Release Notes
CCURDPRC (WC-DPRC)

Driver

ccurdprc (WC-DPRC)

Platform

RedHawk Linux® (CentOS/Rocky/RHEL & Ubuntu), Native
Ubuntu® and Native Red Hat Enterprise Linux®?

Vendor

Concurrent Real-Time

Hardware

Digital Programmable Resister Card (DPRC)

Author

Darius Dubash

Date

July 11", 2025

Rev 2025.1

&concurrent

REAL-TINVIE

L All trademarks are the property of their respective owners

This page intentionally left blank

Table of Contents

1. INTRODUCTION. ...ttt s e e et e e st e e e st b e e e eate e e e e aateeesasbeeeantreeeanseeas 1
2. REQUIREMENTS ..ottt sttt st s et e st et e s et enbe b e e st e neenneene e 1
3. DOCUMENTATION ..ottt st s st e e st e e e e tb e e e s saba e e s atbreeesnteeeesnaeeaas 1
4. RUNNING ON NATIVE RED HAT ..ot 1
4.1. Support to build 3™ party MOUUIES...........ccouriieriiiceeee e 2
4.2, SUPPOIt FOr MST INTEITUPLS...c.viiiiiie ittt st e sbe e sbeesteesreesreesre s 2
4.3. BIOS and Kernel LeVEl TUNINGcoiiiiiiiieeieie e 2
5. RUNNING ON NATIVE UBUNTUcoiiiiiiiiiieieseseie e 3
5.1. Support to build 3 party MOUUIES...........ccceiririeiriiiecieeee e 3
5.2, SUPPOIT FOr MST INTEITUDLS. ... eiivie ettt ettt et st e e be e be e saeenteenbeenee e 3
5.3. Compiling the driver With iNSTAHE gCCoiviiiiiiiie e 4
5.4. BIOS and Kernel LeVel TUNINGooiiiieiiice ettt sttt ae e 4
6. INSTALLATION AND REMOWVAL ..ottt sttt naesnesnaenens 5
6.1. Hardware INSTAlIAtIONccoiiiiiiiieice bt 5
6.2, SOTtWAre INSLAITATION.......oouiiiee ettt et see e ee e 6
6.3, SOTIWAIE REMOVALccuiiiiiiiii ittt sttt et este e beesbeesaeesteenteenee e 7
7. AUTO-LOADING THE DRIVERo ottt 8
8. TESTING AND USAGE ...ttt e e et e e s erre e e e 8
9. RE-BUILDING THE DRIVER, LIBRARY AND TESTS ..ottt 9
10. SOFTWARE SUPPORT ..ottt et e e st e e et e e e tta e e s saaae e s nneeeeennes 9
10.1. DeVice CONFIGUIALION.........coiiiitie ettt ettt e e be et e e s taeeneesaresneeres 9
10.2. LiDrarny INTEITACEoviiiiiiiiee bbbt 10
0 G TR I =1 o0 To o |10 S 10
11, NOTES AND ERR AT A ittt ettt e et e e et e e e s et e e e s tbe e e steeeessneeeesnnraeeans 12
APPENDIX A: EXTERNAL CONNECTIONS AND PIN-OUTScooiiiiiein e 13
APPENDIX B: EXTERNAL CONNECTIONS AND PIN-OUTSoooiiiiiiieecree e 14

APPENDIX C: THE DIGITAL PROGRAMMABLE RESISTANCE CARD.........cccocoviiiiiiicn 15

This page intentionally left blank

1. Introduction

This document assists the user in installing the CCUR-PCle-DPRC Linux ccurdprc driver and related
software on the RedHawk OS, Native Ubuntu and Native Red Hat for use with the CCUR-PCle Digital
Programmable Resister Card (DPRC). The directions in this document supersede all others — they
are specific to installing the software on Concurrent Real-Time’s RedHawk and Native Ubuntu and
Native Red Hat systems. Other information provided as part of this release, when it may contradict
these directions, should be ignored and these directions should prevail.

Current versions of Native Operating Systems that are supported are:
1) Ubuntu 22.04, kernel 6.5 or 6.8, gccll & gecl2
2) Red Hat RHEL 9.4, kernel 5.14

For additional information on this driver and usage refer to the ccurdprc man page.

Features and Characteristics of the DPRC are:

16-channel Digital Programmable Resistance
45 to 1M Ohm Range (In 5 Ohm Steps)

10 Ohm Low Scale Selection

+/-14V @ 10 Milliamp

Open, Ground and V+ Fault Insertion

Galvanic Isolation

Overvoltage Protection

Overcurrent Protection

Analog Devices AD5293 Digital Potentiometers
Industry Standard SCSI 68-pin Connector for I/O
PCI Express x1 Revision 1.0a

NIST Traceable Calibration Standard (Optional)

2. Requirements

e CCUR-DPRC PCle board physically installed in the system.
e This driver supports various versions of RedHawk and a selected set of Native Ubuntu and Native
Red Hat. Actual supported versions depend on the driver being installed.

3. Documentation

e PcCle Digital Programmable Resister Card (DPRC) Software Interface by Concurrent Real-
Time.

e PcCle Digital Programmable Resister Card (DPRC) Design Specification by Concurrent Real-
Time.

4. Running on Native Red Hat

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver will
also be able to run on some selected versions of Red Hat with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccurdprc/driver/ccurdprc.ko due to unavailability
of vmlinux

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -1-

4.1. Support to build 3 party modules

If your system isn’t setup to build 3" party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

#yum install ncurses-devel (to run curses)
#yum install gnuplot (to run plots for various tests)
#yum install <any other package you want to install>

4.2. Support for MSI interrupts

The driver can operate with either MSI or wired interrupts. This is a configuration option that can
be selected by editing the ccurdprc_nomsi parameter located in the .../driver/ccurdprc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

» ccurdprc_nomsi=0 enable MSI support (default for RedHawk systems)
» ccurdprc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSI on a
per board basis for cards using a PLX chip for generating interrupts. This is specially true for the
later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to use
MSI instead of wired interrupts, they can enable them in various ways as outlined below.

e If MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

Reload the kernel with the grub option “iommu=pt”
Reload the kernel with the grub option “iommu=off”
Disable IOMMU in the BIOS

Reload the kernel with the grub option “intremap=nosid”
Reload the kernel with the grub option “intremap=off”
Disable VT-d in the BIOS

Disable VT-d MSI Interrupt Remapping in the BIOS
Disable 4G Decoding in the BIOS

VVVVVYVYYYVY

e To add/remove/display the intremap command to grub, issue the following commands:

» # grubby --update-kernel=ALL --args=iommu=pt (add the parameter)

» # grubby --update-kernel=ALL --args=iommu=off (add the parameter)

» # grubby --update-kernel=ALL --args=intremap=nosid (add the parameter)

» # grubby --update-kernel=ALL --remove-args=intremap=nosid (remove the parameter)

» # grubby --info=ALL (display parameters)

> # reboot

» After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is
present.

4.3. BIOS and Kernel Level Tuning

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
various BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
sysctl kernel.sched_rt_runtime_us=-1
echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -2-

Disable timer migration:
sysctl kernel.timer_migration=0
echo 0 > /proc/sys/kernel/timer_migration

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.
GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nochs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irgaffinity=0 isolcpus=managed_irgq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nochs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

. Running on Native Ubuntu

Though this driver and hardware work best on Concurrent Real-Time RedHawk systems, the driver will
also be able to run on some selected versions of Ubuntu with some limitations. Some of these
limitations are highlighted below. The rest of the document is applicable to all systems.

When compiling the driver, you may get the following message that can be ignored:

Skipping BTF generation for /usr/local/CCRT/drivers/ccurdprc/driver/ccurdprc.ko due to unavailability
of vmlinux

5.1. Support to build 3" party modules

If your system isn’t setup to build 3™ party modules, you will need to install some of the following
packages if they havn’t already been installed before being able to compile the driver. Installation
process of these modules may differ from system to system. Refer to the particular system for
installation of the modules.

apt install build-essential
#apt install libssl-dev

#apt install nfs-common (to mount nfs file systems)

#apt install libncurses-dev (to run curses)

apt install gnuplot (to run plots for various tests)

#apt install chrony (for more accurate clock time)

apt install <any other package you want to install>

5.2. Support for MSI interrupts

The driver can operate with either MSI or wired interrupts. This is a configuration option that can
be selected by editing the ccurdprc_nomsi parameter located in the .../driver/ccurdprc_config file
where the driver is installed. Reloading the driver will cause the MSI interrupt handling option to
switch.

» ccurdprc_nomsi=0 enable MSI support (default for RedHawk systems)
» ccurdprc_nomsi=1 disable MSI support

Red Hat systems do not have kernel level hooks like CCRT RedHawk systems to enable MSl on a
per board basis for cards using a PLX chip for generating interrupts. This is specially true for the
later X11SPA-TF SuperMicro Mother boards and onwards. In this case, if the user wishes to use
MSI instead of wired interrupts, they can enable them in various ways as outlined below.

e |f MSI interrupts are not being generated and the user wishes to continue using MSI interrupts
instead of wired interrupts, they can try to resolve the problem by implementing one the following:

» Reload the kernel with the grub option “iommu=pt”
» Reload the kernel with the grub option “iommu=off’

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -3-

Disable IOMMU in the BIOS

Reload the kernel with the grub option “intremap=nosid”
Reload the kernel with the grub option “intremap=off”
Disable VT-d in the BIOS

Disable VT-d MSI Interrupt Remapping in the BIOS
Disable 4G Decoding in the BIOS

VVVVYVY

e To add/remove/display the intremap command to grub, issue the following commands:

» Edit /etc/default/grub and add "iommu=pt" or “iommu=off” and/or add “intremap=nosid”
to “GRUB_CMDLINE_LINUX=" entry

update-grub

reboot

After system reboots, issue the command “cat /proc/cmdline” to see if the added entry is
present.

Y V V

5.3. Compiling the driver with installed gcc

Depending on the Ubuntu kernel version supported, you will need to make sure that the driver is
compiled with the same gcc as the kernel.

Currently, for Ubuntu release 22.04, the kernel 5.15 uses gcc-11 while kernel 6.4 or 6.8 uses gcc-12
If gcc-12 is not installed, you can do the following:

apt install gcc-12
Then create alternate entries for each available version:

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcec-12 12

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc
/usr/bin/x86_64-linux-gnu-gcc-11 11

sudo update-alternatives --install /usr/bin/x86_64-linux-gnu-gcc x86_64-linux-gnu-gcc
/usr/bin/x86_64-linux-gnu-gcc-12 12

You can select the appropriate gcc with the following commands:

sudo update-alternatives --config gcc
sudo update-alternatvies --config x86_64-linux-gnu-gcc

All of this will ensure you have the compiler versions that match what the kernel was compiled with.

5.4. BIOS and Kernel Level Tuning

BIOS tuning for real-time is specific to the mother board where the Red Hat kernel is running. The
various BIOS settings need to be studied and changed accordingly to make sure that it is running at
optimal performance with minimal interference from other processes.

Some Red Hat kernel level tuning can be performed to see if they are helpful in getting a more real-
time performance.

Disable features that allows SCHED_OTHER tasks to use up to 5% or RT CPUs.
sysctl kernel.sched_rt_runtime_us=-1
echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Disable timer migration:
sysctl kernel.timer_migration=0
echo 0 > /proc/sys/kernel/timer_migration

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -4 -

Add follwing parameters to /etc/default/grub line and running update-grub and reboot.
GRUB_CMDLINE_LINUX="skew_tick=1 rcu_nocb_poll rcu_nocbs=1-95 nohz=on nohz_full=1-95
kthread_cpus=0 irgaffinity=0 isolcpus=managed_irq,domain,1-95 intel_pstate=disable
nosoftlockup tsc=nowatchdog"

Isolate CPUs e.g (this command has been officially marked deprecated)
isolcpus=1-8,26-30 rcu_nochs=1-8,26-30 nohz_full=1-8,26-30 rcu_nocb_poll=1-8,26-30

. Installation and Removal

6.1. Hardware Installation

The CCUR-DPRC card is a Gen 1 PCI Express product and is compatible with any PCI Express slot.
The board must be installed in the system before attempting to use the driver.

The ccurdprc driver is designed to support IRQ sharing. If this device’s IRQ is being shared by another
device then this driver’s performance could be compromised. Hence, as far as possible, move this
board into a PCI slot who'’s IRQ is not being shared with other devices. The default driver configuration
uses MSI interrupts. If the kernel supports MSI interrupts, then sharing of interrupts will not occur, in
which case the board placement will not be an issue.

machine’s power cord is disconnected. Please observe electrostatic discharge

: Caution: when installing the card insure the computer is powered off and the
precautions such as the use of a grounding strap.

An ‘Ispci -v’ or the ‘Isirg’ command can be used to determine the IRQs of various devices in the
system.

1lspci -vv -d1542:9310

08:04.0 System peripheral: Concurrent Computer Corporation Device 9310 (rev 01)

Subsystem: PLX Technology, Inc. Device 9056

Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping-
SERR- FastB2B- DisINTx-

Status: Cap+ 66MHz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort-
<MAbort- >SERR- <PERR- INTx-

Latency: 96, Cache Line Size: 32 bytes

Interrupt: pin A routed to IRQ 55

Region 0: Memory at c4c01000 (32-bit, non-prefetchable) [size=512]

Region 2: Memory at c4c00000 (32-bit, non-prefetchable) [size=2K]

Capabilities: <access denied>

lsirq
55 08:04.0 Concurrent Computer Corporation Unknown device (rev 01)

After installing the card, reboot the system and verify the hardware has been recognized by the
operating system by executing the following command:

1spci -d 1542:9310

For each CCUR-DPRC PCle board installed, a line similar to one of the following will be printed,
depending on the revision of the system’s /usr/share/hwdata/pci.ids file:

08:04.0 System peripheral: Concurrent Computer Corporation Device 9310 (rev 01)

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -5-

If a line like the above is not displayed by the Ispci command, the board has not been properly installed
in the system. Make sure that the device has been correctly installed prior to attempting to use the
software. One similar line should be found for each installed card.

6.2. Software Installation

Concurrent Real-Time™ port of the ccurdprc software is distributed in RPM format for CentOS and
DEB format for Ubuntu OS on a CD-ROM. Source for the API library and kernel loadable driver are not
included, however, source for example test programs as well as documentation is provided in PDF
format.

The software is installed in the /usr/local/CCRT/drivers/ccurdprc directory. This directory will be
referred to as the “top-level” directory by this document.

be set up and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent Real-Time and have not previously done so,
run the following commands while logged in as the root user before installing the driver
software:

i Warning: Before installing the software, for RedHawk kernels, the build environment must

cd /1lib/modules/ uname -r” /build
./ccur-config -c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To install the ccurdprc package, load the CD-ROM installation media and issue the following
commands as the root user. The system should auto-mount the CD-ROM to a mount point in the
/media or /run/media directory based on the CD-ROM'’s volume label — in this case ccurdprc_driver.
The example’s [user_name] may be root, or the logged-in user. Then enter the following commands
from a shell window:

== as root ==
--- on RedHawk 6.5 and below ---
cd /media/ccurdprc_driver
--- or on RedHawk 7.0 and above ---
cd /run/media/[user_name]/ccurdprc_driver
--- or on Ubuntu RedHawk ---
cd /media/[user_name]/ccurdprc_driver

rpm -ivh ccurdprc_RedHawk_driver*.rpm (on a RedHawk Cent0S/RocRy based system)

dpkg -i ccurdprc_ﬁgszgak_driver*.deb (on a RedHawk Ubuntu based system)
rpm -ivh ccurdprc;kgz;;t_driver*.rpm (on a Native RedHat based system)
dpkg -i ccurdprc_dg::;u;driver*.deb (on a Native Ubuntu based system)
cd /
eject

On successful installation, the source tree for the ccurdprc package, including the loadable kernel
module, API libraries, and test programs is extracted into the /usr/local/CCRT/drivers/ccurdprc
directory by the rpm installation process, which will then compile and install the various software
components.

The loadable kernel module is installed in the /lib/modules/ 'uname —r*/misc directory.

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -6 -

Once the package is installed, the driver needs to be loaded with one of the following commands:

== as root ==
cd /usr/local/CCRT/drivers/ccurdprc
make load

--- or on RedHawk 6.5 and below ---
/sbin/service ccurdprc start

--- or on RedHawk 7.0 and above ---
/usr/bin/systemctl start ccurdprc

--- or on Ubuntu RedHawk ---
/bin/systemctl start ccurdprc

Issue the command below to view the boards found by the driver:

cat /proc/ccurdprc

Version ¢ 23.1.1
Built : Tue Apr 14 12:33:40 EST 2020
Boards 01

card=0: [08:04.0] bus=8, slot=4, func=0, irqg=55, msi=1, ID=680593,
BoardInfo=0x93100102

Note: With RedHawk 7.5 you may see a cautionary message similar to the following when the ccurdprc
driver is loaded on the system console or via dmesg command:

CHRDEY "ccurdprc" major number 233 goes below the dynamic allocation range

As documented in the kernel driver Documentation/devices.txt file a range of character device
numbers from 234 to 254 are officially available for dynamic assignment. Dynamic assignments start
at 254 and grow downward. This range is sometimes exceeded as additional kernel drivers are
loaded. Note that this was also the case with earlier kernels — the newer 7.5 kernel has added a runtime
check to produce this warning message that the lower bound has been exceeded, not reduced the
range of numbers officially available for dynamic assignment. If you see this message please verify
the assigned number(s) isn’t being used by a device installed on your system.

6.3. Software Removal

The ccurdprc driver is a dynamically loadable driver that can be unloaded, uninstalled and removed.
Once removed, the only way to recover the driver is to re-install the rpm or deb from the installation
CDROM:

If any changes have been made to the driver package installed in
/usr/local/CCRT/drivers/ccurdprc directory, they need to be backed up prior to invoking the
stop removal; otherwise, all changes will be lost.

== as root ==

rpm -e ccurdprc (driver unloaded, uninstalled, and deleted — on an RPM based system)
- _Or_ -

dpkg -P ccurdprc (driver unloaded, uninstalled, and deleted — on an Debian based

system)

If, for any reason, the user wishes to un-load and uninstall the driver and not remove it, they can perform
the following:

== as root ==
cd /usr/local/CCRT/drivers/ccurdprc
make unload (unload the driver from the kernel)

--- or on RedHawk 6.5 and below ---
/sbin/service ccurdprc stop
Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -7-

--- or on RedHawk 7.0 and above ---
/usr/bin/systemctl stop ccurdprc

--- or on Ubuntu RedHawk ---
/bin/systemctl stop ccurdprc

To uninstall the ccurdprc driver, do the following after it has been unloaded:

=== as root ===
cd /usr/local/CCRT/drivers/ccurdprc
make uninstall (uninstall the driver and library)

In this way, the user can simply issue the ‘make install’ and ‘make load’ in the
/usr/local/CCRT/drivers/ccurdprc directory later to re-install and re-load the driver.

7. Auto-loading the Driver

The ccurdprc driver is a dynamically loadable driver. Once you install the package or perform the
‘make install’, appropriate installation files are placed in the /etc/rc.d/rc*.d or /usr/lib/system/systemd
directories so that the driver is automatically loaded and unloaded when Linux is booted and shutdown.
If, for any reason, you do not wish to automatically load and unload the driver when Linux is booted or
shutdown, you will need to manually issue the following command to enable/disable the automatic
loading of the driver:

=== as root ===
--- on RedHawk 6.5 and below ---

/sbin/chkconfig --add ccurdprc (enable auto-loading of the driver)

/sbin/chkconfig --del ccurdprc (disable auto-loading of the driver)
--- or on RedHawk 7.0 and above ---

/usr/bin/systemctl enable ccurdprc (enable auto-loading of the driver)

/usr/bin/systemctl disable ccurdprc (disable auto-loading of the driver)
--- or on Ubuntu RedHawk ---

/bin/systemctl enable ccurdprc (enable auto-loading of the driver)

/bin/systemctl disable ccurdprc (disable auto-loading of the driver)

8. Testing and Usage
Build and run the driver test programs, if you have not already done so:

cd /usr/local/CCRT/drivers/ccurdprc
make test (build the test programs)

Several tests have been provided in the /usr/local/CCRT/drivers/ccurdprc/test directory and
can be run to test the driver and board.

=== as root ===

cd /usr/local/CCRT/drivers/ccurdprc

make test (build the test programs)

./test/ccurdprc_dump (dump all board resisters)

./test/ccurdprc_rdreg (display board resisters)

./test/ccurdprc_reg (Display board resisters)

./test/ccurdprc_regedit (Interactive board register editor test)
./test/ccurdprc_tst (Interactive test to test driver and board)
./test/ccurdprc_wreg (edit board resisters)

./test/Eeprom/ccurdprc_eeprom (Eeprom: Burn Eeprom)

./test/Flash/ccurdprc_flash (Flash: Flash firmware)

./test/Flash/ccurdprc_fwreload (Flash: Firmware reload)

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -8-

./test/lib/ccurdprc_adc_calibrate (library: display or calibrate)

./test/lib/ccurdprc_disp (library: display, program & test)

./test/lib/ccurdprc_fault_protection (library: display fault protection information)

./test/lib/ccurdprc_fault_trip_test (library: perform fault trip testing)

./test/lib/ccurdprc_identify (library: identify cards in the system)

./test/lib/ccurdprc_info (library: provide information of all boards)

./test/lib/ccurdprc_tst_lib (library: Interactive test for driver & board)

9. Re-building the Driver, Library and Tests
If for any reason the user needs to manually rebuild and load an installed rpm or deb package, they
can go to the installed directory and perform the necessary build.
Warning: Before installing the software, for RedHawk kernels, the build environment must
be set up and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent Real-Time and have not previously done so,
run the following commands while logged in as the root user before installing the driver
software:
cd /lib/modules/ uname -r’/build
./ccur-config -c -n
If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.
To build the driver and tests:

=== as root ===

cd /usr/local/CCRT/drivers/ccurdprc

make clobber (perform cleanup)

make (make package and build the driver, library and tests)

(Note: if you only wish to build the driver, you can enter the ‘make driver’ command instead)
After the driver is built, you will need to install the driver. This install process should only be necessary
if the driver is re-built with changes.

=== as root ===

cd /usr/local/CCRT/drivers/ccurdprc

make install (install the driver software, library and man page)

Once the driver and the board are installed, you will need to load the driver into the running kernel prior
to any access to the CCUR DPRC board.

=== as root ===

cd /usr/local/CCRT/drivers/ccurdprc

make load (load the driver)

10. Software Support

e This driver package includes extensive software support and test programs to assist the user in

communicating with the board. Refer to the PCle Digital Programmable Resister Card (DPRC)
Design Specification by Concurrent Real-Time for more information on the product.

10.1. Device Configuration

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -9-

After the driver is successfully loaded, the device to card association file ccurdprc_devs will be created
in the /usr/local/CCRT/drivers/ccurdprc/driver directory, if it did not exist. Additionally, there is a
symbolic link to this file in the /usr/lib/config/ccurdprc directory as well. If the user wishes to keep the
default one-to-one device to card association, no further action is required. If the device to card
association needs to be changed, this file can be edited by the user to associate a particular device
number with a card number that was found by the driver. The commented portion on the top of the
ccurdprc_devs file is automatically generated every time the user issues the ‘make load’ or
‘/sbin/service ccurdprc start’ (on RedHawk 6.5 and below) or “usr/bin/systemctl start ccurdprc’
(on RedHawk 7.0 and above) command with the current detected cards, information. Any device to
card association edited and placed in this file by the user is retained and used during the next ‘make
load’ or “/sbin/service ccurdprc load’ or usr/bin/systemctl start ccurdprc’ process.

If the user deletes the ccurdprc_devs file and recreates it as an empty file and performs a ‘make load’
or if the user does not associate any device number with card number, the driver will provide a one to
one association of device number and card number. For more information on available commands,
view the commented section of the ccurdprc_devs configuration file.

to re-issue the ‘make load’ or ‘/sbin/service ccurdprc start’ or /usr/bin/systemct| start
ccurdprc’ command to generate the necessary device to card association. This device to
card association will be retained until the user changes or deletes the association. If any
invalid association is detected, the loading of the driver will fail.

i Warning: If you edit the ccurdprc_devs file to associate a device to a card, you will need

10.2. Library Interface

There is an extensive software library that is provided with this package. For more information on the

library interface, please refer to the PCle Digital Programmable Resister Card (DPRC) Software
Interface by Concurrent Real-Time for more information.

10.3. Debugging

This driver has some debugging capability and should only be enabled while trying to trouble-shoot a
problem. Once resolved, debugging should be disabled otherwise it could adversely affect the
performance and behavior of the driver.

To enable debugging, the Makefile file in /usr/local/CCRT/drivers/ccurdprc/driver should be edited
to un-comment the statement (remove the preceding ‘#):

BUILD_TYPE=debug

Next, use and install the debug driver
cd /usr/local/CCRT/drivers/ccurdprc/driver
make

make install

Next, edit the ccurdprc_config file in /usr/local/CCRT/drivers/ccurdprc/driver to un-comment the
statement (remove the preceding ‘#):

ccurdprc_debug_mask=0x00002040

Additionally, the value of the debug mask can be changed to suite the problem investigated. Once the
file has been edited, the user can load the driver by issuing the following:

cd /usr/local/CCRT/drivers/ccurdprc/driver
make load

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -10 -

The user can also change the debug flags after the driver is loaded by passing the above debug

statement directly to the driver as follows:
echo “ccurdprc_debug_mask=0x00082047” > /proc/driver/ccurdprc

Following are the supported flags for the debug mask as shown in the ccurdprc_config file.

B i S S S S e

D_ENTER
D_EXIT

D L1
D_L2
D_L3
D_L4

D_ERR
D_WAIT

D_INTO
D_INT1
D_INT2
D_INT3
D_INTW
D_INTE

D_RTIME
D_WTIME
D_REGS

D_IOCTL

D_DATA
D_DMA
D_DBUFF

D_NEVER
D_ALWAYS
D_TEMP

HHHFHAFHFHAFHFTFHFTHAFTHAFEHAFHFEFHEHEHEEHREHS

0x00000001
0x00000002

0x00000004
0x00000008
0x00000010
0x00000020

0x00000040
0x00000080

0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000

0x00010000
0x00020000
0x00040000
0x00080000

0x00100000
0x00200000
0x00800000

0x00000000
OxFFFFFFFF
D_ALWAYS

/*
/*

/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*

enter rout
exit routi

level 1 */
level 2 */
level 3 */
level 4 */

level erro
level wait

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

display re
display wr
dump regis
ioctl call

data level
DMA level
DMA buffer

never print this debug message */
always print this debug message */

ine */
ne */

r */
*/

level 0 */
level 1 */
level 2 */
level 3 */
wakeup level */
error */

ad times */
ite times */
ters */

*/

*/

*/
allocation */

HHEHHFHHFHAFHAFHAFHAFHRFHEFEFHEFHRFEFEFEFHFTEEEH

#

Only use for temporary debug code */ #
HHHH R R S R R

Another variable ccurdprc_debug_ctrl is also supplied in the ccurdprc_config that the
driver developer can use to control the behavior of the driver. The user can also change the debug
flags after the driver is loaded by passing the above debug statement directly to the driver as follows:

echo “ccurdprc_debug_ctrl=0x00001234” > /proc/driver/ccurdprc

In order to make use of this variable, the driver must be coded to interrogate the bits in the
ccurdprc_debug_ctrl variable and alter its behavior accordingly.

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes

-11 -

11. Notes and Errata

e In some kernel releases, when a package is installed or uninstalled, you may see a warning
message on the system console similar to “systemd-rc-local-generator[22094]:
/etc/rc.d/rc.local is not marked executable, skipping.”. This is for informational purpose only
and can be ignored.

o If a kernel is configured with the CONFIG_DEBUG_LOCK_ALLOC define, the driver will fail to
compile due to mutex_lock_nested() call being included with GPL requirement. If you want to
successfully compile the driver, you will need to remove the CONFIG_DEBUG_LOCK_ALLOC
define and rebuild the kernel.

e Ubuntu kernels RH8.0 onwards may have the default systemd-timesyncd daemon installed which
does not accurately adjust the system.You may want to replace the default with the chrony
package for a more accurate time asjustment.

e The board is designed to protect itself from excess voltage and current faults so as not to damage
it. Programmable trip points are fine-tuned to perform this function. It is imperative that the user
does not attempt to change these trip thresholds as that could damage the card.

e This card does not use interrupts or performs DMA.

e Itis possible that Ispci calls will still display the device with the old name of “Concurrent Computer
Corporation” instead of “Concurrent Real-Time” if the OS has not been updated.

e The potentiometers must be enabled before the ADC’s are enabled. The ADC’s may generate an
error if this sequence is not followed.

e The ADC'’s should also be disabled if the potentiometers are disabled to follow the sequence for
re-enabling.

e A potentiometer is considered “activated” after the first resistance value has been written to it.

e A potentiometer is considered “powered down” if the test register has selected power down and
the potentiometer is then activated.

e Calibration voltages (+2.5V, +10V & -10V) can only be selected if none of the potentiometers have
been activated or if they are all powered down.

e Calibration currents (+8ma, -8ma & +16ma) can only be selected if none of the potentiometers are
powered down.

e External I/O (including fault insertion) for a channel can only be selected if the potentiometer is
active and if no sections are powered down or all sections are powered down.

o External fault switch testing for a channel can only be selected if the potentiometer is not active.

e The potentiometers must be disabled to de-activate them. This is the only way to restore any
potentiometer from a powered down state or a forced failed condition.

e An electronic fuse trip condition will suspend all operations to the affected channel until the
condition is cleared. The affected channels potentiometer will have to be re-written to restore the
desired value.

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -12 -

Appendix A: External Connections and Pin-outs

The input/output signals from the DPRC are connected via an industry standard 68-pin SCSI type connector
with the following pin-out:

EXT_GND
P2
51
\
6 [~ |34
57| *® =3
w1 *® =2
= 4 *e "
(y—EXT B8 13 o . 5 4 B DIRAE
EXT RB 14 A P e | EXT RA 14
< 1 ®*® = >
¢>—EXT BB 13 o W <o e ETRATL
[+2¢] P izl
< EXT RE 12 | TSE o6 123 2| EXT RA 12 5
(>—EXT RS o g | EXT RA N
< <] P ps
(>—EXT RS 10 I ;4‘5 > Zv‘ 2] EXT RA 10 5
~ <
EXT R8 & [53] & s | EXT RA &
O 571 ®® [g = >
¢y_EXTRB S = id L EXT RA 2 N
£XT R8 7 . e i | EXT RA 7
< 3T *® 7 2
¢y_EXTRB = oy L g EXT RA 8 N
(>—EXIRB & —21ee 0=l EXT RA 5 N
¢y—EXI R84 T i | EXT RA 4 N
L X J
EXT RS 2 3T 7 EXT RA 2
< | o0 Lr—+ >
< EXT RE 2 | 5335 i 3 ozl EXT RA 2 5
(>—EXT RS 3t B EXT RA N
<
= = * e - n
< EXT RB O 1] e 1 A EXT RA D b
SGND |- S,

68 Pin SCSI

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -13 -

Appendix B: External Connections and Pin-outs

The DPRC has a single multicolor LED indicator located at the top front edge of the board visible via a hole
in the front panel. If the board is in a reset state the indicator will be solid Red. After reset is complete, the
indicator will cycle through Red, Green and Blue for approximately 1 second each as a lamp test. If the
indicator remains Red after reset is complete it would indicate a board malfunction. Other states of the
board during operation are indicated as follows:

Color | Description Input/Outputs
Red Board in Reset Not Active
Green | Board Operational | Not Active
Blue | Board Operational | Active

1) The Green or Blue indicators will flash once per second if the Identify Board bit is set.
2) The Blue indicator will blink twice per second if any channel has been tripped offline with an electronic
fuse condition.

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes -14 -

Appendix C: The Digital Programmable Resistance Card

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes

-15 -

Concurrent Real-Time™ ccurdprc Driver for RedHawk Linux™ — Release Notes

-16 -

