts: one
to launch NightTrace with the appropriate daemons, and one to launch your instrumented
programs. The New Script from Activation Set (NightTrace in Stream Mode)
and New Script from Activation Set (Launch Programs) will prompt you for an
activation set and create a first draft of the scripts for doing this. As a short cut, you can
also right click on an activation set and select the corresponding Create Default Script
context menu item (see “Create Default Script (NightTrace in File Mode), Create Default
Script (NightTrace in Stream Mode), Create Default Script (Launch Programs)” on page

5-59).

£l Activation Sets
= Moderate Detail
=" binfilluminate
EI main
. Activated
- TRACE_FILE
- NUM_BUFFERS
: - BUFFER_LENGTH
=N binfilluminate.ai
- Activated

- Detail Level
I:+J binfilluminator
- bin/nlight
= Scripts
-- Edit llluminator Stream

El- Edit lluminator Launch

yes
trace_file
16
B5536

yes

Figure 5-51. Activation Set for an Elaborate Script Example

Application Illumination

Console

The Console window (or page) captures output from external commands and scripts.
For each command invoked, the console includes a heading with a time stamp, a descrip-
tion of the action, and the command being invoked. Command output follows and then
finally the status returned by the command. Scripts can have their output directed to a dif-
ferent terminal session.

The status is green if zero, and red if non-zero. You will also get a warning dialog for any
non-zero status that is returned. Scripts might not return an error status but still have error
messages.

Compiling "b.out"

o External command returned error status. See Console window for details.

Figure 5-52. Non-zero Status Warning

2008- Jan-18 Fri 16:08:55 EST
Compiling "a.out"

Running: gcc -o a.out wvar.c
Status=0

2008- Jan-18 Fri 16:08:55 EST

Compiling " b.ow"

Running: make b.out

make: %**¥

INo rule to make target "b.out’
Stop.

Status=2

Figure 5-53. Console Output

5-63

NightTrace RT User’s Guide

Predefined llluminators

Detail Levels

main

glibc

5-64

Except for mai n, all predefined illuminators have the three default detail levels: 1, 2, and
3. The table below details what information is recorded on the events that nl i ght gener-
ates for function entry and return events.

Table 5-1. Values Recorded As Arguments to lllumination Events

1 2 3
return address (entry events) | x X X
frame pointer (entry events) X X

byte limit on aggregate size (all events) | 16 16 16

parameters (entry events) X X

indirect through pointer parameters (entry events) X
return values (return events) | x X X

indirect through pointer return values (return events) X
errno (return events) X

The mai n illuminator is special. It does not record any events. Linking with and activat-
ing it causes t r ace_begi n() to be called before mai n() is called. This is necessary if
the traced program does not do its own t r ace_begi n() call.

If a program does its own t r ace_begi n() call, do not use this illuminator. In this situ-
ation, nl i ght and NightTrace will not know automatically what user trace daemon is
needed by the instrumented program, so generated scripts will have to be edited to include
the appropriate daemon and trace file.

The gl i bc illuminator illuminates functions from the system C library. The thousands of
functions are partitioned into dozens of named groups for convenience when customizing
the gl i bc illuminator (see “Groups” on page 5-90). Use the Editor window (or page) by
editing the illuminator, select the Report menu item from the context menu from the
Create, Customize, and Build llluminators section of the session manger, or use
the following command to see a list of all groups and their functions:

pthread

ccur_rt

cuda

Application Illumination

nlight --report=glibc

The pt hr ead illuminator illuminates functions from the system pt hr ead library. The
functions are partitioned into two named groups for convenience when customizing the
pt hr ead illuminator:

* gl i bc - functions that are redundant with functions in the C library; and

* pt hr ead - the functions implementing threads.

The ccur _rt illuminator illuminates functions from the ccur _rt library. This illumi-
nator will be present only on systems with the ccur _r t library installed. The numerous
functions are partitioned into several named groups for convenience when customizing the
ccur _rt illuminator. Use the Editor window (or page), use the Report context menu
item, or use the following command to see a list of all groups and their functions:

nlight --report=ccur _rt

The cuda illuminator illuminates functions from the CUDA libraries. NVIDIA provides a
CUDA API which allows an NVIDIA GPU to execute user-specified code. This illumina-
tor will be present only on systems with the cuda driver installed. The numerous func-
tions are partitioned into several named groups for convenience when customizing the
cuda illuminator. Use the Editor window (or page), use the Report context menu item,
or use the following command to see a list of all groups and their functions:

nli ght --report=cuda

5-65

NightTrace RT User’s Guide

llluminator Files

The following files are created in the illuminator directory:

config.xm

The file that holds all the settings and customizations for an illuminator. An illuminator
that has not yet been built will contain only this file.

next _event. t xt

The next event number after the last one assigned. Its purpose is to assist in creating mul-
tiple wrapper libraries that use contiguous ranges of events.

$ nlight --build=fred --event_i ds=10000000- 10002000
$ nlight --build=barney \
--event ids='cat fred/next_event.txt‘'-10003999

NOTE

When building multiple illuminators using the graphical interface
of nl'i ght, nli ght will automatically adjust event ranges so
that they do not overlap (assuming the illuminators otherwise
have default event range specifications).

illuminator. h

Header file that #def i nes a name for each event for use in calling the NightTrace analy-
sis API. The names are of the form:

TRACE_EVENT _illuminator_ ENTER_function and
TRACE_EVENT _illuminator RETURN_function.

When a function has been aliased to have multiple names (usually a strongly and a weakly
defined name), only a single event pair is allocated for it. The function name used to build
the event name is the shortest alias (then lexically earliest if there are two or more shortest
aliases). Each alias will get its own wrapper function, but they will each record the same
entry and return event IDs.

illuminator. map

NightTrace event map naming the events. The names are of the form:

5-66

illuminator_levd. f m

illuminator_level. o

illuminator_level. | i st

illuminator. o

illuminator. var ar g

Application Illumination

ENTER_function and
RETURN_function.

NightTrace format table called i | | um nati on. There is one for each detail level so
NightTrace knows what details were recorded in the trace file.

Object file that gets copied into the user program by nl i ght --i 11 um nat e to control
the level of detail recorded by each function in the wrapper library.

The list of functions to wrap or not wrap for each detail level. It is used by the nl i ght
--i |l um nat e command.

Relocatable object file containing all the “wrapper” functions.

NightTrace table called var ar g_f unct i ons indexed by entry event number. The
indexed entry will be “t r ue” if the corresponding function is a “vararg” function (and
thus doesn’t generate a return event) or “f al se” otherwise.

5-67

NightTrace RT User’s Guide

nlight Command Line Mode

Illuminators can be created, manipulated, used, activated, and deactivated by using
nl i ght in command-line mode rather that running the tool in GUI mode.

Commands for Manipulating an llluminator

nlight --create

5-68

Usage:
$ nlight --create=illuminator [options] [object files]

Creates a directory called illuminator (with periods changed to underscores) and places in
itaconfi g. xm file that reflects the options and object files specified on the remainder
of the command line. If illuminator already exists, it will be modified to include the addi-
tional options and object files that are specified.

The following options may be specified:

--aggregate_ |imt=limit
- - conf i g=config.xml
--do_nodebug
--dont _nodebug
--event _i ds=N-[M]
--instal | =path
--iunderscores

- - i regex=regex
--istd

- - xunder scor es

- - XIr egex=regex
--xstd

The object files that may be specified are those containing the functions to be illuminated.
They may be a whole program, archives, shared objects, individual object files, or
debug-info files. If the DWARF debug information has been placed in a separate
debug-info file, it must be listed immediately after its corresponding object file.

--aggregate_|imt=limit

Limits the recording of aggregate values to limit bytes. Aggregates might get
recorded with an event if a function’s parameter or return value is a C/C++ St r uct
type, for example. Only the first limit bytes of the aggregate are recorded.

This option may also be set in a config.xml file:
<def aul t s><opti ons aggregate |imt=limit/ ></ def aul t s>

(See “aggr egat e_| i m t =limit” on page 5-105).

Application Illumination

The limit must be at least 16 bytes. The default limit is 16 bytes.

- - conf i g=config.xml

Reads configuration from an XML file. More than one instance of this option may
be specified to merge several such files together. Options specified on the command
line after the - - conf i g option will override options set in the config.xml file. One
use of this might be to generate a customized gl i bc illuminator.

$ nlight --create=nyglibc \
--config=/usr/lib/N ghtTrace/illum nators/glibc/config.xm \
--aggregate_limt=64

This would initialize mygl i bc/ confi g. xm with /usr/1ib/ Ni ght -
Trace/illum nators/glibc/config.xm,butchange the aggregate limit
from 16 to 64.

--do_nodebug, --dont_nodebug

Creates or blocks creation of trace events for functions that have no DWARF debug
information. The default is to not create such trace events. Only entry events are
generated for functions without debug information. An alternative to - - do_node -
bug is to use a config.xml file to provide a signature for the function (See “declare”
on page 5-101).

This option may also be set in a config.xml file:
<def aul t s><opti ons nodebug={yes|no}></ def aul t s>

(See “nodebug={yes|no}” on page 5-107).

--event _i ds=N-[M]

Specifies the range of NightTrace event IDs to use for the function entry and return
events. Ifthe range is exceeded, a warning is generated.

This option may also be set in a config.xml file:
<def aul t s><opti ons event _i ds=N-[M]></def aul t s>
(See “event _i ds="N- [M]”” on page 5-107).

The defaults for N and M are 10,000,000 and 29,999,999 respectively. The highest
possible event ID is 29,999,999.

If the upper bound is 29,999,999 and the illuminator is built through the graphical
interface, nl i ght will change the lower bound to be a value in the range
10,000,000 through 29,999,999 so that the illuminator’s event range will not overlap
other illuminators in the session that also have their upper bound set to 29,999,999.

--instal | =path

Specifies an installed location for an illuminator, in contrast to the location where it
is actually built. This path is recorded in the object files for nt r ace to find the

5-69

NightTrace RT User’s Guide

event map and format tables (see “Using NightTrace with Illuminators” on page
5-75).

__i*, __X*

Includes or excludes functions from getting entry and return events based on the
functions’ names. Multiple instances of these options may be specified. The last
one specified that matches a function’s name determines whether that function is
included or excluded. Excluded functions are not included in the - - popul at e
output.

--iunderscores, --xunderscores

Includes or excludes functions whose names start with an underscore character. All
aliases of a function and the fully qualified C++ name (if applicable) must begin
with an underscore in order to match these options (in contrast to - - i r egex=_. *
or - - Xregex=_. *). A fully qualified C++ name matches if the function name or
name of any containing classes start with an underscore.

The rationale for this is that functions and class names that begin with underscores
are typically vendor implementation routines that are of less interest. But it is also
common practice to create a strongly defined function that starts with an underscore,
then weakly define aliases to that function that do not. These functions, like many
in Glibc (see NOTE), are likely to be interesting, and so aren’t matched by these
options.

NOTE

Many functions in Glibe for which all aliases begin with an under-
score do not follow standard function call conventions, and so
should never be traced via Application [llumination.

These options may also be specified in a config.xml file:
<def aul t s><opti ons under scor es={yes| no}/ ></ def aul t s>
(See “under scor es={yes|no}” on page 5-107).

The default is - - xunder scor es.

--iregex=regex, --Xregex=regex

Includes or excludes functions whose names match a POSIX regular expression (see
regex(7)). A function name matches the regular expression if any alias or fully
qualified C++ name (if applicable) matches it. The regular expression must match
the whole name (an implicit * and $ is placed before and after the regular expres-
sion respectively).

These options may also be specified in a config.xml file:

5-70

nlight --populate

Application Illumination

<def aul t s>
<option iregex=regex >
<opti on xregex=regex/ >
</ def aul t s>
(See “i regex="regex”, Xregex="regex"” on page 5-108).
By default
mai n,
.*\.internal _io.ada,and
.*\.internal _io\.ada\.\..*
are excluded.

To include only functions matching a particular regex, first exclude all functions:

--Xregex=.* --iregex=regex

--istd, --xstd
Includes or excludes C++ functions in the St d namespace.
These options may also be specified in a config.xml file:
<def aul t s><opti on std={yes|no}/ ></ def aul t s>
(See “st d={yes|no}” on page 5-108).

The default is to exclude C++ functions in the St d namespace. Such functions are
often inlined and so tracing them usually doesn’t provide a lot of useful information.

Usage:
$ nlight --popul at e=illuminator [options] [object files]

Creates or updates (like - - cr eat e) the illuminator’s confi g. xm file to add the
options and object files specified, then populates the conf i g. xm file with a list of all the
functions found on the object files that it will generate trace points for and all the global
variables it can record as arguments to return events. This can be a great convenience
when you want to create a number of function-specific customizations by editing the
confi g. xm file. If such customizations are made, they will be retained if you run the
nl i ght --popul at e command again, which you will likely want to do anytime you
add or remove functions or change the function’s signatures that you are illuminating.

5-71

NightTrace RT User’s Guide

nlight --build

nlight --report

5-72

Usage:
$ nlight --buil d=illuminator [options] [object files]

Creates or updates (like - - cr eat e) the illuminator’s conf i g. xm file to reflect the
options and object files specified, then builds the “wrapper” functions, event map, format
tables, etc. You will want to do this any time you change the types or function signatures
that Application Illumination uses to create trace points.

By default, three detail levels are created for the illuminator: 1, 2, and 3. You may edit the
config. xm file to modify these detail levels or to create custom detail levels.

Usage:
$ nlight --report =illuminator

Generates a report about an illuminator on functions, function groups, global variables,
etc. For example:

$ nlight --report=pthread
The followi ng gl obal variables were found:
The foll owi ng subroutines had no debug information or
<decl ar e>:

__pread64

__pwite64

| seek64

pr ead

pr ead64

pwite

pwite64
The foll owi ng subroutines were excluded because of their
nanes:

__errno_|l ocation

__h_errno_l ocation

__libc_allocate rtsig

_pthread_cl eanup_pop
_pthread_cl eanup_pop_restore
_pthread_cl eanup_push
_pthread_cl eanup_push_defer
The foll owi ng subroutines are in group "glibc":
1O flockfile
1O ftrylockfile
1O funlockfile

wai t
wai t pid
wite
The foll owi ng subroutines are in group "pthread":

Application Illumination

__pthread_atfork
__pthread_getspecific

pt hr ead_t est cance
pt hread_ti nmedj oin_np
pthread_tryjoin_np
pt hread_yi el d
sem cl ose
sem dest r oy
sem get val ue
seminit
sem open
sem post
sem ti nedwait
semtrywait
sem unl i nk
sem wai t
The foll owi ng subroutines are in no group:
$

Commands for Linking with llluminators

nlight --gcc

Once built, an illuminator’s “wrapper” functions must be linked into your program with
the -W, --em t-rel ocs and either - | ntrace or -1 ntrace_t hr options. The
nl i ght program with the below options can be used between back-quotes to conve-
niently generate all the options to reference the needed object files and options. When an
illuminator is specified with a relative path, the program will search for it first relative to
the current directory, and then relative to / usr/ 1 i b/ Ni ght Trace/i || um nators.
Alternatively, an absolute path to the illuminator directory may be given.

When an illuminator is first linked into your program, it is inert. It does not intercept any
function calls or interfere with your program’s performance at all until it is activated with
the nl i ght --illum nate command (see “Command for Activating and Deactivat-
ing Illuminators” on page 5-74).

Usage:
$gcc ... ‘nlight --gcc [-t] illuminator_list

Generates options suitable for gcc to link in a list (separated by whitespace) of illumina-
tors. The - t option specifies the use of the threaded nt r ace library.

This generates the following options:

¢ illuminator_path/ illuminator. 0 (for each illuminator)
e -W,--enit-rel ocs

* -Intrace[_thr]

5-73

NightTrace RT User’s Guide

nlight --g77

nlight --cf77

nlight --ada

Generates options suitable for g77. See “nlight --gcc” on page 5-73.

Generates options suitable for cf 77. See “nlight --gcc” on page 5-73.

Generates options suitable for a. | i nk. See “nlight --gcc” on page 5-73.
This generates the following options:
* -1 d illumnator_path/ illuminator. o (for each illuminator)

e --emt-rel ocs

e -so=ntrace[_thr]

Command for Activating and Deactivating llluminators

5-74

Once the illuminators are linked into a program, they can be activated by using the
nlight --illum nate command. This command scans the user program for calls to
the functions to be traced, and redirects them to the “wrapper” functions in the illuminator
that record the entry event, call the real function, record the return event, and return.

Usage:
$ nlight --illum nate program [[!]mai n[,options]] \
[['Tilluminator[=level]]...
program
Specifies the program you linked with illuminators. nl i ght --illum nate

may be run on the program multiple times to turn on and off various illuminators
and to change their detail levels.

«l

Deactivates the illuminator the
has no run-time overhead.

is prefixed to. When deactivated, an illuminator

mai n[, options]

Specifies the mai n illuminator and its options. This illuminator is special. It
“wraps” only the mai n() routine, and records no events. Instead, it performs a
trace_begi n() call (see “trace_begin, Trace.begin” on page 2-8). Rather than

Application Illumination

specifying a detail level, you may specify a comma-separated list of options to the
trace_begin() call:

* TRACE FI LE=filename

Specifies the name of the file that will hold the trace events. The default is
trace file.

* NUM_BUFFERS=count
Specifies the number of buffers used for recording trace events. The default is 8.
* BUFFER_LENGTH=sze

Specifies the length in bytes of each buffer used for recording trace events. The
default is 32768.

illuminator

Specifies the name of the illuminator. This can be an absolute or relative path to the
directory containing the illuminator’s files. Relative paths will be searched for rela-
tive to the current directory and then relative to/ usr/ | i b/ Ni ght Trace/illu-
m nat or s. The following illuminators are provided in / usr/ | i b/ Ni ght -
Trace/illum nators:

* nain
* glibc
* pthread

* ccur_rt

The following illuminators are provided in the directory / usr/ i b/ Ni ght -
Trace/ill um nat or s2 on systems where CUDA is available:

* cuda

level

Specify the level of detail to be recorded by the illuminator’s events. The default is
2. By default, illuminators have detail levels 1, 2, and 3. These levels may be cus-
tomized, or custom details may be created, for any illuminator.

Using NightTrace with llluminators

[luminators have a NightTrace event map and, for each detail level, a NightTrace format
table, within them. The absolute path to these files are embedded in programs that have
the illuminator linked in. If the mai n illuminator is used, the (possibly relative) path to
the trace file is also embedded in the program. You may specify a program on the
nt r ace command line, and NightTrace will extract these embedded paths and use them.

5-75

NightTrace RT User’s Guide

Usage:
$ ntrace aoutAl

Note that because the path to the trace file may be a relative path, the nt r ace command
should be run with the current working directory being the same as when a.0utAl was run.

5-76

Customizing an llluminator with the Editor

Buttons

Application Illumination

The Editor is invoked by selecting the Edit context menu item on an illuminator in the
[lluminators section of the session manager window (or page), by double clicking on
that same illuminator, or by specifying an illuminator on the nl i ght command line. The
editor can be in its own window or in a page in the session manager, depending on the

Show Editor in Page setting in the View menu.

The Editor presents the configuration of an illuminator in a tree structure much like the

session manager.

NightLight - New Session

File ¥iew Tools Help

(===

lE’Open... HE]Save H[a'Sa\reAs...H search l

|Setting

|Value

= pthread

B

Options

Detail Levels

Groups

Functions

Yariables to Record
-

Figure 5-54. Editor Page

The row of buttons above the settings tree allow loading and saving of the conf i g. xm
files that define the customizations of an illuminator and toggle the search bar.

Open...

Launches a standard file selection dialog which allows you to specify an illumina-
tor’s confi g. xm file to edit.

If changes have been made to the current illuminator but have not yet been saved,
nl i ght will ask you if you wish to save the current illuminator before proceeding.

5-77

NightTrace RT User’s Guide

Save
Saves the current illuminator to a conf i g. xm file quickly.

You are not prompted for the filename where the illuminator is to be saved. It is
automatically saved to the same file it was opened from or previous saved to.

Save As...

Launches a standard file selection dialog which allows you to specify the filename
where the illuminator’s conf i g. xm file will be saved.

Search

Toggles displaying the search bar at the bottom of the Editor window (or page).

5-78

Application Illumination

Search Editor

The Search Editor menu item in the View menu or the Search button turns on the
search bar in the Editor window (or page). All of the items in the editor’s trees also
include Search in their context menus.

NightLight - New Session

File ¥iew Tools Help

[E’Dpen... l [gsave] lBSave As.., l [Search l
‘Setting |Value
- pthread
- Options
Detail Levels
Variables to Record

Groups
E}- Functions

Search: l leNex‘t

. @ Match lgnoring Case

["‘ Previous

() Match Case

() Match Regular Expression
() Search Function Mames

() Search Group Names

() Search variable Names

() Search Detail Level Mames
() Search Text BElocks

@ Search All Text

Figure 5-55. The Search Bar

Closes the search bar.

Search: [

Specifies the text or regular expression to search for. If a Search context menu is
used, it is initialized with a regular expression that will match the value of the item
that was right clicked on exactly.

5-79

NightTrace RT User’s Guide

5-80

B Next | | 4 Previous

Searches for the next or previous instance of the search string or regular expression.

Opens up a pull down menu that allows you to specify search options. The label on
the button reflects the settings of these search options.

Capitalization and Punctuation indicate case and regular expression settings.

All

Capitalized: matches case.
all

All lower case: matches ignoring case.
All*

Capitalized with an asterisk: matches regular expression.
The word indicates the type of value to search for. When using the Search context

menu item on a setting with a particular type, the type setting will be set to that type,
regular expression.

All, all, All*

Searches all text in the tree structure, including values that are multi-line
blocks of text.

Group, group, Group*

Searches only group names.

Function, function, Function*

Searches only function names

Level, level, Level*

Searches only detail level names.

Text, text, Text*

Searches only multi-line text block values.

Application Illumination

Variable, variable, Variable*

Searches only variable names.

Options
The options section contains settings that are not specific to any detail level, group, or
function.
Setting Value
=-inew.al
= Options
Event IDs 10000000-
... Limit on Size of Aggregates Recorded 16
- Include Functions without DWARF Debug Info no
Regular Expressions
£ Object Filenames
.. load.o
‘. MOre. o
- Detail Levels
Figure 5-56. Options
Event IDs

Specifies the range of event ids to be mapped to entry and return events. (See
“event _i ds="N- [M]”” on page 5-107). If the upper bound of the specified range is
29,999,999, nl i ght will take over assigning the lower bound to the range 10,000,000
through 29,999,999 such that the assigned event IDs won’t overlap other managed illumi-
nator’s ranges in the session.

Limit on Size of Aggregates Recorded
Limits the number of bytes of an aggregate that may be recorded with an event. The limit
must be at least 16 bytes. (See “aggregate_l i m t ="limit"” on page 5-107).
Include Functions without Dwarf Debug Info
Specifies whether functions that have no debug information are to be illuminated or not.

Return events are not generated for functions without debug information. (See “node -
bug={yes|no}” on page 5-107).

5-81

NightTrace RT User’s Guide

Regular Expressions

Specifies whether function names that match regular expressions are to be illuminated or
not. Multiple expressions may be specified. Each regular expression either specifies
functions to include in the illuminated functions list or specifies functions to exclude. If
more than one regular expression matches a function name, the last one to match overrides
the previous ones. Right click on Regular Expressions to bring up the context menu of
regular expressions that may be added to the list.

Include Functions Beginning with Underscore
Exclude Functions Beginning with Underscore
Include Functions in Standard Namespace

Exclude Functions in Standard Namespace

Include Functions Matching POSIX Regular Expression

Exclude Functions Matching POSIX Regular Expression

Search

Figure 5-57. Regular Expressions Context Menu

Include Functions Beginning with Underscore,
Exclude Functions Beginning with Underscore

Includes or excludes functions whose names start with an underscore character. All
aliases of a function and the fully qualified C++ name (if applicable) must begin
with an underscore in order to match these options (in contrast to - - i r egex=_. *
or - - Xregex=_. *). A fully qualified C++ name matches if the function name or
name of any containing classes start with an underscore.

The rationale for this is that functions and class names that begin with underscores
are typically vendor implementation routines that are of less interest. But it is also
common practice to create a strongly defined function that starts with an underscore,
then weakly define aliases to that function that do not. These functions, like many
in Glibe (see NOTE), are likely to be interesting, and so aren’t matched by these
options.

NOTE

Many functions in Glibc for which all aliases begin with an under-
score do not follow standard function call conventions, and so
should never be traced via Application Illumination.

5-82

Application Illumination

The default is to exclude functions beginning with underscore.
(See “under scor es={yes|no}” on page 5-107).
Include Functions in Standard Namespace,
Exclude Functions in Standard Namespace
Includes or excludes C++ functions in the St d namespace.

The default is to exclude C++ functions in the St d namespace. Such functions are
often inlined and so tracing them usually doesn’t provide a lot of useful information.

(See “st d={yes|no}” on page 5-108).
Include Functions Matching POSIX Regular Expression,
Exclude Functions Matching POSIX Regular Expression

Includes or excludes functions whose names match a POSIX regular expression (see
regex(7)). A function name matches the regular expression if any alias or fully
qualified C++ name (if applicable) matches it. The regular expression must match
the whole name (an implicit » and $ is placed before and after the regular expres-
sion respectively).

<def aul t s>
<option iregex=regex >
<opti on Xxregex=regex/ >
</ def aul t s>
By default
nmai n,
.*\.internal _io.ada,and
.*\.internal io\.ada\.\..*
are excluded.
To include only functions matching a particular regex, first exclude all functions:

--Xregex=.* --iregex=regex

(See “i regex="regex”, Xregex="regex"” on page 5-108).

5-83

NightTrace RT User’s Guide

The context menu on an individual regular expression allows you to change their order
(order is important!) or remove a regular expression from the list.

Setting Value
£l new.ai
E}- Options
.. Event IDs 10000000-
Limit on Size of Aggregates Recorded 18
- Include Functions without DWARF Debug Info no
£l Regular Expressions
- Exclude Functions Matching Regular Expression S Mowve Up
Inclue Functions Matching Regular Expression myclass. * A Move Down
E}- Object Filenames
.. load.o Remove Regular Expression
mare.o Search
----- threst.o =
El-- Detail Levels

.. Variables to Record
- Groups

F Functions

Object Filenames

5-84

Figure 5-58. Regular Expression Context Menu

Specifies object files that contain the functions to be illuminated. They may be a whole
program, archives, shared objects, individual object files, or debug-info files. If the
DWAREF debug information has been placed in a separate debug-info file, it must be listed
immediately after its corresponding object file.

Right click on Object Filenames to get the context menu. Browse for Object Files
brings up a standard file dialog for selecting object files. Multiple object files may be
selected using control and shift click.

Setting Value
£l new.ai
E}- Options
Event IDs 10000000-

- Limit on Size of Aggregates Recorded 186
- Include Functions without DWARF Debug Info ne

Bl Regular EXf Browse for Object Files
Search

Figure 5-59. Object Filenames Context Menu

more.o
Bl Detail Levels

The context menu on an individual object file allows you to change their order (this is
important only for debug-info files), edit the path to the object file, or remove it from the
list.

The Object Filenames list is normally filled in when the session manager creates the illu-
minator.

Detail Levels

Application Illumination

(See “f i | enanme=" filename” ” on page 5-108).

Named detail levels control what functions are illuminated and what details are recorded
with those illuminated functions’ entry and return events. By default there are three detail
levels, 1, 2, and 3. You may delete these and/or add more. Their names are not limited to
numbers, but may be any string that can be part of a filename.

£ Detail Levels

.. 0

B 1

~ Record Caller on Entry

~ Record Frame Pointer on Entry

= Limit on Size of Aggregates Recorded

~ Record Arguments on Entry

~ Record Indirect through Arguments on Entry
- Record Return Values on Return

- Record Indirect through Return Values on Return
- Record Global Variables on Return

- Record errno on Return

- Exclude All Functions

- Regular Expressions

&
W

Figure 5-60. Detail Levels

There are numerous settings that can be made for each detail level. If a setting has the
default value, it is displayed in gray. The default Limit on Size of Aggregates
Recorded is inherited from the Limit on Size of Aggregates Recorded setting in
Options. The Regular Expressions list is empty by default.

The default value for the other settings depends on the name of the detail level as detailed
by the table below. To return a setting to the default setting right click on it and select
Clear Setting from the context menu.

5-85

NightTrace RT User’s Guide

5-86

(See “level” on page 5-104).

Table 5-2. Detail Levels Settings Defaults

Attribute 1 2 3 Custom
Record Caller on Entry yes | yes | yes no
Record Frame Pointer on Entry no |yes |yes no
Record Arguments on Entry no |yes |yes no
Record Indirect through Arguments on Entry no |no |yes no
Record Return Values on Return yes | yes | yes no
Record Indirect through Return Values on Return no |no |yes no
Record Global Variables on Return no |no |yes no
Record errno on Return no |no |yes no
Exclude All Functions no |no |no no

In the table above, the Custom column is indicating the default setting for the attribute
when a custom detail level is initially created. You can of course change the setting when
you edit the custom detail level.

Record Caller on Entry
Records the return address on entry events. (See “cal | er ={yes|no}” on page
5-105).

Record Frame Pointer on Entry
Records the caller’s frame pointer on entry events. (See “f r ame={yes|no}” on
page 5-105).

Limit on Size of Aggregates Recorded

Sets a size limit (in bytes) on aggregate values recorded with entry and return
events. The aggregate value recorded is truncated beyond the limit. (See “aggr e-
gate_l i m t =limit” on page 5-105).

Record Arguments on Entry

Records a function’s arguments on entry events. If the argument is an aggregate
type (class, structure, union, or array), only a limited number of bytes will be
recorded. This limit is set by the Limit on Size of Aggregates Recorded set-
ting. (See “ar gs={yes|no}” on page 5-105).

Record Indirect through Arguments on Entry

Records the value pointed to by a function’s pointer arguments on entry events. If
the argument is a pointer to an aggregate type (class, structure, union, or array), only

Application Illumination

a limited number of bytes will be recorded. This limit is set by the Limit on Size
of Aggregates Recorded setting. (See “addr _ar gs={yes|no}” on page
5-106).

Record Return Values on Return

Records a function’s return value and out arguments on return events. If the value is
an aggregate type (class, structure, union, or array), only a limited number of bytes
will be recorded. This limit is set by the Limit on Size of Aggregates
Recorded setting. (See “r et ur n_val ={yes|no}” on page 5-106).

Record Indirect through Return Values on Return

Records the value pointed to by a function’s pointer return value and pointer out
arguments on return events. If the value is an aggregate type (class, structure, union,
or array), only a limited number of bytes will be recorded. This limit is set by the
Limit on Size of Aggregates Recorded setting. (See
“addr _r et ={yes|no}” on page 5-106).

Record Global Variables on Return

Records select global variables and indirection through select global variables on
return events. If the value is an aggregate type (class, structure, union, or array),
only a limited number of bytes will be recorded. This limit is set by the Limit on
Size of Aggregates Recorded setting. The list of variables is empty by
default. See “Variables to Record” on page 5-88, “Select Variables to Record, Add
Variable to Record” on page 5-93, “Select Variables to Record Add Variable to
Record” on page 5-96, “var i abl es={yes|no}” on page 5-106).

Record errno on Return

Records the value of er r no on return events. (See “er r no={yes|no}” on page
5-106).

Exclude All Functions

Excludes all functions from having entry and return events recorded for them at this
detail level. This can be convenient for restricting a detail level to a small set of
functions by then overriding this setting for individual groups or functions. (See
“excl ude={yes|no}” on page 5-106).

Regular Expressions

Excludes or includes select functions from having entry and return events recorded
from them. The same regular expressions may be used here as in the Options sec-
tion (see “Regular Expressions” on page 5-82). Functions cannot be included here
that were excluded in the Options sections. The inclusion regular expressions are
for putting back functions that were excluded by previous regular expressions. For
example, you could exclude . *”, then include “C_. *” to restrict this detail level to
just those functions starting with “c_". But if the Options section had excluded

functions matching “c_a. *”, they would not be included. (See “under -

5-87

NightTrace RT User’s Guide

scor es={yes|no}” on page 5-107, “st d={yes|no}” on page 5-108, “i re-
gex="regex", Xregex="regex"” on page 5-108).

Variables to Record

5-88

Detail level 3 (by default) and any detail level with the Record Global Variables on
Return setting turned on will record any global variables or indirection through global
variables that are listed in this section on function return events. The function must have
the global variable declared in its DWARF debugging information. No error is generated
for functions that don’t have the global variable in their DWAREF, they just don’t record the
variable in their return events.

Right click on Variables to Record and select Add Variable or Select Variables
to Record to add variables or indirection through variables to this list. (See “variable”
on page 5-108).

£ pthread
[Options
Detail Levels Add Variable

Variables to Record

: SelectVariables to Record
£ Groups

:) Search
[# Functions =

Figure 5-61. Variables to Record

Add Variable

Brings up a dialog to allow you to type in a variable name. If the variable name is
preceded by an asterisk (“*), then the value pointed to by the variable, if it is a
pointer, is recorded instead. If the variable isn’t a pointer and indirection is
requested, no value is recorded.

Add Variable to Record Value Of [E]
Enter [*]variableName:

(Precede VariableMame with * to record indirection through it)

Figure 5-62. Add Variable Dialog

Application Illumination

Select Variables to Record

Brings up a dialog with a list of variables and their types that were discovered by
populating the illuminator (see “Populate” on page 5-47). Pointer variables will be
in the list twice: once for themselves and once for indirection through them. Select
or deselect the variables desired by clicking in the check box next to them.

NightLight - Select Vari:

—Select Variables

(%] fifloat)
[] g (float)
[]i(signed int)
[j (signed int)
[k isigned int)

[pd (double *)

[ps (struct fred =)
[]*ps
[s (struct fred)

Figure 5-63. Select Variables to Record Dialog

To remove a variable from this list, use the Select Variables to Record dialog to
deselect them, or right click on the variable to be removed and select the Remove Vari-
able context menu item. This context menu may also be used to rearrange the variables
in the list.

5-89

NightTrace RT User’s Guide

Groups

Create a Group

5-90

(= d_out_ai
[+ Options
Detail Levels
£ variables Search

Mowve LUp
Move Down
i Groups
E- Functions Remove Variable

Figure 5-64. Variable Name Context Menu

Functions may be placed in named groups. This is convenient for applying customiza-
tions. Perhaps, for example, you want more details on the functions in the group i conv.
You could create a copy of detail level 1 called i conv_det ai | s, and then customize
that detail level to include more details for functions in the i conv group. (See “group”
on page 5-103).

To create a group, right click on Groups and select New Group from the context menu
that pops up. A dialog will pop up asking for a name for the group.

Detail Levels

Mew Group

Search

G- argp
- catgets

Figure 5-65. Groups Context Menu

Application Illumination

Customize a Group

Right click on the group name and select an item from the context menu that pops up.

EI Groups
.. argp
catgets
-- csU
- ctype
-- debug
dirent
G- elf
amon
E- grp Select Detail Levels to Customize h
: Select Variables to Record
= Fgur'l.ctinns Add Variable to Record
e fCony
iconv_close Search
: ‘- iconv_open Rename Group
-- inet Delete Group
inotify

Figure 5-66. Group Name Context Menu

5-91

NightTrace RT User’s Guide

Select Detail Levels to Customize

This allows you to customize a detail level for a particular group. A dialog pops up
allowing you to select or deselect which detail levels you want to customize.

B3] nightLight - Select Leve [

—SelectLevels—————

Figure 5-67. Select Detail Level to Customize Dialog

An additional branch is added to the group’s tree for each customized detail level.
The values for each detail level setting are gray when they are inherited from the
Detail Levels section. The Exclude This Group setting overrides the
Exclude All Functions setting in the Detail Levels section. To create a cus-
tom detail level that only records events for one group’s functions, set Exclude All
Functions in the Detail Levels section to yes, then override that for a particular
group by setting Exclude This Group to no.

5-92

Application Illumination

[l iconw

EI Functions

: e jCony

= iconv_close

: = iConv_open

£ Detail Level iconv_details

- Record Caller on Entry

~ Record Frame Pointer on Entry Yes
~ Limit on Size of Aggregates Recorded

- Record Arguments on Entry Yes
- Record Indirect through Arguments on Entry yEes
- Record Return Values on Return

- Record Indirect through Return Values on Return yEes
- Record Global Variables on Return

- Record errno on Return yes

- Exclude This Group

Figure 5-68. A Customized Custom Detail Level for a Group

Select Variables to Record,
Add Variable to Record

These allow you to record additional global variables for return events of just this
group’s functions for detail levels that have Record Global Variables on
Return t r ue. The same dialogs are brought up to select variables as in the Vari-
ables to Record section (see “Variables to Record” on page 5-88).

Bl iconv

; -- Functions
Detail Level iconv_details
Record Global Variable; fred

‘- Record Global Variable: *harney

Figure 5-69. A Group with Additional Variables to Record

Rename Group

This pops up a dialog that prompts for a new name for the group.

Delete Group

This deletes a group.

5-93

NightTrace RT User’s Guide

Selecting Members of a Group

To select which functions are in a group, right click on the Functions branch under a
group name and select the Select Functions in Group context menu item.

= iconv Select Functions in Group

Search

= iconv_close

e CONV_open

Figure 5-70. Member Functions Context Menu

This brings up a dialog with a list of all functions defined in the Functions section to
select or deselect from.

— Select Functions

[hstrerror B

[] htanl

[] htons

IE iconw

[%] iconv_close |:|
[%] iconv_open

[] if_freenameindex

[if_indextoname
(<] t | [III]@

Figure 5-71. Select Functions Dialog

Functions may also be added to a group from the Functions section (see “Adding a
Function to a Group” on page 5-98).

5-94

Functions

Adding a Function

Application Illumination

The Function section allows customization of individual functions. A function does not
have to be listed here to be illuminated (although it does need to be here to be a member of
a group). (See “function” on page 5-102).

Functions are usually added to this section by using the populate command in the session
manager (see “Populate” on page 5-47) or nl i ght - - popul at e on a command line
(see “nlight --populate” on page 5-71). Functions may also be added by right clicking on
Functions and selecting Add a Function from the context menu that pops up. A dia-
log will pop up asking for the function name.

-- Groups

Add a Function

: Search
- _10_fclose

E~ _10_fdopen

Figure 5-72. Functions Context Menu

Customizing a Function

- pthread_condattr_setpshared

- pthread_detach
- pthread_equal
- pthread_exit Insert Pre-Entry Event Code

- pthread_getaffinity_np Insert Post-Return Event Code
- pthread_getattr_np

- pthread_getconcurrency
- pthread_getcpuclockid

- pthread_getschedparam Rename This Function

- pthread_getspecific Delete This Function

To customize a function, right click on the function name and choose an item from the
context menu that pops up.

Select Detail Levels to Customize

pthread_create

Member of Groups Exclude This Function from All Levels
Detail Level 0 Select Variables to Record

Handcoded Filescope Code to Insert Add Variable to Record
“+ Handcoded Call To Real Function to Insert Search

Insert File Scope Code

Replace Real Function Call Code

Provide C Declaration

- pthread_join

Figure 5-73. Function Context Menu

5-95

NightTrace RT User’s Guide

Select Detail Levels to Customize

This allows you to customize a detail level for a particular function. It works just
like customizing a detail level for a particular group (see “Select Detail Levels to
Customize” on page 5-92).

Exclude This Function from All Levels

This allows you to prevent this function from being illuminated for all detail levels.
Another way to do this would be to use a regular expression to exclude the function
in the Options section.

To remove the exclusion, right click on Exclude This Function From All
Detail Levels and select Remove Exclusion from the context menu that pops

up.

(See “exclude” on page 5-102).

=N pthread_create
: Member of Groups
-- Detail Level 0

“ Handcoded Filescope Code to Insert

i~ Handcoded Call To Real Function to Insert Search

Exclude This Function From All Detail Levels
-- pthread_detach

Bemove Exclusion

Figure 5-74. Remove Exclusion Context Menu Item

Select Variables to Record
Add Variable to Record

These allow you to record additional global variables for just the return event of this
function for detail levels that have Record Global Variables on Return true.
The same dialogs are brought up to select variables as in the Variables to Record
section (see “Variables to Record” on page 5-88). Settings in gray are inherited
from the Groups section (see “Select Variables to Record, Add Variable to Record”
on page 5-93). If a function is a member of more than one group, the first group in
the list that provides an explicit setting is the effective value.

Insert File Scope Code

Insert Pre-Entry Event Code
Insert Post-Return Event Code
Replace Real Function Call Code

5-96

These are advanced items for inserting assembly code fragments in the function
“wrapper” code that records the entry and return events. To edit the code that is to
be inserted, double click on the appropriate Handcoded item or right click on it
and select Edit from the context menu that pops up. This brings up a text editor dia-
log. See “wrapper_file scope” on page 5-109, “wrapper_post” on page 5-109,

Application Illumination

“wrapper_pre” on page 5-109, “wrapper_real” on page 5-110 for more detailed doc-

umentation on these code fragments.

Edit Handcoded Filescope Code to Insert E]

prestart_routine4

FHESAHERRAHERAAHERRAHERRARHERRGHERRAREIRAHER R AR E SR

$ Set up a function that gets called by the new #
$ thread instead of start routine. This function #
gets an arg that informs it of the original
$ function and its arg. #

FHEAAHERRAHERAAHERRGHERRAAHERRAHERRAREIRRAHER R AR EI SR

.tyvpe prestart_routine, @function

call trace_register_thread

movl 4 (sesp),%eax # get my arg

movl 4 (%seax),%edx # get the original arg
pushl %edx

movl (%seax),%ecx

call *%ecx

movl %eax, (Besp)

movl 8 (sesp),%edx
pushl %edx

call free

addl $4,%e=sp

popl %eax;

ret

get the original start_routine

call it

zave return value (use =ame stack =lot)
free myarg

.=1lze prestart_routine, .-prestart_routine

[oc][concel |

Figure 5-75. Edit Handcoded Dialog

Provide C Declaration

Provides a C language declaration for functions that do not have DWARF debug
information (perhaps the function was written in assembly, for example). This set-
ting is ignored if the function has DWARF debug information. The declaration may
be preceded by #i ncl udes and type definitions. The declaration itself should not
include an ext er n, nor be terminated by a semi-colon. (See “declare” on page

5-101).

5-97

NightTrace RT User’s Guide

Edit Declaration of Function

#include <svs/tyvpes.h>
finclude <svs/socket.h>
int accept(int =, =struct sockaddr *addr, =socklen_t *addrlen)

Figure 5-76. Edit Declaration Dialog

Rename This Function

Pops up a dialog that prompts for a new name for the function.

Delete This Function

Deletes a function from the Functions section. This does not stop the function from
being illuminated, it only removes the customizations for the function and the func-
tion’s group memberships.

Adding a Function to a Group
To add a function to a named group of functions that is defined in the Groups section,

right click on the Groups branch under a function name and select the Select Groups
context menu item.

El- pthread_create Select Groups

B Member of Groups

Search

: pthread
-- Detail Level 0
Handcoded Filescope Code to Insert
Handcoded Call To Real Function to Insert

Exclude This Function From All Detail Levels
Figure 5-77. Member of Groups Context Menu

This brings up a dialog with a list of all groups defined in the Groups section to select or
deselect from.

5-98

Application Illumination

NightLight - Select Grot E]
—Select Groups
[] glibe
[%| pthread
| Ok | [Cancel l

Figure 5-78. Select Groups Dialog

Functions may also be added to a group from the Groups section (see “Selecting Mem-
bers of a Group” on page 5-94).

5-99

NightTrace RT User’s Guide
Customizing an llluminator by Editing the config.xml File

The confi g. xm file in the illuminator directory may be edited to customize the illumi-
nator. This section provides a brief dictionary for the supported XML elements. Each ele-
ment is documented in alphabetical order and is headed with a brief synopsis that shows
the context in which it appears, as well as other elements in may contain.

comments

Comments (<!-- comment -->) may be placed amongst the XML using standard XML
comment syntax. Elements that enclose text (such as <decl ar e>, <wr apper > and
<wr apper _*>may not have comments embedded in the text. Comments are lost when a
confi g. xm file is repopulated with the nl i ght - - popul at e command. There is
no guarantee on the order of the elements, so there is no way to know exactly where to
place the comments in the repopulated file. The three-way comparison tool, di f f 3(1),
may be used to help reinsert them into the approximate correct place.

config

<confi g>
[<def aul t s>
[<level ./> .]
[<options ../> .]
[<vari abl e nane=[*]variable name/ > ..]
</defaul ts> ..]
[<vari abl e nane=variable name
[t ype=type name ptr ={yes|no}]/ > ..]
[<gr oup nane=group_name>
[<vari abl e nane=[*]variable name/ > ..]
</ group> ..]
[<function nanme=function_name>
[<excl ude/ >]
[<level .. [/> .]
[<gr oup name=group_name/ > ..]
[<wr apper >wrapper function</ wr apper >]
[<wr apper _fil e_scope>somecode</ wr apper _fil e _scope>]
[<wr apper _pr e>some code</ wr apper _pr e>]
[<wr apper _r eal >call toreal function</ wr apper _r eal >]
[<wr apper _post >some code</ wr apper _post >]
[<decl ar e>declaration</ decl ar e>]
[<vari abl e nane=[*]variable name/ > ..]
</function> ...]
</ config>

Encloses the entire file. It may contain four types of elements: <def aul t s> (see page

5-101), <vari abl e> (see page 5-108), <gr oup> (see page 5-103), and <f unct i on>
(see page 5-102).

5-100

declare

defaults

Application Illumination

<function ...>
<decl ar e>declaration</ decl ar e>
</ function>

Provides a C language declaration for functions (see “function” on page 5-102) that do not
have DWARF debug information (perhaps the function was written in assembly, for exam-
ple). This element is ignored if the function has DWARF debug information. The decla-
ration may be preceded by #i ncl udes and type definitions. The declaration itself should
not include an ext er n, nor be terminated by a semi-colon. Here is an example:

<decl ar e>
#i nclude & t;sys/types. h>
pidt getpgid(pid t pid)

</ decl are

Certain characters are special in XML and must be replaced with “character entities”:

Table 5-3. Character Entities

&anp; &
< <
> ; >
" ; “
')

<confi g>
<def aul t s>
[<l evel nane=levd_name
[cal | er ={yes|no}]
[f rame={yes|no}]
[aggregat e_| i m t =limit]
[ar gs={yes|no}]
[addr _ar gs={yes|no}]
[return_val ={yes|no}]
[addr _ret ={yes|no}]
[vari abl es={yes|no}]
[er rno={yes|no}]
[excl ude={yes|no}]>
[<options [under scores={yes|no}]
[st d={yes|no}]
[xr egex=regex]
[i regex=regex]/ > ..]
</level > .]
[<options ../> .]

5-101

NightTrace RT User’s Guide

exclude

function

5-102

[<vari abl e name=[*]variable name/ > ..]
</ def aul t s>
</ config>

Defines the defaults for all functions and groups (see “config” on page 5-100). It may
contain zero or more <| evel > elements (see “level” on page 5-104) to customize the
detail levels 1, 2, or 3, or to define a user-named custom detail level. It may contain zero
or more <0Opt i oNs> elements (see “options” on page 5-107) to specify values for certain
command line options.

Finally, it may contain zero or more <var i abl e> elements (see “variable” on page
5-108) to specify global variables to be recorded with the return event for any function
whose DWARF defines the global variables when the detail level includes variables.

<function ...>
<excl ude/ >
</ function>

Excludes a function (see “function” on page 5-102) from all detail levels without having
to list separate <| evel > (see “level” on page 5-104) elements. If both the <excl ude/ >
element and an excl ude attribute (see “excl ude={yes|no}” on page 5-106) for a spe-
cific <| evel > are specified in a <f unct i on> element, the exclude attribute takes pre-
cedence. Thus:

<functi on nane=hel | 0>
<excl ude/ >
<l evel =3 excl ude=no>
</function>

will exclude hel | o() from all detail levels except 3.

<confi g>
<functi on nane=function_name>
[<excl ude/ >]
[<level .. [/> .]
[<gr oup nane=group name/ > ..]
[<wr apper >wrapper function</ wr apper >]
[<wr apper fil e_scope>somecode</ wr apper _fil e _scope>]
[<wr apper _pr e>some code</ wr apper _pr e>]
[<wr apper _real >call toreal function</ wr apper _r eal >]
[<wr apper _post >some code</ wr apper _post >]
[<decl ar e>declaration</ decl ar e>]
[<vari abl e nanme=[*]variable name/ > ..]
</ function>
</ config>

group

Application Illumination

Defines settings for a specific function (see “config” on page 5-100). It may contain:

® zero or more <| evel > elements (see “level” on page 5-104) to override
the defaults for the detail levels for function_name;

® zero or more <gr oup> elements (see “group” on page 5-103) to designate
function_name as a member of a group of functions;

® an optional <wr apper > element (see “wrapper” on page 5-109) to pro-
vide a hand written “wrapper” function;

® optional <wr apper _*> elements (see “wrapper file scope” on page
5-109, “wrapper_post” on page 5-109, “wrapper_pre” on page 5-109, and
“wrapper_real” on page 5-110) to provide some code to insert into or
replace parts of the machine generated “wrapper” function;

® an optional <decl| ar e> element (see “declare” on page 5-101) to provide
the declaration of the function being “wrapped”;

® zero or more <vari abl e> elements (see “variable” on page 5-108) to
specify global variables to be recorded with return events if the function’s
DWAREF defines the global variables when the detail level includes vari-
ables.

<confi g>
<gr oup nane=group_name>
[<level ../> .]
[<vari abl e name=[*]variable name/ > ..]
</ group>
</ config>

Defines settings for a named group of functions (see “config” on page 5-100). It may con-
tain zero or more <l evel > elements (see “level” on page 5-104) to specify settings for
particular detail levels for the named group of functions. The named levels must be one of
the three predefined levels, or a user-named custom level defined in a defaults element.

It may also contain zero or more <var i abl e> elements (see “variable” on page 5-108)
to specify global variables to be recorded with return events for all functions in the group
whose DWARF defines the global variables when the detail level includes variables.

<function ...>
<gr oup nane=group _name/ >
</ function>

Designates in a <f unct i on> element (see “function” on page 5-102) that the subject

function is a member of group_name. In this context it may not contain any <l evel > or
<vari abl e> elements.

5-103

NightTrace RT User’s Guide

level

5-104

<def aul t s>
<l evel name=level_name
[cal | er ={yes|no}]
[f rane={yes|no}]
[aggregate_|imit=limit]
[ar gs={yes|no}]
[addr _ar gs={yes|no}]
[return_val ={yes|no}]
[addr _ret ={yes|no}]
[vari abl es={yes|no}]
[er rno={yes|no}]
[excl ude={yes|no}]>
[<options [underscores={yes|no}]
[st d={yes|no}]
[xr egex=regeX]
[i regex=regex]/ >]
</l evel >
</ def aul t s>

Modifies the default settings (see “defaults” on page 5-101) for predefined detail levels or
defines a custom detail level. The attributes and elements control whether a function is
traced, and what details are recorded with the trace events if it is.

<opt i ons> elements (see “options” on page 5-107) corresponding to - - X* and - -i *
command line options may also be specified in a <I evel > element when it appears in a
<def aul t s> element. These may not be used to include any functions that were
excluded at the command line level or by the corresponding <opt i ons> element within
a <def aul t s> element, but may be used to restrict a level to a smaller subset for a spe-
cific detail level. One way of creating a new level that excludes all functions but one is:

<def aul t s>
<l evel nane=0>
<options xregex=".*" iregex="pthread create”/>
</l evel >
</ defaul t s>

The effective value of each attribute for a given function and detail level is determined by
searching for a definition of the attribute in the following places in the following order:

* a<| evel >element in the function’s <f unct i on> element;

* a <l evel > element in each of the function’s group memberships, in the
order the <gr oup> elements were listed;

* a<l| evel >eclement in the <def aul t s> element;

¢ the system defaults.

cal | er={yes|no}

frame={yes|no}

Application Illumination

The system defaults for the attributes are:

Table 5-4. System Defaults

Attribute Level 1 Level 2 Level 3 Custom
Levels
cal l er yes yes yes no
frame no yes yes no
aggregate limt 16 16 16 16
args no yes yes no
addr _args no no yes no
return_val yes yes yes no
addr _ret no no yes no
vari abl es no no yes no
errno no no yes no
excl ude no no no no

The details that can be recorded are partitioned into several named classes. To turn on one
of those classes, specify classname=yes as an attribute to the <l evel > element. For
example, to create a custom detail level to record only the function arguments, you would
code the following element in a <def aul t s> element:

<l evel nanme="argsonly” args=yes/>

To turn off an attribute specify attribute=no.

The return address in the caller is recorded on entry events.

The address of the frame of the caller is recorded on entry events.

aggregate_|imt=limit

ar gs={yes|no}

A limit is set on the number of bytes of an aggregate that can be recorded with an entry or
return event. The limit must be at least 16 bytes.

The arguments passed to the traced function are recorded on entry events, and out argu-
ments are recorded on return events.

5-105

NightTrace RT User’s Guide

addr _ar gs={yesj|no}

The variables pointed to by arguments that are pointers are recorded on entry events. The
variables pointed to by out arguments that are pointers are recorded on return events.
When these are aggregates (strings, arrays, structures, or unions), the number of bytes that
may be recorded is limited by the aggregate_| i m t setting.

return_val ={yes|no}

The return value of the function (if it has one) is recorded on return events.

addr _r et ={yes|no}

The variable pointed to by the return value, if it is a pointer, is recorded on return events.
When this is an aggregate (string, array, structure, or union), the number of bytes that may
be recorded is limited by the aggr egat e_I| i m t setting.

vari abl es={yes|no}

Variables or indirection through variables specified with <vari abl e> elements (see
“variable” on page 5-108) in <def aul t s>, <gr oup>, and <f unct i on> elements are
recorded on return events.

errno={yes|no}

The value of er r no is recorded on return events.

excl ude={yes|no}

Functions are entirely excluded from being recorded. Normally this would be set to yes
only on individual functions or groups of functions. Or, one could set it to yes in
<def aul t s>, then override that on individual functions or groups of functions in order
to only include those functions. For example, the following creates a new detail level that
excludes all but one function:

<def aul t s>
<l evel name=0 excl ude=yes/>
</ def aul t s>
<functi on nane=pt hread_creat e>
<l evel nanme=0 excl ude=no/ >
</ function>

See also “exclude” on page 5-102 for a shorthand way to exclude a function from all detail
levels.

5-106

options

event _i ds="N-[M]”

Application Illumination

<def aul t s>
<options [event ids="N-[M]"]
[aggregate |imt="limit"]
[nodebug={yes|no}]
[under scor es={yes|no}]
[st d={yes|no}]
[xr egex="regex’]
[i regex="regex’]
[fil enanme="filename’]
/>
</ def aul t s>

Specifies values for several command line options (see “defaults” on page 5-101, “nlight
--create” on page 5-68). Options specified after a - - conf i g option on the command line
will override those set in the config.xml file.

<def aul t s>
<l evel nane=levd _name...>
[<options [underscor es={yes|no}]
[st d={yes|no}]
[xr egex=regex]
[i regex=regex]/ >]
</l evel >
</ def aul t s>

Specifies level-specific overrides for command line options that exclude or include func-
tions by their name (see “level” on page 5-104, “- - i *, - - x*” on page 5-70).

Specifies the range of event ids to be mapped to entry and return events (see
“--event _i ds=N-[M]” on page 5-69).

aggregate |imt="Ilimt"

nodebug={yes|no}

Limits the number of bytes of an aggregate that may be recorded with an event (see
“--aggregate_| i mt=limit” on page 5-68). The limit must be at least 16 bytes.

Specifies whether function names that have no debug information are to be included or
excluded respectively (see “- - do_nodebug, --dont_nodebug” on page 5-69).

under scor es={yes|no}

Specifies whether function names that start with an underscore are to be included or
excluded respectively (see “--i underscores, --xunderscores” on page 5-70).
This may also be specified for a particular level (see “level” on page 5-104).

5-107

NightTrace RT User’s Guide

st d={yes|no}

Specifies whether function names in the C++ st d namespace are to be included or
excluded respectively (see “--i std, --xstd” onpage 5-71). This may also be speci-
fied for a particular level (see “level” on page 5-104).

i regex="regex’, Xregex="regex’

fil ename="filename’

variable

5-108

Specifies whether function names that match the POSIX regular expression are to be
included or excluded respectively (see “- - i r egex=regex, - - Xr egex=regex” on page
5-70). This may also be specified for a particular level (see “level” on page 5-104).

To specify multiple instances of these attributes, you must use separate <opt i ons> ele-
ments since XML syntax does not allow duplicate attribute names.

Specifies an object file, shared object file, debug-info file, archive, or program to read
DWAREF from to generate “wrapper” functions. These filenames may also be specified as
arguments to the nl i ght - - cr eat e command (see “nlight --create” on page 5-68).

To specify more than one filename, you must use multiple <opt i ons> elements since
XML syntax does not allow duplicate attribute names.

<confi g>
<vari abl e nane=variable name [t ype=t ype nane ptr={yes|no}]/>
</ config>

Defines a a global variable (see “config” on page 5-100). i | | um nat or does not actu-
ally use this element. It is populated by the nl i ght - - popul at e command (see “nlight
--populate” on page 5-71). You may wish to consult this list (or nl i ght --report
output, see “nlight --report” on page 5-72) to get the exact correct spelling of certain vari-
able names in name-mangling languages. The fully qualified name is reconstructed from
the mangled name, and may include elements that are implicit in the original source.

<{def aul t s|gr oup|f uncti on}>
<vari abl e nane=[*]variable name/ >
</ {def aul t s|gr oup|f unct i on}>

Names a variable (with optional indirection), when it appears in a <def aul t s>,
<group>, or <f unct i on> element (see “defaults” on page 5-101, “group” on page
5-103, “function” on page 5-102), that will be recorded on return events at detail levels
that have the var i abl es=yes attribute set (see “vari abl es={yes|no}” on page
5-106). Depending on which element it appears in, it may apply to all functions, all func-
tions in a group, or a particular function (for <def aul t s>, <gr oup>, or <f unct i on>
elements respectively). The function’s DWARF must include a definition of the variable
in question. No error message is generated if it is absent from the DWAREF.

wrapper

Application Illumination

<function ...>
<wr apper >assembly “ wrapper” function</ wr apper >
</ function>

Specifies a hand coded “wrapper” function for a specific function (see “function” on page
5-102). The text between the opening and closing tags is copied verbatim into the “wrap-
per” function assembly language source file. It may not be used with the other <wr ap-
per _*> elements.

wrapper_file_scope

wrapper_post

wrapper_pre

<function ...>
<wr apper _fil e_scope>somecode</ w apper_fil e_scope>
</ function>

Specifies assembly language code to be inserted in “file scope” just before the “wrapper”
function (see “function” on page 5-102). It may not be used with a <wr apper > element.

<function ...>
<wr apper _post >some assembly code</ wr apper _post >
</ function>

Specifies assembly language code to insert into a generated “wrapper” function after the
return event is recorded but just before actually returning (see “function” on page 5-102).
One use might be to insert some debug code into the application. It may not be used with
a <wr apper > element.

<function ...>
<wr apper _pr e>some assembly code</ wr apper _pr e>
</ function>

Specifies assembly language code to insert into a generated “wrapper” function before the
entry event is recorded (see “function” on page 5-102). One use might be to test for a sit-
uation where you don’t want an event to be recorded. It may not be used with a <wr ap-
per > element.

5-109

NightTrace RT User’s Guide

wrapper_real

5-110

<function ...>
<wr apper _r eal >assembly code call to real function</ wr apper _r eal >
</ function>

Specifies assembly language code to call the real function in place of the default code in a
generated “wrapper” function (see “function” on page 5-102). It may not be used with a
<wr apper > element.

Here’s an example of intercepting a function called through a pointer parameter in
pt hread_creat e() inordertocalltrace_regi ster_thread() inthe newly cre-
ated thread:

<function name=pt hread_cr eat e>
<wr apper_fil e_scope>
HE B R R R R R

Set up a function that gets called by the new
thread instead of start_routine. This function
gets an arg that informs it of the original
function and its arg.

HHHBHHBHHBHH R R R R R R R R
.type prestart_routine, @unction
prestart_routine:

pushg % di ; # save the arg while | do a call
call trace_register_thread
movqg (% sp), % ax # get the arg back
novg 8(% ax), % di # get the original arg
movg (% ax), % 11 # get the original start_routine
call *%11 # call it
pushqg % ax # save return val ue
novqg 8(% sp), % di # free nyarg
call free
popq % ax;
addq $8, % sp
ret
.Ssize prestart_routine,.-prestart_routine

</ wrapper_file_scope>

<wr apper_real >
allocate arg for the interceptor routine (thread safe)
nmovqg $16, % di
call malloc

store the original start_routine
and arg into the new arg

movq - 24(% bp), % 11 # start_routine
novg % 11, (% ax)
nmovq -32(% bp), % 11 # arg

novg % 11, 8(% ax)

set up paraneters to the interceptor routine

novqg - 8(% bp), % di # newt hr ead

novq - 16(% bp), % si # attr

lea prestart_routine(%ip),%dx # interceptor start
routine

novqg % ax, 9% cx # nyarg

call the real function passing my interceptor routine
call __real_pthread_create
</ wrapper _real >
</ function>

Application Illumination

Note that to call the real function from a “wrapper” you call __r eal _functi on, other-
wise, the call to function would be diverted to __wr ap_f unct i on and become an
infinite recursion.

The NightTrace function t race_r egi st er _t hr ead() is obsolete in the latest Night-
Trace release, but is retained in this example because it makes such a good illustration of
doing something complex with inserting code in an illuminator.

5-111

NightTrace RT User’s Guide
Examples

Appendix E includes several examples with step-by-step instructions for using Applica-
tion Illumination in a variety of scenarios.

See “NightTrace Application Illumination Examples” on page E-1.

5-112

6
Performance Tuning

The NightTrace default configuration is often sufficient for most tracing needs, however,
situations with exceptionally high trace event rates or those requiring precise control over
disk activity may require adjustment. This chapter discusses the following:

* “Preventing Trace Event Loss” on page 6-1
* “Conserving Disk Space” on page 6-3

* “Conserving Memory and Accelerating ntrace” on page 6-3

Preventing Trace Event Loss

By default, NightTrace copies all user trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events as long as it can copy the shared memory buffers to the output device faster than
the application or kernel can fill up all remaining shared memory buffers.

NightTrace reports lost trace events in several ways:

® The - -i nf 0 options to nt r aceud and nt r acekd describe the number
of lost events

* The Daemon Control area in nt r ace displays event loss counts

® NightTrace display pages include a visual indicator on the ruler, a capital L
character, indicating where event loss started to occur

* An internal trace point, NT_LCST_DATA, is included in the trace data out-
put at the point where trace events began to be lost

NOTE

Events that are overwritten in file-wrap and buffer-wrap modes
are not considered lost events and are not reported.

Daemon Scheduling Adjustment

The scheduling policy, priority, and CPU bias of daemons can be adjusted using the fol-
lowing methods:

6-1

NightTrace RT User’s Guide

* Invoke ntraceud and ntracekd with the --priority=P, --pol -
i cy=P, and - - pr ocessor =C command line options to select scheduling
priority, policy and CPU binding.

¢ Select the scheduling policy, scheduling priority and CPU bias from the
Runtime tab of the Daemon dialog in the nt r ace tool.

Increasing Trace Buffer Size

The number of trace buffers and the size of trace buffers can be adjusted using the follow-
ing methods:

® Specify larger values using the - - nunbuf s and - - buf | en options to
nt r aceud. The default values for these options are 8 and 32768, respec-
tively.

® Specify larger values for the ntc_num buffers and ntc_buffer_length fields
in the nt confi g_t configuration record passed to t r ace_begi n. The
default values for these fields are 8 and 32768, respectively. Note that
these configuration values will be ignored if the corresponding user dae-
mon has already started and the value of ntc_daemon_preferred is set to
TRUE.

® Specify larger values using the - - buf f er - scal e option to nt r acekd.

* Use the Daemon Definition dialog within nt r ace to increase the num-
ber of buffers and buffer size, where applicable.

When increasing user trace buffer sizes, your request may be rejected if the total trace buf-
fer shared memory size exceeds system limitations. You can increase the system shared
memory limits by adjusting the kernel.shmmax and kernel .shmall variables using the Sys -
tctl (8) command.

For user trace buffers, the number of buffers and buffer length must be individually a
power of two. These values are automatically increased to the next highest power of two
if this is not the case.

Since daemons are notified immediately when a single trace buffer fills, adding additional
buffers is sometimes as effective as increasing the size of buffers. The kernel and applica-
tions continue to log trace events to the next shared memory buffer while the daemon
flushes the filled buffer.

Programmatic Flushing

6-2

For applications which log trace events, the t r ace_f | ush API routine can be used to
cause the associated user daemon to wake up and flush all filled buffers.

Modifying the sizes and number of trace buffers as described in the previous section is
usually more effective than relying on t r ace_f | ush, since the daemon automatically
wakes and empties buffers as individual buffers are filled.

Performance Tuning

Conserving Disk Space

If disk space is an important consideration and you are most interested in the latest events
that are logged, use of file-wrap and buffer-wrap modes is helpful.

In buffer-wrap mode, no disk activity occurs until the daemon is terminated or an explicit
flush is requested. When all trace buffers are filled, the oldest events are overwritten by
the newest events.

In file-wrap mode, a file size maximum is imposed and the oldest events are overwritten
by the newest events when the maximum size is reached.

Both of these options can be useful when desiring to obtain trace data from a situation
which rarely appears.

For example, the following commands might be used to capture kernel and user trace data
for an extended period of time (even hours or days) until your application detects a spe-
cific situation:

ntracekd --size=20M ker nel -dat a
ntraceud --fil ewap=10M user-data
./a.out

ntraceud --quit user-data
ntracekd --quit kernel -data

V VV VYV

When capturing kernel data from the ntrace graphical analysis tool and streaming the data
for immediate analysis, buffer-wrap mode is also very useful.

The Linux kernel can generate huge numbers of events on busy systems. Use of buffer-
wrap mode allows you to take snapshots of kernel data for immediate analysis or to be
saved for future analysis. Select the Buffer Wrap option on the General tab of the
Daemon dialog and subsequently press the Flush button in the Daemon Control area
of the NightTrace Main window when you wish to sample kernel data.

Conserving Memory and Accelerating ntrace

nt r ace can be a memory-intensive tool. By default, when nt r ace starts up, it loads all
trace event information into memory; therefore, the more trace events in your trace event
file(s), the more memory nt r ace uses. When you move the scroll bar on a display page
to change the displayed interval, nt r ace processes all trace events between the last inter-
val and this one; if there are many trace events, the display update (or search) may be
slow. To conserve memory and accelerate nt r ace:

¢ Log only trace events you are really interested in.

* Disable uninteresting events via the - - di sabl e option to nt r aceud,
the - - event s option to nt r acekd command lines or via the Events
tab of the Daemon dialog in the nt r ace tool.

* Invoke nt race only with the trace event files that are essential to your
analysis.

NightTrace RT User’s Guide

6-4

* Once ntrace is launched, select a data region of interest and discard all
other events to reduce the working set size by selecting the Discard
Events... option from the Events menu of a display page.

® Operate the daemons in file-wrap or buffer-wrap modes to reduce data set
size in favor of keeping the most recent events.

7
Invoking NightTrace

NightTrace is invoked using nt r ace which is normally installed in / usr/ bi n.

The full command syntax for nt r ace is:

ntrace [-h] [--help] [--hel p-sumary]
[-v] [--version] [-I] [--listing]
[--stats] [-n] [--notiner]
[-s val] [--start={offset | timg{ s | u} | percent%}]
[-e val] [--end={ offset | time{ s | u} | percent% }]
[-x] [--nopages]
[-u] [--use-session] [--sunmmary=criteria]
[--inport=a.out | a.out]
[--verbose]
[- - crash=crash _optiong|
[file...] [programfile]

Depending on the options and arguments specified to nt r ace, NightTrace:

loads all trace event information into memory

checks the syntax of specifications in each file argument
processes each file argument

loads any display pages and their objects into memory

presents any timeline panels (see “Timeline Panels” on page 12-1)

displays the NightTrace Main Window (see “The NightTrace Main Win-
dow” on page 8-1)

Command-line Options

The command-line options to nt r ace are:

-h

--hel p

Displays nt r ace invocation syntax and a list of all command line options to stan-
dard output.

- - hel p- summary

Displays help specific to the - - Summar y option to standard output.

See “Summary Criteria” on page 7-6 for more information.

7-1

NightTrace RT User’s Guide

7-2

-V

--version

Displays the current version of NightTrace to standard output and exits.

- - cr ash=crash_options

Displays available kernel trace data at the time of system crash. This option is use-
ful if kernel tracing was running when the system crashed. It extracts kernel trace
data from the in-memory kernel buffers at the time of the crash.

The crash option parameter may be either the time-date format of the crash dump
under/ var/ crash/ save (or / var/ kdunp) or the full paths of the namelist and
vmcore files if the default crash path has been changed. For example:

- - crash=08.02.06-19.11.47
- - cr ash=/crashfiles/vmlinux-33,/crashfiles/vmcore-33.gz

The - - cr ash option is only supported under Redhawk 4.1 or later and may not be
available on AMD64 systems.

i sting

Displays a chronological listing of all trace events and their arguments from all sup-
plied trace-event data files to standard output and exits.

The output includes the following information about a trace event:

* relative timestamp

¢ trace event ID

® any trace event argument(s)

¢ the process identifier (PID), process name, or thread name

® the system node name (when data sets from multiple systems are
present)

* the CPU

The timestamp for the first trace event is zero seconds (0S). All other timestamps
are relative to the first one.

If you supply an event map file on the invocation line, NightTrace displays symbolic
trace event names instead of numeric trace event IDs, and displays trace event argu-
ments in the format you specify in the file, rather than the hexadecimal default for-
mat. For more information on event map files, see “Event Map Files” on page 7-11.

NOTE

The CPU field is only meaningful for kernel trace events; for user
trace events, the CPU field is displayed as CPU=?7.

Invoking NightTrace

--stats

Displays simple overall statistics about the trace-event data files to standard output
and exits.

The statistics are grouped by trace event file, with cumulative statistics for all trace
event files.

The statistics include:
¢ the number of trace event files
¢ their names
¢ the number of trace events logged
¢ the number of trace events lost
For example, the following command:
ntraceud /tnp/data

collects trace data from any user applications which are logging the data to
/tmp/data. (see “Capturing User Events with ntraceud” on page 3-1).

Issuing the command:
ntrace --stats /tnp/data

results in the output similar to the following (assuming user application were actu-
ally logging data):

Read 1 trace event segnent tinmestanped with Intel TSC.
(1) User trace event log file: /tnp/data.

2268 trace events saved.

0 trace events | ost.

2.9707482s tinme span, from 0.0000000s to 2.9707482s.

2268 total events read from disk.

2268 total events saved in menory.

0 total trace events |ost.

2.9707482s total tine span saved in nenory.

Detailed summary information about a trace data set is available via the
- - sunmmary option.

-n
--noti nmer

Excludes from analysis trace events for system timer interrupts in the kernel trace
file.

NightTrace RT User’s Guide

-s val
--start={offset|time{s |u} | percent%;}

Excludes from analysis trace events before the specified trace-event offset, relative
time in seconds (S) or microseconds (U), or percent of total trace events.

The specified values can be:
offset

Load trace events after the specified trace event offset.
time{s|u}

Load trace events after the specified relative time in seconds (S) or microsec-
onds (u).

percent%

Load trace events after the specified percent of total trace events. The %is
required.

If you invoke NightTrace with several - - st art options, NightTrace pays attention
only to the last one.

-e va
--end={ offset | time{ s |u } | percent% }

Excludes from analysis trace events after the specified trace-event offset, relative
time in seconds (S) or microseconds (U), or percent of total trace events.

The specified values can be:
offset

Load trace events before the specified trace event offset.
time{s |u}

Load trace events before the specified relative time in seconds (S) or micro-
seconds (U).

percent%

Load trace events before the specified percent of total trace events. The %is
required.

If you invoke NightTrace with several - - end options, NightTrace pays attention
only to the last one.

- X
--noti el i nes

Starts NightTrace but does not include any timeline panels.

7-4

-u

Invoking NightTrace

--use-sessi on

Automatically loads the last session used in a previous invocation of NightTrace.
All files associated with the previous session are automatically loaded.

- - sunmar y=criteria

Provides a textual summary of specified trace events using the supplied criteria.
Summary results are sent to standard output.

See “Summary Criteria” on page 7-6 for details regarding valid criteria.

--i nport=a. out
a. out

These options specify the executable file containing daemon definitions and the
location of format tables and event description files. This information is embedded
in executable files when they contain instrumented code generated by the Night-
Trace illuminator tool.

A daemon definition is created with the number of buffers, buffer length, and trace
key file information extracted from the file. If the executable file does not include
such information, ntrace queries the user for the name of the trace key file, and uses
default values for other daemon settings.

NightTrace loads all event description and format table files gleaned from the exe-
cutable.

Specifying a. out as a standalone argument processes executable files in the same
manner as those specified with - - i npor t . In addition, NightTrace loads the user
trace data file as specified by information embedded by the built-in “main” illumi-
nator if it was included in the program. NightTrace also records the pathname of the
specified file and associates it with any references to the base name of the file in
| ookup_pc() references during the NightTrace session. For example:

ntrace /tnp/a.out

References to “a.out” in | ookup_pc() expressions in the session will use
/tnp/ a. out as the path to the file from which PC descriptions (routine, file and
line number) are read.

--verbose

file...

In addition to the cumulative statitistics normally output, this option provides
detailed information about each occurrence of the item being summarized.

You can invoke NightTrace with arguments such as trace event files, event map
files, page configuration files, session configuration files, or trace data segments.

See “Command-line Arguments” on page 7-10 for a description of these types of
files.

NightTrace RT User’s Guide

By default, when NightTrace starts up, it reads and loads all trace events from all trace
event files into memory. The - - pr ocess, --start, and - - end options let you pre-
vent the loading (but not the reading) of certain trace events.

For example, the following invocation displays only those trace events logged 0.5 seconds
or more after the start of the data set.

ntrace --start=0.5s /tnp/data

Summary Criteria

The - - sunmar y option is supplied with criteria for command-line usage without ever
using the GUI to perform summaries.

NOTE

The - - ver bose option provides detailed information about each
occurance of the item being summarized in addition to the cumu-
lative statitistics normally output.

This criteria consists of a comma-separated list of any of the following:

crit
This allows previously-defined profiles to be referenced when doing com-
mand line summaries.
To use previously-defined profiles when executing a summary from the com-
mand line, specify the desired profile name (crit) on the command line along
with the NightTrace session configuration file which contains that profile

ev: event
Summarizes the number of occurrences of the specified event.

f:func
Summarizes all function entry events for the specified function func. This
option is only useful if you have loaded Application [llumination data. See
“Application Illumination” on page 5-1 for more infomation.

fr:func
Summarizes all function return events for the specified function func. This
option is only useful if you have loaded Application Illumination data. See
“Application [llumination” on page 5-1 for more infomation.

fe:func

Summarizes all function entry and return events for the specified function
func. This option is only useful if you have loaded Application Illumination
data. See “Application Illumination” on page 5-1 for more infomation.

7-6

Invoking NightTrace

fs:func

Summarizes all function call states for the specified function func. This
option is only useful if you have loaded Application Illumination data. See
“Application Illumination” on page 5-1 for more infomation.

fs:*

Summarizes all function calls statistics for all functions. This option is only
useful if you have loaded Application Illumination data. See “Application
[llumination” on page 5-1 for more infomation.

p: process
Summarizes all events associated with the specified process.
t : thread

Summarizes all events associated with the specified thread.

s: call
Summarizes all events associated with the entry or resumption of the specified
system call.

sl : call
Summarizes all events associated with the exit or suspension of the specified
system call.

se: call

Summarizes all events associated with the specified system call.
ss: call

Summarizes all occurrences of a state defined by system call activity for the
specified system call.

i :intr

Summarizes all events associated with the entry or resumption of the specified
interrupt intr.

il:intr

Summarizes all events associated with the exit or interruption of the specified
interrupt intr.

i e:intr
Summarizes all events associated with the specified interrupt intr.
i s:intr

Summarizes all occurrences of a state defined by interrupt activity for the
specified interrupt intr.

NightTrace RT User’s Guide

e. exc

Summarizes all events associated with the entry or resumption of the specified
exception exc.

el : exc

Summarizes all events associated with the exit or interruption of the specified
exception exc.

ee:. exc
Summarizes all events associated with the specified exception exc.
es:. exc

Summarizes all occurrences of a state defined by exception activity for the
specified exception exc.

ski p: on

Suppresses summarization for all subsequent criteria in the list (or until a
ski p: of f criteria is seen) if there are no summarization matches for the cri-
teria.

ski p: of

Reactivates summarization for all subsequent criteria in the list (or until a
ski p: on criteria is seen) if there are no summarization matches for the crite-
ria.

st : start- end

Summarizes all occurrences of the state defined by the starting event start and
terminated by the ending event end.

These may be combined together along with tagged criteria from the Summarize
NightTrace Events dialog in a comma-separated list.

Consider the following example:

ntrace --summary=ev:5,ss:read,ss:alarmcrit_0 event_file ny_session

Using the trace event file event _fi | e as the trace data source (see “Trace Event Files”
on page 7-11), NightTrace will:

1.

3.

7-8

summarize the number of occurrences of user events with a trace event 1D
of 5 as well as information about the gaps between the events (mi n, max,

avg)

summarize the number of occurrences of r ead and al ar msystem call
states that occur in the data source; provide information pertaining to the
duration of each state (m n, max, avg, sum); and provide information
related to the gaps between each state (m n, max, avg, sum

perform a summary using the profile defined by crit_0 in the
My _sessi on session file (see “Session Configuration Files” on page
7-24)

Invoking NightTrace

NOTE

In order to use a summary criteria tag on the command line, the
NightTrace session configuration file in which it was defined
must be specified on the command line as well (see “Session Con-
figuration Files” on page 7-24).

The following criteria may be specified alone (not part of a comma-separated list):
k[: proc]

Summarize kernel states: system calls, exceptions, and interrupts. If : proc is
provided, only those states involving process proc are summarized.

ksc[: proc]

Summarize kernel system call durations. If: procis provided, only those sys-
tem calls involving process proc are summarized.

kexc[: proc]

Summarize kernel exception durations. If : proc is provided, only those
exceptions involving process proc are summarized.

ki ntr[: proc]

Summarize kernel interrupt durations. If : proc is provided, only those inter-
rupts involving process proc are summarized.

evt [: proc]

Summarize the number of occurrences of all events named in event map files.
User events which are not named in event map files are not shown. If: procis
provided, only those events associated with proc are summarized.

proc

Summarize the number of events for each process.

NightTrace RT User’s Guide

Command-line Arguments

7-10

You can supply filenames as arguments to the nt r ace command when invoking Night-
Trace. These files may contain trace event data, display page layouts, additional configu-
ration information, or information related to a previously-saved session.

These arguments can be:

trace event files

Trace event files are captured by a user or kernel trace daemon and contain
sequences of trace events logged by your application or the operating system kernel.

See “Trace Event Files” on page 7-11 for more information.
event map files

Event map files map short mnemonic trace event names to numeric trace event IDs
and associate data types with trace event arguments. These ASCII files are created
by the user.

See “Event Map Files” on page 7-11 for more information.
session configuration files

Session configuration files define a list of daemon sessions and their individual con-
figurations. In addition, session configuration files contain definitions of profiles
and search and summary configurations from previous uses of the session. Also,
session configuration files contain a list of any files the user associated with the ses-
sion, such as event map files and trace data files.

See “Session Configuration Files” on page 7-24 for more information.
trace data segments

Trace data segments are conglomerations of all trace data saved in a much more effi-
cient format than raw trace event files providing for faster initialization at startup.
These files are created using the Save Trace Segments... menu choice of the
File menu on the NightTrace Main Window.

See “Trace Data Segments” on page 7-25 for more information.
program file

Application Illumination embeds in executable object files paths to various support
files that nt r ace can extract:

* cvent map files defining names for the events generated for function
entry and return points;

* configuration files containing format tables to neatly format the
events and their arguments generated for function entry and return
points;

Invoking NightTrace

a trace event file if the mai n illuminator is used (this file may be recorded using a
relative path; if this is the case, ntrace must be invoked with the same current work-
ing directory that the program file was executed with).

See “Application Illumination” on page 5-1 for more information.

Trace Event Files

Trace event files are created by user and kernel trace daemons. They consist of header
information and individual trace events and their arguments as logged by user applications
or the operating system. NightTrace detects trace event files as specified on the command
line and does the required initialization processing so that the trace events contained in the
files are available for display.

To load a trace event file, either:

¢ specify the trace event file as an argument to the nt r ace command when
you invoke NightTrace, or

* select the Open Files... menu option from the File menu of the Night-
Trace main window and select the trace event file from the file selection
dialog

Event Map Files

NightTrace does not require you to use event map files. However, using these files can
improve the readability of your NightTrace displays.

An event map file allows you to associate meaningful names with the more cryptic trace
event ID numbers. It also allows you to associate additional information with a trace
event including the number of arguments and the argument conversion specifications or
display formats. Although NightTrace does not require you to use event map files, labels
and display formats can make graphical NightTrace displays and textual summary infor-
mation much more readable.

To load an existing event map file, perform any of the following:

¢ specify the event map file as an argument to the nt r ace command when
you invoke NightTrace

* select the Open Files... menu item from the File menu on the Night-
Trace Main Window

You can create an event map file with a text editor before you invoke NightTrace.

There is one trace event name mapping per line. White space separates each field except
the conversion specifications; commas separate the conversion specifications. NightTrace
ignores blank lines and treats text following a # as comments.

The syntax for the trace event mappings in the event map file follows:

NightTrace RT User’s Guide

event: ID “event name’ [nargs [conv_spec, ...]]
Fields in this file are:
event :

The keyword that begins all trace event name mappings.

ID
A valid integer in the range reserved for user trace events (0-4095, inclusive).
Each time you call a NightTrace trace event logging routine, you must supply
a trace event ID.

event_name

A character string to be associated with event_|D. Trace event names must
begin with a letter and consist solely of alphanumeric characters and under-
scores. Keep trace event names short; otherwise, NightTrace may be unable
to display them in the limited window space available.

The following words are reserved in NightTrace and should not be used in
uppercase or lowercase as trace event names:

- NONE

- ALL

- ALLUSER
- ALLKERNEL
- TRUE

- FALSE

- CALC

TIP

Consider giving your trace events uppercase names in event map
files and giving any corresponding profile referring to those
events the same name in lowercase. For more information about
profiles of events, see “Profile References” on page 16-195.

If your application logs a trace event with one or more numeric arguments, by default
NightTrace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs

The number of arguments associated with a particular trace event. If nargsis
too small and you invoke NightTrace with the event map file and the
--li sting option, NightTrace shows only nargs arguments for the trace
event.

7-12

Invoking NightTrace

conv_spec

A conversion specification or display format for a trace event argument.
NightTrace uses conversion specification(s) to display the trace event’s argu-
ment(s) in the designated format(s). There must be one conversion specifica-
tion per argument. Valid conversion specifications for displays include the fol-
lowing:

%l

signed decimal integer (default)

%o

unsigned octal integer
o

unsigned hexadecimal integer
% f

signed double precision, decimal floating point
For more information on these conversion specifications, see pri nt f (3) .
The following line is an example of an entry in an event map file:
event: 5 "Error” 2 %& %f

NightTrace displays trace event 5 and labels the trace event “Er r or ”. Trace event 5 also
has two (2) arguments. NightTrace displays the first argument in unsigned hexadecimal
integer (%) format and the second argument in signed double precision decimal floating
point (9% f) format. (You may override these conversion specifications when you config-
ure display objects.)

For more information on event map files, see “Pre-Defined Strings Tables” on page 7-17.

7-13

NightTrace RT User’s Guide

Table Files

A table file contains information used to obtain verbose descriptions of events or argu-
ments associated with events..

A table file is an ASCII file containing such definitions as:

® string table definitions (see “String Tables” on page 7-15)

¢ format table definitions (see “Format Tables” on page 7-20)

NOTE

Any tables found in page configuration files are imported into the
session; when the session is saved, these tables are saved with the
session. Tables are no longer saved as part of the page configura-
tion files.

NOTE

If you define a string table or format table more than once in a
configuration file, NightTrace merges the two tables; if there are
duplicate entries, values come from the last definition.

To load an existing table file, either:

¢ specify the configuration file as an argument to the ntrace command
when you invoke NightTrace

® Select the Open Files... menu option from the NightTrace menu of the
NightTrace Main window and select the configuration file from the file
selection dialog

Tables

The table file may contain two types of tables, both of which can improve the readability
of your NightTrace displays:

* string tables (see “String Tables” on page 7-15)
¢ format tables (see “Format Tables” on page 7-20)

A table lets you associate meaningful character strings with integer values such as trace
event arguments. These character strings may appear in NightTrace displays.

The following table names are reserved in NightTrace and should not be redefined in
uppercase or lowercase:

- event

- pid

7-14

Invoking NightTrace

- tid

- bool ean

- nanme_pid

- nane_tid

- node_nane

- pi d_nodename

- tid_nodename

- vector

- syscall

- device

- vect or _nodename
- syscal | _nodename
- devi ce_nodename

- vararg_functions

The results are undefined if you supply your own version of these tables.

NOTE

The only way to put tables into your configuration file is by text
editing the file before you invoke NightTrace. To avoid any for-
ward-reference problems, define all string tables before any for-
mat tables.

For more information on pre-defined tables, see “Pre-Defined Strings Tables” on page
7-17, and page 17-7.

If you define a string table or format table more than once in a configuration file, Night-
Trace merges the two tables; if there are duplicate entries, values come from the last defi-
nition.

String Tables

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of values. A string table associates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for a string table is:

string_ table (table name) = {
item = int_const, “sr const” ;

7-15

NightTrace RT User’s Guide

[default _item = “sr_const” ;]

}s

Include all special characters from the syntax except the ellipsis (. . .) and square brackets

(§p2
The fields in a string table definition are:
string_table
The keyword that starts the definition of all string tables.
table name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this string table.

An item line associates an integer value with a character string. This line extends from the
keyword i t emthrough the ending semicolon. You may define any number of item lines
in a single string table. The fields in an item line are:

item
The keyword that begins all item lines.
int_const

An integer constant that is unique within table_name. It may be decimal, octal,
or hexadecimal. Decimal values have no special prefix. Octal values begin
with a zero (0). Hexadecimal values begin with OX.

str_const

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \ n for a newline, not a carriage return in the middle of the
string.

The optional default item line associates all other integer values (those not explicitly refer-
enced) with a single string.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get _string() call with
this table name as the first parameter needs no second parameter.

NightTrace returns a string of the item number in decimal if:

¢ there is no default item line, and the specified item is not found

® the string table is not found (The first time NightTrace cannot find a
particular string table, NightTrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.

7-16

Invoking NightTrace

string_table (curr_state) = {
item= 3, “Processing Data”;
item= 1, “Initializing”;
item= 99, “Termnating”;
default _item= “Qher”;

}s

In this example, your application logs a trace event with a numeric argument that identi-
fies the current state (cur r _st at e). This argument has three significant values (3, 1,
and 99). When cur r _st at e has the value 3, the NightTrace display shows the string
“Pr ocessi ng Dat a.” When it has the value 1, the display shows “I ni ti al i zi ng.”
When it has the value 99, the display shows “Ter mi nati ng.” For all other numeric
values, the display shows “Qt her .”

For more information on string tables and the get _stri ng() function, see page 16-186.

Pre-Defined Strings Tables

The following string tables are pre-defined in NightTrace:

event

pi d

The event string table is a dynamically generated table which contains all trace
event names.

This table is indexed by an event code or an event code name. Examples of using
this table are:

get _string(event, 4306)
get iten(event, “IRQ EXIT")

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates global process ID numbers with process names of the processes being traced.
In kernel tracing, it associates process ID numbers with all active process names and
resides in the dynamically generated vect or s file.

NOTE

When analyzing trace event files from multiple systems, process
identifiers are not guaranteed to be unique across nodes. There-
fore, accessing the pi d table may result in an incorrect process
name being returned for a particular process ID. To get the cor-
rect process name for a process ID, the pi d table for the node on
which the process identifier occurs should be used instead. The
pi d table is maintained for backwards compatibility.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get _string(pid, pid())
get item(pid, “ntraceud”)

7-17

NightTrace RT User’s Guide

7-18

tid

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates NightTrace thread ID numbers with thread names. In kernel tracing, this table
is not used.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get _string(tid, tid())
get _iten(tid, “cleanup_thread”)

bool ean

A string table which associates O with f al se and all other values with t r ue.

nane_pi d

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s process ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get _string(nane_pid, node_id())
get _itenm(name_pid, “systeml23”)

Consider the following example:
get _string(get_string(name_pid, node_id()), pid)

The nested call to get _stri ng(nanme_pi d, node_i d()) returns the name of
the process ID table on the system where this trace point was logged. We then index
that table with the current process ID (since processes IDs are guaranteed to be
unique when analyzing mutipile trace event files obtained from multiple systems) to
obtain the name of the current process.

NOTE

The predefined pr ocess_nane() function is equivalent to the
expression above - and much simpler to write! (See “pro-
cess_name()” on page 16-57 for more information.)

nane_tid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s thread ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get _string(nanme_tid, 1)

Invoking NightTrace

get _item(name_tid, “charon”)
node_nane

A dynamically generated string table internal to NightTrace. It associates node ID
numbers (which are internally assigned by NightTrace) with node names.

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get _string(node_name, node_id())
get i ten(node_nane, “gandal f”)

pi d_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, it
associates process ID numbers with all active process names for a particular node
and resides in that node’s vect or s file. In user tracing, it associates global process
ID numbers with process names of the processes being traced for a particular node.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get _string(pid_sbcl, pid())
get iten(pid_engsim “nfsd”)

t i d_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, this
table is not used. In user tracing, it associates NightTrace thread ID numbers with
thread names for a particular node.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get _string(tid_harpo, 1234567)
get _iten(tid_shark, “reaper_thread”)

vect or

See page 17-7.
syscal |

See page 17-7.
devi ce

See page 17-7.
vect or _nodename

See page 17-7.
syscal | _nodename

See page 17-7.

7-19

NightTrace RT User’s Guide

Format Tables

7-20

vararg_functions

This table is generated by nl i ght (see “Application Illumination” on page 5-1). It
identifies functions that have variable numbers of arguments.

The table is indexed by the trace ID value of the function’s ENTRY event and
returns the string “t rue” for functions have have variable numbers of arguments
and “f al se” otherwise. Vararg functions do not have any RETURN _ events asso-
ciated with them (see “Limitations” on page 5-5 for more information).

devi ce_nodename
See page 17-7.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get _stri ng() function to look up values in string tables.

Like string tables, format tables let you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for a format table is:

format _table (table name) = {

[index_type = “event”;]
item = int_congt, “format string” [, “valuel”] ... ;
[default_item = “format string” [, “valuel” 1 ... ;]

}s

Include all special characters from the syntax except the ellipses (. . .) and square brack-

ets ([]).
The fields in a format table are:
format _table
The keyword that begins the definition of all format tables.
table_name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this format table.

An index_type of “event” may be specified to direct nt r ace to use this table to format
events and their arguments. More than one table may have the event index_type.

An item line associates a single integer value with a character string. This line extends
from the keyword i t emthrough the ending semicolon. You may have any number of
item lines in a single format table.

Invoking NightTrace

The fields in an item line are:
item
The keyword that begins all item lines.
int_const

An integer constant that is unique within table_name. This value may be deci-
mal, octal, or hexadecimal. Decimal values have no special prefix. Octal val-
ues begin with a zero (0). Hexadecimal values begin with OX.

format_string

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \ n for a newline, not a carriage return in the middle of the
string.

The string contains zero or more conversion specifications or display formats.
Valid conversion specifications for displays include the following:

%
Signed integer
%
Unsigned decimal integer
%l
Signed decimal integer
%
Unsigned octal integer
RZ
Unsigned hexadecimal integer
% f
Signed double precision, decimal floating point
%
Signed decimal floating point, exponential notation
%
Single character
%

Character string

7-21

NightTrace RT User’s Guide

7-22

%%
Percent sign
\n
Newline
For more information on these conversion specifications, see pri nt f (3) .

format_string may contain any number of conversion specifications. There is a
one-to-one correspondence between conversion specifications and quoted val-
ues. A particular conversion specification-quoted value pair must match in
both data type and position. For example, if format_string contains a % and a
%l, the first quoted value must be of type string and the second one must be of
type integer. If the number or data type of the quoted value(s) do not match
format_string, the results are not defined.

valuel

A value associated with the first conversion specification in format_string.
The value may be a constant string (literal) expression or a NightTrace expres-
sion. A string literal expression must be enclosed in double quotes. An
expression may be aget _string() call (see page 16-186). For more infor-
mation on expressions, see “Using Expressions” on page 16-1.

The optional def aul t _i t emline associates all other integer values with a single format
item. NightTrace flags it as an error if an expression evaluates to a value that is not on an
item line and you omit the default item line.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get _f or mat () call with
this table name as the first parameter needs no second parameter.

The following lines provide an example of a string table and format table in a
configuration file.

string_table (curr_state) = {

i tem
i tem
i tem

= 3, “Processing Data”;
1, “Initializing”;
= 99, “Termnating”;

default _item= “Qher”;

}s

format _table (event _info) = {

i tem
i tem

i tem
(y”'

= 186, “Search for the next tinme we process data”;
= 25, “The current state is %",

“get _string (curr_state, argl())”;
999, “Current state is %, current trace event is

“get _string (curr_state, argl())”,

Invoking NightTrace

“offset()”;
default _item= “Qher”;

}s

In this example, the first numeric argument associated with a trace event represents the
current state (curr _st at e), and the event _i nf 0 format table represents information
associated with the trace event IDs. When trace event 186 occurs, a get _for -
mat (event _i nf o, 186) makes NightTrace display:

Search for the next time we process data

When trace event 25 occurs, NightTrace replaces the conversion specification (%) with
the result of the get _string() call. Ifargl() has the value 1, then NightTrace dis-

plays:
The current state is Initializing

When trace event 999 occurs, NightTrace replaces the first conversion specification (%)
with the result of the get _string() call and replaces the second conversion
specification (%) with the integer result of the numeric expression of f set (). If
ar g(1) has the value 99 and of f set () has the value 10, then NightTrace displays:

Current state is Terminating, current trace event is
10

For all other trace events, NightTrace displays “Ct her ™.
For more information on get _stri ng(), see “get string()” on page 16-186.

For more information on format tables and the get _f or mat () function, see “get_for-
mat()” on page 16-190.

For more information about ar g1() , see “arg()” on page 16-22.

For more information about of f set (), see “offset()” on page 16-51.

7-23

NightTrace RT User’s Guide

Session Configuration Files

A session configuration file defines a NightTrace session.

NOTE

NightTrace remembers the last session loaded or saved on a
per-user basis. To simplify restarting NightTrace at another time
to analyze the same data, the usage of the - - use- sessi on (- u)
command line option (see “- U - - Use- Sessi on” on page 7-5)
is strongly encouraged to invoke NightTrace with the last session
loaded or saved.

A session configuration may include:
¢ daemon definitions
See “Daemon Dialog” on page 9-9 for more information.
¢ display page configurations
See “Table Files” on page 7-14 for more information.

® string tables
- event names specified for user event IDs
- any user-defined string tables

- string tables imported from generated Ada display page configura-
tion files

- any modifications to default NightTrace string tables, or string tables
embedded in trace data files

¢ profiles of conditions and states
See “Using Expressions” on page 16-1 for more information.
* named tags
See “Tags List Panel” on page 15-1 for more information.
® previously-executed searches
® previously-executed summaries
¢ references to saved trace data segment files
See “Trace Data Segments” on page 7-25 for more information.

¢ references to kernel trace files generated by nt r acekd (see “The ntracekd
Daemon” on page 4-1), or a kernel daemon defined in the GUI (see “Dae-
mons Panel” on page 9-1)

7-24

Invoking NightTrace

* references to user trace files generated by nt r aceud (see “The ntraceud
Daemon” on page 3-1), or a user daemon defined in the GUI (see “Dae-
mons Panel” on page 9-1)

Session configuration files can be generated by the following menu items in the File
menu of the NightTrace Main Window:

Upon exiting when there are unsaved changes to the session, the user is given the chance
to save the changes before NightTrace exits.

The user may load the session on a subsequent invocation of NightTrace by either:

- specifying the session configuration filename on the command-line when
invoking nt r ace (see “Invoking NightTrace” on page 7-1)

- using the Load Session dialog to open the session configuration file
from the NightTrace Main Window

Trace Data Segments

Trace data segments are conglomerations of all trace data saved in a much more efficient
format than raw trace event files providing for faster initialization at startup.

Trace data segments are saved using the Save Trace Data button on the Trace Seg-
ments panel (see “Trace Segments Panel” on page 10-1 for more information).

7-25

NightTrace RT User’s Guide

7-26

8
The NightTrace Main Window

The NightTrace GUI is invoked using nt r ace (see “Invoking NightTrace” on page 7-1).

By default, the NightTrace main window is presented as shown in the figure below.

Nightlrace - New Session (lUnsaved)

File View Daemons Search Summary Profiles Timelines Tools Help

PO R -FmPPPA: O = Effelr 2 @ a

Type | Daemon Target Logged Lost State Attached Buffer
kemel_trace to_gui raptor

ldJLaunch H|)3esume H|| Pause ”- Halt] [Elush H Display] [Tiggers... l [Enable Events... H Delete]

Save Trace Data...] l Close Trace Data

Figure 8-1. NightTrace Main Window

The NightTrace main window consists of the following components:
®* Menu Bar
® Toolbars

* Pages and Panels

NightTrace RT User’s Guide

Menu Bar

The menu bar provides access to session configuration services, additional tools, and help.
The menu bar provides the following menus:

* File

* View

* Daemons
* Search

e Summary
* Profiles
* Timelines
* Tools

* Help

Each menu is described in the sections that follow.

File

Accelerator: Alt+F

The File menu contains session-related items such as initiating a new session, saving the
current session, and opening a previously-saved session or data file.

A session includes daemon configurations, trace data sets, configuration options, display
pages, and user-defined profiles.

) New Session
Load Session...
[Save Session Ctri+S
[& save Session As...
Sawve Session Copy..
Preferences...
[Zr Open Files... Ctri+0
Close All Trace Data Alt+W
A Print
(Exit Ctri+Q
(! Exit Immediately Alt+Q

Figure 8-2. File Menu

The NightTrace Main Window

The following paragraphs describe the options on the File menu in more detail.

New Session

Mnemonic: N

Creates a new Session.

If an existing session is open, it is first closed by this operation.

If changes have been made to the current session but have not yet been saved, Night-
Trace will ask you if you wish to save the current session before proceeding.

Load Session...

Mnemonic: L

This option launches a standard file selection dialog which allows you to specify a
previously-saved session file. Filenames displayed in the file selection dialog are
relative to the host system.

If changes have been made to the current session but have not yet been saved, Night-
Trace will ask you if you wish to save the current session before proceeding.

NOTE

NightTrace will automatically load the last session used when
invoked with the - u option. See “Invoking NightTrace” on page
7-1 for more information.

NightTrace RT User’s Guide

Save Session

Mnemonic: S
Accelerator: Ctrl+S

Save Session saves the current session to a session configuration file.

Save Session allows for quickly saving a session. The user is not prompted for
the filenames where the session, trace data, or display pages are to be saved. These
are automatically saved in appropriately named files in the current working direc-

tory.

If the current session has not been saved to a file in the past, the session is automati-
cally saved to a new session configuration file. The new filename appears in the
window title.

If the current session was loaded from or previously saved to a session configuration
file, the session is saved to that file.

Trace data that has been touched is saved by Save Session. Touched trace data
includes trace data modified by discarding events. In addition, trace data from a
trace data segment file where one or more segments have been saved to another
trace data segment file or closed is saved.

If the trace data was loaded from a previously saved trace data segment file, the data
is saved to that file. If the trace data has never been saved to a trace data segment
file, the data is automatically saved to a newly created trace data segment file

If the display pages were loaded from a previously saved display page file, the page
is saved to that file.

If the display page has never been saved to a display page file, the page is automati-
cally saved to a newly created display page file.

Save Session As...

Mnemonic: A

This option launches a standard file selection dialog which allows you to specify the
a filename where the session will be saved. Filenames displayed in the file selection
dialog are relative to the host system.

Save Session Copy

Mnemonic: C

Save Session Copy saves the current session to a newly created session config-
uration file (see “Session Configuration Files” on page 7-24 for a complete descrip-
tion of the contents of a session).

In addition, all trace data and display pages are saved to new file names using a
common session file name prefix.

Save Session Copy allows for quickly saving one or more copies of a session at
certain stages. The user is not prompted for the filenames where the session, trace

The NightTrace Main Window

data, or display pages are to be saved. These are saved in appropriately named files
in the current working directory.

Preferences...
Mnemonic: F

This option launches the Preferences Dialog which allows you to specify prefer-
ences for NightTrace, including font selection.

Saved user preferences are applied to all NightTrace invocations for the user. Pref-
erences are saved in the user’s home directory and have a broader application than
session configuration files.

See “Preferences Dialog” on page 8-42 for more information.

Open Files...

Mnemonic: O
Accelerator: Ctr|+0O

Presents the user with a standard file selection dialog so that they may select a trace
event file, event map file, or configuration file to load.

The trace event file can be a user trace data file or a kernel trace data file. See
“Trace Event Files” on page 7-11 for more information.

An event map file provides ASCII names for specific trace event values. See “Event
Map Files” on page 7-11 for more information.

Configuration files contain string and format tables as well as display page defini-
tions. See “Table Files” on page 7-14 for more information.

Close All Trace Data

Mnemonic: D
Accelerator: Alt+W

Closes the trace data segments currently selected in the Trace Segments area. The
events associated with the closed segments are immediately removed from the cur-
rent data set being analyzed.

Data segments that were not associated with a trace file and that have not yet been
saved will be lost when closed.

Close All Trace Data
Mnemonic: P

Prints a screen shot of the main NightTrace window.

NightTrace RT User’s Guide

Exit

Mnemonic: X
Accelerator: Ctrl+Q

Closes the session and exits NightTrace completely.

If changes have been made to the current configuration but have not yet been saved,
NightTrace will ask you if you wish to save the session before proceeding.

Exit Imnmediately

Mnemonic: |
Accelerator: Alt+Q

Closes the session and exits NightTrace without prompting to save changes that
have been made. Any changes will be lost.

8-6

View

Accelerator: Alt+V

The NightTrace Main Window

The View menu allows you to add, rename, or delete pages and controls which panels in

pages are visible.

Add Page
Rename Current Page...

Delete Current Page

4, Toolbars
ﬁ Events
L] D
| Daemons

Trace Segments

I Profile Status List
H Profile Definition
Ll Event Descriptions

1 Tags List

Ctrl+A

Figure 8-3. View Menu

Add Page

Mnemonic: A
Accelerator: Ctrl+A

This option adds a new page to the right of the last page in the main window.

Rename Current Page...

Mnemonic: R

This option launches a dialog that allows you to change the name of the current
page. The current page is the page which is currently being displayed in the main

window.

This option is also available from the context menu which appears when you
right-click on a page's tab.

Delete Current Page

Mnemonic: D

This option deletes the current page and all panels it contains. The current page is
the page which is currently being displayed in the main window.

NightTrace RT User’s Guide

This option is also available from the context menu which appears when you
right-click on a pages’s tab.

Toolbars

Mnemonic: B

| File Toolbar

% Search Toolbar

| Daemons Toolbar

| Panels Toolbar
Show All Toolbars
Hide All Toalbars

Figure 8-4. Toolbars Menu

This menu allows you to hide or show individual Toolbars on the main window.
You can also hide or show toolbars using the context menu that appears when you
right-click a toolbar.

Events

This checkbox controls whether the Events panel is displayed. See “Events Panel”
on page 11-1 for information its operation.

Daemons

This checkbox controls whether the Daemons panel is displayed. See “Daemons
Panel” on page 9-1 for information on its operation.

Trace Segments

This checkbox controls whether Trace Segments panel is displayed. See “Trace
Segments Panel” on page 10-1 for information on its operation.

Event Descriptions

This checkbox controls whether the Event Descriptions panel is displayed. See
“Event Descriptions Panel” on page 14-1 for information on its operation.

Tags List

This checkbox controls whether the Tags List panel is displayed. See “Tags List
Panel” on page 15-1 for information on its operation.

8-8

The NightTrace Main Window

Timelines and Panels

When timelines or other panels are added, an entry for each is added to the View
menu. These entries are checkboxes which toggle the visibility of the panel in the
current page.

Daemons
Accelerator: Alt+D
The Daemons menu provides functionality for configuring new and existing daemon
definitions, as well as attaching to and detaching from running daemons.
New Kernel Daemon...
Mew User Daemon...
Import 3
Attach...
Properties...
Delete
¢y Launch Ctrl+L
Refresh Rate...
Triggers...
Streaming Memory Usage Control...
Figure 8-5. Daemons Menu
This menu is identical to the context menu shown when right-clicking inside the Daemons
panel, as described in “Daemons Panel” on page 9-1.
Search

Accelerator: Alt+R

The Search menu contains search-related items such as opening the Profile Definition
panel to define search criteria, executing a forward or backward search with the most
recent search criteria, or modifying search options.

NightTrace RT User’s Guide

8-10

Text Search...
Change Search Profile...
*® Search Backward
¥ Search Forward
*® Search Backward within Timeline Interval
¥ Search Forward within Timeline Interval
) Goto Mext Tag
1 Goto Previous Tag
= Go Back to Previous Interval
F Goto...
&) Goto First Event
(#| Goto Last Event

[%| Ask Before Wrapping for Search
[] Zoom to Search Match

Ctrl+T
Ctrl+F
Ctrl+B
Ctrl+G
Alt+B
Alt+G

]

[

Ctri+v
Ctri+|
Alt+Left
Alt+Right

Figure 8-6. Search Menu

Text Search

This option launches the Search Events for Text dialog which allows you to
specify textual search criteria for searching the contents of an Events panel. See
“Text Search” on page 11-3 for a description of this dialog and its actions.

Change Search Profile...

Mnemonic: S
Accelerator: Ctrl+F

Displays the Profiles dialog allowing you to define the search criteria and to exe-
cute a search for an event or condition in a Timeline panel. See “Profiles Dialog”

on page 13-2 for more information.

Search Forward

Mnemonic: R
Accelerator: Ctrl+G

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a forward search for the next event is executed.

The NightTrace Main Window

Search Backward

Mnemonic: K
Accelerator: Ctrl+B

Executes a backward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed.

Search Forward withinTimeline Interval

Accelerator: Alt+G

Executes a forward search using the last profile defined or selected. If no profiles
have been defined, a forward search for the next event is executed. The search is
bounded by the events in the current timeline interval.

Search Backward within Timeline Interval

Accelerator: Alt+B

Executes a backward search using the last profile defined or selected. If no profiles
have been defined, a backward search for the previous event is executed. The
search is bounded by the events in the current timeline interval.

Goto Next Tag
Goto Previous Tag

Mnemonics:] and [

These options search forward or backward, respectively, to the next or previous
tagged event or time in the data set.

Go Back to Previous Interval

Accelerator: Ctrl+V

This option toggles the current timeline between its current position and its last posi-
tion. Using this option or accelerator, you can easily revert back to a location in the
data set after executing a search or clicking elsewhere in a timeline or ruler.

Goto...

Mnemonic: G
Accelerator: Ctrl+]

NightTrace RT User’s Guide

This option launches the Change Interval dialog which allows you to change the
current time and boundaries of the current interval.

u Change Interval

—Enter Desired Times or Event Offsets

Floating-point values and values with a trailing "s"
character are interpreted as times; other integer
values are intepreted as offsets.

Current 0.000 346 1335

Interval Start | 0.000_000_000s

|
)
Interval End | 1.905_154_405s |
)

Interval Span [1.905 154 4055

OK][Reset H Cancel H Help]

Figure 8-7. Change Interval Dialog

The Change Interval dialog is launched from the Goto... option of the Search
menu. It is also launched whenever you click on any of the values in the interval
value boxes in the lower-left corner of a timeline,

Interrupt | | Exception I
Syscall KernelEven h.01s
Current Time 0.002016665 Hower time
Start Time 0. 000000000
End Time 0024037563 m
Span 0.00403 7563 timelsac)=

£ I

Hover time from current timeline = 0.000511624

as shown in the picture above (highlighted with a reddish background).

The dialog allows you to enter values as event offsets or times. Values entered in
floating-point notation are interpreted as times, as are values with a trailing S char-
acter (meaning seconds). Integer values without a trailing S character are inter-
preted as event offsets.

In most situations, you should change at most one or two of the values in the dialog,

and let NightTrace adjust the unmodified values for you when you press OK; in
order to accommodate your specifications.

8-12

The NightTrace Main Window

For example, if you simply change the Interval End setting to a larger number,
NightTrace will expand the Interval Span (and change the Current timeline
value if necessary) when you press OK.

The dialog was designed for quick access and use. For example, to change the cur-
rent timeline to time 3.5s, you could use the following 6 keystrokes when a timeline
panel has focus (the keystrokes are separated by whitespace for clarity below):

Ctrl+] 3 . 5 s Enter

When the dialog is launched via the menu or accelerator sequence, the Current
time value is fully selected so that it will be replaced immediately with whatever
characters you type. The OK button has the activation focus, so that hitting the
Enter key activates the OK button.

When the dialog is launched by clicking on one of the actual values that define the
interval in the lower-left corner of a timeline (see picture above), the value that you
clicked on is fully selected in the dialog, ready for immediate substitution.

Goto First Event

Mnemonic: F
Accelerator: Alt+LeftArrow

This option searches to the first event in the data set.

Goto Last Event

Mnemonic: L
Accelerator: Alt+Right

This option searches to the last event in the data set.

Ask Before Wrapping for Search

When checked, this causes a dialog to pop up when either end of the data set is
reached during a search operation; it allows you to continue searching at the other
end or to cancel the search.

Zoom to Search Match
When checked and a search criteria is found, the timeline is zoomed to include the

number of events specified by the Limit Number of Events Displayed...
option of the Timelines menu.

Summary

Accelerator: Alt+U

The Summary menu provides for defining profiles for summaries, executing summaries,
and controlling summary options.

8-13

NightTrace RT User’s Guide

Change Summary Profile... Ctrl+U

¥ Summarize Current Profile 3
f} Summarize Kernel Activity 3
fiy Summarize Functions 3

Graph State Durations...
Graph State Gaps...

Graph Condition Gaps...

Figure 8-8. Summary Menu

Change Summary Profile...

Mnemonic: U
Accelerator: Ctrl+U

This option opens the Profiles dialog allowing you to select a profile to summarize
or define a new profile to summarize. See “Profiles” on page 13-1 for more infor-
mation.

Summarize Current Profile

This option opens a sub-menu which allows you to select the range of events (time)
over which to apply the summary action.

Summarize All Events

Mnemonic: A
Accelerator: Ctrl+Z

Summarize Current Timeline Interval

Mnemonic: |
Accelerator: Alt+Z

These options execute a summary of the current profile. If no profiles have been
defined, a dummy profile is used which matches every event. For each summary of
a specific profile, a new page is created to hold the summary results, including any
required data graphs as directed by the Graph State Durations... or Graph
State Gaps... options of the Summary menu.

Summarize Kernel Activity

Mnemonic: K

8-14

The NightTrace Main Window

This option opens a sub-menu which allows you to select the range of events (time)
over which to apply the kernel summary action.

Before the summary takes effect, a dialog will open which allows you to restrict the
kernel activity summary to types of activity and/or a specific process.

Kernel Summary Dialog
" Summary Options | X]

—Summary Type

) Interrupts

() Exceptions

—Options

Process: | ALL Browse...
CPUs: {mask=all)

lSummarizeH Cancel H Help]

Figure 8-9. Kernel Summary Dialog

The dialog allows you to the type of kernel activity you wish to summarize (in terms of
System Calls, Interrupts, or Exceptions), and further restrict that to a specific process
and/or set of CPUs.

Summarize Functions
Mnemonic: F

This option opens a sub-menu which allows you to select the range of events (time)
over which to apply the function summary action.

This option executes a summary on Application Illumination data to summarize the
occurrences of all function calls and returns associated with such data. It presents
the data in a table in a panel which shows you the number of calls and the minimum,
maximum, and average duration times.

This menu option requires that you have used nl i ght to instrument code with such
trace events. See “Application Illumination” on page 5-1 for more information.

The following figure illustrates such a summary:

8-15

NightTrace RT User’s Guide

File View Daemons

PE PR Frmas @O PO

Search Summary Profiles Timelines

Tools Help

Application lllumination Trace J Function Call Summary (0 to 2394365) l

"
Oy

W oa o oM H

Function Call Summary (0 to 2394365)

Completed

Total Time ¥ | Min Duration | Max Duration | Avg Duration |Min Offsethax OffsetlActivel

Name

1

3
539400
369600

55800
55800
111600
55800
30
8400
120

1.025_087_448
1.024_824 726
0.242_640_856
0.138_529_272
0.075_117_357
0.067_853_940
0.043_830_221
0.034_007_077
0.008_011_209
0.006_958_249
0.005_622_338

1.025_087_448
0.180_800_928
0.000_000_353
0.000_000_331
0.000_001_150
0.000_001_060
0.000_000_338
0.000_000_483
0.000_112 193
0.000_000_751
0.000_016_380

1.025_087_448
0.508_160_609
0.000_122 494
0.000_019_725
0.000_019_976
0.000_017_334
0.000_016_172
0.000_019 983
0.000_887_163
0.000_013_435
0.000_630_837

1.025_087_448
0.341_608_242
0.000_000_450
0.000_000_375
0.000_001_346
0.000_001_216
0.000_000_393
0.000_000_5609
0.000_267_040
0.000_000_828
0.000_046_853

2394365
399376
568809
778619

2126981
381545

2117646
315891
306325
403873
405202

2394365
2394348
560813
1946781
2373371
2267397
2267396
2129973
1197459
2091
1197448

false A _whetstone

false A_ewecute_whetstone.whetsto...
false A p3.ewecute_whetstone.whet...

false A_p0.execute_whetstone.whet...

false log
false sqrt
false isnan

false exp

false A_pout.execute_whetstone.wh...
false A_pa.ewecute_whetstone.whet...

false A_outreal.22514.whetstone_s... @

8-16

Figure 8-10. Summarize Function Results

The table headings are mostly self explanatory, except for the Active column. This
value indicates whether the call was still active and the end of the trace data set (or
interval if summarizing only part of the data set).

Right-clicking on a row in the table launches the following context menu:

Save table as text. ..

Resize columns to contents

Set current time to end of shortest call
Set current time to end of longest call

Launch detailed summary of calls for this function

Export table as comma separated list...

Figure 8-11. Summary Functions Table Context Menu

Selecting Launch detailed summary of calls for this function generates a
table with each row representing a single call for the currently selected function, as
shown in the following figure:

The NightTrace Main Window

File View Daemons Search Summary Profiles Timelines Tools Help
PR B ®O 0O £ E /% » H-»
ction Call Summary (0 to 2394365)] Call Details for A_pa.execute_whetstone.whetstone (0 to 2394365)
Call Details for A_pa.execute_whetstone. whetstone (0 to 2394365)
Duration ¥ | Start Time | End Time | Start Offvet | End Offvet | Thread = |
0.000_013_435 0.002_282 055 0.002_295_491 2090 2091 main L
0.000 012 875 0.001 238 612 0.001 251 487 554 555 main
0.000_012_437 0.002_693 187 0.002_705_624 2688 2689 main
0.000_011_897 0.001_767_924 0.001_779_821 1322 1323 main
0.000_011_674 0.182_439 174 0.182_450_849 400386 400387 main
0.000_010_875 0.001_652 854 0.001_663 729 1152 1153 main
0.000_010_355 0.002_521_425 0.002_531_780 2432 2433 main
ANANN N10 337 AON2 AR2 1132 N NAN2 AT2 AAC 23R 23IAT _main @

Figure 8-12. Function Call Details Table

Both tables are sortable; click on the heading of interest to sort. Click again to
change the sort direction.

Both tables have context menus that allow you to set the current timeline to a value
associated with the selected row, and to save the table in textual format to a file.

Summarize Functions within Timeline Interval
Mnemonic: U

This option is identical to the Summarize Functions option except that the list
of events to summary is constrained by those in the current timeline interval.

Graph State Durations...
Mnemonic: D

This option displays the Graph State Durations dialog which allows you to
select whether you want a data graph generated when summarizing the current pro-
file. The data graph shows the individual durations of each instance of the state as
defined by the profile, plotted vertically.

The dialog also allows you to specify a standard deviation value which instructs the
summary action to graph values that fall outside the specified domain as the maxi-
mum defined by that domain.

Graph State Gaps...
Mnemonic: G

This option is identical to the Graph State Durations option except that it con-
trols the graphing of the gaps between instances of states as defined by the current
profile.

8-17

NightTrace RT User’s Guide

Prevents the current timeline from being moved, but the summary results are still
displayed in page text areas.

Profiles

Accelerator: Alt+P

The Profiles menu manipulates the list of profiles shown in the Profile Status List
area of the Profiles dialog.

A profile is a set of criteria either defining a state with beginning and end conditions, or
simply a condition. Profiles are used for searches, summaries, and graphs.

& MNew Profile... Ctrl+P
Delete

S Move Up Ctri+Up

& Move Down Ctrl+Down
Export to APl Source...

String Tables r
Format Tables [

Figure 8-13. Profiles Menu

New Profile...

Mnemonic: N
Accelerator: Ctrl+P

This option shows the Profiles dialog to allow you to create a new profile. See
“Profiles Dialog” on page 13-2 for more information on using profiles.

Delete
Mnemonic: D

This menu choice deletes all profiles currently selected in the Profile Status List
area of the Profiles dialog.

Move Up
Move Down

Accelerator: Ctrl+UpArrow and Ctrl+DownArrow

These options move the currently selected profiles in the Profile Status List in
the Profiles dialog towards the beginning or end of the list, respectively.

8-18

The NightTrace Main Window

Export to API Source...

This option opens the Export Profiles to NightTrace APl Source File dialog
to automatically generate source code defining and referencing profiles, for use with
applications using the NightTrace Analysis API (see “Using the NightTrace Analy-
sis API” on page 18-1).

String Tables

This option expands to a sub-menu which allows you to select an existing string
table for modification, or to create a new string table.

Format Tables

This option expands to a sub-menu which allows you to select an existing format
table for modification, or to create a new format table.
Export Profiles to NightTrace API Source File

The Export Profiles to NightTrace API Source File dialog is presented when the
Export to APl Source... menu item is selected from the Profiles menu.

T4 Export Profile(s) to NightTrace APl Source File [2)](X

[%| Define main() function [%| State start callbacks

[%| Define callback functions [%| state end callbacks

[%] Default printf()'s in callbacks [| State active callbacks
[%] Report analysis APl errors [| state inactive callbacks

[%| Read trace data from stdin

Trace Data File []

Profiles Source [export_analyEiE-_[}.c]

Callbacks Source [export_analyEiE-_[}.c]

H Reset H Cancel H Help]

Figure 8-14. Export Profiles Dialog

This dialogs generates C source code using the NightTrace Analysis API to define and
install listener callback functions for the profiles selected from the Profile Status List
area of the Profiles dialog when the dialog was launched.

8-19

NightTrace RT User’s Guide

8-20

Define m