

Release Notes
CCURUEGO (WC-UEGO)

Driver ccuruego (WC-UEGO)

Platform RedHawk Linux® (CentOS/Rocky/RHEL & Ubuntu), Native

Ubuntu® and Native Red Hat Enterprise Linux®1

Vendor Concurrent Real-Time

Hardware PCIe 4-Channel Universal Exhaust Gas Oxygen Sensor
Simulator Card (UEGO)

Author Darius Dubash

Date July 11th, 2025 Rev 2025.1

1 All trademarks are the property of their respective owners

This page intentionally left blank

Table of Contents

1. INTRODUCTION .. 1

2. REQUIREMENTS ... 1

3. DOCUMENTATION ... 1

4. RUNNING ON NATIVE RED HAT .. 1

4.1. Support to build 3rd party modules .. 2

4.2. Support for MSI interrupts.. 2

4.3. BIOS and Kernel Level Tuning .. 3

5. RUNNING ON NATIVE UBUNTU .. 3

5.1. Support to build 3rd party modules .. 3

5.2. Support for MSI interrupts.. 3

5.3. Compiling the driver with installed gcc .. 4

5.4. BIOS and Kernel Level Tuning .. 5

6. INSTALLATION AND REMOVAL .. 5

6.1. Hardware Installation ... 5

6.2. Software Installation ... 6

6.3. Software Removal .. 8

7. AUTO-LOADING THE DRIVER .. 8

8. TESTING AND USAGE .. 9

9. RE-BUILDING THE DRIVER, LIBRARY AND TESTS .. 9

10. SOFTWARE SUPPORT ... 10

10.1. Device Configuration .. 10

10.2. Library Interface ... 11

10.3. Debugging... 11

11. NOTES AND ERRATA ... 12

APPENDIX A: EXTERNAL CONNECTIONS AND PIN-OUTS .. 13

APPENDIX B: LED INDICATORS ... 14

APPENDIX C: THE 4-CHANNEL UNIVERSAL EXHAUST GAS OXYGEN SENSOR

SIMULATOR CARD ... 15

 This page intentionally left blank

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 1 -

1. Introduction

This document assists the user in installing the CCUR-PCIe-UEGO Linux ccuruego driver and related
software on the RedHawk OS, Native Ubuntu and Native Red Hat for use with the CCUR-PCIe 4-
Channel Universal Exhaust Gas Oxygen Sensor Simulator Card (UEGO). The directions in this
document supersede all others – they are specific to installing the software on Concurrent Real-Time’s
RedHawk and Native Ubuntu and Native Red Hat systems. Other information provided as part of this
release, when it may contradict these directions, should be ignored and these directions should prevail.

Current versions of Native Operating Systems that are supported are:

1) Ubuntu 22.04, kernel 6.5 or 6.8, gcc11 & gcc12
2) Red Hat RHEL 9.4, kernel 5.14

For additional information on this driver and usage refer to the ccuruego man page.

The UEGO is a 4-Channel Universal Exhaust Gas Oxygen Sensor Simulator card with a PCI express
interface. In addition to the sensor simulator, the card incorporates a CJ135 module that controls linear
oxygen sensors. Normally, the CJ135 is designed to be used inside an engine control unit (ECU) for
Gasoline or Diesel engines. It is being used in this card to test and perform on-board diagnostics.

Features and Characteristics of the UEGO are:

• 4-channel O2 Sensor Simulation

• Wideband or Narrowband Sensors

• Heater PCM Monitoring

• Open, Ground and V+ Fault Insertion

• Galvanic Isolation Per Channel Pair

• Input Protection +/-50 VDC

• On-Board Test ASIC

• Industry Standard SCSI 68-pin Connector for I/O

• PCI Express x1 Revision 1.0a

• Non-volatile Storage of Calibration & Configuration Data

• NIST Traceable Calibration Standard

2. Requirements

• CCUR-UEGO PCIe board physically installed in the system.

• This driver supports various versions of RedHawk and a selected set of Native Ubuntu and Native
Red Hat. Actual supported versions depend on the driver being installed.

3. Documentation

• PCIe 4-Channel Universal Exhaust Gas Oxygen Sensor Simulator Card (UEGO) Software
Interface by Concurrent Real-Time.

• PCIe 4-Channel Universal Exhaust Gas Oxygen Sensor Simulator Card (UEGO) Design
Specification by Concurrent Real-Time.

4. Running on Native Red Hat

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver will
also be able to run on some selected versions of Red Hat with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 2 -

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccuruego/driver/ccuruego.ko due to unavailability
of vmlinux

4.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

yum install ncurses-devel (to run curses)
yum install gnuplot (to run plots for various tests)
yum install <any other package you want to install>

4.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccuruego_nomsi parameter located in the …/driver/ccuruego_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

➢ ccuruego_nomsi=0 enable MSI support (default for RedHawk systems)
➢ ccuruego_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on a
per board basis for cards using a PLX chip for generating interrupts. This is specially true for the
later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to use
MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “iommu=pt”
➢ Reload the kernel with the grub option “iommu=off”
➢ Disable IOMMU in the BIOS
➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d MSI Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

➢ # grubby --update-kernel=ALL --args=iommu=pt (add the parameter)
➢ # grubby --update-kernel=ALL --args=iommu=off (add the parameter)
➢ # grubby --update-kernel=ALL --args=intremap=nosid (add the parameter)
➢ # grubby --update-kernel=ALL --remove-args=intremap=nosid (remove the parameter)
➢ # grubby --info=ALL (display parameters)
➢ # reboot
➢ After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is

present.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 3 -

4.3. BIOS and Kernel Level Tuning
BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
various BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

5. Running on Native Ubuntu

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver will
also be able to run on some selected versions of Ubuntu with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccuruego/driver/ccuruego.ko due to unavailability
of vmlinux

5.1. Support to build 3rd party modules
If your system isn’t setup to build 3rd party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

apt install build-essential
apt install libssl-dev
apt install nfs-common (to mount nfs file systems)
apt install libncurses-dev (to run curses)
apt install gnuplot (to run plots for various tests)
apt install chrony (for more accurate clock time)
apt install <any other package you want to install>

5.2. Support for MSI interrupts
• The driver can operate with either MSI or wired interrupts. This is a configuration option that can

be selected by editing the ccuruego_nomsi parameter located in the …/driver/ccuruego_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 4 -

➢ ccuruego_nomsi=0 enable MSI support (default for RedHawk systems)
➢ ccuruego_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on a
per board basis for cards using a PLX chip for generating interrupts. This is specially true for the
later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to use
MSI instead of wired interrupts, they can enable them in various ways as outlined below.

• If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

➢ Reload the kernel with the grub option “iommu=pt”
➢ Reload the kernel with the grub option “iommu=off”
➢ Disable IOMMU in the BIOS
➢ Reload the kernel with the grub option “intremap=nosid”
➢ Reload the kernel with the grub option “intremap=off”
➢ Disable VT-d in the BIOS
➢ Disable VT-d MSI Interrupt Remapping in the BIOS
➢ Disable 4G Decoding in the BIOS

• To add/remove/display the intremap command to grub, issue the following commands:

➢ Edit /etc/default/grub and add "iommu=pt" pr “iommu=off” and/or add “intremap=nosid”
to “GRUB_CMDLINE_LINUX=” entry

➢ # update-grub
➢ # reboot
➢ After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is

present.

5.3. Compiling the driver with installed gcc
Depending on the Ubuntu kernel version supported, you will need to make sure that the driver is
compiled with the same gcc as the kernel.

Currently, for Ubuntu release 22.04, the kernel 5.15 uses gcc-11 while kernel 6.4 or 6.8 uses gcc-12

If gcc-12 is not installed, you can do the following:

apt install gcc-12

Then create alternate entries for each available version:

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc

/usr/bin/x86_64-linux-gnu-gcc-11 11

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc
/usr/bin/x86_64-linux-gnu-gcc-12 12

You can select the appropriate gcc with the following commands:

sudo update-alternatives --config gcc
sudo update-alternatvies --config x86_64-linux-gnu-gcc

All of this will ensure you have the compiler versions that match what the kernel was compiled with.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 5 -

5.4. BIOS and Kernel Level Tuning
BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
various BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
 sysctl kernel.sched_rt_runtime_us=-1
 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
 sysctl kernel.timer_migration=0
 echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.

GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irqaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nocbs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

6. Installation and Removal

6.1. Hardware Installation

The CCUR-UEGO card is a Gen 1 PCI Express product and is compatible with any PCI Express slot.
The board must be installed in the system before attempting to use the driver.

The ccuruego driver is designed to support IRQ sharing. If this device’s IRQ is being shared by another
device then this driver’s performance could be compromised. Hence, as far as possible, move this
board into a PCI slot who’s IRQ is not being shared with other devices. The default driver configuration
uses MSI interrupts. If the kernel supports MSI interrupts, then sharing of interrupts will not occur, in
which case the board placement will not be an issue.

Caution: when installing the card insure the computer is powered off and the
machine’s power cord is disconnected. Please observe electrostatic discharge
precautions such as the use of a grounding strap.

An ‘lspci -v’ or the ‘lsirq’ command can be used to determine the IRQs of various devices in the
system.

lspci -v -d1542:9300

02:04.0 System peripheral: Concurrent Real-Time Device 9300 (rev 01)
 Subsystem: PLX Technology, Inc. Device 9056
 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr-
 Stepping- SERR- FastB2B- DisINTx-
 Status: Cap+ 66MHz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort-
 <TAbort- <MAbort- >SERR- <PERR- INTx-
 Latency: 96, Cache Line Size: 32 bytes
 Interrupt: pin A routed to IRQ 88

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 6 -

 Region 0: Memory at c0100800 (32-bit, non-prefetchable) [size=512]
 Region 2: Memory at c0100000 (32-bit, non-prefetchable) [size=2K]
 Capabilities: <access denied>

lsirq

 88 02:04.0 Concurrent Real-Time Unknown device (rev 01)

After installing the card, reboot the system and verify the hardware has been recognized by the
operating system by executing the following command:

lspci –d 1542:9300

For each CCUR-UEGO PCIe board installed, a line similar to one of the following will be printed,
depending on the revision of the system’s /usr/share/hwdata/pci.ids file:

02:04.0 Unclassified device [0008]: Concurrent Real-Time Device 9300 (rev 01)

If a line similar to the above is not displayed by the lspci command, the board has not been properly
installed in the system. Make sure that the device has been correctly installed prior to attempting to
use the software. One similar line should be found for each installed card.

6.2. Software Installation

Concurrent Real-Time™ port of the ccuruego software is distributed in RPM format for CentOS and
DEB format for Ubuntu OS on a DVD. Source for the API library and kernel loadable driver are not
included, however, source for example test programs as well as documentation is provided in PDF
format.

The software is installed in the /usr/local/CCRT/drivers/ccuruego directory. This directory will be
referred to as the “top-level” directory by this document.

Warning: Before installing the software, for RedHawk kernels, the build environment must
be set up and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent Real-Time and have not previously done so,
run the following commands while logged in as the root user before installing the driver
software:

cd /lib/modules/`uname –r`/build
./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To install the ccuruego package, load the DVD installation media and issue the following commands
as the root user. The system should auto-mount the DVD to a mount point in the /media or /run/media
directory based on the DVD’s volume label – in this case ccuruego_driver. The example’s
[user_name] may be root, or the logged-in user. Then enter the following commands from a shell
window:

== as root ==
 --- on RedHawk 6.5 and below ---

cd /media/ccuruego_driver
 --- or on RedHawk 7.0 and above ---

cd /run/media/[user_name]/ccuruego_driver
--- or on Ubuntu RedHawk ---

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 7 -

cd /media/[user_name]/ccuruego_driver

rpm –ivh ccuruego_RedHawk_driver*.rpm (on a RedHawk CentOS/Rocky based system)
 --or--

dpkg –i ccuruego_RedHawk_driver*.deb (on a RedHawk Ubuntu based system)
 --or—

rpm –ivh ccuruego_RedHat_driver*.rpm (on a Native RedHat based system)
 --or--

dpkg –i ccuruego_Ubuntu_driver*.deb (on a Native Ubuntu based system)

cd /
eject

On successful installation the source tree for the ccuruego package, including the loadable kernel
module, API libraries, and test programs is extracted into the /usr/local/CCRT/drivers/ccuruego
directory by the rpm installation process, which will then compile and install the various software
components.

The loadable kernel module is installed in the /lib/modules/`uname –r`/misc directory.

Once the package is installed, the driver needs to be loaded with one of the following commands:

== as root ==
cd /usr/local/CCRT/drivers/ccuruego
make load

 --- or on RedHawk 6.5 and below ---
/sbin/service ccuruego start

 --- or on RedHawk 7.0 and above ---
/usr/bin/systemctl start ccuruego

 --- or on Ubuntu RedHawk ---
 # /bin/systemctl start ccuruego

Issue the command below to view the boards found by the driver:

cat /proc/ccuruego

Version : 23.1.1
Built : Tue Apr 14 10:17:53 EDT 2020
Boards : 4
 card=0: [86:04.0] bus=134, slot=4, func=0, irq=73, msi=1, ID=672338,
 BoardInfo=0x93000102
 card=1: [88:04.0] bus=136, slot=4, func=0, irq=74, msi=1, ID=672339,
 BoardInfo=0x93000102
 card=2: [8a:04.0] bus=138, slot=4, func=0, irq=75, msi=1, ID=672335,
 BoardInfo=0x93000102
 card=3: [8c:04.0] bus=140, slot=4, func=0, irq=76, msi=1, ID=672342,
 BoardInfo=0x93000102

Note: With RedHawk 7.5 you may see a cautionary message similar to the following when the
ccuruego driver is loaded on the system console or via dmesg command:

CHRDEV "ccuruego" major number 233 goes below the dynamic allocation range

As documented in the kernel driver Documentation/devices.txt file a range of character device
numbers from 234 to 254 are officially available for dynamic assignment. Dynamic assignments start
at 254 and grow downward. This range is sometimes exceeded as additional kernel drivers are
loaded. Note that this was also the case with earlier kernels – the newer 7.5 kernel has added a runtime
check to produce this warning message that the lower bound has been exceeded, not reduced the

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 8 -

range of numbers officially available for dynamic assignment. If you see this message please verify
the assigned number(s) isn’t being used by a device installed on your system.

6.3. Software Removal

The ccuruego driver is a dynamically loadable driver that can be unloaded, uninstalled and removed.
Once removed, the only way to recover the driver is to re-install the rpm or deb from the installation
DVD:

If any changes have been made to the driver package installed in
/usr/local/CCRT/drivers/ccuruego directory, they need to be backed up prior to invoking the
removal; otherwise, all changes will be lost.

== as root ==
rpm –e ccuruego (driver unloaded, uninstalled, and deleted – on an RPM based system)

 --or--

dpkg –P ccuruego (driver unloaded, uninstalled, and deleted – on an Debian based

 system)

If, for any reason, the user wishes to un-load and uninstall the driver and not remove it, they can perform
the following:

== as root ==
cd /usr/local/CCRT/drivers/ccuruego
make unload (unload the driver from the kernel)

 --- or on RedHawk 6.5 and below ---
/sbin/service ccuruego stop

 --- or on RedHawk 7.0 and above ---
/usr/bin/systemctl stop ccuruego

 --- or on Ubuntu RedHawk ---
 # /bin/systemctl stop ccuruego

To uninstall the ccuruego driver, do the following after it has been unloaded:

=== as root ===
cd /usr/local/CCRT/drivers/ccuruego
make uninstall (uninstall the driver and library)

In this way, the user can simply issue the ‘make install’ and ‘make load’ in the
/usr/local/CCRT/drivers/ccuruego directory at a later date to re-install and re-load the driver.

7. Auto-loading the Driver

The ccuruego driver is a dynamically loadable driver. Once you install the package or perform the
‘make install’, appropriate installation files are placed in the /etc/rc.d/rc*.d or /usr/lib/system/systemd
directories so that the driver is automatically loaded and unloaded when Linux is booted and shutdown.
If, for any reason, you do not wish to automatically load and unload the driver when Linux is booted or
shutdown, you will need to manually issue the following command to enable/disable the automatic
loading of the driver:

 === as root ===
 --- on RedHawk 6.5 and below ---
 # /sbin/chkconfig –-add ccuruego (enable auto-loading of the driver)
 # /sbin/chkconfig –-del ccuruego (disable auto-loading of the driver)
 --- or on RedHawk 7.0 and above ---
 # /usr/bin/systemctl enable ccuruego (enable auto-loading of the driver)

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 9 -

 # /usr/bin/systemctl disable ccuruego (disable auto-loading of the driver)
 --- or on Ubuntu RedHawk ---
 # /bin/systemctl enable ccuruego (enable auto-loading of the driver)
 # /bin/systemctl disable ccuruego (disable auto-loading of the driver)

8. Testing and Usage

Build and run the driver test programs, if you have not already done so:

 # cd /usr/local/CCRT/drivers/ccuruego
 # make test (build the test programs)

Several tests have been provided in the /usr/local/CCRT/drivers/ccuruego/test directory and
can be run to test the driver and board.

 === as root ===
 # cd /usr/local/CCRT/drivers/ccuruego
 # make test (build the test programs)

./test/ccuruego_dump (dump all board resisters)
./test/ccuruego_rdreg (display board resisters)
./test/ccuruego_reg (Display board resisters)

./test/ccuruego_regedit (Interactive board register editor test)

./test/ccuruego_tst (Interactive test to test driver and board)

./test/ccuruego_wreg (edit board resisters)

./test/Eeprom/ccuruego_eeprom (Eeprom: Burn Eeprom)

./test/Flash/ccuruego_flash (Flash: Flash firmware)

./test/Flash/ccuruego_fwreload (Flash: Firmware reload)

./test/lib/ccuruego_disp (library: display board registers)

./test/lib/ccuruego_identify (library: identify cards in the system)

./test/lib/ccuruego_info (library: provide information of all boards)

./test/lib/ccuruego_pwm (library: display and test PWM functionality of

 board)
./test/lib/ccuruego_tst_lib (library: Interactive test to test driver and board)

9. Re-building the Driver, Library and Tests

If for any reason the user needs to manually rebuild and load an installed rpm or deb package, they
can go to the installed directory and perform the necessary build.

Warning: Before installing the software, for RedHawk kernels, the build environment must
be set up and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent Real-Time and have not previously done so,
run the following commands while logged in as the root user before installing the driver
software:

cd /lib/modules/`uname –r`/build
./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To build the driver and tests:

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 10 -

=== as root ===
 # cd /usr/local/CCRT/drivers/ccuruego
 # make clobber (perform cleanup)

make (make package and build the driver, library and tests)

(Note: if you only wish to build the driver, you can enter the ‘make driver’ command instead)

After the driver is built, you will need to install the driver. This install process should only be necessary
if the driver is re-built with changes.

=== as root ===
cd /usr/local/CCRT/drivers/ccuruego
make install (install the driver software, library and man page)

Once the driver and the board are installed, you will need to load the driver into the running kernel prior
to any access to the CCUR UEGO board.

=== as root ===
cd /usr/local/CCRT/drivers/ccuruego
make load (load the driver)

10. Software Support

• This driver package includes extensive software support and test programs to assist the user in
communicating with the board. Refer to the PCIe 4-Channel Universal Exhaust Gas Oxygen Sensor
Simulator Card (UEGO) Design Specification by Concurrent Real-Time for more information on the
product.

10.1. Device Configuration

After the driver is successfully loaded, the device to card association file ccuruego_devs will be
created in the /usr/local/CCRT/drivers/ccuruego/driver directory, if it did not exist. Additionally, there
is a symbolic link to this file in the /usr/lib/config/ccuruego directory as well. If the user wishes to keep
the default one-to-one device to card association, no further action is required. If the device to card
association needs to be changed, this file can be edited by the user to associate a particular device
number with a card number that was found by the driver. The commented portion on the top of the
ccuruego_devs file is automatically generated every time the user issues the ‘make load’ or
‘/sbin/service ccuruego start’ (on RedHawk 6.5 and below) or ‘/usr/bin/systemctl start ccuruego’
(on RedHawk 7.0 and above) command with the current detected cards, information. Any device to
card association edited and placed in this file by the user is retained and used during the next ‘make
load’ or ‘/sbin/service ccuruego load’ or ‘/usr/bin/systemctl start ccuruego’ process.

If the user deletes the ccuruego_devs file and recreates it as an empty file and performs a ‘make
load’ or if the user does not associate any device number with card number, the driver will provide a
one to one association of device number and card number. For more information on available
commands, view the commented section of the ccuruego_devs configuration file.

Warning: If you edit the ccuruego_devs file to associate a device to a card, you will need
to re-issue the ‘make load’ or ‘/sbin/service ccuruego start’ or ‘/usr/bin/systemctl start
ccuruego’ command to generate the necessary device to card association. This device to
card association will be retained until the user changes or deletes the association. If any
invalid association is detected, the loading of the driver will fail.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 11 -

10.2. Library Interface

There is an extensive software library that is provided with this package. For more information on the
library interface, please refer to the PCIe 4-Channel Universal Exhaust Gas Oxygen Sensor Simulator
Card (UEGO) Software Interface by Concurrent Real-Time for more information.

10.3. Debugging

This driver has some debugging capability and should only be enabled while trying to trouble-shoot a
problem. Once resolved, debugging should be disabled otherwise it could adversely affect the
performance and behavior of the driver.

To enable debugging, the Makefile file in /usr/local/CCRT/drivers/ccuruego/driver should be edited
to un-comment the statement (remove the preceding ‘#’):

 # BUILD_TYPE=debug

Next, use and install the debug driver

 # cd /usr/local/CCRT/drivers/ccuruego/driver
 # make
 # make install

Next, edit the ccuruego_config file in /usr/local/CCRT/drivers/ccuruego/driver to un-comment the
statement (remove the preceding ‘#’):

 # ccuruego_debug_mask=0x00002040

Additionally, the value of the debug mask can be changed to suite the problem investigated. Once the
file has been edited, the user can load the driver by issuing the following:

 # cd /usr/local/CCRT/drivers/ccuruego/driver
 # make load

The user can also change the debug flags after the driver is loaded by passing the above debug
statement directly to the driver as follows:

 # echo “ccuruego_debug_mask=0x00082047” > /proc/driver/ccuruego

Following are the supported flags for the debug mask as shown in the ccuruego_config file.

D_ENTER 0x00000001 /* enter routine */ #
D_EXIT 0x00000002 /* exit routine */ #

D_L1 0x00000004 /* level 1 */ #
D_L2 0x00000008 /* level 2 */ #
D_L3 0x00000010 /* level 3 */ #
D_L4 0x00000020 /* level 4 */ #

D_ERR 0x00000040 /* level error */ #
D_WAIT 0x00000080 /* level wait */ #

D_INT0 0x00000100 /* interrupt level 0 */ #
D_INT1 0x00000200 /* interrupt level 1 */ #
D_INT2 0x00000400 /* interrupt level 2 */ #
D_INT3 0x00000800 /* interrupt level 3 */ #
D_INTW 0x00001000 /* interrupt wakeup level */ #

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 12 -

D_INTE 0x00002000 /* interrupt error */ #

D_RTIME 0x00010000 /* display read times */ #
D_WTIME 0x00020000 /* display write times */ #
D_REGS 0x00040000 /* dump registers */ #
D_IOCTL 0x00080000 /* ioctl call */ #

D_DATA 0x00100000 /* data level */ #
D_DMA 0x00200000 /* DMA level */ #
D_DBUFF 0x00800000 /* DMA buffer allocation */ #

D_NEVER 0x00000000 /* never print this debug message */ #
D_ALWAYS 0xffffffff /* always print this debug message */ #
D_TEMP D_ALWAYS /* Only use for temporary debug code */ #

Another variable ccuruego_debug_ctrl is also supplied in the ccuruego_config that the

driver developer can use to control the behavior of the driver. The user can also change the debug
flags after the driver is loaded by passing the above debug statement directly to the driver as follows:

 # echo “ccuruego_debug_ctrl=0x00001234” > /proc/driver/ccuruego

In order to make use of this variable, the driver must be coded to interrogate the bits in the
ccuruego_debug_ctrl variable and alter its behavior accordingly.

11. Notes and Errata

• In some kernel releases, when a package is installed or uninstalled, you may see a warning
message on the system console similar to “systemd-rc-local-generator[22094]:
/etc/rc.d/rc.local is not marked executable, skipping.”. This is for informational purpose only
and can be ignored.

• If a kernel is configured with the CONFIG_DEBUG_LOCK_ALLOC define, the driver will fail to
compile due to mutex_lock_nested() call being included with GPL requirement. If you want to
successfully compile the driver, you will need to remove the CONFIG_DEBUG_LOCK_ALLOC
define and rebuild the kernel.

• Ubuntu kernels RH8.0 onwards may have the default systemd-timesyncd daemon installed which
does not accurately adjust the system.You may want to replace the default with the chrony
package for a more accurate time asjustment.

• Driver and board support MSI interrupts.

• It is possible that lspci calls may still display the device with the old name of “Concurrent
Computer Corporation” instead of “Concurrent Real-Time” if the OS has not been updated.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 13 -

Appendix A: External Connections and Pin-outs

The input/output signals from the UEGO card are connected via an industry standard 68-pin SCSI type
connector with the following pin-out:

Note the following when connecting an external ECU to the UEGO to simulate O2 probe values
(e.g. lambda): Connect the corresponding EXT_GND_M_# pin on the UEGO card to the
ECU’s ground. This is in addition to making the various connections of the EXT_UN_#,
EXT_IP_#, EXT_VM_# and EXT_IA_RL_# pins, otherwise, the readings obtained from the
UEGO card may be compromised.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 14 -

Appendix B: LED Indicators

The UEGO has a single multicolor LED indicator located at the top front edge of the board visible via a hole
in the front panel. If the board is in a reset state the indicator will be solid Red. After reset is complete, the
indicator will cycle through Red, Green and Blue for approximately 1 second each as a lamp test. If the
indicator remains Red after reset is complete it would indicate a board malfunction. Other states of the
board during operation are indicated as follows:

The Green & Blue indication will flash at about a one second rate if the Identify Board bit is set.

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 15 -

Appendix C: The 4-Channel Universal Exhaust Gas Oxygen
Sensor Simulator Card

Concurrent Real-Time™ ccuruego Driver for RedHawk Linux™ – Release Notes - 16 -

This page intentionally left blank

