

Release Notes
CCURAOCC (WC-DA3218)

Driver ccuraocc (WC-DA3218)

Platform RedHawk Linux® (CentOS/Rocky/RHEL & Ubuntu),

Native Ubuntu® and Native Red Hat Enterprise Linux®1

Vendor Concurrent Real-Time

Hardware PCIe 8-Channel (CP-DA0818) or 32-Channel

(CP-DA3218) DA Converter Card

Author Darius Dubash

Date July 11th, 2025 Rev 2025.1

1 All trademarks are the property of their respective owners

This page intentionally left blank

Table of Contents

1. INTRODUCTION .. 1

2. REQUIREMENTS ... 1

3. DOCUMENTATION ... 1

4. RUNNING ON NATIVE RED HAT .. 2

4.1. Support to build 3rd party modules .. 2

4.2. Support for MSI interrupts.. 2

4.3. BIOS and Kernel Level Tuning .. 3

5. RUNNING ON NATIVE UBUNTU .. 3

5.1. Support to build 3rd party modules .. 3

5.2. Support for MSI interrupts.. 4

5.3. Compiling the driver with installed gcc .. 4

5.4. BIOS and Kernel Level Tuning .. 5

6. INSTALLATION AND REMOVAL .. 5

6.1. Hardware Installation ... 5

6.2. Add Device to Restricted List ... 6

6.3. Software Installation ... 7

6.4. Software Removal .. 8

7. AUTO-LOADING THE DRIVER .. 9

8. TESTING AND USAGE .. 9

9. RE-BUILDING THE DRIVER, LIBRARY AND TESTS .. 9

10. SOFTWARE SUPPORT ... 10

10.1. Device Configuration .. 10

10.2. Associate Device Names to Cards... 11

10.3. Library Interface ... 11

10.4. Calibration .. 11

10.5. Firmware Updates ... 12

10.6. Debugging... 12

11. NOTES AND ERRATA ... 14

APPENDIX A: EXTERNAL CONNECTIONS AND PIN-OUTS .. 15

APPENDIX B: THE BOARD .. 17

 This page intentionally left blank

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 1 -

1. Introduction

This document assists the user in installing the CCRT-PCIe-AOCC Linux ccuraocc driver and related
software on the RedHawk OS, Native Ubuntu and Native Red Hat for use with the CCRT-PCIe-AOCC
board. The directions in this document supersede all others – they are specific to installing the software
on Concurrent Real-Time’s RedHawk and Native Ubuntu and Native Red Hat systems. Other
information provided as part of this release, when it may contradict these directions, should be ignored
and these directions should prevail.

Current versions of Native Operating Systems that are supported are:

1) Ubuntu 22.04, kernel 6.5 or 6.8, gcc11 & gcc12
2) Red Hat RHEL 9.4, kernel 5.14

For additional information on this driver and usage refer to the ccuraocc man page.

The AOCC is an 8 or 32-channel 18-bit digital to analog converter card with a PCI express interface. It
is implemented using Linear Technology LTC2758 dual channel DAC’s. The PCI interface utilizes a
PLX Technology PEX-8311AA PCI-express-to-local bus bridge. There is a Lattice ECP2M FPGA for
control of board functions including registers and storage. An adjustable main clock source is generated
by a low jitter PLL. The external synchronizing interface consists of LVDS signaling connected via RJ-
12 (6-pin phone) style cabling.

Features and Characteristics of the AOCC are:

− 8 or 32-channel 18-bit D to A Conversion.

− Differential or Single-ended Output (Build Option).

− 0 to +5V, 0 to +10V, +/-2.5V, +/-5V or +/-10V Output Range Selection.

− 10 Milliamp Maximum Output Drive.

− 400K Updates Per Second.

− Industry Standard SCSI 68-pin Connector for Inputs.

− RJ-12 (6-pin phone style) Connectors for External Synchronization.

− PCI Express x1 Revision 1.0a.

− Supports MSI Interrupts.

− Low Jitter Phase Lock Loop (PLL) Clock Generator.

− Supports Multi-board Synchronization.

− Directly Addressable Conversion Data Registers.

− 128K Word Conversion Data FIFO with DMA.

− Low Noise Analog Power Generation.

− On Board Calibration ADC.

− Gain and Offset Calibration DAC’s Per Channel.

− Gain and Offset Calibration Values Fully Accessible.

− Non-volatile Storage of Calibration Data & User Configuration.

− NIST Traceable Calibration Standard.

The board and driver provide support for MSI interrupts. This is the default configuration.

2. Requirements

• CCRT-AOCC PCIe board physically installed in the system.

• This driver supports various versions of RedHawk and a selected set of Native Ubuntu and Native
Red Hat. Actual supported versions depend on the driver being installed.

3. Documentation

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 2 -

• PCIe 8-Channel or 32-Channel Digital to Analog Output Converter Card (AOCC) Software Interface
by Concurrent Real-Time.

4. Running on Native Red Hat

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver will
also be able to run on some selected versions of Red Hat with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccuraocc/driver/ccuraocc.ko due to unavailability
of vmlinux

4.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

yum install ncurses-devel (to run curses)
yum install gnuplot (to run plots for various tests)

yum install <any other package you want to install>

4.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccuraocc_nomsi parameter located in the …/driver/ccuraocc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

➢ ccuraocc_nomsi=0 enable MSI support (default for RedHawk systems)
➢ ccuraocc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on a
per board basis for cards using a PLX chip for generating interrupts. This is specially true for the
later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to use
MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “iommu=pt”
➢ Reload the kernel with the grub option “iommu=off”
➢ Disable IOMMU in the BIOS
➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d MSI Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

➢ # grubby --update-kernel=ALL --args=iommu=pt (add the parameter)
➢ # grubby --update-kernel=ALL --args=iommu=off (add the parameter)
➢ # grubby --update-kernel=ALL --args=intremap=nosid (add the parameter)
➢ # grubby --update-kernel=ALL --remove-args=intremap=nosid (remove the parameter)
➢ # grubby --info=ALL (display parameters)
➢ # reboot

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 3 -

➢ After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is
present.

4.3. BIOS and Kernel Level Tuning
It is possible that some tests may get overflow or underflow errors as the card is capable of high sample
rate transfers. You may need to lower the sample rates for these tests to run successfully if BIOS and
kernel level tuning does not help.

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
various BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

5. Running on Native Ubuntu

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver will
also be able to run on some selected versions of Ubuntu with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccuraocc/driver/ccuraocc.ko due to unavailability
of vmlinux

5.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

apt install build-essential
apt install libssl-dev
apt install nfs-common (to mount nfs file systems)
apt install libncurses-dev (to run curses)
apt install gnuplot (to run plots for various tests)
apt install chrony (for more accurate clock time)
apt install <any other package you want to install>

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 4 -

5.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccuraocc_nomsi parameter located in the …/driver/ccuraocc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

➢ ccuraocc_nomsi=0 enable MSI support (default for RedHawk systems)
➢ ccuraocc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on a
per board basis for cards using a PLX chip for generating interrupts. This is specially true for the
later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to use
MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “iommu=pt”
➢ Reload the kernel with the grub option “iommu=off”
➢ Disable IOMMU in the BIOS
➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d MSI Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

➢ Edit /etc/default/grub and add "iommu=pt" or “iommu=off” and/or add “intremap=nosid”
to “GRUB_CMDLINE_LINUX=” entry

➢ # update-grub
➢ # reboot
➢ After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is

present.

5.3. Compiling the driver with installed gcc
Depending on the Ubuntu kernel version supported, you will need to make sure that the driver is
compiled with the same gcc as the kernel.

Currently, for Ubuntu release 22.04, the kernel 5.15 uses gcc-11 while kernel 6.4 or 6.8 uses gcc-12

If gcc-12 is not installed, you can do the following:

apt install gcc-12

Then create alternate entries for each available version:

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc

/usr/bin/x86_64-linux-gnu-gcc-11 11

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc
/usr/bin/x86_64-linux-gnu-gcc-12 12

You can select the appropriate gcc with the following commands:

sudo update-alternatives --config gcc

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 5 -

sudo update-alternatvies --config x86_64-linux-gnu-gcc

All of this will ensure you have the compiler versions that match what the kernel was compiled with.

5.4. BIOS and Kernel Level Tuning
It is possible that some tests may get overflow or underflow errors as the card is capable of high sample
rate transfers. You may need to lower the sample rates for these tests to run successfully if BIOS and
kernel level tuning does not help.

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
various BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

6. Installation and Removal

6.1. Hardware Installation

The CCRT-AOCC card is a x1 PCI Express product and is compatible with any PCI Express slot. The
board must be installed in the system before attempting to use the driver.

Caution: when installing the card insure the computer is powered off and the
machine’s power cord is disconnected. Please observe electrostatic discharge
precautions such as the use of a grounding strap.

The ccuraocc driver is designed to support IRQ sharing. If this device’s IRQ is being shared by another
device then this driver’s performance could be compromised. Hence, as far as possible, move this
board into a PCI slot who’s IRQ is not being shared with other devices.

An ‘lspci -v’ or the ‘lsirq’ command can be used to determine the IRQs of various devices in the
system.

lspci -v -d1542:9287
02:04.0 System peripheral: Concurrent Computer Corporation Device 9287 (rev 01)
 Subsystem: PLX Technology, Inc. Device 9056
 Flags: bus master, 66MHz, medium devsel, latency 96, IRQ 88
 Memory at c0100800 (32-bit, non-prefetchable) [size=512]
 Memory at c0100000 (32-bit, non-prefetchable) [size=2K]

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 6 -

 Capabilities: <access denied>

lsirq
88 02:04.0 Concurrent Computer Corporation Unknown device (rev 01)
The default driver configuration uses MSI interrupts. If the kernel supports MSI interrupts, then sharing
of interrupts will not occur, in which case the board placement will not be an issue.

After installing the card, reboot the system and verify the hardware has been recognized by the
operating system by executing the following command:

lspci –d 1542:9287

For each CCRT-AOCC PCIe board installed, a line similar to one of the following will be printed,
depending on the revision of the system’s /usr/share/hwdata/pci.ids file:

02:04.0 System peripheral: Concurrent Computer Corporation Device 9287 (rev 01)

If a line similar to the above is not displayed by the lspci command, the board has not been properly
installed in the system. Make sure that the device has been correctly installed prior to attempting to
use the software. One similar line should be found for each installed card.

6.2. Add Device to Restricted List

For kernels that have iommu enabled, these devices will fail DMA read and write access with a message
similar to the following:

DMAR: [DMA Write] Request device [1d:00.0] fault addr 5eec0000
[fault reason 01] Present bit in root entry is clear

You can issue the ‘cat /proc/cmdline’ command to determine if iommu is enabled in the kernel after
booting the system. If you see the ‘intel_iommu=on’ entry, the kernel has iommu enabled for the entire
operating system. In this case you will need to restrict iommu usage for these devices.

To enable DMA to work, you will need to add the following entries to the kernel grub line:

1. iommu=pt (this passthrough option is needed for
 restricting the selected device)

2. intel_iommu.blacklist_ids=1542:9287 (vendor:device id if 9287 card is installed)

Use the ccur-grub2 or blscfg command depending on the loaded kernel. You can use the following
argument ‘--help’ to either command for additional information on its usage.

1. ccur-grub2 --kopt-add iommu=pt 0,1,2 (for kernel entries 0, 1 and 2)

2. ccur-grub2 --kopt-add intel_iommu.blacklist_ids=1542:9287 0,1,2

Reboot the kernel for the device restriction to take effect. You should get a message similar to the one
below if the command took effect:

DMAR: add [1542:9287] to intel_iommu blacklist

Note!!!
If you wish to disable iommu for all devices under a PLX bridge you can use the following option
instead:

1. intel_iommu=on,plx_off

 If you want DMA to work for kernels that do not support plx_off or intel_iommu.blacklist_ids you will

need to disable iommu in the kernel.
1. intel_iommu=off

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 7 -

6.3. Software Installation

Concurrent Real-Time™ port of the ccuraocc software is distributed in RPM and DEB format on a
DVD. Source for the API library, example test programs, and kernel loadable driver are included, as is
documentation in PDF format.

The software is installed in the /usr/local/CCRT/drivers/ccuraocc directory. This directory will be
referred to as the “top-level” directory by this document.

Warning: Before installing the software, for RedHawk kernels, the build environment must
be set up and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent Real-Time and have not previously done so,
run the following commands while logged in as the root user before installing the driver
software:

cd /lib/modules/`uname –r`/build
./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To install the ccuraocc package, load the DVD installation media and issue the following commands
as the root user. The system should auto-mount the DVD to a mount point in the /media or /run/media
directory based on the DVD’s volume label – in this case ccuraocc_driver. The example’s
[user_name] may be root, or the logged-in user. Then enter the following commands from a shell
window:

== as root ==
--- on RedHawk 6.5 and below ---

cd /media/ccuraocc_driver
--- or on RedHawk 7.0 and above ---

cd /run/media/[user_name]/ccuraocc_driver
--- or on Ubuntu RedHawk ---

cd /media/[user_name]/ccuraocc_driver

rpm –ivh ccuraocc_RedHawk_driver*.rpm (on a RedHawk CentOS/Rocky based system)
 --or--

dpkg –i ccuraocc_RedHawk_driver*.deb (on a RedHawk Ubuntu based system)
 --or—

rpm –ivh ccuraocc_RedHat_driver*.rpm (on a Native RedHat based system)
 --or--

dpkg –i ccuraocc_Ubuntu_driver*.deb (on a Native Ubuntu based system)

cd /
eject

On successful installation the source tree for the ccuraocc package, including the loadable kernel
module, API libraries, and test programs is extracted into the /usr/local/CCRT/drivers/ccuraocc
directory by the rpm installation process, which will then compile and install the various software
components.

The loadable kernel module is installed in the /lib/modules/`uname –r`/misc directory.

Issue the command below to view the boards found by the driver:

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 8 -

cat /proc/ccuraocc

Version : 23.3.2
Built : Tue Oct 1 12:58:57 EDT 2019
Boards : 2
 card=0: [86:04.0] bus=134, slot=4, func=0, irq=77, msi=1, ID=691349, BoardInfo=0x92870203
 (32ch/Single-Ended)
 card=1: [89:04.0] bus=137, slot=4, func=0, irq=78, msi=1, ID=652005, BoardInfo=0x92870103
 (32ch/Differential)

Once the package is installed, the driver needs to be loaded with one of the following commands:

=== as root ===
 # cd /usr/local/CCRT/drivers/ccuraocc
 # make load
 --- or on RedHawk 6.5 and below ---
 # /sbin/service ccuraocc start
 --- or on RedHawk 7.0 and above ---
 # /usr/bin/systemctl start ccuraocc
 --- or on Ubuntu RedHawk ---
 # /bin/systemctl start ccuraocc

6.4. Software Removal

The ccuraocc driver is a dynamically loadable driver that can be unloaded, uninstalled and removed.
Once removed, the only way to recover the driver is to re-install the rpm from the installation DVD:

If any changes have been made to the driver package installed in
/usr/local/CCRT/drivers/ccuraocc directory, they need to be backed up prior to invoking the
removal; otherwise, all changes will be lost.

 === as root ===
 # rpm –e ccuraocc (driver unloaded, uninstalled, and deleted – on an RPM based system)

--- or ---
 # dpkg -P ccuraocc (driver unloaded, uninstalled, and deleted – on a Debian based system)

If, for any reason, the user wishes to un-load and uninstall the driver and not remove it, they can perform
the following:

 === as root ===
 # cd /usr/local/CCRT/drivers/ccuraocc
 # make unload (unload the driver from the kernel)
 --- or on RedHawk 6.5 and below ---
 # /sbin/service ccuraocc stop
 --- or on RedHawk 7.0 and above ---
 # /usr/bin/systemctl stop ccuraocc
 --- or on Ubuntu RedHawk ---
 # /bin/systemctl stop ccuraocc

To uninstall the ccuraocc driver, do the following after it has been unloaded:

 === as root ===
 # cd /usr/local/CCRT/drivers/ccuraocc
 # make uninstall (uninstall the driver and library)

In this way, the user can simply issue the ‘make install’ and ‘make load’ in the
/usr/local/CCRT/drivers/ccuraocc directory later to re-install and re-load the driver.

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 9 -

7. Auto-loading the Driver

The ccuraocc driver is a dynamically loadable driver. Once you install the package or perform the
‘make install’, appropriate installation files are placed in the /etc/rc.d/rc*.d or /usr/lib/system/systemd
directory so that the driver is automatically loaded and unloaded when Linux is booted and shutdown.
If, for any reason, you do not wish to automatically load and unload the driver when Linux is booted or
shutdown, you will need to manually issue the following command to enable/disable the automatic
loading of the driver:

 === as root ===
 --- on RedHawk 6.5 and below ---
 # /sbin/chkconfig –-add ccuraocc (enable auto-loading of the driver)
 # /sbin/chkconfig –-del ccuraocc (disable auto-loading of the driver)
 --- or on RedHawk 7.0 and above ---
 # /usr/bin/systemctl enable ccuraocc (enable auto-loading of the driver)
 # /usr/bin/systemctl disable ccuraocc (disable auto-loading of the driver)
 --- or on Ubuntu RedHawk ---
 # /bin/systemctl enable ccuraocc (enable auto-loading of the driver)
 # /bin/systemctl disable ccuraocc (disable auto-loading of the driver)

8. Testing and Usage

Build and run the driver test programs, if you have not already done so:

 # cd /usr/local/CCRT/drivers/ccuraocc
 # make test (build the test programs)

Several tests have been provided in the /usr/local/CCRT/drivers/ccuraocc/test directory and
can be run to test the driver and board.

 === as root ===
 # cd /usr/local/CCRT/drivers/ccuraocc
 # make test (build the test programs)

./test/ccuraocc_dump (dump all board resisters)
./test/ccuraocc_rdreg (display board resisters)
./test/ccuraocc_reg (Display board resisters)

./test/ccuraocc_regedit (Interactive board register editor test)

./test/ccuraocc_tst (Interactive test to test driver and board)

./test/ccuraocc_wreg (edit board resisters)

./test/lib/ccuraocc_calibrate (library: get/set board calibration)

./test/lib/ccuraocc_compute_pll_clock (library: compute pll clock)

./test/lib/ccuraocc_disp (library: display channel data)

./test/lib/ccuraocc_identify (library: identify board)

./test/lib/ccuraocc_setchan (library: generate waves in various

modes)
./test/lib/ccuraocc_smp_affinity (library: display/set IRQ CPU affinity)

./test/lib/ccuraocc_sshot (library: performance of channel write

modes)
./test/lib/ccuraocc_tst_lib (library: Interactive test to test driver and

board)
./test/lib/ccuraocc_volt (library: validate voltage conversion

routines)
./test/lib/Sprom/ccuraocc_sprom (library: serial prom view/update

calibration utility)

9. Re-building the Driver, Library and Tests

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 10 -

If for any reason the user needs to manually rebuild and load an installed rpm package, they can go to
the installed directory and perform the necessary build.

Warning: Before installing the software, for Redhawk kernels, the build environment must
be set up and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent Real-Time and have not previously done so,
run the following commands while logged in as the root user before installing the driver
software:

cd /lib/modules/`uname –r`/build
./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To build the driver and tests:

=== as root ===
 # cd /usr/local/CCRT/drivers/ccuraocc
 # make clobber (perform cleanup)

make (make package and build the driver, library and tests)

(Note: if you only wish to build the driver, you can enter the ‘make driver’ command instead)

After the driver is built, you will need to install the driver. This install process should only be necessary
if the driver is re-built with changes.

=== as root ===
cd /usr/local/CCRT/drivers/ccuraocc
make install (install the driver software, library and man page)

Once the driver and the board are installed, you will need to load the driver into the running kernel prior
to any access to the CCURAOCC board.

=== as root ===
cd /usr/local/CCRT/drivers/ccuraocc
make load (load the driver)

10. Software Support

This driver package includes extensive software support and test programs to assist the user in
communicating with the board. Refer to the Concurrent Real-Time PCIe 8-Channel or 32-Channel Digital
to Analog Output Converter Card (AOCC) Software Interface document for more information on the product.

10.1. Device Configuration

After the driver is successfully loaded, the device to card association file ccuraocc_devs will be created
in the /usr/local/CCRT/drivers/ccuraocc/driver directory, if it did not exist. Additionally, there is a
symbolic link to this file in the /usr/lib/config/ccuraocc directory as well. If the user wishes to keep the
default one-to-one device to card association, no further action is required. If the device to card
association needs to be changed, this file can be edited by the user to associate a particular device
number with a card number that was found by the driver. The commented portion on the top of the
ccuraocc_devs file is automatically generated every time the user issues the ‘make load’ or
‘/sbin/service ccuraocc start’ (on RedHawk 6.5 and below) or ‘systemctl start ccuraocc’ (on
RedHawk 7.0 and above) command with the current detected cards, information. Any device to card
association edited and placed in this file by the user is retained and used during the next ‘make load’,
‘/sbin/service ccuraocc start’, or ‘systemctl start ccuraocc’ process.

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 11 -

If the user deletes the ccuraocc_devs file and recreates it as an empty file and performs a ‘make load’
or if the user does not associate any device number with card number, the driver will provide a one to
one association of device number and card number. For more information on available commands,
view the commented section of the ccuraocc_devs configuration file.

Warning: If you edit the ccuraocc_devs file to associate a device to a card, you will need
to re-issue the ‘make load’, ‘/sbin/service ccuraocc start’, or ‘/usr/bin/systemctl start
ccuraocc’ command to generate the necessary device to card association. This device to
card association will be retained until the user changes or deletes the association. If any
invalid association is detected, the loading of the driver will fail.

10.2. Associate Device Names to Cards

By default, this driver creates a two device names for each board found in the system. The name of the
devices are /dev/ccuraocc<bno> and /dev/ccuraocc_wave<bno> where <bno> corresponds the card
number found in the system. An optional aoccstream_wave package may be purchased separately
that contains an API to interface to this driver and generate user defined waves. This AOCCStream
API only opens the /dev/ccuraocc_wave<bno>. If the user needs to change the association of device
names to cards, they need to edit the ccuraocc_devs that is created by the driver and located in the
/usr/local/CCRT/drivers/ccuraocc/driver directory and provide the device to card association. e.g. if we
have 6 cards in a system and we need to perform wave generation on three of the cards only, then we
would do something like:

 device=0 card=0
 device=1 card=1
 device=2 card=2
 device_wave=0 card=3
 device_wave=1 card=4
 device_wave=2 card=5
 device=4 ID=12345678

The following devices will be created:

/dev/ccuraocc0, /dev/ccuraocc1 and /dev/ccuraocc2 for boards that are not planning to use the
AOCCStream API.

/dev/ccuraocc_wave0, /dev/ccuraocc_wave1 and /dev/ccuraocc_wave2 for boards that are planning to
use the AOCCStream API.

/dev/ccuraocc4 will be assigned to the board that has a board serial number of 12345678.

NOTE: The wave files and AOCCStream API is only available for CCURAOCC cards.

10.3. Library Interface

There is an extensive software library that is provided with this package. For more information on the
library interface, please refer to the PCIe 8-Channel or 32-Channel Digital to Analog Output Converter
Card (AOCC) Software Interface by Concurrent Real-Time document.

10.4. Calibration

Warning: Whenever auto-calibration is performed, the channel outputs will be affected. It is

important that prior to calibration, any sensitive equipment be disconnected; otherwise it
could result in damage to the equipment.

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 12 -

Several library calls are provided to assist the user in calibrating the board. Additionally, the board
contains factory calibration information for each of the output voltage ranges. Users can view this
information using the supplied API or the serial prom test utility ccuraocc_sprom. Though the API and
test utility provides capability to edit and change the factory calibration, users should refrain from
making any changes to it, as it will no longer reflect the factory calibration shipped with the card. Users
can use the factory calibration to restore the calibration information stored for each configured channel
prior to commencing a test run. The restore API will update the calibration information for all the
channels based on their current voltage range. Note that the factory calibration values were obtained
under specific conditions, such as temperature, that may not be the same as the user application. In
most cases it will always be better to perform auto-calibration after the board is stabilized in the user
environment.

Additionally, the users can perform up to two independent user controlled checkpoints where the active
channel configuration and calibration information is stored in the serial prom for all the channels. At any
time, the user can restore either of the two checkpoints with an API call or the serial prom test utility
ccuraocc_sprom prior to a test run. These checkpoints will allow the user to store specific values
pertaining to their calibration conditions.

10.5. Firmware Updates

This board is capable of being re-programmed in the field as new firmware updates are made available
by Concurrent Real-Time™. The procedure for re-programming the firmware will be supplied to the
user at the time when a firmware update is necessary.

10.6. Debugging

This driver has some debugging capability and should only be enabled while trying to trouble-shoot a
problem. Once resolved, debugging should be disabled otherwise it could adversely affect the
performance and behavior of the driver.

To enable debugging, the Makefile file in /usr/local/CCRT/drivers/ccuraocc/driver should be edited
to un-comment the statement (remove the preceding ‘#’):

 #BUILD_TYPE=debug

Next, compile and install the driver

 # cd /usr/local/CCRT/drivers/ccuraocc/driver
 # make
 # make install

Next, edit the ccuraocc_config file in /usr/local/CCRT/drivers/ccuraocc/driver to un-comment the
statement (remove the preceding ‘#’):

 # ccuraocc_debug_mask=0x00002040

Additionally, the value of the debug mask can be changed to suite the problem investigated. Once the
file has been edited, the user can load the driver by issuing the following:

 # cd /usr/local/CCRT/drivers/ccuraocc/driver
 # make load

The user can also change the debug flags after the driver is loaded by passing the above debug
statement directly to the driver as follows:

 # echo “ccuraocc_debug_mask=0x00082047” > /proc/driver/ccuraocc

Following are the supported flags for the debug mask as shown in the ccuraocc_config file.

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 13 -

D_ENTER 0x00000001 /* enter routine */ #
D_EXIT 0x00000002 /* exit routine */ #

D_L1 0x00000004 /* level 1 */ #
D_L2 0x00000008 /* level 2 */ #
D_L3 0x00000010 /* level 3 */ #
D_L4 0x00000020 /* level 4 */ #

D_ERR 0x00000040 /* level error */ #
D_WAIT 0x00000080 /* level wait */ #

D_INT0 0x00000100 /* interrupt level 0 */ #
D_INT1 0x00000200 /* interrupt level 1 */ #
D_INT2 0x00000400 /* interrupt level 2 */ #
D_INT3 0x00000800 /* interrupt level 3 */ #
D_INTW 0x00001000 /* interrupt wakeup level */ #
D_INTE 0x00002000 /* interrupt error */ #

D_RTIME 0x00010000 /* display read times */ #
D_WTIME 0x00020000 /* display write times */ #
D_REGS 0x00040000 /* dump registers */ #
D_IOCTL 0x00080000 /* ioctl call */ #

D_DATA 0x00100000 /* data level */ #
D_DMA 0x00200000 /* DMA level */ #
D_DBUFF 0x00800000 /* DMA buffer allocation */ #

D_NEVER 0x00000000 /* never print this debug message */ #
D_ALWAYS 0xffffffff /* always print this debug message */ #
D_TEMP D_ALWAYS /* Only use for temporary debug code */ #

Another variable ccuraocc_debug_ctrl is also supplied in the ccuraocc_config that the

driver developer can use to control the behavior of the driver. The user can also change the debug
flags after the driver is loaded by passing the above debug statement directly to the driver as follows:

 # echo “ccuraocc_debug_ctrl=0x00001234” > /proc/driver/ccuraocc

To make use of this variable, the driver must be coded to interrogate the bits in the
ccuraocc_debug_ctrl variable and alter its behavior accordingly.

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 14 -

11. Notes and Errata

• In some kernel releases, when a package is installed or uninstalled, you may see a warning
message on the system console similar to “systemd-rc-local-generator[22094]:
/etc/rc.d/rc.local is not marked executable, skipping.”. This is for informational purpose only
and can be ignored.

• If a kernel is configured with the CONFIG_DEBUG_LOCK_ALLOC define, the driver will fail to
compile due to mutex_lock_nested() call being included with GPL requirement. If you want to
successfully compile the driver, you will need to remove the CONFIG_DEBUG_LOCK_ALLOC
define and rebuild the kernel.

• Ubuntu kernels RH8.0 onwards may have the default systemd-timesyncd daemon installed which
does not accurately adjust the system.You may want to replace the default with the chrony
package for a more accurate time asjustment.

• The board can be ordered as an 8-Channel or 32-channel single-ended or differential card.

• Driver and board supports MSI interrupts. The default configuration is to perform MSI interrupts.

• When writing to channel registers, you need to first reset the FIFO as contents from the FIFO could
override the outputs.

• Some new SuperMicro Mother Boards (X11SPA-TF) have a problem with supporting MSI interrupts
on these cards. The driver detects this problem and attempts to switch to alternate MSI support. If
that also fails, then wired interrupts configured by the driver. If the board detects this issue, an
appropriate error message is inserted in the kernel log message (which can be viewed with the
command dmesg).

• On some kernel logs, you may see warnings about module verifications and tainted kernel. These
can be ignored as they are generated due to the fact that this is a proprietary driver.

• On some SuperMicro Mother Boards, if the BIOS has enabled VT-d MSI interrupt remapping, there
is a problem with some kernels where interrupts will not be generated due to source-id verification
failure. Currently, the driver has implemented hooks into the RedHawk 6.5 onwards kernels to fix
this problem.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d Msi Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 15 -

Appendix A: External Connections and Pin-outs

>>>An analog ground connection is always required for the ESD and over/under voltage
protection circuits to function correctly.

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 16 -

The multi-board clock/synchronization signals connect AOCC boards together via two
industry standard RJ-12 (6-pin phone style) connectors with the following pin-out:

Concurrent Real-Time™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 17 -

Appendix B: The Board

CCRT-PCIe-AOCC Card

UNRESTRICTED

This page intentionally left blank

