
Concurrent Real-Time/esd esdcan-pcie402

CAN Driver/API Release 3.10.4 for the CAN-

PCIe/402

Installation on RedHawk Linux

WCS-ES-CAN-402

July 25, 2018

This page intentionally blank.

1. Introduction

This document assists the user in installing the esd electronic system design gmbh esdcan-pcie402

device driver and CAN-API version 3.10.4 software along with cantest test program on a RedHawk Linux
based system for use with the PCIe-CAN/402 CAN bus card. This software will be referred to as the
esdcan-pcie402 driver in this document.

The PCIe-CAN/402 card provides two (optionally four) CAN (ISO 11898-2) net interfaces.

CAN-PCIe/402

The vendor releases distinct 32-bit and 64-bit versions of this software; Concurrent Real-Time bundles
both versions into a single RPM package which will select the correct version matching your system OS
when the esdcan-pcie402 software is installed.

2. Hardware Installation

Versions with four CAN ports may require a second slot adjacent to the main card slot for the daughter
card containing the electronics for the third and fourth ports. These two cards are interconnected with a
small ribbon cable.

Normally the PCIe-CAN/402 hardware will have been installed by Concurrent Real-Time as part of system

integration. If this product is being installed in the field, please refer to page 12 of the CAN-

PCIe402_Hardware_en_10.pdf document included with this package.

Caution: when installing the CAN-PCIe/402 card ensure the computer is powered off

and the machine’s power cord is disconnected. Please observe electrostatic

discharge precautions such as the use of a grounding strap.

After installation, you may verify the board is properly installed by issuing the commands below, which if
the board is present will provide output similar to that shown below – the nn:nn.n bus enumeration
numbers (09:00.0 in the example below) may differ, for example:

 === as user or root ===

 # lspci -v –d 12fe:0402

09:00.0 CANBUS: ESD Electronic System Design GmbH Device 0402 (rev 01)

 Subsystem: ESD Electronic System Design GmbH Device 0402

 Flags: bus master, fast devsel, latency 0, IRQ 88

 Memory at c0100000 (32-bit, non-prefetchable) [size=128K]

 Capabilities: <access denied>

If output like this is not displayed by the lspci command, the device has not been properly installed in the
system.

3. Software Installation

Before extracting the source code and building the driver and other related products, be sure the kernel on
which you wish to use this software is the one currently running. If the kernel you wish to use is not
currently running, reboot to the kernel you desire to use before proceeding.

The esdcan-pcie402 driver is supplied in RPM format on CDROM. Please read the following carefully
before proceeding with the installation.

Caution:

Before installing the software, the kernel build environment must be set up and match the current OS
kernel you are using. If you are running one of the preconfigured kernels supplied by Concurrent
Real-Time and have not previously done so, run the following commands while logged in as the root
user before installing the driver software:

cd /lib/modules/`uname –r`/build

./ccur-config –c -n

If you have built and are running a customized kernel configuration the kernel build environment
should already have been set up when that custom kernel was built.

This requirement is enforced by the RPM package. If ccur-config has not been previously run on your
system, the RPM will generate a detailed error message and the installation will fail.

To install the esdcan-pcie402 package, load the CD-ROM installation media and issue the following

commands as the root user. The system should auto-mount the CD-ROM to a mount point in the /media

or /run/media directory based on the CD-ROM’s volume label – in this case, esdcan-pcie402. The

example’s [user_name] may be root or the logged-in user. Then enter the following commands from a
shell window:

=== as root ===

 --- on RedHawk 6.5 and below ---

cd /media/esdcan-pcie402

 --- or on RedHawk 7.0 and above ---

cd /run/media/[user_name]/esdcan-pcie402

 --- or on Ubuntu RedHawk ---

cd /media/[user_name]/esdcan-pcie402

rpm –ivh esdcan-pcie402_RedHawk_driver*.rpm (on an RPM based system)
--- or ---

dpkg –i esdcan-pcie402_RedHawk_driver*.deb (on a Debian based system)

cd /

eject

The esdcan-pcie402 driver files will be copied into the /usr/local/CCRT/drivers/esdcan-pcie402
directory from the CDROM drive, and the driver and test applications will all be built from source. The
driver and driver startup scripts will be installed. These scripts automatically load the driver during system

bootup and create device nodes. These scripts can also be invoked manually via the service/systemctl

commands. Though this dynamically loadable driver can be loaded manually with the insmod or
modprobe command once it has been built, and can be unloaded manually by issuing the rmmod
command, it is recommended that the startup scripts be used instead.

The source tree for this product contains an enhanced Makefile with additional targets to permit building
and installing the driver and other components in an easier, more automated fashion. Manual intervention
should not be necessary in most cases. The top-level CCRT_ReadMe file explains the new targets added
to Concurrent Real-Time’s version of the top-level Makefile.

Building the esdcan-pcie402 driver for other kernels

RedHawk Linux is provided with three different kernels: the ‘standard, ‘trace’, and ‘debug’ variants. The
esdcan-pcie402.ko kernel driver is initially built for the kernel variant or ‘flavor’ that was booted when the
RPM was installed. To build the driver for a different kernel variant:

First, reboot the system to the desired kernel variant. To rebuild and install just the loadable kernel
module component of the esdcan-pcie402 package:

== as root ==

cd /lib/modules/`uname –r`/build

./ccur-config –c –n [set up the proper kernel build environment]
cd /usr/local/CCRT/drivers/esdcan-pcie402

make clean

make driverinstall [compile and install loadable kernel module]

make load [load the newly installed driver]

To recompile and reinstall the entire package, perform the following steps:

== as root ==

cd /usr/local/CCRT/drivers/esdcan-pcie402

make clean

make [build objects and executables]

make install [install loadable kernel module and API files]

Instructions on removing the software may be found in Section 6. Removing the esdcan-pcie402 package.

4. Loading the esdcan-pcie402 Driver

The esdcan-pcie402 driver module is dynamically loadable and obtains its major number from the kernel

during initialization. A driver initialization file installed as /etc/rc.d/init.d/esdcan-pcie402 or

/usr/lib/systemd/system/esdcan-pcie402.service will load the driver module and create the appropriate
device node files when the system is booted to init levels 3 or 5.

To disable this feature, issue the following command as the root user:

 --- on RedHawk 6.5 and below ---

/sbin/chkconfig --del esdcan-pcie402

 --- or on RedHawk 7.0 and above ---

/bin/systemctl disable esdcan-pcie402

To re-enable auto-loading of the esdcan-pcie402 driver, issue the following command:

 --- on RedHawk 6.5 and below ---

/sbin/chkconfig --add esdcan-pcie402

 --- or on RedHawk 7.0 and above ---

/bin/systemctl enable esdcan-pcie402

The chkconfig/systemctl command references special lines in the init/service file to control these
actions.

An entry to /etc/blacklist.conf was added for chkconfig/systemctl commands to work properly. This entry
disables the automatic loading of the driver when the kernel scans the PCI bus.

The esdcan-pcie402 driver may also be manually loaded and unloaded via the service/systemctl script:

=== as root ===

 --- on RedHawk 6.5 and below ---

/sbin/service esdcan-pcie402 start - load the driver and create /dev/ files

/sbin/service esdcan-pcie402 stop - unload the driver and remove /dev/ files
 --- or on RedHawk 7.0 and above ---

/bin/systemctl start esdcan-pcie402 - load the driver and create /dev/ files

/bin/systemctl stop esdcan-pcie402 - unload the driver and remove /dev/ files

The service/systemctl command will execute the same script that is run when the system is booted.

 === as root ===

lsmod (this command will display the esdcan-pcie402 driver)
--- or on RedHawk 6.5 and below ---

 # /sbin/service esdcan-pcie402 status

 --- or on RedHawk 7.0 and above ---

 # /bin/systemctl status esdcan-pcie402

The driver supports the installation of up to eight CAN-PCIe/402 boards. The Concurrent Real-Time
authored startup scripts will use a esdcan-pcie402 driver generated script -

/proc/bus/can/CAN_PCIe402/inodes – to create only the required /dev/can* files

Messages generated by the driver when it is loaded should appear in /var/log/messages or in the output

of the dmesg command. There will be other unrelated messages – the driver messages of interest will
look like this:

dmesg

…

esd CAN driver: Firmware-version = 0.0.42 (hex)

esd CAN driver: Hardware-version = 1.0.16 (hex)

esd CAN driver: Card = 0 Minor(s) = 0, 1

esd CAN driver: CAN_PCIe402

esd CAN driver: Baudrate not set

esd CAN driver: mode=0x00000000, major=237, verbose=0x00000001

esd CAN driver: Version 3.10.4 (11:04:04, Oct 13 2017)

esd CAN driver: successfully loaded

5. Testing and Usage

Communications API

Included with the driver is the NTCAN-API communications layer software. This software is documented

in the included documentation/can-api_part1_function_manual_45.pdf file, and is copied to the

system’s /usr/include and /usr/local/lib* directories during installation.

The ntcan.h file defines the library interfaces that are implemented by the API software. Static and

dynamically linked versions of the NTCAN-API library are provided. The libntcan.a library contains the

interface routines described in ntcan.h, and is used to link applications statically. However, it is strongly

recommended by esd that applications be dynamically linked using the provided libntcan.so library.

Both 64-bit and 32-bit versions of the libntcan library are supplied with this release. The 32-bit versions

are installed in the /usr/local/lib directory, on 64-bit systems the 64-bit libraries are installed in

/usr/local/lib64 directory.

Cantest

The cantest sample program included with the esdcan-pcie402 package is documented starting on page

170 of the can-api_part1_function_manual_45.pdf document, which may be found in the

documentation directory. Source to this program is provided in the example directory. When invoked

without command line arguments cantest will list the available CAN devices and a summary of available
tests:

cantest

CAN Test Rev 2.12.6 -- (c) 1997-2015 esd electronic system design gmbh

Available CAN-Devices:

Net 0: ID=CAN_PCIE402 (2 ports) Serial no.: GN001652

 Versions (hex): Lib=4.0.01 Drv=3.A.04 HW=1.0.16 FW=0.0.42 (0.0.00)

 Baudrate=7fffffff (Not set) Status=0000 Features=00000ffa

 Ctrl=esd Advanced CAN Core @ 80 MHz (Error Active / REC:0 / TEC:0)

 Transceiver=TI SN65HVD265

 TimestampFreq=80.000000 MHz Timestamp=00000000B72CEFE6

Net 1: ID=CAN_PCIE402 (2 ports) Serial no.: GN001652

 Versions (hex): Lib=4.0.01 Drv=3.A.04 HW=1.0.16 FW=0.0.42 (0.0.00)

 Baudrate=7fffffff (Not set) Status=0000 Features=00000ffa

 Ctrl=esd Advanced CAN Core @ 80 MHz (Error Active / REC:0 / TEC:0)

 Transceiver=TI SN65HVD265

 TimestampFreq=80.000000 MHz Timestamp=00000000B72D0236

Syntax: cantest test-Nr [net id-1st id-last count

 txbuf rxbuf txtout rxtout baud testcount data0 data1 ...]

Test 0: canSend()

Test 20: canSendT()

Test 50: canSend() with incrementing ids

Test 1: canWrite()

Test 21: canWriteT()

Test 51: canWrite() with incrementing ids

Test 2: canTake()

Test 12: canTake() with time-measurement for 10000 can-frames

Test 22: canTakeT()

Test 32: canTake() in Object-Mode

Test 42: canTakeT() in Object-Mode

Test 3: canRead()

Test 13: canRead() with time-measurement for 10000 can-frames

Test 23: canReadT()

Test 4: canReadEvent()

Test 64: Retrieve bus statistics (every tx timeout)

Test 74: Reset bus statistics

Test 84: Retrieve bitrate details (every tx timeout)

Test 5: canSendEvent()

Test 8: Create auto RTR object

Test 9: Wait for RTR reply

Test 19: Wait for RTR reply without text-output

Test 100: Object Scheduling test

Test -2: Overview without syntax help

Test -3: Overview without syntax help but with feature flags details

The cantest application can identify the CAN nets and has a menu of tests that can verify correct

operation of the esdcan-pcie402 driver and CAN-PCIe/402 hardware. A simple example would be to
connect nets 0 and 1 with a loopback cable, and then issue the following two commands:

 # cantest 3 0 &

 # cantest 1 1

The first line starts a reader process on port (net) 0 and the second a sender process on port 1. The
application should show the content of messages successfully sent/received, with an incremented field in
each successive message. Note: the receiving process will run forever and must be manually terminated.
It is probably best to put the above commands in an executable shell script to reduce error messages
resulting from reading timeouts; a script will minimize the time between commands so the window for such
timeouts is minimized.

The messages output when running this sequence will look something like this:

test=3 net=0 id-1st=0 id-last=0 count=1

test=1 net=1 id-1st=0 id-last=0 count=1

txbuf=10 rxbuf=100 txtout=1000 rxtout=5000 baudrate=2 (500000 baud)

txbuf=10 rxbuf=100 txtout=1000 rxtout=5000 baudrate=2 (500000 baud)

testcount=10

Duration= 0 msec Can-Messages=1

Duration= 0 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 00 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 1 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 01 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 0 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 02 00 00 00 01 00 00 00 [........]

Duration= 1 msec Can-Messages=1

Duration= 1 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 03 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 0 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 04 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 0 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 05 00 00 00 01 00 00 00 [........]

Duration= 1 msec Can-Messages=1

Duration= 1 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 06 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 0 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 07 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 0 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 08 00 00 00 01 00 00 00 [........]

Duration= 0 msec Can-Messages=1

Duration= 1 msec Can-Messages=1

RX-ID= 0 (0x00000000) len=8 data= 09 00 00 00 01 00 00 00 [........]

Test-Duration=4 msec

Note that the first byte of each message contains an incremented value from that of the preceding

message. By default, the receiving copy of cantest reads forever and will begin to issue timeout
messages after a few seconds after the sending process completes. You will have to manually kill this
process.

A more intensive test sequence might be:

cantest 3 0 0 0 1 10 100 1000 5000 0 50000 &

cantest 1 1 0 0 1 10 100 1000 5000 0 50000

wait

sleep 1

cantest 3 1 0 0 1 10 100 1000 5000 0 50000 &

cantest 1 0 0 0 1 10 100 1000 5000 0 50000

wait

This sequence differs from the simple example by changing the baud rate from the default 500 Kbits/sec
to 1 Mbit/second, changing the test count from the default 10 iterations to 50,000, and then repeating the
test sequence reversing the transmit and receive ports.

CCRT_canio

The CCRT_canio is a CCRT supplied sample program. This program is used along with cantest in

Run_canio script to test the board's functionality. For this script and test to function properly two ports
need to be connected to each other with a loopback cable (i.e. nets 0 and 1).
The CCRT_canio test can be run as follows:

=== as root ===

cd /usr/local/CCRT/drivers/esdcan-pcie402/CCRT

make

./Run_canio PORTA PORTB #_OF_PASSES

Where PORTA and PORTB are the numbers of the ports connected (i.e. 0 and 1) and the #_OF_PASSES
is the number of times to run the test.

6. Removing the esdcan-pcie402 package

The esdcan-pcie402 driver is a dynamically loadable driver that can be unloaded (and its device nodes
removed) as follows:

 === as root ===

cd /usr/local/CCRT/drivers/esdcan-pcie402

make unload (unload the driver from the kernel)

Alternately, one can use the service script:

 === as root ===

/bin/systemctl stop esdcan-pcie402

To uninstall the esdcan-pcie402 driver and its accessory files from the system directories:

=== as root ===

cd /usr/local/CCRT/drivers/esdcan-pcie402

make uninstall (remove the driver and related files from the system)

To completely remove the esdcan-pcie402 package, do the following after the driver has been
uninstalled:

=== as root ===

rpm -e esdcan-pcie402

Warning: Any local changes made to files belonging to the esdcan-pcie402 package, either those in the

/usr/local/CCRT/drivers/esdcan-pcie402 directory or elsewhere on the system, will be lost
when the rpm -e command is executed.

7. Notes and Errata

The following changes and additions were made by Concurrent Real-Time to the original esd 3.10.4
release:

• The 32-bit and 64-bit releases were bundled into one RPM file; the proper version is selected and
unpacked during the installation process.

• The top-level Makefile was heavily modified to add install, uninstall, driverinstall, load, and unload
targets.

• A ‘documentation’ directory was created and populated.

• A top-level CCRT_ReadMe file was created.

• The driver source was modified to optionally use dynamically assigned device major numbers; the
original version used a hard-coded value of 52.

• Driver init scripts were created; these load the driver requesting the device major number be

dynamically assigned, create the /dev device nodes, pin the device interrupt level to a specified

processor, and pin the driver’s kesdcan_pcie402 kernel thread to the same processor and raise
its priority to use the real-time scheduler.

Original versions of any files modified by Concurrent Real-Time have been retained; these files have an
‘.ORIG’ suffix appended to their names.

The warning message “could not find …/driver/.nucleus.o.cmd” generated when building the kernel driver
module may safely be ignored. This is an artifact of the Linux kernel build mechanism’s treatment of
object.o_shipped binary files.

Included with this release of the esdcan-pcie402 driver are several manuals in Adobe PDF format.

These may be found in the /usr/local/CCRT/drivers/esdcan-pcie402/documentation directory and
include:

• esdCAN-PCIe402_ReleaseNotes_r*.pdf (this document)

• can-api_part1_function_manual_45.pdf (describes the programming API)

• CAN-API_Part2_Installation_Manual_40.pdf (installation on other platforms)

• CAN-PCIe402_Datasheet_en_4.pdf (hardware datasheet)

• CAN-PCIe402_Hardware_en_10.pdf (hardware installation, technical data)

• CAN-Wiring.pdf (whitepaper on CANbus wiring)

• can2spec.pdf (CANbus specification, from 1991)

• intro-e.pdf (CAN tutorial)

It is strongly recommended by esd to link applications using the dynamic library.

The industry standard pin assignments of the CAN-PCIe/402’s DSub9 male connectors are documented

on page 20 of the CAN-PCIe402_Hardware_en_10.pdf document. The CAN-PCIe/402 provides optional

internal termination to the CAN bus, by default it is not terminated, look at page 9 of the CAN-

PCIe402_Hardware_en_10.pdf document for more information. Please note that a CAN bus is

terminated at each end with a 120-ohm resistor. See the provided CAN-Wiring.pdf whitepaper for more
details.

The esdcan-pcie402 kernel driver starts a kesdcan_pcie402 kernel thread to handle interrupt completion
tasks. The design of the driver requires this thread be run on the same CPU as the card’s interrupt
routine. The Concurrent Real-Time authored driver startup script will pin any interrupt levels used by the
PCIe/402 cards to a specific processor; the default is CPU 0. The processor used may be changed by

editing the /usr/lib/config/esdcan-pcie402_start script and changing the value of the DPCCPU variable.

By default, the kesdcan_pcie402 process runs at interactive priorities; the esdcan-pcie402_start script
will raise the priority of this process to use the real-time scheduler.

There are some known issues that you may encounter:

1. When loading the module, you may see a warning about a tainted kernel: “esdcan_pcie402:

module license ‘Proprietary’ taints kernel”. This is not an error message and does not affect the
functionality of the CAN driver.

2. Depending on your kernel configuration a compile-time warning “cast to pointer from integer of
different size” may be issued when the esdcan-pcie402 driver is compiled.

3. It takes several seconds for the kernel driver to configure and initialize the CAN-PCIe/402 board
when the driver is loaded.

Please contact Concurrent Real-Time if you encounter problems with this product.

