
Concurrent Fortran 77 Reference Manual

0890240-100
August 2004

Copyright 2004 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end–users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “Attention: Publications Depart-
ment.” This publication may not be reproduced for any other reason in any form without written permission of the
publisher.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
PowerPC and PowerPC 604 are trademarks of International Business Machines Corporation.
UNIX is a registered trademark, licensed exclusively by X/Open Company Ltd.
VAX is a trademark of Digital Equipment Corporation.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- January 1989 000 CX/UX 4.0
Current Releease -- July 2004 100 Concurrent Fortran 77 6.1

Preface

Scope of Manual

This manual provides an overview of the Concurrent Fortran compiler, general enhance-
ments to the compiler, violations of the standard, and general source components of the
Fortran language.

Information in this manual applies to PowerPCTM platforms as well as RedHawkTM Intel®.

Structure of Manual

A brief description of the chapters and appendixes in this manual follows:

• Chapter 1 provides a general introduction and overview of the Fortran 77
compiler. Language extensions, enhancements, syntax notation, and
violations of the 1977 standard Fortran are discussed.

• Chapter 2 describes the source program components; included in this
chapter are character sets, statements, syntactical elements, program unit
structure and terminology. Also discussed are data types, data constants,
storage alignment and arrays.

• Chapter 3 discusses Fortran expressions and assignments. The Fortran
language permits arithmetic, character, relational, and logical expressions.
The use of Fortran expressions in assignment statements is discussed in
detail in this chapter.

• Chapter 4 deals with the specification and declaration statements. Each
statement is described in detail containing a definition, syntax line and
explanation of the syntax.

• Chapter 5 provides a general description of control statements, their order
of execution, and transfer of control. Examples and definitions are pro-
vided throughout this chapter.

• Chapter 6 describes the general input and output statements of the Fortran
language. The input statements transfer data stored on an external storage
medium into memory while the Fortran output statements transfer data
from memory to an external storage medium.

• Chapter 7 provides information about format specification, defining size of
input and output fields, the type of data being read or written and how the
data are to be edited.

• Chapter 8 deals with the subprograms which are units independent of the
main program and are written by the user or supplied by the compiler.
Inter-language interfacing between C and Fortran is covered in depth.
3

Concurrent Fortran 77 Reference Manual
• Chapter 9 contains the Fortran library description. The library contains the
Fortran intrinsic functions as well as functions that are in addition to the
Fortran 77 standard.

• Chapter 10 provides the information necessary for compilation and
execution. Discussed in this chapter are compiling, preprocessing, linking,
and assembling. Also included in this chapter are the f77 compiler options
and necessary support files.

• Appendix A illustrates array storage.

• Appendix B lists non-standard extensions to Fortran 77.

• Appendix C enumerates incompatibilities with Fortran 66.

The index contains an alphabetical list of topics, names, etc. found in the manual.

Man page descriptions of programs and library routines can be found in system manual
pages.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear in italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in list bold type.

list Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in list type.
Keywords also appear in list type.

emphasis Words or phrases that require extra emphasis use emphasis type.

[] Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments

{} Braces enclose mutually exclusive choices separated by the pipe
(|) character, where one choice must be selected. You do not type
the braces with the choice.

... An ellipsis follows an item that can be repeated.

(H) Sections, chapters, and appendixes that document Fortran
extensions and implementation details particular to Concurrent
bear this suffix.

b Blank spaces in input and output records and formats are
designated as bs.

Concurrent Concurrent-specific text and commands appear in Concurrent
type. On color monitors, this is blue.
4

Preface
ConcurrentParameter Concurrent-specific parameters appear in Concurrent Parameter
type. On color monitors, this is blue.

Referenced Publications

The following publications are referenced in this document:

0890288 HAPSE Reference Manual
0890423 PowerUX Programming Guide
0890459 Compilation Systems Volume 1 (Tools)
0890460 Compilation Systems Volume 2 (Concepts)
0891019 C Reference Manual
5

Concurrent Fortran 77 Reference Manual
6

Contents

Chapter 1 Introduction

Overview . 1-1
Language Extensions . 1-1
Enhancements (H) . 1-1
Violations of the Standard . 1-3
T and TL Formats (H) . 1-3

Chapter 2 Source Program Components

General Component Information. 2-1
Fortran Character Set. 2-1

Treatment of Uppercase and Special Characters . 2-2
Collating Sequence. 2-2

Syntactical Elements of the Language. 2-2
Fortran Statements . 2-3
Lines . 2-4

Statement Label Field. 2-5
Continuation Field . 2-5
Statement Field . 2-6
Identification Field . 2-6

Comments . 2-6
Blank Lines . 2-7
Debugging Lines (H) . 2-7
#pragma Lines (H). 2-7
Include Lines (H). 2-8
Program Unit Structure and Terminology . 2-8

Execution Sequence . 2-9
PROGRAM and NAME Statements . 2-10
END Statement . 2-10

Symbolic Names . 2-11
Data Types . 2-12

Default Lengths for Data Types . 2-14
Storage Alignment . 2-15

Data Constants . 2-15
Hexadecimal Data (H) . 2-17
Octal Data (H) . 2-18
Binary Data (H) . 2-19
Integer Data . 2-20
Real Data . 2-21
Double Precision Data . 2-23
Complex Data . 2-25
Double Complex Data (H). 2-26
Logical Data . 2-27
Character Data . 2-28
Hollerith Data . 2-30
7

Concurrent Fortran 77 Reference Manual
Variables. 2-30
Arrays. 2-31

Declaring an Array . 2-32
Referencing an Array . 2-34

Character Substrings . 2-35
Substring Referencing for Variables . 2-35
Substring Referencing for Array Elements. 2-36

Initialization of Variables and Arrays at Compile Time . 2-36
Arguments . 2-37
Definition Status. 2-37
Association of Symbolic Names . 2-38

Chapter 3 Expressions and Assignment Statements

Expressions and Statements Overview . 3-1
Arithmetic Expressions and Assignments . 3-1

Simple and Compound Arithmetic Expressions. 3-1
Constant Arithmetic Expressions . 3-2
Character Constant Expression . 3-2
Arithmetic Operators . 3-2
Precedence of Arithmetic Operators. 3-3
Examples of Arithmetic Expressions . 3-4
Exponentiation Rules . 3-5
Data Type Conversions (Mixed Modes) . 3-5
Arithmetic Assignments . 3-10
.SHIFT. and .ROTAT. Integer Operators (H) . 3-12

Character Expressions and Assignments . 3-13
Character Expressions. 3-13
Character String Operations . 3-14
Character Assignments . 3-14

Relational and Logical Comparisons and Assignments. 3-16
Relational Expressions . 3-16
Logical Expressions . 3-17
Logical Operations Using Integer Operands (H) . 3-20
Logical Assignments. 3-21
Implementation of the LOGICAL Data Type (H) . 3-22

Default Implementation (H) . 3-23
VAX Implementation (H) . 3-24
logical_true_is_nonzero Implementation (H) . 3-24
no_short_circuit Implementation (H) . 3-24

Use of Arithmetic, Character, and Logical Expressions . 3-25
Summary of Mixed Assignments and Operator Precedence 3-26
ASSIGN Statement . 3-30
Multiple Assignment Statements (H). 3-31
Array Assignment Statements (H) . 3-33

Chapter 4 Specification Statements

General Specification Statements . 4-1
Character Declarations . 4-2
Logical Declarations . 4-4
Numeric Declarations . 4-5
AUTOMATIC Statement (H) . 4-7
8

Contents
CEXTERNAL Statement (H) . 4-8
COMMON Statement . 4-9

Shared Memory Interface (H) . 4-10
DATA Statement . 4-12
Conversion of Hollerith Data . 4-13
Initialization by Numeric Constants (H) . 4-13
Implied-DO in Data Statements. 4-14
DATAPOOL Statement (H) . 4-16

Defining a Datapool Area (H) . 4-16
Generating a Datapool Dictionary (H) . 4-18
Referencing a Datapool (H). 4-18
Placing a Dictionary in Shared Memory (H). 4-19

DIMENSION Statement . 4-20
EQUIVALENCE Statement. 4-22
EXTERNAL Statement . 4-26
IMPLICIT Statement . 4-27
INTRINSIC Statement. 4-29
NAMELIST Statement (H). 4-30
PARAMETER Statement . 4-32
POINTER Statement (H) . 4-34
SAVE Statement . 4-36
STATIC Statement (H) . 4-37
Statement Function Definitions . 4-38
VOLATILE Statement (H) . 4-40

Chapter 5 Control Statements

General Description . 5-1
Execution of a DO Loop . 5-1
Nested DO Loops . 5-3
Execution of an IF Block. 5-4
Nested IF Blocks . 5-5
Execution of a SELECT CASE Construct (H) . 5-7
CONTINUE Statement . 5-8
DO Statements . 5-9

Simple DO . 5-9
DO-UNTIL (H) . 5-11
DO WHILE (H) . 5-12
EXIT DO (H) . 5-13

FOR Statements (H) . 5-14
FOR (H) . 5-14
EXIT FOR (H) . 5-16

GO TO Statements. 5-17
Unconditional GO TO . 5-17
Computed GO TO . 5-18
Assigned GO TO . 5-19

IF Statements . 5-20
Arithmetic IF . 5-20
Logical IF . 5-21
Block IF . 5-22
EXIT IF (H) . 5-23

LOOP Statements (H) . 5-24
LOOP (H) . 5-24
9

Concurrent Fortran 77 Reference Manual
EXIT LOOP (H) . 5-25
PAUSE Statement . 5-26
SELECT CASE Statements (H). 5-27

SELECT CASE (H) . 5-27
CASE (H) . 5-28
CASE DEFAULT or ELSE (H) . 5-30
END SELECT (H) . 5-31

STOP Statement . 5-32
WHILE Statements (H) . 5-33

WHILE (H) . 5-33
EXIT WHILE (H) . 5-35

Chapter 6 Fortran Input/Output

General Fortran I/O Information . 6-1
Records. 6-3
External and Internal Files . 6-3

Units . 6-4
Vertical Format Control . 6-4
File Organization . 6-5

Sequential Access . 6-5
Direct Access . 6-5

File Position . 6-5
Input and Output Using Internal Files . 6-6
I/O Statements for Reading and Writing . 6-7

Formatted I/O Statements . 6-7
Unformatted I/O Statements . 6-7
List-Directed I/O Statements . 6-7
Namelist-Directed I/O Statements (H) . 6-8

Control Information List . 6-8
END Specifier. 6-9
ERR Specifier . 6-9
Format Specifier . 6-10
IOSTAT Specifier . 6-11

I/O Library Error Messages . 6-11
Namelist Specifier (H) . 6-14
REC Specifier . 6-14
UNIT Specifier . 6-15

Input/Output Lists . 6-15
Input Lists . 6-16
Output Lists. 6-16
Implied-DO Lists . 6-17

Sequential I/O Statements . 6-18
Formatted Sequential READ . 6-19
Formatted Sequential WRITE . 6-20
Formatted PRINT . 6-21
Unformatted Sequential READ . 6-22
Unformatted Sequential WRITE . 6-23
List-Directed READ . 6-24
Format of List-Directed Input Data Records . 6-24
List-Directed WRITE and PRINT Statements . 6-26
Format of List-Directed Output Records . 6-26
Namelist-Directed READ (H) . 6-28
10

Contents
Syntax Rules of Namelist-Directed Input Data Records (H) 6-29
Namelist-Directed WRITE (H) . 6-31

Direct Access I/O Statements . 6-31
Formatted Direct Access READ . 6-32
Formatted Direct Access WRITE. 6-33
Unformatted Direct Access READ . 6-34
Unformatted Direct Access WRITE. 6-35

OPEN Statement . 6-36
CLOSE Statement . 6-41
INQUIRE Statement . 6-42
FLUSH Subroutine (H) . 6-46
BACKSPACE Statement . 6-47
ENDFILE Statement . 6-48
REWIND Statement . 6-49

Chapter 7 Formatted Input and Output

Format Specification . 7-1
Group Specification . 7-3
Repetition Factor . 7-4
Scaling Factor. 7-5

FORMAT Statement . 7-6
Character Format Specifications . 7-6
Editing Descriptors . 7-7

Apostrophe (' ') . 7-10
Double Quote (" ") . 7-11
Slash (/). 7-12
Colon (:) . 7-13
Dollar sign ($) (H) . 7-14
A . 7-15

Input and Output of Character Data . 7-15
Input and Output of Hollerith Data . 7-16

B, BN, and BZ . 7-17
D . 7-18
E . 7-19
F . 7-21
G . 7-23
H . 7-25
I. 7-26
L . 7-27
O (H). 7-28
Q (H). 7-29
R (H). 7-30
S, SS, and SP . 7-31
SU (H) . 7-32
T, TL, and TR . 7-33
X . 7-35
Z (H) . 7-36

Chapter 8 Subprograms and Statement Functions

General Definition . 8-1
Arguments . 8-2
11

Concurrent Fortran 77 Reference Manual
Dummy Arguments. 8-2
Dummy Arrays . 8-2

Adjustable Dimensions . 8-2
Assumed-Size Array Declarations. 8-3

Dummy Procedures. 8-4
Actual Arguments . 8-4
%VAL, %LOC, and %REF Argument List Intrinsics (H) 8-5
Argument Association . 8-5
CHARACTER Statements in Subprograms . 8-6
Uplevel References (H) . 8-6

Intrinsic Functions . 8-7
Referencing Statement Functions . 8-8
External (User-Defined) Functions . 8-9

FUNCTION Statement . 8-9
Referencing an External Function . 8-12

User-Defined Subroutines . 8-13
SUBROUTINE Statement . 8-13
CALL Statement . 8-15

Argument List Intrinsic Functions (H) . 8-16
ENTRY Statement . 8-17
RETURN Statement . 8-19
INTERNAL Subprograms (H) . 8-20
Referencing an Internal Subprogram (H) . 8-21
BLOCK DATA Subprogram. 8-23

Inter-Language Procedure Interface (H) . 8-25
Procedure Names (H) . 8-25
Data Representations (H) . 8-25
COMMON Blocks (H) . 8-26
Datapools (H) . 8-26
Equivalenced Variables (H) . 8-27
Return Values (H) . 8-28
Argument Lists (H) . 8-28
Mixing C and Fortran Input/Output (H) . 8-29

Calling C Functions Directly (H). 8-31
CEXTERNAL Declaration (H) . 8-31
Function Return Type Declaration (H) . 8-31
Passing Arguments by Value (H) . 8-31
Converting Character Arguments and Values (H) . 8-32
Simulated Structures (H). 8-33
C Structure Packing Rules (H) . 8-35
Primitive System Types (H) . 8-35
Accessing errno and System Error Messages (H) . 8-35

Chapter 9 Fortran Library

Functions and Routines . 9-1
Intrinsic Functions . 9-1

Generic and Specific Names. 9-2
Summary of Concurrent Fortran Intrinsic Functions . 9-3

%INT1, %INT2, and %INT4 Integer Size Intrinsics (H) 9-9
%LOG1, %LOG2, and %LOG4 Logical Size Intrinsics (H). 9-9
POSIX® P1003.9 Library Functions (H) . 9-10
Additional Library Functions (H) . 9-10
12

Contents
Chapter 10 Compilation and Execution (H)

Compilation . 10-1
Native PowerPC . 10-1
Cross Intel to PowerPC . 10-1
Native Intel . 10-2

Multiple Versions. 10-2
c.install . 10-2
c.release . 10-4

Compiler Input Files . 10-6
Compiler Options . 10-7
Compiler Arguments . 10-7
Conditional Compilation . 10-7
Environment Variables . 10-9

f77_dump_flag . 10-9
fortunit . 10-10
F77INCLPATH. 10-10
LD_BIND_NOW, LD_LIBRARY_PATH, LD_RUN_PATH 10-10
STATIC_LINK . 10-10
TARGET_ARCH . 10-11

Linking Mixed-Language Programs . 10-11

Appendix A Array Storage

Appendix B Non-Standard Extensions to Fortran 77 (H)

Appendix C Incompatibilities with Fortran 66

Glossary

Index

Tables

Table 2-1. Executable Statements. 2-3
Table 2-2. Non-Executable Statements. 2-3
Table 2-3. Order of Statements and Lines . 2-9
Table 2-4. Scope of Symbolic Names for Program Entities 2-12
Table 2-5. hf77 Data Types. 2-13
Table 2-6. Examples of Character Constants . 2-28
Table 2-7. Array Storage. 2-33
Table 3-1. Unary and Binary Arithmetic Operators . 3-3
Table 3-2. Precedence Hierarchy of Arithmetic Operators 3-3
Table 3-3. Examples Illustrating Mixed-Mode Expressions for +, -, * and / 3-9
Table 3-4. Examples Illustrating Mixed-Mode Expressions for ** 3-9
Table 3-5. Truth Tables for the Logical Operators . 3-19
Table 3-6. Implementation of the LOGICAL Data Type . 3-23
Table 3-7. Fortran Operators - Order of Precedence . 3-26
Table 3-8. Validity of Mixed Variable Assignments. 3-27
13

Concurrent Fortran 77 Reference Manual
Table 6-1. Comparison of Input-Statement Syntaxes . 6-2
Table 6-2. Comparison of Output-Statement Syntaxes. 6-2
Table 6-3. OPEN Statement Specifiers, Data Types, and Meaning 6-37
Table 6-4. INQUIRE Statement Specifiers, Data Types and Meaning 6-43
Table 7-1. Summary of Editing Descriptors . 7-8
Table 9-1. hf77 Intrinsic Functions . 9-3
Table A-1. Array Storage . A-1
14

1
Introduction

Overview . 1-1
Language Extensions . 1-1
Enhancements (H) . 1-1
Violations of the Standard . 1-3
T and TL Formats (H) . 1-3

Concurrent Fortran 77 Reference Manual

1
Chapter 1Introduction

1
1
1

Overview 1

The Fortran compiler is based on the full language definition of American National
Standard Fortran X3.9–1978. This chapter details enhancements made to the compiler and
general syntax notation used throughout this manual.

Language Extensions 1

The Fortran 77 standard includes almost all of Fortran 66 as a subset. The most important
additions are:

• A character string data type

• File–oriented input/output statements

• Direct access I/O.

In addition to implementing the language specified in the new standard, this compiler
implements a few extensions. Most are useful additions to the language. The other
extensions make it easier to communicate with C procedures.

Enhancements (H)1 1

The following enhancements have been made to standard Fortran 77:

The Fortran character set permits lowercase characters, dollar signs, and underscores in
symbolic names; any uppercase characters in a symbolic name are automatically
translated to lowercase.

A tab character in one of the first six positions of a line signals the end of the statement
number and continuation part of the line. The remaining characters form the body of the
line. If a tab appears elsewhere on a line, the compiler treats the tab as a blank space.

Lines may extend to 132 columns with the -col132 command-line option.

1. Sections, chapters, and appendixes that document Fortran extensions and implementation details particular to Concurrent Computer
Corporation bear this suffix.
1-1

Concurrent Fortran 77 Reference Manual
Octal, hexadecimal, binary, and Hollerith data are supported.

Null character strings are supported.

Hollerith data can be stored as the value of numeric or logical variables and array
elements.

New operators, .XOR., .ROTAT., and .SHIFT. have been added, and the logical
operators now may be used with integer operands to perform bitwise logical
computations.

The Fortran compiler supports the DATAPOOL global data mechanism.

The POINTER statement declares pointer blocks. Pointer blocks are essentially based
common blocks, a base address for storage of the member variables is supplied via
malloc(3F), for example.

The Fortran compiler recognizes an automatic storage class.

The Fortran compiler supports the CEXTERNAL keyword and other useful mechanisms to
interface directly with C language routines.

The Fortran compiler supports a DOUBLE COMPLEX data type. Each double complex
number is represented by a pair of double–precision real variables. A double complex
version of every COMPLEX built–in function is provided. The specific function names
begin with “z” rather than “c”.

The compiler also accepts declarations of LOGICAL *1 and BYTE, which are one byte
long. Many specific intrinsic function names have been added to facilitate these new data
types.

INTEGER *1 variables may be unsigned on option.

The IMPLICIT statement may take the keyword UNDEFINED in place of a type, to turn
off implicit typing for variables starting which specified letters.

The compiler permits single subscripts in EQUIVALENCE statements and assumes that all
missing subscripts are equal to one. The compiler prints a warning message for each
incomplete subscript.

New control constructs have been added, including LOOP, WHILE, DO–UNTIL, FOR, and
SELECT CASE.

Namelist–directed I/O has been implemented in Concurrent Fortran.

The Fortran 77 standard introduces internal files (memory arrays), but restricts their use to
formatted, sequential I/O statements. The Fortran I/O system also permits use of internal
files in direct reads and writes.

The compiler accepts a variable length input format. An “&” symbol in the first position of
a line indicates that the line continues a statement that is on the previous line.

Entry points of type CHARACTER may have different lengths.

INTERNAL subroutines and functions are supported.
1-2

Introduction
Violations of the Standard 1

The Concurrent implementation of Fortran 77 violates the 1977 standard as described
below.

T and TL Formats (H) 1

The implementation of the T (absolute tab) and TL (left tab) format descriptors is slightly
imperfect. These codes allow you to reread or rewrite part of a record that has already
been processed. The implementation uses seeks, so if the unit (for example, a terminal)
does not allow seeks, a run–time error message,

 can’t seek

is generated and the program aborts.

 The chosen implementation places no upper limit on the length of a record. You need not
“predeclare” a record length except where specifically required by the compiler or the
operating system.
1-3

Concurrent Fortran 77 Reference Manual
1-4

2
Source Program Components

General Component Information. 2-1
Fortran Character Set. 2-1

Treatment of Uppercase and Special Characters . 2-2
Collating Sequence. 2-2

Syntactical Elements of the Language. 2-2
Fortran Statements . 2-3
Lines . 2-4

Statement Label Field. 2-5
Continuation Field . 2-5
Statement Field . 2-6
Identification Field . 2-6

Comments . 2-6
Blank Lines . 2-7
Debugging Lines (H) . 2-7
#pragma Lines (H). 2-7
Include Lines (H). 2-8
Program Unit Structure and Terminology . 2-8

Execution Sequence . 2-9
PROGRAM and NAME Statements . 2-10
END Statement . 2-10

Symbolic Names . 2-11
Data Types . 2-12

Default Lengths for Data Types . 2-14
Storage Alignment . 2-15

Data Constants . 2-15
Hexadecimal Data (H) . 2-17
Octal Data (H) . 2-18
Binary Data (H) . 2-19
Integer Data . 2-20
Real Data . 2-21
Double Precision Data . 2-23
Complex Data . 2-25
Double Complex Data (H). 2-26
Logical Data . 2-27
Character Data . 2-28
Hollerith Data . 2-30
Variables . 2-30
Arrays . 2-31

Declaring an Array . 2-32
Referencing an Array . 2-34

Character Substrings . 2-35
Substring Referencing for Variables. 2-35
Substring Referencing for Array Elements . 2-36

Initialization of Variables and Arrays at Compile Time . 2-36
Arguments . 2-37
Definition Status . 2-37
Association of Symbolic Names . 2-38

Concurrent Fortran 77 Reference Manual

2
Chapter 2Source Program Components

2
2
2

General Component Information 2

A Fortran source program consists of one or more program units containing Fortran
statements and optional comments. A program unit is classified either as a main program
or a subprogram. Only one main program is permitted in a source program. Subprograms,
if any, are identified with a FUNCTION, SUBROUTINE, or BLOCK DATA statement as the
first statement in the program unit.

Fortran Character Set 2

The Fortran character set is composed of the uppercase and lowercase letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

the decimal digits:

0 1 2 3 4 5 6 7 8 9

and the following special characters:

Character Name Character Name

b Blank $ Dollar Sign

= Equals ' Single Quote or
Apostrophe

+ Plus “ Double Quote

- Minus : Colon

* Asterisk ! Exclamation Point

/ Slash _ Underscore

(Left Parenthesis <t> Tab

) Right Parenthesis & Ampersand

, Comma % Percent Sign

. Period or Decimal Point # Sharp Sign
2-1

Concurrent Fortran 77 Reference Manual
Treatment of Uppercase and Special Characters 2

The compiler translates uppercase letters to their lowercase counterparts for keywords and
symbolic names. Uppercase letters appearing in character or Hollerith strings are not
translated to lowercase, and therefore, are not equivalent to their lowercase counterparts in
character comparisons during program execution.

If a character other than those listed appears in any Fortran statement within the source
program (e.g., a backspace character, #, %, >, <, [,], ^, ?, etc.), the compiler produces a
syntax error. ASCII characters that are not a part of the language can be used in comments,
in character constants, and in Hollerith constants.

Collating Sequence 2

The collating sequence is the arrangement of characters in an order such that when two
characters are compared numerically, one character is either less than, equal to, or greater
than the other. The order of the characters in the ASCII character set determines the
collating sequence. Uppercase and lowercase letters are arranged alphabetically in the
collating sequence and, when compared, have a different internal representation. The set
of digits 0 through 9 precede the uppercase letters A through Z in the collating sequence,
and the uppercase letters precede the lowercase letters a through z. Refer to the
ascii(5) man page for the full ASCII character set.

Syntactical Elements of the Language 2

The syntactical elements of the Fortran language are symbolic names, keywords, state-
ment labels, operators, and constants.

symbolic name Also called identifier, consists of 1 to 1023 letters, digits, dollar
signs, or underscores, the first of which must be a letter.

keyword Identifies a Fortran statement (e.g., DO, FORMAT, IF, STOP, etc.)
or is a separator in a Fortran statement (e.g., THEN, etc.). A key-
word identifying a Fortran statement is usually the first word of
the statement. Whether a particular sequence of characters
represents a keyword or a symbolic name is implied by context.
Fortran keywords have no abbreviated forms.

statement label Also called a statement number, is one to five decimal digits
appearing anywhere in columns 1 through 5 of the initial line of a
fixed format statement. Zero is not a valid statement label. State-
ment labels provide a point of reference so that another statement
within the program unit can refer to the labeled statement.

operator Mnemonic or special character used in Fortran expressions to
perform arithmetic computations, to concatenate character strings,
or to perform relational and logical comparisons.
2-2

Source Program Components
data constant A fixed value that is not subject to change. It can be a signed or
unsigned number, a logical value, a character string (literal), or a
Hollerith string. Numeric constants are interpreted as base-10
(decimal) numbers unless they are explicitly in another base.

Fortran Statements 2

Fortran statements are classified as executable or non-executable. Executable statements
specify actions to be performed and are identified by Fortran keywords. Non-executable
statements are directives to the compiler which describe the characteristics and arrange-
ment of input data, set the initial values for variables and array elements, indicate input
and output editing information, define and classify program units, or specify entry points
in subprograms.

Table 2-1. Executable Statements

ACCEPT DO IF RETURN

Assignment statements ELSE INQUIRE REWIND

ASSIGN ELSE IF LOOP SELECT CASE

BACKSPACE END OPEN STOP

CALL END INTERNAL PAUSE TYPE

CASE ENDFILE PRINT UNTIL

CASE DEFAULT EXIT PUNCH WHILE

CLOSE FOR READ WRITE

CONTINUE GOTO REPEAT

Table 2-2. Non-Executable Statements

Statement function definition DOUBLE COMPLEX INTRINSIC

AUTOMATIC DOUBLE PRECISION LOGICAL

BLOCK DATA ENTRY NAME

BYTE EQUIVALENCE NAMELIST

CEXTERNAL EXTERNAL PARAMETER

CHARACTER FORMAT PROGRAM

COMMON FUNCTION REAL

COMPLEX IMPLICIT SAVE

DATA INTEGER STATIC

DATAPOOL INTERNAL FUNCTION SUBROUTINE

DIMENSION INTERNAL SUBROUTINE
2-3

Concurrent Fortran 77 Reference Manual
Lines 2

A Fortran statement is written in one or more lines containing four fields. Each new state-
ment must begin on a new line. The first line of the statement is the initial line, and the
statement can be continued on succeeding lines called continuation lines.

Each line in a program unit is one of the following:

• Initial line of a Fortran statement.

• Continuation line for a Fortran statement.

• Comment line.

• Include line.

Each Fortran statement line in a source program consists of the following fields:

With the -col132 option, each Fortran statement line in a source program consists of the
following fields. Note there is no identification field. The statement field extends to
column 132.

Column Fields

1-5 Statement Label Field

6 Continuation Field

7-72 Statement Field

73-end Identification Field

1 5 6 7 72 73

Label C Statement Field ID Field

Column Fields

1-5 Statement Label Field

6 Continuation Field

7-132 Statement Field

1 5 6 7 132

Label C Statement Field
2-4

Source Program Components
Statement Label Field 2

A statement label appears on the initial line of a statement anywhere in columns 1 through
5.

The following rules apply for labels:

• A label must be a one- to five-digit, non-zero, unsigned integer.

• Blanks or leading zeroes that are part of the label are insignificant.

• Labels may not contain letters or special characters.

• No characters other than those comprising the label may appear in the
statement label field.

• No two statements within the same program unit may have the same label.

• Continuation lines and comment lines may not have statement labels.

• A tab character in the statement label field indicates the end of the state-
ment number. Characters after the tab are regarded as virtually starting in
column 7.

These symbols and characters have the following meaning when in column 1:

C Comment

* Comment

Comment

& Line continues a statement that is on a previous line

D Debugging line

An executable statement may refer only to other executable statements or to FORMAT
statements by statement label.

A label on a non-executable statement is interpreted as referring to the next sequential
executable statement when the label is used as the object of a GO TO statement.

Continuation Field 2

A statement is continued on another line by placing a continuation character in the
continuation field (column 6) of the next line or by placing an ampersand (&) in column 1
of the next line. The continuation field must be blank or contain a zero for the initial line
of a statement, but must contain a continuation character if the line is to be interpreted as a
continuation line and not as the initial line of a new statement. Any character from the For-
tran character set except blank or zero can be used as a continuation character.
Continuation lines cannot have statement labels in the statement label field.
2-5

Concurrent Fortran 77 Reference Manual
There is no fixed limit on the number of continuation lines allowed in a statement. The
number of continuation lines is limited by the memory available during compilation,
which invariably exceeds the ANSI limit of 19 continuation lines.

Statement Field 2

The statement field contains the text of the Fortran statement. Each statement consists of
combinations of the syntactical items of the language. Statements are written between
columns 7 and 72 of the initial line and of any continuation lines. The initial line of the
statement must have a blank or 0 in column 6. Blanks before, after, or between syntactical
items in Fortran statements are insignificant unless they are part of a character or Hollerith
constant. For example, both of the following statements are correct:

IF(NUMBER.GE.0)GOTO10
IF (NUMBER .GE. 0) GO TO 10

Care should be taken to ensure that no part of the text of a statement appears after column
72, since the compiler does not process any line after column 72. Any symbolic name or
other syntactical item can be split across two lines; the compiler resumes its scan of the
next line in column 7 of the continued line. Note, however, that this practice reduces the
readability of the source program.

With the -col132 option, statement text may extend to column 132. Text that appears
beyond column 132 will be ignored with a caution.

Identification Field 2

Columns 73 through the end of the line comprise the identification field. These columns
are ignored by the compiler and can be used to sequentially number the lines of the entire
source program or of particular program units. Letters, numbers, and special characters
can be used in these columns.

If a tab character appears in the statement label field, some of the characters in the
identification field are regarded as statement field characters.

With the -col132 option the identification field does not exist.

Comments 2

Comment lines are ignored by the compiler. Comments are used to describe the actions of
particular sections of program units, the meaning of symbolic names, the input and output
data, etc., and are a useful documentation aid for the programmer.

A C, *, or # in column 1 of a line indicates a comment line. The one exception is the
#pragma directive; see “#pragma Lines (H)” on page 7. The comment is
entered anywhere from column 2 through the end of the line. Comment lines cannot be
2-6

Source Program Components
continued on succeeding lines using a continuation character in column 6. The text of the
comment is continued by repeating the “C” in column 1 of additional comment lines.
Comment lines can be interspersed with continuation lines. Comment lines that follow an
END statement are considered part of the next program unit.

The compiler also recognizes the exclamation point as a comment indicator. If “!”
appears on the same line as a Fortran statement, the remainder of the line is ignored unless
the exclamation point appears in a character string or Hollerith constant. As with other
characters, a “!” in column 6 indicates a continuation line.

Blank Lines 2

The compiler ignores blank lines in a source program. Blank lines can be used freely in the
source program to set off sections in a program unit to improve readability. The compiler
treats blank lines as comment lines and prints them in the source listing.

Debugging Lines (H) 2

Debugging lines are placed in a program unit and treated either as valid statements or as
comments depending on whether the debug option (-D) is specified at compile time. Lines
containing debugging statements are indicated by a “D” in column 1. Debugging lines can
be interspersed with continuation and comment lines, and they can be initial lines with
optional statement labels or continuation lines.

#pragma Lines (H) 2

The compiler recognizes a single #pragma directive. The ‘#’ character must appear in
column 1.

#pragma options various compiler-related -Q options

The #pragma options line may be used to issue command-line options within a
source file. Only compiler-appropriate -Q options may be used, i.e., -Qobjects=1000
is appropriate whereas -Qfile_buffer_limit=15000000 does not apply to the
compiler and will result in an error. No other options are recognized. The #pragma
options directive applies to the entire source file following its appearance. If #pragma
is used more than once to control options for different subprograms, the #pragma line
intended for a specific subprogram must appear within its body. The scope of the directive
still extends beyond the subprogram. An example of a valid directive:

#pragma options -Qobjects=950 -Qgrowth_limit=400
2-7

Concurrent Fortran 77 Reference Manual
Include Lines (H) 2

The compiler replaces the statement

INCLUDE “namespec”

with the contents of the file namespec. At present, you may nest up to ten INCLUDE state-
ments. If a relative path name is specified in namespec, it is relative to the directory the
source file is in, not the directory from which the compiler is invoked.

The compiler also allows the user to specify a list of directories in which to search for
Fortran INCLUDE files. This can be accomplished by using the -I option which allows
for single directory searches (but can be specified multiple times) or listing directories in
the F77INCLPATH environment variable. Each of these methods is discussed in
Chapter 10.

The search order, which applies only to files whose names do not begin with a “/”, is:

• The directory containing the include file;

• Directories specified with -I options; and

• Directories listed in F77INCLPATH, in left to right order.

Any relative path information supplied in the INCLUDE name is preserved during the
search.

Program Unit Structure and Terminology 2

Every program unit must have a name. The name of a main program is supplied implicitly
by the compiler or by you in a PROGRAM or NAME statement. You must supply the name
for any FUNCTION or SUBROUTINE subprogram; the name is the first identifier in a
FUNCTION or SUBROUTINE statement.

Program units can appear in the source program in any order; however, within a program
unit, there are restrictions on the order in which statements may appear.

The restrictions within a program unit are as follows:

• A statement that names a program unit must always be the first statement
of the program unit.

• Specification statements must precede any statement function definitions
and executable statements. IMPLICIT statements may appear anywhere
among the specification statements. DATA statements may appear any-
where.

• FORMAT and PARAMETER statements may appear anywhere in a program
unit.

• ENTRY statements may appear anywhere in a subprogram except in an IF,
FOR, WHILE, DO-UNTIL, or LOOP block, between a DO loop statement
2-8

Source Program Components
and the statement ending the DO loop, or within an INTERNAL
subprogram.

• Statements defining statement functions (see Chapter 4) must precede any
executable statements.

• The END statement must be the last statement in a program unit.

• Comment lines may appear anywhere in a source program. However, any
comment lines after an END statement are considered part of the next
program unit.

• #pragma lines may appear anywhere in a source program. The directive
applies to the current program unit and all following program units.

• INTERNAL subprograms may appear anywhere an executable statement
may appear.

Table 2-3 illustrates the required order of statements and lines in a program unit. Vertical
lines separate statements that can be interspersed. Horizontal lines show statements that
must be separated.

Execution Sequence 2

Executable statements comprise the execution sequence of the program, and each
executable statement is processed sequentially unless a transfer of control statement
indicates otherwise. Execution begins with the first executable statement in the source
program. Non-executable statements and comments do not affect the execution of the
program.

Table 2-3. Order of Statements and Lines

Comment lines,
Blank lines,
Debugging lines,
#pragma lines,
Include lines

PROGRAM, NAME, FUNCTION, SUBROUTINE
or BLOCK DATA statements

 FORMAT,
PARAMETER,

and
 ENTRY

statements

DATA
statements

Specification
statements

Statement
function

statements

Executable
statements and
INTERNAL
subprograms

END statement
2-9

Concurrent Fortran 77 Reference Manual
A transfer of control causes execution to proceed with a statement other than the next
sequential statement in the program unit.

PROGRAM and NAME Statements 2

A PROGRAM statement gives a name to the main program and, if used, must be the first
statement of the main program unit. The keyword NAME can be used instead of the key-
word PROGRAM to name a main program.

SYNTAX

PROGRAM name

NAME name

DESCRIPTION

name Specifies the name of the main program. The selected name must
conform to the rules for symbolic names and must not be used to name
any subprogram, common block, or entry point within the same source
program.

A main program contains any valid Fortran statement except a FUNCTION,
SUBROUTINE, BLOCK DATA, ENTRY, or RETURN statement. A SAVE statement in a
main program has no effect.

In the following example, EDITOR is the name of a Fortran main program:

PROGRAM EDITOR
. . .
END

END Statement 2

The final statement in any program unit must be an END statement; END indicates the end
of a main program, subprogram, or block data subprogram.

SYNTAX

END

The END statement must begin on an initial line and be the only syntactical item on the
line.
2-10

Source Program Components
Symbolic Names 2

A symbolic name consists of 1 to 1023 letters, digits, dollar signs, or underscores, the first
of which must be a letter. Blanks are ignored inside symbolic names.

The name CUMULATIVE SUM is interpreted as one name, cumulative sum, and the
variable name Lcase is converted to lower case (lcase).

Symbolic names are used to define the following program entities:

Associated with a symbolic name is the concept of scope. The scope of a symbolic name is
“local” to the program unit containing the name or “global”, i.e., known in all program
units in the source program. A name with local scope represents only one entity in a single
program unit, but the same name can represent another entity in another program unit. A
name with global scope must represent only one global entity throughout the entire source
program.

Table 2-4 indicates the scope of symbolic names for particular program entities

Correct Incorrect Explanation

PROGA 12ABC First letter not alphabetic

SORT$PGM *V:DATA Invalid characters

TRIM_VAL _beg First letter not alphabetic

CUMULATIVE SUM

K34

Lcase

Constants Statement functions

Variables Function subprograms

Arrays Subroutine subprograms

Actual arguments Block data subprograms

Dummy arguments Function entry points

Main programs Subroutine entry points

Intrinsic functions Common blocks

Internal subprograms Datapool names
2-11

Concurrent Fortran 77 Reference Manual
The scope of a dummy argument name in a statement function definition, and the scope of
an implied-DO variable in an input/output statement or in a DATA statement, is that state-
ment.

Data Types 2

The data type of a symbolic name implies the kind of data the symbolic name represents,
as well as how large, how small, and, for numeric quantities, how accurate the value of the
symbolic name can be. The maximum and minimum size for data of a particular type and
the accuracy limits on the data depend on the storage unit sizes defined for the data type.

Table 2-4. Scope of Symbolic Names for Program Entities

Program Entity Scope

Constants Local

Symbolic names of constants Local

Variable names Local

Array names Local

Dummy argument names Local

Main program name Global

Intrinsic function names (generic and specific) Local

Statement function names Local

External function names Global

Subroutine names Global

Block data subprogram names Global

Function entry point names Global

Subroutine entry point names Global

Internal subprogram names Local

Common block names Global

Datapool names Local
2-12

Source Program Components
Among the program entities defined above, the concept of data type applies to

A symbolic name identifying a main program, subroutine, common block, or block data
subprogram has no data type.

The Fortran compiler permits the following data types:

INTEGER An optionally signed whole number containing no fractional
portion and no decimal point. Integers are stored in one-byte,
two-byte (word), or four-byte (long word) form.

REAL An optionally signed real number containing an integer part or a
fractional part, or both. Numbers of type real are stored in
four-byte form (with a 23-bit mantissa).

DOUBLE PRECISION
An optionally signed real number that is stored with a greater
degree of accuracy than a single precision real number. Double
precision numbers are stored in eight-byte form (with a 55-bit
mantissa).

COMPLEX A pair of optionally signed real numbers is stored. The first is the
real portion of a complex number, and the second is the imaginary
portion of a complex number.

DOUBLE COMPLEX A pair of double precision numbers is stored. The first is the real
portion of a double precision complex number, and the second is
the imaginary portion of a double precision complex number.

LOGICAL A value representing the logical concept true or false. Logicals are
stored in one-byte, two-byte (word), or four-byte (long word)
form.

CHARACTER A non-numeric, non-logical value consisting of a string of ASCII
characters.

Constants Intrinsic functions

Variables Statement functions

Arrays Function subprograms

Dummy arguments Function entry points

Table 2-5. Fortran Data Types

Data Type Lengths Comments

INTEGER*1
or BYTE

Uses 1 byte of storage. Values range from -128 to 127. With the
-uns_int1 option, values range from 0 to 255.

INTEGER INTEGER*2 Uses 2 bytes of storage. Values range from -32768 to 32767.

INTEGER*4 Uses 4 bytes of storage. Values range from -2147483648 to
+2147483647.
2-13

Concurrent Fortran 77 Reference Manual
Default Lengths for Data Types 2

The default length for each data type is dependent on the data type. INTEGER and
LOGICAL default to 4 bytes but can be changed at compile time from 4 bytes to 2 bytes.
This is done by using the -i2 option.

Notes:

• Assigning a single precision value to an entity of extended precision does
not result in increased accuracy, unless the single precision value is a
constant.

• Use of the -i2 option does not override any explicit length declarations for
integer or logical entities.

• A program entity is defined to be of a certain data type implicitly by the
first letter of the name or explicitly by an explicit type statement (Refer to
Chapter 4).

REAL REAL*4 Uses 4 bytes of storage. Values range from
1.17549435082228740e-38 to 3.402823466385288540e+38 in IEEE
floating-point format. Values are accurate to 6 decimal digits in each
floating-point format

DOUBLE
PRECISION

REAL*8 Uses 8 bytes of storage. Values range from 2.225073850720140e-308
to 1.79769313486231470e+308 in IEEE floating-point format.
Values are accurate to 15 decimal digits in IEEE floating-point
format.

COMPLEX Uses 4 bytes of storage in each part. Values in each part range from
1.17549435082228740e-38 to 3.402823466385288540e+38 in IEEE
floating-point format. Values are accurate to 6 decimal digits in IEEE
floating-point format.

DOUBLE
COMPLEX

Uses 8 bytes of storage in each part. Values in each part range from
2.22507385850720140e-308 to 1.79769313486231470e+308 in
IEEE floating-point format. Values are accurate to 15 decimal digits
in IEEE floating-point format. with 16 digits of accuracy in each part.

LOGICAL*1 Uses 1 byte of storage. Values are .TRUE. or .FALSE. See “Imple-
mentation of the LOGICAL Data Type (H)” on page 3-22.

LOGICAL LOGICAL*2 Uses 2 bytes of storage. Values are .TRUE. or .FALSE. See
“Implementation of the LOGICAL Data Type (H)” on page 3-22.

LOGICAL*4 Uses 4 bytes of storage. Values are .TRUE. or .FALSE. See
“Implementation of the LOGICAL Data Type (H)” on page 3-22.

CHARACTER CHARACTER*n Uses n bytes of storage, storing one character per byte. Values of n
are positive.

Table 2-5. Fortran Data Types (Cont.)

Data Type Lengths Comments
2-14

Source Program Components
Storage Alignment 2

There is a minimal alignment requirement imposed by the machine for each data type.

INTEGER *1, LOGICAL *1, BYTE, and CHARACTER data must be aligned on byte
boundaries. INTEGER *2 and LOGICAL *2 data must be aligned to two-byte
boundaries. All other data types must be aligned to four-byte boundaries. Use of REAL
*8 and COMPLEX *16 variables aligned on eight-byte boundaries achieves a slightly
higher level of data access performance. Such eight-byte padding occurs automatically for
local variables, and for common blocks, pointer blocks and datapools unless the user
forces four-byte alignment by using the -Qalign_double=4 or -stdf77 option.

The compiler and subsequent system components attempt to align data items to the
required boundaries when possible without direction from the user. Specifically, the
compiler reserves filler areas in common blocks and pointer blocks to bring data to the
mandatory alignment. When this is done, a warning is issued by the compiler.

When an EQUIVALENCE statement disallows storage allocation which meets the
mandatory requirements, a fatal error occurs and a diagnostic message indicates the vari-
ables concerned.

Data Constants 2

Data constants are numeric, character, logical, or Hollerith values that do not vary. A
constant can be given a symbolic name with the PARAMETER statement.

A negative numeric constant contains a minus sign. If no sign is present in a numeric
constant or if a plus sign is present, the number is considered positive. A signed complex
number of the following form:

-(3, 4)

 is equivalent to:

(-3.0, -4.0)

Embedded blanks in a numeric constant appearing in an assignment statement or a Fortran
expression do not affect the interpretation of the constant; however, blanks in numeric
constants read from data records are significant in list-directed I/O and, for formatted I/O,
are interpreted as zeroes or are interpreted as being insignificant under the control of the
BN and BZ format descriptors (see Chapter 7). Blanks in character or Hollerith constants
are significant.

The compiler permits the following constants:

Character Hollerith
Complex Integer
Double Complex Logical
Double Precision Real
2-15

Concurrent Fortran 77 Reference Manual
The following constants are permitted wherever numeric constants appear:

Hexadecimal
Octal
Binary
2-16

Source Program Components
Hexadecimal Data (H) 2

Hexadecimal constants contain digits drawn from the set:

0 1 2 3 4 5 6 7 8 9 A B C D E F

SYNTAX

z'n'
z"n"
x'n'
x"n"
'n'x
"n"x
wxn (where n has w digits, similar to Hollerith
wzn (where n has w digits, similar to Hollerith
0xn
0zn

DESCRIPTION

n Specifies a base-16 whole number

x and z Can be specified in either upper- or lowercase

w Is an integer indicating the length in characters of the base-16 number

If the last form is used, where the width of the hexadecimal constant is specified as zero,
all legal digits that follow are used to form the constant value, with truncation or zero
padding, as needed. Thus, hexadecimal constants of the forms 0x4 or 0zD4D413 are
legal.

A hexadecimal constant is signed or unsigned and contains up to 16 digits. Each
hexadecimal constant assumes a data type based on its context in a data statement or
expression. If an obvious context does not exist, it is treated as a four-byte integer,
truncated or zero-extended to the left as necessary. For example, if a hex constant is added
to an INTEGER*2 variable, it is treated as an INTEGER*2 constant. If it is added to a real
variable, then the constant is interpreted as a real constant.

Examples:

Correct Incorrect Explanation

z'0' 'G23'X Invalid digit

'ffffffff'x z'123 No closing apostrophe

z'0123456789abc' z'456” Unmatched string delimiter

4xda12 '45b'z z follows constant value

0zABCD 3Zab Constant value shorter than width
2-17

Concurrent Fortran 77 Reference Manual
Octal Data (H) 2

Octal constants contain digits drawn from the set:

0 1 2 3 4 5 6 7

SYNTAX

o'n'
o"n"
'n'o
"n"o
won (where n has w digits, similar to Hollerith)
0on

DESCRIPTION

n Specifies a base-8 whole number

o Can be specified in either upper- or lowercase

w Specifies an integer indicating the length in characters of the base-8
number

If the last form is used, where the width of the octal constant is specified as zero, all legal
digits that follow are used to form the constant value, with truncation or zero padding, as
needed. Thus, octal constants of the forms 0o4 or 0o000577 are legal.

An octal constant is signed or unsigned and contains up to 22 digits. Each octal constant
assumes a data type based on its context in a data statement or expression. If an obvious
context does not exist, it is treated as a four-byte integer, truncated or zero-extended to the
left as necessary. For example, if an octal constant is added to an INTEGER*2 variable, it
is treated as an INTEGER*2 constant. If it is added to a real variable, then the constant is
interpreted as a real constant.

Examples:

Correct Incorrect Explanation

o'0' '823'o Invalid digit in constant value

“07”o

4O0422 3O06 Constant value shorter than width

0o00777
2-18

Source Program Components
Binary Data (H) 2

Binary constants contain digits drawn from the set:

0 1

SYNTAX

b'n'
b"n"
'n'b
"n"b
wbn (where n has w digits, similar to Hollerith)
0bn

DESCRIPTION

n Specifies a base-2 whole number

b Can be specified in either upper- or lowercase

w Specifies an integer indicating the length in characters of the base-2
number

If the last form is used, where the width of the binary constant is specified as zero, all legal
digits which follow are used to form the constant value, with truncation or zero padding,
as needed. Thus, binary constants of the forms 0b1 or 0B110101 are legal.

A binary constant is signed or unsigned and contains up to 64 digits. Each binary constant
assumes a data type based on its context in a data statement or expression. If an obvious
context does not exist, it is treated as a four-byte integer, truncated or zero-extended to the
left as necessary. For example, if a binary constant is added to an INTEGER *2 variable, it
as treated as an INTEGER *2 constant. If it is added to a REAL variable, then the constant
is interpreted as a real constant.

Examples:

Correct Incorrect Explanation

b'0' '021'b Invalid digit

“01”B

4B0101 3B11 Constant value shorter than width

0b10111
2-19

Concurrent Fortran 77 Reference Manual
Integer Data 2

An integer constant is a whole number that does not contain a decimal point.

SYNTAX

[+]n
-n

DESCRIPTION

 n Specifies a signed or unsigned whole number.

An integer constant contains only the decimal digits 0 through 9 and a leading plus or
minus sign.

Examples:

Correct Incorrect Explanation

 0 -1. Decimal point not allowed

 +230 45,678,732 Commas not allowed

 1987530

 -03967
2-20

Source Program Components
Real Data 2

A single precision real constant is a whole number, a fractional number, or a number that
contains an integer and fractional portion. In their simplest form, real constants contain a
decimal point, but they can be represented in a form resembling scientific notation with a
signed or unsigned exponent.

When a real data constant is used in a double precision context, e.g., when assigned to a
double precision variable or within a double precision expression, the full source precision
(to machine double precision accuracy) is used, regardless of the presence of a “D”
exponent. See note 10. on page 3-8 for details.

SYNTAX

[+]n.d[Es]
-n.d[Es]

DESCRIPTION

where n.d specifies a signed or unsigned real number.

n Specifies an optional integer portion.

d Specifies an optional fractional portion.

. A decimal point must be present if the scientific notation form is not
used. The decimal point is optional if Es is used, in which case the
implied decimal point is to the right of n.

where Es when used, is the number represented in a form resembling scientific
notation.

E Specifies a decimal point shift, s follows.

s Specifies a signed or unsigned one- or two-digit integer number
denoting a power of 10. The exponent indicates the decimal point is to
be shifted s places (positive s a right shift, negative s a left shift). s can-
not be omitted but can be zero.

Only the digits 0 through 9, a decimal point, an E, and a plus or minus sign are valid
characters for real constants.

Example:

30.702E5 is 3070200.000000
-.5171848261204058273E-3 is -0.000517184

As many digits as desired can be written in the fractional portion of a real constant, but
only the most significant digits are used. The fractional portion of a real constant is
accurate to 6+ digits; that is, the sixth most significant digit is accurate, whereas the
seventh is sometimes accurate depending on the value assigned to the data value.
2-21

Concurrent Fortran 77 Reference Manual
The IEEE floating-point format specifies a single-precision signaling NaN
(Not-a-Number) bit pattern. When such a bit pattern is encountered as an operand, an
exception is generated. Thus, NaN is useful for detecting uses of uninitialized variables.
The NAN$ constant intrinsic may be used to initialize or assign single-precision real
variables the single-precision NaN bit pattern (0x7FBFFFFF). See the nan$(3F) man
page for further information.

An executing program receives a floating-point exception, SIGFPE, resulting from use of
a NaN, with code (siginfo_t->si_code & FPE_FLTINV). Assignment of NaN
may or may not generate this exception, but arithmetic operations always do.

The Fortran compiler may receive a NaN floating-point exception and abort with an error
message during compilation for two reasons. The first reason is source code that specifies
a NaN bit pattern via a hexadecimal or other constant to be used as a floating-point
constant. Use the appropriate NAN$ intrinsic instead of a hard-coded bit pattern. The
second reason is through compiler transformation of code containing a NAN$ intrinsic. A
NaN exception thus generated produces an error message containing the string “during
constant folding,” indicating that Concurrent Fortran’s CCG optimizer has determined that
the code contains an arithmetic operation that would use a NaN value. The compiler
reports the source file line number containing the operation that caused the exception.
Examine the source for an operation involving a variable that may contain NaN. For infor-
mation on possible program optimizations, please see the “Program Optimization” Chap-
ter of the Compilation Systems Volume 2 (Concepts) manual.

Examples:

Correct Incorrect Explanation

 -5.42 9770 Decimal point missing

 4.5E-3 4,100. Comma not allowed

 .103E+5 $99.95 Special character $ not allowed

 -42E10 4.3E.5 Exponent must be integer

 56700.00E0

 0.007826

 +8410.
2-22

Source Program Components
Double Precision Data 2

Double precision numbers permit a greater degree of accuracy than single precision real
constants because they are stored with a 52-bit mantissa in IEEE.

SYNTAX

[+]n.dDs
-n.dDs

DESCRIPTION

where n.d specifies a signed or unsigned real number.

n Specifies an optional integer portion.

d Specifies an optional fractional portion. A double precision constant is
represented in scientific notation form.

. The decimal point is optional; the implied decimal point is to the right of
n.

where Ds designates scientific notation form.

D Specifies the constant is double precision

s Specifies a decimal point shift. It is signed or unsigned, one to
seven-digit integer number denoting a power of 10. The exponent
indicates the decimal point is to be shifted s places (positive s a right
shift, negative s left shift). The s cannot be omitted, but can be zero.

Only the digits 0 through 9, a decimal point, a D, and a plus or minus sign are valid
characters for double precision constants.

Example:

30.702D5 is 3070200.000000
-.5171848261204058273D-3 is -0.000517184

As many digits as desired can be written in the fractional portion of a double precision
constant, but only the most significant digits are used. The fractional portion of a double
precision constant is accurate to 15+ digits in IEEE; that is, the sixteenth most significant
digit is accurate, whereas the seventeenth is sometimes accurate depending on the value
assigned to the data value.

The IEEE floating-point format provides a double-precision signaling NaN bit pattern.
The constant intrinsic DNAN$ generates this bit pattern (0x7FF7FFFFFFFFFFFF) at
compile time. DNAN$ may be used to initialize a double-precision real variable through a
DATA or assignment statement. See the dnan$(3F) man page and the preceding section
describing the REAL data format for further information on using this intrinsic.
2-23

Concurrent Fortran 77 Reference Manual
Examples:

 59032D+5
-.78156390273D0
2D-3
+25.56000714283D0
2-24

Source Program Components
Complex Data 2

A complex constant is a pair of integers or real numbers or any mixture of the two. The
pair of numbers is enclosed in parentheses and separated by a comma. Each number must
be a positive or negative number. The first number is the real part of the complex number
and the second number is the imaginary part.

Each number in the pair of numbers is converted to a single precision number with a
23-bit mantissa before being stored internally.

The IEEE floating-point format provides a single-precision signaling NaN bit pattern. The
constant intrinsic CNAN$ generates this bit pattern in complex format (0x7FBFFFFF,
0x7FBFFFFF) at compile time. CNAN$ may be used to initialize a single-precision com-
plex variable through a DATA or assignment statement. See the cnan$(3F) man page
and the preceding section describing the REAL data format for further information on
using this intrinsic.

SYNTAX

(cr,ci)

DESCRIPTION

 cr,ci Specify signed or unsigned numbers. Blanks can precede and follow
each number.

Examples:

(5, 7.6)
(1.346,+52.01)
(3, 200)
(289346252E,9.2)
(0.,.1)
(-7.0, 6.19)
(7.1E2, 8.2)

A symbolic name cannot appear as one of the numbers of the pair. The constant is
interpreted to mean:

cr + ci * i

where i equals the square root of -1. Thus, the following complex constants have values
as indicated:

(1.34,52.01) is 1.34 + 52.01i
(98344.,0.34452E+02) is 98344.0 + 34.452i
(-1.,-1000.) is -1.0 -1000.0i
2-25

Concurrent Fortran 77 Reference Manual
Double Complex Data (H) 2

A double complex constant is a pair of numbers, at least one of which is double precision.
The pair of numbers is enclosed in parentheses and separated by a comma. Each number
must be a positive or negative number. The first number is the real part of the double
complex number and the second number is the imaginary part.

Each number in the pair of numbers is converted to a double precision number with a
52-bit mantissa in IEEE before being stored internally.

The IEEE floating-point format provides a double-precision signaling NaN bit pattern.
The constant intrinsic ZNAN$ generates this bit pattern in double-precision complex for-
mat (0x7FF7FFFFFFFFFFFF, 0x7FF7FFFFFFFFFFFF) at compile time. ZNAN$ may
be used to initialize a double-precision complex variable through a DATA or assignment
statement. See the znan$(3F) man page and the preceding section describing the REAL
data format for further information on using this intrinsic.

SYNTAX

(cr,ci)

DESCRIPTION

cr,ci Specify real or double precision constants. Blanks can precede and
follow each number.

Examples:

(1.346,+52.01D3)
(289346252D,9.2D-2)

A symbolic name cannot appear as one of the numbers of the pair.
2-26

Source Program Components
Logical Data 2

A logical constant is one of two fixed values:

.TRUE. or .FALSE.

representing the Boolean values “true” and “false”, respectively. The periods in each
constant must be present to distinguish the constants as fixed values rather than symbolic
names.

Variables, arrays, and functions can be defined as logical in specification statements. A
value of one represents “true” and a zero value represents “false”. Only the
least-significant bit of logical variables is used to determine the truth value when
performing logical operations with the -V or -VAX compatibility options. When using the
-Qlogical_true_is_nonzero option, any non-zero value represents “true”. For
more information on the LOGICAL data type, see “Implementation of the LOGICAL Data
Type (H)” on page 3-22.
2-27

Concurrent Fortran 77 Reference Manual
Character Data 2

A character constant is a string of zero or more characters delimited by single or double
quote marks. The character string contains any ASCII character.

SYNTAX

'c1c2c3c4...cn'

"c1c2c3c4...cn"

DESCRIPTION

c1c2c3c4...cn Specifies a character string containing ASCII characters.
The length of a character constant can be zero or null, e.g.,

“”

The blank character is a valid character in the string.

A non-printable character (e.g., a tab character or backspace character) is stored as itself
internally.

Single or double quote marks that delimit a string are not a part of the string and are not
counted as part of the string’s length. If single quotes delimit the string, use two single
quotes side by side within the string to have one single quote appear as part of the string. If
double quotes delimit the string, use two double quotes side by side within the string to
cause one double quote to be stored as part of the string. Each pair of consecutive single
quotes or double quotes counts as one character in the string and occupies only one
position in the string.

The length of the character string is the count of the number of characters in the string.
Conceptually, each character in the string also has a position that is numbered
consecutively 1, 2, 3, etc.; the number indicates the sequential position of a character in
the string beginning at the left and proceeding to the right.

A substring is a contiguous portion of a character string.

Table 2-6. Examples of Character Constants

Correct Length of Constant

'b' 1

'THEbANSWERbCAN''TbBEbDETERMINED' 30

'Ab+b16' 6

“RESULT:bb” 9

'1234567' 7

'AB63X9YZ[$<*' 12
2-28

Source Program Components
Incorrect Explanation

'RESULT UNDEFINED! No closing single quote

'YESTERDAY'S TALLY WAS:' Matching single quote missing
2-29

Concurrent Fortran 77 Reference Manual
Hollerith Data 2

A Hollerith constant is a non-empty string of characters. Hollerith constants may appear
only in a DATA statement, a FORMAT statement, and during assignment to numeric
variables.

SYNTAX

wHh1h2h3...hw

DESCRIPTION

w Specifies an unsigned, non-zero integer indicating the
number of characters in the Hollerith string.

h1h2h3...hw Specifies the characters in the constant. A blank is a
significant character in the Hollerith string. A character in a
Hollerith string can be any ASCII character.

If the Hollerith data does not fill the sequence of storage locations reserved for the data,
the compiler fills the trailing storage locations with blanks. If the data overflows the
assigned storage locations, any additional characters to the right are lost.

When a numeric entity is defined with a Hollerith value, the entity and its associated
entities should not be used in an arithmetic context.

Example:

1Hb
17HTODAY'SbTOTALbIS:

If Hollerith constants are used in output FORMAT statements, w must indicate the exact
number of characters in the Hollerith string, or the output format will be interpreted
incorrectly. For example,

100 FORMAT (18HTHE RESULT IS:,F6.2)

results in the following Hollerith string and a format error will result:

THE RESULT IS:,F6.

Variables 2

A variable is a symbolic name with a specific data type. The name of a variable refers to a
location in memory where a data value is stored or is to be stored. Referencing a variable
means that the variable is used in a context where its value is needed.

The data type of a variable defines the type of data the variable will contain, limits the
storage available for the variable, and, for numeric variables, defines the precision of the
value.
2-30

Source Program Components
Explicit type statements define the data type and length of a variable. A variable can be
explicitly defined only once. An IMPLICIT statement permits symbolic names beginning
with a specific letter or permits a range of such letters to be designated as belonging to a
particular data type. Explicit type statements take precedence over IMPLICIT definitions.

If the variable is not defined explicitly and if an IMPLICIT statement does not apply, the
following rules are applicable:

• All variable names beginning with the letter I, J, K, L, M, or N are defined
to be of type INTEGER.

• All variable names beginning with a letter A-H or O-Z are defined to be of
type REAL.

Examples:

Arrays 2

An array is a sequence of variables that have the same symbolic name and data type.

A subscript appended to the array name distinguishes each element or member of the
array, and the array element name refers to a specific storage location. When the value of
an array element is referenced, the array name and its subscript are written together; the
subscript is enclosed in parentheses and can be an arithmetic expression. Array element
names (i.e., those written with subscripts) must have a subscript for each dimension of the
array.

Implicit
Integer Variables

Implicit
Real Variables

 I X

 J1 DAYS TOTAL

LINECOUNT COUNT
2-31

Concurrent Fortran 77 Reference Manual
Declaring an Array 2

Arrays used in a program unit must be declared at the beginning of the program unit using
a DIMENSION, AUTOMATIC, STATIC, COMMON, DATAPOOL, or an explicit type state-
ment. The array declaration defines the upper and lower bounds of the array, the data type
of the array, and the number of dimensions in the array.

SYNTAX

keyword name (d1 [, d2, ..., d7]) [,...]

DESCRIPTION

keyword Specifies DIMENSION, AUTOMATIC, STATIC, COMMON,
DATAPOOL, or an explicit type statement keyword.

name Specifies the symbolic name of the array.

d1,d2...,d7 Specifies the dimensions of the array. Each d has one of two
forms:

eu
or
el:eu

el Specifies unsigned integer constants or integer constant
expressions and designates the lower bound of a dimension.
If the lower bound is omitted, it is assumed to be 1.

eu Specifies unsigned integer constants or integer constant
expressions and designates the upper bound of a dimension.
The lower and upper bound specifications are positive,
negative or zero, but the upper bound must not be less than
the lower bound. If the upper bound of the rightmost
dimension is an asterisk (*), the array is an assumed-size
array (see Chapter 8).

An array has from one to seven dimensions. The size of an array is equal to the product of
the dimensions of the array.

Dimension expressions in an array declarator must not contain a variable name, an array
element name, or a function reference. Only arithmetic expressions containing numeric
constants or symbolic names of integer constants are permitted in array declarators. The
result of the dimension expression must be an integer.

Arrays are stored linearly in main memory. Table 2-7 illustrates array storage. Note that
the leftmost subscript varies most rapidly. Elements of array A(3,3,2) are stored as
follows:
2-32

Source Program Components

The data type of an array is implied by the first letter of the name if the array is not
declared in an explicit type statement. If numeric data of a different type is assigned as the
value of a numeric array element name, the data is converted to the data type of the array.
An array with a given name may be declared only once in a program unit.

The number and size of dimensions in one array declarator can be different from the
number and size of dimensions in another array declarator that is associated by common,
equivalence, or argument association.

Examples:

DIMENSION I(0:9,0:9), J(0:4,0:4), K(-5:5)
INTEGER VECTOR (10*10), TABLE (25, 25)
COMMON A(3,3,3)

Table 2-7. Array Storage

Memory Location Array Element

1st A (1,1,1)

2nd A (2,1,1)

3rd A (3,1,1)

4th A (1,2,1)

5th A (2,2,1)

6th A (3,2,1)

7th A (1,3,1)

8th A (2,3,1)

9th A (3,3,1)

10th A (1,1,2)

11th A (2,1,2)

12th A (3,1,2)

13th A (1,2,2)

14th A (2,2,2)

15th A (3,2,2)

16th A (1,3,2)

17th A (2,3,2)

18th A (3,3,2)
2-33

Concurrent Fortran 77 Reference Manual
Referencing an Array 2

The value of an array element is referenced by using the array name with the subscript that
pinpoints the appropriate element in the array; thus, the reference, known as an array
element name, must include the array name and a subscript for each dimension of the
array.

SYNTAX

array-name (s1 [, s2, ..., s7])

DESCRIPTION

array-name Specifies a symbolic name.

s1, s2, ...,s7 Subscripts specified as integer constants or as subscript
expressions that are explicitly converted to integer values.

An unsubscripted array name is used as follows:

• In a COMMON, EQUIVALENCE, DATA, SAVE, AUTOMATIC, STATIC,
DATAPOOL, or explicit type statement.

• As a dummy or actual argument in an argument list.

• In an array declarator in a COMMON, DIMENSION, or explicit type state-
ment.

• In an I/O statement in an input or output list, as a unit specifier for an
internal file, or as a format specifier (providing the array is not an
assumed-size dummy array).

An unsubscripted array name designates the whole array. The appearance of the
unsubscripted array name implies that the number of values to be processed is equal to the
number of elements in the array, and that the elements of the array are to be taken in
sequential order, beginning with the first element of the array.

In EQUIVALENCE statements and in assignment statements, using an unsubscripted array
name references only the first element of the array and no more.

A subscript expression contains constants, symbolic names of constants, function
references, variables, or array element names. Any symbolic names used in the subscript
expression must be defined. Evaluation of a subscript does not alter the value of any other
subscript.

Examples:

A(1)
I(-3,2,4)
J(0,4)
POS(I,I+1)
X(1,2,1,1,2)
VECTOR(2 * INT(Q))
2-34

Source Program Components
Character Substrings 2

A character substring is a contiguous portion of a character string value. A substring is a
single character in a character string, a subset of contiguous characters in a character
string, or the entire character string in duplicate. Within a character context, a substring
reference refers to a substring of characters within a character string.

Substring Referencing for Variables 2

SYNTAX

name (e1:e2)

DESCRIPTION

name Specifies a character variable.

e1 Specifies a substring expression that produces a positive integer num-
ber. It specifies the leftmost character position of a substring.

e2 Specifies a substring expression that produces a positive integer num-
ber. It specifies the rightmost character position of a substring.

Example:

If variable CHARS is declared to be of data type character and has the value:

ABCDEFGHI

then the following will reference the substring DEFG:

CHARS(4:7)

If e1 or e2 is an expression, then numeric variables, array element names, or
function references can appear in the expression.

If e1 is omitted, 1 is used. If e2 is omitted, the compiler uses the number denoting
the length of the parent character string as the default value for the substring
reference. Note that a substring reference of the form:

CHARS(:)

is equivalent to using the variable CHARS with no substring reference.

The values of e1 and e2 must be such that:

1 <= e1 <= e2 <= length

where length is the total number of characters in the parent character string.
2-35

Concurrent Fortran 77 Reference Manual
Substring Referencing for Array Elements 2

SYNTAX

name (d1[,...])(e1:e2)

DESCRIPTION

name Specifies the array element name.

d1,... Specifies the subscript portion denoting which element of the array to
reference.

e1, e2 Specify substring expressions as defined in the previous section.

For example, if CHARS(1) contains: “ALL COWS EAT GRASS” then the following
substring reference produces the sequence COWS EAT GRASS:

INTEGER LM, RM
LM = 5
RM = 18
WRITE(6,*) CHARS(1)(LM:RM)

Initialization of Variables and Arrays at Compile Time 2

When a source program has been compiled and is ready for execution, all variables and
array elements are undefined (i.e., have an unknown value) unless the entity is:

• Given a value in a DATA statement or in a declaration statement

• On the left-hand side of an assignment statement

• Passed as a subroutine or function argument

• In the I/O list of a read

• Referenced by an I/O keyword

• In a COMMON block

• Equivalenced to an initialized entity

• In a statement function

A character entity is defined when all characters in that entity are defined. If the length of
a character value is longer than the length of the character entity to which it is assigned,
additional characters at the right are ignored when the value is assigned (i.e., the character
value is truncated). If the length of a character value is shorter than the length of the
character entity to which it is assigned, blanks are added to the right of the character value
to fill the entire character entity (i.e., the entity is padded to the right with blanks).

A variable, array element, or substring is initially defined only once in a program unit; if
its value changes later, the entity is redefined or its value becomes undefined. Any
2-36

Source Program Components
variable, array element, or substring can be initially defined (i.e., defined in a DATA or
declaration statement) except for:

• A dummy argument.

• A variable in a function subprogram whose name is also the name of a
function subprogram, or the name of an entry point in the function
subprogram.

• A variable declared as AUTOMATIC.

If two entities are associated (i.e., share the same memory space), only one is initially
defined in a DATA statement in the same source program. Refer to Chapter 4 for more
information on the DATA statement.

Arguments 2

Arguments permit one program unit to communicate values to another. Arguments appear
to the right of a function, subroutine name or entry point and are enclosed in parentheses
and are separated by commas.

SYNTAX

name (a1, ..., an)

DESCRIPTION

name Specifies the function, subroutine name or entry point.

a1,...,an Specifies a list of actual arguments.

Actual arguments are constants, expressions or symbolic names appearing in the argument
list of a function reference or subroutine call. The values of the actual arguments are
passed to the function or subroutine, and the values are associated with dummy arguments
defined for the function or subroutine subprogram. Actual and dummy arguments are
explained further in Chapter 8.

Definition Status 2

When a program unit begins execution, the value of a variable is either defined or
undefined. A variable is initially defined if a value is given to it in a DATA statement. A
variable is defined after program execution begins by using assignment or input
statements.

An undefined variable has no predictable value; all variables, unless initially defined in a
DATA statement, are undefined when a program begins execution with the first executable
statement of the program. Once a variable is defined (i.e., contains a value), the value does
2-37

Concurrent Fortran 77 Reference Manual
not change unless the value is destroyed (becomes undefined) or is redefined to contain a
different value.

When variables have been declared AUTOMATIC in a subroutine or function, they become
undefined when a RETURN or an END statement is encountered.

Association of Symbolic Names 2

Symbolic names that are associated refer to the same program entity or memory locations.
Association permits an entity defined in one program unit to be referenced later by another
program entity of different type. Entities are associated by COMMON statements, EQUIVA-
LENCE statements, ENTRY statements, or through the argument list of a function refer-
ence, subroutine call, or ENTRY statement.

In the following example, IVAR and RVAR are associated:

SUBROUTINE SUB1
COMMON /COM/ IVAR
INTEGER IVAR
...
END

FUNCTION FUNC1 ()
COMMON /COM/ RVAR
REAL RVAR
...
END
2-38

3
Expressions and Assignment Statements

Expressions and Statements Overview . 3-1
Arithmetic Expressions and Assignments . 3-1

Simple and Compound Arithmetic Expressions . 3-1
Constant Arithmetic Expressions . 3-2
Character Constant Expression. 3-2
Arithmetic Operators . 3-2
Precedence of Arithmetic Operators . 3-3
Examples of Arithmetic Expressions . 3-4
Exponentiation Rules . 3-5
Data Type Conversions (Mixed Modes). 3-5
Arithmetic Assignments . 3-10
.SHIFT. and .ROTAT. Integer Operators (H) . 3-12

Character Expressions and Assignments . 3-13
Character Expressions . 3-13
Character String Operations . 3-14
Character Assignments. 3-14

Relational and Logical Comparisons and Assignments . 3-16
Relational Expressions . 3-16
Logical Expressions . 3-17
Logical Operations Using Integer Operands (H) . 3-20
Logical Assignments . 3-21
Implementation of the LOGICAL Data Type (H) . 3-22

Default Implementation (H) . 3-23
VAX Implementation (H) . 3-24
logical_true_is_nonzero Implementation (H) . 3-24
no_short_circuit Implementation (H) . 3-24

Use of Arithmetic, Character, and Logical Expressions . 3-25
Summary of Mixed Assignments and Operator Precedence 3-26
ASSIGN Statement . 3-30
Multiple Assignment Statements (H) . 3-31
Array Assignment Statements (H). 3-33

Concurrent Fortran 77 Reference Manual

3
Chapter 3Expressions and Assignment Statements

3
3
3

Expressions and Statements Overview 3

The Fortran language permits arithmetic, character, relational, and logical expressions. An
expression is composed of operands, operators, and, if necessary, parentheses.

Fortran expressions are commonly used in assignment statements because they produce a
single numeric, character, or logical value that can be assigned as the value of a variable or
array element name. Expressions are also used as dimension bounds in array declarators;
as subscripts; as substring bounds in substring references; as arguments in function
references and subroutine calls; as control parameters in DO, FOR, LOOP, DO WHILE,
DO-UNTIL, and IF statements; and in control information lists and I/O lists in input and
output statements.

Assignment statements are executable statements that assign a value to a variable or an
array element. The four kinds of assignment statements are arithmetic, character, logical,
and statement label assignments.

Arithmetic Expressions and Assignments 3

Arithmetic expressions produce numeric values that are used in an arithmetic context, such
as in an arithmetic assignment statement. Evaluation of an arithmetic expression results in
a single numeric value.

Simple and Compound Arithmetic Expressions 3

A simple arithmetic expression consists of one operand in an arithmetic context. The
operand can be a numeric constant or the symbolic name of a constant, a numeric variable
name, a numeric array element name, or a numeric function reference.

A compound arithmetic expression consists of two or more numeric operands, connected
by arithmetic operators, appearing in an arithmetic context. Any of the following entities
are valid numeric operands for compound arithmetic expressions:

• Numeric constants or symbolic names of constants

• Numeric variables

• Numeric array elements
3-1

Concurrent Fortran 77 Reference Manual
• Numeric function references

• Numeric subexpressions nested within the compound expression

Any combination of the preceding operands can appear in an arithmetic expression.

Variables and array element names must be defined (i.e., have a value) before they can be
used in arithmetic expressions.

The following kinds of data can appear in arithmetic expressions:

Binary data
Octal data
Hexadecimal data
Hollerith data
Integer data
Real data
Double precision data
Complex data
Double complex data

Constant Arithmetic Expressions 3

A constant expression is a simple or compound arithmetic expression that contains only
constants. An expression used in a specification statement (e.g., as an array declarator in a
COMMON, DATAPOOL, AUTOMATIC, STATIC, DIMENSION, or explicit type statement)
must be an integer constant expression; i.e., variable names, array element names, or
function references are not permitted, and the resulting data type of the expression must be
an integer.

Character Constant Expression 3

A character constant expression is one in which each primary is a character constant, the
symbolic name of a character constant, or a character constant expression enclosed within
parentheses. The character operator “//” is allowed for string concatenation. The intrinsic
function, CHAR, when given an integer constant parameter, generates a character constant
of length one at compile time; it may be used to form a character constant expression.
Character constant expressions are the only character expressions that may be used to set
character PARAMETER values.

Arithmetic Operators 3

Arithmetic expressions are formed using unary and binary operators. Unary (meaning one)
operators have only one operand, which appears to the right of the operator. Binary
(meaning two) operators have two operands; the operator is written between the two
operands. Table 3-1 lists the unary and binary operators
3-2

Expressions and Assignment Statements
.

Precedence of Arithmetic Operators 3

Expressions containing two or more operators are interpreted based on a precedence
hierarchy associated with arithmetic operators. Table 3-2 gives the precedence hierarchy
for arithmetic operators. Operators of equal precedence are grouped together.

Whenever two or more operators of equal precedence appear in sequence, they are
evaluated from left to right. However, if two or more subexpressions with exponents occur
in sequence, they are evaluated from right to left. Parentheses in the following expressions
indicate how the expression is evaluated for operators of equal precedence:

X-Y+Z is interpreted as (X-Y)+Z
X/Y*Z is interpreted as (X/Y)*Z
X**Y**Z is interpreted as X**(Y**Z)

Table 3-1. Unary and Binary Arithmetic Operators

Unary Operators Representing

 + Identity

 - Negation

Binary Operators Representing

 ** Exponentiation

 * Multiplication

 / Division

 + Addition

 - Subtraction

Table 3-2. Precedence Hierarchy of Arithmetic Operators

Operation Operator Precedence

Exponentiation ** First (Highest)

Multiplication * Second

Division / Second

Addition + Third

Subtraction - Third

Unary plus + Third

Unary minus - Third
3-3

Concurrent Fortran 77 Reference Manual
Parentheses are used in an expression to override the precedence rules:

X - (Y + Z)
X / (Y * Z)

A negative exponent of type integer, real, double precision, complex, or double complex is
permitted and is written in the form:

x1 ** x2

where x1 and x2 can be integer, real, double precision, complex, or double complex
numbers, and x2 is less than 0. The preceding exponentiation is interpreted as follows:

1 / (x1 ** ABS(x2))

The rules of division apply in the above interpretation.

Examples of Arithmetic Expressions 3

Parentheses are used to explicitly indicate the manner in which the expression is to be
evaluated.

Expression

4 + 6 * 10 / 2 ** 2 - 1 = 18

Evaluation

(4 + ((6 * 10) / (2 ** 2))) - 1 = 18

Parentheses are also used to preclude the use of some algebraic transformations by the
compiler.

Expression

A + B + C

Evaluation

(A + C) + B

which is mathematically equivalent (but is not, in general, computationally equivalent).
Using:

(A + B) + C

constrains the pairing of operands to achieve the desired result.

An entire expression or any subexpression is signed or unsigned if enclosed in
parentheses:

+(4 + 6 * 10 / 2 ** 2 - 1) = 18
-(4 + 6 * 10 / 2 ** 2 - 1) = -18
-(4 + 6 * 10 / 2 ** 2) - 1 = -20
3-4

Expressions and Assignment Statements
Expression

-1 ** 3

Evaluation

-(1 ** 3)

Any operation that is not mathematically defined (such as division by zero) is not
permitted during program execution.

Exponentiation Rules 3

The following rules apply in expressions containing exponents:

An exponent and its base is an entity that is an expression in parentheses.

• Negative numbers cannot be raised to non-integer exponents.

• Raising a zero base to a zero power or to a negative power is prohibited.

NOTE: These computations are not mathematically defined.

Data Type Conversions (Mixed Modes) 3

If the operands in an arithmetic expression are all of one arithmetic data type, the value of
the expression has that data type and is defined as an integer, real, double precision,
complex, or double complex expression.

A mixed-mode arithmetic expression contains a mixture of operands with different
numeric data types. In a mixed-mode expression, as each subexpression within the
expression is evaluated, the resulting mode is that of the operand with the highest ranking
data type. The precedence of the data type is as follows:

Data Type Precedence

DOUBLE COMPLEX First (Highest)

COMPLEX Second

DOUBLE PRECISION Third

REAL Fourth

INTEGER Fifth

INTEGER*2 Sixth

INTEGER*1 Seventh

Hollerith Eighth
3-5

Concurrent Fortran 77 Reference Manual
The rules for determining the data type for the value of an expression are given below. A
section of notes follows the explanations.

Resulting
Data Type Explanation

INTEGER The value of an expression or subexpression
is of type INTEGER (1) if all operand(s) are
of type INTEGER or (2) if the operand(s) are
a mixture of INTEGER entities and entities
of a lower rank. Hollerith data is always
treated as integer data in an assignment. See
Notes 1 and 2 below.

REAL The value of an expression or subexpression
is of type REAL (1) if all operand(s) are of
type REAL or (2) if the operand(s) are a
mixture of REAL entities and entities of
lower rank. See Notes 1, 3, 4, and 5 below.

DOUBLE PRECISION The value of an expression or subexpression
is of type DOUBLE PRECISION (1) if all
o p e r a n d (s) a r e o f t y p e DOUBLE
PRECISION or (2) if the operand(s) are a
mixture of DOUBLE PRECISION entities
and entities of lower rank. See Notes 1, 3, 4,
and 5 below.

COMPLEX The value of an expression or subexpression
is of type COMPLEX (1) if all operand(s) are
of type COMPLEX or (2) if the operand(s) are
a mixture of COMPLEX entities and entities
of lower rank. In expressions containing
COMPLEX numbers, integer and double
precision numbers are converted to real
values which are then converted to complex
numbers. The real value is the real portion of
the complex number, and an imaginary part
of 0.0 is supplied.

DOUBLE COMPLEX The value of an expression or subexpression
is of type DOUBLE COMPLEX (1) if all
operand(s) are of type DOUBLE COMPLEX
or (2) if the operand(s) are a mixture of
DOUBLE COMPLEX entities and entities of
lower rank. In expressions containing
DOUBLE COMPLEX numbers, integer, and
real numbers are converted to double
precision values which are then converted to
double complex numbers. The double
precision value is the real portion of the
double complex number, and an imaginary
part of 0.0D0 is supplied.
3-6

Expressions and Assignment Statements
Notes:

1. During expression evaluation, the data type of intermediate results and of
the final result is the data type of the operand with the highest precedence.

Example:

((6 + 5) + 3.2) + 4.5D3

is evaluated as follows:

2. If an integer division occurs, any fractional part is truncated. Note that:

1 / 2 * 3.0

results in a value of 0.0 because the integer division is performed first according to
the rules of precedence for operators. The conversion to a real number occurs when
the real multiplication of 0 * 3.0 is performed.

3. If a real, double precision, complex, or double complex number is raised to
an integer power, the integer is not converted. For example, use:

 A ** 2 and not A ** 2.0

where A is a real number.

4. Any integer numbers that are converted to real, double precision, complex
or double complex form are given a fractional part of zero.

5. Division and multiplication using real or double precision numbers are
subject to round-off errors.

Example:

A. 2./3. + 1./3. can be less than 1.0.

B. 10 * 0.9 may not be exactly equal to 9.

6. Expressions appearing as subscripts in an array reference are independent
of the expression in which the array appears. The subscript expressions are
evaluated in their own mode and neither affect the data type of the outer
expression nor are affected by it.

7. Expressions appearing as arguments in function references are evaluated in
their own mode independently of the expression in which the function ref-
erence appears. For example, if X is of type real and J is of type integer and
the INT (conversion-to-integer) function is used, the expression
INT(X+J) is an integer expression, and X+J is a real expression.

Subexpression Intermediate
Result

Data Type of
Intermediate Result

6 + 5 11 Integer

6 + 5 + 3.2 14.200000 Real

6 + 5 + 3.2 + 4.5D3 4514.20000000000 Double precision
3-7

Concurrent Fortran 77 Reference Manual
Expressions as arguments can affect the mode of the function result and,
thus, of the expression in which the result is used. For example, for many
intrinsic functions, if the generic name of the function is used, the data type
of the function’s result is the data type of the argument(s) processed for the
function. See Chapter 9 for more information on Fortran intrinsic
functions.

8. Values of expressions and subexpressions cannot exceed the limits
associated with the data type of the expression. For example, a real inter-
mediate result cannot be outside the domain of values for real numbers.

9. Hexadecimal, octal, and binary constants assume data types and sizes
based on the context of the expression. When paired with or assigned to
real operands, these constants are treated as real; when paired with or
assigned to integer operands, these constants are treated as integer. The size
of the constant is also determined by the context in the same way. When
there is no context to determine the data type and size for the constant, as
with an argument in a CALL statement, the type defaults to INTEGER *4.

10. Real constants specified to double precision significance have their
accuracy preserved if the constant is used in a double precision context.

Example:

DOUBLE PRECISION DP
DATA DP /1.234567890123456/
WRITE (6,*) DP
DP = 2.345678901234567
WRITE (6,*) DP

would produce:

1.234567890123456
2.345678901234567

as output rather than truncating the real constants to 6 digits of accuracy before use.
Imprecisely representable real constants such as 0.1 also have double precision
accuracy if used in a double precision context.

11. All compile-time real constant arithmetic is performed with double
precision accuracy.

Table 3-3 gives examples illustrating mixed-mode expressions for addition, subtraction,
multiplication, and division; notation in the first column represents any of the four
operations. Table 3-4 gives examples illustrating mixed-mode expressions using
exponentiation. Integer, Real, Double Precision, Complex, and Double Complex operands
are represented by I, R, D, C, and Z, respectively.
3-8

Expressions and Assignment Statements

Table 3-3. Examples Illustrating Mixed-Mode Expressions for +, -, * and /

Expression
x1 op x2 Interpretation Resulting

Data Type

I1 + R2 REAL(I1) + R2 Real

R1 + I2 R1 + REAL(I2) Real

D1 + I2 D1 + DBLE(I2) Double Precision

D1 + R2 D1 + DBLE(R2) Double Precision

I1 + D2 DBLE(I1) + D2 Double Precision

R1 + D2 DBLE(R1) + D2 Double Precision

C1 + I2 C1 + CMPLX(REAL(I2),0.) Complex

C1 + R2 C1 + CMPLX(R2,0.) Complex

C1 + D2 C1 + CMPLX(REAL(D2,0.)) Complex

I1 + C2 CMPLX(REAL(I1),0.) + C2 Complex

R1 + C2 CMPLX(R1,0.) + C2 Complex

D1 + C2 CMPLX(REAL(D1),0.) + C2 Complex

Z1 + I2 Z1 + DCMPLX(DBLE(I2),0.0D0) Double Complex

Z1 + R2 Z1 + DCMPLX(DBLE(R2),0.0D0) Double Complex

Z1 + D2 Z1 + DCMPLX(D2,0.0D0) Double Complex

Z1 + C2 Z1 + DCMPLX(C2) Double Complex

I1 + Z2 DCMPLX(DBLE(I1),0.0D0) + Z2 Double Complex

R1 + Z2 DCMPLX(DBLE(R1),0.0D0) + Z2 Double Complex

D1 + Z2 DCMPLX(D1,0.0D0) + Z2 Double Complex

C1 + Z2 DCMPLX(C1) + Z2 Double Complex

Table 3-4. Examples Illustrating Mixed-Mode Expressions for **

Expression
x1 op x2 Interpretation Resulting

Data Type

I1 ** R2 REAL(I1) ** R2 Real

R1 ** I2 R1 ** REAL(I2) Real

D1 ** I2 D1 ** DBLE(I2) Double Precision

D1 ** R2 D1 ** DBLE(R2) Double Precision

I1 ** D2 DBLE(I1) ** D2 Double Precision

R1 ** D2 DBLE(R1) ** D2 Double Precision
3-9

Concurrent Fortran 77 Reference Manual
Arithmetic Assignments 3

An arithmetic assignment statement assigns a numeric, logical, character, or Hollerith
value to a numeric variable or array element name. Arithmetic assignment statements are
executable statements.

SYNTAX

name = e

DESCRIPTION

name Specifies a variable name or subscripted array element name.

e Specifies an arithmetic, logical or character expression, a variable, a
subscripted array element name, a constant, the symbolic name of a con-
stant, or a Hollerith value.

Any symbolic name appearing to the right of the equals sign must be defined (i.e., have a
value). A symbolic name appearing to the left of the equals sign may or may not be
defined. An expression or function reference cannot appear to the left of the equals sign in
an arithmetic assignment statement except as an array subscript.

C1 ** I2 C1 ** CMPLX(REAL(I2),0.) Complex

C1 ** R2 C1 ** CMPLX(R2,0.) Complex

C1 ** D2 C1 ** CMPLX(REAL(D2,0.)) Complex

I1 ** C2 CMPLX(REAL(I1),0.) ** C2 Complex

R1 ** C2 CMPLX(R1,0.) ** C2 Complex

D1 ** C2 CMPLX(REAL(D1),0.) ** C2 Complex

Z1 ** I2 Z1 ** DCMPLX(DBLE(I2),0.0D0) Double Complex

Z1 ** R2 Z1 ** DCMPLX(DBLE(R2),0.0D0) Double Complex

Z1 ** D2 Z1 ** DCMPLX(D2,0.0D0) Double Complex

Z1 ** C2 Z1 ** DCMPLX(C2) Double Complex

I1 ** Z2 DCMPLX(DBLE(I1),0.0D0) ** Z2 Double Complex

R1 ** Z2 DCMPLX(DBLE(R1),0.0D0) ** Z2 Double Complex

D1 ** Z2 DCMPLX(D1,0.0D0) ** Z2 Double Complex

C1 ** Z2 DCMPLX(C1) ** Z2 Double Complex

Table 3-4. Examples Illustrating Mixed-Mode Expressions for ** (Cont.)

Expression
x1 op x2 Interpretation Resulting

Data Type
3-10

Expressions and Assignment Statements
The equals sign does not imply equality but indicates that the value to the right of the
equals sign is to be assigned as the value of the element to the left of the equals sign. Note
that the following is valid:

J = J + 1

The preceding assignment statement causes the present value of variable J to be
incriminated by 1 and the resulting value assigned as the new value for J. See also “Multi-
ple Assignment Statements (H)” on page 3-31 and “Array Assignment Statements (H)” on
page 3-33.

Examples:

B = 32.7
A = B
J = +I
Q(1) = Z ** 2 + N(L-J)
T32(1) = L / (34.,-0.003244) + (.0045,0)
PI = 4 * (ATAN(0.5) + ATAN(0.2) + ATAN(0.125))

If the data type of name and the value of e are different, the following conversion rules
apply:

• If name is of data type INTEGER, a real or double precision value for e is
truncated to integer form (any fractional part is lost). For a complex or
double complex number, the imaginary part of the complex or double
complex number is ignored and the real part of the complex or double
complex number is truncated to integer form. If e is a character entity or a
Hollerith value, the left most n characters of the entity, where n is the size
in bytes of name, are places in the corresponding bytes of name. The value
of each byte is the integer value defined by the ICHAR intrinsic function. If
e is a logical entity, a verbatim copy of the bit pattern of e is placed
right-justified into name.

• If name is of data type REAL, a double precision value for e is truncated to
a real number, an integer value is converted to a real number with a
fractional part of zero, and the real portion of a complex or double complex
number is used (truncated to a real if double complex) while the imaginary
portion is ignored.

• If name is of data type DOUBLE PRECISION, an integer value for e is
converted to a double precision number and given a fractional part of zero,
and a real value is extended to double precision form. For complex
numbers the real portion of the complex number is used and the imaginary
part is ignored.

• If name is of data type COMPLEX, an imaginary part of 0.0 is assigned for
an integer, real, or double precision value of e. The real part of the complex
number is derived as follows: a real number is used as is, a double preci-
sion number is truncated to a real number, and an integer is converted to a
real number.

• If name is of data type DOUBLE COMPLEX, an imaginary part of 0.0D0 is
assigned for an integer, real, or double precision value of e. The real part of
the complex number is derived as follows: a real number is extended to
3-11

Concurrent Fortran 77 Reference Manual
double precision, a double precision is used as is, and an integer is con-
verted to a double precision number.

.SHIFT. and .ROTAT. Integer Operators (H) 3

The .SHIFT. and .ROTAT. operators treat the bits in a numeric or logical value as a bit
string of 0’s and 1’s. .SHIFT. and .ROTAT. shift digits in a bit string to the left or right
or rotate bits to the left or right within a string, respectively. The bit string is derived from
an integer or logical expression or constant that appears as the left operand of the shift or
rotate operation. The number of binary digits to shift or rotate is indicated as an INTEGER
expression to the right of the shift or rotate operator.

The .SHIFT. and .ROTAT. operators have equal precedence with each other and have a
higher precedence than the other numeric, arithmetic, character, and relational operators.

The .SHIFT. operator has the following form:

e .SHIFT. i

DESCRIPTION

e Specifies an integer or logical constant or expression.

i Specifies an integer constant or expression yielding a value between -32
and +32, inclusive, for INTEGER *4 integers, and -16 and +16,
inclusive, for INTEGER *2 integers. The value of i specifies both the
magnitude and direction of the shift. If i is positive, the direction of the
shift is to the left; if i is negative, the direction of the shift is to the right.

The .SHIFT. operator denotes a logical shift with zero fill. The data type of the result of
a logical shift operation is the same as that of e.

The .ROTAT. operator has the following form:

e .ROTAT. i

DESCRIPTION

e Specifies an integer or logical constant or expression.

i Specifies an integer constant or expression yielding a value between -32
and +32, inclusive, for INTEGER *4 integers, and between -16 and
+16, inclusive, for INTEGER *2 integers. The value of i specifies both
the magnitude and direction of rotation. If i is positive, the direction of
the rotation is to the left; if i is negative, the direction of the rotation is to
the right.

The data type of the result of a logical rotate operation is the same as that of e.
3-12

Expressions and Assignment Statements
Examples:

The following shift and rotate operations have the indicated effect on the bit string and
result in the specified hexadecimal value:

Character Expressions and Assignments 3

Character expressions produce values that are strings of zero or more characters.

Character Expressions 3

Data values that include letters, numbers, or special characters are called character strings
or character data. Any character capable of representation in the computer appears in a
character string.

A character expression results in a value that is a character string. Evaluation of a
character expression results in a single character value, or a string of zero or more
characters that can be used in a character context such as a character assignment state-
ment. Numeric and logical data or symbolic names are not permitted in character
expressions or assignment statements.

A simple character expression consists of a single operand: one character constant or the
symbolic name of a character constant, one character variable, one character array element
name, or one character function reference.

A compound character expression consists of two or more operands connected by the
character concatenation operator (//), appearing in a character context.

Any of the following entities are valid character operands for compound character
expressions:

• Character constants or symbolic names of character constants

• Character variables

• Character array elements

• Character function references

• Character subexpressions nested within the compound expression

Expression Result

'01234567'X .SHIFT. 8 '23456700'X

'01234567'X .SHIFT. -8 '00012345'X

'01234567'X .ROTAT. 8 '23456701'X

'01234567'X .ROTAT. -8 '67012345'X
3-13

Concurrent Fortran 77 Reference Manual
Any combination of the preceding operands can appear in a character expression.

Variables and array element names must be defined (i.e, have a value) before they are used
in character expressions.

Character String Operations 3

Character string concatenation is an operation in which two or more character string
operands are combined into a single string by appending the right operand to the left oper-
and. The concatenation operator is the only character string operator and is used as fol-
lows:

'ABC' // 'DE'

Two slashes (//) denote the concatenation operation. The result of the previous
concatenation is the character value:

ABCDE

When two or more concatenation operators are present in a character expression, the
concatenation operations are evaluated from left to right.

Example:

'AB' // 'CD' // 'E'

is equivalent to:

('AB' // 'CD') // 'E'

Character Assignments 3

A character assignment statement assigns a character string value to a variable name or
array element name. Character assignment statements are executable statements.

SYNTAX

name = e

DESCRIPTION

name Specifies a variable name or subscripted array element name.

e Specifies a character expression, a variable, a subscripted array element
name, a character constant, or the symbolic name of a character
constant.

Any symbolic name in e to be concatenated or whose value is to be assigned must be
defined to be of type character and have a character value. A symbolic name appearing to
3-14

Expressions and Assignment Statements
the left of the equals sign may or may not have a value, but it must have been defined in an
IMPLICIT or explicit declaration statement to be of type character.

An expression or function reference cannot appear to the left of the equals sign in a
character assignment statement except as a subscript or in a substring reference.

If the value of e is less than the size of name, blanks are appended to the right of the value
of e to fill the extra character positions. If e’s value is greater than the size of name, addi-
tional characters are truncated at the right of the string when the value is assigned.

Substring references may appear on the left or right side of a character assignment. If a
substring reference appears on the left, the assignment is made to the positions defined in
the substring; characters to the left or right of the substring in the parent string are
unaffected. Note that the truncation or padding of e’s value affects only the area defined
by the substring reference.

If name refers to a symbolic constant declared as type CHARACTER*(*), the length of the
variable is set to the length of the character expression.

A string is considered defined if one character in one position of the string is defined. Only
as much of e’s value as is needed must be defined for the value to be used in a character
assignment.

See also “Multiple Assignment Statements (H)” on page 3-31 and “Array Assignment
Statements (H)” on page 3-33.

Examples:

CHARACTER A*2 B*4
A=B

The first two characters in string B must be defined, but B(3:4) need not be defined.

CHARACTER *30 LCASE, UCASE, DIGITS, SPECHARS
CHARACTER BLANK
CHARACTER *150 ALLCHARS
. . .

DIGITS = "0123456789"
BLANK = 'b'
UCASE = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
LCASE = 'abcdefghijklmnopqrstuvwxyz'
SPECHARS = '!”$''()*:+;,.=-'
ALLCHARS = UCASE // LCASE // DIGITS // BLANK // SPECHARS
3-15

Concurrent Fortran 77 Reference Manual
Relational and Logical Comparisons and Assignments 3

Comparisons are performed using relational and logical operators in comparison
expressions.

Relational Expressions 3

A relational expression compares the resultant values of two arithmetic expressions or of
two character expressions. A mixture of character and arithmetic operands is not
permitted. The arithmetic or character expression is a simple or compound expression.

Operands being compared are connected by one of the following binary operators:

The periods are part of each operator and must enclose the mnemonic. Relational
operators have a lower precedence than arithmetic or character operators, and all relational
operators are of equal precedence with each other. As a result, evaluation of a series of
relational expressions proceeds from left to right in a statement. Parentheses are used to
alter the order of evaluation.

Two relational operators cannot appear side by side in the same expression.

Variables and array element names must be defined (i.e., have a value) before they can be
used in relational expressions.

The following kinds of data appear in relational expressions:

Binary data
Octal data
Hexadecimal data
Hollerith data
Integer data
Real data
Double precision data
Complex data
Double complex data
Character data

Relational Operator Meaning

 .EQ. Equal to

 .GE. Greater than or equal to

 .GT. Greater than

 .LE. Less than or equal to

 .LT. Less than

 .NE. Not equal to
3-16

Expressions and Assignment Statements
A relational expression results in one of two logical values: .TRUE. or .FALSE. If the
relationship being compared exists, the result is true; if the relationship does not exist, the
value is false.

SYNTAX

el op e2

DESCRIPTION

e1, e2 Specify operands to be compared.

If e1 and e2 are arithmetic expressions and if one operand is complex or double complex,
the other operand is converted to complex or double complex form. Complex or double
complex entities are equal only if their corresponding real and imaginary parts are equal.
When two arithmetic expressions of differing data types are compared, the value of the
relational expression is:

((e1) - (e2)) op O

0 is of the same type as the expression ((e1) - (e2)).

If two character expressions are compared, e1 is considered to be less than e2 if e1
precedes the value of e2 in the collating sequence; e1’s value is greater than e2’s if e1’s
value follows e2’s in the collating sequence. If the character operands are of unequal
length, the length of the shorter is expanded (padded with blanks on the right) to be the
length of the longer before the comparison is made.

Note that multiple comparisons of the following form are not permitted:

A .GE. B .LE. C

Logical operators are used to establish multiple comparisons (see “Logical Expressions”
on page 3-17).

Examples:

IF (COL .EQ. 72) STOP
IF ('A' .EQ. CHAR) GO TO 10
IF (LM .GT. RM) PRINT *, LM
LVALUE = X .EQ. Y
PRINT *, X .GT. Y

Logical Expressions 3

A logical expression expresses a logical computation that produces a single result of type
logical with a value of true or false. A logical expression contains a single logical operand,
or two or more logical operands connected by logical operators.

A logical operand is any of the following:

• Logical constant or the symbolic name of a logical constant
3-17

Concurrent Fortran 77 Reference Manual
• Logical variable or array element name

• Relational expression

• Function reference yielding a logical value

• Subexpression yielding a logical value

Variables and array element names must be defined (i.e., have a value) before being used
in logical assignment statements.

Note that a logical operand represents the value .TRUE. or .FALSE.

The logical operators that connect logical operands are as follows:

Periods must enclose each operator. The .NOT. operator is unary; all others are binary
operators requiring two operands.

Arithmetic, character, and relational operators have a higher precedence than logical
operators.

When subexpressions containing operators of equal precedence appear in the same
expression, the subexpressions are evaluated from left to right. Parentheses are used in
subexpressions to alter the order of evaluation.

Two logical operators cannot be used side by side unless the .NOT. operator is used as the
second operator. The following is valid:

X .GE. Y .AND. .NOT. Z

NOTE: Z is a logical variable.

Operator Logical Meaning Precedence

 .NOT. Negation First (Highest)

 .AND. Conjunction Second

 .XOR. Exclusive “or” Second

 .OR. Disjunction Third

 .EQV. Equivalence Fourth

 .NEQV. Non-equivalence Fourth
3-18

Expressions and Assignment Statements
The meaning of each operator is explained below:

Table 3-5 gives the truth tables for the logical operators.

Multiple comparisons using relational and logical operands are permitted, but care should
be taken to ensure that the comparison is written correctly:

X .GT. 3 .AND. X .LE. 50 Legal
X .GT. 3 .AND. .LE. 50 Illegal

A relational operator cannot compare values that are of type logical:

IF (FLAG) STOP Legal
IF (FLAG .EQ. .TRUE.) STOP Illegal

Part of a logical expression is not evaluated if the result of the expression is already
determined. For example,

L = E1 .OR. E2

If E1 is true, E2 is not necessarily evaluated.

Logical
Expression Explanation

 .NOT. P The expression is true if the value of P is false and is false if the value
of P is true.

 P .AND. Q The expression is true only if both P and Q are true; otherwise, the
expression is false.

 P .XOR. Q The expression is true only if P is true and Q is false or if Q is true
and P is false. The expression is false if both P and Q are true or if
they are both false.

 P .OR. Q The expression is true if both P and Q are true or if either P or Q is
true. The expression is false only if both P and Q are false.

 P .EQV. Q The expression is true only if P and Q have the same logical value,
whether true or false.

 P .NEQV. Q The expression is true only if P and Q do not have the same logical
value, whether true or false.

Table 3-5. Truth Tables for the Logical Operators

P Q .NOT. P P.AND.Q P.XOR.Q P.OR.Q P.EQV.Q P.NEQV.Q

T T F T F T T F

T F F F T T F T

F T T F T T F T

F F T F F F T F
3-19

Concurrent Fortran 77 Reference Manual
The precedence of the logical operators determines the result of a logical expression. The
.XOR. and .NEQV. operators have the same effect but different precedence.

Example:

X .GT. 3 .XOR. Y .LT. 6 .NEQV. Z .EQ. 1

is equivalent to

(X .GT. 3 .XOR. Y .LT. 6) .NEQV. Z .EQ. 1

but

X .GT. 3 .NEQV. Y .LT. 6 .XOR. Z .EQ. 1

is equivalent to

X .GT. 3 .NEQV. (Y .LT. 6 .XOR. Z .EQ. 1)

Logical Operations Using Integer Operands (H) 3

The Concurrent Fortran compiler permits integer variables, integer array elements, and
integer constants to be used as operands in logical expressions. All logical operators
(.AND., .OR., .XOR., .EQV., .NEQV., and .NOT.) are valid for logical/integer
operations. Any data (decimal, integer, binary, octal, hexadecimal, or Hollerith) stored in
an integer storage location can be used in logical/integer operations.

When the logical operators .AND., .OR., .XOR., .EQV., or .NEQV. are used on
INTEGER operands, the effect of the operator is as follows:

Examples of logical/integer operations for bit and byte manipulation testing are as follows
(assume that variables J and K are INTEGER *4 variables):

K = (K .AND.'FFFFFF00'X) .OR.
 (J .SHIFT. -16 .AND. '00FF0000'X)

Move the second from the left byte of J into the right most byte of K without disturbing
the other bytes of K.

The parentheses in the preceding example are used for clarity and are not necessary since
the hierarchical order of the operators guarantee performance of the operations in the
proper order.

I .AND. J The bit-by-bit logical intersection of the data in I and J.

I .OR. J The bit-by-bit logical union of the data in I and J.

I .XOR. J The bit-by-bit logical exclusive “or” of the data in I and J.

I .EQV. J The bit-by-bit logical equivalence of the data in I and J.

I .NEQV. J The bit-by-bit logical non-equivalence of the data in I and J.

.NOT. J Results in the logical not of each bit in J.
3-20

Expressions and Assignment Statements
IF (J .AND. '00000001'X) 500, 500, 700

Jump to statement number 750 if the J is odd (i.e., bit 0 contains a 1); otherwise transfer
control to statement number 500.

IF ((J .AND. '4'O) .EQ. 0) K = K .OR. '20'O

If bit 2 of J is off, turn on Bit 4 of K.

Logical Assignments 3

A logical assignment statement assigns a logical value of .TRUE. or .FALSE. to a
variable name or array element name. Logical assignment statements are executable state-
ments.

SYNTAX

name = e

DESCRIPTION

name Specifies a variable name or subscripted array element name.

e Specifies a logical or integer expression, a variable, a subscripted array
element name, a logical or integer constant, the symbolic name of a
logical or integer constant.

A symbolic name appearing to the right of the equals sign need not be of type logical, but
the result must be a logical or integer value. A symbolic name appearing to the left of the
equals sign may or may not have a value, but it must have been defined in an IMPLICIT
or explicit type statement to be of type LOGICAL.

If e is an integer expression, variable, constant or the symbolic name of an integer
constant, the value of name is the verbatim bit pattern of e, right-justified within name.

An expression or function reference cannot appear to the left of the equals sign except as
part of a subscript.

See also “Multiple Assignment Statements (H)” on page 3-31 and “Array Assignment
Statements (H)” on page 3-33.

Examples:

L = .TRUE. .AND. SWITCH
CHECK = (.NOT. P) .OR. Q
L = F .OR. (.NOT. C) .AND. R .GE. 23.935E-1
3-21

Concurrent Fortran 77 Reference Manual
Implementation of the LOGICAL Data Type (H) 3

The Fortran 77 standard does not specify the implementation of the LOGICAL data type
except that it is the same size as INTEGER and REAL (ANSI X3.9-1978, Section 2.13). To
maximize the portability of non-standard programs, Concurrent provides four mutually
exclusive implementations of the LOGICAL data type. Compiler options let you select an
implementation; if these options are used together, the compiler generates an error.

Table 3-6 summarizes the features of the four implementations of the LOGICAL data type;
a full description of each implementation follows the table. A little vocabulary is neces-
sary before reading the table.

A LOGICAL expression is an expression involving a LOGICAL operator in which each
operand is one of the following:

• A LOGICAL constant (.TRUE. or .FALSE.)

• A LOGICAL variable (scalar or array)

• A LOGICAL function call

• A comparison expression (with .EQ. or .NE.)

• Another LOGICAL expression

A simple LOGICAL expression is an expression in which each operand is one of the
following:

• A LOGICAL constant (.TRUE. or .FALSE.)

• A LOGICAL scalar variable

• Another simple LOGICAL expression

A truth value is the value of a LOGICAL expression or simple LOGICAL expression.
Depending on the implementation, one or more values may represent a true truth value or
a false truth value.

A value-producing context is the right-hand side of an assignment statement or an operand
of an arithmetic operator.

A flow-of-control context is a decision or control situation--for example, IF and WHILE
statements.

A bitwise operation is an operation that usually generates faster code than a short-circuit
operation. This operation does not require testing-and-branching which are
time-consuming on modern RISC architectures.

A short-circuit operation is an .AND. or .OR. operation that avoids evaluating both
operands when evaluation of the first operand determines the final result. Short-circuiting
requires testing-and-branching; the overhead of short-circuiting may be prohibitive on
modern RISC architectures if the cost of evaluating each operand is small.
3-22

Expressions and Assignment Statements
* In these instances, Concurrent Fortran performs a short-circuit operation unless a simple
LOGICAL expression is involved; in that case, it performs a faster bitwise operation.

Default Implementation (H) 3

The default implementation executes as rapidly as possible. The constant .FALSE. is
represented by 0x0 and .TRUE. is represented by 0x1. LOGICAL expressions with other
values are considered ambiguous and should be avoided.

For speed, all simple LOGICAL expressions, whether they are in value-producing or
flow-of-control contexts, are handled with bitwise operations, not short-circuit operations.
However, LOGICAL expressions that are not simple are short-circuited; consider this fact
when using operations with side effects, such as function calls. For example,

F .AND. PRINT_HELLO()

If LOGICAL variable F is false, the function PRINT_HELLO() is not called.

Table 3-6. Implementation of the LOGICAL Data Type

Implementation Constant
Values

Truth
Values

Operation in
Value-Producing

Context

Operation in
Flow-of-Control

Context

Default

.FALSE.
0x0

false: the value 0x0

Short circuit* Short circuit*
.TRUE.
0x1

true : the value 0x1

VAX (-V or -VAX)

.FALSE.
0x0

false: any LOGICAL
expression with a
low-order bit of 0

Bitwise Short circuit*
.TRUE.
0xffffffff

true : any LOGICAL
expression with a
low-order bit of 1

Logical-True-Nonzero
(-Qlogical_true_is_n
onzero)

.FALSE.
0x0

false: the value 0x0

Short circuit Short circuit
.TRUE.
0x1

true : any nonzero value

No-Short-Circuit
(-Qno_short_circuit)

.FALSE.
0x0

false: the value 0x0

Bitwise Bitwise
.TRUE.
0x1

true : the value 0x1
3-23

Concurrent Fortran 77 Reference Manual
VAX Implementation (H) 3

The Concurrent Fortran VAX implementation emulates the DEC VAX LOGICAL imple-
mentation. Select this implementation with either the -V or the -VAX compiler option.
The constant .FALSE. is represented by 0x0 and .TRUE. is represented by
0xffffffff (all bits set). The low-order bit of a LOGICAL expression determines its
truth value. A LOGICAL expression with a low-order bit of 0 has a false truth value; a
LOGICAL expression with a low-order bit of 1 has a true truth value.

For speed, all simple LOGICAL expressions are handled with bitwise operations, not
short-circuit operations. All LOGICAL expressions in value-producing contexts use bit-
wise operations. In a flow-of-control context, .AND. and .OR. are short circuited unless
a simple LOGICAL expression is involved; in that case, Concurrent Fortran performs a
faster bitwise operation.

When the Concurrent Fortran driver is invoked with the -V or -VAX option, it automati-
cally links in an object file called /lib/vax.o. The presence of this file directs the
library to use only the low-order bit of a LOGICAL expression to determine truth value
and to return 0xffffffff for .TRUE.

logical_true_is_nonzero Implementation (H) 3

The logical_true_is_nonzero implementation uses an interpretation of truth value used by
some other Fortran compilers, and by the C programming language. Select this
implementation with the -Qlogical_true_is_nonzero compiler option. As in
default mode, the constant .FALSE. is represented by 0x0 and .TRUE. is represented by
0x1. A LOGICAL expression with a zero value has a false truth value; a LOGICAL
expression with a nonzero value has a true truth value. In this mode, the composition of
true truth values prohibits the determination of truth values with a bitwise operation.
Therefore, this implementation always short circuits and never uses bitwise operations.

If many complicated LOGICAL expressions are involved, performance of executing code
is slower than that of the default and VAX implementations.

no_short_circuit Implementation (H) 3

The no_short_circuit implementation always uses bitwise operations and never short
circuits. Select this implementation with the -Qno_short_circuit compiler option.
As in default mode, the constant .FALSE. is represented by 0x0 and .TRUE. is
represented by 0x1. Avoid LOGICAL expressions with other values because these values
are ambiguous.
3-24

Expressions and Assignment Statements
Use of Arithmetic, Character, and Logical Expressions 3

Expressions can contain combinations of other expressions.

Example:

A+B .GT. D+C .OR. X+Y .GT. Y+Z

If a character substring is referenced in a character expression, no part of the substring is
undefined.

Any function reference, variable, or array element name used in an expression must have a
value at the time the expression is executed. If a function reference defines the value of a
symbolic name, the same symbolic name does not appear elsewhere within the same state-
ment.

Examples:

A(I,J) = F(I)
Y = G(X) + X

These statements are not permitted if the reference to function F defines I or if the
reference to function G defines X.

Evaluation of a subscript, a substring reference, or the arguments of a function reference in
an expression do not affect the data type of the expression.

If a function reference appears in an expression where the entire expression need not be
evaluated (e.g., in logical expressions such as A .GT. B .OR. C(I), where A is greater
than B), the value of function C’s argument(s), if defined by the function, is undefined
when the statement completes execution.

Function references nested within other function references are evaluated from innermost
to outermost. For example, function R(I) is evaluated first in the following expression:

X(R(I))

Note that 0.5*J is not the same as J/2 and that X*(Y-Z) is not the same as X*Y-X*Z,
since the arithmetic result can be different.

In the evaluation of the expression:

D + R + I

where D, R, and I represent a double precision, real, and integer number, respectively, the
data type of the operand that is added to I is unpredictable because the compiler can add D
and R, R and I, or D and I first. To avoid this problem, use parentheses to define the entity
to be added first.
3-25

Concurrent Fortran 77 Reference Manual
Summary of Mixed Assignments and Operator Precedence 3

Table 3-7 lists all Fortran operators in their order of precedence. Table 3-8 indicates
whether an expression of one data type can be assigned as the value of a variable or array
element of a different data type.

Table 3-7. Fortran Operators - Order of Precedence

Operation Denotation Precedence

Shift .SHIFT. 1 (Highest)

Rotate .ROTAT. 1

Exponentiation ** 2

Multiplication * 3

Division / 3

Addition + 4

Subtraction - 4

Unary plus + 4

Unary minus - 4

Character concatenation // 5

Less than .LT. 6

Less than or equal to .LE. 6

Greater than .GT. 6

Greater than or equal to .GE. 6

Not equal to .NE. 6

Equal to .EQ. 6

Logical negation .NOT. 7

Conjunction .AND. 8

Exclusive “or” .XOR. 8

Disjunction .OR. 9

Logical Equivalence .EQV. 10

Logical Non-Equivalence .NEQV. 10
3-26

Expressions and Assignment Statements
Table 3-8. Validity of Mixed Variable Assignments

Variable or Array
Element Being
 Assigned To

Data Type
of Expression
Being Assigned

Result

INTEGER *1

Integer [1]
Real [2]
Double Precision [2]
Complex [2]
Double complex [2]
Hollerith
Logical
Character [5]

INTEGER *1
INTEGER *1
INTEGER *1
INTEGER *1
INTEGER *1
INTEGER *1
INTEGER *1
INTEGER *1

INTEGER *2

Integer [3]
Real [4]
Double Precision [4]
Complex [4]
Double complex [4]
Hollerith
Logical
Character [5]

INTEGER *2
INTEGER *2
INTEGER *2
INTEGER *2
INTEGER *2
INTEGER *2
INTEGER *2
INTEGER *2

INTEGER

Integer
Real
Double Precision
Complex
Double complex
Hollerith
Logical
Character [5]

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

REAL

Integer
Real
Double Precision
Complex
Double complex
Hollerith
Logical
Character

REAL
REAL
REAL
REAL
REAL
REAL
Prohibited
REAL

DOUBLE PRECISION

Integer
Real
Double Precision
Complex
Double complex
Hollerith
Logical
Character

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
Prohibited
DOUBLE PRECISION
3-27

Concurrent Fortran 77 Reference Manual
NOTES:

1. Integer numbers outside the range of INTEGER *1 numbers are reduced
modulo 256 to produce an integer number in the range of INTEGER *1
numbers.

2. Real and double precision numbers are converted to integers, and then the
least significant (low-order) eight bits of the result are assigned as the value
of the INTEGER *1 entity.

COMPLEX

Integer
Real
Double Precision
Complex
Double complex
Hollerith
Logical
Character

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
Prohibited
Prohibited
Prohibited

DOUBLE COMPLEX

Integer
Real
Double Precision
Complex
Double complex
Hollerith
Logical
Character

DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
Prohibited
Prohibited
Prohibited

LOGICAL *1

Logical
Hollerith
Character
All other data types are
prohibited

LOGICAL *1
LOGICAL *1
LOGICAL *1

LOGICAL *2

Logical
Hollerith
Character
All other data types are
prohibited

LOGICAL *2
LOGICAL *2
LOGICAL *2

LOGICAL

Logical
Hollerith
Character
All other data types are
prohibited

LOGICAL
LOGICAL
LOGICAL

CHARACTER
Hollerith
Character
All other data types are
prohibited

CHARACTER
CHARACTER

Table 3-8. Validity of Mixed Variable Assignments (Cont.)

Variable or Array
Element Being
 Assigned To

Data Type
of Expression
Being Assigned

Result
3-28

Expressions and Assignment Statements
3. Integer numbers outside the range of INTEGER *2 numbers are reduced
modulo 65536 to produce an integer number in the range of INTEGER *2
numbers.

4. Real and double precision numbers are converted to integers, and then the
least significant (low-order) sixteen bits of the result are assigned as the
value of the INTEGER *2 entity.

5. Character literals only are allowed, and a warning is issued.
3-29

Concurrent Fortran 77 Reference Manual
ASSIGN Statement 3

The ASSIGN statement associates a statement label with a variable. The statement label
must be present in the same program unit as the ASSIGN statement, and the variable must
implicitly be of type integer or be defined in a declaration statement to be of type integer.
The variable can be used later in the same program unit in an assigned GO TO statement or
as a format specifier for a FORMAT statement.

SYNTAX

ASSIGN label TO int-var

DESCRIPTION

label Specifies the statement label of an executable statement or FORMAT
statement.

int-var Specifies an integer variable name.

The ASSIGN statement is an executable statement that causes the specified statement
label to be assigned as the value of the variable int-var.

Execution of an ASSIGN statement is the only way a symbolic name can be defined to
have a statement label value; the ASSIGN statement must precede the assigned GO TO
statement in the execution sequence but not necessarily in the source program. The
variable is not to be used later in the program in an arithmetic context in which its value is
altered. For example, a sequence like the following should not be used:

ASSIGN 5 TO LINE
LINE = LINE + 1

The variable can be redefined as an integer variable for use in an arithmetic context:

LINE = 100

But, in so doing, LINE is no longer associated with the statement labeled 5 and cannot be
used in an assigned GO TO statement or as a format specifier.
3-30

Expressions and Assignment Statements
Multiple Assignment Statements (H) 3

The multiple assignment statement assigns a value to more than one variable. Multiple
assignment statements are executable statements.

SYNTAX

name1 = name2 = ... namei = e

DESCRIPTION

name Specifies a variable name or array element, including character
variables, character subscripts and character substrings.

e Specifies an arithmetic or character expression, variable name, array
element, character substring, constant, or the symbolic name of a
constant. For character values, all elements of the name list must also be
of type character.

The same restrictions apply here as for single assignment statements. Any use of a
symbolic name in the far right expression must be defined. A name from the list cannot be
an expression or function reference, except as an array subscript or in a substring
reference.

Each equals sign (=) does not imply equality, but rather that the value to the right of the
equals sign is to be assigned to the value of the element to the left of the equals sign.
Assignment occurs from right to left. The rightmost assignment is performed first,
assigning the rightmost value to the element second from the right, with the second
assignment assigning the value of the element second from the right to the element third
from the right, and so on. Type conversion and its effects are cascaded through each
assignment. Observe the following example, where A and C are REAL*4 and B is
INTEGER*4.

A = B = C = 4.3

This is equivalent to

C = 4.3
B = C
A = B

and the values printed for A, B, and C are

A=4.0000 B=4 C=4.3000

For character assignments, values are affected by truncations and blank fills.

Example

CHARACTER U*16, T*6, S*10
S = T = U = "my cat has fleas"

The values printed for S, T, and U are
3-31

Concurrent Fortran 77 Reference Manual
S = "my catbbbb" T= "my cat" U= "my cat has fleas"

Note the truncation required to fit the value of U into T affects the value assigned to S, as
assignment occurs from right to left.
3-32

Expressions and Assignment Statements
Array Assignment Statements (H) 3

The array assignment statement assigns a value to every visible element of an array.

SYNTAX

name = e

DESCRIPTION

name Specifies an actual or dummy array name.

e Specifies an arithmetic or character expression, variable name, array
element, character substring, constant, or the symbolic name of a
constant. The e may not be an array name.

The value of the expression e is assigned to every visible element of the array specified by
name. The same type of restrictions that apply to single assignment statements also apply
to array assignments.

Name may be a dummy array name, but must not be of an assumed size. Every dimension
must be specified or an error results. Adjustably dimensioned dummy arrays are allowed,
and only the portion visible to the subprogram is modified.
3-33

Concurrent Fortran 77 Reference Manual
3-34

4
Specification Statements

General Specification Statements . 4-1
Character Declarations . 4-2
Logical Declarations . 4-4
Numeric Declarations . 4-5
AUTOMATIC Statement (H) . 4-7
CEXTERNAL Statement (H) . 4-8
COMMON Statement . 4-9

Shared Memory Interface (H) . 4-10
DATA Statement . 4-12
Conversion of Hollerith Data . 4-13
Initialization by Numeric Constants (H) . 4-13
Implied-DO in Data Statements. 4-14
DATAPOOL Statement (H) . 4-16

Defining a Datapool Area (H) . 4-16
Generating a Datapool Dictionary (H) . 4-18
Referencing a Datapool (H). 4-18
Placing a Dictionary in Shared Memory (H). 4-19

DIMENSION Statement . 4-20
EQUIVALENCE Statement. 4-22
EXTERNAL Statement . 4-26
IMPLICIT Statement . 4-27
INTRINSIC Statement. 4-29
NAMELIST Statement (H). 4-30
PARAMETER Statement . 4-32
POINTER Statement (H) . 4-34
SAVE Statement . 4-36
STATIC Statement (H) . 4-37
Statement Function Definitions . 4-38
VOLATILE Statement (H) . 4-40

Concurrent Fortran 77 Reference Manual

4
Chapter 4Specification Statements

4
4
4

General Specification Statements 4

Specification statements define the data types of symbolic names, declare the storage
requirements of variables and arrays, define initial values for variables and array elements,
specify the dimensions of arrays, define program entities that are known globally through-
out the source program among all program units, and give symbolic names to arithmetic,
character, and logical constants. Specification statements are non-executable and have no
effect during the execution of the source program.

This chapter presents the declaration statements first, in alphabetical order, followed by
the rest of the specification statements also in alphabetical order. Each statement has a
detailed description containing a definition, syntax line and explanation of the syntax.
4-1

Concurrent Fortran 77 Reference Manual
Character Declarations 4

A variable name, array name, the symbolic name of a constant, an external function name,
or a statement function name is declared to be of type character in an explicit type state-
ment.

SYNTAX

CHARACTER [*n [,]] v [*n] [/clist/] [, v [*n] [/clist/]] ...

DESCRIPTION

v (REQUIRED) Specifies a variable name, an array name (with an
optional array declarator), the symbolic name of a constant, a function
name, or a dummy procedure name. If more than one name is specified,
each name is separated by commas.

*n (OPTIONAL) Defines the total number of characters the symbolic name
has. If specified with the keyword CHARACTER, the length specification
applies to all symbolic names in the statement except those that contain
their own length. For arrays, the specified length applies to each element
of the array. If a length is not specified, *1 is the default. The length
specification is an unsigned, non-zero integer constant, a length
expression enclosed in parentheses with a positive integer value, or an
asterisk in parentheses. If the length specification is an integer constant
or expression, the default maximum allowed value is 1023. To increase
this value, refer to the -Nt option described on the Concurrent Fortran
man page.

/clist/ (OPTIONAL) If v is a variable name, then clist specifies a constant or
the symbolic name of a constant. If v is an array name, then clist is a
comma-separated list of constants or symbolic names of constants that
are assigned on a left-to-right, one-to-one basis as the value of the
corresponding element in the array (the same number of constants must
appear in clist as there are elements in the array). A clist may not be
specified for the symbolic name of a constant, a function name, or a
dummy procedure name. See “DATA Statement” on page 4-12 for more
information on how to specify clist.

Examples:

PARAMETER (LEN=100)
CHARACTER *1 X
CHARACTER *(5+23) C
CHARACTER *(LEN) CHRS
CHARACTER *(*) B
CHARACTER *6 C/'INPUT '/, D/'OUTPUT'/,E

A length expression must be an integer constant expression.

If a character constant is given a symbolic name in a PARAMETER statement, and a length
of (*) is specified in the CHARACTER statement declaring the symbolic name, the length
4-2

Specification Statements
of the name is assumed to be the length of the corresponding constant expression in the
PARAMETER statement.

The length for a character statement function or statement function dummy argument of
type character must be an integer constant or a length expression.

Examples:

CHARACTER *120 LINE, PAGE(66) *85
CHARACTER X, Y, Z
CHARACTER TEN *10, TWENTY *20, THIRTY *30

The compiler sets a maximum length for character strings that defaults to 1023. The
default can be set by giving a positive integer argument to the -Nt option (e.g.,
-Nt3000).
4-3

Concurrent Fortran 77 Reference Manual
Logical Declarations 4

A variable name, array name, the symbolic name of a constant, an external function name,
or a statement function name can be declared to be of type LOGICAL in an explicit type
statement.

SYNTAX

LOGICAL[*n] v [*n] [/clist/] [, v [*n] [/clist/]] ...

DESCRIPTION

v (REQUIRED) Specifies a variable name, an array name (with an
optional array declarator), the symbolic name of a constant, a function
name, or a dummy procedure name. If more than one name is specified,
each name is separated by commas.

*n (OPTIONAL) Defines a length in bytes for the symbolic name being
declared. If specified with the keyword LOGICAL, the length
specification applies to all symbolic names in the statement except those
that contain their own length specification. The length specification is
an unsigned, non-zero integer constant that is a valid length for data
type LOGICAL (i.e., 1, 2 and 4). If a length is not specified, the default
is 4.

/clist/ (OPTIONAL) If v is a variable name, then clist specifies a constant or
the symbolic name of a constant. If v is an array name, then clist is a
comma-separated list of constants or symbolic names of constants that
are assigned on a left-to-right, one-to-one basis as the value of the
corresponding element in the array (the same number of constants must
appear in clist as there are elements in the array). A clist may not be
specified for the symbolic name of a constant, a function name, or a
dummy procedure name. See “COMMON Statement” on page 4-9 for
more information on how to specify clist.

Logical data types along with their possible length specifications are as follows:

LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL

Examples:

LOGICAL TVALUE, FVALUE
LOGICAL*2 ON, OFF*4, CONTROL
LOGICAL T/.TRUE./, F/.FALSE./

For information about controlling the size of converted LOGICAL variables and constants,
see “%LOG1, %LOG2, and %LOG4 Logical Size Intrinsics (H)” on page 9-9.
4-4

Specification Statements
Numeric Declarations 4

A variable name, array name, the symbolic name of a constant, an external function name,
or a statement function name can be declared to be of type integer, real, double precision,
complex, or double complex in an explicit type statement. Explicit type statements are in
effect for a single program unit, and they override or confirm any implicit definition based
on the first letter of the variable name. A symbolic name cannot be explicitly typed more
than once in the same program unit.

SYNTAX

INTEGER[*n] v [*n] [/clist/] [, v [*n] [/clist/]] ...
REAL[*n] v [*n] [/clist/] [, v [*n] [/clist/]] ...
DOUBLE PRECISION v [, v] ...
COMPLEX[*n] v [*n] [/clist/] [, v [*n] [/clist/]] ...
DOUBLE COMPLEX v [, v] ...

DESCRIPTION

v (REQUIRED) Specifies a variable name, an array name (with an
optional array declarator), the symbolic name of a constant, a function
name, or a dummy procedure name. If more than one name is specified,
each name is separated by commas.

*n (OPTIONAL) Defines a length in bytes for the symbolic name being
declared. If specified with the type keyword, the length specification
applies to all symbolic names in the statement except those that contain
their own length specification. The length specification is an unsigned,
non-zero integer constant that is a valid length for the numeric data type
(i.e., 1, 2 and 4 for INTEGER, 4 and 8 for REAL, 8 and 16 for
COMPLEX). If a length is not specified, the default length is 4 for
INTEGER and REAL and 8 for COMPLEX. REAL*8 is equivalent to
DOUBLE PRECISION and COMPLEX*16 is equivalent to DOUBLE
COMPLEX.

/clist/ (OPTIONAL) If v is a variable name, then clist specifies a constant or
the symbolic name of a constant. If v is an array name, then clist is a
comma-separated list of constants or symbolic names of constants that
are assigned on a left-to-right, one-to-one basis as the value of the
corresponding element in the array (the same number of constants must
appear in clist as there are elements in the array). A clist may not be
specified for the symbolic name of a constant, a function name, or a
dummy procedure name. See “DATA Statement” on page 4-12 for more
information on how to specify clist.

Explicit type statements specify the data type of a symbolic name for all occurrences of
the symbolic name within a program unit. The name of a main program, subprogram, or
block data subprogram must not appear in an explicit type statement.

An explicit type statement that confirms the type of an intrinsic function is permitted but is
not required. The data type of an intrinsic function cannot be changed in an explicit type
statement; a warning message is issued if this is attempted.
4-5

Concurrent Fortran 77 Reference Manual
Numeric data types along with their possible length specifications are as follows:

Examples:

INTEGER*2 A, B, C, D(2,6), Z
INTEGER A(5) /1,2,3,4,5/
COMPLEX CN1, CN2
REAL*8 IA, IB*4, IC, ID(25)*4, IE(3,3,3), IO
DOUBLE PRECISION IAD, IBD, ICD, TOTAL
DOUBLE COMPLEX QUAD

For information about controlling the size of converted INTEGER variables and constants,
see “%INT1, %INT2, and %INT4 Integer Size Intrinsics (H)” on page 9-9.

INTEGER*1 One-byte integer

INTEGER*2 Two-byte integer

INTEGER*4 Four-byte integer

INTEGER Four-byte integer

REAL Four-byte real

REAL*4 Four-byte real

REAL*8 Eight-byte real

DOUBLE PRECISION Eight-byte real

COMPLEX Eight-byte complex

COMPLEX*16 Sixteen-byte complex

DOUBLE COMPLEX Sixteen-byte complex
4-6

Specification Statements
AUTOMATIC Statement (H) 4

Variables and array names may be declared of automatic storage, which allows them to be
allocated on the stack. This means that the values in the variables and array names are not
preserved between invocations of the routine containing the declarations.

SYNTAX

AUTOMATIC v [, v] ...

DESCRIPTION

v (REQUIRED) Specifies a variable name or an array name (with an
optional array declarator). If more than one name is specified, each
name is separated by commas.

Automatic variables cannot appear in EQUIVALENCE, DATA, SAVE, or STATIC state-
ments.
4-7

Concurrent Fortran 77 Reference Manual
CEXTERNAL Statement (H) 4

A CEXTERNAL statement allows the user to tell the compiler that an external function
name is in the C language global name space, and object code references to this name
should not be appended with an underscore.

SYNTAX

CEXTERNAL name [, name] ...

DESCRIPTION

 name (REQUIRED) Specifies the symbolic name of an external C language
function. This name can be called as a subroutine or function, or passed
in an argument list. Object code references to name are not appended
with an underscore. The same symbolic name appears only once in any
CEXTERNAL statement in a program unit.

The user should assure that a proper return type is given to the symbolic name if it is
called as a function.

CEXTERNAL can be used to specify C library routines or system services to be called
directly from Fortran. See “Calling C Functions Directly (H)” on page 8-31 for more
information.
4-8

Specification Statements
COMMON Statement 4

The values of variables and array names in one program unit are not known in other
program units unless the values are passed as arguments in the function reference or sub-
routine call, or unless the variable(s) or array(s) are placed in a common region of
memory. A COMMON statement is used to set up a common block of memory that any
program unit can access. Use of common blocks communicates values among program
units and conserves storage space. Common blocks provide a means of associating entities
in different program units and allows different program units to define and reference the
same data without using arguments. Common blocks also permit storage units to be
shared.

SYNTAX

COMMON [/name/] list [[,] / [name] / list] ...

DESCRIPTION

 /name/ (OPTIONAL) Specifies the slash-enclosed symbolic name of a common
block. It consists of up to 1023 characters. It cannot be the name of a
function, subroutine, or any entry point for a function or subroutine.

list (REQUIRED) Specifies a comma-separated list of variable names or
unsubscripted array names for each named or unnamed common block.
Zero or more common blocks can be specified in a single source pro-
gram. Names of dummy arguments in a subprogram dummy argument
list must not appear in the list.

Common blocks with the same name that are declared in different program units share the
same storage area.

One common block for each named or unnamed common block declaration is created. The
storage locations are given the symbolic names specified in the list in the order specified
in the list. If two common block names are identical, each later defined list is appended to
the list of names already in that named common block.

If the common block name is omitted, the common area is called blank common. If no
common block name is specified after the keyword COMMON, the list is placed in blank
common, and the slashes can be omitted entirely. Other common block names specified
after the first list of common items must be enclosed with slashes or, if the common block
name is omitted, two adjacent slashes must be specified. In the following example, VAR1,
ARRAY(2,2), and VAR4 are placed in blank common and VAR2 and VAR3 are placed in
the named common area CMBLOCK:

COMMON VAR1, ARRAY(2,2) /CMBLOCK/ VAR2, VAR3 // VAR4

If an array appears, all elements in the array are placed in the common block. Individual
array elements cannot be assigned to common blocks. Arrays that were dimensioned
previously in DIMENSION or explicit type statements cannot be redimensioned in
COMMON statements, and arrays that are dimensioned in COMMON statements cannot be
redimensioned later in the program unit.
4-9

Concurrent Fortran 77 Reference Manual
Even though entities in a common block do not have to be of the same data type, they
should be of the same data type because storage is shared on a one-to-one basis. When
using INTEGER *1, INTEGER *2, LOGICAL *1, LOGICAL *2, and character
entities, care should be taken to ensure that data of other types are aligned on a word
boundary. If they are not, filler is inserted and a warning issued.

Each program unit that uses a common block must declare that block with a COMMON
statement. Each common block is a collection of contiguous memory locations, known as
a storage sequence. Common blocks declared in different subprograms but with the same
common block name are storage associated, and share the same memory locations.
Symbolic names that refer to the units can be different in different program units. The
order in which the symbolic names are declared in the COMMON statement determines
which memory locations they are associated with in the common block.

The name of the common block is the only name that is communicated between program
units. Names in each common list are local to the program units and can differ from one to
another, but, as a good programming practice, the same names should be used in each
common list.

Within a program unit, the size of the common block is the sum of each of the elements,
plus filler required for word alignment. Entities equivalenced to elements of the common
block are considered to be members of the block, and may therefore increase the size of
the common block.

Globally, the size of a common block is the maximum of the sizes defined by the various
program units.

Examples:

COMMON ARRAY(-3:5,0:7), CHARS(50), X, Y, Z
COMMON /COM1/ A, B, C /COM2/ L, M, N
COMMON /AREA1/ TOTAL // TAXES, INTEREST

Shared Memory Interface (H) 4

Shared memory allows a program to access memory that is also accessible to 1) another
process(es), or 2) a hardware device. This allows multiple processes to share data and
communicate efficiently, and it allows a process or processes to communicate directly
with external devices (assuming those devices access memory directly). A section of
shared memory can be directed to a particular physical address, or not, depending on the
user’s requirements.

Shared memory may be accessed through ordinary COMMON blocks and DATAPOOLs, with
one difference: the COMMON block and DATAPOOL must be declared VOLATILE. For
example,

SUBROUTINE SUB
COMMON /ACOM/ A, B, C (1000)
VOLATILE ACOM
.
.

4-10

Specification Statements
.
END

The VOLATILE declaration, by itself, does not direct ACOM to shared memory; it merely
informs the compiler that items in ACOM may change value asynchronously to the
execution of subroutine SUB. Except for this declaration, the program sees no difference
between accessing ACOM and accessing any other COMMON block or DATAPOOL. For more
information about the VOLATILE statement, see “VOLATILE Statement (H)” on page
4-40.

The shmdefine(1) program is used to specify that a COMMON block or DATAPOOL is
to be placed in shared memory. This program provides the means to name as many shared
memory regions as needed and specifies which COMMON block(s) or DATAPOOL(s) go in
which shared memory region. Each shared memory region contains one or more COMMON
blocks or DATAPOOLs. The shmdefine(1) program creates an object file that must be
linked with the Fortran program. When the program starts executing, the shared memory
region(s) are automatically attached to the program, so all references to any variable in a
COMMON block or DATAPOOL that was placed in a shared memory region refer to the
appropriate location in shared memory.

Use the shmconfig(1M) utility if a shared memory region must reside at a particular
physical memory address. Otherwise, the shared memory region is loaded by the
operating system wherever it can find space.

Note that the contents of a shared memory region are not retained across system reboots.
4-11

Concurrent Fortran 77 Reference Manual
DATA Statement 4

A DATA statement gives initial values to variables, entire arrays, and single array
elements. DATA statements are non-executable and appear anywhere after the
specification statements, but before the END statement that closes the program unit. DATA
statements initialize entities at compile time only.

If values are changed during the execution of the program, they remain changed no matter
how many times the DATA statements are passed during execution.

SYNTAX

DATA nlist /clist/ [[,] nlist /clist/] ...

DESCRIPTION

 nlist (REQUIRED) Specifies one or more variable names, array names, array
element names, or implied-DO lists. Entities in the list are separated by
commas.

/clist/ (REQUIRED) Specifies a comma-separated list of constants or
symbolic names of constants, that are assigned on a left-to-right,
one-to-one basis as the value of the corresponding entity in nlist (the
same number of constants must appear in clist as there are entities in the
corresponding nlist). A constant is any numeric, character, Hollerith, or
logical value.

If the nlist entity is of type LOGICAL, then the corresponding clist constant must be of
logical type. If the nlist entity is of type CHARACTER *1, the clist constant must be of
type character, or integer, or an octal, hexadecimal, or binary constant in the range or
0-255. If the nlist entity is of type CHARACTER with length greater than one, the clist
constant must be of type CHARACTER. When the nlist entity is of type integer, real, double
precision, complex, or double complex, the corresponding clist constant must also be of
type integer, real, double precision, complex, or double complex.

An nlist cannot contain dummy arguments or function names. Names of entities in
common blocks may appear only in the list within a block data subprogram.

If an unsubscripted array name is specified in nlist, there must be enough constants
specified in clist to be assigned as values for all the elements of the array. Array elements
are assigned values in the natural order in which their subscripts vary.

A repetition factor of the following form can be specified for each constant in clist:

r*c

where c is a numeric, character, Hollerith, or logical constant (or the symbolic name of a
constant), and r is an unsigned integer constant or symbolic name of a constant indicating
the number of times c is to be repeated. The repetition factor must be in the range of
integer values. For example:

CHARACTER*1 A(3)
DATA A /3*'b'/
4-12

Specification Statements
is the same as specifying:

CHARACTER*1 A(3)
DATA A /'b', 'b', 'b'/

If a subscripted array element is specified, the subscript specification must be an integer
constant or integer constant expression.

The definition of a character entity causes all characters within that entity to become
defined, and each character constant defines exactly one variable or array element.

Example:

LOGICAL L
CHARACTER *6 ALPHA
DATA X, J, L /3.5, 7, .TRUE./, IA /9/, ALPHA /'ABCDEF'/

Conversion of Hollerith Data 4

Hollerith data may be stored as the value of a numeric, character, or logical variable. Each
numeric or logical variable consumes its size in Hollerith characters, if possible. If there
are too few characters in the Hollerith constant to fill the variable, the characters are left
justified in the variable and unused trailing bytes are filled with blanks. Any remaining
characters are discarded.

Initialization by Numeric Constants (H) 4

The compiler permits initialization by a bit-pattern constant. You may initialize a
LOGICAL, REAL, or INTEGER variable in a DATA statement using a bit-pattern constant.
Enter this constant as a letter followed by a string enclosed within quotes. If the letter is a
“b”, the string is binary; only ones and zeroes are permitted. An octal string is indicated by
an “o” and may contain digits from zero through seven. If the letter is “z”, then the string
is hexadecimal and contains digits from zero through nine and letters from a to f. Bit-pat-
tern constants may also take the additional forms described in Chapter 2.

As an example, to initialize the three elements of an array to ten, you might code:

INTEGER A(3)
DATA A /B'1010', O'12',Z'A'/
4-13

Concurrent Fortran 77 Reference Manual
Implied-DO in Data Statements 4

An implied-DO is an intra-statement DO loop that permits a portion of a statement within
the range of the implied-DO to be executed repetitively. Implied-DOs appear in DATA state-
ments and in input and output statements.

Implied-DO lists can be used in a DATA statement to initialize part of an array or to
initialize elements of an array in a different order from the manner in which they are stored
internally.

SYNTAX

(dlist, i = e1, e2 [, e3])

DESCRIPTION

dlist Specifies one or more array element names and optional implied-DO
lists.

i Specifies the name of an integer variable (the implied-DO variable).

e1,e2,e3 Specify integer expressions that contain implied-DO variables or
variables from outer implied-DO lists that have this implied-DO within
their ranges.

The range of an implied-DO is the list dlist. An iteration count and the values of the
implied-DO variable are established from e1, e2, and e3 exactly as for a DO loop, except
that the iteration count must be positive.

When an implied-DO list appears in a DATA statement, the list items in dlist are specified
once for each iteration of the implied-DO list, with the appropriate substitution of values
for any occurrence of the implied-DO variable i. The variable i appears only in dlist as a
subscript or substring or as part of a subscript or substring expression.

The appearance of an implied-DO variable name in a DATA statement does not affect the
definition status of a variable of the same name in the same program unit.

NOTE: When initializing an entire array to the same value, use of the unsubscripted array
name takes much less compiler time than the use of an implied-DO loop.

Expressions are permitted for subscripted array names in dlist, and the expressions contain
the implied-DO variables of any implied-DO list that has the subscript expression within its
range.

Nested implied-DO lists must be enclosed in parentheses and be wholly contained in the
surrounding implied-DO list.

Implied-DO lists function like a DO statement and therefore can be executed zero times.
4-14

Specification Statements
Examples:

DIMENSION A(3,5)
CHARACTER *3 CHRS
DATA ((A(I,J),I=1,3),J=1,5)/15*0.1/
DATA A/15*0.1/
DATA I, J, K /0, 0, 0/, X, Y /0., 0./
DATA CHRS /'ABC'/
4-15

Concurrent Fortran 77 Reference Manual
DATAPOOL Statement (H) 4

A DATAPOOL statement identifies a memory area called a datapool. It contains Fortran
specification statements that can be compiled separately from the object program. The
memory locations of each variable or array in the DATAPOOL statement are defined when
the program is linked, not at compile time.

Using datapools is helpful in the development of large-scale software systems because the
definition of global or shared data values can be centralized into a single memory area.
The advantage of using a datapool is that it is generally not necessary to recompile all sub-
programs if the order or content of a datapool is changed, a procedure that is required if
COMMON blocks are used.

The datapool is defined using the Concurrent Fortran compiler. Concurrent Fortran forms
a datapool dictionary for each datapool definition that is linked with the program and con-
tains space for the datapool declarations.

SYNTAX

DATAPOOL /name/ list [[,] /name/ list] ...

DESCRIPTION

/name/ (REQUIRED) Specifies the slash-enclosed symbolic name of a
datapool. The /name/ cannot be the name of a function, subroutine, or
entry point, or any other global name in the source program.

list (REQUIRED) Specifies a list of one or more variables or array names
for each named datapool. If more than one name is specified in the list,
each name is separated by a comma.

Other considerations when creating datapools are:

• A datapool dictionary that contains the specified datapool variables must
be created with Concurrent Fortran previous to link time.

• Variables in datapool areas may be initially defined in a datapool definition
file using DATA statements.

• Any data type, length or array dimension declarations defined for particular
variables or arrays in the datapool definition must also be declared in the
same manner in the Fortran source program. This is to assure proper type,
size, dimension, and reference information for the datapool variables.

Defining a Datapool Area (H) 4

Datapool definitions indicate which variables are contained within a datapool. A datapool
definition file contains the following statements
4-16

Specification Statements
:

All data types are allowed.

A “C” in column 1 of a line indicates a comment line. Comments can also be placed on the
same line as a statement by specifying an exclamation point “!”, followed by the
comment.

If desired, IMPLICIT statements can be placed at the beginning of the definition file to
control default type selection. The definition statements can be arranged in any order.

Only one END statement per definition file is allowed. If END is not present, one is
assumed upon reaching the end of the file. Because it is a requirement that datapool
definition information for each variable be duplicated in the Fortran source file, users are
encouraged to omit the END statement and incorporate the actual datapool definition file
into the source using an INCLUDE statement in order to assure accurate duplication.

Multiple datapools can be defined in the same definition file. There are no restrictions as
to the order or placement of the definitions; however, a variable cannot be placed in more
than one datapool.

NOTE: Equivalencing is allowed between variables in the same datapool. An attempt to
equivalence variables in different datapools results in an error.

Datapool names and variable names and declarations have the same limitations as Fortran
identifiers and declarations. The following is a sample datapool definition file:

 IMPLICIT UNDEFINED (A-Z)

C
C The following variables are used to keep track of
C Dino's feeding schedule.
C
 DATAPOOL /FLINTSTONE/ FRED,WILMA,PEBBLES
 DATAPOOL /RUBBLE/ BETTY,BARNEY
 REAL FRED
 COMPLEX BETTY
 INTEGER BARNEY,
 + BAM
 DOUBLE PRECISION WILMA
C
C Wilma and Fred take the same days
C
 EQUIVALENCE (WILMA,FRED)
 INTEGER*4 PEBBLES

IMPLICIT explicit type

DATAPOOL END

DATA INCLUDE

DIMENSION comment

EQUIVALENCE
4-17

Concurrent Fortran 77 Reference Manual
C
C So do Barney and Betty
C
 EQUIVALENCE (BARNEY,BETTY)
C
C Can't forget Bam-Bam!!
C
 DATAPOOL /RUBBLE/ BAM(2)
 !End of definition file. END not required.

The preceding example shows declarations similar to standard Fortran declarations, how-
ever, a name is required in the DATAPOOL statements. There is no blank DATAPOOL.
Explicit initialization at declaration is allowed.

Multiple DATAPOOL lines with the same datapool name put the named variables into the
same datapool.

Generating a Datapool Dictionary (H) 4

A datapool dictionary is created by running the Concurrent Fortran compiler over a
datapool definition file. Concurrent Fortran produces a dictionary object file for each
datapool definition file. The names of the object file and definition file should be the same
except for the suffix, which must be.o for the object file and .dp for the datapool defini-
tion file. Users can intermix datapool definition files and Fortran source files in the com-
mand line—Concurrent Fortran automatically links the dictionary object with the execut-
able unless otherwise specified. The dictionary object file remains in the current directory
and is not erased. When users wish to use a datapool, they must link the desired dictionary
with the program object files. The datapool is placed in the appropriate memory space and
all datapool references in the program are resolved. Special ld(1) commands are not
required unless the datapool is to be used in shared memory.

Referencing a Datapool (H) 4

Datapools are referenced in the Fortran program via the DATAPOOL statement. Multiple
datapools can be referenced provided that the variables in each DATAPOOL statement are
uniquely named. Variables contained in a datapool, but not included in a DATAPOOL state-
ment, are not accessible from the program. Variables declared with similar names would
be considered local variables. A sample program referring to variables from the dictionary
defined above:

PROGRAM SAMPLE
DATAPOOL /RUBBLE/ BARNEY,BETTY,BAM
DIMENSION BAM (2)
COMPLEX BETTY
INTEGER BARNEY,BAM
EQUIVALENCE (BARNEY,BETTY)
PRINT *,BETTY, BARNEY, BAM(1), BAM(2)
END
4-18

Specification Statements
Equivalencing a datapool variable to a subprogram variable results in an error. However,
equivalencing between datapool variables within a Fortran source file (if it duplicates the
equivalencing specified in a datapool definition file) provides the compiler with essential
reference information and assures that correct code is generated for datapool variable ref-
erences. Users are encouraged to include their datapool definition files en masse into
source files by using the INCLUDE statement. Incorrect equivalence information about
datapool variables usually causes incorrect program results.

If a datapool is being placed in shared memory and optimization is enabled, the datapool
name must be placed in a VOLATILE statement.

Placing a Dictionary in Shared Memory (H) 4

 The file name of the datapool dictionary is given as part of the input to shmdefine(1)
using the statement

INCLUDE "filename.o"

Refer to the COMMON statement in “Shared Memory Interface (H)” on page 4-10 in this
manual and also “Interprocess Communication” in the PowerMAX OS Programming
Guide for detailed information on accessing a shared memory region.
4-19

Concurrent Fortran 77 Reference Manual
DIMENSION Statement 4

A DIMENSION statement identifies symbolic names for arrays, defines the number of
dimensions in each array, and defines the number of elements in each dimension.

SYNTAX

DIMENSION a(d) [, a(d)] ...

DESCRIPTION

 a Specifies the symbolic name of an array.

a(d) Specifies an array declarator of the form:

 a (d1[,d2,...,d7])

d Specifies from one to seven dimensions for array a. Each d is an integer
constant or a dimension expression. A dimension expression, if present,
must be an integer constant expression. An upper and lower bound
range for each dimension of the following form can be specified:

 a ([el :] eu,...)

where el and eu specify the lower and upper bound, respectively. The upper and lower
bound is an integer constant or a dimension expression. The rightmost dimension in an
array declaration in a subprogram may have an asterisk (*) as the upper bound, indicating
that the dimension is unknown.

If a range is not specified, the dimension d is the upper bound of the array, and the lower
bound is 1.

The size of array a is the product of all elements in each dimension of the array. All
memory locations for the elements of the array are contiguous and are of the same size (as
determined by the data type of the array).

Arrays can also be declared in COMMON, DATAPOOL, AUTOMATIC, and STATIC state-
ments and in explicit type statements.

A symbolic name defined as an array can be declared only once within a program unit;
i.e., the dimensions and upper and lower bounds of an array cannot be redefined in any
way in the same program unit in a COMMON, DATAPOOL, AUTOMATIC, STATIC or
explicit type statement or in another DIMENSION statement. The array name can be used
in a COMMON, DATAPOOL, AUTOMATIC, STATIC, or explicit type statement to declare it
as an array in common, or to give the array an explicit data type, but no array declarator
can be specified.

When an element of the array is referenced, the same number of subscripts must be used
as there are dimensions in the array, unless the array name is used in a context that does
not require any subscripts or is used in an EQUIVALENCE statement.

Array declarators cannot contain variable names in a main program; however, they can
contain variable names in a subprogram (see Chapter 8).
4-20

Specification Statements
Examples:

Example Explanation

DIMENSION VECTOR(25) Correct

DIMENSION MATRIX(5,6) Correct

DIMENSION Z(-2:2,5,15) Correct

DIMENSION A(-5:-3) Correct

DIMENSION X(8), Y Dimensions omitted for Y

DIMENSION B(0) Zero dimensions invalid

DIMENSION X(-3) Upper bound is less than lower bound
4-21

Concurrent Fortran 77 Reference Manual
EQUIVALENCE Statement 4

The EQUIVALENCE statement allows you to refer to the same sequence of contiguous
storage locations with two or more symbolic names. (This statement does not establish an
equivalence in the mathematical sense of the word.)

An EQUIVALENCE statement is used to conserve memory, to set up a “structure” of data,
or to add more storage units at the end of a common block but not at the beginning of a
common block. EQUIVALENCE allows the same storage locations to be used for different
purposes with different symbolic names. An EQUIVALENCE statement applies only to the
program unit in which it is defined, unless one of the equivalenced entities is also in a
common block.

SYNTAX

EQUIVALENCE (list) [, (list)] ...

DESCRIPTION

list (REQUIRED) Specifies a list of variable names, array names, array
element names, or character substring names. Each parenthesized list is
separated by commas, and items within each list are separated by
commas. All items in a list are allocated beginning at the same storage
location. Parentheses must enclose each equivalence list.

Example:

CHARACTER *3 I, J
CHARACTER *7 K, L, M*2
EQUIVALENCE (I, K), (J, L, M)

Associates the variables I, J, K, L, and M to storage units as follows:

Figure 4-1. Equivalencing Scalars

Dummy argument names must not appear in an equivalence list in a subprogram. In
addition, if a variable name is also the name of a function, that name must not appear in an
equivalence list.

01 02 03 04 05 06 07

I

K

J

L

M

4-22

Specification Statements
Numeric, character, and logical entities of any data type can be equivalenced (i.e.,
symbolic names representing character, numeric, or logical data can appear in an equiva-
lence list), and the length of the entities need not be the same. Where the lengths of the
entities are not the same, the entities are partially associated. Also, if entities of different
data types are equivalenced, conversion of data types is not performed.

Variables can be equivalenced with arrays and neither takes on the properties of the other
(e.g., a variable equivalenced with an array element is not part of any array nor is the array
element a variable).

An EQUIVALENCE statement must not specify that the same storage location is to occur
more than once in a storage sequence.

Example:

INTEGER A, B (2)
EQUIVALENCE (B(1), A), (B(2), A)

defines B(1) and B(2) to be at the same storage location.

Also, two storage locations that must be consecutive cannot be made non-consecutive
with an EQUIVALENCE statement. For example,

CHARACTER *1 A(5), B(2), C
EQUIVALENCE (A(1), B(1)), (A(5), B(2))

is an illegal use of EQUIVALENCE. It causes the first element of A to be equivalenced to
the first element of B and the second element of B to be equivalenced to the fifth element
of A. The preceding equivalence is illegal because it indicates that an array is to be stored
non-linearly in memory.

Associating one entity with another in an EQUIVALENCE statement can also cause the
association of other entities. For example, if an array element name is equivalenced with
another symbolic name in a storage sequence, other elements of the array are also
associated with storage units in the storage sequence.

For example,

INTEGER *2 A(3), B(5), C, D
EQUIVALENCE (A(2), B(5)), (C, D, B(4))

associates the variables C and D and the element of arrays A and B as follows:
4-23

Concurrent Fortran 77 Reference Manual
Figure 4-2. Equivalencing Arrays

Note that adjacent elements in an array are also associated even though the elements were
not specifically equivalenced in an equivalence list (e.g., A(1) is equivalenced to B(4)).
Note also that two arrays of equal size could occupy the same storage space if an
EQUIVALENCE statement caused the first two elements of each array to be equivalenced.

Partial association of entities occurs when some but not all of the storage units of the
entities share the same storage. For example,

CHARACTER *4 X, Y, Z*3
EQUIVALENCE (X(2:4), Y, Z)

associates X, Y, and Z as follows:

Figure 4-3. Equivalencing with Partial Association

Symbolic names defined as being in common blocks are used in EQUIVALENCE state-
ments, but not more than one of the elements in an equivalence list can be in a common
block. Two components in the same or different common blocks cannot be equivalent.

An EQUIVALENCE statement can be used to extend a common block beyond its original
boundaries, but only beyond the last element in the common block. The ordering of
common blocks cannot be forced with an EQUIVALENCE statement. For example, the
following EQUIVALENCE is not allowed:

DIMENSION ARRAY(2)
COMMON /COM1/ C1
COMMON /COM2/ C2
EQUIVALENCE (ARRAY(1), C1), (ARRAY(2), C2)

01 02 03 04 05 06 07 08 09 10 11 12

A(1) A(2) A(3)

B(4) B(5)

C

D

B(1) B(2) B(3)

01 02 03 04 05

X

Y

Z

4-24

Specification Statements
A single (one-dimensional) subscript may be used in EQUIVALENCE statements with
array elements that were previously defined as arrays with two or more dimensions. A
single subscript represents the linear element number in the bounds of the array. However,
the lower bound of all dimensions in a multi-dimensional array must be 1 or a single
subscript cannot be used in an EQUIVALENCE statement. If the lower bounds of any
dimension in the multi-dimensional array is not 1, the correct number of dimensions as
defined for the array must be specified in the EQUIVALENCE statement.

Example:

CHARACTER *1 X(3,2,2), Y(2,3)
EQUIVALENCE (X(6),Y(2))

the arrays are aligned as follows:

Figure 4-4. Equivalencing Arrays with One Subscript

12

11

10

09

08

07

06

05

04

03

02

01 X(1,1,1)

X(2,1,1)

X(3,1,1)

X(1,2,1)

X(2,2,1)

X(3,2,1)

X(1,1,2)

X(2,1,2)

X(3,1,2)

X(1,2,2)

X(2,2,2)

X(3,2,2)

Y(1,1)

Y(2,1)

Y(1,2)

Y(2,2)

Y(1,3)

Y(2,3)
4-25

Concurrent Fortran 77 Reference Manual
EXTERNAL Statement 4

An EXTERNAL statement allows a user-defined function or subroutine name, a dummy
procedure name, or a block data subprogram name to be used as an actual argument in a
subroutine call or function reference. If procedure names that are passed as actual
arguments to subprograms are not declared in an EXTERNAL statement, the procedure
names are interpreted as variables. An EXTERNAL statement is permitted wherever a
specification statement is allowed.

SYNTAX

EXTERNAL name [, name] ...

DESCRIPTION

name (REQUIRED) Specifies the symbolic name of an external procedure,
dummy procedure, or block data subprogram. The same symbolic name
appears only once in any EXTERNAL statement in a program unit.

If a complete function reference (including function name and arguments) is used in a
function reference or subroutine call, then the name of the complete function reference
need not appear in an EXTERNAL statement.

Example:

CALL SUB (X,Y,SQRT(Z))

SQRT(Z) represents an actual value and SQRT need not be specified in an EXTERNAL
statement.

If the name of an intrinsic function appears in an EXTERNAL statement, that name
becomes the name of an external procedure and the intrinsic function is no longer
available for reference in the program unit. Using intrinsic function names in EXTERNAL
statements permits a programmer to override intrinsic function names, so that the same
name can be used for a user-defined function. Note, however, that the generic properties of
any name appearing in an EXTERNAL statement are not lost.

A statement function name must not appear in an EXTERNAL statement. Example:

PROGRAM MAIN
EXTERNAL DSQUARE
DOUBLE PRECISION D
. . .
X = DSQUARE (Y) ! statement function declaration
. . .
END

FUNCTION DSQUARE (ROOT)
. . .
END

Statement X = DSQUARE (Y) references a user-defined function called DSQUARE.
4-26

Specification Statements
IMPLICIT Statement 4

The IMPLICIT statement overrides or confirms the implied data type for symbolic
names. A program unit can have more than one IMPLICIT statement, and all IMPLICIT
statements must precede all other specification statements. The names of intrinsic
functions are not affected by the IMPLICIT statement.

SYNTAX

IMPLICIT type [*n](a [, a]...) [,type [*n](a [, a] ...)] ...

IMPLICIT NONE

DESCRIPTION

a Specifies a single letter or a list of single letters in any order. A range of
letters is denoted as follows:

a1-a2

a1 and a2 must be in alphabetical order.

Parentheses must enclose the letters defined for a particular type. Each
single letter or range of letters is separated by commas.

The same letter cannot appear explicitly or in a range of letters in
another IMPLICIT statement within the same program unit.

type Specifies one of the following:

Defaults for all data types are as defined in Chapter 2. If UNDEFINED is selected as the
type, then there is no implicit type for variables starting with the letters specified. If
IMPLICIT NONE is used, then there is no implicit type of any variable. The compiler
issues a warning for each variable without an implicit type that is used but which does not
appear in a type statement.

BYTE COMPLEX

INTEGER *1 COMPLEX *8

INTEGER *2 COMPLEX *16

INTEGER *4 DOUBLE COMPLEX

INTEGER LOGICAL *1

REAL LOGICAL *2

REAL *4 LOGICAL *4

REAL *8 LOGICAL

DOUBLE PRECISION CHARACTER *n

UNDEFINED
4-27

Concurrent Fortran 77 Reference Manual
An IMPLICIT statement applies only to the program unit that contains it.

The appearance of a symbolic name in an explicit type statement overrides any typing and
length defined by an IMPLICIT statement. An explicit data type specified in a
FUNCTION statement overrides an IMPLICIT statement for the name of the function
subprogram. Note that the length is also overridden when a particular name appears in a
CHARACTER or CHARACTER FUNCTION statement.

Examples:

IMPLICIT DOUBLE PRECISION (A-E)
IMPLICIT DOUBLE PRECISION (A, B, C, D, E)
IMPLICIT INTEGER*2 (P-R, T, X-Z)
IMPLICIT REAL (K, J, I)
IMPLICIT CHARACTER *25 (F-H), INTEGER (I), COMPLEX (C, P)
4-28

Specification Statements
INTRINSIC Statement 4

An INTRINSIC statement identifies a symbolic name as the name of an intrinsic
function, and permits the symbolic name of an intrinsic to be used as an actual argument in
a function reference or subroutine call.

SYNTAX

INTRINSIC fname [, fname] ...

DESCRIPTION

fname (REQUIRED) Specifies the generic or specific name of an intrinsic
function. A symbolic name appears only once in any INTRINSIC state-
ment within a program unit, and a symbolic name cannot appear in both
an EXTERNAL and an INTRINSIC statement in the same program unit.

If the symbolic name of an intrinsic function is used as an actual argument in a function
reference or subroutine call in a program unit, the symbolic name must be identified in an
INTRINSIC statement in the program unit.

The name of a statement function cannot be used in an INTRINSIC statement.

Use of the generic name of a function in an INTRINSIC statement does not cause the
name to lose its generic property.

Example:

PROGRAM TEST
INTRINSIC SQRT
REAL VALUE, RESULT
. . .
CALL RTINE (SQRT, VALUE, RESULT)
. . .
END

SUBROUTINE RTINE (FN, V, R)
REAL V, R, FN
R = FN(V)
. . .
RETURN
END
4-29

Concurrent Fortran 77 Reference Manual
NAMELIST Statement (H) 4

The NAMELIST statement defines a list of variables or array names and associates the list
with a unique group name. The group name is used in namelist-directed I/O statements.

SYNTAX

NAMELIST /name/namelist[[,] /name/namelist] ...

DESCRIPTION

/name/ (REQUIRED) Specifies the slash-enclosed symbolic name of the
namelist group. It cannot be the name of a function, subroutine, or any
other symbolic entity in the program.

namelist Specifies a comma-separated list of variable names or unsubscripted
array names. Each name in this list is associated with the preceding
group name. A variable can appear in more than one namelist. Each
namelist is appended to the end of any existing namelist of the same
group name in the same program unit.

The namelist associated with a group name is used by a namelist-directed I/O statement in
place of an I/O list. The unique group name identifies a list whose entities can be read or
written. Only the entities in the specified group can be read or written during a namelist I/
O operation. It is not necessary for the input records of a namelist-directed read operation
to define every entity in the associated namelist.

The namelist entities can be of any data type and can be explicitly or implicitly typed.
Array elements and character substrings are not permitted in the namelist. Array elements
can be specified in a namelist-directed I/O operation.

The order of the entities in the NAMELIST statement determines the order in which the
values are written in a namelist-directed write operation. Input values can be in any order.

A variable name can appear in zero or more namelists. Dummy arguments cannot appear
in a namelist. Variable and assumed-size arrays are not allowed. Refer to Chapter 6 for
more information on namelist-directed I/O operations.

Namelist group names and namelist entity variable names may contain embedded under-
scores (_); however, embedded dollar signs ($) are not allowed. The dollar sign is a
special delimiter in namelist data files. The Concurrent Fortran compiler issues a warning
for group names and variable names that violate this restriction within NAMELIST state-
ments. Unpredictable results, including I/O errors and invalid data, may result if this
guideline is not followed.

Example:

CHARACTER *10 C10
INTEGER IARRAY(5), INT2
REAL REALVAL, ARRAY(3), REAL2, REAL3, REAL4
NAMELIST /BLK1/ C10,IARRAY,INT2,REALVAL,REAL2,REAL3
NAMELIST /BLK2/ INT2, C10 /BLK1/ ARRAY, REAL4
4-30

Specification Statements
This namelist statement defines two groups, BLK1 and BLK2. BLK1 contains the entities
C10, IARRAY, INT2, REALVAL, REAL2, and REAL4. BLK2 contains INT2 and C10.
4-31

Concurrent Fortran 77 Reference Manual
PARAMETER Statement 4

A PARAMETER statement gives a symbolic name to a numeric, character, Hollerith, or
logical constant. Once defined in a PARAMETER statement, the name of a constant can be
used wherever the constant is used except in a format specification. A PARAMETER state-
ment may be used to generalize array and character length declarations so that an array or
character entity can be expanded or contracted simply by changing the value of the
symbolic constant. PARAMETER statements are evaluated at compilation time and are
non-executable statements.

SYNTAX

PARAMETER (p1=e [, p2=e] ...)

DESCRIPTION

 p1, p2... Specify symbolic names.

e Specifies a constant expression. Parentheses must enclose the list of
assignments. The data type of the symbolic name is as defined in an
explicit type statement or is determined implicitly by the first character
of the name. If p1 is numeric, then e must be an arithmetic constant
expression or Hollerith value. If p1 is of type CHARACTER or
LOGICAL, then e must be a character constant expression or a logical
constant expression, respectively. If the data type of e differs from that
of p1, then the data type of the value of e is converted to the data type of
p1 in accordance with the rules for assignment statements.

A symbolic name of a constant that appears in expression e must have been previously
defined in the same or a different PARAMETER statement in the same program unit. The
symbolic name of a constant applies only to the program unit in which it is defined. The
symbolic name of a constant must not become defined more than once in a program unit.

The default length for the symbolic name of a constant is the same as the default length for
the data type. If a different length (or data type) is desired, it must be defined in an explicit
type statement or in an IMPLICIT statement before being used in a PARAMETER state-
ment.

The length or data type of the symbolic name of a constant cannot be changed by
subsequent statements.

PARAMETER statements can appear anywhere in a program unit, but they must define the
symbolic name of a constant before the constant is used.

Example:

INTEGER A, B, X
PARAMETER (A=100, B=0)
DIMENSION X(A)
DATA X /A*B/
. . .
END
4-32

Specification Statements
A, the symbolic name for integer constant 100, is used to declare the dimension of vector
X and is used as a repetition factor in the DATA statement. B, the symbolic name for
integer constant 0, is used as the initial value to be assigned to all elements of array X.
4-33

Concurrent Fortran 77 Reference Manual
POINTER Statement (H) 4

The POINTER statement associates a pointer variable and a block of based variables
whose locations are determined as offsets from an address held in the pointer variable. A
pointer block is useful for implementing dynamic and other data structures otherwise
difficult in Fortran.

SYNTAX

POINTER /name/ list [[,] /name/ list] ...

DESCRIPTION

/name/ (REQUIRED) Specifies the pointer variable which holds the base
address of the pointer block. The pointer variable must be declared
separately, and requires INTEGER*4 type to hold a full system address.
It must be scalar, and may be a local variable, a dummy argument, a
member of a common block or datapool, or a member of another pointer
block.

list (REQUIRED) Specifies the comma-separated list of one or more
variables or array names associated with the pointer variable name. No
storage is allocated for these based variables. Based variables may
appear in the VOLATILE statement and may be equivalenced to local
variables. Like common block variables, all based variables in a pointer
block form a storage sequence.

Storage for pointer block members is supplied by the user and the address is assigned to
the pointer variable. Once the pointer variable contains a valid address, the associated
based variables may be used. Use of a based variable when its associated pointer variable
does not contain a valid address usually results in a run-time error and a core dump.

A chunk of storage may be obtained dynamically via the malloc(3F) package, or
statically by declaring a dummy array and using the %LOC() intrinsic to determine its
address.

The address of a based variable is the current value of its associated pointer variable, plus
the offset as determined from the member list. Offsets of based variables are the same as
offsets computed for an identical list of common block variables, and like common block
variables, it is the offset rather than the name that is used for accessing the storage area. A
different name may be used for a based variable in a separate subprogram as long as type
and size information remains the same.

The total size of a pointer block may be larger than the sum of the sizes of all member
variables, due to data-type alignment restrictions. The sizeofblock(3F) intrinsic
takes as its argument a pointer variable and returns the total size in bytes of the associated
pointer block.
4-34

Specification Statements
Example 1:

PROGRAM FUDGE

INTEGER*4 PTR
POINTER /PTR/ A, B(2)
REAL*4 A, B

EXTERNAL MALLOC
INTEGER*4 MALLOC

PTR = MALLOC(SIZEOFBLOCK(PTR))

B(2) = 1.0
B(1) = 2.0
A = B(1) + B(2)

PRINT *, A, B

END

Example 2:

...
INTEGER*4 PTR
POINTER /PTR/ A, B(2)
REAL*4 A, B

! Static storage allocation.

INTEGER*4 DUMMY(3)

PTR = %LOC(DUMMY) ! %LOC(DUMMY(1)) is also valid.
...
4-35

Concurrent Fortran 77 Reference Manual
SAVE Statement 4

A SAVE statement in a program unit identifies a list of local entities that do not become
undefined when a RETURN or END statement is executed. If a SAVE statement identifies a
local entity that is not in a common block and that is defined when a RETURN or END
statement is executed, that entity has the same value at the next reference of the
subprogram.

The use of a common block name in a SAVE statement is effectively a null operation.
However, a saved common block can become undefined or redefined in another program
unit.

SYNTAX

SAVE [name [, name]] ...

DESCRIPTION

name (OPTIONAL) Specifies a common block name enclosed with slashes, a
variable name, or an array name. A symbolic name cannot be specified
more than once in a SAVE statement in a program unit. Names of
particular entities in a common block, dummy argument names, and
procedure names cannot appear in a SAVE statement.

The values of saved common block entities are made available to the next program unit
which specifies that common block name in a COMMON statement. If the common block is
specified in a main program unit, the current values of saved common block entities are
made available to each subprogram that uses the labeled common block, and a SAVE state-
ment in the subprogram has no effect.

The definition status of each entity in the named common block storage sequence depends
on the association that has been established for the common block storage sequence.

Example:

INTEGER I, J, K(3)
COMMON /COM/ J, K

SAVE COM, I ! I, J, K are saved
4-36

Specification Statements
STATIC Statement (H) 4

Variables and array names may be declared of static storage. The values in the variables
and array names are preserved between invocations of the routine containing the
declarations, as with the SAVE statement.

SYNTAX

STATIC v [, v] ...

DESCRIPTION

v (REQUIRED) Specifies a variable name or an array name (with an
optional array declarator). If more than one name is specified, each
name is separated by commas.

Example:

INTEGER I, J(3,4,4), K

STATIC I, J, K ! I, J, K are static
4-37

Concurrent Fortran 77 Reference Manual
Statement Function Definitions 4

A statement function definition defines a statement function that is local to the program
unit in which it is defined. Statement function definitions may or may not have a dummy
argument list, and once the function is evaluated, it must return a value at the point of
reference. Statement functions resemble assignment statements and are referenced like
intrinsic functions.

SYNTAX

name ([d [, d] ...]) = e

DESCRIPTION

name (REQUIRED) Specifies the symbolic name of the statement function.

d (OPTIONAL) Specifies a dummy argument.

e Specifies an arithmetic, character, relational, or logical expression. The
name of the statement function has a data type, and if the result of e is
not the same data type, the result is converted to the data type of the
function name. The conversion rules applied are the same as those for
assignment statements.

The data type of the name can be declared explicitly in a type statement or can be defined
implicitly by the first letter of the name.

Statement function definitions follow other specification statements and precede any
executable statements in a program unit.

Statement functions can be referenced only within the program unit in which they are
defined. A statement function name cannot be used as a procedure name in an actual
argument list.

Each dummy argument in a statement function is a variable name, and all arguments in the
list need not have the same data type. When a statement function is referenced, actual
arguments are associated with dummy arguments on a one-to-one basis. The same dummy
argument can be used as a dummy argument in more than one statement function
definition in the same program unit or in other program units, and can also be used as a
variable in the same program unit. Constants, subscripted array names, and unsubscripted
array names are not valid as dummy arguments in a statement function definition.

The expression e can contain constants, symbolic names of constants, dummy argument
names, subscripted array names, intrinsic and external function references, dummy
procedure references, references to other statement functions previously defined in the
same program unit, or an expression in parentheses.

A statement function definition can be continued on more than one line.

A statement function cannot be referenced in another statement function unless it has been
previously defined.
4-38

Specification Statements
If a statement function is defined in a function subprogram, the name of the function sub-
program or the name of an entry point in the function subprogram cannot be referenced in
expression e.

Example:

PROGRAM STFU
SQUARE (X) = X ** 2
FUNC (A, B, C) = A * B + MIN(A,B,C)
. . .
END
4-39

Concurrent Fortran 77 Reference Manual
VOLATILE Statement (H) 4

The VOLATILE type qualifier denotes local variables or common block, datapool or
pointer block members which may be modified asynchronously to the execution of the
modules in which they are declared. A shared-memory program, for example, could affect
a variable in this manner when one process modifies a shared-memory variable that is also
used by another process. The VOLATILE keyword limits the kinds of optimizations that
may take place on expressions involving the volatile variable.

If one variable of an equivalence class appears in a VOLATILE statement, the entire
equivalence class is considered volatile. Individual member variables of common blocks,
datapools, or pointer blocks may be volatile without declaring the entire block volatile,
though there is also VOLATILE syntax for declaring an entire block. A pointer block and
its associated pointer variable must be declared volatile separately.

SYNTAX

VOLATILE volatile-entity [, volatile-entity ...]

DESCRIPTION

volatile-entity (REQUIRED) One of the following name or /block-name/
program elements.

name Symbolic Name Volatile Impact

Local variable The variable is volatile

Member variable of
 a common block

The variable is volatile

Member variable of
 a datapool

The variable is volatile

Member variable of
 a pointer block

The variable is volatile

Pointer variable for
 a pointer block

The pointer variable is volatile

Common block Every member variable is volatile

Datapool Every member variable is volatile
4-40

Specification Statements

Example:

COMMON /COM/ R, I
POINTER /PTR/ S, T
DATAPOOL /DP/ A, B
INTEGER I, J, PTR
REAL R, S, T(10,10)
COMPLEX A, B

VOLATILE /COM/ ! R and I volatile
VOLATILE PTR, /PTR/ ! PTR, S and T volatile
VOLATILE J, A ! J and A volatile, B is not
!
VOLATILE /J/ ! ERROR: J is not a valid block name

/block-name/ Symbolic Name Volatile Impact

Common block Every member variable is volatile

Datapool Every member variable is volatile

Pointer block Every member variable is volatile
4-41

Concurrent Fortran 77 Reference Manual
4-42

5
Control Statements

General Description . 5-1
Execution of a DO Loop . 5-1
Nested DO Loops . 5-3
Execution of an IF Block. 5-4
Nested IF Blocks . 5-5
Execution of a SELECT CASE Construct (H) . 5-7
CONTINUE Statement . 5-8
DO Statements . 5-9

Simple DO . 5-9
DO-UNTIL (H) . 5-11
DO WHILE (H) . 5-12
EXIT DO (H) . 5-13

FOR Statements (H) . 5-14
FOR (H) . 5-14
EXIT FOR (H) . 5-16

GO TO Statements. 5-17
Unconditional GO TO . 5-17
Computed GO TO . 5-18
Assigned GO TO . 5-19

IF Statements . 5-20
Arithmetic IF . 5-20
Logical IF . 5-21
Block IF . 5-22
EXIT IF (H) . 5-23

LOOP Statements (H) . 5-24
LOOP (H) . 5-24
EXIT LOOP (H) . 5-25

PAUSE Statement . 5-26
SELECT CASE Statements (H) . 5-27

SELECT CASE (H) . 5-27
CASE (H) . 5-28
CASE DEFAULT or ELSE (H) . 5-30
END SELECT (H) . 5-31

STOP Statement. 5-32
WHILE Statements (H) . 5-33

WHILE (H) . 5-33
EXIT WHILE (H) . 5-35

Concurrent Fortran 77 Reference Manual

5
Chapter 5Control Statements

5
5
5

General Description 5

Control statements affect the order of statement execution in the source program. State-
ments are executed sequentially, unless control statements indicate a transfer of control or
establish an iterative procedure, in which the same sequence of statements are executed
zero or more times, depending on the result of a condition. All control statements except
CALL and RETURN are discussed in this chapter. The CALL and RETURN statements are
discussed in Chapter 8.

A source program is executed sequentially, one statement after another, unless a transfer
of control indicates otherwise. GO TO statements permit branching, which is the transfer
of control from one statement to an executable statement elsewhere in the same program
unit.

There are three types of GO TO statements:

• Unconditional GO TO

• Computed GO TO

• Assigned GO TO

The IF statement permits conditional execution of one or more statements and is one of
three types:

• Arithmetic IF -- conditional branching

• Logical IF -- conditional statement execution

• Block IF -- conditional execution of a block of statements

The SELECT CASE construct permits selective execution of one of several blocks of state-
ments.

This chapter presents information on the execution of DO loops, IF blocks, and SELECT
CASE constructs followed by detailed alphabetical descriptions of the control statements.

Execution of a DO Loop 5

An active DO loop executes as follows:
5-1

Concurrent Fortran 77 Reference Manual
1. If the DO loop is being executed for the first time, the iteration count is
established based on the initial value and terminal value of the DO variable,
and the number by which the DO variable is incremented with each
iteration of the loop. The iteration count is then tested, and the first state-
ment after the DO statement is executed if the iteration count is not zero. If
the iteration count is zero or negative, the loop is not executed, and
execution continues with the first statement after the terminal statement of
the DO loop. However, if other DO loops sharing the same terminal state-
ment are active, execution continues with the DO statement for the next
outermost DO loop.

2. For subsequent executions of the loop, the value of the DO variable is
incremented by the value of the increment parameter, and the iteration
count is decreased by 1. If the iteration count is positive and is not zero,
execution continues with the statement following the DO statement; other-
wise, the loop becomes inactive.

A loop becomes inactive when:

• Its iteration count is tested and determined to be zero or negative.

• A RETURN or STOP statement is executed within the loop’s range.

• A statement within the loop transfers control to a statement outside the
loop.

• Execution is abnormally terminated.

Transfer into the range of a DO loop from outside the loop is not permitted. Control is
transferred only to the DO statement of a DO loop. Control is transferred only from an inner
DO loop to any executable statement in an outer DO loop’s range. Control may not be
transferred from a statement in an outer loop to a statement in an inner loop. If two or
more loops share the same terminal statement, control is transferred from an inner loop to
that statement, not from an outer loop to that statement.

The terminal statement of a DO loop may not be any of the following statements:

unconditional GO TO EXIT DO

assigned GO TO LOOP

arithmetic IF EXIT LOOP

block IF END LOOP

ELSE IF FOR

ELSE EXIT FOR

END IF END FOR

RETURN WHILE

STOP EXIT WHILE

END END WHILE

DO SELECT CASE

END SELECT CASE
5-2

Control Statements
If the terminal statement is a logical IF statement, the object of the logical IF may contain
any executable statement except a DO, block IF, ELSE IF, ELSE, END IF, END, FOR,
LOOP, WHILE, SELECT CASE or another logical IF.

A function reference or subroutine call within the range of the loop does not cause the
loop to become inactive unless an alternate return specifier in a subroutine returns control
to a statement outside the range of the loop.

A DO loop can be executed zero times.

Example:

M = 0
DO 50 J = 3, 1

50 M = M + 1

The loop is not executed, leaving M=0 and J=3.

When a DO loop becomes inactive, the DO variable retains its last defined value.

Examples:

DO 15 I = 0, 16, 2
. . .

15 CONTINUE

DO 111 R = 1.0, 3.5, .1
. . .

111 CONTINUE

DO 40 X = INT(HI), INT(LO), -3
. . .

40 CONTINUE

Nested DO Loops 5

DO loops may be nested to any level; that is, a DO loop can be included in another DO loop,
which can be included in another DO loop, etc. A DO loop within the range of another DO
loop must be totally within the range of the outer DO loop. Note that more than one DO
loop may have the same terminal statement.

A DO loop in an IF block must be wholly contained within that block. An IF, SELECT
CASE, WHILE, FOR, LOOP, DO WHILE, or DO-UNTIL block within the range of a DO loop
must be totally within that DO loop. For example:
5-3

Concurrent Fortran 77 Reference Manual
Correct nesting of three DO loops

DO 100 I = 1, 15
. . .
DO 30 J = 1, 5
DO 30 K = 1, 5
. . .

30 CONTINUE
. . .

100 CONTINUE

Incorrect nesting of three DO loops

DO 100 I = 1, 15
. . .
DO 30 J = 1, 5
DO 35 K = 1, 5
. . .

100 CONTINUE
. . .

30 CONTINUE
. . .

35 CONTINUE

Execution of an IF Block 5

If the expression in the initial IF statement of an IF block is true, the range of statements
between the IF statement and the first ELSE IF or ELSE statement, that has the same IF
control level as the block IF statement, is executed, and then control passes to the state-
ment after the END IF. If the expression in the initial IF statement is false, processing
continues with the next ELSE IF, ELSE, or END IF statement. A THEN clause may be
empty.

If the expression in an ELSE IF statement is true, the range of statements between the
ELSE IF and the next ELSE IF or ELSE statement, that has the same IF control level as
the ELSE IF block, is executed, and then control passes to the statement after the END
IF. If the expression in an ELSE IF statement is false, processing continues with the next
ELSE IF, ELSE, or END IF statement. An ELSE IF clause may be empty.

If an ELSE statement is present and all previous tests are false, the range of statements
between the ELSE and the END IF statement, that have the same IF control level as the
ELSE statement, is executed, and then control passes to the statement after the END IF.
An ELSE clause may be empty.
5-4

Control Statements
Nested IF Blocks 5

Block IF statements may be nested in other block IF statements. If so, inner block IF’s
must be wholly contained within the block IF, ELSE IF, or ELSE section in which the
inner block IF statement appears.

The IF control level of a statement s is:

n1 - n2

where n1 is the number of initial block IF statements from the beginning of the program
unit up to and including a particular statement s, and n2 is the number of END IF state-
ments in the program unit up to but not including statement s. The IF control level of
every statement s must be 0 or positive, and the IF control level of each block IF, ELSE
IF, ELSE, and END IF statement must be positive. The IF control level of the END state-
ment of each program unit must be zero, i.e., all active IF blocks must be inactive when
the program unit completes execution.

For each block IF, there must be a corresponding END IF at the same IF control level in
the same program unit.

The statement label, if any, of an ELSE IF or ELSE statement must not be referenced by
any other statement.

Transfer of control into an IF block, ELSE IF block, or ELSE block from outside the IF,
ELSE IF, or ELSE block is prohibited.

An ELSE IF statement at the same IF control level as an ELSE statement may not
appear after the ELSE statement.

Statements in outermost IF, ELSE IF, or ELSE blocks have a higher IF control level
than statements in innermost blocks. A transfer of control from within an IF block, ELSE
IF block, or ELSE block is permitted as long as the transfer is to a statement that has a
lower IF control level than the IF, ELSE IF, or ELSE statement. A statement within a
single clause may transfer control to another statement within the same clause but not to a
statement in another clause in the same IF block, unless the transfer is to a statement that
is the initial statement of a clause. A transfer of control out of the clause to a statement in
another clause at the same IF level or at a higher IF level is prohibited.
5-5

Concurrent Fortran 77 Reference Manual
Example:

An IF block in a block or in a DO loop must be wholly contained within that block or
loop.

IF Control
Level for

Each
Statement

CHARACTER *3 ICOM 0

...

IF (ICOM .EQ. 'ADD') THEN 1

 OP1 = OP1 + OP2 1

 PRINT*, OP1 1

ELSE IF (ICOM .EQ. 'SUB') THEN 1

 OP1 = OP1 - OP2 1

 PRINT*, OP1 1

ELSE IF (ICOM .EQ. 'MUL') THEN 1

 OP1 = OP1 * OP2 1

 IF(OP1 .GT.100000.) THEN 2

 PRINT*, "GREATER THAN 100000." 2

 ELSE 2

 PRINT*, OP1 2

 END IF 2

ELSE 1

 PRINT*, "ERROR" 1

END IF 1

END 0
5-6

Control Statements
Execution of a SELECT CASE Construct (H) 5

The SELECT CASE construct allows selective execution of one of several blocks of state-
ments. The user provides a selection expression in the SELECT CASE statement, which is
evaluated and compared sequentially to the constant expression provided in each of
subsequent CASE statements. The block of statements following the first CASE that
matches the selection expression is evaluated. If no CASE expression matches the
selection expression, and a CASE DEFAULT or ELSE statement is provided, the block of
statements following the CASE DEFAULT or ELSE statement is executed. Control is then
transferred to the first executable statement following the END SELECT statement.

The selection expression may be of any data type, including CHARACTER. It must evalu-
ate to a scalar value. The constant expression in each CASE statement may express any
number of values or ranges of values. The exact format of the constant expression is
described in “CASE (H)” on page 5-28. The value of the selection expression is compared
with each CASE expression in the order the CASE expressions appear in the source.

The block of statements executed on matching a CASE expression may be zero or more
statements long and includes all statements between the CASE statement and a following
CASE, CASE DEFAULT, ELSE, or END SELECT statement. IF blocks, DO and other loop
constructs, and other SELECT CASE constructs may be present but must be wholly
contained within the block of statements.

While not required, there may be at most one CASE DEFAULT or ELSE statement per
SELECT CASE construct. If ELSE is used, it must appear at the same nesting level as
other CASE statements in the same construct. No constant expression is associated with
CASE DEFAULT or ELSE. The block of statements following the CASE DEFAULT or
ELSE is executed if the selection expression matches no other CASE expression.

There are no restrictions to the sequence of CASE, CASE DEFAULT or ELSE statements
within a SELECT CASE construct.

Transfer of control into a SELECT CASE construct is prohibited. Transfer of control out of
a SELECT CASE construct is allowed at any time.
5-7

Concurrent Fortran 77 Reference Manual
CONTINUE Statement 5

The CONTINUE statement has no effect when executed. It is used as a point to which
control can be transferred from elsewhere in the program unit or as the terminal statement
of a DO loop.

SYNTAX

[label] CONTINUE

DESCRIPTION

label Specifies an optional statement number. If the CONTINUE statement is
the terminal statement of a DO loop or is a point to which control is
transferred from elsewhere in the program unit, the label must be
present.

A CONTINUE statement may be used to terminate a DO loop that would otherwise end in a
statement that may not be the terminal statement of a DO loop.
5-8

Control Statements
DO Statements 5

Simple DO 5

The DO statement defines a loop called a DO loop which is a sequence of executable state-
ments to be executed zero or more times based on control information defined in the DO
statement.

SYNTAX

DO label [,] v = e1, e2 [, e3]
...

label ...

or

DO v = e1, e2 [, e3]
...
END DO

DESCRIPTION

label Specifies the statement number of an executable statement that appears
below the DO statement in the same program unit.

v Specifies the DO variable and is of type integer, real, or double preci-
sion.

e1 Specifies the initial value of the DO variable.

e2 Specifies the terminal value of the DO variable.

e3 Specifies the number by which the DO variable is incremented with each
iteration of the loop.

The labeled statement is called the terminal statement of the DO loop. If the label
specification is omitted, then the END DO statement is the terminal statement of the DO
loop. The range of the DO loop is the sequence of statements from the DO statement up to
and including the terminal statement of the loop.

The control parameters e1, e2, and e3 are integer, real, or double precision expressions. If
necessary, the data type of the value of e1, e2, and e3 is converted to the data type of the
DO variable. If e3 is omitted, its value is 1. The control parameters have a positive or
negative value, but the value of e3 may not be zero. If e1, e2, or e3 is an expression, it is
evaluated the first time the DO statement is processed but is not reevaluated on subsequent
iterations of the loop. The control parameters e1, e2, and e3 should not be changed during
the execution of the loop.

The number of times the loop is to be processed, the iteration count, is determined when
the DO statement is executed for the first time. The iteration count is defined to be:

MAX(INT((e2 - e1 + e3) / e3), 0)
5-9

Concurrent Fortran 77 Reference Manual
(The intrinsic functions MAX and INT are explained in Chapter 9.)

The iteration count is zero whenever:

e1 > e2 and e3 > 0

or

 e1 < e2 and e3 < 0

During program execution, a DO loop is either active or inactive. The DO loop becomes
active when its DO statement is executed. The DO loop becomes inactive when it has
exited.
5-10

Control Statements
DO-UNTIL (H) 5

A DO-UNTIL block is a loop that executes at least once. The loop remains active or
becomes inactive based on a test at the end of the range of the DO-UNTIL loop.

SYNTAX

DO
. . .
UNTIL (e)

DESCRIPTION

e Specifies a relational or logical expression. The parentheses must be
specified as shown. The range of the loop is executed at least once, and
a test is made at the end of the loop in the UNTIL statement. If the test is
true, control is transferred to the statement that follows the UNTIL state-
ment. If the test is false, the range of the DO-UNTIL loop is executed
again.

Control may not be transferred to a statement within the range of the DO-UNTIL loop
from outside the loop.

A DO-UNTIL loop in an IF, WHILE, FOR, DO WHILE, or LOOP block or in a DO loop
must be wholly contained within that block or loop. An IF, WHILE, FOR, DO WHILE, or
LOOP block or a DO loop within the range of a DO-UNTIL loop must be wholly contained
within the range of the DO-UNTIL loop.

Example:

CHARACTER *1 BLANK, ICHAR
DATA BLANK /"b"/
. . .
DO
CALL GETCHR(ICHAR)
UNTIL (ICHAR .NE. BLANK)
5-11

Concurrent Fortran 77 Reference Manual
DO WHILE (H) 5

A DO WHILE block executes as long as the specified condition in the DO WHILE state-
ment is true.

SYNTAX

DO WHILE (e)
. . .
END DO

or

DO label [,] WHILE (e)
. . .

label . . .

DESCRIPTION

e Specifies a relational or logical expression. Execution of the DO WHILE
statement causes evaluation of expression e. If the value of e is true,
normal sequential execution continues and execution of the range of the
DO WHILE begins. If the value of e is false, control is transferred to the
statement immediately following the END DO or labeled statement that
closes the DO WHILE block.

label Specifies the statement number of an executable statement that appears
below the DO WHILE statement in the same program unit.

The DO WHILE block executes repeatedly as long as the specified condition is true. The
test for the condition is made before each execution of the range of the DO WHILE; thus a
DO WHILE block can be executed no times. DO WHILE blocks may be nested to any level
but overlapping cannot occur. A DO WHILE block in an IF, DO-UNTIL, FOR, or LOOP
block or within a DO loop must be wholly contained within that block or loop. An IF,
DO-UNTIL, FOR, or LOOP block or DO loop within the range of a DO WHILE block must
be totally within that DO WHILE block.

Example:

DO WHILE (ICOUNT .NE. 0)
. . .
DO 10, WHILE (.NOT. EOF)

. . .
10 CONTINUE

. . .
END DO
5-12

Control Statements
EXIT DO (H) 5

Allows a conditional or unconditional exit from a DO-UNTIL block.

The EXIT DO statement allows a conditional or unconditional exit from a DO-UNTIL
block but may not be used to exit from any other type of DO loop.

SYNTAX

EXIT DO [IF (e)]

DESCRIPTION

e Specifies the relational or logical expression that permits the
DO-UNTIL block to be exited conditionally depending on whether the
value of e is true or false. The parentheses surrounding e must be
specified as shown.

One or more EXIT DO statements may be placed in a DO block. If an EXIT DO is
encountered during execution, the innermost DO-UNTIL block becomes inactive, and
control is transferred to the statement following the UNTIL statement that closes the
DO-UNTIL block. If an IF phrase is not specified, the exit is unconditional. If an IF
phrase is specified and the logical expression e is true, the DO-UNTIL loop is exited. If e
is false, an exit is not taken and the loop execution continues with the next statement after
the EXIT DO.

Example:

LOGICAL TEST
DO
. . .
EXIT DO IF (TEST)
. . .
UNTIL (I .GE. 25)
5-13

Concurrent Fortran 77 Reference Manual
FOR Statements (H) 5

FOR (H) 5

A FOR block functions exactly like a DO loop except the terminal statement of the FOR
block is an END FOR statement rather than a labeled statement, and a label is not specified
in the FOR statement.

SYNTAX

FOR v = e1, e2 [, e3]
...

END FOR

DESCRIPTION

v Specifies the FOR variable and is of type integer, real, or double
precision.

e1 Specifies the initial value of the FOR variable.

e2 Specifies the terminal value of the FOR variable.

e3 Specifies the number by which the FOR variable is incremented with
each iteration of the loop.

FOR blocks may be nested to any level; that is, a FOR block may be included in another
FOR block, which may be included in another FOR block, etc. Overlapping of FOR blocks
is not permitted. A FOR block within the range of another FOR block must be totally
within the range of the outer FOR block. An END FOR statement closes only the
innermost FOR block; thus, an END FOR must be present for each FOR statement.
Examples:

FOR I = 1, 10
. . .
FOR INVAR = J, K, L
. . .

FOR J = 10, -10, -1
. . .

END FOR
END FOR

END FOR

A FOR block in an IF, WHILE, DO-UNTIL, DO WHILE, or LOOP block or in a DO loop
must be wholly contained within that block or loop. An IF, WHILE, DO-UNTIL, DO
WHILE, or LOOP block or a DO loop within the range of a FOR block must be totally
within that FOR block.
5-14

Control Statements
DIMENSION A (10,10)
. . .
FOR I = 1, 9

I1 = I + 1
FOR J = I1, 10

TEMP = A(I,J)
A(I,J) = A(J,I)
A(J,I) = TEMP

END FOR
END FOR

This computes the transpose of a 10 by 10 matrix A. Note that the two END FOR state-
ments are needed to close the two FOR blocks; the first END FOR statement closes the
inner FOR block with J as its loop variable, and the second END FOR statement closes the
outer FOR block with I as its loop variable.
5-15

Concurrent Fortran 77 Reference Manual
EXIT FOR (H) 5

The EXIT FOR statement allows a conditional or unconditional exit from a FOR block.

SYNTAX

EXIT FOR [IF (e)]

DESCRIPTION

e Specifies the relational or logical expression that permits the FOR block
to be exited conditionally depending on whether the value of e is true or
false. The parentheses surrounding e must be specified as shown.

One or more EXIT FOR statements may be placed in a FOR block. If an EXIT FOR is
encountered during execution, the innermost FOR block becomes inactive, and control is
transferred to the statement following the END FOR statement that closes the FOR block.
If an IF phrase is not specified, the exit is unconditional. If an IF phrase is specified and
the logical expression e is true, the FOR loop is exited. If e is false, an exit is not taken and
the loop execution continues with the next statement after the EXIT FOR.
5-16

Control Statements
GO TO Statements 5

Unconditional GO TO 5

An unconditional GO TO statement transfers control to another statement in the same
program unit.

The statement is called unconditional because a transfer of control occurs every time the
GO TO is executed.

SYNTAX

GO TO label

DESCRIPTION

label Specifies the statement number of an executable statement elsewhere in
the program unit. The labeled statement may precede or follow the
unconditional GO TO statement. Normal execution continues with the
statement whose statement number is label.

Examples:

GO TO 105
. . .
GO TO 105
. . .
GO TO 105
. . .

105 CONTINUE
. . .
END

Control is immediately transferred to the statement labeled 105 if any of the GO TO state-
ments is executed.
5-17

Concurrent Fortran 77 Reference Manual
Computed GO TO 5

A computed GO TO permits a user to define alternate locations to branch to based on the
evaluation of an expression.

SYNTAX

GO TO (s [, s] ...)[,] e

DESCRIPTION

 s Specifies a statement label that appears elsewhere in the same program
unit. Each s must be separated by a comma. The labeled statements may
precede or follow the computed GO TO statement. The same statement
label may appear more than once in the list of statement labels. The list
of statement labels must be enclosed in parentheses.

e Specifies an arithmetic expression.

If the value of e is a non-integer numeric value, the number is converted
to an integer.

When e is evaluated, control is transferred to the statement whose statement label is the
eth statement label in the list of statement labels. For a computed GO TO to have any
effect, the value of e must be between 1 and the total number of labels specified in the list
of statement labels. If e’s value is 0, a negative number, or a number greater than the num-
ber of labels in the list, the computed GO TO has no effect, and execution continues with
the statement that follows the computed GO TO.

Example:

GO TO (10, 20, 30, 30, 40) I + J / 2

Transfers control to the statement labeled 20 if I+J/2 equals 2, to the statement labeled 30
if I+J/2 equals 3 or 4, etc.
5-18

Control Statements
Assigned GO TO 5

Assigned GO TO statements transfer control to a location in the same program unit based
on the value assigned to a variable in an ASSIGN statement (see “ASSIGN Statement” on
page 3-30).

SYNTAX

GO TO i [[,] (s [, s] ...)]

DESCRIPTION

i Specifies a four-byte integer variable name defined in an ASSIGN state-
ment.

s Specifies the label of an executable statement that appears elsewhere in
the same program unit, either above or below the assigned GO TO state-
ment. If one or more statement labels are specified, the labels must be
enclosed in parentheses, and the labels must be separated by commas.

The variable i must have been previously defined in an ASSIGN statement in the same
program unit, and the destination of the transfer of control is the statement label identified
in the most recently executed ASSIGN statement that specified the variable i.

The same statement label can appear more than once in the list of statement labels. If a list
of labels is not specified, then the list of possible labels is assumed to be all statement
numbers that appear in an ASSIGN statement. If a list of labels is specified, then the value
of i must be one of the labels in the list; if not, a warning is not issued, but the compiled
program can be erroneous.

Examples:

ASSIGN 5371 TO LOCUS
GO TO LOCUS
GO TO LOCUS, (117, 56, 101, 5371)

The two GO TO statements transfer control to the statement labeled 5371.
5-19

Concurrent Fortran 77 Reference Manual
IF Statements 5

Arithmetic IF 5

An arithmetic IF branches to one of three specified locations depending on the result of a
condition.

SYNTAX

IF (e) s1, s2, s3

DESCRIPTION

e Specifies an integer, real, or double precision expression, enclosed in
parentheses, that returns a positive, negative, or zero value. A complex
or double complex expression for e is not permitted.

s1,s2,s3 Each specifies a statement label of an executable statement that appears
elsewhere in the same program unit. The same statement label may
appear more than once in the arithmetic IF.

Once e is evaluated, control is transferred to the statement labeled s1 if e is less than 0, to
statement s2 if e equals 0, or to statement s3 if e is greater than 0. The transfer may be to a
statement that precedes or follows the arithmetic IF in the program unit.

Examples:

IF (I / J) 10, 20, 30

Caution should be exercised if e is a real or double precision expression, and the
expression involves a computation whose mathematical value is zero. A small number that
is not exactly zero is likely to result and a branch to s2 would not be taken.

Statement Value of e Transfers to Statement

IF (K) 1,2,3 47802 3

IF (3 * M(J) - 7) 76,4,3 -6 76

IF (C(J,10) + A/4) 23,10,12 0.0002 12

IF (K*N**2 - 14*LIMIT) 78,444,78 -1000 78

IF (Z-B-3.1416 + SQRT(X-2)) 3,3,7 23.40669 7
5-20

Control Statements
Logical IF 5

A logical IF statement executes a statement conditionally, depending on whether the
logical IF is true or false.

SYNTAX

IF (e) stmt

DESCRIPTION

e Specifies a relational or logical expression enclosed in parentheses.

stmt Specifies any executable statement except a DO, DO-UNTIL, DO
WHILE, END DO, LOOP, END LOOP, WHILE, END WHILE, FOR, END
FOR, SELECT CASE, block IF, END IF, ELSE IF, ELSE, END, or
another logical IF.

NOTE: The symbolic name “THEN” must not be used as a keyword with a logical IF
statement.

If e results in a true value, stmt is executed and then the next sequential statement after the
logical IF is executed (unless stmt is a transfer of control). If e results in a false value, stmt
is not executed, and execution continues with the next sequential statement after the
logical IF.

The execution of a function reference in e can affect entities in stmt.

Examples:

IF (FLAG .OR. L) GO TO 3000
IF (W .OR. N .LT. U/S + X3(J,K)) R(J-8) = Q * ABS(X)
IF (OCTT * TRR .LT. 5.334E4) CALL THERML (N, Y(L,5))
5-21

Concurrent Fortran 77 Reference Manual
Block IF 5

A block IF statement defines a sequence of statements to be executed conditionally if a
condition is true, defines an IF-THEN-ELSE sequence, or defines a case selection
facility.

SYNTAX

! The following form defines a sequence of statements
! to be executed conditionally if a condition is true
IF (e) THEN
. . .
END IF

! The following form defines an IF-THEN-ELSE sequence
IF (e) THEN
. . .
ELSE
. . .
END IF

! The following form defines an IF-THEN-ELSEIF facility
IF (e1) THEN

! “Then” clause (Case 1)
ELSE IF (e2) THEN

! “Else if” clause (Case 2)
.
.
ELSE IF (en) THEN

! “Else if” clause (Case n)
ELSE

! “default” clause (if no previous test is true)
END IF

DESCRIPTION

e Specifies a relational or logical expression enclosed in parentheses.
5-22

Control Statements
EXIT IF (H) 5

The EXIT IF statement allows a conditional or unconditional exit from any clause in an
IF block.

SYNTAX

EXIT IF [IF (e)]

DESCRIPTION

e Specifies a relational or logical expression that permits the IF block to
be exited conditionally depending on whether the value of e is true or
false. The parentheses surrounding e must be specified as shown.

One or more EXIT IF statements can be placed in an IF block. If an EXIT IF is
encountered during execution, the innermost IF block becomes inactive, and control is
transferred to the statement following the next END IF statement at the same IF control
level as the EXIT IF statement. If an IF phrase is not specified, the exit is unconditional.
If an IF phrase is specified and the logical expression e is true, the IF block is exited. If e
is false, an exit is not taken and the loop execution continues with the next statement after
the EXIT IF.

An EXIT IF statement can be used in a THEN, ELSE IF, or ELSE clause to exit the IF
block.
5-23

Concurrent Fortran 77 Reference Manual
LOOP Statements (H) 5

LOOP (H) 5

A LOOP block executes a specified number of times or executes repeatedly until the loop
is exited from within.

SYNTAX

LOOP [(e)]
. . .
END LOOP

DESCRIPTION

e Specifies a constant, the symbolic name of a constant, a variable, an
array element name, or an arithmetic expression. The e defines the
number or times the range of the loop is to be executed, i.e., the iteration
count. If the value of e is a real or double precision number, it is
converted to an integer. If e has a negative or zero value, the loop is not
executed. A complex or double complex value for e is not permitted. If
specified, e must be enclosed in parentheses. If e is omitted, the range of
the loop executes repeatedly until a statement from within the loop
transfers control outside the loop.

Function references or subroutine calls do not transfer control out of the loop unless an
alternate return is executed. LOOP blocks can be nested to any level but overlapping can-
not occur.

Example:

LOOP (K / J)
. . .
LOOP (100)

. . .
LOOP

. . .
END LOOP

END LOOP
END LOOP

A LOOP block in an IF, WHILE, DO-UNTIL, DO WHILE, or FOR block or within a DO
loop must be wholly contained within that block or DO loop. An IF, WHILE, or FOR block
or DO loop within the range of a LOOP block must be totally within that LOOP block.
5-24

Control Statements
EXIT LOOP (H) 5

The EXIT LOOP statement allows a conditional or unconditional exit from a LOOP block.

SYNTAX

EXIT LOOP [IF (e)]

DESCRIPTION

e Specifies a relational or logical expression that permits the LOOP block
to be exited conditionally depending on whether the value of e is true or
false. The parentheses surrounding e must be specified as shown.

One or more EXIT LOOP statements may be placed in a LOOP block. If an EXIT LOOP
is encountered during execution, the innermost LOOP block becomes inactive, and control
is transferred to the statement following the END LOOP statement that closes the LOOP
block. If an IF phrase is not specified, the exit is unconditional. If an IF phrase is
specified and the logical expression e is true, the loop is exited. If e is false, an exit is not
taken and the loop execution continues with the next statement after the EXIT LOOP.

An EXIT LOOP statement may not be used to exit from any other iterative procedure.
5-25

Concurrent Fortran 77 Reference Manual
PAUSE Statement 5

The PAUSE statement suspends execution of the source program. More than one PAUSE
statement may appear in a program unit.

SYNTAX

PAUSE [literal]

DESCRIPTION

literal Specifies a string of decimal digits or a character string. If the character
string contains blanks or special characters, the string must be enclosed
in single or double quotes. If the literal begins with a digit, only an
INTEGER number may be specified. The literal is written to the user’s
terminal.

The resumption of execution occurs when the user responds to the PAUSE prompt at the
terminal. Once execution resumes, processing continues as if CONTINUE were specified,
and there had been no effect on the execution of the program.
5-26

Control Statements
SELECT CASE Statements (H) 5

SELECT CASE (H) 5

The SELECT CASE statement begins the SELECT CASE construct. It contains a selection
expression to be evaluated.

SYNTAX

SELECT CASE expression
CASE case-expression
 . . .
CASE case-expression
 . . .
CASE DEFAULT
 . . .
END SELECT

DESCRIPTION

expression
Specifies a selection expression of any data type, including
CHARACTER. The expression must represent a scalar value.

case-expression
A comma-separated list of expressions against which the selection
expression is compared. See “CASE (H)” on page 5-28 for format
details.

When SELECT CASE is executed, expression is evaluated. The value of expression is
compared with each case-expression in the order the case-expressions appear in the source.
Control is transferred to the first statement following a matching CASE case-expression. If
no matching case-expression is found, control is transferred to the first statement following
CASE DEFAULT or ELSE. If no CASE DEFAULT or ELSE statement is present, control is
transferred to the first statement following the END SELECT statement.
5-27

Concurrent Fortran 77 Reference Manual
CASE (H) 5

The CASE statement appears within a SELECT CASE construct. The CASE statement
precedes a block of zero or more statements to be selectively executed.

The CASE statement contains one or more constant expressions representing a value or
range of values. The value of the selection expression is compared with each value or
range of values in left-to-right order of their appearance in the source. If the value of the
selection expression matches a value or falls within a range of values, control is
transferred to the first statement following the CASE statement containing the matching
constant expression. When the final statement of the block is executed, or if there are no
statements within the block, control is transferred to the first executable statement
following the END SELECT statement of the SELECT CASE construct.

The data type of the constant expressions should match the data type of the corresponding
SELECT CASE selection expression. If the data types do not match, data type conversion
rules are followed. (See “Data Type Conversions (Mixed Modes)” on page 3-5 for details.)

SYNTAX

CASE value-or-range-of-values [,value-or-range-of-values]
 statement-list

DESCRIPTION

value-or-range-of-values
(REQUIRED) Represents a single value or an inclusive or exclusive
range of values to compare with the selection expression. Ranges are
valid for all numeric data types, and CHARACTER, for which the
comparisons are lexical. Ranges are not valid for LOGICAL data type.
The following forms are recognized.

value-or-range-of-values Selection expression matches if...

value Equal to value.

lower : upper Greater than or equal to lower, and less than or
equal to upper.

(lower : upper) Greater than lower, and less than upper.

(lower : upper Greater than lower, and less than or equal to upper.

lower : upper) Greater than or equal to lower, and less than upper.

lower : Greater than or equal to lower.

(lower : Greater than lower.

: upper Less than or equal to upper.

: upper) Less than upper.
5-28

Control Statements
statement-list
Zero or more statements to be executed if the CASE statement is
e x e c u t e d a n d t h e s e l e c t i o n e x p r e s s i o n m a t c h e s a n y o f
value-or-range-of-values.

Example:

INTEGER ARR(50), I
PARAMETER (ERR = -1)
 . . .
SELECT CASE ARR(I)
CASE ERR
 PRINT *, "ARR(I) matches ERR"
CASE 0, 3:5, 17
 PRINT *, "ARR(I) is one of 0, 3, 4, 5, 17"
CASE (6:6*2)
 PRINT *, "ARR(I) is between 6 and 12 but not 6 or 12"
CASE :ERR)
 PRINT *, "ARR(I) is less than ERR"
CASE DEFAULT
 PRINT *, "ARR(I) did not match any case expression"
END SELECT
5-29

Concurrent Fortran 77 Reference Manual
CASE DEFAULT or ELSE (H) 5

An CASE DEFAULT or ELSE statement appears within a SELECT CASE construct. The
CASE DEFAULT or ELSE statement precedes a block of statements to be executed if no
matching value-or-range-of-values (see “CASE (H)” on page 5-28) is found.

There may be one optional CASE DEFAULT or ELSE statement per SELECT CASE
construct. If no matching value-or-range-of-values is found, control is transferred to the
first executable statement following the CASE DEFAULT or ELSE statement. When the
final statement of the block is executed, control is transferred to the first executable state-
ment following the END SELECT statement of the SELECT CASE construct.

SYNTAX

CASE DEFAULT
 statement-list

statement-list
Zero or more statements to be executed if no other CASE statement is
executed.

See “CASE (H)” on page 5-28 for an example.
5-30

Control Statements
END SELECT (H) 5

An END SELECT statement terminates a SELECT CASE construct.

When the final statement of a block of statements associated with a CASE, CASE
DEFAULT or ELSE statement is executed, control is transferred to the first executable
statement following the END SELECT statement of the SELECT CASE construct.

See “CASE (H)” on page 5-28 for an example.
5-31

Concurrent Fortran 77 Reference Manual
STOP Statement 5

The STOP statement terminates the execution of a running program. More than one STOP
statement may appear in a program unit.

SYNTAX

STOP [literal]

DESCRIPTION

literal Specifies a string of decimal digits or a character string. If the character
string contains blanks or special characters, the string must be enclosed
in single or double quotes. If the literal begins with a digit, only an
INTEGER number may be specified. The literal is written to the user’s
terminal.

When STOP is executed, the message “STOP literal statement executed” is
written to stderr. literal is the integer or character string supplied with the STOP statement.
If the literal is an integer, the exit status of the program is the integer value, otherwise the
exit status is 0.
5-32

Control Statements
WHILE Statements (H) 5

WHILE (H) 5

A WHILE block executes as long as the specified condition in the WHILE statement is true.

SYNTAX

WHILE (e)
. . .
END WHILE

DESCRIPTION

e Specifies a relational or logical expression enclosed in parentheses.
Execution of the WHILE statement causes evaluation of expression e. If
the value of e is true, normal sequential execution continues and
execution of the range of the WHILE begins. If the value of e is false,
control is transferred to the statement immediately following the END
WHILE or labeled statement that closes the WHILE block.

The WHILE block executes repeatedly as long as the specified condition is true. The test
for the condition is made before each execution of the range of the WHILE; thus a WHILE
block cannot be executed.

WHILE blocks can be nested to any level, but overlapping cannot occur. A WHILE block in
an IF, DO-UNTIL, DO WHILE, FOR, or LOOP block or within a DO loop must be wholly
contained within that block or loop. An IF, DO-UNTIL, DO WHILE, FOR, or LOOP block
or DO loop within the range of a WHILE block must be totally within that WHILE block.
5-33

Concurrent Fortran 77 Reference Manual
Examples:

WHILE (ICOUNT .NE. 0)
. . .
WHILE (.NOT. EOF)

. . .
WHILE (T .LE. TMAX)

. . .
END WHILE
. . .

END WHILE
. . .

END WHILE

INTEGER I, SUM
I = 50
SUM = 100
WHILE (I .LT. 100)

SUM = SUM + I
I = I + 1

END WHILE
. . .
END

The second example computes the sum of the integers between 50 and 100, inclusive.
5-34

Control Statements
EXIT WHILE (H) 5

The EXIT WHILE statement allows a conditional or unconditional exit from a WHILE
block.

SYNTAX

EXIT WHILE [IF (e)]

DESCRIPTION

e Specifies a relational or logical expression that permits the WHILE
block to be exited conditionally depending on whether the value of e is
true or false. The parentheses surrounding e must be specified as shown.

One or more EXIT WHILE statements can be placed in a WHILE block. If an EXIT
WHILE is encountered during execution, the innermost WHILE block becomes inactive,
and control is transferred to the statement following the END WHILE statement that closes
the WHILE block. If an IF phrase is not specified, the exit is an unconditional exit. If an
IF phrase is specified and the logical expression e is true, the WHILE loop is exited. If e is
false, an exit is not taken and the loop execution continues with the next statement after
the EXIT WHILE.

An EXIT WHILE statement may not be used to exit from any other iterative procedure.
5-35

Concurrent Fortran 77 Reference Manual
5-36

6
Fortran Input/Output

General Fortran I/O Information . 6-1
Records . 6-3
External and Internal Files. 6-3

Units . 6-4
Vertical Format Control . 6-4
File Organization . 6-5

Sequential Access . 6-5
Direct Access. 6-5

File Position . 6-5
Input and Output Using Internal Files . 6-6
I/O Statements for Reading and Writing . 6-7

Formatted I/O Statements. 6-7
Unformatted I/O Statements. 6-7
List-Directed I/O Statements . 6-7
Namelist-Directed I/O Statements (H) . 6-8

Control Information List . 6-8
END Specifier . 6-9
ERR Specifier. 6-9
Format Specifier . 6-10
IOSTAT Specifier . 6-11

I/O Library Error Messages. 6-11
Namelist Specifier (H) . 6-14
REC Specifier. 6-14
UNIT Specifier . 6-15

Input/Output Lists . 6-15
Input Lists. 6-16
Output Lists . 6-16
Implied-DO Lists . 6-17

Sequential I/O Statements . 6-18
Formatted Sequential READ . 6-19
Formatted Sequential WRITE . 6-20
Formatted PRINT . 6-21
Unformatted Sequential READ . 6-22
Unformatted Sequential WRITE . 6-23
List-Directed READ. 6-24
Format of List-Directed Input Data Records . 6-24
List-Directed WRITE and PRINT Statements . 6-26
Format of List-Directed Output Records . 6-26
Namelist-Directed READ (H) . 6-28
Syntax Rules of Namelist-Directed Input Data Records (H) 6-29
Namelist-Directed WRITE (H) . 6-31

Direct Access I/O Statements . 6-31
Formatted Direct Access READ . 6-32
Formatted Direct Access WRITE. 6-33
Unformatted Direct Access READ . 6-34
Unformatted Direct Access WRITE. 6-35

OPEN Statement . 6-36

Concurrent Fortran 77 Reference Manual
CLOSE Statement . 6-41
INQUIRE Statement . 6-42
FLUSH Subroutine (H) . 6-46
BACKSPACE Statement . 6-47
ENDFILE Statement . 6-48
REWIND Statement. 6-49

6
Chapter 6Fortran Input/Output

6
6
6

General Fortran I/O Information 6

Fortran input statements transfer (read) data stored on an external storage medium (e.g.,
disk storage) into memory, or transfer data from an internal file to memory. Input is
performed using the READ statement. The non-standard ACCEPT statement is functionally
and syntactically equivalent to the READ statement; however, its use is discouraged.

Fortran output statements transfer (write) data from memory to an external storage
medium, or transfer data from memory to an internal file. Output is performed using the
WRITE or PRINT statements. The non-standard TYPE and PUNCH statements are
functionally and syntactically equivalent to the WRITE and PRINT statements; however,
their use is discouraged.

Input and output statements are classified as:

• Formatted (sequential and direct access)

• Unformatted (sequential and direct access)

• List-directed (free-format)

• Namelist-directed

Table 6-1 compares the syntaxes of the American National Standard (ANSI) Fortran input
statements. Table 6-2 compares the syntaxes of the ANSI Fortran output statements. Both
tables refer to several specifiers. For information about the following specifiers, see the
corresponding section.

u Specifies a unit number or character entity. See “UNIT
Specifier” on page 6-15

f Specifies a format specifier. See “Format Specifier” on page
6-10

g Specifies the group-name of a namelist. See “Namelist
Specifier (H)” on page 6-14

END=s Indicates a statement label to branch to on an end-of-file
condition. See “END Specifier” on page 6-9

ERR=s Indicates a statement label to branch to on an I/O error con-
dition. See “ERR Specifier” on page 6-9

IOSTAT=ios Indicates the status of the last I/O operation. See “IOSTAT
Specifier” on page 6-11
6-1

Concurrent Fortran 77 Reference Manual
REC=n Specifies the next record number to be read or written. See
“REC Specifier” on page 6-14

list Specifies an input or output list of variables, subscripted
array names, unsubscripted array names, or expressions.
See “Input/Output Lists” on page 6-15

Table 6-1. Comparison of Input-Statement Syntaxes

Category Syntax Page Number

Formatted
 Sequential

READ (u, f [,ERR=s] [,END=s] [,IOSTAT=ios]) [list]
READ f [,list]

6-19

Unformatted
 Sequential

READ (u [,ERR=s] [,END=s] [,IOSTAT=ios]) [list] 6-22

List-Directed READ (u, * [,ERR=s] [,END=s] [,IOSTAT=ios]) [list]
READ * [,list]

6-24

Namelist-Directed READ (u, g [,ERR=s] [,END=s] [,IOSTAT=ios]) 6-28

Formatted
 Direct Access

READ (u, f, REC=n [,ERR=s] [,IOSTAT=ios]) [list]
READ (u'n, f [,ERR=s] [,IOSTAT=ios]) [list]

6-32

Unformatted
 Direct Access

READ (u, REC=n [,ERR=s] [,IOSTAT=ios]) [list]
READ (u'n [,ERR=s] [,IOSTAT=ios]) [list]

6-34

Table 6-2. Comparison of Output-Statement Syntaxes

Category Syntax Page Number

Formatted
 Sequential

WRITE (u, f [,ERR=s] [,END=s] [,IOSTAT=ios]) [list]
PRINT f [,list]

6-20
6-21

Unformatted
 Sequential

WRITE (u [,ERR=s] [,END=s] [,IOSTAT=ios]) [list] 6-23

List-Directed WRITE (u, * [,ERR=s] [,END=s] [,IOSTAT=ios]) [list]
PRINT * [,list]

6-26

Namelist-Directed WRITE (u, g [,ERR=s] [,END=s] [,IOSTAT=ios]) 6-31

Formatted
 Direct Access

WRITE (u, f, REC=n [,ERR=s] [,IOSTAT=ios]) [list]
WRITE (u'n, f [,ERR=s] [,IOSTAT=ios]) [list]

6-33

Unformatted
 Direct Access

WRITE (u, REC=n [,ERR=s] [,IOSTAT=ios]) [list]
WRITE (u'n [,ERR=s] [,IOSTAT=ios]) [list]

6-35
6-2

Fortran Input/Output
Records 6

Any input or output statement that transfers data processes one or more “records” with
each execution of the input or output statement. A data record is a sequence of one or
more data values. The length of a record is the number of bytes (i.e., characters) in the
record.

The maximum length of a record depends on the medium on which the records are stored.
For example, records read from or written on cards cannot exceed 80 characters, while
records printed on a line printer are limited to the size of a line that the printer can print.

An end-of-file record denotes the end of a data file and is written by an ENDFILE state-
ment. An end-of-file record does not contain data and is usually the last record of a file.
When an end-of-file record is read, no data is transmitted, but an end-of-file condition is
raised if the end-of-file record is the last record in the file.

The Fortran standard does not permit I/O after an ENDFILE operation unless it is
preceded by a backspace or a REWIND operation. The Fortran I/O library permits write
operations to be performed after an ENDFILE. The ENDFILE truncates the file, but there
is no physical embodiment of an end-of-file record.

A null record contains no data and is neither defined nor undefined. Unformatted WRITE
statements without an output list write null records. A null record can be read only with an
unformatted READ statement that contains no input list.

External and Internal Files 6

A file is a collection of records and is external or internal.

External files are read from or written to an external device (e.g., a line printer, magnetic
tape drive, magnetic disk drive, etc.). An external file can be empty.

When an external file is to be read or written, the input or output statement for the file
must refer to a unit number which references a file on an external device defined for your
Concurrent system.

An internal file is used to transfer data from one location in memory to another location in
memory and is used to convert data from one form to another (e.g., from numeric to char-
acter form). A READ or WRITE statement specifying a character entity as the unit specifier
(see “I/O Statements for Reading and Writing” on page 6-7) is used in conjunction with a
format specification to edit and convert the data.
6-3

Concurrent Fortran 77 Reference Manual
Units 6

Neither input nor output can be performed on a file until the file is “connected” to a unit.

With Concurrent Fortran, a file is preconnected to certain units by the compiler or is con-
nected explicitly when an OPEN statement is executed. An OPEN statement can be speci-
fied for files that are preconnected, but the OPEN statement is not necessary.

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input (stdin), unit 6 is connected to the standard output (stdout), and unit 0 is
connected to the standard error (stderr) unit. To preserve error reporting, it is illegal to
close unit 0, although it may be reopened to another file.

Redefining the standard units may impair console I/O. An alternative is to use shell
redirection to externally redefine the above units. To redefine default blank control or
format of the standard input or output files, use the OPEN statement specifying the unit
number and no file name.

stdin, stdout, and stderr are not actual file names, and cannot be used for opening
these units. INQUIRE does not return these names and indicates that the above units are
not named unless they are open for real files.

All other units are also preconnected when execution begins. Unit n is connected to a file
named fort.n. These files need not exist nor are they created unless their units are used
without first executing an OPEN. All default preconnections are for sequential formatted
I/O. The ioinit subroutine may be used to override this convention; see the man page
for ioinit(3F).

All input/output statements refer to units that are connected. The OPEN, CLOSE, and
INQUIRE statements are the only statements that refer to unconnected units and to files
that have not been created.

A unit is connected only to one file at a time; however, a file can be disconnected from one
unit and then reconnected to the same unit or to another unit.

A unit is disconnected when a CLOSE statement for the unit is executed, when an OPEN
statement associating the same unit to a different file is executed, or when program
execution is terminated.

Once a unit is connected or disconnected, it is connected or disconnected for all program
units in the source program.

The maximum number of units that a program may open at one time is same as the system
limit. Unit numbers must be in the range of 0 to 255.

Vertical Format Control 6

If a unit is open for sequential access with FORM='print' specified, then control codes
0 and 1 are replaced in the output file with \n and \f, respectively. The control character
+ is not implemented and, like any other character in the first position of a record written
to a print file, is dropped. Vertical format control is not recognized for direct formatted
output or list-directed output.
6-4

Fortran Input/Output
File Organization 6

Every external file is defined to have a certain file organization which controls the order in
which records of the file are retrieved or written. This organization is called the file’s
access method and is dependent on the properties of the storage medium. Fortran permits
both sequential access and direct access files.

Sequential Access 6

Records in sequential access files are written one after the other and are retrieved in the
order in which they were written. The records are either all formatted or all unformatted.
Records of different lengths must not be read or written except with sequential I/O state-
ments.

List-directed I/O statements are sequential access I/O statements.

Direct Access 6

Records in direct access files must have the same lengths and can be retrieved or written
only by direct access I/O statements. List-directed input and output statements cannot read
or write direct access records.

Records in direct access files are written or read in any order. For example, record 5 can be
written first, followed by record 1, followed by record 23, etc. Any record can be retrieved
as long as it has previously been written.

Each direct access record is identified in an input or output statement by its record number.
The record number is a positive integer. Once a record is created, the record number can-
not be changed, and the record cannot be deleted; however, the record can be rewritten.

If a sequential file can be accessed directly, its end-of-file, if any, is not considered to be
part of the file while it is connected for direct access.

File Position 6

A file that is connected to a unit is positioned at a certain location in the file. This position
can change when various input or output statements are executed.

The initial point of a file is the position just before the first record of the file.

The terminal point of a file is the position just after the last record of the file.

The current record is the record at which the file is currently positioned for reading or
writing. If the file is positioned at the initial or terminal point, there is no current record.

The preceding record is the record just before the current record. If the first record is the
current record or if the file is positioned at its initial point, there is no preceding record. If
the file is positioned at its terminal point, the last record of the file is the preceding record.
6-5

Concurrent Fortran 77 Reference Manual
The next record is the record just after the current record. If the last record is the current
record or if the file is positioned at the terminal point, there is no next record. If a file is
positioned at its initial point, the first record is the next record.

Input and Output Using Internal Files 6

Output can be written to or read from files in memory. Such I/O is performed using
internal files.

An internal file is a character variable, character array, character array element, or
character substring specified as the unit in a READ or WRITE statement. The record length
is the length of the variable, array element, array, or substring.

If the internal file is a character variable, character array element, or substring, the file
consists of a single record. If the internal file is an entire array, each element of the array is
a record of the file, each record has the same length, and the order of the records in the
internal file is the same as the order of the elements in the array.

A variable, array element, or substring becomes defined by writing the record. A value
that is too long to fit the record results in an error. A value that is too short results in blanks
being appended to the end of the record to fill the record length. A record in an internal file
is read only if it has been defined. Note that a record in an internal file can become defined
or undefined in ways other than an output statement (e.g., with an assignment statement).

Unformatted I/O is not allowed for internal files.

The OPEN, CLOSE, INQUIRE, ENDFILE, BACKSPACE, and REWIND statements cannot
refer to an internal file.

Example:

INTEGER Q
CHARACTER *16 INTFILE (100)
DO 10 Q= 1,100
WRITE (UNIT=INTFILE (Q), FMT='(I15)') Q*Q

10 CONTINUE
DO 90 I=1,100,1
PRINT, I, INTFILE(I)

90 CONTINUE
END

Stores the squares of the whole numbers from 1 to 100 in the records of internal file
INFILE and then prints the contents of INTFILE.
6-6

Fortran Input/Output
I/O Statements for Reading and Writing 6

Formatted I/O Statements 6

Records read using formatted input and output statements are edited on both input and
output, and a format specification (see “Format Specification” on page 7-1) must be
referenced in the formatted input or output statement. Formatted I/O statements read or
write records in both sequential and direct access files.

Formatted I/O statements include:

• Formatted READ (sequential and direct access)

• Formatted WRITE (sequential and direct access)

• Formatted PRINT (sequential access only)

Data in records read or written by formatted I/O statements can be numeric, character,
logical, or a mixture of the three types.

Rounding occurs on output for real, double precision, complex, and double complex data.

Unformatted I/O Statements 6

Unformatted input and output statements read or write records that consist of binary data;
each record is a string of binary digits. No data translation or editing is performed when
unformatted I/O statements are used; thus, a format specification is not specified.

Because data translation or editing is not performed, unformatted I/O is usually faster than
formatted I/O. Also, unformatted I/O permits greater accuracy for numeric data because
the representation of the data is identical.

Unformatted I/O statements read or write records in both sequential and direct access files.

Unformatted I/O statements include:

• Unformatted READ (sequential and direct access)

• Unformatted WRITE (sequential and direct access)

The length of an unformatted record is not restricted. For direct access files, unformatted
records are fixed in length, but as many records as are necessary are read or written to
accommodate the input or output list.

List-Directed I/O Statements 6

List-directed I/O (also called free-format I/O) permits data on one or more records to be
read or written until all items in an input or output list are satisfied. List-directed I/O state-
6-7

Concurrent Fortran 77 Reference Manual
ments do not require a FORMAT statement. Data editing is performed by the compiler and
cannot be changed by the user.

List-directed input and output statements include:

• List-directed READ (sequential access only)

• List-directed WRITE (sequential access only)

• List-directed PRINT (sequential access only)

List-directed I/O statements cannot be used to read or write direct access files.

Internal list-directed I/O has been implemented. During internal list reads, bytes are
consumed until the input list is satisfied or until the end-of-file is reached. During internal
list writes, records are filled until the output list is satisfied. The length of an internal array
element should be at least 20 bytes to avoid logical record overflow when writing double
precision values. The internal list READ is implemented to make command line decoding
easier. The internal list WRITE should be avoided.

Namelist-Directed I/O Statements (H) 6

Namelist-directed reads cause a series of data records to be read from the specified unit.
Each record may contain a list of variable-name/value specifications, causing the variable
to assume the specified value. Variables that may be updated in this manner are defined in
a NAMELIST statement.

When a namelist-directed READ statement is executed, records are read sequentially from
the specified unit until a header block with the specified group name is detected. The
variables listed in the following data records are then set to the specified values, until a
terminating block is located.

When a namelist-directed WRITE statement is executed, output is written to the specified
unit in the format used by the namelist-directed READ statement.

Control Information List 6

The control information list consists of one or more control specifiers that appear in a
READ or WRITE statement after the READ or WRITE keyword. The list is enclosed in
parentheses in most cases, and control specifiers are separated by commas in the list.

Not all control specifiers apply to all types of READ and WRITE statements. The control
specifiers that pertain to an input or output statement are shown in subsequent sections
that discuss the syntax of particular I/O statements.

The term specifier denotes a control list value that must be specified in a particular
position in the list of control information or denotes a specification in keyword form:

keyword=value
6-8

Fortran Input/Output
END Specifier 6

The end-of-file specifier identifies a statement label within the program unit, where con-
trol is to be transferred if an end-of-file condition is detected in an I/O statement. An
end-of-file condition is raised on input when an attempt is made to read an end-of-file
record. On output, an end-of-file condition is raised when a file becomes full (e.g., if a file
system fills up).

SYNTAX

END=s

DESCRIPTION

s Specifies the statement number of an executable statement in the same
program unit.

The end-of-file specifier is always optional. If END is specified, control is transferred to
the statement identified by s if an end-of-file record is detected. The program is aborted if
an end-of-file condition is detected and the program has not specified END= or IOSTAT=.

ERR Specifier 6

The error specifier identifies a statement label within the program unit, where control is to
be transferred if an error occurs during the execution of an I/O statement.

SYNTAX

ERR=s

DESCRIPTION

s Specifies the statement number of an executable statement in the same
program unit.

The error specifier is optional. If ERR is specified, control is transferred to the statement
identified by s if an error occurs. If ERR is not specified, execution of the user’s program
terminates if an error is detected.
6-9

Concurrent Fortran 77 Reference Manual
Format Specifier 6

A format specifier identifies a format for the input or output statement.

SYNTAX

f

FMT=f

DESCRIPTION

f Specifies an input or output format specification (see Chapter 7) and is
one of the following:

• The statement number of a FORMAT statement in the same
program unit.

• An integer variable (not an array name) whose value is the
statement number of a FORMAT statement as defined in an
ASSIGN statement in the same program unit.

• A character constant enclosed in single or double quotes.

• The name of a character variable, subscripted character array,
or unsubscripted character array.

• A subscripted or unsubscripted array name containing
Hollerith data.

• An asterisk (*) (list-directed I/O only).

• A character expression, except a character expression that
concatenates an operand whose length specification is an aster-
isk, unless the operand is the symbolic name of a constant.

The format specifier must be the second item of the control information list if the FMT
keyword is not specified, and the unit specifier, without the UNIT keyword, must be the
first item of the list. If the FMT keyword is specified, the format specifier may appear any-
where in the control information list.

Example:

READ "(I5)", I
PRINT '("b", I5)', I
STOP
END

Reads an INTEGER constant from the input and prints it.
6-10

Fortran Input/Output
IOSTAT Specifier 6

The I/O status specifier returns a positive or zero integer indicating the status of the last
I/O operation.

SYNTAX

IOSTAT=ios

DESCRIPTION

ios Specifies an integer variable or array element name whose value is:

0 I/O operation was successful (i.e., no error or end-of-file was
 detected).

+n n is the positive Fortran error number. See the next section for
details.

I/O Library Error Messages 6

The I/O library generates the following error messages. The error numbers are returned in
the IOSTAT=variable if the ERR=return is taken. Error numbers less than 100 are
generated by the kernel.

100 “error in format”
See error message output for the location of the error in the format. Can
be caused by more than ten levels of nested () or an extremely long
format statement.

101 “illegal unit number”
It is illegal to close logical unit 0. Negative unit numbers are not
allowed. The upper limit is system-dependent.

102 “formatted i/o not allowed”
The logical unit was opened for unformatted I/O.

103 “unformatted i/o not allowed”
The logical unit was opened for formatted I/O.

104 “direct i/o not allowed”
The logical unit was opened for sequential access or the logical record
length was specified as zero.

105 “sequential i/o not allowed”
The logical unit was opened for direct access I/O.

106 “can’t backspace file”
The file associated with the logical unit cannot seek. It may be a device
or pipe.
6-11

Concurrent Fortran 77 Reference Manual
107 “off beginning of record”
The format specified a left tab beyond the beginning of an internal input
record.

108 “can’t stat file”
The system cannot return status information about the file. Perhaps the
directory is unreadable.

109 “no * after repeat count”
Repeat counts in list-directed I/O must be followed by an * with no
blank spaces.

110 “off end of record”
A formatted write tried to go beyond the logical end-of-record. An
unformatted read or write will also cause this error.

111 “truncation failed”
The truncation of an external sequential file on CLOSE, BACKSPACE,
REWIND, or ENDFILE failed.

112 “incomprehensible list input”
List input must be correct.

113 “out of free space”
The library dynamically creates buffers for internal use. You ran out of
memory for buffers. Your program is too big.

114 “unit not connected”
The logical unit was not open.

115 “read unexpected character”
Certain format conversions cannot tolerate non-numeric data. Logical
data must be T or F.

116 “blank logical input field”

117 “’new’ file exists” You tried to open an existing file with
STATUS=’NEW’.

118 “can’t find ’old’ file”
You tried to open a non-existent file with STATUS=’OLD’.

119 “unknown system error”
Should not happen, but ...

120 “requires seek ability”
Direct access requires seek ability. Sequential unformatted I/O requires
seek ability on the file due to the special data structure required. Tab-
bing left also requires seek ability.

121 “illegal argument”
Certain arguments to OPEN, etc., must be legal. Often Fortran looks
only for non-default forms.

122 “negative repeat count”
The repeat count for list-direct input must be a positive integer.
6-12

Fortran Input/Output
123 “illegal operation for unit”
An operation was requested for a device associated with the logical unit
(which was not possible). This error is returned by the tape I/O routines
if attempting to read past end-of-tape, etc.

149 “cannot keep a scratch file”
An attempt was made to keep a scratch file upon its closing.

150 “could not print file upon closing”
The file could not be printed upon its closing.

151 “could not print and delete file upon closing”
The file could not be printed and/or deleted upon its closing.

152 “cannot write to a read-only file”
An attempt was made to write to a read-only file.

153 “record number greater than maximum”
A record number larger than the specified maximum was used on a
direct access file.

154 “cannot print a scratch file”
An attempt was made to print a scratch file.

155 “cannot delete a read-only file”
An attempt was made to delete a read-only file.

156 “unrecognizable data type”
The namelist dictionary references an unknown data type.

157 “invalid number of dimensions”
An invalid number of dimensions was specified in the namelist record.

158 “unable to find this name in the namelist block”
A name is present in the data file that is not a member of the namelist.

159 “bad value or value format”
Unable to read a valid value where one is expected.

160 “bad variable name or name format”
Unable to read a valid variable name, or an error was found in a sub-
script format.

161 “no terminating block for this namelist input record”
No terminating block (e.g., “&END”, “$end”, etc.) was found for this
namelist record.

162 “unable to locate namelist header block”
Could not find a valid namelist header block.
6-13

Concurrent Fortran 77 Reference Manual
Namelist Specifier (H) 6

A namelist specifier identifies the group-name and associates the namelist to be used in
that I/O statement.

SYNTAX

NML=g

g

DESCRIPTION

g Specifies a group name of a namelist that has already been defined in a
namelist statement.

The group name must be defined in the same program unit. The keyword NML= is optional
only if the namelist specifier is the second parameter in the control list, and the first
parameter is a logical unit specifier without the optional keyword UNIT=. A namelist
specifier cannot be used in a statement that contains a format specifier. See “Namel-
ist-Directed READ (H)” on page 6-28 and “Namelist-Directed WRITE (H)” on page 6-31.

REC Specifier 6

The record specifier identifies the next record to be read or written for direct access I/O.

SYNTAX

REC=n

'n

DESCRIPTION

n Specifies a positive integer, or an arithmetic expression indicating the
absolute record number of the record to be read or written.

The maximum number of records in a direct access file cannot exceed the maximum size
of a disk area on a disk pack.

The REC specifier must be present for direct access READ and WRITE statements. The
REC specifier cannot be specified for files being accessed sequentially.

Refer to the sections in this chapter on direct access READ and WRITE for examples of the
proper use of 'n.
6-14

Fortran Input/Output
UNIT Specifier 6

The unit specifier identifies a unit number for external files or a character entity for
internal files.

SYNTAX

u

UNIT=u

DESCRIPTION

u Specifies an asterisk (*), or the logical input file or output file.

For external files, the unit specifier is an asterisk or an integer arithmetic expression that
results in a value from 0 through 255. An asterisk can be used only in READ, WRITE, and
PRINT statements and means that the implicit unit number for input or output is to be
used.

For internal files, the unit specifier is the name of a character variable, character array,
character array element, or character substring.

Usually, the unit specifier appears as the first control specifier in the list and the UNIT
keyword is omitted. If the unit specifier is not the first control specifier in the list, the
UNIT keyword must be specified.

The UNIT keyword must be omitted in some cases (See “Format Specifier” on page 6-10).

A given unit specifier has the same meaning in all program units.

Input/Output Lists 6

An I/O list is a sequence of entities specified in an input or output statement that is to be
read or written. Entities in an input or output list are separated by commas.

No entity or part of an entity in an input or output list can contain a function reference that
references a function containing I/O statements.

Once variables are defined in the input or output list, they may be used as subscripts later
in the input or output list. For example,

DIMENSION J(5)
READ, I, J(I)
PRINT, I, J(I)
END

A value is read for variable I and that value is used as a subscript reference for array J.
6-15

Concurrent Fortran 77 Reference Manual
The subscript of an array can be an arithmetic expression in both input and output state-
ments.

The name of an assumed-size array cannot appear in an input or output list without sub-
scripts.

Input Lists 6

Zero or more entities are specified in an input list. An entity in an input list is a variable
name, array name, array element name, or character substring name. If an unsubscripted
array name is specified, values are read into the array as if each element were specified
one after another in the order in which they are stored internally. Values are read into each
entity in left-to-right order. Not specifying an input list causes an input record to be
skipped.

Output Lists 6

Zero or more entities can be specified in an output list. An entity in an output is:

• A numeric, character, or logical constant

• A variable name

• A subscripted array name

• An unsubscripted array name

• A character substring name

• An expression, except a character expression that concatenates an operand
whose length specification is an asterisk.

If an unsubscripted array name is specified, the array is treated as if each element were
specified one after another in the order in which they are stored internally. Values are out-
put in left-to-right order in the I/O list.
6-16

Fortran Input/Output
Implied-DO Lists 6

Implied-DO lists are used in input or output lists to establish a loop within the I/O list.
Implied-DO lists are useful in reading or writing part of an array or in reading or writing
elements of an array in a different order from the manner in which they are stored
internally.

SYNTAX

(dlist, i = e1, e2 [, e3])

DESCRIPTION

dlist Specifies an input or output list or another implied-DO list

i Specifies the name of an integer variable (the implied-DO variable).

e1,e2,e3 Specify integer expressions which contain implied-DO variables or
variables from outer implied-DO lists that have this implied-DO within
their ranges.

The range of an implied-DO is the list dlist. An iteration count and the values of the
implied-DO variable are established from e1, e2, and e3, exactly as for a DO loop.

When an implied-DO list appears in an I/O statement, the list items in dlist are specified
once for each iteration of the implied-DO list, with the appropriate substitution of values
for any occurrence of the implied-DO variable i.

Expressions are permitted for subscripted array names or function references in dlist, and
the expressions can contain the implied-DO variables of any implied-DO list that has the
subscript expression within its range.

Nested implied-DO lists must be enclosed in parentheses and be wholly contained in the
surrounding implied-DO list.

Sample Implied-DO Lists Equivalent Simple List

(X(I), I = 1, 4) X(1), X(2), X(3), X(4)

(A(J), B(J), J = 1, 3) A(1), B(1), A(2), B(2), A(3), B(3)

(G(2*N), N = 3, 9, 2) G(6), G(10), G(14), G(18)

T, (C(J), J = 3, 5), E, LENGTH T, C(3), C(4), C(5), E, LENGTH

((A(I,J), I = 7, 9), J = 1, 3) A(7,1), A(8,1), A(9,1), A(7,2), A(8,2),
A(9,2), A(7,3), A(8,3), A(9,3)

(R, T(K), K = 2, 3) R, T(2), R, T(3)
6-17

Concurrent Fortran 77 Reference Manual
The DO variable can be used as a list item. For example:

(K, A(K), K = 1, 3), G(K)

is equivalent to the list:

1, A(1), 2, A(2), 3, A(3), G(4)

Implied-DO lists function like a DO statement and therefore can be executed no times. For
example, the implied-DO:

(J, X(J), J = 10, 9, 1)

results in data not being read or written.

Sequential I/O Statements 6

The peculiar requirements of sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran I/O statements. Each record is
preceded and followed by an integer containing the record’s length in bytes.

During a read, the Fortran I/O system breaks sequential formatted files into records after
each newline. The 1977 standard does not define the result if a program reads past the end
of a record. In general, the I/O system treats the record as being extended by blanks.

Logical records in sequentially accessed external files may be of arbitrary and variable
length. The logical record length for unformatted sequential files is determined by the size
of items in the input or output list. The requirements of this form of I/O cause the external
physical record size to be somewhat larger than the logical record size. For formatted
WRITE statements, the logical record length is determined by the format statement
interacting with the output list at execution time.

While printing, the I/O system writes a newline at the end of each record. It is also
possible for the program to write newlines. If a program writes a newline, no error occurs.
The only effect, however, is that each record you write is treated as multiple records
during subsequent records or backspacing.
6-18

Fortran Input/Output
Formatted Sequential READ 6

The formatted sequential READ statement transfers data in specified formats from the next
record in an input data file to memory locations identified in the READ statement input list.
On transfer, data is translated to internal form and is edited based on a format
specification.

SYNTAX

READ f [, list]

READ (u, f [, END=s] [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u An input unit specifier. Format 1 does not specify a unit and the implied
unit is unit number 5.

f A format specifier other than an asterisk. The FMT keyword cannot be
specified for format 1.

list An input list. If the input list is omitted, the next record is skipped. Once
a record is read or skipped by a sequential access READ statement, it
cannot be read again until the file is repositioned.

If a record contains more data than the formatted READ statement needs, additional data is
ignored. Each READ causes a new record to be read. If the READ statement’s input list
requires more data than is available on an input data record, an error results. The format
specification can indicate that more than one record is to be read.

Examples:

READ 100
READ 100, A, B, C
READ (11, FMT=ARRAY) TOTAL
READ (UNIT=*, FMT='(A)') CHRS
READ (FMT=1001, UNIT=7, END=99) X, Y, Z
6-19

Concurrent Fortran 77 Reference Manual
Formatted Sequential WRITE 6

The formatted sequential WRITE statement transfers the values of entities in an output list
in specified formats to the next record in a specified external or internal file. On transfer,
data is translated to external form and is edited based on a format specification.

SYNTAX

WRITE (u, f [, END=s] [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u An output unit specifier.

f A format specifier other than an asterisk.

list An output list. If the output list is omitted, data stored in the format
specification is written. If data is not present in the format specification,
a blank record is written. Once a record is written by a sequential access
WRITE statement, it cannot be rewritten or read until the file is
repositioned. All entities in the list must be defined on output or an error
occurs and data is not written.

The END specifier can be used to trap an end-of-file condition that results when a disk
pack fills up or a file becomes too large.

Examples:

WRITE (6, 102, ERR=99, IOSTAT=IOS) A, B, C, 4*D+C
WRITE (6, FMT=10) VALUE
WRITE (6, 500)
WRITE (END=99, UNIT=6, FMT=ARRAY) (I(M),J(M),M = 1,15,2)
WRITE (*, FMT='("b", A)') CSTRING
6-20

Fortran Input/Output
Formatted PRINT 6

The formatted PRINT statement functions like the formatted sequential WRITE statement
except the unit specifier is omitted and defaults to unit 6.

SYNTAX

PRINT f [, list]

DESCRIPTION

f A format specifier other than an asterisk. The FMT keyword cannot be
specified.

list An output list.

The unit specifier is omitted and the implied unit is unit number 6. All rules and
restrictions pertaining to the formatted sequential WRITE statement apply to formatted
PRINT statements.

Examples:

PRINT 10, A * B * C, L
PRINT '(A)', CSTRING
PRINT 100
6-21

Concurrent Fortran 77 Reference Manual
Unformatted Sequential READ 6

The unformatted sequential READ statement transfers (without editing) binary data from
the next record in an input file to specified memory locations. Unformatted READ state-
ments read only records previously written by unformatted WRITE statements.

SYNTAX

READ (u [, END=s] [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u A unit specifier.

list Specifies an input list. The amount of data read from the input record is
determined by the length of the variables and array elements in the input
list. If the input list is omitted, one input record is skipped.

Each unformatted READ reads exactly one record, and each read causes a new record to be
read. If data in the record is not needed by the input list, additional data are ignored. If the
input list requires more data from the input record than is available, an error results.

Examples:

READ (6) M, N, O
READ (END=99, UNIT=6) IN1, KN2, LN3
6-22

Fortran Input/Output
Unformatted Sequential WRITE 6

The unformatted sequential WRITE statement transfers (without editing or translation)
binary data from specified program variables to the next record in an output file.
Unformatted WRITE statements write only records to storage media capable of handling
binary data. Records written by unformatted WRITE statements should be read only by
unformatted READ statements.

SYNTAX

WRITE (u [, END=s] [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u A unit specifier.

list An output list. The size of the written record is the total length of all
variables and array elements in the output list. If the output list is
omitted, a null record is written.

Each unformatted WRITE writes exactly one unformatted record.

Examples:

WRITE (UNIT=11, END=99) A, B, C
WRITE (6, IOSTAT=IOS) OUTFIELD
6-23

Concurrent Fortran 77 Reference Manual
List-Directed READ 6

The list-directed (free-format) READ statement transfers (without editing) symbolic data
(i.e., ASCII characters) from the next record in an input file to specified memory loca-
tions.

SYNTAX

READ (u, * [, ERR=s] [, END=s] [, IOSTAT=ios]) [list]

READ * [, list]

asterisk (*) indicates the omission of a format specifier.

DESCRIPTION

u A unit specifier.

list Specifies an input list. The amount of data read from the input record is
determined by the length of the variables and array elements in the input
list. If the input list is omitted, one input record is skipped.

Examples:

READ *, A, B, C
READ, A, B, C
READ (7, *) CL, CS

Format of List-Directed Input Data Records 6

Data values that are read using a list-directed READ statement are separated by a comma,
one or more blanks, or a comma and one or more blanks.

The following considerations apply when list-directed reading is done:

Input data must be of the same data type as the variable or array into which it is being read.

Character data can be read only into character variables or arrays. Character values may be
enclosed in single or double quotes. A character value cannot be empty. A single quote
can be included in a string enclosed by single quotes, by specifying two adjacent single
quote marks. Similarly, a double quote can be included in a string enclosed by double
quotes, by specifying two adjacent double quote marks. If the character value is smaller or
larger than its corresponding entity in the input list, blanks are appended or additional
characters are truncated, respectively.

The list-directed READ has been extended to allow input of a string not enclosed in quotes.
The string must not start with a digit and cannot contain a separator (, or /) or blank
(space or tab). A newline terminates the string unless escaped with \\. Any string not
meeting the above restrictions must be enclosed in single or double quotes.
6-24

Fortran Input/Output
Data are read from one or more records until every item in the input list is satisfied.
Character values may be split over more than one input record as needed. Complex
numbers may be split between lines only if the split does not occur within the real or
imaginary number, or immediately before the comma. Real, integer, and logical data may
not be split between lines since the digits at the end of the first line and the remaining dig-
its at the beginning of the next line are considered to be two separate values. Blanks are
never used as zeroes, and embedded blanks are not permitted in constants, except within
character and complex constants. The end of a record has the effect of a blank, except
when it appears within a character constant.

Integer data must not contain a decimal point.

Real, double precision, complex, and double complex data may be input in any of the
forms acceptable under a formatted READ statement. If an exponent is present in the data,
it must contain an E or D. The decimal point is optional and, if omitted, is assumed to be to
the right of the last digit of the datum.

Complex items are input in one of the following forms:

(r,i)
r,i

without the parentheses. The real or imaginary part of a complex constant can be preceded
or followed by one or more blanks.

If a logical variable or array is to be true, it must read a value whose first character is a T;
a value that begins with any other character results in the variable or array element being
false.

A new input record is read each time a list-directed READ statement is executed.

Two consecutive commas on an input record denote a null value. A null value indicates
the contents of the variable is not changed.

If a slash (/) is read as input, execution of the list-directed READ statement stops, and the
remaining entities retain their previous values. If the remaining entities have not been pre-
viously initialized, their values continue to be null. A complex constant can be represented
by a null value, but the individual real or imaginary part cannot be null.

Input values specified using a repeat specification have the following form:

 r*c

where r is an unsigned non-zero integer constant denoting r repetitions of value c. The
following results in repetitions of the null value:

r*
6-25

Concurrent Fortran 77 Reference Manual
List-Directed WRITE and PRINT Statements 6

The ANSI list-directed (free-format) WRITE and PRINT statements transfer (without
editing) data from specified program variables to the next record in an output file.

SYNTAX

WRITE (u, * [, ERR=s] [, END=s] [, IOSTAT=ios]) [list]

PRINT * [, list]

DESCRIPTION

u A unit specifier.

list An output list.

Examples:

PRINT, I, J, K
PRINT *, "K= ", K
WRITE (*, *) X, Y, Z

Format of List-Directed Output Records 6

The formats are explained in Chapter 7.

A printed line is 81 characters containing 80 print positions. The first position or character
in every output record is interpreted as carriage control and is not printed. The carriage
control character is provided by the compiler for list-directed output statements, and all

Data Format

 INTEGER *1 I5

 INTEGER *2 I5

 INTEGER I10

 REAL 1PG14.5

 DOUBLE PRECISION 1PG24.15

 LOGICAL*1 L1

 LOGICAL*2 L1

 LOGICAL L1

 COMPLEX (1X,1P,'(',G13.8,','G13.8,')')

 DOUBLE COMPLEX (1P,(1X,G23.18,1X,',',1X,G23.18')')

 CHARACTER *n An
6-26

Fortran Input/Output
output is single spaced. If other carriage control characters are desired, a formatted WRITE
or PRINT statement must be used.

If the current line being printed does not accommodate the values being printed, a new line
is started (e.g., three complex numbers cannot be printed on the same line since the total
field would be greater than 80 characters).

The output accuracy for real, double precision, complex, and double complex values is
such that all full digits of accuracy for the value are output. The least significant portion is
not output in order to avoid printing numbers such as 1.99999999 when the value is
effectively 2.0000.

Each execution of a list-directed WRITE or PRINT statement causes the printer carriage to
advance to a new line before printing the output.

Numeric data is written right-justified in an output field, whereas character and logical
data are printed left-justified in the print field. Character constants are split over two lines
if insufficient room is available on a single line. A T is printed for a true value, and an F is
printed for a false value.
6-27

Concurrent Fortran 77 Reference Manual
Namelist-Directed READ (H) 6

The namelist-directed READ statement transfers (without editing) and assigns symbolic
data from the next record in an input file to the entities that appear in the specified
name-list.

SYNTAX

READ (u, g [,ERR=s] [,END=s] [,IOSTAT=ios])

DESCRIPTION

g Group name that has been defined in a namelist statement.

The namelist read statement reads data from external records accessed under sequential
access mode.

If the unit is connected to a file, a namelist read scans forward until it finds the matching
group name then begins reading input records.

The read continues until an ampersand or dollar sign (&,$) is detected on input, and every-
thing after the terminator on the current input record is ignored.

The namelist read translates the data from external to internal form using the data types of
the entities in the corresponding namelist statement. Namelist reads provide editing as in
list-directed reads.

The namelist read assigns the translated data to the specified entity in the order in which
they appear in the input records. In the case of arrays, a value or list of values can be
assigned beginning at a specified array offset.

Example:

NAMELIST /BLK1/TITLE,COLUMNS,LINES,PIXELS,STOP
CHARACTER*80 TITLE
INTEGER COLUMNS,LINES,PIXELS,STOP,IOS
READ(10,NML=BLK1,IOSTAT=IOS)
.
.
.

In this example, The namelist statement associates five entities with the group name
BLK1. The read statements reads input data and assigns values to the specified namelist
entities.
6-28

Fortran Input/Output
Syntax Rules of Namelist-Directed Input Data Records (H) 6

Namelist-directed data records consist of an identifying header block, one or more
variable_name/value combinations, and a closing block.

The header block consists of an ampersand or dollar sign followed by the group name of
the namelist block, and must begin in column two.

The header is followed by one or more combinations of variable names and values to be
assigned to the variable, in the format:

variable_name [(index_list)] = list_of_constant_values

where variable_name has been listed in a NAMELIST statement in the program unit doing
the namelist read. If the specified variable is scalar, only one value may be present. Array
subscripts may be specified. If subscript are not present for an array name, the list of
values is loaded sequentially into the array. If fewer values are listed than allocated for the
array, the remaining array elements are not modified. Using namelist data records to store
values beyond the end of an array causes undefined results, and should be avoided. For
character variables, substring specifications may be used.

Variable names must be contained on a single data record and not have embedded spaces.
Variable names may have embedded underscores (_), however, embedded dollar signs ($)
are not allowed. The Concurrent Fortran compiler allows these special characters within
normal variable names, but the dollar sign is a special delimiter in namelist data files. The
equals sign may be preceded or followed by one or more spaces.

The format of the values is the same as in list-directed input records. Assigned values and
subscripts (or substring delimiters) must be constant values. The use of symbolic constant
names (parameters) is not permitted.

Variable_name/value combinations are separated by a comma and zero or more spaces.
Data records are read sequentially and processed until a terminating block is detected.

A terminating block consists of an ampersand or dollar sign optionally followed by the
text “END”. The terminating block must begin in column two of the record.

Data records with non-blank characters in column 1 are assumed to be comments. They
may appear anywhere in the namelist data records. As in Fortran program statements, the
case of variable names is not significant.

Example:

 &BLK1
C
C Many variables are listed in the NAMELIST block, but
C often only some of them appear in the input file.
C

REALVAL=12.456, IARRAY=1,2,3, ARRAY(3)=5.0,
REAL2=4, INT2=5.0E4

 &END
6-29

Concurrent Fortran 77 Reference Manual
This example should be compared with the NAMELIST statement example in “NAMEL-
IST Statement (H)” on page 4-30. Note the comment characters appearing in column 1,
and the implicit type conversion performed for the values of REAL2 and INT2.
6-30

Fortran Input/Output
Namelist-Directed WRITE (H) 6

The namelist-directed WRITE statement transfers (without editing) data from entities in a
specified namelist to the next record in an output file. In the case of arrays, the entire array
is output.

SYNTAX

WRITE (u, g [,ERR=s] [,END=s] [,IOSTAT=ios])

DESCRIPTION

g Group name that has been defined in a namelist statement.

The namelist-directed WRITE retrieves data specified in the namelist specifier and
translates it from internal to external form by using the data types of the list of entities in
the corresponding namelist statements.

The name of the variable and equals sign followed by the value of the variable is written to
the output unit in sequential access mode.

The order of values is dictated by the order of variables in the NAMELIST statement. Each
variable displayed begins on a new line.

Direct Access I/O Statements 6

A logical record in a direct access external file is a string with the number of bytes
specified when the file is opened. Read and write statements must not specify logical
records longer than the original record size definition. Shorter logical records are allowed.
Unformatted direct access writes leave the empty part of the record undefined. Formatted
direct access writes tend to pad the empty record with blanks.
6-31

Concurrent Fortran 77 Reference Manual
Formatted Direct Access READ 6

The formatted direct access READ statement transfers data in specified formats from a
specific record in a direct access input file to specified program variables. On transfer,
data is converted to internal form and is edited based on a format specification.

SYNTAX

READ (u, f, REC=n [, ERR=s] [, IOSTAT=ios]) [list]

READ (u'n, f [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u Specifies a unit specifier. The unit must have previously been opened
for direct access input by an OPEN statement.

f Specifies a format specifier other than an asterisk.

REC=n

'n Specifies a record specifier indicating the number of the record to be
read. This number must be an existing record number for the direct
access file or an error results. The record specifier may not be omitted.
The record number must be a positive number in the range of INTEGER
values.

list Specifies an input list. If the input list is omitted, the file is positioned at
the specified record but no data is read.

If a record contains more data than the formatted READ statement needs, additional data is
ignored. Each READ causes a new record to be read. An error results and all entities in the
input list become undefined if the input list and format specification require more data
than is available on the input data record.

An attempt to read a record outside the file’s boundaries results in an end-of-file condition
with an I/O status of -1. If the file is being read in a sequential fashion (e.g., in a loop in
which the record number is being incremented), the READ should be followed by a check
for a negative I/O status.

Examples:

READ (REC=5, UNIT=7, FMT=100, ERR=99) A, B, C
READ (7, 100, REC=1) I, J, K
READ (*, REC=25, FMT=ARRAY)
READ (7, REC=RECPOS, FMT=1099) Z
6-32

Fortran Input/Output
Formatted Direct Access WRITE 6

The formatted direct access WRITE statement transfers data in specified formats from
specified program variables to a specific record in a direct access output file. On transfer,
data is converted to ASCII characters and is edited based on a format specification.

SYNTAX

WRITE (u, f, REC=n [, ERR=s] [, IOSTAT=ios]) [list]

WRITE (u'n, f [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u A unit specifier. The unit must have previously been opened for direct
access output by an OPEN statement.

f Specifies a format specifier other than an asterisk.

REC=n

'n A record specifier indicating the number of the next record to be writ-
ten. Only the one record can be written, and the output list and format
must not cause additional records to be written.

All records that are written must not exceed the maximum record length
defined for the direct access file in an OPEN statement, if a maximum
record length was specified. If insufficient data is written to fill a record,
blanks are automatically appended to fill the record’s length. An error
results if more data is written than can be contained in the record. The
REC specifier cannot be omitted. The record number must be a number
in the range of INTEGER values.

list Specifies an output list. If the output list is omitted, output data is taken
from the format specification or, if none exists, a blank record is written.

An attempt to write a record beyond the file’s boundaries results in an error.

Examples:

WRITE (6, 100, REC=10) A, B, C
WRITE (FMT=555, UNIT=6, ERR=99, REC=15) IX, IY, IZ
WRITE (11, '(A)', REC=14) LINE
WRITE (*, 1000, REC=50)
WRITE (7, REC=RECPOS, FMT=1099) Z
6-33

Concurrent Fortran 77 Reference Manual
Unformatted Direct Access READ 6

The unformatted direct access READ statement transfers (without editing) binary data
from a specified record in a direct access input file to specified program variables. When
transferred, the data is not edited or translated in any way.

SYNTAX

READ (u, REC=n [, ERR=s] [, IOSTAT=ios]) [list]

READ (u'n [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u A unit specifier. The unit must have previously been opened for direct
access input by an OPEN statement.

REC=n
'n A record specifier indicating the number of the record to be read. This

number must be an existing record number for the direct access file or
an error results. The record number must be a positive integer in the
range of INTEGER values. The REC specifier cannot be omitted.

list Specifies an input list. If the input list is omitted, the file is positioned at
the specified record but no data is read.

If a record contains more binary data than the unformatted READ statement needs,
additional data is ignored. Each READ statement causes a new record to be read. An error
results and all entities in the input list become undefined if the input list requires more
binary data than is available in the input data record.

An attempt to read a record beyond the file’s boundaries results in an end-of-file condition
with an I/O status of -1.

Examples:

READ (7, ERR=99, REC=I) A, B, C
READ (ERR=99, UNIT=10, REC=58) K, L, M
READ (UNIT=7, REC=40)
READ (*, REC=1) J, JJ, JJJ
6-34

Fortran Input/Output
Unformatted Direct Access WRITE 6

The unformatted direct access WRITE statement transfers (without editing) binary data
from specified program variables to a specified record in a direct access output file. No
data translation or editing is performed when the data is written.

SYNTAX

WRITE (u, REC=n [, ERR=s] [, IOSTAT=ios]) [list]

WRITE (u'n [, ERR=s] [, IOSTAT=ios]) [list]

DESCRIPTION

u A unit specifier. The unit must have previously been opened for direct
access output with an OPEN statement.

REC=n
'n A record specifier indicating the number of the next record to be writ-

ten. Each unformatted WRITE writes exactly one record. The record
number must be a number in the range of INTEGER values.

All records that are written must not exceed the maximum record length
defined for the direct access file in an OPEN statement. If insufficient
data is written to fill a record, the remainder of the record is undefined.
The REC specifier cannot be omitted.

list Specifies an output list. If the output list is omitted, a null record is
written.

An attempt to write a record outside the file’s boundaries results in an error.

Examples:

WRITE (6, REC=15) A, B, C
WRITE (REC=1, UNIT=6, ERR=99) JJ, KK, LL
WRITE (*, REC=J)
6-35

Concurrent Fortran 77 Reference Manual
OPEN Statement 6

An OPEN statement is used to connect a unit, create and assign a file and connect it to a
unit, or change certain specifiers of a connection between a file and a unit. An OPEN state-
ment must specify a unit and can optionally specify a file name that corresponds to a
system file name.

If a sequential READ or WRITE statement is executed and an OPEN statement for the file
has not been executed, the file is implicitly opened. An explicit OPEN statement must be
executed before data can be written to or read from a direct access file.

When a file is opened, the following file properties are established explicitly or implicitly:

• An access method (sequential or direct access).

• The form of the file (formatted, unformatted, or print).

• A record length (for direct access files).

• A blank significance specifier for numeric data (applies only to formatted
input files).

• A file status (indicating whether the file is old, new, or a scratch file).

SYNTAX

OPEN ([UNIT=]u [specifiers])

where specifiers are as follows:

ACCESS=acc
ASSOCIATEVARIABLE=asv
BLANK=blnk
BLOCKSIZE=bsize
BUFFERCOUNT=bcount
CARRIAGECONTROL=cc
DEFAULTFILE=name
DISP=disp
DISPOSE=disp
ERR=s
EXTENDSIZE=esize
FILE=name
FORM=fm
INITIALSIZE=isize
IOSTAT=ios
MAXREC=max
NAME=name
NOSPANBLOCKS
ORGANIZATION=org
READONLY
RECORDSIZE=len
RECORDTYPE=rtype
RECL=len
SHARED
6-36

Fortran Input/Output
STATUS=sta
TYPE=sta
USEROPEN=proc

DESCRIPTION

All specifiers are optional except the unit specifier. The RECL specifier must be
present if a file is being connected for direct access.

In the following specifier descriptions, a character entity can be a character constant
enclosed in single or double quotes, a character variable, a character array element,
or a character expression. The data type requirements and meaning of each specifier
is provided in Table 6-3.

Table 6-3. OPEN Statement Specifiers, Data Types, and Meaning

Specifier Data Type Meaning

u INTEGER Identifies a required unit number and must be the first
specifier in the list unless the UNIT keyword is used. Once
the unit is connected, it can be referenced in any program
unit of the source program.

ACCESS=acc CHARACTER Identifies the access method of the file connected to unit u.
The acc must be a character entity whose value is
“SEQUENTIAL”, “DIRECT”, or “APPEND”. The default
access method is sequential. For an existing file, the
specified access method must be a permissible access
method for the file.

ASSOCIATEVARIABLE=asv INTEGER Specifies an integer variable which is updated after each I/
O call to the file to reflect the record number of the next
record in the file. The variable must not be a dummy
argument. This specifier may be used only in an OPEN for
direct access; otherwise, it is ignored.

BLANK=blnk CHARACTER Indicates how blank characters in formatted numeric input
fields are to be handled. This specifier applies only to
formatted input files. The blnk must be a character entity
whose value is either “NULL” or “ZERO”. If “NULL” is
specified, all blanks in a formatted numeric input field are
ignored, and a field of all blanks has a value of zero. If
“ZERO” is specified, all blanks except leading blanks are
treated as zeroes. The default setting is “NULL”.

BLOCKSIZE=bsize This specifier has no effect. It is included to facilitate
compatibility with other compilers and is accepted but
ignored and a warning is issued.

BUFFERCOUNT=bcount This specifier has no effect. It is included to facilitate
compatibility with other compilers and is accepted but
ignored and a warning is issued.

CARRIAGECONTROL=cc CHARACTER Indicates how carriage control is to be handled. The cc must
be a character entity whose value is “Fortran”, “LIST”, or
“NONE”. The default setting is “Fortran”.
6-37

Concurrent Fortran 77 Reference Manual
DEFAULTFILE=name CHARACTER name must be a character entity. This specifier has effect
only when a FILE or NAME parameter is not supplied. The
meaning of name is the same as for the FILE parameter in
this case.

DISPOSE=disp CHARACTER Indicates what will happen to the file when it is closed. The
disp must be a character entity whose value is “KEEP”,
“SAVE”, “DELETE”, “PRINT”, or “PRINT/DELETE”. If
“KEEP” or “SAVE” is specified, the file remains after it
is closed. If “DELETE” is specified, the file is removed
when closed. If “PRINT” is specified, the file is submitted
to the system line printer and is not deleted unless
“PRINT/DELETE” is specified.

The keyword DISP may be used in place of DISPOSE.

A READONLY file may not be deleted. A scratch file may
not be saved or printed.

ERR=s Statement label An error specifier (see “ERR Specifier” on page 6-9).

EXTENDSIZE=esize INTEGER This specifier has no effect. It is included to facilitate
compatibility with other compilers and is accepted but
ignored and a warning is issued.

FILE=name CHARACTER Identifies the name of the file connected to the unit. If the
specified name represents an environment variable, the
value of that variable is used as the name of the file
connected to the unit. Otherwise, the name itself is used as
the file name. The keyword NAME may be used in place of
FILE.

FORM=fm CHARACTER Indicates whether the file is being connected for formatted
or unformatted I/O, or vertical format print control. The fm
is a character entity whose value is either “FORMATTED”,
“UNFORMATTED” or “PRINT”.

If the FORM specifier is omitted for a new file, the compiler
assumes “UNFORMATTED” for files connected for direct
access and assumes “FORMATTED” if the file is connected
for sequential access.

If vertical format control is desired, the unit must be open
for sequential access with the value “PRINT” (see “Vertical
Format Control” on page 6-4).

INITIALSIZE=isize INTEGER This specifier has no effect. It is included to facilitate
compatibility with other compilers and is accepted but
ignored and a warning is issued.

IOSTAT=ios INTEGER An input/output status specifier (see “IOSTAT Specifier”
on page 6-11).

Table 6-3. OPEN Statement Specifiers, Data Types, and Meaning (Cont.)

Specifier Data Type Meaning
6-38

Fortran Input/Output
MAXREC=max INTEGER Indicates the maximum number of records permitted in a
direct access file. The max must be an integer expression.
This specifier may be used only in a file opened for direct
access.

NAME=name CHARACTER This specifier is a non-standard synonym for FILE.

NOSPANBLOCKS This specifier is has no effect. It is included to facilitate
compatibility with other compilers.

ORGANIZATION=org This specifier has no effect. It is included to facilitate
compatibility with other compilers.

READONLY Indicates that a file may be used only for reads, regardless
of whether the user has write access to the file.

RECORDTYPE=type This specifier has no effect. It is included to facilitate
compatibility with other compilers.

RECL=len INTEGER Identifies the length of each record of a file connected for
direct access. The len must be a positive integer constant or
integer expression. This specifier must be present for files
connected for direct access. The length is defined in bytes
(characters) for both formatted and unformatted I/O. For an
existing file, len must be the record length defined for the
file. For a new file, the user must specify the record length
or an error results.

The keyword RECORDSIZE may be used in place of RECL.

SHARED This specifier has no effect. It is included to facilitate
compatibility with other compilers.

Table 6-3. OPEN Statement Specifiers, Data Types, and Meaning (Cont.)

Specifier Data Type Meaning
6-39

Concurrent Fortran 77 Reference Manual
If a unit is connected to a file, an OPEN statement specifying a different unit for the same
file is not allowed until the previous file is disconnected from the unit.

If the unit being connected to the file is different from a file already connected to the unit,
the new file is connected and the old file is disconnected.

The same specifier or unit must not be specified more than once in the same OPEN state-
ment.

By default, a file is positioned at the beginning upon opening. An external file opened for
sequential access is positioned at the end if it is opened with APPEND access. Existing
files are never truncated on opening.

STATUS=sta CHARACTER Indicates the status of the file on opening. The sta is a
character entity whose value is either “NEW”, “OLD”,
“SCRATCH”, or “UNKNOWN”.

If “OLD” is specified, the Fortran I/O system assumes the
file exists. If “NEW” is specified, the Fortran I/O system
assumes the file does not exist and creates it. If “UNKNOWN”
is specified, the Fortran I/O system simply opens an
existing file or creates the file if it does not exist. If
“SCRATCH” is specified, the Fortran I/O system assigns the
unit number to a temporary file with a name of the form
tmp.Fxxxxxx, where xxxxxx is a process id number and
opens the file. When the unit is closed or the program
terminates, the scratch file is deleted. “SCRATCH” must not
be specified with a named file.

The FILE specifier must be present if “NEW” or “OLD” is
specified explicitly. The default status is “UNKNOWN”. Any
other status specifier without an associated file name opens
a file named fort.N, where N is the specified unit num-
ber.

TYPE=sta CHARACTER The keyword TYPE may be used in place of STATUS.

USEROPEN=proc This specifier has no effect. It is included to facilitate
compatibility with other compilers.

Table 6-3. OPEN Statement Specifiers, Data Types, and Meaning (Cont.)

Specifier Data Type Meaning
6-40

Fortran Input/Output
CLOSE Statement 6

A CLOSE statement disconnects a file from a unit.

SYNTAX

CLOSE u

CLOSE ([UNIT=]u [, ERR=s] [, IOSTAT=ios] [, STATUS=sta])

All specifiers are optional except the unit specifier. No specifier can be used more
than once in a single CLOSE statement.

DESCRIPTION

u The required unit specifier. The unit specifier identifies the
external unit and must be the first specifier in the list unless
the UNIT keyword is used. A unit is disconnected whenever
a CLOSE statement specifying that unit is executed.

ERR=s An error specifier (see “ERR Specifier” on page 6-9).

IOSTAT=ios An input/output status specifier (see “IOSTAT Specifier” on
page 6-11).

STATUS=sta Determines the disposition of the file on closing. The status
is a character entity whose value is “KEEP”, “SAVE”,
“DELETE”, “PRINT”, or “PRINT/DELETE”.

“SAVE” is equivalent to “KEEP”. If “DELETE” is specified,
the file is eliminated after closing. If “KEEP” is specified,
the file is not deleted. If “KEEP” is specified and the file
does not exist, the file will not exist after closing. “KEEP”
may be specified for temporary files; if you want to open it
again later, get the scratch file’s real name using INQUIRE.
If “PRINT” is specified, the file is submitted to the system
line printer and is not deleted unless “PRINT/DELETE” is
specified. The default is “DELETE” for scratch files and
“KEEP” for all other files. The keywords DISP and
DISPOSE may be used in place of STATUS.

A CLOSE statement for a unit need not appear in the same program unit in which an OPEN
statement for the unit was specified.

Execution of a CLOSE statement on a unit or file that does not exist has no effect.

Sequentially accessed external files are truncated to the current file position during a
CLOSE if the last access to the file was a WRITE.
6-41

Concurrent Fortran 77 Reference Manual
INQUIRE Statement 6

The INQUIRE statement is used to inquire, either by file name or by unit number, about
the characteristics of an external file. An INQUIRE statement may be executed before,
while, or after a file is connected to a unit. If an inquiry by file name is performed, the file,
but not the unit number, is specified. If an inquiry by unit is performed, the unit number,
but not the file name, is specified.

SYNTAX

Name statement:

INQUIRE (FILE=fname [specifiers])

Unit statement:

INQUIRE (UNIT=u [specifiers])

DESCRIPTION

The name is specified in the same manner as it is in the OPEN statement (see “OPEN
Statement” on page 6-36).

The specifiers are as follows:

ACCESS=acc
BLANK=blnk
CARRIAGECONTROL=cc
DEFAULTFILE=fn
DIRECT=dir
ERR=s
EXIST=ex
FORM=fm
FORMATTED=fmt
IOSTAT=ios
NAME=fn
NAMED=nmd
NEXTREC=nr
NUMBER=num
OPENED=od
RECL=len
RECORDTYPE=rtype
SEQUENTIAL=seq
UNFORMATTED=unf

Specifiers are separated by commas, and no specifier is used more than once in a single
INQUIRE statement. More than one INQUIRE statement can be present in a single
program unit. The data type requirements and meaning of each specifier is provided in
Table 6-4. Each specifier is a variable or subscripted array of the indicated data type.
6-42

Fortran Input/Output
Table 6-4. INQUIRE Statement Specifiers, Data Types and Meaning

Specifier Data Type Meaning

ACCESS=acc CHARACTER acc has the value “SEQUENTIAL” if the file is connected for
sequential access or “DIRECT” if connected for direct
access. acc becomes undefined if the file is not connected.

BLANK=blnk CHARACTER blnk has the value “NULL” if null blank control is in effect or
“ZERO” if zero blank control is in effect for a connected file.
blnk is undefined if the file is not connected, or if the
connection is not for formatted I/O.

CARRIAGECONTROL=cc CHARACTER cc has the value “Fortran”, “LIST”, or “NONE”,
depending on how the file was opened. cc is undefined if the
file is not connected, or if the connection is not for formatted
I/O.

DEFAULTFILE=name CHARACTER name is the name supplied to the DEFAULTFILE parameter
when the file was opened.

DIRECT=dir CHARACTER dir has the value “YES” if the file can be direct access, “NO”
if the file cannot be direct access, or “UNKNOWN” if the
access is indeterminate.

ERR=s Statement label Transfers control to statement number s if an error on the file
or unit exists. (See “ERR Specifier” on page 6-9.)

EXIST=ex LOGICAL ex contains .TRUE. if the file exists or .FALSE. otherwise.

FORM=fm CHARACTER fm has the value “FORMATTED” if the file is connected for
formatted I/O, “UNFORMATTED” if the file is connected for
unformatted I/O, and “PRINT” if the file was opened with
vertical format control. fm is undefined if no connection
exists.

FORMATTED=fmt CHARACTER fmt has the value “YES” if the file can be a formatted file,
“NO” if the file cannot be a formatted file, or “UNKNOWN” if
fmt is indeterminate.

IOSTAT=ios INTEGER ios is zero if an error or end-of-file does not exists, or a
non-zero value if an error or end-of-file exists (see “IOSTAT
Specifier” on page 6-11).

NAME=fn CHARACTER fn is the external file name for an INQUIRE by unit.

NAMED=nmd LOGICAL nmd contains .TRUE. if the file has a name or .FALSE. other-
wise.

NEXTREC=nr INTEGER If n is the current record number for a direct access file, nr is
n + 1. If records have not been read or written, nr is 1. nr is
undefined if the file is not connected, or if the connection is
not for direct access.

NUMBER=num INTEGER num contains the value of the external unit identifier of the
currently connected unit. num is undefined if a unit is not
connected.
6-43

Concurrent Fortran 77 Reference Manual
All specifier values become undefined if an error occurs during the execution of
INQUIRE. The EXIST and OPENED specifiers are always defined unless an error occurs.

A variable or array element that becomes undefined as a result of its use as an INQUIRE
specifier must not be used in more than one specifier in the same INQUIRE statement.

The use of an INTEGER or LOGICAL variable or array element that is not of four-byte
size within an INQUIRE specifier that may modify it, causes the compiler to generate an
assignment prior to completion of the INQUIRE statement.

The following rules apply to INQUIRE by file name statements:

• The following specifiers are assigned values only if the value of the FILE
specifier is an acceptable file name or if the file exists by that name:
DIRECT, CARRIAGECONTROL , FORMATTED , NAME , NAMED ,
SEQUENTIAL, and UNFORMATTED.

• The NUMBER specifier becomes defined only if the OPENED parameter has
a true value. Also, the specifier values for ACCESS, BLANK, FORM,
NEXTREC, RECL, and RECORDTYPE become defined only if the value of
OPENED is true.

The following rule applies to INQUIRE by unit statements:

The following specifiers become defined only if the specified unit exists and if a file
is connected: ACCESS, BLANK, CARRIAGECONTROL, DIRECT, FORM,
FORMATTED, NAME, NAMED, NEXTREC, NUMBER, RECL, RECORDTYPE, and
SEQUENTIAL. Otherwise, they become undefined.

OPENED=od LOGICAL od contains .TRUE. if the file name is connected to some
unit, or if the specified unit is connected to some file,
or.FALSE. otherwise.

RECL=len INTEGER len contains the fixed length in bytes of records in the file.
len is undefined if a connection does not exist or if the file is
connected for sequential access.

RECORDTYPE=rtype CHARACTER rtype always has the value “STREAM_LF”. It is included to
facilitate compatibility with other compilers.

SEQUENTIAL=seq CHARACTER seq has the value “YES” if the file can be accessed
sequentially, “NO” if the file cannot be accessed sequentially,
or “UNKNOWN” if the access is indeterminate.

UNFORMATTED=unf CHARACTER unf has the value “YES” if the file can be an unformatted file,
“NO” if the file cannot be unformatted, or “UNKNOWN” if the
form is indeterminate.

Table 6-4. INQUIRE Statement Specifiers, Data Types and Meaning (Cont.)

Specifier Data Type Meaning
6-44

Fortran Input/Output
Example:

CHARACTER *15 ACC, DIR, FM, FMATED, SQ, UFMATED
LOGICAL EXST, NMED
PRINT, "THIS IS A TEST"
INQUIRE (UNIT=6, ACCESS=ACC)
INQUIRE (UNIT=6, DIRECT=DIR)
INQUIRE (UNIT=6, EXIST=EXST)
INQUIRE (UNIT=6, FORM=FM)
INQUIRE (UNIT=6, FORMATTED=FMATED)
INQUIRE (UNIT=6, NAMED=NMED)
INQUIRE (UNIT=6, SEQUENTIAL=SQ)
INQUIRE (UNIT=6, UNFORMATTED=UFMATED)
PRINT, "ACCESS = ", ACC
PRINT, "DIRECT = ", DIR
PRINT, "EXIST = ", EXST
PRINT, "FORM = ", FM
PRINT, "FORMATTED = ", FMATED
PRINT, "NAMED = ", NMED
PRINT, "SEQUENTIAL = ", SQ
PRINT, "UNFORMATTED = ", UFMATED
END
6-45

Concurrent Fortran 77 Reference Manual
FLUSH Subroutine (H) 6

The C library fflush function transfers buffered data to an output file. It can be invoked
on Fortran 77 logical units, through a subroutine interface.

SYNTAX

CALL FLUSH [(n)]

DESCRIPTION

n A unit specifier. If omitted, FLUSH flushes all logical units.
6-46

Fortran Input/Output
BACKSPACE Statement 6

A BACKSPACE statement positions a sequential access external file at the previous
sequential record.

SYNTAX

BACKSPACE u

BACKSPACE ([UNIT=]u [, IOSTAT=ios] [, ERR=s])

DESCRIPTION

u Is the required unit specifier.

If a preceding record does not exist in the file, the position of the file does not change, and
the IOSTAT variable, if any, is set to 0.

BACKSPACE cannot be used to backspace a direct access file, a connected sequential file
that does not exist, or a file created using list-directed formatting.

Sequentially accessed external files are truncated to the current file position during a
BACKSPACE if the last access to the file was a WRITE.
6-47

Concurrent Fortran 77 Reference Manual
ENDFILE Statement 6

An ENDFILE statement truncates a sequential access external file to the current file
position.

SYNTAX

ENDFILE u

ENDFILE ([UNIT=]u [, IOSTAT=ios] [, ERR=s])

DESCRIPTION

u Is the required unit specifier.

Execution of an ENDFILE statement for a connected file that does not exist creates the
file.

The Fortran standard does not permit I/O after an ENDFILE operation unless it is
preceded by a BACKSPACE or a REWIND operation. The Fortran I/O library permits write
operations to be performed after an ENDFILE. The ENDFILE truncates the file, but there
is no physical embodiment of an end-of-file record.
6-48

Fortran Input/Output
REWIND Statement 6

A REWIND statement repositions a sequential access external file at the initial point of the
file.

SYNTAX

REWIND u

REWIND ([UNIT=]u [, IOSTAT=ios] [, ERR=s])

DESCRIPTION

u Is the required unit specifier.

Execution of REWIND for a file that is already at the initial point or for a connected file
that does not exist has no effect.

Sequentially accessed external files are truncated to the current file position during a
REWIND if the last access to the file was a WRITE.
6-49

Concurrent Fortran 77 Reference Manual
6-50

7
Formatted Input and Output

Format Specification . 7-1
Group Specification . 7-3
Repetition Factor . 7-4
Scaling Factor. 7-5

FORMAT Statement . 7-6
Character Format Specifications . 7-6
Editing Descriptors . 7-7

Apostrophe (' ') . 7-10
Double Quote (" ") . 7-11
Slash (/). 7-12
Colon (:) . 7-13
Dollar sign ($) (H) . 7-14
A . 7-15

Input and Output of Character Data . 7-15
Input and Output of Hollerith Data . 7-16

B, BN, and BZ . 7-17
D . 7-18
E . 7-19
F . 7-21
G . 7-23
H . 7-25
I. 7-26
L . 7-27
O (H). 7-28
Q (H). 7-29
R (H). 7-30
S, SS, and SP . 7-31
SU (H) . 7-32
T, TL, and TR . 7-33
X . 7-35
Z (H) . 7-36

Concurrent Fortran 77 Reference Manual

7
Chapter 7Formatted Input and Output

7
7
7

Format Specification 7

If formatted input and output statements are used, all formatting is under the control of the
programmer. Formatted input and output statements contain a format specifier that is a
reference to a FORMAT statement or that is a Hollerith array or character entity defining a
format specification.

A format specification defines the size of input and output fields, what type of data is
being read or written (numeric, character, Hollerith, or logical) and how the data is to be
edited.

SYNTAX

([fs])

DESCRIPTION

fs Specifies a list of editing descriptors separated by commas. The
parentheses must be specified even if the format specification is empty.
The format specification is empty only if the input or output statement
referencing the format specification does not contain an input or output
list.

The format descriptors consist of the following categories:

• Integer editing descriptor (I)

• Octal editing descriptor (O)

• Hexadecimal editing descriptor (Z)

• Real, double precision, complex and double complex editing descriptors
(F, E, D, and G)

• Character editing descriptors (A, the apostrophe, and the double quote)

• Hollerith editing descriptors (A and H)

• Logical editing descriptor (L)

• Positional editing descriptors (X, T, TL, and TR)

• Format control descriptors (/, :, R, S, SS, SP, SU, B, BN, and BZ)

• Miscellaneous non-standard descriptors (Q,$)
7-1

Concurrent Fortran 77 Reference Manual
On input, editing descriptors specify the size of fields to be read from an input data record.
Each numeric, character, Hollerith, or logical field is matched with an entity in the input
list of the READ statement on a left to right basis.

On output, editing descriptors define output fields for an output record, and each entity in
the output list of the WRITE or PRINT statement is matched on a left to right basis with
the editing descriptor defining the output field.

The commas separating editing descriptors are omitted before or after a slash descriptor,
before or after a colon descriptor, and before or after a scaling factor.

I/O formatting operates in the following manner:

• When a formatted input statement is executed, a new input data record is
read. When an output statement is executed, construction of a new output
data record is begun.

• Attempting to read or write more characters on a record than are (or can be)
physically present does not cause a new record to be begun. On input, extra
characters are ignored. On output, characters are lost.

• During input and output operations, a record is terminated whenever a
slash descriptor or the closing right parenthesis of the format specification
is sensed, or when the format specification requests an item from the input
or output list, and there are not any remaining items in the list.

• Each list item is matched to one descriptor or to one repeated descriptor
except for a complex list item, which is matched with two such descriptors.

• Each formatted input or output statement containing an I/O list must refer
to a format specification that contains at least one numeric, logical, or
character editing descriptor. If this condition is not met, the format
specification is processed, but an error results.

• Whenever a numeric, logical, or character editing descriptor is
encountered, a new input or output list item is processed, data is converted
as necessary, and the next item in the format specification is processed. If
conversion is impossible because of a conflict between an editing
descriptor and a data type, an error results. If the next descriptor is a format
control or format positioning descriptor, the descriptor is processed
whether or not items remain in the input or output list.

Example:

WRITE (6, 100)
100 FORMAT (/, /, /, 'ABCD')

Produces three blank records and one record containing ABCD before reaching the
closing right parenthesis of the format specification. When there are no more items
remaining in an input or output list, and the closing right parenthesis is encountered
or a conversion descriptor (i.e., A, D, E, F, G, I, O, or Z) has been found, the current
record is terminated and the I/O operation is complete.

• When the closing right parenthesis of the format specification is
encountered, a test is made to determine if all items in the input or output
list have been processed. If no list items remain, the current record is
7-2

Formatted Input and Output
terminated, and the I/O operation is complete. If list items remain, a new
record is processed, and the format specification is rescanned as follows:

- If group specifications are not present, the entire format specification
is rescanned.

- If group specifications are present, rescanning begins with the group
specification whose right parenthesis was the last one encountered
before the closing right parenthesis of the format specification.

Group Specification 7

A group specification is a list of editing descriptors that are enclosed within parentheses in
the format specification. Editing descriptors in the group specification are separated by
commas.

Zero or more group specifications can be specified in a format specification, and group
specifications can contain other group specifications. Group specifications can be nested
to a depth of ten levels. Group specifications can be intermixed with single editing
descriptors in the same format specification.

An editing descriptor that normally cannot be repeated can be enclosed in parentheses in a
group specification and be repeated by preceding the group specification with a repetition
factor.

Example:

READ (UNIT=11, FMT='(I5, A3, 2(F10.3, I4))')I,J,A,K,B,M
WRITE (6, '(I5, /, A3, /, (F15.3, /, I4))') I,J,A,K,B,M

Input Record:

1234567890b1234567890b1234567890b1234567890b1234567890

Output:

12345
678
 9001234.563
 890
 1234567.875
 123
7-3

Concurrent Fortran 77 Reference Manual
Repetition Factor 7

An optional repetition factor of the following form precedes certain editing descriptors or
precedes a group specification:

SYNTAX

rd

r(gs)

DESCRIPTION

 r Specifies an unsigned integer constant between 1 and 32767 denoting a
repetition factor.

d Specifies an editing descriptor for which a repetition factor is permitted.

gs Is a group specification.

If a repetition factor is not specified, an editing descriptor or group specification is used
once. The editing descriptors for which a repetition factor is valid are given in Table 7-1.

Examples:

READ (11, '(3I5)') I, II, III
WRITE (6,'(3(2X,I5),/," SUM= ",I10)')I,II,III,I+II+III

Input Record:

1234567890b1234567890b1234567890b1234567890b1234567890

Output:

12345bb67890bb1234
SUM= 81469
7-4

Formatted Input and Output
Scaling Factor 7

An optional scaling factor of the following form can precede the F, E, D, or G editing
descriptors:

SYNTAX

[c]P[,]d

[c]P[,]rd

DESCRIPTION

c Specifies an optionally signed integer indicating the number of places
the decimal point is to be scaled to the left or right. If c is omitted, then
the scale factor is set to the default value of zero.

P Denotes that a scaling factor is present.

r Specifies an optional repetition factor.

d Specifies one of the editing descriptors F, E, D, or G. An optional comma
can follow P.

When a scaling factor is encountered in a format specification, it remains in effect for all
subsequent F, E, D, and G field descriptors.

The scaling factor is treated as a multiplier of the form 10**-c for input and 10**c for out-
put. On output, the decimal point is shifted to the right c places. For the D and E
descriptors, the exponent field is reduced by c for output. Thus, for output under D, E, and
G control, the number is equal to the rounded internal value; for output under F control,
the number is not equal to the internal value unless c is zero.

The scaling factor is set to zero at the beginning of a formatted I/O operation.

The scaling factor can be changed in a format specification any number of times. Each
new scaling factor is in effect for the remainder of the format specification unless another
scaling factor is defined. If an entire format specification or a portion of a format
specification is rescanned to satisfy all items in the input or output list, the scaling factor in
effect remains in effect for the rescanning.
7-5

Concurrent Fortran 77 Reference Manual
FORMAT Statement 7

A FORMAT statement is a non-executable statement appearing anywhere in a program
unit. FORMAT statements define a format specification for use by a formatted input or out-
put statement.

SYNTAX

label FORMAT ([fs])

DESCRIPTION

label Specifies a unique statement number.

fs Denotes a format specification.

A statement label must be present so the format can be referenced. FORMAT statements are
the only statements that require a label. A formatted READ, WRITE, or PRINT statement
refers only to a FORMAT statement that appears in the same program unit.

Examples:

DOUBLE PRECISION DA
. . .
READ (11, 104) IA, RA, DA

104 FORMAT (I3, F15.6, F20.11)
WRITE (6, 105) IA, RA, DA

105 FORMAT (I3 / F20.7 / F25.12)

Input Record:

123456789012345678901234567890123456789012345678901234567

Output:

123
 456789024.0000000
 901234567.890123360000

Character Format Specifications 7

The format specifier of a formatted I/O statement is a character expression, variable, or
constant; a Hollerith constant; or a subscripted array name or unsubscripted array name
containing Hollerith data (refer to “Format Specifier” on page 6-10). A format
specification is derived from a character expression or read as input data. The format spec-
ification must be stored in the proper form in the character or Hollerith entity; i.e., the
7-6

Formatted Input and Output
beginning left parenthesis, closing right parenthesis, and list of editing descriptors (and
group specifications if any), separated by commas, must be present.

Example:

DOUBLE PRECISION DA
INTEGER HFS(5)
CHARACTER *21 CFS
. . .
DATA HFS /19H(I3, F15.6, F20.11)/
DATA CFS /'(I3 / F20.7 / F25.12)'/
. . .
READ (UNIT=11, FMT=HFS) IA, RA, DA
WRITE (UNIT=6, FMT=CFS) IA, RA, DA

Input Record:

123456789012345678901234567890123456789012345678901234567

Output:

123
 456789012.3400000
 901234567.890000000000

Editing Descriptors 7

Editing descriptors are summarized in Table 7-1. Lowercase letters in the table have the
following meanings:

a Denotes an ASCII character.

cP Denotes a scaling factor.

d Denotes the number of digits in the field that are to be placed to the right
of the internal decimal point. d must be an unsigned integer between 0
and 32767, inclusive.

e Denotes an exponent field. e must be an unsigned integer in the range 1
to 127, inclusive.

h Denotes a Hollerith character.

m Denotes the exact number of digits in a field to be written to an output
field, including leading zeroes (0 <=m <= w).

r Denotes a repetition factor. r must be an unsigned integer between 1 and
32767, inclusive.
7-7

Concurrent Fortran 77 Reference Manual
w Denotes the total width of a numeric, character, or logical field. w must
be an unsigned integer between 1 and 32767, inclusive.

Table 7-1. Summary of Editing Descriptors

Descriptor
Form Function Repetition

Factor Scaling Factor

'a1...aw' The apostrophe defines a character input/output field. -- --

/ On input, causes a new record to be read. On output, causes the
current record to be written.

-- --

: Terminate output if no remaining output list items exist. -- --

$ Suppress carriage return on output records. -- --

Aw Define a character or Hollerith field. The w can be omitted for
character data on both input and output. The w must be present
for the input and output of Hollerith data.

rAw --

B Return to default mode of blank interpretation. -- --

BN Ignore blank characters in a numeric input field. -- --

BZ Treat blank characters in a numeric input field as zeroes. -- --

Dwd.d Define a real or double precision field. rDw.d cPDw.d

Ew.d or
Ew.dEe or
Ew.dDe or
Ew.d.e

Define a real or double precision field rEw.d
rEw.dEe
rEw.dDe
rEw.d.e

cPEw.d
cPEw.dEe
cPEw.dDe
cPEw.dEe

Fw.d Define a real or double precision field. rFw.d cPFw.d

Gw.d or
Gw.dEe

Define a real or double precision field. rGw.d
rGw.dEe

cPGw.d
cPGw.dEe

wHh1...hw Define a Hollerith field for output. -- --

Iw or
Iw.m

Define an integer field. rIw or rIw.m --

Lw Define a logical field. rLw --

Ow or
Ow.m

Define an octal field. rOw or rOw.m --

Q Obtain the number of characters remaining in an input record. -- --

nR Set the radix for integers. -- --

S or SS Do not insert a leading plus sign on output. -- --

SP Insert a leading plus sign on output. -- --

SU Interpret integers as unsigned. -- --

nT Move to the nth eight-column location. -- --

Tn Move current position pointer to position n in a data record -- --

TLn Move the current position pointer backward n positions. -- --
7-8

Formatted Input and Output
TRn Move the current position pointer forward n positions. -- --

wX On input, skip a field of length w. On output, write a field of
length w filled with blanks.

-- --

Zw or
Zw.m

Define a hexadecimal field rZw or rZw.m --

(...) Denote a group specification. r(...) --

Table 7-1. Summary of Editing Descriptors (Cont.)

Descriptor
Form Function Repetition

Factor Scaling Factor
7-9

Concurrent Fortran 77 Reference Manual
Apostrophe (' ') 7

The apostrophe is a character editing descriptor that can be used in an output format
specification. The apostrophe descriptor takes the form of a character constant enclosed in
quotes and is used to define a character string to be read/written. On input, characters in
string s are replaced by the same number of characters from the input record (see Example
2). The apostrophe descriptor is not permitted in an input specification.

SYNTAX

'a1...aw'

DESCRIPTION

a Denotes an ASCII character. The width of the output field is the number
of characters in the character string excluding the opening and closing
apostrophes. An apostrophe in the string is represented as two adjacent
apostrophes with no intervening blanks and occupies one character
position in the output field.

Characters including blanks in the character constant are output directly from the format
specification, and the character constant does not correspond to an item in the output list.

Example:

DOUBLE PRECISION DSUM
DSUM = 4596565605D-5 + 5765473243D-2
PRINT "(' ', 'THE ANSWER IS: ', F20.10)", DSUM

Output:

THE ANSWER IS: 57700698.0890499960
7-10

Formatted Input and Output
Double Quote (" ") 7

The double quote is a character editing descriptor that is functionally equivalent to the
apostrophe descriptor.

Example:

DOUBLE PRECISION DSUM
DSUM = 4596565605D-5 + 5765473243D-2
PRINT '(" ", "THE ANSWER IS: ", F20.10)', DSUM

Output:

THE ANSWER IS: 57700698.0860499960
7-11

Concurrent Fortran 77 Reference Manual
Slash (/) 7

The slash (/) is a control descriptor that can be used in either an input or output format
specification. The slash descriptor ends data transfer on the current record and results in
the positioning of the input or output data file at a new record.

SYNTAX

/

DESCRIPTION

For files connected for sequential access, a slash causes:

• A new record to be read for input (beginning with the first character
position of the new input record), or

• The current record to be written and a new record begun for output
(beginning with the first character position of the new output record).

The occurrence of n adjacent slashes in a format specification causes n-1 blank records to
be written on output or n-1 records to be skipped on input. For direct access files, a slash
ends data transfer on the current record and increases the record count by one.

Example:

INTEGER HARRAY(7)
. . .
READ (UNIT=11, FMT='(7(A4, /))') HARRAY
WRITE (UNIT=6, FMT="(7(' ' ,A4))") HARRAY

Input Records:

ABCD
EFGH
IJKL
MNOP
QRST
UVWX
YZb

Output:

bABCDbEFGHbIJKLbMNOPbQRSTbUVWXbYZbb
7-12

Formatted Input and Output
Colon (:) 7

The colon is a control descriptor that can be used in an output format specification. The
colon editing descriptor terminates an output operation if there are no more remaining
items in the output list.

SYNTAX

:

DESCRIPTION

A colon in an input format specification is ignored.

Example:

DATA I, J, K, L /10, 20, 30, 40/
PRINT '(I5, I5, :, " ""K AND L ARE:"" ", I5, I5)', I, J
PRINT '(I5, I5, " ""K AND L ARE:"" ", I5, I5)', I, J

Output:

bbb10 20
bbb10 20 "K AND L ARE:"b
7-13

Concurrent Fortran 77 Reference Manual
Dollar sign ($) (H) 7

The dollar sign character in an output format specification provides the same functionality
as the colon descriptor, with the additional effect of suppressing the carriage return
character at the end of the record output.

For terminal I/O, this means that a typed response follows the output on the same line at
the terminal.

SYNTAX

$

DESCRIPTION

A dollar sign in an input format specification is ignored.

Example:

WRITE (6,"('What is the answer? ',$)")
READ (5,*) I
WRITE (6,*) "You entered ",I

Output:

What is the answer? 10
 You entered 10
7-14

Formatted Input and Output
A 7

The A descriptor is a character editing descriptor that can be used in either an input or out-
put format specification. The A editing descriptor edits character or Hollerith data and
must correspond to a character or Hollerith entity in an I/O list.

The A descriptor is repeatable.

SYNTAX

Aw

DESCRIPTION

w Denotes the width of the input or output field in characters. The w can
be omitted for character entities but not for Hollerith entities. If w is
omitted, w is the length of the character item in the input or output list.

Input and Output of Character Data 7

For the input of character data, if w is greater than or equal to the length n, of the input list
item, then w characters of the input field are read and the rightmost n characters are stored
as the value of the character entity. If w is less than n, w characters are read, left-justified,
with trailing blanks appended to the end of the character value.

For the output of character data, if w is greater than the length, n, of the character item in
the output list, then an output field of w characters is written including any trailing blanks;
the value is right-justified in the output field and leading blanks are supplied at the front. If
w is less than or equal to n, the leftmost w characters of the character value of the output
list item are written to the output field.

Examples:

CHARACTER *15 CHRS (2)
. . .
READ (UNIT=11, FMT='(A10)') CHRS(1)
READ (UNIT=11, FMT='(A20)') CHRS(2)
WRITE (UNIT=6, FMT='(A)') CHRS(1)
WRITE (UNIT=6, FMT='(A)') CHRS(2)
WRITE (UNIT=6, FMT='(A5)') CHRS(1)
WRITE (UNIT=6, FMT='(A25)') CHRS(2)

Input Record:

ABCDEFGHIJKLMNOP
QRSTUVWXYZbbbbbbb
7-15

Concurrent Fortran 77 Reference Manual
Output:

ABCDEFGHIJbbbbb
STUVWXYZbbbbbbb
ABCDE
STUVWXYZbbbbbbb

Input and Output of Hollerith Data 7

Hollerith values can be read as the value of any numeric or logical list item using the A
descriptor. The A descriptor is also used to write Hollerith values to output fields. For both
the input and output of Hollerith data, the width, w, of the input and output field cannot be
omitted.

Examples:

INTEGER IARRAY(5)
. . .
READ (FMT='(5A4)', UNIT=11) IARRAY
WRITE (FMT=101, UNIT=6) IARRAY

101 FORMAT (' ', 5A4)

Input Record:

THE RAIN IN SPAINbb

Output:

bTHE RAIN IN SPAINbb
7-16

Formatted Input and Output
B, BN, and BZ 7

B, BN, and BZ are control descriptors that can be used in an input format specification. B,
BN, and BZ are ignored if they appear in an output specification. These descriptors
determine if blanks are treated as zeroes in a numeric input field. Once a B, BN, or BZ
descriptor is specified in a format specification, it remains in effect until another blank
control descriptor is encountered in the format.

SYNTAX

B
BN
BZ

DESCRIPTION

The B descriptor causes blank interpretation to return to the default mode for that unit.

The BN editing descriptor causes the compiler to ignore blank characters in a numeric
input field and to right justify remaining characters as if the ignored blanks were leading
blanks. A field of all blanks has a zero value.

The BZ editing descriptor causes the compiler to treat blank characters as zeroes in a
numeric input field.

A BN or BZ descriptor is in effect from the moment it is detected in the format
specification until another blank control descriptor is encountered. If the format
specification is rescanned, any blank control setting remains intact.

In the absence of a BN or BZ descriptor, the interpretation of blanks is under the control of
the BLANK specifier currently in effect for the unit.

Example:

READ (11, '(BZ, I5, BN, 3I5)') I, J, K, L
WRITE (6, '(" ", 4I7)') I, J, K, L

Input Record:

b1bb5b3bb741bb3bb3bb

Output:

bbbb1005bbbbb37bbbb413bbbbbb3
7-17

Concurrent Fortran 77 Reference Manual
D 7

D is a numeric editing descriptor that can be used in either an input or output format
specification. The D editing descriptor reads or writes real or double precision data and
must correspond to a real, double precision, complex, or double complex item in an I/O
list.

SYNTAX

Dw.d

DESCRIPTION

The D descriptor operates exactly like the Ew.d descriptor.

There is no alternative form for the D descriptor analogous to the Ew.dEe form of the E
descriptor.

Example:

DOUBLE PRECISION DN, QN
. . .
READ (11, '(BN, D10.6, BZ, D20.11, BN, D20.11)')RN,DN,QN
WRITE (6, '(D30.7 / D30.12 / D30.12)') RN,DN,QN

Input Record:

b1537bbbElb423.23423854599bb3829283.947569bE-3bbbb //////

Output:

 0.1537000D-01
0.423234238546D+03
0.292839475690D+02
7-18

Formatted Input and Output
E 7

E is a numeric editing descriptor that can be used in either an input or output format
specification. The E editing descriptor edits and converts real or double precision data in
exponential form and must correspond to a real, double precision, complex, or double
complex item in an I/O list.

SYNTAX

Ew.d
Ew.dEe
Ew.dDe
Ew.d.e

DESCRIPTION

w Specifies the width of the input or output field in characters.

d Specifies an unsigned integer indicating the number of digits to the right
of the decimal point.

On input, a real or double precision value is read. If the value contains an exponent, the
exponent must be of the form Ee or De where e is a signed or unsigned power of 10 (zero
is a valid power of 10, and the E or D can be omitted if the power of 10 is signed). A D
exponent indicator is treated as an E exponent when input under the control of the E
descriptor. The exponent cannot be omitted if E or D is present in the input value.

On input, the width indicator w must be large enough to include an exponent, any plus or
minus signs, and an optional decimal point in the datum. A value containing a decimal
point overrides a d specification in the E editing descriptor. A value can specify more
precision than can be stored internally. Blanks in the value are interpreted as defined by
the setting of the BLANK specifier for the unit or based on the BN and BZ editing
descriptors.

On output, a decimal number is written with an exponent of the form Ee, where e is a
signed or unsigned power of 10. If the value has greater precision than can be printed, it is
rounded by adding 0.5E-d to the magnitude of the value. The field width w must be large
enough to write the integer portion of the number (including a leading zero and optional
sign if necessary), a decimal point, any decimal portion, and an exponent of the following
form.

Esnn for all variable types.

where s is a plus or minus sign.

On output, a field written under E control is right justified. If the number of characters to
be written exceeds the width w, the entire field is filled with asterisks.
7-19

Concurrent Fortran 77 Reference Manual
Example:

DOUBLE PRECISION DN
. . .
READ (11, '(BZ, E10.6, BN, E20.11,)') RN, DN
WRITE (6, '(E30.7 / E30.12)') RN, DN

Input Record:

15373b+03b423.bb233854599D-10bbbbbb38292839474169023755

Output:

 0.1537300E+30
0.423233854599E-07

Alternate forms of the E descriptor is written as follows:

Ew.dEe
Ew.dDe
Ew.d.e

These forms are treated identically to the Ew.d descriptor form for input and for output
except that an exponent field of e digits is to be written. The maximum value for e is 7,
with larger values truncated to 7. If the number of digits to be written for the exponent
exceeds the width of e, then the entire field is filled with asterisks.

Example:

DOUBLE PRECISION DN
. . .
READ (11, '(BZ, E10.6E3, BN, E20.11E3)') RN, DN
WRITE (6, '(E30.7E3 / E30.12E3)') RN, DN

Input Record:

15373b+03b423.bb233854599D-10bbbbbb38292839474169023755

Output:

 0.1537300E+030
0.423233854599E-007
7-20

Formatted Input and Output
F 7

F is a numeric editing descriptor that is used in either an input or output format
specification. The F editing descriptor defines a real or double precision input or output
field and must correspond to a real, double precision, complex, or double complex item in
an I/O list.

SYNTAX

Fw.d

DESCRIPTION

w Gives the width of the input or output field.

d Specifies the number of digits that are to be placed to the right of the
decimal point.

On input, a field of w positions containing an integer, a number with a decimal point, or a
number with an E or D exponent indicator is read and associated with the corresponding
item in the input list. The input list item must be of type real, double precision, complex,
or double complex. The field width w must allow for any decimal point, exponent field,
and an optional leading sign. If a decimal point is used in the input field, it overrides the d
specification. A value with a D exponent is treated the same as a value with an E exponent.
The exponent indicator is followed by optional blanks followed by an optionally signed
integer indicating a power of 10. An input value can specify more precision that can be
maintained by the processor, but the number read must be in the domain of numbers
capable of being assigned to real, double precision, complex, or double complex entities.
Blanks in the input value are interpreted as defined by the setting of the BLANK specifier
for the unit or based on the BN and BZ editing descriptor. A field of all blanks is read as
zero.

On output, a real, double precision, complex, or double complex value is written into an
output field of length w. If the value has greater precision than can be printed, it is rounded
by adding 0.5E-d to the magnitude of the value. The value is written right-justified in the
output field. No leading zeroes are output except where a single zero is needed to the left
of the decimal point. If the value exceeds w characters, the field is filled with asterisks.
The width w must be large enough to accommodate the value, a decimal point, d decimal
places, and an optional leading sign.

Example:

DOUBLE PRECISION DN
. . .
READ (11, '(BZ, F10.6, BN, F20.11)') RN, DN
WRITE (6, '(F30.7 / F30.12)') RN, DN
7-21

Concurrent Fortran 77 Reference Manual
Input Record:

15373b+03b423.bb233854599D-10bb

Output:

153.7300000
0.000000042323
7-22

Formatted Input and Output
G 7

G is a numeric editing descriptor that is used in either an input or output format
specification. The G editing descriptor transmits real, double precision, complex, or dou-
ble complex data whose magnitude is not known beforehand. The G descriptor must
correspond to a real, double precision, complex, or double complex item in an I/O list.

SYNTAX

Gw.d
Gw.dEd

DESCRIPTION

For input, the G descriptor is the same as F descriptor input.

For output, the external representation depends on the magnitude M of the output value.
The external representation is determined as follows:

The X descriptor indicates that 4 spaces (for Gw.d formats) or e+2 spaces (for Gw.dEe
formats) are to follow the value in the field.

On output, a decimal number is written with an exponent of the form Ee, where e is a
signed or unsigned power of 10. If the value has greater precision than can be printed, it is
rounded by adding 0.5E-d to the magnitude of the value. The field width w must be large
enough to write the integer portion of the number (including a leading zero and optional
sign if necessary), a decimal point, any decimal portion, and a three to four character
exponent of the form:

 Esnn

where s is an optional plus sign or a minus sign if applicable. Thus, w should always be
greater than or equal to d+5. If the output field is too small to contain the value, the field is
filled with asterisks.

Range of M Action for Gw.d Action for Gw.dEe

M < 0.1 cPEw.d cPEw.dEe

0.1 <= M < 1.0 F(w-4).d,4X F(w-(e+2)).d,(e+2)X

1.0 <= M < 10.0 F(w-4).d-1,4X F(w-(e+2)).d-1,(e+2)X

10**(d-2) <= M < 10**(d-1) F(w-4).1,4X F(w-(e+2)).1,(e+2)X

10**(d-1) <= M < 10**d F(w-4).0,4X F(w-(e+2)).0,(e+2)X

M >= 10**d cPEw.d cPEw.dEe
7-23

Concurrent Fortran 77 Reference Manual
Example:

DOUBLE PRECISION DN
. . .
READ (11, '(BZ, G10.6, BN, G20.11)') RN, DN, QN
WRITE (6, '(G30.7 / G30.12)') RN, DN, QN

Input Record:

15373b+03b423.bb233854599D-10bb

Output:

153.7300
0.423233854590e-07

An alternate form of the G descriptor is written as follows:

Gw.dEe

where .d is the number of significant digits.

This form is treated identically to the Gw.d descriptor form for input and for output except
that an exponent field of e digits is to be written.
7-24

Formatted Input and Output
H 7

H is a Hollerith editing descriptor that defines a Hollerith value to be output.

SYNTAX

wHh1...hw

DESCRIPTION

 w Specifies the number of characters following the H in the Hollerith
constant.

On output, the w characters h1..hw are written into an output field of length w. Care should
be taken to ensure that exactly w characters are specified after the H, because additional
characters are interpreted as another format item and generate an error, whereas fewer than
w characters could result in subsequent format items being treated as Hollerith data. Note
that two consecutive apostrophes in a Hollerith descriptor within a character constant are
counted as one apostrophe.

The H editing descriptor may not be used on input.

Hollerith data can be read and written as values for list items using the A editing
descriptor.

Example:

WRITE (6, '(23HSAMPLE HOLLERITH OUTPUT)')

Output:

SAMPLE HOLLERITH OUTPUT
7-25

Concurrent Fortran 77 Reference Manual
I 7

I is a numeric editing descriptor that can be used in either an input or output format
specification. The I editing descriptor defines an integer field and must correspond to an
integer item in an I/O list.

SYNTAX

Iw
Iw.m

DESCRIPTION

w Specifies the width of the integer field to be read or written.

m Specifies an unsigned integer constant that must be less than or equal to
the value of w. The m specification indicates that at least m digits must
be written on output. The field width must be large enough to
accommodate the integer as well as an optional sign.

On input, the I descriptor causes w positions in the input record to be read, converted to
internal integer form, and associated with the corresponding item in the input list. The
value read can consist of digits, blanks, and an optional leading sign, but no decimal point
or exponent can be present. Blanks are interpreted as defined by the setting of the BLANK
specifier for the unit or based on the BN or BZ editing descriptors. The value read must be
in the domain of integer values or an error occurs. An m appearing in the input format
specification is ignored.

On output, the I descriptor is associated with the corresponding item in the output list and
w positions of the output record are written. The value is right-justified in the field, and
leading blanks are output to fill the field if necessary. If m is specified, exactly m digits are
written, including leading zeroes if necessary. If m is zero and the output is zero, a field of
all blanks is written.

If the value contains too many digits to fit within the field, the entire field is filled with
asterisks. If the value is not an integer, an error message is issued, and the field is filled
with question marks.

Example:

INTEGER I
I = 598449745
READ (11, '(2I5)') II, III
WRITE (6, '(3(I10.10, 2X) / I5)')I, II, III, I+II+III

Input Record:

15373b253

Output:

0598449745 0000001537 0000030253

7-26

Formatted Input and Output
L 7

L is a logical editing descriptor that is used in either an input or output format
specification. The L editing descriptor defines a logical field and must correspond to a log-
ical item in an I/O list.

SYNTAX

Lw

DESCRIPTION

w Specifies the width of the input or output field.

On input, w characters are read. If the first non-blank character read is a T, the value
.TRUE. is stored internally; otherwise, .FALSE. is stored. An entirely blank field results in
a false value.

On output, the L descriptor is associated with the corresponding item in the output list,
which must be of type logical. The letter T is written right-justified in field w if the inter-
nal value is true, or F is written if the internal value is false. Leading blanks are supplied if
the field width is greater than one.
7-27

Concurrent Fortran 77 Reference Manual
O (H) 7

O is an octal editing descriptor that can be used in either an input or output format
specification. The O editing descriptor defines an octal field and must correspond to an
integer item in an I/O list. The value must be a 1- to 11-digit number formed from the
digits 0, 1, 2, 3, 4, 5, 6, or 7.

SYNTAX

Ow
Ow.m

DESCRIPTION

w Specifies the width of the input or output field.

m Specifies an unsigned integer constant that must be less than or equal to
the value of w. The m specification indicates that at least m digits must
be written on output. The field width must be large enough to
accommodate the integer as well as an optional sign.

On input, w positions of the input record are read. The value read must be unsigned and
contain no decimal point, exponent indicator, or single quote. Blanks are interpreted as
defined by the setting of the BLANK specifier for the unit or based on the BN or BZ editing
descriptors. An m appearing in the input format specification is ignored.

On output, an octal number is written right-justified in the field w with leading zeroes, if
necessary.

If m is specified, exactly m digits are written, including leading zeroes if necessary. If m is
zero and the output is zero, a field of all blanks is written. If the value requires more than
w positions, the entire field is filled with asterisks. No sign or leading single quote is writ-
ten.

Example:

READ (11, '(BN, O5, BZ, 3O5)') I, J, K, L
WRITE (6, '(" ", O7)') I, J, K, L

Input Record:

1 5 3 741 3 3

Output:

15
3007
41003
300
7-28

Formatted Input and Output
Q (H) 7

During a READ statement, the Q edit descriptor obtains the number of characters
remaining to be transferred from the input record. The corresponding I/O list element must
be of type INTEGER.

SYNTAX

Q

Example:

INTEGER NCHRS, IARRAY(50)

. . .

READ (5,"(F10.4,Q,50A1)") X,NCHRS,(IARRAY(I),I=1,NCHRS)

By placing the Q descriptor first in the format specification, the length of the input record
may be obtained. On output, the Q descriptor has no effect, except that the corresponding
I/O list element is skipped.
7-29

Concurrent Fortran 77 Reference Manual
R (H) 7

R is a radix editing descriptor that can be used in either an input or output format
specification. The R editing descriptor is patterned after P, the scale factor for floating
point conversion. It defines a radix for integer I/O conversion and remains in effect until
another radix is specified or format interpretation completes.

SYNTAX

[n]R

DESCRIPTION

n Specifies the radix to be used, where 2 < n < 36.

The R editing descriptor should be used in conjunction with the SU editing descriptor.
7-30

Formatted Input and Output
S, SS, and SP 7

S, SS, and SP are control descriptors that determine whether plus signs are to be written
in a numeric output field. S, SS, and SP are ignored if they appear in input specifications
but apply to the I, F, E, D, and G descriptors during output. Once an S, SS, or SP
descriptor is specified in a format specification, it remains in effect until another sign
control descriptor is encountered in the format.

SYNTAX

S
SS
SP

DESCRIPTION

S and SS are identical and indicate that plus signs are to print as blanks in any numeric
field that contains an optional leading plus sign. SP causes leading plus signs to print in
numeric output fields.

An S or SS descriptor is in effect by default. An SP descriptor is in effect from the
moment it is detected in the format specification until an S or SS descriptor is
encountered. If the format specification is rescanned, any setting in effect for S, SS, or SP
remains in effect.

Example:

DOUBLE PRECISION D, Q
. . .
READ (11, '(I5, F10.3, F15.4, E20.10)') I, R, D, Q
WRITE (6,'(SP, I10/F15.3 /F20.4/, S, F30.10') I, R, D, Q

Input Record:

320 632.3823 5927.985925537 45456458763434757635983D-9

Output:

+32000
+632.382
+5927.9859
45456458.7634347576
7-31

Concurrent Fortran 77 Reference Manual
SU (H) 7

SU is a control descriptor that can be used in either an input or output format specification.
The specifier indicates that integer values are to be interpreted as unsigned during input
and output conversion. It remains in effect until another sign control specifier is
encountered or until format interpretation completes.

SYNTAX

SU

DESCRIPTION

Unsigned integer values greater than (2**31 - 1) -- that is, any signed negative value --
cannot be read by Fortran input routines. All internal values are output correctly.

Example:

Used in conjunction with the radix editing descriptor, a binary dump could be
formatted as follows:

200 FORMAT (SU, 16R, 8I10.8)
7-32

Formatted Input and Output
T, TL, and TR 7

T, TL, and TR are control descriptors that move the position pointer in an input or output
data record.

SYNTAX

Tn
[m]T
TLb
TRf

DESCRIPTION

n Specifies an unsigned non-zero integer constant indicating the absolute
character position to which the current position pointer is to be moved.

m Specifies a tab to the next (or nth) eight-column tab stop. Thus, columns
of data can be aligned without counting.

b Specifies an unsigned integer constant indicating the number of
positions the position pointer should be moved backward (i.e., to the
left) in the current record. The b can be zero. If b is greater than or equal
to the current position, the next data item is transmitted from position
one of the record.

f Specifies an unsigned integer constant indicating the number of
positions the position pointer should be moved forward (i.e., to the
right) in the current record. The f can be zero. The TR descriptor must
not result in a forward position beyond the length of the input or output
record.

The T descriptor moves the position pointer in an input or output data record to an
absolute position forward or backward in the record.

The T descriptor must not specify a forward position beyond the length of the input or
output record. For printed records, the first character is interpreted as a carriage control
character.

The implementation of the T and TL descriptor is slightly imperfect. The implementation
uses seeks, so if the unit (for example, a terminal) does not allow seeks, a run-time error
message,

can’t seek

is generated and the program aborts.

The TL descriptor moves the position pointer in an input or output data record backward
to a relative position in the record.

The TR descriptor moves the position pointer in an input or output data record forward to
a relative position in the record.
7-33

Concurrent Fortran 77 Reference Manual
On input the T, TL, and TR descriptors permit the same portion of a record to be read more
than once and possibly edited differently.

On output, the T, TL, and TR descriptors can move the position pointer so that data in an
output record can be replaced. T, TL, and TR do not cause data to be replaced; however,
subsequent editing descriptors can cause the data to be replaced. Positions that are skipped
as a result of T, TL, or TR editing and that are not filled with any input or output data are
filled with blanks.

Example:

READ (11, 100) N1, N2, N3, N4, N5
100 FORMAT(T10, I5, T30, I5, TL17, I5, TR8, I5, T100, I5)

WRITE (6, '(5I10)') N1, N2, N3, N4, N5
WRITE (6, 101) N1, N2, N3, N4, N5

101 FORMAT(T10,I5.5,T2,I5.5,T50,I5.5,TL35,I5.5,TR11,I5.5)

Input Record:

1231 4562 3134 4821 4716 3714 9140 3800 3712 5721 4517
4533 4717

Output:

20313 40914 82104 9140 0
40914 20313 09140 00000 82104
7-34

Formatted Input and Output
X 7

X is a control descriptor that is used in either an input or output format specification. The X
descriptor skips forward a specified number of positions in the input or output record.

SYNTAX

nX

DESCRIPTION

 n Specifies an unsigned integer constant indicating the number of
positions to skip forward from the current position.

The X descriptor must not result in a forward position that is beyond the length of the
record.

Example:

READ (11, 102) N1, N2, N3, N4, N5
102 FORMAT (3X, I5, 5X, I5, 3X, I5, 9X, I5, 4X, I5)

WRITE (6, '(5(I5, 3X))') N1, N2, N3, N4, N5

Input Record:

1231 4562 3134 4821 4716 3714 9140 3800 3712 5721 4517
4533 4717

Output:

31045 34048 47160 3800 20572
7-35

Concurrent Fortran 77 Reference Manual
Z (H) 7

Z is a hexadecimal editing descriptor that can be used in either an input or output format
specification. The Z editing descriptor defines a hexadecimal field and must correspond to
an integer item in an I/O list. The value must be a 1- to 8-digit number formed from the
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9, and the upper- or lower-case letters A, B, C, D, E, or F.

SYNTAX

Zw
Zw.m

DESCRIPTION

w Specifies the width of the input or output field.

m Specifies an unsigned integer constant that must be less than or equal to
the value of w. The m specification indicates that at least m digits must
be written on output. The field width must be large enough to
accommodate the integer as well as an optional sign.

On input, w positions of the input record are read. The value read must be unsigned and
contain no decimal point, exponent indicator, or single quote. Blanks are interpreted as
defined by the setting of the BLANK specifier for the unit or based on the BN or BZ editing
descriptors. An m appearing in the input format specification is ignored.

On output, a hexadecimal number is written right-justified in the field w with leading
zeroes, if necessary.

If m is specified, exactly m digits are written, including leading zeroes if necessary. If m is
zero and the output is zero, a field of all blanks is written. If the value requires more than
w positions, the entire field is filled with asterisks. No sign or leading single quote is writ-
ten.

Example:

READ (11, '(BN, Z5, BZ, 3O5)') I, J, K, L
WRITE (6, '(" ", Z8)') I, J, K, L

Input Record:

F 5 3 a741 3 3

Output:

f5
41003
300
7-36

8
Subprograms and Statement Functions

General Definition . 8-1
Arguments . 8-2

Dummy Arguments . 8-2
Dummy Arrays . 8-2

Adjustable Dimensions . 8-2
Assumed-Size Array Declarations . 8-3

Dummy Procedures . 8-4
Actual Arguments. 8-4
%VAL, %LOC, and %REF Argument List Intrinsics (H) 8-5
Argument Association . 8-5
CHARACTER Statements in Subprograms. 8-6
Uplevel References (H) . 8-6

Intrinsic Functions . 8-7
Referencing Statement Functions . 8-8
External (User-Defined) Functions . 8-9

FUNCTION Statement . 8-9
Referencing an External Function . 8-12

User-Defined Subroutines . 8-13
SUBROUTINE Statement . 8-13
CALL Statement. 8-15

Argument List Intrinsic Functions (H) . 8-16
ENTRY Statement . 8-17
RETURN Statement . 8-19
INTERNAL Subprograms (H) . 8-20
Referencing an Internal Subprogram (H) . 8-21
BLOCK DATA Subprogram . 8-23

Inter-Language Procedure Interface (H) . 8-25
Procedure Names (H) . 8-25
Data Representations (H) . 8-25
COMMON Blocks (H) . 8-26
Datapools (H) . 8-26
Equivalenced Variables (H) . 8-27
Return Values (H) . 8-28
Argument Lists (H). 8-28
Mixing C and Fortran Input/Output (H). 8-29

Calling C Functions Directly (H) . 8-31
CEXTERNAL Declaration (H) . 8-31
Function Return Type Declaration (H). 8-31
Passing Arguments by Value (H) . 8-31
Converting Character Arguments and Values (H) . 8-32
Simulated Structures (H) . 8-33
C Structure Packing Rules (H) . 8-35
Primitive System Types (H) . 8-35
Accessing errno and System Error Messages (H) . 8-35

Concurrent Fortran 77 Reference Manual

8
Chapter 8Subprograms and Statement Functions

8
8
8

General Definition 8

Fortran subprograms are program units, independent of the main program, that are either
written by the user or supplied with the Fortran compiler. Subprograms are classified as
functions or subroutines. Functions appear in an expression and always return a value for
use at the point of reference in the expression; functions also supply other values to the
referencing program unit. Subroutines are invoked with a CALL statement and return zero
or more values for use by the calling program unit.

Subprograms contain a sequence of executable statements as well as any specification
statements local to the program unit. The main program and any functions or subroutines
can be independently compiled or compiled together. If more than one program unit is
compiled together in the same source program, only one main program can be present.

Functions are classified as:

• Intrinsic functions (those supplied with the Fortran compiler).

• Statement functions (one-statement functions that are written by the user
and that pertain only to the program unit in which they are defined).

• External functions (those supplied by the user).

A data type is associated with each function when the function is defined.

A function is invoked when its name, followed by any arguments in parentheses, is
referenced or used in an expression where the value of the function is needed.

A subroutine is invoked when its name, followed by any arguments in parentheses, is
specified in a CALL statement. Unlike functions, the name of a subroutine is not assigned
an explicit or implicit data type. Subroutines are either written by the user or supplied with
the Fortran compiler.

A host subprogram is a subprogram that contains an internal subprogram. An internal
subprogram:

• Is a subprogram defined within the body of another subprogram.

• May be a function or subroutine.

• Must not contain other internal subprograms.

• Is visible only within the host subprogram.
8-1

Concurrent Fortran 77 Reference Manual
• May have arguments and may make uplevel references (see “Uplevel Ref-
erences (H)” on page 8-6) to variables that are visible within the host
subprogram without additional declarations.

NOTE: Names of functions, subroutines, entry points for a subroutine or function cannot
be the name of a common block or datapool.

Arguments 8

Arguments are a means of communicating values from one program unit to another. They
are classified either as dummy arguments or actual arguments.

Dummy Arguments 8

Dummy arguments are used in statement function statements, FUNCTION statements,
SUBROUTINE statements, or ENTRY statements to define an argument list for the state-
ment function, external function, or subroutine. Dummy arguments represent the correct
order, data type, and total number of actual arguments that are passed to the subprogram
when the subprogram is invoked.

All dummy arguments must be variable names or unsubscripted array names (i.e., no
constants, expressions, or subscripted array names are permitted). The length and data
type of each dummy argument are defined explicitly in an explicit type statement in the
subprogram or implicitly by the first character of the name.

A dummy argument name must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, AUTOMATIC, STATIC, COMMON or DATAPOOL statement in a
subprogram. The name of a common block or datapool can be the same as a dummy
argument.

Dummy Arrays 8

Entire arrays can be passed to and from subprograms using dummy arrays. A dummy
array is an unsubscripted array name that appears in the dummy argument list of an
external function or subroutine. A dummy array is dimensioned in the subprogram in a
DIMENSION statement or explicit type statement, but not in a COMMON or DATAPOOL
statement. When a subscripted or unsubscripted array name is used as an actual argument,
the address of the array or array element is passed to the subprogram; data values are not
passed. The size of the actual array in the calling program unit can be larger than, smaller
than, or equal to the size of the corresponding dummy array.

Adjustable Dimensions 8

A DIMENSION or explicit type statement in a subprogram contains fixed dimension
declarators or adjustable dimension declarators. The appearance of an integer variable in a
8-2

Subprograms and Statement Functions
dimension declarator instead of an integer constant or integer constant expression means
that the DIMENSION statement is an adjustable DIMENSION statement. Use of integer
variables as dimension declarators permits the same subprogram array to process more
than one set of array data and to redefine the dimensions of an array passed in the
subprogram argument list. The size of the dummy array can be smaller than or the same
size as the actual array, but the dummy array cannot be larger than the actual array.

The following example illustrates the use of an adjustable DIMENSION statement in a
subprogram:

Main Program:

DIMENSION X(-2:2,5), Y(-2:2,10)
INTEGER X, Y
. . .
CALL SUB (X, 1, 5, 3, 15)
. . .
CALL SUB (Y, 1, 5, 5, 25)
. . .
END

Subprogram:

SUBROUTINE SUB (A, B, C, D, SIZE)
INTEGER A, B, C, D, SIZE
DIMENSION A (B:C,D)
DO 99 I = 1, SIZE
. . .

99 CONTINUE
RETURN
END

Adjustable dimensions cannot be used in array declarators appearing in a main program.

Assumed-Size Array Declarations 8

An array declaration in a subprogram can also be an assumed-size array declaration.
Assumed-size array declarations force the compiler to use the size of the corresponding
actual argument array as the size of the dummy array. The array is still declared in the sub-
program, but the rightmost dimension upper bound is declared as an asterisk (*). The size
of an assumed-size dummy array is the size of the corresponding actual array if the actual
array is a non-character array. If the actual array is a non-character array element, the size
of the assumed-size dummy array is:

x - r + 1

where x is the size of the actual array and r is the subscript value for the array element used
as the corresponding actual argument. If the actual array is a character array, character
array element, or character array substring reference, the size of the assumed-size array is:

INT((c - t + 1) / ln
8-3

Concurrent Fortran 77 Reference Manual
where ln is the length of an element of the dummy array, c is the total number of bytes in
the actual array, and t is the beginning byte in the array for the corresponding actual
argument.

An assumed-size array name cannot be used without subscripts in an input or output list in
an I/O statement, as a unit identifier for an internal file in an I/O statement, or as a format
identifier in an I/O statement.

Dummy Procedures 8

Dummy procedure names permit actual procedure names to be passed as arguments
through several levels of program units. A dummy procedure name is a dummy argument
that corresponds to an actual argument in a function reference or subroutine call. The
actual argument is the name of an external function, intrinsic function, or subroutine. The
dummy procedure name merely indicates that the corresponding actual argument is a sub-
program name whose actual location is defined by the calling program.

Example:

INTRINSIC SIN, SQRT
A = DIFF (SIN, 25.)
B = DIFF (SQRT, 25.)
. . .
END

FUNCTION DIFF (F, Z)
DIFF = F(Z)
RETURN
END

A subprogram identifier to be passed as an argument must be identified as a subprogram.
That is, it must be used as a subprogram or appear in an EXTERNAL statement, or both.
Otherwise, it is classified as a scalar variable.

If the dummy procedure name specifies a subroutine name, the concept of data type does
not apply.

The specific (but not the generic) name of an intrinsic function can be used as an actual
argument.

Actual Arguments 8

Actual arguments are the entities that are specified in parentheses after the function or sub-
routine name, when the function or subroutine is invoked in a program unit. An actual
argument can be:

• A constant or the symbolic name of a constant

• A variable name
8-4

Subprograms and Statement Functions
• An unsubscripted or subscripted array name

• An expression

• A statement function reference

• An external function reference

• An external function name

• A subroutine name

• An alternate return specifier (see “CALL Statement” on page 8-15)

A statement function name cannot be used as a procedure name in an actual argument list.

Each actual argument must match a corresponding dummy argument defined in the initial
statement or entry point of the subprogram. The correct order must be observed, and the
data type of the actual argument must match that defined for the dummy argument. The
same number of actual arguments must be specified as there are dummy arguments in the
function or subroutine.

%VAL, %LOC, and %REF Argument List Intrinsics (H) 8

Three intrinsics provided to control the way Concurrent Fortran passes arguments are:
%VAL, %LOC, and %REF.

%VAL (arg) Passes arg by value rather than reference. Arg may be of
any type and size. The value’s type and size are retained.
Complex values are passed as a structure with two consecu-
tive real values. Character values are passed as a pointer to
the string storage, equivalent to a C char*; the additional
length parameter is suppressed.

%LOC (arg) Passes the address of arg, resulting in the address of the
address of arg being passed. For an INTEGER*4 variable, it
is equivalent to a C int**.

%REF (arg) Undoes any previous %VAL action on arg. If %VAL was not
previously used on arg, no action is performed.

NOTE: Six additional intrinsics, %INT1, %INT2, %INT4, %LOG1, %LOG2, and %LOG4,
described in Chapter 9 may also be useful in argument lists to control the size of integer
and logical constant and expression arguments.

Argument Association 8

When a function or subroutine is invoked, actual and dummy arguments are associated
when control is transferred to the subprogram. Within the subprogram, the dummy
argument name is used whenever the corresponding actual argument entity is needed. If
the value of a dummy argument is changed in the subprogram, the value of the actual
argument entity is also changed. This association of actual and dummy arguments permits
8-5

Concurrent Fortran 77 Reference Manual
values to be passed back and forth between program units. Note, however, that if the
corresponding actual argument is a constant, symbolic name of a constant, expression,
function reference, or actual procedure name, the corresponding dummy argument cannot
be used in a context in which its value would change (i.e., in an assignment statement,
etc.).

Partial association of dummy and actual arguments can occur. If the length of a character
dummy argument, n, is less than the length of the corresponding character constant,
expression, variable, or array element in the actual argument list, only the leftmost n
characters of the actual argument are associated with the dummy argument.

If an actual argument is an expression, the expression is evaluated before the actual
arguments and dummy arguments become associated.

The association of actual arguments and dummy arguments is not retained between
references to the function or subroutine.

CHARACTER Statements in Subprograms 8

A CHARACTER statement in a subprogram contains fixed length declarators, as defined
above, or assumed-size declarators. The appearance of an asterisk (*) in a character
variable declaration instead of an integer constant or length specification means that the
character declaration is an assumed-size declaration.

If a dummy argument has a length of (*), the dummy argument assumes the length of the
corresponding actual argument each time the subprogram is referenced. If the actual
argument is an array name, the length assumed by the dummy argument is the length of a
single array element in the corresponding actual array.

If an external function has a length of (*) declared in a function subprogram, the function
name must appear as the name of a function in a FUNCTION or ENTRY statement in the
same subprogram. When a reference to such a function is executed, the function assumes
the length specified in the referencing program unit.

Uplevel References (H) 8

An internal subprogram shares the same namespace as its host subprogram and may make
uplevel references to names declared within the host subprogram. Such a reference within
an internal subprogram results in the reference of the identical variable within the host
subprogram. If an uplevel reference to a host variable changes the value of the variable
within an internal subprogram, the variable will also show the change within the host.

For each uplevel reference, type, dimension and other name specifications are identical
between the host subprogram and internal subprogram.
8-6

Subprograms and Statement Functions
Intrinsic Functions 8

Intrinsic functions (also called built-in functions) are supplied with the Fortran compiler.
An intrinsic function reference is used in an expression and evaluated at its point of
reference, and its value is made available at the point of reference when the function
completes execution.

SYNTAX

name [([a [, a] ...])]

DESCRIPTION

name Specifies the specific or generic name of an intrinsic function.

a Specifies an actual argument being passed to the intrinsic function. One
or more arguments must be specified, depending on the particular
function, and all arguments must be of the same data type and be a valid
data type for the function.

Refer to Chapter 9 for more detailed information on intrinsic functions.
8-7

Concurrent Fortran 77 Reference Manual
Referencing Statement Functions 8

Statement functions are defined in statement function definitions (see Chapter 4) and are
not subprograms. However, they are invoked exactly like external functions and can be
referenced anywhere after their definition in the program unit in which they are defined. A
statement function is referenced by name in an expression or in the actual argument list of
a subprogram or of another statement function. The statement function’s actual arguments,
if any, are enclosed in parentheses after the name.

SYNTAX

name ([a [, a] ...])

DESCRIPTION

name Specifies the name of a statement function previously defined in the
program unit.

a Specifies a valid actual argument for the statement function. Each a is
associated with its corresponding dummy argument, and the order,
number, and data type of each a must agree with the order, number, and
data type of the corresponding dummy argument in the statement
function definition. If a is an expression, the expression is evaluated
before the actual arguments and dummy arguments become associated.

Once the statement function is evaluated, the value is converted to the data type of the
statement function if necessary (using the type conversion rules for assignment state-
ments), and the value is available for use at the point where the statement function was
referenced.

An actual argument cannot be a character expression that concatenates an operand whose
length is an asterisk, unless the operand is the symbolic name of a constant.

All components of actual arguments must be defined when the function is referenced.

A statement function can be referenced in another statement function definition as long as
the statement function being referenced has been previously defined.

A statement function that does not contain any arguments is referenced as follows:

name()
8-8

Subprograms and Statement Functions
External (User-Defined) Functions 8

A user-defined function is defined as a subprogram using a FUNCTION statement and can
be referenced in an expression in the main program or in any other subprogram, but cannot
reference itself either directly or indirectly. User-defined functions are external functions.
Zero or more external functions can be present in a single source program.

FUNCTION Statement 8

A FUNCTION statement must be the first statement of an external function.

SYNTAX

[type] FUNCTION name ([d [, d] ...])
. . .
END

DESCRIPTION

type Declares the data type of the function.

name Specifies the name of the function.

d Specifies a dummy argument for the function.

The data type and optional length of a function must be declared in both the function sub-
program and in any program unit that references it.

A function’s data type is determined implicitly by the first letter of the function name, or is
declared explicitly by specifying the data type in the FUNCTION statement or in an
explicit type statement in the function subprogram.

If the type is specified in the FUNCTION statement, the type is one of the following:

INTEGER *1
BYTE
INTEGER *2
INTEGER *4
INTEGER
REAL
REAL *4
REAL *8
DOUBLE PRECISION
COMPLEX
DOUBLE COMPLEX
LOGICAL *1
LOGICAL *2
LOGICAL *4
LOGICAL
CHARACTER *n
8-9

Concurrent Fortran 77 Reference Manual
The length specification is optional in all cases. The type specification determines the data
type of the value returned at the point of reference. For data type CHARACTER, n can be
any of the forms allowed for the CHARACTER type statement, except that an integer
constant expression cannot include the symbolic name of a constant.

The length specification can alternatively be specified with the name of the function. For
example:

INTEGER ABC*2(X,Y)

is equivalent to

INTEGER*2 ABC(X,Y)

If the data type of the function is not defined in the FUNCTION statement, the function’s
data type is defined by using the function name in an explicit type statement in the
subprogram. The name is a global name and cannot be used to name any other program
unit or dummy procedure.

The name must also be used at least once in the subprogram as a variable name (e.g., in an
assignment statement) to give a value to the function. This variable can be defined and
redefined and is returned to the referencing program as the function’s value when a
RETURN or END statement is executed in the function subprogram. If the variable is a
character variable, it must not appear as an entity in a concatenation operation except in a
character assignment statement.

Each d is a dummy argument that is a variable name, unsubscripted array name, or dummy
procedure name. The dummy argument list identifies the order, number, and data type of
the arguments that can be passed to the function in a function reference. If the array has
adjustable dimensions, the dimensions must be declared in a DIMENSION or explicit type
statement in the program unit. The parentheses () are necessary even if no dummy
arguments are specified.

The function can return additional values to the referencing program, other than the value
of the function, by redefining the value of dummy arguments during the execution of the
function.

A dummy argument defined for an entry point is local to the sequence of statements
between the entry point and the next RETURN or END statement. If one or more ENTRY
statements appear between the entry point and the next RETURN or END statement, the
ENTRY statements and any dummy arguments defined for the ENTRY statements are
ignored. The same dummy argument name can be used in the argument list of more than
one entry point of the function, but the name applies only to the entry point for which it
was defined.

A SUBROUTINE, PROGRAM or BLOCK DATA statement cannot appear in a function sub-
program.

A function subprogram can have more than one ENTRY or RETURN statement but only
one END statement.

In the subprogram, if the length of the character variable representing the name of a
character function is an asterisk in parentheses, the function has the length specified in the
referencing program unit.
8-10

Subprograms and Statement Functions
If a dummy procedure name appears as a dummy argument in a FUNCTION statement,
then an actual procedure name must be specified as the corresponding actual argument. If
a dummy procedure name specifies a function, then the specified function’s data type must
agree with the dummy procedure name’s data type.

If an actual argument is an expression, a constant, or the symbolic name of a constant, its
corresponding dummy argument must not be altered during the execution of the function.

Example:

INTEGER FUNCTION FACT(N)
FACT = 1
DO 5 I = 2, N

5 FACT = FACT * I
RETURN
END
8-11

Concurrent Fortran 77 Reference Manual
Referencing an External Function 8

SYNTAX

name ([a [, a] ...])

DESCRIPTION

name Specifies the name or entry point of an external function.

a Specifies an actual argument.

If arguments are not defined for the function, the function is referenced as follows:

name ()

Actual arguments must agree in order, number, and data type with the corresponding
dummy arguments in the FUNCTION statement or function ENTRY statement. An actual
argument for an external function reference is one of the following:

• A constant or the symbolic name of a constant.

• An unsubscripted array name.

• A variable name or subscripted array name.

• An intrinsic function name. A dummy procedure name must be the
corresponding dummy argument if an intrinsic function name is passed as
an actual argument.

• The name of a subroutine, the name of a subroutine entry point, the name
of another external function, or the name of an entry point in another
external function.

• Any expression except a character expression that concatenates an operand
whose length is an asterisk in parentheses, unless the operand is the
symbolic name of a constant.

Functions use their dummy arguments as actual arguments when referencing other
subprograms.

Example:

EXTERNAL FACT
INTEGER FACT
PRINT, FACT(10)
END
INTEGER FUNCTION FACT (N)
FACT = 1
DO 1 I = 2, N

1 FACT = FACT * I
RETURN
END
8-12

Subprograms and Statement Functions
User-Defined Subroutines 8

Zero or more user-defined subroutines can be defined in a source program. A subroutine
subprogram is defined using a SUBROUTINE statement and is referenced using a CALL
statement.

SUBROUTINE Statement 8

Subroutines are written as independent program units. A SUBROUTINE statement defines
a subroutine, and the SUBROUTINE statement must be the first statement of the subrou-
tine subprogram.

SYNTAX

SUBROUTINE name [([d [, d] ...])]
. . .
END

DESCRIPTION

name Specifies the symbolic name of the subroutine.

d Specifies a dummy argument for the subroutine.

The subroutine name is a global procedure name. The concept of data type does not apply
to subroutine names and subroutine entry points.

Each dummy argument is a variable name, an unsubscripted array name, a dummy
procedure name, or an asterisk. An asterisk denotes an alternate return (i.e., the
corresponding actual argument is an alternate return specifier). An expression, subscripted
array name, constant, or the symbolic name of a constant is not a valid dummy argument.

If dummy arguments are not defined for the subroutine, the subroutine is defined in either
of the following ways:

A subroutine returns zero or more values to the calling program. Values are returned to the
calling program by redefining the values of one or more of the dummy arguments. The
value of any dummy argument can be changed as long as the corresponding actual
argument is not a constant, the symbolic name of a constant, an expression, or an actual
procedure name.

A CALL statement within a subroutine can call another subroutine, but it cannot call itself
or call another entry point of the subroutine of which it is a part.

SUBROUTINE name
...
END

SUBROUTINE name()
...
END
8-13

Concurrent Fortran 77 Reference Manual
The symbolic name of a subroutine cannot be used as a variable in the subroutine.

A subroutine subprogram can contain any statement except a FUNCTION, PROGRAM, or
BLOCK DATA statement.

A dummy argument name of type character whose length is an asterisk in parentheses
must not appear as a concatenation operand except in a character assignment statement.

Example:

INTEGER SIZE
PARAMETER (SIZE=25)
INTEGER VECTOR(SIZE)
...
CALL FMAX (VECTOR, SIZE, MAXIMUM, LMAX)
...
END

SUBROUTINE FMAX (ARRAY, SIZE, MAXIMUM, LMAX)
INTEGER SIZE
INTEGER ARRAY(SIZE)
MAXIMUM = ARRAY(1)
LMAX = 1
DO 10 I = 2, SIZE, 1
IF (ARRAY(I) .GT. MAXIMUM) THEN
MAXIMUM = ARRAY(I)
LMAX = I
END IF

10 CONTINUE
RETURN
END

The preceding subroutine finds the maximum value in an array and the position in the
array of the maximum value, and returns the two values to the calling program.
8-14

Subprograms and Statement Functions
CALL Statement 8

A subroutine is referenced in a program unit using a CALL statement. Actual arguments, if
any, appear after the subroutine name in the CALL statement and are enclosed in
parentheses.

SYNTAX

CALL name [([a [, a] ...])]

DESCRIPTION

name Specifies the symbolic name of a user-defined or processor-supplied
subroutine.

If arguments are not defined for the subroutine, either of the following CALL statements is
permissible:

CALL name

CALL name ()

Actual arguments must agree in order, number, and data type with the corresponding
dummy arguments in the SUBROUTINE statement or subroutine ENTRY statement. If an
alternate return specifier is used as an actual argument, the corresponding dummy
argument must be an asterisk.

An actual argument for a subroutine call is one of the following:

• A constant or the symbolic name of a constant.

• An unsubscripted array name.

• A variable name or subscripted array name.

• An intrinsic function name.

• The name of a function, the name of a function entry point, the name of
another subroutine, or the name of an entry point in another subroutine.

• Any expression except a character expression that concatenates an operand
whose length is an asterisk in parentheses, unless the operand is the sym-
bolic name of a constant.

• An alternate return specifier of the form:

 *s

where s is the statement label of an executable statement in the calling program. An
alternate return identifies a statement label in the calling program where execution is to
continue when the subprogram completes execution. An asterisk without a statement label
cannot be used as an actual argument.

Subroutines use their dummy arguments as actual arguments when referencing other sub-
programs.
8-15

Concurrent Fortran 77 Reference Manual
Argument List Intrinsic Functions (H) 8

There are two built-in functions that govern the way arguments are passed, %VAL and
%REF. They may be used only in the argument list of a CALL statement or function
reference. For argument a, %REF(a) passes a by reference, which is the default. %VAL(a)
passes the argument a by value; a 32-bit immediate value is always passed. If the argu-
ment is shorter than 32 bits, it is sign-extended. Refer to “%VAL, %LOC, and %REF
Argument List Intrinsics (H)” on page 8-5 for additional information.
8-16

Subprograms and Statement Functions
ENTRY Statement 8

An ENTRY statement is used within a function or subroutine to identify one or more
alternate entry points into the function or subroutine. An ENTRY statement appears any-
where after a FUNCTION or SUBROUTINE statement but cannot appear in an IF block or
within a DO loop.

SYNTAX

ENTRY name [(d [, d] ...])]

DESCRIPTION

name Specifies the symbolic name of an entry point for a subprogram.

d Specifies a dummy argument. The dummy argument list for a function
or subroutine entry point follows the same rules for the dummy
argument list for a FUNCTION statement.

Specification statements are permitted after an ENTRY statement, but not if any statement
function or executable statements have preceded the ENTRY statement (see Table 2-1).

If an argument list is not defined, either of the following forms of the ENTRY statement is
permissible:

ENTRY name

ENTRY name()

If a function reference refers to an entry name with no arguments, the function must be
referenced as follows:

name()

Also, the function entry name must be used as a variable, in the sequence of executable
statements following the ENTRY statement, to give a value to the function. The entry name
can appear in an explicit type statement for a function.

If a subroutine call refers to an entry name without any arguments, the subroutine is called
with either of the following:

CALL name

CALL name()

ENTRY statements are non-executable statements.

An entry name may be referenced in any program unit except in the program unit that
contains the name in an ENTRY statement.

The order, number, data type, and names of dummy arguments in an ENTRY statement
may be different from the order, number, type, and names of dummy arguments in the
FUNCTION statement, SUBROUTINE statement, or other ENTRY statements in the same
program unit.
8-17

Concurrent Fortran 77 Reference Manual
A dummy argument must not appear in an executable statement before it appears in an
ENTRY, FUNCTION, or SUBROUTINE statement. The same dummy argument name can
be used in the argument list of more than one entry point of the subprogram, but the name
applies only to the entry point in which it is defined.

Within an external function, all entry names are associated with the name specified in the
FUNCTION statement; therefore, if one function variable becomes defined, all associated
function variables of the same type become defined and all associated function variables
of a different type become undefined. The data type of the function name and of any entry
names need not be the same, unless the data type is CHARACTER, in which case the
function name and all entry names must be of type CHARACTER. For entry points of type
CHARACTER, if one entry point is declared with length (*), all entry points must be
declared with length (*); otherwise, the entry points may be of the same or different
lengths.

The variable whose name is used to reference the function must be defined when a
RETURN or END statement is executed in the subprogram. The variable name cannot
appear in any executable statement prior to the ENTRY statement. The name cannot appear
in a statement function definition unless the name appears as a dummy argument name for
the statement function.

All ENTRY statements for a subprogram must appear before the END statement for the
subprogram.

Within a subprogram, an entry name cannot be a dummy argument in a FUNCTION state-
ment, a SUBROUTINE statement, or another ENTRY statement, nor can the entry name
appear in an EXTERNAL statement within the subprogram.

An entry name in a function subprogram is referenced only in a function reference or as an
actual argument, and an entry name in a subroutine subprogram is referenced only in a
CALL statement or as an actual argument.
8-18

Subprograms and Statement Functions
RETURN Statement 8

A RETURN statement terminates the execution of a subprogram and returns control to the
referencing program unit. It appears only in a function or subroutine subprogram.

SYNTAX

RETURN [e]

DESCRIPTION

e Specifies an integer constant or integer expression.

If e is specified, it identifies the eth asterisk in the dummy argument list. Control is
returned to the statement label in the calling program whose statement label is associated
with the eth asterisk in the dummy argument list. If e is negative, zero, or greater than the
number of asterisks specified as dummy arguments in the dummy argument list, control is
returned to the next sequential statement following the referencing statement in the calling
program unit.

Execution of an END statement has the same effect as a RETURN statement; therefore, a
RETURN statement can be omitted. More than one RETURN statement is permitted in a
single subprogram. Execution of a RETURN statement ends the association of actual and
dummy arguments.

Execution of a RETURN or END statement results in all entities in the subprogram
becoming undefined except:

• Entities in SAVE statements that were executed in the subprogram.

• Blank common entities.

• Entities defined in DATA statements within the subroutine or function that
were not redefined or did not become undefined.

• Entities in a named common block that appear in the subprogram and
appear in at least one other program unit that is referencing, either directly
or indirectly, the subprogram. Entities in named common blocks defined in
the main program do not become undefined when a RETURN or END state-
ment is executed in a subprogram.

A RETURN statement cannot appear in a main program.
8-19

Concurrent Fortran 77 Reference Manual
INTERNAL Subprograms (H) 8

An internal subprogram is a function or subroutine defined completely within the body of
a subprogram, known as the host subprogram, and is visible only within the host
subprogram. The internal subprogram may access host subprogram variables in addition
to its own arguments and local variables. Zero or more internal subprograms may be
present in a function, subroutine or main program.

SYNTAX

INTERNAL FUNCTION name ([d [, d] ...])
[type name]
. . .
END INTERNAL

INTERNAL SUBROUTINE name [([d [, d] ...])]
. . .
END INTERNAL

DESCRIPTION

type Declares the data type of the internal function. The type must not be
placed on the INTERNAL FUNCTION line; instead, the type must be
declared within the body of the internal function.

name Specifies the name of the internal function or subroutine.

d Specifies a dummy argument for the internal function or subroutine.

The INTERNAL keyword defines the start of the internal subprogram. The END
INTERNAL keyword defines the end of the internal subprogram but not the host
subprogram. Statements preceding the INTERNAL and following the END INTERNAL
belong to the host subprogram.

An internal subprogram may be defined anywhere within the executable statements of the
host subprogram. An internal subprogram may be referenced from anywhere within the
host, including other internal subprograms. An internal subprogram must not directly or
indirectly reference itself.

Statement labels within an internal subprogram must be unique within the host
subprogram and all other internal subprograms. FORMAT statements anywhere within the
host including other internal subprograms may be referenced by their statement labels. A
GOTO, ERR=, etc. into or out of an internal subprogram is not allowed.

ENTRY statements, alternate returns, statement function definitions, and additional
internal subprograms must not be used within an internal subprogram.

Within the body of an internal subprogram, names referenced may be dummy arguments,
local variables or host variables. Dummy arguments and local variables are declared with
the appropriate specification statements. Any host variables referenced are called uplevel
references and are not declared within an internal subprogram. All attributes of uplevel
8-20

Subprograms and Statement Functions
references are the same as their attributes in the host subprogram. For details, see “Uplevel
References (H)” on page 8-6.

Additional considerations generally appropriate for functions and subroutines also apply
to internal functions and internal subroutines.

Referencing an Internal Subprogram (H) 8

Host subprograms reference internal functions and internal subroutines the same way they
reference external functions or user-defined subroutines. The name of an internal
subprogram must not appear within an EXTERNAL statement in the host subprogram, or
an external subprogram with the same name will be referenced instead of the internal.

The type of internal functions must be declared explicitly or implicitly within the host sub-
program. Internal functions are referenced by name and return a value. See the following
example.

Internal subroutines are not declared within the specification statements of the host sub-
program. Internal subroutines are referenced by using the CALL statement. See the
following example.

Non-dummy argument names declared explicitly within the internal subprogram, and
implicitly declared names that are not uplevel references, are local variables within the
internal subprogram. Explicitly declared names override an identical host name. Local
variables of internal subprograms are not visible within the body of the host subprogram
or other internal subprograms.

Internal subprograms that are not referenced or called are not otherwise executed.
Execution of host statements continues from the last executable statement preceding the
INTERNAL keyword to the first executable statement following the END INTERNAL key-
word.
8-21

Concurrent Fortran 77 Reference Manual
Example:

! The end result of calling SUB is the assignment of
! the integer value 39 to ten elements of the array
! argument.

SUBROUTINE SUB (JARR)
INTEGER D, I, JARR, IFUNC
PARAMETER (D = 10)
DIMENSION JARR(D)

I = IFUNC () ! references the internal function below
CALL ISUB (I) ! calls the internal subroutine below

 INTERNAL SUBROUTINE ISUB (ARG)
 ! This internal subroutine assigns its dummy argument
 ! ARG to every element of the host array named JARR.
 ! JARR and its dimension constant D are uplevel
 ! references. The loop index K is local to this
 ! internal subroutine.
 INTEGER ARG, K
 DO K = 1, D
 JARR(K) = ARG
 END DO
 END INTERNAL

 INTERNAL FUNCTION IFUNC ()
 ! This internal function returns an integer value.
 ! The return type is declared within the body of the
 ! internal function, as well as within the host (see
 ! above.)
 INTEGER IFUNC ! declares the type of this function
 IFUNC = 39 ! assigns the return value
 RETURN
 END INTERNAL

END ! This ends the subroutine SUB.
8-22

Subprograms and Statement Functions
BLOCK DATA Subprogram 8

A BLOCK DATA statement is the first statement of a block data subprogram. A block data
subprogram functions only at compile time and is used to define and give initial values to
variables and array elements in common blocks.

SYNTAX

BLOCK DATA [name]
...
END

DESCRIPTION

name Specifies the optional name of a block data subprogram. The name, if
specified, is global to the source program and must not be the name of a
subprogram, main program, common block, or other block data
subprogram.

Block data “subprogram” is a misnomer because a block data subprogram cannot contain
executable statements and, therefore, is not a true program unit. However, the group of
lines comprising a block data subprogram are placed outside the main program and are not
a part of the main program.

The BLOCK DATA statement must be the first statement of a block data subprogram. State-
ments that can be placed in a block data subprogram include IMPLICIT, COMMON,
PARAMETER, DIMENSION, SAVE, STATIC, EQUIVALENCE, DATA, END, and explicit
type statements. The order of statements as defined in Table 2-1 must be observed.

There can be more than one block data subprogram in the source program.

Block data subprograms initialize entities in named or blank common blocks. If an entity
in a common block is initially defined in a block data subprogram, all entities having
storage units in the common block storage sequence must be specified even if they are not
all initially defined. More than one common block can have entities initially defined in a
single block data subprogram.

Only an entity in a common block is initially defined in a block data subprogram. Entities
that are associated with an entity in a common block are considered to be in that common
block.

The same storage cannot be initialized in more than one block data subprogram in the
same executable program.

If an entity in a common block is initialized using a block data subprogram, a complete set
of specification statements to establish the entire common block must be present even
though some of the entities in the block do not appear in DATA statements.
8-23

Concurrent Fortran 77 Reference Manual
Example:

DIMENSION A(5), B(5)
INTEGER C
COMMON I, J, K /ALPHA/ A, B, C
...
END
BLOCK DATA BD
DIMENSION A(5), B(5)
COMMON I, J, K /ALPHA/ A, B, C
INTEGER C
DATA I, J, K, C / 1, 2, 3, 100 /
DATA A / 5*0. /, B / 5*1.2 /
END
8-24

Subprograms and Statement Functions
Inter-Language Procedure Interface (H) 8

To write C procedures that call or are called by Fortran procedures, you must know the
conventions for procedure names, data representation, return values, and argument lists
followed by the compiled code.

This section discusses procedure names, data representations, common blocks and
datapools and their corresponding C representations.1

Procedure Names (H) 8

The compiler appends an underscore to the name of a Fortran procedure or function and
two underscores to the name of a common block. This underscore distinguishes the
procedure, function or block from a C procedure or external variable with the same name.
To avoid conflict with subroutine names you assign, Fortran library procedure names have
embedded underscores.

Data Representations (H) 8

Following is a table of corresponding Fortran and C declarations.

The Fortran standard specifies that INTEGER, LOGICAL, and REAL data occupy equal
amounts of memory.

1. Users interested in interfacing Ada and Fortran can consult the HAPSE Reference Manual.

Fortran C

INTEGER*1 var char var;

INTEGER*2 var short int var;

INTEGER var long int var;

BYTE var char var;

LOGICAL*1 var char var;

LOGICAL*2 var short int var;

LOGICAL var long int var;

REAL var float var;

DOUBLE PRECISION var double var;

COMPLEX var struct { float r, i; } var;

DOUBLE COMPLEX var struct { double dr, di; } var;

CHARACTER*6 var char var[6];
8-25

Concurrent Fortran 77 Reference Manual
COMMON Blocks (H) 8

Accessing Fortran common blocks from C is best accomplished by using C structures. To
properly access a common block’s variables, the same type and order for variables must be
used in the structure declaration. Consider the following example:

COMMON /SIMPSON/ HOMER,MARGE,BART,LISA,MAGGIE
CHARACTER*8 HOMER
COMPLEX MARGE
REAL*8 BART
LOGICAL*2 LISA
INTEGER MAGGIE

A C structure equivalent to this common block would be:

struct simpsons {
char homer[8];
struct { float r, i; } marge;
double bart;
short int lisa;
int maggie;

};

and to access the common block as a structure from C:

extern struct simpsons simpson__;
simpson__.maggie = 4;
...

For more information about common blocks, see “COMMON Statement” on page 4-9.

Datapools (H) 8

Outside of Concurrent Fortran, a datapool as a single storage object does not exist.
Datapool storage consists of many discrete space requirements, one for each datapool
variable or equivalence class. An equivalence class, as interpreted for datapool storage, is
a group of all datapool variables equivalenced together; each variable name in an equiva-
lence class is still associated with a distinct object address, and is referenced directly. This
basic scheme is quite different from common block storage. Common block storage has
one name, the name of the common block, and is sized to hold space for all common vari-
ables. Common block variables are referenced in object code as offsets from the beginning
of common block storage and do not have a link name of their own, thus the reason for the
basic Fortran requirement that all common block declarations in source files use identical
types and order for variables; the proper offset must be known at compile time.

Datapool variable link names are a hybrid formation of the datapool and variable names.
The basic form is “datapool__$variable”. Thus, a Fortran declaration of the form

DATAPOOL /REM/ BUCK, STIPE
8-26

Subprograms and Statement Functions
would, in object files, cause the datapool variables “BUCK” and “STIPE” to be referenced
as “rem__$buck” and “rem__$stipe”, respectively. Note the lowercase letters. This
is the name, minus the leading underscore, that is used for C’s extern.

Because each datapool variable has discrete storage, a datapool cannot be interpreted as a
structure in C, as can common blocks. extern must be used for each desired datapool
variable, but it is not required that extern be used for every variable in a datapool. All type
information must still be accurate, but it is not necessary to preserve order of variables.
Users accessing datapool variables from several C source files are encouraged to create a
common C file containing all datapool variable declarations and use the C #include fea-
ture to guarantee consistent declarations.

For more information about datapools, see “DATAPOOL Statement (H)” on page 4-16.

Equivalenced Variables (H) 8

Users attempting to reference in C overlapping variables in an equivalence class should be
cautious. Incorrect code may result unless the user precisely communicates the variables’
interdependence to the compiler via unions or pointers. In particular, translating array
equivalences that involve equivalencing to the middle of an array should be avoided
unless absolutely necessary.

For datapools, the user may also specify all such variables as volatile to prevent incorrect
interpretation and optimization of their usage.

Example:

CHARACTER*10 STR
INTEGER I, IARR(10), J
REAL R, RARR(10)
EQUIVALENCE (STR,J), (I,R), (IARR(4),RARR)

can be expressed in C as:

union { char str[10]; int j } str_j_equiv;
union { int i; float r } i_r_equiv;

/* iarr is sized to hold both iarr and rarr */
int iarr[10 + (4 - 1)];

/* if iarr & rarr were in a common block, just */
/* iarr would appear in the struct declaration */

float *rarr;
rarr = &iarr[3];

For more information about equivalencing, see “EQUIVALENCE Statement” on page
4-22. For more information about volatiles, see “VOLATILE Statement (H)” on page
4-40.
8-27

Concurrent Fortran 77 Reference Manual
Return Values (H) 8

A function of type INTEGER, LOGICAL, REAL, or DOUBLE PRECISION is declared as
a C function that returns the corresponding type. A COMPLEX or DOUBLE COMPLEX
function is equivalent to a C routine with an added, initial argument that points to the
returned value. Thus,

COMPLEX FUNCTION F(...)

equals

struct { float r, i;} *temp;
f_(&temp,...)

A function with a character value is equivalent to a C routine with two extra initial
arguments; a data address and a length. Thus,

CHARACTER*15 FUNCTION G(...)

is the same as

g_(result,length,...)
char result[];
long int length;

and could be invoked in C by

char chars[15];
...
g_(chars, 15L,);

The compiler invokes subroutines with alternate return values as if they are functions with
INTEGER values. These values specify which return value to use. Alternate return
arguments (statement labels) are not passed to the function, but are used to do an indexed
branch in the calling procedure. If the subroutine does not have any entry points with
alternate return arguments, the returned value is undefined. The statement

CALL NRET(*1, *2, *3)

is treated exactly as if it is the computed GOTO,

GOTO (1,2,3), NRET()

Argument Lists (H) 8

All Fortran arguments are passed by address. CHARACTER arguments and dummy
procedure arguments have some special characteristics. Normally, procedure arguments
are passed as the address of the entry point of the procedure.

Character arguments have two components: a pointer to the storage for the string that is
passed in sequence with the other arguments, and the length of that storage, which is
passed by value as an extra argument after the regular arguments. Otherwise, they are
contiguous with the regular arguments.
8-28

Subprograms and Statement Functions
Given the following call

EXTERNAL F
CHARACTER*7 S
INTEGER B(3)
...
CALL SAM(F, B(2), S)

the equivalent in C code is normally

int f();
char s[7];
long int b[3];
...
sam_(f, &b[1], s, 7L);

Mixing C and Fortran Input/Output (H) 8

Files are opened in a slightly different manner in Fortran than in C. In C, the fopen(3S)
function call makes explicit the desired access types and produces an error if unable to
fulfill the request. Fortran’s OPEN statement, on the other hand, is more “passive”. Access
types are not made explicit by the user and are determined through the user’s subsequent
operations on the file. A file is known to have write access only after the first Fortran
WRITE on the unit, and read access after the first READ. If both are performed on the same
unit, the file is opened with update access, allowing both reading and writing.
Consequently, C I/O operations on a file opened from Fortran may result in an access
error.

The Concurrent Fortran library provides four C-callable routines to facilitate C and For-
tran I/O on the same file:

int _now_reading_on_unit (int * unit)

_now_reading_on_unit() coerces the file associated with the Fortran unit to have
an access type that allows reading. The unit number is passed by address. Return status is
1 for success (file enabled for requested operation) or 0 if unable to change the requested
status.

int _now_writing_on_unit (int * unit)

_now_writing_on_unit() coerces the file associated with the Fortran unit to have
an access type that allows writing. The unit number is passed by address. Return status is 1
for success (file enabled for requested operation) or 0 if unable to change the requested
status.

int _now_updating_on_unit (int * unit)

_now_updating_on_unit() coerces the file associated with the Fortran unit to have
an access type that allows both reading and writing. The unit number is passed by address.
Return status is 1 for success (file enabled for requested operation) or 0 if unable to
change the requested status.

FILE * _fortran_fd (int * unit)
8-29

Concurrent Fortran 77 Reference Manual
_fortran_fd() returns the stream pointer associated with a Fortran unit number. The
unit number is passed by address.

Before performing C I/O on a file opened from Fortran, one of the access type coercion
routines should be called to ensure proper stream access. Do not attempt to modify access
of a Fortran file by modifying the FILE stream structure directly, as the Fortran library
contains internal data structures associated with each unit that must remain consistent.

The coercion routines are additive. If _now_reading_on_unit() and then
_now_writing_on_unit() are called for the same unit, the resulting access type for
the unit is update.

E x a m p l e c o d e s h o w i n g t h e u s e o f _fortran_fd() a n d
_now_updating_on_unit() follows. Note that the first write fails with a bad file
number error EBADF. The write following the call to _now_updating_on_unit()
completes successfully.

Fortran main program:

PROGRAM IOTEST
LFN = 10
OPEN (UNIT=LFN, FILE="TESTFILE", STATUS="UNKNOWN")

C call a C routine to do a write to the opened file
CALL CSUB (LFN)
END

C subroutine:

#include <stdio.h>
csub_(lfn)
int *lfn;
{

FILE *fp;
extern FILE *_fortran_fd();
int status, fd;
char *buf="123456789\n";

fp = _fortran_fd(lfn);
fd = fileno(fp);

printf(" 1st write...");
if (write(fd, buf, 10) < 0) {

perror(" 1st write - error");
}

printf(" _now_updating_on_unit ");
if(_now_updating_on_unit(lfn) == 0) {

printf(" error - updating");
}

printf(" 2nd write...");
if ((status = write(fd, buf, 10)) < 0) {

perror ("2nd write - error");
return ;

}

8-30

Subprograms and Statement Functions
printf(" 2nd write - success nbytes= %d\n", status);
}

Calling C Functions Directly (H) 8

Separate global object code routine name-spaces are used by Fortran and C. In Fortran,
global routine names end with one underscore, whereas in C, global names are not
appended with underscores unless explicitly added by the user. Thus, to be able to call a C
routine from Fortran, an underscore must be appended to the C routine name. System ser-
vices and other C routines, for which access to the source is not available, must be called
through an intermediate Fortran-callable C routine.

The Concurrent CEXTERNAL keyword, the CTOF77STR , F77TOCSTR and
F77TOCSTR_TRIM intrinsics, the Concurrent implementation of the %VAL argument list
intrinsic, and the documentation in this section are meant to assist the user in directly
calling any C function or system service from Fortran.

See also “CEXTERNAL Statement (H)” on page 4-8, “%VAL, %LOC, and %REF Argu-
ment List Intrinsics (H)” on page 8-5, and the man pages for the CTOF77STR,
F77TOCSTR and F77TOCSTR_TRIM intrinsics.

CEXTERNAL Declaration (H) 8

CEXTERNAL is a keyword similar in syntax and semantics to the EXTERNAL keyword
with the additional action of ordering the compiler not to append an underscore to a
reference of a listed name. To call the nice(2) routine, place the following declaration
in the Fortran source program (recall that Fortran converts external names to lowercase by
default):

CEXTERNAL NICE

Function Return Type Declaration (H) 8

Users must declare the return type of the C routines properly if the return value is to be
interpreted correctly. For nice(2) the proper declaration is:

CEXTERNAL NICE
INTEGER*4 NICE

Passing Arguments by Value (H) 8

Standard Fortran passes all routine arguments by reference. Many C routines expect at
least some of their arguments to be passed by value. Concurrent Fortran provides the
8-31

Concurrent Fortran 77 Reference Manual
%VAL argument list intrinsic to pass arguments by value. To call nice(2) the user can
write something similar to the following:

CEXTERNAL NICE
INTEGER*4 NICE, INCR_VAL, STATUS
PARAMETER (INCR_VAL = 8)
...
STATUS=NICE(%VAL(INCR_VAL))

If a C routine is actually expecting the address of a non-character argument, %VAL is not
necessary.

Arguments of any type (integer, logical, real, double precision, complex, double complex,
character) are accepted by Concurrent’ %VAL and retain their size when passed. The
address of character storage only is passed for character %VAL arguments -- the extra
length parameter is suppressed.

Converting Character Arguments and Values (H) 8

To convert from Fortran and C character variable formats, three intrinsic functions are
provided. Note the reverse sense of their arguments, that is, destination precedes origin.

INTEGER*4 FUNCTION F77TOCSTR (C_DEST, F77_ORIG)
INTEGER*4 FUNCTION F77TOCSTR_TRIM (C_DEST, F77_ORIG)

These copy the origin into the destination with the string storage converted to a C type
null-terminated string. F77TOCSTR converts the entire value. F77TOCSTR_TRIM strips
trailing blanks before converting. Both intrinsics return the equivalent of a C char* to the
string storage for C_DEST. This value may be passed by %VAL to C routines which expect
a char* argument -- this is useful in argument lists.

Example:

CEXTERNAL CFUNC
CHARACTER F77_ORIG*10, C_DEST*11
...
CALL CFUNC(...,%VAL(F77TOCSTR_TRIM(C_DEST,F77_ORIG)),...)

Both arguments must be Fortran character variables. The destination must be large enough
to hold the converted value -- truncation results otherwise.

INTEGER*4 FUNCTION CTOF77STR (F77_DEST, C_ORIG)

CTOF77STR copies a C string to a Fortran string, removing the null byte and either
truncating or blank padding as necessary. Only the Fortran destination string need be an
actual Fortran character variable, so C functions that return char* may have their return
value assigned to an INTEGER*4 variable which may then be passed by %VAL to this
intrinsic, where it is treated as a char*. CTOF77STR returns the number of characters
copied from the C string into the destination string.

As mentioned in the above paragraph, a Fortran routine which calls a C function returning
a char* may assign the return value to an INTEGER*4 variable and then pass this by
%VAL to either a C routine expecting a char* or to CTOF77STR as the origin argument.
8-32

Subprograms and Statement Functions
Simulated Structures (H) 8

Several system services expect as an argument a pointer to an instantiation of a
system-defined structure type, i.e., struct termios. Concurrent Fortran provides the
POINTER statement, which may be used to construct a pointer block whose storage layout
is identical in size and/or contents to a C structure. This example is for demonstration
purposes; a standard-conforming method for accomplishing a call to tcgetattr(2)
from Fortran may be found in the POSIX-defined pxftcgetattr(3F).

The POINTER statement associates a pointer variable with a list of variables; the locations
of these variables are at offsets relative to the memory address held in the pointer variable.
The offsets of these based variables are determined by their ordering in the declaration list
combined with type and size information. The declaration of struct termios from
<sys/termios.h> is:

struct termios {
 tcflag_t c_iflag; /* unsigned long */
 tcflag_t c_oflag;
 tcflag_t c_cflag;
 tcflag_t c_lflag;
#define NCCS 19
 cc_t c_cc[NCCS]; /* unsigned char */
};

The equivalent pointer block declaration is:

INTEGER*4 TERMIOS_PTR, NCCS
PARAMETER (NCCS=19)
POINTER /TERMIOS_PTR/ IFLAG,OFLAG,CFLAG,LFLAG,CC(NCCS)
INTEGER*4 IFLAG, OFLAG, CFLAG, LFLAG, CC
CHARACTER CC
8-33

Concurrent Fortran 77 Reference Manual
The following example shows a direct call to tcgetattr(2) from Fortran, using a
pointer block to simulate struct termios.

INTEGER*4 TERMIOS_PTR, NCCS
PARAMETER (NCCS=19)
POINTER /TERMIOS_PTR/ IFLAG,OFLAG,CFLAG,LFLAG,CC(NCCS)
INTEGER*4 IFLAG, OFLAG, CFLAG, LFLAG, CC
CHARACTER CC
EXTERNAL MALLOC, FILENO
INTEGER*4 MALLOC, FILENO

CEXTERNAL tcgetattr
INTEGER*4 tcgetattr

INTEGER*4 STAT, UNIT

! Must allocate space for the structure.
TERMIOS_PTR = MALLOC (SIZEOFBLOCK (TERMIOS_PTR))
...
! Pass the pointer variable by value, not address.
STAT = tcgetattr(%VAL(FILENO(UNIT)), %VAL(TERMIOS_PTR))

Pointer blocks are also useful for interpreting struct * return values from C functions.
The C library function localtime(3C) returns a struct tm *.

 INTEGER*4 TM_PTR
 POINTER /TM_PTR/ TM_SEC, TM_MIN, TM_HOUR, TM_MDAY,
& TM_MON, TM_YEAR, TM_WDAY, TM_YDAY, TM_ISDST
 INTEGER*4 TM_SEC, TM_MIN, TM_HOUR, TM_MDAY, TM_MON,
& TM_YEAR, TM_WDAY, TM_YDAY, TM_ISDST

 CEXTERNAL localtime, time
 INTEGER*4 localtime, time

 INTEGER*4 NOW

 NOW = time(%VAL(0))
 ! Passed by address, not value.
 TM_PTR = localtime(NOW)

 ! Now that the pointer variable has a valid address, the
 ! based variables may be used. tm.tm_yday is returned
 ! by localtime
 WRITE (*,*) TM_YDAY
8-34

Subprograms and Statement Functions
Alternatively, common blocks or equivalence classes may be used to guarantee a specific
storage layout, although the method is more clumsy and prone to error. The next example
shows a translation of the localtime(3C) example implemented with common
blocks.

 IMPLICIT INTEGER*4 (T)
 COMMON /TM_STRUCT/ TM_SEC, TM_MIN, TM_HOUR, TM_MDAY,
& TM_MON, TM_YEAR, TM_WDAY, TM_YDAY, TM_ISDST
 CEXTERNAL LOCALTIME, TIME, MEMCPY
 INTEGER*4 LOCALTIME, TIME, MEMCPY, NOW, TM_POINTER,
& SIZEOF_TM_STRUCT
 PARAMETER (SIZEOF_TM_STRUCT=9*4)
 ...
 NOW = TIME(%VAL(0)) ! see time(2) and localtime(3C)
 TM_POINTER = LOCALTIME(NOW) ! pass by address, not value
 ! memcpy returns the value of its first argument
 ! -- we may ignore it
 CALL MEMCPY(%VAL(TM_POINTER), TM_SEC, SIZEOF_TM_STRUCT)

C Structure Packing Rules (H) 8

When simulating C structures in Fortran, careful attention must be paid to the actual
physical alignment of the structure fields. The following rules apply.

• Fields are packed as tightly as possible as long as they do not cross a
boundary of their “natural” type. This means that shorts cannot cross two
byte boundaries, long words cannot cross four byte boundaries, and
doubles cannot cross eight byte boundaries. NOTE: Concurrent Fortran
does not restrict doubles in common blocks to eight-byte boundaries if the
-Qalign_double=4 option is used.

• An aggregate type (e.g., structures or union) is aligned according to the
most restrictive boundary of all its members. The total aggregate size is
also rounded up to a size which is a multiple of the size of the most
restrictive type of all members.

Refer to the C Reference Manual for further details.

Primitive System Types (H) 8

Simulating system types that are equivalent to primitive data types (i.e., typedef int
key_t) is the responsibility of the user. These system types are documented in the system
include files.

Accessing errno and System Error Messages (H) 8

Many system services set the C global status variable, errno, if an error occurs. The
Fortran library provides three routines for getting the value of errno and the contents of
8-35

Concurrent Fortran 77 Reference Manual
system error messages: perror, gerror, and ierrno. The perror(3F) routine
writes an appropriate message of the last detected system error to logical unit 0. The
gerror(3F) routine returns the system error message appropriate to the last detected
error as a character string. The ierrno(3F) routine returns the error number of the last
detected system error, that is, the current value of errno.

Refer to the perror(3F) man page which includes information on all three error
routines.
8-36

9
Fortran Library

Functions and Routines . 9-1
Intrinsic Functions . 9-1

Generic and Specific Names . 9-2
Summary of hf77 Intrinsic Functions. 9-3

%INT1, %INT2, and %INT4 Integer Size Intrinsics (H) 9-9
%LOG1, %LOG2, and %LOG4 Logical Size Intrinsics (H) 9-9
POSIX® P1003.9 Library Functions (H) . 9-10
Additional Library Functions (H) . 9-10

Concurrent Fortran 77 Reference Manual

9
Chapter 9Fortran Library

9
9
9

Functions and Routines 9

The Fortran library contains the Fortran intrinsic functions, as well as several functions
that are in addition to the Fortran 77 standard.

This chapter gives an alphabetical summary of these functions. Descriptions include
syntax and argument descriptions. More information about each of the intrinsic functions
can be found in the system manual pages for the functions.

Intrinsic Functions 9

Intrinsic functions are supplied with the Fortran compiler. An intrinsic function is used in
an expression and evaluated at its point of reference, and its value is made available to the
expression at the point of reference when the function completes execution. The Fortran
library contains all the intrinsic functions required by the Fortran 77 standard as well as
additional functions, which are noted in this chapter with an asterisk (*).

SYNTAX

name (a [, a...])

DESCRIPTION

name Specifies the specific name or generic name of an intrinsic function.

a Actual argument being passed to the intrinsic function. One or more
arguments must be specified, depending on the particular function. All
actual arguments in the function reference must be of the same data
type, and the order and number of actual arguments must agree with the
order and number of arguments defined for the function.

A function argument can be a subscripted array name, a variable name, a constant or the
symbolic name of a constant, other functions of the correct type, or any valid expression
except a character expression that concatenates an operand of length asterisk, unless the
operand is the symbolic name of a constant.

If an actual argument is another intrinsic function reference, the inner function reference
must result in a value with a valid data type for the outer intrinsic function. For example, a
9-1

Concurrent Fortran 77 Reference Manual
logical function reference (e.g., LGE, LGT, LLE, or LLT) cannot be used as an actual
argument for a numeric intrinsic function.

All arguments must be defined when the function reference is executed. Arguments for
which the result is out of the numeric range of the compiler or for which the result is not
mathematically defined (e.g., division by zero) may not be arguments for an intrinsic
function.

Syntax of the argument list for each intrinsic function is given in Table 9-1.

Generic and Specific Names 9

Intrinsic functions that perform the same task but which use different data types have a
specific name for each operation of a particular data type.

Examples:

SIN Real version of the sin function

DSIN Double precision version of the sin function

CSIN Complex version of the sin function

ZSIN Double complex version of the sin function.

CDSIN Double complex version of the sin function (alternate name).

The generic name of a function can be used in place of all specific names for the function.
The generic name permits arguments of any data type allowed by the compiler to be used
in the function reference. Based on the data type of the arguments, the compiler references
the appropriate function by its specific name. Use of the generic name for a function is
helpful if the data type of the function needs to be changed later.

Some intrinsic functions have limited generic names. These names may be used in place
of some, but not all, of the specific names of a function. For instance, IABS can be given
an argument of INTEGER *2 or INTEGER type. The generic name accesses all the
specific names of the function, including the ones which may be accessed by the limited
generic name. By default, integer constants passed to generic intrinsic functions are
treated as INTEGER *4 entities unless there are other INTEGER *2 parameters to the
intrinsic function, in which case they are treated as INTEGER *2 constants.

An intrinsic function name is no longer the name of an intrinsic function in a program unit
if the name is used as a statement function name, as a variable name or array name in an
explicit type statement, or as a dummy argument name; however, the name is an intrinsic
function name in other program units. If the name is used as a variable or array name in a
common block, the name cannot be referenced in any program unit of the source program
as an intrinsic function.

Use of a generic name in an INTRINSIC or EXTERNAL statement does not affect its
generic properties. Use of an intrinsic function name as the name of a main procedure,
subroutine, subroutine entry point, block data subprogram, or common block does not
affect its use as an intrinsic function name.
9-2

Fortran Library
The following rules apply to the use of specific names:

• A specific name can be used as a function reference if all arguments are of
the correct data type.

• The data type of an intrinsic function cannot be changed by specifying its
specific name in an explicit type statement.

• A specific name cannot be used as an actual argument unless its name
appears in an INTRINSIC statement. The names of intrinsic functions for
performing type conversion, lexical ordering, or selection of smallest or
largest values may not be used as actual arguments.

• Specific and generic names are local to a program unit; however, if the
name is used in an EXTERNAL statement, the name is no longer available
for use as an intrinsic function name in that program unit.

• Non-standard specific names have been added to facilitate additional
degrees of precision for complex functions.

An IMPLICIT statement cannot be used to change the data type of a generic or specific
function name.

Summary of Concurrent Fortran Intrinsic Functions 9

Table 9-1 lists the intrinsic functions specified in the Fortran 77 standard, as well as some
specific functions added to accommodate non-standard data types. The generic name (if
any) is listed in the first column along with the reference to the man page which contains
complete information about the function. The limited generic name (if any) is in the
second column, and the specific name is in the third column. If a specific name does not
exist, then it is indicated by two dashes (i.e., “- -”). The data type of the arguments and the
data type of the result are in the fourth and fifth columns, respectively, with DOUBLE
abbreviated to DBLE. Finally, the sixth column contains the number of arguments the
intrinsic function allows. If a note to the intrinsic function is necessary, it is included in
this column in square brackets (i.e., “[1]”).

Functions or capabilities that are not in the Fortran 77 standard are noted with asterisks.

Table 9-1. Concurrent Fortran Intrinsic Functions

Generic
Name
(man Page)

Limited
Generic
Name

Specific
Name

Data Type
of
Arguments

Data Type
of
Results

of
Args

ABS

(abs(3F))

IABS IABS
*JIABS
*IIABS

INTEGER
INTEGER
INTEGER *2

INTEGER
INTEGER
INTEGER *2

1

[2]

ABS
DABS
CABS
*CDABS
*ZABS

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

REAL
DBLE PREC
REAL
DBLE PREC
DBLE PREC
9-3

Concurrent Fortran 77 Reference Manual
ACOS
(acos(3F))

ACOS
DACOS

REAL
DBLE PREC

REAL
DBLE PREC

1

(aimag(3F))
AIMAG AIMAG

*DIMAG
COMPLEX
DBLE CMPX

REAL
DBLE PREC

1

 AINT
(aint(3F))

AINT
DINT

REAL
DBLE PREC

REAL
DBLE PREC

1

(max(3F))
AMAX0 *AJMAX0

*AIMAX0
INTEGER
INTEGER *2

REAL
REAL

>1

(min(3F))
AMIN0 *AJMIN0

*AIMIN0
INTEGER
INTEGER *2

REAL
REAL

>1

ANINT
(round(3F))

ANINT
DNINT

REAL
DBLE PREC

REAL
DBLE PREC

1

ASIN
(asin(3F))

ASIN
DASIN

REAL
DBLE PREC

REAL
DBLE PREC

1

ATAN
(atan(3F))

ATAN
DATAN

REAL
DBLE PREC

REAL
DBLE PREC

1

ATAN2
(atan2(3F))

ATAN2
DATAN2

REAL
DBLE PREC

REAL
DBLE PREC

2

(mil(3F))
*BTEST *BJTEST

*BITEST
INTEGER
INTEGER *2

LOGICAL
LOGICAL *2

2
[2]

(ftype(3F)) CHAR --
* --
* --

INTEGER
INTEGER *2
INTEGER *1

CHARACTER
CHARACTER
CHARACTER

1
[3]

CMPLX

(ftype(3F))

* --
--
--
--
--
* --

INTEGER *2
INTEGER
REAL
DBLE PREC
COMPLEX
DBLE CMPX

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

1 or 2

[1]

(conjg(3F))
CONJG CONJG

*DCONJG
COMPLEX
DBLE CMPX

COMPLEX
DBLE CMPX

1

COS

(cos(3F))

COS
DCOS
CCOS
*CDCOS
*ZCOS

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

1

COSH
(cosh(3F))

COSH
DCOSH

REAL
DBLE PREC

REAL
DBLE PREC

1

Table 9-1. Concurrent Fortran Intrinsic Functions (Cont.)

Generic
Name
(man Page)

Limited
Generic
Name

Specific
Name

Data Type
of
Arguments

Data Type
of
Results

of
Args
9-4

Fortran Library
DBLE

(ftype(3F))

*DFLOAT *DFLOTJ
*DFLOTI

INTEGER
INTEGER *2

DBLE PREC
DBLE PREC

1

--
--
--
*DREAL

REAL
DBLE PREC
COMPLEX
DBLE CMPX

DBLE PREC
DBLE PREC
DBLE PREC
DBLE PREC

DCMPLX

(ftype(3F))

* --
* --
* --
* --
* --
* --

INTEGER *2
INTEGER
REAL
DBLE PREC
COMPLEX
DBLE CMPX

DBLE CMPX
DBLE CMPX
DBLE CMPX
DBLE CMPX
DBLE CMPX
DBLE CMPX

1 or 2

[1]

DIM

(dim(3F))

IDIM *JIDIM
*IIDIM

INTEGER
INTEGER *2

INTEGER
INTEGER *2

2

[2]

DIM
DDIM

REAL
DBLE PREC

REAL
DBLE PREC

(dprod(3F)) DPROD REAL DBLE PREC 2

EXP

(exp(3F))

EXP
DEXP
CEXP
*CDEXP
*ZEXP

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

1

(mil(3F))
*IAND *JIAND

*IIAND
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(mil(3F))
*IBCLR *JIBCLR

*IIBCLR
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(mil(3F))
*IBITS *JIBITS

*IIBITS
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(mil(3F))
*IBSET *JIBSET

*IIBSET
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(ftype(3F))
ICHAR --

* --
CHARACTER
CHARACTER

INTEGER
INTEGER *2

1
[2][3]

(mil(3F))
*IEOR *JIEOR

*IIEOR
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(index(3F)) INDEX INDEX
* --

CHARACTER
CHARACTER

INTEGER
INTEGER *2

2
[2]

Table 9-1. Concurrent Fortran Intrinsic Functions (Cont.)

Generic
Name
(man Page)

Limited
Generic
Name

Specific
Name

Data Type
of
Arguments

Data Type
of
Results

of
Args
9-5

Concurrent Fortran 77 Reference Manual
INT

(ftype(3F))

 --
* --

INTEGER
INTEGER *2

INTEGER
INTEGER 1

[2]

IFIX *JIFIX
*JINT
*IIFIX
*IINT

REAL
REAL
REAL
REAL

INTEGER
INTEGER
INTEGER *2
INTEGER *2

IDINT *JIDINT
*IIDINT

DBLE PREC
DBLE PREC

INTEGER
INTEGER *2

 --
*--
*--
*--

COMPLEX
COMPLEX
DBLE CMPX
DBLE CMPX

INTEGER
INTEGER *2
INTEGER
INTEGER *2

(mil(3F))
*IOR *JIOR

*IIOR
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(mil(3F))
*ISHFT *JISHFT

*IISHFT
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(mil(3F))
*ISHFTC *JISHFTC

*IISHFTC
INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

(len(3F))
LEN --

* --
CHARACTER
CHARACTER

INTEGER
INTEGER *2

1
[2]

(strcmp(3F)) LGE --
*--

CHARACTER
CHARACTER

LOGICAL
LOGICAL *2

2
[2]

(strcmp(3F)) LGT --
*--

CHARACTER
CHARACTER

LOGICAL
INTEGER *2

2
[2]

(strcmp(3F)) LLE --
*--

CHARACTER
CHARACTER

LOGICAL
INTEGER *2

2
[2]

(strcmp(3F)) LLT --
*--

CHARACTER
CHARACTER

LOGICAL
INTEGER *2

2
[2]

LOG

(log(3F))

ALOG
DLOG
CLOG
*ZLOG
*CDLOG

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

1

LOG10

(log10(3F))

ALOG10
DLOG10
*CLOG10

REAL
DBLE PREC
COMPLEX

REAL
DBLE PREC
COMPLEX

1

MAX

(max(3F))

MAX0 *JMAX0
*IMAX0

INTEGER
INTEGER *2

INTEGER
INTEGER *2 >1

[2]AMAX1
DMAX1

REAL
DBLE PREC

REAL
DBLE PREC

Table 9-1. Concurrent Fortran Intrinsic Functions (Cont.)

Generic
Name
(man Page)

Limited
Generic
Name

Specific
Name

Data Type
of
Arguments

Data Type
of
Results

of
Args
9-6

Fortran Library
MAX1

(max(3F))

*JMAX1
*IMAX1

REAL
REAL

INTEGER
INTEGER *2

>1
[2]

MIN

(min(3F))

MIN0 *JMIN0
*IMIN0

INTEGER
INTEGER *2

INTEGER
INTEGER *2

>1

[2]
AMIN1
DMIN1

REAL
DBLE PREC

REAL
DBLE PREC

MIN1
(min(3F))

*JMIN1
*IMIN1

REAL
REAL

INTEGER
INTEGER *2

>1
[2]

MOD

(mod(3F))

*IMOD
*JMOD
MOD
AMOD
DMOD

INTEGER *2
INTEGER
INTEGER
REAL
DBLE PREC

INTEGER *2
INTEGER
INTEGER
REAL
DBLE PREC

2

[2]

(nan$(3F)) *NAN$
*DNAN$
*CNAN$
*ZNAN$
*CDNAN$

--
--
--
--
--

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

0

[4]

NINT

(round(3F))

NINT
*JNINT
*ININT

REAL
REAL
REAL

INTEGER
INTEGER
INTEGER *2 1

[2]

IDNINT IDNINT
*JIDNNT
*IIDNNT

DBLE PREC
DBLE PREC
DBLE PREC

INTEGER
INTEGER
INTEGER *2

(mil(3F))
(bool(3F))

*NOT *JNOT
*INOT

INTEGER
INTEGER *2

INTEGER
INTEGER *2

2
[2]

REAL

(ftype(3F))

FLOAT *FLOATJ
*FLOATI

INTEGER
INTEGER *2

REAL
REAL 1

--
SNGL
--
*--

REAL
DBLE PREC
COMPLEX
DBLE CMPX

REAL
REAL
REAL
REAL

SIGN

(sign(3F))

ISIGN *JISIGN
*IISIGN

INTEGER
INTEGER

INTEGER
INTEGER *2

2

[2]
SIGN
DSIGN

REAL
DBLE PREC

REAL
DBLE PREC

Table 9-1. Concurrent Fortran Intrinsic Functions (Cont.)

Generic
Name
(man Page)

Limited
Generic
Name

Specific
Name

Data Type
of
Arguments

Data Type
of
Results

of
Args
9-7

Concurrent Fortran 77 Reference Manual
* Functions or capabilities that are not in the Fortran 77 standard.

NOTE:

[1] CMPLX or DCMPLX may have one or two arguments. If there is one
argument, it may be of type INTEGER, INTEGER*2, REAL, DOUBLE
PRECISION, COMPLEX, or DOUBLE COMPLEX. If there are two
arguments, they must both be of the same type and may be of type
INTEGER, REAL, or DOUBLE PRECISION.

[2] If the -i2 option is specified, then each generic or limited generic
intrinsic function which has a default result type of INTEGER or
LOGICAL will instead have a result type of INTEGER *2 or LOGICAL
*2, respectively.

[3] CHAR produces a character constant of length one at compile time when
given an integer constant argument. ICHAR produces an integer con-
stant at compile time when given a character constant argument. These
may be used in constant expressions, e.g., PARAMETER values.

[4] These are constant intrinsics that evaluate to a constant at compile time.

SIN

(sin(3F))

SIN
DSIN
CSIN
*ZSIN
*CDSIN

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

1

SINH
(sinh(3F))

SINH
DSINH

REAL
DBLE PREC

REAL
DBLE PREC

1

SQRT

(sqrt(3F))

SQRT
DSQRT
CSQRT
*ZSQRT
*CDSQRT

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

REAL
DBLE PREC
COMPLEX
DBLE CMPX
DBLE CMPX

1

TAN
(tan(3F))

TAN
DTAN

REAL
DBLE PREC

REAL
DBLE PREC

1

TANH
(tanh(3F))

TANH
DTANH

REAL
DBLE PREC

REAL
DBLE PREC

1

Table 9-1. Concurrent Fortran Intrinsic Functions (Cont.)

Generic
Name
(man Page)

Limited
Generic
Name

Specific
Name

Data Type
of
Arguments

Data Type
of
Results

of
Args
9-8

Fortran Library
%INT1, %INT2, and %INT4 Integer Size Intrinsics (H) 9

Concurrent Fortran provides the %INT1, %INT2, and %INT4 intrinsics to convert from
one integer size to another.

%INT1 (arg) Converts arg to INTEGER*1 which is useful for passing
constants to routines that expect INTEGER*1 arguments.

%INT2 (arg) Converts arg to INTEGER*2 which is useful for passing
constants to routines that expect INTEGER*2 arguments.

%INT4 (arg) Converts arg to INTEGER*4. This is useful for specifying
INTEGER*4 constants in program units compiled with the
-i2 option, which otherwise forces all integer constants to
be two bytes.

Example:

INTEGER I,J
I = 32769
J = %INT4(32769)
PRINT *,I,J
END

Output, when compiled with -i2, is:

-32767 32769

%LOG1, %LOG2, and %LOG4 Logical Size Intrinsics (H) 9

Concurrent Fortran provides the %LOG1, %LOG2 and %LOG4 intrinsics to convert from
one logical size to another.

%LOG1 (arg) Converts arg to LOGICAL*1 which is useful for passing
constants to routines that expect LOGICAL*1 arguments.

%LOG2 (arg) Converts arg to LOGICAL*2 which is useful for passing
constants to routines that expect LOGICAL*2 arguments.

%LOG4 (arg) Converts arg to LOGICAL*4 which is useful for passing
constants to routines that expect LOGICAL*4 arguments.
9-9

Concurrent Fortran 77 Reference Manual
Example:

! .TRUE. and .FALSE. default to LOGICAL*4
CALL LOGSUB (.TRUE., %LOG2(.TRUE.))
END

SUBROUTINE LOGSUB (VAR1, VAR2)
LOGICAL*2 VAR1, VAR2
PRINT *, VAR1, VAR2
RETURN
END

Output is:

F T

POSIX® P1003.9 Library Functions (H) 9

The Fortran library includes a full implementation of POSIX P1003.9 Fortran 77
Language Bindings, the set of Fortran-accessible routines that provide P1003.1-mandated
system services. The -lposix9 flag should be passed to the linker to access the library.
See posix9(3F) for more details.

Additional Library Functions (H) 9

The Fortran library also includes functions which allow access to system functions as well
as more powerful bitwise functions. None of these functions are part of standard Fortran
77. Where the man page name is not intuitive from the function name, it has been
supplied. The functions the compiler recognizes as special intrinsics are marked with an
asterisk *.

Function Int. Use

abort * terminate Fortran program

access determine accessibility of a file

adjustl * remove leading blanks from character value

adjustr * remove trailing blanks from character value

alarm execute a subroutine after a specified time

and * bitwise boolean intrinsic (bool(3F))

besj0 bessel function (bessel(3F))

besj1 bessel function (bessel(3F))

besjn bessel function (bessel(3F))
9-10

Fortran Library
besy0 bessel function (bessel(3F))

besy1 bessel function (bessel(3F))

besyn bessel function (bessel(3F))

bufferin VOS-like asynchronous I/O (bufferio(3F))

bufferout VOS-like asynchronous I/O (bufferio(3F))

cancel cancel pending asynchronous I/O (bufferio(3F))

ceiling * largest integer not less than real value

chdir change default directory

chmod change mode of a file

csignal specify Fortran action upon receipt of a system signal

ctime return system time (time(3F))

ctof77str * convert C string to Fortran string

dbesj0 bessel function (bessel(3F))

dbesj1 bessel function (bessel(3F))

dbesjn bessel function (bessel(3F))

dbesy0 bessel function (bessel(3F))

dbesy1 bessel function (bessel(3F))

dbesyn bessel function (bessel(3F))

dffrac fractional accuracy of floating point numbers
(flmin(3F))

dflmin minimum positive floating point value (flmin(3F))

dflmax maximum positive floating point value (flmin(3F))

drand random number generator (rand(3F))

dtime return elapsed execution time (etime(3F))

erf error function

erfc complementary error function (erf(3F))

etime return elapsed execution time

even * test for even integer

exit * terminate process with status

exponent * exponent portion of Fortran real variable

f77tocstr * convert Fortran string to C string

f77tocstr_trim * convert Fortran string to C string (f77tocstr(3F))

fdate return date and time in an ASCII string.

ffrac fractional accuracy of floating point numbers
(flmin(3F))

Function Int. Use
9-11

Concurrent Fortran 77 Reference Manual
fget get a character from a logical unit (getc(3F))

flmin minimum positive floating point value

flmax maximum positive floating point value (flmin(3F))

floor * largest integer not greater than real value

flush * flush output to a logical unit

fork create a copy of this process

fpecnt trap and repair floating point faults (trpfpe(3F))

fputc write a character to a Fortran logical unit (putc(3F))

fraction * fractional portion of Fortran real variable

fseek reposition a file on a logical unit

fstat get file status (stat(3F))

ftell inquire position of file on a logical unit (fseek(3F))

gerror get system error message (perror(3F))

getarg return Fortran command-line argument

getc get a character from a logical unit

getcwd get path name of current working directory

getenv return environment variable

getgid get group ID of the caller (getuid(3F))

getlog get user’s login name

getpid get process ID

getuid get user ID of the caller

gmtime return system time (time(3F))

hostnm get name of current host

iargc number of Fortran command-line arguments

idate return date in numerical form

ierrno get system error message (perror(3F))

index return location of substring

inmax maximum positive integer value (flmin(3F))

ioinit change f77 I/O initialization

irand random number generator (rand(3F))

isatty test unit for being a terminal device (ttynam(3F))

itime return time in numerical form (idate(3F))

kill send a signal to a process

link make a link to an existing file

Function Int. Use
9-12

Fortran Library
loc return the address of an object

long integer object conversion

lshift * bitwise boolean intrinsic (bool(3F))

lshifta * bitwise boolean intrinsic (bool(3F))

lshiftl * bitwise boolean intrinsic (bool(3F))

lstat get file status (stat(3F))

ltime return system time (time(3F))

mclock return Fortran time accounting

mvbits move bits (mil(3F))

not * bitwise boolean intrinsic (bool(3F))

odd * test for odd integer

or * bitwise boolean intrinsic (bool(3F))

perror get system error message

putc write a character to a Fortran logical unit

qsort quick sort

rand random number generator

rebuffer resize a unit’s I/O buffer

rename rename a file

rshift * bitwise boolean intrinsic (bool(3F))

rshifta * bitwise boolean intrinsic (bool(3F))

rshiftl * bitwise boolean intrinsic (bool(3F))

short integer object conversion (long(3F))

signal specify Fortran action upon receipt of a system signal

sleep suspend execution for an interval

srand random number generator (rand(3F))

stat get file status

status VOS-like asynchronous I/O (bufferio(3F))

symlnk make a symbolic link to a file (link(3F),symlnk(3F))

system issue a shell command from Fortran

tclose tape I/O (topen(3F))

time return system time

topen tape I/O

traper trap arithmetic errors

tread tape I/O (topen(3F))

Function Int. Use
9-13

Concurrent Fortran 77 Reference Manual
trewin tape I/O (topen(3F))

trpfpe trap and repair floating point faults

tskipf tape I/O (topen(3F))

tstate tape I/O (topen(3F))

ttynam find name of a terminal port

twrite tape I/O (topen(3F))

unlink remove a directory entry

verify * verify character string contents

wait wait for a process a terminate

xor * bitwise boolean intrinsic (bool(3F))

Function Int. Use
9-14

10
Compilation and Execution (H)

Compilation . 10-1
Native PowerPC . 10-1
Cross Intel to PowerPC . 10-1
Native Intel . 10-2

Multiple Versions. 10-2
c.install . 10-2
c.release . 10-4

Compiler Input Files . 10-6
Compiler Options . 10-7
Compiler Arguments . 10-7
Conditional Compilation . 10-7
Environment Variables . 10-9

f77_dump_flag . 10-9
fortunit . 10-10
F77INCLPATH. 10-10
LD_BIND_NOW, LD_LIBRARY_PATH, LD_RUN_PATH 10-10
STATIC_LINK . 10-10
TARGET_ARCH . 10-11

Linking Mixed-Language Programs . 10-11

Concurrent Fortran 77 Reference Manual

10
Chapter 10Compilation and Execution (H)

10
10
10

Compilation 10

The Concurrent Fortran compiler performs a combination of preprocessing, compiling,
assembling, and linking depending on the parameters and options specified. One or more
source files, object files, and system libraries may be specified when the compiler is
invoked or can be defined implicitly when the compiler is invoked.

There are three Concurrent Fortran products, and each is invoked its own way. The user
must have the directory /usr/ccs/bin in his PATH environment variable.

Native PowerPC 10

The Native PowerPC Fortran compiler runs on a PowerPC based machine running Power-
MAX OS and generates code for the same machine.

The compiler is invoked from the shell as follows:

hf77 [options arguments files]

f77 [options arguments files]

where options is a list of option specifiers, arguments is a list of arguments passed to the
link editor, and files is a list of source files whose names are suffixed with .f, .F, .fpp,
.dp, .r, .c, .s, .o, .a or .so.

Object files are generated in the ELF format. Debug information is generated in the
DWARF Version 2 format.

The hf77(1) man page provides additional information concerning development
environments and options.

Cross Intel to PowerPC 10

The Cross Intel to PowerPC Fortran compiler runs on an Intel based machine running
RedHat or RedHawk Linux, but generates code for a PowerPC based machine running
PowerMAX OS.

The compiler is invoked from the shell as follows:
10-1

Concurrent Fortran 77 Reference Manual
xf77 [options arguments files]

where options is a list of option specifiers, arguments is a list of arguments passed to the
link editor, and files is a list of source files whose names are suffixed with .f, .F, .fpp,
.dp, .r, .c, .s, .o, .a or .so.

Object files are generated in the ELF format. Debug information is generated in the
DWARF Version 2 format.

The xf77(1) man page provides additional information concerning development
environments and options.

Native Intel 10

The Native Intel Fortran compiler runs on an Intel based machine running RedHat or
RedHawk Linux, but generates code for a Pentium-4 based machine running RedHat or
RedHawk Linux.

The compiler is invoked from the shell as follows:

cf77 [options arguments files]

where options is a list of option specifiers, arguments is a list of arguments passed to the
link editor, and files is a list of source files whose names are suffixed with .f, .F, .fpp,
.dp, .r, .c, .s, .o, .a or .so.

Object files are generated in the ELF format. Debug information is generated in the
DWARF Version 2 format.

The cf77(1) man page provides additional information concerning development
environments and options.

Multiple Versions 10

Multiple releases 6.1 and later of the Concurrent Fortran compiler may be installed at the
same time. Multiple releases and system defaults are maintained via the c.install and
c.release tools, which are also used with the Concurrent C/C++ compilers.

c.install 10

Install, remove, or modify a release installation

The syntax of the c.install command is:

c.install -rel release [options]

The following options are available with the c.install command:
10-2

Compilation and Execution (H)
NOTE

Only the System Administrator (or a super user) can invoke
c.install.

The -i, -m, and -r options may never be used together.

The c.install utility is the tool that allows users to register installations with the sys-
tem’s installation database. It may be used to install, move, and remove installations.

Option Meaning Function

-arch arch default arch Set the default PowerMAXOS architecture (nh, moto, synergy, etc.) for
PowerPC-targeting compilers.

-cpu cpu default cpu Set the default Intel processor to optimize code for for Intel-targeting
compilers.

-d default Mark the selected release installation as the system-wide default

-env env environment Specify an environment pathname

-gcc_version
version

gcc version Set the default gcc version for Intel-targeting compilers to get libraries
from.

-f force Permit the removal of the last release on the system without confirma-
tion

-H help Display syntax and options for this function

-i path install Install the release located at path into the release database (the name is
determined from the -rel option)

-linux_release
release

linux release Set the default Linux release for Intel-targeting compilers to get librar-
ies from.

-m path move Move the selected release installation to path

-osversion osver-
sion

default os
version

Set the default version of PowerMAX OS being targeted by Pow-
erPC-targeting compilers.

-p pre-5.1 Mark the selected release isntallation as the default for cc, hc, cc++,
and c++.

-r remove Remove the specified release installation from the release database

-rel release release Specify a Concurrent C/C++ release (REQUIRED)

-target cpu default cpu Set the default cpu being targeted by PowerPC-targeting compilers.
Defaults to the native cpu under PowerMAX OS. A default must be set
under PLDE.

-v verbose Report changes as they are made
10-3

Concurrent Fortran 77 Reference Manual
When the -i option is given, then the structure located at the specified path name is regis-
tered with the database as a valid installation. The name of the installation is registered as
the release given by the -rel option. Therefore, the -rel option is required when using
the -i option to install an installation.

For example, the following command:

$ c.install -rel newf77 -d -i /somedir/dir

assumes that /somedir/dir contains a valid directory structure and “installs” this ver-
sion of the compilers in the database as newf77.

When the -d option is used, then c.install registers the installation with the database,
and also marks the installation as the system-wide default installation (as in the above
example).

c.release 10

Display release installation information

The syntax of the c.release command is:

c.release [options]

The following represents the c.release options:

Option Meaning Function

-arch arch default arch Set the user’s default architecture target (nh, mot, synergy, etc.)
for PowerPC-targeting compilers

-cpu cpu default cpu Set the user’s default cpu for Intel-targeting compilers.

-e env Display the path of the selected environment

-env env environment Specify an environment pathname

-gcc_version version d e f a u l t g c c
versiiion

Set the user’s default gcc version for Intel-targeting compilers.

-H help Display syntax and options for this function

-linux_release release linux release Set the user’s default linux release for Intel-targeting compilers.

-n name Display the name of the selected release

-osversion osversion default os ver. Set the user’s default osversion target for PowerPC-targeting
compilers.

-p path Display the path to the selected release

-q query Display the selected environment and release

-r remove Remove the default release currently set for the invoking user

-rel release release Specify a Concurrent C/C++ release
10-4

Compilation and Execution (H)
If invoked without options, c.release lists all available release installations on the cur-
rent host. For example,

$ c.release

provides output similar to the following:

Screen 10-1. c.release output

-S system default
release

Specify system default release (ignoring user default ,
PDE_RELEASE environment variable, etc.)

-target target default target Set user’s default target microprocessor for PowerPC-targeting
compilers

-U u s e r d e f a u l t
release

Specify the user default release (ignoring system default, PDE
RELEASE environment variable, etc.)

-u user Set the default release for the invoking user

Option Meaning Function

The following compiler releases are available on this machine:

 Name Lang Path
 ---- ---- ----
 5.4 CF /usr/opt/plde-c++-5.4
 * 6.1 CFI /usr/opt/ccur-compilers-6.1

 Lang: C=PowerPC C++/C F=PowerPC F77 I=Intel F77

The following PowerPC cross target OS releases are available on this
machine:

 Version Architecture(s)
 ------- ---------------
 * 4.3 moto, * nh
 5.1 moto, * nh, synergy
 6.1 synergy

 The default target microprocessor is ppc604e

The following Intel gcc libraries are available on this machine:

 Linux Release Gcc Version(s)
 ------------- -----------
 * i386-redhat-linux * 3.2
 i386-redhat-linux7 2.96

(*) Designates the defaults
10-5

Concurrent Fortran 77 Reference Manual
The -q option displays the release for the specified environment (or the local environment
if no environment is specified). For example,

$ c.release -q

in a Concurrent C/C++ environment named test provides the following output:

Screen 10-2. c.release -q output

c.release may be invoked with any combination of -rel and/or -env options. All
remaining options are mutually exclusive, and may not be combined in a single invocation
of c.release.

Compiler Input Files 10

Types of files are recognized by the suffix that is appended to the file name. The following
suffixes identify particular kinds of files:

Some of the released shared libraries contain a mixture of shared-object and static code.
This is necessary for proper use of global data. System file names ending with .so.1 are
the shared-object portions of these libraries. Do not specify them separately on the
command line; specify the .so library name.

RATFOR source files are passed to the ratfor(1) preprocessor. C source files are
compiled by the appropriatre C compiler. The C compiler also accepts assembler source
files and transfers them to the assembler. Object and archive files are handed over to the
link editor. The C compiler is passed the -c, -g, -D, -I, -U, -v and -S options, if they
are specified.

If source files are not specified, the compiler does not perform any action.

.f Fortran source file .c C source file

.F

.fpp
Fortran source file run through
cpp(1) before compilation

.s assembler source file

.dp Datapool definition source file .o object file

.r RATFOR source file .a archive file

.so shared-library file

environment path: /csteam/vir/home/jgj/test
release name: 5.3
release path: /usr/opt/plde-c++-5.3
10-6

Compilation and Execution (H)
Compiler Options 10

The Concurrent Fortran compiler accepts many options which may be specified sepa-
rately, each preceded by a “-”, or together, with the first option being preceded by a “-”.
Each of the options is described on the hf77(1), xf77(1), or cf77(1) man page as
appropriate.

Compiler Arguments 10

Any additional arguments which do not fall into the previous two sections are taken to be
either link-editor option arguments or object programs (typically produced by an earlier
run), or libraries of routines. These arguments, together with the results of any
compilations specified, are linked (in the order given) to produce an executable program
with the default name a.out.

Conditional Compilation 10

During compilation, a block of source lines may be compiled or skipped depending on
flags set with the -FLAG compiler option. Conditional compilation may be used to
produce different versions of a program with each version having different capabilities
and characteristics.

The -FLAG list option specifies flag numbers for conditional compilation directives
(VOS-style). The list may contain zero or more flag numbers (1-23), separated by
commas. Do not leave a space between the -FLAG and the first flag number. Even if flags
are not specified, it is still necessary to specify the -FLAG option to successfully compile
any source which contains conditional compilation directives. Note that the listing
produced by the compiler (via -L) shows the conditional compilation directives as
comments, and skipped lines as blank lines.

When using conditional compilation, debug or diagnostic statements may be made a
permanent part of the program. Fortran statements are placed in the range of one or more
conditional compilation blocks. Each of these blocks is controlled by one or more
conditional compilation flags. Several conditional compilation flags can be placed in the
program to provide different levels of debugging.

A block of source statements is skipped based on a condition established with either of
two skip statements, :SKFS (or :skfs) and :SKFZ (or :skfz). These statements have
the following form:

:SKFS f
...
:ESKP

 or
10-7

Concurrent Fortran 77 Reference Manual
:SKFZ f
...
:ESKP

where each f is a flag number. The flag number is an unsigned integer constant from 1
through 23. The :ESKP (or :eskp) command closes a skip block and must be preceded
by a matching :SKFS or :SKFZ statement. A colon in column 1 must precede the state-
ment keyword as shown, or the statement will be treated as part of the Fortran language.
Only one flag number may be specified.

Flag numbers establish the skip condition. If a skip condition is true, the range of state-
ments between the skip statement and the next :ESKP statement are skipped. For :SKFS,
the condition is true only if the specified flag in the statement is on (i.e., if the same flag
number is specified in the -FLAGS compile time parameter when the compiler was
invoked). For :SKFZ the condition is true only if the flag is off (i.e., the flag number was
not specified in the -FLAGS compile time parameter). If a condition is false the statements
in the skip block are processed.

Skip blocks may be nested up to 100 levels deep, and a block may be empty. If skip blocks
are nested, the first :ESKP statement encountered closes the last opened skip block. Each
opened skip block must be properly closed before compilation ends. If the skip condition
is true for a skip block, any other blocks in the range are skipped regardless of the skip
condition.

Examples:

:SKFS 1
:SKFZ 20
:SKFZ 2

An error in a :SKFS, :SKFZ, and :ESKP statement results in a warning message, and the
compiler ignores the statement.
10-8

Compilation and Execution (H)
Example:

 DIMENSION ID (6)
 ...
 DO 1 I=1,6
 CALL GETCHR (INCHAR, MODE)

:SKFZ 2
 WRITE (*, 100) I, INCHAR, MODE

100 FORMAT (I6, A6, I6)
:ESKP

 IF (MODE .LT. 0) GO TO 2
 ID(I) = INCHAR

1 CONTINUE
 CALL GETCHAR (INCHAR, MODE)
 IF (MODE .GE. 0) CALL ERROR

2 CONTINUE
:SKFZ 1

 WRITE (*, 101) ID, INCHAR
101 FORMAT (6A1, A6)
:ESKP

 END

The preceding example obtains a Fortran identifier in the one dimensional array ID and its
delimiter INCHAR. Subroutine GETCHR returns the next character from the input stream
and its MODE. The two conditional compilation blocks produce two levels of debugging
information. The first block is controlled by flag number 2. If this flag is on at compile
time, the first block is compiled thus causing I, INCHAR, and MODE to be printed during
each iteration of the DO loop. If flag number two was not set at compile time, this output is
not produced during execution. The second block is controlled by flag number 1. If this
flag was set at compile time, the second block is compiled. This causes the identifier ID
and the delimiter INCHAR to be printed. If flag number 1 was not set at compile time, this
output will not be produced during execution.

Environment Variables 10

This section describes shell environment variables that are significant when compiling or
executing Fortran programs. See also the man page.

f77_dump_flag 10

The environment variable, f77_dump_flag controls core dumps for programs compiled
with Concurrent Fortran. A normal Fortran program does not dump core if an internal
error occurs unless the first character of f77_dump_flag is a “y”. However, if you have
compiled and linked your program using the -g debug option and the first character of
f77_dump_flag is not an “n”, the program dumps core by default if an internal error
occurs.
10-9

Concurrent Fortran 77 Reference Manual
fortunit 10

If no file name is supplied when opening the unit and there is no DEFAULTFILE=
specifier, the environment variable fortunit if defined contains the file name to be
used. If the environment variable is not set, the file name defaults to fort.unit.

F77INCLPATH 10

F77INCLPATH is a shell environment variable that can be set to contain a list of
directories, separated by a colon, that the compiler uses to search for Fortran INCLUDE
files. It is similar in format to the PATH environment variable.

Example:

F77INCLPATH="/usr/local/fort/include:/usr/local/simul/include"

Refer to “Include Lines (H)” on page 2-8.

LD_BIND_NOW, LD_LIBRARY_PATH, LD_RUN_PATH 10

These variables affect the behavior of ld(1) and the dynamic linker. See the “Link
Editing” Chapter of the Compilation Systems Volume 1 (Tools) manual.

STATIC_LINK 10

Using STATIC_LINK is an alternative to specifying -Zlink=static. The presence of
this variable in the environment is all that is needed to turn on static linking; the value of
the variable is not interpreted. The following sequence in the Bourne or Korn shells sets
this variable.

$ STATIC_LINK=yes
$ export STATIC_LINK

To explicitly remove STATIC_LINK from the environment in the Bourne or Korn shells:

$ unset STATIC_LINK
10-10

Compilation and Execution (H)
TARGET_ARCH 10

Using TARGET_ARCH is an alternative to specifying -Qtarget=. Any of the valid target
values may be used. Additional TARGET_ARCH values may apply; see the man page.

Linking Mixed-Language Programs 10

Normally, invocation of the hf77(1) compiler driver, causes it to automatically invoke
the ld(1) link editor with appropriate options and libraries; ld(1) in turn creates an
executable program. Creating a program from a mixture of C and Fortran modules some-
times requires altering this process.

The following text discusses the default ld(1) invocation.

/bin/ld -t [-u _MAIN__] /usr/ccs/lib/crt0.o \
[/usr/ccs/lib/vax.o] [/usr/ccs/lib/unsint1.o] \
object.o [...] -L/usr/ccs/lib [-lg] -lhU77 -lhF77 \
-lhI77 -lm -lc -o a.out

/bin/ld The full path name of the ld(1) link editor.

-t The option that turns off warnings about common blocks being
accidentally defined with different sizes in different routines.

-u _MAIN__ The option that enters the main routine as an undefined symbol in
the symbol table; this forces the main routine to be loaded. This
option is necessary only if the main routine is a Fortran module in
a user library.

/usr/ccs/lib/crt0.o
The object file that calls main. The Fortran libraries contain a
routine called main that does some setup for Fortran I/O and
signal handling. The version of main in the Fortran libraries then
call _MAIN__; this is the name of the main routine generated by
the Fortran compiler.

/usr/ccs/lib/vax.o
The object file that causes the Fortran libraries, hU77, hF77, and
hI77, to interpret and return LOGICAL values consistent with
VAX implementations. This object file is necessary only when
compiling Fortran code with the -V or -VAX options.

/usr/ccs/lib/unsint1.o
The object file that causes the Fortran libraries to interpret

Option TARGET_ARCH Value

-Qtarget=ppc604 PowerPC 604TM

-Qtarget=ppc PowerPC
10-11

Concurrent Fortran 77 Reference Manual
INTEGER*1 variables as unsigned. This object file is necessary
only when compiling Fortran code with the -uns_int1 option.

object.o [...] The names of user-specified object files and libraries.

-L/usr/ccs/lib Instructs ld(1) to look for libraries in the directory /usr/ccs/
lib.

-lg The debugging library. This library is necessary only when
compiling with the -g option.

-lhU77 -lhF77 -lhI77
The Fortran libraries. So that all module names are resolved, it is
sometimes necessary to repeat these library names. One instance
when this may be necessary is when the main routine is a C
module.

-lm The math library. Intrinsics in the Fortran libraries contain
references to this library.

-lc The C library. The Fortran libraries require the inclusion of the C
library.

-o a.out The name of the executable, by default a.out.
10-12

A
Appendix AArray Storage

1
1
1

Arrays are stored linearly in main memory. Table A-1 shows how arrays are stored
internally. Note that the leftmost subscript varies most rapidly.

Elements of array A(3,3,2) are stored as follows:

Table A-1. Array Storage

Memory Location Array Element

1st A(1,1,1)

2nd A(2,1,1)

3rd A(3,1,1)

4th A(1,2,1)

5th A(2,2,1)

6th A(3,2,1)

7th A(1,3,1)

8th A(2,3,1)

9th A(3,3,1)

10th A(1,1,2)

11th A(2,1,2)

12th A(3,1,2)

13th A(1,2,2)

14th A(2,2,2)

15th A(3,2,2)

16th A(1,3,2)

17th A(2,3,2)

18th A(3,3,2)
A-1

Concurrent Fortran 77 Reference Manual
A-2

B
Appendix BNon-Standard Extensions to Fortran 77 (H)

2
2
2

Non–standard features of the hf77 compiler are described in this appendix.

The hf77 compiler supports many non–standard extensions in the VAX/VMS Fortran
compiler, as well as some f77 extensions and VOS sauf77 extensions. Some extensions
have not been included because they require system–level support which is not provided.
Other extensions which have been implemented may behave differently from those on a
VAX because of system differences. As always, caution should be exercised before using
these extensions.

Ampersand (&) is accepted as a continuation symbol when found in column 1. Also the
compiler accepts a variable length input format.

1. More than 19 continuation lines are supported. There is no effective limit
to the number of continuation lines that may be provided.

2. Debugging statements may be included as part of the source file for a
Fortran program by using D in column 1. If the –D option is selected these
statements become part of the program, otherwise these lines are inter-
preted as comments.

3. A tab character in one of the first six positions of a line signals the end of
the statement number and continuation part of the line. The remaining
characters form the body of the line. If a tab appears elsewhere on a line,
the compiler treats the tab as a blank space.

4. End of line comments are supported. An exclamation point (!) terminates
the source line and anything that follows it is interpreted as a comment.

5. The NAME statement is supported by the compiler. It is equivalent to the
PROGRAM statement. See “PROGRAM and NAME Statements” on page
2-10 for syntax of this statement.

6. The INCLUDE statement is supported by this compiler and allows the user
to include another source file as part of the source for the current program
unit.

7. Symbolic names can be up to 1023 characters long and they may include
underscores and dollar signs as well as lower case letters.

8. There is support for additional data types. These data types are described in
greater detail in “Data Types” on page 2-12.

BYTE
COMPLEX*16
DOUBLE COMPLEX
INTEGER*1
INTEGER*2
LOGICAL*1
LOGICAL*2
REAL*8
B-1

Concurrent Fortran 77 Reference Manual
9. An extension to the IMPLICIT statement allows the user to reset implicit
types by using the IMPLICIT NONE or IMPLICIT UNDEFINED
specification statement. See “IMPLICIT Statement” on page 4-27 for
information about this feature.

10. This implementation allows DATA statements to appear anywhere within
the source of a program unit. More information on DATA statements can be
found in “DATA Statement” on page 4-12.

11. Data initialization clauses are accepted in the declaration statements. See
Chapter 4 for information about the syntax declaration statements using
initialization.

12. The DATAPOOL global data mechanism is supported. Refer to
“DATAPOOL Statement (H)” on page 4-16 for more information.

13. The compiler allows the AUTOMATIC storage class for variables to be allo-
cated on the stack. The STATIC keyword is also accepted. See “AUTO-
MATIC Statement (H)” on page 4-7 and “STATIC Statement (H)” on page
4-37 for details.

14. The CEXTERNAL keyword and a number of C/Fortran string conversion
intrinsics are provided. See “CEXTERNAL Statement (H)” on page 4-8
and “CEXTERNAL Declaration (H)” on page 8-31.

15. The POINTER statement declares a block of variables to be accessed
relative to a base address. For details, see “POINTER Statement (H)” on
page 4-34.

16. The compiler permits single subscripts in EQUIVALENCE statements and
assumes that all missing subscripts are equal to one. The compiler prints a
warning message for each incomplete subscript.

17. Non–integer subscript expressions are accepted by the compiler.

18. Real–valued parameters defined in PARAMETER statements may be used to
dimension arrays.

19. The NAN$ constant intrinsic is available for flagging uninitialized Real
variables with an IEEE–specified signal. For more information, see “Real
Data” on page 2-21.

20. Null character strings are supported by the compiler.

21. Binary, octal, and hexadecimal constants may be specified with a syntax
similar to the Hollerith constant syntax, as well as with the usual single–
quote and double–quotes notation. The new syntax allows users to use con-
stants of unspecified length. Refer to “Binary Data (H)” on page 2-19,
“Octal Data (H)” on page 2-18, and “Hexadecimal Data (H)” on page 2-17
for more information.

22. Hollerith data can be stored as the value of numeric or logical variables and
array elements.

23. New operators, .XOR., .ROTAT., and .SHIFT. have been added. See
“.SHIFT. and .ROTAT. Integer Operators (H)” on page 3-12 and “Logical
Expressions” on page 3-17 for details.
B-2

Non-Standard Extensions to Fortran 77 (H)
24. The logical operators now may be used with integer operands to perform
bitwise logical computations.

25. Logical and integer operators and operands can be mixed. This allows for a
more flexible use of these data types.

26. Multiple assignment statements are supported. Refer to “Multiple Assign-
ment Statements (H)” on page 3-31 for more information.

27. Some additional control constructs are supported. These constructs are
described in more detail in Chapter 5.

28. Namelist directed input/output is supported by this compiler. This allows
symbolic I/O variable selection at run time, making a program more
flexible. This is described in “NAMELIST Statement (H)” on page 4-30
and Chapter 6.

29. List–directed internal READ and WRITE statements are permitted by the
compiler. See “List-Directed I/O Statements” on page 6-7 for details.

30. ACCEPT and TYPE statements are supported. ACCEPT is functionally
similar to READ, and TYPE is functionally similar to WRITE and PRINT.
See Chapter 6 for information about READ and WRITE statements.

31. The u'r direct access format in READ and WRITE statements is also
supported by this compiler.

32. Additional OPEN and INQUIRE keywords are accepted by the compiler.
Some of these keyword perform no function because they have no meaning
in terms of the file structure on this system. Keywords in the following list
that have an asterisk beside them are accepted but ignored; the compiler
issues a warning when they are used.

DO FOR

DO WHILE LOOP

DO UNTIL WHILE

END DO SELECT CASE

ASSOCIATEVARIABLE NAME

* BLOCKSIZE * NOSPANBLOCKS

* BUFFERCOUNT * ORGANIZATION

CARRIAGECONTROL READONLY

DEFAULTFILE * RECORDSIZE

DISP RECORDTYPE

DISPOSE * SHARED

* EXTENDSIZE TYPE

* INITIALSIZE * USEROPEN

MAXREC
B-3

Concurrent Fortran 77 Reference Manual
33. The O and Z format descriptors for octal and hexadecimal output are
supported. The Q and $ descriptors are supported to provide greater control
over formatted input and output.

34. INTERNAL subroutines and functions are supported. See “INTERNAL
Subprograms (H)” on page 8-20 for details.

35. Three special argument list intrinsic functions are supported by the
compiler: %VAL, %REF, %LOC. %VAL passes any argument by value
rather than reference; %REF undoes any %VAL action; and %LOC generates
the address of a variable, resulting in the address of the variable being
passed. See “%VAL, %LOC, and %REF Argument List Intrinsics (H)” on
page 8-5 for a description of these special functions.

36. The %INT1, %INT2, and %INT4 intrinsics, which provide a simple
method of converting between integer variables and constants of different
sizes, are supported. The %LOG1, %LOG2, and %LOG4 intrinsics, which
provide a simple method of converting between logical variables and
constants of different sizes, are also supported. They are all especially use-
ful in argument lists. See “%INT1, %INT2, and %INT4 Integer Size Intrin-
sics (H)” on page 9-9 and “%LOG1, %LOG2, and %LOG4 Logical Size
Intrinsics (H)” on page 9-9 for more information.

37. There are several additional intrinsic functions which are available in the
compiler. See Chapter 9 for a complete listing of all supported intrinsic
functions.

38. Conditional compilation flags may be used to produce different versions of
a program with each version having different capabilities and characteris-
tics. Even if no flags are going to be specified, it is still necessary to specify
the -FLAG option to successfully compile any source which contains
conditional compilation directives. Example:

 INTEGER I, SUM
 SUM =20
 DO 1 I=1,10
 SUM = SUM + I

:SKFS 2
 WRITE (*, 100) I, SUM

100 FORMAT (I2, I3)
:ESKP
1 CONTINUE

 WRITE (*, 101) SUM
101 FORMAT (I3)

 END

The block is controlled by flag number 2. If this flag is on, then the skip condition is true.
The range of statements between the skip statement and the next :ESKP statement are
skipped. If this flag is off, then all statements are compiled and executed.
B-4

C
Appendix CIncompatibilities with Fortran 66

3
3
3

Incompatibilities of Fortran 77 with Fortran 66 are identified in this appendix.

1. The method of specifying alternate return points is significantly different in
Fortran 77. In particular, asterisks in the argument list identify alternate
return dummy arguments, and an integer expression on the RETURN state-
ment identifies which argument is to be used as the return point. In Fortran
66, the corresponding dummy arguments where integer variables, and
whose name appeared on the RETURN statement.

Note that the Fortran 77 return is similar to a computed GO TO, whereas
the Fortran 66 version is similar to an assigned GO TO.

2. A line with all blank characters in columns 1 through 72 is a comment line
and is not interpreted as the initial line of a statement.

3. In Fortran 77, a subscript value for a multi-dimensioned array cannot
exceed its corresponding upper bound declaration. For example,
A(11,1) is not permitted for the array A(10,5).

4. A warning is issued when a symbolic name is explicitly typed more than
once in the same program unit.

5. Data cannot be read directly into an H descriptor field defined in an input
FORMAT statement.

6. A simple input or output list cannot be enclosed in parentheses;
parentheses may be present only as part of an implied-DO. This restriction
avoids any ambiguity if complex constants appear in an I/O list.

7. An entity that is associated with an entity in an input list becomes defined
when the input list entity becomes defined and not after the input statement
completes execution.

8. Fortran 77 always writes a plus (+) or minus (-) sign prior to the exponent
field for an E or D output field.

9. The class of functions in Fortran 77 called intrinsic includes the basic
external function class of Fortran 66. An intrinsic function name used as an
actual argument must appear in an INTRINSIC statement rather than an
EXTERNAL statement.

10. The data type of an intrinsic function cannot be changed by using the name
in an explicit type statement.

11. Intrinsic function names have been added to Fortran 77 that could conflict
with user subprogram names. See Table 9-1 for a list of the intrinsic
functions.
C-1

Concurrent Fortran 77 Reference Manual
12. The range of the arguments and the result of intrinsic functions could be
different in Fortran 77 than they were in Fortran 66. See Chapter 9 for
information on the intrinsic functions.

13. The FIND statement is accepted but has no effect in Concurrent Fortran 77.

14. The RECUR statement is not supported in Concurrent Fortran 77.

15. Fortran 66 allows a negative value for the width (number of positions) for
format specification X. Fortran 77 and ANSI standards prohibit negative
values.

16. The letter specification in an IMPLICIT statement may not be omitted in
Fortran 77.

17. A Fortran 77 external function does not set the condition code register to
reflect the value returned by the function.

18. The syntax used to specify dummy arguments for an ENTRY point is
significantly different. Fortran 66 requires specification of all dummy
arguments within the first statement of the program unit. Fortran 77
requires dummy arguments to be specified on the ENTRY statement.

19. Fortran 77 does not support the DEFINE FILE statement.
C-2

Glossary

This glossary defines terms used in the documentation. Terms in italics are defined here.

access method

A file’s organization which controls the order in which records of the file are
retrieved or written. It is dependent on the properties of the storage medium. Fortran
permits both sequential access and direct access files.

actual argument

A constant, expression or symbolic name appearing in the argument list of a function
reference or subroutine call. Actual arguments are the entities that are specified in
parentheses after the function or subroutine name, when the function or subroutine
is invoked in a program unit. Actual arguments match the order, data type, and
number of dummy arguments defined in the initial statement or entry point of the
subprogram.

argument

See actual argument and dummy argument.

arithmetic assignment statement

An assignment statement that assigns a numeric, logical, character, or Hollerith
value to a numeric variable or array element name.

arithmetic expression

An expression that produces numeric values that are used in an arithmetic context,
such as in an arithmetic assignment statement. Evaluation of an arithmetic
expression results in a single numeric value.

array

A sequence of variables that have the same symbolic name and data type.

array element name

A reference to a single array element consisting of the array name and a subscript
for each dimension of the array.

array assignment statement

An assignment statement that assigns a value to every visible element of an array.
Glossary-1

Concurrent Fortran 77 Reference Manual
assignment statement

An executable statement that assigns a value to a variable or an array element. The
four kinds of assignment statements are arithmetic, character, logical, and state-
ment label assignments (i.e. the ASSIGN statement.).

binary operator

An operator that appears between two operands.

bitwise operation

A logical operation that usually generates faster code than a short-circuit operation.
This operation does not require testing-and-branching which are time-consuming on
modern RISC architectures.

blank common

A common block with no name specified after the keyword COMMON.

built-in function

See intrinsic function.

CHARACTER

The data type of a non-numeric, non-logical value consisting of a fixed-length string
of ASCII characters.

character assignment statement

An assignment statement that assigns a character string value to a variable name or
array element name.

character constant expression

A constant expression in which each primary is a character constant, the symbolic
name of a character constant, or a character constant expression enclosed within
parentheses. The concatenation operator (//) is allowed for character string
concatenation. The intrinsic function, CHAR, when given an integer constant
argument, generates a character constant of length one at compile time; it may be
used to form a character constant expression. Character constant expressions are the
only character expressions that may be used to set character PARAMETER values.

character expression

An expression that results in a value that is a character string.

character string

A data value of fixed length that includes letters, numbers, or special characters.
Glossary-2

Glossary
character string concatenation

An operation in which two or more character string operands are combined into a
single string by appending the right operand to the left operand.

character substring

A contiguous portion of a character string value.

collating sequence

The arrangement of characters in an order such that when two characters are
compared numerically, one character is either less than, equal to, or greater than the
other.

COMPLEX

The data type of a pair of optionally signed real numbers. The first is the real por-
tion of a complex number, and the second is the imaginary portion of a complex
number.

compound arithmetic expression

An arithmetic expression that consists of two or more numeric operands, connected
by arithmetic operators, appearing in an arithmetic context.

compound character expression

A character expression that consists of two or more operands connected by the
character concatenation operator (//), appearing in a character context.

constant

A syntactical element with a fixed value that is not subject to change. A constant can
be a signed or unsigned number, a logical value, a literal character string, or a
Hollerith string.

constant expression

A simple or compound arithmetic expression that contains only constants. An
expression used in a specification statement (e.g., as an array declarator in a
COMMON, DATAPOOL, AUTOMATIC, STATIC, DIMENSION, or explicit type state-
ment) must be an integer constant expression; i.e., variable names, array element
names, or function references are not permitted, and the resulting data type of the
expression must be an integer.

continuation line

A line after the initial line that holds part of a statement.
Glossary-3

Concurrent Fortran 77 Reference Manual
current record

The record at which a file is currently positioned for reading or writing. If the file is
positioned at the initial or terminal point, there is no current record.

data type

The kind of data a symbolic name represents, as well as the storage limits and, for
numeric quantities, the precision. The maximum and minimum size for data of a
particular type and the accuracy limits on the data depend on the storage unit sizes
defined for the data type. Data types include character, integer, logical, real, and
complex.

direct access

The file access method in which uniquely numbered, fixed-length records may be
written or read in any order.

DOUBLE COMPLEX

The data type of a pair of double precision numbers. The first is the real portion of a
double precision complex number, and the second is the imaginary portion of a
double precision complex number.

DOUBLE PRECISION

The data type of an optionally signed real number that is stored with a greater
degree of accuracy than a single precision real number. Double precision numbers
are stored in eight-byte form (with a 55-bit mantissa).

dummy argument

A constant, expression or symbolic name appearing in the argument list of a
subprogram definition or entry statement. Dummy arguments represent the correct
order, data type, and total number of actual arguments that are passed to the
subprogram when the subprogram is invoked. All dummy arguments must be
variable names or unsubscripted array names (i.e., no constants, expressions, or
subscripted array names are permitted). The length and data type of each dummy
argument are defined explicitly in an explicit type statement in the subprogram or
implicitly by the first character of the name.

executable statement

A statement that specifies actions to be performed and is identified by Fortran key-
words.

expression

An operand and possibly some operators that represent a value. The Fortran
language permits arithmetic, character, relational, and logical expressions.
Glossary-4

Glossary
external file

A file read from or written to an external device (e.g., a line printer, magnetic tape
drive, magnetic disk drive, etc.). An external file can be empty.

external function

A function supplied by the user.

file

A collection of records. It is external or internal.

flow-of-control context

The context in which a value is interpreted within a decision or control situation--for
example, the logical expression of IF and WHILE statements.

format specification

An entity that defines the size of input and output fields, what type of data is being
read or written (numeric, character, Hollerith, or logical) and how the data is to be
edited in formatted I/O statements.

formatted I/O

A form of I/O that edits records on both input and output and requires a format
specification in the I/O statement.

free-format I/O

See list-directed I/O.

function

A subprogram with a defined data type. It is invoked when its name, followed by
any arguments in parentheses, is referenced or used in an expression where the value
of the function is needed. It includes intrinsic functions, statement functions, and
external functions.

Hollerith constant

A non-empty string of characters. Hollerith constants may appear only in a DATA
statement, a FORMAT statement, and during assignment to numeric variables.

host subprogram

A subprogram that contains an internal subprogram.

initial point

The position just before the first record of a file.
Glossary-5

Concurrent Fortran 77 Reference Manual
INTEGER

The data type of an optionally signed whole number containing no fractional portion
and no decimal point. Integers are stored in one-byte, two-byte, or four-byte form.

internal file

A character variable, character array, character array element name, or character
substring used to transfer data from one location in memory to another location in
memory and is used to convert data from one form to another (e.g., from numeric to
character form).

internal subprogram

A subprogram defined within and visible only within the body of a host
subprogram. It must not contain other internal subprograms. It may have arguments
and may make uplevel references to variables that are visible within the host
subprogram without additional declarations.

intrinsic function

A function supplied with the Fortran compiler.

keyword

A syntactical element that identifies a Fortran statement (e.g., DO, FORMAT, IF,
STOP, etc.) or is a separator in a Fortran statement (e.g., THEN, etc.). A keyword
identifying a Fortran statement is usually the first word of the statement. Whether a
particular sequence of characters represents a keyword or a symbolic name is
implied by context. Fortran keywords have no abbreviated forms.

list-directed I/O

A form of sequential access I/O that permits data on one or more records to be read
or written until all items in an input or output list are satisfied. List-directed I/O
statements do not require a FORMAT statement. Data editing is performed by the
compiler and cannot be changed by the user.

LOGICAL

The data type of a value representing the logical or boolean concept true or false.
Logicals are stored in one-byte, two-byte, or four-byte form.

logical assignment statement

An assignment statement that assigns a logical value of .TRUE. or .FALSE. to a
variable name or array element name.

logical expression

An expression that expresses a logical computation that produces a single result of
type logical with a value of true or false. A logical expression contains a single
logical operand, or two or more logical operands connected by logical operators.
Glossary-6

Glossary
mixed mode arithmetic expression

An arithmetic expression that contains a mixture of operands with different numeric
data types. In a mixed mode expression, as each subexpression within the expres-
sion is evaluated, the resulting mode is that of the operand with the highest ranking
data type.

multiple assignment statement

An assignment statement that assigns a value to more than one variable, array
element name, or array.

namelist-directed I/O

A form of sequential I/O that reads or writes a series of data records from a specified
unit. Each series begins with a header block and ends with a terminating block. Each
record may contain a list of variable-name/value specifications, causing the variable
to assume the specified value. Variables that may be updated in this manner are
defined in a NAMELIST statement.

next record

The record just after the current record. If the last record is the current record or if
the file is positioned at the terminal point, there is no next record. If a file is
positioned at its initial point, the first record is the next record.

non-executable statement

A statement that is a directive to the compiler. It describes the characteristics and
arrangement of input data, sets the initial values for variables and array elements,
indicates input and output editing information, defines and classifies program units,
or specifies entry points in subprograms.

operand

A variable, array element name, or constant that is acted upon by an operator.

operator

A syntactical element that acts upon operands that are symbolic names and
constants. A mnemonic or special character used in Fortran expressions to perform
arithmetic computations, to concatenate character strings, or to perform relational
and logical comparisons.

parameter

1) A constant with a symbolic name specified with the PARAMETER statement. 2)
See argument.
Glossary-7

Concurrent Fortran 77 Reference Manual
preceding record

The record just before the current record. If the first record is the current record or if
the file is positioned at its initial point, there is no preceding record. If the file is
positioned at its terminal point, the last record of the file is the preceding record.

program unit

A main program or a subprogram.

REAL

The data type of an optionally signed real number containing an integer part or a
fractional part, or both. Numbers of type real are stored in four-byte or eight-byte
form.

record

A sequence of one or more data values transferred by an I/O statement. The length
of a record is the number of bytes (i.e., characters) in the record.

reference

A use of a function in an expression where the value of the function is needed.

relational expression

An expression that compares the resultant values of two arithmetic expressions or of
two character expressions. A mixture of character and arithmetic operands is not
permitted. The arithmetic or character expression is a simple or compound expres-
sion.

scope

The extent of visibility. Symbolic names with global scope represent one entity in all
program units throughout the entire source program. Symbolic names with local
scope represent one entity in a single program unit, but the same name can represent
another entity in another program unit.

sequential access

The file access method in which variably lengthed records are written one after the
other and are read in the order in which they were written. The records are either all
formatted or all unformatted.

short-circuit operation

An .AND. or .OR. operation that avoids evaluating both operands when evalua-
tion of the first operand determines the final result. Short-circuiting requires
testing-and-branching; the overhead of short-circuiting may be prohibitive on
modern RISC architectures if the cost of evaluating each operand is small.
Glossary-8

Glossary
simple arithmetic expression

An arithmetic expression that consists of one operand. The operand can be a
numeric constant or the symbolic name of a constant, a numeric variable name, a
numeric array element name, or a numeric function reference.

simple character expression

A character expression that consists of a single operand: one character constant or
the symbolic name of a character constant, one character variable, one character
array element name, or one character function reference.

source program

One or more program units containing Fortran statements and optional comments.

specification statement

A statement that defines the data types of symbolic names, declares the storage
requirements of variables and arrays, defines initial values for variables and array
elements, specifies the dimensions of arrays, defines program entities that are
known globally throughout the source program among all program units, and gives
symbolic names to arithmetic, character, and logical constants. Specification state-
ments are non-executable and have no effect during the execution of the source
program.

specifier

An I/O control list value that must be specified in a particular position in the list of
control information or denotes a specification in keyword form keyword=value. See
also format specification.

statement function

A one-statement function that is written by the user and that pertains only to the
program unit in which it is defined.

statement label

A syntactical element that identifies the initial line of a statement. It is one to five
decimal digits appearing anywhere in columns 1 through 5 of the initial line of a
fixed format statement. Zero is not a valid statement label. Statement labels provide
a point of reference so that another statement within the program unit can refer to
the labeled statement.

storage association

When two or more storage sequences share one or more memory locations. Storage
sequences are totally associated if they share the same memory locations. Storage
sequences are partially associated if they share one or more, but not all, memory
locations.
Glossary-9

Concurrent Fortran 77 Reference Manual
storage sequence

A collection of contiguous memory locations. A COMMON declaration, and the
individual elements of an array, form storage sequences.

subprogram

A program unit, independent of the main program, that is either written by the user
or supplied with the Fortran compiler. Subprograms are classified as functions, sub-
routines, or block data.

subroutine

A subprogram that is invoked with a CALL statement and returns zero or more
values for use by the calling program unit.

substring

A single character in a character string, a subset of contiguous characters in a
character string, or the entire character string in duplicate.

symbolic name

A syntactical element that identifies a user-defined entity, such as a variable, named
constant, subprogram name, or COMMON block name. It consists of 1 to 1023 letters,
digits, dollar signs, or underscores, the first of which must be a letter.

terminal point

The position just after the last record of a file.

truth value

The value of a logical expression. Depending on the implementation, one or more
values may represent a true truth value or a false truth value.

unary operator

An operator that appears before its one operand.

unformatted I/O

A form of I/O that reads or writes records that consist of binary data; each record is
a string of binary digits. No data translation or editing is performed; thus, a format
specification is not specified.

unit

A number used in I/O statements that is associated with a file name.

uplevel reference

A reference to a host subprogram’s variable from one of its internal subprograms.
Glossary-10

Glossary
user-defined function

See external function.

variable

A symbolic name with a specific data type. The name of a variable refers to a
location in memory where a data value is stored or is to be stored. Referencing a
variable means that the variable is used in a context where its value is needed.

value-producing context

The right-hand side of an assignment statement or an operand of an arithmetic
operator.
Glossary-11

Concurrent Fortran 77 Reference Manual
Glossary-12

Index
Symbols

! 4-17
- 3-3
! comment character 2-7
comment character 2-5, 2-6
#pragma directive 2-6, 2-9
%INT1 integer size conversion intrinsic 9-9
%INT2 integer size conversion intrinsic 9-9
%INT4 integer size conversion intrinsic 9-9
%LOC argument list intrinsic 8-5
%LOG1 logical size conversion intrinsic 9-9
%LOG2 logical size conversion intrinsic 9-9
%LOG4 logical size conversion intrinsic 9-9
%REF argument list intrinsic 8-5, 8-16
%VAL argument list intrinsic 8-5, 8-16, 8-31, 8-32
& 2-5
* 2-5, 2-6, 3-3, 4-2, 4-12, 6-10, 6-15, 6-24
** 3-3
+ 3-3
.AND. 3-18
.EQ. 3-16
.EQV. 3-18
.FALSE. 2-27, 3-17
.GE. 3-16
.GT. 3-16
.LE. 3-16
.LT. 3-16
.NE. 3-16
.NEQV. 3-18
.NOT. 3-18
.OR. 3-18
.ROTAT. 3-12
.SHIFT. 3-12
.TRUE. 2-14, 2-27, 3-17
.XOR. 3-18
/ 3-3
// 3-14

A

ACCEPT statement 6-1

Access method 6-5, GL-1
direct 6-5, GL-4
sequential 6-5, GL-8

Actual arguments 2-37, 8-4, GL-1
Adjustable dimensions 8-2
Argument association 8-5
Argument lists 8-28

intrinsic functions 8-16
Arguments 2-37, 8-2, GL-1

actual 2-37, GL-1
dummy 2-37, GL-4
passing by value 8-31

Arithmetic assignment statement 3-10, GL-1
Arithmetic assignments 3-1
Arithmetic expressions 3-1, 3-25, GL-1

examples 3-4
use of 3-25

Arithmetic operators 3-2
- 3-3
* 3-3
** 3-3
+ 3-3
/ 3-3
precedence of 3-3

Array assignment statement GL-1
Array element name 2-34, GL-1
Arrays 2-31, GL-1

assignment statements 3-33
assumed-size 8-3
declaring 2-32
initialization 2-36
referencing 2-34
storage A-1

ASSIGN statement 3-30
Assigned GO TO 5-19
Assignment statements GL-2

arithmetic 3-10, GL-1
array 3-33
character 3-14, GL-2
logical 3-21, GL-6
multiple 3-31

Assignments
arithmetic 3-1
logical 3-16
relational 3-16
Index-1

Concurrent Fortran 77 Reference Manual
Association of symbolic names 2-38
Assumed-size array declarations 8-3
AUTOMATIC statement 4-7
Automatic storage class 1-2

B

BACKSPACE statement 6-47
Based variable 4-34
Binary constants

initialization by 4-13
Binary data 2-19
Binary operator 3-2, GL-2
Bitwise operation 3-22, GL-2
Blank COMMON 4-9, GL-2
Blank lines 2-7
BLOCK DATA statement 8-23
Block IF 5-22
Built-in functions 8-7, GL-2
BYTE 1-2

C

C comment character 2-5, 2-6, 4-17
c.install 10-2
CALL statement 8-15
Calling C functions directly 8-31
CASE DEFAULT statement 5-30
CASE statement 5-28
CEXTERNAL statement 1-2, 4-8, 8-31
CHARACTER GL-2
Character assignment statements 3-14, GL-2
Character constant expression 3-2, GL-2
Character data 2-28

input 7-15
output 7-15

Character declarations 4-2
Character expressions 3-13, 3-25, GL-2, GL-3

use of 3-25
Character format specifications 7-6
Character set 2-1
CHARACTER statement 4-2
CHARACTER statements in subprograms 8-6
Character string GL-2
Character string operations 3-14
Character substrings 2-35, GL-3, GL-10
CLOSE statement 6-41
CNAN$ 2-25
Collating sequence 2-2, GL-3
Comment character

! 2-7, 4-17
2-5, 2-6
* 2-5, 2-6
C 2-5, 2-6, 4-17

Comments 2-6
COMMON

blank 4-9, GL-2
Common blocks 8-26
COMMON statement 4-9
Comparisons

logical 3-16
relational 3-16

Compilation 10-1
Compiler 1-1
Compiler arguments 10-7
Compiler input files 10-6
Compiler options 10-7

-col132 2-4, 2-6
-D B-1
-FLAG 10-7, B-4
-g 10-12
-i2 2-14, 9-8
-lposix9 9-10
-Nt 4-2, 4-3
-Qalign_double 8-35
-Qlogical_true_is_nonzero 3-24
-Qno_short_circuit 3-23, 3-24
-uns_int1 2-13
-V 2-27, 3-23, 3-24, 10-11
-VAX 2-27, 3-23, 3-24, 10-11

COMPLEX GL-3
Complex data 2-25
COMPLEX statement 4-5
Component information 2-1
Compound arithmetic expressions 3-1, GL-3
Computed GO TO 5-18
Concatenation 3-14, GL-3
Concatenation operator

// 3-14
Conditional compilation 10-7
Constant arithmetic expressions 3-2
Constant expressions GL-3

arithmetic 3-2
Constants 2-3, 2-15, GL-3
Continuation character

& 2-5
Continuation field 2-5
Continuation lines 2-4, GL-3
CONTINUE statement 5-8
Control information list 6-8
Control statements 5-1
Conversion of Hollerith data 4-13
Converting character arguments 8-32
CTOF77STR 8-32
Index-2

Index
Current record GL-4

D

D debugging character 2-5, 2-7
Data

binary 2-19
character 2-28
complex 2-25
double complex 2-26
double precision 2-23
hexadecimal 2-17
Hollerith 2-30
integer 2-20
logical 2-27
octal 2-18
real 2-21

Data constants 2-15
Data representations 8-25
DATA statement 4-12
Data type conversions

mixed modes 3-5
Data types 2-12, 2-30, GL-4

default lengths 2-14
Datapool 8-26

area defining 4-16
dictionary generating 4-18
referencing 4-18

DATAPOOL statement 1-2, 4-16
Debugging character

D 2-5, 2-7
Debugging lines 2-7
Declarations

array 2-32
character 4-2
logical 4-4
numeric 4-5

Default lengths for data types 2-14
Defining a datapool area 4-16
Definition status 2-37
DIMENSION statement 4-20
Direct access 6-5, GL-4
Direct access I/O statements 6-31
DNAN$ 2-23
DO loop 5-1
DO WHILE statement 5-12
DO-END DO 5-12
DOUBLE COMPLEX 1-2, GL-4
Double complex data 2-26
DOUBLE COMPLEX statement 4-5
DOUBLE PRECISION GL-4
Double precision data 2-23

DOUBLE PRECISION statement 4-5
double-precision 1-2
DO-UNTIL statement 5-11
Dummy

arguments 2-37, 8-2, GL-4
arrays 8-2
procedures 8-4

DWARF 10-1, 10-2

E

Editing descriptors 7-7
ELF 10-1, 10-2
ELSE statement 5-30
END DO statement 5-12
END IF 5-4, 5-22
END SELECT statement 5-31
END specifier 6-9
END statement 2-10
END WHILE statement 5-33
ENDFILE statement 6-3, 6-48
Enhancements 1-1
ENTRY statement 8-17
Environment variable 10-9

f77_dump_flag 10-9
F77INCLPATH 10-10
fortunit 10-10
LD_BIND_NOW 10-10
LD_LIBRARY_PATH 10-10
LD_RUN_PATH 10-10
SHELL 10-10
STATIC_LINK 10-10
TARGET_ARCH 10-11

EQUIVALENCE statement 4-22
ERR specifier 6-9
errno 8-35
Error messages

I/O library 6-11
Executable

static 10-10
Executable statement 2-3, GL-4
Execution sequence 2-9
EXIT DO statement 5-13
EXIT FOR statement 5-16
EXIT IF statement 5-23
EXIT LOOP statement 5-25
EXIT WHILE statement 5-35
Exponentiation rules 3-5
Expressions GL-4

arithmetic 3-1
character 3-13, GL-3
character constant 3-2
Index-3

Concurrent Fortran 77 Reference Manual
compound arithmetic 3-1, GL-3
constant GL-3
constant arithmetic 3-2
logical 3-17, 3-22
mixed-mode 3-9
overview 3-1
relational 3-16, GL-8
simple arithmetic 3-1, GL-9
simple character 3-13, GL-9
simple logical 3-22

Extensions 1-1
External files 6-3, GL-5
External function 8-9, GL-5

referencing 8-12
EXTERNAL statement 4-26

F

f77_dump_flag environment variable 10-9
F77INCLPATH 2-8
F77INCLPATH environment variable 10-10
F77TOCSTR 8-32
F77TOCSTR_TRIM 8-32
Field

continuation 2-5
identification 2-6
statement 2-6
statement label 2-5

File 6-3, GL-5
external 6-3, GL-5
internal 6-3, 6-6, GL-6

File format
ELF 10-1, 10-2

File organization 6-5
File position 6-5

current record 6-5
initial point 6-5, GL-5
next record 6-6, GL-7
preceding record 6-5, GL-8
terminal point 6-5, GL-10

Flow-of-control context 3-22, GL-5
FLUSH statement 6-46
FMT specifier 6-10
Format specifications GL-5

stored as character entities 7-6
stored as Hollerith entities 7-6

Format specifier 7-1
FORMAT statement 7-6
Formatted I/O 7-1, GL-5
Formatted I/O statements 6-7
Fortran 66

incompatibilities with C-1

Fortran character set 2-1
Fortran library 9-1
Fortran statements 2-3
fortunit environment variable 10-10
Free-format I/O GL-5
Function return type declaration 8-31
FUNCTION statement 8-9
Functions 8-1, 9-1, GL-5

built-in 8-7, GL-2
external 8-9, GL-5
intrinsic 8-7, GL-6
user-defined 8-9, GL-11

G

General component information 2-1
Generating a datapool dictionary 4-18
Generic names 9-2
GO TO

assigned 5-19
computed 5-18
unconditional 5-17

GO TO statement 5-17
Group specification 7-3

H

Hexadecimal data 2-17
hf77 compiler 1-1
hf77 intrinsic functions

summary 9-3
Hollerith constant GL-5
Hollerith data 2-30

conversion of 4-13
input 7-16
output 7-16

Host subprogram 8-1, 8-6, GL-5

I

I/O 8-29
I/O library error messages 6-11
I/O lists 6-15
I/O statements

reading 6-1
writing 6-1

Identification field 2-6
Identifier 2-2
Index-4

Index
IF
block 5-22
logical 5-21

IF block
execution of 5-4

IF statement 5-20
IMPLICIT statement 4-27
Implied-DO in data statements 4-14
Implied-DO lists 6-17
Include lines 2-8, 10-10
Initialization of arrays at compile time 2-36
Initialization of binary constants 4-13
Initialization of variables at compile time 2-36
Input 6-1
Input lists 6-16
Input of character data 7-15
Input of Hollerith data 7-16
Input using internal files 6-6
INQUIRE statement 6-42
INTEGER GL-6
Integer data 2-20
Integer operator

.ROTAT. 3-12

.SHIFT. 3-12
Integer size intrinsics 9-9
INTEGER statement 4-5
Inter-language

linking 10-11
procedure interface 8-25

Internal files 6-3, 6-6, GL-6
Internal subprogram 8-1, 8-6, 8-20, GL-6
Intrinsic functions 8-7, 9-1, GL-6

argument list 8-16
integer size 9-9
logical size 9-9

INTRINSIC statement 4-29
IOSTAT specifier 6-11

K

Keywords 2-2, GL-6

L

Language extensions 1-1
ld 10-10, 10-11
LD_BIND_NOW environment variable 10-10
LD_LIBRARY_PATH environment variable 10-10
LD_RUN_PATH environment variable 10-10
Library

math 10-12
Library functions 9-10

POSIX 9-10
Lines 2-4

blank 2-7
continuation 2-4, GL-3
debugging 2-7
include 2-8

Linking 10-10
mixing C and Fortran 10-11

List-directed I/O GL-6
List-directed I/O statements 6-7
List-directed input data records

format of 6-24
List-directed output records

format of 6-26
LOGICAL GL-6
LOGICAL *1 1-2
Logical assignment statements 3-21, GL-6
Logical assignments 3-16
Logical comparisons 3-16
Logical data 2-27
Logical declarations 4-4
Logical expressions 3-17, 3-22, 3-25, GL-6

use of 3-25
Logical IF 5-21
Logical implementation 3-22

Default 3-23
logical_true_is_nonzero 3-24
No_short_circuit 3-24
VAX 3-24

Logical operations
using integer operands 3-20

Logical operator
.AND. 3-18
.EQV. 3-18
.NEQV. 3-18
.NOT. 3-18
.OR. 3-18
.ROTAT. 3-12
.SHIFT. 3-12
.XOR. 3-18

Logical size intrinsics 9-9
LOGICAL statement 4-4
LOOP statement 5-24

M

Malloc(3F) 4-34
Math library 10-12
Mixed assignments 3-26
Mixed-mode arithmetic expressions 3-5, GL-7
Index-5

Concurrent Fortran 77 Reference Manual
Mixed-mode expressions 3-9
Multiple assignment statement GL-7
Multiple assignment statements 3-31

N

NAME statement 2-10
Namelist specifier 6-14
NAMELIST statement 4-30
Namelist-directed I/O GL-7
Namelist-directed I/O statements 1-2, 6-8
Namelist-directed input data records

syntax rules 6-29
Namelist-directed READ 6-28
Names 9-2
NaN 2-22, 2-23, 2-25, 2-26
NAN$ 2-22
Nested DO loops 5-3
Nested IF blocks 5-5
No_short_circuit implementation 3-24
Non-executable statements 2-3, GL-7
Non-standard extensions B-1
Numeric declarations 4-5

O

Object file format
ELF 10-1, 10-2

Octal data 2-18
OPEN statement 6-36
Operand GL-7
Operator 2-2, GL-7

- 3-3
* 3-3
** 3-3
+ 3-3
.AND. 3-18
.EQ. 3-16
.EQV. 3-18
.GE. 3-16
.GT. 3-16
.LE. 3-16
.LT. 3-16
.NE. 3-16
.NEQV. 3-18
.NOT. 3-18
.OR. 3-18
.ROTAT. 3-12
.SHIFT. 3-12
.XOR. 3-18

/ 3-3
// 3-14
binary 3-2, GL-2
precedence 3-26
unary 3-2, GL-10

Options
compiler 10-7

Output 6-1
Output lists 6-16
Output of character data 7-15
Output of Hollerith data 7-16
Output using internal files 6-6

P

Packing rules
C structure 8-35

Parameter GL-7
PARAMETER statement 4-32
Passing arguments by value 8-31
PAUSE statement 5-26
Placing a dictionary in shared memory 4-19
POINTER statement 4-34
Pointer variable 4-34
POSIX library functions 9-10
Precedence of arithmetic operators 3-3
Primitive system types 8-35
PRINT statement 6-1, 6-21, 6-26
Procedure names 8-25
Program

source 2-1, GL-9
PROGRAM statement 2-10
Program unit 2-1, GL-8
Program unit structure 2-8
PUNCH statement 6-1

R

READ statement 6-1, 6-19, 6-22, 6-24, 6-28, 6-32, 6-34
REAL GL-8
Real data 2-21
REAL statement 4-5
REC specifier 6-14
Record 6-3, GL-8

current GL-4
Reference GL-8

datapool 4-18
external function 8-12
statement functions 8-8
uplevel 8-2, 8-6, 8-20, GL-10
Index-6

Index
Referencing an array 2-34
Relational assignments 3-16
Relational comparisons 3-16
Relational expressions 3-16, GL-8
Relational operator

.EQ. 3-16

.GE. 3-16

.GT. 3-16

.LE. 3-16

.LT. 3-16

.NE. 3-16
Repetition factor 7-4
RETURN statement 8-19
Return values 8-28
REWIND statement 6-49
Routines 9-1
Rules

exponentiation 3-5

S

SAVE statement 4-36
Scaling factor 7-5
Scope 2-11, GL-8
SELECT CASE statement 5-7, 5-27
Sequential access 6-5, GL-8
Sequential I/O statements 6-18
Shared memory

dictionary placement 4-19
Shared memory interface 4-10
SHELL environment variable 10-10
Short-circuit operation 3-22, GL-8
Simple arithmetic expressions 3-1, GL-9
Simple character expressions 3-13, GL-9
Simple logical expressions 3-22
Simulated structures 8-33
Sizeofblock(3F) 4-34
Source program 2-1, GL-9
Special characters

treatment of 2-2
Specific names 9-2
Specification statements 4-1, GL-9
Specifier GL-9

END 6-9
ERR 6-9
FMT 6-10
format 7-1
IOSTAT 6-11
namelist 6-14
REC 6-14
UNIT 6-15

Standard violations 1-3

Statement field 2-6
Statement functions GL-9

definitions 4-38
referencing 8-8

Statement label 2-2, GL-9
Statement labels field 2-5
Statement number 2-2
Statements 2-3

ASSIGN 3-30
AUTOMATIC 4-7
BACKSPACE 6-47
BLOCK DATA 8-23
CALL 8-15
CASE 5-28
CASE DEFAULT 5-30
CEXTERNAL 4-8, 8-31
CHARACTER 4-2
CLOSE 6-41
COMMON 4-9
COMPLEX 4-5
CONTINUE 5-8
control 5-1
DATA 4-12
DATAPOOL 4-16
DIMENSION 4-20
DO WHILE 5-12
DOUBLE COMPLEX 4-5
DOUBLE PRECISION 4-5
DO-UNTIL 5-11
ELSE 5-30
END 2-10
END DO 5-12
END SELECT 5-31
END WHILE 5-33
ENDFILE 6-48
ENTRY 8-17
EQUIVALENCE 4-22
executable 2-3, GL-4
EXIT DO 5-13
EXIT FOR 5-16
EXIT IF 5-23
EXIT LOOP 5-25
EXIT WHILE 5-35
EXTERNAL 4-26
FLUSH 6-46
FORMAT 7-6
formatted I/O 6-7
free-format I/O 6-7
FUNCTION 8-9
GO TO 5-17
IF 5-20
IMPLICIT 4-27
INCLUDE 4-19
INQUIRE 6-42
Index-7

Concurrent Fortran 77 Reference Manual
INTEGER 4-5
INTRINSIC 4-29
list-directed I/O 6-7
LOGICAL 4-4
LOOP 5-24
NAME 2-10
NAMELIST 4-30
namelist-directed I/O 6-8
non-executable 2-3, GL-7
OPEN 6-36
overview 3-1
PARAMETER 4-32
PAUSE 5-26
POINTER 4-34
PRINT 6-1, 6-21, 6-26
PROGRAM 2-10
READ 6-1, 6-19, 6-22, 6-24, 6-28, 6-32, 6-34
REAL 4-5
RETURN 8-19
REWIND 6-49
SAVE 4-36
SELECT CASE 5-7, 5-27
specification 4-1, GL-9
STATIC 4-37
STOP 5-32
SUBROUTINE 8-13
unformatted I/O 6-7
VOLATILE 4-40
WHILE 5-33
WRITE 6-1, 6-20, 6-23, 6-26, 6-31, 6-33, 6-35

Static executable 10-10
STATIC statement 4-37
STATIC_LINK environment variable 10-10
stderr 5-32, 6-4
stdin 6-4
stdout 6-4
STOP statement 5-32
Storage alignment 2-15
Storage association 4-10, GL-9
Storage sequence 4-10, GL-10
String conversion intrinsics

CTOF77STR 8-32
F77TOCSTR 8-32
F77TOCSTR_TRIM 8-32

Subprogram 2-1, 8-1, GL-10
CHARACTER statements 8-6
host 8-1, 8-6, GL-5
internal 8-1, 8-6, 8-20, GL-6

Subroutine GL-10
SUBROUTINE statement 8-13
Substrings

character 2-35, GL-3, GL-10
referencing for array elements 2-36
referencing for variables 2-35

Symbolic names 1-1, 2-2, 2-11, GL-10
association of 2-38

Syntactical elements
constants 2-3, GL-3
keywords 2-2, GL-6
operators 2-2, GL-7
statement labels 2-2, GL-9
symbolic names 2-2

System error messages 8-35

T

T editing descriptor 1-3
Tab 2-5, 2-6
TARGET_ARCH environment variable 10-11
Terminology 2-8
TL editing descriptor 1-3
Treatment of uppercase and special characters 2-2
Truth value 2-27, 3-22, GL-10
TYPE statement 6-1
Types

data 2-12, GL-4

U

Unary operator 3-2, GL-10
Unconditional GO TO 5-17
Unformatted I/O GL-10
Unformatted I/O statements 6-7
UNIT specifier 6-15
Units 6-4, GL-10
Uplevel reference 8-2, 8-6, 8-20, GL-10
Uppercase

treatment of 2-2
User-defined functions 8-9, GL-11
User-defined subroutines 8-13

V

Value-producing context 3-22, GL-11
Variables 2-30, GL-11

defined 2-37
initialization 2-36
undefined 2-37

Vertical format control 6-4
Violations of the standard 1-3
VOLATILE statement 4-40
Index-8

Index
W

WHILE statement 5-33
WRITE statement 6-1, 6-20, 6-23, 6-26, 6-31, 6-33,

6-35

Z

ZNAN$ 2-26
Index-9

Concurrent Fortran 77 Reference Manual
Index-10

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

Pow
erM

A
X O

S

hf77 Fortran
Reference Manual

0890240

Progr

	Concurrent Fortran 77 Reference Manual
	Preface
	Contents
	Appendix A Array Storage
	Appendix B Non-Standard Extensions to Fortran 77 (H)
	Appendix C Incompatibilities with Fortran 66
	Glossary
	Index

	Introduction
	Overview
	Language Extensions
	Enhancements (H)
	Violations of the Standard
	T and TL Formats (H)

	Source Program Components
	General Component Information
	Fortran Character Set
	Treatment of Uppercase and Special Characters
	Collating Sequence

	Syntactical Elements of the Language
	Fortran Statements
	Lines
	Statement Label Field
	Continuation Field
	Statement Field
	Identification Field

	Comments
	Blank Lines
	Debugging Lines (H)
	#pragma Lines (H)
	Include Lines (H)
	Program Unit Structure and Terminology
	Execution Sequence
	PROGRAM and NAME Statements
	END Statement

	Symbolic Names
	Data Types
	Default Lengths for Data Types
	Storage Alignment

	Data Constants
	Hexadecimal Data (H)
	Octal Data (H)
	Binary Data (H)
	Integer Data
	Real Data
	Double Precision Data
	Complex Data
	Double Complex Data (H)
	Logical Data
	Character Data
	Hollerith Data
	Variables
	Arrays
	Declaring an Array
	Referencing an Array

	Character Substrings
	Substring Referencing for Variables
	Substring Referencing for Array Elements

	Initialization of Variables and Arrays at Compile Time
	Arguments
	Definition Status
	Association of Symbolic Names

	Expressions and Assignment Statements
	Expressions and Statements Overview
	Arithmetic Expressions and Assignments
	Simple and Compound Arithmetic Expressions
	Constant Arithmetic Expressions
	Character Constant Expression
	Arithmetic Operators
	Precedence of Arithmetic Operators
	Examples of Arithmetic Expressions
	Exponentiation Rules
	Data Type Conversions (Mixed Modes)
	Arithmetic Assignments
	.SHIFT. and .ROTAT. Integer Operators (H)

	Character Expressions and Assignments
	Character Expressions
	Character String Operations
	Character Assignments

	Relational and Logical Comparisons and Assignments
	Relational Expressions
	Logical Expressions
	Logical Operations Using Integer Operands (H)
	Logical Assignments
	Implementation of the LOGICAL Data Type (H)
	Default Implementation (H)
	VAX Implementation (H)
	logical_true_is_nonzero Implementation (H)
	no_short_circuit Implementation (H)

	Use of Arithmetic, Character, and Logical Expressions
	Summary of Mixed Assignments and Operator Precedence
	ASSIGN Statement
	Multiple Assignment Statements (H)
	Array Assignment Statements (H)

	Specification Statements
	General Specification Statements
	Character Declarations
	Logical Declarations
	Numeric Declarations
	AUTOMATIC Statement (H)
	CEXTERNAL Statement (H)
	COMMON Statement
	Shared Memory Interface (H)

	DATA Statement
	Conversion of Hollerith Data
	Initialization by Numeric Constants (H)
	Implied-DO in Data Statements
	DATAPOOL Statement (H)
	Defining a Datapool Area (H)
	Generating a Datapool Dictionary (H)
	Referencing a Datapool (H)
	Placing a Dictionary in Shared Memory (H)

	DIMENSION Statement
	EQUIVALENCE Statement
	EXTERNAL Statement
	IMPLICIT Statement
	INTRINSIC Statement
	NAMELIST Statement (H)
	PARAMETER Statement
	POINTER Statement (H)
	SAVE Statement
	STATIC Statement (H)
	Statement Function Definitions
	VOLATILE Statement (H)

	Control Statements
	General Description
	Execution of a DO Loop
	Nested DO Loops
	Execution of an IF Block
	Nested IF Blocks
	Execution of a SELECT CASE Construct (H)
	CONTINUE Statement
	DO Statements
	Simple DO
	DO-UNTIL (H)
	DO WHILE (H)
	EXIT DO (H)

	FOR Statements (H)
	FOR (H)
	EXIT FOR (H)

	GO TO Statements
	Unconditional GO TO
	Computed GO TO
	Assigned GO TO

	IF Statements
	Arithmetic IF
	Logical IF
	Block IF
	EXIT IF (H)

	LOOP Statements (H)
	LOOP (H)
	EXIT LOOP (H)

	PAUSE Statement
	SELECT CASE Statements (H)
	SELECT CASE (H)
	CASE (H)
	CASE DEFAULT or ELSE (H)
	END SELECT (H)

	STOP Statement
	WHILE Statements (H)
	WHILE (H)
	EXIT WHILE (H)

	Fortran Input/Output
	General Fortran I/O Information
	Records
	External and Internal Files
	Units
	Vertical Format Control
	File Organization
	Sequential Access
	Direct Access

	File Position

	Input and Output Using Internal Files
	I/O Statements for Reading and Writing
	Formatted I/O Statements
	Unformatted I/O Statements
	List-Directed I/O Statements
	Namelist-Directed I/O Statements (H)

	Control Information List
	END Specifier
	ERR Specifier
	Format Specifier
	IOSTAT Specifier
	I/O Library Error Messages

	Namelist Specifier (H)
	REC Specifier
	UNIT Specifier

	Input/Output Lists
	Input Lists
	Output Lists
	Implied-DO Lists

	Sequential I/O Statements
	Formatted Sequential READ
	Formatted Sequential WRITE
	Formatted PRINT
	Unformatted Sequential READ
	Unformatted Sequential WRITE
	List-Directed READ
	Format of List-Directed Input Data Records
	List-Directed WRITE and PRINT Statements
	Format of List-Directed Output Records
	Namelist-Directed READ (H)
	Syntax Rules of Namelist-Directed Input Data Records (H)
	Namelist-Directed WRITE (H)

	Direct Access I/O Statements
	Formatted Direct Access READ
	Formatted Direct Access WRITE
	Unformatted Direct Access READ
	Unformatted Direct Access WRITE

	OPEN Statement
	CLOSE Statement
	INQUIRE Statement
	FLUSH Subroutine (H)
	BACKSPACE Statement
	ENDFILE Statement
	REWIND Statement

	Formatted Input and Output
	Format Specification
	Group Specification
	Repetition Factor
	Scaling Factor

	FORMAT Statement
	Character Format Specifications
	Editing Descriptors
	Apostrophe (' ')
	Double Quote (" ")
	Slash (/)
	Colon (:)
	Dollar sign ($) (H)
	A
	Input and Output of Character Data
	Input and Output of Hollerith Data

	B, BN, and BZ
	D
	E
	F
	G
	H
	I
	L
	O (H)
	Q (H)
	R (H)
	S, SS, and SP
	SU (H)
	T, TL, and TR
	X
	Z (H)

	Subprograms and Statement Functions
	General Definition
	Arguments
	Dummy Arguments
	Dummy Arrays
	Adjustable Dimensions
	Assumed-Size Array Declarations

	Dummy Procedures
	Actual Arguments
	%VAL, %LOC, and %REF Argument List Intrinsics (H)
	Argument Association
	CHARACTER Statements in Subprograms
	Uplevel References (H)

	Intrinsic Functions
	Referencing Statement Functions
	External (User-Defined) Functions
	FUNCTION Statement
	Referencing an External Function

	User-Defined Subroutines
	SUBROUTINE Statement
	CALL Statement
	Argument List Intrinsic Functions (H)

	ENTRY Statement
	RETURN Statement
	INTERNAL Subprograms (H)
	Referencing an Internal Subprogram (H)
	BLOCK DATA Subprogram

	Inter-Language Procedure Interface (H)
	Procedure Names (H)
	Data Representations (H)
	COMMON Blocks (H)
	Datapools (H)
	Equivalenced Variables (H)
	Return Values (H)
	Argument Lists (H)
	Mixing C and Fortran Input/Output (H)

	Calling C Functions Directly (H)
	CEXTERNAL Declaration (H)
	Function Return Type Declaration (H)
	Passing Arguments by Value (H)
	Converting Character Arguments and Values (H)
	Simulated Structures (H)
	C Structure Packing Rules (H)
	Primitive System Types (H)
	Accessing errno and System Error Messages (H)

	Fortran Library
	Functions and Routines
	Intrinsic Functions
	Generic and Specific Names
	Summary of Concurrent Fortran Intrinsic Functions

	%INT1, %INT2, and %INT4 Integer Size Intrinsics (H)
	%LOG1, %LOG2, and %LOG4 Logical Size Intrinsics (H)
	POSIX® P1003.9 Library Functions (H)
	Additional Library Functions (H)

	Compilation and Execution (H)
	Compilation
	Native PowerPC
	Cross Intel to PowerPC
	Native Intel

	Multiple Versions
	c.install
	c.release

	Compiler Input Files
	Compiler Options
	Compiler Arguments
	Conditional Compilation
	Environment Variables
	f77_dump_flag
	fortunit
	F77INCLPATH
	LD_BIND_NOW, LD_LIBRARY_PATH, LD_RUN_PATH
	STATIC_LINK
	TARGET_ARCH

	Linking Mixed-Language Programs

	Array Storage
	Non-Standard Extensions to Fortran 77 (H)
	Incompatibilities with Fortran 66
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

