Technical Guide
CCRTAICC (WC-ADS6418)

PCle 64-Channel Analog Input Card
(AICC)

Driver | ccrtaicc (WC-ADS6418)
OS | RedHawk (CentOS or Ubuntu based)
Vendor | Concurrent Real-Time
Hardware | PCle 64-Channel Analog Input Card (CP-ADS6418)

Date | December 20™, 2018 Rev 2018.1

4 concurrent

REAL-TIIVIE

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 1 of 11



All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 2 of 11



Table of Contents

1. INTRODUCTION ..ottt
2. ANALOG TO DIGITAL (ADC) CONVERSION........cc.ceovnirairinnas
211 ADC Channel REgIStErS.......cccovvveieieieie e
2.1.2 ADC FIFO ..ot
2.1.3 ADC INPUL OPLIONS ...cvveiiiicieciere e e
3. SDRAM (CURRENTLY NOT SUPPORTED).......ccccssvrvrrireinieiennns
311 SDRAM Read (currently not supported)..........ccceveneenennn
3.12 SDRAM Write (currently not supported)..........ccccoeeveeniennn
4. CLOCKS ...ttt bbbt
411 RESEt All CIOCKS ..o
41.2 Compute All Output CIOCKS ....c..cviviiiiiiieineeeec
413 Program All Output CIOCKS .........cooveirinieinineeceeceee
414 Get Clock Generator Information ...........ccocecvvereivneneicnennns
5. CALIBRATION. ..ottt
511 ADC Calibration .........ccocooeiriiiinisneeeeseeenes
6. SERIAL PROM (CURRENTLY NOT SUPPORTED) .......cccooevenne

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time.
copyright or trade secret right is granted or implied by the conveyance of this document.

No license, expressed or implied, under any patent,

Page 3 of 11



All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 4 of 11



1. Introduction

This technical guide provides an insight into the workings of the various components of the FPGA card. Several
example programs supplied in the installed driver’s test directory can assist the user in developing their
applications. The board is comprised of the following features:

Analog to Digital (ADC) conversion

SDRAM (currently not supported by this card)
Clocks

Calibration

Serial Prom (currently not supported by this card)

2. Analog to Digital (ADC) Conversion

The ADC has 64 channels with 18-bit resolution, controlled by four ADC converters; each can be assigned one of
four update clocks, or four inverted update clocks and can have as input either an external signal or calibration bus.
Both single-ended or differential inputs are supported.

ADC to channel association is as follows:

ADC 0 — Channel 0 to 15

ADC 1 - Channel 16 to 31
ADC 2 — Channel 32 to 47
ADC 3 — Channel 48 to 63

Prior to performing any conversion, the ADC converter needs to be activated with the ccrtAICC_ADC_Activate()
API call. Without this activation, all other ADC calls will fail.

There are two mechanisms implemented by the hardware to enable the user to acquire analog signals. The ADC
channels can be read from either 64 channel registers that are updated at the selected clock rates or an ADC FIFO
that is 128K samples deep. Each ADC FIFO sample will also contain the channel number associated with the
sample. Either of these approaches can be used to acquire digital samples from the channels. The ADC FIFO
approach of course captures all the samples at the selected clock rates as long as no overflow condition occurs.

e ADC Channel Registers
e ADCFIFO

Prior to any data being collected, the user needs to configure each ADC in order to select one of 4 individual
clocks (0 to 3) as the input signal, they can also select one of 4 inverted clocks (0 to 3) which are the same normal
clocks inverted. The input signal can be either external inputs (hormal mode), or calibration bus (for debug and
calibration). Additionally, the onboard clock generator needs to be programmed with the selected ADC clock(s) at
the user desired data collection rate. Each of the four individual ADCs can also be programmed with data format
of offset binary or two’s complement and a bipolar voltage range of either 5 or 10 volts or a unipolar voltage range
of either 5 or 10 volts. Additionally, the ADCs can be set to normal or high speed. Normal speed is when you wish
to sample below the 500KSPS clock rate and high speed when you want to select clock speed below 700KSPS. In
this case, only even channels of the ADC will be active and odd channels will be unused.

2.1.1 ADC Channel Registers

This mechanism allows the user to asynchronously acquire raw data for any converted analog channel. Once the
clocks have started (after programming the ADCs and clocks), the board will continuously convert the ADC
channels and update all the Channel Registers that have an active clock at the programmed clock rate. User can
then asynchronously read any of the registers to acquire the latest converted raw data.

There are various methods available at the disposal of the user to receive the contents of the converted channel
registers. Each has its own merit, limitations and performance impact and left to the sole discretion of the user as
to the method to use.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 5 of 11



a) Advanced users can access these registers directly via memory mapping, and bypassing the API, however,
care must be taken in performing synchronization with any other applications accessing the board at the same
time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_ptr can be obtained by using the ccrtAICC_Get_Library_Info() call. Once
the pointer is available, the channels can be accessed via the ADC_Data[ ] array.

If the user wishes to determine the floating point voltages for the raw data, they can do so with the help of the
ccrtAICC_DataToVolts() library call. This call requires as an argument a pointer to the
ccrtaicc_volt_convert_t structure that holds the current ADC configuration information.

b) Alternatively, the user can use the ccrtAICC_Fast Memcpy() library call to copy a consecutive set of raw
channel registers contents to a local buffer.

c) Another method to transfer the contents of a consecutive set of raw channel registers to a local buffer is to use
the ccrtAICC_Transfer_Data() library routine. The advantage of this call is that it allows the user to transfer
the data via DMA or Programmed 1/O. If this call is going to use DMA, then the received user buffer must be
a buffer that can allow the board to perform DMA writes. This buffer can be obtained with the help of the
ccrtAICC_MMap_Physical_Memory() library call.

d) Another approach is for the user to make use of the driver to acquire the contents of the ADC channels. In this
case, the user needs to first select the appropriate channel read mode operation (Programmed 1/0 or DMA)
with the ccrtAICC_ADC_Set Driver_Read_Mode() library call and then call the ccrtAICC_Read() routine to
read the raw channel registers. At present, the driver does NOT support DMA transfers. In this case (i.e. PIO
mode), any buffer (not necessarily a DMA capable one) can be supplied to the ccrtAICC_Read() call.

e) Finally, the ccrtAICC_ADC_Read_Channels() library call not only allows the user to select individual
channels via a channel mask, but also returns the raw and floating point voltages as determined by the current
configuration of ADC converters.

The user has the option to supply a NULL pointer instead of the adc_csr argument, in which case the
ccrtAICC_ADC_Read_Channels() call will internally extract the current hardware ADC configuration prior
to computing the floating point voltage. This would add considerable overhead to the call if it is being called
multiple times. Alternatively, the user could first determine the current ADC configuration using the
ccrtAICC_ADC_Get_CSR() first and then supplying the current configuration to the adc_csr argument in the
following ccrtAICC_ADC_Read_Channels() calls, with the assumption that the ADC configuration is not
going to change for the duration of the reads.

2.1.2 ADC FIFO

This mechanism allows the hardware to synchronously acquire the raw data for any converted analog channel.
Once the ADCs and clocks have been programmed and started, the board will continuously convert the selected
ADC channels and place them in the ADC FIFO at the programmed clock rate. The user can select which channels
are to be sampled by the hardware and placed in the ADC FIFO with the channel selection mask supplied to the
ccrtAICC_ADC_Set_Fifo_Channel_Select() call.

User can then asynchronously extract the samples from the ADC FIFO via several methods. Care must be taken to
ensure that the ADC FIFO does not get empty (underflow) or go beyond full (overflow), otherwise synchronous
data collection will be compromised. At any time, the ccrtAICC_ADC_Get_Fifo_Info() call can be invoked to
determine the status of the ADC FIFO.

Unlike the samples in the ADC Channel Registers which only contain the raw 18-bit sample data, the ADC FIFO
samples contain the raw 18-bit channel data along with the channel number in the most significant byte associated
with the channel in the 32 bit FIFO sample.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 6 of 11



If the method to extract samples from the ADC FIFO is too slow, the user may consider either selecting fewer
channels being scanned or reducing the sample collection clock rate.

This card can support channel clock speeds of up to 700KSPS. When operating at clock speeds between 500KSPS
and 700KSPS, the user should set the ADC to high speed mode. This is to ensure that the hardware can keep up
with the clock rate and this is accomplished by reducing the number of channel from 16 per ADC to 8 per ADC. In
this case, only the even channels are active, while the odd channels are not used and not placed in the FIFO even if
the user has selected the odd channels in the channel select mask.

Additionally, the users can use this FIFO mechanism to achieve 1MSPS per channel by dedicating two channels
for the source signal. What is done in this case is to select two channels from different ADCs, e.g. 0 for ADCO and
16 from ADC1. The ADCs could be in normal or high speed mode. The user would then assign a clock to ADCO
and an inversion of the same clock to ADC1. Now, when samples are collected, they will alternate between
channel 0 and 16 in the FIFO. The user can then extract the samples from the FIFO and merge them into a single
FIFO stream achieving the 1MSPS rate for the selected channel. There is no reason why a user could not similarly
pair two channels that have both ADCs configured for high speed mode operating at the maximum clock speed of
700KSPS. In this case, the merged sample rate of the channels could be as high as 1.4MSPS.

The obvious drawback for operating channels at high speeds is that the software would not be fast enough to
extract the FIFO samples and come back in time to extract the next set of samples without overflowing. In that
case, the user has the choice of either reducing the number of channels being sampled and/or reducing the
sampling frequency.

Prior to collecting the samples, it is recommended to reset the ADC FIFO to ensure that FIFO is empty. This can
be accomplished by the ccrtAICC_ADC_Reset_Fifo() call.

Recommended method of data collection is to start the clocks, let them settle and then reset the FIFO just prior to
starting sample collection.

There are various methods available at the disposal of the user to receive the contents of the converted channel
samples from the ADC FIFO. Each has its own merit, limitations and performance impact and left to the sole
discretion of the user as to the method to use.

a) Advanced users can access this register directly via memory mapping, and bypassing the API, however, care
must be taken in performing any synchronization with any other applications accessing the board at the same
time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_ptr can be obtained by using the ccrtAICC_Get_Library_Info() call. Once
the pointer is available, the channels can be accessed via the ADC_FifoData FIFO register.

If the user wishes to determine the floating point voltages for the raw data, they can do so with the help of the
ccrtAICC_DataToVolts() library call. This call requires as an argument a pointer to the
ccrtaicc_volt_convert_t structure that holds the current ADC configuration information.

b) Another method to transfer the samples collected in the ADC FIFO to a local buffer is to use the
ccrtAICC_Transfer_Data() library routine. The advantage of this call is that it allows the user to transfer the
data via DMA or Programmed 1/O. If this call is going to use DMA, then the received user buffer must be a
buffer that can allow the board to perform DMA. This buffer can be obtained with the help of the
ccrtAICC_MMap_Physical_Memory() library call.

c) Another approach is for the user to make use of the driver to extract the contents of the samples from the ADC
FIFO. In this case, the user needs to first select the appropriate channel read mode operation (Programmed
I/O or DMA) with the ccrtAICC_ADC Set Driver_Read Mode() library call and then call the
ccrtAICC_Read() routine to read the raw channel samples. At present, the driver does NOT support DMA
transfers. In this case (i.e. P1O mode), any buffer (not necessarily a DMA capable one) can be supplied to the
ccrtAICC_Read() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 7 of 11



2.1.3 ADC Input Options
Each of the four ADC’s has the option of selecting its inputs either from the external lines (normal mode) or from
the calibration bus with the ccrtAICC_ADC_Set CSR() call. If external lines are selected for an ADC, all 16 ADC
channels will return the raw digital values for the 16 inputs lines. If calibration bus is selected, then all ADCs can
receive one of the following with the ccrtAICC_Set_Calibration_CSR() call:

Calibration Ground

Calibration Positive 10 Volt Reference Voltage (really 9.91 volts)
Calibration Negative 10 Volt Reference Voltage (really 9.91 volts)
Calibration Positive 5 Volt Reference Voltage (really 4.95 volts)
Calibration Negative 5 Volt Reference Voltage (really 4.95 volts)
Calibration 2 Volt Reference (really 2.048 volts)

The calibration connections are used for calibrating the ADCs. Note that all channels will display the same
Calibration reference voltage, depending on the calibration bus selection.

3. SDRAM (currently not supported)
Currently, this card does NOT support SDRAM.

This card includes a 256 Mega-Word SDRAM. Currently, no memory has been reserved for internal use.

Clock 7 is internally assigned to SDRAM by the hardware and it needs to be programmed and running at 10MHz
prior to any SDRAM operation.

Once clock 7 is programmed and running, the SDRAM needs to be activated with the
ccrtAICC_SDRAM_Activate() API call. Without this activation, all other SDRAM calls will fail.

The user can read or write to any word within the SDRAM with the use of the ccrtAICC_SDRAM_Read() and
ccrtAICC_SDRAM_Write() calls respectively. All operations are word oriented.

3.1.1 SDRAM Read (currently not supported)
Currently, this card does NOT support SDRAM.

Typically a read operation consists of reading a set of words from a given word offset within the SDRAM. To
perform this operation, first ensure that the SDRAM is in the read incrementing mode by setting the
read_auto_increment argument in the ccrtAICC_SDRAM_Set_CSR() call to
CCRTAICC_SDRAM_READ_AUTO_INCREMENT_ENABLE. This call need only be done once. The user can
then issue the ccrtAICC_SDRAM_Read() with the word offset specified in Offset and the word size in Size.

Though the hardware allows the user to disable the auto incrementing of the read address, it is not normally used
in this mode. If read auto incrementing is disabled, the same word will be read repeatedly.

3.1.2 SDRAM Write (currently not supported)
Currently, this card does NOT support SDRAM.

Typically a write operation consists of writing a set of words to a given word offset within the SDRAM. To
perform this operation, first ensure that the SDRAM is in the write incrementing mode by setting the
write_auto_increment argument in the ccrtAICC_SDRAM_Set CSR() call to
CCRTAICC_SDRAM_WRITE_AUTO_INCREMENT_ENABLE. This call need only be done once. The user can
then issue the ccrtAICC_SDRAM_Write() with the word offset specified in Offset and the word size in Size.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 8 of 11



Though the hardware allows the user to disable the auto incrementing of the write address, it is not normally used
in this mode. If write auto incrementing is disabled, all the words will be written to the same offset within the
SDRAM.

4. Clocks

This FPGA supports a total of ten clock generators Clock 0 to Clock 9. Following are their assignments:

e Clock 0to 3 - for ADC
e Clock 7 — for SDRAM (currently the card does not support SDRAM)
e Clock 4,5, 6, 8and 9 — Reserved

Currently, users can select any of the four clocks (Clock 0 to 3) for ADC. They operate in either normal mode or
inverted mode. Users can assign any combinations of the above four clocks (normal or inverted) for any of the
four ADCs.

Clock 7 is only used by the SDRAM and must be programmed and running at 10MHz prior to performing any
SDRAM operations. This is automatically done when the clock creating API is called.

Though there are several API calls to control the clock generator, it is recommended that they be left to the
advanced users to control as they require in depth knowledge of the internals of the hardware and workings of the
clock generator. For most users, the following API calls should suffice to handle most situations:

e cCrtAICC_Reset_Clock()

e cCcrtAICC_Compute_All_Output_Clocks()
e ccrtAICC_Program_All_Output_Clocks()
e ccrtAICC_Clock_Get_Generator_Info()

Due to the complexity of programming the clock generator and due to hardware limitations (different clocks
sharing same resources), a user cannot append to or change already running clocks. If multiple clocks are to be
used, then the user needs to program all the clocks with the single call prior to commencing. Additionally, the
software makes all attempts to program the clocks with the user desired frequency. There may be times when the
desired frequencies are so mismatched that it will be impossible for the clock chip to be programmed for those
exact frequencies. In that case, the user has two choices (1) change the clock frequencies slightly (2) increase the
supplied tolerance to the API call. In the latter case, the call will attempt to program the frequencies closest to
what the hardware will allow.

4.1.1 Reset All Clocks

This call simply resets and disables all the clocks on the board. Not much can be done with the card until the
clocks are programmed and running.

4.1.2 Compute All Output Clocks

Any of the ten clocks can be selected to be programmed with any frequency ranging from 1 Hz to 250 MHz. Since
the clocks are sharing hardware resources, there may be certain frequency and clock combinations that will make
programming the board impossible due to clock chip limitations. In this case, the user has the option to select
fewer clocks, change the frequencies or increase the acceptable tolerance for desired frequencies.

The user can use the ccrtAICC_Compute_All_Output_Clocks() call to see if their combination of clock
programming is going to work. No actual programming of the hardware takes place and therefore it should not
interfere with any other hardware operation. If the call succeeds, it returns detailed information in the AllClocks
argument for each of the clocks. Users can decide whether to program the clock generator with the same
information using the ccrtAICC_Program_All_Output_Clocks() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 9 of 11



4.1.3 Program All Output Clocks

This call first resets all the clock generators and then programs them with the desired frequencies supplied to the
call. If any components (e.g. ADC, or SDRAM) are operational, they will no longer work until the corresponding
clocks have been re-programmed. It is recommended to stop all components that are using the clocks prior to
reprogramming the clock generators; otherwise, the component operation will be compromised.

4.1.4 Get Clock Generator Information

This call provides detailed information for any of the selected clock generators in the Cglnfo argument of the
ccrtAICC_Clock_Get_Generator_Info() call.

5. Calibration

For accurate representation of samples, users must perform calibration of ADC channels prior to sampling. ADC
calibration makes use of either the on-board reference voltage or an external input.

5.1.1 ADC Calibration

The simplest way to calibrate all or a selected set of channels using the internal reference voltages, is to use the
single call ccrtAICC_ADC_Perform_Auto_Calibration(). The calibration values assigned to channels will be
directly impacted by the clock frequency, voltage range and normal/high speed of the ADCs. It is therefore
required that the user set the individual ADCs properly prior to commencing calibration. The call requires a
channel start and stop range, therefore individual channels can be calibrated without disturbing the calibration of
other channels if so desired. When the call is successful, the offset, positive and negative calibration values for the
selected channels have been calibrated.

External ADC calibration is more involved as the user needs to interactively supply the appropriate input signals.
The user can perform external calibration by supplying zero volts signal to the selected channels and using the
ccrtAICC_ADC_Perform_External_Offset_Calibration() call. Next, they can perform positive calibration by
supplying an  external positive  signal to  the  selected channels and using  the
ccrtAICC_ADC_Perform_External_Positive_Calibration() call with the ReferenceVoltage argument set to the
value of the external input signal and finally supplying a negative signal to the selected channels and using the
_ccrtAICC_ADC_Perform_External_Negative_Calibration() call with the ReferenceVoltage argument set to the
negative signal supplied.

If users prefer that the hardware not perform any calibration for specific channels, one can do that with the use of
the ccrtAICC_ADC_Set Offset Cal() call with 0 wvolts offsst and a gain of 1 for the
ccrtAICC_ADC_Set_Positive_Cal() and ccrtAICC_ADC_Set_Negative_Cal() calls. Users can skip calibration data
for channels being update by setting the corresponding channel with the CCRTAICC_DO_NOT_CHANGE flag
instead. They can also use the ccrtAICC_ADC_Reset_Calibration() call to reset the calibration for all the channels.

6. Serial PROM (currently not supported)
Currently, this card does NOT support Serial PROM.

The board contains a Serial Prom that is 1024 short words (2048 bytes) deep. Information written to the Serial
Prom is preserved and contains vital board information and should not be erased or changed by the user.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 10 of 11



All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,
transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,
copyright or trade secret right is granted or implied by the conveyance of this document.

Page 11 of 11



