

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 1 of 40

Software Interface
CCURPWMIN (WC-PWM-1112 Input)

PCIe 12-Channel Pulse Width

Modulation Input

Card (PWMIN)

Driver ccurpwmin (WC-PWM-1112)

OS RedHawk

Vendor Concurrent Real-Time, Inc.

Hardware PCIe 12-Channel Pulse Width Modulation Input Card (CP-PWM-1112)

Author Darius Dubash

Date November 21st, 2023 Rev 2023.2

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 2 of 40

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 3 of 40

Table of Contents

1. INTRODUCTION .. 5

1.1 Related Documents ... 5

2. SOFTWARE SUPPORT .. 5

2.1 Direct Driver Access ... 5
2.1.1 open(2) system call ... 5
2.1.2 ioctl(2) system call .. 5
2.1.3 mmap(2) system call ... 7
2.1.4 read(2) system call .. 8

2.2 Application Program Interface (API) Access ... 9
2.2.1 ccurPWMIN_Add_Irq() .. 10
2.2.2 ccurPWMIN_CalcDutyCycle()... 10
2.2.3 ccurPWMIN_CalcFreqinHz() ... 10
2.2.4 ccurPWMIN_CalcPeriodinUsec() .. 11
2.2.5 ccurPWMIN_Clear_Driver_Error() .. 11
2.2.6 ccurPWMIN_Clear_Lib_Error() ... 11
2.2.7 ccurPWMIN_Close() .. 12
2.2.8 ccurPWMIN_Disable_Pci_Interrupts() .. 12
2.2.9 ccurPWMIN_Enable_Pci_Interrupts().. 12
2.2.10 ccurPWMIN_Fast_Memcpy() .. 13
2.2.11 ccurPWMIN_Fast_Memcpy_Unlocked() ... 13
2.2.12 ccurPWMIN_Flush_Fifo() .. 13
2.2.13 ccurPWMIN_Format_Raw_Data() ... 14
2.2.14 ccurPWMIN_Freeze_Output() ... 15
2.2.15 ccurPWMIN_Get_Driver_Error() ... 15
2.2.16 ccurPWMIN_Get_Driver_Read_Mode() .. 16
2.2.17 ccurPWMIN_Get_Info() ... 16
2.2.18 ccurPWMIN_Get_Lib_Error_Description() ... 17
2.2.19 ccurPWMIN_Get_Lib_Error() ... 18
2.2.20 ccurPWMIN_Get_Mapped_Config_Ptr() ... 18
2.2.21 ccurPWMIN_Get_Mapped_Local_Ptr() ... 19
2.2.22 ccurPWMIN_Get_Noise_Filter_Count() .. 19
2.2.23 ccurPWMIN_Get_Open_File_Descriptor() .. 19
2.2.24 ccurPWMIN_Get_Period_Average_Count() .. 20
2.2.25 ccurPWMIN_Get_Physical_Memory() .. 20
2.2.26 ccurPWMIN_Get_PWM() .. 21
2.2.27 ccurPWMIN_Get_Value() .. 21
2.2.28 ccurPWMIN_Initialize_Board() ... 23
2.2.29 ccurPWMIN_MMap_Physical_Memory() ... 24
2.2.30 ccurPWMIN_Munmap_Physical_Memory() .. 24
2.2.31 ccurPWMIN_NanoDelay() ... 24
2.2.32 ccurPWMIN_Open() .. 25
2.2.33 ccurPWMIN_Read() ... 25
2.2.34 ccurPWMIN_Remove_Irq() ... 26
2.2.35 ccurPWMIN_Reset_Board()... 26
2.2.36 ccurPWMIN_Reset_PulseCount() .. 26
2.2.37 ccurPWMIN_Select_Driver_Read_Mode() .. 27
2.2.38 ccurPWMIN_Set_Noise_Filter_Count() .. 27
2.2.39 ccurPWMIN_Set_Period_Average_Count()... 28
2.2.40 ccurPWMIN_Set_Value() .. 28
2.2.41 ccurPWMIN_Unfreeze_Output() ... 29
2.2.42 ccurPWMIN_Write() .. 29

3. TEST PROGRAMS .. 30

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 4 of 40

3.1 Direct Driver Access Example Tests .. 30
3.1.1 ccurpwmin_dump ... 30
3.1.2 ccurpwmin_rdreg .. 34
3.1.3 ccurpwmin_reg ... 34
3.1.4 ccurpwmin_tst ... 37
3.1.5 ccurpwmin_wreg .. 37

3.2 Application Program Interface (API) Access Example Tests ... 38
3.2.1 ccurpwmin_disp .. 38
3.2.2 ccurpwmin_tst_lib .. 39

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 5 of 40

1. Introduction

This document provides the software interface to the ccurpwmin driver which communicates with the

Concurrent Real-Time PCI Express 12-Channel Pulse Width Modulation Input Card (CP-PWM-1112).

The software package that accompanies this board provides the ability for advanced users to communicate

directly with the board via the driver ioctl(2) and mmap(2) system calls. When programming in this mode, the

user needs to be intimately familiar with both the hardware and the register programming interface to the

board. Failure to adhere to correct programming will result in unpredictable results.

Additionally, the software package is accompanied with an extensive set of application programming interface

(API) calls that allow the user to access all capabilities of the board. The API allows the user the ability to

communicate directly with the board through the ioctl(2) and mmap(2) system calls. In this case, there is a risk

of conflicting with API calls and therefore should only be used by advanced users who are intimately familiar

with, the hardware, board registers and the driver code.

Various example tests have been provided in the test directorie to assist the user in writing their applications.

1.1 Related Documents

• Pulse Width Input Card Installation on RedHawk Release Notes by Concurrent Real-Time.

2. Software Support

Software support is provided for users to communicate directly with the board using the kernel system calls (Direct

Driver Access) or the supplied API. Both approaches are identified below to assist the user in software development.

2.1 Direct Driver Access

2.1.1 open(2) system call

In order to access the board, the user first needs to open the device using the standard system call

open(2).

 int fp;

 fp = open(“/dev/ccurpwmin0”, O_RDWR);

 The file pointer ‘fp’ is then used as an argument to other system calls. The device name specified is of the

format “/dev/ccurpwmin<num>” where num is a digit 0..9 which represents the board number that is to be

accessed.

2.1.2 ioctl(2) system call

This system call provides the ability to control and get responses from the board. The nature of the

control/response will depend on the specific ioctl command.

int status;

int arg;

status = ioctl(fp, <IOCTL_COMMAND>, &arg);

where, ‘fp’ is the file pointer that is returned from the open(2) system call. <IOCTL_COMMAND> is one of

the ioctl commands below and arg is a pointer to an argument that could be anything and is dependent on the

command being invoked. If no argument is required for a specific command, then set to NULL.

Driver IOCTL command:

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 6 of 40

IOCTL_CCURPWMIN_ADD_IRQ

IOCTL_CCURPWMIN_DISABLE_PCI_INTERRUPTS

IOCTL_CCURPWMIN_ENABLE_PCI_INTERRUPTS

IOCTL_CCURPWMIN_GET_DRIVER_ERROR

IOCTL_CCURPWMIN_GET_DRIVER_INFO

IOCTL_CCURPWMIN_GET_PHYSICAL_MEMORY

IOCTL_CCURPWMIN_GET_READ_MODE

IOCTL_CCURPWMIN_INIT_BOARD

IOCTL_CCURPWMIN_MAIN_CONTROL_REGISTERS

IOCTL_CCURPWMIN_MMAP_SELECT

IOCTL_CCURPWMIN_NO_COMMAND

IOCTL_CCURPWMIN_PCI_BRIDGE_REGISTERS

IOCTL_CCURPWMIN_PCI_CONFIG_REGISTERS

IOCTL_CCURPWMIN_READ_EEPROM

IOCTL_CCURPWMIN_REMOVE_IRQ

IOCTL_CCURPWMIN_RESET_BOARD

IOCTL_CCURPWMIN_SELECT_READ_MODE

IOCTL_CCURPWMIN_WRITE_EEPROM

IOCTL_CCURPWMIN_ADD_IRQ: This ioctl does not have any arguments. Its purpose is to setup the driver

interrupt handler to handle interrupts. This driver currently does not use interrupts for DMA and hence there is

no need to use this call. This ioctl is only invoked if the user has issued the

IOCTL_CCURPWMIN_REMOVE_IRQ call earlier to remove the interrupt handler.

IOCTL_CCURPWMIN_DISABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Currently, it

does not perform any operation.

IOCTL_CCURPWMIN_ENABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Currently, it

does not perform any operation.

IOCTL_CCURPWMIN_GET_DRIVER_ERROR: The argument supplied to this ioctl is a pointer to the

ccurpwmin_user_error_t structure. Information on the structure is located in the ccurpwmin_user.h include

file. The error returned is the last reported error by the driver. If the argument pointer is NULL, the current

error is reset to CCURPWMIN_SUCCESS.

IOCTL_CCURPWMIN_GET_DRIVER_INFO: The argument supplied to this ioctl is a pointer to the

ccurpwmin_ ccurpwmin_driver_info_t structure. Information on the structure is located in the

ccurpwmin_user.h include file. This ioctl provides useful driver information.

IOCTL_CCURPWMIN_GET_PHYSICAL_MEMORY: The argument supplied to this ioctl is a pointer to the

ccurpwmin_phys_mem_t structure. Information on the structure is located in the ccurpwmin_user.h include

file. If physical memory is not allocated, the call will fail, otherwise the call will return the physical memory

address and size in bytes. The only reason to request and get physical memory from the driver is to allow the

user to perform DMA operations and by-pass the driver and library. Care must be taken when performing user

level DMA as incorrect programming could lead to unpredictable results including but not limited to

corrupting the kernel and any device connected to the system.

IOCTL_CCURPWMIN_GET_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned

long int. The value returned will be one of the read modes as defined by the enum

CCURPWMIN_DRIVER_READ_MODE located in the ccurpwmin_user.h include file.

IOCTL_CCURPWMIN_INIT_BOARD: This ioctl does not have any arguments. This call resets the board to a

known initial default state. This call is currently identical to the IOCTL_CCURPWMIN_RESET_BOARD call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 7 of 40

IOCTL_CCURPWMIN_MAIN_CONTROL_REGISTERS: This ioctl dumps all the PCI Main Control registers

and is mainly used for debug purpose. The argument to this ioctl is a pointer to the

ccurpwmin_main_control_register_t structure. Raw 32-bit data values are read from the board and loaded into

this structure.

IOCTL_CCURPWMIN_MMAP_SELECT: The argument to this ioctl is a pointer to the

ccurpwmin_mmap_select_t structure. Information on the structure is located in the ccurpwmin_user.h include

file. This call needs to be made prior to the mmap(2) system call so as to direct the mmap(2) call to perform

the requested mapping specified by this ioctl. The three possible mappings that are performed by the driver

are to mmap the local register space (CCURPWMIN_SELECT_LOCAL_MMAP), the configuration register

space (CCURPWMIN_SELECT_CONFIG_MMAP) and a physical memory

(CCURPWMIN_SELECT_PHYS_MEM_MMAP) that is created by the the mmap(2) system call.

IOCTL_CCURPWMIN_NO_COMMAND: This ioctl does not have any arguments. It is only provided for

debugging purpose and should not be used as it serves no purpose for the user.

IOCTL_CCURPWMIN_PCI_BRIDGE_REGISTERS: This ioctl dumps all the PCI bridge registers and is

mainly used for debug purpose. The argument to this ioctl is a pointer to the

ccurpwmin_pci_bridge_register_t structure. Raw 32-bit data values are read from the board and loaded into

this structure.

IOCTL_CCURPWMIN_PCI_CONFIG_REGISTERS: This ioctl dumps all the PCI configuration registers and

is mainly used for debug purpose. The argument to this ioctl is a pointer to the

ccurpwmin_pci_config_reg_addr_mapping_t structure. Raw 32-bit data values are read from the board and

loaded into this structure.

IOCTL_CCURPWMIN_READ_EEPROM: The argument to this ioctl is a pointer to the ccurpwmin_eeprom_t

structure. Information on the structure is located in the ccurpwmin_user.h include file. This call is specifically

used by the supplied eeprom application and should not be used by the user.

IOCTL_CCURPWMIN_REMOVE_IRQ: This ioctl does not have any arguments. Its purpose is to remove the

interrupt handler that was previously setup. This driver currently does not use interrupts for DMA and hence

there is no need to use this call. The user should not issue this call, otherwise reads will time out.

IOCTL_CCURPWMIN_RESET_BOARD: This ioctl does not have any arguments. This call resets the board to

a known initial default state. This call is currently identical to the IOCTL_CCURPWMIN_INIT_BOARD call.

IOCTL_CCURPWMIN_SELECT_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned

long int. The value set will be one of the read modes as defined by the enum

CCURPWMIN_DRIVER_READ_MODE located in the ccurpwmin_user.h include file.

IOCTL_CCURPWMIN_WRITE_EEPROM: The argument to this ioctl is a pointer to the

ccurpwmin_eeprom_t structure. Information on the structure is located in the ccurpwmin_user.h include file.

This call is specifically used by the supplied eeprom application and should not be used by the user.

2.1.3 mmap(2) system call

This system call provides the ability to map either the local board registers, the configuration board registers

or create and map a physical memory that can be used for user DMA. Prior to making this system call, the

user needs to issue the ioctl(2) system call with the IOCTL_CCURPWMIN_MMAP_SELECT command.

When mapping either the local board registers or the configuration board registers, the ioctl call returns the

size of the register mapping which needs to be specified in the mmap(2) call. In the case of mapping a

physical memory, the size of physical memory to be created is supplied to the mmap(2) call.

int *munmap_local_ptr;

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 8 of 40

ccurpwmin_local_ctrl_data_t *local_ptr;

ccurpwmin_mmap_select_t mmap_select;

unsigned long mmap_local_size;

mmap_select.select = CCURPWMIN_SELECT_LOCAL_MMAP;

mmap_select.offset=0;

mmap_select.size=0;

 ioctl(fp, IOCTL_CCURPWMIN_MMAP_SELECT,(void *)&mmap_select);

 mmap_local_size = mmap_select.size;

 munmap_local_ptr = (int *) mmap((caddr_t)0, map_local_size,

 (PROT_READ|PROT_WRITE), MAP_SHARED, fp, 0);

 local_ptr = (ccurpwmin_local_ctrl_data_t *)munmap_local_ptr;

 local_ptr = (ccurpwmin_local_ctrl_data_t *)((char *)local_ptr +

 mmap_select.offset);

.

.

.

if(munmap_local_ptr != NULL)

 munmap((void *)munmap_local_ptr, mmap_local_size);

2.1.4 read(2) system call

Prior to issuing this call to read the registers, the user needs to select the type of read operation they would

like to perform. The only reason for providing various read modes is because the board allows it and that it

gives the user the ability to choose the optimal mode for their particular application. The read mode is

specified by the ioctl call with the IOCTL_CCURPWMIN_SELECT_READ_MODE command. The

following are the possible read modes:

CCURPWMIN_PIO_CHANNEL: This mode returns the data from 1 to 12 channels. The relative offset

within the returned buffer determines the channel number. The data content is raw register values represented

by the ccurpwmin_raw_indiv_t structure located in the ccurpwmin_user.h file. The driver uses Programmed

I/O to perform this operation. In this mode, registers read are the latest data that are being continuously

collected by the hardware. During the read operation, all data is frozen from any changes.

CCURPWMIN_DMA_CHANNEL: This mode of operation is identical to the

CCURPWMIN_PIO_CHANNEL mode with the exception that the driver performs a DMA operation instead

of Programmed I/O to complete the operation. Normally, this is the preferred of the two modes as it takes

less processing time and is faster.

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 9 of 40

2.2 Application Program Interface (API) Access

The API is the recommended method of communicating with the board for most users. The following are a list of

calls that are available.

 ccurPWMIN_Add_Irq()

 ccurPWMIN_CalcDutyCycle()

 ccurPWMIN_CalcFreqinHz()

 ccurPWMIN_CalcPeriodinUsec()

 ccurPWMIN_Clear_Driver_Error()

 ccurPWMIN_Clear_Lib_Error()

 ccurPWMIN_Close()

 ccurPWMIN_Disable_Pci_Interrupts()

 ccurPWMIN_Enable_Pci_Interrupts()

 ccurPWMIN_Fast_Memcpy()

 ccurPWMIN_Fast_Memcpy_Unlocked()

 ccurPWMIN_Flush_Fifo()

 ccurPWMIN_Format_Raw_Data()

 ccurPWMIN_Freeze_Output

 ccurPWMIN_Fraction_To_Hex()

 ccurPWMIN_Get_Driver_Error()

 ccurPWMIN_Get_Driver_Read_Mode()

 ccurPWMIN_Get_Info()

 ccurPWMIN_Get_Lib_Error_Description()

 ccurPWMIN_Get_Lib_Error()

 ccurPWMIN_Get_Mapped_Config_Ptr()

 ccurPWMIN_Get_Mapped_Local_Ptr()

 ccurPWMIN_Get_Noise_Filter_Count()

 ccurPWMIN_Get_Open_File_Descriptor()

 ccurPWMIN_Get_Period_Average_Count()

 ccurPWMIN_Get_Physical_Memory()

 ccurPWMIN_Get_PWM()

 ccurPWMIN_Get_Value()

 ccurPWMIN_Initialize_Board()

 ccurPWMIN_MMap_Physical_Memory()

 ccurPWMIN_Munmap_Physical_Memory()

 ccurPWMIN_NanoDelay()

 ccurPWMIN_Open()

 ccurPWMIN_Read()

 ccurPWMIN_Remove_Irq()

 ccurPWMIN_Reset_Board()

 ccurPWMIN_Reset_PulseCount()

 ccurPWMIN_Select_Driver_Read_Mode()

 ccurPWMIN_Set_Noise_Filter_Count()

 ccurPWMIN_Set_Period_Average_Count()

 ccurPWMIN_Set_Value()

 ccurPWMIN_Unfreeze_Output()

 ccurPWMIN_Write()

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 10 of 40

2.2.1 ccurPWMIN_Add_Irq()

This call will add the driver interrupt handler if it has not been added. Normally, the user should not use this

call unless they want to disable the interrupt handler and then re-enable it.

/**

 int ccurPWMIN_Add_Irq(void *Handle)

 Description: By default, the driver assigns an interrupt handler to handle

 device interrupts. If the interrupt handler was removed using

 the ccurPWMIN_Remove_Irq(), then this call adds it back.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 ***/

2.2.2 ccurPWMIN_CalcDutyCycle()

This call simply returns to the user the duty cycle for the raw supplied period width clock count and the period

high clock count. Both these values can be returned by the hardware for each channel via programmed I/O.

Normally, the user does not need to use this call as the other API ccurPWMIN_Format_Raw_Data() returns

the duty cycle for requested channels.

/**

 double ccurPWMIN_CalcDutyCycle(u_int32_t period_width_clock_count,

 u_int32_t period_high_clock_count)

 Description: Calculate Duty Cycle in percent

 Input: u_int32_t period_width_clock_count (period width clock count)

 u_int32_t period_high_clock_count (period high clock count)

 Output: None

 Return: double Calculated Duty Cycle

 **/

2.2.3 ccurPWMIN_CalcFreqinHz()

This call simply returns to the user the frequency in Hz for the raw supplied period width clock count. This

value can be returned by the hardware for each channel via programmed I/O. Normally, the user does not need

to use this call as the other API ccurPWMIN_Format_Raw_Data() returns the frequency for requested

channels.

/**

 double ccurPWMIN_CalcFreqinHz(u_int32_t period_width_clock_count)

 Description: Calculate Frequency in Hertz

 Input: u_int32_t period_width_clock_count (period width clock count)

 Output: None

 Return: double Frequency in Hertz

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 11 of 40

2.2.4 ccurPWMIN_CalcPeriodinUsec()

This call simply returns to the user the period in micro-seconds for the raw supplied period width clock count.

This value can be returned by the hardware for each channel via programmed I/O. Normally, the user does not

need to use this call as the other API ccurPWMIN_Format_Raw_Data() returns the period for requested

channels.

/**

 double ccurPWMIN_CalcPeriodinUsec(u_int32_t period_width_clock_count)

 Description: Calculate Period in micro-seconds

 Input: u_int32_t period_width_clock_count (period width clock count)

 Output: None

 Return: double Period in micro-seconds

 **/

2.2.5 ccurPWMIN_Clear_Driver_Error()

This call resets the last driver error that was maintained internally by the driver to CCURPWMIN_SUCCESS.

 /**

 int ccurPWMIN_Clear_Driver_Error(void *Handle)

 Description: Clear any previously generated driver related error.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.6 ccurPWMIN_Clear_Lib_Error()

 This call resets the last library error that was maintained internally by the API.

/**

 int ccurPWMIN_Clear_Lib_Error(void *Handle)

 Description: Clear any previously generated library related error.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 **

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 12 of 40

2.2.7 ccurPWMIN_Close()

 This call is used to close an already opened device using the ccurPWMIN_Open() call.

/**

 int ccurPWMIN_Close(void *Handle)

 Description: Close a previously opened device.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 **/

2.2.8 ccurPWMIN_Disable_Pci_Interrupts()

The purpose of this call is to disable PCI interrupts. Currently, this call performs no action.

/**

 int ccurPWMIN_Disable_Pci_Interrupts(void *Handle)

 Description: Disable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.9 ccurPWMIN_Enable_Pci_Interrupts()

The purpose of this call is to enable PCI interrupts. Currently this call performs no action.

/**

 int ccurPWMIN_Enable_Pci_Interrupts(void *Handle)

 Description: Enable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 13 of 40

2.2.10 ccurPWMIN_Fast_Memcpy()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory using

programmed I/O. The library performs appropriate locking while the copying is taking place.

/**

 ccurPWMIN_Fast_Memcpy()

 Description: Perform fast copy to/from buffer using Programmed I/O

 (WITH LOCKING)

 Input: void *Handle (handle pointer)

 volatile void *Source (pointer to source buffer)

 int SizeInBytes (transfer size in bytes)

 Output: volatile void *Destination (pointer to destination buffer)

 Return: _ccurpwmin_lib_error_number_t

 - CCURPWMIN_LIB_NO_ERROR (successful)

 - CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 - CCURPWMIN_LIB_NOT_OPEN (device not open)

 ***/

2.2.11 ccurPWMIN_Fast_Memcpy_Unlocked()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory using

programmed I/O. The library does not perform any locking. User needs to provide external locking instead.

/***

 ccurPWMIN_Fast_Memcpy_Unlocked()

 Description: Perform fast copy to/from buffer using Programmed I/O

 (WITHOUT LOCKING)

 Input: volatile void *Source (pointer to source buffer)

 int SizeInBytes (transfer size in bytes)

 Output: volatile void *Destination (pointer to destination buffer)

 Return: None

 **/

2.2.12 ccurPWMIN_Flush_Fifo()

The hardware maintains an internal FIFO of maximum size of 127 entries that holds the last N pulse width

counts for each of the input channels. These pulse width counts are used to provide to the user a running sum

of these pulse width counts which can be used to determine the average pulse width over the specified

interval. This call provides the user the ability to clear this FIFO for specific channels by supplying the

appropriate channel mask.

/**

 int ccurPWMIN_Flush_Fifo(void *Handle, u_int32_t channel_mask)

 Description: Flush Fifo

 Input: void *Handle (handle pointer)

 u_int32_t channel_mask (which channels)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

// Channel masks that can be supplied to the call

- CCURPWMIN_CH0_MASK

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 14 of 40

- CCURPWMIN_CH1_MASK

- CCURPWMIN_CH2_MASK

- CCURPWMIN_CH3_MASK

- CCURPWMIN_CH4_MASK

- CCURPWMIN_CH5_MASK

- CCURPWMIN_CH6_MASK

- CCURPWMIN_CH7_MASK

- CCURPWMIN_CH8_MASK

- CCURPWMIN_CH9_MASK

- CCURPWMIN_CH10_MASK

- CCURPWMIN_CH11_MASK

- CCURPWMIN_ALL_CH_MASK

2.2.13 ccurPWMIN_Format_Raw_Data()

When the user issues the read(2) system call to retrieve the channel information, the information returned for

each channel is in a raw format in the ccurpwmin_raw_indiv_t structure. This call takes as input, the raw

channel information read from the hardware and converts it to a more user friendly channel information and

returned in the ccurpwmin_channel_t structure. Users can supply 1 to maximum number of channel to this

call. They need to ensure that the returned value is large enough in size to receive the formatted channels.

/**

 int ccurPWMIN_Format_Raw_Data(void *Handle, u_int32_t numChans,

 ccurpwmin_raw_indiv_t *RawData,

 ccurpwmin_channel_t *value)

 Description: Format raw data and return to user.

 Input: void *Handle (handle pointer)

 u_int32_t numChans (number of channels)

 ccurpwmin_raw_indiv_t *RawData (pointer to raw data)

 Output: ccurpwmin_channel_t *value; (pointer to value)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

/*** PWM individual channels ***/

typedef volatile struct {

 u_int32_t pwm_period_high_clock_count; /* PWM period high clock count */

 u_int32_t pwm_period_width_clock_count; /* PWM width clock count */

 u_int32_t pwm_number_rising_edges; /* PWM number of rising edges */

 u_int32_t pwm_period_sum; /* PWM period sum */

 u_int32_t pwm_period_average_count_rcvd;/* PWM period average count received

*/

} ccurpwmin_raw_indiv_t;

typedef struct

{

 u_int32_t pwm_period_high_clock_count; /* PWM period high clock count */

 u_int32_t pwm_period_width_clock_count; /* PWM period width clock count */

 u_int32_t pwm_number_rising_edges; /* PWM number of rising edges */

 double pwm_period; /* PWM period in micro-seconds */

 double pwm_average_period; /* PWM period in micro-seconds */

 double pwm_frequency; /* PWM frequency Hz */

 double pwm_duty_cycle; /* PWM duty cycle */

 u_int32_t pwm_period_average_count; /* PWM period average count */

} ccurpwmin_channel_t;

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 15 of 40

2.2.14 ccurPWMIN_Freeze_Output()

The hardware is continuously gathering, computing and supplying to the user the most current values in

various registers for each channel during each clock cycle. In order to ensure that all the data for a specific

channel is not changing while being accessed by the user, this call provides the ability to freeze a selected set

of channels while the information is being gathered from the hardware. Though this data for the channel is

“frozen” by this call, the board is continuing to gather and compute date for all the channels and is ready to

return to the user when the freeze is removed.

/**

 int ccurPWMIN_Freeze_Output(void *Handle, u_int32_t channel_mask)

 Description: Freeze Output

 Input: void *Handle (handle pointer)

 u_int32_t channel_mask (which channels)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

// Channel masks that can be supplied to the call

- CCURPWMIN_CH0_MASK

- CCURPWMIN_CH1_MASK

- CCURPWMIN_CH2_MASK

- CCURPWMIN_CH3_MASK

- CCURPWMIN_CH4_MASK

- CCURPWMIN_CH5_MASK

- CCURPWMIN_CH6_MASK

- CCURPWMIN_CH7_MASK

- CCURPWMIN_CH8_MASK

- CCURPWMIN_CH9_MASK

- CCURPWMIN_CH10_MASK

- CCURPWMIN_CH11_MASK

- CCURPWMIN_ALL_CH_MASK

2.2.15 ccurPWMIN_Get_Driver_Error()

This call returns the last error generated by the driver.

/**

 int ccurPWMIN_Get_Driver_Error(void *Handle, ccurpwmin_user_error_t *ret_err)

 Description: Get the last error generated by the driver.

 Input: void *Handle (handle pointer)

 Output: ccurpwmin_user_error_t *ret_err (error struct pointer)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

#define CCURPWMIN_ERROR_NAME_SIZE 64

#define CCURPWMIN_ERROR_DESC_SIZE 128

typedef struct _ccurpwmin_user_error_t {

 uint error; /* error number */

 char name[CCURPWMIN_ERROR_NAME_SIZE]; /* error name used in driver */

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 16 of 40

 char desc[CCURPWMIN_ERROR_DESC_SIZE]; /* error description */

} ccurpwmin_user_error_t;

enum {

 CCURPWMIN_SUCCESS = 0,

 CCURPWMIN_INVALID_PARAMETER,

 CCURPWMIN_TIMEOUT,

 CCURPWMIN_OPERATION_CANCELLED,

 CCURPWMIN_RESOURCE_ALLOCATION_ERROR,

 CCURPWMIN_INVALID_REQUEST,

 CCURPWMIN_FAULT_ERROR,

 CCURPWMIN_BUSY,

 CCURPWMIN_ADDRESS_IN_USE,

 CCURPWMIN_DMA_TIMEOUT,

};

2.2.16 ccurPWMIN_Get_Driver_Read_Mode()

This call returns the current driver read mode. When a read(2) system call is issued, it is this mode that

determines the type of read being performed by the driver.

/**

 int ccurPWMIN_Get_Driver_Read_Mode(void *Handle,

 CCURPWMIN_DRIVER_READ_MODE *mode)

 Description: Get current read mode that will be selected by the 'read()' call

 Input: void *Handle (handle pointer)

 Output: CCURPWMIN_DRIVER_READ_MODE *mode (pointer to read mode)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_NO_LOCAL_REGION (local region error)

 CCURPWMIN_LIB_IOCTL_FAILED (ioctl error)

 **/

typedef enum {

 CCURPWMIN_PIO_CHANNEL,

 CCURPWMIN_DMA_CHANNEL,

} CCURPWMIN_DRIVER_READ_MODE;

2.2.17 ccurPWMIN_Get_Info()

This call returns internal information that is maintained by the driver.

/**

 int ccurPWMIN_Get_Info(void *Handle, ccurpwmin_driver_info_t *info)

 Description: Get device information from driver.

 Input: void *Handle (handle pointer)

 Output: ccurpwmin_driver_info_t *info (info struct pointer)

 -- char info.version

 -- char *info.built

 -- char *info.module_name[16]

 -- int info.board_type

 -- char *info.board_desc[32]

 -- int info.bus

 -- int info.slot

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 17 of 40

 -- int info.func

 -- int info.vendor_id

 -- int info.device_id

 -- int info.board_id

 -- int info.firmware

 -- int info.interrupt_count

 -- U_int info.mem_region[].physical_address

 -- U_int info.mem_region[].size

 -- U_int info.mem_region[].flags

 -- U_int info.mem_region[].virtual_address

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

typedef struct

{

 uint physical_address;

 uint size;

 uint flags;

 uint *virtual_address;

} ccurpwmin_dev_region_t;

#define CCURPWMIN_MAX_REGION 32

typedef struct

{

 char version[12]; /* driver version */

 char built[32]; /* driver date built */

 char module_name[16]; /* driver name */

 int board_type; /* board type */

 char board_desc[32]; /* board description */

 int bus; /* bus number */

 int slot; /* slot number */

 int func; /* function number */

 int vendor_id; /* vendor id */

 int device_id; /* device id */

 int board_id; /* board id */

 int firmware; /* firmware number if applicable*/

 int interrupt_count; /* interrupt count */

 int Ccurpwmin_Max_Region;/*kernel DEVICE_COUNT_RESOURCE*/

 ccurpwmin_dev_region_t mem_region[CCURPWMIN_MAX_REGION];

} ccurpwmin_driver_info_t;

2.2.18 ccurPWMIN_Get_Lib_Error_Description()

This call returns the library error name and description for the supplied error number.

/**

 ccurPWMIN_Get_Lib_Error_Description()

 Description: Get Error Description of supplied error number.

 Input: int ErrorNumber (Library error number)
 Output: ccurpwmin_lib_error_description_t *lib_error_desc (error description struct pointer)
 -- int found
 -- char name[CCURPWMIN_LIB_ERROR_NAME_SIZE] (last library error name)
 -- char desc[CCURPWMIN_LIB_ERROR_DESC_SIZE] (last library error description)
 Return: none

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 18 of 40

 **/

2.2.19 ccurPWMIN_Get_Lib_Error()

This call provides detailed information about the last library error that was maintained by the API.

/**

 int ccurPWMIN_Get_Lib_Error(void *Handle, ccurpwmin_lib_error_t *lib_error)

 Description: Get last error generated by the library.

 Input: void *Handle (handle pointer)

 Output: ccurpwmin_lib_error_t *lib_error (error struct pointer)

 -- uint error (error number)

 -- char name[CCURPWMIN_LIB_ERROR_NAME_SIZE] (error name)

 -- char desc[CCURPWMIN_LIB_ERROR_DESC_SIZE] (error description)

 -- int line_number (error line number in lib)

 -- char function[CCURPWMIN_LIB_ERROR_FUNC_SIZE]

 (library function in error)

 Return: CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 Last Library Error

 **/

typedef struct _ccurpwmin_lib_error_t {

 uint error; /* lib error number */

 char name[CCURPWMIN_LIB_ERROR_NAME_SIZE]; /* error name used in lib */

 char desc[CCURPWMIN_LIB_ERROR_DESC_SIZE]; /* error description */

 int line_number; /* line number in library */

 char function[CCURPWMIN_LIB_ERROR_FUNC_SIZE];

 /* library function */

} ccurpwmin_lib_error_t;

2.2.20 ccurPWMIN_Get_Mapped_Config_Ptr()

If the user wishes to bypass the API and communicate directly with the board configuration registers, then

they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)

by bypassing the API could compromise the API and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care and intimate knowledge of the hardware

programming registers before attempting to access these registers. For information on the registers, refer to

the ccurpwmin_user.h include file that is supplied with the driver.

/**

 int ccurPWMIN_Get_Mapped_Config_Ptr(void *Handle,

 ccurpwmin_config_local_data_t **config_ptr)

 Description: Get mapped configuration pointer.

 Input: void *Handle (handle pointer)

 Output: ccurpwmin_config_local_data_t **config_ptr (config struct ptr)

 -- structure in ccurpwmin_user.h

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_NO_CONFIG_REGION (config region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 19 of 40

2.2.21 ccurPWMIN_Get_Mapped_Local_Ptr()

If the user wishes to bypass the API and communicate directly with the board control and data registers, then

they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)

by bypassing the API could compromise the API and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care and intimate knowledge of the hardware

programming registers before attempting to access these registers. For information on the registers, refer to

the ccurpwmin_user.h include file that is supplied with the driver.

/**

 int ccurPWMIN_Get_Mapped_Local_Ptr(void *Handle,

 ccurpwmin_local_ctrl_data_t **local_ptr)

 Description: Get mapped local pointer.

 Input: void *Handle (handle pointer)

 Output: ccurpwmin_local_ctrl_data_t **local_ptr (local struct ptr)

 -- structure in ccurpwmin_user.h

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.22 ccurPWMIN_Get_Noise_Filter_Count()

The board is capable of filtering out some very high frequency noise spikes if the user so desires. The users

can set this filter count from 0 (i.e. no filter) to the maximum allowable filter count specified by the define

CCURPWMIN_MAX_NOISE_FILTER_COUNT. This call returns the noise filter count that has been

previously set by the ccurPWMIN_Set_Noise_Filter_Count(). The count is the number of noise transitions

that are to be skipped within the duration of the clock ticks specified in this filter.

/**

 int ccurPWMIN_Get_Noise_Filter_Count(void *Handle, u_int32_t channel,

 u_int32_t *value)

 Description: Get Noise Filter Count

 Input: void *Handle (handle pointer)

 u_int32_t channel (channel selection)

 u_int32_t *value (value to be set)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.23 ccurPWMIN_Get_Open_File_Descriptor()

When the library ccurPWMIN_Open() call is successfully invoked, the board is opened using the system call

open(2). The file descriptor associated with this board is returned to the user with this call. This call allows

advanced users to bypass the library and communicate directly with the driver with calls like read(2), ioctl(2),

etc. Normally, this is not recommended as internal checking and locking is bypassed and the library calls can

no longer maintain integrity of the functions. This is only provided for advanced users who want more control

and are aware of the implications.

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 20 of 40

/**

 int ccurPWMIN_Get_Open_File_Descriptor(void *Handle, int *fd)

 Description: Get Open File Descriptor

 Input: void *Handle (handle pointer)

 Output: int *fd (open file descriptor)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.24 ccurPWMIN_Get_Period_Average_Count()

The board maintains an internal FIFO for each channel that holds the last N pulse width counts. This call

returns the number of pulse width counts that the hardware is using to save the last set of pulse widths

encountered. This list is maintained by the hardware to provide a running sum of the last N pulse widths that

is then used by the API to determine the average of the last N pulse widths encountered by the channel.
/**

 int ccurPWMIN_Get_Period_Average_Count(void *Handle, u_int32_t channel,

 u_int32_t *value)

 Description: Get Period Average Count

 Input: void *Handle (handle pointer)

 u_int32_t channel (channel selection)

 u_int32_t *value (value to be set)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.25 ccurPWMIN_Get_Physical_Memory()

This call returns to the user the physical memory pointer and size that was previously allocated by the

ccurPWMIN_Mmap_Physical_Memory() call. The physical memory is allocated by the user when they wish

to perform their own DMA and bypass the API. Once again, this call is only useful for advanced users.

/**

 int ccurPWMIN_Get_Physical_Memory(void *Handle,

 ccurpwmin_phys_mem_t *phys_mem)

 Description: Get previously mmapped() physical memory address and size

 Input: void *Handle (handle pointer)

 Output: ccurpwmin_phys_mem_t *phys_mem (mem struct pointer)

 -- void *phys_mem

 -- u_int phys_mem_size

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 21 of 40

typedef struct {

 void *phys_mem; /* physical memory: physical address */

 unsigned int phys_mem_size; /* physical memory: memory size - bytes */

} ccurpwmin_phys_mem_t;

2.2.26 ccurPWMIN_Get_PWM()

This call returns to the user information about a particular channel or all the channels. Additionally, the

hardware maintains a continuous pulse count for each channel which latches the pulse counts since the last

reset and then clears the counter. The user can optionally set the reset_pulsecount argument to ‘1’ to request

the API to perform to latch the pulse count and the clear it.

The user can specify a single channel number from 0 to (CCURPWMIN_MAX_CHANNELS – 1) to receive the

contents of a specific channel. If the user wishes to receive information for ALL channels, then they can

specify CCURPWMIN_MAX_CHANNELS as the argument to channel. In this case, the ccurpwmin_channel_t

structure pointed to by value must be large enough to receive all the channels.

/**

 int ccurPWMIN_Get_PWM(void *Handle, u_int32_t channel,

 ccurpwmin_channel_t *value, int reset_pulsecount)

 Description: Return the individual settings of the specified channel.

 Input: void *Handle (handle pointer)

 u_int32_t channel (which channel)

 int reset_pulsecount (reset pulse count flag)

 Output: ccurpwmin_channel_t *value; (pointer to value)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

typedef struct

{

 u_int32_t pwm_period_high_clock_count; /* PWM period high clock count */

 u_int32_t pwm_period_width_clock_count; /* PWM period width clock count */

 u_int32_t pwm_number_rising_edges; /* PWM number of rising edges */

 double pwm_period; /* PWM period in micro-seconds */

 double pwm_average_period; /* PWM period in micro-seconds */

 double pwm_frequency; /* PWM frequency Hz */

 double pwm_duty_cycle; /* PWM duty cycle */

 u_int32_t pwm_period_average_count; /* PWM period average count */

} ccurpwmin_channel_t;

2.2.27 ccurPWMIN_Get_Value()

This call allows the user to read the board registers. The actual data returned will depend on the command

register information that is requested. Refer to the hardware manual for more information on what is being

returned. Most commands return a pointer to an unsigned integer.

/**

 int ccurPWMIN_Get_Value(void *Handle, CCURPWMIN_CONTROL cmd, void *value)

 Description: Return the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURPWMIN_CONTROL cmd (register definition)

 Output: void *value; (pointer to value)

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 22 of 40

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef enum {

 CCURPWMIN_STATUS,

 CCURPWMIN_REVISION,

 CCURPWMIN_RESET,

 CCURPWMIN_RESET_PULSECOUNT,

 CCURPWMIN_FREEZE_OUTPUT,

 CCURPWMIN_FLUSH_FIFO,

 CCURPWMIN_INDIV0_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV0_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV0_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV0_PERIOD_SUM,

 CCURPWMIN_INDIV0_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV0_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV0_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV1_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV1_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV1_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV1_PERIOD_SUM,

 CCURPWMIN_INDIV1_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV1_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV1_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV2_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV2_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV2_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV2_PERIOD_SUM,

 CCURPWMIN_INDIV2_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV2_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV2_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV3_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV3_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV3_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV3_PERIOD_SUM,

 CCURPWMIN_INDIV3_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV3_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV3_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV4_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV4_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV4_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV4_PERIOD_SUM,

 CCURPWMIN_INDIV4_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV4_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV4_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV5_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV5_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV5_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV5_PERIOD_SUM,

 CCURPWMIN_INDIV5_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV5_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV5_PWM_NOISE_FILTER_COUNT,

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 23 of 40

 CCURPWMIN_INDIV6_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV6_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV6_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV6_PERIOD_SUM,

 CCURPWMIN_INDIV6_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV6_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV6_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV7_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV7_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV7_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV7_PERIOD_SUM,

 CCURPWMIN_INDIV7_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV7_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV7_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV8_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV8_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV8_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV8_PERIOD_SUM,

 CCURPWMIN_INDIV8_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV8_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV8_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV9_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV9_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV9_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV9_PERIOD_SUM,

 CCURPWMIN_INDIV9_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV9_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV9_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV10_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV10_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV10_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV10_PERIOD_SUM,

 CCURPWMIN_INDIV10_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV10_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV10_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV11_PERIOD_HIGH_CLOCK_COUNT,

 CCURPWMIN_INDIV11_PERIOD_WIDTH_CLOCK_COUNT,

 CCURPWMIN_INDIV11_NUMBER_RISING_EDGES,

 CCURPWMIN_INDIV11_PERIOD_SUM,

 CCURPWMIN_INDIV11_PWM_PERIOD_SUM_COUNT_RECEIVED,

 CCURPWMIN_INDIV11_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV11_PWM_NOISE_FILTER_COUNT,

} CCURPWMIN_CONTROL;

2.2.28 ccurPWMIN_Initialize_Board()

This call resets the board to a default initial state. This call is currently identical to the

ccurPWMIN_Reset_Board() call.

/**

 int ccurPWMIN_Initialize_Board(void *Handle)

 Description: Initialize the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 24 of 40

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 CCURPWMIN_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.29 ccurPWMIN_MMap_Physical_Memory()

This call is provided for advanced users to create a physical memory of specified size that can be used for

DMA. The allocated DMA memory is rounded to a page size. If a physical memory has been previously

allocated, this call will fail, at which point the user will need to issue the

ccurPWMIN_Munmap_Physical_Memory() API call to remove the previously allocated physical memory.

/**

 int ccurPWMIN_MMap_Physical_Memory(void *Handle, int size, void **mem_ptr)

 Description: Allocate a physical DMA memory for size bytes.

 Input: void *Handle (handle pointer)

 int size (size in bytes)

 Output: void **mem_ptr (mapped memory pointer)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 CCURPWMIN_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.30 ccurPWMIN_Munmap_Physical_Memory()

This call simply removes a physical memory that was previously allocated by the

ccurPWMIN_MMap_Physical_Memory() API call.

/**

 int ccurPWMIN_Munmap_Physical_Memory(void *Handle)

 Description: Unmap a previously mapped physical DMA memory.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_MUNMAP_FAILED (failed to un-map memory)

 CCURPWMIN_LIB_NOT_MAPPED (memory not mapped)

 **/

2.2.31 ccurPWMIN_NanoDelay()

This call simply delays (loops) for user specified nano–seconds. .

/**

 void ccurPWMIN_NanoDelay(unsigned long long NanoDelay)

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 25 of 40

 Description: Delay)loop for user specified nano-seconds.

 Input: unsigned long long NanoDelay (number of nano-secs to delay)

 Output: None

 Return: None

**/

2.2.32 ccurPWMIN_Open()

This is the first call that needs to be issued by a user to open a device and access the board through the rest of

the API calls. What is returned is a handle to a void pointer that is supplied as an argument to the other API

calls. The Board_Number is a valid board number [0..9] that is associated with a physical card. There must

exist a character special file /dev/ccurpwmin<Board_Number> for the call to be successful. One character

special file is created for each board found when the driver is successfully loaded.

The oflag is the flag supplied to the open(2) system call by this API. It is normally a 0, however the user may

use the O_NONBLOCK option for read(2) calls which will change the default reading in block mode.

/**

 int ccurPWMIN_Open(void **My_Handle, int Board_Number, int oflag)

 Description: Open a device.

 Input: void **Handle (handle pointer to pointer)

 int Board_Number (0-9 board number)

 int oflag (open flags)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_ALREADY_OPEN (device already opened)

 CCURPWMIN_LIB_OPEN_FAILED (device open failed)

 CCURPWMIN_LIB_ALREADY_MAPPED (memory already mmapped)

 CCURPWMIN_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 CCURPWMIN_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.33 ccurPWMIN_Read()

This call is provided for users to receive raw data from the channels. It basically calls the read(2) system call

with the exception that it performs necessary locking and returns the errno returned from the system call in the

pointer to the error variable.

For specific information about the data being returned for the various read modes, refer to the read(2) system

call description the Driver Direct Access section.

/**

 int ccurPWMIN_Read(void *Handle, void *buf, int size, int *bytes_read,

 int *error)

 Description: Perform a read operation.

 Input: void *Handle (handle pointer)

 int size (size of buffer in bytes)

 Output: void *buf (pointer to buffer)

 int *bytes_read (bytes read)

 int *error (returned errno)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 26 of 40

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IO_ERROR (read failed)

 CCURPWMIN_LIB_FIFO_OVERFLOW (FIFO overflow)

 **/

2.2.34 ccurPWMIN_Remove_Irq()

The purpose of this call is to remove the interrupt handler that was previously set up. The interrupt handler is

managed internally by the driver and the library. The user should not issue this call, otherwise reads will time

out.

/**

 int ccurPWMIN_Remove_Irq(void *Handle)

 Description: By default, the driver sets up a shared IRQ interrupt handler

 when the device is opened. Now if for any reason, another

 device is sharing the same IRQ as this driver, the interrupt

 handler will also be entered every time the other shared

 device generates an interrupt. There are times that a user,

 for performance reasons may wish to run the board without

 interrupts enabled. In that case, they can issue this ioctl

 to remove the interrupt handling capability from the driver.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.35 ccurPWMIN_Reset_Board()

This call resets the board to a known initial default state. Additionally, the Converters, Clocks and FIFO are

reset along with internal pointers and clearing of interrupts. This call is currently identical to the

ccurPWMIN_Initialize_Board() call.

/**

 int ccurPWMIN_Reset_Board(void *Handle)

 Description: Reset the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IOCTL_FAILED (driver ioctl call failed)

 CCURPWMIN_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.36 ccurPWMIN_Reset_PulseCount()

The driver maintains a continuous number of pulse counts that are being detected on each channel. This call

allows the user to latch the contents of the pulse counts since the last pulse reset. After latching the contents,

the hardware resets the counter and continues pulse count detection.

/**

 ccurPWMIN_Reset_PulseCount()

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 27 of 40

 Description: Issue reset pulse count

 Input: void *Handle (handle pointer)

 u_int32_t channel_mask (which channels)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.37 ccurPWMIN_Select_Driver_Read_Mode()

This call sets the current driver read mode. When a read(2) system call is issued, it is this mode that

determines the type of read being performed by the driver. Refer to the read(2) system call under Direct

Driver Access section for more information on the various modes.

/**

 int ccurPWMIN_Select_Driver_Read_Mode(void *Handle,

 CCURPWMIN_DRIVER_READ_MODE mode)

 Description: Reset Fifo

 Input: void *Handle (handle pointer)

 CCURPWMIN_DRIVER_READ_MODE mode (select read mode)

 Output: none

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 CCURPWMIN_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef enum {

 CCURPWMIN_PIO_CHANNEL,

 CCURPWMIN_DMA_CHANNEL,

} CCURPWMIN_DRIVER_READ_MODE;

2.2.38 ccurPWMIN_Set_Noise_Filter_Count()

The hardware can perform some basic noise filtering on a per-channel basis. Users can set the noise filter

count anywhere from CCURPWMIN_MIN_NOISE_FILTER_COUNT (where no noise rejection will occur) to

CCURPWMIN_MAX_NOISE_FILTER_COUNT. The value supplied requests the hardware to skip high

frequency noise transitions that occur within the number of clock ticks supplied to this call. The user can

specify a single channel number from 0 to (CCURPWMIN_MAX_CHANNELS – 1) to set the filter for a

specific channel. If the user wishes to set filter for ALL channels, then they can specify

CCURPWMIN_MAX_CHANNELS as the argument to channel.

/**

 ccurPWMIN_Set_Noise_Filter_Count()

 Description: Set Noise Filter Count

 Input: void *Handle (handle pointer)

 u_int32_t channel (channel selection)

 u_int32_t value (value to be set)

 Output: None

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 28 of 40

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.39 ccurPWMIN_Set_Period_Average_Count()

This call sets the count of the number that is required for determining the most recent period average. The

driver maintains an internal FIFO for each channel that hold the most recent period widths and provides this

information to the user in the form of the sum of these periods. The sum of the periods is supplied to the user

in a 32-bit register. Users need to ensure that the window size of average selection times the period width

count must not exceed the 32-bit register, otherwise, incorrect averaging will result. This is only true when the

input pulse is of a very low frequency.(less than 0.52Hz) with the maximum window size of 127. As the

frequency is reduced, the user needs to reduce the window size accordingly. The ccurPWMIN_Get_PWM()

API uses this information to return to the user the average of the collected pulse widths.

/**

 ccurPWMIN_Set_Period_Average_Count()

 Description: Set Period Average Count

 Input: void *Handle (handle pointer)

 u_int32_t channel (channel selection)

 u_int32_t value (value to be set)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.40 ccurPWMIN_Set_Value()

This call allows the advanced user to set the writable board registers. The actual data written will depend on

the command register information that is requested. Refer to the hardware manual for more information on

what can be written to.

Normally, users should not be changing these registers as it will bypass the API integrity and could result in

an unpredictable outcome.

/**

 int ccurPWMIN_Set_Value(void *Handle, CCURPWMIN_CONTROL cmd, int value)

 Description: Set the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURPWMIN_CONTROL cmd (register definition)

 int value (value to be set)

 Output: None

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

typedef enum {

 CCURPWMIN_STATUS,

 CCURPWMIN_RESET,

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 29 of 40

 CCURPWMIN_RESET_PULSECOUNT,

 CCURPWMIN_FREEZE_OUTPUT,

 CCURPWMIN_FLUSH_FIFO,

 CCURPWMIN_INDIV0_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV0_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV1_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV1_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV2_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV2_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV3_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV3_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV4_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV4_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV5_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV5_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV6_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV6_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV7_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV7_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV8_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV8_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV9_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV9_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV10_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV10_PWM_NOISE_FILTER_COUNT,

 CCURPWMIN_INDIV11_PWM_PERIOD_SUM_COUNT_SET,

 CCURPWMIN_INDIV11_PWM_NOISE_FILTER_COUNT,

} CCURPWMIN_CONTROL;

2.2.41 ccurPWMIN_Unfreeze_Output()

This call un-freezes data collection that was previously frozen by the ccurPWMIN_Freeze_Output() call. User

can specify a set of channels to un-freeze.

/**

 ccurPWMIN_Unfreeze_Output()

 Description: Unfreeze Output

 Input: void *Handle (handle pointer)

 u_int32_t channel_mask (which channels)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_INVALID_ARG (invalid argument)

 **/

2.2.42 ccurPWMIN_Write()

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 30 of 40

This call is not supported for this Analog Input card.

/**

 int ccurPWMIN_Write(void *Handle, void *buf, int size, int *bytes_written,

 int *error)

 Description: Perform a write operation.

 Input: void *Handle (handle pointer)

 int size (number of bytes to write)

 Output: void *buf (pointer to buffer)

 int *bytes_written (bytes written)

 int *error (returned errno)

 Return: CCURPWMIN_LIB_NO_ERROR (successful)

 CCURPWMIN_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWMIN_LIB_NOT_OPEN (device not open)

 CCURPWMIN_LIB_IO_ERROR (write failed)

 CCURPWMIN_LIB_NOT_IMPLEMENTED (call not implemented)

 **/

3. Test Programs

This driver and API are accompanied with an extensive set of test examples. Examples under the Direct

Driver Access do not use the API, while those under Application Program Interface Access use the API.

3.1 Direct Driver Access Example Tests

These set of tests are located in the …/test directory and do not use the API. They communicate directly with

the driver. Users should be extremely familiar with both the driver and the hardware registers if they wish to

communicate directly with the hardware.

3.1.1 ccurpwmin_dump

This is a simple program that dumps the local, configuration, PCI bridge, PCI config and main control

registers.

Usage: ccurpwmin_dump <device number>

Example display:

Device Name : /dev/ccurpwmin0

LOCAL Register 0x7ffff7ff5000 Offset=0x0

CONFIG Register 0x7ffff7ff4000 Offset=0x0

======= LOCAL BOARD REGISTERS =========

LBR: @0x0000 --> 0x00010000

LBR: @0x0004 --> 0x00020002

LBR: @0x0008 --> 0x00000000

LBR: @0x000c --> 0x00000000

LBR: @0x0010 --> 0x00000000

LBR: @0x0014 --> 0x00000000

...

LBR: @0x1000 --> 0x00000000

LBR: @0x1004 --> 0x00000000

LBR: @0x1008 --> 0x00000000

LBR: @0x100c --> 0x00000000

LBR: @0x1010 --> 0x00000000

LBR: @0x1014 --> 0x00000000

...

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 31 of 40

LBR: @0x38ec --> 0x00000000

LBR: @0x38f0 --> 0x00000000

LBR: @0x38f4 --> 0x00000000

LBR: @0x38f8 --> 0x00000000

LBR: @0x38fc --> 0x00000000

======= LOCAL CONFIG REGISTERS =========

LCR: @0x0000 --> 0xffff8000

LCR: @0x0004 --> 0x00000001

LCR: @0x0008 --> 0x00200000

LCR: @0x000c --> 0x00000400

LCR: @0x0010 --> 0x00000000

LCR: @0x0014 --> 0x00000011

LCR: @0x0018 --> 0xf20301db

LCR: @0x001c --> 0x00000000

LCR: @0x0020 --> 0x00000000

LCR: @0x0024 --> 0x00000000

LCR: @0x0028 --> 0x00001009

LCR: @0x002c --> 0x00000000

LCR: @0x0030 --> 0x00000000

LCR: @0x0034 --> 0x00000008

LCR: @0x0038 --> 0x00000000

LCR: @0x003c --> 0x00000000

LCR: @0x0040 --> 0x00000000

LCR: @0x0044 --> 0x00000000

LCR: @0x0048 --> 0x00000000

LCR: @0x004c --> 0x00000000

LCR: @0x0050 --> 0x00000000

LCR: @0x0054 --> 0x00000000

LCR: @0x0058 --> 0x00000000

LCR: @0x005c --> 0x00000000

LCR: @0x0060 --> 0x00000000

LCR: @0x0064 --> 0x00000000

LCR: @0x0068 --> 0x0f000483

LCR: @0x006c --> 0x100f767e

LCR: @0x0070 --> 0x905610b5

LCR: @0x0074 --> 0x000000ba

LCR: @0x0078 --> 0x00000000

LCR: @0x007c --> 0x00000000

LCR: @0x0080 --> 0x00000043

LCR: @0x0084 --> 0x17e53000

LCR: @0x0088 --> 0x00001400

LCR: @0x008c --> 0x000000f0

LCR: @0x0090 --> 0x0000000a

LCR: @0x0094 --> 0x00000003

LCR: @0x0098 --> 0x00000000

LCR: @0x009c --> 0x00000000

LCR: @0x00a0 --> 0x00000000

LCR: @0x00a4 --> 0x00000000

LCR: @0x00a8 --> 0x00001011

LCR: @0x00ac --> 0x00200000

LCR: @0x00b0 --> 0x00000000

LCR: @0x00b4 --> 0x00000000

LCR: @0x00b8 --> 0x00000000

LCR: @0x00bc --> 0x00000000

LCR: @0x00c0 --> 0x00000002

LCR: @0x00c4 --> 0x00000000

LCR: @0x00c8 --> 0x00000000

LCR: @0x00cc --> 0x00000000

LCR: @0x00d0 --> 0x00000000

LCR: @0x00d4 --> 0x00000000

LCR: @0x00d8 --> 0x00000000

LCR: @0x00dc --> 0x00000000

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 32 of 40

LCR: @0x00e0 --> 0x00000000

LCR: @0x00e4 --> 0x00000000

LCR: @0x00e8 --> 0x00000050

LCR: @0x00ec --> 0x00000000

LCR: @0x00f0 --> 0x00000000

LCR: @0x00f4 --> 0x00000000

LCR: @0x00f8 --> 0x00000043

======= PCI CONFIG REG ADDR MAPPING =========

PCR: @0x0000 --> 0x92721542

PCR: @0x0004 --> 0x02b00017

PCR: @0x0008 --> 0x08800001

PCR: @0x000c --> 0x00006008

PCR: @0x0010 --> 0xbd508000

PCR: @0x0014 --> 0x00000000

PCR: @0x0018 --> 0xbd500000

PCR: @0x001c --> 0x00000000

PCR: @0x0020 --> 0x00000000

PCR: @0x0024 --> 0x00000000

PCR: @0x0028 --> 0x00000000

PCR: @0x002c --> 0x905610b5

PCR: @0x0030 --> 0x00000000

PCR: @0x0034 --> 0x00000040

PCR: @0x0038 --> 0x00000000

PCR: @0x003c --> 0x0000010b

PCR: @0x0040 --> 0x00024801

PCR: @0x0044 --> 0x00000000

PCR: @0x0048 --> 0x00004c00

PCR: @0x004c --> 0x00000003

PCR: @0x0050 --> 0x00000000

======= PCI BRIDGE REGISTERS =========

PBR: @0x0000 --> 0x811110b5

PBR: @0x0004 --> 0x00100017

PBR: @0x0008 --> 0x06040021

PBR: @0x000c --> 0x00010010

PBR: @0x0010 --> 0xbd20000c

PBR: @0x0014 --> 0x00000000

PBR: @0x0018 --> 0x00070706

PBR: @0x001c --> 0x220000f0

PBR: @0x0020 --> 0xbd50bd50

PBR: @0x0024 --> 0x0000fff0

PBR: @0x0028 --> 0x00000000

PBR: @0x002c --> 0x00000000

PBR: @0x0030 --> 0x00000000

PBR: @0x0034 --> 0x00000040

PBR: @0x0038 --> 0x00000000

PBR: @0x003c --> 0x0000010b

PBR: @0x0040 --> 0x5a025001

PBR: @0x0044 --> 0x00000000

PBR: @0x0048 --> 0x000e2012

PBR: @0x004c --> 0x00000000

PBR: @0x0050 --> 0x00806005

PBR: @0x0054 --> 0x00000000

PBR: @0x0058 --> 0x00000000

PBR: @0x005c --> 0x00000000

PBR: @0x0060 --> 0x00710010

PBR: @0x0064 --> 0x00640000

PBR: @0x0068 --> 0x00002000

PBR: @0x006c --> 0x00024c11

PBR: @0x0070 --> 0x00110000

PBR: @0x0074 --> 0x00000c80

PBR: @0x0078 --> 0x00400000

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 33 of 40

PBR: @0x007c --> 0x00000000

PBR: @0x0080 --> 0x00000000

PBR: @0x0084 --> 0x00000000

PBR: @0x0088 --> 0x00000033

PBR: @0x008c --> 0x00000000

PBR: @0x0090 --> 0x00000000

PBR: @0x0094 --> 0x00000000

PBR: @0x0098 --> 0x00000000

PBR: @0x009c --> 0x00000000

PBR: @0x00a0 --> 0x00000000

PBR: @0x00a4 --> 0x00000000

PBR: @0x00a8 --> 0x00000000

PBR: @0x00ac --> 0x00000000

PBR: @0x00b0 --> 0x00000000

PBR: @0x00b4 --> 0x00000000

PBR: @0x00b8 --> 0x00000000

PBR: @0x00bc --> 0x00000000

PBR: @0x00c0 --> 0x00000000

PBR: @0x00c4 --> 0x00000000

PBR: @0x00c8 --> 0x00000000

PBR: @0x00cc --> 0x00000000

PBR: @0x00d0 --> 0x00000000

PBR: @0x00d4 --> 0x00000000

PBR: @0x00d8 --> 0x00000000

PBR: @0x00dc --> 0x00000000

PBR: @0x00e0 --> 0x00000000

PBR: @0x00e4 --> 0x00000000

PBR: @0x00e8 --> 0x00000000

PBR: @0x00ec --> 0x00000000

PBR: @0x00f0 --> 0x00000000

PBR: @0x00f4 --> 0x00000000

PBR: @0x00f8 --> 0x00000000

PBR: @0x00fc --> 0x00000000

PBR: @0x0100 --> 0x00010004

PBR: @0x0104 --> 0x00000000

PBR: @0x0108 --> 0x00000000

PBR: @0x010c --> 0x00000000

PBR: @0x0110 --> 0x00000000

PBR: @0x0114 --> 0x00000000

PBR: @0x0118 --> 0x00000000

======= MAIN CONTROL REGISTERS =========

MCR: @0x0000 --> 0x00000033

MCR: @0x0004 --> 0x8000ff00

MCR: @0x0008 --> 0x00000000

MCR: @0x000c --> 0x03008090

MCR: @0x0010 --> 0x80000000

MCR: @0x0014 --> 0x00000000

MCR: @0x0018 --> 0x00000000

MCR: @0x001c --> 0x00000000

MCR: @0x0020 --> 0x0000101f

MCR: @0x0024 --> 0x00000000

MCR: @0x0028 --> 0x00000000

MCR: @0x002c --> 0x00000000

MCR: @0x0030 --> 0xfeedface

MCR: @0x0034 --> 0x00000000

MCR: @0x0038 --> 0x00000000

MCR: @0x003c --> 0x00000000

MCR: @0x0040 --> 0x00000201

MCR: @0x0044 --> 0x00000000

MCR: @0x0048 --> 0x00810a20

MCR: @0x004c --> 0x000000d4

MCR: @0x0050 --> 0x00010600

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 34 of 40

MCR: @0x0054 --> 0x00000000

MCR: @0x0058 --> 0x080a2c2a

MCR: @0x005c --> 0x0000029a

MCR: @0x0060 --> 0x00000019

MCR: @0x0064 --> 0x00000000

3.1.2 ccurpwmin_rdreg

This is a simple program that returns the local register value for a given offset.

Usage: ./ccurpwmin_rdreg [-b board] [-o offset]

 -b board: board number -- default board is 0

 -o offset: hex offset to read from -- default offset is 0x0

Example display:

Read at offset 0x0000: 0x00010000

3.1.3 ccurpwmin_reg

This is a simple program that dumps the local and configuration registers.

Usage: ccurpwmin_reg <device number>

Example display:

Device Name : /dev/ccurpwmin0

LOCAL Register 0x7ffff7ff0000 Offset=0x0

CONFIG Register 0x7ffff7fef000 Offset=0x0

CONFIG REGS #### (length=512)

+CFG+ 0 ffff8000 00000001 00200000 00000400 *.........*

+CFG+ 0x10 00000000 00000011 f20301db 00000000 *................*

+CFG+ 0x20 00000000 00000000 00001009 00000000 *................*

+CFG+ 0x30 00000000 00000008 00000000 00000000 *................*

+CFG+ 0x40 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x50 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x60 00000000 00000000 0f000403 100f767e *..............v~*

+CFG+ 0x70 905610b5 000000ba 00000000 00000000 *.V..............*

+CFG+ 0x80 00000043 17e53000 00001400 000000f0 *...C..0.........*

+CFG+ 0x90 0000000a 00000003 00000000 00000000 *................*

+CFG+ 0xa0 00000000 00000000 00001011 00200000 *............. ..*

+CFG+ 0xb0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0xc0 00000002 00000000 00000000 00000000 *................*

+CFG+ 0xd0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0xe0 00000000 00000000 00000050 00000000 *...........P....*

+CFG+ 0xf0 00000000 00000000 00000043 00000000 *...........C....*

+CFG+ 0x100 00000000 17e530e8 00000000 00000000 *......0.........*

+CFG+ 0x110 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x120 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x130 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x140 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x150 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x160 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x170 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x180 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x190 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x1a0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x1b0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x1c0 00000000 00000000 00000000 00000000 *................*

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 35 of 40

+CFG+ 0x1d0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x1e0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x1f0 00000000 00000000 00000000 00000000 *................*

======= LOCAL REGISTERS =========

 pwm_status =0x00010000 @0x00000000

 pwm_revision =0x00020002 @0x00000004

 pwm_reset =0x00000000 @0x00001000

 pwm_reset_pulsecount =0xfffff000 @0x00001100

 pwm_freeze_output =0xfffff000 @0x00001104

 pwm_flush_fifo =0xfffff000 @0x00001108

 pwm_indiv0.pwm_period_high_clock_count =0xdeadffff @0x00001400

 pwm_indiv0.pwm_period_width_clock_count =0xdeadffff @0x00001404

 pwm_indiv0.pwm_number_rising_edges =0x00000000 @0x00001408

 pwm_indiv0.pwm_period_sum =0x00000000 @0x0000140c

 pwm_indiv0.pwm_period_average_count_rcvd =0x00000000 @0x00001410

 pwm_indiv_control0.pwm_period_average_count_set =0x00000001 @0x00001200

 pwm_indiv_control0.pwm_noise_filter_count =0x00000014 @0x00001204

 pwm_indiv1.pwm_period_high_clock_count =0xdeadffff @0x00001414

 pwm_indiv1.pwm_period_width_clock_count =0xdeadffff @0x00001418

 pwm_indiv1.pwm_number_rising_edges =0x00000000 @0x0000141c

 pwm_indiv1.pwm_period_sum =0x00000000 @0x00001420

 pwm_indiv1.pwm_period_average_count_rcvd =0x00000000 @0x00001424

 pwm_indiv_control1.pwm_period_average_count_set =0x00000001 @0x00001208

 pwm_indiv_control1.pwm_noise_filter_count =0x00000014 @0x0000120c

 pwm_indiv2.pwm_period_high_clock_count =0xdeadffff @0x00001428

 pwm_indiv2.pwm_period_width_clock_count =0xdeadffff @0x0000142c

 pwm_indiv2.pwm_number_rising_edges =0x00000000 @0x00001430

 pwm_indiv2.pwm_period_sum =0x00000000 @0x00001434

 pwm_indiv2.pwm_period_average_count_rcvd =0x00000000 @0x00001438

 pwm_indiv_control2.pwm_period_average_count_set =0x00000001 @0x00001210

 pwm_indiv_control2.pwm_noise_filter_count =0x00000014 @0x00001214

 pwm_indiv3.pwm_period_high_clock_count =0xdeadffff @0x0000143c

 pwm_indiv3.pwm_period_width_clock_count =0xdeadffff @0x00001440

 pwm_indiv3.pwm_number_rising_edges =0x00000000 @0x00001444

 pwm_indiv3.pwm_period_sum =0x00000000 @0x00001448

 pwm_indiv3.pwm_period_average_count_rcvd =0x00000000 @0x0000144c

 pwm_indiv_control3.pwm_period_average_count_set =0x00000001 @0x00001218

 pwm_indiv_control3.pwm_noise_filter_count =0x00000014 @0x0000121c

 pwm_indiv4.pwm_period_high_clock_count =0xdeadffff @0x00001450

 pwm_indiv4.pwm_period_width_clock_count =0xdeadffff @0x00001454

 pwm_indiv4.pwm_number_rising_edges =0x00000000 @0x00001458

 pwm_indiv4.pwm_period_sum =0x00000000 @0x0000145c

 pwm_indiv4.pwm_period_average_count_rcvd =0x00000000 @0x00001460

 pwm_indiv_control4.pwm_period_average_count_set =0x00000001 @0x00001220

 pwm_indiv_control4.pwm_noise_filter_count =0x00000014 @0x00001224

 pwm_indiv5.pwm_period_high_clock_count =0xdeadffff @0x00001464

 pwm_indiv5.pwm_period_width_clock_count =0xdeadffff @0x00001468

 pwm_indiv5.pwm_number_rising_edges =0x00000000 @0x0000146c

 pwm_indiv5.pwm_period_sum =0x00000000 @0x00001470

 pwm_indiv5.pwm_period_average_count_rcvd =0x00000000 @0x00001474

 pwm_indiv_control5.pwm_period_average_count_set =0x00000001 @0x00001228

 pwm_indiv_control5.pwm_noise_filter_count =0x00000014 @0x0000122c

 pwm_indiv6.pwm_period_high_clock_count =0xdeadffff @0x00001478

 pwm_indiv6.pwm_period_width_clock_count =0xdeadffff @0x0000147c

 pwm_indiv6.pwm_number_rising_edges =0x00000000 @0x00001480

 pwm_indiv6.pwm_period_sum =0x00000000 @0x00001484

 pwm_indiv6.pwm_period_average_count_rcvd =0x00000000 @0x00001488

 pwm_indiv_control6.pwm_period_average_count_set =0x00000001 @0x00001230

 pwm_indiv_control6.pwm_noise_filter_count =0x00000014 @0x00001234

 pwm_indiv7.pwm_period_high_clock_count =0xdeadffff @0x0000148c

 pwm_indiv7.pwm_period_width_clock_count =0xdeadffff @0x00001490

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 36 of 40

 pwm_indiv7.pwm_number_rising_edges =0x00000000 @0x00001494

 pwm_indiv7.pwm_period_sum =0x00000000 @0x00001498

 pwm_indiv7.pwm_period_average_count_rcvd =0x00000000 @0x0000149c

 pwm_indiv_control7.pwm_period_average_count_set =0x00000001 @0x00001238

 pwm_indiv_control7.pwm_noise_filter_count =0x00000014 @0x0000123c

 pwm_indiv8.pwm_period_high_clock_count =0xdeadffff @0x000014a0

 pwm_indiv8.pwm_period_width_clock_count =0xdeadffff @0x000014a4

 pwm_indiv8.pwm_number_rising_edges =0x00000000 @0x000014a8

 pwm_indiv8.pwm_period_sum =0x00000000 @0x000014ac

 pwm_indiv8.pwm_period_average_count_rcvd =0x00000000 @0x000014b0

 pwm_indiv_control8.pwm_period_average_count_set =0x00000001 @0x00001240

 pwm_indiv_control8.pwm_noise_filter_count =0x00000014 @0x00001244

 pwm_indiv9.pwm_period_high_clock_count =0xdeadffff @0x000014b4

 pwm_indiv9.pwm_period_width_clock_count =0xdeadffff @0x000014b8

 pwm_indiv9.pwm_number_rising_edges =0x00000000 @0x000014bc

 pwm_indiv9.pwm_period_sum =0x00000000 @0x000014c0

 pwm_indiv9.pwm_period_average_count_rcvd =0x00000000 @0x000014c4

 pwm_indiv_control9.pwm_period_average_count_set =0x00000001 @0x00001248

 pwm_indiv_control9.pwm_noise_filter_count =0x00000014 @0x0000124c

 pwm_indiv10.pwm_period_high_clock_count =0xdeadffff @0x000014c8

 pwm_indiv10.pwm_period_width_clock_count =0xdeadffff @0x000014cc

 pwm_indiv10.pwm_number_rising_edges =0x00000000 @0x000014d0

 pwm_indiv10.pwm_period_sum =0x00000000 @0x000014d4

 pwm_indiv10.pwm_period_average_count_rcvd =0x00000000 @0x000014d8

 pwm_indiv_control10.pwm_period_average_count_set=0x00000001 @0x00001250

 pwm_indiv_control10.pwm_noise_filter_count =0x00000014 @0x00001254

 pwm_indiv11.pwm_period_high_clock_count =0xdeadffff @0x000014dc

 pwm_indiv11.pwm_period_width_clock_count =0xdeadffff @0x000014e0

 pwm_indiv11.pwm_number_rising_edges =0x00000000 @0x000014e4

 pwm_indiv11.pwm_period_sum =0x00000000 @0x000014e8

 pwm_indiv11.pwm_period_average_count_rcvd =0x00000000 @0x000014ec

 pwm_indiv_control11.pwm_period_average_count_set=0x00000001 @0x00001258

 pwm_indiv_control11.pwm_noise_filter_count =0x00000014 @0x0000125c

 spi_ram[0..63]

@0x3800 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x3820 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x3840 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x3860 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x3880 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x38a0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x38c0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x38e0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

======= CONFIG REGISTERS =========

 las0rr =0xffff8000 @0x00000000

 las0ba =0x00000001 @0x00000004

 marbr =0x00200000 @0x00000008

 bigend =0x00000400 @0x0000000c

 eromrr =0x00000000 @0x00000010

 eromba =0x00000011 @0x00000014

 lbrd0 =0xf20301db @0x00000018

 dmrr =0x00000000 @0x0000001c

 dmlbam =0x00000000 @0x00000020

 dmlbai =0x00000000 @0x00000024

 dmpbam =0x00001009 @0x00000028

 dmcfga =0x00000000 @0x0000002c

 oplfis =0x00000000 @0x00000030

 oplfim =0x00000008 @0x00000034

 mbox0 =0x00000000 @0x00000040

 mbox1 =0x00000000 @0x00000044

 mbox2 =0x00000000 @0x00000048

 mbox3 =0x00000000 @0x0000004c

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 37 of 40

 mbox4 =0x00000000 @0x00000050

 mbox5 =0x00000000 @0x00000054

 mbox6 =0x00000000 @0x00000058

 mbox7 =0x00000000 @0x0000005c

 p2ldbell =0x00000000 @0x00000060

 l2pdbell =0x00000000 @0x00000064

 intcsr =0x0f000483 @0x00000068

 cntrl =0x100f767e @0x0000006c

 pcihidr =0x905610b5 @0x00000070

 pcihrev =0x000000ba @0x00000074

 dmamode0 =0x00000043 @0x00000080

 dmapadr0 =0x17e53000 @0x00000084

 dmaladr0 =0x00001400 @0x00000088

 dmasiz0 =0x000000f0 @0x0000008c

 dmadpr0 =0x0000000a @0x00000090

 dmamode1 =0x00000003 @0x00000094

 dmapadr1 =0x00000000 @0x00000098

 dmaladr1 =0x00000000 @0x0000009c

 dmasiz1 =0x00000000 @0x000000a0

 dmadpr1 =0x00000000 @0x000000a4

 dmacsr0 =0x00001011 @0x000000a8

 dmacsr1 =0x00200000 @0x000000ac

 las1rr =0x00000000 @0x000000f0

 las1ba =0x00000000 @0x000000f4

 lbrd1 =0x00000043 @0x000000f8

3.1.4 ccurpwmin_tst

This is an interactive test to exercise some of the driver features.

Usage: ccurpwmin_tst <device number>

Example display:

Initialize_Board: Firmware Rev. 0x10002 successful

 01 = add irq 02 = disable pci interrupts

 03 = enable pci interrupts 04 = get device error

 05 = get driver info 06 = get physical mem

 07 = init board 08 = mmap select

 09 = mmap(CONFIG registers) 10 = mmap(LOCAL registers)

 11 = mmap(physical memory) 12 = munmap(physical memory)

 13 = no command 14 = read operation

 15 = remove irq 16 = reset board

 17 = write operation

Main Selection ('h'=display menu, 'q'=quit)->

3.1.5 ccurpwmin_wreg

This is a simple test to write to the local registers at the user specified offset.

Usage: ./ccurpwmin_wreg [-b board] [-o offset] [-v value]

 -b board : board selection -- default board is 0

 -o offset: hex offset to write to -- default offset is 0x0

 -v value: hex value to write at offset -- default value is 0x0

Example display:

Writing 0x00000000 to offset 0x0000

Read at offset 0x0000: 0x00010000

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 38 of 40

3.2 Application Program Interface (API) Access Example Tests

These set of tests are located in the …/test directory and use the API.

3.2.1 ccurpwmin_disp

Useful program to display all the analog input channels using various read modes. This program uses the

curses library.

Usage: ./ccurpwmin_disp [-b board] [-c average_count] [-d delay] [-mD|-mp|-mP] [-

n noise_filter]

 -b <board> (default = 0)

 -c <average count> (default = 30)

 -d <delay> microsecs (default = 1000000)

 -mD (Driver DMA read mode)

 -mp (User PIO read mode)

 -mP (Driver PIO read mode)

 -n <noise filter count> (default = 20)

Example display:

 Board Num: 0

 Delay: 1000000 (usec)

 Read Mode: DRIVER_DMA_CHANNEL

 Version: 24.1.0

 Build: Thu May 6 11:03:25 EDT 2021

 Module: ccurpwmin

 Board Type: 0 (PLX-CCURPWMIN)

 Bus: 4

 Slot: 4

 Func: 0

 Vendor ID: 0x1542

 Device ID: 0x9272

 Board ID: 0x9056

 Firmware: 0x20002

 Interrupts: 0

 Region 0: Addr=0xfb708000 Size=512 (0x200)

 Region 2: Addr=0xfb700000 Size=32768 (0x8000)

 Period Average Count Set: 30 [CH0]

 Noise Filter Count Set: 20 [CH0]

 cycleTime: 1000068.1 usec

 ioTime: 13.1 usec

Chan Period (us) Freq(Hz) Duty% WidthCount HighCount NumRiseEdge PeriodAve AveCount

==== =========== ======== ===== ========== ========= =========== ========= ========

[0] 0.00 0.00 0.00 all_low all_low 0 0.00 0

[1] 0.00 0.00 0.00 all_low all_low 0 0.00 0

[2] 0.00 0.00 0.00 all_low all_low 0 0.00 0

[3] 0.00 0.00 0.00 all_low all_low 0 0.00 0

[4] 0.00 0.00 0.00 all_low all_low 0 0.00 0

[5] 49.98 20006.06 41.25 3299 1361 20000 50.00 30

[6] 0.00 0.00 100.00 ALL_HIGH ALL_HIGH 0 0.00 0

[7] 0.00 0.00 100.00 ALL_HIGH ALL_HIGH 0 0.00 0

[8] 0.00 0.00 100.00 ALL_HIGH ALL_HIGH 0 0.00 0

[9] 0.00 0.00 100.00 ALL_HIGH ALL_HIGH 0 0.00 0

[10] 0.00 0.00 100.00 ALL_HIGH ALL_HIGH 0 0.00 0

[11] 0.00 0.00 100.00 ALL_HIGH ALL_HIGH 0 0.00 0

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 39 of 40

3.2.2 ccurpwmin_tst_lib

This is an interactive test that accesses the various supported API calls.

Usage: ccurpwmin_tst_lib <device number>

Example display:

 01 = Add Irq 02 = Calculate Duty Cycle

 03 = Calculate Pulse Frequency 04 = Clear Driver Error

 05 = Clear Library Error 06 = Disable Pci Interrupts

 07 = Display BOARD Registers 08 = Enable Pci Interrupts

 09 = Flush FIFO 10 = Freeze Output

 11 = Get Information 12 = Get Driver Error

 13 = Get Driver Read Mode 14 = Get Library Error

 15 = Get Mapped Config Pointer 16 = Get Mapped Local Pointer

 17 = Get Noise Filter Count 18 = Get Period Average Count

 19 = Get Physical Memory 20 = Get PWM

 21 = Get Value 22 = Initialize Board

 23 = MMap Physical Memory 24 = Munmap Physical Memory

 25 = Reset PulseCount 26 = Read Operation

 27 = Remove Irq 28 = Reset Board

 29 = Select Driver Read Mode 30 = Set Noise Filter Count

 31 = Set Period Average Count 32 = Set Value

 33 = Unfreeze Output 34 = Test Registers

 35 = Write Operation

Main Selection ('h'=display menu, 'q'=quit)->

All information contained in this document is confidential and proprietary to Concurrent Real-Time, Inc. No part of this document may be

reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time, Inc. No license, expressed or implied, under

any patent, copyright or trade secret right is granted or implied by the conveyance of this document.
Page 40 of 40

This page intentionally left blank

