

Release Notes
CCURPMFC (WC-CP-FIO)

Driver ccurpmfc (WC-CP-FIO)

OS RedHawk (CentOS or Ubuntu based)

Vendor Concurrent Real-Time

Hardware PCIe Programmable Multi-Function I/O Card (CP-FPGA-Ax)

Author Darius Dubash

Date February 25th, 2021 Rev 2021.1

This page intentionally left blank

Table of Contents

1. INTRODUCTION ... 1

2. REQUIREMENTS .. 2

3. DOCUMENTATION .. 2

4. INSTALLATION AND REMOVAL ... 2

4.1. Hardware Installation ... 2

4.2. Software Installation .. 3

4.3. Software Removal .. 5

5. AUTO-LOADING THE DRIVER ... 5

6. TESTING AND USAGE ... 6

7. RE-BUILDING THE DRIVER, LIBRARY AND TESTS ... 7

8. SOFTWARE SUPPORT ... 7

8.1. Device Configuration ... 7

8.2. Library Interface ... 8

8.3. Debugging .. 8

9. 256K BASE ADDRESS REGISTER (BAR) FIRMWARE SUPPORT .. 9

9.1. Determining BAR of current installed Firmware ... 9

9.2. Installing the new 256K BAR Base Level Firmware ... 10

10. NOTES AND ERRATA ... 11

APPENDIX A: BOARD INDICATORS ... 12

APPENDIX B: BOARD FAULTS ... 13

APPENDIX C: EXTERNAL CONNECTIONS AND PIN-OUTS ... 14

APPENDIX D: THE MULTI-FUNCTION FPGA BOARD ... 15

 This page intentionally left blank

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 1 -

1. Introduction

This document assists the user in installing the CCUR-PCIe-PMFC Linux ccurpmfc driver and related
software on the RedHawk OS for use with the CCUR-PCIe-Multi-Function I/O Card (MIOC). The
directions in this document supersede all others – they are specific to installing the software on
Concurrent Real-Time’s RedHawk systems. Other information provided as part of this release, when it
may contradict these directions, should be ignored and these directions should prevail.

For additional information on this driver and usage, refer to the ccurpmfc man page.

The MIOC is a programmable multi-function card with a PCI express interface.

Features and Characteristics of the MIOC are:



General

 Altera Arria V FPGA Control

 1GB SDRAM

 Dual DMA Engines

 Programmable Clock Generator

 Temperature Compensated Oscillator (TCXO)

 Multi-board Synchronization

 In System Firmware Update

 PCI Express Gen 1 x4 Lane

 MSI Interrupts

 Isolated I/O Power

 Low Noise Analog Power Generation

 In System Calibration

 Non-volatile Storage of Calibration Data

 NIST Traceable Calibration Standard

 Directly Addressable Conversion Data Registers

 128K Word Conversion Data FIFO’s with DMA

 Industry Standard High Density SCSI 68-pin Connectors

 RJ-45 Synchronization Connectors



Analog Input Section

 16-channel 16-bit Digital-to-Analog Conversion

 Differential or Single-ended Input

 +/-5V or +/-10V Input Range

 Input Impedance >1Meg ohm

 Input Over-voltage Protection +/-30V

 300Khz Maximum Sampling Rate

Analog Output Section

 16-channel 16-bit Digital-to-Analog Conversion

 16-channel Single-ended Output or up to 8-channel Differential outputs.

 Differential channels are consecutive even/odd pairs

 0V to +10V, 0V to +20V*, +/-5V or +/-10V Single-ended Output Range

 0V to +10V, 0V to +20V*, +/-10V or +/-20V Differential Output Range

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 2 -

 10 Milliamp Maximum Output Drive

 100K Maximum Updates Per Second

Digital I/O Section

 96-channel Input/Output

 5V TTL Levels (3.3V Optional)

 4 Milliamp Sink/Source

 25Mhz Maximum I/O Rate

 Outputs Selectable per Nibble

 Input Channel Snapshot

 Output Channel Synchronization

 Change-of-state detection

Intellectual Property Core (IpCore) Section (Special Cards Required)

 64-channel Change of State IP Core Card

Note: *The 0V to +20V range is usable to approximately 14 volts but is un-calibrated above 10 volts. The unipolar

range in differential mode will always hold the negative (odd) channel at zero volts.

2. Requirements

 CCUR-MIOC PCIe board physically installed in the system.

 This driver supports various versions of RedHawk. Actual supported versions depend on the
driver being installed.

3. Documentation

 PCIe Programmable Multi-Function I/O Card (PMFC) Software Interface by Concurrent Real-
Time.

4. Installation and Removal

4.1. Hardware Installation

The CCUR-MIOC card is a Gen 1 PCI Express product and is compatible with any PCI Express slot.
The board must be installed in the system before attempting to use the driver.

Caution: when installing the card insure the computer is powered off and the
machine’s power cord is disconnected. Please observe electrostatic discharge
precautions such as the use of a grounding strap.

The ccurpmfc driver is designed to support IRQ sharing. If this device’s IRQ is being shared by
another device then this driver’s performance could be compromised. Hence, as far as possible,
move this board into a PCI slot who’s IRQ is not being shared with other devices. The default driver
configuration uses MSI interrupts. If the kernel supports MSI interrupts, then sharing of interrupts will
not occur, in which case the board placement will not be an issue.

An ‘lspci -v’ or the ‘lsirq’ command can be used to determine the IRQs of various devices in the
system.

lspci -v -d1542:9290

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 3 -

05:00.0 System peripheral: Concurrent Real-Time FPGA Card (rev 01)

 Subsystem: Concurrent Real-Time Device 0100

 Physical Slot: 3

 Flags: bus master, fast devsel, latency 0, IRQ 59

 Memory at bd340000 (32-bit, non-prefetchable) [size=32K]

 Memory at bd300000 (32-bit, non-prefetchable) [size=256K]

 Capabilities: [50] MSI: Enable+ Count=1/4 Maskable- 64bit+

 Capabilities: [78] Power Management version 3

 Capabilities: [80] Express Endpoint, MSI 00

 Capabilities: [100] Virtual Channel

 Capabilities: [200] Vendor Specific Information: ID=1172 Rev=0 Len=044 <?>

 Capabilities: [800] Advanced Error Reporting

lsirq

 66 87:00.0 Concurrent Real-Time Unknown device (rev 01)

After installing the card, reboot the system and verify the hardware has been recognized by the
operating system by executing the following command:

lspci –d 1542:9290

For each CCUR-MIOC PCIe board installed, a line similar to one of the following will be printed,
depending on the revision of the system’s /usr/share/hwdata/pci.ids file:

87:00.0 Unclassified device [0008]: Concurrent Real-Time Device 9290 (rev 01)

If a line similar to the above is not displayed by the lspci command, the board has not been properly
installed in the system. Make sure that the device has been correctly installed prior to attempting to
use the software. One similar line should be found for each installed card.

4.2. Software Installation

Concurrent Real-Time™ port of the ccurpmfc software is distributed in RPM format for CentOS and
DEB format for Ubuntu OS on a DVD. Source for the API library and kernel loadable driver are not
included, however, source for example test programs as well as documentation is provided in PDF
format.

The software is installed in the /usr/local/CCRT/drivers/ccurpmfc directory. This directory will be
referred to as the “top-level” directory by this document.

Warning: Before installing the software, the kernel build environment must be set up
and match the current OS kernel you are using. If you are running one of the
preconfigured kernels supplied by Concurrent and have not previously done so, run the
following commands while logged in as the root user before installing the driver software:

cd /lib/modules/`uname –r`/build

./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To install the ccurpmfc package, load the DVD installation media and issue the following commands

as the root user. The system should auto-mount the DVD to a mount point in the /media or

/run/media directory based on the DVD’s volume label – in this case ccurpmfc_driver. The

example’s [user_name] may be root, or the logged-in user. Then enter the following commands from
a shell window:

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 4 -

== as root ==

 --- on RedHawk 6.5 and below ---

cd /media/ccurpmfc_driver

 --- or on RedHawk 7.0 and above ---

cd /run/media/[user_name]/ccurpmfc_driver

rpm –ivh ccurpmfc_RedHawk_driver*.rpm (on a CentOS based system)

 --or--

dpkg –i ccurpmfc_RedHawk_driver*.deb (on an Ubuntu based system)

cd /

eject

On successful installation the source tree for the ccurpmfc package, including the loadable kernel

module, API libraries, and test programs is extracted into the /usr/local/CCRT/drivers/ccurpmfc
directory by the rpm installation process, which will then compile and install the various software
components.

The loadable kernel module is installed in the /lib/modules/`uname –r`/misc directory.

Once the package is installed, the driver needs to be loaded with one of the following commands:

== as root ==
cd /usr/local/CCRT/drivers/ccurpmfc

make load

 --- or on RedHawk 6.5 and below ---

/sbin/service ccurpmfc start

 --- or on RedHawk 7.0 and above ---

/usr/bin/systemctl start ccurpmfc

Issue the command below to view the boards found by the driver:

cat /proc/ccurpmfc

Version : 26.0.1

Built : Thu Feb 25 12:34:00 EST 2021

Boards : 1

 card=0: [05:00.0] bus=5, slot=0, func=0, irq=56, msi=1, BInfo=9290.01.01

FM=06/19/2019 (4.0) FLV=00000000 FWB=00000000 IP=0

ID=11223344 MC=A5 RLS=100 (MultiFunc)

Note: With RedHawk 7.5 you may see a cautionary message similar to the following when the

ccurpmfc driver is loaded on the system console or via dmesg command:

CHRDEV "ccurpmfc" major number 233 goes below the dynamic allocation range

As documented in the kernel driver Documentation/devices.txt file a range of character device
numbers from 234 to 254 are officially available for dynamic assignment. Dynamic assignments start
at 254 and grow downward. This range is sometimes exceeded as additional kernel drivers are
loaded. Note that this was also the case with earlier kernels – the newer 7.5 kernel has added a
runtime check to produce this warning message that the lower bound has been exceeded, not
reduced the range of numbers officially available for dynamic assignment. If you see this message
please verify the assigned number(s) isn’t being used by a device installed on your system.

In addition to the above message, on some systems you may also see messages from APEI (ACPI
Platform Error Interface) or AER (Advanced Error Reporting) which have these error reporting
capabilities. These messages will be of the form of unrecoverable hardware errors or some other form
of hardware errors for the board when the driver/firmware is loaded and started. This is because
during the driver load operation, a fresh copy of the firmware is installed and started. This process of

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 5 -

starting is equivalent to issuing a power shutdown and restart of the card. Some operating systems
see the device as being no longer present, and generate the message.

On RedHawk 8.x kernels, you may see cautionary messages on the system console or via dmesg

command similar to the following when the ccurpmfc driver is loaded, as this is a proprietary driver:

ccurpmfc: module verification failed: signature and/or required key missing - tainting kernel

4.3. Software Removal

The ccurpmfc driver is a dynamically loadable driver that can be unloaded, uninstalled and removed.
Once removed, the only way to recover the driver is to re-install the rpm or deb from the installation
DVD:

If any changes have been made to the driver package installed in
/usr/local/CCRT/drivers/ccurpmfc directory, they need to be backed up prior to invoking
the removal; otherwise, all changes will be lost.

== as root ==
rpm –e ccurpmfc (driver unloaded, uninstalled, and deleted – on an RPM based system)

 --or--

dpkg –P ccurpmfc (driver unloaded, uninstalled, and deleted – on an Debian based

 system)

If, for any reason, the user wishes to un-load and uninstall the driver and not remove it, they can
perform the following:

== as root ==
cd /usr/local/CCRT/drivers/ccurpmfc

make unload (unload the driver from the kernel)
 --- or on RedHawk 6.5 and below ---

/sbin/service ccurpmfc stop

 --- or on RedHawk 7.0 and above ---

/usr/bin/systemctl stop ccurpmfc

To uninstall the ccurpmfc driver, do the following after it has been unloaded:

=== as root ===
cd /usr/local/CCRT/drivers/ccurpmfc

make uninstall (uninstall the driver and library)

In this way, the user can simply issue the ‘make install’ and ‘make load’ in the
/usr/local/CCRT/drivers/ccurpmfc directory at a later date to re-install and re-load the driver.

5. Auto-loading the Driver

The ccurpmfc driver is a dynamically loadable driver. Once you install the package or perform the
‘make install’, appropriate installation files are placed in the /etc/rc.d/rc*.d or /usr/lib/system/systemd
directories so that the driver is automatically loaded and unloaded when Linux is booted and
shutdown. If, for any reason, you do not wish to automatically load and unload the driver when Linux is
booted or shutdown, you will need to manually issue the following command to enable/disable the
automatic loading of the driver:

 === as root ===
 --- on RedHawk 6.5 and below ---

 # /sbin/chkconfig –-add ccurpmfc (enable auto-loading of the driver)

 # /sbin/chkconfig –-del ccurpmfc (disable auto-loading of the driver)
 --- or on RedHawk 7.0 and above ---

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 6 -

 # /usr/bin/systemctl enable ccurpmfc (enable auto-loading of the driver)

 # /usr/bin/systemctl disable ccurpmfc (disable auto-loading of the driver)

6. Testing and Usage

Build and run the driver test programs, if you have not already done so:

 # cd /usr/local/CCRT/drivers/ccurpmfc

 # make test (build the test programs)

Several tests have been provided in the /usr/local/CCRT/drivers/ccurpmfc/test directory and
can be run to test the driver and board.

 === as root ===
 # cd /usr/local/CCRT/drivers/ccurpmfc

 # make test (build the test programs)

./test/ccurpmfc_disp (display board registers)

./test/ccurpmfc_dump (dump all board resisters)

./test/ccurpmfc_rdreg (display board resisters)

./test/ccurpmfc_reg (Display board resisters)

./test/ccurpmfc_regedit (Interactive board register editor test)

./test/ccurpmfc_tst (Interactive test to test driver and board)

./test/ccurpmfc_wreg (edit board resisters)

./test/Flash/ccurpmfc_flash (Flash: Flash FPGA)

./test/Flash/ccurpmfc_label (Flash: Label FPGA)

./test/Flash/ccurpmfc_dump_license (Flash: Dump License)

./test/lib/ccurpmfc_adc (library: test ADC channel registers)

./test/lib/ccurpmfc_adc_calibrate (library: test ADC calibrate)

./test/lib/ccurpmfc_adc_fifo (library: test ADC FIFO channels)

./test/lib/ccurpmfc_adc_sps (library: test ADC samples/channel)

./test/lib/ccurpmfc_check_bus (library: test system jitter)

./test/lib/ccurpmfc_clock (library: test clock)

./test/lib/ccurpmfc_dac (library: test DAC channels)

./test/lib/ccurpmfc_dac_calibrate (library: test DAC calibrate)

./test/lib/ccurpmfc_dac_setchan (library: test DAC channels)

./test/lib/ccurpmfc_dio (library: test DIO channels)

./test/lib/ccurpmfc_dio_intr (library: test DIO change-of-state interrupt)

./test/lib/ccurpmfc_disp (library: display board registers)

./test/lib/ccurpmfc_dma (library: run dma test)

./test/lib/ccurpmfc_example (library: run example test)

./test/lib/ccurpmfc_expires (library: run expires information test)

./test/lib/ccurpmfc_identify (library: identify cards in the system)

./test/lib/ccurpmfc_info (library: provide information of all boards)

./test/lib/ccurpmfc_msgdma (library: modular scatter-gather DMA test)

./test/lib/ccurpmfc_msgdma_info (library: modular scatter-gather DMA info)

./test/lib/ccurpmfc_smp_affinity (library: display/set IRQ CPU affinity)

./test/lib/ccurpmfc_transfer (library: run DMA and PIO transfer test)

./test/lib/ccurpmfc_tst_lib (library: Interactive test to test driver and board)

./test/lib/IpCore/ccurpmfc_ipcore_cos (library:IpCore: Change-of-state test)

./test/lib/Sprom/ccurpmfc_sprom (library:Sprom: run SPROM test)

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 7 -

7. Re-building the Driver, Library and Tests

If for any reason the user needs to manually rebuild and load an installed rpm or deb package, they
can go to the installed directory and perform the necessary build.

Warning: Before installing the software, the kernel build environment must be set up and
match the current OS kernel you are using. If you are running one of the preconfigured
kernels supplied by Concurrent and have not previously done so, run the following
commands while logged in as the root user before installing the driver software:

cd /lib/modules/`uname –r`/build

./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build
environment should already have been set up when that custom kernel was built.

To build the driver and tests:

=== as root ===
 # cd /usr/local/CCRT/drivers/ccurpmfc

 # make clobber (perform cleanup)

make (make package and build the driver, library and tests)

(Note: if you only wish to build the driver, you can enter the ‘make driver’ command instead)

After the driver is built, you will need to install the driver. This install process should only be necessary
if the driver is re-built with changes.

=== as root ===
cd /usr/local/CCRT/drivers/ccurpmfc

make install (install the driver software, library and man page)

Once the driver and the board are installed, you will need to load the driver into the running kernel
prior to any access to the CCUR MIOC board.

=== as root ===
cd /usr/local/CCRT/drivers/ccurpmfc

make load (load the driver)

8. Software Support

This driver package includes extensive software support and test programs to assist the user in
communicating with the board. Refer to the CONCURRENT PCIe Programmable Multi-Function I/O Card
(MIOC) Software Interface document for more information on the product.

8.1. Device Configuration

After the driver is successfully loaded, the device to card association file ccurpmfc_devs will be
created in the /usr/local/CCRT/drivers/ccurpmfc/driver directory, if it did not exist. Additionally, there
is a symbolic link to this file in the /usr/lib/config/ccurpmfc directory as well. If the user wishes to
keep the default one-to-one device to card association, no further action is required. If the device to
card association needs to be changed, this file can be edited by the user to associate a particular
device number with a card number that was found by the driver. The commented portion on the top of
the ccurpmfc_devs file is automatically generated every time the user issues the ‘make load’ or
‘/sbin/service ccurpmfc start’ (on RedHawk 6.5 and below) or ‘/usr/bin/systemctl start
ccurpmfc’ (on RedHawk 7.0 and above) command with the current detected cards, information. Any

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 8 -

device to card association edited and placed in this file by the user is retained and used during the
next ‘make load’ or ‘/sbin/service ccurpmfc load’ or ‘/usr/bin/systemctl start ccurpmfc’ process.

If the user deletes the ccurpmfc_devs file and recreates it as an empty file and performs a ‘make
load’ or if the user does not associate any device number with card number, the driver will provide a
one to one association of device number and card number. For more information on available
commands, view the commented section of the ccurpmfc_devs configuration file.

Warning: If you edit the ccurpmfc_devs file to associate a device to a card, you will need
to re-issue the ‘make load’ or ‘/sbin/service ccurpmfc start’ or ‘/usr/bin/systemctl start
ccurpmfc’ command to generate the necessary device to card association. This device to

card association will be retained until the user changes or deletes the association. If any

invalid association is detected, the loading of the driver will fail.

8.2. Library Interface

There is an extensive software library that is provided with this package. For more information on the
library interface, please refer to the PCIe Programmable Multi-Function I/O Card (PMFC) Software
Interface by Concurrent Real-Time document.

8.3. Debugging

This driver has some debugging capability and should only be enabled while trying to trouble-shoot a
problem. Once resolved, debugging should be disabled otherwise it could adversely affect the
performance and behavior of the driver.

To enable debugging, the Makefile file in /usr/local/CCRT/drivers/ccurpmfc/driver should be edited
to un-comment the statement (remove the preceding ‘#’):

 # EXTRA_CFLAGS += -DCCURPMFC_DEBUG

Next, compile and install the driver

 # cd /usr/local/CCRT/drivers/ccurpmfc/driver

 # make

 # make install

Next, edit the ccurpmfc_config file in /usr/local/CCRT/drivers/ccurpmfc/driver to un-comment the
statement (remove the preceding ‘#’):

 # ccurpmfc_debug_mask=0x00002040

Additionally, the value of the debug mask can be changed to suite the problem investigated. Once the
file has been edited, the user can load the driver by issuing the following:

 # cd /usr/local/CCRT/drivers/ccurpmfc/driver

 # make load

The user can also change the debug flags after the driver is loaded by passing the above debug
statement directly to the driver as follows:

 # echo “ccurpmfc_debug_mask=0x00082047” > /proc/ccurpmfc

Following are the supported flags for the debug mask as shown in the ccurpmfc_config file.

D_ENTER 0x00000001 /* enter routine */ #

D_EXIT 0x00000002 /* exit routine */ #

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 9 -

D_L1 0x00000004 /* level 1 */ #

D_L2 0x00000008 /* level 2 */ #

D_L3 0x00000010 /* level 3 */ #

D_L4 0x00000020 /* level 4 */ #

D_ERR 0x00000040 /* level error */ #

D_WAIT 0x00000080 /* level wait */ #

D_INT0 0x00000100 /* interrupt level 0 */ #

D_INT1 0x00000200 /* interrupt level 1 */ #

D_INT2 0x00000400 /* interrupt level 2 */ #

D_INT3 0x00000800 /* interrupt level 3 */ #

D_INTW 0x00001000 /* interrupt wakeup level */ #

D_INTE 0x00002000 /* interrupt error */ #

D_RTIME 0x00010000 /* display read times */ #

D_WTIME 0x00020000 /* display write times */ #

D_REGS 0x00040000 /* dump registers */ #

D_IOCTL 0x00080000 /* ioctl call */ #

D_DATA 0x00100000 /* data level */ #

D_DMA 0x00200000 /* DMA level */ #

D_DBUFF 0x00800000 /* DMA buffer allocation */ #

D_NEVER 0x00000000 /* never print this debug message */ #

D_ALWAYS 0xffffffff /* always print this debug message */ #

D_TEMP D_ALWAYS /* Only use for temporary debug code */ #

Another variable ccurpmfc_debug_ctrl is also supplied in the ccurpmfc_config that the driver

developer can use to control the behavior of the driver. The user can also change the debug flags
after the driver is loaded by passing the above debug statement directly to the driver as follows:

 # echo “ccurpmfc_debug_ctrl=0x00001234” > /proc/ccurpmfc

In order to make use of this variable, the driver must be coded to interrogate the bits in the
ccurpmfc_debug_ctrl variable and alter its behavior accordingly.

9. 256K Base Address Register (BAR) Firmware Support

The original FPGA firmware came with 128K BAR memory support. The new FPGA firmware uses a 256K
BAR memory size. For cards that have multi-level firmware (Base & Run Level Firmware), the user will be
required to upgrade the Base Level Firmware to the 256K BAR Base Level Firmware if they plan to use
the 256K BAR Run Level Firmware. Failure to do so will result in unpredictable behavior.

For now, there is no need to update the Multi-Function Firmware (normally on A5 Member Code cards) as
no changes have been made to it to utilize the 256K memory size. This exercise is more for the B3 and B7
cards that have FPGAWB support.

The user can upgrade to the 256K BAR base level firmware at any time (even if the Run Level Firmware
currently on the card is a 128K BAR) with the help of the ccurpmfc_flash utility.

9.1. Determining BAR of current installed Firmware
The easiest way to determine the BAR of the firmware is by using the lspci(8) system command. The
FPGA card must be installed, however, there is no need to install the FPGA driver.

lspci -v -d1542:9290

05:00.0 System peripheral: Concurrent Real-Time FPGA Card (rev 01)

 Subsystem: Concurrent Real-Time Device 0100

 Physical Slot: 3

 Flags: bus master, fast devsel, latency 0, IRQ 59

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 10 -

 Memory at bd340000 (32-bit, non-prefetchable) [size=32K]

 Memory at bd300000 (32-bit, non-prefetchable) [size=256K]

 Capabilities: [50] MSI: Enable+ Count=1/4 Maskable- 64bit+

 Capabilities: [78] Power Management version 3

 Capabilities: [80] Express Endpoint, MSI 00

 Capabilities: [100] Virtual Channel

 Capabilities: [200] Vendor Specific Information: ID=1172 Rev=0 Len=044 <?>

 Capabilities: [800] Advanced Error Reporting

You will notice that the second memory address has a size of 256K. If the card shows a size of 128K
instead, then you will need to update the Base Level Firmware if you plan to use the new 256K BAR
Run Level Firmware.

9.2. Installing the new 256K BAR Base Level Firmware

Before updating the Base Level Firmware, you need to make sure whether the card has a Member
Code of A5, B3 or B7. In order to determine the card Member Code, the driver and card must be
installed and running in the system. You can then issue the following command to get information on
the card.

cat /proc/ccurpmfc

Version : 24.0.1

Built : Tue Jun 18 11:18:12 EDT 2019

Boards : 1

 card=0: [05:00.0] bus=5, slot=0, func=0, irq=59, msi=1, BInfo=9290.02.01

FM=10/14/2016 (3.2) FLV=00000000 FWB=00000000 IP=0 ID=674459 MC=B3 RLS=100

(MultiFunc)

In the above example, the card has a Member Code of ‘B3’. We therefore will need to install a 256K
BAR Base Level Firmware with a Member Code of ‘B3’ on this card. Installing the wrong Member
Code will render the board useless.

 # cd /usr/local/CCRT/drivers/ccurpmfc/test/Flash
 # ./ccurpmfc_flash -b# -w BASE/XX/*.cust (# is the board number, XX is A3, B5 or B7 depending
 on the member code of the card)
 # <Follow the instructions until completion>

Once the firmware is successfully burnt, you will need to reboot the system for the Base Level
Firmware to take effect.

reboot

Once the system is operational, use the lspci(8) as above to verify that the memory BAR is now
showing 256K. If you have a 256K Run Level Firmware, you can install that at this time.

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 11 -

10. Notes and Errata

 This new driver provides support for the 128K and 256K board BAR sizes. If a 256K run level
firmware is installed, then the 256K base level firmware must also be installed on the card
otherwise, the board will not operate properly.

 Driver and board support MSI interrupts. It can be configured for wired interrupts. MSI support is
the default.

 Currently, several totally different types of cards are supported by the driver. The standard Multi-
Function I/O Card (MIOC), the specialized Engine Control, the IP Core change-of-state card and
several others. Currently, all tests are tailored for the Multi-Function card so some tests may fail
on the other card.

 It is possible that lspci calls may still display the device with the old name of “Concurrent

Computer Corporation” instead of “Concurrent Real-Time” if the OS has not been updated.

 Modular scatter-gather DMA is currently not supported on the Multi-Function I/O Card. It is
supported in some specific cards with limitations on specific memory regions.

 Removed Depreciated Defines

 The following defines have been renamed:
 CCURPMFC_ADC_DATA_UPDATE_CLOCK_NONE -> CCURPMFC_ADC_UPDATE_CLOCK_NONE_MASK
 CCURPMFC_ADC_DATA_EXTERNAL_SIGNAL -> CCURPMFC_ADC_EXTERNAL_SIGNAL_MASK
 CCURPMFC_ADC_DATA_CALIBRATION_BUS -> CCURPMFC_ADC_CALIBRATION_BUS_MASK
 CCURPMFC_ADC_DATA_FORMAT_OFFSET_BINARY -> CCURPMFC_ADC_OFFSET_BINARY_MASK
 CCURPMFC_ADC_DATA_FORMAT_TWOS_COMPLEMENT -> CCURPMFC_ADC_TWOS_COMPLEMENT_MASK
 CCURPMFC_ADC_INPUT_RANGE_BIPOLAR_10V -> CCURPMFC_ADC_BIPOLAR_10V_MASK
 CCURPMFC_ADC_INPUT_RANGE_BIPOLAR_5V -> CCURPMFC_ADC_BIPOLAR_5V_MASK
 CCURPMFC_DAC_UPDATE_MODE_IMMEDIATE -> CCURPMFC_DAC_MODE_IMMEDIATE_MASK
 CCURPMFC_DAC_UPDATE_MODE_SYNCHRONIZED -> CCURPMFC_DAC_MODE_SYNCHRONIZED_MASK
 CCURPMFC_DAC_DATA_FORMAT_OFFSET_BINARY -> CCURPMFC_DAC_OFFSET_BINARY_MASK
 CCURPMFC_DAC_DATA_FORMAT_TWOS_COMPLEMENT -> CCURPMFC_DAC_TWOS_COMPLEMENT_MASK
 CCURPMFC_DAC_OUTPUT_SINGLE_ENDED -> CCURPMFC_DAC_SINGLE_ENDED_MASK
 CCURPMFC_DAC_OUTPUT_DIFFERENTIAL -> CCURPMFC_DAC_DIFFERENTIAL_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_SINGLE_ENDED_UNIPOLAR_10V -> CCURPMFC_DAC_SINGLE_ENDED_UNIPOLAR_10V_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_SINGLE_ENDED_BIPOLAR_5V -> CCURPMFC_DAC_SINGLE_ENDED_BIPOLAR_5V_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_SINGLE_ENDED_BIPOLAR_10V -> CCURPMFC_DAC_SINGLE_ENDED_BIPOLAR_10V_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_SINGLE_ENDED_UNIPOLAR_20V -> CCURPMFC_DAC_SINGLE_ENDED_UNIPOLAR_20V_MAKS
 CCURPMFC_DAC_OUTPUT_RANGE_DIFFERENTIAL_UNIPOLAR_10V -> CCURPMFC_DAC_DIFFERENTIAL_UNIPOLAR_10V_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_DIFFERENTIAL_BIPOLAR_10V -> CCURPMFC_DAC_DIFFERENTIAL_BIPOLAR_10V_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_DIFFERENTIAL_BIPOLAR_20V -> CCURPMFC_DAC_DIFFERENTIAL_BIPOLAR_20V_MASK
 CCURPMFC_DAC_OUTPUT_RANGE_DIFFERENTIAL_UNIPOLAR_20V -> CCURPMFC_DAC_DIFFERENTIAL_UNIPOLAR_20V_MASK

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 12 -

Appendix A: Board Indicators

The MIOC has two multicolor LED indicator located between the two front panel connector pairs.
If the board is in a reset state, the right indicator will be solid Red. After reset is complete, the
indicators will cycle through Red, Green and Blue for approximately 1 second each as a lamp test.
If the either of the indicators remain solid or flashing Red after reset is complete it would indicate a
board malfunction. See the Board Faults section for more information. Other states of the board
during normal operation are indicated as follows:

Left Indicator

Color Description
Digital

Outputs

Red <See board faults section> Not Active

Flashing Red <See board faults section> Not Active

Green Digital Inputs Enabled Not Active

Blue Digital Outputs Enabled Active

Right Indicator

Color Description
Analog

Outputs

Red <See board faults section> Not Active

Flashing Red <See board faults section> Not Active

Green Analog Inputs Enabled Not Active

Blue Analog Outputs Enabled Active

Note: If either left or right LED has to represent both the blue (output) and the green (input) color,

the Digital or Analog Output signals supersede the inputs and therefore the corresponding
LED will display a blue color.

 If the user selects to identify the board, both the left and right LEDs will flash approximately

once every second with the color blue on the left and green on the right while board
identification is enabled. Once board identification is disabled, the left and right LEDs will
display the Analog and Digital Input and Output settings.

If the FPGA card is running a custom firmware, it is possible that the meaning of the LED
colors can change based on the custom firmware running on the card at that time.

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 13 -

Appendix B: Board Faults

The MIOC has on board monitoring of the power up sequence and initialization of the Altera
FPGA. The front panel indicators along with the multi-board synchronization (J1 & J2) connector
LED indicators will provide some level of feedback if there is a problem during board initialization
as follows:

Front Panel J1 J2
Description Cause

Left Right Green Yellow Green Yellow

Off
Red

OFF OFF OFF OFF
Board
Reset

N/A

Red
Flashing

Red
OFF OFF OFF OFF N/A

Board
Malfunction

Red
Flashing

Red
OFF OFF OFF ON

No 12V
Main Power

Board
Malfunction

Red
Flashing

Red
OFF OFF ON OFF

V1.1 Off
Status Error

Board
Malfunction

Red
Flashing

Red
OFF OFF ON ON

V1.15 Off
Status Error

Board
Malfunction

Red
Flashing

Red
OFF ON OFF OFF

V1.5 Off
Status Error

Board
Malfunction

Red
Flashing

Red
OFF ON OFF ON

V2.5 Off
Status Error

Board
Malfunction

Red
Flashing

Red
OFF ON ON OFF

V3.3 Off
Status Error

Board
Malfunction

Red
Flashing

Red
OFF ON ON ON

VTT Off
Status Error

Board
Malfunction

Red
Flashing

Red
ON OFF OFF OFF

V1.1 On
Status Error

Board
Malfunction

Red
Flashing

Red
ON OFF OFF ON

V1.15 On
Status Error

Board
Malfunction

Red
Flashing

Red
ON OFF ON OFF

V1.5 On
Status Error

Board
Malfunction

Red
Flashing

Red
ON OFF ON ON

V2.5 On
Status Error

Board
Malfunction

Red
Flashing

Red
ON ON OFF OFF

V3.3 On
Status Error

Board
Malfunction

Red
Flashing

Red
ON ON OFF ON

VTT On
Status Error

Board
Malfunction

Red
Flashing

Red
ON ON ON OFF

FPGA Pwr
Status Error

Board
Malfunction

Red
Flashing

Red
ON ON ON ON

All Pwr On
Status Error

Board
Malfunction

OFF
Flashing

Red
OFF OFF OFF OFF N/A

Board
Malfunction

OFF
Flashing

Red
OFF OFF OFF ON

FPGA
Status Error

Board
Malfunction

OFF
Flashing

Red
OFF OFF ON OFF

FPGA
Conf Error

Board
Malfunction

All other combinations would be N/A and indicate a board malfunction.

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 14 -

Appendix C: External Connections and Pin-outs

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 15 -

Appendix D: The Multi-Function FPGA Board

Concurrent Real-Time, Inc.™ ccuraocc Driver for RedHawk Linux™ – Release Notes - 16 -

This page intentionally left blank

