
Release Notes
CCURDSCC (WC-AD3224-DS)

Driver ccurdscc (WC-AD3224-DS)

Platform RedHawk Linux® (CentOS/Rocky/RHEL, Ubuntu), Native

Ubuntu® and Native Red Hat Enterprise Linux®1

Vendor Concurrent Real-Time

Hardware PCIe 32-Channel Delta Sigma Converter Card

(CP-AD3224-DS) (CP-AD3224-DS-10)

Author Darius Dubash

Date August 8th, 2024 Rev 2024.1

1 All trademarks are the property of their respective owners

This page intentionally left blank

Table of Contents

1. INTRODUCTION .. 1

2. REQUIREMENTS ... 1

3. DOCUMENTATION ... 2

4. RUNNING ON NATIVE RED HAT .. 2

4.1. Support to build 3rd party modules ... 2

4.2. Support for MSI interrupts ... 2

4.3. BIOS and Kernel Level Tuning .. 3

5. RUNNING ON NATIVE UBUNTU ... 3

5.1. Support to build 3rd party modules ... 3

5.2. Support for MSI interrupts ... 4

5.3. Compiling the driver with installed gcc ... 4

5.4. BIOS and Kernel Level Tuning .. 5

6. INSTALLATION AND REMOVAL.. 5

6.1. Hardware Installation ... 5

6.2. Add Device to Restricted List .. 6

6.3. Software Installation ... 7

6.4. Software Removal .. 8

7. AUTO-LOADING THE DRIVER.. 9

8. TESTING AND USAGE ... 9

9. RE-BUILDING THE DRIVER, LIBRARY AND TESTS ... 10

10. SOFTWARE SUPPORT ... 10

10.1. Device Configuration .. 10

10.2. Library Interface ... 11

10.3. Calibration .. 11

10.4. Firmware Updates ... 11

10.5. Debugging ... 12

11. NOTES AND ERRATA ... 14

APPENDIX A: EXTERNAL CONNECTIONS AND PIN-OUTS ... 15

APPENDIX B: THE 9277 (CP-AD3224-DS) +/- 5 VOLT BOARD .. 16

APPENDIX C: THE 9278 (CP-AD3224-DS-10) +/- 10 VOLT BOARD ... 16

 This page intentionally left blank

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 1 -

1. Introduction

This document assists the user in installing the CCRT-PCIe-DSCC Linux ccurdscc driver and related
software on the RedHawk OS, Native Ubuntu and Native Red Hat for use with the CCRT-PCIe-DSCC
board. The directions in this document supersede all others – they are specific to installing the
software on Concurrent Real-Time’s RedHawk and , Native Ubuntu and Native Red Hat systems.
Other information provided as part of this release, when it may contradict these directions, should be
ignored and these directions should prevail.

Current versions of Native Operating Systems that are supported are:

1) Ubuntu 22.04, kernel 6.5, gcc11 & gcc12
2) Red Hat RHEL 9.4, kernel 5.14

For additional information on this driver and usage refer to the ccurdscc man page.

The CCRT-PCIe-DSCC is a 32-channel analog to digital 24-bit delta sigma converter card with a PCI
express interface. It is implemented using four Cirrus Logic CS5368 8-channel converters. The PCI
interface utilizes a PLX Technology PEX-8311AA PCI-express-to-local bus bridge. There is a Lattice
ECP2M FPGA for control of board functions including registers and storage. Each converter has an
independently selectable clock source generated by a low jitter PLL. The external clocking interface
consists of LVDS signaling connected via RJ-25 (6-pin) style cabling.

Features and Characteristics of the DSCC are:

9277 board (CP-AD3224-DS)

− Fully Differential +/-5V

− Differential Input Impedance >200K ohm

− Input Over-Voltage Protection +/-20V

9278 board (CP-AD3224-DS-10)

− Fully Differential +/-10V

− Differential Input Impedance >1Meg ohm

− Input Over-Voltage Protection +/-30V

Common to both boards

− 32-channel 24-bit Delta Sigma A to D Conversion.

− Industry Standard SCSI 68-pin Connector for Inputs.

− RJ-12 (6-pin phone style) Connectors for Multi-board Synchronization.

− PCI Express x1 Revision 1.0a.

− Supports MSI Interrupts.

− Independent Clocking for Four Channel Groups.

− Low Jitter Phase Lock Loop (PLL) Clock Generators.

− Supports Multi-board Clocking & Synchronization.

− Directly Addressable Conversion Data Registers.

− 64K Word Conversion Data FIFO with DMA.

− Low Noise Analog Power Generation.

− Positive and Negative Calibration Voltage.

− Gain and Offset Calibration Values Accessible.

− Sampling Rate (Fs) 2Khz to 216Khz.

− NIST Traceable Calibration Standard.

− Non-volatile Storage of Calibration Data & User Configuration.

The board and driver provide support for MSI interrupts. This is the default configuration.

2. Requirements

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 2 -

• CCRT-DSCC PCIe board physically installed in the system.

• This driver supports various versions of RedHawk and a selected set of Native Ubuntu and Native
Red Hat. Actual supported versions depend on the driver being installed.

3. Documentation

• PCIe 32-Channel Delta Sigma Converter Card (DSCC) Software Interface by Concurrent Real-
Time.

4. Running on Native Red Hat

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver
will also be able to run on some selected versions of Red Hat with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccurdscc/driver/ccurdscc.ko due to unavailability
of vmlinux

4.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

yum install ncurses-devel (to run curses)
yum install gnuplot (to run plots for various tests)
yum install <any other package you want to install>

4.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccurdacc_nomsi parameter located in the …/driver/ccurdscc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

➢ ccurdscc_nomsi=0 enable MSI support (default for RedHawk systems)
➢ ccurdscc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on
a per board basis for cards using a PLX chip for generating interrupts. This is specially true for
the later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to
use MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d MSI Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

➢ # grubby --update-kernel=ALL --args=intremap=nosid (add the parameter)

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 3 -

➢ # grubby --update-kernel=ALL --remove-args=intremap=nosid (remove the parameter)
➢ # grubby --info=ALL (display parameters)
➢ # reboot
➢ After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is

present.

4.3. BIOS and Kernel Level Tuning
It is possible that some tests may get overflow or underflow errors as the card is capable of high
sample rate transfers. You may need to lower the sample rates for these tests to run successfully if
BIOS and kernel level tuning does not help.

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
varions BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

5. Running on Native Ubuntu

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver
will also be able to run on some selected versions of Ubuntu with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccurdscc/driver/ccurdscc.ko due to unavailability
of vmlinux

5.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

apt install build-essential
apt install libssl-dev
apt install nfs-common (to mount nfs file systems)
apt install libncurses-dev (to run curses)
apt install gnuplot (to run plots for various tests)
apt install chrony (for more accurate clock time)

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 4 -

apt install <any other package you want to install>

5.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccurdscc_nomsi parameter located in the …/driver/ccurdscc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

➢ ccurdscc_nomsi=0 enable MSI support (default for RedHawk systems)
➢ ccurdscc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on
a per board basis for cards using a PLX chip for generating interrupts. This is specially true for
the later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to
use MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d MSI Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

➢ Edit /etc/default/grub and add "intremap=nosid" to “GRUB_CMDLINE_LINUX=” entry
➢ # update-grub
➢ # reboot
➢ After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is

present.

5.3. Compiling the driver with installed gcc
Depending on the Ubuntu kernel version supported, you will need to make sure that the driver is
compiled with the same gcc as the kernel.

Currently, for Ubuntu release 22.04, the kernel 5.15 uses gcc-11 while kernel 6.4 uses gcc-12

If gcc-12 is not installed, you can do the following:

apt install gcc-12

Then create alternate entries for each available version:

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc

/usr/bin/x86_64-linux-gnu-gcc-11 11

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc
/usr/bin/x86_64-linux-gnu-gcc-12 12

You can select the appropriate gcc with the following commands:

sudo update-alternatives --config gcc
sudo update-alternatvies --config x86_64-linux-gnu-gcc

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 5 -

All of this will ensure you have the compiler versions that match what the kernel was compiled with.

5.4. BIOS and Kernel Level Tuning
It is possible that some tests may get overflow or underflow errors as the card is capable of high
sample rate transfers. You may need to lower the sample rates for these tests to run successfully if
BIOS and kernel level tuning does not help.

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
varions BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 Sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

6. Installation and Removal

6.1. Hardware Installation

The CCRT-DSCC card is a x1 PCI Express product and is compatible with any PCI Express slot. The
board must be installed in the system before attempting to use the driver.

Caution: when installing the card insure the computer is powered off and the
machine’s power cord is disconnected. Please observe electrostatic discharge
precautions such as the use of a grounding strap.

The ccurdscc driver is designed to support IRQ sharing. If this device’s IRQ is being shared by
another device then this driver’s performance could be compromised. Hence, as far as possible,
move this board into a PCI slot who’s IRQ is not being shared with other devices.

An ‘lspci -v’ or the ‘lsirq’ command can be used to determine the IRQs of various devices in the
system.

lspci –v

for 9277 (CP-AD3224-DS) +/- 5 Volt board
05:04.0 System peripheral: Concurrent Computer Corporation Device 9277

(rev 01)

 Subsystem: PLX Technology, Inc. Device 9056

 Flags: bus master, 66MHz, medium devsel, latency 96, IRQ 98

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 6 -

 Memory at c4b01000 (32-bit, non-prefetchable) [size=512]

 Memory at c4b00000 (32-bit, non-prefetchable) [size=2K]

 Capabilities: <access denied>

for 9278 (CP-AD3224-DS-10) +/-10 Volt board
06:04.0 System peripheral: Concurrent Computer Corporation 10 Volt Delta-

Sigma Input Card (rev 01)

 Subsystem: PLX Technology, Inc. Device 9056

 Flags: bus master, 66MHz, medium devsel, latency 96, IRQ 51

 Memory at fbbff400 (32-bit, non-prefetchable) [size=512]

 Memory at fbbff800 (32-bit, non-prefetchable) [size=2K]

 Capabilities: [40] Power Management version 2

 Capabilities: [48] #00 [0000]

 Capabilities: [4c] Vital Product Data

lsirq
98 05:04.0 Concurrent Computer Corporation Unknown device (rev 01)

The default driver configuration uses MSI interrupts. If the kernel supports MSI interrupts, then
sharing of interrupts will not occur, in which case the board placement will not be an issue.

After installing the card, reboot the system and verify the hardware has been recognized by the
operating system by executing the following command:

lspci –d 1542:9277
lspci –d 1542:9278

For each CCRT-DSCC PCIe board installed, a line like one of the following will be printed, depending
on the revision of the system’s /usr/share/hwdata/pci.ids file:

05:04.0 System peripheral: Concurrent Computer Corporation Device 9277 (rev 01)

02:04.0 System peripheral: Concurrent Computer Corporation Device 9278 (rev 01)

If a line like the above is not displayed by the lspci command, the board has not been properly
installed in the system. Make sure that the device has been correctly installed prior to attempting to
use the software. One similar line should be found for each installed card.

6.2. Add Device to Restricted List

For kernels that have iommu enabled, these devices will fail DMA read and write access with a
message similar to the following:

DMAR: [DMA Read] Request device [1d:00.0] fault addr 5eec0000
[fault reason 01] Present bit in root entry is clear

You can issue the ‘cat /proc/cmdline’ command to determine if iommu is enabled in the kernel after
booting the system. If you see the ‘intel_iommu=on’ entry, the kernel has iommu enabled for the
entire operating system. In this case you will need to restrict iommu usage for these devices.

To enable DMA to work, you will need to add the following entries to the kernel grub line:

1. iommu=pt (this passthrough option is needed for
 restricting the selected devices)

2. intel_iommu.blacklist_ids=1542:9277 (vendor:device id if 9277 card is installed)
3. intel_iommu.blacklist_ids=1542:9278 (vendor:device id if 9287 card is installed)
4. intel_iommu.blacklist_ids=1542:9277,1542:9278 (vendor:device id if both cards are installed)

Use the ccur-grub2 or blscfg command depending on the loaded kernel. You can use the following
argument ‘--help’ to either command for additional information on its usage.

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 7 -

1. ccur-grub2 --kopt-add iommu=pt 0,1,2 (for kernel entries 0, 1 and 2)

2. ccur-grub2 --kopt-add intel_iommu.blacklist_ids=1542:9277,1542:9278 0,1,2

Reboot the kernel for the device restriction to take effect. You should get a message similar to the
one below if the command took effect:

DMAR: add [1542:9277] to intel_iommu blacklist
DMAR: add [1542:9278] to intel_iommu blacklist

Note!!!

If you wish to disable iommu for all devices under a PLX bridge you can use the following option
instead:

1. intel_iommu=on,plx_off

 If you want DMA to work for kernels that do not support plx_off or intel_iommu.blacklist_ids you

will need to disable iommu in the kernel.
1. intel_iommu=off

6.3. Software Installation

Concurrent Real-Time™ port of the ccurdscc software is distributed in RPM and DEB format on a
DVD. Source for the API library, example test programs, and kernel loadable driver are included, as
is documentation in PDF format.

The software is installed in the /usr/local/CCRT/drivers/ccurdscc directory. This directory will be
referred to as the “top-level” directory by this document.

Warning: Before installing the software, for RedHawk kernels, the build environment
must be set up and match the current OS kernel you are using. If you are running one of
the preconfigured kernels supplied by Concurrent Real-Time and have not previously
done so, run the following commands while logged in as the root user before installing
the driver software:

cd /lib/modules/`uname –r`/build

./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To install the ccurdscc package, load the DVD installation media and issue the following commands
as the root user. The system should auto-mount the DVD to a mount point in the /media or
/run/media directory based on the DVD’s volume label – in this case ccurdscc_driver. The
example’s [user_name] may be root, or the logged-in user. Then enter the following commands from
a shell window:

== as root ==
 --- on RedHawk 6.5 and below ---

cd /media/ccurdscc_driver

 --- or on RedHawk 7.0 and above ---

cd /run/media/[user_name]/ccurdscc_driver

--- or on Ubuntu RedHawk ---

cd /media/[user_name]/ccurdscc_driver

rpm –ivh ccurdscc_RedHawk_driver*.rpm (on an RPM based system)

--- or ---

dpkg –i ccurdscc_RedHawk_driver*.deb (on a Debian based system)

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 8 -

cd /

eject

On successful installation the source tree for the ccurdscc package, including the loadable kernel
module, API libraries, and test programs is extracted into the /usr/local/CCRT/drivers/ccurdscc
directory by the rpm installation process, which will then compile and install the various software
components.

The loadable kernel module is installed in the /lib/modules/`uname –r`/misc directory.
Issue the command below to view the boards found by the driver:

cat /proc/ccurdscc

Version : 23.0.1

Built : Mon Jun 4 2018, 10:25:49

Boards : 1

 card=0: [0f:04.0] bus=15, slot=4, func=0, irq=105, msi=1, nbuf=10, hwm=0, ID=656739,

BoardInfo=0x92780202

DMA Memory: (Allocated): card number(s): 0

Once the package is installed, the driver needs to be loaded with one of the following commands:

=== as root ===
 # cd /usr/local/CCRT/drivers/ccurdscc

 # make load
 --- or on RedHawk 6.5 and below ---

 # /sbin/service ccurdscc start

 --- or on RedHawk 7.0 and above ---

 # /usr/bin/systemctl start ccurdscc

 --- or on Ubuntu RedHawk ---

 # /bin/systemctl start ccurdscc

When the driver is loaded with the /sbin/service or /usr/bin/systemctl call, automatic calibration will
commence for all the cards installed in the system and run in the background. This is also true when
the system is rebooted. Issuing the ‘make load’ in the driver directory will not initiate an automatic
calibration.

6.4. Software Removal

The ccurdscc driver is a dynamically loadable driver that can be unloaded, uninstalled and removed.
Once removed, the only way to recover the driver is to re-install the rpm from the installation DVD:

If any changes have been made to the driver package installed in
/usr/local/CCRT/drivers/ccurdscc directory, they need to be backed up prior to invoking
the removal; otherwise, all changes will be lost.

 === as root ===
 # rpm –e ccurdscc (driver unloaded, uninstalled, and deleted – on an RPM based system)

--- or ---

 # dpkg -P ccurdscc (driver unloaded, uninstalled, and deleted – on a Debian based system)

If, for any reason, the user wishes to un-load and uninstall the driver and not remove it, they can
perform the following:

 === as root ===
 # cd /usr/local/CCRT/drivers/ccurdscc

 # make unload (unload the driver from the kernel)
 --- or on RedHawk 6.5 and below ---

 # /sbin/service ccurdscc stop

 --- or on RedHawk 7.0 and above ---

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 9 -

 # /usr/bin/systemctl stop ccurdscc

 --- or on Ubuntu RedHawk ---

 # /bin/systemctl stop ccurdscc

To uninstall the ccurdscc driver, do the following after it has been unloaded:

 === as root ===
 # cd /usr/local/CCRT/drivers/ccurdscc

 # make uninstall (uninstall the driver and library)

In this way, the user can simply issue the ‘make install’ and ‘make load’ in the
/usr/local/CCRT/drivers/ccurdscc directory later to re-install and re-load the driver.

7. Auto-loading the Driver

The ccurdscc driver is a dynamically loadable driver. Once you install the package or perform the
‘make install’, appropriate installation files are placed in the /etc/rc.d/rc*.d or /usr/lib/system/systemd
directory so that the driver is automatically loaded and unloaded when Linux is booted and shutdown.
If, for any reason, you do not wish to automatically load and unload the driver when Linux is booted or
shutdown, you will need to manually issue the following command to enable/disable the automatic
loading of the driver:

 === as root ===
 --- on RedHawk 6.5 and below ---

 # /sbin/chkconfig –-add ccurdscc (enable auto-loading of the driver)

 # /sbin/chkconfig –-del ccurdscc (disable auto-loading of the driver)
 --- or on RedHawk 7.0 and above ---

 # /usr/bin/systemctl enable ccurdscc (enable auto-loading of the driver)

 # /usr/bin/systemctl disable ccurdscc (disable auto-loading of the driver)
 --- or on Ubuntu RedHawk ---

 # /bin/systemctl enable ccurdscc (enable auto-loading of the driver)

 # /bin/systemctl disable ccurdscc (disable auto-loading of the driver)

8. Testing and Usage

Build and run the driver test programs, if you have not already done so:

 # cd /usr/local/CCRT/drivers/ccurdscc

 # make test (build the test programs)

Several tests have been provided in the /usr/local/CCRT/drivers/ccurdscc/test directory and
can be run to test the driver and board.

 === as root ===
./test/ccurdscc_disp (display channel data)

./test/ccurdscc_dump (dump board registers)

./test/ccurdscc_get_sps (determine sample rate for the channels)

./test/ccurdscc_rdreg (display board resisters)

./test/ccurdscc_reg (Display board resisters)

./test/ccurdscc_regedit (Interactive board register editor test)

./test/ccurdscc_tst (Interactive test to test driver and board)

./test/ccurdscc_wreg (edit board resisters)

./test/lib/ccurdscc_calibrate (library: get/set board calibration)

./test/lib/ccurdscc_compute_pll_clock (library: compute pll clock)

./test/lib/ccurdscc_disp (library: display channel data)

./test/lib/ccurdscc_dma_read (library: simple driver DMA read)

./test/lib/ccurdscc_fifo (library: perform FIFO reads)

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 10 -

./test/lib/ccurdscc_identify (library: identify board)

./test/lib/ccurdscc_smp_affinity (library: display/set IRQ CPU affinity)

./test/lib/ccurdscc_tst_lib (library: Interactive test to test driver and board)

./test/lib/sprom/ccurdscc_sprom (library: serial prom view/update calibration utility)

9. Re-building the Driver, Library and Tests

If for any reason the user needs to manually rebuild and load an installed rpm package, they can go
to the installed directory and perform the necessary build.

Warning: Before installing the software, for RedHawk kernels, the build environment
must be set up and match the current OS kernel you are using. If you are running one of
the preconfigured kernels supplied by Concurrent Real-Time and have not previously
done so, run the following commands while logged in as the root user before installing
the driver software:

cd /lib/modules/`uname –r`/build

./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To build the driver and tests:

=== as root ===
 # cd /usr/local/CCRT/drivers/ccurdscc

 # make clobber (perform cleanup)

make (make package and build the driver, library and tests)

(Note: if you only wish to build the driver, you can enter the ‘make driver’ command instead)

After the driver is built, you will need to install the driver. This install process should only be
necessary if the driver is re-built with changes.

=== as root ===
cd /usr/local/CCRT/drivers/ccurdscc

make install (install the driver software, library and man page)

Once the driver and the board are installed, you will need to load the driver into the running kernel
prior to any access to the CCURDSCC board.

=== as root ===
cd /usr/local/CCRT/drivers/ccurdscc

make load (load the driver)

10. Software Support

This driver package includes extensive software support and test programs to assist the user in
communicating with the board. Refer to the Concurrent Real-Time PCIe 32-Channel Delta Sigma
Converter Card (DSCC) Software Interface document for more information on the product.

10.1. Device Configuration

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 11 -

After the driver is successfully loaded, the device to card association file ccurdscc_devs will be
created in the /usr/local/CCRT/drivers/ccurdscc/driver directory, if it did not exist. Additionally,
there is a symbolic link to this file in the /usr/lib/config/ccurdscc directory as well. If the user wishes
to keep the default one-to-one device to card association, no further action is required. If the device to
card association needs to be changed, this file can be edited by the user to associate a particular
device number with a card number that was found by the driver. The commented portion on the top of
the ccurdscc_devs file is automatically generated every time the user issues the ‘make load’,
‘/sbin/service ccurdscc start’ (on RedHawk 6.5 and below), or ‘systemctl start ccurdscc’ (on
RedHawk 7.0 and above) command with the current detected cards, information. Any device to card
association edited and placed in this file by the user is retained and used during the next ‘make
load’, ‘/sbin/service ccurdscc start’ or ‘systemctl start ccurdscc’ process.

If the user deletes the ccurdscc_devs file and recreates it as an empty file and performs a ‘make
load’ or if the user does not associate any device number with card number, the driver will provide a
one to one association of device number and card number. For more information on available
commands, view the commented section of the ccurdscc_devs configuration file.

Warning: If you edit the ccurdscc_devs file to associate a device to a card, you will need
to re-issue the ‘make load’, ‘/sbin/service ccurdscc start’, or ‘systemctl start ccurdscc’
command to generate the necessary device to card association. This device to card
association will be retained until the user changes or deletes the association. If any invalid
association is detected, the loading of the driver will fail.

10.2. Library Interface

There is an extensive software library that is provided with this package. For more information on the
library interface, please refer to the PCIe 32-Channel Delta Sigma Converter Card (DSCC) Software
Interface by Concurrent Real-TIme document.

10.3. Calibration

Several library calls are provided to assist the user in calibrating the board. Additionally, the board
contains factory calibration information for the output voltage range. Users can view this information
using the supplied API or the serial prom test utility ccurdscc_sprom. Though the API and test utility
provides capability to edit and change the factory calibration, users should refrain from making any
changes to it, as it will no longer reflect the factory calibration shipped with the card. Users can use
the factory calibration to restore the calibration information stored for each configured channel prior to
commencing a test run. The restore API will update the calibration information for all the channels
based on their current voltage range. Note that the factory calibration values were obtained under
specific conditions, such as temperature, that may not be the same as the user application. In most
cases it will always be better to perform auto-calibration after the board is stabilized in the user
environment.

Additionally, the users can perform up to two independent user controlled checkpoints where the
active channel configuration and calibration information is stored in the serial prom for all the
channels. At any time, the user can restore either of the two checkpoints with an API call or the serial
prom test utility ccurdscc_sprom prior to a test run. These checkpoints will allow the user to store
specific values pertaining to their calibration conditions.

10.4. Firmware Updates

This board is capable of being re-programmed in the field as new firmware updates are made
available by Concurrent Real-Time™. The procedure for re-programming the firmware will be
supplied to the user at the time when a firmware update is necessary.

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 12 -

10.5. Debugging

This driver has some debugging capability and should only be enabled while trying to trouble-shoot a
problem. Once resolved, debugging should be disabled otherwise it could adversely affect the
performance and behavior of the driver.

To enable debugging, the Makefile file in /usr/local/CCRT/drivers/ccurdscc/driver should be edited
to un-comment the statement (remove the preceding ‘#’):

 #BUILD_TYPE=debug

Next, compile and install the driver

 # cd /usr/local/CCRT/drivers/ccurdscc/driver

 # make

 # make install

Next, edit the ccurdscc_config file in /usr/local/CCRT/drivers/ccurdscc/driver to un-comment the
statement (remove the preceding ‘#’):

 # ccurdscc_debug_mask=0x00002040

Additionally, the value of the debug mask can be changed to suite the problem investigated. Once the
file has been edited, the user can load the driver by issuing the following:

 # cd /usr/local/CCRT/drivers/ccurdscc/driver

 # make load

The user can also change the debug flags after the driver is loaded by passing the above debug
statement directly to the driver as follows:

 # echo “ccurdscc_debug_mask=0x00082047” > /proc/driver/ccurdscc

Following are the supported flags for the debug mask as shown in the ccurdscc_config file.

D_ENTER 0x00000001 /* enter routine */ #

D_EXIT 0x00000002 /* exit routine */ #

D_L1 0x00000004 /* level 1 */ #

D_L2 0x00000008 /* level 2 */ #

D_L3 0x00000010 /* level 3 */ #

D_L4 0x00000020 /* level 4 */ #

D_ERR 0x00000040 /* level error */ #

D_WAIT 0x00000080 /* level wait */ #

D_INT0 0x00000100 /* interrupt level 0 */ #

D_INT1 0x00000200 /* interrupt level 1 */ #

D_INT2 0x00000400 /* interrupt level 2 */ #

D_INT3 0x00000800 /* interrupt level 3 */ #

D_INTW 0x00001000 /* interrupt wakeup level */ #

D_INTE 0x00002000 /* interrupt error */ #

D_RTIME 0x00010000 /* display read times */ #

D_WTIME 0x00020000 /* display write times */ #

D_REGS 0x00040000 /* dump registers */ #

D_IOCTL 0x00080000 /* ioctl call */ #

D_DATA 0x00100000 /* data level */ #

D_DMA 0x00200000 /* DMA level */ #

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 13 -

D_DBUFF 0x00800000 /* DMA buffer allocation */ #

D_NEVER 0x00000000 /* never print this debug message */ #

D_ALWAYS 0xffffffff /* always print this debug message */ #

D_TEMP D_ALWAYS /* Only use for temporary debug code */ #

Another variable ccurdscc_debug_ctrl is also supplied in the ccurdscc_config that

the driver developer can use to control the behavior of the driver. The user can also change the
debug flags after the driver is loaded by passing the above debug statement directly to the driver as
follows:

 # echo “ccurdscc_debug_ctrl=0x00001234” > /proc/driver/ccurdscc

To make use of this variable, the driver must be coded to interrogate the bits in the
ccurdscc_debug_ctrl variable and alter its behavior accordingly.

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 14 -

11. Notes and Errata

• In some kernel releases, when a package is installed or uninstalled, you may see a warning
message on the system console similar to “systemd-rc-local-generator[22094]:
/etc/rc.d/rc.local is not marked executable, skipping.”. This is for informational purpose only
and can be ignored.

• If a kernel is configured with the CONFIG_DEBUG_LOCK_ALLOC define, the driver will fail to
compile due to mutex_lock_nested() call being included with GPL requirement. If you want to
successfully compile the driver, you will need to remove the CONFIG_DEBUG_LOCK_ALLOC
define and rebuild the kernel.

• Ubuntu kernels RH8.0 onwards may have the default systemd-timesyncd daemon installed
which does not accurately adjust the system.You may want to replace the default with the chrony
package for a more accurate time asjustment.

• The 9277 board comes in +/5 Volt range.

• The 9278 board comes in +/-10 Volt range.

• Full differential mode is supported by these boards.

• When synchronizing multiple cards, only one synchronization clock can be selected even though
the board supports multiple clocks.

• Driver and board supports MSI interrupts. The default configuration is to perform MSI interrupts.

• On some kernel logs, you may see warnings about module verifications and tainted kernel. These
can be ignored as they are generated due to the fact that this is a proprietary driver.

• Some new SuperMicro Mother Boards (X11SPA-TF) have a problem with supporting MSI
interrupts on these cards. The driver detects this problem and attempts to switch to alternate MSI
support. If that also fails, then wired interrupts configured by the driver. If the board detects this
issue, an appropriate error message is inserted in the kernel log message (which can be viewed
with the command dmesg).

• On some SuperMicro Mother Boards, if the BIOS has enabled VT-d MSI interrupt remapping,
there is a problem with some kernels where interrupts will not be generated due to source-id
verification failure. Currently, the driver has implemented hooks into the RedHawk 6.5 onwards
kernels to fix this problem.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d Msi Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 15 -

Appendix A: External Connections and Pin-outs

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 16 -

Appendix B: The 9277 (CP-AD3224-DS) +/- 5 Volt Board

Appendix C: The 9278 (CP-AD3224-DS-10) +/- 10 Volt Board

Concurrent Real-Time™ ccurdscc Driver for RedHawk Linux™ – Release Notes - 17 -

This page intentionally left blank

