Software Interface
CCURDPRC (WC-DPRC)

PCle Digital Programmable Resistance
Card (DPRC)

Driver | ccurdprc (WC-DPRC)

Platform | RedHawk Linux® (CentOS/Rocky/RHEL & Ubuntu), Native
Ubuntu® and Native Red Hat Enterprise Linux®?
Vendor | Concurrent Real-Time

Hardware | PCle Digital Programable Resister Card (DPRC)
Author | Darius Dubash

Date | July 11™", 2025 Rev 2025.1

&concurrent

REAL-TIVIE

L All trademarks are the property of their respective owners

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 1 of 94

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 2 of 94

Table of Contents

1. INTRODUCTION L..oiiiiiiiiiiiiiesieie ettt ettt sttt stenbeeneenbeeneenae e 6
11 Related DOCUMENTSc.veiiiiieiie ettt et e et et e ree e e e sreesreeenteesaeesneeaneee e 6
2. SOFTWARE SUPPORTooitiiiie sttt sttt sttt sttt sttt st ne et e 6
2.1 DIFECE DFIVEE ACCESS ...ttt stee st ettt e sbee ettt e st e tee e te e sbeestaeebeesbeesteeesteesbeesbeeareee e 6
211 OPEN(2) SYStEM Call.....viiiiiiiie e 6
212 TOCHI(2) SYSEEM Call ...t 7
2.1.3 MMAP(2) SYSIEM Call.......eoiveiiiiiiie et 9
214 read(2) SYSLEM Call........c.ooiiiiiii e 10
215 WIIE(2) SYSEM Callooiiiiiiii s 10
2.2 Application Program Interface (API) ACCESS.......ccciiuiiiieiieiiesieeiieesteeseesieeesreesreesines 11
221 CCUrDPRC_ADBOIM_DIMA() .. ettt 13
2.2.2 CCUrDPRC_Activate BOard()coeovereeiiieeiiesiesie s esteeseesine e sieestee e sveesrae e 13
2.2.3 CCUrDPRC_ADC_ACHVAE() . veereeeitee ettt sttt sttt sree s 13
224 ccurDPRC_ADC_Get_Negative_Cal()cccocevveeierinienenieneseee e, 14
225 cCUrDPRC_ADC_Get_Offset_Cal() ...ovveveeiieiieiieeieie et 14
226 ccUrDPRC_ADC_Get_PoSitivVe_Cal()cceoeririiiiiieie e, 15
2.2.7 ccurDPRC_ADC_Perform_Auto_Calibration()cccccveveeviieeiiie e 15
228 ccurDPRC_ADC_Perform_External_Negative Calibration()ccccccevvevennnnns 15
2.2.9 ccurDPRC_ADC_Perform_External_Offset_Calibration()cccccovvevvernnninnn, 16
2.2.10 ccurDPRC_ADC_Perform_External_Positive_Calibration()ccccoceveverieennnene 16
2.2.11 ccurDPRC_ADC_Perform_Negative_Calibration()ccccoevvviiiverinnveiinernnnn, 17
2.2.12 ccurDPRC_ADC Perform_Offset_Calibration()ccccoevveviieevineeiieceiie s 17
2.2.13 ccurDPRC_ADC_Perform_Positive_Calibration()c.cccocevvervienieniieniniienennen, 18
2.2.14 ccurDPRC_ADC _Read Channels()ccccovvieiieiieiie e 18
2.2.15 ccurDPRC_ADC_Read_Channels_Calibration()cccocerverinieninieiinieeneen, 19
2.2.16 ccurDPRC_ADC_Set Negative Cal()....ccccceerrreieeiieiiieeiie e sieesieesteesve e eseee s 19
2.2.17 ccurDPRC_ADC_Set Offset_Cal()....ccrverieiiieiieiie e 19
2.2.18 ccurDPRC_ADC_Set_POoSItiVe_Cal()covvreeriiriiiieiieie e 20
2.219 ccurDPRC_ADC_Write_Channels_Calibration()cccccceriiiiiiiiiinieee 20
2.2.20 CCUrDPRC_AUU_IFG().evververeerreniiaiieniiniiesie ettt 21
2.2.21 ccurDPRC_Clear_Driver _EIror() ..cccccoeiiveiiieiieeiiesiesreesieesinesive e sveesnne e e e 21
2.2.22 ccurDPRC_Clear_Electronic_Fuse_Trip_Fault()c.cccoovieriiiiiiiieiienie e 21
2.2.23 cCcurDPRC_Clear_Lib Error()...c.cccceecieeiieiieiii e sie e esie e sivesie et snve e 22
2.2.24 CCUIDPREC _CIOSE() .- -veeureauteatieiuieauieaieesteeaiteesie et e saee e e beesteesmteenteesbeesneeeneeeeee e 22
2.2.25 CCUrDPRC_DataTOVOIS().veevreirreirieeieesiiesiiesieesieestte e eieessaesnnessaeesnsesnnesneeesene e 23
2.2.26 ccurDPRC_DigitalPotentiometerAndlo_Activate()........ccccervrrreriieeiieniesieeene 23
2.2.27 ccurDPRC_Disable_PCi_INErruptS()coovrvereriiriiniiieniiie e 23
2.2.28 ccurDPRC_Enable _PCi_INterruptS()ocoveiiveariieiieiie e erieesiesre et sve e 24
2.2.29 CCUrDPRC_FaSt_ MEMCPY() .. cuveveamreririieieniieiesiieie sttt 24
2.2.30 ccurDPRC_Fast_ Memcpy _UNIOCKEd()......ccuvevrereeiieiieeiee e 24
2.2.31 cCUrDPRC_Fraction_TO_HEX() «..eeueeveeieeiieaieeniie et 25
2.2.32 cCUrDPRC_Get_B0Oard CSR().....ccoueerererieiieiineiresiesie e see e sae e snae e e 25
2.2.33 ccurDPRC_Get_Board_INfo()cooueeieeiieiieiieeie e 25
2.2.34 ccurDPRC_Get_CalibrationBus_Control()cccccervriininiineiiene e, 26
2.2.35 ccurDPRC_Get_Digital_Potentiometer().........covevivvreiiee e ieeeciee e esie s 26
2.2.36 ccurDPRC_Get_Digital_Potentiometer _TeSt()cooverveereerieiieiiee e eiee e 27
2.2.37 CCUrDPRC_Get_DIiVEr_EITOr() cuveicveeeeiieiiesieesieestiesieesieesresnvesneesieesnne e enea e 28
2.2.38 ccurDPRC_Get_Driver_INfo().......ccereeiieiiiiieeiie et 29
2.2.39 ccurDPRC_Get_Driver_ Read MOode()ocovveerereerieiireriresie e esieesiee e see e 30
2.2.40 ccurDPRC_Get_Driver Write_ IMOde()......cueeiivreeiieieiiie e eee st sre e 30
2.2.41 ccurDPRC_Get_Electronic_FuSe Base().......cccouerereiienienienienienieseenie e 30
2.2.42 ccurDPRC_Get_Electronic_Fuse InternalS().........cccceoveeiieiieiieiiee e e 31

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 3 of 94

2.2.43 ccurDPRC_Get_Electronic_Fuse MUItIPIEr().......cccoovvoeiiniiiniiiiniee e, 32

2.2.44 ccurDPRC_Get_Electronic_Fuse Status().......ccccoervveiieeriemriesieeineeseesveseeeseeens 33
2.2.45 ccurDPRC_Get_Electronic_Fuse_Threshold().........ccovveriieiiniiiiieiie e 33
2.2.46 ccurDPRC_Get_Electronic_FUSe_TriP()...ccoerereereniaienienieniesie e 34
2.2.47 ccurDPRC_Get_Interrupt_Control().......cooueieeiieiieiieesiie e 35
2.2.48 ccUrDPRC_Get_INterrupt_StatuS()cccververeerieriiienisienie e e 35
2.249 ccurDPRC_Get_Interrupt_Timeout_Seconds()ccccceererrierieiiieenie e 36
2.250 cCUrDPRC_Get 10 _COoNtrol() ...eeiveeieeiieiiie it 36
2.251 ccurDPRC_Get_Lib _Error_DesCription()......ccoevieiieiiieeiie e sie e sre e 37
2.252 cCUrDPRC_Get_LiD _Error()....ccccoioueeieiie et 37
2.253 ccurDPRC_Get_Mapped _Config Pr()....ccceereeiieiie e se e 39
2.254 ccurDPRC_Get_Mapped_Driver_Library Ptr().......cccooeiiiiniiiiiiiecienie e 39
2.2.55 ccurDPRC_Get_Mapped_Local_Ptr()cccoovereriiiiiiieneeiesee e 40
2.256 ccurDPRC_Get_Open_File _DeSCriptor().......ccoveiveriueiireeieeiiesiieerieesiresnesneeseee s 40
2.2.57 ccurDPRC_Get_Physical_MemOry()ccovueririiiiiiiienieie st 40
2.258 CCUrDPRC_GEt ValUB() iovveeveeieieieieeiiesieesiese e esttesnte et e e nte e e snaeenan e 41
2.259 cCUrDPRC_HeX_TO_FraCtion()c.cooeeieeiieiieeiiesiie st 45
2.2.60 ccurDPRC_Identify BOard()c.ccoveerererveiieiieeieesie e esineseesnne e eseeesneesnenesene e 45
2.2.61 ccurDPRC_Initialize Board()........ceerueeiiriieiieeiie ettt 45
2.2.62 ccurDPRC_MMap_Physical_Memory()ccoovriiriiiiieniiienesienie e 46
2.2.63 ccurDPRC_Munmap_Physical_Memory()........ccocerueiurerienieiie e 46
2.2.64 CCUrDPRC_NaNODEIAY() ...evveuviiiiiiiiiiiiesie et 46
2.2.65 CCUrDPRC _OPEN() 1evveirreaiieiiesiieiieeteesieestteateestaessaesnaeeteessaesnaeesneesneesseesneeesseens 47
2.2.66 CCUrDPRC_REAA() ...+ e vreeureeiieitie ittt sttt ettt sttt ettt 47
2.2.67 ccurDPRC_Read_Serial Prom()......cccceiiueiiieiiieriee s e e sie e snee e 48
2.2.68 ccurDPRC_Read_Serial_Prom_HemM().....cccceiieiieiieiie e 48
2.2.69 CCUrDPRC_REMOVE_ITQ() «eveevverviameeiiniieiisiieie ettt st 49
2.2.70 cCUrDPRC_RESEt_BOAIG() .. .vveivreireeiieiiiesiiesieestiesteesreesteestaesnvesneesteesnvesneeesnee e 49
2.2.71 ccurDPRC_Select_Driver_Read_Mode().......cccvrvermiriiiiniiieneiiene e 49
2.2.72 ccurDPRC_Select_Driver Write. MOdE()......ccoverrerieiiieeiieiieiie e e sie e 50
2.2.73 ccurDPRC_Serial_Prom_Write_OVErride()cccoovevvriuierieiieiieeiee e 50
2.2.74 cCUrDPRC_Set_B0ard_CSR() ..evovereiriiiiiriieie st 51
2.2.75 ccurDPRC_Set_CalibrationBus_Control()........ccccceruriiiiiieniieiieeee e 51
2.2.76 ccurDPRC_Set_Digital_Potentiometer().........ccoveruereiienenieneniesesiese e 52
2.2.77 ccurDPRC_Set_Digital_Potentiometer_TeSt()cccovverieerierieiiie e sre e 52
2.2.78 ccurDPRC_Set_Interrupt_Control()........cccorveririiiiiiiie st 53
2.2.79 ccurDPRC_Set_INterrupt. STatuS() ...ccoveervreiieiiieeiiesiiesieesieesieesire e sreesave e e 54
2.2.80 ccurDPRC_Set_Interrupt_Timeout_SecondS().........ceuvveerueerierieiiieeniee e sie e 54
2.2.81 cCUrDPRC_Set 10 _CONLrOI() ieivveiieeieeiiesiieiie e e stie e e e see et sne e 55
2.2.82 CCUIDPRC_SEL_ValUB() .. i veetieiiieiiieeiie ettt 56
2.2.83 CCUIDPRC_VOISTODELA() ... ecvvevearreneirireiiniieiesieeie sttt 59
2.2.84 ccurDPRC_VoltsToDataChanCal()cccuevveiieeiieiie et 59
2.2.85 ccurDPRC_Wait_For_INterrupt()ccooverereeieniiieniieienieseesie e 60
2.2.86 CCUrDPRC _WIE() .evveivieiieeieesiiesie e st e st te e stte et e snae et et e snaeanaeene e 60
2.2.87 ccurDPRC_Write_Serial_Prom().......cccooiiiiiiiiie it 60
2.2.88 ccurDPRC_Write_Serial Prom _Iem().......ccccooveiiverieiii e sie e see e 61
3. TEST PROGRADMSottt ettt sttt b et e bt e sbeaneenbeenes 62
3.1 Direct Driver Access EXample TESESooviiiiiiiieieiieie et 62
311 CCUPAPIC_ UM . ettt bbbt sb ettt sb et beenbeesrneas 62
3.1.2 oolb fo]o] (ol (0| (=0 U TSP PP VPO PV PPPRPO 65
3.1.3 CCUTAPIC _TBU «veerveeiteeiteeeteesteesteeesteesteestaeasaeesteesteesteeasseesbeestaeasaeesbeesseeateeanneenseesrnnns 65
3.14 (oo N0 o (ol €10 =T || S PR TP UURUPRTURROPR 71
3.15 (o000 o] o (SO SPR TR 71
3.1.6 COUNTPIC _WIB ettt ettt ettt ettt ettt b e sb e bttt e b e b e e et e e nbeeebeeereeebeesbeearneas 72
3.1.7 Flash/ceurdpre_flash..........coooiii 72

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 4 of 94

3.1.8 Flash/ccurdpre_fWIEloadcovoiiiiiiiiiri e 72

3.1.9 EEProm/CCUrdPrC_BEPIOM....cuviiieiieecieeseestte et e s e s e e et e e e te e sneesnee e e e nnee e 73
3.2 Application Program Interface (API) Access Example TestSccoovvvvriiiiineiiinnenins 73
321 lib/ccurdpre_adc_Calibrate.........ocoveiiiiiiiiiee s 73
3.2.2 TID/CCUPAPIC ISP et 75
3.23 lib/ccurdpre_fault_proteCtion............cooveiiiiiiiiic s 81
3.2.4 lib/ccurdpre_fault_trip eSt.........cooiiiiiiie e 82
3.25 [ih/CCUrdpre_IdeNTITYcoveieieecc s 87
3.2.6 lID/CCUrdPIC_INFO ..ot e e 88
3.2.7 lID/CCUrdPre_tStIiD. ..o 92
3.2.8 lib/SProm/CCUIdPIC_SPIOM c..vieiie ittt ettt e s 93

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 5 of 94

1. Introduction

This document provides the software interface to the ccurdprc driver which communicates with the Concurrent
Real-Time PCI Express Digital Programmable Resistance Card (DPRC).

The software package that accompanies this board provides the ability for advanced users to communicate
directly with the board via the driver ioctl(2) and mmap(2) system calls. When programming in this mode, the
user needs to be intimately familiar with both the hardware and the register programming interface to the board.
Failure to adhere to correct programming will result in unpredictable behavior.

Additionally, the software package is accompanied with an extensive set of application programming interface
(API) calls that allow the user to access all capabilities of the board. The API library also allows the user the
ability to communicate directly with the board through the ioctl(2) and mmap(2) system calls. In this case, there
is a risk of this direct access conflicting with API calls and therefore should only be used by advanced users
who are intimately familiar with the hardware, board registers and the driver code.

Various example tests have been provided in the test and test/lib directories to assist the user in developing their
applications.

1.1 Related Documents

e PCle Digital Programmable Resistance Card Driver Installation on RedHawk Release Notes by
Concurrent Real-Time.

2. Software Support

Software support is provided for users to communicate directly with the board using the kernel system calls
(Direct Driver Access) or the supplied API. Both approaches are identified below to assist the user in software
development.

2.1 Direct Driver Access

2.1.1 open(2) system call

In order to access the board, the user first needs to open the device using the standard system call
open(2).

int fp;

fp = open(“/dev/ccurdprc0”, O RDWR);

The file pointer ‘fp’ is then used as an argument to other system calls. The user can also supply the
O_NONBLOCK flag if the user does not wish to block waiting for reads to complete. In that case, if the read is
not satisfied, the call will fail. The device name specified is of the format “/dev/ccurdprc<num>" where num is
a digit 0..9 which represents the board number that is to be accessed. Basically, the driver only allows one
application to open a board at a time. The reason for this is that the application can have full access to the card,
even at the board and API level. If another application were to communicate with the same card concurrently,
the results would be unpredictable unless proper synchronization between applications is performed external to
the driver.

This driver allows multiple applications to open the same board by specifying an additional oflag O_APPEND.
It is then the responsibility of the user to ensure that the various applications communicating with the same
cards are properly synchronized. Various tests supplied in this package has the O_APPEND flags enabled,
however, it is strongly recommended that only one application be run with a single card at a time, unless the
user is well aware of how the applications are going to interact with each other and accept any unpredictable
results.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 6 of 94

2.1.2 ioctl(2) system call

This system call provides the ability to control and get responses from the board. The nature of the
control/response will depend on the specific ioctl command.

int status;
int arg;
status = ioctl (fp, <IOCTL_COMMAND>, &arg);

where, ‘fp’ is the file pointer that is returned from the open(2) system call. <IOCTL_COMMAND> is one of
the ioctl commands below and arg is a pointer to an argument that could be anything and is dependent on the
command being invoked. If no argument is required for a specific command, then set to NULL.

Driver IOCTL command:

TOCTL CCURDPRC_ABORT DMA
IOCTL_CCURDPRC_ADD IRQ
TOCTL_CCURDPRC_DISABLE PCI INTERRUPTS
IOCTL_CCURDPRC_ENABLE PCI INTERRUPTS
IOCTL_CCURDPRC_GET DRIVER ERROR
IOCTL_CCURDPRC_GET DRIVER INFO
IOCTL_CCURDPRC_GET PHYSICAL MEMORY
TOCTL_CCURDPRC_GET READ MODE
IOCTL_CCURDPRC_GET WRITE MODE
IOCTL_CCURDPRC_INIT BOARD
IOCTL_CCURDPRC_INTERRUPT TIMEOUT SECONDS
IOCTL_CCURDPRC_MAIN CONTROL REGISTERS
TOCTL CCURDPRC_MMAP SELECT
IOCTL_CCURDPRC_NO_COMMAND
TOCTL_CCURDPRC_PCI BRIDGE REGISTERS
IOCTL_CCURDPRC_PCI CONFIG REGISTERS
TOCTL_CCURDPRC_READ EEPROM
IOCTL_CCURDPRC_REMOVE IRQ
IOCTL_CCURDPRC_RESET BOARD
IOCTL_CCURDPRC_SELECT READ MODE
IOCTL_CCURDPRC_SELECT WRITE MODE
TOCTL_CCURDPRC WAIT FOR_ INTERRUPT
IOCTL_CCURDPRC_WRITE EEPROM

IOCTL_CCURDPRC_ABORT_DMA: This ioctl does not have any arguments. Its purpose is to abort any DMA
already in progress.

IOCTL_CCURDPRC_ADD_IRQ: This ioctl does not have any arguments. Its purpose is to setup the driver
interrupt handler to handle interrupts. If support for MSI interrupts are configured, they will be enabled.
Normally, there is no need to call this ioctl as the interrupt handler is already added when the driver is loaded.
This ioctl should only be invoked if the user has issued the IOCTL_CCURDPRC_REMOVE_IRQ call earlier to
remove the interrupt handler.

IOCTL_CCURDPRC_DISABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is
to disable PCI interrupts. This call shouldn’t be used during normal reads or writes, as calls could time out. The
driver handles enabling and disabling interrupts during its normal course of operation.

IOCTL_CCURDPRC_ENABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is to
enable PCI interrupts. This call shouldn’t be used during normal reads or writes as calls could time out. The
driver handles enabling and disabling interrupts during its normal course of operation.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 7 of 94

IOCTL_CCURDPRC_GET_DRIVER_ERROR: The argument supplied to this ioctl is a pointer to the
ccurdprc_user_error_t structure. Information on the structure is located in the ccurdprc_user.h include file.
The error returned is the last reported error by the driver. If the argument pointer is NULL, the current error is
reset to CCURDPRC_SUCCESS.

IOCTL_CCURDPRC_GET_DRIVER_INFQ: The argument supplied to this ioctl is a pointer to the
ccurdprec_driver_info_t structure. Information on the structure is located in the ccurdprc_user.h include file.
This ioctl provides useful driver information.

IOCTL_CCURDPRC_GET_PHYSICAL _MEMORY: The argument supplied to this ioctl is a pointer to the
ccurdprc_user_phys_mem_t structure. Information on the structure is located in the ccurdprc_user.h include
file. If physical memory is not allocated, the call will fail; otherwise the call will return the physical memory
address and size in bytes. The only reason to request and get physical memory from the driver is to allow the
user to perform DMA operations and bypass the driver and library. Care must be taken when performing user
level DMA, as incorrect programming could lead to unpredictable results, including but not limited to corrupting
the kernel and any device connected to the system.

IOCTL_CCURDPRC_GET_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned long
int. The value returned will be one of the read modes as defined by the enum _ccurdprc_driver_rw_mode_t
located in the ccurdprc_user.h include file. Currently, only the CCURDPRC_PIO_CHANNEL mode is
supported for driver reads.

IOCTL_CCURDPRC _GET WRITE_MODE: (CURRENTLY NOT IMPLEMENTED) The argument supplied to
this ioctl is a pointer an unsigned long int. The value returned will be one of the write modes as defined by the
enum _ccurdprc_driver_rw_mode_t located in the ccurdprc_user.h include file. This call is not supported for
driver writes.

IOCTL_CCURDPRC_INIT_BOARD: This ioctl does not have any arguments. This call resets the board to a
known initial default state. This call is currently identical to the IOCTL_CCURDPRC_RESET_BOARD call.

IOCTL_CCURDPRC_INTERRUPT_TIMEOUT_SECONDS: The argument supplied to this ioctl is a pointer to
an int. It allows the user to change the default time out from 30 seconds to user supplied time out. This is the
time that the read call will wait before it times out. The call could time out if a DMA fails to complete. The
device should have been opened in the block mode (O_NONBLOCK not set) for reads to wait for an operation
to complete.

IOCTL_CCURDPRC_MAIN_CONTROL _REGISTERS: This ioctl dumps all the PCI Main Control registers
and is mainly used for debug purpose. The argument to this ioctl is a pointer to the
ccurdprc_main_control_register_t structure. Raw 32-bit data values are read from the board and loaded into
this structure.

IOCTL_CCURDPRC_MMAP_SELECT: The argument to this ioctl is a pointer to the ccurdprc_mmap_select t
structure. Information on the structure is located in the ccurdprc_user.h include file. This call needs to be made
prior to the mmap(2) system call so as to direct the mmap(2) call to perform the requested mapping specified
by this ioctl. The four possible mappings that are performed by the driver are to mmap the local register space
(CCURDPRC_SELECT _LOCAL_MMAP), the configuration register space
(CCURDPRC_SELECT_CONFIG_MMAP) the physical memory
(CCURDPRC_SELECT_PHYS_MEM_MMAP) that is created by the mmap(2) system call and the driver/library
mapping (CCURDPRC_SELECT_DRIVER_LIBRARY_MMAP).

IOCTL_CCURDPRC_NO_COMMAND: This ioctl does not have any arguments. It is only provided for
debugging purpose and should not be used as it serves no purpose for the application.

IOCTL_CCURDPRC_PCI_BRIDGE_REGISTERS: This ioctl dumps all the PCI bridge registers and is mainly
used for debug purpose. The argument to this ioctl is a pointer to the ccurdprc_pci_bridge_register_t structure.
Raw 32-bit data values are read from the board and loaded into this structure.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 8 of 94

IOCTL_CCURDPRC_PCI_CONFIG_REGISTERS: The argument supplied to this ioctl is a pointer to the
ccurdprc_pci_config_reg_addr_mapping_t structure whose definition is located in the ccurdprc_user.h include
file.

IOCTL_CCURDPRC_READ_EEPROM: The argument to this ioctl is a pointer to the ccurdprc_eeprom_t
structure. Information on the structure is located in the ccurdprc_user.h include file. This call is specifically
used by the supplied eeprom application and should not be used by the user.

IOCTL_CCURDPRC_REMOVE_IRQ: This ioctl does not have any arguments. Its purpose is to remove the
interrupt handler that was previously setup. The interrupt handler is managed internally by the driver and the
library. The user should not issue this call, otherwise reads will time out.

IOCTL_CCURDPRC_RESET_BOARD: This ioctl does not have any arguments. This call resets the board to a
known initial default state. This call is currently identical to the IOCTL_CCURDPRC_INIT_BOARD call.

IOCTL_CCURDPRC_SELECT READ_MODE: The argument supplied to this ioctl is a pointer an unsigned
long int. The value set will be one of the read modes as defined by the enum _ccurdprc_driver_rw_mode _t
located in the ccurdprc_user.h include file. Currently, only the CCURDPRC_PIO_CHANNEL mode is
supported for driver reads.

IOCTL_CCURDPRC SELECT WRITE_MODE: (CURRENTLY NOT IMPLEMENTED) The argument
supplied to this ioctl is a pointer an unsigned long int. The value set will be one of the write modes as defined
by the enum _ccurdprc_driver_rw_mode_t located in the ccurdprc_user.h include file. This call is not
supported for driver writes.

IOCTL_CCURDPRC _WAIT FOR_INTERRUPT: The argument to this ioctl is a pointer to the
ccurdprc_driver_int_t structure. Information on the structure is located in the ccurdprc_user.h include file. The
user can wait for a DMA or Analog signal complete interrupt. If a time out value greater than zero is specified,
the call will time out after the specified seconds, otherwise it will not time out.

IOCTL_CCURDPRC_WRITE_EEPROM: The argument to this ioctl is a pointer to the ccurdprc_eeprom_t
structure. Information on the structure is located in the ccurdprc_user.h include file. This call is specifically
used by the supplied eeprom application and should not be used by the user.

2.1.3 mmap(2) system call

This system call provides the ability to map either the local board registers, the configuration board registers,
create and map a physical memory that can be used for user DMA or driver/library structure mapping. Prior to
making this system call, the wuser needs to issue the ioctl(2) system call with the
IOCTL_CCURDPRC_MMAP_SELECT command. When mapping either the local board registers or the
configuration board registers, the ioctl call returns the size of the register mapping which needs to be specified
in the mmap(2) call. In the case of mapping a physical memory, the size of physical memory to be created is
supplied to the mmap(2) call.

int *munmap local ptr;
ccurdprc_local ctrl data t *local ptr;
ccurdprc mmap select t mmap select;
unsigned long mmap local size;

mmap select.select = CCURDPRC SELECT LOCAL MMAP;

mmap_select.offset=0;

mmap select.size=0;

ioctl (fp, IOCTL CCURDPRC MMAP SELECT, (void *)&mmap_ select);

mmap local size = mmap select.size;

munmap_local ptr = (int *) mmap((caddr t)0, map local size,
(PROT_READ|PROT WRITE), MAP SHARED, fp, 0);

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 9 of 94

local ptr = (ccurdprc local ctrl data t *)munmap_ local ptr;
local ptr (ccurdprc local ctrl data t *) ((char *)local ptr +
mmap select.offset);

if (munmap local ptr != NULL)
munmap ((void *)munmap local ptr, mmap local size);

2.1.4 read(2) system call

This system call currently supports ADC programmed 1/O reads of channel registers. The option selected is
determined by the ccurDPRC_Select_Driver_Read_Mode() call.

2.1.5 write(2) system call

Currently this option is not implemented. The option selected is determined by the
ccurDPRC_Select_Driver_Write_Mode() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 10 of 94

2.2 Application Program Interface (API1) Access
The API is the recommended method of communicating with the board for most users.

There are a lot of APIs that have multiple arguments to set various parameters. If the user only wishes to change
certain parameters for the call, they need to get the current settings via a query API, change only those
parameters that need to be modified and then invoke a setting APl to update these parameters (i.e.
read/modify/write). This is a two API call operation.

A nice feature has been implemented in these APIs to simplify the user programming by having a common
parameter CCURDPRC_DO_NOT_CHANGE which is a #define, that can be used for a lot of these calls.
Arguments with this parameter will therefore cause the API to perform the read/modify/write operation instead
of the user performing the same function with two API calls. The drawback to this approach is that some
compilers will complain about the use of this parameter and therefore the user will require appropriate casting
to get rid of warnings/errors.

The following are a list of calls that are available.

ccurDPRC_Abort DMA ()

ccurDPRC_Activate Board()

ccurDPRC_ADC Activate ()
ccurDPRC_ADC Get Negative Cal ()
ccurDPRC_ADC Get Offset Cal()
ccurDPRC_ADC Get Positive Cal ()
ccurDPRC_ADC Perform Auto Calibration()
ccurDPRC_ADC Perform External Negative Calibration()
ccurDPRC_ADC Perform External Offset Calibration()
ccurDPRC_ADC Perform External Positive Calibration ()
ccurDPRC_ADC Perform Negative Calibration()
ccurDPRC_ADC Perform Offset Calibration()
ccurDPRC_ADC Perform Positive Calibration()
ccurDPRC_ADC Read Channels()
ccurDPRC_ADC Read Channels Calibration()
ccurDPRC_ADC_ Set Negative Cal ()
ccurDPRC_ADC Set Offset Cal()
ccurDPRC_ADC Set Positive Cal ()
ccurDPRC_ADC Write Channels Calibration()
ccurDPRC_Add Irg()
ccurDPRC _Clear Driver Error ()

ccurDPRC Clear Electronic Fuse Trip Fault()
ccurDPRC Clear Lib Error()

ccurDPRC _Close ()

ccurDPRC DataToVolts ()

ccurDPRC DigitalPotentiometerAndIo Activate()
ccurDPRC Disable Pci Interrupts ()
ccurDPRC_Enable Pci Interrupts()
ccurDPRC_Fast Memcpy ()
ccurDPRC Fast Memcpy Unlocked()

ccurDPRC Fraction To Hex()
ccurDPRC _Get Board CSR()
ccurDPRC_Get Board Info()

ccurDPRC_Get CalibrationBus Control()
ccurDPRC_Get Digital Potentiometer ()

ccurDPRC _Get Digital Potentiometer Test ()
ccurDPRC_Get Driver Error ()
ccurDPRC Get Driver Info()
ccurDPRC_Get Driver Read Mode ()

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 11 of 94

ccurDPRC _Get Driver Write Mode ()
ccurDPRC_Get Electronic Fuse Base()
ccurDPRC Get Electronic Fuse Internals ()
ccurDPRC_Get Electronic Fuse Multiplier()
ccurDPRC _Get Electronic Fuse Status()
ccurDPRC_Get Electronic Fuse Threshold()
ccurDPRC_Get Electronic Fuse Trip()
ccurDPRC _Get Interrupt Control()
ccurDPRC Get Interrupt Status()

ccurDPRC Get Interrupt Timeout Seconds ()
ccurDPRC_Get IO Control()

ccurDPRC Get Lib Error Description ()
ccurDPRC_Get Lib Error()
ccurDPRC_Get Mapped Config Ptr()
ccurDPRC Get Mapped Driver Library Ptr()
ccurDPRC_Get Mapped Local Ptr()

ccurDPRC Get Open File Descriptor()
ccurDPRC_Get Physical Memory ()
ccurDPRC_Get Value ()
ccurDPRC_Hex To Fraction()
ccurDPRC_Identify Board()
ccurDPRC_Initialize Board()
ccurDPRC MMap Physical Memory ()

ccurDPRC Munmap Physical Memory ()
ccurDPRC NanoDelay ()

ccurDPRC_Open ()

ccurDPRC_Read ()
ccurDPRC_Read Serial Prom()
ccurDPRC Read Serial Prom Item()
ccurDPRC_Remove Irg()
ccurDPRC Reset Board()
ccurDPRC_Select Driver Read Mode ()
ccurDPRC Select Driver Write Mode ()
ccurDPRC_Serial Prom Write Override ()
ccurDPRC_Set Board CSR()

ccurDPRC_Set CalibrationBus Control()
ccurDPRC_Set Digital Potentiometer ()
ccurDPRC _Set Digital Potentiometer Test ()
ccurDPRC_Set Interrupt Control ()
ccurDPRC Set Interrupt Status()
ccurDPRC_Set Interrupt Timeout Seconds ()
ccurDPRC_Set IO Control()
ccurDPRC_Set Value ()

ccurDPRC VoltsToData ()

ccurDPRC VoltsToDataChanCal ()
ccurDPRC _Wait For Interrupt ()

ccurDPRC Write ()
ccurDPRC _Write Serial Prom()

ccurDPRC Write Serial Prom Item()

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 12 of 94

2.2.1 ccurDPRC_Abort DMA()

This call will abort any DMA operation that is in progress. Normally, the user should not use this call unless
they are providing their own DMA handling.

/**

_ccurdprc lib error number t ccurDPRC Abort DMA (void *Handle)

Description: Abort any DMA in progress

Input: void *Handle (Handle pointer)

Output: none

Return: ccurdprc_ lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB NO LOCAL REGION (local region not present)
CCURDPRC_LIB IOCTL FAILED (driver ioctl call failed)

***/

2.2.2 ccurDPRC_Activate_Board()

This call activates the ADC, Potentiometer and 1/0 in a specific sequence to ensure proper board activation.
This is the preferred and recommended call to activate the card. Using the individual ADC and Potentiometer
activation calls, not being performed in correct sequence could result in unpredictable behavior of the card.

/**

_ccurdprc lib error number t ccurDPRC Activate Board(void *Handle)

Description: Activate ADC, Potentiometer and I/O Control module

Input: void *Handle (Handle pointer)
Output: none
Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR (successful)

CCURDPRC LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB _NOT OPEN (device not open)

CCURDPRC_LIB NO LOCAL REGION (local region not present)
CCURDPRC_LIB ADC_ FAILURE (ADC failure)

CCURDPRC_LIB ELECTRONIC FUSE TRIPPED (Electronic Fuse tripped)

**/

2.2.3 ccurDPRC_ADC_Activate()

This call gives the user the ability to activate, disable and get the current ADC state. The user can
also use this call to return the current state of the ADC without any change by specifying a pointer to
current_state and setting activate to CCURDPRC_ADC_ALL_ENABLE_DO_NOT_CHANGE. If the
ADC is already active and the user issues a CCURDPRC_ADC_ALL ENABLE, no additional
activation will be performed. To cause the ADC to go through a full reset, the user needs to issue
the CCURDPRC_ADC_ALL_DISABLE followed by CCURDPRC_ADC_ALL_ENABLE.

/**
_ccurdprc_lib error number t
ccurDPRC_ADC Activate (void *Handle,
_ccurdprc _adc_all enable t activate,
_ccurdprc_adc_all enable t *current state)

Description: Activate/DeActivate ADC module

Input: void *Handle (Handle pointer)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 13 of 94

_ccurdprc_adc_all enable t
CCURDPRC ADC ALL DISABLE
CCURDPRC_ADC_ALL ENABLE

activate

(activate/deactivate)

CCURDPRC_ADC ALL ENABLE DO NOT CHANGE

Output: ccurdprc adc_all enable t
CCURDPRC_ADC ALL DISABLE
CCURDPRC_ADC_ALL_ ENABLE
Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

*current state (active/deactive)

(successful)

(no/bad handler supplied)
(device not open)

(invalid argument)

(local region not present)

**/

2.2.4 ccurDPRC_ADC_Get_Negative Cal()

This call returns the negative ADC calibration information to the user.

/**

_ccurdprc_lib error number t
ccurDPRC_ADC Get Negative Cal (void

*Handle,

ccurdprc adc cal t *cal)

Description: Get the ADC Negative Calibration data.

(handle pointer)
(pointer to board cal)

Input: void *Handle
Output: ccurdprc adc cal t *cal
uint Raw [CCURDPRC MAX CHANNELS];
double Float[CCURDPRC MAX CHANNELS];
Return: ccurdprc_ lib error number t

CCURDPRC_LIB NO ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

successful)

no/bad handler supplied)
device not open)

invalid argument)

(local region not present)

(
(
(
(

**/

2.2.5 ccurDPRC_ADC_Get_Offset_Cal()

This call returns the offset ADC calibration information to the user.

/**

_ccurdprc lib error number t
ccurDPRC_ADC Get Offset Cal (void

*Handle,

ccurdprc _adc _cal t *cal)

Description: Get the ADC Offset Calibration data.

(handle pointer)
(pointer to board cal)

Input: void *Handle
Output: ccurdprc adc cal t *cal
uint Raw [CCURDPRC MAX CHANNELS];
double Float[CCURDPRC MAX CHANNELS];
Return: ccurdprc_ lib error number t

CCURDPRC_LIB NO ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

successful)

no/bad handler supplied)
device not open)

invalid argument)

(local region not present)

********k************k**************k************k********************************/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 14 of 94

2.2.6 ccurDPRC_ADC_Get_Positive_Cal()
This call returns the positive ADC calibration information to the user.

/*k**k**k**k**k**k**k**k******k**k**k**k**k**k**k**k**k**k**k******k****k***************************

_ccurdprc lib error number t
ccurDPRC ADC Get Positive Cal (void *Handle,
ccurdprc_adc_cal t *cal)

Description: Get the ADC Positive Calibration data.

Input: void *Handle (handle pointer)
Output: ccurdprc adc cal t *cal (pointer to board cal)
uint Raw [CCURDPRC MAX CHANNELS];
double Float[CCURDPRC_MAX_CHANNELS];
Return: ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR

CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN device not open)

CCURDPRC_LIB INVALID ARG invalid argument)

CCURDPRC_LIB NO LOCAL REGION (local region not present)

**/

successful)
no/bad handler supplied)

2.2.7 ccurDPRC_ADC_Perform_Auto_Calibration()
This call performs a full ADC calibration.

/**

_ccurdprc_lib error number t
ccurDPRC ADC Perform Auto Calibration(void *Handle)

Description: Perform ADC Auto Calibration

Input: void *Handle (handle pointer)
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (library not open)
CCURDPRC_LIB_NO LOCAL REGION (local region not present)
CCURDPRC_LIB NO RESOURCE (no free PLL available)
CCURDPRC_LIB_IO ERROR (read error)
CCURDPRC_LIB CLOCK IS NOT ACTIVE (Clock is not active)
CCURDPRC_LIB ADC_ FAILURE (ADC failure)
CCURDPRC_LIB ELECTRONIC FUSE TRIPPED

(Electronic Fuse tripped)
***/

2.2.8 ccurDPRC_ADC_Perform_External_Negative_Calibration()

Use this call to perform an external negative calibration. Prior to calling this function, the ADC inputs must be
provided with a negative signal close to -10 Volts, otherwise this call will fail. Additionally, the user can specify
a range of channels.

/**

_ccurdprc_lib error number t

ccurDPRC_ADC Perform External Negative Calibration(void *Handle,
_ccurdprc_channel t chan_ start,
_ccurdprc channel t chan _end,
double ReferenceVoltage)

Description: Perform ADC External Negative Calibration

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 15 of 94

Input: void *Handle (handle pointer)
_ccurdprc_channel t chan start (start channel)
_ccurdprc channel t chan end (end channel)
double ReferenceVoltage (Reference Voltage)

Output: none

Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB_NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO RESOURCE
CCURDPRC_LIB IO ERROR

CCURDPRC_LIB NO LOCAL REGION

(successful)

(no/bad handler supplied)
(library not open)
(invalid argument)

(local region not present)
(no free PLL available)
(read error)

+H= = T o

CCURDPRC_LIB CLOCK IS NOT ACTIVE (Clock is not active)

***/

2.2.9 ccurDPRC_ADC_Perform_External_Offset_Calibration()

Use this call to perform an external offset calibration. Prior to calling this function, the ADC inputs must be
provided with a offset signal close to 0 Volts, otherwise this call will fail. Additionally, the user can specify a
range of channels. Once this call is executed, the user will need to perform external negative and external
positive calibrations as this call resets these gains to 1.0 prior to calibration.

/***‘k*‘k*‘k*‘k*‘k*‘k*****‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

_ccurdprc lib error number t

ccurDPRC_ADC Perform External Offset Calibration(void *Handle,
_ccurdprc channel t chan start,
_ccurdprc_channel t chan end)

Description: Perform ADC External Offset Calibration

Input: void *Handle
_ccurdprc channel t chan start
_ccurdprc_channel t chan end

Output: none

Return: ccurdprc lib error number t

CCURDPRC LIB NO ERROR

CCURDPRC_LIB BAD_ HANDLE

CCURDPRC_LIB NOT OPEN

(handle pointer)
(start channel)
(end channel)

successful)
no/bad handler supplied)
library not open)

CCURDPRC_LIB INVALID ARG
CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB NO RESOURCE

local region not present)
no free PLL available)

(
(
(
(invalid argument)
(
(
(

CCURDPRC LIB IO ERROR read error)
CCURDPRC_LIB CLOCK IS NOT ACTIVE (Clock is not active)

***/

HE o S S S o 3 o

2.2.10 ccurDPRC_ADC_Perform_External_Positive_Calibration()

Use this call to perform an external positive calibration. Prior to calling this function, the ADC inputs must be
provided with a positive signal close to +10 Volts, otherwise this call will fail. Additionally, the user can specify
a range of channels.

/**

_ccurdprc lib error number t

ccurDPRC_ADC Perform External Positive Calibration (void
_ccurdprc channel t
_ccurdprc_channel t
double

*Handle,

chan start,
chan_end,
ReferenceVoltage)

Description: Perform ADC External Positive Calibration

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 16 of 94

2211

2.2.12

Input:

Output:
Return:

void *Handle
_ccurdprc channel t chan start
_ccurdprc_channel t chan end
double
none
_ccurdprc lib error number t
CCURDPRC_LIB NO ERROR
CCURDPRC LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC LIB INVALID ARG

CCURDPRC_LIB NO RESOURCE
CCURDPRC_LIB IO ERROR

& &

ReferenceVoltage

CCURDPRC_LIB NO LOCAL REGION

CCURDPRC_LIB CLOCK IS NOT ACTIVE

(handle pointer)

(start channel)

(end channel)

(Reference Voltage)
(successful)

(no/bad handler supplied)
(library not open)
(invalid argument)

(local region not present)
(no free PLL available)
(read error)

(Clock is not active)

***/

ccurDPRC_ADC_Perform_Negative_Calibration()

This call performs a negative calibration using the internal reference voltage.

/**

_ccurdprc_lib error number t
ccurDPRC_ADC Perform Negative Calibration(void *Handle)

Description: Perform ADC Negative Calibration
Input: void *Handle

Output: none

Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT_ OPEN

CCURDPRC_LIB NO RESOURCE
CCURDPRC_LIB IO ERROR

B R e

CCURDPRC_LIB NO_ LOCAL REGION

CCURDPRC_LIB CLOCK IS NOT ACTIVE

(handle pointer)

(successful)

(no/bad handler supplied)
(library not open)

(local region not present)
(no free PLL available)
(read error)

(Clock is not active)

***/

ccurDPRC_ADC _Perform_Offset_Calibration()

This call performs an offset calibration using the internal reference voltage. Once this call is executed, the user
will need to perform negative and positive calibrations as this call resets these gains to 1.0 prior to calibration.

/**

_ccurdprc lib error number t
ccurDPRC ADC Perform Offset Calibration(void *Handle)

Description: Perform ADC Offset Calibration
Input: void *Handle

Output: none

Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB NO RESOURCE
CCURDPRC_LIB IO ERROR

T I e e

CCURDPRC_LIB NO LOCAL REGION

CCURDPRC _LIB CLOCK IS NOT ACTIVE

(handle pointer)

(successful)

(no/bad handler supplied)
(library not open)

(local region not present)
(no free PLL available)
(read error)

(Clock is not active)

***/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 17 of 94

2.2.13 ccurDPRC_ADC_Perform_Positive_Calibration()
This call performs a positive calibration using the internal reference voltage.

/***‘k*‘k*‘k*‘k*‘k*‘k*****‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

_ccurdprc lib error number t
ccurDPRC ADC Perform Positive Calibration(void *Handle)

Description: Perform ADC Positive Calibration

Input: void *Handle (handle pointer)
Output: none
Return: ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (library not open)
CCURDPRC_LIB NO LOCAL REGION (local region not present)
CCURDPRC_LIB NO RESOURCE (no free PLL available)
CCURDPRC_LIB IO ERROR (read error)
CCURDPRC_LIB CLOCK IS NOT ACTIVE (Clock is not active)

***/

2.2.14 ccurDPRC_ADC_Read_Channels()
This call provides the user an easy method of reading the ADC channels. User can supply a channel mask.

/**

_ccurdprc_lib error number t

ccurDPRC_ADC Read Channels (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc adc volts t *adc volts)

Description: Read ADC Channels

Input: void *Handle (Handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)
CCURDPRC_CHANNEL MASK 0
CCURDPRC CHANNEL MASK 1
CCURDPRC CHANNEL MASK 2
CCURDPRC_CHANNEL MASK 3
CCURDPRC CHANNEL MASK 4
CCURDPRC_CHANNEL MASK 5
CCURDPRC CHANNEL MASK 6
CCURDPRC_CHANNEL MASK 7
CCURDPRC_CHANNEL MASK 8
CCURDPRC_CHANNEL MASK 9
CCURDPRC_CHANNEL MASK 10
CCURDPRC_CHANNEL MASK 11
CCURDPRC_CHANNEL MASK 12
CCURDPRC_CHANNEL MASK 13
CCURDPRC_CHANNEL MASK 14
CCURDPRC_CHANNEL MASK 15
CCURDPRC_ALL CHANNELS MASK
Output: ccurdprc adc volts t *adc _volts (pointer to ADC volts)
uint Raw [CCURDPRC MAX CHANNELS];
double Float [CCURDPRC MAX CHANNELS] ;
Return: ccurdprc_ lib error number t
CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN device not open)
CCURDPRC_LIB INVALID ARG invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region not present)

**/

S o S e S S e S 3 S R e o 3 S 3

successful)

(
(no/bad handler supplied)
(
(

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 18 of 94

2.2.15

2.2.16

ccurDPRC_ADC_Read_Channels_Calibration()

This routine reads the ADC channel calibration registers and dumps them to the user specified file. If the file
name specified is NULL, then information is written to stdout.

/**

_ccurdprc lib error number t
ccurDPRC_ADC Read Channels Calibration(void *Handle,
char *filename)

Description: Read ADC Channels Calibration

Input: void *Handle (handle pointer)
Output: char *filename (pointer to filename)
Return: _ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN library not open)

CCURDPRC_LIB NO LOCAL REGION local region not present)
CCURDPRC LIB CANNOT OPEN FILE (cannot open calib. file)

***/

successful)

(
(no/bad handler supplied)
(
(

ccurDPRC_ADC_Set_Negative Cal()
This call allows the user to set the negative calibration data for all the channels by supplying floating point Float

gains to the call. Users can supply CCURDPRC_DO_NOT_CHANGE as a gain for any channel that should not
be changed. Additionally, this call will return the RAW value of the gain supplied that is written to the board.

/**

_ccurdprc lib error number t
ccurDPRC_ADC Set Negative Cal (void *Handle,
ccurdprc_adc cal t *cal)

Description: Set the ADC Negative Calibration data.

Input: void *Handle (handle pointer)
ccurdprc_adc_cal t *cal (pointer to board cal)
uint Raw [CCURDPRC MAX CHANNELS];
double Float [CCURDPRC MAX CHANNELS];
Output: none
Return: _ccurdprc_lib error number t

CCURDPRC_LIB NO_ERROR (successful)

CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (library not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region not present)
CCURDPRC_LIB NO RESOURCE (no free PLL available)

CCURDPRC_LIB_ IO ERROR (read error)
**/

+H= = H

2.2.17 ccurDPRC_ADC_Set Offset_Cal()

This call allows the user to set the offset calibration data for all the channels by supplying floating point Float
offset to the call. Users can supply CCURDPRC_DO_NOT_CHANGE as a gain for any channel that should
not be changed. Additionally, this call will return the Raw value of the offset supplied that is written to the
board.

/**

_ccurdprc lib error number t
ccurDPRC_ADC Set Offset Cal (void *Handle,
ccurdprc_adc_cal t *cal)

Description: Set the ADC Offset Calibration data.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 19 of 94

(handle pointer)
(pointer to board cal)

Input: void *Handle
ccurdprc_adc _cal t *cal
uint Raw [CCURDPRC MAX CHANNELS];
double Float[CCURDPRC MAX CHANNELS];
Output: none
Return: _ccurdprc_lib error number t

#

+H= = S

#

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB_NOT OPEN
CCURDPRC_LIB INVALID ARG
CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB NO RESOURCE
CCURDPRC_LIB IO ERROR

(successful)

(no/bad handler supplied)
(library not open)
(invalid argument)

(local region not present)
(no free PLL available)
(read error)

**/

2.2.18 ccurDPRC_ADC_Set_Positive_Cal()

This call allows the user to set the positive calibration data for all the channels by supplying floating point Float
gains to the call. Users can supply CCURDPRC_DO_NOT_CHANGE as a gain for any channel that should not
be changed. Additionally, this call will return the Raw value of the gain supplied that is written to the board.

/**

_ccurdprc lib error number t
ccurDPRC_ADC Set Positive Cal (void
ccurdprc_adc _cal t *cal)

Description:

Input: void

ccurdprc_adc_cal t

*Handle
*cal

*Handle,

Set the ADC Positive Calibration data.

(handle pointer)
(pointer to board cal)

uint
double

Raw [CCURDPRC_ MAX CHANNELS];
Float [CCURDPRC MAX CHANNELS];

Output:
Return:

none

#

+H= = =

_ccurdprc lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG
CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB NO_RESOURCE
CCURDPRC_LIB IO ERROR

(successful)

(no/bad handler supplied)
(library not open)
(invalid argument)

(local region not present)
(no free PLL available)
(read error)

**/

2.2.19 ccurDPRC_ADC_Write_Channels_Calibration()
This call allows the user to write the calibration registers from a user supplied calibration file.

/**

_ccurdprc lib error number t
ccurDPRC_ADC Write Channels Calibration(void *Handle,
char *filename)

Description:
Input: void
Output: char
Return:

#

+H= = T

Write Channels Calibration

*Handle
*filename

_ccurdprc lib error number t

CCURDPRC_LIB NO_ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB CANNOT OPEN FILE

(handle pointer)
(pointer to filename)

(successful)
(no/bad handler supplied)
(library not open)

(local region not present)
(

cannot open calib. file)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 20 of 94

CCURDPRC_LIB INVALID ARG (invalid argument)
Kok ok kK kK ok kK kK kK ok kK kK ok K ok kK kK ok K ok ok ok ok K ok K ok kK ok K ok K ok ok K ok K ok ok ok kK ok K ok kR ok K ok Kk ok ok ok ok kK kR kK Kk Kk /

2.2.20 ccurDPRC_Add_Irq()
This call will add the driver interrupt handler if it has not been added. Normally, the user should not use this
call unless they want to disable the interrupt handler and then re-enable it.

/**

int ccurDPRC_Add Irg(void *Handle)

Description: By default, the driver assigns an interrupt handler to handle
device interrupts. If the interrupt handler was removed using
the ccurDPRC Remove Irqg(), then this call adds it back.

Input: void *Handle (Handle pointer)
Output: none
Return: ccurdprc_ lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT OPEN (library not open)
CCURDPRC_LIB IOCTL FAILED (driver ioctl call failed)

k**********************k*k**********k*k***************************************/

2.2.21 ccurDPRC_Clear_Driver_Error()
This call resets the last driver error that was maintained internally by the driver to CCURDPRC_SUCCESS.

/**

_ccurdprc lib error number t ccurDPRC Clear Driver Error (void *Handle)

Description: Clear any previously generated driver related error.

Input: void *Handle (Handle pointer)
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB IOCTL FAILED (driver ioctl call failed)

**/

2.2.22 ccurDPRC_Clear_Electronic_Fuse_Trip_Fault()

If an electronic fuse trip fault occured for a channel, that channel is no longer accessible to the user until the
channel fuse trip fault is reset. Users need to query as to why the electronic fuse trip fault occurred, correct the
condition that caused the fuse trip fault, and then clear the fuse trip fault for the channel with the help of this
call. If the reason for the fuse trip fault is not cleared, the fault is cleared, it is likely that the electronic fuse trip
will re-occur immediately. If multiple electronic fuse trip faults occur for a channel, the faults will be queued
to a quantity of two deep. This call ensures that all queued faults for the requested channel are also cleared.

/**

_ccurdprc lib error number t
ccurDPRC Clear Electronic Fuse Trip Fault (void *Handle,
_ccurdprc_channel mask t ChanMask)

Description: Clear Electronic Fuse Trip Fault

Input: void *Handle (handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)
CCURDPRC_CHANNEL MASK 0

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 21 of 94

CCURDPRC_CHANNEL MASK 1
CCURDPRC_CHANNEL MASK 2
CCURDPRC_CHANNEL MASK 3
CCURDPRC_CHANNEL MASK 4
CCURDPRC_CHANNEL MASK 5
CCURDPRC_CHANNEL MASK 6
CCURDPRC_CHANNEL MASK_7
CCURDPRC_CHANNEL MASK 8
CCURDPRC_CHANNEL MASK 9
CCURDPRC_CHANNEL MASK 10
CCURDPRC_CHANNEL MASK 11
CCURDPRC_CHANNEL MASK 12
CCURDPRC_CHANNEL MASK 13
CCURDPRC_CHANNEL MASK 14
CCURDPRC_CHANNEL MASK 15
CCURDPRC_ALL CHANNELS MASK

S o o S S o e o e o 3 o 3 e o 3

Output: none
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)
CCURDPRC_LIB_IO ERROR (Channel Trip Fault not
clearing)

**/

2.2.23 ccurDPRC_Clear_Lib_Error()
This call resets the last library error that was maintained internally by the API.

/**

_ccurdprc lib error number t ccurDPRC Clear Lib Error(void *Handle)

Description: Clear any previously generated library related error.

Input: void *Handle (Handle pointer)

Output: none

Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB_BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)

KA KA AR AR A A A A A A A A A A A A A A AR A A A A A A AR A A A A A A A A A IR A IR A A I A A KA A A A A AN A A A A A A A A AR A A A,k K

2.2.24 ccurDPRC_Close()
This call is used to close an already opened device using the ccurDPRC_Open() call.

/**

_ccurdprc 1lib error number t ccurDPRC Close(void *Handle)

Description: Close a previously opened device.

Input: void *Handle (Handle pointer)

Output: none

Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB_BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)

‘k*‘k******‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 22 of 94

2.2.25 ccurDPRC_DataToVolts()
This routine takes a raw analog input data value and converts it to a floating point.

/*********k**************************k**************‘k*‘k*****‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

double ccurDPRC DataToVolts (int us data)

Description: Convert Data to volts

Input: int us data (data to convert)
Output: none
Return: double volts (returned volts)

**/

2.2.26 ccurDPRC_DigitalPotentiometerAndlo_Activate()
This call gives the user the ability to activate, disable and get the current ADC state.

/**

ccurDPRC DigitalPotentiometerAndIo Activate ()

_ccurdprc lib error number t

ccurDPRC DigitalPotentiometerAndIo Activate (void *Handle,
_ccurdprc _digital pot and io enable t activate,
_ccurdprc _digital pot and io enable t *current state)

Description: Activate/DeActivate Digital Potentiometer and I/O module

Input: void *Handle (Handle pointer)
_ccurdprc_digital pot and io enable t activate (activate/deactivate)
CCURDPRC_DIGITAL POT AND IO DISABLE
CCURDPRC DIGITAL POT AND IO ENABLE
CCURDPRC_DIGITAL POT AND IO ENABLE DO NOT CHANGE
Output: ccurdprc digital pot and io enable t *current state
(active/deactive)
CCURDPRC DIGITAL POT AND IO DISABLE
CCURDPRC_DIGITAL POT AND IO ENABLE
Return: ccurdprc lib error number t
CCURDPRC_LIB_NO_ERROR
CCURDPRC LIB BAD HANDLE
CCURDPRC_LIB_NOT OPEN device not open)
CCURDPRC_LIB INVALID ARG invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region not present)

**/

successful)

(
(no/bad handler supplied)
(
(

2.2.27 ccurDPRC _Disable _Pci_Interrupts()

The purpose of this call is to disable PCI interrupts. This call shouldn’t be used during normal reads as calls
could time out. The driver handles enabling and disabling interrupts during its normal course of operation.

/**

_ccurdprc_lib error number t
ccurDPRC Disable Pci Interrupts (void *Handle)

Description: Disable interrupts being generated by the board.

Input: void *Handle (handle pointer)
Output: None
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB IOCTL FAILED (driver ioctl call failed)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 23 of 94

2.2.28

2.2.29

**/

ccurDPRC_Enable_Pci_Interrupts()
The purpose of this call is to enable PCI interrupts. This call shouldn’t be used during normal reads as calls
could time out. The driver handles enabling and disabling interrupts during its normal course of operation.

/**

_ccurdprc_lib error number t
ccurDPRC Enable Pci Interrupts (void *Handle, uint interrupt mask)

Description: Enable interrupts being generated by the board.

Input: void *Handle (Handle pointer)
uint interrupt mask (interrupt mask)
Output: none
Return: ccurdprc_ lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT OPEN (device not open)

CCURDPRC_LIB IOCTL FAILED (driver ioctl call failed)

**/

ccurDPRC_Fast_ Memcpy()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory using
programmed 1/0. The library performs appropriate locking while the copying is taking place.

/**

ccurDPRC_ Fast Memcpy (void *Handle,
volatile void *Destination,
volatile void *Source,
int SizeInBytes)

Description: Perform fast copy to/from buffer using Programmed I/O
(WITH LOCKING)

Input: void *Handle (Handle pointer)
volatile void *Source (pointer to source buffer)
int SizeInBytes (transfer size in bytes)
Oupput: volatile void *Destination (pointer to destination buffer)
Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT OPEN (device not open)

**/

2.2.30 ccurDPRC_Fast_ Memcpy_Unlocked()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory using
programmed 1/O. The library does not perform any locking. User needs to provide external locking instead.

/**
void
ccurDPRC Fast Memcpy Unlocked(volatile void *Destination,
volatile void *Source,
int SizeInBytes)

Description: Perform fast copy to/from buffer using Programmed I/O
(WITHOUT LOCKING)

Input: volatile void *Source (pointer to source buffer)
int SizeInBytes (transfer size in bytes)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 24 of 94

Oupput: volatile void *Destination (pointer to destination buffer)

Return: none
**/

2.2.31 ccurDPRC_Fraction_To_Hex()
This converts a fractional decimal to a hexadecimal value.

/**
int
ccurDPRC Fraction To Hex (double Fraction,

uint *value)

Description: Convert Fractional Decimal to Hexadecimal

Input: double Fraction (fraction to convert)
Output: uint *value (converted hexadecimal value)
Return: 1 (call failed)

0 (good return)

**/

2.2.32 ccurDPRC_Get_Board_CSR()
This call returns information from the board status register.

/**

_ccurdprc lib error number t
ccurDPRC Get Board CSR (void *Handle,
ccurdprc_board csr t *bcsr)

Description: Get Board Control and Status information

Input: void *Handle (Handle pointer)
Output: ccurdprc board csr t *bcsr (pointer to board csr)
_ccurdprc _bcsr _identify board t identify board
CCURDPRC BCSR IDENTIFY BOARD DISABLE
CCURDPRC_BCSR_IDENTIFY BOARD ENABLE
Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)

CCURDPRC_LIB NO LOCAL REGION (local region not present)
**/

2.2.33 ccurDPRC_Get Board_Info()

This call returns the board id, the board type and the firmware revision level for the selected board. This board
id is 0x9300 and board type is 0x1.

/**

_ccurdprc_lib error number t
ccurDPRC_Get Board Info (void *Handle,
ccurdprc_board info t *binfo)

Description: Get Board Information

Input: void *Handle (handle pointer)
Output: ccurdprc _board info t *pbinfo (pointer to board info)
int board id (board id)
int board type (board type)
int firmware rev (firmware revision)

ccurdprc sprom header t sprom header

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 25 of 94

u int32 t board serial number (serial number)

u short sprom revision (serial prom revision)
int number of channels (number of hardware channels)
int all channels mask (all channels mask)
double cal ref voltage (calibration reference voltage)
double voltage range (maximum voltage range)

Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler
supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region not present)

**/

2.2.34 ccurDPRC_Get_CalibrationBus_Control()
This call returns the bus calibration control.

/**
_ccurdprc_lib error number t
ccurDPRC Get CalibrationBus Control (void *Handle,
_ccurdprc_calibration bus control t *bus control)

Description: Get Calibration Bus Control

Input: void *Handle (handle pointer)
Output: _ccurdprc_calibration bus control t

*bus_ control (pointer to control select)
CCURDPRC CALIBRATIONBUS CONTROL OPEN
CCURDPRC_CALIBRATIONBUS CONTROL PLUS 2 5 VOLTS

CCURDPRC_CALIBRATIONBUS CONTROL PLUS 10 VOLTS
CCURDPRC_CALIBRATIONBUS CONTROL MINUS 10 VOLTS

H = =

==

CCURDPRC CALIBRATIONBUS CONTROL GROUND

CCURDPRC_CALIBRATIONBUS CONTROL PLUS 8 MILLIAMP
CCURDPRC_CALIBRATIONBUS CONTROL MINUS 8 MILLIAMP
CCURDPRC_CALIBRATIONBUS CONTROL PLUS 16 MILLIAMP

Return: _ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT_ OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB_NO LOCAL REGION (local region not present)

**/

2.2.35 ccurDPRC_Get _Digital_Potentiometer()
This call returns to the user the raw and ohms value of the digital potentiometer for the selected channels.

/**
_ccurdprc lib error number t
ccurDPRC Get Digital Potentiometer (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc digital potentiometer t *DPValue)

Description: Get Digital Potentiometer Value

Input: void *Handle (Handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)
CCURDPRC_CHANNEL MASK 0
CCURDPRC_CHANNEL MASK 1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 26 of 94

CCURDPRC_CHANNEL MASK 2

CCURDPRC CHANNEL MASK 3

CCURDPRC_CHANNEL MASK 4

CCURDPRC CHANNEL MASK 5

CCURDPRC_CHANNEL MASK 6

CCURDPRC_CHANNEL MASK_ 7

CCURDPRC_CHANNEL MASK 8

CCURDPRC CHANNEL MASK 9

CCURDPRC_CHANNEL MASK 10

CCURDPRC CHANNEL MASK 11

CCURDPRC_CHANNEL MASK 12

CCURDPRC CHANNEL MASK 13

CCURDPRC_CHANNEL MASK 14

CCURDPRC_CHANNEL MASK 15

CCURDPRC_ALL CHANNELS MASK

Output: ccurdprc digital potentiometer t *DPValue (pointer to Digital
Potentiometer Value)

S o S S e o S o 3 o o e 9 3 o

uint Raw [CCURDPRC MAX CHANNELS];
uint Ohms [CCURDPRC_MAX CHANNELS] ;
Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR (successful)

CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region not present)
CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE

(Potentiometer and I/0 Control not active)
**/

o+ oW S 3

2.2.36 ccurDPRC_Get_Digital_Potentiometer_Test()

This call returns to the user the power-down and mode selection of the digital potentiometer for the selected
channels.

/**

_ccurdprc lib error number t

ccurDPRC Get Digital Potentiometer Test (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc _digital potentiometer test t *DPTest)

Description: Get Digital Potentiometer Test

Input: void *Handle (Handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)

CCURDPRC_CHANNEL MASK 0

CCURDPRC_CHANNEL MASK 1

CCURDPRC_CHANNEL MASK 2

CCURDPRC_CHANNEL MASK 3

CCURDPRC_CHANNEL MASK 4

CCURDPRC CHANNEL MASK 5

CCURDPRC_CHANNEL MASK 6

CCURDPRC CHANNEL MASK 7

CCURDPRC_CHANNEL MASK 8

CCURDPRC_CHANNEL MASK 9

CCURDPRC_CHANNEL MASK 10

CCURDPRC_CHANNEL MASK 11

CCURDPRC_CHANNEL MASK 12

CCURDPRC_CHANNEL MASK 13

CCURDPRC_CHANNEL MASK 14

CCURDPRC CHANNEL MASK 15

CCURDPRC ALL CHANNELS MASK

Output: ccurdprc digital potentiometer test t *DPTest (pointer to

S o o e S o e o B o 3 e o e o9 3 o

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 27 of 94

Digital Potentiometer Test)
_ccurdprc digital potentiometer test t

DigitalPotTest [CCURDPRC_MAX CHANNELS];
CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K POTO
CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K POT1
CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K POT2
CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K POT3
CCURDPRC DIGITAL POTENTIOMETER TEST PWRDWN 100K
CCURDPRC_DIGITAL POTENTIOMETER TEST FORCE FAILURE
CCURDPRC_DIGITAL POTENTIOMETER TEST MODE 20K
CCURDPRC_DIGITAL POTENTIOMETER TEST MODE 100K

Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE

(Potentiometer and I/0 Control not active)
**/

2.2.37 ccurDPRC_Get _Driver_Error()
This call returns the last error generated by the driver.

/**

_ccurdprc_lib error number t

ccurDPRC Get Driver Error (void *Handle,
ccurdprc user error t *ret err)

Description: Get the last error generated by the driver.

Input: void *Handle (Handle pointer)

Output: ccurdprc user error t *ret err (error struct pointer)
uint error (error number)
char name [CCURDPRC ERROR NAME SIZE] (error name used in driver)
char desc[CCURDPRC_ERROR DESC SIZE] (error description)

Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB IOCTL_ FAILED (driver ioctl call failed)

**/

#define CCURDPRC_ERROR NAME SIZE 64
#define CCURDPRC_ERROR DESC SIZE 128

typedef struct ccurdprc user error t

{

uint error; /* error number */
char name [CCURDPRC_ERROR NAME SIZE]; /* error name used in driver */
char desc[CCURDPRC_ERROR DESC_SIZE]; /* error description */

} ccurdprc user error t;

enum

{
CCURDPRC_SUCCESS = 0,
CCURDPRC_INVALID PARAMETER,
CCURDPRC_DMA TIMEOUT,
CCURDPRC_OPERATION CANCELLED,
CCURDPRC_RESOURCE ALLOCATION ERROR,
CCURDPRC_INVALID REQUEST,

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 28 of 94

CCURDPRC_FAULT ERROR,
CCURDPRC_BUSY,
CCURDPRC_ADDRESS_IN USE,
CCURDPRC_USER_INTERRUPT TIMEOUT,
CCURDPRC_DMA INCOMPLETE,
CCURDPRC_DATA UNDERFLOW,
CCURDPRC_DATA_OVERFLOW,
CCURDPRC_IO FAILURE,

CCURDPRC_PCI ABORT_ INTERRUPT ACTIVE,

}s

2.2.38 ccurDPRC_Get Driver_Info()

This call returns internal information that is maintained by the driver.

/**

_ccurdprc lib error number t
ccurDPRC Get Driver Info (void

*Handle,

ccurdprc driver info t *info)

Description: Get device information from driver.

Input: void

Output:
char
char
char
int
char
int
int
int
int
int
int
int
int
int
int
int
int
int
int
double
int
int
double

ccurdprc _driver info t

*Handle (handle pointer)

*info (info struct pointer)
version[12]
built[32]
module name[16]
board index
board desc[32]
bus
slot
func
vendor id
sub_vendor id
board id
board type
sub_device id
board info
msi support
irglevel
firmware
number of channels
all channels mask
cal ref voltage
max dma_ samples
dma size
voltage range

ccurdprc _driver int t interrupt
unsigned long long count

u_int status
u_int mask

int timeout seconds

int

Ccurdprc Max Region

ccurdprc_dev_region t mem region[CCURDPRC MAX REGION]
uint physical address

uint size
uint flags

uint *virtual address
ccurdprc sprom header t sprom header

u_int32 t
u_short
Return:

board serial number
sprom revision
_ccurdprc_lib error number t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 29 of 94

+= = T

#

CCURDPRC_LIB NO_ ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

CCURDPRC LIB TOCTL FAILED

(successful)

(no/bad handler supplied)
(device not open)

(invalid argument)

(local region error)
(driver ioctl call failed)

**/

2.2.39 ccurDPRC_Get Driver_Read Mode()
This call returns the driver read mode.

/**

_ccurdprc_lib error number t
ccurDPRC Get Driver Read Mode (void
_ccurdprc _driver rw mode t *mode)

*Handle,

Description: Get current read mode that will be selected by the 'read()' call
Input: void *Handle (handle pointer)
Output: _ccurdprc _driver rw mode t *mode (pointer to read mode)
CCURDPRC_PIO CHANNEL
CCURDPRC_DMA CHANNEL
Return: _ccurdprc_lib error number t

H= = = = = S

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

CCURDPRC_LIB IOCTL FAILED

(successful)

(no/bad handler supplied)
(device not open)

(invalid argument)

(local region error)
(driver ioctl call failed)

**/

2.2.40 ccurDPRC_Get Driver_Write_Mode()
This call is currently not supported for driver writes. This call returns the driver write mode.

/**

_ccurdprc lib error number t
ccurDPRC Get Driver Write Mode (void
_ccurdprc driver rw mode t *mode)

*Handle,

Description: Get current write mode that will be selected by the 'write()'

*Handle
*mode

call
Input: void
Output: _ccurdprc_driver rw mode t
CCURDPRC_PIO CHANNEL
CCURDPRC_DMA CHANNEL
Return: _ccurdprc_lib error number t

#

+H= H= FH

#

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

CCURDPRC_LIB IOCTL FAILED

(handle pointer)
(pointer to write mode)

(successful)

(no/bad handler supplied)
(device not open)

(invalid argument)

(local region error)
(driver ioctl call failed)

**/

2.2.41 ccurDPRC_Get_Electronic_Fuse Base()

This call returns the Electronic Fuse Base for the selected channels. This value where the channel will fault for
a short (10 ohm) resistance. This is for information only and must not be changed by the user, otherwise, it
could result in damage to the board.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 30 of 94

/**

_ccurdprc lib error number t

ccurDPRC Get Electronic Fuse Base (void *Handle,
_ccurdprc channel mask t ChanMask,
ccurdprc_electronic fuse base t Base)

Description: Get Electronic Fuse Base information

Input: void *Handle (handle pointer)
_ccurdprc channel mask t ChanMask (specify channel mask)
CCURDPRC CHANNEL MASK 0
CCURDPRC CHANNEL MASK 1
CCURDPRC CHANNEL MASK 2
CCURDPRC_CHANNEL MASK 3
CCURDPRC CHANNEL MASK 4
CCURDPRC_CHANNEL MASK 5
CCURDPRC CHANNEL MASK 6
CCURDPRC CHANNEL MASK 7
CCURDPRC CHANNEL MASK 8
CCURDPRC_CHANNEL MASK 9
CCURDPRC_CHANNEL MASK 10
CCURDPRC_CHANNEL MASK 11
CCURDPRC_CHANNEL MASK 12
CCURDPRC CHANNEL MASK 13
CCURDPRC_CHANNEL MASK_ 14
CCURDPRC_CHANNEL MASK 15
CCURDPRC_ALL CHANNELS MASK
Output: ccurdprc_electronic fuse base t Base[CCURDPRC_MAX CHANNELS]
(pointer to electronic fuse base channel array)
_ccurdprc_electronic fuse base t

S o S S e o e e o e o 3 o o e o

int base raw;
double base volts;
Return: _ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

*********************k**************************k*******************************/

2.2.42 ccurDPRC_Get_Electronic_Fuse_Internals()

This call returns the internal settings for the electronic fuse trip for the selected channels. This is for information
only and must not be changed by the user, otherwise it could result in damage to the board.

/**

_ccurdprc lib error number t
ccurDPRC Get Electronic Fuse Internals (void *Handle,
ccurdprc_electronic_ fuse internals t *ElectronicFuse)

Description: Get Electronic Fuse Internals information

Input: void *Handle (handle pointer)
Output: ccurdprc _electronic fuse internals t ElectronicFuse (pointer to
electronic fuse internals)
int electrical short raw;
double electrical short volts;
int delay;
int count;
int io delay raw;
double io delay microseconds;
int maximum resistance raw;

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 31 of 94

double maximum resistance ohms;

int maximum voltage raw;

double maximum voltage volts;

int voltage fault delay raw;

int voltage fault delay microseconds;

Return: _ccurdprc lib error number t

CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.43 ccurDPRC_Get_Electronic_Fuse_Multiplier()

This call returns the Electronic Fuse Multiplier for the selected channels. This is the value where the channel
will fault for a resistance other than a short (10 ohm) resistance. This is for information only and must not be
changed by the user, otherwise, it could result in damage to the board.

/*‘k*k‘k*‘k*‘k*k‘k*‘k*k‘k*‘k*‘k*‘k*‘k*k‘k*‘k*‘k*k‘k*‘k*‘k*k‘k*‘k*k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

_ccurdprc lib error number t

ccurDPRC Get Electronic Fuse Multiplier (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc_electronic fuse multiplier t Multiplier)

Description: Get Electronic Fuse Multiplier information

Input: void *Handle (handle pointer)
_ccurdprc channel mask t ChanMask (specify channel mask)

CCURDPRC_CHANNEL MASK 0

CCURDPRC CHANNEL MASK 1

CCURDPRC_CHANNEL MASK 2

CCURDPRC CHANNEL MASK 3

CCURDPRC CHANNEL MASK 4

CCURDPRC CHANNEL MASK 5

CCURDPRC_CHANNEL MASK 6

CCURDPRC CHANNEL MASK 7

CCURDPRC_CHANNEL MASK 8

CCURDPRC CHANNEL MASK 9

CCURDPRC_CHANNEL MASK 10

CCURDPRC CHANNEL MASK 11

CCURDPRC_CHANNEL MASK 12

CCURDPRC CHANNEL MASK 13

CCURDPRC CHANNEL MASK 14

CCURDPRC CHANNEL MASK 15

CCURDPRC_ALL CHANNELS MASK
Output: ccurdprc electronic fuse multiplier t

Multiplier [CCURDPRC MAX CHANNELS]

SHE e S S e o e S o e o 3 o 3 o o 3

(pointer to electronic fuse
multiplier channel array)
_ccurdprc_electronic fuse multiplier t

int multiplier raw;
double multiplier volts;
Return: _ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT_ OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 32 of 94

2.2.44 ccurDPRC_Get_Electronic_Fuse_Status()
This call returns the various Electronic Fuse Trip Status for the board.

/***‘k*‘k*‘k*‘k*‘k*‘k*****‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

_ccurdprc lib error number t
ccurDPRC Get Electronic Fuse Status (void *Handle,
ccurdprc electronic fuse status_t *Status)

Description: Get Electronic Fuse Status information

Input: void *Handle (handle pointer)
Output: ccurdprc_electronic fuse status t Status (pointer to
electronic fuse status)
_ccurdprc_efstat fuse tripped t any fuse tripped

CCURDPRC_EFSTAT FUSE NOT TRIPPED
CCURDPRC_EFSTAT FUSE TRIPPED
_ccurdprc_efstat fuse adc failed t adc_1 fuse failed
CCURDPRC_EFSTAT FUSE ADC NOT FAILED
CCURDPRC_EFSTAT FUSE ADC FAILED
_ccurdprc_efstat fuse adc failed t adc 0 fuse failed
CCURDPRC_EFSTAT FUSE ADC NOT FAILED
CCURDPRC_EFSTAT FUSE ADC FAILED
_ccurdprc_efstat fuse tripped t
channel fuse tripped[CCURDPRC MAX CHANNELS]
CCURDPRC_EFSTAT FUSE NOT TRIPPED
CCURDPRC_EFSTAT FUSE TRIPPED

int
channel fuse tripped mask
Return: _ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.45 ccurDPRC_Get _Electronic_Fuse_Threshold()

This call returns the Electronic Fuse Threshold for selected channels. This is for information only and must not
be changed by the user, otherwise, it could result in damage to the board.

/**

_ccurdprc_lib error number t

ccurDPRC Get Electronic Fuse Threshold (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc_electronic fuse threshold t Threshold)

Description: Get Electronic Fuse Threshold information

Input: void *Handle (handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)

CCURDPRC_CHANNEL MASK_0

CCURDPRC_CHANNEL MASK 1

CCURDPRC_CHANNEL MASK_2

CCURDPRC_CHANNEL MASK 3

CCURDPRC_CHANNEL MASK_ 4

CCURDPRC_CHANNEL MASK 5

CCURDPRC_CHANNEL MASK_ 6

CCURDPRC_CHANNEL MASK 7

CCURDPRC_CHANNEL MASK_8

CCURDPRC_CHANNEL MASK 9

CCURDPRC_CHANNEL MASK 10

S o o e S o e o 3 4 3

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 33 of 94

CCURDPRC_CHANNEL_MASK 11
CCURDPRC CHANNEL MASK 12
CCURDPRC_CHANNEL_MASK 13
CCURDPRC CHANNEL MASK 14
CCURDPRC_CHANNEL_MASK 15
CCURDPRC ALL CHANNELS MASK
Output: ccurdprc _electronic_ fuse threshold t

Threshold [CCURDPRC MAX CHANNELS]

o+ oW o F S

(pointer to electronic fuse
threshold channel array)
_ccurdprc_electronic fuse threshold t

int threshold_raw;
double threshold volts;
Return: _ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.46 ccurDPRC_Get Electronic_Fuse_Trip()

This call returns the Electronic Fuse Trip for selected channels. This is for information only and must not be
changed by the user, otherwise, it could result in damage to the board.

/**

_ccurdprc_lib error number t

ccurDPRC Get Electronic Fuse Trip (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc_electronic fuse channel trip t Trip)

Description: Get Electronic Fuse Trip information

Input: void *Handle (handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)
CCURDPRC_CHANNEL MASK 0
CCURDPRC_CHANNEL MASK 1
CCURDPRC_CHANNEL MASK 2
CCURDPRC_CHANNEL MASK 3
CCURDPRC_CHANNEL MASK_ 4
CCURDPRC_CHANNEL MASK 5
CCURDPRC_CHANNEL MASK 6
CCURDPRC_CHANNEL MASK 7
CCURDPRC_CHANNEL MASK_8
CCURDPRC CHANNEL MASK 9
CCURDPRC_CHANNEL MASK 10
CCURDPRC_CHANNEL MASK 11
CCURDPRC_CHANNEL MASK 12
CCURDPRC_CHANNEL MASK 13
CCURDPRC_CHANNEL MASK 14
CCURDPRC_CHANNEL MASK 15
CCURDPRC_ALL CHANNELS MASK
Output: ccurdprc_electronic fuse channel trip t Trip[CCURDPRC MAX CHANNELS]
(pointer to electronic fuse trip channel array)
_ccurdprc_electronic fuse channel trip t
_ccurdprc_eft fuse tripped t fuse trip status
CCURDPRC_EFT FUSE NOT TRIPPED
CCURDPRC_EFT FUSE TRIPPED
_ccurdprc_eft invalid calibration fuse trip t
invalid calibration trip

S e S e S o e o 3 o 3 o o e o 3 o

CCURDPRC_EFT FUSE NOT TRIPPED
CCURDPRC_EFT FUSE_TRIPPED

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 34 of 94

_ccurdprc_eft potentiometer failure fuse trip t
potentiometer failure trip

CCURDPRC_EFT FUSE NOT TRIPPED
CCURDPRC EFT FUSE TRIPPED

_ccurdprc_eft adc failure fuse trip t adc_failure trip
CCURDPRC_EFT FUSE NOT TRIPPED
CCURDPRC_EFT FUSE TRIPPED

_ccurdprc _eft switch voltage fuse trip t witch voltage trip
CCURDPRC_EFT FUSE NOT TRIPPED
CCURDPRC_EFT FUSE TRIPPED

_ccurdprc_eft adc compare fuse trip t adc_compare trip
CCURDPRC_EFT FUSE NOT TRIPPED
CCURDPRC_EFT FUSE TRIPPED

uint last adc tripped raw
double last adc tripped volts
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.47 ccurDPRC_Get_Interrupt_Control()
This call returns the interrupt control information.

/**

_ccurdprc_lib error number t
ccurDPRC Get Interrupt Control (void *Handle,
ccurdprc_ interrupt t *intr)

Description: Get Interrupt Control information

Input: void *Handle (handle pointer)
Output: ccurdprc_interrupt t *intr (pointer to interrupt control)
int global int
int plx local int
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN device not open)
CCURDPRC_LIB INVALID ARG invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

successful)
no/bad handler supplied)

2.2.48 ccurDPRC_Get_Interrupt_Status()
This call returns the current status of the PLX interrupt.

/**

_ccurdprc lib error number t
ccurDPRC Get Interrupt Status (void *Handle,
ccurdprc_interrupt t *intr)

Description: Get Interrupt Status information

Input: void *Handle (handle pointer)
Output: ccurdprc_interrupt t *intr (pointer to interrupt status)
int plx local int
CCURDPRC_ISR LOCAL_ PLX NONE
CCURDPRC_ISR LOCAL PLX OCCURRED
Return: _ccurdprc lib error number t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 35 of 94

CCURDPRC_LIB NO_ ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

+= = T

CCURDPRC_LIB NO LOCAL REGION

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)

**/

2.2.49 ccurDPRC_Get_Interrupt_Timeout_Seconds()

This call returns the read time out maintained by the driver. It is the time that the read call will wait before it
times out. The call could time out because a DMA fails to complete. The device should have been opened in
the block mode (O_NONBLOCK not set) for reads to wait for the operation to complete.

/**

ccurdprc lib

error number t

ccurDPRC Get Interrupt Timeout Seconds

Description:

Input: void

Output: int
Return:

#
#
#
#
#

#

Get Interrupt Timeout Seconds

*Handle

*int timeout secs
_ccurdprc lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB IOCTL FAILED

*Handle,
*int timeout secs)

(Handle pointer)
(pointer to int tout secs)

(successful)

(no/bad handler supplied)
(device not open)

(invalid argument)

(local region not present)
(ioctl error)

‘k*‘k******‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k/

2.2.50 ccurDPRC_Get I0_Control()

This call returns the 10 Control settomg for the selected channels.

/**

ccurdprc lib

error number t

ccurDPRC Get IO Control (void
_ccurdprc channel mask t ChanMask,

ccurdprc_io control t

*Handle

Description: Get I/O Control
Input: void
_ccurdprc channel mask t

S o o e S S e S 3 R R e o 3 S 3

CCURDPRC_CHANNEL MASK 0
CCURDPRC_CHANNEL MASK 1
CCURDPRC_CHANNEL_MASK_2
CCURDPRC_CHANNEL_MASK 3
CCURDPRC_CHANNEL_MASK_4
CCURDPRC_CHANNEL_MASK 5
CCURDPRC_CHANNEL MASK 6
CCURDPRC_CHANNEL_ MASK_7
CCURDPRC_CHANNEL MASK 8
CCURDPRC_CHANNEL MASK 9
CCURDPRC_CHANNEL MASK 10
CCURDPRC_CHANNEL_MASK 11
CCURDPRC_CHANNEL MASK 12
CCURDPRC_CHANNEL MASK 13
CCURDPRC_CHANNEL MASK 14
CCURDPRC_CHANNEL MASK 15

CCURDPRC_ALL CHANNELS MASK

ChanMask

*Handle,

*IoControl)

(Handle pointer)
(specify channel mask)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 36 of 94

Output: ccurdprc io control t *IoControl (pointer to I/O
control)
_ccurdprc_io control t
IoSignal [CCURDPRC MAX CHANNELS];
CCURDPRC_IO CONTROL OPEN
CCURDPRC_IO CONTROL EXTERNAL
CCURDPRC_IO CONTROL TEST BUS
CCURDPRC_ IO CONTROL RA GROUND FAULT
CCURDPRC_IO CONTROL RB GROUND FAULT
CCURDPRC_IO CONTROL RA RB GROUND FAULT
CCURDPRC_IO CONTROL RA V PLUS FAULT
CCURDPRC_IO CONTROL RB V PLUS FAULT
CCURDPRC_IO CONTROL RA RB V PLUS FAULT
CCURDPRC_IO CONTROL RA V PLUS RB GROUND FAULT SWITCH
CCURDPRC_IO CONTROL RA GROUND RB V PLUS FAULT SWITCH

Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE

(Potentiometer and I/0 Control not active)
**/

2.2.51 ccurDPRC_Get_Lib_Error_Description()
This call returns the library error name and description for the supplied error number.

/**

ccurDPRC_Get_Lib_Error_Description()
Description: Get Error Description of supplied error number.

Input: int ErrorNumber (Library error number)

Output: ccurdprc_lib_error_description_t *1ib_error_desc (error description struct pointer)
-- int found
-- char name[CCURDPRC_LIB_ERROR_NAME_SIZE] (last library error name)
-- char desc[CCURDPRC_LIB_ERROR_DESC_SIZE] (last library error description)

Return: none

**/

2.2.52 ccurDPRC_Get Lib_Error()
This call provides detailed information about the last library error that was maintained by the API.

/**

_ccurdprc lib error number t
ccurDPRC Get Lib Error (void *Handle,
ccurdprc_ lib error t *1ib error)

Description: Get last error generated by the library.

Input: void *Handle (Handle pointer)
Output: ccurdprc lib error t *1lib error (error struct pointer)
-—- uint error (last library error number)

-- char name[CCURDPRC_LIB ERROR NAME SIZE] (last library error name)

-- char desc[CCURDPRC_LIB ERROR DESC SIZE] (last library error
description)

-- int line number (last library error line number
in 1lib)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 37 of 94

-- char function[CCURDPRC_LIB ERROR FUNC SIZE]

(library function in error)

—-— ccurdprc lib error backtrace t BT[CCURDPRC BACK TRACE DEPTH]

-- int line number

(backtrace of errors)
(line number in library)

-- char function[CCURDPRC LIB ERROR FUNC SIZE]

Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN

(library function)

(successful)
(no/bad handler supplied)
(device not open)

**/

typedef struct
{

int line number;

char function[CCURDPRC LIB ERROR FUNC SIZE];
} ccurdprc_ lib error backtrace t;

typedef struct

{
uint error;
char name[CCURDPRC LIB ERROR NAME SIZE];
char desc[CCURDPRC LIB ERROR DESC SIZE];
int line number;

char function[CCURDPRC LIB ERROR FUNC SIZE];

/*
/*

/*
/*
/*
/*

/*

ccurdprc lib error backtrace t BT[CCURDPRC_BACK

} ccurdprc lib error t;

Possible library errors:

CCURDPRC_LIB NO ERROR = 0,

CCURDPRC_LIB INVALID ARG = -1,

CCURDPRC_LIB ALREADY OPEN = -2,

CCURDPRC_LIB OPEN FAILED = -3,

CCURDPRC_LIB BAD HANDLE = -4,

CCURDPRC_LIB NOT OPEN = -5,

CCURDPRC_LIB MMAP SELECT FAILED = -6,

CCURDPRC_LIB MMAP FAILED = -7,

CCURDPRCiLIBiMUNMAPiFAILED = -8,

CCURDPRC_LIB NOT MAPPED = -9,

CCURDPRCiLIBiALREADYiMAPPED = -10,
CCURDPRC_LIB TIOCTL_ FAILED = -11,
CCURDPRC_LIB IO ERROR = -12,
CCURDPRC_LIB INTERNAL ERROR = -13,
CCURDPRC_LIB_NOT_IMPLEMENTED = -14,
CCURDPRC_LIB LOCK FAILED = -15,
CCURDPRC_LIB NO LOCAL REGION = -16,
CCURDPRC_LIB_NO CONFIG REGION = -17,
CCURDPRC_LIB NO_SOLUTION FOUND = -18,
CCURDPRC_LIB CONVERTER RESET = -19,
CCURDPRC_LIB NO_RESOURCE = -20,
CCURDPRC_LIB CALIBRATION RANGE ERROR = =21,
CCURDPRC_LIB CANNOT OPEN FILE = -23,
CCURDPRC_LTIB BAD DATA IN CAIL FILE = -24,
CCURDPRC_LIB UNUSED 25 = -25,
CCURDPRC_LTIB_SERTAL_PROM BUSY = -26,
CCURDPRC_LIB SERIAL PROM FAILURE = -27,
occurred */

CCURDPRC_LIB INVALID CRC = -28,
CCURDPRC_LIB SERIAL PROM WRITE PROTECTED = -29,
CCURDPRC_LIB ADC IS NOT ACTIVE = -30,

/*

/*
/*
/*

line number in library */
library function */

last library error number */

last library error name */

last libarary error description */

last library error line number in

lib */

library function in error */
_TRACE DEPTH] ;

backtrace of errors */

successful */

invalid argument */

already open */

open failed */

bad handle */

device not opened */

mmap selection failed */

mmap failed */

munmap failed */

not mapped */

already mapped */

driver ioctl failed */

i/o error */

internal library error */

call not implemented */

failed to get lib lock */

local region not present */
config region not present */

no solution found */

converter not active */
resource not available */
calibration voltage out of range */
cannot open file */

bad date in calibration file */
UNUSED */

serial prom busy */

serial prom failure - malfunction

invalid CRC read */
serial prom is write protected */
ADC is not active */

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 38 of 94

CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE
= -31, /* Digital Potentiometer & I/0O is not
active */
CCURDPRC_LIB CLOCK IS NOT ACTIVE = 32, /* ADC Clock is not active */
CCURDPRC_LIB ADC FAILURE -33, /* ADC Failure */
CCURDPRC_LIB ELECTRONIC FUSE TRIPPED = -34, /* Electronic Fuse Tripped */

2.2.53 ccurDPRC_Get_Mapped_Config_Ptr()

If the user wishes to bypass the API and communicate directly with the board configuration registers, then they
can use this call to acquire a pointer to these registers. Please note that any type of access (read or write) by
bypassing the API could compromise the API and results could be unpredictable. It is recommended that only
advanced users should use this call and with extreme care and intimate knowledge of the hardware programming
registers before attempting to access these registers. For information on the registers, refer to the
ccurdprc_user.h include file that is supplied with the driver.

/**

_ccurdprc lib error number t
ccurDPRC Get Mapped Config Ptr (void *Handle,
ccurdprc config local data t **config ptr)

Description: Get mapped configuration pointer.

Input: void *Handle (Handle pointer)
Output: ccurdprc config local data t **config ptr (config struct ptr)
-- structure in ccurdprc user.h
Return: ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB_NO CONFIG REGION (config region not present)

**/

2.2.54 ccurDPRC_Get_Mapped_Driver_Library Ptr()
The driver and library share a common structure. This call returns a pointer to the shared driver/library structure.

/**

_ccurdprc_lib error number t
ccurDPRC Get Mapped Driver Library Ptr (void *Handle,
ccurdprc_driver library common t **driver lib ptr)

Description: Get mapped Driver/Library structure pointer.

Input: void *Handle (Handle pointer)
Output: ccurdprc driver library common t **driver lib ptr
(driver 1lib struct ptr)
uint dma abort count (DMA abort count)
ccurdprc_sprom header t sprom header
u int32 t board serial number (serial number)
u_short sprom revision (serial revision)
uint library needs initialization
Return: ccurdprc lib error number t

successful)
no/bad handler supplied)

CCURDPRC_LIB_NO ERROR

CCURDPRC LIB BAD HANDLE
CCURDPRC_LIB_NOT OPEN device not open)
CCURDPRC_LIB INVALID ARG invalid argument)

CCURDPRC_LIB:NO_LOCAL_REGION (local region not present)
**/

(
(
(
(

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 39 of 94

2.2.55 ccurDPRC_Get_Mapped_Local Ptr()

If the user wishes to bypass the API and communicate directly with the board control and data registers, then
they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)
by bypassing the API could compromise the APl and results could be unpredictable. It is recommended that
only advanced users should use this call and with extreme care and intimate knowledge of the hardware
programming registers before attempting to access these registers. For information on the registers, refer to the
ccurdprc_user.h include file that is supplied with the driver.

/**

_ccurdprc lib error number t
ccurDPRC Get Mapped Local Ptr (void *Handle,
ccurdprc local ctrl data t **local ptr)

Description: Get mapped local pointer.
Input: void *Handle (Handle pointer)

Output: ccurdprc local ctrl data t **local ptr (local struct ptr)
-- structure in ccurdprc user.h

Return: ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region not present)

**/

2.2.56 ccurDPRC_Get_Open_File_Descriptor()

When the library ccurDPRC_Open() call is successfully invoked, the board is opened using the system call
open(2). The file descriptor associated with this board is returned to the user with this call. This call allows
advanced users to bypass the library and communicate directly with the driver with calls like read(2), ioctl(2),
etc. Normally, this is not recommended as internal checking and locking is bypassed and the library calls can
no longer maintain integrity of the functions. This is only provided for advanced users who want more control
and are aware of the implications.

/**

_ccurdprc_lib error number t
ccurDPRC Get Open File Descriptor (void *Handle,
int *fd)

Description: Get Open File Descriptor

Input: void *Handle (Handle pointer)
Output: int *fd (open file descriptor)
Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB_NO LOCAL REGION (local region not present)

*********************k**************************k*******************************/

2.2.57 ccurDPRC_Get _Physical _ Memory()

This call returns to the user the physical memory pointer and size that was previously allocated by the
ccurDPRC_Mmap_Physical_Memory() call. The physical memory is allocated by the user when they wish to
perform their own DMA and bypass the API. Once again, this call is only useful for advanced users.

/**

_ccurdprc lib error number t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 40 of 94

ccurDPRC Get Physical Memory (void *Handle,
ccurdprc phys mem t *phys mem)

Description: Get previously mmapped() physical memory address and size

Input: void *Handle (handle pointer)
Output: ccurdprc _phys mem t *phys mem (mem struct pointer)
void *phys mem
uint phys mem size

Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.58 ccurDPRC_Get Value()

This call allows the user to read the board registers. The actual data returned will depend on the command
register information that is requested. Refer to the hardware manual for more information on what is being
returned. Most commands return a pointer to an unsigned integer.

/*‘k*k‘k*‘k*‘k*k‘k*‘k*k‘k*‘k*‘k*‘k*‘k*k‘k*‘k*‘k*k‘k*‘k*‘k*k‘k*‘k*k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

ccurDPRC Get Value ()
_ccurdprc_lib error number t

ccurDPRC_Get Value (void *Handle,
CCURDPRC CONTROL cmd,
void *value)

Description: Return the value of the specified board register.

Input: void *Handle (handle pointer)
CCURDPRC_CONTROL cmd (register definition)
CCURDPRC_CONTROL BOARD INFORMATION
CCURDPRC_CONTROL_ BOARD_CSR
CCURDPRC_CONTROL_INTERRUPT_CONTROL
CCURDPRC_CONTROL INTERRUPT STATUS
CCURDPRC_CONTROL CALIBRATION BUS CONTROL
CCURDPRC_CONTROL_ FIRMWARE SPI COUNTER STATUS
CCURDPRC_CONTROL ADC_ENABLE
CCURDPRC_CONTROL DIGITAL POTENTIOMETER AND IO ENABLE

CCURDPRC_ADC_POSITIVE CAL CHANNEL 0
CCURDPRC_ADC_POSITIVE CAL CHANNEL 1
CCURDPRC_ADC_POSITIVE CAL CHANNEL 2
CCURDPRC_ADC_POSITIVE CAL CHANNEL 3
CCURDPRC_ADC_POSITIVE CAL CHANNEL 4
CCURDPRC_ADC POSITIVE CAL CHANNEL 5
CCURDPRC_ADC_POSITIVE CAL CHANNEL 6
CCURDPRC_ADC POSITIVE CAL CHANNEL 7
CCURDPRC_ADC_POSITIVE CAL CHANNEL_8
CCURDPRC_ADC POSITIVE CAL CHANNEL 9
CCURDPRC_ADC_POSITIVE CAL CHANNEL 10
CCURDPRC_ADC POSITIVE CAL CHANNEL 11
CCURDPRC_ADC_POSITIVE CAL CHANNEL 12
CCURDPRC_ADC_ POSITIVE CAL CHANNEL 13
CCURDPRC_ADC_POSITIVE CAL CHANNEL 14
CCURDPRC_ADC POSITIVE CAL CHANNEL 15

= = S S S SR S S S S S S S S S

=

CCURDPRC_ADC NEGATIVE CAL CHANNEL 0
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 1
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 2

+H= =

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 41 of 94

CCURDPRC_ADC_NEGATIVE CAL CHANNEL 3
CCURDPRC_ADC NEGATIVE CAL CHANNEL 4
CCURDPRC_ADC NEGATIVE CAL CHANNEL 5
CCURDPRC_ADC NEGATIVE CAL CHANNEL 6
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 7
CCURDPRC_ADC NEGATIVE CAL CHANNEL 8
CCURDPRC_ADC_ NEGATIVE CAL CHANNEL 9
CCURDPRC_ADC NEGATIVE CAL CHANNEL 10
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 11
CCURDPRC_ADC NEGATIVE CAL CHANNEL 12
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 13
CCURDPRC_ADC NEGATIVE CAL CHANNEL 14
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 15

H= = S S S S S S S S S S S

CCURDPRC_ADC_ OFFSET_ CAL CHANNEL 0
CCURDPRC_ADC OFFSET_ CAI,_CHANNEL_ 1
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 2
CCURDPRC_ADC OFFSET_ CAI, CHANNEL_3
CCURDPRC_ADC OFFSET_ CAL CHANNEL 4
CCURDPRC_ADC_OFFSET_ CAI, CHANNEL_5
CCURDPRC_ADC_OFFSET_ CAL CHANNEL_ 6
CCURDPRC_ADC OFFSET CAL CHANNEL 7
CCURDPRC_ADC_OFFSET_ CAL CHANNEL_ 8
CCURDPRC_ADC OFFSET CAL CHANNEL 9
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 10
CCURDPRC_ADC OFFSET CAL CHANNEL 11
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 12
CCURDPRC_ADC OFFSET CAL CHANNEL 13
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 14
CCURDPRC_ADC OFFSET CAL CHANNEL 15

= = e S o SR S S S S S S S S S e

CCURDPRC_ADC DATA CHANNEL 0
CCURDPRC_ADC_DATA CHANNEL 1
CCURDPRC_ADC DATA CHANNEL 2
CCURDPRC_ADC_DATA CHANNEL 3
CCURDPRC_ADC DATA CHANNEL 4
CCURDPRC_ADC_DATA CHANNEL 5
CCURDPRC_ADC DATA CHANNEL 6
CCURDPRC_ADC_DATA CHANNEL 7
CCURDPRC_ADC DATA CHANNEL 8
CCURDPRC_ADC_DATA CHANNEL 9
CCURDPRC_ADC_DATA CHANNEL 10
CCURDPRC_ADC_DATA CHANNEL 11
CCURDPRC_ADC_DATA CHANNEL 12
CCURDPRC_ADC_DATA CHANNEL 13
CCURDPRC_ADC_ DATA CHANNEL 14
CCURDPRC_ADC_DATA CHANNEL 15

= = S S S S S S e S S S S S S

==

CCURDPRC_CONTROL_SPROM STAT ADDR WRITE DATA

CCURDPRC_IO CONTROL_CHANNEL 0
CCURDPRC_IO CONTROL CHANNEL 1
CCURDPRC_IO CONTROL CHANNEL 2
CCURDPRC_IO CONTROL CHANNEL 3
CCURDPRC_IO CONTROL CHANNEL 4
CCURDPRC_IO CONTROL CHANNEL 5
CCURDPRC_IO CONTROL CHANNEL 6
CCURDPRC_IO CONTROL CHANNEL 7
CCURDPRC_IO CONTROL CHANNEL 8
CCURDPRC_IO CONTROL_CHANNEL 9
CCURDPRC_IO CONTROL CHANNEL 10
CCURDPRC_IO CONTROL CHANNEL 11
CCURDPRC_IO CONTROL CHANNEL 12

= = S S S S S S S S T

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 42 of 94

CCURDPRC_IO CONTROL CHANNEL 13
CCURDPRC_IO CONTROL_CHANNEL 14
CCURDPRC_IO CONTROL CHANNEL 15

+H= =

CCURDPRC_DIGITAL POT VALUE CHANNEL 0
CCURDPRC_DIGITAL POT VALUE CHANNEL 1
CCURDPRC_DIGITAL POT VALUE CHANNEL 2
CCURDPRC_DIGITAL POT VALUE CHANNEL 3
CCURDPRC_DIGITAL POT VALUE CHANNEL 4
CCURDPRC_DIGITAL POT VALUE CHANNEL 5
CCURDPRC_DIGITAL POT VALUE CHANNEL 6
CCURDPRC_DIGITAL POT VALUE CHANNEL 7
CCURDPRC_DIGITAL POT VALUE CHANNEL 8
CCURDPRC_DIGITAL POT VALUE CHANNEL 9
CCURDPRC_DIGITAL POT VALUE CHANNEL 10
CCURDPRC_DIGITAL POT VALUE CHANNEL 11
CCURDPRC_DIGITAL POT VALUE CHANNEL 12
CCURDPRC_DIGITAL POT VALUE CHANNEL 13
CCURDPRC_DIGITAL POT VALUE CHANNEL 14
CCURDPRC_DIGITAL POT VALUE CHANNEL 15

= = e S o S S S S S S S S S e

CCURDPRC_DIGITAL POT TEST CHANNEL 0
CCURDPRC_DIGITAL POT TEST CHANNEL 1
CCURDPRC_DIGITAL POT TEST CHANNEL 2
CCURDPRC_DIGITAL POT TEST CHANNEL 3
CCURDPRC_DIGITAL POT TEST CHANNEL 4
CCURDPRC_DIGITAL POT TEST CHANNEL 5
CCURDPRC_DIGITAL POT TEST CHANNEL 6
CCURDPRC_DIGITAL POT TEST CHANNEL 7
CCURDPRC_DIGITAL POT TEST CHANNEL 8
CCURDPRC_DIGITAL POT TEST CHANNEL 9
CCURDPRC_DIGITAL POT TEST CHANNEL 10
CCURDPRC_DIGITAL POT TEST CHANNEL 11
CCURDPRC_DIGITAL POT TEST CHANNEL 12
CCURDPRC_DIGITAL POT TEST CHANNEL 13
CCURDPRC_DIGITAL POT TEST CHANNEL 14
CCURDPRC_DIGITAL POT TEST CHANNEL 15

H= o= S S S R S S H S S S S S S

=

CCURDPRC_CONTROL SPROM READ DATA

=

CCURDPRC_ELECTRONIC FUSE STATUS

CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 0
CCURDPRC_ELECTRONIC_ FUSE TRIP_CHANNEL 1
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 2
CCURDPRC_ELECTRONIC_ FUSE TRIP_CHANNEL 3
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 4
CCURDPRC_ELECTRONIC_ FUSE TRIP_CHANNEL 5
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 6
CCURDPRC_ELECTRONIC_ FUSE TRIP_CHANNEL 7
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 8
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 9
CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL 10
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 11
CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL 12
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 13
CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL 14
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 15

H= S S S S S S S S S S S S S S

CCURDPRC_ELECTRONIC_ FUSE ELECTRICAL SHORT VALUE
CCURDPRC_ELECTRONIC FUSE DELAY VALUE
CCURDPRC_ELECTRONIC_ FUSE COUNT VALUE
CCURDPRC_ELECTRONIC FUSE IO DELAY VALUE

= = = e

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 43 of 94

CCURDPRC_ELECTRONIC FUSE MAXIMUM RESISTANCE
CCURDPRC ELECTRONIC FUSE MAXIMUM VOLTAGE
CCURDPRC_ELECTRONIC FUSE VOLTAGE FAULT DELAY

+H= =

CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL 0
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 1
CCURDPRC_ELECTRONIC_FUSE BASE CHANNEL 2
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 3
CCURDPRC_ELECTRONIC_FUSE BASE CHANNEL 4
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 5
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 6
CCURDPRC_ELECTRONIC_ FUSE BASE CHANNEL 7
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 8
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 9
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 10
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 11
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 12
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 13
CCURDPRC_ELECTRONIC_ FUSE BASE CHANNEL 14
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 15

= = e S o S S S S S S S S S e

CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 0
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 1
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 2
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 3
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 4
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 5
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 6
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 7
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 8
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 9
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 10
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 11
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 12
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 13
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 14
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 15

H= o= S S S R S S H S S S S S S

CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 0
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 1
CCURDPRC_ELECTRONIC_ FUSE_THRESHOLD CHANNEL 2
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 3
CCURDPRC_ELECTRONIC_ FUSE_THRESHOLD CHANNEL 4
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 5
CCURDPRC_ELECTRONIC_ FUSE_THRESHOLD CHANNEL 6
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 7
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 8
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 9
CCURDPRC_ELECTRONIC_ FUSE_THRESHOLD CHANNEL_ 10
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 11
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 12
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 13
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 14
CCURDPRC_ELECTRONIC_ FUSE THRESHOLD CHANNEL 15

H= = S S o S S S S S S S S S S

B

CCURDPRC_CONTROL_SPI RAM

Output: void *value; (pointer to wvalue)
Return: _ccurdprc lib error number t

CCURDPRC_LIB NO ERROR (successful)

CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

= = =

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 44 of 94

**/

2.2.59 ccurDPRC_Hex_To_Fraction()
This call converts a hexadecimal value to a fractional decimal.

/**

double
ccurDPRC Hex To Fraction (uint value)

Description: Convert Hexadecimal to Fractional Decimal

Input: uint value (hexadecimal to convert)
Output: none
Return: double Fraction (converted fractional value)

**/

2.2.60 ccurDPRC_ldentify_Board()

This call is useful in identifying a physical board via software control. It causes the front LED to either flash or
stay steady. Users can also specify the number of seconds they wish to flash the LED.

/**

_ccurdprc_lib error number t
ccurDPRC Identify Board (void *Handle,
_ccurdprc_identify t Identify)

Description: Identify the board by setting the front LED

Input: void *Handle Handle pointer)
_ccurdprc_identify t Identify Identify board settings)

CCURDPRC_IDENTIFY ON turn on flashing)
Number of seconds to flash flash for number of seconds)
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NO LOCAL REGION local region not present)
CCURDPRC_LIB NOT OPEN device not open)

CCURDPRC_LIB INVALID ARG (invalid argument)
Kok ko kK K kK K KK KK kK K kK kK ok Kk kK kK ok ok kK ok Kk ok kR Kk K kK ok kK ok Kk kR R Kk K kK Rk Kk K kK kR Kk ok kK kK Kk ok /

(
(
CCURDPRC_IDENTIFY OFF (turn off flashing)
(
(

successful)

(
(no/bad handler supplied)
(
(

2.2.61 ccurDPRC_Initialize_Board()
This call resets the board to a default initial state. This call is currently identical to the ccurDPRC_Reset_Board()
call.

/**

_ccurdprc lib error number t
ccurDPRC Initialize Board (void *Handle)

Description: Initialize the board.

Input: void *Handle (Handle pointer)
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB IOCTL FAILED (driver ioctl call failed)

CCURDPRCiLIBiNoiLOEALiREGION (local region not present)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 45 of 94

2.2.62 ccurDPRC_MMap_Physical_Memory()

This call is provided for advanced users to create a physical memory of specified size that can be used for DMA.
The allocated DMA memory is rounded to a page size. If a physical memory is not available, this call will fail,
at which point the user will need to issue the ccurDPRC_Munmap_Physical_Memory() API call to remove the
previously allocated physical memory.

/**

_ccurdprc lib error number t
ccurDPRC MMap Physical Memory (void *Handle,
int size,

void **mem ptr)

Description: Allocate a physical DMA memory for size bytes.
Input: void *Handle (handle pointer)
int size (size 1in bytes)
Output: void **mem ptr (mapped memory pointer)
Return: _ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG
CCURDPRC_LIB MMAP SELECT FAILED
CCURDPRC_LIB MMAP FAILED

H= H= =

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(mmap selection failed)
(mmap failed)

**/

2.2.63 ccurDPRC_Munmap_Physical_Memory()

This call simply removes a physical memory
ccurDPRC_MMap_Physical_Memory() API call.

that was previously allocated by the

/**

_ccurdprc lib error number t

ccurDPRC Munmap Physical Memory (void *Handle)

Description: Unmap a previously mapped physical DMA memory.

Input: void *Handle (handle pointer)
Output: None

Return: _ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG
CCURDPRC LIB MMAP SELECT FAILED (mmap selection failed)
CCURDPRC_LIB MMAP FAILED (mmap failed)

**/

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

H= =

2.2.64 ccurDPRC_NanoDelay()

This call goes into a tight loop spinning for the requested nano seconds specified by the user.

/**
void

ccurDPRC NanoDelay (unsigned long long NanoDelay)

Description: Delay (loop) for user specified nano-seconds

Input: unsigned long long NanoDelay (number of nano-secs to delay)
Output: none

Return: none

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 46 of 94

**/

2.2.65 ccurDPRC_Open()

This is the first call that needs to be issued by a user to open a device and access the board through the rest of
the API calls. What is returned is a handle to a void pointer that is supplied as an argument to the other API
calls. The Board_Number is a valid board number [0..9] that is associated with a physical card. There must exist
a character special file /dev/ccurdprc<Board_Number> for the call to be successful. One character special file
is created for each board found when the driver is successfully loaded.

The oflag is the flag supplied to the open(2) system call by this API. It is normally ‘0’ (zero), however the user
may use the O_NONBLOCK option for read(2) calls which will change the default reading in block mode.

This driver allows multiple applications to open the same board by specifying an additional oflag O_APPEND.
It is then the responsibility of the user to ensure that the various applications communicating with the same
cards are properly synchronized. Various tests supplied in this package has the O_APPEND flags enabled,
however, it is strongly recommended that only one application be run with a single card at a time, unless the
user is well aware of how the applications are going to interact with each other and accept any unpredictable
results.

In case of error, errno is also set for some non-system related errors encountered.

/**

_ccurdprc lib error number t

ccurDPRC Open (void **My Handle,
int Board Number,
int oflag)

Description: Open a device.

Input: void **Handle (Handle pointer to pointer)
int Board Number (0-9 board number)
int oflag (open flags)
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB_ALREADY OPEN (device already opened)
CCURDPRC_LIB OPEN FAILED (device open failed)
CCURDPRC_LIB ALREADY MAPPED (memory already mmapped)
CCURDPRC_LIB MMAP SELECT FAILED (mmap selection failed)
CCURDPRC_LIB MMAP FAILED (mmap failed)

**/

2.2.66 ccurDPRC_Read()

Currently, this call is not supported. It basically calls the read(2) system call with the exception that it performs
necessary locking and returns the errno returned from the system call in the pointer to the error variable.

For specific information about the data being returned for the various read modes, refer to the read(2) system
call description the Driver Direct Access section.

/**

ccurdprc lib error number t

ccurDPRC_Read (void *Handle,
void *buf,
int size,
int *bytes read,
int *error)

Description: Perform a read operation.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 47 of 94

Input: void *Handle
int size
Output: void *pbuf
int *bytes read
int *error
Return: ccurdprc_ lib error number t

CCURDPRC LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT_ OPEN
CCURDPRC_LIB IO_ERROR

(Handle pointer)

(size of buffer in bytes)
(pointer to buffer)
(bytes read)

(returned errno)

(successful)

(no/bad handler supplied)
(device not open)

(read failed)

**/

2.2.67 ccurDPRC_Read_Serial_Prom()

This is a basic call to read short word entries from the serial prom. The user specifies a word offset within the
serial prom and a word count, and the call returns the data read in a pointer to short words.

/**************

Ak hkhkhkhkhkrhkhkhhAhkhk A hhkhhkhkrhhkhkhdkhkhkrhhkrhkhkrhkhkhkhdkhkhkrhkhkrhkhkrhkkhkhkdkhkkxkkxkk*x

_ccurdprc_lib error number t

ccurDPRC_Rea

Description:

Input:

Output:

Return:

khkkhkkhk Ak khkhkkKhkkk

d Serial Prom(void *Handle,
ccurdprc_sprom rw_t *spr)

Read Serial Prom for specified number of words

void *Handle (handle pointer)
ccurdprc sprom rw t *spr (pointer to struct)
u_short word offset
u short num words
ccurdprc_sprom rw_t *spr (pointer to struct)

u_short *data ptr
_ccurdprc_lib_error number t
CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG
CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB SERIAL PROM BUSY
CCURDPRC_LIB SERIAL PROM FAILURE

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)
(serial prom busy)
(serial prom failure)

H= = = S S S

**/

2.2.68 ccurDPRC_Read_Serial_Prom_Item()

This call is used to read well defined sections in the serial prom. The user supplies the serial prom section that
needs to be read and the data is returned in a section specific structure.

/**************

_ccurdprc_1i

ccurDPRC Read Serial Prom Item(void

Description:

Input:

Output:

Return:

Ak kA hkhkrhkhkhkhhkhhk Ak hkhhkhkrhkhkhkhhkhhkrhhkrhhkrhkhkhkhhkhkhkrhkhkrhkhkrhkhkhkhkdhkhxkhkkxkkx*x

b error number t

*Handle,
__ccurdprc_sprom_access_t item,
void *item ptr)

Read Serial Prom for specified item

void *Handle
_ccurdprc_sprom_access_t item
CCURDPRC_SPROM HEADER
ccurdprc_sprom header t sprom header
u int32 t board serial number
u_short sprom revision
_ccurdprc_lib error number t
CCURDPRC_LIB NO_ ERROR

(handle pointer)
(select item)

(pinter to item struct)

(successful)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 48 of 94

CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB_ INVALID ARG

+= = T

CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB_SERIAL PROM BUSY
CCURDPRC_LIB SERIAL PROM FAILURE

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)
(serial prom busy)
(serial prom failure)

**/

2.2.69 ccurDPRC_Remove_Irq()

The purpose of this call is to remove the interrupt handler that was previously set up. The interrupt handler is
managed internally by the driver and the library. The user should not issue this call, otherwise reads will time

out.

/**

_ccurdprc_lib error number t

ccurDPRC _Remove Irqg (void *Handle)

By default, the driver sets up a shared IRQ interrupt handler
when the device is opened. Now if for any reason, another
device is sharing the same IRQ as this driver, the interrupt
handler will also be entered every time the other shared
device generates an interrupt. There are times that a user,
for performance reasons may wish to run the board without
interrupts enabled. In that case, they can issue this ioctl
to remove the interrupt handling capability from the driver.

Description:

void *Handle
none
_ccurdprc_lib error number t

CCURDPRC LIB NO ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB NOT_OPEN

CCURDPRC_LIB IOCTL_FAILED

Input:
Output:
Return:

(Handle pointer)

(successful)

(no/bad handler supplied)
(device not open)

(driver ioctl call failed)

**/

2.2.70 ccurDPRC_Reset_Board()

This call resets the board to a known initial default state. This call is currently identical to the

ccurDPRC _Initialize_Board() call.

/**

_ccurdprc lib error number t
ccurDPRC Reset Board (void *Handle)
Description: Reset the board.
void *Handle
none
_ccurdprc lib error number t

CCURDPRC_LIB NO_ ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB IOCTL FAILED

CCURDPRC_LIB NO_ LOCAL REGION

Input:
Output:
Return:

(Handle pointer)

(successful)

(no/bad handler supplied)
(device not open)

(driver ioctl call failed)
(local region not present)

**/

2.2.71 ccurDPRC_Select_Driver_Read Mode()
This call can be used to select the driver read mode.

/**

_ccurdprc lib error number t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 49 of 94

ccurDPRC Select Driver Read Mode (void *Handle,
_ccurdprc driver rw mode t mode)

Description: Select Driver Read Mode

Input: void *Handle (handle pointer)
_ccurdprc_driver rw mode t mode (select read mode)
CCURDPRC_PIO CHANNEL
CCURDPRC_DMA CHANNEL (CURRENTLY NOT SUPPORTED)
Output: none
Return: _ccurdprc_lib_error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB_NOT_ OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.72 ccurDPRC_Select_Driver_Write_Mode()
This call is currently not supported for driver writes. This call can be used to select the driver write mode.

/**

_ccurdprc lib error number t
ccurDPRC_Select Driver Write Mode (void *Handle,
_ccurdprc_driver rw mode_ t mode)

Description: Select Driver Write Mode

Input: void *Handle (handle pointer)
_ccurdprc_driver rw mode t mode (select write mode)
CCURDPRC_PIO CHANNEL
CCURDPRC_DMA CHANNEL

Output: none
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.73 ccurDPRC_Serial Prom_Write_Override()

The serial prom is non-volatile and its information is preserved during a power cycle. It contains useful
information and settings that the customer could lose if they were to inadvertently overwrite. For this reason,
all calls that write to the serial proms will fail with a write protect error, unless this write protect override API
is invoked prior to writing to the serial proms. Once the Write Override is enabled, it will stay in effect until the
user closes the device or re-issues this call to disable writes to the serial prom.

The calls that will fail unless the write protect is disabled are:

- ccurDPRC_Write_Serial_Prom()
- ccurDPRC_Write_Serial_Prom_ltem()

/**
_ccurdprc_lib error number t
ccurDPRC Serial Prom Write Override (void *Handle,
int action)

Description: Set Serial Prom Write Override

Input: void *Handle (handle pointer)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 50 of 94

__ccurdprc_bool t action (override action)
CCURDPRC_TRUE
CCURDPRC_FALSE

Output: none
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT_ OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.74 ccurDPRC_Set_Board_CSR()
This call is used to set the board control register.

/**

_ccurdprc_lib error number t
ccurDPRC_Set Board CSR (void *Handle,
ccurdprc_board csr t *bcsr)

Description: Set Board Control and Status information

Input: void *Handle (Handle pointer)
ccurdprc board csr t *bcsr (pointer to board csr)
_ccurdprc_bcsr _identify board t identify board
CCURDPRC_BCSR_IDENTIFY BOARD DISABLE
CCURDPRC_BCSR_IDENTIFY BOARD ENABLE
CCURDPRC_BCSR IDENTIFY BOARD ENABLE DO NOT CHANGE
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN device not open)
CCURDPRC_LIB INVALID ARG invalid argument)
CCURDPRC_LIB_NO_ LOCAL REGION (local region not present)

**/

successful)

(
(no/bad handler supplied)
(
(

2.2.75 ccurDPRC_Set_CalibrationBus_Control()
This call sets the calibration bus control.

/**

_ccurdprc lib error number t
ccurDPRC Set CalibrationBus_ Control (void *Handle,
_ccurdprc calibration bus control t bus control)

Description: Set Calibration Bus Control

Input: void *Handle (handle pointer)
_ccurdprc_calibration bus control t
bus control (control set)
CCURDPRC CALIBRATIONBUS CONTROL OPEN
CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_2_5_VOLTS
CCURDPRC_CALIBRATIONBUS CONTROL PLUS 10 VOLTS
CCURDPRC_CALIBRATIONBUS_CONTROL_MINUS_lO_VOLTS

H= = =

CCURDPRC_CALIBRATIONBUS CONTROL_ GROUND

CCURDPRC_CALIBRATIONBUS CONTROL PLUS 8 MILLIAMP
CCURDPRC_CALIBRATIONBUS CONTROL MINUS 8 MILLIAMP

CCURDPRC_CALIBRATIONBUS CONTROL PLUS 16 MILLIAMP
Output: none

+=

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 51 of 94

Return:

_ccurdprc_lib error number t

CCURDPRC_LIB NO_ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB_NOT OPEN

CCURDPRC_LIB_INVALID ARG

CCURDPRC LIB NO LOCAL REGION

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)

**/

2.2.76 ccurDPRC_Set_Digital_Potentiometer()

This call is used for setting the digital potentiometer resistance in ohms for the selected channels. Users need to
supply valid resistances for channels in ohms and the call will set them accordingly and return the raw value
supplied to the hardware. Valid resistances are 10 Ohms and 45 to 1000,000 Ohms in approximately 5 Ohms
increments. If an exact resistance value is not supplied to the call, it will fail, unless the user tags the resistance
with CCURDPRC_POTENTIOMETER_AUTOCORRECT_OHM_TAG flag. In this case, the call will attempt
to get the nearest programmable resistance value and return this value back to the user after setting it.

/**

ccurdprc lib
ccurDPRC Set Digital Potentiometer Test (void
_ccurdprc_channel mask t
ccurdprc_digital potentiometer test t

error number t

*Handle,
ChanMask,
*DPTest)

Description: Set Digital Potentiometer
Input: void *Handle (Handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)

S o S S S o e o S S 3 o 3 e 9 3

Output: None

Return:

S o S 3 o3 o

2.2.77 ccurDPRC_Set_Digital_Potentiometer_Test()

CCURDPRC_CHANNEL MASK 0
CCURDPRC_CHANNEL MASK 1
CCURDPRC_CHANNEL MASK 2
CCURDPRC_CHANNEL MASK 3
CCURDPRC_CHANNEL MASK 4
CCURDPRC_CHANNEL MASK 5
CCURDPRC_CHANNEL MASK 6
CCURDPRC_CHANNEL MASK 7
CCURDPRC_CHANNEL MASK 8
CCURDPRC_CHANNEL MASK 9
CCURDPRC_CHANNEL_ MASK 10
CCURDPRC_CHANNEL MASK 11
CCURDPRC_CHANNEL_ MASK 12
CCURDPRC_CHANNEL MASK 13
CCURDPRC_CHANNEL MASK 14
CCURDPRC_CHANNEL MASK 15

CCURDPRC_ALL CHANNELS MASK
ccurdprc digital potentiometer t

uint
uint

_ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

*DPValue (pointer to Digital

Potentiometer Value)

Raw [CCURDPRC MAX CHANNELS];
Ohms [CCURDPRC_MAX CHANNELS] ;

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)

CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE

(Potentiometer and I/0 Control not active)
**/

This call sets the digital potentiometer test power down and modes for selected channels.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 52 of 94

/**

ccurDPRC Set Digital Potentiometer Test ()
Description: Set Digital Potentiometer Test

Input: void *Handle (Handle pointer)
_ccurdprc_channel mask t ChanMask (specify channel mask)

CCURDPRC CHANNEL MASK 0

CCURDPRC_CHANNEL MASK 1

CCURDPRC CHANNEL MASK 2

CCURDPRC_CHANNEL MASK 3

CCURDPRC CHANNEL MASK 4

CCURDPRC_CHANNEL MASK 5

CCURDPRC_CHANNEL MASK 6

CCURDPRC_CHANNEL MASK 7

CCURDPRC CHANNEL MASK 8

CCURDPRC_CHANNEL MASK 9

CCURDPRC_CHANNEL MASK 10

CCURDPRC_CHANNEL MASK 11

CCURDPRC_CHANNEL MASK 12

CCURDPRC_CHANNEL MASK 13

CCURDPRC_CHANNEL MASK 14

CCURDPRC_CHANNEL MASK 15

CCURDPRC_ALL_CHANNELS MASK

ccurdprc _digital potentiometer test t *DPTest (pointer to Digital

Potentiometer Test)

S o o S S S S o e o o 3 e 9 3 o

_ccurdprc _digital potentiometer test t

DigitalPotTest [CCURDPRC MAX CHANNELS];

CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K _POTO
CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K POT1
CCURDPRC_DIGITAL POTENTIOMETER TEST PWRDWN 20K POT2
CCURDPRC DIGITAL POTENTIOMETER TEST PWRDWN 20K POT3
CCURDPRC DIGITAL POTENTIOMETER TEST PWRDWN 100K
CCURDPRC_DIGITAL POTENTIOMETER TEST FORCE FAILURE
CCURDPRC_DIGITAL POTENTIOMETER TEST MODE 20K
CCURDPRC DIGITAL POTENTIOMETER TEST MODE 100K

= = = S o S

Output: None

Return: ccurdprc lib error number t

CCURDPRC_LIB NO ERROR (successful)

CCURDPRC LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC LIB NO LOCAL REGION (local region error)
CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE

(Potentiometer and I/0 Control not active)
**/

s =

2.2.78 ccurDPRC_Set_Interrupt_Control()
This call sets the interrupt control.

/**

_ccurdprc_lib error number t
ccurDPRC_Set Interrupt Control (void *Handle,
ccurdprc_interrupt t *intr)

Description: Set Interrupt Control information

Input: void *Handle (handle pointer)
ccurdprc_interrupt t *intr (pointer to interrupt control)
int global int
CCURDPRC_ICSR GLOBAL DISABLE
CCURDPRC_ICSR GLOBAL ENABLE

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 53 of 94

CCURDPRC_DO_NOT CHANGE
int plx local int
CCURDPRC_ICSR LOCAL_ PLX DISABLE
CCURDPRC_ICSR LOCAL PLX ENABLE
CCURDPRC_DO_NOT CHANGE
Output: none
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.79 ccurDPRC_Set_Interrupt_Status()
This call sets/clears the PLX interrupt.

/**

_ccurdprc lib error number t
ccurDPRC_Set Interrupt Status (void *Handle,
ccurdprc_interrupt t *intr)

Description: Set Interrupt Status information

Input: void *Handle (handle pointer)
ccurdprc_interrupt t *intr (pointer to interrupt status)
int plx local int
CCURDPRC_ INTSTAT LOCAL PLX NONE
CCURDPRC_INTSTAT LOCAL PLX RESET
CCURDPRC_DO NOT_ CHANGE

Output: none
Return: _ccurdprc_lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC_LIB INVALID ARG (invalid argument)

CCURDPRC_LIB NO LOCAL REGION (local region error)

**/

2.2.80 ccurDPRC_Set_Interrupt_Timeout_Seconds()

This call sets the read timeout maintained by the driver. It allows the user to change the default time out from
30 seconds to a user specified value. It is the time that the read call will wait before it times out. The call could
time out if the DMA fails to complete. The device should have been opened in the blocking mode
(O_NONBLOCK not set) for reads to wait for the operation to complete.

/**

_ccurdprc_lib error number t
ccurDPRC Set Interrupt Timeout Seconds (void *Handle,
int timeout secs)

Description: Set Interrupt Timeout Seconds

Input: void *Handle (Handle pointer)
int timeout secs (interrupt tout secs)
Output: none
Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC_LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)

CCURDPRC_LIB INVALID ARG (invalid argument)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 54 of 94

2.2.81 ccurDPRC_Set_10_Control()
This call sets the 1/0 Controls for the selected channels.

/***‘k*‘k*‘k*‘k*‘k*‘k*****‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

_ccurdprc lib error number t

ccurDPRC Set IO Control (void *Handle,
_ccurdprc_channel mask t ChanMask,
ccurdprc_io control t *IoControl)

Description: Set I/0O Control

Input: void *Handle (Handle pointer)
_ccurdprc channel mask t ChanMask (specify channel mask)
CCURDPRC_CHANNEL_MASK_O
CCURDPRC CHANNEL MASK 1
CCURDPRC_CHANNEL_MASK_Z
CCURDPRC CHANNEL MASK 3
CCURDPRC_CHANNEL MASK 4
CCURDPRC CHANNEL MASK 5
CCURDPRC_CHANNEL_MASK_6
CCURDPRC CHANNEL MASK 7
CCURDPRCiCHANNELiMASK78
CCURDPRC CHANNEL MASK 9
CCURDPRC_CHANNEL_MASK_lO
CCURDPRC CHANNEL MASK 11
CCURDPRC_CHANNEL_MASK_12
CCURDPRC CHANNEL MASK 13
CCURDPRC_CHANNEL MASK 14
CCURDPRC CHANNEL MASK 15
CCURDPRC_ALL CHANNELS MASK
ccurdprc_io control t *ToControl (pointer to I/0 control)
_ccurdprc_io control t
IOSignal[CCURDPRC_MAX_CHANNELS];
CCURDPRC_IO CONTROL OPEN
CCURDPRC_IO CONTROL EXTERNAL
CCURDPRC_IO CONTROL TEST BUS
CCURDPRC_IO CONTROL RA GROUND FAULT
CCURDPRC_IO CONTROL RB GROUND FAULT
CCURDPRC_IO CONTROL RA RB GROUND FAULT
CCURDPRC IO CONTROL RA V PLUS FAULT
CCURDPRC_IO CONTROL RB V PLUS FAULT
CCURDPRC IO CONTROL RA RB V PLUS FAULT
CCURDPRC_IO CONTROL RA V_PLUS RB GROUND FAULT SWITCH
CCURDPRC IO CONTROL RA GROUND RB V PLUS FAULT SWITCH

SHE o S S S o e o 3 S 3 o 9 e 9k 3 o

Output: None

Return: ccurdprc lib error number t
CCURDPRC_LIB NO_ ERROR (successful)
CCURDPRC LIB BAD HANDLE (no/bad handler supplied)
CCURDPRC_LIB NOT OPEN (device not open)
CCURDPRC LIB INVALID ARG (invalid argument)
CCURDPRC_LIB NO_ LOCAL REGION (local region error)

CCURDPRC_LIB DIGITAL POT AND IO IS NOT ACTIVE
(Potentiometer and I/0 Control not active)

CCURDPRC_LIB ADC FAILURE (ADC failure)

CCURDPRC_LIB ELECTRONIC FUSE TRIPPED

(Electronic Fuse tripped)
**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 55 of 94

2.2.82 ccurDPRC_Set Value()

This call allows the advanced user to set the writable board registers. The actual data written will depend on the
command register information that is requested. Refer to the hardware manual for more information on what
can be written to.

Normally, users should not be changing these registers as it will bypass the API integrity and could result in an
unpredictable outcome.

/**

_ccurdprc lib error number t

ccurDPRC_Set Value (void *Handle,
CCURDPRC_CONTROL cmd,
void *value)

Description: Set the value of the specified board register.

Input: void *Handle (handle pointer)
CCURDPRC_CONTROL cmd (register definition)

CCURDPRC_CONTROL BOARD CSR

CCURDPRC_CONTROL INTERRUPT CONTROL

CCURDPRC_CONTROL INTERRUPT STATUS

CCURDPRC_ CONTROL CALIBRATION BUS CONTROL

CCURDPRC_CONTROL FIRMWARE SPI COUNTER STATUS

CCURDPRC_ CONTROL_ ADC ENABLE

CCURDPRC_CONTROL DIGITAL POTENTIOMETER AND IO ENABLE

H= = = =

CCURDPRC_ADC_POSITIVE CAL CHANNEL O
CCURDPRC_ADC POSITIVE CAL CHANNEL 1
CCURDPRC_ADC_POSITIVE CAL CHANNEL 2
CCURDPRC_ADC POSITIVE CAL CHANNEL 3
CCURDPRC_ADC_POSITIVE CAL CHANNEL 4
CCURDPRC_ADC POSITIVE CAL CHANNEL 5
CCURDPRC_ADC_POSITIVE CAL CHANNEL 6
CCURDPRC_ADC POSITIVE CAL CHANNEL 7
CCURDPRC_ADC_POSITIVE CAL CHANNEL 8
CCURDPRC_ADC POSITIVE CAL CHANNEL 9
CCURDPRC_ADC_POSITIVE CAL CHANNEL 10
CCURDPRC_ADC POSITIVE CAL CHANNEL 11
CCURDPRC_ADC_POSITIVE CAL CHANNEL 12
CCURDPRC_ADC_POSITIVE CAL CHANNEL 13
CCURDPRC_ADC_POSITIVE CAL CHANNEL 14
CCURDPRC_ADC_POSITIVE CAL CHANNEL 15

= e S S S S S S S S S h S R S e

CCURDPRC_ADC_NEGATIVE CAL CHANNEL 0
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 1
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 2
CCURDPRC_ADC_NEGATIVE CAL CHANNEL_ 3
CCURDPRC_ADC NEGATIVE CAL CHANNEL 4
CCURDPRC_ADC_ NEGATIVE CAL CHANNEL 5
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 6
CCURDPRC_ADC NEGATIVE CAL CHANNEL 7
CCURDPRC_ADC NEGATIVE CAL CHANNEL 8
CCURDPRC_ADC NEGATIVE CAL CHANNEL 9
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 10
CCURDPRC_ADC NEGATIVE CAL CHANNEL 11
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 12
CCURDPRC_ADC NEGATIVE CAL CHANNEL 13
CCURDPRC_ADC_NEGATIVE CAL CHANNEL 14
CCURDPRC_ADC NEGATIVE CAL CHANNEL 15

= = S S o S S S S S S S S S S

=

CCURDPRC_ADC OFFSET CAL CHANNEL 0
CCURDPRC_ADC_OFFSET CAL CHANNEL 1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 56 of 94

CCURDPRC_ADC_OFFSET_ CAL CHANNEL_ 2
CCURDPRC_ADC OFFSET CAL CHANNEL 3
CCURDPRC_ADC OFFSET_ CAL CHANNEL 4
CCURDPRC_ADC OFFSET CAL CHANNEL 5
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 6
CCURDPRC_ADC OFFSET CAL CHANNEL 7
CCURDPRC_ADC OFFSET CAL CHANNEL 8
CCURDPRC_ADC OFFSET CAL CHANNEL 9
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 10
CCURDPRC_ADC OFFSET CAL CHANNEL 11
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 12
CCURDPRC_ADC OFFSET CAL CHANNEL 13
CCURDPRC_ADC_OFFSET_ CAL CHANNEL 14
CCURDPRC_ADC OFFSET CAL CHANNEL 15

H= = e S S S S S S S S S e

==

CCURDPRC_CONTROL_SPROM STAT ADDR WRITE DATA

CCURDPRC_IO CONTROL_CHANNEL 0
CCURDPRC_IO CONTROL CHANNEL 1
CCURDPRC_IO CONTROI,_CHANNEL 2
CCURDPRC_IO CONTROL CHANNEL_ 3
CCURDPRC_IO CONTROL CHANNEL 4
CCURDPRC_IO CONTROL CHANNEL 5
CCURDPRC_IO CONTROL CHANNEL 6
CCURDPRC_IO CONTROL CHANNEL 7
CCURDPRC_IO CONTROL CHANNEL 8
CCURDPRC_IO CONTROL_CHANNEL 9
CCURDPRC_IO CONTROL CHANNEL 10
CCURDPRC_IO CONTROL CHANNEL 11
CCURDPRC_IO CONTROL CHANNEL 12
CCURDPRC_IO CONTROL CHANNEL_ 13
CCURDPRC_IO CONTROL CHANNEL 14
CCURDPRC_IO CONTROL CHANNEL 15

H= = S S S S S S S S S S S S S

CCURDPRC_DIGITAL POT VALUE CHANNEL 0
CCURDPRC_DIGITAL POT VALUE CHANNEL 1
CCURDPRC_DIGITAL POT VALUE CHANNEL 2
CCURDPRC_DIGITAL POT VALUE CHANNEL 3
CCURDPRC_DIGITAL POT VALUE CHANNEL 4
CCURDPRC_DIGITAL POT VALUE CHANNEL 5
CCURDPRC_DIGITAL POT VALUE CHANNEL 6
CCURDPRC_DIGITAL POT VALUE CHANNEL 7
CCURDPRC_DIGITAL POT VALUE CHANNEL 8
CCURDPRC_DIGITAL POT VALUE CHANNEL 9
CCURDPRC_DIGITAL POT VALUE CHANNEL 10
CCURDPRC_DIGITAL POT VALUE CHANNEL 11
CCURDPRC_DIGITAL POT VALUE CHANNEL 12
CCURDPRC_DIGITAL POT VALUE CHANNEL 13
CCURDPRC_DIGITAL POT VALUE CHANNEL 14
CCURDPRC_DIGITAL POT VALUE CHANNEL 15

H= = S S S S S S S S S S S S

CCURDPRC_DIGITAL POT TEST CHANNEL 0
CCURDPRC_DIGITAL POT TEST CHANNEL 1
CCURDPRC_DIGITAL POT TEST CHANNEL 2
CCURDPRC_DIGITAL POT TEST CHANNEL 3
CCURDPRC_DIGITAL POT TEST CHANNEL 4
CCURDPRC_DIGITAL POT TEST CHANNEL 5
CCURDPRC_DIGITAL POT TEST CHANNEL 6
CCURDPRC_DIGITAL POT TEST CHANNEL 7
CCURDPRC_DIGITAL POT TEST CHANNEL 8
CCURDPRC_DIGITAL POT TEST CHANNEL 9
CCURDPRC_DIGITAL POT TEST CHANNEL 10
CCURDPRC_DIGITAL POT TEST CHANNEL 11

= = S S o S S S S S S

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 57 of 94

CCURDPRC_DIGITAL POT TEST CHANNEL 12
CCURDPRC_DIGITAL POT TEST CHANNEL 13
CCURDPRC_DIGITAL POT TEST CHANNEL 14
CCURDPRC_DIGITAL POT TEST CHANNEL 15

H H= = HE

CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 0
CCURDPRC_ELECTRONIC_FUSE TRIP_CHANNEL 1
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 2
CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL 3
CCURDPRC_ELECTRONIC_ FUSE TRIP CHANNEL 4
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 5
CCURDPRC_ELECTRONIC_ FUSE_TRIP CHANNEL 6
CCURDPRC_ELECTRONIC_ FUSE TRIP_CHANNEL 7
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 8
CCURDPRC_ELECTRONIC_ FUSE TRIP CHANNEL 9
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 10
CCURDPRC_ELECTRONIC_ FUSE TRIP CHANNEL 11
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 12
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 13
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 14
CCURDPRC_ELECTRONIC FUSE TRIP CHANNEL 15

H= o S S S SR S S S S S S S S S e

CCURDPRC_ELECTRONIC_ FUSE ELECTRICAL SHORT VALUE
CCURDPRC_ELECTRONIC FUSE DELAY VALUE
CCURDPRC_ELECTRONIC_ FUSE COUNT VALUE
CCURDPRC_ELECTRONIC FUSE IO DELAY VALUE
CCURDPRC_ELECTRONIC_ FUSE_MAXIMUM RESISTANCE
CCURDPRC_ELECTRONIC FUSE MAXIMUM VOLTAGE
CCURDPRC_ELECTRONIC FUSE VOLTAGE FAULT DELAY

H= = S e HE

CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 0
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 1
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 2
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 3
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 4
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 5
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 6
CCURDPRC_ELECTRONIC FUSE_BASE CHANNEL_ 7
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 8
CCURDPRC_ELECTRONIC FUSE_BASE CHANNEL 9
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 10
CCURDPRC_ELECTRONIC FUSE_BASE CHANNEL 11
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 12
CCURDPRC_ELECTRONIC_ FUSE BASE CHANNEL 13
CCURDPRC_ELECTRONIC FUSE BASE CHANNEL 14
CCURDPRC_ELECTRONIC_ FUSE_ BASE CHANNEL 15

H= e S S S H S S S S S S S S S

CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 0
CCURDPRC_ELECTRONIC_FUSE MULTIPLIER CHANNEL 1
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 2
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 3
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 4
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 5
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 6
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 7
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 8
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 9
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 10
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 11
CCURDPRC_ELECTRONIC_ FUSE MULTIPLIER CHANNEL 12
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 13
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 14
CCURDPRC_ELECTRONIC FUSE MULTIPLIER CHANNEL 15

= = S S S S e S S S S S S S S e

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 58 of 94

CCURDPRC ELECTRONIC FUSE THRESHOLD CHANNEL O
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 1
CCURDPRC ELECTRONIC FUSE THRESHOLD CHANNEL 2
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 3
CCURDPRC _ELECTRONIC FUSE THRESHOLD CHANNEL 4
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 5
CCURDPRC ELECTRONIC FUSE THRESHOLD CHANNEL 6
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 7
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 8
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 9
CCURDPRC _ELECTRONIC FUSE THRESHOLD CHANNEL 10
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 11
CCURDPRC ELECTRONIC FUSE THRESHOLD CHANNEL 12
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 13
CCURDPRC ELECTRONIC FUSE THRESHOLD CHANNEL 14
CCURDPRC_ELECTRONIC FUSE THRESHOLD CHANNEL 15

H= = S S S R S S S S S S S S S e

CCURDPRC_CONTROL SPI RAM
void *value (pointer to value to be set)
Output: None
Return: _ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR

CCURDPRC_LIB BAD HANDLE

CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION

successful)

device not open)
invalid argument)
(local region error)

no/bad handler supplied)

**/

2.2.83 ccurDPRC_VoltsToData()
This call converts user supplied volts to raw data.

/**

uint
ccurDPRC VoltsToData (double volts)

Description: Convert Volts to data

Input: double volts (volts to convert)
Output: none
Return: uint data (returned data)

**/

2.2.84 ccurDPRC_VoltsToDataChanCal()
This call converts user supplied volts to raw data for calibration registers.

/**

uint
ccurDPRC VoltsToDataChanCal (double volts)

Description: Convert Volts to Data (for Channel Calibration)

Input: double volts (volts to convert)
Output: none
Return: uint data (returned data)

‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 59 of 94

2.2.85 ccurDPRC_Wait_For_Interrupt()

This call is made available to advanced users to bypass the APl and perform their own interrupt handling. If a
time out value greater than zero is specified, the call will time out after the specified seconds, otherwise it will

not time out.

/**

_ccurdprc_lib error number t
ccurDPRC Wait For Interrupt (void

*Handle,

ccurdprc_driver int t *drv_int)

Description: Wait For Interrupt

Input: void *Handle
Output: ccurdprc driver int t *drv_int
unsigned long long count
u_int status
u_int mask

(handle pointer)
(pointer to drv_int struct)

CCURDPRC_INTSTAT LOCAL PLX MASK

int timeout seconds
_ccurdprc_lib error number t
CCURDPRC_LIB NO_ ERROR
CCURDPRC_LIB_BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB_INVALID ARG
CCURDPRC LIB NO LOCAL REGION

Return:

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)

**********k**************************k**/

2.2.86 ccurDPRC_Write()
This call is currently not supported.

/**

_ccurdprc lib error number t

ccurDPRC Write (void *Handle,
void *buf,
int size,
int *bytes written,
int *error)

Description: Perform a write operation.

Input: void *Handle (Handle pointer)

int size (number of bytes to write)
Output: wvoid *buf (pointer to buffer)

int *bytes written (bytes written)

int *error (returned errno)
Return: ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN

CCURDPRC_LIB IO ERROR (write failed)

CCURDPRC_LIB_NOT IMPLEMENTED (call not implemented)

**/

(successful)
(no/bad handler supplied)
(device not open)

2.2.87 ccurDPRC_Write_Serial_Prom()

This is a basic call to write short word entries to the serial prom. The user specifies a word offset within the
serial prom and a word count, and the call writes the data pointed to by the spw pointer, in short words.

Prior to using this call, the user will need to issue the ccurDPRC_Serial_Prom_Write_Override() to allowing
writing to the serial prom.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 60 of 94

/**

_ccurdprc lib error number t
ccurDPRC Write Serial Prom(void

*Handle,
ccurdprc_sprom rw t *spw)

Description: Write data to Serial Prom for specified number of words

Input: void

*Handle

ccurdprc sprom rw t *spw
u_short word offset
u_short num words
u_short *data ptr

Output: none
Return:
#

= H= H =

_ccurdprc_lib error number t

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB SERIAL PROM BUSY
CCURDPRC_LIB SERIAL PROM FAILURE

(handle pointer)
(pointer to struct)

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)
(serial prom busy)
(serial prom failure)

**/

2.2.88 ccurDPRC_Write_Serial_Prom_Item()

This call is used to write well defined sections in the serial prom. The user supplies the serial prom section that
needs to be written and the data points to the section specific structure. This call should normally not be used

by the user.

Prior to using this call, the user will need to issue the ccurDPRC_Serial_Prom_Write_Override() to allowing

writing to the serial prom.

/**

_ccurdprc_lib error number t
ccurDPRC Write Serial Prom Item(void
_ccurdprc_sprom _access_t item,

Description: Write Serial Prom with specified item

Input: void

void

*Handle

_ccurdprc_sprom_access_t item

CCURDPRC_SPROM HEADER
Output: ccurdprc_sprom header t sprom header
u int32 t board serial number
u_short sprom revision
Return: _ccurdprc_lib error number t

#

+= = S

#

CCURDPRC_LIB NO ERROR
CCURDPRC_LIB BAD HANDLE
CCURDPRC_LIB NOT OPEN
CCURDPRC_LIB INVALID ARG

CCURDPRC_LIB NO LOCAL REGION
CCURDPRC_LIB_SERIAL PROM BUSY
CCURDPRC_LIB SERIAL PROM FAILURE

*Handle,

*item ptr)

(handle pointer)
(select item)

(pinter to item struct)

(successful)

(no/bad handler supplied)
(device not open)
(invalid argument)

(local region error)
(serial prom busy)
(serial prom failure)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 61 of 94

3. Test Programs

This driver and API are accompanied with an extensive set of test examples. Examples under the Direct Driver
Access do not use the API, while those under Application Program Interface Access use the API.

3.1 Direct Driver Access Example Tests

These set of tests are located in the .../fest directory and do not use the API. They communicate directly with
the driver. Users should be extremely familiar with both the driver and the hardware registers if they wish to
communicate directly with the hardware.

3.1.1 ccurdprc_dump
This test is for debugging purpose. It dumps all the hardware registers.

Usage: ccurdprc_dump [-b board]
-b board: board number -- default board is 0

Example display:
Jccurdprc_dump

Device Name : /dev/ccurdprcO
Board Serial No: 680593 (0x000a6291)

LOCAL Register O0x7ffff7ff6000 Offset=0x0
CONFIG Register Ox7ffff7ff5000 Offset=0x0

======= LOCAL BOARD REGISTERS =========
LBR: @0x0000 --> 0x93100102
LBR: @0x0004 --> 0x00000000
LBR: @0x0008 --> 0x00000000
LBR: @0x000c --> 0x00000000
LBR: @0x0010 --> 0x00000000
LBR: @0x0014 --> 0x00000001
LBR: @0x0018 --> 0x00000001
LBR: @0x00lc --> 0x00000001
LBR: @0x0020 --> 0x00000001
LBR: @0x0024 --> 0x00000001
LBR: @0x0028 --> 0x00000001
LBR: @0x002c --> 0x00000001
LBR: @0x0030 --> 0x00000001

LBR: @0x07c0 --> 0x00000000
IBR: Q0x07c4 --> 0x00000000
LBR: Q@0x07¢c8 --> 0x00000000
LBR: @0x07cc --> 0x00000000
ILBR: @0x07d0 --> 0x00000000
LBR: Q0x07d4 --> 0x00000000
ILBR: @Q0x07d8 --> 0x00000000
LBR: @0x07dc --> 0x00000000
ILBR: Q0x07e0 --> 0x00000000
LBR: @0x07e4 --> 0x00000000
LBR: @0x07e8 --> 0x00000000
ILBR: @Q0x07ec —--> 0x00000000
LBR: QO0x07f0 —--> 0x00000000

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 62 of 94

LBR: @0x07f4 --> 0x00000000
LBR: @QO0x07£f8 --> 0x00000000
LBR: @0x07fc --> 0x00000000

======= LOCAL CONFIG REGISTERS =========
LCR: @0x0000 --> Oxfffff800
LCR: @0x0004 --> 0x00000001
LCR: @0x0008 --> 0x00200000
LCR: @Q0x000c --> 0x00300400
LCR: @0x0010 --> 0x00000000
LCR: @0x0014 --> 0x00000000
LCR: @0x0018 --> 0x42430343
LCR: @0x001lc --> 0x00000000
LCR: @0x0020 --> 0x00000000
LCR: @0x0024 --> 0x00000000
LCR: @0x0028 --> 0x00000000
LCR: @0x002c --> 0x00000000
LCR: @Q0x0030 --> 0x00000000

LCR: @0x00cO --> 0x00000002
LCR: @Q0x00c4 --> 0x00000000
LCR: @0x00c8 --> 0x00000000
LCR: @Q0x00cc --> 0x00000000
LCR: @0x00d0 --> 0x00000000
LCR: @0x00d4 --> 0x00000000
LCR: @0x00d8 --> 0x00000000
LCR: @0x00dc --> 0x00000000
LCR: @0x00e0 --> 0x00000000
LCR: @0x00e4 --> 0x00000000
LCR: @0x00e8 --> 0x00000050
LCR: @0x00ec --> 0x00000000
LCR: @0x00f0 --> 0x00000000
LCR: @O0x00f4 --> 0x00000000
LCR: @0x00f8 --> 0x00000043
LCR: @QO0x00fc --> 0x00000000
LCR: @0x0100 --> 0x00000000
LCR: @0x0104 --> 0x00000000

======= PCI CONFIG REG ADDR MAPPING =========
PCR: @0x0000 --> 0x93101542
PCR: @0x0004 --> 0x02b00017
PCR: @0x0008 --> 0x08800001
PCR: @0x000c --> 0x00006008
PCR: @Q0x0010 --> 0xc4c01000
PCR: @0x0014 --> 0x00000000
PCR: @0x0018 —--> 0xc4c00000
PCR: @0x001lc --> 0x00000000
PCR: Q0x0020 --> 0x00000000
PCR: @0x0024 --> 0x00000000
PCR: @0x0028 —--> 0x00000000
PCR: @Q0x002c --> 0x905610b5
PCR: @0x0030 --> 0x00000000
PCR: @Q0x0034 --> 0x00000040
PCR: @0x0038 —--> 0x00000000
PCR: @0x003c --> 0x0000010b

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 63 of 94

PCR: ©@0x0040 --> 0x00024801
PCR: @0x0044 --> 0x00000000
PCR: ©@0x0048 --> 0x00004c00
PCR: @0x004c --> 0x00000003
PCR: ©@0x0050 --> 0x00000000

======= PCI BRIDGE REGISTERS =========
PBR: Q0x0000 --> 0x811110b5
PBR: @0x0004 --> 0x00100417
PBR: @0x0008 --> 0x06040021
PBR: @0x000c --> 0x00010010
PBR: @0x0010 --> 0xc490000c
PBR: @Q0x0014 --> 0x00000000
PBR: @0x0018 --> 0x00080807
PBR: @0x001lc --> 0x220000f0
PBR: @0x0020 --> 0Oxc4c0c4cO
PBR: @0x0024 --> 0xO0000fffo0
PBR: @0x0028 --> 0x00000000
PBR: @0x002c --> 0x00000000
PBR: Q0x0030 --> 0x00000000

PBR: ©@0x00d0 --> 0x00000000
PBR: @0x00d4 --> 0x00000000
PBR: ©@0x00d8 --> 0x00000000
PBR: @0x00dc --> 0x00000000
PBR: ©@0x00e0 --> 0x00000000
PBR: @0x00e4 --> 0x00000000
PBR: @0x00e8 —--> 0x00000000
PBR: @0x00ec —--> 0x00000000
PBR: @0x00f0 --> 0x00000000
PBR: @0x00f4 --> 0x00000000
PBR: @0x00f8 --> 0x00000000
PBR: @0x00fc --> 0x00000000
PBR: @0x0100 --> 0x00010004
PBR: @0x0104 --> 0x00000000
PBR: ©@0x0108 --> 0x00000000
PBR: ©@0x010c --> 0x00000000
PBR: ©@0x0110 --> 0x00000000
PBR: @0x0114 --> 0x00000000
PBR: @0x0118 --> 0x00000000

======= MAIN CONTROL REGISTERS =========
MCR: @0x0000 --> 0x00000033
MCR: @0x0004 --> 0x8000ff00
MCR: @0x0008 --> 0x00000000
MCR: @0x000c --> 0x1b008090
MCR: @0x0010 --> 0x80000002
MCR: @0x0014 --> 0x00000000
MCR: @0x0018 --> 0x00000000
MCR: @0x00lc --> 0x00000000
MCR: @0x0020 --> 0x0000141f
MCR: @0x0024 --> 0x00000000
MCR: @0x0028 --> 0x00000000
MCR: @0x002c --> 0x00000000
MCR: @0x0030 --> Oxfeedface

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 64 of 94

MCR: @0x0034 --> 0x00000000
MCR: @0x0038 --> 0x00000000
MCR: @0x003c --> 0x00000000
MCR: @0x0040 --> 0x00000201
MCR: @0x0044 --> 0x00000000
MCR: @0x0048 --> 0x00810a20
MCR: @0x004c --> 0x000000d4
MCR: @0x0050 --> 0x00010700
MCR: @0x0054 --> 0x00000000
MCR: @0x0058 --> 0x080a2c2a
MCR: @0x005¢c --> 0x0000029%a
MCR: @0x0060 --> 0x00000019
MCR: @0x0064 --> 0x00000000

3.1.2 ccurdprc_rdreg
This is a simple program that returns the local register value for a given offset.

Usage: ./ccurdprc_rdreg [-b board] [-o offset] [-s size]
-b board : board number -- default board is 0
-0 offset: hex offset to read from -- default offset is 0x0
-s size : number of bytes to read -- default size is 0x4
Example display:

Jccurdprc_rdreg —s64

Device Name : /dev/ccurdprc0
Board Serial No: 680593 (0x000a6291)

LOCAL REGS #### (length=100)

+LCL+ 0 93100102 00000000 00000000 00000000 *...3....cvuun.. *
+LCL+ 0x10 00000000 00000001 00000001 00000001 *......ccvvunenunn.. *
+LCL+ 0x20 00000001 00000001 00000001 00000001 *......covuvvuvnnn.. *
+LCL+ 0x30 00000001 00000001 00000001 00000001 *.......cvvuuun.. *
+LCL+ 0x40 00000001 00000001 00000001 00000001 *......covuvvunvnn.. *
+LCL+ 0x50 00000001 00000001 00000001 00000001 *.......cvvuuun.. *
+LCL+ 0x60 0000000

3.1.3 ccurdprc_reg
This call displays all the boards local and configuration registers.
Usage: ./ccurdprc_reg [-b board]

-b board: Board number -- default board is 0

Example display:
Jccurdpre_reg
Device Name : /dev/ccurdprcO
Board Serial No: 680593 (0x000a6291)
LOCAL Register 0x7ffff7f£6000 Offset=0x0
LOCAL REGS #### (length=2048)
+LCL+ 0 93100102 00000000 00000000 00000000 *...3....cveuen.. *
+LCL+ 0x10 00000000 00000001 00000001 00000001 *......evvvennvnnn.. *
+LCL+ 0x20 00000001 00000001 00000001 00000001 *.......ccvvuneun.. *
+LCL+ 0x30 00000001 00000001 00000001 00000001 *......ccvvunvunn.. *
+LCL+ 0x40 00000001 00000001 00000001 00000001 *......ccvvuneun.. *
+LCL+ 0x50 00000001 00000001 00000001 00000001 *.......cvvunvunn.. *

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 65 of 94

+LCL+ 0x60 00000001 00000001 00000001 00000001 *....c.oviuninnennn. *
+LCL+ 0x70 00000001 00000001 00000001 00000001 *.......oviunvn... *
+LCL+ 0x80 00000001 00000001 00000001 00000001 *......viuiuennn. *
+LCL+ 0x90 00000001 00000001 00000001 00000001 *........uiunvn... *
+LCL+ 0xal 00000001 00000001 00000001 00000001 *....c.ovieinnennn. *
+LCL+ 0xb0 00000000 00000001 00000001 00000001 *......viunienvn.n. *
+LCL+ 0xc0 00000001 00000001 00000001 00000001 *.....c.viuniunvn.n. *
+LCL+ 0xdO 00000001 00000001 00000001 00000001 *....v.viuinonn.. *
+LCL+ 0xe0 00000001 00000001 00000001 00000001 *......viviuennn. *
+LCL+ 0x£0 00000000 00000000 00000001 00000001 *....veviunienn.n. *
+LCL+ 0x100 00000000 00000001 00000001 00000001 *....vuvieinennn. *
+LCL+ 0x110 80000000 80000000 80000000 80000000 *......viuiun... *
+LCL+ 0x120 80000000 80000000 80000000 80000000 *......vvuiuvn.n. *
+LCL+ 0x130 80000000 80000000 80000000 80000000 *......ciuiuvn.n. *
+LCL+ 0x140 80000000 80000000 80000000 80000000 *......vvuiuvn.n. *
+LCL+ 0x150 80000000 80000000 80000000 80000000 *......viuienn... *
+LCL+ 0x160 80000000 80000000 80000000 80000000 *......vvuiuvn.n. *
+LCL+ 0x170 80000000 80000000 80000000 80000000 *......ciuiunvn... *
+LCL+ 0x180 80000000 80000000 80000000 80000000 *......vvuiuvn.n. *
+LCL+ 0x190 00000000 00000000 00000000 00000000 *....vviuievn.n. *
+LCL+ 0x1a0 00000000 00000000 00000000 00000000 *..... v, *
+LCL+ 0x1b0 00000000 00000000 00000000 00000000 *....vviuievn.n. *
+LCL+ 0x1cO 00000000 00000000 00000000 00000000 *......iuienn... *
+LCL+ 0x1do0 00000001 00000001 00000001 00000001 *......viuiunvn.n. *
+LCL+ Oxle0 00000001 00000001 00000001 00000001 *................ *
+LCL+ 0x1£0 00000001 00000001 00000001 00000001 *......viuniunvn.n. *

* *

+LCL+ 0x200 00000001 00000001 00000001 00000001 *................

+LCL+ 0x700 00000000 00000000 00000000 ©00000OO0O

* *
+LCL+ 0x710 00000000 00000000 00000000 00000000 *...vvivenunnnn. *
+LCL+ 0x720 00000000 00000000 00000000 00000000 *....vviunvnvnnn. *
+LCL+ 0x730 00000000 00000000 00000000 00000000 *....vvivevunnnn. *
+LCL+ 0x740 00000000 00000000 00000000 00000000 *....vuvvievnvnnn. *
+LCL+ 0x750 00000000 00000000 00000000 00000000 *....vvivevunnnn. *
+LCL+ 0x760 00000000 00000000 00000000 00000000 *....vvviuvnvnnn. *
+LCL+ 0x770 00000000 00000000 00000000 00000000 *...evvivuvnennn. *
+LCL+ 0x780 00000000 00000000 00000000 00000000 *....vuvievnvnnn. *
+LCL+ 0x790 00000000 00000000 00000000 00000000 *...vivenunnnn. *
+LCL+ 0x7a0 00000000 00000000 00000000 00000000 *....vvivevnvnnn. *
+LCL+ 0x7b0 00000000 00000000 00000000 00000000 *....vvvvevunnnn. *
+LCL+ 0x7c0 00000000 00000000 00000000 00000000 *...evuvvevunvnnn. *
+LCL+ 0x7d0 00000000 00000000 00000000 00000000 *..vvevvewnnnn. *
+LCL+ 0x7e0 00000000 00000000 00000000 00000000 *...evuivevunvnnn. *
+LCL+ 0x7£0 00000000 00000000 00000000 00000000 *....vuvievunnnn. *
CONFIG Register Ox7ffff7f£f5000 Offset=0x0
CONFIG REGS #### (length=264)
+CFG+ 0 f££££800 00000001 00200000 00300400 *......... Lo 00 uF
+CFG+ 0x10 00000000 00000000 42430343 00000000 *........ BC.C....*
+CFG+ 0x20 00000000 00000000 00000000 00000000 *...evuivenvunnnn. *
+CFG+ 0x30 00000000 00000008 00000000 00000000 *....vuvieinvnnn. *
+CFG+ 0x40 00000000 00000000 00000000 00000000 *...evuivenvunennn. *
+CFG+ 0x50 00000000 00000000 00000000 00000000 *....vuvvuinennn. *
+CFG+ 0x60 00000000 00000000 0f000080 100f767C *.vvivivununnn v|*
+CFG+ 0x70 905610b5 000000ba 00000000 00000000 *.V....vuovuivnnnn. *
+CFG+ 0x80 00000003 00000000 00000000 00000000 *...eiivevunvnnn. *
+CFG+ 0x90 00000000 00000003 00000000 00000000 *....vuviuinvnnn. *
+CFG+ 0xal 00000000 00000000 00001010 00200000 *........ocn... LF
+CFG+ 0xb0 00000000 00000000 00000000 00000000 *....vuvievnvnnn. *
+CFG+ 0xc0 00000002 00000000 00000000 00000000 *....vivevunnnn. *

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 66 of 94

+CFG+ 0xdo0 00000000 00000000 00000000 00000000 *.......c.ovvun... *
+CFG+ 0xe0 00000000 00000000 00000050 00000000 *........... P....*
+CFG+ 0xf0 00000000 00000000 00000043 00000000 *........... C....*
+CFG+ 0x100 00000000 00000000 AT *
======= CONFIG REGISTERS =========
lasOrr =0xfff££800 @0x00000000
lasOba =0x00000001 @0x00000004
marbr =0x00200000 @0x00000008
bigend =0x00300400 @0x0000000c
eromrr =0x00000000 @0x00000010
eromba =0x00000000 @0x00000014
1brdo =0x42430343 @0x00000018
dmrr =0x00000000 @0x0000001c
dmlbam =0x00000000 @0x00000020
dmlbai =0x00000000 @0x00000024
dmpbam =0x00000000 @0x00000028
dmcfga =0x00000000 @0x0000002c
oplfis =0x00000000 @0x00000030
oplfim =0x00000008 @0x00000034
mbox0 =0x00000000 @0x00000040
mbox1 =0x00000000 @0x00000044
mbox2 =0x00000000 @0x00000048
mbox3 =0x00000000 @0x0000004c
mbox4 =0x00000000 @0x00000050
mbox5 =0x00000000 @0x00000054
mbox6 =0x00000000 @0x00000058
mbox7 =0x00000000 @0x0000005¢c
p2ldbell =0x00000000 @0x00000060
12pdbell =0x00000000 @0x00000064
intcsr =0x0£000080 @0x00000068
cntrl =0x100£f767c @0x0000006¢c
pcihidr =0x905610b5 @0x00000070
pcihrev =0x000000ba @0x00000074
dmamode0 =0x00000003 @0x00000080
dmapadr0 =0x00000000 @0x00000084
dmaladrO =0x00000000 @0x00000088
dmasiz0 =0x00000000 @0x0000008c
dmadpr0 =0x00000000 @0x00000090
dmamodel =0x00000003 @0x00000094
dmapadrl =0x00000000 @0x00000098
dmaladrl =0x00000000 @0x0000009c
dmasizl =0x00000000 @0x000000a0
dmadprl =0x00000000 @0x000000a4
dmacsr0 =0x00000010 @0x000000a8
dmacsrl =0x00000010 @0x000000a9
dmaaarb =0x00200000 @0x000000ac
dmathr =0x00000000 @0x000000b0
dmadacO0 =0x00000000 @0x000000b4
dmadacl =0x00000000 @0x000000b8
laslrr =0x00000000 @0x000000£0
laslba =0x00000000 @0x000000£4
lbrdl =0x00000043 @0x000000f8
dmdac =0x00000000 @0x000000fc
pciarb =0x00000000 @0x00000100
pabtadr =0x00000000 @0x00000104
======= LOCAL REGISTERS =========
board info =0x93100102 @0x00000000
board csr =0x00000000 @0x00000004
interrupt control =0x00000000 @0x00000008
interrupt status =0x00000000 @0x0000000c
calib bus control =0x00000000 @0x000000b0
spl_counter status =0x00000000 @0x000000£0

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 67 of 94

ADC_Enable =0x00000000 @0x00000100
ADC PositiveCalibration[CCURDPRC CHANNEL 0] =0x80000000 @0x00000110
ADC PositiveCalibration[CCURDPRC CHANNEL 1] =0x80000000 @0x00000114
ADC PositiveCalibration[CCURDPRC CHANNEL 2] =0x80000000 @0x00000118
ADC_PositiveCalibration [CCURDPRC_CHANNEL 3] =0x80000000 @0x0000011c
ADC PositiveCalibration[CCURDPRC CHANNEL 4] =0x80000000 @0x00000120
ADC PositiveCalibration[CCURDPRC CHANNEL 5] =0x80000000 @0x00000124
ADC PositiveCalibration[CCURDPRC CHANNEL 6] =0x80000000 @0x00000128
ADC_PositiveCalibration [CCURDPRC_CHANNEL 7] =0x80000000 @0x0000012c
ADC_PositiveCalibration[CCURDPRC_CHANNEL 8] =0x80000000 @0x00000130
ADC PositiveCalibration[CCURDPRC CHANNEL 9] =0x80000000 @0x00000134
ADC_PositiveCalibration[CCURDPRC_CHANNEL 10] =0x80000000 @0x00000138
ADC PositiveCalibration[CCURDPRC CHANNEL 11] =0x80000000 @0x0000013c
ADC_PositiveCalibration[CCURDPRC_CHANNEL 12] =0x80000000 @0x00000140
ADC PositiveCalibration[CCURDPRC CHANNEL 13] =0x80000000 @0x00000144
ADC_PositiveCalibration[CCURDPRC_CHANNEL 14] =0x80000000 @0x00000148
ADC PositiveCalibration[CCURDPRC CHANNEL 15] =0x80000000 @0x0000014c
ADC_NegativeCalibration [CCURDPRC_CHANNEL 0] =0x80000000 @0x00000150
ADC NegativeCalibration[CCURDPRC CHANNEL 1] =0x80000000 @0x00000154
ADC_NegativeCalibration[CCURDPRC_CHANNEL 2] =0x80000000 @0x00000158
ADC NegativeCalibration[CCURDPRC CHANNEL 3] =0x80000000 @0x0000015¢c
ADC_NegativeCalibration[CCURDPRC_CHANNEL 4] =0x80000000 @0x00000160
ADC NegativeCalibration[CCURDPRC CHANNEL 5] =0x80000000 @0x00000164
ADC_NegativeCalibration[CCURDPRC_CHANNEL 6] =0x80000000 @0x00000168
ADC NegativeCalibration[CCURDPRC CHANNEL 7] =0x80000000 @0x0000016c
ADC_NegativeCalibration[CCURDPRC_CHANNEL 8] =0x80000000 @0x00000170
ADC NegativeCalibration[CCURDPRC CHANNEL 9] =0x80000000 @0x00000174
ADC_NegativeCalibration[CCURDPRC_CHANNEL 10] =0x80000000 @0x00000178
ADC NegativeCalibration[CCURDPRC CHANNEL 11] =0x80000000 @0x0000017c
ADC_NegativeCalibration[CCURDPRC_CHANNEL 12] =0x80000000 @0x00000180
ADC NegativeCalibration[CCURDPRC CHANNEL 13] =0x80000000 @0x00000184
ADC NegativeCalibration[CCURDPRC_ CHANNEL 14] =0x80000000 @0x00000188
ADC NegativeCalibration[CCURDPRC CHANNEL 15] =0x80000000 @0x0000018¢c
ADC OffsetCalibration[CCURDPRC CHANNEL O] =0x00000000 @0x00000190
ADC OffsetCalibration[CCURDPRC CHANNEL 1] =0x00000000 @0x00000194
ADC OffsetCalibration[CCURDPRC CHANNEL 2] =0x00000000 @0x00000198
ADC OffsetCalibration[CCURDPRC CHANNEL 3] =0x00000000 @0x0000019c
ADC OffsetCalibration[CCURDPRC CHANNEL 4] =0x00000000 @0x000001a0
ADC OffsetCalibration[CCURDPRC CHANNEL 5] =0x00000000 @0x000001a4
ADC OffsetCalibration[CCURDPRC CHANNEL 6] =0x00000000 @0x000001a8
ADC OffsetCalibration[CCURDPRC_CHANNEL 7] =0x00000000 @0x000001ac
ADC OffsetCalibration[CCURDPRC CHANNEL 8] =0x00000000 @0x000001b0
ADC_OffsetCalibration[CCURDPRC_CHANNEL 9] =0x00000000 @0x000001b4
ADC OffsetCalibration[CCURDPRC_CHANNEL 10] =0x00000000 @0x000001b8
ADC OffsetCalibration[CCURDPRC_CHANNEL 11] =0x00000000 @0x000001bc
ADC OffsetCalibration[CCURDPRC CHANNEL 12] =0x00000000 @0x000001cO
ADC OffsetCalibration[CCURDPRC_CHANNEL 13] =0x00000000 @0x000001c4
ADC OffsetCalibration[CCURDPRC_CHANNEL 14] =0x00000000 @0x000001cs8
ADC OffsetCalibration[CCURDPRC CHANNEL 15] =0x00000000 @0x000001cc
ADC_Data [CCURDPRC_CHANNEL 0] =0x00000000 @0x00000280
ADC Data [CCURDPRC_CHANNEL 1] =0x00000000 @0x00000284
ADC Data [CCURDPRC_CHANNEL 2] =0x00000000 @0x00000288
ADC_Data [CCURDPRC_CHANNEL_ 3] =0x00000000 @0x0000028c
ADC Data [CCURDPRC_CHANNEL 4] =0x00000000 @0x00000290
ADC_Data [CCURDPRC_CHANNEL 5] =0x00000000 @0x00000294
ADC Data [CCURDPRC_CHANNEL 6] =0x00000000 @0x00000298
ADC_Data [CCURDPRC_CHANNEL_ 7] =0x00000000 @0x0000029c
ADC Data [CCURDPRC_CHANNEL 8] =0x00000000 @0x000002a0
ADC_Data [CCURDPRC_CHANNEL 9] =0x00000000 @0x000002a4
ADC Data [CCURDPRC_CHANNEL 10] =0x00000000 @0x000002a8
ADC_Data [CCURDPRC_CHANNEL 11] =0x00000000 @0x000002ac
ADC Data [CCURDPRC CHANNEL 12] =0x00000000 @0x000002b0
ADC Data [CCURDPRC_CHANNEL 13] =0x00000000 @0x000002b4

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 68 of 94

ADC Data[CCURDPRC CHANNEL 14] =0x00000000 @0x000002b8
ADC Data [CCURDPRC CHANNEL 15] =0x00000000 @0x000002bc
Digital Potentiomenter and IO Enable =0x00000000 @0x00000300
IO Signal Select [CCURDPRC_ CHANNEL 0] =0x00000000 @0x00000310
IO Signal Select [CCURDPRC_CHANNEL 1] =0x00000000 @0x00000314
IO Signal Select[CCURDPRC_CHANNEL 2] =0x00000000 @0x00000318
IO Signal Select [CCURDPRC_CHANNEL 3] =0x00000000 @0x0000031c
IO Signal Select[CCURDPRC_CHANNEL 4] =0x00000000 @0x00000320
IO Signal Select [CCURDPRC_CHANNEL 5] =0x00000000 @0x00000324
IO Signal Select [CCURDPRC_CHANNEL 6] =0x00000000 @0x00000328
IO Signal Select[CCURDPRC_CHANNEL 7] =0x00000000 @0x0000032c
IO Signal Select [CCURDPRC_CHANNEL 8] =0x00000000 @0x00000330
IO Signal Select[CCURDPRC_CHANNEL 9] =0x00000000 @0x00000334
IO Signal Select [CCURDPRC_CHANNEL 10] =0x00000000 @0x00000338
IO Signal Select[CCURDPRC_ CHANNEL 11] =0x00000000 @0x0000033c
IO Signal Select [CCURDPRC_CHANNEL 12] =0x00000000 @0x00000340
IO Signal Select[CCURDPRC_CHANNEL 13] =0x00000000 @0x00000344
IO Signal Select[CCURDPRC_CHANNEL 14] =0x00000000 @0x00000348
IO Signal Select[CCURDPRC_ CHANNEL 15] =0x00000000 @0x0000034c
Digital Potentiometer Value[CCURDPRC_CHANNEL 0] =0x00032000 @0x00000400
Digital Potentiometer Value[CCURDPRC CHANNEL 1] =0x00032000 @Q0x00000404
Digital Potentiometer Value[CCURDPRC CHANNEL 2] =0x00032000 @0x00000408
Digital Potentiometer Value[CCURDPRC CHANNEL 3] =0x00032000 @0x0000040c
Digital Potentiometer Value[CCURDPRC CHANNEL 4] =0x00032000 @0x00000410
Digital Potentiometer Value[CCURDPRC CHANNEL 5] =0x00032000 @0x00000414
Digital Potentiometer Value[CCURDPRC CHANNEL 6] =0x00032000 @0x00000418
Digital Potentiometer Value[CCURDPRC CHANNEL 7] =0x00032000 @0x0000041c
Digital Potentiometer Value[CCURDPRC CHANNEL 8] =0x00032000 @0x00000420
Digital Potentiometer Value[CCURDPRC CHANNEL 9] =0x00032000 @0x00000424
Digital Potentiometer Value[CCURDPRC CHANNEL 10]=0x00032000 @0x00000428
Digital Potentiometer Value[CCURDPRC CHANNEL 11]=0x00032000 @0x0000042c
Digital Potentiometer Value[CCURDPRC CHANNEL 12]=0x00032000 @0x00000430
Digital Potentiometer Value[CCURDPRC CHANNEL 13]=0x00032000 @0x00000434
Digital Potentiometer Value[CCURDPRC CHANNEL 14]=0x00032000 @0x00000438
Digital Potentiometer Value[CCURDPRC CHANNEL 15]=0x00032000 @0x0000043c
Digital Potentiometer Test [CCURDPRC_CHANNEL 0] =0x00000100 @0x00000480
Digital Potentiometer Test[CCURDPRC CHANNEL 1] =0x00000100 @0x00000484
Digital Potentiometer Test [CCURDPRC_CHANNEL 2] =0x00000100 @0x00000488
Digital Potentiometer Test[CCURDPRC CHANNEL 3] =0x00000100 @0x0000048c
Digital Potentiometer Test [CCURDPRC_CHANNEL 4] =0x00000100 @0x00000490
Digital Potentiometer Test[CCURDPRC CHANNEL 5] =0x00000100 @0x00000494
Digital Potentiometer Test [CCURDPRC_CHANNEL 6] =0x00000100 @0x00000498
Digital Potentiometer Test[CCURDPRC CHANNEL 7] =0x00000100 @0x0000049c
Digital Potentiometer Test[CCURDPRC CHANNEL 8] =0x00000100 @0x000004a0
Digital Potentiometer Test[CCURDPRC CHANNEL 9] =0x00000100 @0x000004a4
Digital Potentiometer Test [CCURDPRC_ CHANNEL 10] =0x00000100 @0x000004a8
Digital Potentiometer Test [CCURDPRC CHANNEL 11] =0x00000100 @0x000004ac
Digital Potentiometer Test[CCURDPRC CHANNEL 12] =0x00000100 @0x000004b0
Digital Potentiometer Test [CCURDPRC_CHANNEL 13] =0x00000100 @0x000004b4
Digital Potentiometer Test[CCURDPRC CHANNEL 14] =0x00000100 @0x000004b8
Digital Potentiometer Test [CCURDPRC CHANNEL 15] =0x00000100 @0x000004bc
sprom stat addr write data =0x00000000 @0x00000500
sprom_ read data =0x00000000 @0x00000504
Electronic Fuse Status =0x00030000 @0x00000520
Electronic Fuse Trip[CCURDPRC CHANNEL 0] =0x00000000 @0x00000530
Electronic Fuse Trip[CCURDPRC CHANNEL 1] =0x00000000 @0x00000534
Electronic Fuse Trip[CCURDPRC_ CHANNEL 2] =0x00000000 @0x00000538
Electronic Fuse Trip[CCURDPRC_CHANNEL 3] =0x00000000 @0x0000053c
Electronic Fuse Trip[CCURDPRC_ CHANNEL 4] =0x00000000 @0x00000540
Electronic Fuse Trip[CCURDPRC_CHANNEL 5] =0x00000000 @0x00000544
Electronic Fuse Trip[CCURDPRC_ CHANNEL 6] =0x00000000 @0x00000548
Electronic Fuse Trip[CCURDPRC CHANNEL 7] =0x00000000 @0x0000054c
Electronic Fuse Trip[CCURDPRC_CHANNEL 8] =0x00000000 @0x00000550

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 69 of 94

Electronic Fuse Trip[CCURDPRC_ CHANNEL 9] =0x00000000 @0x00000554
Electronic Fuse Trip[CCURDPRC CHANNEL 10] =0x00000000 @0x00000558
Electronic Fuse Trip[CCURDPRC_ CHANNEL 11] =0x00000000 @0x0000055¢
Electronic Fuse Trip[CCURDPRC CHANNEL 12] =0x00000000 @0x00000560
Electronic Fuse Trip[CCURDPRC_ CHANNEL 13] =0x00000000 @0x00000564
Electronic Fuse Trip[CCURDPRC CHANNEL 14] =0x00000000 @0x00000568
Electronic Fuse Trip[CCURDPRC_CHANNEL 15] =0x00000000 @0x0000056¢
Electronic Fuse Electrical Short Value =0x000000b4 @0x000005b0
Electronic Fuse Delay Value =0x00000002 @0x000005b4
Electronic Fuse Count Value =0x00000001 @0x000005b8
Electronic Fuse IO Delay Value =0x00000800 @0x000005bc
Electronic Fuse Maximum Resistance =0x000000fd @0x000005c0
Electronic Fuse Maximum Voltage =0x00005ae0 @0x000005c4
Electronic Fuse Voltage Fault Delay =0x00000002 @0x000005c8
Electronic Fuse Base[CCURDPRC CHANNEL 0] =0x00000241 @0x00000600
Electronic Fuse Base[CCURDPRC CHANNEL 1] =0x00000241 @0x00000604
Electronic Fuse Base[CCURDPRC CHANNEL 2] =0x00000241 @0x00000608
Electronic Fuse Base[CCURDPRC CHANNEL 3] =0x00000241 @0x0000060c
Electronic Fuse Base[CCURDPRC CHANNEL 4] =0x00000241 @0x00000610
Electronic Fuse Base[CCURDPRC CHANNEL 5] =0x00000241 @0x00000614
Electronic Fuse Base[CCURDPRC CHANNEL 6] =0x00000241 @0x00000618
Electronic Fuse Base[CCURDPRC CHANNEL 7] =0x00000241 @0x0000061c
Electronic Fuse Base[CCURDPRC CHANNEL 8] =0x00000241 @0x00000620
Electronic Fuse Base[CCURDPRC_ CHANNEL 9] =0x00000241 @0x00000624
Electronic Fuse Base[CCURDPRC CHANNEL 10] =0x00000241 @0x00000628
Electronic Fuse Base[CCURDPRC_ CHANNEL 11] =0x00000241 @0x0000062c
Electronic Fuse Base[CCURDPRC CHANNEL 12] =0x00000241 @0x00000630
Electronic Fuse Base [CCURDPRC_ CHANNEL 13] =0x00000241 @0x00000634
Electronic Fuse Base[CCURDPRC CHANNEL 14] =0x00000241 @0x00000638
Electronic Fuse Base [CCURDPRC_ CHANNEL 15] =0x00000241 @0x0000063c
Electronic Fuse Multiplier [CCURDPRC CHANNEL 0] =0x0000005a @0x00000640
Electronic Fuse Multiplier [CCURDPRC CHANNEL 1] =0x0000005a @0x00000644
Electronic Fuse Multiplier [CCURDPRC CHANNEL 2] =0x0000005a @0x00000648
Electronic Fuse Multiplier [CCURDPRC CHANNEL 3] =0x0000005a @0x0000064c
Electronic Fuse Multiplier [CCURDPRC CHANNEL 4] =0x0000005a @0x00000650
Electronic Fuse Multiplier [CCURDPRC CHANNEL 5] =0x0000005a @0x00000654
Electronic Fuse Multiplier [CCURDPRC CHANNEL 6] =0x0000005a @0x00000658
Electronic Fuse Multiplier [CCURDPRC CHANNEL 7] =0x0000005a @0x0000065c
Electronic Fuse Multiplier [CCURDPRC CHANNEL 8] =0x0000005a @0x00000660
Electronic Fuse Multiplier [CCURDPRC CHANNEL 9] =0x0000005a @0x00000664
Electronic Fuse Multiplier [CCURDPRC CHANNEL 10] =0x0000005a @0x00000668
Electronic Fuse Multiplier [CCURDPRC CHANNEL 11] =0x0000005a @0x0000066¢C
Electronic Fuse Multiplier [CCURDPRC CHANNEL 12] =0x0000005a @0x00000670
Electronic Fuse Multiplier [CCURDPRC CHANNEL 13] =0x0000005a @0x00000674
Electronic Fuse Multiplier [CCURDPRC CHANNEL 14] =0x0000005a @0x00000678
Electronic Fuse Multiplier [CCURDPRC CHANNEL 15] =0x0000005a @0x0000067c
Electronic Fuse Threshold[CCURDPRC CHANNEL 0] =0x00005ae0 @0x00000680
Electronic Fuse Threshold[CCURDPRC CHANNEL 1] =0x00005ae0 @0x00000684
Electronic Fuse Threshold[CCURDPRC CHANNEL 2] =0x00005ae0 @0x00000688
Electronic Fuse Threshold[CCURDPRC_CHANNEL 3] =0x00005ae0 @0x0000068c
Electronic Fuse Threshold[CCURDPRC CHANNEL 4] =0x00005ae0 @0x00000690
Electronic Fuse Threshold[CCURDPRC CHANNEL 5] =0x000052ae0 @0x00000694
Electronic Fuse Threshold[CCURDPRC CHANNEL 6] =0x00005ae0 @0x00000698
Electronic Fuse Threshold[CCURDPRC CHANNEL 7] =0x000052ae0 @0x0000069c
Electronic Fuse Threshold[CCURDPRC CHANNEL 8] =0x00005ae0 @0x000006a0
Electronic Fuse Threshold[CCURDPRC CHANNEL 9] =0x000052ae0 @0x000006a4
Electronic Fuse Threshold[CCURDPRC_CHANNEL 10] =0x00005ae0 @0x000006a8
Electronic Fuse Threshold[CCURDPRC CHANNEL 11] =0x00005ae0 @0x000006ac
Electronic Fuse Threshold[CCURDPRC_CHANNEL 12] =0x00005ae0 @0x000006b0
Electronic Fuse Threshold[CCURDPRC CHANNEL 13] =0x00005ae0 @0x000006b4
Electronic Fuse Threshold[CCURDPRC_CHANNEL 14] =0x00005ae0 @0x000006b8
Electronic Fuse Threshold[CCURDPRC CHANNEL 15] =0x00005ae0 @0x000006bc

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 70 of 94

spi ram[0..63]
@0x0700 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0720 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0740 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0760 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x0780 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x07a0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x07c0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
@0x07e0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3.1.4 ccurdprc_regedit
This is an interactive test to display and write to local, configuration and physical memory.

Usage: ./ccurdprc_regedit [-b board]
-b board: Board number -- default board is 0

Example display:

Jccurdprc_regedit

Device Name : /dev/ccurdprcO
Board Serial No : 680593 (0x000a6291)

Initialize Board: Firmware Rev. 0x0l1 successful

Virtual Address: Ox7ffff7f£6000

1 = Create Physical Memory 2 = Destroy Physical memory

3 = Display Driver Information 4 = Display Firmware RAM

5 = Display Physical Memory Info 6 = Display Registers (CONFIG)
7 = Display Registers (LOCAL) 8 = Dump Physical Memory

9 = Reset Board 10 = Write Register (LOCAL)
11 = Write Register (CONFIG) 12 = Write Physical Memory

Main Selection ('h'=display menu, 'g'=quit)->

3.1.5 ccurdprc_tst
This is an interactive test to exercise some of the driver features.

Usage: ./ccurdprc_tst [-b board]
-b board: Board number -- default board is 0

Example display:

Jccurdprc_tst

Device Name : /dev/ccurdprcO
Board Serial No : 680593 (0x000a6291)
Initialize Board: Firmware Rev. 0x0l successful

01 = add irqg 02 = disable pci interrupts
03 = enable pci interrupts 04 = get device error

05 = get driver info 06 = get physical mem

07 = init board 08 = mmap select

09 = mmap (CONFIG registers) 10 = mmap (LOCAL registers)
11 = mmap (physical memory) 12 = munmap (physical memory)
13 = no command 14 = read operation

15 = remove irg 16 = reset board

17 = write operation

Main Selection ('h'=display menu, 'g'=quit)->

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 71 of 94

3.1.6 ccurdprc_wreg
This is a simple test to write to the local registers at the user specified offset.

Usage: ./ccurdprc_wreg [-b board] [-o offset] [-s size] [-v value] [-x]

-b board : board selection -- default board is 0

-0 offset: hex offset to write to -- default offset is 0x0

-s size : number of bytes to write -- default size is 0x4

-v value : hex value to write at offset -- default value is 0x0

-x : Do not read back just written values -- default read back values
Example display:

Jccurdprc_wreg -v12345678 -00x700 —s100

Device Name : /dev/ccurdprcO
Board Serial No: 680593 (0x000a6291)

Writing 0x12345678 to offset 0x0700 for 256 bytes

LOCAL REGS #### (length=256)

+LCL+ 0x700 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x710 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x720 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x730 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x740 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x750 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x760 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x770 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x780 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x790 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x7a0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x7b0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x7c0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x7d0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x7e0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*
+LCL+ 0x7£0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

3.1.7 Flash/ccurdprc_flash

This program is used to burn new firmware. This must only be done at the direction of Concurrent Real-Time
support team; otherwise, they could render the board useless.

./ccurdprc_flash -[rw] -b[board] -gq -s[start] -e[end] file name

-b [board] : board number. Default=-1

-e [end address] : Default=0x408c83

-q : Quite (non-interactive) mode

-r : Read Flash and write to output file created by

./ccurdprc_flash

-s [start address]: Default=0x0

-w : Read input file and Flash the board

Use either -r or -w to read or write the ccurdprc spi flash
The file name is required

e.g. ./ccurdprc flash -w -s 0x0 -e 0x408C89 -b0 FIRMWARE/CCURDPRC.bin
./ccurdprc_flash -r -s 0x0 -e 0x408c89 -b0 /tmp/CCURDPRC.out

3.1.8 Flash/ccurdprc_fwreload
This program reloads the firmware. This is normally performed after a new firmware is burnt.

./ccurdprc_fwreload -b[board]
-b [board] : board number. Default=-1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 72 of 94

e.g. ./ccurdprc fwreload -bO0

3.1.9 Eeprom/ccurdprc_eeprom

This program is used to burn new eeprom. This must only be done at the direction of Concurrent Real-Time
support team; otherwise, they could render the board useless.

./ccurdprc_eeprom -b[board]

-b [board] : board number. Default=-1
e.g. ./ccurdprc_eeprom -b0
Example display:

Jccurdprc_eeprom —b0

Device Name : /dev/ccurdprcO
Board Serial No: 680593 (0x000a6291)

Dumping EEPROM: (0x00 - 0x3f)

@0x00: 9310 1542 0880 0001 0000 0100 0000 0000
@0x08: 0000 0000 ffff £800 0000 0001 0020 0000
@0x10: 0030 0400 0000 0000 0000 0000 4243 0343
@0x18: 0000 0000 0000 0000 0000 0000 0000 0000
@0x20: 0000 0000 9056 10b5 0000 0000 0000 0000
@0x28: 0000 0043 0000 4c00 0000 0000 0002 0000
@0x30: 0000 0000 0000 0000 0000 0000 0000 0000
@0x38: 0000 0000 0000 0000 0000 0000 0000 0100

device id = 0x9310

vendor id = 0x1542

subsystem device id = 0x9056

subsystem vendor id = 0x10b5

eeprom revision = 0x0100

eeprom size = 128 bytes

eeprom crcl6 = 0x0000
d = Dump EEPROM p = Pattern Fill EEPROM
r = Restore EEPROM to default w = Write EEPROM

Main Selection ('h'=display menu, 'g'=quit)->
3.2 Application Program Interface (API) Access Example Tests
These set of tests are located in the .../test/lib directory and use the API.

3.2.1 lib/ccurdprc_adc_calibrate

This utility can be used to perform AutoCalibration. Additionally, they can use this utility can also be used to
display or write calibration information.

Usage: ./ccurdprc_adc calibrate [-A] [-A!] [-b board] [-i inCalFile]
[-o outCalFile] [-R] [-W]
-A (perform Auto Calibration)
-A ! (perform Auto Calibration only if any channel not
calibrated)
-b <board> (board #, default = 0)
-1 <In Cal File> (input calibration file [input->board reg])
-0 <Out Cal File> (output calibration file [board reg->output])
-R (reset calibration registers)
-W (wait for busy to clear before autocal - approx 60

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 73 of 94

seconds)

Example display:

Jccurdpre_adc_calibrate -A

Device Name
Board Serial No:

680593

/dev/ccurdprc0
(0x000a6291)

Auto Calibration started...done.

(3.742 seconds)

===> Dump to 'stdout'

#Date Fri Jan 05 07:49:27 2018

#Chan Negative Offset

S

ch00: 0.99923127004876732826 0.00061035156250000000
ch01l: 0.99947279226034879684 0.00000000000000000000
ch02: 0.99920631432905793190 0.00000000000000000000
ch03: 0.99905325518921017647 0.00000000000000000000
ch04: 0.99838953465223312378 -0.00061035156250000000
ch05: 0.99927610578015446663 0.00000000000000000000
ch06: 0.99905750295147299767 -0.00122070312500000000
ch07: 0.99851436214521527290 0.00000000000000000000
ch08: 1.00050740223377943039 0.00061035156250000000
ch09: 1.00066073611378669739 0.00000000000000000000
chl0: 0.99857268156483769417 0.00000000000000000000
chll: 0.99877768149599432945 -0.00061035156250000000
chl2: 0.99823356745764613152 0.00000000000000000000
chl3: 0.99831963051110506058 0.00061035156250000000
chl4: 1.00009105587378144264 -0.00122070312500000000
chl5: 0.99985559144988656044 0.00000000000000000000
Jccurdpre_adc_calibrate -0 OUTFILE

Device Name /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

===> Dump of 'OUTFILE' file

#Date Fri Jan 05 07:50:16 2018

#Chan Negative Offset

[

ch00: 0.99923127004876732826 0.00061035156250000000
ch01l: 0.99947279226034879684 0.00000000000000000000
ch02: 0.99920631432905793190 0.00000000000000000000
ch03: 0.99905325518921017647 0.00000000000000000000
ch04: 0.99838953465223312378 -0.00061035156250000000
ch05: 0.99927610578015446663 0.00000000000000000000
ch06: 0.99905750295147299767 -0.00122070312500000000
ch07: 0.99851436214521527290 0.00000000000000000000
ch08: 1.00050740223377943039 0.00061035156250000000
ch09: 1.00066073611378669739 0.00000000000000000000
chl0: 0.99857268156483769417 0.00000000000000000000
chll: 0.99877768149599432945 -0.00061035156250000000
chl2: 0.99823356745764613152 0.00000000000000000000
chl3: 0.99831963051110506058 0.00061035156250000000
chl4: 1.00009105587378144264 -0.00122070312500000000
chl5: 0.99985559144988656044 0.00000000000000000000

===> Board calibration data written to

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,

'OUTFILE' file

Positive

.99922021990641951561
.99952901387587189674
.99925487162545323372
.99904842255637049675
.99847391713410615921
.99934815429151058197
.99922219337895512581
.99861047510057687759
.00050500780344009399
.00072780018672347069
.99864626117050647736
.99878046847879886627
.99832826759666204453
.99833270628005266190
.00013939756900072098
.99989806674420833588

ORFRP OO O0OO0ORFRPRFPFOOOOOOOOo

Positive

.99922021990641951561
.99952901387587189674
.99925487162545323372
.99904842255637049675
.99847391713410615921
.99934815429151058197
.99922219337895512581
.99861047510057687759
.00050500780344009399
.00072780018672347069
.99864626117050647736
.99878046847879886627
.99832826759666204453
.99833270628005266190
.00013939756900072098
.99989806674420833588

ORFRP OO OO P OOOOOOOOo

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 74 of 94

Jccurdpre_adc_calibrate -i INFILE

Device Name
Board Serial No:

680593

/dev/ccurdprc0
(0x000a6291)

===> Calibration data from 'INFILE' file written to board

===> Dump of 'INFILE' file

#Date Fri Jan 05 07:50:16 2018

#Chan Negative Offset Positive

R RS ———
ch00: 0.99923127004876732826 0.00061035156250000000 0.99922021990641951561
ch0l: 0.99947279226034879684 0.00000000000000000000 0.99952901387587189674
ch02: 0.99920631432905793190 0.00000000000000000000 0.99925487162545323372
ch03: 0.99905325518921017647 0.00000000000000000000 0.99904842255637049675
ch04: 0.99838953465223312378 -0.00061035156250000000 0.99847391713410615921
ch05: 0.99927610578015446663 0.00000000000000000000 0.99934815429151058197
ch06: 0.99905750295147299767 -0.00122070312500000000 0.99922219337895512581
ch07: 0.99851436214521527290 0.00000000000000000000 0.99861047510057687759
ch08: 1.00050740223377943039 0.00061035156250000000 1.00050500780344009399
ch09: 1.00066073611378669739 0.00000000000000000000 1.00072780018672347069
chl0: 0.99857268156483769417 0.00000000000000000000 0.99864626117050647736
chll: 0.99877768149599432945 -0.00061035156250000000 0.99878046847879886627
chl2: 0.99823356745764613152 0.00000000000000000000 0.99832826759666204453
chl3: 0.99831963051110506058 0.00061035156250000000 0.99833270628005266190
chl4: 1.00009105587378144264 -0.00122070312500000000 1.00013939756900072098
chl5: 0.99985559144988656044 0.00000000000000000000 0.99989806674420833588

===> Dump to 'stdout'

#Date Fri Jan 05 07:51:26 2018

#Chan Negative Offset Positive

[E— R ——

ch00: 0.99923127004876732826 0.00061035156250000000 0.99922021990641951561
ch0l: 0.99947279226034879684 0.00000000000000000000 0.99952901387587189674
ch02: 0.99920631432905793190 0.00000000000000000000 0.99925487162545323372
ch03: 0.99905325518921017647 0.00000000000000000000 0.99904842255637049675
ch04: 0.99838953465223312378 -0.00061035156250000000 0.99847391713410615921
ch05: 0.99927610578015446663 0.00000000000000000000 0.99934815429151058197
ch06: 0.99905750295147299767 -0.00122070312500000000 0.99922219337895512581
ch07: 0.99851436214521527290 0.00000000000000000000 0.99861047510057687759
ch08: 1.00050740223377943039 0.00061035156250000000 1.00050500780344009399
ch09: 1.00066073611378669739 0.00000000000000000000 1.00072780018672347069
chl0: 0.99857268156483769417 0.00000000000000000000 0.99864626117050647736
chll: 0.99877768149599432945 -0.00061035156250000000 0.99878046847879886627
chl2: 0.99823356745764613152 0.00000000000000000000 0.99832826759666204453
chl3: 0.99831963051110506058 0.00061035156250000000 0.99833270628005266190
chl4: 1.00009105587378144264 -0.00122070312500000000 1.00013939756900072098
chl5: 0.99985559144988656044 0.00000000000000000000 0.99989806674420833588

3.2.2 lib/ccurdprc_disp
This is a powerful utility to not only display the various registers but control and test the board.

Usage: ./ccurdprc disp [-a RollingAve] [-A] [-b BoardNo] [-c Chan] [-d Delay]
[-E ExpInpVolts] [-F DebugFile] [-1 LoopCnt] [-r resistance]
[-s InputSignal] [-t Resistance] [-X]
-a RollingAve (Rolling average -- default =1000)
-A (Perform Auto Calibration using reference voltage first)
-b BoardNo (select specific board, default = 0)
-c ChanNo (select specific channel, default = ALL CHANNELS)
-d Delay (Delay between screen refresh in milli-seconds -- default is 10)
-E <ExpInpVolts>@<Tol> (Expected Input Volts@Tolerance -- default Tol=0.006000)
+Q@<Tol> (Positive Calibration Ref Volt@Tolerance)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 75 of 94

-@<Tol> (Negative Calibration Ref Volt@Tolerance)
r@<Tol> (Variable expected voltage based on selected resistance in '-t'
option)
-f FaultGeneration (select fault 'o','RaG', 'RbG', 'RaRbG','RaVv', 'RbV', "RaRbV',
'RaVRbG', 'RaGRbV")
-f o (Ch0..15[0]=Open [fault or disabled])
-f rag (Ch0..15[17]=RA Ground Fault)
-f RBg (Ch0..15[18]1=RB Ground Fault)
-f rarbg (Ch0..15[19]=RA & RB Ground Fault)
-f rav (Ch0..15[20]=RA Voltage Plus Fault)
-f RBV (Ch0..15[21]=RB Voltage Plus Fault)
-f rarbVv (Ch0..15[22]=RA & RB Voltage Plus Fault)
-f RavRbg (Ch0..15[33]=RA Voltage Plus & RB Ground Fault Switch Test)
-f RaGRbV (Ch0..15[34]=RA Ground & RB Voltage Plus Fault Switch Test)
-F DebugFile (Menu display and write to debug file)
@DebugFile (No menu display. Only write to debug file)
@ (No menu display or write to debug file, only summary to stderr)
-1 LoopCnt (Loop count -- default is 0)
-r <Resistance> (Program Potentiometer resistance (Range: 10-1000000)
-s InputSignal (select input signal, 'e', 'g', '+', '=', 't")
-s e (Ch0..15=External input)
-s g (Ch0..15=Ground Reference)
-s t (ChO0..15=Positive 2.5 Volts Reference)
-s + (ChO0..15=Positive 10 Volts Reference)
-s - (Ch0..15=Negative 10 Volts Reference)
-t <Resistance>@<Err> (Perform Potentiometer Test using supplied resistance
(Range: 10-1000000) -- default Err=3.0%
-X (Adjusted Measured Ohms for programmed Ohms between
45 and 1000000)

Notes: Fault generation option 'f' and input signal option 's' not allowed together
Potentiometer test option 't' and program resistance option 'r' not allowed together
Potentiometer test option 't' and input signal option 's' not allowed together
Potentiometer test option 't' and fault generation option 'f' not allowed together
Option 't' % tolerance is with respect to the user supplied resistance

e.g. ./ccurdprc disp -t1240 (set all channels resistance to 1240 and display)
./ccurdprc_disp -t1240 -c4 (set channel 4 resistance to 1240 and display)
./ccurdprc _disp -t40 -Er (set all channels resistance to 40 and validate

expected voltage)
./ccurdprc disp -t12345 -FDebug (set all channels resistance to 12345 and output to
Debug file)
./ccurdprc_disp -t1240 -X (set all channels resistance to 1240 and display
adjusted measured ohms)
./ccurdprc_disp -s+ -E10 (set all channels to 10V and validate expected
voltage)
./ccurdprc_disp -se -rl12345 (set all channels to external and program all
channels to 12345 ohms)
./ccurdprc_disp -se -rl2345 -c5 (set channel 5 to external and program channel 5 to
12345 ohms)
Example display:
Jccurdpre_disp -A
Auto Calibration started...done. (4.773 seconds)
Specific Channel Selected[-c]: === All Channels Selected ===
Delay [-d]: 10 milli-seconds
Expected Input Volts [-E]: === Not Specified ===
Loop Count [-1] *** Forever***
Calibration Bus Control 0 (Open)
c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 cl0 cll cl2 cl13 cl4 cl5
Digital Pot. Test (HexMask) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
I/0 Control (chan00..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Scan Count 2161
Read Duration (microsecs) TotalDelta: 33.127 (min= 32.827/max= 41.054/ave= 33.434)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 76 of 94

ADC Channels
(0] [1]

Fh#fH
[4]

(Raw Hex Data)
(2] (3]

[7] (8] (9]

0000 FFFF FFFF 0000 FFFF

FFFE FFFF FFFF FFFE

FFFE FFFE FFFE FFFE FFFE

ADC Channels
[0] [1]

(Volts)
(2]

FhEHH

[3] [4]

FFFE

[5] [7] (8] [91]

+0.0000 -0.0006 -0
-0.0006 -0.0006 -0

.0006 +0.
.0006 -0.

0000 -0.0006
0006 -0.0006

###4## Digital Potentiometer
(0] (1] (2]

(Programmed
[3] (4]

-0.0012
-0.0006

-0.0012 -0.0006 -0.0006 -0.0012

LR R L
(6]

Raw Hex Data)

[5] (7]

32000
32000

32000
32000

32000
32000

32000
32000

32000
32000

Digital Potentiometer
(0] [1] (2]

(Programmed
(3] [4]

32000
32000

32000 32000 32000 32000

Ohms) ####+#

[5] (el (7] (8] (9]

1000000 1000000 1000000 1000000 1000000
1000000 1000000 1000000 1000000 1000000

Expected Input Volts:

Chan

Not Specified

1000000 1000000 1000000 1000000 1000000
1000000

[volts]

Min Max Ave

TolerExeededCnt

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

0012
0024
0031
0024
0018
0024
0024
0031
0037
0031
0031
0031
0024
0018
0031
0031

.0006
.0000
.0000
.0000
.0000
.0000
.0006
.0000
.0012
.0012
.0006
.0012
.0006
.0000
.0012
.0012

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

0003
0006
0006
0005
0004
0006
0007
0006
0008
0009
0004
0004
0006
0005
0007
0006

OO OO OO OODOOOO OO OoOo

Jccurdpre_disp -t12345 -X

Sele

cted Ohms=12345, Actual Ohms=12344,

Expected ADC Volts=9.081813

Computing Channel Voltage Error at 1 MegaOhm....done

Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch
Ch

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,

Voltage Error
an= 0 Error=+0.
an= 1 Error=+0.
an= Error=+0.
an= Error=+0.
an= Error=+0.
an= Error=+0.
an= Error=+0.
an= Error=+0.
an= Error=+0.
an= 9 Error=+0.
an=10 Error=+0.
an=11 Error=+0.
an=12 Error=+0.
an=13 Error=+0.

000386
000514
000489
000666
001069
001197
000978
001002
000630
000343
000489
000801
000941
000727

volts
volts
volts
volts
volts
volts
volts
volts
volts
volts
volts
volts
volts
volts

2
3
4
5
6
7
8

Adjustment at 1 MegaOhm Resistance

(for high ohms adjustment)

under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 77 of 94

Chan=14 Error=+0.000862 volts
Chan=15 Error=+0.000849 volts
Computing Channel Ohms where expected=programmed....done

==== Point where Programmed Equal to Measured Ohm (for low ohms

Chan= 0
Chan= 1
Chan= 2
Chan= 3
Chan= 4
5
6
7
8

Ohm=960
Ohm=1023
Ohm=1333
Ohm=994
Ohm=558
Ohm=1115
Ohm=713
Ohm=481
Ohm=1207
Ohm=2573
Ohm=960
Ohm=1866
Ohm=1517
Ohm=1115
Ohm=650
Ohm=1333

Chan=
Chan=
Chan=
Chan=
Chan= 9
Chan=10
Chan=11
Chan=12
Chan=13
Chan=14
Chan=15

Specific
Delay
Expected Input Volts
Loop Count
Potentiometer Test

Adjusted Measured Ohms

Calibration Bus Control

Digital Pot.
I/0 Control

Test

Scan Count

(HexMask)
(chan00..15)

Ohms Tolerance Exceeded Count:

Read Duration

(microsecs)

adjustment)

All Channels Selected
10 milli-seconds
Not Specified
*A*Forever***

supplied 12345 Ohms (actual=12344) (Tolerance 3.000000% error
wrt actual ohms)

=== Enabled ===

8 (+8 Milli-Ampere Current)

c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 cl1l0 cll cl2 cl13 cl4 cl5
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
(*** all 15 channels being set to test bus '7' in turn **¥*)

456

0 (=== Passed ===

TotalDelta: 55161.612

(min=55105.278/max=55184.692/ave=55041.208)

ADC Channels (Raw Hex Data)
(0] [1] (2] (3] [4] [5] (6] [7] (8] [9
[0] 3A27 3A2A 3A28 3A2A 3A29 3A26 3A28 3A2A 3A27 3A25
[1] 3A2A 3A20 3A27 3A26 3A28 3A22
ADC Channels (Volts) ##### (Expected ADC Volts for Attached Resistance is
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9
[0] +9.0867 +9.0883 +9.0875 +9.0886 +9.0880 +9.0860 +9.0874 +9.0887 +9.0869 +9.0852
[1] +9.0885 +9.0826 +9.0864 +9.0861 +9.0873 +9.0834
#4#4#4 Digital Potentiometer (Programmed Raw Hex Data) #####
(0] [1] (2] (3] [4] [5] (6] [7] (8] [9
[0] 009EQ 009EQ 009EQ 009EQ 009EQ 009EQ 009EQ 009EQ 009EQ 009EQ
[1] 009EOQ 009EOQ 009EOQ 009EOQ 009EOQ 009EOQ
#4###4 Digital Potentiometer (Programmed Ohms) #####
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9
[0] 12344 12344 12344 12344 12344 12344 12344 12344 12344 12344
[1] 12344 12344 12344 12344 12344 12344
Digital Potentiometer (Adjusted Internal Measured Ohms)
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

9.0818)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 78 of 94

[0] 12410 12433 12421 12435 12420 12388
[1] 12436 12343 12398 12397 12413 12354
Expected Input Volts: === Not Specified
[volts]
Chan Min Max Ave TolerExeededCnt
00 9.0865 9.0868 9.0867 -
01 9.0882 9.0885 9.0883 -
02 9.0873 9.0877 9.0875 -
03 9.0884 9.0887 9.0886 -
04 9.0879 9.0881 9.0880 -
05 9.0858 9.0861 9.0859 -
06 9.0872 9.0875 9.0873 -
07 9.0885 9.0888 9.0887 -
08 9.0867 9.0870 9.0869 -
09 9.0850 9.0853 9.0852 -
10 9.0883 9.0887 9.0885 -
11 9.0825 9.0828 9.0827 -
12 9.0862 9.0866 9.0864 -
13 9.0858 9.0862 9.0860 -
14 9.0871 9.0875 9.0873 -
15 9.0833 9.0836 9.0834 -

Potentiometer Resistance:

12

supplied 12345 ohms

411

12431

12410

(actual=12344)
error wrt actual ohms)
Resistance Tolerence Exceed Count: 0

12

388

(Tolerance 3.000000

[resistance]
mmm————— (Ohms) —-————---- > <-- (% error wrt supplied ohms) ->

Chan Min Max Ave Min Max Ave TolerExeededCnt
00 12408 12412 12409 0.52 0.55 0.53 -

01 12430 12435 12432 0.70 0.74 0.71 -

02 12419 12424 12420 0.61 0.65 0.62 -

03 12432 12436 12434 0.71 0.75 0.73 -

04 12418 12422 12420 0.60 0.63 0.62 -

05 12385 12389 12387 0.33 0.36 0.35 -

06 12409 12413 12410 0.53 0.56 0.53 -

07 12428 12432 12430 0.68 0.71 0.70 -

08 12407 12412 12409 0.51 0.55 0.53 -

09 12386 12390 12388 0.34 0.37 0.36 -

10 12433 12439 12436 0.72 0.77 0.75 -

11 12341 12347 12344 0.02 0.02 0.00 -

12 12395 12400 12397 0.41 0.45 0.43 -

13 12393 12399 12395 0.40 0.45 0.41 -

14 12410 12415 12412 0.53 0.58 0.55 -

15 12352 12357 12354 0.06 0.11 0.08 -

Jccurdpre_disp -s+ -a0

Rolling Average Count [-a] 1000

Specific Channel Selected[-c] === All Channels Selected ===

Delay [-d]: 10 milli-seconds

Expected Input Volts [-E]: === Not Specified ===

Loop Count [-1] ***Forever***x

Calibration Bus Control 2 (+10 Volts Reference)

c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 cl0

Digital Pot. Test (HexMask) 100 100 100 100 100 100 100 100 100 100 100
I/0 Control (chan00..15) (*** all 15 channels being set to test bus
Scan Count 1250

Read Duration (microsecs) TotalDelta: 55191.640

(min=55083.646/max=55212.522/ave=55140.996)

ADC Ch
(0]

annels
[1]

(Raw Hex Data)

(2]

[3]

[4]

[5]

(Rolling Average Count

(el

[1000/10001)

(7]

(8]

cll

100

cl2

100

cl3

100

cl4

100

'7' in turn **¥*)

Fh#tH

(9]

o

]

cl5

100

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 79 of 94

[0] 3FFF 3FFF 3FFF 3FFE 3FFF 3FFF 3FFF 3FFF 3FFE 3FFF
[1] 3FFF 3FFF 3FFF 3FFF 4000 3FFF
####4 ADC Channels (Volts) #####
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9
[0] +9.9997 +9.9998 +9.9998 +9.9994 +9.9997 +9.9999 +9.9998 +9.9997 +9.9994 +9.9997
[1] +9.9998 +9.9999 +9.9998 +9.9997+10.0000+10.0000
#4#4#4 Digital Potentiometer (Programmed Raw Hex Data) #####
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000
[1] 32000 32000 32000 32000 32000 32000
#4###4# Digital Potentiometer (Programmed Ohms) ###4##
[0] [11] [2] [3] [4] [5] [6] [71] [8] [9
[0] 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000
[1] 1000000 1000000 1000000 1000000 1000000 1000000
Expected Input Volts: === Not Specified ===
[volts]
Chan Min Max Ave TolerExeededCnt
00 9.9998 9.9999 9.9999 -
01 9.9998 9.9999 9.9998 -
02 9.9995 9.9996 9.9996 -
03 9.9997 9.9998 9.9998 -
04 9.9999 10.0000 10.0000 -
05 9.9997 9.9998 9.9998 -
06 9.9998 9.9999 9.9998 -
07 9.9998 9.9999 9.9999 -
08 9.9998 9.9999 9.9999 -
09 9.9994 9.9995 9.9995 -
10 9.9995 9.9995 9.9995 -
11 9.9999 10.0000 10.0000 -
12 9.9996 9.9997 9.9997 -
13 9.9996 9.9997 9.9996 -
14 9.9998 9.9999 9.9998 -
15 9.9998 9.9999 9.9998 -

Jccurdpre_disp -f RavRbG

cl3

100
33

Specific Channel Selected[-c] === All Channels Selected ===
Delay [-d]: 10 milli-seconds
Expected Input Volts [-E]: === Not Specified ===
Loop Count [-1] ***Forever***
Calibration Bus Control 0 (Open)
c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 cl0 cll cl2
Digital Pot. Test (HexMask) 100 100 100 100 100 100 100 100 100 100 100 100 100
I/0 Control (chan00..15) 33 33 33 33 33 33 33 33 33 33 33 33 33
Scan Count 3515
Read Duration (microsecs) TotalDelta: 33.184 (min= 32.809/max= 41.355/ave=
ADC Channels (Raw Hex Data)
(0] [1] (2] (3] [4] [5] (6] [7] (8] [9
[0] S5EF4 S5EF7 5F06 5ED9 S5EEA 5ED9 5EDC 5EC8 5EE6 5F02
[1] 5EC6 S5EF4 5F0B S5EFA 5EF3 5FO0A
###4# ADC Channels (Volts) ####4#
(0] [1] (2] (3] (4] [5] (6] [71] (8] [9]

cl4

100
33

clb

100
33

33.440)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 80 of 94

[0]+14.8364+14.8383+14.8474+14.8199+14.8303+14.8199+14.8218+14.8096+14.8279+14.8450
[1]+14.8083+14.8364+14.8505+14.8401+14.8358+14.8499

Digital Potentiometer (Programmed Raw Hex Data)
[0] [1] [2] (3] [4] [5] (6] [7] (8] (9]

[0] 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000
[1] 32000 32000 32000 32000 32000 32000

#4#44 Digital Potentiometer (Programmed Ohms) #####
(0] (1] (2] [3] [4] [5] [6] [7] [8] [9]

[0] 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000
[1] 1000000 1000000 1000000 1000000 1000000 1000000

Expected Input Volts: === Not Specified ===
[volts]
Chan Min Max Ave TolerExeededCnt

00 14.8236 14.8370 14.8360 -
01 14.8248 14.8395 14.8378 -
02 14.8352 14.8486 14.8467 -
03 14.8071 14.8218 14.8203 -
04 14.8175 14.8322 14.8303 -
05 14.8065 14.8218 14.8202 -
06 14.8083 14.8230 14.8218 -
07 14.7955 14.8108 14.8093 -
08 14.8157 14.8303 14.8282 -
09 14.8328 14.8462 14.8446 -
10 14.7955 14.8108 14.8087 -
11 14.8242 14.8389 14.8364 -
12 14.8376 14.8511 14.8491 -
13 14.8273 14.8413 14.8397 -
14 14.8242 14.8413 14.8369 -
15 14.8376 14.8529 14.8494 -

3.2.3 lib/ccurdprc_fault_protection
This utility is useful in displaying any Electronic Fuse Trip faults that may have occurred.

Usage: ./ccurdprc_fault_protection [-A] [-b BoardNo] [-c ChannelMask] [-d Delay]
[-F DebugFile] [-1 LoopCnt] [-R]

-A (perform Auto Calibration)
-b BoardNo (select specific board, default = 0)
-c ChannelMask (Channel mask, default = Oxffff)
-d Delay (Delay between screen refresh in milli-seconds -
default is 10)
-F DebugFile (Menu display and write to debug file)
@DebugFile (No menu display. Only write to debug file)
@ (No menu display or write to debug file, only summary
to stderr)
-1 LoopCnt (Loop count -- default is 0)
-R (Clear Fault Condition)
Example display:

Jccurdpre_fault_protection

Channel Mask [-c]: Oxffff
Delay [-d]: 10 milli-seconds
Loop Count [-1]: ***Forever***

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 81 of 94

Scan Count : 332
Read Duration (microsecs): TotalDelta: 204.982 (min= 203.346/max= 215.011/ave= 206.281)

Any Fuse Tripped: 0 (=== No ===)
ADC 0 Failed: 0 (=== No ===)
ADC 1 Failed: 0 (=== No ===)
Channel Fuse Tripped Mask: 0x0000
Electrical Short: 0x00b4 (0.109863 volts)
Delay: 0x0002 (2)
Count: 0x0001 (1)
I/0 Delay: 0x0800 (31.000000 microseconds)
Maximum Resistance: 0x00fd (1266.000000 ohms)
Maximum Voltage: Ox5ae0 (14.199219 volts)
Voltage Fault Delay: 0x0002 (8 microseconds)

Fuse Base Fuse Multiplier Potentiometer Threshold I0S

Ch Trip? hex volts hex volts hex ohms hex volts hex
0 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
1 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
2 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
3 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
4 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
5 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
6 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
7 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
8 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
9 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
10 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
11 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
12 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
13 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
14 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21
15 -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

Q
oy

AnyTrip? CalNotValid? PotFail? ADCFail? VoltTrip? ADCComp? ADCValue? (hex/volts)

W oo Jo U d WN ol
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

o - - S - --= 0000 (0.000000)
o - - — - --= 0000 (0.000000)
- — - - - --= 0000 (0.000000)
o - - — - --= 0000 (0.000000)
0000 (0.000000)
i — - S - --= 0000 (0.000000)

- — — - - --- 0000 (0.000000)

o — - S - --= 0000 (0.000000)

i - - — — --= 0000 (0.000000)

o — _— — - --= 0000 (0.000000)
10 ——- - - — — --= 0000 (0.000000)
11 - — _— — - --= 0000 (0.000000)
12 - - - S - --= 0000 (0.000000)
13 ——- — _— - - --= 0000 (0.000000)
14 - - - S - --= 0000 (0.000000)
15 ——- — — — - --= 0000 (0.000000)

3.2.4 lib/ccurdprc_fault_trip_test
This utility is only for validating the boards handling of Enetronic Fuse Trip handling.

Usage: ./ccurdprc_fault_trip_test [-A] [-b BoardNo] [-c ChannelMask]
[-F DebugFile] [-1 LoopCnt] [-R] [-t TestRun]
perform Auto Calibration)
select specific board, default = 0)
Channel mask, default = Oxffff)
Menu display and write to debug file)

-A
-b BoardNo
-c ChannelMask

(
(
(
-F DebugFile (
(
(

@DebugFile No menu display. Only write to debug file)
@ No menu display or write to debug file, only summary
to stderr)
-1 LoopCnt (Loop count -- default is 1)
-R (Clear Fault Condition)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 82 of 94

-t TestRun Run Option -- default is all options)
Calibration Not Valid Trip)

ADC Failure Trip)

ADC Compare Short Failure Trip)

ADC Compare Low Resistance Failure Trip)
Potentiometer Failure Trip)

Switch Voltage Failure Trip)

Example display:

fHEFHFESESERAR RS ERARARARAS LoOD 1

1) Testing tripping condition for "Calibration Not Valid"
Activating ADC and Potentiometer..............ccoiuvuo.. passed
Preserving Calibration for selected channels.......... passed
Case (A)

Clearing Calibration for selected channels............ passed
Clearing Faults for selected channels [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (B)

Writing Potentiometer to selected Channels [0x0001] .passed
Validating Faults for selected channels [Oxffff]...passed
Writing Potentiometer to selected Channels [0x0002]...passed
Validating Faults for selected channels [Oxffff] .passed
Writing Potentiometer to selected Channels [0x0004] .passed
Case (C)

Restoring Calibration for selected channels........... passed
Clearing Faults for selected channels [0x0001]...passed
Writing Potentiometer to selected Channels [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed
Clearing Faults for selected channels [0x0002]...passed
Writing Potentiometer to selected Channels [0x0002]...passed
Validating Faults for selected channels [Oxffff]...passed
Restoring Calibration for selected channels........... passed

==== PASSED ====

2) Test tripping condition for "ADC Failure"...............
Activating ADC and Potentiometer............eeeenennnn. passed
Case (A)

Disabling both ADCS. . vt ittt i ieteeeteeeeeeennnaneeeneenn passed
Validating Faults for selected channels [Oxffff]...passed
Case (B)

Writing Potentiometer to selected Channels [0x0001] .passed
Validating Faults for selected channels [Oxffff]...passed
Writing Potentiometer to selected Channels [0x0002]...passed
Validating Faults for selected channels [Oxffff] .passed

Case (C)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 83 of 94

ENnabling @ll ADCS . i vt eeeeeeeenneeeeeeeeeennnnnees passed

Validating Faults for selected channels [Oxffff]...passed
Case (D)
Clearing Faults for selected channels [0x0001] .passed
Validating Faults for selected channels [Oxffff]...passed
Clearing Faults for selected channels [0x0002]...passed
Validating Faults for selected channels [Oxffff] .passed
Clearing Faults for selected channels [0x8000]...passed
Validating Faults for selected channels [Oxffff]...passed
==== PASSED ====
3) Test tripping condition for "ADC Compare Short Failure".
Activating ADC and Potentiometer...............cov.... passed
Case (A) - Calibration Control is Open
Writing 10 Ohms (short) to all Channels [Oxffff]...passed
Setting Electronic Fuse Short Value to 44............. passed
Setting Electronic Fuse Short Value to 43............. passed
Setting Electronic Fuse Short Value to 42............. passed
Setting Electronic Fuse Short Value to 2............. passed
Setting Electronic Fuse Short Value to l............. passed
Tripped Channels Mask [0x0b00] .. .passed
Setting Electronic Fuse Short Value to O............. passed
Tripped Channels Mask [Oxffff]...passed
1: Tripped Channels Mask [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Activating ADC and Potentiometer...................... passed
Case (B) - Calibration Control is Minus 8 Milli-Amps
Writing 10 Ohms (short) to all Channels [Oxffff]...passed
Setting Electronic Fuse Short Value to 44............. passed
Tripped Channels Mask [0xff7f]...passed
Setting Electronic Fuse Short Value to 43............. passed
Tripped Channels Mask [0xff7f]...passed
Setting Electronic Fuse Short Value to 17............. passed
Tripped Channels Mask [Oxffff]...passed
1: Tripped Channels Mask [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Activating ADC and Potentiometer.............ceeeenno.. passed
Case (C) - Calibration Control is Plus 8 Milli-Amps
Writing 10 Ohms (short) to all Channels [Oxffff]...passed
Setting Electronic Fuse Short Value to 44............. passed
Tripped Channels Mask [Oxffff]...passed
1: Tripped Channels Mask [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Activating ADC and Potentiometer...................... passed
Case (D) - Calibration Control is Plus 2.5 Volts

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 84 of 94

Writing 10 Ohms (short) to all Channels [Oxffff]...passed

Setting Electronic Fuse Short Value to 44............. passed
Setting Electronic Fuse Short Value to 43............. passed
Setting Electronic Fuse Short Value to 42............. passed
Setting Electronic Fuse Short Value to 2............. passed
Setting Electronic Fuse Short Value to l............. passed
Tripped Channels Mask [0x4300]...passed
Setting Electronic Fuse Short Value to O............. passed
Tripped Channels Mask [Oxffff]...passed
1: Tripped Channels Mask [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Activating ADC and Potentiometer...............cov.... passed
Case (E) - Calibration Control is Minus 10 Volts
Writing 10 Ohms (short) to all Channels [Oxffff]...passed
Setting Electronic Fuse Short Value to 44............. passed
Tripped Channels Mask [Oxffff]...passed
1: Tripped Channels Mask [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Activating ADC and Potentiometer.............ceeeenn.. passed
Case (F) - Calibration Control is Plus 10 Volts
Writing 10 Ohms (short) to all Channels [Oxffff]...passed
Setting Electronic Fuse Short Value to 44............. passed
Tripped Channels Mask [Oxffff]...passed
1: Tripped Channels Mask [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
==== PASSED ====
4) Test tripping condition for "ADC Compare Low Resistance Failure".
Activating ADC and Potentiometer...................... passed
Case (A) - Low Resistance 45 Ohms
Writing 45 Ohms (short) to all Channels [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (B) - Low Resistance 45 Ohms
Setting Fuse Base to 0x0192 for channel O............ passed
Validating Faults for selected channels [Oxffff]...passed
Setting Fuse Base to 0x0191 for channel 1............ passed
Validating Faults for selected channels [Oxffff]...passed
Setting Fuse Base to 0x0195 for channel 15............ passed
Validating Faults for selected channels [Oxffff]...passed
Case (C) - Low Resistance 45 Ohms
Clearing Faults for selected channels [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed
Clearing Faults for selected channels [0x8000]...passed
Validating Faults for selected channels [Oxffff]...passed

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 85 of 94

Case (D) - Low Resistance 45 Ohms

Writing 45 Ohms (short) to Channel [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed
Writing 45 Ohms (short) to Channel [0x8000]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (E) - Low Resistance 45 Ohms

Clearing Faults for selected channels [0x0001]...passed
Setting Fuse Base/Multiplier defaults for channel 0..passed
Writing 45 Ohms (short) to Channel [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (A) - Low Resistance 1265 Ohms

Writing 1265 Ohms (short) to all Channels [Oxffff]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (B) - Low Resistance 1265 Ohms

Setting Fuse Multiplier to 0x00le for channel O0...... passed
Validating Faults for selected channels [Oxffff]...passed
Setting Fuse Multiplier to 0x00le for channel 1...... passed
Validating Faults for selected channels [Oxffff]...passed
Setting Fuse Multiplier to 0x00le for channel 15...... passed
Validating Faults for selected channels [Oxffff]...passed
Case (C) - Low Resistance 1265 Ohms

Clearing Faults for selected channels [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed
Clearing Faults for selected channels [0x8000]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (D) - Low Resistance 1265 Ohms

Writing 1265 Ohms (short) to Channel [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed
Writing 1265 Ohms (short) to Channel [0x8000]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (E) - Low Resistance 1265 Ohms

Clearing Faults for selected channels [0x0001]...passed
Setting Fuse Base/Multiplier defaults for channel 0..passed
Writing 1265 Ohms (short) to Channel [0x0001]...passed
Validating Faults for selected channels [Oxffff]...passed

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 86 of 94

Setting Fuse Base/Multiplier defaults for channel 15..passed
Writing 1265 Ohms (short) to Channel [0x8000]...passed

Validating Faults for selected channels [Oxffff]...passed
—=== PASSED ====
5) Test tripping condition for "Potentiometer Failure"
Activating ADC and Potentiometer..............ccovuvuo.. passed
Case (A)
Force Potentiometer Failure on all channels........... passed
Validating Faults for selected channels [Oxffff]...passed
Case (B)
Writing Potentiometer to selected Channels [0x0001] .passed
Validating Faults for selected channels [Oxffff]...passed
Writing Potentiometer to selected Channels [0x0002]...passed
Validating Faults for selected channels [Oxffff] .passed
Writing Potentiometer to selected Channels [0x8000]...passed
Validating Faults for selected channels [Oxffff]...passed
Case (C)
Activating ADC and Potentiometer...................... passed
Validating Faults for selected channels [Oxffff]...passed
==== PASSED ====
6) Test tripping condition for "Switch Voltage Failure".... (ToBeCoded)

3.2.5 lib/ccurdprc_identify
This test is useful in identifying a card by displaying its LED.

Usage: ./ccurdprc_identify -[absx]
-a (Identify all cards through a light sequence)
-b <board> (board #, default = 0)
-s <seconds) (Identify Board: ENABLED for number of seconds,
default = 10)
-s 0 (Identify Board: DISABLED)
-s <negative value> (Identify Board: ENABLED forever)
-X (silent)
If the '-a' option is selected, all other options are ignored. This option will
sequence through all the cards found in turn as follows:
1) The first device number will flash its LED for 10 seconds
2) The remaining devices numbers will be selected sequentially and flash their
LEDs for 3 seconds
Example display:

Jccurdprc_identify

Device Name /dev/ccurdprcO
Board ID : 9310
Board Type : 01

Board NumChans : 16
Board Cal Volts: 10.000000
Board Serial No: 680584 (0x000a6288)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 87 of 94

Identify ENABLED on board 0
Sleeping for 10 seconds...
Identify DISABLED on board O

(LED should start flashing for 10 seconds)

(LED should stop flashing)

3.2.6 lib/ccurdprc_info
This test is useful in getting information for all the ccurdprc devices in the system.

Usage: ./ccurdprc_info -[bpv]
-b <board> (board #, default = 0)
-p <ald> (Program Activate (a)/Disable(d) All, default = no program)
-V (Verbose, default = no verbose)
Example display:
Jccurdprc_info
Version: 23.1.1
Build: Apr 14 2020, 12:33:40
Module: ccurdprc
Board Index: 0 (PLX-CCURDPRC)
Board Serial No: 680593 (0x000a6291)
Serial Prom Rev: 0x0000
Bus: 8
Slot: 4
Func: O
Vendor ID: 0x1542
Sub-Vendor ID: O0x10b5
Board ID: 0x9310
Board Type: 0x0001
Sub-Device ID: 0x9056
Board Info: 0x93100102
MSI Support: Enabled
IRQ Level: 55
Firmware: 0x0001
Interrupt Count: 0
Interrupt Status: 0x0000
Number of Channels: 16
All Channel Mask: Oxffff

Calibration Reference Voltage:
Voltage Range:

Region O:

Region 2:

Calibration Bus Control:

10.000000 volts
0.000000 volts
Addr=0xc4c01000
Addr=0xc4c00000
00 (0x0) Bus Open

Size=512
Size=2048

I/0 Control: === Disabled ===
Potentiometer: === Disabled ===
Potentiometer Test: Disabled ===
Analog to Digital Converter: = Disabled ===
Any Fuse Tripped: === No ===
ADC 0 Failed: ### Yes ###
ADC 1 Failed: ### Yes ###
Electrical Short: 0x00b4 (0.109863 volts)
Delay: 0x0002 (2)
Count: 0x0001 (1)
I/0 Delay: 0x0800 (31.000000 volts)
Maximum Resistance: 0x00fd (1266.000000 ohms)
Maximum voltage: 0OxbaeO (14.199219 volts)
Voltage Fault Delay: 0x0002 (8 microseconds)
Jccurdprc_info -v
Version: 23.1.1
Build: Apr 14 2020, 12:33:40
Module: ccurdprc
Board Index: 0 (PLX-CCURDPRC)
Board Serial No: 680593 (0x000a6291)
Serial Prom Rev: 0x0000
Bus: 8
Slot: 4

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 88 of 94

Func: O
Vendor ID: O0x1542
Sub-Vendor ID: 0x10bb
Board ID: 0x9310
Board Type: 0x0001
Sub-Device ID: 0x9056
Board Info: 0x93100102
MSI Support: Enabled
IRQ Level: 55
Firmware: 0x0001
Interrupt Count: O
Interrupt Status: 0x0000
Number of Channels: 16
All Channel Mask: Oxffff

Calibration Reference Voltage:
Voltage Range:

10.000000 volts
0.000000 volts

Region 0: Addr=0xc4c01000 Size=512 (0x200)
Region 2: Addr=0xc4c00000 Size=2048 (0x800)
Calibration Bus Control: 00 (0x0) Bus Open
Calibration Information: Negative Offset

Channel 0: 0.99923393130302429199 0.00061035156250000000
.99922629352658987045

Channel 1: 0.99947733711451292038 0.00000000000000000000
.99953469820320606232

Channel 2: 0.99920863285660743713 0.00000000000000000000
.99925949377939105034

Channel 3: 0.99905715836212038994 0.00000000000000000000
.99905238440260291100

Channel 4: 0.99838956817984580994 -0.00061035156250000000
.99847721355035901070

Channel 5: 0.99927859148010611534 0.00000000000000000000
.99935070564970374107

Channel 6: 0.99905843008309602737 -0.00122070312500000000
.99922330724075436592

Channel 7: 0.99851754121482372284 0.00000000000000000000
.99861228326335549355

Channel 8: 1.00050913682207465172 0.00061035156250000000
.00050572864711284637

Channel 9: 1.00065903877839446068 0.00000000000000000000
.00072941137477755547

Channel 10: 0.99857431231066584587 0.00000000000000000000
.99864789657294750214

Channel 11: 0.99878009874373674393 -0.00061035156250000000
.99878242751583456993

Channel 12: 0.99823445873335003853 0.00000000000000000000
.99833095585927367210

Channel 13: 0.99832039466127753258 0.00061035156250000000
.99833637848496437073

Channel 14: 1.00009206961840391159 -0.00122070312500000000
.00013942923396825790

Channel 15: 0.99985691532492637634 0.00000000000000000000
.99989738129079341888

I/0 Control: Value Description

Channel O: 00 (0x00) Open

Channel 1: 00 (0x00) Open

Channel 2: 00 (0x00) Open

Channel 3: 00 (0x00) Open

Channel 4: 00 (0x00) Open

Channel 5: 00 (0x00) Open

Channel ©6: 00 (0x00) Open

Channel 7: 00 (0x00) Open

Channel 8: 00 (0x00) Open

Channel 9: 00 (0x00) Open

Channel 10: 00 (0x00) Open

Channel 11: 00 (0x00) Open

Channel 12: 00 (0x00) Open

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 89 of 94

Channel 13: 00 (0x00) Open
Channel 14: 00 (0x00) Open
Channel 15: 00 (0x00) Open

Potentiometer: Value (Raw) Ohms

Channel 0: 204800 1000000
Channel 1: 204800 1000000
Channel 2: 204800 1000000
Channel 3: 204800 1000000
Channel 4: 204800 1000000
Channel 5: 204800 1000000
Channel 6: 204800 1000000
Channel 7: 204800 1000000
Channel 8: 204800 1000000
Channel 9: 204800 1000000
Channel 10: 204800 1000000
Channel 11: 204800 1000000
Channel 12: 204800 1000000
Channel 13: 204800 1000000
Channel 14: 204800 1000000

Channel 15: 204800 1000000

Potentiometer Test: Value (Mask) Description

Channel 0: 0x00000100 20K Potentiometer Mode
Channel 1: 0x00000100 20K Potentiometer Mode
Channel 2: 0x00000100 20K Potentiometer Mode
Channel 3: 0x00000100 20K Potentiometer Mode
Channel 4: 0x00000100 20K Potentiometer Mode
Channel 5: 0x00000100 20K Potentiometer Mode
Channel 6: 0x00000100 20K Potentiometer Mode
Channel 7: 0x00000100 20K Potentiometer Mode
Channel 8: 0x00000100 20K Potentiometer Mode
Channel 9: 0x00000100 20K Potentiometer Mode
Channel 10: 0x00000100 20K Potentiometer Mode
Channel 11: 0x00000100 20K Potentiometer Mode
Channel 12: 0x00000100 20K Potentiometer Mode
Channel 13: 0x00000100 20K Potentiometer Mode
Channel 14: 0x00000100 20K Potentiometer Mode
Channel 15: 0x00000100 20K Potentiometer Mode

Analog to Digital Converter: Value (Hex) Volts

Channel 0: 0x0000 +0.000000
Channel 1: Oxffff -0.000610
Channel 2: Oxffff -0.000610
Channel 3: 0x0000 +0.000000
Channel 4: Oxffff -0.000610
Channel 5: Oxffff -0.000610
Channel 6: Oxffff -0.000610
Channel 7: Oxffff -0.000610
Channel 8: Oxffff -0.000610
Channel 9: Oxffff -0.000610
Channel 10: Oxffff -0.000610
Channel 11: Oxffff -0.000610
Channel 12: Oxffff -0.000610
Channel 13: Oxffff -0.000610
Channel 14: Oxffff -0.000610
Channel 15: 0x0000 +0.000000
Any Fuse Tripped: === No ===
ADC 0 Failed: === No ===
ADC 1 Failed: === No =

Electrical Short: 0x00b4 (0.109863 volts)
Delay: 0x0002 (2)
Count: 0x0001 (1)
I/0 Delay: 0x0800 (31.000000 volts)
Maximum Resistance: 0x00fd (1266.000000 ohms)
Maximum voltage: 0OxbaeO (14.199219 volts)
Voltage Fault Delay: 0x0002 (8 microseconds)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 90 of 94

Fuse Base Fuse Multiplier Potentiometer

Threshold I0S
Channel Fault Information: Trip? hex volts hex volts hex ohms

hex volts hex

Channel 0: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 1: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 2: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 3: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 4: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 5: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 6: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 7: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 8: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 9: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 10: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 11: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 12: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 13: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 14: -—- 0241 (0.352173) 005a (0.054932) 32000 (1000000)
5ae0 (14.199219) 00

Channel 15: -—= 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

Channel Fault Information: AnyTrip? CalNotValid? PotFail? ADCFail? VoltTrip? ADCComp?
ADCValue? (hex/volts)

Channel O: -—- - - _ —— _—
0000 (0.000000)

Channel 1: - -_— - —— —— o
0000 (0.000000)

Channel 2: - -_— - —— —— o
0000 (0.000000)

Channel 3: - - P I — __
0000 (0.000000)

Channel 4: - - P I — __
0000 (0.000000)

Channel 5: - - R R . o
0000 (0.000000)

Channel 6: -——— - R R . N
0000 (0.000000)

Channel 7: - - . _— —— N
0000 (0.000000)

Channel 8: -——— - R R . N
0000 (0.000000)

Channel 9: —-—— - R _— _— N
0000 (0.000000)

Channel 10: —-—— - _— —_— _— N
0000 (0.000000)

Channel 11: -—- - JE— _ —— _—
0000 (0.000000)

Channel 12: -—- - JE— _ —— _—
0000 (0.000000)

Channel 13: -—- - JE— _ —— _—

0000 (0.000000)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 91 of 94

Channel 14: - I
0000 (0.000000)
Channel 15: - R

0000 (0.000000)

3.2.7 lib/ccurdprc_tst _lib

This is an interactive test that accesses the various supported API calls.

Usage:
-b board: board number --

./ccurdprc_tst_lib [-b board]

Example display:

Jccurdpre_tst_lib

Device Name: /dev/ccurdprcO

01 = Abort DMA 02 =
03 = Clear Library Error 04 =
05 = Display CONFIG Registers 06 =
07 = Get Board Information 08 =
09 = Get Driver Information 10 =
11 = Get Driver Write Mode 12 =
13 = Get Mapped Config Pointer 14 =
15 = Get Mapped Local Pointer 16 =
17 = Get Value 18 =
19 = MMap Physical Memory 20 =
21 = Read Operation 22 =
23 = Reset Board 24 =
25 = Select Driver Write Mode 26 =
27 = Set Value 28 =
29 = ### CALIBRATION MENU ### 30 =
31 = ### ELECTRONIC FUSE CONTROL MENU ### 32 =
33 = ### SERIAL PROM MENU ###

Main Selection ('h'=display menu, 'g'=quit)->

= Get

= Get

default board is O

Clear Driver Error

Display BOARD Registers

Board CSR

Driver Error

Driver Read Mode

Library Error

Get Mapped Driver/Library Pointer
Get Physical Memory

Initialize Board

Munmap Physical Memory

Get

Get

= Read Channels

Select Driver Read Mode

= Set Board CSR

##4# ADC CONTROL MENU ###
DIGITAL POT AND I/O CONTROL MENU
##4# INTERRUPT MENU ###

Main Selection ('h'=display menu,
Command: ADC control menu()

'gq'=quit)-> 28

01 = ADC Activate 02 =
03 = ADC Read Channels
ADC Selection ('h'=display menu, 'q'=quit)->

ADC Disable

Main Selection ('h'=display menu,
Command: calibration menu()

'gq'=quit)-> 29

01 = Get Calibrated Values 02 = Get Calibration Bus Control
03 = Perform Auto Calibration 04 = Perform External Negative Calib.
05 = Perform External Offset Calib. 06 = Perform External Positive Calib.
07 = Perform Negative Calibration 08 = Perform Offset Calibration
09 = Perform Positive Calibration 10 = Read calibration channels
11 = Reset Calibration 12 = Write Channels Calibration
13 = Set Calibration Bus Control
Calibration Selection ('h'=display menu, 'g'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 30
Command: DigitalPotAndIo control menu()

01 = Digital Potentiometer & I/O Activate 02 =
03 = Digital Potentiometer Get Resistance 04 =
05 = Digital Potentiometer Set Resistance 06 =
07 = I/0 Control Get 08 =

Digital Pot and I/O Selection ('h'=display menu,

Digital Potentiometer & I/O Disable
Digital Potentiometer Get Test
Digital Potentiometer Set Test

I/0 Control Set

'gq'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 31
Command: ElectronicFuse control menu()
01 = Clear Electronic Fuse Trip
03 = Get Electronic Fuse Base

02 =
04

Dump Electronic Fuse Registers
Get Electronic Fuse Internals

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 92 of 94

05 = Get Electronic Fuse Multiplier 06 = Get Electronic Fuse Status
07 Get Electronic Fuse Threshold 08 Get Electronic Fuse Trip

Electronic Fuse Selection ('h'=display menu, 'g'=quit)->

Main Selection ('h'=display menu, 'q'=quit)-> 32
Command: interrupt menu ()

01 = Add Irg 02 = Disable Pci Interrupts
03 = Enable Pci Interrupts 04 = Get Interrupt Control
05 = Get Interrupt Status 06 = Get Interrupt Timeout
07 = Remove Irg 08 = Set Interrupt Control
09 = Set Interrupt Status 10 = Set Interrupt Timeout

Interrupt Selection ('h'=display menu, 'q'=quit)->

Main Selection ('h'=display menu, 'g'=quit)-> 33
Command: serial prom menu ()
01 = Clear Serial Prom 02 = Read Serial PROM
03 = Serial PROM Write Override 04 = Write Serial PROM

Serial PROM Selection ('h'=display menu, 'g'=quit)->

3.2.8 lib/Sprom/ccurdprc_sprom
This is a simple program to demonstrate sprom access.

Usage: ./ccurdprc sprom [-b board] [-C] [-D] [-S serialNo]
-b <board> (Board #, default = 0)
-C (Clear ENTIRE serial PROM first)
-D (Dump entire serial prom)
(

-S <serialNo> Program board serial number)

e.g. ./ccurdprc_sprom -C -> Clear Entire Serial Prom First
e.g. ./ccurdprc_sprom -D -> Dump Entire Serial Prom
e.g. ./ccurdprc_ sprom -S 12345678 -> Write Serial Number

Example display:

Sprom/ccurdprc_sprom

Device Name: /dev/ccurdprc0
Board Serial Number: 680593 (0x000a6291)
Serial PROM Revision: 0 (0x0000)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 93 of 94

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may
be reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 94 of 94

