

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 1 of 29

Technical Guide
CCRTNGFC (WC-CP-FIO2)

PCIe Programmable Multi-Function

I/O Card

Driver ccrtngfc (WC-CP-FIO2)

Platform RedHawk Linux® (CentOS/Rocky/RHEL & Ubuntu), Native

Ubuntu® and Native Red Hat Enterprise Linux®1

Vendor Concurrent Real-Time

Hardware PCIe Programmable Multi-Function Card (CP-FPGA-4 & 5)

Author Darius Dubash

Date July 11th, 2025 Rev 2025.1

1 All trademarks are the property of their respective owners

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 2 of 29

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 3 of 29

Table of Contents

1. INTRODUCTION ... 5

2. THE NGFC MOTHER BOARD ... 5

3. THE SDFC MOTHER BOARD .. 5

4. DIGITAL INPUT/OUTPUT ... 5
4.1 TTY Digital Input/Output (DIO – Module 0) ... 6

4.1.1 TTY Digital Input... 6
4.1.1.1 TTY Digital Continuous Input .. 6
4.1.1.2 TTY Digital Snapshot Input .. 6
4.1.1.3 TTY Digital Change-Of-State Input .. 7

4.1.2 TTY Digital Output .. 7
4.1.2.1 TTY Digital Continuous Output ... 8
4.1.2.2 TTY Digital Synchronous Output ... 8

4.2 LVDS Input/Output (LIO – Module 1) (only for NGFC mother board) 8
4.2.1 LVDS Input .. 8

4.2.1.1 LVDS Continuous Input ... 9
4.2.1.2 LVDS Snapshot Input ... 9
4.2.1.3 LVDS Change-Of-State Input ... 9

4.2.2 LVDS Output ... 10
4.2.2.1 LVDS Continuous Output... 10
4.2.2.2 LVDS Synchronous Output .. 10

5. DAUGHTER CARD: ANALOG TO DIGITAL (ADC) CONVERSION 11
5.1.1 ADC Channel Registers .. 11
5.1.2 ADC FIFO ... 13
5.1.3 ADC Input Options .. 14

6. DAUGHTER CARD: DIGITAL TO ANALOG (DAC) CONVERSION 14
6.1.1 DAC Channel Registers .. 15
6.1.2 DAC FIFO ... 17

7. READING AND WRITING TO THE CARD .. 18

8. CLONING (CCRT US PATENT US 11.281.584 B1, INVENTOR DARIUS DUBASH) ... 20
8.1 Scope ... 20
8.2 What is Cloning ... 20
8.3 Basic Cloning... 21
8.4 Region Addressing Cloning.. 21
8.5 Reason for Cloning .. 23
8.6 Technical ... 23
8.7 Licensing ... 23
8.8 Features and Limitations .. 24
8.9 Example 1 .. 24
8.10 Example 2 .. 25
8.11 Example 3 .. 25

9. CLOCKS .. 26
9.1.1 Reset All Clocks ... 26
9.1.2 Clock Set Generator CSR ... 26
9.1.3 Compute All Output Clocks ... 26
9.1.4 Program All Output Clocks .. 27

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 4 of 29

9.1.5 Get Clock Generator Information ... 27
10. CALIBRATION ... 27

10.1.1 ADC Calibration .. 27
10.1.2 DAC Calibration .. 27

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 5 of 29

1. Introduction

This technical guide provides an insight into the workings of the various components of the Next Generation FPGA

card (NGFC). Several example programs supplied in the installed driver’s test directory can assist the user in

developing their applications. The board is comprised of the following features:

• The NGFC Mother Board (Device ID 9320)

o TTY Digital Input/Output (DIO)

o LVDS Input/Output (LIO)

o FPGA Temperature Sensing with Power Control

o Clocks

o Modular Scatter-Gather DMA Engines

• The SDFC Mother Board (Device ID 9330)

o TTY Digital Input/Output (DIO)

o Clocks

o Modular Scatter-Gather DMA Engines

• Daughter Card: Analog to Digital (ADC) conversion

o Calibration

o Modular Scatter-Gather DMA support for ADC operation

• Daughter Card: Digital to Analog (DAC) conversion

o Calibration

o Modular Scatter-Gather DMA support for DAC operation

2. The NGFC Mother Board

The Next Generation FPGA card is basically a Gen-2 x4 high speed full size PCIe card that contains three separate

I/O interfaces.

1) Digital Input/Output (DIO)

2) LVDS Input/Output (LIO)

3) Two positions for FMC style Daughter Cards.

Additionally, the mother board contains on-board Clocks and Modular Scatter-Gather DMA engines.

Currently the FMC slot supports the new Analog Daughter Card which supports both Analog to Digital and Digital

to Analog signals

3. The SDFC Mother Board

The Single Daughter Card FPGA card is basically a Gen-1 x4 high speed PCIe card that contains two separate I/O

interfaces.

1) Digital Input/Output (DIO)

2) Two positions for FMC style Daughter Cards.

Additionally, the mother board contains on-board Clocks and Modular Scatter-Gather DMA engines.

Currently the FMC slot supports the new Analog Daughter Card which supports both Analog to Digital and Digital

to Analog signals

4. Digital Input/Output

In this document, the following terms are used for digital input/output functionality.

1) DIO – TTY Digital Input/Output

2) LIO – LVDS Input/Output

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 6 of 29

3) LDIO – Refers to either LIO or DIO context

4.1 TTY Digital Input/Output (DIO – Module 0)

The card supports 32-channels (or lines) of high speed TTL (3.3V/5V) (DIO) digital inputs and outputs. All
access to this on-board DIO is via the API calls that specify the CCRTNGFC_MAIN_DIO_MODULE_0 (or
CCRTNGFC_LDIO_MODULE_0) module as one of its argument.

Prior to performing any DIO operation, it needs to be activated with the ccrtNGFC_LDIO_Activate() API call.

Without this activation, all other DIO calls will fail.

The direction call ccrtNGFC_DIO_Set_Ports_Direction() can be used to select the direction of a set of DIO ports.

The channels or lines are grouped into ports where one channel (or line) is assigned to a single port.

The DIO can operate in either the normal DIO mode or the custom mode depending on whether the firmware loaded

on the FPGA is a multi-function firmware or custom firmware. The ccrtNGFC_LDIO_Set_Mode() call is used to

select the mode, which should match the type of firmware loaded, otherwise results will be unpredictable. For the

rest of this discussion, we will be concentrating on the normal DIO mode.

The DIO also provides a capability to detect a change-of-state on any input line with the generation of an interrupt.

Note! This DIO interface is located on the mother board and is not supported on any currently available daughter

cards.

4.1.1 TTY Digital Input

User can program 1 to 32 ports as inputs with the help of the ccrtNGFC_DIO_Set_Ports_Direction() call. A read

issued to the lines associated with the input ports using the ccrtNGFC_LDIO_Read_Input_Channel_Registers() call

will return the external digital signal connected to these lines. If this call is used to read ports programmed as outputs,

then what is returned to the user is the output signals sent by the card to the external lines. In this way, a user can

effectively perform an internal loopback of output lines.

The user has two modes of operation for reading the input channels:

• Continuous

• Snapshot (Simultaneously)

4.1.1.1 TTY Digital Continuous Input

This is the normal mode of operation where the user receives asynchronously the current state of each channel for

every read. It is therefore possible that during the single read ccrtNGFC_LDIO_Read_Input_Channel_Registers()

call, channels on different LDIO modules could change their current state asynchronously, thus not reflecting the

simultaneous state of all the DIO or LIO channels between the various LDIO modules.

If this is the desired mode of operation, the user needs to first issue the ccrtNGFC_LDIO_Set_Input_Snapshot() call

with the CCRTNGFC_LDIO_INPUT_OPERATION_CONTINUOUS option. This can be followed by multiple input

channel reads with the ccrtNGFC_LDIO_Read_Input_Channel_Registers() call and the ldio_snapshot argument set

to the CCRTNGFC_LDIO_INPUT_OPERATION_DO_NOT_CHANGE option.

If performance is not an issue, the user can skip the initial ccrtNGFC_LDIO_Set_Input_Snapshot() call and simply

perform the input channel reads with the CCRTNGFC_LDIO_INPUT_OPERATION_CONTINUOUS option.

4.1.1.2 TTY Digital Snapshot Input

This mode of operation allows the user to receive all selected channels current state simultaneously for every read,

i.e. takes a snapshot of the selected channels across all the LDIO modules.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 7 of 29

If this is the desired mode of operation, the user can simply use the

ccrtNGFC_LDIO_Read_Input_Channel_Registers() call with the ldio_snapshot argument set to the

CCRTNGFC_LDIO_INPUT_OPERATION_SNAPSHOT. In this case, there is no need to issue the initial

ccrtNGFC_LDIO_Set_Input_Snapshot() call.

Note: As long the board is operating in the snapshot mode, the hardware will reflect the simultaneous

state of all the input channels that were last snapshot for all the modules, i.e. the most recent

hardware states will not be reflected until another snapshot was issued.

4.1.1.3 TTY Digital Change-Of-State Input

The card provides capability to detect when a digital input line changes state. Detection can be for either the rising

edge, falling edge or level detection. Level detection is when either rising or falling edge for a channel changes. In

order to detect a change of state for a set of channels, the user will need to enable COS detection for the selected

channels with the help of the ccrtNGFC_LDIO_Set_COS_Channels_Enable() API. Additionally the

ccrtNGFC_LDIO_Set_COS_Channels_Edge_Sense() and the ccrtNGFC_LDIO_Set_COS_Channels_Mode() APIs

are to be used to select what type of detection is to be performed on the channel.

The user will also need to create an interrupt handler with the help of the

ccrtNGFC_Create_UserLDioCosInterruptHandler() API. This interrupt handler will be awoken every time a

change of state interrupt has occurred for the selected channels. Useful information will be provided to assist the

user in determining the cause of the interrupt. User needs to ensure that the duration of processing the interrupt in

the user interrupt handler should be kept to a minimal; otherwise, there is a possibility of missing a change of state

detection while it is in the routine.

Proper shielding and priority of both the application and driver needs to be conducted to ensure that no change of

state is lost (overflow condition) or a user interrupt is missed. Redhawk provides the ability to shield and run

applications at high priority. For example, to run the change-of-state test ccrtngfc_ldio_intr that is supplied with this

driver, you can follow similar steps for your system:

=== as root ===

Connect 17 KHz square wave to DIO (M0) channel 0 with a voltage of 0 to +4 volts and load of High-Z

shield –a 2, 4-5 (shield processors 2, 4 and 5)

./ccrtngfc_smp_affinity -c4 (force driver to CPU 2)

run –b4-5 ./ccrtngfc_ldio_intr -M0 (run DIO test on CPU 4 & 5)

4.1.2 TTY Digital Output

User can program 1 to 32 ports as outputs with the help of the ccrtNGFC_DIO_Set_Ports_Direction() call. A write

issued to the output registers with the ccrtNGFC_LDIO_Write_Output_Channel_Registers() call will cause the

output registers to be written to. Those ports that have their direction as outputs will result in the digital signals being

routed to the external lines. No routing of digital signals to external lines will occur for those lines whose ports have

been configured as inputs. Those output channels that were written to ports that were configured as inputs will not

output their digital signals to the external lines until the port’s directions are switched to outputs. At any time, the

users can read back the output registers that were last written to with the

ccrtNGFC_LDIO_Read_Output_Channel_Registers() call.

The user has two modes of operation for writing the output channels:

• Continuous

• Synchronous (Simultaneously)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 8 of 29

4.1.2.1 TTY Digital Continuous Output

This is the normal mode of operation where the asynchronous writes to the output registers will immediately appear

on the external output lines. It is therefore possible that during the single write

ccrtNGFC_LDIO_Write_Output_Channel_Registers() call, simultaneous output of channels on different LDIO

modules would not occur.

If this is the desired mode of operation, the user needs to first issue the ccrtNGFC_LDIO_Set_Output_Sync() call

with the CCRTNGFC_LDIO_OUTPUT_OPERATION_CONTINUOUS option. This can be followed by multiple

output channel writes with the ccrtNGFC_LDIO_Write_Output_Channel_Registers() call and the ldio_sync

argument set to the CCRTNGFC_LDIO_OUTPUT_OPERATION_NOT_CHANGE option.

If performance is not an issue, the user can skip the initial ccrtNGFC_LDIO_Set_Output_Sync() call and simply

perform the output channel writes with the CCRTNGFC_LDIO_OUTPUT_OPERATION_CONTINUOUS option.

4.1.2.2 TTY Digital Synchronous Output

This mode of operation allows the user to write to all the selected channels and output them simultaneously i.e.

synchronize the output channels across all the LDIO modules.

If this is the desired mode of operation, the user can simply use the

ccrtNGFC_LDIO_Write_Output_Channel_Registers() call and the ldio_sync argument set to the

CCRTNGFC_LDIO_OUTPUT_OPERATION_SYNC option. In this case, there is no need to issue the initial

ccrtNGFC_LDIO_Set_Output_Sync() call.

Note: As long the board is operating in the synchronous mode, the hardware will reflect the state of

the output registers after a synchronization of channels occur, i.e. change will occur on the output

lines only after the writes to the output registers are followed by a synchronization of outputs.

4.2 LVDS Input/Output (LIO – Module 1) (only for NGFC mother board)

The card supports 32-channels (or lines) of high speed Low Voltage Differential Signalling (LVDS) digital
inputs and outputs. All access to this on-board LIO is via the API calls that specify the
CCRTNGFC_MAIN_LIO_MODULE_1 (or CCRTNGFC_LDIO_MODULE_1) module as one of its argument.

Prior to performing any LIO operation, it needs to be activated with the ccrtNGFC_LDIO_Activate() API call.

Without this activation, all other LIO calls will fail.

The direction call ccrtNGFC_LIO_Set_Ports_Direction() can be used to select the direction of a set of LIO ports.

The channels or lines are grouped into ports where four channels (or lines) are assigned to a single port.

The LIO can operate in either the normal LIO mode or the custom mode depending on whether the firmware loaded

on the FPGA is a multi-function firmware or custom firmware. The ccrtNGFC_LDIO_Set_Mode() call is used to

select the mode, which should match the type of firmware loaded, otherwise results will be unpredictable. For the

rest of this discussion, we will be concentrating on the normal LIO mode.

The LIO also provides a capability to detect a change-of-state on any input line with the generation of an interrupt.

Note! This LVDS interface is located on the mother board and is not supported on any currently available daughter

cards.

4.2.1 LVDS Input

User can program 1 to 8 ports as inputs with the help of the ccrtNGFC_LIO_Set_Ports_Direction() call. The

channels or lines are grouped into ports where four channels (or lines) are assigned to a single port.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 9 of 29

A read issued to the lines associated with the input ports using the

ccrtNGFC_LDIO_Read_Input_Channel_Registers() call will return the external digital signal connected to these

lines.

Unlike the DIO modules where the ccrtNGFC_LDIO_Read_Input_Channel_Registers() API returns the output

signals sent by the card to the external lines if the ports directions are outputs, the LIO module behaves differently.

To obtain the same functionality as the DIO, you will need to set the Test Mode CCRTNGFC_LIO_TEST_MODE

along with a SINGLE port to an output direction and read the four channels associated with the board. In order to

perform this function, a useful API ccrtNGFC_LIO_Read_Output_Loopbacked_Channels() has been supplied.

The user has two modes of operation for reading the input channels:

ccrtNGFC_LIO_Read_Output_Loopbacked_Channels()

• Continuous

• Snapshot (Simultaneously)

4.2.1.1 LVDS Continuous Input

This is the normal mode of operation where the user receives asynchronously the current state of each channel for

every read. It is therefore possible that during the single read ccrtNGFC_LDIO_Read_Input_Channel_Registers()

call, channels on different LDIO modules could change their current state asynchronously, thus not reflecting the

simultaneous state of all the DIO or LIO channels between the various LDIO modules.

If this is the desired mode of operation, the user needs to first issue the ccrtNGFC_LDIO_Set_Input_Snapshot() call

with the CCRTNGFC_LDIO_INPUT_OPERATION_CONTINUOUS option. This can be followed by multiple input

channel reads with the ccrtNGFC_LDIO_Read_Input_Channel_Registers() call and the ldio_snapshot argument set

to the CCRTNGFC_LDIO_INPUT_OPERATION_DO_NOT_CHANGE option.

If performance is not an issue, the user can skip the initial ccrtNGFC_LDIO_Set_Input_Snapshot() call and simply

perform the input channel reads with the CCRTNGFC_LDIO_INPUT_OPERATION_CONTINUOUS option.

4.2.1.2 LVDS Snapshot Input

This mode of operation allows the user to receive all selected channels current state simultaneously for every read,

i.e. takes a snapshot of the selected channels across all the LDIO modules.

If this is the desired mode of operation, the user can simply use the

ccrtNGFC_LDIO_Read_Input_Channel_Registers() call with the ldio_snapshot argument set to the

CCRTNGFC_LDIO_INPUT_OPERATION_SNAPSHOT. In this case, there is no need to issue the initial

ccrtNGFC_LDIO_Set_Input_Snapshot() call.

Note: As long the board is operating in the snapshot mode, the hardware will reflect the simultaneous

state of all the input channels that were last snapshot for all the modules, i.e. the most recent

hardware states will not be reflected until another snapshot was issued.

4.2.1.3 LVDS Change-Of-State Input

The card provides capability to detect when a digital input line changes state. Detection can be for either the rising

edge, falling edge or level detection. Level detection is when either rising or falling edge for a channel changes. In

order to detect a change of state for a set of channels, the user will need to enable COS detection for the selected

channels with the help of the ccrtNGFC_LDIO_Set_COS_Channels_Enable() API. Additionally the

ccrtNGFC_LDIO_Set_COS_Channels_Edge_Sense() and the ccrtNGFC_LDIO_Set_COS_Channels_Mode() APIs

are to be used to select what type of detection is to be performed on the channel.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 10 of 29

The user will also need to create an interrupt handler with the help of the

ccrtNGFC_Create_UserLDioCosInterruptHandler() API. This interrupt handler will be awoken every time a

change of state interrupt has occurred for the selected channels. Useful information will be provided to assist the

user in determining the cause of the interrupt. User needs to ensure that the duration of processing the interrupt in

the user interrupt handler should be kept to a minimal; otherwise, there is a possibility of missing a change of state

detection while it is in the routine.

Proper shielding and priority of both the application and driver needs to be conducted to ensure that no change of

state is lost (overflow condition) or a user interrupt is missed. Redhawk provides the ability to shield and run

applications at high priority. For example, to run the change-of-state test ccrtngfc_ldio_intr that is supplied with this

driver, you can follow similar steps for your system:

=== as root ===

Connect 15 KHz square wave to LIO (M1) channel 3 with a voltage of +/- 200 milli-volts and load of 50 Ohms

shield –a 2, 4-5 (shield processors 2, 4 and 5)

./ccrtngfc_smp_affinity -c4 (force driver to CPU 2)

run –b4-5 ./ccrtngfc_ldio_intr -M1 (run LIO test on CPU 4 & 5)

4.2.2 LVDS Output

User can program 1 to 8 ports as outputs with the help of the ccrtNGFC_LIO_Set_Ports_Direction() call. The

channels or lines are grouped into ports where four channels (or lines) are assigned to a single port. A write issued

to the output registers with the ccrtNGFC_LDIO_Write_Output_Channel_Registers() call will cause the output

registers to be written to. Those ports that have their direction as outputs will result in the digital signals being routed

to the external lines. No routing of digital signals to external lines will occur for those lines whose ports have been

configured as inputs. Those output channels that were written to ports that were configured as inputs will not output

their digital signals to the external lines until the port’s directions are switched to outputs. At any time, the users can

read back the output registers that were last written to with the

ccrtNGFC_LIO_Read_Output_Loopbacked_Channels() call.

The user has two modes of operation for writing the output channels:

• Continuous

• Synchronous (Simultaneously)

4.2.2.1 LVDS Continuous Output

This is the normal mode of operation where the asynchronous writes to the output registers will immediately appear

on the external output lines. It is therefore possible that during the single write

ccrtNGFC_LDIO_Write_Output_Channel_Registers() call, simultaneous output of channels on different LDIO

modules would not occur.

If this is the desired mode of operation, the user needs to first issue the ccrtNGFC_LDIO_Set_Output_Sync() call

with the CCRTNGFC_LDIO_OUTPUT_OPERATION_CONTINUOUS option. This can be followed by multiple

output channel writes with the ccrtNGFC_LDIO_Write_Output_Channel_Registers() call and the ldio_sync

argument set to the CCRTNGFC_LDIO_OUTPUT_OPERATION_NOT_CHANGE option.

If performance is not an issue, the user can skip the initial ccrtNGFC_LDIO_Set_Output_Sync() call and simply

perform the output channel writes with the CCRTNGFC_LDIO_OUTPUT_OPERATION_CONTINUOUS option.

4.2.2.2 LVDS Synchronous Output

This mode of operation allows the user to write to all the selected channels and output them simultaneously i.e.

synchronize the output channels across all the LDIO modules.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 11 of 29

If this is the desired mode of operation, the user can simply use the

ccrtNGFC_LDIO_Write_Output_Channel_Registers() call and the ldio_sync argument set to the

CCRTNGFC_LDIO_OUTPUT_OPERATION_SYNC option. In this case, there is no need to issue the initial

ccrtNGFC_LDIO_Set_Output_Sync() call.

Note: As long the board is operating in the synchronous mode, the hardware will reflect the state of

the output registers after a synchronization of channels occur, i.e. change will occur on the output

lines only after the writes to the output registers are followed by a synchronization of outputs.

5. Daughter Card: Analog to Digital (ADC) Conversion

The ADC has 12 channels with 16-bit resolution, controlled by three ADC converters; each can be assigned one of

six update clocks and can have as input either an external signal or calibration bus. Both single-ended or differential

inputs are supported.

ADC to channel association is as follows:

 ADC 0 –> Channel 0 to 3
 ADC 1 –> Channel 4 to 7
 ADC 2 –> Channel 8 to 11

Prior to performing any conversion, the user needs to open(2) the ADC module (installed in one of the two FMC

slots for the daughter cards) with the ccrtNGFC_DC_ADC_Open() API. Once the ADC daughter card is

successfully opened, it needs to be activated with the ccrtNGFC_DC_ADC_Activate() API call. Without this

activation, all other ADC calls will fail.

There are two mechanisms implemented by the hardware to enable the user to acquire analog signals. The ADC

channels can be read from either 12 channel registers or an ADC FIFO that is 128K samples deep. Each ADC FIFO

sample will also contain the channel number associated with the sample. Either of these approaches can be used to

acquire digital samples from the channels.

• ADC Channel Registers (asynchronous operation)

• ADC FIFO (synchronous operation)

Prior to any data being collected, the user needs to configure each ADC in order to select one of 6 individual clocks

(0 to 5) as the input clock with the ccrtNGFC_DC_ADC_Set_CSR() API. The input signal can be either external

inputs (normal mode), or calibration bus (for debug and calibration). Additionally, the onboard clock generator

needs to be programmed with the selected ADC clock(s) at the user desired data collection rate. Each of the three

individual ADCs can also be programmed with data format of offset binary or two’s complement, however, its inputs

are always bipolar with a voltage range of 10 volts (i.e. +/- 10V).

5.1.1 ADC Channel Registers

This mechanism allows the user to asynchronously acquire raw data for any converted analog channel. Once the

clocks have started (after programming the ADCs and clocks), the board will continuously convert the ADC channels

and update all the Channel Registers at the programmed clock rate. User can then asynchronously read any of the

registers to acquire the latest converted raw data.

There are various methods available at the disposal of the user to receive the contents of the converted channel

registers. Each has its own merit, limitations and performance impact and left to the sole discretion of the user as to

the method to use.

a) Advanced users can access these registers directly via memory mapping, and bypassing the API, however, care

must be taken in performing synchronization with any other applications accessing the board at the same time,

since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 12 of 29

The memory mapped pointer local_adc_ptr can be obtained by using the ccrtNGFC_DC_ADC_Get_Info() call.

Once the pointer is available, the channels can be accessed via the ADC_Data[] array.

If the user wishes to determine the floating point voltages for the raw data, they can do so with the help of the

ccrtNGFC_DataToVolts() library call. This call requires as an argument a pointer to the ccrtngfc_volt_convert_t

structure that holds the current ADC configuration information.

b) Alternatively, the user can use the ccrtNGFC_Fast_Memcpy() library call to copy a consecutive set of raw

channel registers contents to a local buffer.

c) Another method to transfer the contents of a consecutive set of raw channel registers to a local buffer is to use

the ccrtNGFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to transfer

the data via MsgDma or Programmed I/O. If this call is going to use MsgDma, then the received user buffer

must be a buffer that can allow the board to perform MsgDma reads. This buffer can be obtained with the help

of the ccrtNGFC_MMap_Physical_Memory() library call.

d) Another approach is for the user to make use of the driver to acquire the contents of the ADC channels. In this

case, the user needs to first select the appropriate channel read mode operation

(CCRTNGFC_ADC_PIO_CHANNEL) with the ccrtNGFC_DC_ADC_Set_Driver_Read_Mode() library call

and then call the ccrtNGFC_DC_ADC_Read() routine to read the raw channel registers. At present, the driver

does NOT support MsgDma transfers. In this case (i.e. PIO mode), any buffer (not necessarily a DMA capable

one) can be supplied to the ccrtNGFC_DC_ADC_Read() call.

e) Another approach is for the user to make use of the ccrtNGFC_DC_ADC_Read_Channels() library call. It not

only allows the user to select individual channels via a channel mask, but also returns the raw and floating point

voltages as determined by the current configuration of ADC converters.

The user has the option to supply a NULL pointer instead of the adc_csr argument, in which case the

ccrtNGFC_DC_ADC_Read_Channels() call will internally extract the current hardware ADC configuration

prior to computing the floating point voltage. This would add considerable overhead to the call if it is being

called multiple times. Alternatively, the user could first determine the current ADC configuration using the

ccrtNGFC_DC_ADC_Get_CSR() first and then supplying the current configuration to the adc_csr argument

in the following ccrtNGFC_DC_ADC_Read_Channels() calls, with the assumption that the ADC configuration

is not going to change for the duration of the reads.

f) Finally, to read the channels in the fastest manner possible, the user can make use of the MsgDma engines

supplied with the card. In this case, the user will first need to acquire one of 6 available MsgDma engines via

the ccrtNGFC_MsgDma_Seize() call.

Next, they will need to configure the MsgDma channel with the

ccrtNGFC_DC_ADC_MsgDma_Configure_Channel() call, passing the MsgDma engine as one of the

arguments to the call. Users also need to specify the start channel number StartChannelNumber and end channel

number EndChannelNumber to this call. If the user plans to use one of the MsgDma engines 0 through 3, they

need to ensure that the start channel number is a multiple of 4 and that the number of channels being transferred

are also a multiple of 4. If that is not the case, then the user will need to use the slightly slower MsgDma engines

4 or 5 where there are no alignment restrictions.

Once the MsgDma is successfully configured in the above step, the user will then use the

ccrtNGFC_DC_ADC_MsgDma_Fire_Channel() call supplying the same seized MsgDma engine. This call is

then repeated for each new transfer of channel registers to the user supplied PciDmaMemory buffer, which is

also one of the arguments in the above ccrtNGFC_DC_ADC_MsgDma_Configure_Channel() call.

Once the user is done with the transfer, they can release the MsgDma engine with the

ccrtNGFC_MsgDma_Release() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 13 of 29

5.1.2 ADC FIFO

This mechanism allows the hardware to synchronously acquire the raw data for any converted analog channel. Once

the ADCs and clocks have been programmed and started, the board will continuously convert the selected ADC

channels and place them in the ADC FIFO at the programmed clock rate. The user can select which channels are to

be sampled by the hardware and placed in the ADC FIFO with the channel selection mask supplied to the

ccrtNGFC_DC_ADC_Set_Fifo_Channel_Select() call.

User can then asynchronously extract the samples from the ADC FIFO via several methods. Care must be taken to

ensure that the ADC FIFO does not get empty (underflow) or go beyond full (overflow), otherwise synchronous data

collection will be compromised. At any time, the ccrtNGFC_DC_ADC_Get_Fifo_Info() call can be invoked to

determine the status of the ADC FIFO.

Unlike the samples in the ADC Channel Registers which only contain the raw 16-bit sample data, the ADC FIFO

samples contain the raw 16-bit channel data along with the channel number in the most significant nibble associated

with the channel in the 32 bit FIFO sample.

If the method to extract samples from the ADC FIFO is too slow, the user may consider either selecting fewer

channels being scanned or reducing the sample collection clock rate.

Prior to collecting the samples, it is recommended to reset the ADC FIFO to ensure that FIFO is empty. This can be

accomplished by the ccrtNGFC_DC_ADC_Reset_Fifo() call.

Recommended method of data collection is to program the clocks and let them settle. Then disable them with the

ccrtNGFC_Clock_Set_Generator_CSR() call. Next reset the ADC FIFO with the

ccrtNGFC_DC_ADC_Reset_Fifo() call. Finally, when ready to start data collection, enable the clocks with the

ccrtNGFC_Clock_Set_Generator_CSR() call.

There are various methods available at the disposal of the user to receive the contents of the converted channel

samples from the ADC FIFO. Each has its own merit, limitations and performance impact and left to the sole

discretion of the user as to the method to use.

a) Advanced users can access this register directly via memory mapping, and bypassing the API, however, care

must be taken in performing any synchronization with any other applications accessing the board at the same

time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_adc_fifo_ptr can be obtained by using the ccrtNGFC_DC_ADC_Get_ Info()

call. Once the pointer is available, the channels can be accessed via this register.

If the user wishes to determine the floating point voltages for the raw data, they can do so with the help of the

ccrtNGFC_DataToVolts() library call. This call requires as an argument a pointer to the ccrtngfc_volt_convert_t

structure that holds the current ADC configuration information.

b) Another method to transfer the samples collected in the ADC FIFO to a local buffer is to use the

ccrtNGFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to transfer the

data via MsgDma or Programmed I/O. If this call is going to use MsgDma, then the received user buffer must

be a buffer that can allow the board to perform DMA. This buffer can be obtained with the help of the

ccrtNGFC_MMap_Physical_Memory() library call.

c) Another approach is for the user to make use of the driver to extract the contents of the samples from the ADC

FIFO. In this case, the user needs to first select the appropriate channel read mode operation

(CCRTNGFC_ADC_PIO_FIFO) with the ccrtNGFC_DC_ADC_Set_Driver_Read_Mode() library call and

then call the ccrtNGFC_DC_ADC_Read() routine to read the raw channel samples. At present, the driver does

NOT support MsgDma transfers. In this case (i.e. PIO mode), any buffer (not necessarily a DMA capable one)

can be supplied to the ccrtNGFC_DC_ADC_Read() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 14 of 29

d) Finally, to read the channels in the fastest manner possible, the user can make use of the MsgDma engines

supplied with the card. In this case, the user will first need to acquire one of 6 available MsgDma engines via

the ccrtNGFC_MsgDma_Seize() call.

Next, they will need to configure the MsgDma Fifo with the ccrtNGFC_DC_ADC_MsgDma_Configure_Fifo()

call, passing the MsgDma engine as one of the arguments to the call. Users also need to specify the number of

samples NumberOfSamples as one of its arguments. If the user plans to use one of the MsgDma engines 0

through 3, they need to ensure that the number of samples specified is a multiple of 4. If that is not the case,

then the user will need to use the slightly slower MsgDma engines 4 or 5 where there are no alignment

restrictions.

Once the MsgDma is successfully configured in the above step, the user will then use the

ccrtNGFC_DC_ADC_MsgDma_Fire_Fifo() call supplying the same seized MsgDma engine. This call is then

repeated for each new transfer of ADC FIFO to the user supplied PciDmaMemory buffer, which is also one of

the arguments in the above ccrtNGFC_DC_ADC_MsgDma_Configure_Fifo() call.

Once the user is done with the transfer, they can release the MsgDma engine with the

ccrtNGFC_MsgDma_Release() call.

Note: The first four set of samples that are processed after a FIFO reset are discarded as the high

speed ADC requires time to settle before valid data is presented to the user.

5.1.3 ADC Input Options

Each of the three ADC’s has the option of selecting its inputs either from the external lines (normal mode) or from

the calibration bus with the ccrtNGFC_DC_ADC_Set_CSR() call. If external lines are selected for an ADC, all 4

ADC channels will return the raw digital values for the 4 inputs lines. If calibration bus is selected, then the ADC

can receive one of the following with the ccrtNGFC_DC_ADC_Set_Calibration_CSR() call:

• Calibration Ground

• Calibration Postive Reference Voltage (+9.91 volts)

• Calibration Negative Reference Voltage (-9.91 volts)

• Calibration 4 Volts Reference (+4.030 volts)

• Calibration Positive 10 Volts Reference (+10.0 volts)

• Calibration Negative 10 Volts Reference (-10.0 volts)

• One of 12 DAC channels as input

The calibration connections are used for calibrating the ADCs, while the DAC inputs can be used to loopback the

DAC outputs for diagnostics. Note that all 4 ADC channels will display the same Calibration reference voltage or

DAC channel, depending on the calibration bus selection.

6. Daughter Card: Digital to Analog (DAC) Conversion

The DAC has 12 channels with 16-bit resolution, controlled by six DAC converters. It supports both single-ended

and differential outputs. The outputs can be software configured as 12-channel single-ended outputs, 6-channel

differential outputs, or a combination of single-ended and differential on a per-DAC granularity. Differential

channels are identified as a pair of odd/even channels. Unlike the ADC converters where each converter can have

its own clock, all six DAC converters can either be assigned for software update or a selection of one of six update

clocks.

DAC to channel association is as follows:

 DAC 0 –> Channel 0 to 1
 DAC 1 –> Channel 2 to 3

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 15 of 29

 DAC 2 –> Channel 4 to 5
 DAC 3 –> Channel 6 to 7
 DAC 4 –> Channel 8 to 9
 DAC 5 –> Channel 10 to 11

Prior to performing any conversion, the user needs to open(2) the DAC module (installed in one of the two FMC

slots for the daughter cards) with the ccrtNGFC_DC_DAC_Open() API. Once the DAC daughter card is

successfully opened, it needs to be activated with the ccrtNGFC_DC_DAC_Activate() API call. Without this

activation, all other DAC calls will fail.

There are two mechanisms implemented by the hardware to enable the user to generate analog signals. The DAC

channels can be written to either 12 channel registers or a DAC FIFO that is 128K samples deep. Either of these

approaches can be used to write digital samples to the channels.

• DAC Channel Registers (asynchronous operation)

• DAC FIFO (synchronous operation)

Prior to writing any samples, the user needs to configure the DACs in order to select software update or one of 6

individual clocks (0 to 5) as the input clock. Unlike the ADCs where the users can select a different clock for each

of the two ADCs, all four DACs are controlled by a single source. This can be accomplished by using the

ccrtNGFC_DC_DAC_Set_Update_Source_Select() routine. If the update source is a clock, then the onboard clock

generator needs to be programmed to the user desired sample generation rate.

In addition to the above setup which affects all DACs, each of the six individual DACs can be programmed with

data format of offset binary or two’s complement, however, its outputs are always bipolar with a voltage range of

10 volts (i.e. +/- 10V).

Users can also program each individual DAC to operate in Immediate or Synchronized mode with the

ccrtNGFC_DC_DAC_Set_CSR() call. Depending on the mode of operation, the hardware will determine when to

output analog signals on the individual channels. Conceptually, immediate mode would cause analog signals to be

output to the channel the moment the digital sample was written to the registers. In the case of Synchronized mode,

all registers belonging to a particular DAC would be synchronized and output simultaneously by the hardware.

6.1.1 DAC Channel Registers

This mechanism allows the user to write raw digital values to any of the DAC channel registers. The hardware, in

turn, outputs the converted analog signals according to the update source selection and operational mode.

Note: Make sure that you do not have any samples in the DAC FIFO with a clock running during

writing to the DAC channel registers as the board will overwrite the channel registers with the

FIFO samples. It is best to ensure that the FIFO is empty before commencing DAC channel register

writes.

If the operational mode for any of the six DACs is Immediate, the analog outputs for the channels associated with

the DAC will continuously output the last converted analog signal. The moment a write occurs on any channel

register for the associated DAC, the hardware will convert the raw digital value to the new analog signal and output

the new value on the corresponding channel. In this operational mode, the update source selection is ignored.

If the operational mode for any of the six DACs is Synchronized, all channels associated with the DAC will output

in accordance with the update source selection. If software update mode is selected, then a write to any channel with

bit 31 (sync update flag) set will cause all the DACs that have an operational mode set to Synchronized to convert

and simultaneously output its corresponding channels. If instead, the update source is set to an active clock, then the

hardware will convert to analog signals the raw digital values for all the DAC channels (that have an operational

mode of Synchronized) and simultaneously update these channels on every clock cycle. The rate of update will be

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 16 of 29

dependent on the clock rate of the clock assigned to the DAC update source. In this case, setting bit 31 (sync update

flag) in the raw digital value for any channel will be ignored.

Note: If the user has operational mode for any DACs as Synchronized and the source selection

set to software update, then no analog signal change will occur on the outputs until a channel is

written with bit 31 (sync update flag) set. If, instead, the source selection for the DACs is a clock,

analog signal change will only occur on the outputs if the clock associated with the DACs is

programmed and running.

There are various methods available at the disposal of the user to output the contents of the channel registers. Each

has its own merit, limitations and performance impact and left to the sole discretion of the user as to the method to

use.

a) Advanced users can access these registers directly via memory mapping, and bypassing the API, however, care

must be taken in performing synchronization with any other applications accessing the board at the same time,

since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_dac_ptr can be obtained by using the ccrtNGFC_DC_DAC_Get_Info() call.

Once the pointer is available, the channels can be accessed via the DAC_Data[] array.

If the user wishes to determine the raw data for a given floating point voltage, they can do so with the help of

the ccrtNGFC_VoltsToData() library call. This call requires as an argument a pointer to the

ccrtngfc_volt_convert_t structure that holds the current DAC configuration information.

b) Alternatively, the user can use the ccrtNGFC_Fast_Memcpy() library call to copy a consecutive set of raw

values from a local buffer to the channel registers.

c) Another method to transfer the contents of a consecutive set of raw values in a local buffer to channel registers

is to use the ccrtNGFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to

transfer the data via MagDma or Programmed I/O. If this call is going to use MsgDma, then the transmitting

user buffer must be a buffer that can allow the board to perform MsgDma writes. This buffer can be obtained

with the help of the ccrtNGFC_MMap_Physical_Memory() library call.

d) Another approach is for the user to make use of the driver to write to the DAC channel registers. In this case,

the user needs to first select the appropriate channel write mode operation

(CCRTNGFC_DAC_PIO_CHANNEL) with the ccrtNGFC_DC_DAC_Set_Driver_Write_Mode() library call

and then call the ccrtNGFC_DC_DAC_Write() routine to write to the raw channel registers. At present, the

driver does NOT support DMA transfers. In this case (i.e. PIO mode), any buffer (not necessarily a DMA

capable one) can be supplied to the ccrtNGFC_DC_DAC_Write() call.

e) Another approach is for the user to make use of the ccrtNGFC_DC_DAC_Write_Channels() library call. It not

only allows the user to select individual channels via a channel mask, but also allows the user to supply floating

point voltages and lets the call perform the necessary conversion to raw data prior to writing the channel

registers.

The user has the option to supply a NULL pointer instead of the dac_csr argument. In this case the

ccrtNGFC_DC_DAC_Write_Channels() call will internally extract the current hardware DAC configuration

prior to computing the raw data. This would add considerable overhead to the call if it is being called multiple

times. Alternatively, the user could first determine the current DAC configuration using the

ccrtNGFC_DC_DAC_Get_CSR() first and then supplying the current configuration to the dac_csr argument

in the following ccrtNGFC_DC_DAC_Write_Channels() calls, with the assumption that the DAC configuration

is not going to change for the duration of the writes.

Additionally, this call always sets bit 31(sync update flag) in the raw data for the last channel. In this way, if

the user had set the operational mode to Synchronized for any DACs, all channels for the DACs will be sent out

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 17 of 29

simultaneously by the hardware. There is therefore no need for the user to set the last channel with bit 31 when

using this call, in case they wanted outputs of channels to be synchronized.

f) Finally, to write the channels in the fastest manner possible, the user can make use of the MsgDma engines

supplied with the card. In this case, the user will first need to acquire one of 6 available MsgDma engines via

the ccrtNGFC_MsgDma_Seize() call

Next, they will need to configure the MsgDma channel with the

ccrtNGFC_DC_DAC_MsgDma_Configure_Channel() call, passing the MsgDma engine as one of the

arguments to the call. Users also need to specify the start channel number StartChannelNumber and end channel

number EndChannelNumber to this call. If the user plans to use one of the MsgDma engines 0 through 3, they

need to ensure that the start channel number is a multiple of 4 and that the number of channels being transferred

are also a multiple of 4. If that is not the case, then the user will need to use the slightly slower MsgDma engines

4 or 5 where there are no alignment restrictions.

Once the MsgDma is successfully configured in the above step, the user will then use the

ccrtNGFC_DC_DAC_MsgDma_Fire_Channel() call supplying the same seized MsgDma engine. This call is

then repeated for each new transfer of channel registers to the user supplied PciDmaMemory buffer, which is

also one of the arguments in the above ccrtNGFC_DC_DAC_MsgDma_Configure_Channel() call.

Once the user is done with the transfer, they can release the MsgDma engine with the

ccrtNGFC_MsgDma_Release() call.

6.1.2 DAC FIFO

This mechanism allows the hardware to convert raw sample voltages placed in the DAC FIFO by the user and

synchronously output analog signals on the selected DAC channels on every clock cycle. Once the clocks have

started (after programming the DACs and clocks), the board will continuously convert the raw sample voltages in

the DAC FIFO for the selected DAC channels and output them at the programmed clock rate.

The user can select which channels are to be converted by the hardware and placed in the DAC FIFO with the

channel selection mask supplied to the ccrtNGFC_DC_DAC_Set_Fifo_Channel_Select() call. Note that for

differential channels, the odd channels will be masked out and outputs will only appear on even numbered channels.

Synchronous output will occur for the set of selected DAC channels either sequentially or simultaneously based on

the update mode selection of Immediate or Synchronized.

Care must be taken to ensure that the DAC FIFO does not get empty (underflow) or go beyond full (overflow),

otherwise synchronous signal generation will be compromised. If this occurs, the DAC FIFO should be reset with

the ccrtNGFC_DC_DAC_Reset_Fifo() call to empty the DAC FIFO and resume from a known state. At any time,

the ccrtNGFC_DC_DAC_Get_Fifo_Info() call can be invoked to determine the status of the DAC FIFO.

Unlike the samples in the ADC FIFO which contain the raw sample data and the associated channel number, the

DAC FIFO samples do not contain the channel number. Once sampling has commenced, the hardware will map

each sample in the DAC FIFO with the channel selection mask. In order to guarantee synchronization between the

samples in the DAC FIFO and the channel selection mask, it is necessary to perform a DAC FIFO reset with the

ccrtNGFC_DC_DAC_Reset_Fifo() call prior to commencing sample conversion. Additionally, the channel selection

mask must not be changed while sampling, otherwise, unpredictable results will occur as the sample to channel

association will no longer be valid.

If the method to place samples in the DAC FIFO is too slow, the user may consider either selecting fewer channels

being scanned or reducing the sample collection clock rate.

Recommended method of data conversion is to program the clocks and let them settle. Then disable them with the

ccrtNGFC_Clock_Set_Generator_CSR() call. Next select a set of channels whose samples are going to be placed in

the DAC FIFO and then reset the DAC FIFO with the ccrtNGFC_DC_DAC_Reset_Fifo() call and start a few writing

samples into it for selected channels (priming the FIFO). Finally, when ready to start conversion, enable the clocks

with the ccrtNGFC_Clock_Set_Generator_CSR() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 18 of 29

There are various methods available at the disposal of the user to write to the DAC FIFO so that the hardware can

convert the samples to analog signals. Each has its own merit, limitations and performance impact and left to the

sole discretion of the user as to the method to use.

a) Advanced users can access this register directly via memory mapping, and bypassing the API, however, care

must be taken in performing any synchronization with any other applications accessing the board at the same

time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_dac_fifo_ptr can be obtained by using the ccrtNGFC_DC_DAC_Get_Info()

call. Once the pointer is available, the channels can be accessed via this register.

If the user wishes to determine the raw data for a given floating point voltage, they can do so with the help of

the ccrtNGFC_VoltsToData() library call. This call requires as an argument a pointer to the

ccrtngfc_volt_convert_t structure that holds the current DAC configuration information.

b) Another method to transfer the contents of a consecutive set of raw values in a local buffer to the DAC FIFO is

to use the ccrtNGFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to

transfer the data via MsgDma or Programmed I/O. If this call is going to use MsgDma, then the transmitting

user buffer must be a buffer that can allow the board to perform MsgDma writes. This buffer can be obtained

with the help of the ccrtNGFC_MMap_Physical_Memory() library call.

c) Another approach is for the user to make use of the driver to write to the DAC FIFO. In this case, the user needs

to first select the appropriate channel write mode operation (CCRTNGFC_DAC_PIO_FIFO) with the

ccrtNGFC_DC_DAC_Set_Driver_Write_Mode() library call and then call the ccrtNGFC_DC_DAC_Write()

routine to write raw data to the DAC FIFO. At present, the driver does NOT support MsgDma transfers. In

this case (i.e. PIO mode), any buffer (not necessarily a DMA capable one) can be supplied to the

ccrtNGFC_DC_DAC_Write() call.

e) Finally, to write to the channels in the fastest manner possible, the user can make use of the MsgDma engines

supplied with the card. In this case, the user will first need to acquire one of 6 available MsgDma engines via

the ccrtNGFC_MsgDma_Seize() call.

Next, they will need to configure the MsgDma Fifo with the ccrtNGFC_DC_DAC_MsgDma_Configure_Fifo()

call, passing the MsgDma engine as one of the arguments to the call. Users also need to specify the number of

samples NumberOfSamples as one of its arguments. If the user plans to use one of the MsgDma engines 0

through 3, they need to ensure that the number of samples specified is a multiple of 4. If that is not the case,

then the user will need to use the slightly slower MsgDma engines 4 or 5 where there are no alignment

restrictions.

Once the MsgDma is successfully configured in the above step, the user will then use the

ccrtNGFC_DC_DAC_MsgDma_Fire_Fifo() call supplying the same seized MsgDma engine. This call is then

repeated for each new transfer from the user supplied PciDmaMemory buffer (which is also one of the

arguments in the above ccrtNGFC_DC_DAC_MsgDma_Configure_Fifo() call) to the DAC FIFO.

Once the user is done with the transfer, they can release the MsgDma engine with the

ccrtNGFC_MsgDma_Release() call.

7. Reading and Writing to the card

This card has the ability to perform reads and writes to the card in four ways.

1. Programmed I/O

2. Modular Scatter-Gather DMA

3. Modular Scatter-Gather DMA Cloning

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 19 of 29

Of the three approaches, the programmed I/O is the slowest, however, it gives the user the ability to access any

region on the card to read and write to it. The restrictions are of course, if a region is a read-only region then writes

to it will not take place and vice versa. This approach also utilizes the most CPU and PCI bandwidth. It is good for

small size read or write operations.

Modular Scatter-Gather DMA is a lot faster than programmed I/O when a larger region is read or written to. It also

has the advantage of reducing the CPU bandwidth, since, once the Modular Scatter-Gather DMA operation

commences, entire transfer occurs between the card and memory without CPU intervention. Since there is a finite

setup time to initialize the Modular Scatter-Gather DMA, it is only useful for large transfers as the overhead of setup

would offset any gains for smaller transfers. Additionally, the user has the ability to setup multiple DMA accesses

with a single call. You can also use interrupts to determine the end of transmission instead of polling. In latter case

is faster response while the former uses less CPU overhead.

Modular Scatter-Gather DMA Cloning is identical to the Modular Scatter-Gather DMA operation with the exception

that once the Cloning operation has commenced, it keeps repeating the Modular Scatter-Gather DMA under

hardware control until it is stopped.

There are six Modular Scatter-Gather DMA engines present on the mother board. They can be shared between

various resources and multiple Modular Scatter-Gather DMA engines can be running concurrently. Before any

access can be granted to a resource for MsgDma operation, the engine needs to be seized via the

ccrtNGFC_MsgDma_Seize() call. At this point, no other resource can access this engine until it is released by the

ccrtNGFC_MsgDma_Release() call. When using MsgDma engines 0 through 3, the data supplied to the call must

be quad-word aligned (multiple of 16 bytes) and the transfer size must also be a multiple of 4 words or 16 bytes. If

the above restriction on alignment and size cannot be satisfied, then the user will have to use the MsgDma engines

4 or 5 which require only word (i.e. 4 bytes) alignment.

The following calls can assist the user in performing the I/O:

1. Programmed I/O

➢ ccrtNGFC_Fast_Memcpy()

➢ ccrtNGFC_Fast_Memcpy_Unlocked()

➢ ccrtNGFC_Fast_Memcpy_Unlocked_FIFO()

➢ ccrtNGFC_Transfer_Data()

➢ ccrtNGFC_Get_Mapped_Local_Ptr() // pointer to the card local memory - advanced users only

➢ ccrtNGFC_DC_ADC_Read() // for reading ADC FIFO or channels via driver

➢ ccrtNGFC_DC_ADC_Read_Channels() // for reading ADC channels

➢ ccrtNGFC_DC_ADC_Read_Channels_Calibration() // for reading ADC channel calibration values

➢ ccrtNGFC_DC_ADC_Get_Value() // to read specific values on the board registers

➢ ccrtNGFC_DC_ADC_Set_Value() // to write specific values to the board registers

➢ ccrtNGFC_DC_DAC_Read_Channels() // for reading DAC channels

➢ ccrtNGFC_DC_DAC_Read_Channels_Calibration() // for reading DAC channel calibration values

➢ ccrtNGFC_DC_DAC_ReadBack_Channels // for reading DAC readback channels

➢ ccrtNGFC_DC_DAC_Write() // for writing DAC FIFO and channels via driver

➢ ccrtNGFC_DC_DAC_Write_Channels() // for writing to DAC channels

➢ ccrtNGFC_DC_DAC_Write_Channels_Calibration() // for writing to DAC channel calibration

➢ ccrtNGFC_DC_DAC_Get_Value() // to read specific values on the board registers

➢ ccrtNGFC_DC_DAC_Set_Value() // to write specific values to the board registers

2. Modular Scatter-Gather DMA

➢ ccrtNGFC_Transfer_Data() // single MsgDma transfer

➢ ccrtNGFC_MsgDma_Seize() // single MsgDma Channel register transfer

ccrtNGFC_DC_ADC_MsgDma_Configure_Channel()

 ccrtNGFC_DC_ADC_MsgDma_Fire_Channel() - repeat multiple times

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 20 of 29

ccrtNGFC_MsgDma_Release()

➢ ccrtNGFC_MsgDma_Seize() // single MsgDma FIFO transfer

ccrtNGFC_DC_ADC_MsgDma_Configure_Fifo()

 ccrtNGFC_DC_ADC_MsgDma_Fire_Fifo() - repeat multiple times

ccrtNGFC_MsgDma_Release()

➢ ccrtNGFC_MsgDma_Seize() // single MsgDma Channel register transfer

ccrtNGFC_DC_DAC_MsgDma_Configure_Channel()

 ccrtNGFC_DC_DAC_MsgDma_Fire_Channel() - repeat multiple times

ccrtNGFC_MsgDma_Release()

➢ ccrtNGFC_MsgDma_Seize() // single MsgDma FIFO transfer

ccrtNGFC_DC_DAC_MsgDma_Configure_Fifo()

 ccrtNGFC_DC_DAC_MsgDma_Fire_Fifo() - repeat multiple times

ccrtNGFC_MsgDma_Release()

➢ ccrtNGFC_MsgDma_Seize() // multiple MsgDma transfer

ccrtNGFC_MsgDma_Configure_Descriptor()

ccrtNGFC_MsgDma_Setup()

ccrtNGFC_MsgDma_Fire() - repeat multiple times

ccrtNGFC_MsgDma_Release()

➢ ccrtNGFC_MsgDma_Seize() // single MsgDma transfer

ccrtNGFC_MsgDma_Configure_Single()

ccrtNGFC_MsgDma_Fire_Single() - repeat multiple times

ccrtNGFC_MsgDma_Release()

3. Modular Scatter-Gather DMA Cloning

➢ ccrtNGFC_MsgDma_Seize()

ccrtNGFC_MsgDma_Configure_Descriptor()

ccrtNGFC_MsgDma_Setup()

ccrtNGFC_MsgDma_Clone() - start Cloning

ccrtNGFC_MsgDma_Release()

8. Cloning (CCRT US Patent US 11.281.584 B1, Inventor Darius Dubash)

8.1 Scope

The CCRTNGFC allows Cloning of its entire local memory.

This card has six MsgDma engines and therefore up to a maximum of six Cloning or MsgDma operation can be

active at a given time. Additionally, it is meaningless to perform Cloning on a FIFO region for two reasons. Firstly,

each data in a FIFO is synchronous, however, the Cloned region is accessed asynchronously. Secondly, when the

FIFO runs empty (underflow) or cannot accept more data (overflow) the results are unpredictable.

8.2 What is Cloning

It is a mechanism under hardware control, setup by the user to continuously reflect (copy) a section of
physical or local memory on a card (the source) to another physical or local memory located on the same
or another card (the destination). Once Cloning has initiated, an image of source region appears on the
destination region continuously at MsgDma transfer speed and the process cannot be throttled. The
transfers are repeated continuously until the Cloning operation is stopped by the user. For example, the
source can be the analog input registers on the card and its changing values can be reflected in the
Cloned destination. If the Cloned destination is the analog output registers of the card, any change in
values to the Cloned source will be reflected in the analog output registers.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 21 of 29

Types of Cloning: There are two types of Cloning available:

• Basic

• Region Addressing

8.3 Basic Cloning

Basic Cloning is an option that can be purchased and involves a user having the ability to Clone a section
of the board’s local memory or a physical memory. All Cloning must reside within the user domain. In
this case, board addresses are relative offsets within the local board memory area and not ABSOLUTE
addresses (as seen by the kernel). Additionally, any physical memory created must be one that the user
previously created by the driver (i.e. not an acquired physical memory from another user).

With Basic Cloning the user can Clone:

• any MsgDma (not FIFO) local memory on the board as its source and a physical memory it
created as its destination

• a physical memory it created as its source and any MsgDma (not FIFO) local memory on the
board as its destination

• any MsgDma (not FIFO) local memory on the board as its source and another MsgDma (not FIFO)
local memory on the same board as its destination

• a physical memory is created as its source and another physical memory is created as its
destination (as long as the user has created the physical memory and has full access to it).

8.4 Region Addressing Cloning

This option expands the above Basic Cloning functionality. The Region Addressing option can be
purchased with either one of the following:

1. The first option is to allow only the root user to perform region addressing
2. The second option is to give permission to any user to perform region addressing. The root

always has permission even in this second option, however, only a selected set of users up to a
maximum of 512 users can be given permission to perform region addressing.

With the purchase of either option, a user can perform Cloning outside their domain by Cloning ANY
physical region that is visible to the kernel even if the region is currently in use by another user. There
are therefore several security and stability ramifications with the use of this option. In addition to other
restrictions, the main caveat is that the region being Cloned must be capable of handling MsgDma (not
FIFO) and be made available to the user by the kernel. Since physical addresses are supplied to Region
Addressing, care must be taken in making sure that the address and size is valid otherwise results could
be unpredictable, resulting in possible DMA and/or kernel crashing or hanging. Recovery from a
hanging DMA would require a reloading of the driver.

If the second option is purchased, by default whenever the driver is reloaded, no users are given region
addressing permission unless specifically granted by the root user. User permission is granted on a per
card basis and is limited to maximum of 512 users. The way user permission is granted or denied by the
root user is as follows:

 === root ===
 echo “ccrtngfc_manage_clone_user=<+|->,<Board_Serial_Number|*>,UID1,UID2,…,UIDn”
 > /proc/ccrtngfc

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 22 of 29

The first token must be “ccrtngfc_manage_clone_user” and be followed by the ‘=’ sign. Next can be
either ‘+’ to add a user or ‘-‘ to remove a user from the list, followed by the ‘,’ sign. After that the root
user can specify either a specific ‘Board_Serial_Number’ or ‘*’. If ‘*’ is specified, then the command is
applicable to all the boards in the system. The board specification must be followed by the ‘,’ sign,
followed by a comma separated list of User IDs. This information is then passed to the driver via the
directive ‘> /proc/ccrtngfc’. The driver will parse this information and maintain a list of users internally
since the driver was loaded, on a per board basis, that are granted region addressing permission.
Though the driver allows imbedded spaces in the above command, it is recommended to encase them
in <”>, especially if you are selecting ‘*’ to specify all the cards.

e.g. to add specific User IDs 1234, 5678, 9 and 10 to a board with a serial number 665413:

 sudo echo “ccrtngfc_manage_clone_user=+,665413,1234,5678,9,10” > /proc/ccrtngfc

If successful, the driver will output on the terminal:

 [0:665413] Count of number of users ADDED: 4
 [0:665413] CloneRA Users: 1234, 5678, 9, 10
 [0:665413] Total number of users allowed Region Addressing permission: 4

To add another user 11223344 to all the cards, you can issue the following:

 sudo echo “ccrtngfc_manage_clone_user=+,*,11223344” > /proc/ccrtngfc

If successful, the driver will output on the terminal:
 [0:665413] Count of number of users ADDED: 1
 [0:665413] CloneRA Users: 1234, 5678, 9, 10, 11223344
 [0:665413] Total number of users allowed Region Addressing permission: 5

If a second board with serial number 665527 exists in the system:
 [0:665527] Count of number of users ADDED: 1
 [0:665527] CloneRA Users: 11223344
 [0:665527] Total number of users allowed Region Addressing permission: 1

To remove the 5678 User ID from the specific board 665413 you can issue the following:

 sudo echo “ccrtngfc_manage_clone_user=-,665413,5678” > /proc/ccrtngfc

If successful, the driver will output on the terminal:
 [0:665413] Count of number of users REMOVED: 1
 [0:665413] CloneRA Users: 1234, 9, 10, 11223344
 [0:665413] Total number of users allowed Region Addressing permission: 4

To remove all User ID entries quickly for all cards, reload the driver.

If you get an invalid argument error, issue the ‘dmesg’ command and it will supply more information
on the error.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 23 of 29

No error is generated if the user supplies a specific board serial number that does not exist in the
system or attempts to remove User IDs for a board that does not have the User ID in its list or
attempts to duplicate a User ID for a board.

At any time, you can issue the ‘cat /proc/ccrtngfc’ directive to get information on the list of User
IDs that have region addressing permission.

If several users are added in a single command line making the string very long (1000+ characters),
it is possible that the kernel may break up the string into partial multiple strings before giving to the
driver. If that happens, the driver will only see a partial command and could error out. It is therefore
suggested that if several User IDs are to be specified multiple commands should be used.

8.5 Reason for Cloning

The ability to Clone a region opens up a whole new way of thinking about accessing hardware and
provides an infinite number of scenarios. For example, the simplest case would be to Clone the analog
input channels of a card to a physical memory. The user can read the physical memory instead of the
real hardware to get the latest channel information, thus incurring little to no overhead as the read is
being performed on a physical memory instead of the board’s hardware registers. (see Example 1)

A more complex scenario could be if the Region Addressing option is selected. For example, it is possible
for the Analog Input card to Clone its local input registers to a physical memory and another physical
memory Cloned to the analog output registers of another Analog Output card. In this way, the user can
instantaneously acquire changing analog input data from the Analog Input card by reading its Cloned
physical memory, process the signals and then write the values to the Analog Output card’s Cloned
physical memory without incurring any overhead that would have resulted if they were reading from
the Analog Inputs local registers and writing to the Analog Outputs local registers. (see Example 3)

8.6 Technical

Cloning basically causes the MsgDma engine to run continuously under hardware control. Once
initiated, there is no software intervention required to sustain it. The Cloning is asynchronous and a
finite interval is required to completely Clone a given region. The time it takes to complete a single
Cloning pass is a direct function of the number of words being Cloned, the number of descriptors in use
and the region being Cloned.

CCRTNGFC card:
The CCRTNGFC card uses a 100MHz clock for its entire region. It will therefore take 10 nono-seconds to
perform a MsgDma transfer for a single 32-bit word. Hence, transfering 12 channels of ADC or DAC will
take approximately 120+ nano-seconds for each MsgDma burst. There also appears to be some delay
between bursts for hardware synchronization.

8.7 Licensing

This Cloning option is disabled by default. License can be obtained for

• Basic Cloning

• Basic Cloning plus region addressing by only the root user

• Basic Cloning plus region addressing by any user in addition to the root user

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 24 of 29

8.8 Features and Limitations

Features:

1. Cloning allows a user the ability to access its hardware with minimal to no overhead

2. Region Addressing can allow Cloning outside the user domain within a system

3. With proper licensing, Region Addressing can be granted access permission to a specific set of users

(maximum 512 users) in addition to the root user on a per board basis

4. This card can perform Cloning of its entire local memory

5. Cloning operation is easily controlled by various APIs included with the library

6. No CPU intervention occurs during Cloning once transfer has begun

7. Cloning uses MsgDMA as its backbone

Limitations:

1. Cloning of FIFO region is not supported

2. Cloning it limited to within a system

3. Larger Cloning region will use more PCIe bandwidth as it is Cloning the entire selected region and

not just the changing elements within the region

4. Successful Cloning outside the user domain is directly dependent on the region being Cloned

8.9 Example 1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 25 of 29

8.10 Example 2

8.11 Example 3

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 26 of 29

9. Clocks

This FPGA supports a total of ten clock generators Clock 0 to Clock 9. Following are their assignments:

• Clock 0 to 5 – for ADC or DAC

• Clock 6 – for External clock (currently not used)

• Clock 7 – for HighSpeed Daughter Card 1 (future use)

• Clock 8 – for HighSpeed Daughter Card 1 & 2 (future use)

• Clock 9 – Feed-back (Reserved)

Currently, users can select any of the six clocks (Clock 0 to 5) for ADC or DAC. They can also use the same clock

if both ADC and DAC are to run at the same clock speed.

Though there are several API calls to control the clock generator, it is recommended that they be left to the advanced

users to control as they require in depth knowledge of the internals of the hardware and workings of the clock

generator. For most users, the following API calls should suffice to handle most situations:

• ccrtNGFC_Reset_Clock()

• ccrtNGFC_Clock_Set_Generator_CSR()

• ccrtNGFC_Compute_All_Output_Clocks()

• ccrtNGFC_Program_All_Output_Clocks()

• ccrtNGFC_Clock_Get_Generator_Info()

Due to the complexity of programming the clock generator and due to hardware limitations (i.e. different clocks

sharing same resources), a user cannot append to or change already running clocks. If multiple clocks are to be

used, then the user needs to program all the clocks with the single call prior to commencing. Additionally, the

software makes all attempts to program the clocks with the user desired frequency. There may be times when the

desired frequencies are so mismatched that it will be impossible for the clock chip to be programmed for those exact

frequencies. In that case, the user has two choices (1) change the clock frequencies slightly (2) increase the supplied

tolerance to the API call which currently defaults to 0.020 parts/trillion. In the latter case, the call will attempt to

program the frequencies closest to what the hardware will allow.

9.1.1 Reset All Clocks

This call simply resets and disables all the clocks on the board. Not much can be done (other than Digital I/O) with

the card until the clocks are programmed and running.

9.1.2 Clock Set Generator CSR

This is a useful call to enable and disable clocks once they are programmed. Users can use this to control the contents

of the FIFO for both ADC and DAC.

9.1.3 Compute All Output Clocks

Any of the ten clocks can be selected to be programmed with any frequency ranging from 1 Hz to 750 MHz. Since

the clocks are sharing hardware resources, there may be certain frequency and clock combinations that will make

programming the board impossible. In this case, the user has the option to select fewer clocks, change the frequencies

or increase the acceptable tolerance for desired frequencies.

The user can use the ccrtNGFC_Compute_All_Output_Clocks() call to see if their combination of clock

programming is going to work. No actual programming of the hardware takes place and therefore it should not

interfere with any other hardware operation. If the call succeeds, it returns detailed information in the AllClocks

argument for each of the clocks. Users can decide whether to program the clock generator with the same information

using the ccrtNGFC_Program_All_Output_Clocks() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 27 of 29

9.1.4 Program All Output Clocks

This call first resets all the clock generators and then programs them with the desired frequencies supplied to the

call. If any components (e.g. ADC, DAC etc) are operational, they will no longer work until the corresponding clocks

have been re-programmed. It is recommended to stop all components that are using the clocks prior to

reprogramming the clock generators; otherwise, the component operation will be compromised.

9.1.5 Get Clock Generator Information

This call provides detailed information for any of the selected clock generators in the CgInfo argument of the

ccrtNGFC_Clock_Get_Generator_Info() call.

10. Calibration

For accurate representation of samples, users can perform calibration of ADC or DAC channels prior to sampling.

ADC calibration makes use of either the on-board reference voltage or an external input. DAC calibration uses the

ADC input channels to read-back analog output signals. Hence, it is recommended that the ADC be calibrated first

prior to calibrating the DAC channels.

10.1.1 ADC Calibration

The simplest way to calibrate all the channels using the internal reference voltage is to use the single call

ccrtNGFC_DC_ADC_Perform_Auto_Calibration(). This call requires the ADC and the clocks to be in an active

state, otherwise it will fail. In normal circumstances, both are active so there is no need to activate them. This call

first programs clock generator 0 to the maximum ADC clock frequency and associates all the ADCs with this clock.

It also programs the ADCs for two’s complement, bi-polar 10 volts operation and then calibrates ADC channels for

offset, positive reference and finally negative reference.

External ADC calibration is more involved as the user needs to interactively supply the appropriate input signals.

The user can perform external calibration by supplying zero volts signal to the selected channels and using the

ccrtNGFC_DC_ADC_Perform_External_Offset_Calibration() call. Next, they can perform positive calibration by

supplying an external positive signal to the selected channels and using the

ccrtNGFC_DC_ADC_Perform_External_Positive_Calibration() call with the ReferenceVoltage argument set to the

value of the external input signal and finally supplying a negative signal to the selected channels and using the

_ccrtNGFC_DC_ADC_Perform_External_Negative_Calibration() call with the ReferenceVoltage argument set to

the negative signal supplied.

If users prefer that the hardware not perform any calibration for specific channels, one can do that with the use of

the corresponding channel selection mask ChanMask for any of the above calls.

Note: Since the ADC calibration programs the clock generator for clock 0 at the maximum ADC

frequency, it is recommended to first complete auto calibration before programming the clocks for

later use.

10.1.2 DAC Calibration

Caution: Anytime the DAC channels are being calibrated, full scale signals are driven on the

output channels. It is recommended to disconnect the outputs from any external devices if there is

any possibility of damaging them during calibration.

For accurate DAC calibration of channels, the user must first enable the ADC and complete its calibration. Users

can use the ccrtNGFC_DC_DAC_Perform_Auto_Calibration() call to perform DAC calibration. Since the DAC is

fairly accurate before calibration, you may not see any change to the calibrated DAC offset voltages.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 28 of 29

If users prefer that the hardware not perform any calibration for specific channels, one can do that with the use of

the corresponding channel selection mask ChanMask in the above call.

Note: Since the ADC channels are used for DAC calibration, the clocks have to be programmed for

sample collection. It is therefore necessary to complete DAC calibration prior to any programming

of the clocks for later use.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 29 of 29

This page intentionally left blank

