

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 1 of 18

Technical Guide
CCURPMFC (WC-CP-FIO)

PCIe Programmable Multi-Function

I/O Card (MIOC)

Driver ccurpmfc (WC-CP-FIO)

OS RedHawk (CentOS or Ubuntu based)

Vendor Concurrent Real-Time

Hardware PCIe Programmable Multi-Function Card (CP-FPGA-Ax)

Author Darius Dubash

Date February 25th, 2021 Rev 2021.1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 2 of 18

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 3 of 18

Table of Contents

1. INTRODUCTION .. 5

2. ANALOG TO DIGITAL (ADC) CONVERSION.. 5

2.1.1 ADC Channel Registers .. 5
2.1.2 ADC FIFO .. 6
2.1.3 ADC Input Options ... 7

3. DIGITAL TO ANALOG (DAC) CONVERSION.. 7

3.1.1 DAC Channel Registers .. 8
3.1.2 DAC FIFO .. 10

4. DIGITAL INPUT/OUTPUT (DIO) ... 11

4.1.1 Digital Input .. 11
4.1.1.1 Continuous Mode .. 11
4.1.1.2 Snapshot Mode ... 11
4.1.1.3 Change-Of-State ... 12

4.1.2 Digital Output ... 12
4.1.2.1 Continuous Mode .. 13
4.1.2.2 Synchronous Mode ... 13

5. READING AND WRITING TO THE CARD .. 13

6. SDRAM ... 14

6.1.1 SDRAM Read ... 14
6.1.2 SDRAM Write .. 15

7. CLOCKS ... 15

7.1.1 Reset All Clocks ... 15
7.1.2 Compute All Output Clocks ... 15
7.1.3 Program All Output Clocks .. 16
7.1.4 Get Clock Generator Information ... 16

8. CALIBRATION .. 16

8.1.1 ADC Calibration ... 16
8.1.2 DAC Calibration ... 16

9. SERIAL PROM .. 17

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 4 of 18

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 5 of 18

1. Introduction

This technical guide provides an insight into the workings of the various components of the FPGA card. Several

example programs supplied in the installed driver’s test directory can assist the user in developing their

applications. The board is comprised of the following features:

 Analog to Digital (ADC) conversion

 Digital to Analog (DAC) conversion

 Digital Input/Output (DIO)

 SDRAM

 Clocks

 Calibration

 Serial Prom

2. Analog to Digital (ADC) Conversion

The ADC has 16 channels with 16-bit resolution, controlled by two ADC converters; each can be assigned one of

seven update clocks and can have as input either an external signal or calibration bus. Both single-ended or

differential inputs are supported.

ADC to channel association is as follows:

 ADC 0 – Channel 0 to 7

 ADC 1 – Channel 8 to 15

Prior to performing any conversion, the ADC converter needs to be activated with the ccurPMFC_ADC_Activate()

API call. Without this activation, all other ADC calls will fail.

There are two mechanisms implemented by the hardware to enable the user to acquire analog signals. The ADC

channels can be read from either 16 channel registers or an ADC FIFO that is 128K samples deep. Each ADC

FIFO sample will also contain the channel number associated with the sample. Either of these approaches can be

used to acquire digital samples from the channels.

 ADC Channel Registers

 ADC FIFO

Prior to any data being collected, the user needs to configure each ADC in order to select one of 7 individual

clocks (0 to 6) as the input signal. The input signal can be either external inputs (normal mode), or calibration bus

(for debug and calibration). Additionally, the onboard clock generator needs to be programmed with the selected

ADC clock(s) at the user desired data collection rate. Each of the two individual ADCs can also be programmed

with data format of offset binary or two’s complement and a bipolar voltage range of either 5 or 10 volts.

2.1.1 ADC Channel Registers

This mechanism allows the user to asynchronously acquire raw data for any converted analog channel. Once the

clocks have started (after programming the ADCs and clocks), the board will continuously convert the ADC

channels and update all the Channel Registers at the programmed clock rate. User can then asynchronously read

any of the registers to acquire the latest converted raw data.

There are various methods available at the disposal of the user to receive the contents of the converted channel

registers. Each has its own merit, limitations and performance impact and left to the sole discretion of the user as

to the method to use.

a) Advanced users can access these registers directly via memory mapping, and bypassing the API, however,

care must be taken in performing synchronization with any other applications accessing the board at the same

time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 6 of 18

The memory mapped pointer local_ptr can be obtained by using the ccurPMFC_Get_Library_Info() call.

Once the pointer is available, the channels can be accessed via the ADC_Data[] array.

If the user wishes to determine the floating point voltages for the raw data, they can do so with the help of the

ccurPMFC_DataToVolts() library call. This call requires as an argument a pointer to the

ccurpmfc_volt_convert_t structure that holds the current ADC configuration information.

b) Alternatively, the user can use the ccurPMFC_Fast_Memcpy() library call to copy a consecutive set of raw

channel registers contents to a local buffer.

c) Another method to transfer the contents of a consecutive set of raw channel registers to a local buffer is to use

the ccurPMFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to transfer

the data via DMA or Programmed I/O. If this call is going to use DMA, then the received user buffer must be

a buffer that can allow the board to perform DMA writes. This buffer can be obtained with the help of the

ccurPMFC_MMap_Physical_Memory() library call.

d) Another approach is for the user to make use of the driver to acquire the contents of the ADC channels. In this

case, the user needs to first select the appropriate channel read mode operation (Programmed I/O or DMA)

with the ccurPMFC_ADC_Set_Driver_Read_Mode() library call and then call the ccurPMFC_Read() routine

to read the raw channel registers. At present, the driver does NOT support DMA transfers. In this case (i.e.

PIO mode), any buffer (not necessarily a DMA capable one) can be supplied to the ccurPMFC_Read() call.

e) Finally, the ccurPMFC_ADC_Read_Channels() library call not only allows the user to select individual

channels via a channel mask, but also returns the raw and floating point voltages as determined by the current

configuration of ADC converters.

The user has the option to supply a NULL pointer instead of the adc_csr argument, in which case the

ccurPMFC_ADC_Read_Channels() call will internally extract the current hardware ADC configuration prior

to computing the floating point voltage. This would add considerable overhead to the call if it is being called

multiple times. Alternatively, the user could first determine the current ADC configuration using the

ccurPMFC_ADC_Get_CSR() first and then supplying the current configuration to the adc_csr argument in

the following ccurPMFC_ADC_Read_Channels() calls, with the assumption that the ADC configuration is

not going to change for the duration of the reads.

2.1.2 ADC FIFO

This mechanism allows the hardware to synchronously acquire the raw data for any converted analog channel.

Once the ADCs and clocks have been programmed and started, the board will continuously convert the selected

ADC channels and place them in the ADC FIFO at the programmed clock rate. The user can select which channels

are to be sampled by the hardware and placed in the ADC FIFO with the channel selection mask supplied to the

ccurPMFC_ADC_Set_Fifo_Channel_Select() call.

User can then asynchronously extract the samples from the ADC FIFO via several methods. Care must be taken to

ensure that the ADC FIFO does not get empty (underflow) or go beyond full (overflow), otherwise synchronous

data collection will be compromised. At any time, the ccurPMFC_ADC_Get_Fifo_Info() call can be invoked to

determine the status of the ADC FIFO.

Unlike the samples in the ADC Channel Registers which only contain the raw 16-bit sample data, the ADC FIFO

samples contain the raw 16-bit channel data along with the channel number in the most significant nibble

associated with the channel in the 32 bit FIFO sample.

If the method to extract samples from the ADC FIFO is too slow, the user may consider either selecting fewer

channels being scanned or reducing the sample collection clock rate.

Prior to collecting the samples, it is recommended to reset the ADC FIFO to ensure that FIFO is empty. This can

be accomplished by the ccurPMFC_ADC_Reset_Fifo() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 7 of 18

Recommended method of data collection is to start the clocks, let them settle and then reset the FIFO just prior to

starting sample collection.

There are various methods available at the disposal of the user to receive the contents of the converted channel

samples from the ADC FIFO. Each has its own merit, limitations and performance impact and left to the sole

discretion of the user as to the method to use.

a) Advanced users can access this register directly via memory mapping, and bypassing the API, however, care

must be taken in performing any synchronization with any other applications accessing the board at the same

time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_ptr can be obtained by using the ccurPMFC_Get_Library_Info() call.

Once the pointer is available, the channels can be accessed via the ADC_FifoData FIFO register.

If the user wishes to determine the floating point voltages for the raw data, they can do so with the help of the

ccurPMFC_DataToVolts() library call. This call requires as an argument a pointer to the

ccurpmfc_volt_convert_t structure that holds the current ADC configuration information.

b) Another method to transfer the samples collected in the ADC FIFO to a local buffer is to use the

ccurPMFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to transfer the

data via DMA or Programmed I/O. If this call is going to use DMA, then the received user buffer must be a

buffer that can allow the board to perform DMA. This buffer can be obtained with the help of the

ccurPMFC_MMap_Physical_Memory() library call.

c) Another approach is for the user to make use of the driver to extract the contents of the samples from the ADC

FIFO. In this case, the user needs to first select the appropriate channel read mode operation (Programmed

I/O or DMA) with the ccurPMFC_ADC_Set_Driver_Read_Mode() library call and then call the

ccurPMFC_Read() routine to read the raw channel samples. At present, the driver does NOT support DMA

transfers. In this case (i.e. PIO mode), any buffer (not necessarily a DMA capable one) can be supplied to the

ccurPMFC_Read() call.

2.1.3 ADC Input Options

Each of the two ADC’s has the option of selecting its inputs either from the external lines (normal mode) or from

the calibration bus with the ccurPMFC_ADC_Set_CSR() call. If external lines are selected for an ADC, all 8 ADC

channels will return the raw digital values for the 8 inputs lines. If calibration bus is selected, then the ADC can

receive one of the following with the ccurPMFC_Set_Calibration_CSR() call:

 Calibration Ground

 Calibration Postive Reference Voltage

 Calibration Negative Reference Voltage

 Calibration 2.5 Volts Reference

 Calibration 5 Volts Reference

 One of 16 DAC channels as input

The calibration connections are used for calibrating the ADCs, while the DAC inputs can be used to loopback the

DAC outputs for diagnostics. Note that all 8 ADC channels will display the same Calibration reference voltage

or DAC channel, depending on the calibration bus selection.

3. Digital to Analog (DAC) Conversion

The DAC has 16 channels with 16-bit resolution, controlled by four DAC converters. It supports both single-ended

and differential outputs. The outputs can be software configured as 16-channel single-ended outputs, 8-channel

differential outputs, or a combination of single-ended and differential on a per-DAC granularity. Different

channels are identified as a pair of odd/even channels. Unlike the ADC converters where each converter can have

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 8 of 18

its own clock, all four DAC converters can either be assigned for software update or a selection of one of seven

update clocks.

DAC to channel association is as follows:

 DAC 0 – Channel 0 to 3

 DAC 1 – Channel 4 to 7

 DAC 2 – Channel 8 to 11

 DAC 3 – Channel 12 to 15

Prior to performing any conversion, the DAC converter needs to be activated with the ccurPMFC_DAC_Activate()

API call. Without this activation, all other DAC calls will fail.

There are two mechanisms implemented by the hardware to enable the user to generate analog signals. The DAC

channels can be written to either 16 channel registers or a DAC FIFO that is 128K samples deep. Either of these

approaches can be used to write digital samples to the channels.

 DAC Channel Registers

 DAC FIFO

Prior to writing any samples, the user needs to configure the DACs in order to select one of 7 individual clocks (0

to 6) as the input clock or instead select software update. Unlike the ADCs where the users can select a different

clock for each of the two ADCs, all four DACs are controlled by a single source. This can be accomplished by

using the ccurPMFC_DAC_Set_Update_Source_Select() routine. If the update source is a clock, then the onboard

clock generator needs to be programmed to the user desired sample generation rate.

In addition to the above setup which affects all DACs, each of the four individual DACs can be programmed with

data format of offset binary or two’s complement and a bipolar voltage range of either 5 or 10 volts or a unipolar

voltage range of 10 or 20 volts with the ccurPMFC_DAC_Set_CSR() call.

Note: Though the API allows the user to set a maximum unipolar range of 20 volts, the actual

maximum voltage that can be output is approximately 12 volts due to hardware limitations.

Users can also program each individual DAC to operate in Immediate or Synchronized mode with the

ccurPMFC_DAC_Set_CSR() call. Depending on the mode of operation, the hardware will determine when to

output analog signals on the individual channels. Conceptually, immediate mode would cause analog signals to be

output to the channel the moment the digital sample was written to the registers. In the case of Synchronized mode,

all registers belonging to a particular DAC would be synchronized and output simultaneously by the hardware.

3.1.1 DAC Channel Registers

This mechanism allows the user to write raw digital values to any of the DAC channel registers. The hardware, in

turn, outputs the converted analog signals according to the update source selection and operational mode.

Note: Make sure that you do not have any samples in the DAC FIFO with a clock running during

writing to the DAC channel registers as the board will overwrite the channel registers with the

FIFO samples. It is best to ensure that the FIFO is empty before commencing DAC channel

register writes.

If the operational mode for any of the four DACs is Immediate, the analog outputs for the channels associated with

the DAC will continuously output the last converted analog signal. The moment a write occurs on any channel

register for the associated DAC, the hardware will convert the raw digital value to the new analog signal and

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 9 of 18

output the new value on the corresponding channel. In this operational mode, the update source selection is

ignored.

If the operational mode for any of the four DACs is Synchronized, all channels associated with the DAC will

output in accordance with the update source selection. If software update mode is selected, then a write to any

channel with bit 31 (sync update flag) set will cause all the DACs that have an operational mode set to

Synchronized to convert and simultaneously output its corresponding channels. If instead, the update source is set

to an active clock, then the hardware will convert to analog signals the raw digital values for all the DAC channels

(that have an operational mode of Synchronized) and simultaneously update these channels on every clock cycle.

The rate of update will be dependent on the clock rate of the clock assigned to the DAC update source. In this

case, setting bit 31 (sync update flag) in the raw digital value for any channel will be ignored.

Note: If the user has operational mode for any DACs as Synchronized and the source

selection set to software update, then no analog signal change will occur on the outputs until a

channel is written with bit 31 (sync update flag) set. If, instead, the source selection for the

DACs is a clock, analog signal change will only occur on the outputs if the clock associated

with the DACs is programmed and running.

There are various methods available at the disposal of the user to output the contents of the channel registers. Each

has its own merit, limitations and performance impact and left to the sole discretion of the user as to the method to

use.

a) Advanced users can access these registers directly via memory mapping, and bypassing the API, however,

care must be taken in performing synchronization with any other applications accessing the board at the same

time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_ptr can be obtained by using the ccurPMFC_Get_Library_Info() call.

Once the pointer is available, the channels can be accessed via the DAC_Data[] array.

If the user wishes to determine the raw data for a given floating point voltage, they can do so with the help of

the ccurPMFC_VoltsToData() library call. This call requires as an argument a pointer to the

ccurpmfc_volt_convert_t structure that holds the current DAC configuration information.

b) Alternatively, the user can use the ccurPMFC_Fast_Memcpy() library call to copy a consecutive set of raw

values from a local buffer to the channel registers.

c) Another method to transfer the contents of a consecutive set of raw values in a local buffer to channel

registers is to use the ccurPMFC_Transfer_Data() library routine. The advantage of this call is that it allows

the user to transfer the data via DMA or Programmed I/O. If this call is going to use DMA, then the

transmitting user buffer must be a buffer that can allow the board to perform DMA reads. This buffer can be

obtained with the help of the ccurPMFC_MMap_Physical_Memory() library call.

d) Another approach is for the user to make use of the driver to write to the DAC channel registers. In this case,

the user needs to first select the appropriate channel write mode operation (Programmed I/O or DMA) with

the ccurPMFC_DAC_Set_Driver_Write_Mode() library call and then call the ccurPMFC_Write() routine to

write to the raw channel registers. At present, the driver does NOT support DMA transfers. In this case (i.e.

PIO mode), any buffer (not necessarily a DMA capable one) can be supplied to the ccurPMFC_Write() call.

e) Finally, the ccurPMFC_DAC_Write_Channels() library call not only allows the user to select individual

channels via a channel mask, but also allows the user to supply floating point voltages and lets the call

perform the necessary conversion to raw data prior to writing the channel registers.

The user has the option to supply a NULL pointer instead of the dac_csr argument. In this case the

ccurPMFC_DAC_Write_Channels() call will internally extract the current hardware DAC configuration prior

to computing the raw data. This would add considerable overhead to the call if it is being called multiple

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 10 of 18

times. Alternatively, the user could first determine the current DAC configuration using the

ccurPMFC_DAC_Get_CSR() first and then supplying the current configuration to the dac_csr argument in

the following ccurPMFC_DAC_Write_Channels() calls, with the assumption that the DAC configuration is

not going to change for the duration of the writes.

Additionally, this call always sets bit 31(sync update flag) in the raw data for the last channel. In this way, if

the user had set the operational mode to Synchronized for any DACs, all channels for the DACs will be sent

out simultaneously by the hardware. There is therefore no need for the user to set the last channel with bit 31

when using this call, in case they wanted outputs of channels to be synchronized.

3.1.2 DAC FIFO

This mechanism allows the hardware to convert raw sample voltages placed in the DAC FIFO by the user and

synchronously output analog signals on the selected DAC channels on every clock cycle. Once the clocks have

started (after programming the DACs and clocks), the board will continuously convert the raw sample voltages in

the DAC FIFO for the selected DAC channels and output them at the programmed clock rate.

The user can select which channels are to be converted by the hardware and placed in the DAC FIFO with the

channel selection mask supplied to the ccurPMFC_DAC_Set_Fifo_Channel_Select() call. Note that for differential

channels, the odd channels will be masked out and outputs will only appear on even numbered channels.

Synchronous output will occur for the set of selected DAC channels either sequentially or simultaneously based on

the update mode selection of Immediate or Synchronized.

Care must be taken to ensure that the DAC FIFO does not get empty (underflow) or go beyond full (overflow),

otherwise synchronous signal generation will be compromised. If this occurs, the DAC FIFO should be reset with

the ccurPMFC_DAC_Reset_Fifo() call to empty the DAC FIFO and resume from a known state. At any time, the

ccurPMFC_DAC_Get_Fifo_Info() call can be invoked to determine the status of the DAC FIFO.

Unlike the samples in the ADC FIFO which contain the raw sample data and the associated channel number, the

DAC FIFO samples do not contain channel number. Once sampling has resumed, the hardware will map each

sample in the DAC FIFO with the channel selection mask. In order to guarantee synchronization between the

samples in the DAC FIFO and the channel selection mask, it is necessary to perform a DAC FIFO reset with the

ccurPMFC_DAC_Reset_Fifo() call prior to commencing sample conversion. Additionally, the channel selection

mask must not be changed while sampling, otherwise, unpredictable results will occur as the sample to channel

association will be lost.

If the method to place samples in the DAC FIFO is too slow, the user may consider either selecting fewer channels

being scanned or reducing the sample collection clock rate.

Recommended method of data collection is to start the clocks, let them settle and then select a set of channels

whose samples are going to be placed in the DAC FIFO and then reset the DAC FIFO and start writing samples

into it for selected channels.

There are various methods available at the disposal of the user to write to the DAC FIFO so that the hardware can

convert the samples to analog signals. Each has its own merit, limitations and performance impact and left to the

sole discretion of the user as to the method to use.

a) Advanced users can access this register directly via memory mapping, and bypassing the API, however, care

must be taken in performing any synchronization with any other applications accessing the board at the same

time, since all safety locking will be bypassed. Failure to do so will result in unpredictable results.

The memory mapped pointer local_ptr can be obtained by using the ccurPMFC_Get_Library_Info() call.

Once the pointer is available, the channels can be accessed via the DAC_FifoData FIFO register.

If the user wishes to determine the raw data for a given floating point voltage, they can do so with the help of

the ccurPMFC_VoltsToData() library call. This call requires as an argument a pointer to the

ccurpmfc_volt_convert_t structure that holds the current DAC configuration information.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 11 of 18

b) Another method to transfer the contents of a consecutive set of raw values in a local buffer to the DAC FIFO

is to use the ccurPMFC_Transfer_Data() library routine. The advantage of this call is that it allows the user to

transfer the data via DMA or Programmed I/O. If this call is going to use DMA, then the transmitting user

buffer must be a buffer that can allow the board to perform DMA reads. This buffer can be obtained with the

help of the ccurPMFC_MMap_Physical_Memory() library call.

c) Another approach is for the user to make use of the driver to write to the DAC FIFO. In this case, the user

needs to first select the appropriate channel write mode operation (Programmed I/O or DMA) with the

ccurPMFC_DAC_Set_Driver_Write_Mode() library call and then call the ccurPMFC_Write() routine to write

raw data to the DAC FIFO. At present, the driver does NOT support DMA transfers. In this case (i.e. PIO

mode), any buffer (not necessarily a DMA capable one) can be supplied to the ccurPMFC_Write() call.

4. Digital Input/Output (DIO)

This board supports 96 digital input or output lines. The direction call ccurPMFC_DIO_Set_Ports_Direction() can

be used to select the direction of a set of DIO ports. The lines are grouped into ports where there are four

consecutive lines assigned to a port.

Prior to performing any DIO operation, it needs to be activated with the ccurPMFC_DIO_Activate() API call.

Without this activation, all other DIO calls will fail.

The DIO can operate in either the normal DIO mode or the custom mode depending on whether the firmware

loaded on the FPGA is a multi-function firmware or custom firmware. The ccurPMFC_DIO_Set_Mode() call is

used to select the mode, which should match the type of firmware loaded, otherwise results will be unpredictable.

For the rest of this discussion, we will be concentrating on the normal DIO mode.

The DIO also provides a capability to detect a change-of-state on any input line with the generation of an interrupt.

4.1.1 Digital Input

User can program 1 to 24 ports as inputs with the help of the ccurPMFC_DIO_Set_Ports_Direction() call. A read

issued to the lines associated with the input ports using the ccurPMFC_DIO_Read_Input_Channel_Registers()

call will return the external digital signal connected to these lines. If this call is used to read ports programmed as

outputs, then what is returned to the user is the output signals sent by the card to the external lines. In this way, a

user can effectively perform an internal loopback of output lines.

The user has two modes of operation for reading the input channels:

 Continuous

 Snapshot (Simultaneously)

4.1.1.1 Continuous Mode

This is the normal mode of operation where the user receives asynchronously the current state of each channel for

every read. It is therefore possible that during the single read ccurPMFC_DIO_Read_Input_Channel_Registers()

call, channels could change their current state, thus not reflecting the instantaneous state of all the channels.

If this is the desired mode of operation, the user needs to first issue the ccurPMFC_DIO_Set_Input_Snapshot()

call with the CCURPMFC_DIO_INPUT_OPERATION_CONTINUOUS option. This can be followed by multiple

input channel reads with the ccurPMFC_DIO_Read_Input_Channel_Registers() call and the dio_snapshot

argument set to the CCURPMFC_DO_NOT_CHANGE option.

If performance is not an issue, the user can skip the initial ccurPMFC_DIO_Set_Input_Snapshot() call and simply

perform the input channel reads with the CCURPMFC_DIO_INPUT_OPERATION_CONTINUOUS option.

4.1.1.2 Snapshot Mode

This mode of operation allows the user to receive all selected channels current state instantantanously for every

read, i.e. takes a snapshot of the selected channels.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 12 of 18

If this is the desired mode of operation, the user can simply use the

ccurPMFC_DIO_Read_Input_Channel_Registers() call with the dio_snapshot argument set to the

CCURPMFC_DIO_INPUT_OPERATION_SNAPSHOT. There is no need to issue the initial

ccurPMFC_DIO_Set_Input_Snapshot() call.

Note: As long the board is operating in the snapshot mode, the hardware will reflect the

instantaneous state of all the input channels that were last snapshot, i.e. the most recent hardware

states will not be reflected until another snapshot was issued.

4.1.1.3 Change-Of-State

The card provides capability to detect when a digital input line changes state. Detection can be for either for rising

edge, falling edge or level detection. Level detection is when either rising or falling edge for a channel changes. In

order to detect a change of state for a set of channels, the user will need to enable the selected channels with the

help of the ccurPMFC_DIO_Set_COS_Channels_Enable() API. Additionally the

ccurPMFC_DIO_Set_COS_Channels_Edge_Sense() and the ccurPMFC_DIO_Set_COS_Channels_Mode() APIs

are to be used to select what type of detection is to be performed on the channel.

The user will also need to create an interrupt handler with the help of the

ccurPMFC_Create_UserDioCosInterruptHandler() API. This interrupt handler will be awoken every time a

change of state interrupt has occurred for the selected channels. Useful information will be provided to enable the

user to determine the cause of the interrupt. User needs to ensure that the duration of processing in the user

interrupt handler should be kept to a minimal; otherwise, there is a possibility of missing a change of state

detection while it is in the routine.

Proper shielding and priority of both the application and driver needs to be conducted to ensure that no change of

state is lost (overflow condition) or a user interrupt is missed. Redhawk provides the ability to shield and run

applications at high priority. For example, to run the change-of-state test ccurpmfc_dio_intr that is supplied with

this driver, you can follow similar steps for your system:

=== as root ===

shield –a 2, 4-5 (shield processors 2, 4 and 5)

cat /proc/ccurpmfc (get board irq – in this case it is ‘irq=56’)

echo 4 > /proc/irq/56/smp_affinity (direct board irq to be handled by processor 2)

(if irq ‘56’ is not present in the proc/irq directory, then you will need to start the test at least once to get it

 assigned by the kernel)

run –b4-5 ./ccurpmfc_dio_intr

4.1.2 Digital Output

User can program 1 to 24 ports as outputs with the help of the ccurPMFC_DIO_Set_Ports_Direction() call. A

write issued to the output registers with the ccurPMFC_DIO_Write_Output_Channel_Registers() call will cause

the output registers to be written to. Those ports that have their direction as outputs will result in the digital signals

being routed to the external lines. No routing of digital signals to external lines will occur for those lines whose

ports have been configured as inputs. Those output channels that were written to ports that were configured as

inputs will not output their digital signals to the external lines until the port’s directions were switched to outputs.

At any time, the users can read back the output registers that were last written to with the

ccurPMFC_DIO_Read_Output_Channel_Registers() call.

The user has two modes of operation for writing the output channels:

 Continuous

 Synchronous (Simultaneously)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 13 of 18

4.1.2.1 Continuous Mode

This is the normal mode of operation where the writes to the output registers will immediately appear on the

external output lines. It is therefore possible that during the single write

ccurPMFC_DIO_Write_Output_Channel_Registers() call, simultaneous output of channels would not occur.

If this is the desired mode of operation, the user needs to first issue the ccurPMFC_DIO_Set_Output_Sync() call

with the CCURPMFC_DIO_OUTPUT_OPERATION_CONTINUOUS option. This can be followed by multiple

output channel writes with the ccurPMFC_DIO_Write_Output_Channel_Registers() call and the dio_sync

argument set to the CCURPMFC_DO_NOT_CHANGE option.

If performance is not an issue, the user can skip the initial ccurPMFC_DIO_Set_Output_Sync() call and simply

perform the output channel writes with the CCURPMFC_DIO_OUTPUT_OPERATION_CONTINUOUS option.

4.1.2.2 Synchronous Mode

This mode of operation allows the user to write to all the selected channels and output them simultaneously i.e.

synchronize the output channels.

If this is the desired mode of operation, the user needs to first issue the ccurPMFC_DIO_Set_Output_Sync() call

with the CCURPMFC_DIO_OUTPUT_OPERATION_SYNC option. This can be followed by multiple output

channel writes with the ccurPMFC_DIO_Write_Output_Channel_Registers() call and the dio_sync argument set

to the CCURPMFC_DIO_OUTPUT_OPERATION_SYNC option.

Note: As long the board is operating in synchronous mode, the hardware will reflect the state of

the output registers after a synchronization of channels occur, i.e. change will occur on the output

lines only after the writes to the output registers are followed by a synchronization of outputs.

5. Reading and Writing to the card

This card has the ability to perform reads and writes to the card in four ways.

1. Programmed I/O

2. Basic DMA (Direct Memory Access)

3. Modular Scatter-Gather DMA

Of the four approaches, the programmed I/O is the slowest, however, it gives the user the ability to access any

region on the card to read and write to it. The restrictions are of course, if a region is a read-only region then writes

to it will not take place and vice versa. This approach also utilizes the most CPU and PCI bandwidth. It is good for

small size read or write operations.

Basic DMA is faster than programmed I/O when a larger region is read or written to. It also has the advantage of

reducing the CPU bandwidth since once the DMA operation commences, entire transfer occurs between the card

and memory without CPU intervention. Since there is a finite setup time to initialize the DMA, it is only useful for

large transfers as the overhead of setup would offset any gains for smaller transfers. Each call to the Basic DMA

engine causes a single transfer read or write operation. You can also use interrupts to determine the end of

transmission instead of polling. In latter case is faster response while the former uses less CPU overhead.

Modular Scatter-Gather DMA is similar to the Basic DMA with two differences. It is a lot faster that the Basic

DMA and the user has the ability to setup multiple DMA accesses with a single call.

The following calls can assist the user in performing the I/O:

1. Programmed I/O

 ccurPMFC_Fast_Memcpy()

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 14 of 18

 ccurPMFC_Fast_Memcpy_Unlocked()

 ccurPMFC_Fast_Memcpy_Unlocked_FIFO()

 ccurPMFC_Transfer_Data()

 ccurPMFC_Get_Mapped_Local_Ptr() // pointer to the card local memory - advanced users only

 ccurPMFC_Read() // for reading ADC channels

 ccurPMFC_ADC_Read_Channels() // for reading ADC channels

 ccurPMFC_ADC_Read_Channels_Calibration() // for reading ADC channel calibration values

 ccurPMFC_DAC_Read_Channels() // for reading DAC channels

 ccurPMFC_DAC_Read_Channels_Calibration() // for reading DAC channel calibration values

 ccurPMFC_DAC_ReadBack_Channels // for reading DAC readback channels

 ccurPMFC_DAC_Write_Channels() // for writing to DAC channels

 ccurPMFC_Write() // for writing DAC channels

 ccurPMFC_DAC_Write_Channels_Calibration() // for writing to DAC channel calibration

 ccurPMFC_Get_Value() // to read specific values on the board registers

 ccurPMFC_Set_Value() // to write specific values to the board registers

2. Basic DMA

 ccurPMFC_Transfer_Data()

 ccurPMFC_DMA_Configure()

ccurPMFC_DMA_Fire()

3. Modular Scatter-Gather DMA

 ccurPMFC_Transfer_Data() // single MsgDma transfer

 ccurPMFC_MsgDma_Seize() // single MsgDma transfer

ccurPMFC_MsgDma_Configure_Single()

 ccurPMFC_MsgDma_Fire_Single()

ccurPMFC_MsgDma_Release()

 ccurPMFC_MsgDma_Seize() // multiple MsgDma transfer

ccurPMFC_MsgDma_Configure_Descriptor()

ccurPMFC_MsgDma_Setup()

ccurPMFC_MsgDma_Fire()

ccurPMFC_MsgDma_Release()

6. SDRAM

This card includes a 256 Mega-Word SDRAM. Currently, no memory has been reserved for internal use.

Clock 7 is internally assigned to SDRAM by the hardware and it needs to be programmed and running at 10MHz

prior to any SDRAM operation.

Once clock 7 is programmed and running, the SDRAM needs to be activated with the

ccurPMFC_SDRAM_Activate() API call. Without this activation, all other SDRAM calls will fail.

The user can read or write to any word within the SDRAM with the use of the ccurPMFC_SDRAM_Read() and

ccurPMFC_SDRAM_Write() calls respectively. All operations are word oriented.

6.1.1 SDRAM Read

Typically a read operation consists of reading a set of words from a given word offset within the SDRAM. To

perform this operation, first ensure that the SDRAM is in the read incrementing mode by setting the

read_auto_increment argument in the ccurPMFC_SDRAM_Set_CSR() call to

CCURPMFC_SDRAM_READ_AUTO_INCREMENT_ENABLE. This call need only be done once. The user can

then issue the ccurPMFC_SDRAM_Read() with the word offset specified in Offset and the word size in Size.

Though the hardware allows the user to disable the auto incrementing of the read address, it is not normally used

in this mode. If read auto incrementing is disabled, the same word will be read repeatedly.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 15 of 18

6.1.2 SDRAM Write

Typically a write operation consists of writing a set of words to a given word offset within the SDRAM. To

perform this operation, first ensure that the SDRAM is in the write incrementing mode by setting the

write_auto_increment argument in the ccurPMFC_SDRAM_Set_CSR() call to

CCURPMFC_SDRAM_WRITE_AUTO_INCREMENT_ENABLE. This call need only be done once. The user can

then issue the ccurPMFC_SDRAM_Write() with the word offset specified in Offset and the word size in Size.

Though the hardware allows the user to disable the auto incrementing of the write address, it is not normally used

in this mode. If write auto incrementing is disabled, all the words will be written to the same offset within the

SDRAM.

7. Clocks

This FPGA supports a total of ten clock generators Clock 0 to Clock 9. Following are their assignments:

 Clock 0 to 6 – for ADC or DAC

 Clock 7 – for SDRAM

 Clock 8 and 9 – Reserved

Currently, users can select any of the seven clocks (Clock 0 to 6) for ADC or DAC. They can also use the same

clock if both ADC and DAC are to run at the same clock speed.

Clock 7 is only used by the SDRAM and must be programmed and running at 10MHz prior to performing any

SDRAM operations.

Though there are several API calls to control the clock generator, it is recommended that they be left to the

advanced users to control as they require in depth knowledge of the internals of the hardware and workings of the

clock generator. For most users, the following API calls should suffice to handle most situations:

 ccurPMFC_Reset_Clock()

 ccurPMFC_Compute_All_Output_Clocks()

 ccurPMFC_Program_All_Output_Clocks()

 ccurPMFC_Clock_Get_Generator_Info()

Due to the complexity of programming the clock generator and due to hardware limitations (different clocks

sharing same resources), a user cannot append to or change already running clocks. If multiple clocks are to be

used, then the user needs to program all the clocks with the single call prior to commencing.

7.1.1 Reset All Clocks

This call simply resets and disables all the clocks on the board. Not much can be done (other than DIO) with the

card until the clocks are programmed and running.

7.1.2 Compute All Output Clocks

Any of the ten clocks can be selected to be programmed with any frequency ranging from 1 Hz to 250 MHz. Since

the clocks are sharing hardware resources, there may be certain frequency and clock combinations that will make

programming the board impossible. In this case, the user has the option to select fewer clocks, change the

frequencies or increase the acceptable tolerance for desired frequencies.

The user can use the ccurPMFC_Compute_All_Output_Clocks() call to see if their combination of clock

programming is going to work. No actual programming of the hardware takes place and therefore it should not

interfere with any other hardware operation. If the call succeeds, it returns detailed information in the AllClocks

argument for each of the clocks. Users can decide whether to program the clock generator with the same

information using the ccurPMFC_Program_All_Output_Clocks() call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 16 of 18

7.1.3 Program All Output Clocks

This call first resets all the clock generators and then programs them with the desired frequencies supplied to the

call. If any components (e.g. ADC, DAC, or SDRAM) are operational, they will no longer work until the

corresponding clocks have been re-programmed. It is recommended to stop all components that are using the

clocks prior to reprogramming the clock generators; otherwise, the component operation will be compromised.

7.1.4 Get Clock Generator Information

This call provides detailed information for any of the selected clock generators in the CgInfo argument of the

ccurPMFC_Clock_Get_Generator_Info() call.

8. Calibration

For accurate representation of samples, users can perform calibration of ADC or DAC channels prior to sampling.

ADC calibration makes use of either the on-board reference voltage or an external input. DAC calibration uses the

ADC input channels to read-back analog output signals. Hence, it is recommended that the ADC be calibrated first

prior to calibrating the DAC channels.

8.1.1 ADC Calibration

The simplest way to calibrate all the channels using the internal reference voltage is to use the single call

ccurPMFC_ADC_Perform_Auto_Calibration(). This call requires the ADC and the clocks to be in an active state,

otherwise it will fail. In normal circumstances, both are active so there is no need to activate them. This call first

programs clock generator 0 to the maximum ADC clock frequency and associates all the ADCs with this clock. It

also programs the ADCs for two’s complement, bi-polar 10 volts operation and then calibrates ADC channels for

offset, positive reference and finally negative reference.

External ADC calibration is more involved as the user needs to interactively supply the appropriate input signals.

The user can perform external calibration by supplying zero volts signal to the selected channels and using the

ccurPMFC_ADC_Perform_External_Offset_Calibration() call. Next, they can perform positive calibration by

supplying an external positive signal to the selected channels and using the

ccurPMFC_ADC_Perform_External_Positive_Calibration() call with the ReferenceVoltage argument set to the

value of the external input signal and finally supplying a negative signal to the selected channels and using the

_ccurPMFC_ADC_Perform_External_Negative_Calibration() call with the ReferenceVoltage argument set to the

negative signal supplied.

If users prefer that the hardware not perform any calibration for specific channels, one can do that with the use of

the ccurPMFC_ADC_Set_Offset_Cal() call with 0 volts offset and a gain of 1 for the

ccurPMFC_ADC_Set_Positive_Cal() and ccurPMFC_ADC_Set_Negative_Cal() calls. Users can skip calibration

data for channels being update by setting the corresponding channel with the CCURPMFC_DO_NOT_CHANGE

flag instead.

Note: Since the ADC calibration programs the clock generator for clock 0 at the maximum ADC

frequency, it is recommended to first complete auto calibration before programming the clocks

for later use.

8.1.2 DAC Calibration

Caution: Anytime the DAC channels are being calibrated, full scale signals are driven on the

output channels. It is recommended to disconnect the outputs from any external devices if there is

any possibility of damaging them during calibration.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 17 of 18

For accurate DAC calibration of channels, the user must first enable the ADC and complete its calibration. Users

can use the ccurPMFC_DAC_Perform_Auto_Calibration() call to perform DAC calibration. Since the DAC is

fairly accurate before calibration, you may not see any change to the calibrated DAC offset voltages.

Note: Since the ADC channels are used for DAC calibration, the clocks have to be programmed

for sample collection. It is therefore necessary to complete DAC calibration prior to any

programming of the clocks for later use.

9. Serial PROM

The board contains a Serial Prom that is 1024 short words (2048 bytes) deep. Information written to the Serial

Prom is preserved and contains vital board information and should not be erased or changed by the user.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be reproduced,

transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied, under any patent,

copyright or trade secret right is granted or implied by the conveyance of this document.
 Page 18 of 18

This page intentionally left blank

