

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 1 of 28

Software Interface
CCURPWM (WC-PWM-1012 Output)

PCIe 12-Channel Pulse Width
Modulation Output

Card (PWM)

Driver ccurpwm (WC-PWM-1012)

OS RedHawk

Vendor Concurrent Real-Time, Inc.

Hardware PCIe 12-Channel Pulse Width Modulation Output Card (CP-
PWM-1012)

Date August 23, 2018 rev 2018.1

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 2 of 28

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 3 of 28

Table of Contents

1. INTRODUCTION ... 5

1.1 Related Documents .. 5

2. SOFTWARE SUPPORT .. 5

2.1 Direct Driver Access ... 5
2.1.1 open(2) system call ... 5
2.1.2 ioctl(2) system call ... 5
2.1.3 mmap(2) system call ... 7

2.2 Application Program Interface (API) Access .. 8
2.2.1 Ccurpwm_Add_Irq() .. 8
2.2.2 Ccurpwm_Clear_Driver_Error() ... 9
2.2.3 Ccurpwm_Clear_Lib_Error() ... 9
2.2.4 Ccurpwm_Close() .. 9
2.2.5 Ccurpwm_Disable_Pci_Interrupts()... 10
2.2.6 Ccurpwm_Enable_Pci_Interrupts() ... 10
2.2.7 Ccurpwm_Fast_Memcpy() .. 10
2.2.8 Ccurpwm_Fast_Memcpy_Unlocked() ... 10
2.2.9 Ccurpwm_Get_Driver_Error() ... 11
2.2.10 Ccurpwm_Get_Info() ... 11
2.2.11 Ccurpwm_Get_Lib_Error() .. 13
2.2.12 Ccurpwm_Get_Mapped_Config_Ptr() ... 13
2.2.13 Ccurpwm_Get_Mapped_Local_Ptr() ... 14
2.2.14 Ccurpwm_Get_Physical_Memory()... 14
2.2.15 Ccurpwm_Get_PWM() .. 15
2.2.16 Ccurpwm_Get_PWM_Individual() ... 15
2.2.17 Ccurpwm_Get_Value() .. 16
2.2.18 Ccurpwm_Initialize_Board() .. 17
2.2.19 Ccurpwm_MMap_Physical_Memory() .. 17
2.2.20 Ccurpwm_Munmap_Physical_Memory() .. 18
2.2.21 Ccurpwm_NanoDelay() ... 18
2.2.22 Ccurpwm_Open() .. 18
2.2.23 Ccurpwm_PWM_Resync() .. 19
2.2.24 Ccurpwm_Read() .. 19
2.2.25 Ccurpwm_Remove_Irq() ... 20
2.2.26 Ccurpwm_Reset_Board() .. 20
2.2.27 Ccurpwm_Set_PWM() ... 20
2.2.28 Ccurpwm_Set_PWM_Individual() ... 21
2.2.29 Ccurpwm_Set_Value() .. 22
2.2.30 Ccurpwm_Write()... 23

3. TEST PROGRAMS .. 23

3.1 Direct Driver Access Example Tests .. 23
3.1.1 ccurpwm_dump ... 23
3.1.2 ccurpwm_reg ... 24
3.1.3 ccurpwm_tst .. 26
3.1.4 ccurpwm_rdreg .. 26
3.1.5 ccurpwm_wreg .. 27

3.2 Application Program Interface (API) Access Example Test 27
3.2.1 ccurpwm_tst_lib ... 27

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 4 of 28

This page intentionally left blank

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 5 of 28

1. Introduction

This document provides the software interface to the ccurpwm driver which communicates with the
Concurrent Real-Time PCI Express 12-Channel Pulse Width Modulation Output Card (CP-PWM-
1012).

The software package that accompanies this board provides the ability for advanced users to
communicate directly with the board via the driver ioctl(2) and mmap(2) system calls. When
programming in this mode, the user needs to be intimately familiar with both the hardware and the
register programming interface to the board. Failure to adhere to correct programming will result in
unpredictable results.

Additionally, the software package is accompanied with an extensive set of application
programming interface (API) calls that allow the user to access all capabilities of the board. The API
allows the user the ability to communicate directly with the board through the ioctl(2) and mmap(2)
system calls. In this case, there is a risk of conflicting with API calls and therefore should only be
used by advanced users who are intimately familiar with, the hardware, board registers and the
driver code.

Various example tests have been provided in the test directories to assist the user in writing their
applications.

1.1 Related Documents

• Pulse Width Output Card Installation on RedHawk Release Notes by Concurrent Real-Time.

2. Software Support

Software support is provided for users to communicate directly with the board using the kernel
system calls (Direct Driver Access) or the supplied API. Both approaches are identified below to
assist the user in software development.

2.1 Direct Driver Access

2.1.1 open(2) system call

In order to access the board, the user first needs to open the device using the standard system call
open(2).

 int fp;

 fp = open(“/dev/ccurpwm0”, O_RDWR);

 The file pointer ‘fp’ is then used as an argument to other system calls. The device name specified is
of the format “/dev/ccurpwm<num>” where num is a digit 0..9 which represents the board number
that is to be accessed.

2.1.2 ioctl(2) system call

This system call provides the ability to control and get responses from the board. The nature of the
control/response will depend on the specific ioctl command.

int status;

int arg;

status = ioctl(fp, <IOCTL_COMMAND>, &arg);

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 6 of 28

where ‘fp’ is the file pointer that is returned from the open(2) system call. <IOCTL_COMMAND> is
one of the ioctl commands below and arg is a pointer to an argument that could be anything and is
dependent on the command being invoked. If no argument is required for a specific command, then
set to NULL.

Driver IOCTL command:

IOCTL_CCURPWM_ADD_IRQ

IOCTL_CCURPWM_DISABLE_PCI_INTERRUPTS

IOCTL_CCURPWM_ENABLE_PCI_INTERRUPTS

IOCTL_CCURPWM_GET_DRIVER_ERROR

IOCTL_CCURPWM_GET_DRIVER_INFO

IOCTL_CCURPWM_GET_PHYSICAL_MEMORY

IOCTL_CCURPWM_INIT_BOARD

IOCTL_CCURPWM_MAIN_CONTROL_REGISTERS

IOCTL_CCURPWM_MMAP_SELECT

IOCTL_CCURPWM_NO_COMMAND

IOCTL_CCURPWM_PCI_BRIDGE_REGISTERS

IOCTL_CCURPWM_PCI_CONFIG_REGISTERS

IOCTL_CCURPWM_REMOVE_IRQ

IOCTL_CCURPWM_RESET_BOARD

IOCTL_CCURPWM_ADD_IRQ: This ioctl does not have any arguments. Its purpose is to setup the
driver interrupt handler to handle interrupts. This driver currently does not use interrupts for DMA
and hence there is no need to use this call. This ioctl is only invoked if the user has issued the
IOCTL_CCURPWM_REMOVE_IRQ call earlier to remove the interrupt handler.

IOCTL_CCURPWM_DISABLE_PCI_INTERRUPTS: This ioctl does not have any arguments.
Currently, it does not perform any operation.

IOCTL_CCURPWM_ENABLE_PCI_INTERRUPTS: This ioctl does not have any arguments.
Currently, it does not perform any operation.

IOCTL_CCURPWM_GET_DRIVER_ERROR: The argument supplied to this ioctl is a pointer to the
ccurpwm_user_error_t structure. Information on the structure is located in the ccurpwm_user.h
include file. The error returned is the last reported error by the driver. If the argument pointer is
NULL, the current error is reset to CCURPWM_SUCCESS.

IOCTL_CCURPWM_GET_DRIVER_INFO: The argument supplied to this ioctl is a pointer to the
ccurpwm_ ccurpwm_driver_info_t structure. Information on the structure is located in the
ccurpwm_user.h include file. This ioctl provides useful driver information.

IOCTL_CCURPWM_GET_PHYSICAL_MEMORY: The argument supplied to this ioctl is a pointer
to the ccurpwm_phys_mem_t structure. Information on the structure is located in the
ccurpwm_user.h include file. If physical memory is not allocated, the call will fail, otherwise, the call
will return the physical memory address and size in bytes. The only reason to request and get
physical memory from the driver is to allow the user to perform DMA operations and bypass the
driver and library. Care must be taken when performing user-level DMA as incorrect programming
could lead to unpredictable results including but not limited to corrupting the kernel and any device
connected to the system.

IOCTL_CCURPWM_INIT_BOARD: This ioctl does not have any arguments. This call resets the
board to a known initial default state. This call is currently identical to the
IOCTL_CCURPWM_RESET_BOARD call.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 7 of 28

IOCTL_CCURPWM_MAIN_CONTROL_REGISTERS: This ioctl dumps all the PCI Main Control
registers and is mainly used for debug purpose. The argument to this ioctl is a pointer to the
ccurpwm_main_control_register_t structure. Raw 32-bit data values are read from the board and
loaded into this structure.

IOCTL_CCURPWM_MMAP_SELECT: The argument to this ioctl is a pointer to the
ccurpwm_mmap_select_t structure. Information on the structure is located in the ccurpwm_user.h
include file. This call needs to be made prior to the mmap(2) system call so as to direct the mmap(2)
call to perform the requested mapping specified by this ioctl. The three possible mappings that are
performed by the driver are to mmap the local register space
(CCURPWM_SELECT_LOCAL_MMAP), the configuration register space
(CCURPWM_SELECT_CONFIG_MMAP) and a physical memory
(CCURPWM_SELECT_PHYS_MEM_MMAP) that is created by the mmap(2) system call.

IOCTL_CCURPWM_NO_COMMAND: This ioctl does not have any arguments. It is only provided
for debugging purpose and should not be used as it serves no purpose for the user.

IOCTL_CCURPWM_PCI_BRIDGE_REGISTERS: This ioctl dumps all the PCI bridge registers and
is mainly used for debug purpose. The argument to this ioctl is a pointer to the
ccurpwm_pci_bridge_register_t structure. Raw 32-bit data values are read from the board and
loaded into this structure.

IOCTL_CCURPWM_PCI_CONFIG_REGISTERS: This ioctl dumps all the PCI configuration
registers and is mainly used for debug purpose. The argument to this ioctl is a pointer to the
ccurpwm_pci_config_reg_addr_mapping_t structure. Raw 32-bit data values are read from the
board and loaded into this structure.

IOCTL_CCURPWM_REMOVE_IRQ: This ioctl does not have any arguments. Its purpose is to
remove the interrupt handler that was previously setup. This driver currently does not use interrupts
for DMA and hence there is no need to use this call. The user should not issue this call, otherwise,
reads will time out.

IOCTL_CCURPWM_RESET_BOARD: This ioctl does not have any arguments. This call resets the
board to a known initial default state. This call is currently identical to the
IOCTL_CCURPWM_INIT_BOARD call.

2.1.3 mmap(2) system call

This system call provides the ability to map either the local board registers, the configuration board
registers or create and map a physical memory that can be used for user DMA. Prior to making this
system call, the user needs to issue the ioctl(2) system call with the
IOCTL_CCURPWM_MMAP_SELECT command. When mapping either the local board registers or
the configuration board registers, the ioctl call returns the size of the register mapping which needs
to be specified in the mmap(2) call. In the case of mapping a physical memory, the size of physical
memory to be created is supplied to the mmap(2) call.

int *munmap_local_ptr;

ccurpwm_local_ctrl_data_t *local_ptr;

ccurpwm_mmap_select_t mmap_select;

unsigned long mmap_local_size;

mmap_select.select = CCURPWM_SELECT_LOCAL_MMAP;

mmap_select.offset=0;

mmap_select.size=0;

 ioctl(fp, IOCTL_CCURPWM_MMAP_SELECT,(void *)&mmap_select);

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 8 of 28

 mmap_local_size = mmap_select.size;

 munmap_local_ptr = (int *) mmap((caddr_t)0, map_local_size,

 (PROT_READ|PROT_WRITE), MAP_SHARED, fp, 0);

 local_ptr = (ccurpwm_local_ctrl_data_t *)munmap_local_ptr;

 local_ptr = (ccurpwm_local_ctrl_data_t *)((char *)local_ptr +

 mmap_select.offset);

if(munmap_local_ptr != NULL)

 munmap((void *)munmap_local_ptr, mmap_local_size);

2.2 Application Program Interface (API) Access

The API is the recommended method of communicating with the board for most users. The following are
a list of calls that are available.

 Ccurpwm_Add_Irq()

 Ccurpwm_Clear_Driver_Error()

 Ccurpwm_Clear_Lib_Error()

 Ccurpwm_Close()

 Ccurpwm_Disable_Pci_Interrupts()

 Ccurpwm_Enable_Pci_Interrupts()

 Ccurpwm_Fast_Memcpy()

 Ccurpem_Fast_Memcpy_Unlocked()

 Ccurpwm_Get_Driver_Error()

 Ccurpwm_Get_Info()

 Ccurpwm_Get_Lib_Error()

 Ccurpwm_Get_Mapped_Config_Ptr()

 Ccurpwm_Get_Mapped_Local_Ptr()

 Ccurpwm_Get_Physical_Memory()

 Ccurpwm_Get_PWM()

 Ccurpwm_Get_PWM_Individual()

 Ccurpwm_Get_Value()

 Ccurpwm_Initialize_Board()

 Ccurpwm_MMap_Physical_Memory()

 Ccurpwm_Munmap_Physical_Memory()

 Ccurpwm_NanoDelay()

 Ccurpwm_Open()

 ccurpwm_PWM_Resync()

 Ccurpwm_Read()

 Ccurpwm_Remove_Irq()

 Ccurpwm_Reset_Board()

 ccurpwm_Set_PWM()

 Ccurpwm_Set_PWM_Individual()

 Ccurpwm_Set_Value()

 Ccurpwm_Write()

2.2.1 Ccurpwm_Add_Irq()

This call will add the driver interrupt handler if it has not been added. Normally, the user should not
use this call unless they want to disable the interrupt handler and then re-enable it.

/**

 int Ccurpwm_Add_Irq(void *Handle)

 Description: By default, the driver assigns an interrupt handler to handle

 device interrupts. If the interrupt handler was removed using

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 9 of 28

 the Ccurpwm_Remove_Irq(), then this call adds it back.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 ***/

2.2.2 Ccurpwm_Clear_Driver_Error()

This call resets the last driver error that was maintained internally by the driver to
CCURPWM_SUCCESS.

 /**

 int Ccurpwm_Clear_Driver_Error(void *Handle)

 Description: Clear any previously generated driver related error.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.3 Ccurpwm_Clear_Lib_Error()

 This call resets the last library error that was maintained internally by the API.

/**

 int Ccurpwm_Clear_Lib_Error(void *Handle)

 Description: Clear any previously generated library related error.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 **

2.2.4 Ccurpwm_Close()

 This call is used to close an already opened device using the Ccurpwm_Open() call.

/**

 int Ccurpwm_Close(void *Handle)

 Description: Close a previously opened device.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 10 of 28

2.2.5 Ccurpwm_Disable_Pci_Interrupts()

The purpose of this call is to disable PCI interrupts. Currently, this call performs no action.

/**

 int Ccurpwm_Disable_Pci_Interrupts(void *Handle)

 Description: Disable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.6 Ccurpwm_Enable_Pci_Interrupts()

The purpose of this call is to enable PCI interrupts. Currently, this call performs no action.

/**

 int Ccurpwm_Enable_Pci_Interrupts(void *Handle)

 Description: Enable interrupts being generated by the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.7 Ccurpwm_Fast_Memcpy()

The purpose of this call is to provide a fast mechanism to copy between hardware and memory
using programmed I/O. The library performs appropriate locking while the copying is taking place.

/**

 Ccurpwm_Fast_Memcpy()

 Description: Perform fast copy to/from buffer using Programmed I/O

 (WITH LOCKING)

 Input: void *Handle (handle pointer)

 volatile void *Source (pointer to source buffer)

 int SizeInBytes (transfer size in bytes)

 Output: volatile void *Destination (pointer to destination buffer)

 Return: _ccurpwm_lib_error_number_t

 - CCURPWM_LIB_NO_ERROR (successful)

 - CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 - CCURPWM_LIB_NOT_OPEN (device not open)

 ***/

2.2.8 Ccurpwm_Fast_Memcpy_Unlocked()

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 11 of 28

The purpose of this call is to provide a fast mechanism to copy between hardware and memory
using programmed I/O. The library does not perform any locking. User needs to provide external
locking instead.

/***

 Ccurpwm_Fast_Memcpy_Unlocked()

 Description: Perform fast copy to/from buffer using Programmed I/O

 (WITHOUT LOCKING)

 Input: volatile void *Source (pointer to source buffer)

 int SizeInBytes (transfer size in bytes)

 Output: volatile void *Destination (pointer to destination buffer)

 Return: None

 **/

2.2.9 Ccurpwm_Get_Driver_Error()

This call returns the last error generated by the driver.

/**

 int Ccurpwm_Get_Driver_Error(void *Handle, ccurpwm_user_error_t *ret_err)

 Description: Get the last error generated by the driver.

 Input: void *Handle (handle pointer)

 Output: ccurpwm_user_error_t *ret_err (error struct pointer)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

#define CCURPWM_ERROR_NAME_SIZE 64

#define CCURPWM_ERROR_DESC_SIZE 128

typedef struct _ccurpwm_user_error_t {

 uint error; /* error number */

 char name[CCURPWM_ERROR_NAME_SIZE]; /* error name used in driver */

 char desc[CCURPWM_ERROR_DESC_SIZE]; /* error description */

} ccurpwm_user_error_t;

enum {

 CCURPWM_SUCCESS = 0,

 CCURPWM_INVALID_PARAMETER,

 CCURPWM_TIMEOUT,

 CCURPWM_OPERATION_CANCELLED,

 CCURPWM_RESOURCE_ALLOCATION_ERROR,

 CCURPWM_INVALID_REQUEST,

 CCURPWM_FAULT_ERROR,

 CCURPWM_BUSY,

 CCURPWM_ADDRESS_IN_USE,

 CCURPWM_DMA_TIMEOUT,

};

2.2.10 Ccurpwm_Get_Info()

This call returns internal information that is maintained by the driver.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 12 of 28

/**

 int Ccurpwm_Get_Info(void *Handle, ccurpwm_driver_info_t *info)

 Description: Get device information from driver.

 Input: void *Handle (handle pointer)

 Output: ccurpwm_driver_info_t *info (info struct pointer)

 -- char info.version

 -- char *info.built

 -- char *info.module_name[16]

 -- int info.board_type

 -- char *info.board_desc[32]

 -- int info.bus

 -- int info.slot

 -- int info.func

 -- int info.vendor_id

 -- int info.device_id

 -- int info.board_id

 -- int info.firmware

 -- int info.interrupt_count

 -- U_int info.mem_region[].physical_address

 -- U_int info.mem_region[].size

 -- U_int info.mem_region[].flags

 -- U_int info.mem_region[].virtual_address

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

typedef struct

{

 uint physical_address;

 uint size;

 uint flags;

 uint *virtual_address;

} ccurpwm_dev_region_t;

#define CCURPWM_MAX_REGION 32

typedef struct

{

 char version[12]; /* driver version */

 char built[32]; /* driver date built */

 char module_name[16]; /* driver name */

 int board_type; /* board type */

 char board_desc[32]; /* board description */

 int bus; /* bus number */

 int slot; /* slot number */

 int func; /* function number */

 int vendor_id; /* vendor id */

 int device_id; /* device id */

 int board_id; /* board id */

 int firmware; /* firmware number if applicable*/

 int interrupt_count; /* interrupt count */

 int Ccurpwm_Max_Region;/*kernel DEVICE_COUNT_RESOURCE*/

 ccurpwm_dev_region_t mem_region[CCURPWM_MAX_REGION];

} ccurpwm_driver_info_t;

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 13 of 28

2.2.11 Ccurpwm_Get_Lib_Error()

This call provides detailed information about the last library error that was maintained by the API.

/**

 int Ccurpwm_Get_Lib_Error(void *Handle, ccurpwm_lib_error_t *lib_error)

 Description: Get last error generated by the library.

 Input: void *Handle (handle pointer)

 Output: ccurpwm_lib_error_t *lib_error (error struct pointer)

 -- uint error (error number)

 -- char name[CCURPWM_LIB_ERROR_NAME_SIZE] (error name)

 -- char desc[CCURPWM_LIB_ERROR_DESC_SIZE] (error description)

 -- int line_number (error line number in lib)

 -- char function[CCURPWM_LIB_ERROR_FUNC_SIZE]

 (library function in error)

 Return: CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 Last Library Error

 **/

typedef struct _ccurpwm_lib_error_t {

 uint error; /* lib error number */

 char name[CCURPWM_LIB_ERROR_NAME_SIZE]; /* error name used in lib */

 char desc[CCURPWM_LIB_ERROR_DESC_SIZE]; /* error description */

 int line_number; /* line number in library */

 char function[CCURPWM_LIB_ERROR_FUNC_SIZE];

 /* library function */

} ccurpwm_lib_error_t;

2.2.12 Ccurpwm_Get_Mapped_Config_Ptr()

If the user wishes to bypass the API and communicate directly with the board configuration
registers, then they can use this call to acquire a pointer to these registers. Please note that any
type of access (read or write) by bypassing the API could compromise the API and results could be
unpredictable. It is recommended that only advanced users should use this call and with extreme
care and intimate knowledge of the hardware programming registers before attempting to access
these registers. For information on the registers, refer to the ccurpwm_user.h include file that is
supplied with the driver.

/**

 int Ccurpwm_Get_Mapped_Config_Ptr(void *Handle,

 ccurpwm_config_local_data_t **config_ptr)

 Description: Get mapped configuration pointer.

 Input: void *Handle (handle pointer)

 Output: ccurpwm_config_local_data_t **config_ptr (config struct ptr)

 -- structure in ccurpwm_user.h

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_NO_CONFIG_REGION (config region not present)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 14 of 28

2.2.13 Ccurpwm_Get_Mapped_Local_Ptr()

If the user wishes to bypass the API and communicate directly with the board control and data
registers, then they can use this call to acquire a pointer to these registers. Please note that any
type of access (read or write) by bypassing the API could compromise the API and results could be
unpredictable. It is recommended that only advanced users should use this call and with extreme
care and intimate knowledge of the hardware programming registers before attempting to access
these registers. For information on the registers, refer to the ccurpwm_user.h include file that is
supplied with the driver.

/**

 int Ccurpwm_Get_Mapped_Local_Ptr(void *Handle,

 ccurpwm_local_ctrl_data_t **local_ptr)

 Description: Get mapped local pointer.

 Input: void *Handle (handle pointer)

 Output: ccurpwm_local_ctrl_data_t **local_ptr (local struct ptr)

 -- structure in ccurpwm_user.h

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.14 Ccurpwm_Get_Physical_Memory()

This call returns to the user the physical memory pointer and size that was previously allocated by
the Ccurpwm_Mmap_Physical_Memory() call. The physical memory is allocated by the user when
they wish to perform their own DMA and bypass the API. Once again, this call is only useful for
advanced users.

/**

 int Ccurpwm_Get_Physical_Memory(void *Handle,

 ccurpwm_phys_mem_t *phys_mem)

 Description: Get previously mmapped() physical memory address and size

 Input: void *Handle (handle pointer)

 Output: ccurpwm_phys_mem_t *phys_mem (mem struct pointer)

 -- void *phys_mem

 -- u_int phys_mem_size

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

typedef struct {

 void *phys_mem; /* physical memory: physical address */

 unsigned int phys_mem_size; /* physical memory: memory size - bytes */

} ccurpwm_phys_mem_t;

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 15 of 28

2.2.15 Ccurpwm_Get_PWM()

This call returns to the user information about a specified wave. The user can specify either
CCURPWM_WAVE_A or CCURPWM_WAVE_B.

/**

 int Ccurpwm_Get_PWM(void *Handle, CCURPWM_WAVE wave, ccurpwm_wave_t *value)

 Description: Return the wave settings of the specified wave.

 Input: void *Handle (handle pointer)

 CCURPWM_WAVE wave (which wave)

 Output: ccurpwm_wave_t *value; (pointer to value)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 **/

typedef enum {

 CCURPWM_WAVE_A=1,

 CCURPWM_WAVE_B,

} CCURPWM_WAVE;

typedef struct

{

 u_int32_t pwm_sine_frequency; /* sine frequency */

 u_int32_t pwm_phase_1; /* phase 1 - 0 to 360 degrees */

 u_int32_t pwm_phase_2; /* phase 2 - 0 to 360 degrees */

 u_int32_t pwm_phase_3; /* phase 3 - 0 to 360 degrees */

 u_int32_t pwm_deadband; /* deadband */

 u_int32_t pwm_PWM_frequency; /* PWM frequency */

} _ccurpwm_raw_wave_t;

typedef struct

{

 double pwm_sine_frequency; /* sine frequency */

 double pwm_phase_1; /* phase 1 - 0 to 360 degrees */

 double pwm_phase_2; /* phase 2 - 0 to 360 degrees */

 double pwm_phase_3; /* phase 3 - 0 to 360 degrees */

 u_int32_t pwm_deadband; /* deadband */

 double pwm_PWM_frequency; /* PWM frequency */

 _ccurpwm_raw_wave_t raw; /* raw data structure */

} ccurpwm_wave_t;

2.2.16 Ccurpwm_Get_PWM_Individual()

This call allows the user to get the individual frequency and duty cycle.

/**

 int Ccurpwm_Get_PWM_Individual(void *Handle, u_int32_t select,

 ccurpwm_individual_t *value)

 Description: Return the individual settings of the specified entry.

 Input: void *Handle (handle pointer)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 16 of 28

 u_int32_t select (which individual)

 Output: ccurpwm_individual_t *value; (pointer to value)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 **/

Select ranges from 0 to (PWM_MAX_PWM_FREQ_REGS-1) individual channels.

typedef struct

{

 u_int32_t pwm_PWM_frequency; /* PWM frequency */

 u_int32_t pwm_duty; /* duty cycle - 0 - 100% */

} _ccurpwm_raw_individual_t;

typedef struct

{

 double pwm_PWM_frequency; /* PWM frequency */

 double pwm_duty; /* duty cycle - 0 - 100% */

 _ccurpwm_raw_individual_t raw; /* raw data structure */

} ccurpwm_individual_t;

2.2.17 Ccurpwm_Get_Value()

This call allows the user to read the board registers. The actual data returned will depend on the
command register information that is requested. Refer to the hardware manual for more information
on what is being returned. Most commands return a pointer to an unsigned integer.

/**

 int Ccurpwm_Get_Value(void *Handle, CCURPWM_CONTROL cmd, void *value)

 Description: Return the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURPWM_CONTROL cmd (register definition)

 Output: void *value; (pointer to value)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_NO_LOCAL_REGION (local region not present)

 **/

typedef enum {

 CCURPWM_STATUS,

 CCURPWM_REVISION,

 CCURPWM_RESYNC,

 CCURPWM_MODE,

 CCURPWM_A_SINE_FREQUENCY,

 CCURPWM_A_PHASE_1,

 CCURPWM_A_PHASE_2,

 CCURPWM_A_PHASE_3,

 CCURPWM_A_DEADBAND,

 CCURPWM_A_PWM_FREQUENCY,

 CCURPWM_B_SINE_FREQUENCY,

 CCURPWM_B_PHASE_1,

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 17 of 28

 CCURPWM_B_PHASE_2,

 CCURPWM_B_PHASE_3,

 CCURPWM_B_DEADBAND,

 CCURPWM_B_PWM_FREQUENCY,

 CCURPWM_INDIV0_PWM_FREQUENCY,

 CCURPWM_INDIV0_DUTY,

 CCURPWM_INDIV1_PWM_FREQUENCY,

 CCURPWM_INDIV1_DUTY,

 CCURPWM_INDIV2_PWM_FREQUENCY,

 CCURPWM_INDIV2_DUTY,

 CCURPWM_INDIV3_PWM_FREQUENCY,

 CCURPWM_INDIV3_DUTY,

 CCURPWM_INDIV4_PWM_FREQUENCY,

 CCURPWM_INDIV4_DUTY,

 CCURPWM_INDIV5_PWM_FREQUENCY,

 CCURPWM_INDIV5_DUTY,

 CCURPWM_INDIV6_PWM_FREQUENCY,

 CCURPWM_INDIV6_DUTY,

 CCURPWM_INDIV7_PWM_FREQUENCY,

 CCURPWM_INDIV7_DUTY,

 CCURPWM_INDIV8_PWM_FREQUENCY,

 CCURPWM_INDIV8_DUTY,

 CCURPWM_INDIV9_PWM_FREQUENCY,

 CCURPWM_INDIV9_DUTY,

 CCURPWM_INDIV10_PWM_FREQUENCY,

 CCURPWM_INDIV10_DUTY,

 CCURPWM_INDIV11_PWM_FREQUENCY,

 CCURPWM_INDIV11_DUTY,

} CCURPWM_CONTROL;

2.2.18 Ccurpwm_Initialize_Board()

This call resets the board to a default initial state. This call is currently identical to the
Ccurpwm_Reset_Board() call.

/**

 int Ccurpwm_Initialize_Board(void *Handle)

 Description: Initialize the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 CCURPWM_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.19 Ccurpwm_MMap_Physical_Memory()

This call is provided for advanced users to create a physical memory of specified size that can be
used for DMA. The allocated DMA memory is rounded to a page size. If a physical memory has
been previously allocated, this call will fail, at which point the user will need to issue the
Ccurpwm_Munmap_Physical_Memory() API call to remove the previously allocated physical
memory.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 18 of 28

/**

 int Ccurpwm_MMap_Physical_Memory(void *Handle, int size, void **mem_ptr)

 Description: Allocate a physical DMA memory for size bytes.

 Input: void *Handle (handle pointer)

 int size (size in bytes)

 Output: void **mem_ptr (mapped memory pointer)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 CCURPWM_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.20 Ccurpwm_Munmap_Physical_Memory()

This call simply removes a physical memory that was previously allocated by the
Ccurpwm_MMap_Physical_Memory() API call.

/**

 int Ccurpwm_Munmap_Physical_Memory(void *Handle)

 Description: Unmap a previously mapped physical DMA memory.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_MUNMAP_FAILED (failed to un-map memory)

 CCURPWM_LIB_NOT_MAPPED (memory not mapped)

 **/

2.2.21 Ccurpwm_NanoDelay()

This call simply delays (loops) for user specified nanoseconds.

/**

 void Ccurpwm_NanoDelay(unsigned long long NanoDelay)

 Description: Delay)loop for user specified nanoseconds.

 Input: unsigned long long NanoDelay (number of nano-secs to delay)

 Output: None

 Return: None

**/

2.2.22 Ccurpwm_Open()

This is the first call that needs to be issued by a user to open a device and access the board
through the rest of the API calls. What is returned is a handle to a void pointer that is supplied as an
argument to the other API calls. The Board_Number is a valid board number [0..9] that is associated
with a physical card. There must exist a character special file /dev/ccurpwm<Board_Number> for
the call to be successful. One character special file is created for each board found when the driver
is successfully loaded.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 19 of 28

The oflag is the flag supplied to the open(2) system call by this API. It is normally a 0, however, the
user may use the O_NONBLOCK option for read(2) calls which will change the default reading in
block mode.

/**

 int Ccurpwm_Open(void **My_Handle, int Board_Number, int oflag)

 Description: Open a device.

 Input: void **Handle (handle pointer to pointer)

 int Board_Number (0-9 board number)

 int oflag (open flags)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 CCURPWM_LIB_ALREADY_OPEN (device already opened)

 CCURPWM_LIB_OPEN_FAILED (device open failed)

 CCURPWM_LIB_ALREADY_MAPPED (memory already mmapped)

 CCURPWM_LIB_MMAP_SELECT_FAILED (mmap selection failed)

 CCURPWM_LIB_MMAP_FAILED (mmap failed)

 **/

2.2.23 Ccurpwm_PWM_Resync()

 This call issues a Resync command to the PWM.

/**

 Ccurpwm_PWM_Resync()

 Description: Issue resync command to the PWM

 Input: void *Handle (handle pointer)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 **/

2.2.24 Ccurpwm_Read()

This call is not supported for this card.

/**

 int Ccurpwm_Read(void *Handle, void *buf, int size, int *bytes_read,

 int *error)

 Description: Perform a read operation.

 Input: void *Handle (handle pointer)

 int size (size of buffer in bytes)

 Output: void *buf (pointer to buffer)

 int *bytes_read (bytes read)

 int *error (returned errno)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IO_ERROR (read failed)

 CCURPWM_LIB_FIFO_OVERFLOW (FIFO overflow)

 **/

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 20 of 28

2.2.25 Ccurpwm_Remove_Irq()

The purpose of this call is to remove the interrupt handler that was previously set up. The interrupt
handler is managed internally by the driver and the library. The user should not issue this call,
otherwise, reads will time out.

/**

 int Ccurpwm_Remove_Irq(void *Handle)

 Description: By default, the driver sets up a shared IRQ interrupt handler

 when the device is opened. Now if for any reason, another

 device is sharing the same IRQ as this driver, the interrupt

 handler will also be entered every time the other shared

 device generates an interrupt. There are times that a user,

 for performance reasons may wish to run the board without

 interrupts enabled. In that case, they can issue this ioctl

 to remove the interrupt handling capability from the driver.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 **/

2.2.26 Ccurpwm_Reset_Board()

This call resets the board to a known initial default state. Additionally, the Converters, Clocks, and
FIFO are reset along with internal pointers and clearing of interrupts. This call is currently identical
to the Ccurpwm_Initialize_Board() call.

/**

 int Ccurpwm_Reset_Board(void *Handle)

 Description: Reset the board.

 Input: void *Handle (handle pointer)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IOCTL_FAILED (driver ioctl call failed)

 CCURPWM_LIB_NO_LOCAL_REGION (local region not present)

 **/

2.2.27 Ccurpwm_Set_PWM()

This call sets information for the specified wave.

/**

 int Ccurpwm_Set_PWM(void *Handle, CCURPWM_WAVE wave, ccurpwm_wave_t *value)

 Description: Set the wave parameters for the specified wave.

 Input: void *Handle (handle pointer)

 CCURPWM_WAVE wave (which wave)

 ccurpwm_wave_t *value; (pointer to value)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 21 of 28

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 **/

typedef enum {

 CCURPWM_WAVE_A=1,

 CCURPWM_WAVE_B,

} CCURPWM_WAVE;

typedef struct

{

 u_int32_t pwm_sine_frequency; /* sine frequency */

 u_int32_t pwm_phase_1; /* phase 1 - 0 to 360 degrees */

 u_int32_t pwm_phase_2; /* phase 2 - 0 to 360 degrees */

 u_int32_t pwm_phase_3; /* phase 3 - 0 to 360 degrees */

 u_int32_t pwm_deadband; /* deadband */

 u_int32_t pwm_PWM_frequency; /* PWM frequency */

} _ccurpwm_raw_wave_t;

typedef struct

{

 double pwm_sine_frequency; /* sine frequency */

 double pwm_phase_1; /* phase 1 - 0 to 360 degrees */

 double pwm_phase_2; /* phase 2 - 0 to 360 degrees */

 double pwm_phase_3; /* phase 3 - 0 to 360 degrees */

 u_int32_t pwm_deadband; /* deadband */

 double pwm_PWM_frequency; /* PWM frequency */

 _ccurpwm_raw_wave_t raw; /* raw data structure */

} ccurpwm_wave_t;

2.2.28 Ccurpwm_Set_PWM_Individual()

This call allows the user to set the individual frequency and duty cycle.

/**

 int Ccurpwm_Set_PWM_Individual(void *Handle, u_int32_t select,

 ccurpwm_individual_t *value)

 Description: Set the individual settings for the specified entry.

 Input: void *Handle (handle pointer)

 u_int32_t select (which individual)

 ccurpwm_individual_t *value; (pointer to value)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 **/

Select ranges from 0 to (PWM_MAX_PWM_FREQ_REGS-1) individual channels.

typedef struct

{

 u_int32_t pwm_PWM_frequency; /* PWM frequency */

 u_int32_t pwm_duty; /* duty cycle - 0 - 100% */

} _ccurpwm_raw_individual_t;

typedef struct

{

 double pwm_PWM_frequency; /* PWM frequency */

 double pwm_duty; /* duty cycle - 0 - 100% */

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 22 of 28

 _ccurpwm_raw_individual_t raw; /* raw data structure */

} ccurpwm_individual_t;

2.2.29 Ccurpwm_Set_Value()

This call allows the advanced user to set the writable board registers. The actual data written will
depend on the command register information that is requested. Refer to the hardware manual for
more information on what can be written to.

Normally, users should not be changing these registers as it will bypass the API integrity and could
result in an unpredictable outcome.

/**

 int Ccurpwm_Set_Value(void *Handle, CCURPWM_CONTROL cmd, int value)

 Description: Set the value of the specified board register.

 Input: void *Handle (handle pointer)

 CCURPWM_CONTROL cmd (register definition)

 int value (value to be set)

 Output: None

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_INVALID_ARG (invalid argument)

 **/

typedef enum {

 CCURPWM_STATUS,

 CCURPWM_REVISION,

 CCURPWM_RESYNC,

 CCURPWM_MODE,

 CCURPWM_A_SINE_FREQUENCY,

 CCURPWM_A_PHASE_1,

 CCURPWM_A_PHASE_2,

 CCURPWM_A_PHASE_3,

 CCURPWM_A_DEADBAND,

 CCURPWM_A_PWM_FREQUENCY,

 CCURPWM_B_SINE_FREQUENCY,

 CCURPWM_B_PHASE_1,

 CCURPWM_B_PHASE_2,

 CCURPWM_B_PHASE_3,

 CCURPWM_B_DEADBAND,

 CCURPWM_B_PWM_FREQUENCY,

 CCURPWM_INDIV0_PWM_FREQUENCY,

 CCURPWM_INDIV0_DUTY,

 CCURPWM_INDIV1_PWM_FREQUENCY,

 CCURPWM_INDIV1_DUTY,

 CCURPWM_INDIV2_PWM_FREQUENCY,

 CCURPWM_INDIV2_DUTY,

 CCURPWM_INDIV3_PWM_FREQUENCY,

 CCURPWM_INDIV3_DUTY,

 CCURPWM_INDIV4_PWM_FREQUENCY,

 CCURPWM_INDIV4_DUTY,

 CCURPWM_INDIV5_PWM_FREQUENCY,

 CCURPWM_INDIV5_DUTY,

 CCURPWM_INDIV6_PWM_FREQUENCY,

 CCURPWM_INDIV6_DUTY,

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 23 of 28

 CCURPWM_INDIV7_PWM_FREQUENCY,

 CCURPWM_INDIV7_DUTY,

 CCURPWM_INDIV8_PWM_FREQUENCY,

 CCURPWM_INDIV8_DUTY,

 CCURPWM_INDIV9_PWM_FREQUENCY,

 CCURPWM_INDIV9_DUTY,

 CCURPWM_INDIV10_PWM_FREQUENCY,

 CCURPWM_INDIV10_DUTY,

 CCURPWM_INDIV11_PWM_FREQUENCY,

 CCURPWM_INDIV11_DUTY,

} CCURPWM_CONTROL;

2.2.30 Ccurpwm_Write()

This call is not supported for this card.

/**

 int Ccurpwm_Write(void *Handle, void *buf, int size, int *bytes_written,

 int *error)

 Description: Perform a write operation.

 Input: void *Handle (handle pointer)

 int size (number of bytes to write)

 Output: void *buf (pointer to buffer)

 int *bytes_written (bytes written)

 int *error (returned errno)

 Return: CCURPWM_LIB_NO_ERROR (successful)

 CCURPWM_LIB_BAD_HANDLE (no/bad handler supplied)

 CCURPWM_LIB_NOT_OPEN (device not open)

 CCURPWM_LIB_IO_ERROR (write failed)

 CCURPWM_LIB_NOT_IMPLEMENTED (call not implemented)

 **/

3. Test Programs

This driver and API are accompanied with an extensive set of test examples. Examples under the
Direct Driver Access do not use the API, while those under Application Program Interface Access
use the API.

3.1 Direct Driver Access Example Tests

These set of tests are located in the …/test directory and do not use the API. They communicate
directly with the driver. Users should be extremely familiar with both the driver and the hardware
registers if they wish to communicate directly with the hardware.

3.1.1 ccurpwm_dump

This is a simple program that dumps the local, configuration, PCI bridge, PCI config and main
control registers.

Usage: ccurpwm_dump -b<device number>

Example display:

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 24 of 28

Device Name : /dev/ccurpwm0

LOCAL Register 0x7ffff7ff5000 Offset=0x0

CONFIG Register 0x7ffff7ff4000 Offset=0x0

======= LOCAL BOARD REGISTERS =========

LBR: @0x0000 --> 0x00010000

LBR: @0x000c --> 0x00000000

...

LBR: @0x07d0 --> 0x00000000

LBR: @0x07dc --> 0x00000000

...

LBR: @0x13f0 --> 0x00000000

LBR: @0x13fc --> 0x00000000

======= LOCAL CONFIG REGISTERS =========

LCR: @0x0000 --> 0xffff8000

LCR: @0x0004 --> 0x00000001

...

LCR: @0x00f4 --> 0x00000000

LCR: @0x00f8 --> 0x00000043

======= PCI CONFIG REG ADDR MAPPING =========

PCR: @0x0000 --> 0x92721542

PCR: @0x0004 --> 0x02b00117

...

PCR: @0x004c --> 0x00000003

PCR: @0x0050 --> 0x00000000

======= PCI BRIDGE REGISTERS =========

PBR: @0x0000 --> 0x811110b5

PBR: @0x0004 --> 0x00100117

...

PBR: @0x010c --> 0x00000000

PBR: @0x0110 --> 0x00000000

======= MAIN CONTROL REGISTERS =========

MCR: @0x0000 --> 0x00000033

MCR: @0x0004 --> 0x8000ff00

...

MCR: @0x0060 --> 0x00000019

MCR: @0x0064 --> 0x00000000

3.1.2 ccurpwm_reg

This is a simple program that dumps the local and configuration registers.

Usage: ccurpwm_reg -b<device number>

Example display:

Device Name: /dev/ccurpwm0

LOCAL Register 0xb7ff8000 Offset=0x0

LOCAL REGS #### (length=32768)

+LCL+ 0 00010000 00020000 00000000 00000000 *................*

+LCL+ 0x10 00000000 00000000 00000000 00000000 *................*

...

+LCL+ 0x7fe0 00000000 00000000 00000000 00000000 *................*

+LCL+ 0x7ff0 00000000 00000000 00000000 00000000 *................*

CONFIG Register 0xb7ff7c00 Offset=0xc00

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 25 of 28

CONFIG REGS #### (length=512)

+CFG+ 0 ffff8000 00000001 00200000 00000400 *.........*

+CFG+ 0x10 00000000 00000011 f20301db 00000000 *................*

...

+CFG+ 0x1e0 00000000 00000000 00000000 00000000 *................*

+CFG+ 0x1f0 00000000 00000000 00000000 00000000 *................*

======= LOCAL REGISTERS =========

 pwm_status =0x00010000 @0x00000000

 pwm_revision =0x00020000 @0x00000004

 pwm_resync =0x00000000 @0x00001000

 pwm_mode =0x00000000 @0x00001004

 pwm_a_sine_frequency =0x00000000 @0x00001100

 pwm_a_phase_1 =0x00000000 @0x00001104

 pwm_a_phase_2 =0x00000000 @0x00001108

 pwm_a_phase_3 =0x00000000 @0x0000110c

 pwm_a_deadband =0x00000000 @0x00001110

 pwm_a_PWM_frequency =0x00000000 @0x00001114

 pwm_b_sine_frequency =0x00000000 @0x00001130

 pwm_b_phase_1 =0x00000000 @0x00001134

 pwm_b_phase_2 =0x00000000 @0x00001138

 pwm_b_phase_3 =0x00000000 @0x0000113c

 pwm_b_deadband =0x00000000 @0x00001140

 pwm_b_PWM_frequency =0x00000000 @0x00001144

 pwm_indiv0.pwm_PWM_frequency=0x00000000 @0x00001220

 pwm_indiv0.pwm_duty =0x00000000 @0x00001224

 pwm_indiv1.pwm_PWM_frequency=0x00000000 @0x00001228

 pwm_indiv1.pwm_duty =0x00000000 @0x0000122c

 pwm_indiv2.pwm_PWM_frequency=0x00000000 @0x00001230

 pwm_indiv2.pwm_duty =0x00000000 @0x00001234

 pwm_indiv3.pwm_PWM_frequency=0x00000000 @0x00001238

 pwm_indiv3.pwm_duty =0x00000000 @0x0000123c

 pwm_indiv4.pwm_PWM_frequency=0x00000000 @0x00001240

 pwm_indiv4.pwm_duty =0x00000000 @0x00001244

 pwm_indiv5.pwm_PWM_frequency=0x00000000 @0x00001248

 pwm_indiv5.pwm_duty =0x00000000 @0x0000124c

 pwm_indiv6.pwm_PWM_frequency=0x00000000 @0x00001250

 pwm_indiv6.pwm_duty =0x00000000 @0x00001254

 pwm_indiv7.pwm_PWM_frequency=0x00000000 @0x00001258

 pwm_indiv7.pwm_duty =0x00000000 @0x0000125c

 pwm_indiv8.pwm_PWM_frequency=0x00000000 @0x00001260

 pwm_indiv8.pwm_duty =0x00000000 @0x00001264

 pwm_indiv9.pwm_PWM_frequency=0x00000000 @0x00001268

 pwm_indiv9.pwm_duty =0x00000000 @0x0000126c

 pwm_indiv10.pwm_PWM_frequency=0x00000000 @0x00001270

 pwm_indiv10.pwm_duty =0x00000000 @0x00001274

 pwm_indiv11.pwm_PWM_frequency=0x00000000 @0x00001278

 pwm_indiv11.pwm_duty =0x00000000 @0x0000127c

======= CONFIG REGISTERS =========

 las0rr =0xffff8000 @0x00000000

 las0ba =0x00000001 @0x00000004

 marbr =0x00200000 @0x00000008

 bigend =0x00000400 @0x0000000c

 eromrr =0x00000000 @0x00000010

 eromba =0x00000011 @0x00000014

 lbrd0 =0xf20301db @0x00000018

 dmrr =0x00000000 @0x0000001c

 dmlbam =0x00000000 @0x00000020

 dmlbai =0x00000000 @0x00000024

 dmpbam =0x00001009 @0x00000028

 dmcfga =0x00000000 @0x0000002c

 oplfis =0x00000000 @0x00000030

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 26 of 28

 oplfim =0x00000008 @0x00000034

 mbox0 =0x00000000 @0x00000040

 mbox1 =0x00000000 @0x00000044

 mbox2 =0x00000000 @0x00000048

 mbox3 =0x00000000 @0x0000004c

 mbox4 =0x00000000 @0x00000050

 mbox5 =0x00000000 @0x00000054

 mbox6 =0x00000000 @0x00000058

 mbox7 =0x00000000 @0x0000005c

 p2ldbell =0x00000000 @0x00000060

 l2pdbell =0x00000000 @0x00000064

 intcsr =0x0f000483 @0x00000068

 cntrl =0x100f767e @0x0000006c

 pcihidr =0x905610b5 @0x00000070

 pcihrev =0x000000ba @0x00000074

 dmamode0 =0x00000003 @0x00000080

 dmapadr0 =0x00000000 @0x00000084

 dmaladr0 =0x00000000 @0x00000088

 dmasiz0 =0x00000000 @0x0000008c

 dmadpr0 =0x00000000 @0x00000090

 dmamode1 =0x00000003 @0x00000094

 dmapadr1 =0x00000000 @0x00000098

 dmaladr1 =0x00000000 @0x0000009c

 dmasiz1 =0x00000000 @0x000000a0

 dmadpr1 =0x00000000 @0x000000a4

 dmacsr0 =0x00001010 @0x000000a8

 dmacsr1 =0x00200000 @0x000000ac

 las1rr =0x00000000 @0x000000f0

 las1ba =0x00000000 @0x000000f4

 lbrd1 =0x00000043 @0x000000f8

3.1.3 ccurpwm_tst

This is an interactive test to exercise some of the driver features.

Usage: ccurpwm_tst -b<device number>

Example display:

Device Name: /dev/ccurpwm0

Initialize_Board: Firmware Rev. 0x20000 successful

 01 = add irq 02 = disable pci interrupts

 03 = enable pci interrupts 04 = get device error

 05 = get driver info 06 = get physical mem

 07 = init board 08 = mmap select

 09 = mmap(CONFIG registers) 10 = mmap(LOCAL registers)

 11 = mmap(physical memory) 12 = munmap(physical memory)

 13 = no command 14 = read operation

 15 = remove irq 16 = reset board

 17 = write operation

Main Selection ('h'=display menu, 'q'=quit)->

3.1.4 ccurpwm_rdreg

This is a simple program that reads registers by address.

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 27 of 28

Usage: ccurpwm_rdreg -b<device number> -o<offset> -s<size>

Example display:

Device Name : /dev/ccurpwm0

LOCAL REGS #### (length=4)
+LCL+ 0 00010000 *.... *

3.1.5 ccurpwm_wreg

This is a simple program that writes registers by address.

Usage: ccurpwm_wreg -b<device number> -o<offset> -s<size>

Example display:

Device Name : /dev/ccurpwm0
Writing 0x00000000 to offset 0x0000 for 4 bytes

LOCAL REGS #### (length=4)
+LCL+ 0 00010000 *.... *

3.2 Application Program Interface (API) Access Example Test

These set of tests are located in the …/test directory and use the API.

3.2.1 ccurpwm_tst_lib

This is an interactive test that accesses the various supported API calls.

Usage: ccurpwm_tst_lib <device number>

Example display:

 01 = Add Irq 02 = Clear Driver Error

 03 = Clear Library Error 04 = Disable Pci Interrupts

 05 = Display BOARD Registers 06 = Enable Pci Interrupts

 07 = Get Information 08 = Get Driver Error

 09 = Get Library Error 10 = Get Mapped Config Pointer

 11 = Get Mapped Local Pointer 12 = Get Physical Memory

 13 = Get PWM 14 = Get PWM Individual

 15 = Get Value 16 = Initialize Board

 17 = MMap Physical Memory 18 = Munmap Physical Memory

 19 = PWM Resync 20 = Read Operation

 21 = Remove Irq 22 = Reset Board

 23 = Set PWM 24 = Set PWM Individual

 25 = Set Value 26 = Test Registers

 27 = Write Operation

Main Selection ('h'=display menu, 'q'=quit)->

All information contained in this document is confidential and proprietary to Concurrent Real-Time. No part of this document may be
reproduced, transmitted, in any form, without the prior written permission of Concurrent Real-Time. No license, expressed or implied,
under any patent, copyright or trade secret right is granted or implied by the conveyance of this document.

Page 28 of 28

This page intentionally left blank

