

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 1 of 94

Software Interface
CCURDPRC (WC-DPRC)

PCIe Digital Programmable Resistance

Card (DPRC)

Driver ccurdprc (WC-DPRC)

OS RedHawk (CentOS or Ubuntu based)

Vendor Concurrent Real-Time

Hardware PCIe Digital Programable Resister Card (DPRC)

Author Darius Dubash

Date October 3rd, 2023 Rev 2023.1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 2 of 94

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 3 of 94

Table of Contents

1. INTRODUCTION .. 6

1.1 Related Documents ... 6

2. SOFTWARE SUPPORT .. 6

2.1 Direct Driver Access ... 6
2.1.1 open(2) system call ... 6
2.1.2 ioctl(2) system call .. 7
2.1.3 mmap(2) system call ... 9
2.1.4 read(2) system call .. 10
2.1.5 write(2) system call ... 10

2.2 Application Program Interface (API) Access ... 11
2.2.1 ccurDPRC_Abort_DMA() .. 13
2.2.2 ccurDPRC_Activate_Board() ... 13
2.2.3 ccurDPRC_ADC_Activate()... 13
2.2.4 ccurDPRC_ADC_Get_Negative_Cal() .. 14
2.2.5 ccurDPRC_ADC_Get_Offset_Cal() ... 14
2.2.6 ccurDPRC_ADC_Get_Positive_Cal() .. 15
2.2.7 ccurDPRC_ADC_Perform_Auto_Calibration() ... 15
2.2.8 ccurDPRC_ADC_Perform_External_Negative_Calibration() 15
2.2.9 ccurDPRC_ADC_Perform_External_Offset_Calibration() 16
2.2.10 ccurDPRC_ADC_Perform_External_Positive_Calibration() 16
2.2.11 ccurDPRC_ADC_Perform_Negative_Calibration() ... 17
2.2.12 ccurDPRC_ADC_Perform_Offset_Calibration() ... 17
2.2.13 ccurDPRC_ADC_Perform_Positive_Calibration() .. 18
2.2.14 ccurDPRC_ADC_Read_Channels() ... 18
2.2.15 ccurDPRC_ADC_Read_Channels_Calibration() ... 19
2.2.16 ccurDPRC_ADC_Set_Negative_Cal() ... 19
2.2.17 ccurDPRC_ADC_Set_Offset_Cal() ... 19
2.2.18 ccurDPRC_ADC_Set_Positive_Cal() ... 20
2.2.19 ccurDPRC_ADC_Write_Channels_Calibration() .. 20
2.2.20 ccurDPRC_Add_Irq() ... 21
2.2.21 ccurDPRC_Clear_Driver_Error() ... 21
2.2.22 ccurDPRC_Clear_Electronic_Fuse_Trip_Fault() ... 21
2.2.23 ccurDPRC_Clear_Lib_Error() .. 22
2.2.24 ccurDPRC_Close() ... 22
2.2.25 ccurDPRC_DataToVolts() .. 23
2.2.26 ccurDPRC_DigitalPotentiometerAndIo_Activate() ... 23
2.2.27 ccurDPRC_Disable_Pci_Interrupts() .. 23
2.2.28 ccurDPRC_Enable_Pci_Interrupts() ... 24
2.2.29 ccurDPRC_Fast_Memcpy() .. 24
2.2.30 ccurDPRC_Fast_Memcpy_Unlocked() .. 24
2.2.31 ccurDPRC_Fraction_To_Hex() .. 25
2.2.32 ccurDPRC_Get_Board_CSR() ... 25
2.2.33 ccurDPRC_Get_Board_Info() .. 25
2.2.34 ccurDPRC_Get_CalibrationBus_Control() .. 26
2.2.35 ccurDPRC_Get_Digital_Potentiometer() ... 26
2.2.36 ccurDPRC_Get_Digital_Potentiometer_Test()... 27
2.2.37 ccurDPRC_Get_Driver_Error() .. 28
2.2.38 ccurDPRC_Get_Driver_Info() .. 29
2.2.39 ccurDPRC_Get_Driver_Read_Mode() ... 30
2.2.40 ccurDPRC_Get_Driver_Write_Mode() .. 30

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 4 of 94

2.2.41 ccurDPRC_Get_Electronic_Fuse_Base() ... 30
2.2.42 ccurDPRC_Get_Electronic_Fuse_Internals() ... 31
2.2.43 ccurDPRC_Get_Electronic_Fuse_Multiplier() ... 32
2.2.44 ccurDPRC_Get_Electronic_Fuse_Status() ... 33
2.2.45 ccurDPRC_Get_Electronic_Fuse_Threshold() ... 33
2.2.46 ccurDPRC_Get_Electronic_Fuse_Trip() .. 34
2.2.47 ccurDPRC_Get_Interrupt_Control() ... 35
2.2.48 ccurDPRC_Get_Interrupt_Status() ... 35
2.2.49 ccurDPRC_Get_Interrupt_Timeout_Seconds() .. 36
2.2.50 ccurDPRC_Get_IO_Control() .. 36
2.2.51 ccurDPRC_Get_Lib_Error_Description() .. 37
2.2.52 ccurDPRC_Get_Lib_Error() ... 37
2.2.53 ccurDPRC_Get_Mapped_Config_Ptr() .. 39
2.2.54 ccurDPRC_Get_Mapped_Driver_Library_Ptr() ... 39
2.2.55 ccurDPRC_Get_Mapped_Local_Ptr() .. 40
2.2.56 ccurDPRC_Get_Open_File_Descriptor() ... 40
2.2.57 ccurDPRC_Get_Physical_Memory().. 40
2.2.58 ccurDPRC_Get_Value() ... 41
2.2.59 ccurDPRC_Hex_To_Fraction() .. 45
2.2.60 ccurDPRC_Identify_Board() .. 45
2.2.61 ccurDPRC_Initialize_Board()... 45
2.2.62 ccurDPRC_MMap_Physical_Memory() .. 46
2.2.63 ccurDPRC_Munmap_Physical_Memory() ... 46
2.2.64 ccurDPRC_NanoDelay() .. 46
2.2.65 ccurDPRC_Open() .. 47
2.2.66 ccurDPRC_Read() .. 47
2.2.67 ccurDPRC_Read_Serial_Prom() .. 48
2.2.68 ccurDPRC_Read_Serial_Prom_Item() ... 48
2.2.69 ccurDPRC_Remove_Irq() .. 49
2.2.70 ccurDPRC_Reset_Board() .. 49
2.2.71 ccurDPRC_Select_Driver_Read_Mode() ... 49
2.2.72 ccurDPRC_Select_Driver_Write_Mode() .. 50
2.2.73 ccurDPRC_Serial_Prom_Write_Override() ... 50
2.2.74 ccurDPRC_Set_Board_CSR() .. 51
2.2.75 ccurDPRC_Set_CalibrationBus_Control() ... 51
2.2.76 ccurDPRC_Set_Digital_Potentiometer() .. 52
2.2.77 ccurDPRC_Set_Digital_Potentiometer_Test() ... 53
2.2.78 ccurDPRC_Set_Interrupt_Control() ... 53
2.2.79 ccurDPRC_Set_Interrupt_Status() .. 54
2.2.80 ccurDPRC_Set_Interrupt_Timeout_Seconds() ... 54
2.2.81 ccurDPRC_Set_IO_Control() ... 55
2.2.82 ccurDPRC_Set_Value() .. 56
2.2.83 ccurDPRC_VoltsToData() .. 59
2.2.84 ccurDPRC_VoltsToDataChanCal() .. 59
2.2.85 ccurDPRC_Wait_For_Interrupt() ... 60
2.2.86 ccurDPRC_Write() ... 60
2.2.87 ccurDPRC_Write_Serial_Prom() ... 60
2.2.88 ccurDPRC_Write_Serial_Prom_Item() .. 61

3. TEST PROGRAMS .. 62

3.1 Direct Driver Access Example Tests .. 62
3.1.1 ccurdprc_dump ... 62
3.1.2 ccurdprc_rdreg .. 65
3.1.3 ccurdprc_reg ... 65
3.1.4 ccurdprc_regedit ... 71
3.1.5 ccurdprc_tst... 71

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 5 of 94

3.1.6 ccurdprc_wreg .. 72
3.1.7 Flash/ccurdprc_flash ... 72
3.1.8 Flash/ccurdprc_fwreload .. 72
3.1.9 Eeprom/ccurdprc_eeprom ... 73

3.2 Application Program Interface (API) Access Example Tests ... 73
3.2.1 lib/ccurdprc_adc_calibrate .. 73
3.2.2 lib/ccurdprc_disp .. 75
3.2.3 lib/ccurdprc_fault_protection .. 81
3.2.4 lib/ccurdprc_fault_trip_test ... 82
3.2.5 lib/ccurdprc_identify ... 87
3.2.6 lib/ccurdprc_info ... 88
3.2.7 lib/ccurdprc_tst_lib ... 92
3.2.8 lib/Sprom/ccurdprc_sprom ... 93

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 6 of 94

1. Introduction

This document provides the software interface to the ccurdprc driver which communicates with the

Concurrent Real-Time PCI Express Digital Programmable Resistance Card (DPRC).

The software package that accompanies this board provides the ability for advanced users to communicate

directly with the board via the driver ioctl(2) and mmap(2) system calls. When programming in this mode, the

user needs to be intimately familiar with both the hardware and the register programming interface to the

board. Failure to adhere to correct programming will result in unpredictable behavior.

Additionally, the software package is accompanied with an extensive set of application programming interface

(API) calls that allow the user to access all capabilities of the board. The API library also allows the user the

ability to communicate directly with the board through the ioctl(2) and mmap(2) system calls. In this case,

there is a risk of this direct access conflicting with API calls and therefore should only be used by advanced

users who are intimately familiar with the hardware, board registers and the driver code.

Various example tests have been provided in the test and test/lib directories to assist the user in developing

their applications.

1.1 Related Documents

• PCIe Digital Programmable Resistance Card Driver Installation on RedHawk Release Notes by

Concurrent Real-Time.

2. Software Support

Software support is provided for users to communicate directly with the board using the kernel system calls

(Direct Driver Access) or the supplied API. Both approaches are identified below to assist the user in software

development.

2.1 Direct Driver Access

2.1.1 open(2) system call

In order to access the board, the user first needs to open the device using the standard system call

open(2).

 int fp;

 fp = open(“/dev/ccurdprc0”, O_RDWR);

 The file pointer ‘fp’ is then used as an argument to other system calls. The user can also supply the

O_NONBLOCK flag if the user does not wish to block waiting for reads to complete. In that case, if the read

is not satisfied, the call will fail. The device name specified is of the format “/dev/ccurdprc<num>” where

num is a digit 0..9 which represents the board number that is to be accessed. Basically, the driver only allows

one application to open a board at a time. The reason for this is that the application can have full access to the

card, even at the board and API level. If another application were to communicate with the same card

concurrently, the results would be unpredictable unless proper synchronization between applications is

performed external to the driver.

This driver allows multiple applications to open the same board by specifying an additional oflag

O_APPEND. It is then the responsibility of the user to ensure that the various applications communicating

with the same cards are properly synchronized. Various tests supplied in this package has the O_APPEND

flags enabled, however, it is strongly recommended that only one application be run with a single card at a

time, unless the user is well aware of how the applications are going to interact with each other and accept any

unpredictable results.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 7 of 94

2.1.2 ioctl(2) system call

This system call provides the ability to control and get responses from the board. The nature of the

control/response will depend on the specific ioctl command.

int status;

int arg;

status = ioctl(fp, <IOCTL_COMMAND>, &arg);

where, ‘fp’ is the file pointer that is returned from the open(2) system call. <IOCTL_COMMAND> is one of

the ioctl commands below and arg is a pointer to an argument that could be anything and is dependent on the

command being invoked. If no argument is required for a specific command, then set to NULL.

Driver IOCTL command:

IOCTL_CCURDPRC_ABORT_DMA

IOCTL_CCURDPRC_ADD_IRQ

IOCTL_CCURDPRC_DISABLE_PCI_INTERRUPTS

IOCTL_CCURDPRC_ENABLE_PCI_INTERRUPTS

IOCTL_CCURDPRC_GET_DRIVER_ERROR

IOCTL_CCURDPRC_GET_DRIVER_INFO

IOCTL_CCURDPRC_GET_PHYSICAL_MEMORY

IOCTL_CCURDPRC_GET_READ_MODE

IOCTL_CCURDPRC_GET_WRITE_MODE

IOCTL_CCURDPRC_INIT_BOARD

IOCTL_CCURDPRC_INTERRUPT_TIMEOUT_SECONDS

IOCTL_CCURDPRC_MAIN_CONTROL_REGISTERS

IOCTL_CCURDPRC_MMAP_SELECT

IOCTL_CCURDPRC_NO_COMMAND

IOCTL_CCURDPRC_PCI_BRIDGE_REGISTERS

IOCTL_CCURDPRC_PCI_CONFIG_REGISTERS

IOCTL_CCURDPRC_READ_EEPROM

IOCTL_CCURDPRC_REMOVE_IRQ

IOCTL_CCURDPRC_RESET_BOARD

IOCTL_CCURDPRC_SELECT_READ_MODE

IOCTL_CCURDPRC_SELECT_WRITE_MODE

IOCTL_CCURDPRC_WAIT_FOR_INTERRUPT

IOCTL_CCURDPRC_WRITE_EEPROM

IOCTL_CCURDPRC_ABORT_DMA: This ioctl does not have any arguments. Its purpose is to abort any

DMA already in progress.

IOCTL_CCURDPRC_ADD_IRQ: This ioctl does not have any arguments. Its purpose is to setup the driver

interrupt handler to handle interrupts. If support for MSI interrupts are configured, they will be enabled.

Normally, there is no need to call this ioctl as the interrupt handler is already added when the driver is loaded.

This ioctl should only be invoked if the user has issued the IOCTL_CCURDPRC_REMOVE_IRQ call earlier

to remove the interrupt handler.

IOCTL_CCURDPRC_DISABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is

to disable PCI interrupts. This call shouldn’t be used during normal reads or writes, as calls could time out.

The driver handles enabling and disabling interrupts during its normal course of operation.

IOCTL_CCURDPRC_ENABLE_PCI_INTERRUPTS: This ioctl does not have any arguments. Its purpose is to

enable PCI interrupts. This call shouldn’t be used during normal reads or writes as calls could time out. The

driver handles enabling and disabling interrupts during its normal course of operation.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 8 of 94

IOCTL_CCURDPRC_GET_DRIVER_ERROR: The argument supplied to this ioctl is a pointer to the

ccurdprc_user_error_t structure. Information on the structure is located in the ccurdprc_user.h include file.

The error returned is the last reported error by the driver. If the argument pointer is NULL, the current error is

reset to CCURDPRC_SUCCESS.

IOCTL_CCURDPRC_GET_DRIVER_INFO: The argument supplied to this ioctl is a pointer to the

ccurdprc_driver_info_t structure. Information on the structure is located in the ccurdprc_user.h include file.

This ioctl provides useful driver information.

IOCTL_CCURDPRC_GET_PHYSICAL_MEMORY: The argument supplied to this ioctl is a pointer to the

ccurdprc_user_phys_mem_t structure. Information on the structure is located in the ccurdprc_user.h include

file. If physical memory is not allocated, the call will fail; otherwise the call will return the physical memory

address and size in bytes. The only reason to request and get physical memory from the driver is to allow the

user to perform DMA operations and bypass the driver and library. Care must be taken when performing user

level DMA, as incorrect programming could lead to unpredictable results, including but not limited to

corrupting the kernel and any device connected to the system.

IOCTL_CCURDPRC_GET_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned long

int. The value returned will be one of the read modes as defined by the enum _ccurdprc_driver_rw_mode_t

located in the ccurdprc_user.h include file. Currently, only the CCURDPRC_PIO_CHANNEL mode is

supported for driver reads.

IOCTL_CCURDPRC_GET_WRITE_MODE: (CURRENTLY NOT IMPLEMENTED) The argument supplied

to this ioctl is a pointer an unsigned long int. The value returned will be one of the write modes as defined by

the enum _ccurdprc_driver_rw_mode_t located in the ccurdprc_user.h include file. This call is not supported

for driver writes.

IOCTL_CCURDPRC_INIT_BOARD: This ioctl does not have any arguments. This call resets the board to a

known initial default state. This call is currently identical to the IOCTL_CCURDPRC_RESET_BOARD call.

IOCTL_CCURDPRC_INTERRUPT_TIMEOUT_SECONDS: The argument supplied to this ioctl is a pointer

to an int. It allows the user to change the default time out from 30 seconds to user supplied time out. This is

the time that the read call will wait before it times out. The call could time out if a DMA fails to complete.

The device should have been opened in the block mode (O_NONBLOCK not set) for reads to wait for an

operation to complete.

IOCTL_CCURDPRC_MAIN_CONTROL_REGISTERS: This ioctl dumps all the PCI Main Control registers

and is mainly used for debug purpose. The argument to this ioctl is a pointer to the

ccurdprc_main_control_register_t structure. Raw 32-bit data values are read from the board and loaded into

this structure.

IOCTL_CCURDPRC_MMAP_SELECT: The argument to this ioctl is a pointer to the

ccurdprc_mmap_select_t structure. Information on the structure is located in the ccurdprc_user.h include file.

This call needs to be made prior to the mmap(2) system call so as to direct the mmap(2) call to perform the

requested mapping specified by this ioctl. The four possible mappings that are performed by the driver are to

mmap the local register space (CCURDPRC_SELECT_LOCAL_MMAP), the configuration register space

(CCURDPRC_SELECT_CONFIG_MMAP) the physical memory

(CCURDPRC_SELECT_PHYS_MEM_MMAP) that is created by the mmap(2) system call and the

driver/library mapping (CCURDPRC_SELECT_DRIVER_LIBRARY_MMAP).

IOCTL_CCURDPRC_NO_COMMAND: This ioctl does not have any arguments. It is only provided for

debugging purpose and should not be used as it serves no purpose for the application.

IOCTL_CCURDPRC_PCI_BRIDGE_REGISTERS: This ioctl dumps all the PCI bridge registers and is

mainly used for debug purpose. The argument to this ioctl is a pointer to the ccurdprc_pci_bridge_register_t

structure. Raw 32-bit data values are read from the board and loaded into this structure.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 9 of 94

IOCTL_CCURDPRC_PCI_CONFIG_REGISTERS: The argument supplied to this ioctl is a pointer to the

ccurdprc_pci_config_reg_addr_mapping_t structure whose definition is located in the ccurdprc_user.h

include file.

IOCTL_CCURDPRC_READ_EEPROM: The argument to this ioctl is a pointer to the ccurdprc_eeprom_t

structure. Information on the structure is located in the ccurdprc_user.h include file. This call is specifically

used by the supplied eeprom application and should not be used by the user.

IOCTL_CCURDPRC_REMOVE_IRQ: This ioctl does not have any arguments. Its purpose is to remove the

interrupt handler that was previously setup. The interrupt handler is managed internally by the driver and the

library. The user should not issue this call, otherwise reads will time out.

IOCTL_CCURDPRC_RESET_BOARD: This ioctl does not have any arguments. This call resets the board to a

known initial default state. This call is currently identical to the IOCTL_CCURDPRC_INIT_BOARD call.

IOCTL_CCURDPRC_SELECT_READ_MODE: The argument supplied to this ioctl is a pointer an unsigned

long int. The value set will be one of the read modes as defined by the enum _ccurdprc_driver_rw_mode_t

located in the ccurdprc_user.h include file. Currently, only the CCURDPRC_PIO_CHANNEL mode is

supported for driver reads.

IOCTL_CCURDPRC_SELECT_WRITE_MODE: (CURRENTLY NOT IMPLEMENTED) The argument

supplied to this ioctl is a pointer an unsigned long int. The value set will be one of the write modes as defined

by the enum _ccurdprc_driver_rw_mode_t located in the ccurdprc_user.h include file. This call is not

supported for driver writes.

IOCTL_CCURDPRC_WAIT_FOR_INTERRUPT: The argument to this ioctl is a pointer to the

ccurdprc_driver_int_t structure. Information on the structure is located in the ccurdprc_user.h include file.

The user can wait for a DMA or Analog signal complete interrupt. If a time out value greater than zero is

specified, the call will time out after the specified seconds, otherwise it will not time out.

IOCTL_CCURDPRC_WRITE_EEPROM: The argument to this ioctl is a pointer to the ccurdprc_eeprom_t

structure. Information on the structure is located in the ccurdprc_user.h include file. This call is specifically

used by the supplied eeprom application and should not be used by the user.

2.1.3 mmap(2) system call

This system call provides the ability to map either the local board registers, the configuration board registers,

create and map a physical memory that can be used for user DMA or driver/library structure mapping. Prior to

making this system call, the user needs to issue the ioctl(2) system call with the

IOCTL_CCURDPRC_MMAP_SELECT command. When mapping either the local board registers or the

configuration board registers, the ioctl call returns the size of the register mapping which needs to be specified

in the mmap(2) call. In the case of mapping a physical memory, the size of physical memory to be created is

supplied to the mmap(2) call.

int *munmap_local_ptr;

ccurdprc_local_ctrl_data_t *local_ptr;

ccurdprc_mmap_select_t mmap_select;

unsigned long mmap_local_size;

mmap_select.select = CCURDPRC_SELECT_LOCAL_MMAP;

mmap_select.offset=0;

mmap_select.size=0;

 ioctl(fp, IOCTL_CCURDPRC_MMAP_SELECT,(void *)&mmap_select);

 mmap_local_size = mmap_select.size;

 munmap_local_ptr = (int *) mmap((caddr_t)0, map_local_size,

 (PROT_READ|PROT_WRITE), MAP_SHARED, fp, 0);

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 10 of 94

 local_ptr = (ccurdprc_local_ctrl_data_t *)munmap_local_ptr;

 local_ptr = (ccurdprc_local_ctrl_data_t *)((char *)local_ptr +

 mmap_select.offset);

.

.

.

if(munmap_local_ptr != NULL)

 munmap((void *)munmap_local_ptr, mmap_local_size);

2.1.4 read(2) system call

This system call currently supports ADC programmed I/O reads of channel registers. The option selected is

determined by the ccurDPRC_Select_Driver_Read_Mode() call.

2.1.5 write(2) system call

Currently this option is not implemented. The option selected is determined by the

ccurDPRC_Select_Driver_Write_Mode() call.

.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 11 of 94

2.2 Application Program Interface (API) Access

The API is the recommended method of communicating with the board for most users.

There are a lot of APIs that have multiple arguments to set various parameters. If the user only wishes to

change certain parameters for the call, they need to get the current settings via a query API, change only those

parameters that need to be modified and then invoke a setting API to update these parameters (i.e.

read/modify/write). This is a two API call operation.

A nice feature has been implemented in these APIs to simplify the user programming by having a common

parameter CCURDPRC_DO_NOT_CHANGE which is a #define, that can be used for a lot of these calls.

Arguments with this parameter will therefore cause the API to perform the read/modify/write operation

instead of the user performing the same function with two API calls. The drawback to this approach is that

some compilers will complain about the use of this parameter and therefore the user will require appropriate

casting to get rid of warnings/errors.

The following are a list of calls that are available.

 ccurDPRC_Abort_DMA()

 ccurDPRC_Activate_Board()

 ccurDPRC_ADC_Activate()

 ccurDPRC_ADC_Get_Negative_Cal()

 ccurDPRC_ADC_Get_Offset_Cal()

 ccurDPRC_ADC_Get_Positive_Cal()

 ccurDPRC_ADC_Perform_Auto_Calibration()

 ccurDPRC_ADC_Perform_External_Negative_Calibration()

 ccurDPRC_ADC_Perform_External_Offset_Calibration()

 ccurDPRC_ADC_Perform_External_Positive_Calibration()

 ccurDPRC_ADC_Perform_Negative_Calibration()

 ccurDPRC_ADC_Perform_Offset_Calibration()

 ccurDPRC_ADC_Perform_Positive_Calibration()

 ccurDPRC_ADC_Read_Channels()

 ccurDPRC_ADC_Read_Channels_Calibration()

 ccurDPRC_ADC_Set_Negative_Cal()

 ccurDPRC_ADC_Set_Offset_Cal()

 ccurDPRC_ADC_Set_Positive_Cal()

 ccurDPRC_ADC_Write_Channels_Calibration()

 ccurDPRC_Add_Irq()

 ccurDPRC_Clear_Driver_Error()

 ccurDPRC_Clear_Electronic_Fuse_Trip_Fault()

 ccurDPRC_Clear_Lib_Error()

 ccurDPRC_Close()

 ccurDPRC_DataToVolts()

 ccurDPRC_DigitalPotentiometerAndIo_Activate()

 ccurDPRC_Disable_Pci_Interrupts()

 ccurDPRC_Enable_Pci_Interrupts()

 ccurDPRC_Fast_Memcpy()

 ccurDPRC_Fast_Memcpy_Unlocked()

 ccurDPRC_Fraction_To_Hex()

 ccurDPRC_Get_Board_CSR()

 ccurDPRC_Get_Board_Info()

 ccurDPRC_Get_CalibrationBus_Control()

 ccurDPRC_Get_Digital_Potentiometer()

 ccurDPRC_Get_Digital_Potentiometer_Test()

 ccurDPRC_Get_Driver_Error()

 ccurDPRC_Get_Driver_Info()

 ccurDPRC_Get_Driver_Read_Mode()

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 12 of 94

 ccurDPRC_Get_Driver_Write_Mode()

 ccurDPRC_Get_Electronic_Fuse_Base()

 ccurDPRC_Get_Electronic_Fuse_Internals()

 ccurDPRC_Get_Electronic_Fuse_Multiplier()

 ccurDPRC_Get_Electronic_Fuse_Status()

 ccurDPRC_Get_Electronic_Fuse_Threshold()

 ccurDPRC_Get_Electronic_Fuse_Trip()

 ccurDPRC_Get_Interrupt_Control()

 ccurDPRC_Get_Interrupt_Status()

 ccurDPRC_Get_Interrupt_Timeout_Seconds()

 ccurDPRC_Get_IO_Control()

 ccurDPRC_Get_Lib_Error_Description()

 ccurDPRC_Get_Lib_Error()

 ccurDPRC_Get_Mapped_Config_Ptr()

 ccurDPRC_Get_Mapped_Driver_Library_Ptr()

 ccurDPRC_Get_Mapped_Local_Ptr()

 ccurDPRC_Get_Open_File_Descriptor()

 ccurDPRC_Get_Physical_Memory()

 ccurDPRC_Get_Value()

 ccurDPRC_Hex_To_Fraction()

 ccurDPRC_Identify_Board()

 ccurDPRC_Initialize_Board()

 ccurDPRC_MMap_Physical_Memory()

 ccurDPRC_Munmap_Physical_Memory()

 ccurDPRC_NanoDelay()

 ccurDPRC_Open()

 ccurDPRC_Read()

 ccurDPRC_Read_Serial_Prom()

 ccurDPRC_Read_Serial_Prom_Item()

 ccurDPRC_Remove_Irq()

 ccurDPRC_Reset_Board()

 ccurDPRC_Select_Driver_Read_Mode()

 ccurDPRC_Select_Driver_Write_Mode()

 ccurDPRC_Serial_Prom_Write_Override()

 ccurDPRC_Set_Board_CSR()

 ccurDPRC_Set_CalibrationBus_Control()

 ccurDPRC_Set_Digital_Potentiometer()

 ccurDPRC_Set_Digital_Potentiometer_Test()

 ccurDPRC_Set_Interrupt_Control()

 ccurDPRC_Set_Interrupt_Status()

 ccurDPRC_Set_Interrupt_Timeout_Seconds()

 ccurDPRC_Set_IO_Control()

 ccurDPRC_Set_Value()

 ccurDPRC_VoltsToData()

 ccurDPRC_VoltsToDataChanCal()

 ccurDPRC_Wait_For_Interrupt()

 ccurDPRC_Write()

 ccurDPRC_Write_Serial_Prom()

 ccurDPRC_Write_Serial_Prom_Item()

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 13 of 94

2.2.1 ccurDPRC_Abort_DMA()

 This call will abort any DMA operation that is in progress. Normally, the user should not use this call unless

they are providing their own DMA handling.

/**

 _ccurdprc_lib_error_number_t ccurDPRC_Abort_DMA(void *Handle)

 Description: Abort any DMA in progress

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

***/

2.2.2 ccurDPRC_Activate_Board()

This call activates the ADC, Potentiometer and I/O in a specific sequence to ensure proper board activation.

This is the preferred and recommended call to activate the card. Using the individual ADC and Potentiometer

activation calls, not being performed in correct sequence could result in unpredictable behavior of the card.

/**

 _ccurdprc_lib_error_number_t ccurDPRC_Activate_Board(void *Handle)

 Description: Activate ADC, Potentiometer and I/O Control module

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_ADC_FAILURE (ADC failure)

 # CCURDPRC_LIB_ELECTRONIC_FUSE_TRIPPED (Electronic Fuse tripped)

**/

2.2.3 ccurDPRC_ADC_Activate()

This call gives the user the ability to activate, disable and get the current ADC state. The user can
also use this call to return the current state of the ADC without any change by specifying a pointer to
current_state and setting activate to CCURDPRC_ADC_ALL_ENABLE_DO_NOT_CHANGE. If the
ADC is already active and the user issues a CCURDPRC_ADC_ALL_ENABLE, no additional
activation will be performed. To cause the ADC to go through a full reset, the user needs to issue
the CCURDPRC_ADC_ALL_DISABLE followed by CCURDPRC_ADC_ALL_ENABLE.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Activate (void *Handle,

 _ccurdprc_adc_all_enable_t activate,

 _ccurdprc_adc_all_enable_t *current_state)

 Description: Activate/DeActivate ADC module

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 14 of 94

 Input: void *Handle (Handle pointer)

 _ccurdprc_adc_all_enable_t activate (activate/deactivate)

 # CCURDPRC_ADC_ALL_DISABLE

 # CCURDPRC_ADC_ALL_ENABLE

 # CCURDPRC_ADC_ALL_ENABLE_DO_NOT_CHANGE

 Output: _ccurdprc_adc_all_enable_t *current_state (active/deactive)

 # CCURDPRC_ADC_ALL_DISABLE

 # CCURDPRC_ADC_ALL_ENABLE

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

**/

2.2.4 ccurDPRC_ADC_Get_Negative_Cal()

This call returns the negative ADC calibration information to the user.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Get_Negative_Cal(void *Handle,

 ccurdprc_adc_cal_t *cal)

 Description: Get the ADC Negative Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdprc_adc_cal_t *cal (pointer to board cal)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

**/

2.2.5 ccurDPRC_ADC_Get_Offset_Cal()

This call returns the offset ADC calibration information to the user.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Get_Offset_Cal(void *Handle,

 ccurdprc_adc_cal_t *cal)

 Description: Get the ADC Offset Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdprc_adc_cal_t *cal (pointer to board cal)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 15 of 94

2.2.6 ccurDPRC_ADC_Get_Positive_Cal()

This call returns the positive ADC calibration information to the user.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Get_Positive_Cal(void *Handle,

 ccurdprc_adc_cal_t *cal)

 Description: Get the ADC Positive Calibration data.

 Input: void *Handle (handle pointer)

 Output: ccurdprc_adc_cal_t *cal (pointer to board cal)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.7 ccurDPRC_ADC_Perform_Auto_Calibration()

This call performs a full ADC calibration.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_Auto_Calibration(void *Handle)

 Description: Perform ADC Auto Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

 # CCURDPRC_LIB_ADC_FAILURE (ADC failure)

 # CCURDPRC_LIB_ELECTRONIC_FUSE_TRIPPED

 (Electronic Fuse tripped)

 ***/

2.2.8 ccurDPRC_ADC_Perform_External_Negative_Calibration()

Use this call to perform an external negative calibration. Prior to calling this function, the ADC inputs must be

provided with a negative signal close to -10 Volts, otherwise this call will fail. Additionally, the user can

specify a range of channels.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_External_Negative_Calibration(void *Handle,

 _ccurdprc_channel_t chan_start,

 _ccurdprc_channel_t chan_end,

 double ReferenceVoltage)

 Description: Perform ADC External Negative Calibration

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 16 of 94

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_t chan_start (start channel)

 _ccurdprc_channel_t chan_end (end channel)

 double ReferenceVoltage (Reference Voltage)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

***/

2.2.9 ccurDPRC_ADC_Perform_External_Offset_Calibration()

Use this call to perform an external offset calibration. Prior to calling this function, the ADC inputs must be

provided with a offset signal close to 0 Volts, otherwise this call will fail. Additionally, the user can specify a

range of channels. Once this call is executed, the user will need to perform external negative and external

positive calibrations as this call resets these gains to 1.0 prior to calibration.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_External_Offset_Calibration(void *Handle,

 _ccurdprc_channel_t chan_start,

 _ccurdprc_channel_t chan_end)

 Description: Perform ADC External Offset Calibration

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_t chan_start (start channel)

 _ccurdprc_channel_t chan_end (end channel)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

***/

2.2.10 ccurDPRC_ADC_Perform_External_Positive_Calibration()

Use this call to perform an external positive calibration. Prior to calling this function, the ADC inputs must be

provided with a positive signal close to +10 Volts, otherwise this call will fail. Additionally, the user can

specify a range of channels.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_External_Positive_Calibration(void *Handle,

 _ccurdprc_channel_t chan_start,

 _ccurdprc_channel_t chan_end,

 double ReferenceVoltage)

 Description: Perform ADC External Positive Calibration

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 17 of 94

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_t chan_start (start channel)

 _ccurdprc_channel_t chan_end (end channel)

 double ReferenceVoltage (Reference Voltage)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

***/

2.2.11 ccurDPRC_ADC_Perform_Negative_Calibration()

This call performs a negative calibration using the internal reference voltage.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_Negative_Calibration(void *Handle)

 Description: Perform ADC Negative Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

***/

2.2.12 ccurDPRC_ADC_Perform_Offset_Calibration()

This call performs an offset calibration using the internal reference voltage. Once this call is executed, the

user will need to perform negative and positive calibrations as this call resets these gains to 1.0 prior to

calibration.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_Offset_Calibration(void *Handle)

 Description: Perform ADC Offset Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

***/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 18 of 94

2.2.13 ccurDPRC_ADC_Perform_Positive_Calibration()

This call performs a positive calibration using the internal reference voltage.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Perform_Positive_Calibration(void *Handle)

 Description: Perform ADC Positive Calibration

 Input: void *Handle (handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 # CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE (Clock is not active)

 ***/

2.2.14 ccurDPRC_ADC_Read_Channels()

This call provides the user an easy method of reading the ADC channels. User can supply a channel mask.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Read_Channels(void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_adc_volts_t *adc_volts)

 Description: Read ADC Channels

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_adc_volts_t *adc_volts (pointer to ADC volts)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 19 of 94

2.2.15 ccurDPRC_ADC_Read_Channels_Calibration()

This routine reads the ADC channel calibration registers and dumps them to the user specified file. If the file

name specified is NULL, then information is written to stdout.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Read_Channels_Calibration(void *Handle,

 char *filename)

 Description: Read ADC Channels Calibration

 Input: void *Handle (handle pointer)

 Output: char *filename (pointer to filename)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_CANNOT_OPEN_FILE (cannot open calib. file)

 ***/

2.2.16 ccurDPRC_ADC_Set_Negative_Cal()

This call allows the user to set the negative calibration data for all the channels by supplying floating point

Float gains to the call. Users can supply CCURDPRC_DO_NOT_CHANGE as a gain for any channel that

should not be changed. Additionally, this call will return the RAW value of the gain supplied that is written to

the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Set_Negative_Cal(void *Handle,

 ccurdprc_adc_cal_t *cal)

 Description: Set the ADC Negative Calibration data.

 Input: void *Handle (handle pointer)

 ccurdprc_adc_cal_t *cal (pointer to board cal)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 **/

2.2.17 ccurDPRC_ADC_Set_Offset_Cal()

This call allows the user to set the offset calibration data for all the channels by supplying floating point Float

offset to the call. Users can supply CCURDPRC_DO_NOT_CHANGE as a gain for any channel that should

not be changed. Additionally, this call will return the Raw value of the offset supplied that is written to the

board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Set_Offset_Cal(void *Handle,

 ccurdprc_adc_cal_t *cal)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 20 of 94

 Description: Set the ADC Offset Calibration data.

 Input: void *Handle (handle pointer)

 ccurdprc_adc_cal_t *cal (pointer to board cal)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

 **/

2.2.18 ccurDPRC_ADC_Set_Positive_Cal()

This call allows the user to set the positive calibration data for all the channels by supplying floating point

Float gains to the call. Users can supply CCURDPRC_DO_NOT_CHANGE as a gain for any channel that

should not be changed. Additionally, this call will return the Raw value of the gain supplied that is written to

the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Set_Positive_Cal(void *Handle,

 ccurdprc_adc_cal_t *cal)

 Description: Set the ADC Positive Calibration data.

 Input: void *Handle (handle pointer)

 ccurdprc_adc_cal_t *cal (pointer to board cal)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 double Float[CCURDPRC_MAX_CHANNELS];

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NO_RESOURCE (no free PLL available)

 # CCURDPRC_LIB_IO_ERROR (read error)

**/

2.2.19 ccurDPRC_ADC_Write_Channels_Calibration()

This call allows the user to write the calibration registers from a user supplied calibration file.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_ADC_Write_Channels_Calibration(void *Handle,

 char *filename)

 Description: Write Channels Calibration

 Input: void *Handle (handle pointer)

 Output: char *filename (pointer to filename)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 21 of 94

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_CANNOT_OPEN_FILE (cannot open calib. file)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 ***/

2.2.20 ccurDPRC_Add_Irq()

This call will add the driver interrupt handler if it has not been added. Normally, the user should not use this

call unless they want to disable the interrupt handler and then re-enable it.

/**

 int ccurDPRC_Add_Irq(void *Handle)

 Description: By default, the driver assigns an interrupt handler to handle

 device interrupts. If the interrupt handler was removed using

 the ccurDPRC_Remove_Irq(), then this call adds it back.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (library not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

***/

2.2.21 ccurDPRC_Clear_Driver_Error()

 This call resets the last driver error that was maintained internally by the driver to CCURDPRC_SUCCESS.

 /**

 _ccurdprc_lib_error_number_t ccurDPRC_Clear_Driver_Error(void *Handle)

 Description: Clear any previously generated driver related error.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

**/

2.2.22 ccurDPRC_Clear_Electronic_Fuse_Trip_Fault()

If an electronic fuse trip fault occured for a channel, that channel is no longer accessible to the user until the

channel fuse trip fault is reset. Users need to query as to why the electronic fuse trip fault occurred, correct the

condition that caused the fuse trip fault, and then clear the fuse trip fault for the channel with the help of this

call. If the reason for the fuse trip fault is not cleared, the fault is cleared, it is likely that the electronic fuse

trip will re-occur immediately. If multiple electronic fuse trip faults occur for a channel, the faults will be

queued to a quantity of two deep. This call ensures that all queued faults for the requested channel are also

cleared.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Clear_Electronic_Fuse_Trip_Fault (void *Handle,

 _ccurdprc_channel_mask_t ChanMask)

 Description: Clear Electronic Fuse Trip Fault

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 22 of 94

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_IO_ERROR (Channel Trip Fault not

 clearing)

 **/

2.2.23 ccurDPRC_Clear_Lib_Error()

 This call resets the last library error that was maintained internally by the API.

/**

 _ccurdprc_lib_error_number_t ccurDPRC_Clear_Lib_Error(void *Handle)

 Description: Clear any previously generated library related error.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

**

2.2.24 ccurDPRC_Close()

 This call is used to close an already opened device using the ccurDPRC_Open() call.

/**

 _ccurdprc_lib_error_number_t ccurDPRC_Close(void *Handle)

 Description: Close a previously opened device.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 23 of 94

2.2.25 ccurDPRC_DataToVolts()

This routine takes a raw analog input data value and converts it to a floating point.

/**

 double ccurDPRC_DataToVolts(int us_data)

 Description: Convert Data to volts

 Input: int us_data (data to convert)

 Output: none

 Return: double volts (returned volts)

 **/

2.2.26 ccurDPRC_DigitalPotentiometerAndIo_Activate()

This call gives the user the ability to activate, disable and get the current ADC state.

/**

 ccurDPRC_DigitalPotentiometerAndIo_Activate()

 _ccurdprc_lib_error_number_t

 ccurDPRC_DigitalPotentiometerAndIo_Activate (void *Handle,

 _ccurdprc_digital_pot_and_io_enable_t activate,

 _ccurdprc_digital_pot_and_io_enable_t *current_state)

 Description: Activate/DeActivate Digital Potentiometer and I/O module

 Input: void *Handle (Handle pointer)

 _ccurdprc_digital_pot_and_io_enable_t activate (activate/deactivate)

 # CCURDPRC_DIGITAL_POT_AND_IO_DISABLE

 # CCURDPRC_DIGITAL_POT_AND_IO_ENABLE

 # CCURDPRC_DIGITAL_POT_AND_IO_ENABLE_DO_NOT_CHANGE

 Output: _ccurdprc_digital_pot_and_io_enable_t *current_state

 (active/deactive)

 # CCURDPRC_DIGITAL_POT_AND_IO_DISABLE

 # CCURDPRC_DIGITAL_POT_AND_IO_ENABLE

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.27 ccurDPRC_Disable_Pci_Interrupts()

The purpose of this call is to disable PCI interrupts. This call shouldn’t be used during normal reads as calls

could time out. The driver handles enabling and disabling interrupts during its normal course of operation.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Disable_Pci_Interrupts (void *Handle)

 Description: Disable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 24 of 94

**/

2.2.28 ccurDPRC_Enable_Pci_Interrupts()

The purpose of this call is to enable PCI interrupts. This call shouldn’t be used during normal reads as calls

could time out. The driver handles enabling and disabling interrupts during its normal course of operation.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Enable_Pci_Interrupts (void *Handle, uint interrupt_mask)

 Description: Enable interrupts being generated by the board.

 Input: void *Handle (Handle pointer)

 uint interrupt_mask (interrupt mask)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.29 ccurDPRC_Fast_Memcpy()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory using

programmed I/O. The library performs appropriate locking while the copying is taking place.

/**

 ccurDPRC_Fast_Memcpy(void *Handle,

 volatile void *Destination,

 volatile void *Source,

 int SizeInBytes)

 Description: Perform fast copy to/from buffer using Programmed I/O

 (WITH LOCKING)

 Input: void *Handle (Handle pointer)

 volatile void *Source (pointer to source buffer)

 int SizeInBytes (transfer size in bytes)

 Oupput: volatile void *Destination (pointer to destination buffer)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 **/

2.2.30 ccurDPRC_Fast_Memcpy_Unlocked()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory using

programmed I/O. The library does not perform any locking. User needs to provide external locking instead.

/**

 void

 ccurDPRC_Fast_Memcpy_Unlocked(volatile void *Destination,

 volatile void *Source,

 int SizeInBytes)

 Description: Perform fast copy to/from buffer using Programmed I/O

 (WITHOUT LOCKING)

 Input: volatile void *Source (pointer to source buffer)

 int SizeInBytes (transfer size in bytes)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 25 of 94

 Oupput: volatile void *Destination (pointer to destination buffer)

 Return: none

**/

2.2.31 ccurDPRC_Fraction_To_Hex()

 This converts a fractional decimal to a hexadecimal value.

/**

 int

 ccurDPRC_Fraction_To_Hex (double Fraction,

 uint *value)

 Description: Convert Fractional Decimal to Hexadecimal

 Input: double Fraction (fraction to convert)

 Output: uint *value (converted hexadecimal value)

 Return: 1 (call failed)

 0 (good return)

 **/

2.2.32 ccurDPRC_Get_Board_CSR()

This call returns information from the board status register.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Board_CSR (void *Handle,

 ccurdprc_board_csr_t *bcsr)

 Description: Get Board Control and Status information

 Input: void *Handle (Handle pointer)

 Output: ccurdprc_board_csr_t *bcsr (pointer to board csr)

 _ccurdprc_bcsr_identify_board_t identify_board

 # CCURDPRC_BCSR_IDENTIFY_BOARD_DISABLE

 # CCURDPRC_BCSR_IDENTIFY_BOARD_ENABLE

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.33 ccurDPRC_Get_Board_Info()

This call returns the board id, the board type and the firmware revision level for the selected board. This board

id is 0x9300 and board type is 0x1.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Board_Info (void *Handle,

 ccurdprc_board_info_t *binfo)

 Description: Get Board Information

 Input: void *Handle (handle pointer)

 Output: ccurdprc_board_info_t *binfo (pointer to board info)

 int board_id (board id)

 int board_type (board type)

 int firmware_rev (firmware revision)

 ccurdprc_sprom_header_t sprom_header

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 26 of 94

 u_int32_t board_serial_number (serial number)

 u_short sprom_revision (serial prom revision)

 int number_of_channels (number of hardware channels)

 int all_channels_mask (all channels mask)

 double cal_ref_voltage (calibration reference voltage)

 double voltage_range (maximum voltage range)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler

supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

**/

2.2.34 ccurDPRC_Get_CalibrationBus_Control()

This call returns the bus calibration control.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_CalibrationBus_Control (void *Handle,

 _ccurdprc_calibration_bus_control_t *bus_control)

 Description: Get Calibration Bus Control

 Input: void *Handle (handle pointer)

 Output: _ccurdprc_calibration_bus_control_t

 *bus_control (pointer to control select)

 # CCURDPRC_CALIBRATIONBUS_CONTROL_OPEN

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_2_5_VOLTS

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_10_VOLTS

 # CCURDPRC_CALIBRATIONBUS_CONTROL_MINUS_10_VOLTS

 # CCURDPRC_CALIBRATIONBUS_CONTROL_GROUND

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_8_MILLIAMP

 # CCURDPRC_CALIBRATIONBUS_CONTROL_MINUS_8_MILLIAMP

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_16_MILLIAMP

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.35 ccurDPRC_Get_Digital_Potentiometer()

This call returns to the user the raw and ohms value of the digital potentiometer for the selected channels.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Digital_Potentiometer(void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_digital_potentiometer_t *DPValue)

 Description: Get Digital Potentiometer Value

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 27 of 94

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_digital_potentiometer_t *DPValue (pointer to Digital

 Potentiometer Value)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 uint Ohms[CCURDPRC_MAX_CHANNELS];

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 (Potentiometer and I/O Control not active)

**/

2.2.36 ccurDPRC_Get_Digital_Potentiometer_Test()

This call returns to the user the power-down and mode selection of the digital potentiometer for the selected

channels.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Digital_Potentiometer_Test(void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_digital_potentiometer_test_t *DPTest)

 Description: Get Digital Potentiometer Test

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_digital_potentiometer_test_t *DPTest (pointer to

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 28 of 94

 Digital Potentiometer Test)

 _ccurdprc_digital_potentiometer_test_t

 DigitalPotTest[CCURDPRC_MAX_CHANNELS];

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT0

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT1

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT2

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT3

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_100K

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_FORCE_FAILURE

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_MODE_20K

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_MODE_100K

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 (Potentiometer and I/O Control not active)

 **/

2.2.37 ccurDPRC_Get_Driver_Error()

This call returns the last error generated by the driver.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Driver_Error (void *Handle,

 ccurdprc_user_error_t *ret_err)

 Description: Get the last error generated by the driver.

 Input: void *Handle (Handle pointer)

 Output: ccurdprc_user_error_t *ret_err (error struct pointer)

 uint error (error number)

 char name[CCURDPRC_ERROR_NAME_SIZE] (error name used in driver)

 char desc[CCURDPRC_ERROR_DESC_SIZE] (error description)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

#define CCURDPRC_ERROR_NAME_SIZE 64

#define CCURDPRC_ERROR_DESC_SIZE 128

typedef struct _ccurdprc_user_error_t

{

 uint error; /* error number */

 char name[CCURDPRC_ERROR_NAME_SIZE]; /* error name used in driver */

 char desc[CCURDPRC_ERROR_DESC_SIZE]; /* error description */

} ccurdprc_user_error_t;

enum

{

 CCURDPRC_SUCCESS = 0,

 CCURDPRC_INVALID_PARAMETER,

 CCURDPRC_DMA_TIMEOUT,

 CCURDPRC_OPERATION_CANCELLED,

 CCURDPRC_RESOURCE_ALLOCATION_ERROR,

 CCURDPRC_INVALID_REQUEST,

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 29 of 94

 CCURDPRC_FAULT_ERROR,

 CCURDPRC_BUSY,

 CCURDPRC_ADDRESS_IN_USE,

 CCURDPRC_USER_INTERRUPT_TIMEOUT,

 CCURDPRC_DMA_INCOMPLETE,

 CCURDPRC_DATA_UNDERFLOW,

 CCURDPRC_DATA_OVERFLOW,

 CCURDPRC_IO_FAILURE,

 CCURDPRC_PCI_ABORT_INTERRUPT_ACTIVE,

};

2.2.38 ccurDPRC_Get_Driver_Info()

This call returns internal information that is maintained by the driver.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Driver_Info (void *Handle,

 ccurdprc_driver_info_t *info)

 Description: Get device information from driver.

 Input: void *Handle (handle pointer)

 Output: ccurdprc_driver_info_t *info (info struct pointer)

 char version[12]

 char built[32]

 char module_name[16]

 int board_index

 char board_desc[32]

 int bus

 int slot

 int func

 int vendor_id

 int sub_vendor_id

 int board_id

 int board_type

 int sub_device_id

 int board_info

 int msi_support

 int irqlevel

 int firmware

 int number_of_channels

 int all_channels_mask

 double cal_ref_voltage

 int max_dma_samples

 int dma_size

 double voltage_range

 ccurdprc_driver_int_t interrupt

 unsigned long long count

 u_int status

 u_int mask

 int timeout_seconds

 int Ccurdprc_Max_Region

 ccurdprc_dev_region_t mem_region[CCURDPRC_MAX_REGION]

 uint physical_address

 uint size

 uint flags

 uint *virtual_address

 ccurdprc_sprom_header_t sprom_header

 u_int32_t board_serial_number

 u_short sprom_revision

 Return: _ccurdprc_lib_error_number_t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 30 of 94

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

**/

2.2.39 ccurDPRC_Get_Driver_Read_Mode()

This call returns the driver read mode.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Driver_Read_Mode (void *Handle,

 _ccurdprc_driver_rw_mode_t *mode)

 Description: Get current read mode that will be selected by the 'read()' call

 Input: void *Handle (handle pointer)

 Output: _ccurdprc_driver_rw_mode_t *mode (pointer to read mode)

 # CCURDPRC_PIO_CHANNEL

 # CCURDPRC_DMA_CHANNEL

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

**/

2.2.40 ccurDPRC_Get_Driver_Write_Mode()

This call is currently not supported for driver writes.This call returns the driver write mode.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Driver_Write_Mode (void *Handle,

 _ccurdprc_driver_rw_mode_t *mode)

 Description: Get current write mode that will be selected by the 'write()'

 call

 Input: void *Handle (handle pointer)

 Output: _ccurdprc_driver_rw_mode_t *mode (pointer to write mode)

 # CCURDPRC_PIO_CHANNEL

 # CCURDPRC_DMA_CHANNEL

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

**/

2.2.41 ccurDPRC_Get_Electronic_Fuse_Base()

This call returns the Electronic Fuse Base for the selected channels. This value where the channel will fault

for a short (10 ohm) resistance. This is for information only and must not be changed by the user, otherwise, it

could result in damage to the board.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 31 of 94

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Electronic_Fuse_Base (void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_electronic_fuse_base_t Base)

 Description: Get Electronic Fuse Base information

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_electronic_fuse_base_t Base[CCURDPRC_MAX_CHANNELS]

 (pointer to electronic fuse base channel array)

 _ccurdprc_electronic_fuse_base_t

 int base_raw;

 double base_volts;

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.42 ccurDPRC_Get_Electronic_Fuse_Internals()

This call returns the internal settings for the electronic fuse trip for the selected channels. This is for

information only and must not be changed by the user, otherwise it could result in damage to the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Electronic_Fuse_Internals (void *Handle,

 ccurdprc_electronic_fuse_internals_t *ElectronicFuse)

 Description: Get Electronic Fuse Internals information

 Input: void *Handle (handle pointer)

 Output: ccurdprc_electronic_fuse_internals_t ElectronicFuse (pointer to

electronic fuse internals)

 int electrical_short_raw;

 double electrical_short_volts;

 int delay;

 int count;

 int io_delay_raw;

 double io_delay_microseconds;

 int maximum_resistance_raw;

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 32 of 94

 double maximum_resistance_ohms;

 int maximum_voltage_raw;

 double maximum_voltage_volts;

 int voltage_fault_delay_raw;

 int voltage_fault_delay_microseconds;

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.43 ccurDPRC_Get_Electronic_Fuse_Multiplier()

This call returns the Electronic Fuse Multiplier for the selected channels. This is the value where the channel

will fault for a resistance other than a short (10 ohm) resistance. This is for information only and must not be

changed by the user, otherwise, it could result in damage to the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Electronic_Fuse_Multiplier (void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_electronic_fuse_multiplier_t Multiplier)

 Description: Get Electronic Fuse Multiplier information

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_electronic_fuse_multiplier_t

Multiplier[CCURDPRC_MAX_CHANNELS]

 (pointer to electronic fuse

multiplier channel array)

 _ccurdprc_electronic_fuse_multiplier_t

 int multiplier_raw;

 double multiplier_volts;

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 33 of 94

2.2.44 ccurDPRC_Get_Electronic_Fuse_Status()

This call returns the various Electronic Fuse Trip Status for the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Electronic_Fuse_Status (void *Handle,

 ccurdprc_electronic_fuse_status_t *Status)

 Description: Get Electronic Fuse Status information

 Input: void *Handle (handle pointer)

 Output: ccurdprc_electronic_fuse_status_t Status (pointer to

electronic fuse status)

 _ccurdprc_efstat_fuse_tripped_t any_fuse_tripped

 # CCURDPRC_EFSTAT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFSTAT_FUSE_TRIPPED

 _ccurdprc_efstat_fuse_adc_failed_t adc_1_fuse_failed

 # CCURDPRC_EFSTAT_FUSE_ADC_NOT_FAILED

 # CCURDPRC_EFSTAT_FUSE_ADC_FAILED

 _ccurdprc_efstat_fuse_adc_failed_t adc_0_fuse_failed

 # CCURDPRC_EFSTAT_FUSE_ADC_NOT_FAILED

 # CCURDPRC_EFSTAT_FUSE_ADC_FAILED

 _ccurdprc_efstat_fuse_tripped_t

channel_fuse_tripped[CCURDPRC_MAX_CHANNELS]

 # CCURDPRC_EFSTAT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFSTAT_FUSE_TRIPPED

 int

channel_fuse_tripped_mask

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.45 ccurDPRC_Get_Electronic_Fuse_Threshold()

This call returns the Electronic Fuse Threshold for selected channels. This is for information only and must

not be changed by the user, otherwise, it could result in damage to the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Electronic_Fuse_Threshold (void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_electronic_fuse_threshold_t Threshold)

 Description: Get Electronic Fuse Threshold information

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 34 of 94

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_electronic_fuse_threshold_t

Threshold[CCURDPRC_MAX_CHANNELS]

 (pointer to electronic fuse

threshold channel array)

 _ccurdprc_electronic_fuse_threshold_t

 int threshold_raw;

 double threshold_volts;

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.46 ccurDPRC_Get_Electronic_Fuse_Trip()

This call returns the Electronic Fuse Trip for selected channels. This is for information only and must not be

changed by the user, otherwise, it could result in damage to the board.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Electronic_Fuse_Trip (void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_electronic_fuse_channel_trip_t Trip)

 Description: Get Electronic Fuse Trip information

 Input: void *Handle (handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 Output: ccurdprc_electronic_fuse_channel_trip_t Trip[CCURDPRC_MAX_CHANNELS]

 (pointer to electronic fuse trip channel array)

 _ccurdprc_electronic_fuse_channel_trip_t

 _ccurdprc_eft_fuse_tripped_t fuse_trip_status

 # CCURDPRC_EFT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFT_FUSE_TRIPPED

 _ccurdprc_eft_invalid_calibration_fuse_trip_t

 invalid_calibration_trip

 # CCURDPRC_EFT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFT_FUSE_TRIPPED

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 35 of 94

 _ccurdprc_eft_potentiometer_failure_fuse_trip_t

 potentiometer_failure_trip

 # CCURDPRC_EFT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFT_FUSE_TRIPPED

 _ccurdprc_eft_adc_failure_fuse_trip_t adc_failure_trip

 # CCURDPRC_EFT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFT_FUSE_TRIPPED

 _ccurdprc_eft_switch_voltage_fuse_trip_t witch_voltage_trip

 # CCURDPRC_EFT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFT_FUSE_TRIPPED

 _ccurdprc_eft_adc_compare_fuse_trip_t adc_compare_trip

 # CCURDPRC_EFT_FUSE_NOT_TRIPPED

 # CCURDPRC_EFT_FUSE_TRIPPED

 uint last_adc_tripped_raw

 double last_adc_tripped_volts

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.47 ccurDPRC_Get_Interrupt_Control()

This call returns the interrupt control information.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Interrupt_Control (void *Handle,

 ccurdprc_interrupt_t *intr)

 Description: Get Interrupt Control information

 Input: void *Handle (handle pointer)

 Output: ccurdprc_interrupt_t *intr (pointer to interrupt control)

 int global_int

 int plx_local_int

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.48 ccurDPRC_Get_Interrupt_Status()

This call returns the current status of the PLX interrupt.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Interrupt_Status (void *Handle,

 ccurdprc_interrupt_t *intr)

 Description: Get Interrupt Status information

 Input: void *Handle (handle pointer)

 Output: ccurdprc_interrupt_t *intr (pointer to interrupt status)

 int plx_local_int

 # CCURDPRC_ISR_LOCAL_PLX_NONE

 # CCURDPRC_ISR_LOCAL_PLX_OCCURRED

 Return: _ccurdprc_lib_error_number_t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 36 of 94

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.49 ccurDPRC_Get_Interrupt_Timeout_Seconds()

This call returns the read time out maintained by the driver. It is the time that the read call will wait before it

times out. The call could time out because a DMA fails to complete. The device should have been opened in

the block mode (O_NONBLOCK not set) for reads to wait for the operation to complete.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Interrupt_Timeout_Seconds (void *Handle,

 int *int_timeout_secs)

 Description: Get Interrupt Timeout Seconds

 Input: void *Handle (Handle pointer)

 Output: int *int_timeout_secs (pointer to int tout secs)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_IOCTL_FAILED (ioctl error)

 **/

2.2.50 ccurDPRC_Get_IO_Control()

This call returns the IO Control settomg for the selected channels.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_IO_Control(void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_io_control_t *IoControl)

 Description: Get I/O Control

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 37 of 94

 Output: ccurdprc_io_control_t *IoControl (pointer to I/O

control)

 _ccurdprc_io_control_t

IoSignal[CCURDPRC_MAX_CHANNELS];

 # CCURDPRC_IO_CONTROL_OPEN

 # CCURDPRC_IO_CONTROL_EXTERNAL

 # CCURDPRC_IO_CONTROL_TEST_BUS

 # CCURDPRC_IO_CONTROL_RA_GROUND_FAULT

 # CCURDPRC_IO_CONTROL_RB_GROUND_FAULT

 # CCURDPRC_IO_CONTROL_RA_RB_GROUND_FAULT

 # CCURDPRC_IO_CONTROL_RA_V_PLUS_FAULT

 # CCURDPRC_IO_CONTROL_RB_V_PLUS_FAULT

 # CCURDPRC_IO_CONTROL_RA_RB_V_PLUS_FAULT

 # CCURDPRC_IO_CONTROL_RA_V_PLUS_RB_GROUND_FAULT_SWITCH

 # CCURDPRC_IO_CONTROL_RA_GROUND_RB_V_PLUS_FAULT_SWITCH

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 (Potentiometer and I/O Control not active)

 **/

2.2.51 ccurDPRC_Get_Lib_Error_Description()

This call returns the library error name and description for the supplied error number.

/**

 ccurDPRC_Get_Lib_Error_Description()

 Description: Get Error Description of supplied error number.

 Input: int ErrorNumber (Library error number)
 Output: ccurdprc_lib_error_description_t *lib_error_desc (error description struct pointer)
 -- int found
 -- char name[CCURDPRC_LIB_ERROR_NAME_SIZE] (last library error name)
 -- char desc[CCURDPRC_LIB_ERROR_DESC_SIZE] (last library error description)
 Return: none

 **/

2.2.52 ccurDPRC_Get_Lib_Error()

This call provides detailed information about the last library error that was maintained by the API.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Lib_Error (void *Handle,

 ccurdprc_lib_error_t *lib_error)

 Description: Get last error generated by the library.

 Input: void *Handle (Handle pointer)

 Output: ccurdprc_lib_error_t *lib_error (error struct pointer)

 -- uint error (last library error number)

 -- char name[CCURDPRC_LIB_ERROR_NAME_SIZE] (last library error name)

 -- char desc[CCURDPRC_LIB_ERROR_DESC_SIZE] (last library error

 description)

 -- int line_number (last library error line number

 in lib)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 38 of 94

 -- char function[CCURDPRC_LIB_ERROR_FUNC_SIZE]

 (library function in error)

 -- ccurdprc_lib_error_backtrace_t BT[CCURDPRC_BACK_TRACE_DEPTH]

 (backtrace of errors)

 -- int line_number (line number in library)

 -- char function[CCURDPRC_LIB_ERROR_FUNC_SIZE]

 (library function)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 **/

typedef struct

{

 int line_number; /* line number in library */

 char function[CCURDPRC_LIB_ERROR_FUNC_SIZE]; /* library function */

} ccurdprc_lib_error_backtrace_t;

typedef struct

{

 uint error; /* last library error number */

 char name[CCURDPRC_LIB_ERROR_NAME_SIZE]; /* last library error name */

 char desc[CCURDPRC_LIB_ERROR_DESC_SIZE]; /* last libarary error description */

 int line_number; /* last library error line number in

 lib */

 char function[CCURDPRC_LIB_ERROR_FUNC_SIZE]; /* library function in error */

 ccurdprc_lib_error_backtrace_t BT[CCURDPRC_BACK_TRACE_DEPTH];

 /* backtrace of errors */

} ccurdprc_lib_error_t;

Possible library errors:

CCURDPRC_LIB_NO_ERROR = 0, /* successful */

CCURDPRC_LIB_INVALID_ARG = -1, /* invalid argument */

CCURDPRC_LIB_ALREADY_OPEN = -2, /* already open */

CCURDPRC_LIB_OPEN_FAILED = -3, /* open failed */

CCURDPRC_LIB_BAD_HANDLE = -4, /* bad handle */

CCURDPRC_LIB_NOT_OPEN = -5, /* device not opened */

CCURDPRC_LIB_MMAP_SELECT_FAILED = -6, /* mmap selection failed */

CCURDPRC_LIB_MMAP_FAILED = -7, /* mmap failed */

CCURDPRC_LIB_MUNMAP_FAILED = -8, /* munmap failed */

CCURDPRC_LIB_NOT_MAPPED = -9, /* not mapped */

CCURDPRC_LIB_ALREADY_MAPPED = -10, /* already mapped */

CCURDPRC_LIB_IOCTL_FAILED = -11, /* driver ioctl failed */

CCURDPRC_LIB_IO_ERROR = -12, /* i/o error */

CCURDPRC_LIB_INTERNAL_ERROR = -13, /* internal library error */

CCURDPRC_LIB_NOT_IMPLEMENTED = -14, /* call not implemented */

CCURDPRC_LIB_LOCK_FAILED = -15, /* failed to get lib lock */

CCURDPRC_LIB_NO_LOCAL_REGION = -16, /* local region not present */

CCURDPRC_LIB_NO_CONFIG_REGION = -17, /* config region not present */

CCURDPRC_LIB_NO_SOLUTION_FOUND = -18, /* no solution found */

CCURDPRC_LIB_CONVERTER_RESET = -19, /* converter not active */

CCURDPRC_LIB_NO_RESOURCE = -20, /* resource not available */

CCURDPRC_LIB_CALIBRATION_RANGE_ERROR = -21, /* calibration voltage out of range */

CCURDPRC_LIB_CANNOT_OPEN_FILE = -23, /* cannot open file */

CCURDPRC_LIB_BAD_DATA_IN_CAL_FILE = -24, /* bad date in calibration file */

CCURDPRC_LIB_UNUSED_25 = -25, /* UNUSED */

CCURDPRC_LIB_SERIAL_PROM_BUSY = -26, /* serial prom busy */

CCURDPRC_LIB_SERIAL_PROM_FAILURE = -27, /* serial prom failure - malfunction

occurred */

CCURDPRC_LIB_INVALID_CRC = -28, /* invalid CRC read */

CCURDPRC_LIB_SERIAL_PROM_WRITE_PROTECTED = -29, /* serial prom is write protected */

CCURDPRC_LIB_ADC_IS_NOT_ACTIVE = -30, /* ADC is not active */

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 39 of 94

CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 = -31, /* Digital Potentiometer & I/O is not

 active */

CCURDPRC_LIB_CLOCK_IS_NOT_ACTIVE = 32, /* ADC Clock is not active */

CCURDPRC_LIB_ADC_FAILURE = -33, /* ADC Failure */

CCURDPRC_LIB_ELECTRONIC_FUSE_TRIPPED = -34, /* Electronic Fuse Tripped */

2.2.53 ccurDPRC_Get_Mapped_Config_Ptr()

If the user wishes to bypass the API and communicate directly with the board configuration registers, then

they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)

by bypassing the API could compromise the API and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care and intimate knowledge of the hardware

programming registers before attempting to access these registers. For information on the registers, refer to

the ccurdprc_user.h include file that is supplied with the driver.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Mapped_Config_Ptr (void *Handle,

 ccurdprc_config_local_data_t **config_ptr)

 Description: Get mapped configuration pointer.

 Input: void *Handle (Handle pointer)

 Output: ccurdprc_config_local_data_t **config_ptr (config struct ptr)

 -- structure in ccurdprc_user.h

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_CONFIG_REGION (config region not present)

**/

2.2.54 ccurDPRC_Get_Mapped_Driver_Library_Ptr()

The driver and library share a common structure. This call returns a pointer to the shared driver/library

structure.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Mapped_Driver_Library_Ptr (void *Handle,

 ccurdprc_driver_library_common_t **driver_lib_ptr)

 Description: Get mapped Driver/Library structure pointer.

 Input: void *Handle (Handle pointer)

 Output: ccurdprc_driver_library_common_t **driver_lib_ptr

 (driver_lib struct ptr)

 uint dma_abort_count (DMA abort count)

 ccurdprc_sprom_header_t sprom_header

 u_int32_t board_serial_number (serial number)

 u_short sprom_revision (serial revision)

 uint library_needs_initialization

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 40 of 94

2.2.55 ccurDPRC_Get_Mapped_Local_Ptr()

If the user wishes to bypass the API and communicate directly with the board control and data registers, then

they can use this call to acquire a pointer to these registers. Please note that any type of access (read or write)

by bypassing the API could compromise the API and results could be unpredictable. It is recommended that

only advanced users should use this call and with extreme care and intimate knowledge of the hardware

programming registers before attempting to access these registers. For information on the registers, refer to

the ccurdprc_user.h include file that is supplied with the driver.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Mapped_Local_Ptr (void *Handle,

 ccurdprc_local_ctrl_data_t **local_ptr)

 Description: Get mapped local pointer.

 Input: void *Handle (Handle pointer)

 Output: ccurdprc_local_ctrl_data_t **local_ptr (local struct ptr)

 -- structure in ccurdprc_user.h

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.56 ccurDPRC_Get_Open_File_Descriptor()

When the library ccurDPRC_Open() call is successfully invoked, the board is opened using the system call

open(2). The file descriptor associated with this board is returned to the user with this call. This call allows

advanced users to bypass the library and communicate directly with the driver with calls like read(2), ioctl(2),

etc. Normally, this is not recommended as internal checking and locking is bypassed and the library calls can

no longer maintain integrity of the functions. This is only provided for advanced users who want more control

and are aware of the implications.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Open_File_Descriptor (void *Handle,

 int *fd)

 Description: Get Open File Descriptor

 Input: void *Handle (Handle pointer)

 Output: int *fd (open file descriptor)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.57 ccurDPRC_Get_Physical_Memory()

This call returns to the user the physical memory pointer and size that was previously allocated by the

ccurDPRC_Mmap_Physical_Memory() call. The physical memory is allocated by the user when they wish to

perform their own DMA and bypass the API. Once again, this call is only useful for advanced users.

/**

 _ccurdprc_lib_error_number_t

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 41 of 94

 ccurDPRC_Get_Physical_Memory (void *Handle,

 ccurdprc_phys_mem_t *phys_mem)

 Description: Get previously mmapped() physical memory address and size

 Input: void *Handle (handle pointer)

 Output: ccurdprc_phys_mem_t *phys_mem (mem struct pointer)

 void *phys_mem

 uint phys_mem_size

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

**/

2.2.58 ccurDPRC_Get_Value()

This call allows the user to read the board registers. The actual data returned will depend on the command

register information that is requested. Refer to the hardware manual for more information on what is being

returned. Most commands return a pointer to an unsigned integer.

/**

 ccurDPRC_Get_Value()

 _ccurdprc_lib_error_number_t

 ccurDPRC_Get_Value (void *Handle,

 CCURDPRC_CONTROL cmd,

 void *value)

 Description: Return the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURDPRC_CONTROL cmd (register definition)

 # CCURDPRC_CONTROL_BOARD_INFORMATION

 # CCURDPRC_CONTROL_BOARD_CSR

 # CCURDPRC_CONTROL_INTERRUPT_CONTROL

 # CCURDPRC_CONTROL_INTERRUPT_STATUS

 # CCURDPRC_CONTROL_CALIBRATION_BUS_CONTROL

 # CCURDPRC_CONTROL_FIRMWARE_SPI_COUNTER_STATUS

 # CCURDPRC_CONTROL_ADC_ENABLE

 # CCURDPRC_CONTROL_DIGITAL_POTENTIOMETER_AND_IO_ENABLE

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_0

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_1

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_2

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_3

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_4

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_5

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_6

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_7

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_8

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_9

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_10

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_11

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_12

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_13

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_14

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_15

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_0

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_1

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_2

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 42 of 94

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_3

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_4

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_5

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_6

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_7

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_8

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_9

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_10

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_11

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_12

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_13

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_14

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_15

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_0

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_1

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_2

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_3

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_4

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_5

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_6

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_7

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_8

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_9

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_10

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_11

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_12

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_13

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_14

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_15

 # CCURDPRC_ADC_DATA_CHANNEL_0

 # CCURDPRC_ADC_DATA_CHANNEL_1

 # CCURDPRC_ADC_DATA_CHANNEL_2

 # CCURDPRC_ADC_DATA_CHANNEL_3

 # CCURDPRC_ADC_DATA_CHANNEL_4

 # CCURDPRC_ADC_DATA_CHANNEL_5

 # CCURDPRC_ADC_DATA_CHANNEL_6

 # CCURDPRC_ADC_DATA_CHANNEL_7

 # CCURDPRC_ADC_DATA_CHANNEL_8

 # CCURDPRC_ADC_DATA_CHANNEL_9

 # CCURDPRC_ADC_DATA_CHANNEL_10

 # CCURDPRC_ADC_DATA_CHANNEL_11

 # CCURDPRC_ADC_DATA_CHANNEL_12

 # CCURDPRC_ADC_DATA_CHANNEL_13

 # CCURDPRC_ADC_DATA_CHANNEL_14

 # CCURDPRC_ADC_DATA_CHANNEL_15

 # CCURDPRC_CONTROL_SPROM_STAT_ADDR_WRITE_DATA

 # CCURDPRC_IO_CONTROL_CHANNEL_0

 # CCURDPRC_IO_CONTROL_CHANNEL_1

 # CCURDPRC_IO_CONTROL_CHANNEL_2

 # CCURDPRC_IO_CONTROL_CHANNEL_3

 # CCURDPRC_IO_CONTROL_CHANNEL_4

 # CCURDPRC_IO_CONTROL_CHANNEL_5

 # CCURDPRC_IO_CONTROL_CHANNEL_6

 # CCURDPRC_IO_CONTROL_CHANNEL_7

 # CCURDPRC_IO_CONTROL_CHANNEL_8

 # CCURDPRC_IO_CONTROL_CHANNEL_9

 # CCURDPRC_IO_CONTROL_CHANNEL_10

 # CCURDPRC_IO_CONTROL_CHANNEL_11

 # CCURDPRC_IO_CONTROL_CHANNEL_12

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 43 of 94

 # CCURDPRC_IO_CONTROL_CHANNEL_13

 # CCURDPRC_IO_CONTROL_CHANNEL_14

 # CCURDPRC_IO_CONTROL_CHANNEL_15

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_0

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_1

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_2

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_3

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_4

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_5

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_6

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_7

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_8

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_9

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_10

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_11

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_12

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_13

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_14

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_15

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_0

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_1

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_2

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_3

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_4

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_5

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_6

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_7

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_8

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_9

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_10

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_11

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_12

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_13

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_14

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_15

 # CCURDPRC_CONTROL_SPROM_READ_DATA

 # CCURDPRC_ELECTRONIC_FUSE_STATUS

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_ELECTRICAL_SHORT_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_DELAY_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_COUNT_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_IO_DELAY_VALUE

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 44 of 94

 # CCURDPRC_ELECTRONIC_FUSE_MAXIMUM_RESISTANCE

 # CCURDPRC_ELECTRONIC_FUSE_MAXIMUM_VOLTAGE

 # CCURDPRC_ELECTRONIC_FUSE_VOLTAGE_FAULT_DELAY

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_15

 # CCURDPRC_CONTROL_SPI_RAM

 Output: void *value; (pointer to value)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 45 of 94

 **/

2.2.59 ccurDPRC_Hex_To_Fraction()

 This call converts a hexadecimal value to a fractional decimal.

/**

 double

 ccurDPRC_Hex_To_Fraction (uint value)

 Description: Convert Hexadecimal to Fractional Decimal

 Input: uint value (hexadecimal to convert)

 Output: none

 Return: double Fraction (converted fractional value)

 **/

2.2.60 ccurDPRC_Identify_Board()

This call is useful in identifying a physical board via software control. It causes the front LED to either flash

or stay steady. Users can also specify the number of seconds they wish to flash the LED.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Identify_Board (void *Handle,

 _ccurdprc_identify_t Identify)

 Description: Identify the board by setting the front LED

 Input: void *Handle (Handle pointer)

 _ccurdprc_identify_t Identify (Identify board settings)

 # CCURDPRC_IDENTIFY_OFF (turn off flashing)

 # CCURDPRC_IDENTIFY_ON (turn on flashing)

 # Number of seconds to flash (flash for number of seconds)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 **/

2.2.61 ccurDPRC_Initialize_Board()

This call resets the board to a default initial state. This call is currently identical to the

ccurDPRC_Reset_Board() call.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Initialize_Board (void *Handle)

 Description: Initialize the board.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 46 of 94

2.2.62 ccurDPRC_MMap_Physical_Memory()

This call is provided for advanced users to create a physical memory of specified size that can be used for

DMA. The allocated DMA memory is rounded to a page size. If a physical memory is not available, this call

will fail, at which point the user will need to issue the ccurDPRC_Munmap_Physical_Memory() API call to

remove the previously allocated physical memory.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_MMap_Physical_Memory (void *Handle,

 int size,

 void **mem_ptr)

 Description: Allocate a physical DMA memory for size bytes.

 Input: void *Handle (handle pointer)

 int size (size in bytes)

 Output: void **mem_ptr (mapped memory pointer)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 # CCURDPRC_LIB_MMAP_FAILED (mmap failed)

**/

2.2.63 ccurDPRC_Munmap_Physical_Memory()

This call simply removes a physical memory that was previously allocated by the

ccurDPRC_MMap_Physical_Memory() API call.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Munmap_Physical_Memory (void *Handle)

 Description: Unmap a previously mapped physical DMA memory.

 Input: void *Handle (handle pointer)

 Output: None

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 # CCURDPRC_LIB_MMAP_FAILED (mmap failed)

**/

2.2.64 ccurDPRC_NanoDelay()

This call goes into a tight loop spinning for the requested nano seconds specified by the user.

/**

 void

 ccurDPRC_NanoDelay (unsigned long long NanoDelay)

 Description: Delay (loop) for user specified nano-seconds

 Input: unsigned long long NanoDelay (number of nano-secs to delay)

 Output: none

 Return: none

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 47 of 94

 **/

2.2.65 ccurDPRC_Open()

This is the first call that needs to be issued by a user to open a device and access the board through the rest of

the API calls. What is returned is a handle to a void pointer that is supplied as an argument to the other API

calls. The Board_Number is a valid board number [0..9] that is associated with a physical card. There must

exist a character special file /dev/ccurdprc<Board_Number> for the call to be successful. One character

special file is created for each board found when the driver is successfully loaded.

The oflag is the flag supplied to the open(2) system call by this API. It is normally ‘0’ (zero), however the

user may use the O_NONBLOCK option for read(2) calls which will change the default reading in block

mode.

This driver allows multiple applications to open the same board by specifying an additional oflag

O_APPEND. It is then the responsibility of the user to ensure that the various applications communicating

with the same cards are properly synchronized. Various tests supplied in this package has the O_APPEND

flags enabled, however, it is strongly recommended that only one application be run with a single card at a

time, unless the user is well aware of how the applications are going to interact with each other and accept any

unpredictable results.

In case of error, errno is also set for some non-system related errors encountered.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Open (void **My_Handle,

 int Board_Number,

 int oflag)

 Description: Open a device.

 Input: void **Handle (Handle pointer to pointer)

 int Board_Number (0-9 board number)

 int oflag (open flags)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_ALREADY_OPEN (device already opened)

 # CCURDPRC_LIB_OPEN_FAILED (device open failed)

 # CCURDPRC_LIB_ALREADY_MAPPED (memory already mmapped)

 # CCURDPRC_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 # CCURDPRC_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.66 ccurDPRC_Read()

Currently, this call is not supported. It basically calls the read(2) system call with the exception that it

performs necessary locking and returns the errno returned from the system call in the pointer to the error

variable.

For specific information about the data being returned for the various read modes, refer to the read(2) system

call description the Driver Direct Access section.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Read (void *Handle,

 void *buf,

 int size,

 int *bytes_read,

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 48 of 94

 int *error)

 Description: Perform a read operation.

 Input: void *Handle (Handle pointer)

 int size (size of buffer in bytes)

 Output: void *buf (pointer to buffer)

 int *bytes_read (bytes read)

 int *error (returned errno)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IO_ERROR (read failed)

 **/

2.2.67 ccurDPRC_Read_Serial_Prom()

This is a basic call to read short word entries from the serial prom. The user specifies a word offset within the

serial prom and a word count, and the call returns the data read in a pointer to short words.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Read_Serial_Prom(void *Handle,

 ccurdprc_sprom_rw_t *spr)

 Description: Read Serial Prom for specified number of words

 Input: void *Handle (handle pointer)

 ccurdprc_sprom_rw_t *spr (pointer to struct)

 u_short word_offset

 u_short num_words

 Output: ccurdprc_sprom_rw_t *spr (pointer to struct)

 u_short *data_ptr

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_SERIAL_PROM_BUSY (serial prom busy)

 # CCURDPRC_LIB_SERIAL_PROM_FAILURE (serial prom failure)

 **/

2.2.68 ccurDPRC_Read_Serial_Prom_Item()

This call is used to read well defined sections in the serial prom. The user supplies the serial prom section that

needs to be read and the data is returned in a section specific structure.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Read_Serial_Prom_Item(void *Handle,

 _ccurdprc_sprom_access_t item,

 void *item_ptr)

 Description: Read Serial Prom for specified item

 Input: void *Handle (handle pointer)

 _ccurdprc_sprom_access_t item (select item)

 CCURDPRC_SPROM_HEADER

 Output: ccurdprc_sprom_header_t sprom_header (pinter to item struct)

 u_int32_t board_serial_number

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 49 of 94

 u_short sprom_revision

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_SERIAL_PROM_BUSY (serial prom busy)

 # CCURDPRC_LIB_SERIAL_PROM_FAILURE (serial prom failure)

**/

2.2.69 ccurDPRC_Remove_Irq()

The purpose of this call is to remove the interrupt handler that was previously set up. The interrupt handler is

managed internally by the driver and the library. The user should not issue this call, otherwise reads will time

out.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Remove_Irq (void *Handle)

 Description: By default, the driver sets up a shared IRQ interrupt handler

 when the device is opened. Now if for any reason, another

 device is sharing the same IRQ as this driver, the interrupt

 handler will also be entered every time the other shared

 device generates an interrupt. There are times that a user,

 for performance reasons may wish to run the board without

 interrupts enabled. In that case, they can issue this ioctl

 to remove the interrupt handling capability from the driver.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.70 ccurDPRC_Reset_Board()

This call resets the board to a known initial default state. This call is currently identical to the

ccurDPRC_Initialize_Board() call.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Reset_Board (void *Handle)

 Description: Reset the board.

 Input: void *Handle (Handle pointer)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IOCTL_FAILED (driver ioctl call failed)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.71 ccurDPRC_Select_Driver_Read_Mode()

This call can be used to select the driver read mode.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 50 of 94

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Select_Driver_Read_Mode (void *Handle,

 _ccurdprc_driver_rw_mode_t mode)

 Description: Select Driver Read Mode

 Input: void *Handle (handle pointer)

 _ccurdprc_driver_rw_mode_t mode (select read mode)

 # CCURDPRC_PIO_CHANNEL

 # CCURDPRC_DMA_CHANNEL (CURRENTLY NOT SUPPORTED)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

**/

2.2.72 ccurDPRC_Select_Driver_Write_Mode()

This call is currently not supported for driver writes.This call can be used to select the driver write mode.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Select_Driver_Write_Mode (void *Handle,

 _ccurdprc_driver_rw_mode_t mode)

 Description: Select Driver Write Mode

 Input: void *Handle (handle pointer)

 _ccurdprc_driver_rw_mode_t mode (select write mode)

 # CCURDPRC_PIO_CHANNEL

 # CCURDPRC_DMA_CHANNEL

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

**/

2.2.73 ccurDPRC_Serial_Prom_Write_Override()

The serial prom is non-volatile and its information is preserved during a power cycle. It contains useful

information and settings that the customer could lose if they were to inadvertently overwrite. For this reason,

all calls that write to the serial proms will fail with a write protect error, unless this write protect override API

is invoked prior to writing to the serial proms. Once the Write Override is enabled, it will stay in effect until

the user closes the device or re-issues this call to disable writes to the serial prom.

The calls that will fail unless the write protect is disabled are:

- ccurDPRC_Write_Serial_Prom()

- ccurDPRC_Write_Serial_Prom_Item()

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Serial_Prom_Write_Override (void *Handle,

 int action)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 51 of 94

 Description: Set Serial Prom Write Override

 Input: void *Handle (handle pointer)

 _ccurdprc_bool_t action (override action)

 # CCURDPRC_TRUE

 # CCURDPRC_FALSE

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

**/

2.2.74 ccurDPRC_Set_Board_CSR()

This call is used to set the board control register.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_Board_CSR (void *Handle,

 ccurdprc_board_csr_t *bcsr)

 Description: Set Board Control and Status information

 Input: void *Handle (Handle pointer)

 ccurdprc_board_csr_t *bcsr (pointer to board csr)

 _ccurdprc_bcsr_identify_board_t identify_board

 # CCURDPRC_BCSR_IDENTIFY_BOARD_DISABLE

 # CCURDPRC_BCSR_IDENTIFY_BOARD_ENABLE

 # CCURDPRC_BCSR_IDENTIFY_BOARD_ENABLE_DO_NOT_CHANGE

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.75 ccurDPRC_Set_CalibrationBus_Control()

This call sets the calibration bus control.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_CalibrationBus_Control (void *Handle,

 _ccurdprc_calibration_bus_control_t bus_control)

 Description: Set Calibration Bus Control

 Input: void *Handle (handle pointer)

 _ccurdprc_calibration_bus_control_t

 bus_control (control set)

 # CCURDPRC_CALIBRATIONBUS_CONTROL_OPEN

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_2_5_VOLTS

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_10_VOLTS

 # CCURDPRC_CALIBRATIONBUS_CONTROL_MINUS_10_VOLTS

 # CCURDPRC_CALIBRATIONBUS_CONTROL_GROUND

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_8_MILLIAMP

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 52 of 94

 # CCURDPRC_CALIBRATIONBUS_CONTROL_MINUS_8_MILLIAMP

 # CCURDPRC_CALIBRATIONBUS_CONTROL_PLUS_16_MILLIAMP

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.76 ccurDPRC_Set_Digital_Potentiometer()

This call is used for setting the digital potentiometer resistance in ohms for the selected channels. Users need

to supply valid resistances for channels in ohms and the call will set them accordingly and return the raw

value supplied to the hardware. Valid resistances are 10 Ohms and 45 to 1000,000 Ohms in approximately 5

Ohms increments. If an exact resistance value is not supplied to the call, it will fail, unless the user tags the

resistance with CCURDPRC_POTENTIOMETER_AUTOCORRECT_OHM_TAG flag. In this case, the call

will attempt to get the nearest programmable resistance value and return this value back to the user after

setting it.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_Digital_Potentiometer_Test(void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_digital_potentiometer_test_t *DPTest)

 Description: Set Digital Potentiometer

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 ccurdprc_digital_potentiometer_t *DPValue (pointer to Digital

 Potentiometer Value)

 uint Raw[CCURDPRC_MAX_CHANNELS];

 uint Ohms[CCURDPRC_MAX_CHANNELS];

 Output: None

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 (Potentiometer and I/O Control not active)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 53 of 94

2.2.77 ccurDPRC_Set_Digital_Potentiometer_Test()

This call sets the digital potentiometer test power down and modes for selected channels.

/**

 ccurDPRC_Set_Digital_Potentiometer_Test()

 Description: Set Digital Potentiometer Test

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 ccurdprc_digital_potentiometer_test_t *DPTest (pointer to Digital

 Potentiometer Test)

 _ccurdprc_digital_potentiometer_test_t

DigitalPotTest[CCURDPRC_MAX_CHANNELS];

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT0

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT1

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT2

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_20K_POT3

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_PWRDWN_100K

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_FORCE_FAILURE

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_MODE_20K

 # CCURDPRC_DIGITAL_POTENTIOMETER_TEST_MODE_100K

 Output: None

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 (Potentiometer and I/O Control not active)

 **/

2.2.78 ccurDPRC_Set_Interrupt_Control()

This call sets the interrupt control.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_Interrupt_Control (void *Handle,

 ccurdprc_interrupt_t *intr)

 Description: Set Interrupt Control information

 Input: void *Handle (handle pointer)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 54 of 94

 ccurdprc_interrupt_t *intr (pointer to interrupt control)

 int global_int

 # CCURDPRC_ICSR_GLOBAL_DISABLE

 # CCURDPRC_ICSR_GLOBAL_ENABLE

 # CCURDPRC_DO_NOT_CHANGE

 int plx_local_int

 # CCURDPRC_ICSR_LOCAL_PLX_DISABLE

 # CCURDPRC_ICSR_LOCAL_PLX_ENABLE

 # CCURDPRC_DO_NOT_CHANGE

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.79 ccurDPRC_Set_Interrupt_Status()

This call sets/clears the PLX interrupt.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_Interrupt_Status (void *Handle,

 ccurdprc_interrupt_t *intr)

 Description: Set Interrupt Status information

 Input: void *Handle (handle pointer)

 ccurdprc_interrupt_t *intr (pointer to interrupt status)

 int plx_local_int

 # CCURDPRC_INTSTAT_LOCAL_PLX_NONE

 # CCURDPRC_INTSTAT_LOCAL_PLX_RESET

 # CCURDPRC_DO_NOT_CHANGE

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

**/

2.2.80 ccurDPRC_Set_Interrupt_Timeout_Seconds()

This call sets the read timeout maintained by the driver. It allows the user to change the default time out from

30 seconds to a user specified value. It is the time that the read call will wait before it times out. The call

could time out if the DMA fails to complete. The device should have been opened in the blocking mode

(O_NONBLOCK not set) for reads to wait for the operation to complete.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_Interrupt_Timeout_Seconds (void *Handle,

 int timeout_secs)

 Description: Set Interrupt Timeout Seconds

 Input: void *Handle (Handle pointer)

 int timeout_secs (interrupt tout secs)

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 55 of 94

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 **/

2.2.81 ccurDPRC_Set_IO_Control()

This call sets the I/O Controls for the selected channels.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_IO_Control(void *Handle,

 _ccurdprc_channel_mask_t ChanMask,

 ccurdprc_io_control_t *IoControl)

 Description: Set I/O Control

 Input: void *Handle (Handle pointer)

 _ccurdprc_channel_mask_t ChanMask (specify channel mask)

 # CCURDPRC_CHANNEL_MASK_0

 # CCURDPRC_CHANNEL_MASK_1

 # CCURDPRC_CHANNEL_MASK_2

 # CCURDPRC_CHANNEL_MASK_3

 # CCURDPRC_CHANNEL_MASK_4

 # CCURDPRC_CHANNEL_MASK_5

 # CCURDPRC_CHANNEL_MASK_6

 # CCURDPRC_CHANNEL_MASK_7

 # CCURDPRC_CHANNEL_MASK_8

 # CCURDPRC_CHANNEL_MASK_9

 # CCURDPRC_CHANNEL_MASK_10

 # CCURDPRC_CHANNEL_MASK_11

 # CCURDPRC_CHANNEL_MASK_12

 # CCURDPRC_CHANNEL_MASK_13

 # CCURDPRC_CHANNEL_MASK_14

 # CCURDPRC_CHANNEL_MASK_15

 # CCURDPRC_ALL_CHANNELS_MASK

 ccurdprc_io_control_t *IoControl (pointer to I/O control)

 _ccurdprc_io_control_t

IoSignal[CCURDPRC_MAX_CHANNELS];

 # CCURDPRC_IO_CONTROL_OPEN

 # CCURDPRC_IO_CONTROL_EXTERNAL

 # CCURDPRC_IO_CONTROL_TEST_BUS

 # CCURDPRC_IO_CONTROL_RA_GROUND_FAULT

 # CCURDPRC_IO_CONTROL_RB_GROUND_FAULT

 # CCURDPRC_IO_CONTROL_RA_RB_GROUND_FAULT

 # CCURDPRC_IO_CONTROL_RA_V_PLUS_FAULT

 # CCURDPRC_IO_CONTROL_RB_V_PLUS_FAULT

 # CCURDPRC_IO_CONTROL_RA_RB_V_PLUS_FAULT

 # CCURDPRC_IO_CONTROL_RA_V_PLUS_RB_GROUND_FAULT_SWITCH

 # CCURDPRC_IO_CONTROL_RA_GROUND_RB_V_PLUS_FAULT_SWITCH

 Output: None

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_DIGITAL_POT_AND_IO_IS_NOT_ACTIVE

 (Potentiometer and I/O Control not active)

 # CCURDPRC_LIB_ADC_FAILURE (ADC failure)

 # CCURDPRC_LIB_ELECTRONIC_FUSE_TRIPPED

 (Electronic Fuse tripped)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 56 of 94

2.2.82 ccurDPRC_Set_Value()

This call allows the advanced user to set the writable board registers. The actual data written will depend on

the command register information that is requested. Refer to the hardware manual for more information on

what can be written to.

Normally, users should not be changing these registers as it will bypass the API integrity and could result in

an unpredictable outcome.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Set_Value (void *Handle,

 CCURDPRC_CONTROL cmd,

 void *value)

 Description: Set the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURDPRC_CONTROL cmd (register definition)

 # CCURDPRC_CONTROL_BOARD_CSR

 # CCURDPRC_CONTROL_INTERRUPT_CONTROL

 # CCURDPRC_CONTROL_INTERRUPT_STATUS

 # CCURDPRC_CONTROL_CALIBRATION_BUS_CONTROL

 # CCURDPRC_CONTROL_FIRMWARE_SPI_COUNTER_STATUS

 # CCURDPRC_CONTROL_ADC_ENABLE

 # CCURDPRC_CONTROL_DIGITAL_POTENTIOMETER_AND_IO_ENABLE

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_0

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_1

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_2

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_3

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_4

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_5

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_6

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_7

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_8

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_9

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_10

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_11

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_12

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_13

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_14

 # CCURDPRC_ADC_POSITIVE_CAL_CHANNEL_15

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_0

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_1

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_2

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_3

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_4

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_5

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_6

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_7

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_8

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_9

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_10

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_11

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_12

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_13

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_14

 # CCURDPRC_ADC_NEGATIVE_CAL_CHANNEL_15

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 57 of 94

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_0

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_1

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_2

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_3

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_4

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_5

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_6

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_7

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_8

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_9

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_10

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_11

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_12

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_13

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_14

 # CCURDPRC_ADC_OFFSET_CAL_CHANNEL_15

 # CCURDPRC_CONTROL_SPROM_STAT_ADDR_WRITE_DATA

 # CCURDPRC_IO_CONTROL_CHANNEL_0

 # CCURDPRC_IO_CONTROL_CHANNEL_1

 # CCURDPRC_IO_CONTROL_CHANNEL_2

 # CCURDPRC_IO_CONTROL_CHANNEL_3

 # CCURDPRC_IO_CONTROL_CHANNEL_4

 # CCURDPRC_IO_CONTROL_CHANNEL_5

 # CCURDPRC_IO_CONTROL_CHANNEL_6

 # CCURDPRC_IO_CONTROL_CHANNEL_7

 # CCURDPRC_IO_CONTROL_CHANNEL_8

 # CCURDPRC_IO_CONTROL_CHANNEL_9

 # CCURDPRC_IO_CONTROL_CHANNEL_10

 # CCURDPRC_IO_CONTROL_CHANNEL_11

 # CCURDPRC_IO_CONTROL_CHANNEL_12

 # CCURDPRC_IO_CONTROL_CHANNEL_13

 # CCURDPRC_IO_CONTROL_CHANNEL_14

 # CCURDPRC_IO_CONTROL_CHANNEL_15

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_0

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_1

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_2

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_3

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_4

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_5

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_6

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_7

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_8

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_9

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_10

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_11

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_12

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_13

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_14

 # CCURDPRC_DIGITAL_POT_VALUE_CHANNEL_15

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_0

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_1

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_2

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_3

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_4

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_5

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_6

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_7

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_8

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_9

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 58 of 94

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_10

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_11

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_12

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_13

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_14

 # CCURDPRC_DIGITAL_POT_TEST_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_TRIP_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_ELECTRICAL_SHORT_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_DELAY_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_COUNT_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_IO_DELAY_VALUE

 # CCURDPRC_ELECTRONIC_FUSE_MAXIMUM_RESISTANCE

 # CCURDPRC_ELECTRONIC_FUSE_MAXIMUM_VOLTAGE

 # CCURDPRC_ELECTRONIC_FUSE_VOLTAGE_FAULT_DELAY

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_BASE_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_13

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 59 of 94

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_MULTIPLIER_CHANNEL_15

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_0

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_1

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_2

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_3

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_4

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_5

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_6

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_7

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_8

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_9

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_10

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_11

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_12

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_13

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_14

 # CCURDPRC_ELECTRONIC_FUSE_THRESHOLD_CHANNEL_15

 # CCURDPRC_CONTROL_SPI_RAM

 void *value (pointer to value to be set)

 Output: None

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 **/

2.2.83 ccurDPRC_VoltsToData()

This call converts user supplied volts to raw data.

/**

 uint

 ccurDPRC_VoltsToData (double volts)

 Description: Convert Volts to data

 Input: double volts (volts to convert)

 Output: none

 Return: uint data (returned data)

 **/

2.2.84 ccurDPRC_VoltsToDataChanCal()

 This call converts user supplied volts to raw data for calibration registers.

/**

 uint

 ccurDPRC_VoltsToDataChanCal (double volts)

 Description: Convert Volts to Data (for Channel Calibration)

 Input: double volts (volts to convert)

 Output: none

 Return: uint data (returned data)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 60 of 94

2.2.85 ccurDPRC_Wait_For_Interrupt()

This call is made available to advanced users to bypass the API and perform their own interrupt handling. If a

time out value greater than zero is specified, the call will time out after the specified seconds, otherwise it will

not time out.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Wait_For_Interrupt (void *Handle,

 ccurdprc_driver_int_t *drv_int)

 Description: Wait For Interrupt

 Input: void *Handle (handle pointer)

 Output: ccurdprc_driver_int_t *drv_int (pointer to drv_int struct)

 unsigned long long count

 u_int status

 u_int mask

 # CCURDPRC_INTSTAT_LOCAL_PLX_MASK

 int timeout_seconds

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

**/

2.2.86 ccurDPRC_Write()

This call is currently not supported.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Write (void *Handle,

 void *buf,

 int size,

 int *bytes_written,

 int *error)

 Description: Perform a write operation.

 Input: void *Handle (Handle pointer)

 int size (number of bytes to write)

 Output: void *buf (pointer to buffer)

 int *bytes_written (bytes written)

 int *error (returned errno)

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_IO_ERROR (write failed)

 # CCURDPRC_LIB_NOT_IMPLEMENTED (call not implemented)

 **/

2.2.87 ccurDPRC_Write_Serial_Prom()

This is a basic call to write short word entries to the serial prom. The user specifies a word offset within the

serial prom and a word count, and the call writes the data pointed to by the spw pointer, in short words.

Prior to using this call, the user will need to issue the ccurDPRC_Serial_Prom_Write_Override() to allowing

writing to the serial prom.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 61 of 94

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Write_Serial_Prom(void *Handle,

 ccurdprc_sprom_rw_t *spw)

 Description: Write data to Serial Prom for specified number of words

 Input: void *Handle (handle pointer)

 ccurdprc_sprom_rw_t *spw (pointer to struct)

 # u_short word_offset

 # u_short num_words

 # u_short *data_ptr

 Output: none

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_SERIAL_PROM_BUSY (serial prom busy)

 # CCURDPRC_LIB_SERIAL_PROM_FAILURE (serial prom failure)

**/

2.2.88 ccurDPRC_Write_Serial_Prom_Item()

This call is used to write well defined sections in the serial prom. The user supplies the serial prom section

that needs to be written and the data points to the section specific structure. This call should normally not be

used by the user.

Prior to using this call, the user will need to issue the ccurDPRC_Serial_Prom_Write_Override() to allowing

writing to the serial prom.

/**

 _ccurdprc_lib_error_number_t

 ccurDPRC_Write_Serial_Prom_Item(void *Handle,

 _ccurdprc_sprom_access_t item,

 void *item_ptr)

 Description: Write Serial Prom with specified item

 Input: void *Handle (handle pointer)

 _ccurdprc_sprom_access_t item (select item)

 # CCURDPRC_SPROM_HEADER

 Output: ccurdprc_sprom_header_t sprom_header (pinter to item struct)

 u_int32_t board_serial_number

 u_short sprom_revision

 Return: _ccurdprc_lib_error_number_t

 # CCURDPRC_LIB_NO_ERROR (successful)

 # CCURDPRC_LIB_BAD_HANDLE (no/bad handler supplied)

 # CCURDPRC_LIB_NOT_OPEN (device not open)

 # CCURDPRC_LIB_INVALID_ARG (invalid argument)

 # CCURDPRC_LIB_NO_LOCAL_REGION (local region error)

 # CCURDPRC_LIB_SERIAL_PROM_BUSY (serial prom busy)

 # CCURDPRC_LIB_SERIAL_PROM_FAILURE (serial prom failure)

**/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 62 of 94

3. Test Programs

This driver and API are accompanied with an extensive set of test examples. Examples under the Direct

Driver Access do not use the API, while those under Application Program Interface Access use the API.

3.1 Direct Driver Access Example Tests

These set of tests are located in the …/test directory and do not use the API. They communicate directly with

the driver. Users should be extremely familiar with both the driver and the hardware registers if they wish to

communicate directly with the hardware.

3.1.1 ccurdprc_dump

This test is for debugging purpose. It dumps all the hardware registers.

Usage: ccurdprc_dump [-b board]

 -b board: board number -- default board is 0

Example display:

./ccurdprc_dump

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

LOCAL Register 0x7ffff7ff6000 Offset=0x0

CONFIG Register 0x7ffff7ff5000 Offset=0x0

======= LOCAL BOARD REGISTERS =========

LBR: @0x0000 --> 0x93100102

LBR: @0x0004 --> 0x00000000

LBR: @0x0008 --> 0x00000000

LBR: @0x000c --> 0x00000000

LBR: @0x0010 --> 0x00000000

LBR: @0x0014 --> 0x00000001

LBR: @0x0018 --> 0x00000001

LBR: @0x001c --> 0x00000001

LBR: @0x0020 --> 0x00000001

LBR: @0x0024 --> 0x00000001

LBR: @0x0028 --> 0x00000001

LBR: @0x002c --> 0x00000001

LBR: @0x0030 --> 0x00000001

.

.

.

LBR: @0x07c0 --> 0x00000000

LBR: @0x07c4 --> 0x00000000

LBR: @0x07c8 --> 0x00000000

LBR: @0x07cc --> 0x00000000

LBR: @0x07d0 --> 0x00000000

LBR: @0x07d4 --> 0x00000000

LBR: @0x07d8 --> 0x00000000

LBR: @0x07dc --> 0x00000000

LBR: @0x07e0 --> 0x00000000

LBR: @0x07e4 --> 0x00000000

LBR: @0x07e8 --> 0x00000000

LBR: @0x07ec --> 0x00000000

LBR: @0x07f0 --> 0x00000000

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 63 of 94

LBR: @0x07f4 --> 0x00000000

LBR: @0x07f8 --> 0x00000000

LBR: @0x07fc --> 0x00000000

======= LOCAL CONFIG REGISTERS =========

LCR: @0x0000 --> 0xfffff800

LCR: @0x0004 --> 0x00000001

LCR: @0x0008 --> 0x00200000

LCR: @0x000c --> 0x00300400

LCR: @0x0010 --> 0x00000000

LCR: @0x0014 --> 0x00000000

LCR: @0x0018 --> 0x42430343

LCR: @0x001c --> 0x00000000

LCR: @0x0020 --> 0x00000000

LCR: @0x0024 --> 0x00000000

LCR: @0x0028 --> 0x00000000

LCR: @0x002c --> 0x00000000

LCR: @0x0030 --> 0x00000000

.

.

.

LCR: @0x00c0 --> 0x00000002

LCR: @0x00c4 --> 0x00000000

LCR: @0x00c8 --> 0x00000000

LCR: @0x00cc --> 0x00000000

LCR: @0x00d0 --> 0x00000000

LCR: @0x00d4 --> 0x00000000

LCR: @0x00d8 --> 0x00000000

LCR: @0x00dc --> 0x00000000

LCR: @0x00e0 --> 0x00000000

LCR: @0x00e4 --> 0x00000000

LCR: @0x00e8 --> 0x00000050

LCR: @0x00ec --> 0x00000000

LCR: @0x00f0 --> 0x00000000

LCR: @0x00f4 --> 0x00000000

LCR: @0x00f8 --> 0x00000043

LCR: @0x00fc --> 0x00000000

LCR: @0x0100 --> 0x00000000

LCR: @0x0104 --> 0x00000000

======= PCI CONFIG REG ADDR MAPPING =========

PCR: @0x0000 --> 0x93101542

PCR: @0x0004 --> 0x02b00017

PCR: @0x0008 --> 0x08800001

PCR: @0x000c --> 0x00006008

PCR: @0x0010 --> 0xc4c01000

PCR: @0x0014 --> 0x00000000

PCR: @0x0018 --> 0xc4c00000

PCR: @0x001c --> 0x00000000

PCR: @0x0020 --> 0x00000000

PCR: @0x0024 --> 0x00000000

PCR: @0x0028 --> 0x00000000

PCR: @0x002c --> 0x905610b5

PCR: @0x0030 --> 0x00000000

PCR: @0x0034 --> 0x00000040

PCR: @0x0038 --> 0x00000000

PCR: @0x003c --> 0x0000010b

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 64 of 94

PCR: @0x0040 --> 0x00024801

PCR: @0x0044 --> 0x00000000

PCR: @0x0048 --> 0x00004c00

PCR: @0x004c --> 0x00000003

PCR: @0x0050 --> 0x00000000

======= PCI BRIDGE REGISTERS =========

PBR: @0x0000 --> 0x811110b5

PBR: @0x0004 --> 0x00100417

PBR: @0x0008 --> 0x06040021

PBR: @0x000c --> 0x00010010

PBR: @0x0010 --> 0xc490000c

PBR: @0x0014 --> 0x00000000

PBR: @0x0018 --> 0x00080807

PBR: @0x001c --> 0x220000f0

PBR: @0x0020 --> 0xc4c0c4c0

PBR: @0x0024 --> 0x0000fff0

PBR: @0x0028 --> 0x00000000

PBR: @0x002c --> 0x00000000

PBR: @0x0030 --> 0x00000000

.

.

.

PBR: @0x00d0 --> 0x00000000

PBR: @0x00d4 --> 0x00000000

PBR: @0x00d8 --> 0x00000000

PBR: @0x00dc --> 0x00000000

PBR: @0x00e0 --> 0x00000000

PBR: @0x00e4 --> 0x00000000

PBR: @0x00e8 --> 0x00000000

PBR: @0x00ec --> 0x00000000

PBR: @0x00f0 --> 0x00000000

PBR: @0x00f4 --> 0x00000000

PBR: @0x00f8 --> 0x00000000

PBR: @0x00fc --> 0x00000000

PBR: @0x0100 --> 0x00010004

PBR: @0x0104 --> 0x00000000

PBR: @0x0108 --> 0x00000000

PBR: @0x010c --> 0x00000000

PBR: @0x0110 --> 0x00000000

PBR: @0x0114 --> 0x00000000

PBR: @0x0118 --> 0x00000000

======= MAIN CONTROL REGISTERS =========

MCR: @0x0000 --> 0x00000033

MCR: @0x0004 --> 0x8000ff00

MCR: @0x0008 --> 0x00000000

MCR: @0x000c --> 0x1b008090

MCR: @0x0010 --> 0x80000002

MCR: @0x0014 --> 0x00000000

MCR: @0x0018 --> 0x00000000

MCR: @0x001c --> 0x00000000

MCR: @0x0020 --> 0x0000141f

MCR: @0x0024 --> 0x00000000

MCR: @0x0028 --> 0x00000000

MCR: @0x002c --> 0x00000000

MCR: @0x0030 --> 0xfeedface

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 65 of 94

MCR: @0x0034 --> 0x00000000

MCR: @0x0038 --> 0x00000000

MCR: @0x003c --> 0x00000000

MCR: @0x0040 --> 0x00000201

MCR: @0x0044 --> 0x00000000

MCR: @0x0048 --> 0x00810a20

MCR: @0x004c --> 0x000000d4

MCR: @0x0050 --> 0x00010700

MCR: @0x0054 --> 0x00000000

MCR: @0x0058 --> 0x080a2c2a

MCR: @0x005c --> 0x0000029a

MCR: @0x0060 --> 0x00000019

MCR: @0x0064 --> 0x00000000

3.1.2 ccurdprc_rdreg

This is a simple program that returns the local register value for a given offset.

Usage: ./ccurdprc_rdreg [-b board] [-o offset] [-s size]

 -b board : board number -- default board is 0

 -o offset: hex offset to read from -- default offset is 0x0

 -s size : number of bytes to read -- default size is 0x4

Example display:

./ccurdprc_rdreg –s64

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

LOCAL REGS #### (length=100)

+LCL+ 0 93100102 00000000 00000000 00000000 *...3............*

+LCL+ 0x10 00000000 00000001 00000001 00000001 *................*

+LCL+ 0x20 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x30 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x40 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x50 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x60 0000000

3.1.3 ccurdprc_reg

 This call displays all the boards local and configuration registers.

Usage: ./ccurdprc_reg [-b board]

 -b board: Board number -- default board is 0

Example display:

./ccurdprc_reg

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

LOCAL Register 0x7ffff7ff6000 Offset=0x0

LOCAL REGS #### (length=2048)

+LCL+ 0 93100102 00000000 00000000 00000000 *...3............*

+LCL+ 0x10 00000000 00000001 00000001 00000001 *................*

+LCL+ 0x20 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x30 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x40 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x50 00000001 00000001 00000001 00000001 *................*

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 66 of 94

+LCL+ 0x60 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x70 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x80 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x90 00000001 00000001 00000001 00000001 *................*

+LCL+ 0xa0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0xb0 00000000 00000001 00000001 00000001 *................*

+LCL+ 0xc0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0xd0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0xe0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0xf0 00000000 00000000 00000001 00000001 *................*

+LCL+ 0x100 00000000 00000001 00000001 00000001 *................*

+LCL+ 0x110 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x120 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x130 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x140 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x150 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x160 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x170 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x180 80000000 80000000 80000000 80000000 *................*

+LCL+ 0x190 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x1a0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x1b0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x1c0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x1d0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x1e0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x1f0 00000001 00000001 00000001 00000001 *................*

+LCL+ 0x200 00000001 00000001 00000001 00000001 *................*

.

.

.

+LCL+ 0x700 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x710 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x720 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x730 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x740 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x750 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x760 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x770 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x780 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x790 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7a0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7b0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7c0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7d0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7e0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7f0 00000000 00000000 00000000 00000000 *................*

CONFIG Register 0x7ffff7ff5000 Offset=0x0

CONFIG REGS #### (length=264)

+CFG+ 0 fffff800 00000001 00200000 00300400 *......... ...0..*

+CFG+ 0x10 00000000 00000000 42430343 00000000 *........BC.C....*

+CFG+ 0x20 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x30 00000000 00000008 00000000 00000000 *................*

+CFG+ 0x40 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x50 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x60 00000000 00000000 0f000080 100f767c *..............v|*

+CFG+ 0x70 905610b5 000000ba 00000000 00000000 *.V..............*

+CFG+ 0x80 00000003 00000000 00000000 00000000 *................*

+CFG+ 0x90 00000000 00000003 00000000 00000000 *................*

+CFG+ 0xa0 00000000 00000000 00001010 00200000 *............. ..*

+CFG+ 0xb0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0xc0 00000002 00000000 00000000 00000000 *................*

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 67 of 94

+CFG+ 0xd0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0xe0 00000000 00000000 00000050 00000000 *...........P....*

+CFG+ 0xf0 00000000 00000000 00000043 00000000 *...........C....*

+CFG+ 0x100 00000000 00000000 *........ *

======= CONFIG REGISTERS =========

 las0rr =0xfffff800 @0x00000000

 las0ba =0x00000001 @0x00000004

 marbr =0x00200000 @0x00000008

 bigend =0x00300400 @0x0000000c

 eromrr =0x00000000 @0x00000010

 eromba =0x00000000 @0x00000014

 lbrd0 =0x42430343 @0x00000018

 dmrr =0x00000000 @0x0000001c

 dmlbam =0x00000000 @0x00000020

 dmlbai =0x00000000 @0x00000024

 dmpbam =0x00000000 @0x00000028

 dmcfga =0x00000000 @0x0000002c

 oplfis =0x00000000 @0x00000030

 oplfim =0x00000008 @0x00000034

 mbox0 =0x00000000 @0x00000040

 mbox1 =0x00000000 @0x00000044

 mbox2 =0x00000000 @0x00000048

 mbox3 =0x00000000 @0x0000004c

 mbox4 =0x00000000 @0x00000050

 mbox5 =0x00000000 @0x00000054

 mbox6 =0x00000000 @0x00000058

 mbox7 =0x00000000 @0x0000005c

 p2ldbell =0x00000000 @0x00000060

 l2pdbell =0x00000000 @0x00000064

 intcsr =0x0f000080 @0x00000068

 cntrl =0x100f767c @0x0000006c

 pcihidr =0x905610b5 @0x00000070

 pcihrev =0x000000ba @0x00000074

 dmamode0 =0x00000003 @0x00000080

 dmapadr0 =0x00000000 @0x00000084

 dmaladr0 =0x00000000 @0x00000088

 dmasiz0 =0x00000000 @0x0000008c

 dmadpr0 =0x00000000 @0x00000090

 dmamode1 =0x00000003 @0x00000094

 dmapadr1 =0x00000000 @0x00000098

 dmaladr1 =0x00000000 @0x0000009c

 dmasiz1 =0x00000000 @0x000000a0

 dmadpr1 =0x00000000 @0x000000a4

 dmacsr0 =0x00000010 @0x000000a8

 dmacsr1 =0x00000010 @0x000000a9

 dmaaarb =0x00200000 @0x000000ac

 dmathr =0x00000000 @0x000000b0

 dmadac0 =0x00000000 @0x000000b4

 dmadac1 =0x00000000 @0x000000b8

 las1rr =0x00000000 @0x000000f0

 las1ba =0x00000000 @0x000000f4

 lbrd1 =0x00000043 @0x000000f8

 dmdac =0x00000000 @0x000000fc

 pciarb =0x00000000 @0x00000100

 pabtadr =0x00000000 @0x00000104

======= LOCAL REGISTERS =========

 board_info =0x93100102 @0x00000000

 board_csr =0x00000000 @0x00000004

 interrupt_control =0x00000000 @0x00000008

 interrupt_status =0x00000000 @0x0000000c

 calib_bus_control =0x00000000 @0x000000b0

 spi_counter_status =0x00000000 @0x000000f0

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 68 of 94

 ADC_Enable =0x00000000 @0x00000100

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_0] =0x80000000 @0x00000110

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_1] =0x80000000 @0x00000114

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_2] =0x80000000 @0x00000118

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_3] =0x80000000 @0x0000011c

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_4] =0x80000000 @0x00000120

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_5] =0x80000000 @0x00000124

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_6] =0x80000000 @0x00000128

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_7] =0x80000000 @0x0000012c

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_8] =0x80000000 @0x00000130

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_9] =0x80000000 @0x00000134

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_10] =0x80000000 @0x00000138

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_11] =0x80000000 @0x0000013c

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_12] =0x80000000 @0x00000140

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_13] =0x80000000 @0x00000144

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_14] =0x80000000 @0x00000148

 ADC_PositiveCalibration[CCURDPRC_CHANNEL_15] =0x80000000 @0x0000014c

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_0] =0x80000000 @0x00000150

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_1] =0x80000000 @0x00000154

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_2] =0x80000000 @0x00000158

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_3] =0x80000000 @0x0000015c

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_4] =0x80000000 @0x00000160

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_5] =0x80000000 @0x00000164

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_6] =0x80000000 @0x00000168

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_7] =0x80000000 @0x0000016c

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_8] =0x80000000 @0x00000170

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_9] =0x80000000 @0x00000174

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_10] =0x80000000 @0x00000178

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_11] =0x80000000 @0x0000017c

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_12] =0x80000000 @0x00000180

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_13] =0x80000000 @0x00000184

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_14] =0x80000000 @0x00000188

 ADC_NegativeCalibration[CCURDPRC_CHANNEL_15] =0x80000000 @0x0000018c

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_0] =0x00000000 @0x00000190

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_1] =0x00000000 @0x00000194

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_2] =0x00000000 @0x00000198

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_3] =0x00000000 @0x0000019c

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_4] =0x00000000 @0x000001a0

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_5] =0x00000000 @0x000001a4

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_6] =0x00000000 @0x000001a8

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_7] =0x00000000 @0x000001ac

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_8] =0x00000000 @0x000001b0

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_9] =0x00000000 @0x000001b4

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_10] =0x00000000 @0x000001b8

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_11] =0x00000000 @0x000001bc

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_12] =0x00000000 @0x000001c0

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_13] =0x00000000 @0x000001c4

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_14] =0x00000000 @0x000001c8

 ADC_OffsetCalibration[CCURDPRC_CHANNEL_15] =0x00000000 @0x000001cc

 ADC_Data[CCURDPRC_CHANNEL_0] =0x00000000 @0x00000280

 ADC_Data[CCURDPRC_CHANNEL_1] =0x00000000 @0x00000284

 ADC_Data[CCURDPRC_CHANNEL_2] =0x00000000 @0x00000288

 ADC_Data[CCURDPRC_CHANNEL_3] =0x00000000 @0x0000028c

 ADC_Data[CCURDPRC_CHANNEL_4] =0x00000000 @0x00000290

 ADC_Data[CCURDPRC_CHANNEL_5] =0x00000000 @0x00000294

 ADC_Data[CCURDPRC_CHANNEL_6] =0x00000000 @0x00000298

 ADC_Data[CCURDPRC_CHANNEL_7] =0x00000000 @0x0000029c

 ADC_Data[CCURDPRC_CHANNEL_8] =0x00000000 @0x000002a0

 ADC_Data[CCURDPRC_CHANNEL_9] =0x00000000 @0x000002a4

 ADC_Data[CCURDPRC_CHANNEL_10] =0x00000000 @0x000002a8

 ADC_Data[CCURDPRC_CHANNEL_11] =0x00000000 @0x000002ac

 ADC_Data[CCURDPRC_CHANNEL_12] =0x00000000 @0x000002b0

 ADC_Data[CCURDPRC_CHANNEL_13] =0x00000000 @0x000002b4

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 69 of 94

 ADC_Data[CCURDPRC_CHANNEL_14] =0x00000000 @0x000002b8

 ADC_Data[CCURDPRC_CHANNEL_15] =0x00000000 @0x000002bc

 Digital_Potentiomenter_and_IO_Enable =0x00000000 @0x00000300

 IO_Signal_Select[CCURDPRC_CHANNEL_0] =0x00000000 @0x00000310

 IO_Signal_Select[CCURDPRC_CHANNEL_1] =0x00000000 @0x00000314

 IO_Signal_Select[CCURDPRC_CHANNEL_2] =0x00000000 @0x00000318

 IO_Signal_Select[CCURDPRC_CHANNEL_3] =0x00000000 @0x0000031c

 IO_Signal_Select[CCURDPRC_CHANNEL_4] =0x00000000 @0x00000320

 IO_Signal_Select[CCURDPRC_CHANNEL_5] =0x00000000 @0x00000324

 IO_Signal_Select[CCURDPRC_CHANNEL_6] =0x00000000 @0x00000328

 IO_Signal_Select[CCURDPRC_CHANNEL_7] =0x00000000 @0x0000032c

 IO_Signal_Select[CCURDPRC_CHANNEL_8] =0x00000000 @0x00000330

 IO_Signal_Select[CCURDPRC_CHANNEL_9] =0x00000000 @0x00000334

 IO_Signal_Select[CCURDPRC_CHANNEL_10] =0x00000000 @0x00000338

 IO_Signal_Select[CCURDPRC_CHANNEL_11] =0x00000000 @0x0000033c

 IO_Signal_Select[CCURDPRC_CHANNEL_12] =0x00000000 @0x00000340

 IO_Signal_Select[CCURDPRC_CHANNEL_13] =0x00000000 @0x00000344

 IO_Signal_Select[CCURDPRC_CHANNEL_14] =0x00000000 @0x00000348

 IO_Signal_Select[CCURDPRC_CHANNEL_15] =0x00000000 @0x0000034c

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_0] =0x00032000 @0x00000400

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_1] =0x00032000 @0x00000404

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_2] =0x00032000 @0x00000408

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_3] =0x00032000 @0x0000040c

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_4] =0x00032000 @0x00000410

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_5] =0x00032000 @0x00000414

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_6] =0x00032000 @0x00000418

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_7] =0x00032000 @0x0000041c

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_8] =0x00032000 @0x00000420

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_9] =0x00032000 @0x00000424

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_10]=0x00032000 @0x00000428

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_11]=0x00032000 @0x0000042c

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_12]=0x00032000 @0x00000430

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_13]=0x00032000 @0x00000434

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_14]=0x00032000 @0x00000438

 Digital_Potentiometer_Value[CCURDPRC_CHANNEL_15]=0x00032000 @0x0000043c

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_0] =0x00000100 @0x00000480

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_1] =0x00000100 @0x00000484

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_2] =0x00000100 @0x00000488

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_3] =0x00000100 @0x0000048c

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_4] =0x00000100 @0x00000490

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_5] =0x00000100 @0x00000494

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_6] =0x00000100 @0x00000498

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_7] =0x00000100 @0x0000049c

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_8] =0x00000100 @0x000004a0

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_9] =0x00000100 @0x000004a4

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_10] =0x00000100 @0x000004a8

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_11] =0x00000100 @0x000004ac

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_12] =0x00000100 @0x000004b0

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_13] =0x00000100 @0x000004b4

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_14] =0x00000100 @0x000004b8

 Digital_Potentiometer_Test[CCURDPRC_CHANNEL_15] =0x00000100 @0x000004bc

 sprom_stat_addr_write_data =0x00000000 @0x00000500

 sprom_read_data =0x00000000 @0x00000504

 Electronic_Fuse_Status =0x00030000 @0x00000520

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_0] =0x00000000 @0x00000530

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_1] =0x00000000 @0x00000534

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_2] =0x00000000 @0x00000538

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_3] =0x00000000 @0x0000053c

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_4] =0x00000000 @0x00000540

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_5] =0x00000000 @0x00000544

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_6] =0x00000000 @0x00000548

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_7] =0x00000000 @0x0000054c

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_8] =0x00000000 @0x00000550

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 70 of 94

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_9] =0x00000000 @0x00000554

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_10] =0x00000000 @0x00000558

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_11] =0x00000000 @0x0000055c

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_12] =0x00000000 @0x00000560

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_13] =0x00000000 @0x00000564

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_14] =0x00000000 @0x00000568

 Electronic_Fuse_Trip[CCURDPRC_CHANNEL_15] =0x00000000 @0x0000056c

 Electronic_Fuse_Electrical_Short_Value =0x000000b4 @0x000005b0

 Electronic_Fuse_Delay_Value =0x00000002 @0x000005b4

 Electronic_Fuse_Count_Value =0x00000001 @0x000005b8

 Electronic_Fuse_IO_Delay_Value =0x00000800 @0x000005bc

 Electronic_Fuse_Maximum_Resistance =0x000000fd @0x000005c0

 Electronic_Fuse_Maximum_Voltage =0x00005ae0 @0x000005c4

 Electronic_Fuse_Voltage_Fault_Delay =0x00000002 @0x000005c8

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_0] =0x00000241 @0x00000600

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_1] =0x00000241 @0x00000604

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_2] =0x00000241 @0x00000608

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_3] =0x00000241 @0x0000060c

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_4] =0x00000241 @0x00000610

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_5] =0x00000241 @0x00000614

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_6] =0x00000241 @0x00000618

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_7] =0x00000241 @0x0000061c

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_8] =0x00000241 @0x00000620

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_9] =0x00000241 @0x00000624

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_10] =0x00000241 @0x00000628

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_11] =0x00000241 @0x0000062c

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_12] =0x00000241 @0x00000630

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_13] =0x00000241 @0x00000634

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_14] =0x00000241 @0x00000638

 Electronic_Fuse_Base[CCURDPRC_CHANNEL_15] =0x00000241 @0x0000063c

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_0] =0x0000005a @0x00000640

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_1] =0x0000005a @0x00000644

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_2] =0x0000005a @0x00000648

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_3] =0x0000005a @0x0000064c

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_4] =0x0000005a @0x00000650

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_5] =0x0000005a @0x00000654

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_6] =0x0000005a @0x00000658

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_7] =0x0000005a @0x0000065c

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_8] =0x0000005a @0x00000660

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_9] =0x0000005a @0x00000664

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_10] =0x0000005a @0x00000668

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_11] =0x0000005a @0x0000066c

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_12] =0x0000005a @0x00000670

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_13] =0x0000005a @0x00000674

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_14] =0x0000005a @0x00000678

 Electronic_Fuse_Multiplier[CCURDPRC_CHANNEL_15] =0x0000005a @0x0000067c

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_0] =0x00005ae0 @0x00000680

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_1] =0x00005ae0 @0x00000684

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_2] =0x00005ae0 @0x00000688

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_3] =0x00005ae0 @0x0000068c

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_4] =0x00005ae0 @0x00000690

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_5] =0x00005ae0 @0x00000694

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_6] =0x00005ae0 @0x00000698

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_7] =0x00005ae0 @0x0000069c

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_8] =0x00005ae0 @0x000006a0

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_9] =0x00005ae0 @0x000006a4

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_10] =0x00005ae0 @0x000006a8

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_11] =0x00005ae0 @0x000006ac

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_12] =0x00005ae0 @0x000006b0

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_13] =0x00005ae0 @0x000006b4

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_14] =0x00005ae0 @0x000006b8

 Electronic_Fuse_Threshold[CCURDPRC_CHANNEL_15] =0x00005ae0 @0x000006bc

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 71 of 94

 spi_ram[0..63]

@0x0700 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x0720 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x0740 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x0760 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x0780 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x07a0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x07c0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

@0x07e0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3.1.4 ccurdprc_regedit

This is an interactive test to display and write to local, configuration and physical memory.

Usage: ./ccurdprc_regedit [-b board]

 -b board: Board number -- default board is 0

Example display:

./ccurdprc_regedit

Device Name : /dev/ccurdprc0

Board Serial No : 680593 (0x000a6291)

Initialize_Board: Firmware Rev. 0x01 successful

Virtual Address: 0x7ffff7ff6000

 1 = Create Physical Memory 2 = Destroy Physical memory

 3 = Display Driver Information 4 = Display Firmware RAM

 5 = Display Physical Memory Info 6 = Display Registers (CONFIG)

 7 = Display Registers (LOCAL) 8 = Dump Physical Memory

 9 = Reset Board 10 = Write Register (LOCAL)

 11 = Write Register (CONFIG) 12 = Write Physical Memory

Main Selection ('h'=display menu, 'q'=quit)->

3.1.5 ccurdprc_tst

This is an interactive test to exercise some of the driver features.

Usage: ./ccurdprc_tst [-b board]

 -b board: Board number -- default board is 0

Example display:

./ccurdprc_tst

Device Name : /dev/ccurdprc0

Board Serial No : 680593 (0x000a6291)

Initialize_Board: Firmware Rev. 0x01 successful

 01 = add irq 02 = disable pci interrupts

 03 = enable pci interrupts 04 = get device error

 05 = get driver info 06 = get physical mem

 07 = init board 08 = mmap select

 09 = mmap(CONFIG registers) 10 = mmap(LOCAL registers)

 11 = mmap(physical memory) 12 = munmap(physical memory)

 13 = no command 14 = read operation

 15 = remove irq 16 = reset board

 17 = write operation

Main Selection ('h'=display menu, 'q'=quit)->

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 72 of 94

3.1.6 ccurdprc_wreg

This is a simple test to write to the local registers at the user specified offset.

Usage: ./ccurdprc_wreg [-b board] [-o offset] [-s size] [-v value] [-x]

 -b board : board selection -- default board is 0

 -o offset: hex offset to write to -- default offset is 0x0

 -s size : number of bytes to write -- default size is 0x4

 -v value : hex value to write at offset -- default value is 0x0

 -x : Do not read back just written values -- default read back values

Example display:

./ccurdprc_wreg -v12345678 -o0x700 –s100

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

Writing 0x12345678 to offset 0x0700 for 256 bytes

LOCAL REGS #### (length=256)

+LCL+ 0x700 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x710 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x720 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x730 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x740 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x750 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x760 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x770 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x780 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x790 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x7a0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x7b0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x7c0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x7d0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x7e0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

+LCL+ 0x7f0 12345678 12345678 12345678 12345678 *.4Vx.4Vx.4Vx.4Vx*

3.1.7 Flash/ccurdprc_flash

This program is used to burn new firmware. This must only be done at the direction of Concurrent Real-Time

support team; otherwise, they could render the board useless.

./ccurdprc_flash -[rw] -b[board] -q -s[start] -e[end] file_name

-b [board] : board number. Default=-1

-e [end address] : Default=0x408c83

-q : Quite (non-interactive) mode

-r : Read Flash and write to output file created by

./ccurdprc_flash

-s [start address]: Default=0x0

-w : Read input file and Flash the board

Use either -r or -w to read or write the ccurdprc spi flash

The file_name is required

e.g. ./ccurdprc_flash -w -s 0x0 -e 0x408C89 -b0 FIRMWARE/CCURDPRC.bin

 ./ccurdprc_flash -r -s 0x0 -e 0x408c89 -b0 /tmp/CCURDPRC.out

3.1.8 Flash/ccurdprc_fwreload

This program reloads the firmware. This is normally performed after a new firmware is burnt.

./ccurdprc_fwreload -b[board]

-b [board] : board number. Default=-1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 73 of 94

e.g. ./ccurdprc_fwreload -b0

3.1.9 Eeprom/ccurdprc_eeprom

This program is used to burn new eeprom. This must only be done at the direction of Concurrent Real-Time

support team; otherwise, they could render the board useless.

./ccurdprc_eeprom -b[board]

-b [board] : board number. Default=-1

e.g. ./ccurdprc_eeprom -b0

Example display:

./ccurdprc_eeprom –b0

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

Dumping EEPROM: (0x00 - 0x3f)

@0x00: 9310 1542 0880 0001 0000 0100 0000 0000

@0x08: 0000 0000 ffff f800 0000 0001 0020 0000

@0x10: 0030 0400 0000 0000 0000 0000 4243 0343

@0x18: 0000 0000 0000 0000 0000 0000 0000 0000

@0x20: 0000 0000 9056 10b5 0000 0000 0000 0000

@0x28: 0000 0043 0000 4c00 0000 0000 0002 0000

@0x30: 0000 0000 0000 0000 0000 0000 0000 0000

@0x38: 0000 0000 0000 0000 0000 0000 0000 0100

device id = 0x9310

vendor id = 0x1542

subsystem device id = 0x9056

subsystem vendor id = 0x10b5

eeprom revision = 0x0100

eeprom size = 128 bytes

eeprom crc16 = 0x0000

 d = Dump EEPROM p = Pattern Fill EEPROM

 r = Restore EEPROM to default w = Write EEPROM

Main Selection ('h'=display menu, 'q'=quit)->

3.2 Application Program Interface (API) Access Example Tests

These set of tests are located in the …/test/lib directory and use the API.

3.2.1 lib/ccurdprc_adc_calibrate

This utility can be used to perform AutoCalibration. Additionally, they can use this utility can also be used to

display or write calibration information.

Usage: ./ccurdprc_adc_calibrate [-A] [-A!] [-b board] [-i inCalFile]

 [-o outCalFile] [-R] [-W]

 -A (perform Auto Calibration)

 -A ! (perform Auto Calibration only if any channel not

 calibrated)

 -b <board> (board #, default = 0)

 -i <In Cal File> (input calibration file [input->board_reg])

 -o <Out Cal File> (output calibration file [board_reg->output])

 -R (reset calibration registers)

 -W (wait for busy to clear before autocal - approx 60

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 74 of 94

 seconds)

Example display:

./ccurdprc_adc_calibrate -A

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

Auto Calibration started...done. (3.742 seconds)

===> Dump to 'stdout'

#Date : Fri Jan 05 07:49:27 2018

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 0.99923127004876732826 0.00061035156250000000 0.99922021990641951561

 ch01: 0.99947279226034879684 0.00000000000000000000 0.99952901387587189674

 ch02: 0.99920631432905793190 0.00000000000000000000 0.99925487162545323372

 ch03: 0.99905325518921017647 0.00000000000000000000 0.99904842255637049675

 ch04: 0.99838953465223312378 -0.00061035156250000000 0.99847391713410615921

 ch05: 0.99927610578015446663 0.00000000000000000000 0.99934815429151058197

 ch06: 0.99905750295147299767 -0.00122070312500000000 0.99922219337895512581

 ch07: 0.99851436214521527290 0.00000000000000000000 0.99861047510057687759

 ch08: 1.00050740223377943039 0.00061035156250000000 1.00050500780344009399

 ch09: 1.00066073611378669739 0.00000000000000000000 1.00072780018672347069

 ch10: 0.99857268156483769417 0.00000000000000000000 0.99864626117050647736

 ch11: 0.99877768149599432945 -0.00061035156250000000 0.99878046847879886627

 ch12: 0.99823356745764613152 0.00000000000000000000 0.99832826759666204453

 ch13: 0.99831963051110506058 0.00061035156250000000 0.99833270628005266190

 ch14: 1.00009105587378144264 -0.00122070312500000000 1.00013939756900072098

 ch15: 0.99985559144988656044 0.00000000000000000000 0.99989806674420833588

./ccurdprc_adc_calibrate -o OUTFILE

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

===> Dump of 'OUTFILE' file

#Date : Fri Jan 05 07:50:16 2018

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 0.99923127004876732826 0.00061035156250000000 0.99922021990641951561

 ch01: 0.99947279226034879684 0.00000000000000000000 0.99952901387587189674

 ch02: 0.99920631432905793190 0.00000000000000000000 0.99925487162545323372

 ch03: 0.99905325518921017647 0.00000000000000000000 0.99904842255637049675

 ch04: 0.99838953465223312378 -0.00061035156250000000 0.99847391713410615921

 ch05: 0.99927610578015446663 0.00000000000000000000 0.99934815429151058197

 ch06: 0.99905750295147299767 -0.00122070312500000000 0.99922219337895512581

 ch07: 0.99851436214521527290 0.00000000000000000000 0.99861047510057687759

 ch08: 1.00050740223377943039 0.00061035156250000000 1.00050500780344009399

 ch09: 1.00066073611378669739 0.00000000000000000000 1.00072780018672347069

 ch10: 0.99857268156483769417 0.00000000000000000000 0.99864626117050647736

 ch11: 0.99877768149599432945 -0.00061035156250000000 0.99878046847879886627

 ch12: 0.99823356745764613152 0.00000000000000000000 0.99832826759666204453

 ch13: 0.99831963051110506058 0.00061035156250000000 0.99833270628005266190

 ch14: 1.00009105587378144264 -0.00122070312500000000 1.00013939756900072098

 ch15: 0.99985559144988656044 0.00000000000000000000 0.99989806674420833588

===> Board calibration data written to 'OUTFILE' file

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 75 of 94

./ccurdprc_adc_calibrate -i INFILE

Device Name : /dev/ccurdprc0

Board Serial No: 680593 (0x000a6291)

===> Calibration data from 'INFILE' file written to board

===> Dump of 'INFILE' file

#Date : Fri Jan 05 07:50:16 2018

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 0.99923127004876732826 0.00061035156250000000 0.99922021990641951561

 ch01: 0.99947279226034879684 0.00000000000000000000 0.99952901387587189674

 ch02: 0.99920631432905793190 0.00000000000000000000 0.99925487162545323372

 ch03: 0.99905325518921017647 0.00000000000000000000 0.99904842255637049675

 ch04: 0.99838953465223312378 -0.00061035156250000000 0.99847391713410615921

 ch05: 0.99927610578015446663 0.00000000000000000000 0.99934815429151058197

 ch06: 0.99905750295147299767 -0.00122070312500000000 0.99922219337895512581

 ch07: 0.99851436214521527290 0.00000000000000000000 0.99861047510057687759

 ch08: 1.00050740223377943039 0.00061035156250000000 1.00050500780344009399

 ch09: 1.00066073611378669739 0.00000000000000000000 1.00072780018672347069

 ch10: 0.99857268156483769417 0.00000000000000000000 0.99864626117050647736

 ch11: 0.99877768149599432945 -0.00061035156250000000 0.99878046847879886627

 ch12: 0.99823356745764613152 0.00000000000000000000 0.99832826759666204453

 ch13: 0.99831963051110506058 0.00061035156250000000 0.99833270628005266190

 ch14: 1.00009105587378144264 -0.00122070312500000000 1.00013939756900072098

 ch15: 0.99985559144988656044 0.00000000000000000000 0.99989806674420833588

===> Dump to 'stdout'

#Date : Fri Jan 05 07:51:26 2018

#Chan Negative Offset Positive

#==== ======== ====== ========

 ch00: 0.99923127004876732826 0.00061035156250000000 0.99922021990641951561

 ch01: 0.99947279226034879684 0.00000000000000000000 0.99952901387587189674

 ch02: 0.99920631432905793190 0.00000000000000000000 0.99925487162545323372

 ch03: 0.99905325518921017647 0.00000000000000000000 0.99904842255637049675

 ch04: 0.99838953465223312378 -0.00061035156250000000 0.99847391713410615921

 ch05: 0.99927610578015446663 0.00000000000000000000 0.99934815429151058197

 ch06: 0.99905750295147299767 -0.00122070312500000000 0.99922219337895512581

 ch07: 0.99851436214521527290 0.00000000000000000000 0.99861047510057687759

 ch08: 1.00050740223377943039 0.00061035156250000000 1.00050500780344009399

 ch09: 1.00066073611378669739 0.00000000000000000000 1.00072780018672347069

 ch10: 0.99857268156483769417 0.00000000000000000000 0.99864626117050647736

 ch11: 0.99877768149599432945 -0.00061035156250000000 0.99878046847879886627

 ch12: 0.99823356745764613152 0.00000000000000000000 0.99832826759666204453

 ch13: 0.99831963051110506058 0.00061035156250000000 0.99833270628005266190

 ch14: 1.00009105587378144264 -0.00122070312500000000 1.00013939756900072098

 ch15: 0.99985559144988656044 0.00000000000000000000 0.99989806674420833588

3.2.2 lib/ccurdprc_disp

This is a powerful utility to not only display the various registers but control and test the board.

Usage: ./ccurdprc_disp [-a RollingAve] [-A] [-b BoardNo] [-c Chan] [-d Delay]

 [-E ExpInpVolts] [-F DebugFile] [-l LoopCnt] [-r resistance]

 [-s InputSignal] [-t Resistance] [-X]

 -a RollingAve (Rolling average -- default =1000)

 -A (Perform Auto Calibration using reference voltage first)

 -b BoardNo (select specific board, default = 0)

 -c ChanNo (select specific channel, default = ALL CHANNELS)

 -d Delay (Delay between screen refresh in milli-seconds -- default is 10)

 -E <ExpInpVolts>@<Tol> (Expected Input Volts@Tolerance -- default Tol=0.006000)

 +@<Tol> (Positive Calibration Ref Volt@Tolerance)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 76 of 94

 -@<Tol> (Negative Calibration Ref Volt@Tolerance)

 r@<Tol> (Variable expected voltage based on selected resistance in '-t'

 option)

 -f FaultGeneration (select fault 'o','RaG','RbG','RaRbG','RaV','RbV','RaRbV',

 'RaVRbG','RaGRbV')

 -f o (Ch0..15[0]=Open [fault or disabled])

 -f rag (Ch0..15[17]=RA Ground Fault)

 -f RBg (Ch0..15[18]=RB Ground Fault)

 -f rarbg (Ch0..15[19]=RA & RB Ground Fault)

 -f raV (Ch0..15[20]=RA Voltage Plus Fault)

 -f RBV (Ch0..15[21]=RB Voltage Plus Fault)

 -f rarbV (Ch0..15[22]=RA & RB Voltage Plus Fault)

 -f RavRbg (Ch0..15[33]=RA Voltage Plus & RB Ground Fault Switch Test)

 -f RaGRbV (Ch0..15[34]=RA Ground & RB Voltage Plus Fault Switch Test)

 -F DebugFile (Menu display and write to debug file)

 @DebugFile (No menu display. Only write to debug file)

 @ (No menu display or write to debug file, only summary to stderr)

 -l LoopCnt (Loop count -- default is 0)

 -r <Resistance> (Program Potentiometer resistance (Range: 10-1000000)

 -s InputSignal (select input signal, 'e', 'g', '+', '-', 't')

 -s e (Ch0..15=External input)

 -s g (Ch0..15=Ground Reference)

 -s t (Ch0..15=Positive 2.5 Volts Reference)

 -s + (Ch0..15=Positive 10 Volts Reference)

 -s - (Ch0..15=Negative 10 Volts Reference)

 -t <Resistance>@<Err> (Perform Potentiometer Test using supplied resistance

 (Range: 10-1000000) -- default Err=3.0%

 -X (Adjusted Measured Ohms for programmed Ohms between

 45 and 1000000)

Notes: Fault generation option 'f' and input signal option 's' not allowed together

 Potentiometer test option 't' and program resistance option 'r' not allowed together

 Potentiometer test option 't' and input signal option 's' not allowed together

 Potentiometer test option 't' and fault generation option 'f' not allowed together

 Option 't' % tolerance is with respect to the user supplied resistance

 e.g. ./ccurdprc_disp -t1240 (set all channels resistance to 1240 and display)

 ./ccurdprc_disp -t1240 -c4 (set channel 4 resistance to 1240 and display)

 ./ccurdprc_disp -t40 -Er (set all channels resistance to 40 and validate

 expected voltage)

 ./ccurdprc_disp -t12345 -FDebug (set all channels resistance to 12345 and output to

 Debug file)

 ./ccurdprc_disp -t1240 -X (set all channels resistance to 1240 and display

 adjusted measured ohms)

 ./ccurdprc_disp -s+ -E10 (set all channels to 10V and validate expected

 voltage)

 ./ccurdprc_disp -se -r12345 (set all channels to external and program all

 channels to 12345 ohms)

 ./ccurdprc_disp -se -r12345 -c5 (set channel 5 to external and program channel 5 to

 12345 ohms)

Example display:

./ccurdprc_disp -A

Auto Calibration started...done. (4.773 seconds)

 Specific Channel Selected[-c]: === All Channels Selected ===

 Delay [-d]: 10 milli-seconds

 Expected Input Volts [-E]: === Not Specified ===

 Loop Count [-l]: ***Forever***

 Calibration Bus Control : 0 (Open)

 : c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 c10 c11 c12 c13 c14 c15

 : === === === === === === === === === === === === === === === ===

 Digital Pot. Test (HexMask) : 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

 I/O Control (chan00..15) : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Scan Count : 2161

 Read Duration (microsecs) : TotalDelta: 33.127 (min= 32.827/max= 41.054/ave= 33.434)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 77 of 94

 ##### ADC Channels (Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 0000 FFFF FFFF 0000 FFFF FFFE FFFE FFFF FFFF FFFE

[1] FFFF FFFF FFFF FFFF FFFF FFFF

 ##### ADC Channels (Volts) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] +0.0000 -0.0006 -0.0006 +0.0000 -0.0006 -0.0012 -0.0012 -0.0006 -0.0006 -0.0012

[1] -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006

 ##### Digital Potentiometer (Programmed Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000

[1] 32000 32000 32000 32000 32000 32000

 ##### Digital Potentiometer (Programmed Ohms) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000

[1] 1000000 1000000 1000000 1000000 1000000 1000000

 Expected Input Volts: === Not Specified ===

=================== [volts] ====================

Chan Min Max Ave TolerExeededCnt

==== ======= ======= ======= ===============

 00 -0.0012 0.0006 -0.0003 -

 01 -0.0024 0.0000 -0.0006 -

 02 -0.0031 0.0000 -0.0006 -

 03 -0.0024 0.0000 -0.0005 -

 04 -0.0018 0.0000 -0.0004 -

 05 -0.0024 0.0000 -0.0006 -

 06 -0.0024 0.0006 -0.0007 -

 07 -0.0031 0.0000 -0.0006 -

 08 -0.0037 0.0012 -0.0008 -

 09 -0.0031 0.0012 -0.0009 -

 10 -0.0031 0.0006 -0.0004 -

 11 -0.0031 0.0012 -0.0004 -

 12 -0.0024 0.0006 -0.0006 -

 13 -0.0018 0.0000 -0.0005 -

 14 -0.0031 0.0012 -0.0007 -

 15 -0.0031 0.0012 -0.0006 -

==

./ccurdprc_disp -t12345 -X

Selected Ohms=12345, Actual Ohms=12344, Expected ADC Volts=9.081813

Computing Channel Voltage Error at 1 MegaOhm....done

==== Voltage Error Adjustment at 1 MegaOhm Resistance (for high ohms adjustment)

 Chan= 0 Error=+0.000386 volts

 Chan= 1 Error=+0.000514 volts

 Chan= 2 Error=+0.000489 volts

 Chan= 3 Error=+0.000666 volts

 Chan= 4 Error=+0.001069 volts

 Chan= 5 Error=+0.001197 volts

 Chan= 6 Error=+0.000978 volts

 Chan= 7 Error=+0.001002 volts

 Chan= 8 Error=+0.000630 volts

 Chan= 9 Error=+0.000343 volts

 Chan=10 Error=+0.000489 volts

 Chan=11 Error=+0.000801 volts

 Chan=12 Error=+0.000941 volts

 Chan=13 Error=+0.000727 volts

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 78 of 94

 Chan=14 Error=+0.000862 volts

 Chan=15 Error=+0.000849 volts

Computing Channel Ohms where expected=programmed....done

==== Point where Programmed Equal to Measured Ohm (for low ohms adjustment)

 Chan= 0 Ohm=960

 Chan= 1 Ohm=1023

 Chan= 2 Ohm=1333

 Chan= 3 Ohm=994

 Chan= 4 Ohm=558

 Chan= 5 Ohm=1115

 Chan= 6 Ohm=713

 Chan= 7 Ohm=481

 Chan= 8 Ohm=1207

 Chan= 9 Ohm=2573

 Chan=10 Ohm=960

 Chan=11 Ohm=1866

 Chan=12 Ohm=1517

 Chan=13 Ohm=1115

 Chan=14 Ohm=650

 Chan=15 Ohm=1333

 Specific Channel Selected[-c]: === All Channels Selected ===

 Delay [-d]: 10 milli-seconds

 Expected Input Volts [-E]: === Not Specified ===

 Loop Count [-l]: ***Forever***

 Potentiometer Test [-t]: supplied 12345 Ohms (actual=12344) (Tolerance 3.000000% error

 wrt actual ohms)

 Adjusted Measured Ohms [-X]: === Enabled ===)

 Calibration Bus Control : 8 (+8 Milli-Ampere Current)

 : c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 c10 c11 c12 c13 c14 c15

 : === === === === === === === === === === === === === === === ===

 Digital Pot. Test (HexMask) : 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

 I/O Control (chan00..15) : (*** all 15 channels being set to test bus '7' in turn ***)

 Scan Count : 456

 Ohms Tolerance Exceeded Count: 0 (=== Passed ===)

 Read Duration (microsecs) : TotalDelta: 55161.612

 (min=55105.278/max=55184.692/ave=55041.208)

 ##### ADC Channels (Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 3A27 3A2A 3A28 3A2A 3A29 3A26 3A28 3A2A 3A27 3A25

[1] 3A2A 3A20 3A27 3A26 3A28 3A22

 ##### ADC Channels (Volts) ##### (Expected ADC Volts for Attached Resistance is 9.0818)

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] +9.0867 +9.0883 +9.0875 +9.0886 +9.0880 +9.0860 +9.0874 +9.0887 +9.0869 +9.0852

[1] +9.0885 +9.0826 +9.0864 +9.0861 +9.0873 +9.0834

 ##### Digital Potentiometer (Programmed Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 009E0 009E0 009E0 009E0 009E0 009E0 009E0 009E0 009E0 009E0

[1] 009E0 009E0 009E0 009E0 009E0 009E0

 ##### Digital Potentiometer (Programmed Ohms) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 12344 12344 12344 12344 12344 12344 12344 12344 12344 12344

[1] 12344 12344 12344 12344 12344 12344

 ##### Digital Potentiometer (Adjusted Internal Measured Ohms) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 79 of 94

[0] 12410 12433 12421 12435 12420 12388 12411 12431 12410 12388

[1] 12436 12343 12398 12397 12413 12354

 Expected Input Volts: === Not Specified ===

=================== [volts] ====================

Chan Min Max Ave TolerExeededCnt

==== ======= ======= ======= ===============

 00 9.0865 9.0868 9.0867 -

 01 9.0882 9.0885 9.0883 -

 02 9.0873 9.0877 9.0875 -

 03 9.0884 9.0887 9.0886 -

 04 9.0879 9.0881 9.0880 -

 05 9.0858 9.0861 9.0859 -

 06 9.0872 9.0875 9.0873 -

 07 9.0885 9.0888 9.0887 -

 08 9.0867 9.0870 9.0869 -

 09 9.0850 9.0853 9.0852 -

 10 9.0883 9.0887 9.0885 -

 11 9.0825 9.0828 9.0827 -

 12 9.0862 9.0866 9.0864 -

 13 9.0858 9.0862 9.0860 -

 14 9.0871 9.0875 9.0873 -

 15 9.0833 9.0836 9.0834 -

==

 Potentiometer Resistance: supplied 12345 ohms (actual=12344) (Tolerance 3.000000 %

 error wrt actual ohms)

 Resistance Tolerence Exceed Count: 0

============================= [resistance] ============================

 <--------- (Ohms) --------> <-- (% error wrt supplied ohms) ->

Chan Min Max Ave Min Max Ave TolerExeededCnt

==== ======= ======= ======= ==== ==== ==== ===============

 00 12408 12412 12409 0.52 0.55 0.53 -

 01 12430 12435 12432 0.70 0.74 0.71 -

 02 12419 12424 12420 0.61 0.65 0.62 -

 03 12432 12436 12434 0.71 0.75 0.73 -

 04 12418 12422 12420 0.60 0.63 0.62 -

 05 12385 12389 12387 0.33 0.36 0.35 -

 06 12409 12413 12410 0.53 0.56 0.53 -

 07 12428 12432 12430 0.68 0.71 0.70 -

 08 12407 12412 12409 0.51 0.55 0.53 -

 09 12386 12390 12388 0.34 0.37 0.36 -

 10 12433 12439 12436 0.72 0.77 0.75 -

 11 12341 12347 12344 0.02 0.02 0.00 -

 12 12395 12400 12397 0.41 0.45 0.43 -

 13 12393 12399 12395 0.40 0.45 0.41 -

 14 12410 12415 12412 0.53 0.58 0.55 -

 15 12352 12357 12354 0.06 0.11 0.08 -

===

./ccurdprc_disp -s+ -a0

 Rolling Average Count [-a]: 1000

 Specific Channel Selected[-c]: === All Channels Selected ===

 Delay [-d]: 10 milli-seconds

 Expected Input Volts [-E]: === Not Specified ===

 Loop Count [-l]: ***Forever***

 Calibration Bus Control : 2 (+10 Volts Reference)

 : c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 c10 c11 c12 c13 c14 c15

 : === === === === === === === === === === === === === === === ===

 Digital Pot. Test (HexMask) : 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

 I/O Control (chan00..15) : (*** all 15 channels being set to test bus '7' in turn ***)

 Scan Count : 1250

 Read Duration (microsecs) : TotalDelta: 55191.640

(min=55083.646/max=55212.522/ave=55140.996)

 ##### ADC Channels (Raw Hex Data) (Rolling Average Count [1000/1000]) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 80 of 94

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 3FFF 3FFF 3FFF 3FFE 3FFF 3FFF 3FFF 3FFF 3FFE 3FFF

[1] 3FFF 3FFF 3FFF 3FFF 4000 3FFF

 ##### ADC Channels (Volts) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] +9.9997 +9.9998 +9.9998 +9.9994 +9.9997 +9.9999 +9.9998 +9.9997 +9.9994 +9.9997

[1] +9.9998 +9.9999 +9.9998 +9.9997+10.0000+10.0000

 ##### Digital Potentiometer (Programmed Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000

[1] 32000 32000 32000 32000 32000 32000

 ##### Digital Potentiometer (Programmed Ohms) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000

[1] 1000000 1000000 1000000 1000000 1000000 1000000

 Expected Input Volts: === Not Specified ===

=================== [volts] ====================

Chan Min Max Ave TolerExeededCnt

==== ======= ======= ======= ===============

 00 9.9998 9.9999 9.9999 -

 01 9.9998 9.9999 9.9998 -

 02 9.9995 9.9996 9.9996 -

 03 9.9997 9.9998 9.9998 -

 04 9.9999 10.0000 10.0000 -

 05 9.9997 9.9998 9.9998 -

 06 9.9998 9.9999 9.9998 -

 07 9.9998 9.9999 9.9999 -

 08 9.9998 9.9999 9.9999 -

 09 9.9994 9.9995 9.9995 -

 10 9.9995 9.9995 9.9995 -

 11 9.9999 10.0000 10.0000 -

 12 9.9996 9.9997 9.9997 -

 13 9.9996 9.9997 9.9996 -

 14 9.9998 9.9999 9.9998 -

 15 9.9998 9.9999 9.9998 -

==

./ccurdprc_disp -f RavRbG

 Specific Channel Selected[-c]: === All Channels Selected ===

 Delay [-d]: 10 milli-seconds

 Expected Input Volts [-E]: === Not Specified ===

 Loop Count [-l]: ***Forever***

 Calibration Bus Control : 0 (Open)

 : c00 c01 c02 c03 c04 c05 c06 c07 c08 c09 c10 c11 c12 c13 c14 c15

 : === === === === === === === === === === === === === === === ===

 Digital Pot. Test (HexMask) : 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

 I/O Control (chan00..15) : 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33

 Scan Count : 3515

 Read Duration (microsecs) : TotalDelta: 33.184 (min= 32.809/max= 41.355/ave= 33.440)

 ##### ADC Channels (Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 5EF4 5EF7 5F06 5ED9 5EEA 5ED9 5EDC 5EC8 5EE6 5F02

[1] 5EC6 5EF4 5F0B 5EFA 5EF3 5F0A

 ##### ADC Channels (Volts) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 81 of 94

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0]+14.8364+14.8383+14.8474+14.8199+14.8303+14.8199+14.8218+14.8096+14.8279+14.8450

[1]+14.8083+14.8364+14.8505+14.8401+14.8358+14.8499

 ##### Digital Potentiometer (Programmed Raw Hex Data) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000

[1] 32000 32000 32000 32000 32000 32000

 ##### Digital Potentiometer (Programmed Ohms) #####

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 ======= ======= ======= ======= ======= ======= ======= ======= ======= =======

[0] 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000

[1] 1000000 1000000 1000000 1000000 1000000 1000000

 Expected Input Volts: === Not Specified ===

=================== [volts] ====================

Chan Min Max Ave TolerExeededCnt

==== ======= ======= ======= ===============

 00 14.8236 14.8370 14.8360 -

 01 14.8248 14.8395 14.8378 -

 02 14.8352 14.8486 14.8467 -

 03 14.8071 14.8218 14.8203 -

 04 14.8175 14.8322 14.8303 -

 05 14.8065 14.8218 14.8202 -

 06 14.8083 14.8230 14.8218 -

 07 14.7955 14.8108 14.8093 -

 08 14.8157 14.8303 14.8282 -

 09 14.8328 14.8462 14.8446 -

 10 14.7955 14.8108 14.8087 -

 11 14.8242 14.8389 14.8364 -

 12 14.8376 14.8511 14.8491 -

 13 14.8273 14.8413 14.8397 -

 14 14.8242 14.8413 14.8369 -

 15 14.8376 14.8529 14.8494 -

==

3.2.3 lib/ccurdprc_fault_protection

This utility is useful in displaying any Electronic Fuse Trip faults that may have occurred.

Usage: ./ccurdprc_fault_protection [-A] [-b BoardNo] [-c ChannelMask] [-d Delay]

 [-F DebugFile] [-l LoopCnt] [-R]

 -A (perform Auto Calibration)

 -b BoardNo (select specific board, default = 0)

 -c ChannelMask (Channel mask, default = 0xffff)

 -d Delay (Delay between screen refresh in milli-seconds –

 default is 10)

 -F DebugFile (Menu display and write to debug file)

 @DebugFile (No menu display. Only write to debug file)

 @ (No menu display or write to debug file, only summary

 to stderr)

 -l LoopCnt (Loop count -- default is 0)

 -R (Clear Fault Condition)

Example display:

 ./ccurdprc_fault_protection

 Channel Mask [-c]: 0xffff

 Delay [-d]: 10 milli-seconds

 Loop Count [-l]: ***Forever***

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 82 of 94

 Scan Count : 332

 Read Duration (microsecs): TotalDelta: 204.982 (min= 203.346/max= 215.011/ave= 206.281)

 Any Fuse Tripped: 0 (=== No ===)

 ADC 0 Failed: 0 (=== No ===)

 ADC 1 Failed: 0 (=== No ===)

 Channel Fuse Tripped Mask: 0x0000

 Electrical Short: 0x00b4 (0.109863 volts)

 Delay: 0x0002 (2)

 Count: 0x0001 (1)

 I/O Delay: 0x0800 (31.000000 microseconds)

 Maximum Resistance: 0x00fd (1266.000000 ohms)

 Maximum Voltage: 0x5ae0 (14.199219 volts)

 Voltage Fault Delay: 0x0002 (8 microseconds)

 Fuse_Base Fuse_Multiplier Potentiometer Threshold IOS

 Ch Trip? hex volts hex volts hex ohms hex volts hex

 == ===== =============== =============== =============== ================ ===

 0 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 1 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 2 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 3 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 4 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 5 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 6 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 7 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 8 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 9 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 10 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 11 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 12 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 13 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 14 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 15 --- 0241 (0.352173) 005a (0.054932) 32000 (1000000) 5ae0 (14.199219) 21

 Ch AnyTrip? CalNotValid? PotFail? ADCFail? VoltTrip? ADCComp? ADCValue? (hex/volts)

 == ======== ============ ======== ======== ========= ======== =====================

 0 --- --- --- --- --- --- 0000 (0.000000)

 1 --- --- --- --- --- --- 0000 (0.000000)

 2 --- --- --- --- --- --- 0000 (0.000000)

 3 --- --- --- --- --- --- 0000 (0.000000)

 4 --- --- --- --- --- --- 0000 (0.000000)

 5 --- --- --- --- --- --- 0000 (0.000000)

 6 --- --- --- --- --- --- 0000 (0.000000)

 7 --- --- --- --- --- --- 0000 (0.000000)

 8 --- --- --- --- --- --- 0000 (0.000000)

 9 --- --- --- --- --- --- 0000 (0.000000)

 10 --- --- --- --- --- --- 0000 (0.000000)

 11 --- --- --- --- --- --- 0000 (0.000000)

 12 --- --- --- --- --- --- 0000 (0.000000)

 13 --- --- --- --- --- --- 0000 (0.000000)

 14 --- --- --- --- --- --- 0000 (0.000000)

 15 --- --- --- --- --- --- 0000 (0.000000)

3.2.4 lib/ccurdprc_fault_trip_test

This utility is only for validating the boards handling of Enetronic Fuse Trip handling.

Usage: ./ccurdprc_fault_trip_test [-A] [-b BoardNo] [-c ChannelMask]

 [-F DebugFile] [-l LoopCnt] [-R] [-t TestRun]

 -A (perform Auto Calibration)

 -b BoardNo (select specific board, default = 0)

 -c ChannelMask (Channel mask, default = 0xffff)

 -F DebugFile (Menu display and write to debug file)

 @DebugFile (No menu display. Only write to debug file)

 @ (No menu display or write to debug file, only summary

 to stderr)

 -l LoopCnt (Loop count -- default is 1)

 -R (Clear Fault Condition)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 83 of 94

 -t TestRun (Test Run Option -- default is all options)

 (-t1 Calibration Not Valid Trip)

 (-t2 ADC Failure Trip)

 (-t3 ADC Compare Short Failure Trip)

 (-t4 ADC Compare Low Resistance Failure Trip)

 (-t5 Potentiometer Failure Trip)

 (-t6 Switch Voltage Failure Trip)

Example display:

############################ Loop 1 ############################

 1) Testing tripping condition for "Calibration Not Valid"

 Activating ADC and Potentiometer......................passed

 Preserving Calibration for selected channels..........passed

 Case (A)

 ========

 Clearing Calibration for selected channels............passed

 Clearing Faults for selected channels [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (B)

 ========

 Writing Potentiometer to selected Channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

 Writing Potentiometer to selected Channels [0x0002]...passed

 Validating Faults for selected channels [0xffff]...passed

 Writing Potentiometer to selected Channels [0x0004]...passed

.

.

.

 Case (C)

 ========

 Restoring Calibration for selected channels...........passed

 Clearing Faults for selected channels [0x0001]...passed

 Writing Potentiometer to selected Channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

 Clearing Faults for selected channels [0x0002]...passed

 Writing Potentiometer to selected Channels [0x0002]...passed

 Validating Faults for selected channels [0xffff]...passed

 .

.

.

 Restoring Calibration for selected channels...........passed

 ==== PASSED ====

 2) Test tripping condition for "ADC Failure"...............

 Activating ADC and Potentiometer......................passed

 Case (A)

 ========

 Disabling both ADCs...................................passed

 Validating Faults for selected channels [0xffff]...passed

 Case (B)

 ========

 Writing Potentiometer to selected Channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

 Writing Potentiometer to selected Channels [0x0002]...passed

 Validating Faults for selected channels [0xffff]...passed

 .

.

.

 Case (C)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 84 of 94

 ========

 Enabling all ADCs.....................................passed

 Validating Faults for selected channels [0xffff]...passed

 Case (D)

 ========

 Clearing Faults for selected channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

 Clearing Faults for selected channels [0x0002]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Clearing Faults for selected channels [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

 ==== PASSED ====

 3) Test tripping condition for "ADC Compare Short Failure".

 Activating ADC and Potentiometer......................passed

 Case (A) - Calibration Control is Open

 ========

 Writing 10 Ohms (short) to all Channels [0xffff]...passed

 Setting Electronic Fuse Short Value to 44.............passed

 Setting Electronic Fuse Short Value to 43.............passed

 Setting Electronic Fuse Short Value to 42.............passed

.

.

.

 Setting Electronic Fuse Short Value to 2.............passed

 Setting Electronic Fuse Short Value to 1.............passed

 Tripped Channels Mask [0x0b00]...passed

 Setting Electronic Fuse Short Value to 0.............passed

 Tripped Channels Mask [0xffff]...passed

 1: Tripped Channels Mask [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Activating ADC and Potentiometer......................passed

 Case (B) - Calibration Control is Minus 8 Milli-Amps

 ========

 Writing 10 Ohms (short) to all Channels [0xffff]...passed

 Setting Electronic Fuse Short Value to 44.............passed

 Tripped Channels Mask [0xff7f]...passed

 Setting Electronic Fuse Short Value to 43.............passed

 Tripped Channels Mask [0xff7f]...passed

.

.

.

 Setting Electronic Fuse Short Value to 17.............passed

 Tripped Channels Mask [0xffff]...passed

 1: Tripped Channels Mask [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Activating ADC and Potentiometer......................passed

 Case (C) - Calibration Control is Plus 8 Milli-Amps

 ========

 Writing 10 Ohms (short) to all Channels [0xffff]...passed

 Setting Electronic Fuse Short Value to 44.............passed

 Tripped Channels Mask [0xffff]...passed

 1: Tripped Channels Mask [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Activating ADC and Potentiometer......................passed

 Case (D) - Calibration Control is Plus 2.5 Volts

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 85 of 94

 ========

 Writing 10 Ohms (short) to all Channels [0xffff]...passed

 Setting Electronic Fuse Short Value to 44.............passed

 Setting Electronic Fuse Short Value to 43.............passed

 Setting Electronic Fuse Short Value to 42.............passed

.

.

.

 Setting Electronic Fuse Short Value to 2.............passed

 Setting Electronic Fuse Short Value to 1.............passed

 Tripped Channels Mask [0x4300]...passed

 Setting Electronic Fuse Short Value to 0.............passed

 Tripped Channels Mask [0xffff]...passed

 1: Tripped Channels Mask [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Activating ADC and Potentiometer......................passed

 Case (E) - Calibration Control is Minus 10 Volts

 ========

 Writing 10 Ohms (short) to all Channels [0xffff]...passed

 Setting Electronic Fuse Short Value to 44.............passed

 Tripped Channels Mask [0xffff]...passed

 1: Tripped Channels Mask [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Activating ADC and Potentiometer......................passed

 Case (F) - Calibration Control is Plus 10 Volts

 ========

 Writing 10 Ohms (short) to all Channels [0xffff]...passed

 Setting Electronic Fuse Short Value to 44.............passed

 Tripped Channels Mask [0xffff]...passed

 1: Tripped Channels Mask [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 ==== PASSED ====

 4) Test tripping condition for "ADC Compare Low Resistance Failure".

 Activating ADC and Potentiometer......................passed

 Case (A) - Low Resistance 45 Ohms

 ========

 Writing 45 Ohms (short) to all Channels [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (B) - Low Resistance 45 Ohms

 ========

 Setting Fuse Base to 0x0192 for channel 0............passed

 Validating Faults for selected channels [0xffff]...passed

 Setting Fuse Base to 0x0191 for channel 1............passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Setting Fuse Base to 0x0195 for channel 15............passed

 Validating Faults for selected channels [0xffff]...passed

 Case (C) - Low Resistance 45 Ohms

 ========

 Clearing Faults for selected channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Clearing Faults for selected channels [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 86 of 94

 Case (D) - Low Resistance 45 Ohms

 ========

 Writing 45 Ohms (short) to Channel [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Writing 45 Ohms (short) to Channel [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (E) - Low Resistance 45 Ohms

 ========

 Clearing Faults for selected channels [0x0001]...passed

 Setting Fuse Base/Multiplier defaults for channel 0..passed

 Writing 45 Ohms (short) to Channel [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Case (A) - Low Resistance 1265 Ohms

 ========

 Writing 1265 Ohms (short) to all Channels [0xffff]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (B) - Low Resistance 1265 Ohms

 ========

 Setting Fuse Multiplier to 0x001e for channel 0......passed

 Validating Faults for selected channels [0xffff]...passed

 Setting Fuse Multiplier to 0x001e for channel 1......passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Setting Fuse Multiplier to 0x001e for channel 15......passed

 Validating Faults for selected channels [0xffff]...passed

 Case (C) - Low Resistance 1265 Ohms

 ========

 Clearing Faults for selected channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Clearing Faults for selected channels [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (D) - Low Resistance 1265 Ohms

 ========

 Writing 1265 Ohms (short) to Channel [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Writing 1265 Ohms (short) to Channel [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (E) - Low Resistance 1265 Ohms

 ========

 Clearing Faults for selected channels [0x0001]...passed

 Setting Fuse Base/Multiplier defaults for channel 0..passed

 Writing 1265 Ohms (short) to Channel [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 87 of 94

.

.

.

 Setting Fuse Base/Multiplier defaults for channel 15..passed

 Writing 1265 Ohms (short) to Channel [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

 ==== PASSED ====

 5) Test tripping condition for "Potentiometer Failure"

 Activating ADC and Potentiometer......................passed

 Case (A)

 ========

 Force Potentiometer Failure on all channels...........passed

 Validating Faults for selected channels [0xffff]...passed

 Case (B)

 ========

 Writing Potentiometer to selected Channels [0x0001]...passed

 Validating Faults for selected channels [0xffff]...passed

 Writing Potentiometer to selected Channels [0x0002]...passed

 Validating Faults for selected channels [0xffff]...passed

.

.

.

 Writing Potentiometer to selected Channels [0x8000]...passed

 Validating Faults for selected channels [0xffff]...passed

 Case (C)

 ========

 Activating ADC and Potentiometer......................passed

 Validating Faults for selected channels [0xffff]...passed

 ==== PASSED ====

 6) Test tripping condition for "Switch Voltage Failure"....(ToBeCoded)

3.2.5 lib/ccurdprc_identify

This test is useful in identifying a card by displaying its LED.

Usage: ./ccurdprc_identify -[absx]

 -a (Identify all cards through a light sequence)

 -b <board> (board #, default = 0)

 -s <seconds) (Identify Board: ENABLED for number of seconds,

 default = 10)

 -s 0 (Identify Board: DISABLED)

 -s <negative value> (Identify Board: ENABLED forever)

 -x (silent)

If the '-a' option is selected, all other options are ignored. This option will

sequence through all the cards found in turn as follows:

 1) The first device number will flash its LED for 10 seconds

 2) The remaining devices numbers will be selected sequentially and flash their

LEDs for 3 seconds

Example display:

./ccurdprc_identify

Device Name : /dev/ccurdprc0

Board ID : 9310

Board Type : 01

Board NumChans : 16

Board Cal Volts: 10.000000

Board Serial No: 680584 (0x000a6288)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 88 of 94

Identify ENABLED on board 0 (LED should start flashing for 10 seconds)

Sleeping for 10 seconds...

Identify DISABLED on board 0 (LED should stop flashing)

3.2.6 lib/ccurdprc_info

This test is useful in getting information for all the ccurdprc devices in the system.

Usage: ./ccurdprc_info -[bpv]

 -b <board> (board #, default = 0)

 -p <a|d> (Program Activate(a)/Disable(d) All, default = no program)

 -v (Verbose, default = no verbose)

Example display:

./ccurdprc_info
 Version: 23.1.1

 Build: Apr 14 2020, 12:33:40

 Module: ccurdprc

 Board Index: 0 (PLX-CCURDPRC)

 Board Serial No: 680593 (0x000a6291)

 Serial Prom Rev: 0x0000

 Bus: 8

 Slot: 4

 Func: 0

 Vendor ID: 0x1542

 Sub-Vendor ID: 0x10b5

 Board ID: 0x9310

 Board Type: 0x0001

 Sub-Device ID: 0x9056

 Board Info: 0x93100102

 MSI Support: Enabled

 IRQ Level: 55

 Firmware: 0x0001

 Interrupt Count: 0

 Interrupt Status: 0x0000

 Number of Channels: 16

 All Channel Mask: 0xffff

 Calibration Reference Voltage: 10.000000 volts

 Voltage Range: 0.000000 volts

 Region 0: Addr=0xc4c01000 Size=512 (0x200)

 Region 2: Addr=0xc4c00000 Size=2048 (0x800)

 Calibration Bus Control: 00 (0x0) Bus Open

 I/O Control: === Disabled ===

 Potentiometer: === Disabled ===

 Potentiometer Test: === Disabled ===

 Analog to Digital Converter: === Disabled ===

 Any Fuse Tripped: === No ===

 ADC 0 Failed: ### Yes ###

 ADC 1 Failed: ### Yes ###

 Electrical Short: 0x00b4 (0.109863 volts)

 Delay: 0x0002 (2)

 Count: 0x0001 (1)

 I/O Delay: 0x0800 (31.000000 volts)

 Maximum Resistance: 0x00fd (1266.000000 ohms)

 Maximum voltage: 0x5ae0 (14.199219 volts)

 Voltage Fault Delay: 0x0002 (8 microseconds)

./ccurdprc_info -v
 Version: 23.1.1

 Build: Apr 14 2020, 12:33:40

 Module: ccurdprc

 Board Index: 0 (PLX-CCURDPRC)

 Board Serial No: 680593 (0x000a6291)

 Serial Prom Rev: 0x0000

 Bus: 8

 Slot: 4

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 89 of 94

 Func: 0

 Vendor ID: 0x1542

 Sub-Vendor ID: 0x10b5

 Board ID: 0x9310

 Board Type: 0x0001

 Sub-Device ID: 0x9056

 Board Info: 0x93100102

 MSI Support: Enabled

 IRQ Level: 55

 Firmware: 0x0001

 Interrupt Count: 0

 Interrupt Status: 0x0000

 Number of Channels: 16

 All Channel Mask: 0xffff

 Calibration Reference Voltage: 10.000000 volts

 Voltage Range: 0.000000 volts

 Region 0: Addr=0xc4c01000 Size=512 (0x200)

 Region 2: Addr=0xc4c00000 Size=2048 (0x800)

 Calibration Bus Control: 00 (0x0) Bus Open

 :

 Calibration Information: Negative Offset Positive

 =======================: ====================== ======================

======================

 Channel 0: 0.99923393130302429199 0.00061035156250000000

0.99922629352658987045

 Channel 1: 0.99947733711451292038 0.00000000000000000000

0.99953469820320606232

 Channel 2: 0.99920863285660743713 0.00000000000000000000

0.99925949377939105034

 Channel 3: 0.99905715836212038994 0.00000000000000000000

0.99905238440260291100

 Channel 4: 0.99838956817984580994 -0.00061035156250000000

0.99847721355035901070

 Channel 5: 0.99927859148010611534 0.00000000000000000000

0.99935070564970374107

 Channel 6: 0.99905843008309602737 -0.00122070312500000000

0.99922330724075436592

 Channel 7: 0.99851754121482372284 0.00000000000000000000

0.99861228326335549355

 Channel 8: 1.00050913682207465172 0.00061035156250000000

1.00050572864711284637

 Channel 9: 1.00065903877839446068 0.00000000000000000000

1.00072941137477755547

 Channel 10: 0.99857431231066584587 0.00000000000000000000

0.99864789657294750214

 Channel 11: 0.99878009874373674393 -0.00061035156250000000

0.99878242751583456993

 Channel 12: 0.99823445873335003853 0.00000000000000000000

0.99833095585927367210

 Channel 13: 0.99832039466127753258 0.00061035156250000000

0.99833637848496437073

 Channel 14: 1.00009206961840391159 -0.00122070312500000000

1.00013942923396825790

 Channel 15: 0.99985691532492637634 0.00000000000000000000

0.99989738129079341888

 :

 I/O Control: Value Description

 ===========: ========= ===========

 Channel 0: 00 (0x00) Open

 Channel 1: 00 (0x00) Open

 Channel 2: 00 (0x00) Open

 Channel 3: 00 (0x00) Open

 Channel 4: 00 (0x00) Open

 Channel 5: 00 (0x00) Open

 Channel 6: 00 (0x00) Open

 Channel 7: 00 (0x00) Open

 Channel 8: 00 (0x00) Open

 Channel 9: 00 (0x00) Open

 Channel 10: 00 (0x00) Open

 Channel 11: 00 (0x00) Open

 Channel 12: 00 (0x00) Open

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 90 of 94

 Channel 13: 00 (0x00) Open

 Channel 14: 00 (0x00) Open

 Channel 15: 00 (0x00) Open

 :

 Potentiometer: Value (Raw) Ohms

 =============: =========== ====

 Channel 0: 204800 1000000

 Channel 1: 204800 1000000

 Channel 2: 204800 1000000

 Channel 3: 204800 1000000

 Channel 4: 204800 1000000

 Channel 5: 204800 1000000

 Channel 6: 204800 1000000

 Channel 7: 204800 1000000

 Channel 8: 204800 1000000

 Channel 9: 204800 1000000

 Channel 10: 204800 1000000

 Channel 11: 204800 1000000

 Channel 12: 204800 1000000

 Channel 13: 204800 1000000

 Channel 14: 204800 1000000

 Channel 15: 204800 1000000

 :

 Potentiometer Test: Value (Mask) Description

 ==================: ============ ===========

 Channel 0: 0x00000100 20K Potentiometer Mode

 Channel 1: 0x00000100 20K Potentiometer Mode

 Channel 2: 0x00000100 20K Potentiometer Mode

 Channel 3: 0x00000100 20K Potentiometer Mode

 Channel 4: 0x00000100 20K Potentiometer Mode

 Channel 5: 0x00000100 20K Potentiometer Mode

 Channel 6: 0x00000100 20K Potentiometer Mode

 Channel 7: 0x00000100 20K Potentiometer Mode

 Channel 8: 0x00000100 20K Potentiometer Mode

 Channel 9: 0x00000100 20K Potentiometer Mode

 Channel 10: 0x00000100 20K Potentiometer Mode

 Channel 11: 0x00000100 20K Potentiometer Mode

 Channel 12: 0x00000100 20K Potentiometer Mode

 Channel 13: 0x00000100 20K Potentiometer Mode

 Channel 14: 0x00000100 20K Potentiometer Mode

 Channel 15: 0x00000100 20K Potentiometer Mode

 Analog to Digital Converter: Value (Hex) Volts

 ===========================: =========== =====

 Channel 0: 0x0000 +0.000000

 Channel 1: 0xffff -0.000610

 Channel 2: 0xffff -0.000610

 Channel 3: 0x0000 +0.000000

 Channel 4: 0xffff -0.000610

 Channel 5: 0xffff -0.000610

 Channel 6: 0xffff -0.000610

 Channel 7: 0xffff -0.000610

 Channel 8: 0xffff -0.000610

 Channel 9: 0xffff -0.000610

 Channel 10: 0xffff -0.000610

 Channel 11: 0xffff -0.000610

 Channel 12: 0xffff -0.000610

 Channel 13: 0xffff -0.000610

 Channel 14: 0xffff -0.000610

 Channel 15: 0x0000 +0.000000

 Any Fuse Tripped: === No ===

 ADC 0 Failed: === No ===

 ADC 1 Failed: === No ===

 Electrical Short: 0x00b4 (0.109863 volts)

 Delay: 0x0002 (2)

 Count: 0x0001 (1)

 I/O Delay: 0x0800 (31.000000 volts)

 Maximum Resistance: 0x00fd (1266.000000 ohms)

 Maximum voltage: 0x5ae0 (14.199219 volts)

 Voltage Fault Delay: 0x0002 (8 microseconds)

 :

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 91 of 94

 : Fuse_Base Fuse_Multiplier Potentiometer

Threshold IOS

 Channel Fault Information: Trip? hex volts hex volts hex ohms

hex volts hex

 =========================: ===== =============== =============== ===============

================ ===

 Channel 0: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 1: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 2: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 3: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 4: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 5: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 6: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 7: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 8: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 9: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 10: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 11: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 12: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 13: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 14: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 Channel 15: --- 0241 (0.352173) 005a (0.054932) 32000 (1000000)

5ae0 (14.199219) 00

 :

 Channel Fault Information: AnyTrip? CalNotValid? PotFail? ADCFail? VoltTrip? ADCComp?

ADCValue? (hex/volts)

 =========================: ======== ============ ======== ======== ========= ========

=====================

 Channel 0: --- --- --- --- --- ---

0000 (0.000000)

 Channel 1: --- --- --- --- --- ---

0000 (0.000000)

 Channel 2: --- --- --- --- --- ---

0000 (0.000000)

 Channel 3: --- --- --- --- --- ---

0000 (0.000000)

 Channel 4: --- --- --- --- --- ---

0000 (0.000000)

 Channel 5: --- --- --- --- --- ---

0000 (0.000000)

 Channel 6: --- --- --- --- --- ---

0000 (0.000000)

 Channel 7: --- --- --- --- --- ---

0000 (0.000000)

 Channel 8: --- --- --- --- --- ---

0000 (0.000000)

 Channel 9: --- --- --- --- --- ---

0000 (0.000000)

 Channel 10: --- --- --- --- --- ---

0000 (0.000000)

 Channel 11: --- --- --- --- --- ---

0000 (0.000000)

 Channel 12: --- --- --- --- --- ---

0000 (0.000000)

 Channel 13: --- --- --- --- --- ---

0000 (0.000000)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 92 of 94

 Channel 14: --- --- --- --- --- ---

0000 (0.000000)

 Channel 15: --- --- --- --- --- ---

0000 (0.000000)

3.2.7 lib/ccurdprc_tst_lib

This is an interactive test that accesses the various supported API calls.

Usage: ./ccurdprc_tst_lib [-b board]

 -b board: board number -- default board is 0

Example display:

./ccurdprc_tst_lib

Device Name: /dev/ccurdprc0

 01 = Abort DMA 02 = Clear Driver Error

 03 = Clear Library Error 04 = Display BOARD Registers

 05 = Display CONFIG Registers 06 = Get Board CSR

 07 = Get Board Information 08 = Get Driver Error

 09 = Get Driver Information 10 = Get Driver Read Mode

 11 = Get Driver Write Mode 12 = Get Library Error

 13 = Get Mapped Config Pointer 14 = Get Mapped Driver/Library Pointer

 15 = Get Mapped Local Pointer 16 = Get Physical Memory

 17 = Get Value 18 = Initialize Board

 19 = MMap Physical Memory 20 = Munmap Physical Memory

 21 = Read Operation 22 = Read Channels

 23 = Reset Board 24 = Select Driver Read Mode

 25 = Select Driver Write Mode 26 = Set Board CSR

 27 = Set Value 28 = ### ADC CONTROL MENU ###

 29 = ### CALIBRATION MENU ### 30 = ### DIGITAL POT AND I/O CONTROL MENU

 31 = ### ELECTRONIC FUSE CONTROL MENU ### 32 = ### INTERRUPT MENU ###

 33 = ### SERIAL PROM MENU ###

Main Selection ('h'=display menu, 'q'=quit)->

__

Main Selection ('h'=display menu, 'q'=quit)-> 28

 Command: ADC_control_menu()

 01 = ADC Activate 02 = ADC Disable

 03 = ADC Read Channels

ADC Selection ('h'=display menu, 'q'=quit)->

__

Main Selection ('h'=display menu, 'q'=quit)-> 29

 Command: calibration_menu()

 01 = Get Calibrated Values 02 = Get Calibration Bus Control

 03 = Perform Auto Calibration 04 = Perform External Negative Calib.

 05 = Perform External Offset Calib. 06 = Perform External Positive Calib.

 07 = Perform Negative Calibration 08 = Perform Offset Calibration

 09 = Perform Positive Calibration 10 = Read calibration channels

 11 = Reset Calibration 12 = Write Channels Calibration

 13 = Set Calibration Bus Control

Calibration Selection ('h'=display menu, 'q'=quit)->

__

Main Selection ('h'=display menu, 'q'=quit)-> 30

 Command: DigitalPotAndIo_control_menu()

 01 = Digital Potentiometer & I/O Activate 02 = Digital Potentiometer & I/O Disable

 03 = Digital Potentiometer Get Resistance 04 = Digital Potentiometer Get Test

 05 = Digital Potentiometer Set Resistance 06 = Digital Potentiometer Set Test

 07 = I/O Control Get 08 = I/O Control Set

Digital Pot and I/O Selection ('h'=display menu, 'q'=quit)->

__

Main Selection ('h'=display menu, 'q'=quit)-> 31

 Command: ElectronicFuse_control_menu()

 01 = Clear Electronic Fuse Trip 02 = Dump Electronic Fuse Registers

 03 = Get Electronic Fuse Base 04 = Get Electronic Fuse Internals

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 93 of 94

 05 = Get Electronic Fuse Multiplier 06 = Get Electronic Fuse Status

 07 = Get Electronic Fuse Threshold 08 = Get Electronic Fuse Trip

Electronic Fuse Selection ('h'=display menu, 'q'=quit)->

Main Selection ('h'=display menu, 'q'=quit)-> 32

 Command: interrupt_menu()

 01 = Add Irq 02 = Disable Pci Interrupts

 03 = Enable Pci Interrupts 04 = Get Interrupt Control

 05 = Get Interrupt Status 06 = Get Interrupt Timeout

 07 = Remove Irq 08 = Set Interrupt Control

 09 = Set Interrupt Status 10 = Set Interrupt Timeout

Interrupt Selection ('h'=display menu, 'q'=quit)->

Main Selection ('h'=display menu, 'q'=quit)-> 33

 Command: serial_prom_menu()

 01 = Clear Serial Prom 02 = Read Serial PROM

 03 = Serial PROM Write Override 04 = Write Serial PROM

Serial PROM Selection ('h'=display menu, 'q'=quit)->

3.2.8 lib/Sprom/ccurdprc_sprom

This is a simple program to demonstrate sprom access.

Usage: ./ccurdprc_sprom [-b board] [-C] [-D] [-S serialNo]

 -b <board> (Board #, default = 0)

 -C (Clear ENTIRE serial PROM first)

 -D (Dump entire serial prom)

 -S <serialNo> (Program board serial number)

 e.g. ./ccurdprc_sprom -C -> Clear Entire Serial Prom First

 e.g. ./ccurdprc_sprom -D -> Dump Entire Serial Prom

 e.g. ./ccurdprc_sprom -S 12345678 -> Write Serial Number

Example display:

./Sprom/ccurdprc_sprom

Device Name: /dev/ccurdprc0

Board Serial Number: 680593 (0x000a6291)

Serial PROM Revision: 0 (0x0000)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 94 of 94

This page intentionally left blank

