
1.6

 KVM-RT ™ Userís Guide

0898604-1.6

September 2024

Copyright 2024 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for
use with Concurrent Real-Time products by Concurrent Real-Time personnel, customers, and end–users. It may not
be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Real-Time makes no warranties, expressed or implied, concerning the information con-
tained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Real-Time, 800 NW 33
Street, Pompano Beach, FL 33064. Mark the envelope “Attention: Publications Department.” This publication
may not be reproduced for any other reason in any form without written permission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent
Real-Time product names are trademarks of Concurrent Real-Time while all other product names are trademarks or
registered trademarks of their respective owners. Linux® is used pursuant to a sublicense from the Linux Mark
Institute.

Printed in U. S. A.

Revision History: Level: Effective With:

July 2019 1.0 RedHawk Linux 7.5

January 2020 1.1 RedHawk Linux 8.0

February 2021 1.2 RedHawk Linux 8.2

October 2021 1.3 RedHawk Linux 8.4

March 2023 1.4 RedHawk Linux 8.4

December 2023 1.5 RedHawk Linux 9.2

September 2024 1.6 RedHawk Linux 9.2.3

iii

Preface

Scope of Manual

This manual provides information and instructions for using Concurrent Real-Time’s
RedHawk KVM-RTTM.

Structure of Manual

This manual consists of:

• Chapter 1 introduces you to KVM-RT.

• Chapter 2 explains the steps in setting up and booting virtual machines in
KVM-RT.

• Chapter 3 covers how to configure KVM-RT.

• Chapter 4 summarizes all the KVM-RT tools.

• Chapter 5 discusses time synchronization.

• Chapter 6 discusses I/O utilization in Virtual Environment.

• Chapter 7 discusses ways to analyze and debug guest VMs in KVM-RT.

• Appendix A covers NUMA node mappings of the Supermicro M12SWA-
TF platform.

• Appendix B gives instructions in setting up single root I/O virtualization
(SR-IOV).

• Appendix C lists the boot parameters that may be required for PCI
Passthrough.

Syntax Notation

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify appear in
italic type. Special terms may also appear in italic.

list bold User input appears in list bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in list bold type.

list Operating system and program output such as prompts, messages and
listings of files and programs appears in list type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify these options or
arguments.

RedHawk KVM-RT User’s Guide

iv

hypertext links When viewing this document online, clicking on chapter, section,
figure, table and page number references will display the
corresponding text. Clicking on Internet URLs provided in blue type
will launch your web browser and display the web site. Clicking on
publication names and numbers in red type will display the
corresponding manual PDF, if accessible.

Related Publications

The following table lists Concurrent Real-Time documentation. Depending upon the
document, they are available online on RedHawk Linux systems or from Concurrent Real-
Time’s documentation web site at http://redhawk.concurrent-rt.com/docs.

RedHawk KVM-RT Pub. Number

RedHawk KVM-RT Release Notes 0898603

RedHawk KVM-RT User’s Guide 0898604

RedHawk Architect

RedHawk Architect Release Notes 0898600

RedHawk Architect User’s Guide 0898601

RedHawk Linux

RedHawk Linux Release Notes 0898003

RedHawk Linux User’s Guide 0898004

RedHawk Linux Cluster Manager User’s Guide 0898016

RedHawk Linux FAQ N/A

NightStar RT Development Tools

NightView User’s Guide 0898395

NightTrace User’s Guide 0898398

NightProbe User’s Guide 0898465

NightTune User’s Guide 0898515

http://redhawk.concurrent-rt.com/docs

i

Chapter 0Contents

Preface . iii

Chapter 1 Introduction to KVM-RT

Introduction. 1-1
Host System Requirements and Installation . 1-1

Chapter 2 Getting Started

Building Virtual Machines . 2-1
Using Virtual Machine Manager to Create a Virtual Machine 2-1
Using RedHawk Architect to Create a Virtual Machine 2-1
Cloning a Virtual Machine Image . 2-2

Importing Virtual Machines into KVM-RT . 2-2
Booting and Shutting Down Virtual Machines. 2-2
Understanding QEMU/KVM Threads . 2-3

Chapter 3 Configuring Virtual Machines

The KVM-RT Configuration File. 3-1
Configuration Tools . 3-5
Advanced Libvirt Configuration. 3-5
Understanding the cpuset Configuration Attribute . 3-6
Understanding KVM-RT Use of RedHawk Real-Time Features 3-6

KVM-RT Use of Threaded CPUs . 3-7
Configuring Real-Time Virtual Machines . 3-7

Chapter 4 KVM-RT Tools

RedHawk’s Real-time Tools. 4-1
Command line interfaces . 4-1
Graphical user interfaces . 4-1

KVM-RT Tools. 4-2
Start-Up Commands . 4-2
Configuration Commands . 4-2
Boot/Shutdown Commands . 4-3

Chapter 5 Virtual Machine Time Synchronization

Instructions to run chrony . 5-1

Chapter 6 I/O Device Utilization in Virtual Environment

Introduction. 6-1
Virtualization Techniques. 6-1

Device Emulation . 6-1

RedHawk KVM-RT User’s Guide

ii

Paravirtualization. 6-2
PCI Passthrough . 6-2

IOMMU . 6-3
VFIO. 6-3

Networking . 6-3
Virtual Networking . 6-3

NAT . 6-4
MacVTap . 6-4
Virtual Networking Device Models . 6-5

Device Model Performance Comparison . 6-5
Physical Networking . 6-6

SR-IOV. 6-6
Physical Functions. 6-7
Virtual Functions. 6-7
SR-IOV vs MacVTap Performance . 6-7

Network PCI Passthrough . 6-8
Storage . 6-8

Virtual Disks . 6-8
Qcow2 Images . 6-9
Raw Images . 6-9
Virtual Disk Drawbacks . 6-9

Physical Disks . 6-10
Partition Assignment . 6-10
Storage PCI Passthrough . 6-11

Graphics . 6-11
VGA. 6-11
QXL . 6-12
Virtio GPU. 6-12
Display Protocols. 6-12

VNC . 6-12
SPICE . 6-13

Graphics PCI Passthrough . 6-13

Chapter 7 Analysis and Debugging

KVM Trace Events . 7-2
Kernel Tracing with xtrace . 7-2

Example: multi-merge Tracing with xtrace. 7-3
KVM-RT Guest Services . 7-4

KVM-RT Guest Services Library Interface . 7-6
KVM-RT Guest Services Command Line Interface . 7-7
KVM-RT Guest Services Trace Events. 7-8
KVM-RT Guest Services Kernel Boot Parameters . 7-8

Appendix A NUMA mapping the Supermicro M12SWA-TF . A-1

Importance of NUMA Mappings in KVM-RT. A-1
NUMA Node Mappings of devices and I/O ports . A-2

Contents

iii

Appendix B SR-IOV Setup . B-1

Appendix C PCI Passthrough Boot Parameters . C-1

Required in RedHawk Release 8.x . C-1
Optional for enhancing host performance . C-1
Required for Graphic Cards . C-1

RedHawk KVM-RT User’s Guide

iv

1-1

1
Chapter 1Introduction to KVM-RT

1
1

This chapter provides a general overview and requirements for using RedHawk KVM-RT.

Introduction 1

RedHawk KVM-RT is a Real-Time Hypervisor solution that utilizes Quick Emulator
(QEMU) and Kernel-Based Virtual Machine (KVM) and RedHawk real-time features to
extend RedHawk's real-time determinism to guest RedHawk virtual machines. It supports
multiple guests, both real-time and non-real-time, running in virtual machines on a single
host system.

RedHawk KVM-RT leverages the capabilites of RedHawk Linux together with QEMU
and KVM to give users the ability to:

• virtualize legacy operating systems

• reduce physical system hardware footprint

• run real-time and non-real-time virtual machines in a secure, isolated
environment

• provide I/O implementation solutions that allow VMs to perform close to
their bare-metal configuration

Host System Requirements and Installation 1

Refer to the RedHawk KVM-RT Release Notes for hardware host system requirements and
software installation instructions.

Though not a requirement, it is highly recommended that the entire host system be
dedicated to running the Real-Time Hypervisor. Administrators of the KVM-RT host
system must be careful not to disturb CPU shielding or CPU affinities on the system, or
else real-time performance of virtual machines may be compromised.

KVM-RT requires that a RedHawk kernel is booted on the host system while KVM-RT is
being used. Additional system configuration may be required. For example, PCI
Passthrough may require the addition of boot time parameters. See Appendix C, PCI
Passthrough Boot Parameters, for more information.

Once KVM-RT is installed, the following command can be run to test the suitability of the
host system.

$ sudo kvmrt-validate-host

RedHawk KVM-RT User’s Guide

1-2

2-1

2
Chapter 2Getting Started

1
2 This

2

This chapter explains the steps in setting up and booting virtual machines in KVM-RT.
Also discussed are the various QEMU/KVM threads that run on the host for each virtual
machine.

Building Virtual Machines 2

KVM-RT works with virtual machines that have been created and configured within the
libvirt framework. A virtual machine may be created and configured within libvirt in
several ways, including:

• with Virtual Machine Manager

• with RedHawk Architect

• by cloning another virtual machine

Detailed instructions on how to build virtual machines are beyond the scope of this book
but are well documented. General instructions and references to documentation are given
in the following sections.

Real-time virtual machines must contain a guest OS of RedHawk Linux 7.0 or later. The
guest CPU architecture must match that of the host.

Using Virtual Machine Manager to Create a Virtual Machine 2

The Virtual Machine Manager is a GUI tool that can be used to create, configure, and
manage virtual machines within the libvirt framework.

Start Virtual Machine Manager by running:

$ sudo run virt-manager

See the virt-manager(1) man page for more information.

Using RedHawk Architect to Create a Virtual Machine 2

RedHawk Architect is an optional product offered by Concurrent Real-Time that
specializes in creating, customizing and deploying RedHawk Linux disk images.

RedHawk KVM-RT User’s Guide

2-2

Architect can be used to create a RedHawk virtual machine and to export it to the Virtual
Machine Manager. Detailed instructions can be found in the documentation that comes
with RedHawk Architect. Below are the general steps required:

• run Architect

• create a new session and configure the image as desired

• build the image

• deploy the image to a virtual machine

• export the virtual machine to Virtual Machine Manager

Cloning a Virtual Machine Image 2

Any existing virtual machine within the libvirt framework can be cloned by using the virt-
clone command. For example:

 $ sudo virt-clone -o old_vm -n new_vm

See the virt-clone(1) man page for more information.

Importing Virtual Machines into KVM-RT 2

Once virtual machines have been created within the libvirt framework, they can be
imported into KVM-RT.

All libvirt virtual machines can be imported into KVM-RT with the following command:

 $ sudo kvmrt-import

This command may be run at any time new VMs are created. Run kvmrt-import
--help for more information and options.

When a VM is imported into KVM-RT it inherits the VM configuration settings from
libvirt. Once this is done a VM may be further configured with KVM-RT as needed. See
“Configuring Virtual Machines” in Chapter 3 for more information.

Booting and Shutting Down Virtual Machines 2

A systemd service, named kvmrt, exists for KVM-RT. It may be enabled so that the
VMs configured with autostart set, will be automatically booted during system start-up
and VMs running when the system is shutting down will be shut down. The service is not
enabled by default. Once enabled, the service will automatically start on the next boot. If
you want it to start it immediately, you must enable the service and start it as follows:

systemctl enable kvmrt

RedHawk KVM-RT User’s Guide

2-3

systemctl start kvmrt

Note that the service start will fail if there are any VMs running since it invokes kmvrt-
boot with the --clean option.

The following KVM-RT tools can be used to boot, shutdown, and view the status of VMs.

To start up all configured VMs:

$ sudo kvmrt-boot

To shut down all the running VMs:

$ sudo kvmrt-shutdown

To query the state of all VMs:

$ sudo kvmrt-stat

Individual VMs can be specified to all these commands. For example:

$ sudo kvmrt-boot RedHawk-8.4VM Windows10VM

$ sudo kvmrt-shutdown RedHawk-8.4VM Windows10VM

Note that by default VMs are brought down in parallel. If the -v (verbose) option is used,
the shutdown will be serialized so that the output from the different VMs is not garbled
together.

Run any of the above commands with the --help option for more information and
options.

Understanding QEMU/KVM Threads 2

QEMU/KVM runs multiple threads for each virtual machine. The names and purpose of
these threads are as follows:

qemu-kvm

These are emulator threads. There may be two or more of these.

qemu-system-x86

This is an alternate name for qemu-kvm in some distributions.

worker

These are dynamically created threads for long I/O operations being per-
formed by the emulator.

SPICE Worker

This is a thread for a virtual console.

IO mon_ioth

RedHawk KVM-RT User’s Guide

2-4

This is an optional thread used for some I/O.

CPU n/KVM

These are virtual CPU (vCPU) threads. There will be one per virtual CPU,
where n is the vCPU ID.

Use the kvmrt-stat -t command to display information about all currently running
VM threads.

3-1

3
Chapter 3Configuring Virtual Machines

2
3

3 F

Virtual machines that are configured within the libvirt framework have an XML
configuration file that controls all attributes of the virtual machine.

This file usually exists as "/etc/libvirt/qemu/{DOMAIN}.xml" for the given VM
domain name and is created when the VM is created or imported into the libvirt
framework. This file gets updated when VM configuration changes are made in the Virtual
Machine Manager.

KVM-RT uses a simplified configuration file, explained below, to manage multiple VMs.
KVM-RT updates libvirt XML configuration files as needed to keep the two files in sync.

The KVM-RT Configuration File 3

The default location of the KVM-RT configuration file is /etc/kvmrt.cfg, but all
kvmrt-* tools that use a configuration file accept a -f option that allows the user to
specify an alternate configuration file.

The KVM-RT configuration file uses the INI file format, where each section describes a
VM. The first line of each section is the UUID, a unique VM identification number
generated by libvrt. An example configuration follows with two guest VMs, the second
one not in use (disabled):

[fde74e84-0e1b-404e-90e7-72101e79c48a]
name = RedHawk-8.4-RT
title = Real-Time RedHawk 8.4
description = Configured for real-time
nr_vcpus = auto
cpu_topology = auto
cpuset = n1,n2
rt = True
rt_memory = auto
numatune = auto
hide_kvm = False
autostart = True
disabled = False
pcidevs = 0000:21:00.0 0000:22:00.0 0000:22:00.1
comments = remember to change autostart to true after

testing

[aeec46cc-0638-4949-ac04-146b233194a9]
name = RedHawk-8.4
title = RedHawk8.4
description = RedHawk8.4VM
nr_vcpus = 2

RedHawk KVM-RT User’s Guide

3-2

cpu_topology = auto
cpuset =
rt = False
rt_memory = auto
numatune = auto
hide_kvm = False
autostart = True
disabled = True
pcidevs =
comments = This VM is not used anymore; kept for

reference

Defined below are the field types used in the attribute description that follows:

{string}: any string

{int}: any integer

{bool}: true | false | on | off | yes | no | 1 | 0
(case-insensitive)

{ I D - s e t } : a s t r i n g t h a t d e s c r i b e s a s e t o f r a n g e s o f i n t e g e r s i n a
human-readable form such as "0,2,4-7,12-15"

{CPUSET}:can be specified as a comma-separated list of CPUs or CPU
ranges (eg. 0,1,16-19) but also as integers prefixed with 'n'
for NUMA node, 'c' for core, 'd' for die, or 'p' for package.
Additionally, the string may be prefixed with '~' to create an
inverse set (eg. ~n0).

{PCISET}: a list of space-separated full PCI bus addresses. Each device is
descr ibed by the syntax “domain:bus:device . funct ion”(eg.
0000:21:00.00).

Each VM may be configured with the following attributes. Note that if an attribute is not
set or it is missing, the default value is used.

name = { string }

This attribute sets the VM name. This is an arbitrary, user specified name that
must be unique to libvrt.
There is no default value, this attribute must be set but it can be changed.

title = {string}

This attribute sets the VM title.
The default value is "".

description = {string}

This attribute sets the VM description.
The default value is "".

nr_vcpus = {int } | auto

RedHawk KVM-RT User’s Guide

3-3

This attribute defines the number of virtual CPUs in the VM. When set to
auto, the number of virtual CPUs will automatically be set to the number of
physical CPUs defined in 'cpuset' -1. Note that when rt is true,
hyperthreaded siblings are downed and hence not counted in the cpuset
calculation.

The default value is 1

cpu_topology = {int}, {int}, {int} | auto

This attribute defines the CPU topology that is seen by the VM.

If not auto, the value must be a string of three positive integers separated by
commas ("sockets, cores, threads"), to describe the CPU topology. sockets is
the number of CPU sockets, cores is the number of cores per socket, and
threads is the number of threads per core.

When the value is auto, the topology is set to one socket, nr_vcpus cores
per socket, and one thread per core.

The default value is auto.

NOTE

If the guest virtual machine is running a Windows operating sys-
tem, the cpu_topology attribute may have been set to a
default value that will not work well in KVM-RT. It is best to
change this setting to auto. See the item labeled “VMs running
the Windows operating system” in the Known Issues section of
the KVM-RT Release Notes document.

cpuset = {CPUSET}

This attribute defines host CPUs to which all VM threads are biased. CPUSET
is defined with the other field types above. See the section “Understanding the
cpuset Configuration Attribute” later in this chapter for more information.

The default value is "" (no CPU biasing).

rt_memory = {bool} | auto

This attribute enables memory locking of all pages used by the VM.

When the value is auto, this option is enabled if the rt attribute is enabled
and disabled if rt is disabled.

The default value is auto.

numatune = {ID-set} | auto

This attribute sets the host NUMA node(s) to be used for memory allocation
to the VM.

RedHawk KVM-RT User’s Guide

3-4

If not auto, the value must describe a set of host NUMA node IDs. The set
may be empty, in which case memory will not be restricted to any host NUMA
nodes.

When the value is auto, all NUMA nodes used by cpuset will be used. If
cpuset is empty then memory will not be restricted to any host NUMA
nodes.

The default value is auto.

hide_kvm = {bool}

This attribute hides KVM from the view of the guest OS in the VM.

The default value is false (do not hide KVM).

rt = {bool}

This attribute configures the VM for real-time.

The cpuset and rt_memory attributes must be configured (enabled)
when this attribute is enabled. It is also recommended to configure and enable
numatune when this attribute is enabled.

The default value is false (not real-time).

autostart = {bool}

This attribute enables auto-starting of the VM with kvmrt-boot.
The default value is false (do not autostart).

disabled = {bool}

When set to true the VM is hidden from KVM-RT. This provides a way to
save a VM configuration that is not in use.

The default value is false (the VM is enabled).

pcidevs = {PCISET}

A list of space-separated full PCI device bus addresses that KVM-RT will pass
through to the VM. A device’s bus address may be obtained by searching for
the device in the output of the pci(1) command.

Note that all the devices in the same IOMMU group must be passed through to
the same VM. The pci command, by default, lists only common devices and
may miss other devices in the IOMMU group. To see all the devices, add the
-a option to the pci command or let kvmrt-edit-config fail and print
the device bus addresses of the missing devices.

The default value is "".

comments = { string }

A place for user comments. For multiple lines of comments, indent the addi-
tional line(s) with a space or TAB.

RedHawk KVM-RT User’s Guide

3-5

The default value is "".

Configuration Tools 3

A KVM-RT configuration can be edited by running the command:

 $ sudo kvmrt-edit-config

Note that KVM-RT configuration files should not be edited directly. kvmrt-edit-
config validates and also synchronizes the configuration with libvirt.

A KVM-RT configuration, as interpreted by KVM-RT, can be displayed by running the
command:

 $ sudo kvmrt-show-config

The kvmrt-validate-config and kvmrt-sync-config commands can be run to
validate and synchronize, respectively, a configuration. Users do not normally need to run
these commands directly when using kvmrt-edit-config.

Run any of the above commands with the --help option for more information and
options.

Advanced Libvirt Configuration 3

Advanced configuration that is beyond the scope of the KVM-RT configuration file may
be made to the libvirt XML files, using Virtual Machine Manager or 'virsh edit', but
additional synchronization and validation steps are required for KVM-RT. This is also true
when you remove a VM from libvrt.

Note that some combinations of configuration may be invalid and users are encouraged to
make configuration changes by editing the KVM-RT configuration file with kvmrt-
edit-config whenever possible.

If libvirt XML files are modified by the user outside of KVM-RT, then it is necessary to
run kvmrt-sync-config -r and kvmrt-validate-config, like so:

$ sudo kvmrt-sync-config -r
$ sudo kvmrt-validate-config

Also note that kvmrt-import -u may be used instead of kvmrt-sync-config -r,
as in:

$ sudo kvmrt-import -u
$ sudo kvmrt-validate-config

The kvmrt-validate-config command will display appropriate errors or warnings
for any invalid configuration.

RedHawk KVM-RT User’s Guide

3-6

Run any of the above commands with the --help option for more information and
options.

Understanding the cpuset Configuration Attribute 3

The cpuset attribute controls host-CPU-biasing of the QEMU/KVM threads of a virtual
machine.

The cpuset attribute may be used for both real-time and non-real-time VMs.

For non real-time VMs, all the CPUs in the cpuset can be allocated to any QEMU/KVM
thread. Under-provisioning of host CPUs (less CPUs in cpuset than nr_vcpus +1)
results in more than one vCPU being biased to a host CPU. If cpuset is empty then the
VM will not be bound to any particular host CPUs.

For real-time VMs, host CPUs in cpuset are assigned to vCPUs in order, starting with
the lowest numbered CPU. The rest of the CPUs (at least one more is required) are used
for non-vCPU threads. Under-provisioning of host CPUs is not allowed for real-time VMs
and cpuset is not allowed to be empty.

Understanding KVM-RT Use of RedHawk Real-Time Features3

When the rt configuration attribute is enabled in the configuration file, the following
RedHawk real-time system features are performed:

• All the CPUs in cpuset are shielded. See shield(1).

• Hyperthreaded siblings are downed. See cpu(1) and “KVM-RT Use of
Threaded CPUs” in the section below.

• Memory Locking is enabled. See the -L option of run(1).

• IRQ affinities on the host may be modified. See below.

For each real-time VM using PCI passthrough devices, the affinity of all related vfio IRQs
are changed to bind the IRQ to the last host CPU used by the real-time VM. This is done
constantly in the background whenever VMs are running. All other device IRQs on the
host have their affinity changed as needed in order to guarantee that they will not be bound
to any of the host’s CPUs used by any real-time VMs in the configuration.

It is recommended that when the rt configuration attribute is enabled, that numatune
also be enabled. When numatune is enabled NUMA nodes specified are to be used for
memory allocation to the real-time VM. See NUMA(7).

RedHawk KVM-RT User’s Guide

3-7

KVM-RT Use of Threaded CPUs 3

On host systems having a threaded-CPU architecture such as Intel's Hyper-Threading or
AMD’s SMT, KVM-RT gives special treatment to multi-threaded CPU cores when a real-
time VM is in use.

Real-time demands that only one threaded sibling CPU be in use to avoid contention of
CPU core resources (e.g. caches, etc.). To ensure this, KVM-RT shuts down all but one
threaded sibling CPU for each CPU core allocated to a real-time VM. This requires some
consideration when assigning VM cpusets.

A real-time VM will be given ownership of all threaded sibling CPUs that are related to
the CPUs specified in its cpuset. This may result in the VM consuming but not using
more CPUs than it has specified in it's cpuset. Only one CPU per threaded core will be
used for real-time and the others will be shutdown.

No special treatment is given to threaded cores hosting non-real-time VMs.

Configuring Real-Time Virtual Machines 3

Perform the following steps to configure a VM for real-time:

• enable the rt configuration attribute

• enable the rt_memory attribute (auto is recommended)

• consider enabling the numatume attribute (auto is recommended)

• configure the cpuset attribute as described below

Configuring the cpuset attribute for a real-time VM requires some understanding of
the host system's CPU topology. Use the hwtopo or the cpustat command to see a
display of the host system's CPU topology. hwtopo displays the layout of NUMA nodes,
CPU cores, and logical CPUs. The following example shows the command output for a
multi-threaded architecture with multiple NUMA nodes:

$ hwtopo -v --no-io
Machine 0 (Supermicro M12SWA-TF, "TEST_MACH1"):
 Package 0 (AMD Ryzen Threadripper PRO 5975WX 32-

Cores):
 L3 Cache (32MiB):
 NUMA Node 0 (31GiB)
 Core 0:
 CPU 0
 CPU 32
 Core 1:
 CPU 1
 CPU 33
 Core 2:
 CPU 2
 CPU 34
 Core 3:
 CPU 3

RedHawk KVM-RT User’s Guide

3-8

 CPU 35
 Core 4:
 CPU 4
 CPU 36
 Core 5:
 CPU 5
 CPU 37
 Core 6:
 CPU 6
 CPU 38
 Core 7:
 CPU 7
 CPU 39
 L3 Cache (32MiB):
 NUMA Node 1 (31GiB)
 Core 8:
 CPU 8
 CPU 40
 Core 9:
 CPU 9
 CPU 41
 Core 10:
 CPU 10
 CPU 42
 Core 11:
 CPU 11
 CPU 43
 Core 12:
 CPU 12
 CPU 44
 Core 13:
 CPU 13
 CPU 45
 Core 14:
 CPU 14
 CPU 46
 Core 15:
 CPU 15
 CPU 47
 L3 Cache (32MiB):
 NUMA Node 2 (31GiB)

...

The following rules should be observed when configuring a real-time VM for optimal
performance. The KVM-RT tools will display appropriate errors or warnings when any of
the rules are violated. Errors must be corrected to continue, but warnings serve as
reminders that your configuration may not be optimal.

• The cpuset of a real-time VM cannot overlap the cpuset of any other
VM.

• The cpuset of a real-time VM must not be under-provisioned for the
number of CPUs configured in the nr_vcpus attribute.

RedHawk KVM-RT User’s Guide

3-9

• Careful consideration should be given if the cpuset of a real-time VM
spans multiple NUMA nodes.

• Careful consideration should be given if the cpuset of any other VM
shares NUMA nodes with a real-time VM.

• Careful consideration should be given if numatune is not enabled for a
real-time VM, or if the numatune node set is not contained within the
NUMA nodes used by the cpuset.

• Careful consideration should be given if the numatune node set of any
other VM overlaps with the NUMA nodes used by a real-time VM's
cpuset.

• The cpusets of all real-time VMs must not consume all host CPUs.
This is because some CPUs must be available for the KVM-RT host OS.

Adhering to the following recommendations will help simplify real-time VM
configuration:

• Always configure cpuset with a least nr_vcpus + 1 host CPUs.

• Do not configure the cpuset of any other VM to conflict with this VM's
cpuset, or to use any other CPUs in a NUMA node used by this VM.

• Do not let the cpuset span multiple NUMA nodes.

• Set numatune to auto.

• Do not configure the numatune of any other VM to include the NUMA
node used by this VM.

• Use the kvmrt-show-config command to view the real-time policy
configured for all VMs.

• Use the kvmrt-stat -t command to display the CPU-biasing of all
currently running VM threads.

RedHawk KVM-RT User’s Guide

3-10

4-1

4
Chapter 4KVM-RT Tools

3

RedHawk’s real time tools included in the ccur-rttools package are shipped with
both RedHawk Linux and KVM-RT. Both sets of tools, RedHawk’s Real-time tools and
KVM-RT tools are described here.

RedHawk’s Real-time Tools 4

These commands can be used to examine and modify the system to achieve the best
performing KVM-RT configuration possible.

Only a very brief description is listed here. For more information see the man pages or use
the --help option provided for each tool. There is also a rttools(7) man page that
lists all these commands.

Command line interfaces 4

cpus
Displays or changes the state of CPUs.

irqs
 Displays information about IRQs on the system.
tasks
 Displays information about tasks (process threads) on the system.
hwtopo
 Displays system hardware topology.
pci

Displays PCI device information.
irq-affinity
 Displays or changes the CPU affinity of IRQs.
task-affinity
 Displays or changes the CPU affinity of tasks (process threads).
cpustat

Combines hardware topology, CPU state, IRQ and task execution and CPU affinity
into one display.

cpi
Displays per-CPU interrupt counts of IRQs.

Graphical user interfaces 4

hwtopo-gui
Displays system hardware topology with a GUI.

RedHawk KVM-RT User’s Guide

4-2

cpustat-gui
Combines hardware topology, CPU state, IRQ and task execution and CPU affinity
into one display with a GUI.

interview
Displays interrupt counts per-CPU in real-time with a GUI.

KVM-RT Tools 4

These commands are KVM--RT specific. There is a man page and a --help option
associated with each command. There is also a kvmrt(7) man page that lists all these
tools.

Most of the KVM-RT tools use the /etc/kvmrt.cfg file by default, however, a
different configuration file may be specified via the -f option.

Start-Up Commands 4

kvmrt-validate-host:

Verifies if the current system configuration is valid for a KVM-RT host. It
will provide suggestions on changes to be made if not.

kvmrt-import:

Imports libvirt virtual machines into a KVM-RT configuration file. By
default, all libvirt VMs on the current system will be imported, but individual
VMs may be specified instead. Any VMs already listed in the KVM-RT
configuration file will be skipped, unless the -u option is used.

Configuration Commands 4

kvmrt-edit-config:

Allows a user to edit, validate, and synchronize the KVM-RT configuration
file /etc/kvmrt-edit-config. This is the default configuration file but
another may be specified with the -f option.

kvmrt-show-config:

Displays the configuration of virtual machines in a KVM-RT configuration.
Options are available to control the information to display.

kvmrt-sync-config:

Synchronizes libvirt VM configuration XML files with a KVM-RT
configuration file. By default, all VMs in the KVM-RT configuration file are

RedHawk KVM-RT User’s Guide

4-3

synchronized, but individual VMs may be specified instead. Optionally you
can just query the state.

kvmrt-validate-config:

All VMs in the configuration are individually validated as well as the
combined VMs are evaluated for conflicts. By default, only VMs in the
configuration that are not disabled are evaluated but -all option may be
used to override.

Boot/Shutdown Commands 4

kvmrt-boot:

Boots virtual machines in a KVM-RT configuration, after validating the
configuration. By default, all VMs in the configuration with the “autostart”
configuration parameter enabled are booted, however the --all option can
be used to boot all VMs in the configuration. Individual VMs may be also be
specified instead.

If any VMs are running it simply re-tunes them as required for real-time and
boot errors are ignored. When the option --clean is specified, no virtual
machine may already be running and no boot errors are tolerated.

kvmrt-shutdown:

Shuts down virtual machines and removes any real-time policy used by those
VMs. By default, all VMs in the configuration are shutdown in parallel, but
individual VMs may be specified instead. Using the -v verbose option will
serialize the shutdown so that the output from the shutdown is not garbled. A
--force option is available.

kvmrt-stat:

Displays the status of virtual machines in a KVM-RT configuration. By
default, all enabled VMs are shown but the --all option will also show
disabled VMs. Individual VMs may also be specified instead.

RedHawk KVM-RT User’s Guide

4-4

5-1

5
Chapter 5Virtual Machine Time Synchronization

4
4
4

Chrony is a versatile time synchronization implementation of NTP. It is designed to
perform well in a wide range of conditions and can be run on virtual machines. Specific
instructions are included here on how to configure and start the chrony system on virtual
machines. The host system is assumed to be already configured with time synchronization.
See chronyd(1) , chrony.conf(5) and on-line documentation for more
information.

Complex applications may depend on the time of day to be synchronized between two or
more VMs or with the host. It is also required that the time of day on the virtual guests be
synchronized with the host when using RedHawk tracing to analyze performance issues or
debug system problems with real-time VMs.

Instructions to run chrony 5

There are various techniques to synchronize the time of day clock on the virtual guests but
we recommend kvm_clock synchronized with chrony via the ptp_kvm module.

The process of configuring chronyd to use ptp_kvm differs slightly depending on the
base distribution.

If you are using Ubuntu as your base distro, use these settings:

service=chrony
conf=/etc/chrony/chrony.conf
drift=/var/lib/chrony/chrony.drift

If you are using a Rocky-compatible distro, use these settings:

service=chronyd
conf=/etc/chrony.conf
drift=/var/lib/chrony/drift

The following instructions should help in configuring chrony on a virtual guest. Substitute
the variable settings below for the appropriate distro settings above.

1. If not already installed, install chrony.

For Rocky-compatible systems:

dnf install chrony

For Ubuntu systems use:

apt install chrony

RedHawk KVM-RT User’s Guide

5-2

2. Load the ptp_kvm module on boots.

echo ptp_kvm > /etc/modules-load.d/ptp_kvm.conf

3. See if there are any lines that reference ‘refclock’, 'server’, ‘pool’ or ‘peer'
in the configuration file. If there is, edit the file and comment them out (put
a # sign in front).

egrep 'refclock|server|pool|peer' $conf
["$?" = 0] && vi $conf

4. Configure ‘refclock”.

echo "refclock PHC /dev/ptp_kvm poll 3 dpoll -2 \
offset 0" >> $conf

5. Comment (place a # at the front) any lines with PEERNTP and append
PEERNTP=no to the /etc/sysconfig/network file.

grep PEERNTP /etc/sysconfig/network && \
vi /etc/sysconfig/network

echo "PEERNTP=no" >> /etc/sysconfig/network

6. Remove the appropriate $drift file.

rm -f $drift

7. Enable the appropriate chronyd service but do not start it.

systemctl enable $service

8. Reboot for a clean start with the new configuration.

reboot

6-1

6
Chapter 6I/O Device Utilization in Virtual Environment

5

This chapter covers key aspects of virtualization within the context of Linux Quick
Emulator (QEMU) and Kernel-based Virtual Machine (KVM). It aims to provide users
with a better understanding of the underlying techniques within virtualization so that
informed decisions can be made in terms of performance and reduced latency when
configuring common I/O devices.

The chapter covers different virtualization techniques, including device emulation,
paravirtualization, and PCI passthrough, which provide varying levels of performance and
host hardware interaction. This provides a foundation for understanding the device types.

Three common device types, networking, storage and graphics, are also discussed
including several implementations for each which can be separated into virtual and
physical hardware solutions.

Introduction 6

In Linux, QEMU/KVM make up the hypervisor. QEMU provides hardware emulation
including CPU, memory, network cards, disk controllers, display adapters and more.

KVM provides core virtualization capabilities by exposing hardware virtualization
features such as Intel VT-x and AMD-V to user-space. It relies on libraries such as libvirt
to manage virtual machines. KVM also handles the virtualization of the CPU, allowing
virtual machines to execute instructions directly on the host's physical CPU.

Virtualization Techniques 6

There are three common techniques for making I/O devices available to a virtual
machine: Device Emulation, Paravirtualization and PCI Passthrough.

Device Emulation 6

Full device emulation works by simulating the hardware devices the guest operating
system uses. This allows the guest OS to run in a state where it believes it is interacting
with real hardware.

The guest OS will interact with I/O devices using standard I/O operations, except device
interrupts are emulated and QEMU intercepts and handles them. The work is often
forwarded to the host OS CPU for processing or handled directly by the emulator.

RedHawk KVM-RT User’s Guide

6-2

Device emulation does incur some performance overhead since interrupts are handled via
software instead of by the hardware device it would have normally been intended for on a
physical system. This method can be useful for older guest operating systems where
paravirtualization is not an option or the drivers are not available.

Paravirtualization 6

Paravirtualization improves the performance of the virtual machine by modifying the
guest OS to be aware that it is running in a virtual environment. By being aware of an
underlying hypervisor, the guest OS can bypass the emulation layer for certain operations
and interact directly with the hypervisor.

Virtio is the interface with which QEMU/KVM provides paravirtualization support. It
provides a standardized API for devices. The guest OS will need support for drivers such
as virtio-pci for various devices. For example: networking (VirtioNet), storage controllers
(Virtio Block, Virtio SCSI), and graphics (Virtio GPU).

The virtio driver is responsible for accepting I/O requests from user processes within the
guest OS, forwarding those I/O requests to the appropriate virtio device within QEMU,
and retrieving completed requests from the virtio device.

The virtio device will accept the I/O requests from the corresponding virtio driver, offload
those I/O requests to the host's physical hardware, and make the result available to the
virtio driver.

While there is a significant improvement in virtual machine performance when utilizing
the optimizations present in virtio, there is still some overhead. All virtual machines
utilizing paravirtualization still contend for host resources and there can still be some
latency expected when compared to dedicating physical hardware completely to the VM
using PCI passthrough.

For further reading:

https://blogs.oracle.com/linux/post/introduction-to-virtio

PCI Passthrough 6

PCI passthrough offers the best performance by reducing host kernel involvement in
executing virtual machine I/O operations. PCI passthrough may require some kernel boot
parameter configuration depending on your system. See Appendix C, PCI Passthrough
Boot Parameters.

Some benefits of PCI passthrough include secure isolation from host memory and other
VMs along with direct hardware access providing near bare-metal performance.

One of the drawbacks to PCI passthrough is complete resource allocation. This solution
does not scale well due to resource limitations and prevents the host and other guests from
using the device assigned to a specific VM. While this is a drawback, PCI passthrough
provides the best real-time performance over the methods mentioned above.

https://blogs.oracle.com/linux/post/introduction-to-virtio

RedHawk KVM-RT User’s Guide

6-3

To understand how PCI passthrough works we must discuss the mechanisms with which
the host OS prepares an environment for a physical device to be allocated to a virtual
machine. These mechanisms include IOMMU and VFIO.

IOMMU 6

Input-Output Memory Management unit (IOMMU) provides secure and efficient mapping
of device memory access. This provides memory isolation such that the VM can only
access the memory for the assigned device. IOMMU also provides interrupt remapping to
ensure interrupts generated by the device are properly routed to the VM’s CPUs.

Further reading:

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization
_deployment_and_administration_guide/sect-iommu-deep-dive#sect-iommu-deep-dive

VFIO 6

The Virtual Function I/O (VFIO) driver is an IOMMU/device agnostic framework for
exposing direct device access to userspace in a secure, IOMMU protected environment.
This allows VMs to utilize their device drivers to directly interact with physical disk
devices and bypass the host kernel.

VFIO depends on IOMMU to safely assign a PCI device to a VM by setting up the
necessary memory mappings and providing isolation from the host. IOMMU isolation is
not always at the individual device level. Properties of devices, interconnects, and
IOMMU topology can reduce isolation to a group of devices. It should be noted that VFIO
operates at the IOMMU group level and all devices within the same IOMMU group must
be passed through to the same VM.

Further reading:

https://docs.kernel.org/driver-api/vfio.html

Networking 6

A virtual machine can use virtual and physical network devices. Virtual network devices
can be configured for NAT or MacVTap. Physical network devices are passed through
from the host.

Virtual Networking 6

Virtual networking can be configured for NAT or MacVTap on virtual device models such
as virtio, e1000e and rt18139.

https://docs.kernel.org/driver-api/vfio.html
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-iommu-deep-dive#sect-iommu-deep-dive

RedHawk KVM-RT User’s Guide

6-4

NAT 6

By default libvirt installations use Network Address Translation (NAT) with forwarding
for network configuration on virtual machines. The host system will have an isolated
bridge device, 'virbr0', without any physical interfaces added.

Libvirt adds iptables rules to manage traffic to and from the guest. Outgoing connections
from the guest pass through the virtual network and are forwarded via the host IP address
to their destination. External connections cannot initiate communication with the guest,
however the guest can accept incoming communication from other guests, as well as the
host, using virbr0.

For a guest to be accessible from outside the bridge an explicit static destination network
address translation (DNAT) with port forwarding has to be configured on the host.

Further readings:

https://wiki.libvirt.org/Networking.html
https://wiki.libvirt.org/VirtualNetworking.html

MacVTap 6

MacVTap provides a simplified solution for virtualized bridged networking. This is not to
be confused with network bridges created via brctl(8), nmcli(1), or other methods
of creating a Linux ethernet bridge.

MacVTap combines the Macvlan driver and a tap device. It is an instance created on top of
a physical interface along with a character device directly used by KVM/QEMU. It
extends an existing host network interface along with providing its own MAC address on
the same ethernet segment for the guest to use.

Guests will appear on the same switch the host is connected to. This offers an advantage
over NAT networking where incoming connections cannot reach the guest. With
MacVTap, incoming connections can reach the guest.

MacVTap can be set up in one of three modes which define the communication between
endpoints:

Virtual Ethernet Port Aggregator (VEPA)
Bridge
Private

Most modern libvirt installations now use bridge mode and it’s the mode discussed here.

Bridge allows all endpoints to be directly connected to each other. While guests using
MacVTap can communicate on the same network the host uses, they can also exchange
frames directly with other guests using the same MacVTap bridge connection without
routing through the external network. Inter-guest transfer speeds are similar to what NAT
networking provides while external network speeds are limited to the physical network
setup.

One limitation of MacVTap is that it cannot readily enable network communication
between the KVM host and any of the KVM guests. One possible workaround is to have

https://wiki.libvirt.org/VirtualNetworking.html
https://wiki.libvirt.org/Networking.html
https://wiki.libvirt.org/VirtualNetworking.html

RedHawk KVM-RT User’s Guide

6-5

multiple network interfaces in the KVM host and configure another host interface to
communicate with the guest.

Further reading:

https://virt.kernelnewbies.org/MacVTap
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-
virtual-networking#macvlan
https://docs.kernel.org/networking/tuntap.html
https://wiki.libvirt.org/TroubleshootMacvtapHostFail.html

Virtual Networking Device Models 6

Virtual Network device models are virtualized network cards presented as PCI devices
within the guest. These device models utilize the backend setup of either NAT of
MacVTap as described above.

These common device models are available for both MacVTap and NAT backend setups:

virtio
e1000e
rtl8139 (hypervisor default)

Virtio is a paravirtualized driver that works in guest operating systems that support virtio.
The guest knows it is running within a virtual machine and allows direct calls to the
hypervisor. This method greatly improves transfer speeds and avoids the need for fully
emulated network devices.

The remaining device models, e1000e and rtl8139, are emulated Intel and Realtek network
cards respectively. Depending on the limitations of what network cards the guest OS can
support, one of these options might be needed in lieu of virtio.

Examples of PCI device listing in the guest for each device model:

virtio:
 Ethernet controller: Red Hat, Inc. Virtio 1.0 network device (rev 01)

e1000e:
 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection

rtl8139:
 Ethernet controller: Realtek Semiconductor Co., Ltd.
 RTL-8100/8101L/8139 PCI Fast Ethernet Adapter (rev 20)

Device Model Performance Comparison 6

When configuring virtual network devices it is important to note the differences in
performance.

Each device model was compared using communication between 2 guests on the same
bridge in both NAT and MacVTap configurations. The sampling was done using iperf3
TCP tests over a 5 minute period with measurement intervals being one second (60
secs/min x 5 minutes= 300 samples). Tests were completed both with and without stress

https://virt.kernelnewbies.org/MacVTap
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking#macvlan
https://docs.kernel.org/networking/tuntap.html
https://wiki.libvirt.org/TroubleshootMacvtapHostFail.html

RedHawk KVM-RT User’s Guide

6-6

on the guest OS. Below is the average giga bits per second measured over the sampling
period:.

Speeds between NAT and MacVTap configurations, when directly comparing device
models, are nearly identical and therefore not distinguished in the results.

Test results for guests configured with MacVTap communicating outside of the host would
depend upon the user's network limitations. The same can be said for guests configured
with NAT sending data outside the virbr0 device.

Note that these measurements were taken on systems not utilizing any real-time features.
The use of KVM-RT on the host, along with a RedHawk guest shielding both network
interrupts and iperf tasks, yields dramatic improvements in network performance and
consistency.

Further reading:

https://wiki.libvirt.org/Virtio.html

Physical Networking 6

Physical network cards can be used to provide dedicated networking devices to virtual
machines. Single Root IO Virtualization (SR-IOV) technology can make a physical
network card appear as multiple, individual devices, called virtual functions, on the PCI
bus. Alternatively, the entire network card can be dedicated to a single virtual machine via
complete PCI passthrough.

SR-IOV 6

Single root I/O virtualization (SR-IOV) allows a single root function to appear as multiple,
separate, physical devices. A single ethernet port on a network card could appear as
multiple functions each with its own configuration space, bus address, and IOMMU
group. Multiple functions appear as separate devices in the output of commands that list
PCI device information.

Device Model
Without

Stress
(Gbps)

With
Stress
(Gpbs)

virtio 10.3 4.44

e1000e 2.12 1.12

rt18139 0.55 0.44

https://wiki.libvirt.org/Virtio.html

RedHawk KVM-RT User’s Guide

6-7

NOTE

The KVM-RT qualified platform supports SR-IOV. Users of a
non-qualified system should check with the corresponding manu-
facturer documentation on whether their system supports this fea-
ture and ensure it is enabled in the BIOS.

NOTE

The network card must also be SR-IOV capable. Refer to the man-
ufacturer's specifications to verify SR-IOV capabilities.

SR-IOV enabled devices use two PCI functions, Physical Functions (PFs) and Virtual
Functions(VFs).

Physical Functions 6

Physical Functions (PFs) are the complete PCIe device that contain the SR-IOV
capabilities. They operate as normal PCI devices while also configuring and managing
SR-IOV functionality.

Virtual Functions 6

Virtual Functions (VFs) are derived from a Physical Function. Virtual Functions are
simple PCIe functions that process I/O. A single, physical ethernet port can map to many
Virtual Functions up to the limitations of the device.

Unlike the virtual network methods mentioned in the previous section, some setup is
required before a Virtual Function can be utilized by a guest. See Appendix B, SR-IOV
Setup for help.

Once Virtual Functions are set up, proceed to pass through the PCIe device associated
with the VF to the guest as one would with any other PCIe device.

Guests on the same host utilizing Virtual Functions on the same Physical Function benefit
from transfer speeds greater than the limitation of the network since they do not get routed
to the switch and back to the card.

Guests using a Virtual Function cannot communicate with the host's corresponding
Physical Function. A separate interface would need to be configured to enable guest-to-
host communication.

Further reading:

https://www.intel.com/content/www/us/en/developer/articles/technical/configure-sr-iov-
network-virtual-functions-in-linux-kvm.html
https://access.redhat.com/documentation/enus/red_hat_enterprise_linux/7/html/virtualizat
ion_deployment_and_administration_guide/sect-pci_devices-pci_passthrough

SR-IOV vs MacVTap Performance 6

The similarities between Virtual Functions (SR-IOV) and MacVTap warrant a comparison
in performance.

https://www.intel.com/content/www/us/en/developer/articles/technical/configure-sr-iov-network-virtual-functions-in-linux-kvm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/configure-sr-iov-network-virtual-functions-in-linux-kvm.html
https://access.redhat.com/documentation/enus/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-pci_devices-pci_passthrough

RedHawk KVM-RT User’s Guide

6-8

Two KVM-RT hosts with identical guests and 10Gb ethernet cards were setup to
communicate with each other over a dedicated ethernet connection isolated from any other
network.

The guests first communicated over MacVTap in bridge mode with a virtio device model
using the first interface of the 10Gb network card.

After data was collected, Virtual Functions were configured for the same interface and the
guests utilized PCI passthrough to use a Virtual Function.

During a round trip network test MacVTap was shown, on average, to use 34.6% more
kernel CPU time than SR-IOV when transferring GB of data for each interval and 69.3%
more kernel CPU time, on average, when transferring MB of data for each interval.

Along with lower CPU utilization, SR-IOV also provides advantages in throughput and
scalability when compared to virtual networking methods.

Network PCI Passthrough 6

Complete passthrough of a network card is the best method to provide full functionality of
a network card to a guest while also isolating its use from both the host and any other
guests.

This method also allows the other interfaces (ports) of the card to be configured for guest
use. This method is best for any use cases where networking performance is critical to a
real-time application.

This method is the least scalable with respect to the maximum number of guests and
network interfaces given the limitation of PCIe slots on the host motherboard.

Storage 6

Storage options include virtual disk formats like qcow2 and raw images, alongside
physical disk configurations including the assignment of physical disk partitions and PCI
passthrough of physical storage controllers.

Virtual Disks 6

Virtual machines see the virtual disk image file as a physical disk, however I/O is actually
managed by the host system via the hypervisor (QEMU/KVM).

When the VM makes an I/O request to the virtual disk, the hypervisor intercepts the
request and translates it in a manner appropriate to the disk format being used before
forwarding the request to the host's file system.

The translation varies depending upon the virtual disk format in use.

RedHawk KVM-RT User’s Guide

6-9

With qcow2 images, there is some overhead as they involve the management of additional
metadata, snapshots, and compression.

Raw images, however, have a one-to-one mapping of disk sectors. This allows the
hypervisor to directly translate the request to the corresponding offset in the raw image
file.

Once forwarded to the host's file system, the I/O request appears as a standard file
operation. The complexity of the file operation will vary for qcow2 depending upon the
structure of the image and the state of the virtual disk. The process for raw images is a
straightforward read or write at a given offset.

The host kernel schedules the I/O operations and disk interrupts are generated as they
normally would be for the host system.

Once completed, the hypervisor sends a result to the VM. The VM interprets this as
though the I/O operation on its virtual disk has been completed.

Qcow2 Images 6

QEMU Copy-on-Write 2 (qcow2) images offer several features:

• Sparse allocation. The disk space on the host is allocated dynamically,
allowing the disk to take up only the amount of space needed by the data
stored within.

• Compression. Images can be compressed to reduce host disk usage.

• Snapshots. Allows the state of the VM to be saved and revert back to later.

As mentioned before, the benefits qcow2 offers also introduces some overhead which
impacts performance.

Raw Images 6

Raw images are simple, unstructured disk images that occupy the entire space allocated
when created. Because of this simplicity, raw images provide better read/write
performance when compared to qcow2 images.

Virtual Disk Drawbacks 6

While virtual disk images are easier to migrate and require fewer resources when
compared to allocating physical disks to VMs, there are drawbacks which affect VM and
host disk performance.

Virtual disk images are placed on the host file system. This requires VM disk I/O
operations to be communicated via the hypervisor and completed by the host kernel.

There is contention between scheduling I/O operations for the VM and I/O operations for
the host. This can negatively impact read and write operations for both the VM and the
host. Performance degradation is more apparent when managing multiple VMs; each
requiring the host to schedule I/O operations on its behalf.

RedHawk KVM-RT User’s Guide

6-10

With virtual disk images, flushes for dirty pages to write to the physical host disk are
dependent upon the host. Virtual disk write performance is reduced when the host decides
to perform a sync.

While VMs with virtual disk images can benefit from fast cached read speeds, the host
controls when to evict pages from memory. This has been shown to dramatically reduce
read performance.

Further reading:

https://docs.redhat.com/en/documentation/red_hat_virtualization/4.3/html/technical_refer
ence/qcow2
https://github.com/qemu/qemu/blob/master/docs/interop/qcow2.txt
https://www.qemu.org/docs/master/system/images.html
https://docs.kernel.org/admin-guide/mm/concepts.html#page-cache

Physical Disks 6

Physical hardware storage can be allocated to virtual machines through partition
assignment and PCI passthrough.

Partition Assignment 6

When a physical disk partition on the host disk is assigned to the VM, I/O requests are
directly mapped to the host disk partition and there is no longer a need for the hypervisor
to translate the I/O request for a virtual disk image file format.

When the VM makes an I/O request, the hypervisor will intercept the request and directly
pass the request to the assigned host disk partition.

As with virtual disk images, the I/O request is still handled by the host kernel as a standard
file operation, however there are no intermediate files system layers.

Once complete, a disk interrupt is generated, signaling to the host that the operation is
complete. The hypervisor then sends a signal to the VM.

Partition assignment offers many benefits over virtual disk images such as reduced
complexity, overhead, and improved disk performance. There are drawbacks, however,
when compared to PCI passthrough. Partition assignment still involves host kernel support
to perform I/O operations and there is a notable performance impact due to contention
between scheduling I/O operations for both VM and host. The effects of the host cache
flushing and evicting pages from memory mentioned in the previous section still apply
here to disk partition assignment.

Note that partition assignment is not considered passthrough. The distinction being that
partition assignment still relies on the host kernel and disk driver to process I/O operations
to/from the physical disk on behalf of the hypervisor intercepting signals from the VM.

https://docs.redhat.com/en/documentation/red_hat_virtualization/4.3/html/technical_reference/qcow2
https://github.com/qemu/qemu/blob/master/docs/interop/qcow2.txt
https://www.qemu.org/docs/master/system/images.html
https://docs.kernel.org/admin-guide/mm/concepts.html#page-cache

RedHawk KVM-RT User’s Guide

6-11

Storage PCI Passthrough 6

PCI passthrough offers the best performance by reducing host kernel involvement in
executing VM I/O operations.

On IOMMU enabled systems, the disk controller can be passed directly to the guest VM
and controlled by the guest VM's disk driver. This operation is made possible due to the
host's disk driver being unloaded and instead loading the VFIO driver to provide full
direct, device access to the VM.

One of the drawbacks to PCI passthrough is complete resource allocation. Depending
upon the topology of the host system, passthrough of a disk controller can prevent the host
from having access to disks under that controller. This is more evident with SATA
controllers where multiple disks might be part of the IOMMU group associated with the
controller and passthrough allocates all of the disks to the VM. The performance
advantages of PCI passthrough, which include allowing the VM direct control over the
disk device and freeing the host from processing VM I/O operations, outweigh the cost of
complete resource allocation.

Graphics 6

Virtual graphics implementations within virtual environments include VGA, QXL, and
Virtio GPU. VNC and SPICE are display protocols used to deliver a virtual graphics
display. Full GPU PCI passthrough provides full access to a physical graphics card on the
host and provides the best graphical performance and reduced latencies.

VGA 6

VGA offers broad compatibility with older OS versions, especially those that might not
have specific drivers for more advanced virtual graphics adapters such as QXL or Virtio
GPU.

QEMU emulates a simple VGA card with Bochs VESA BIOS Extensions (VBE) with the
guest OS using the bochs-drm driver.

The emulated VGA graphics adapter supports low-resolution graphics modes and can
provide higher resolutions and color depths with VBE.

This device uses a simple framebuffer. The hypervisor (QEMU) reads this framebuffer and
displays it on the screen or sends it to a remote client via a display protocol such as VNC.

Emulated VGA does not support hardware acceleration and all graphics rendering is
handled by the CPU which can limit high-resolution displays or graphically intensive
applications.

Overall, it has lower performance when compared with the other methods mentioned in
this doc, but offers broader compatibility. For example, both QXL and VirtIO GPU have
optimizations which offer some level of 2D acceleration even without the use of the host
GPU, but require that the guest OS support and use paravirtual drivers for graphical
devices.

RedHawk KVM-RT User’s Guide

6-12

QXL 6

QXL is a paravirtual graphical adapter with 2D acceleration support that utilizes the
SPICE protocol (see SPICE below).

It is designed to provide better performance than traditional emulated graphics by
leveraging the capabilities of the host machine and improving the efficiency of the
graphics operations in VMs. The graphical adapter utilizes a paravirtual graphics 'qxl'
driver within the VM and communicates with a QXL device on the backend via QEMU.
The guest OS needs this qxl driver to translate the guest's graphical operations into
commands that the QXL device can process efficiently.

QXL operates within the VM and handles drawing commands, screen updates, and other
graphics-related tasks. Unlike emulated graphics (VGA), QXL is designed to work in
virtual environments, allowing it to offload tasks to the host system and SPICE server.
This makes it more efficient in terms of host CPU and memory usage. It also supports
single monitor resolutions up to 3840x2160.

Virtio GPU 6

Virtio GPU is a modern paravirtualized graphics driver. Part of the broader Virtio
framework, Virtio GPU provides efficient I/O virtualization by exposing simplified device
interfaces to the guest OS. This reduces the overhead that is normally associated with fully
emulated hardware. Virtio GPU provides better performance and flexibility over full
device emulation and older paravirtual solutions such as QXL.

The guest OS will need support for the paravirtual drivers. While the driver is lightweight
and optimized for virtual environments, it may not be supported by older operating
systems. Full emulation would be necessary in this case.

Virtio GPU supports 2D acceleration. 3D acceleration support via OpenGL is not stable at
this time. For more complete graphical capabilities, we recommend PCI passthrough.

Further reading:

https://www.kraxel.org/blog/2019/09/display-devices-in-qemu/

Display Protocols 6

The VNC (Virtual Network Computing) protocol and the Simple Protocol for Independent
Computing Environment (SPICE) protocol are described and compared in this section.

VNC 6

VNC (Virtual Network Computing) is a cross-platform protocol that provides remote
access to a GUI by transmitting screen updates, keyboard, and mouse events between a
server running on the VM host and a client running on the user's system. It is based on the

https://www.kraxel.org/blog/2019/09/display-devices-in-qemu/

RedHawk KVM-RT User’s Guide

6-13

Remote Framebuffer (RFB) protocol which is simple compared to more advanced
protocols like SPICE.

VNC provides a broader compatibility than SPICE which is beneficial for older operating
systems running within virtual machines, however it does not perform as well as SPICE.

Further reading:

https://web.mit.edu/cdsdev/src/howitworks.html

SPICE 6

The Simple Protocol for Independent Computing Environment (SPICE) protocol is
designed to handle remote access to virtualized desktops, enabling high performance
graphics and input redirection between VM and a client.

SPICE manages the guest framebuffer, efficiently streaming graphical updates to the
client. It tracks changes to the framebuffer and only sends the updated regions to the
client. It also caches frequently used graphical elements on the client, reducing the need to
retransmit them.

Like VNC, SPICE operates as a client-server protocol with several components working
together to deliver a remote desktop. The server runs on the host machine (within the
hypervisor) and manages graphical, input, and multimedia data streams. The client will
connect to the server and receive the guest VM's display while also handling input events
from mouse, keyboard, etc.

SPICE also has a software component running inside the guest to provide additional
features such as clipboard sharing, dynamic resolution changes, and more. Some features
might not perform as well depending on the graphics adapter in use (QXL vs. Virtio
GPU).

SPICE generally offers better performance, especially for multimedia heavy workloads
and when interacting with the desktop. This is in part due to features like client-side
caching, and advanced compression methods.

Further reading:

https://www.spice-space.org/documentation.html

Graphics PCI Passthrough 6

GPU passthrough provides full access of a physical graphics card on host to the virtual
machine. IOMMU will provide secure memory isolation and access while VFIO will
allow the graphics driver in the guest OS to directly access the device.

The virtual machine will then have access to all of the physical GPU's features as though it
were a physical system. Depending on the GPU used, this includes multiple displays, 3D
acceleration, CUDA, and more.

Note that with PCI passthrough, this will prevent the GPU from being used by the host and
any other virtual machines. This method, while not necessarily scaling well, provides the
best graphical performance and reduced latencies.

https://web.mit.edu/cdsdev/src/howitworks.html
https://www.spice-space.org/documentation.html
https://www.spice-space.org/documentation.html

RedHawk KVM-RT User’s Guide

6-14

7-1

7
Chapter 7Analysis and Debugging

6

This chapter covers the system tools that can be used to analyze performance issues or
debug system problems in virtualized environments.

A new multi-merge tracing feature is included in the latest release of the RedHawk
operating system. It allows the merging of multiple system trace dumps into one view
organized by timestamp. This new feature is crucial to debugging virtualized
environments that often produce cross-VM and host interactions that can impact the
performance of real-time applications.

In order to take advantage of the multi-merge tracing feature, all the guest VMs to be
traced must be synchronized using the time of day clock (TOD). See the section
“Instructions to run chrony” on page 5-1 to start-up chrony on each of the guest VMs to be
traced.

NOTE

The time stamp counter (TSC) cannot be synchronized, therefore,
only the TOD timestamp type should be used when tracing multi-
ple systems. Be sure to select the TOD timestamp clock option in
the trace tools.

In this chapter, the following information is presented:

• the KVM trace events supported in RedHawk.

• a brief description of the RedHawk tracing tools collectively known as
xtrace. These tools use a simple command line interface. An example of
tracing the host and one guest VM using xtrace and the new multi-merge
feature is included.

• a new service named KVM-RT Guest Services. KVM-RT Guest Services is
a collection of application programmer interfaces which give guest
userspace applications access to functions exposed by the host hypervisor.

NightTrace is an optional product offered by Concurrent Real-Time. NightTrace is part of
the NightStar family and consists of an interactive debugging and performance analysis
tool, trace data collection daemons, and two Application Programming Interfaces (APIs)
allowing user applications to log data values as well as analyze data collected from user or
kernel.

For information on how to use NightTrace with KVM-RT see the "Kernel Tracing with
KVM-RT" section in the NightTrace User's Guide.

RedHawk KVM-RT User’s Guide

7-2

KVM Trace Events 7

Following are the KVM traceable events supported by the RedHawk operating system.

KVM_ENTER_VM_PID

This is a generic catch-all event which will be triggered any time
execution/control is transferred from the host kernel to the guest VM. It is
produced by the KVM module on the host system, right before the host-
guest transition.

KVM_EXIT_VM_PID

This is a generic catch-all event which will be triggered any time
execution/control is transferred from guest VM to host kernel. It is
produced by the KVM module on the host system, right after the guest-host
transition.

KVM_EXIT_HANDLER

This event is logged to provide additional information about VM exits,
such as when MSR reads and writes occur along with the MSR type and
data that is read or writ ten. This event is logged shortly after
KVM_EXIT_VM_PID.

KVM_GUEST_HC_START

This event is logged by the guest VM right before it makes a hypercall to
the host.

KVM_GUEST_HC_END

This event is logged by the guest VM right after control returns from a
hypercall.

KVM_HOST_HC_ENTER

This event is logged by the host system right after execution reached the
generic hypercall handler.

KVM_HOST_HC_EXIT

This event is logged by the host system right before execution exits the
generic hypercall handler.

Kernel Tracing with xtrace 7

xtrace is a command line interface used in the tracing and analysis of dumps.

RedHawk KVM-RT User’s Guide

7-3

xtrace comes with the RedHawk Operating system in the ccur-xtrace package and
contains several tools named xtrace-<function>. To see all the commands and libraries
provided by this package, on a RedHawk system execute:

rpm -ql ccur-xtrace

The following are the tools directly called in the example that follows. A brief description
and only a few options are mentioned below. For more information and to see more
options, use the --help option:

xtrace-run:

captures xtrace data during the execution of a shell command. The command
must be specified in the command line. When the command exits xtrace-
run stops. The -o option specifies the output directory name where the
xtrace data will be saved. The -m overwrite option may be used when the trac-
ing will go for long periods of time and the xtrace data will grow very large.

xtrace-multi-merge:

merges into one multi-merge directory the xtrace-data directories specified in
the command line. These are the directories created when xtrace-run was
invoked. In the command line specify one directory for the host and one for
each guest VM traced. The -o option lets you specify the directory name of
the multi-merge directory to be created. The -t option sets the xtrace time-
stamp clock to be used. Note that only the time of day clock (TOD) can be
synchronized.

xtrace-view:

merges and displays xtrace data in a user-readable format. The xtrace data
directory must be specified.

xtrace-ctl:

provides control of the kernel xtrace module on one or more CPUs. In the non-
interactive mode, commands such as FLUSH, PAUSE, RESUME are speci-
fied in the command line.

Example: multi-merge Tracing with xtrace 7

This example captures a trace dump on the host system and a guest VM simultaneously,
and then merges the two trace dumps into one. The example assumes that the user
application is known to fail within the first five minutes.

NOTE

Time of day synchronization must be configured and running
before guest VMs are traced. Refer to the section “Instructions to
run chrony” on page 5-1 to start-up chrony on each of the VMs to
be traced.

RedHawk KVM-RT User’s Guide

7-4

1. Trace host system in the background and sleep for a span of time greater
than it takes the user application to fail:

rm -rf xtrace-host
xtrace-run -m overwrite -t tod -o xtrace-host \

sleep 600 &

2. Start tracing remotely from the host. When the user application fails on the
guest VM, the trace buffer is flushed:

ssh guest_vm "rm -rf xtrace-vm;
xtrace-run -m overwrite -t tod -o xtrace-vm \

bash -c '(userapp || xtrace-ctl flush)' "

3. Flush the trace buffer and stop tracing on the host:

xtrace-ctl flush stop

4. Copy the trace data directory from the guest VM to the host system:

scp -r guest-vm:xtrace-vm .

5. Merge the guest and host trace directories into one:

xtrace-multi-merge -o xtrace-merged xtrace-host xtrace-vm

6. View the merged trace arranged according to time stamp:

xtrace-view xtrace-merged

The fields displayed are controlled by options to xtrace-view. The fields in the
following example output are: timestamp (TOD), hostname, CPU and event.

Note that CPUs are local to each host so in the excerpt that follows, "vm1 0" denotes
virtual CPU 0 in the guest VM whose hostname is "vm1".

23.404455270 host 3 INTERRUPT_ENTER [apic_timer]
23.404455720 host 3 HRTIMER_CANCEL [0xffffffff8e8f84e0]
23.404455898 host 3 HRTIMER_EXPIRE [0xffffffff8e8f84e0]
23.404456627 host 3 SCHED_WAKEUP [740216]
23.404456854 host 3 HRTIMER_EXPIRE_DONE[0xffffffff8e8f84e0]
23.404456971 host 3 HRTIMER_START [0xffffffff8e8f84e0]
23.407646071 vm1 0 SYSCALL_EXIT [openat]
23.407646321 vm1 0 SYSCALL_ENTER [read]
23.407646512 vm1 0 FILE_READ [3]
23.407647171 vm1 0 SYSCALL_EXIT [read]

KVM-RT Guest Services 7

Virtualized environments can produce complex cross-VM and host interactions which can
have detrimental effects on the performance of hard real-time applications running on the
VMs. Some of these interactions might be infrequent and/or hard to reproduce. In these
cases the standard approach of tracing may not suffice.

RedHawk KVM-RT User’s Guide

7-5

KVM-RT Guest Services is a collection of application programmer interfaces which give
guest userspace applications access to functions exposed by the host hypervisor.

One of the ways to reduce complexity is to leverage the implied domain knowledge
contained within each of the applications. Applications know the state the application
should be in at any particular time and when any timing or state violations occur. In that
context, KVM-RT Guest Services gives the application developer the ability to:

1. log relevant events/data from an application running on a guest-VM
directly to a central logging/tracing facility (i.e. syslog, NightTrace, xtrace)
on the host.

2. flush xtrace buffers on the host. This can be combined with local flushing
of xtrace buffers on the guest to flush both guest and host buffers at about
the same time.

3. log explicit pre-defined sequence of events, in the context of the host’s
clock, to establish ordering of events; "bracketing”. For example the fol-
lowing was logged by two different guest VMs on the host:

On VM1:

host: "VM1 is about to start A"
...
host: "VM1 just finished A"
...

On VM2:

host: "VM2 is about to start B"
...
host: "VM2 just finished B”

On the host, you will be able to see the order of events in the context of the host’s
clock:

host: "VM1 is about to start A"
...
host: "VM2 is about to start B"
...
host: "VM2 just finished B"
...
host: "VM1 just finished A

The KVM-RT Guest Services functions provided in the command line interface kvmrt-
gs and the library libccur_kvmrt_gs are briefly discussed in the sections that
follow.

Also discussed below are the traceable KVM-RT Guest Services events and the kernel
boot parameters that must be enabled in the host and guest VMs.

RedHawk KVM-RT User’s Guide

7-6

KVM-RT Guest Services Library Interface 7

The following functions are provided via the library libccur_kvmrt_gs. See the
libccur_kvmrt_gs(3) man page for more information on options and usage.

Note that the man page can be invoked using the names of any of the functions listed
below. For example: man kvmrt_gs_available.

bool kvmrt_gs_available(void);
bool kvmrt_gs_ping_available(void);
bool kvmrt_gs_log_msg_available(void);
bool kvmrt_gs_xtrace_flush_available(void);
bool kvmrt_gs_xtrace_log_data_available(void);
long kvmrt_gs_ping(unsigned long cookie);
long kvmrt_gs_log_msg(char * msg);
long kvmrt_gs_xtrace_flush(unsigned long scope);
long kvmrt_gs_xtrace_log_data(void * data, long size);

kvmrt_gs_available

Returns true if the KVMRT_GS interface is present, enabled, and
permitted. Smilarly, kvmrt_gs_<function>_available returns true if each
individual KVMRT_GS function is present, enabled, and permitted.

Note that availability of the interface does not imply availability of any
function. Further, an invocation of a function which is available may still
fail due to variety of reasons.

kvmrt_gs_ping

Ping a hypervisor with a cookie. The purpose of this function is to
provide a guest with a simple light-weight mechanism with no copying or
allocation to explicitly cause a VMEXIT event on a hypervisor in a way
which can easily be traced and matched from guest and host sides. This
interface produces corresponding xtrace events, when xtrace is available.

kvmrt_gs_log_msg

Log a short ASCII text message via the standard kernel logging mechanism
on a hypervisor side. msg is a pointer to a standard Zero-terminated C
string. The hypervisor and any of the intermediate layers may restrict the
maximum length of the string, and/or truncate the message. See also
kvmrt_gs_xtrace_log_data below.

kvmrt_gs_xtrace_flush

Trigger FLUSH xtrace event on host OS.

scope c o n t r o l s w h i c h C P U s a r e a f f e c t e d b y t h e F L U S H :
KVMRT_GS_XTRACE_CPU_CURRENT
KVMRT_GS_XTRACE_CPU_VM
KVMRT_GS_XTRACE_CPU_ALL

issue FLUSH to the current CPU, all the CPUs servicing current VM, and
all the CPUs active on the host system respectively.

RedHawk KVM-RT User’s Guide

7-7

kvmrt_gs_xtrace_log_data

Log arbitrary binary data buffer containing size bytes as two matching
xtrace events on guest and host sides. The hypervisor and any of the
intermediate layers may restrict the maximum size of, and/or truncate the
data logged. See also kvmrt_gs_log_msg above.

KVM-RT Guest Services Command Line Interface 7

The following commands are provided via the kvmrt-gs command line interface. See
the kvmrt-gs(1) man page for more information on options and usage.

kvmrt-gs [OPTIONS] [COMMAND [ARGUMENTS] ...] ...

available

Return SUCCESS if KVM-RT Guest Services are available.

ping_available

Return SUCCESS if 'ping' command is available.

ping COOKIE

ping a hypervisor with a COOKIE - an arbitrary user-selected integer
(unsigned long int).

log_msg_available

Return SUCCESS if the 'log_msg' command is available.

log_msg MESSAGE

Log a message on hypervisor. MESSAGE can be either a regular quoted
ASCII string or a hex-encoded byte sequence.

xtrace_flush_available

Return SUCCESS if the 'xtrace_flush' command is available.

xtrace_flush SCOPE

Flush xtrace buffers on host OS. SCOPE can be one of the following: {0:
the current CPU; 1: all the VM CPUs; 2: all host CPUs}

xtrace_log_data_available

Return SUCCESS if the 'xtrace_log_data' command is available.

xtrace_log_data DATA

Log xtrace event with binary data. DATA can be either a regular quoted
ASCII string or a hex-encoded byte sequence.

RedHawk KVM-RT User’s Guide

7-8

KVM-RT Guest Services Trace Events 7

KVM-RT Guest Services logs various trace events. Every event type comes as a pair,
where the *_GUEST part is logged on the guest side and the *_HOST is logged on the
host.

The purpose behind such double-logging is to provide predictable reference points within
the trace logs for cases where the host and the guest VM clocks might not be synchronized
or have drifted in relation to each other.

KVMRT_GS_PING_GUEST
KVMRT_GS_PING_HOST

These are produced by the "ping" function of KVM-RT Guest Services.
See kvmrt_gs_ping(3) for details.

KVMRT_GS_FLUSH_GUEST
KVMRT_GS_FLUSH_HOST

These are produced by the "xtrace_flush" function of KVM-RT Guest
Services. See kvmrt_gs_xtrace_flush(3) for details.

KVMRT_GS_LOG_DATA_GUEST
KVMRT_GS_LOG_DATA_HOST

These are produced by the "xtrace_log_data" function of KVM-RT Guest
S e r v i c e s a n d i s s i m i l a r t o XTRACE_EV_CUSTOM . S e e
kvmrt_gs_xtrace_log_data(3) for details.

KVM-RT Guest Services Kernel Boot Parameters 7

KVM-RT Guest Services requires that the following kernel parameters must be enabled at
boot time. Note that one is specific to the host system and the others to the guest VMs.

kvm.kvmrt_gs_hc_host_enabled=

[KVM,x86] Enable KVM-RT Guest Services Hypercall on KVM Host.
Setting this to 1 (Enabled) permits host to advertise KVMRT_GS hypercall
and related GS functions to the guests. This is a host-side parameter for
KVM module. Default is 0 (Disabled).

kvmrt_gs_hc_guest_enabled=

[KVM_GUEST,x86] Enable KVM-RT Guest Services Hypercall on KVM
Guest. Setting this option to 1 (Enabled) permits guest kernel to discover
and use KVMRT_GS Hypercall and its functions if such is offered by the
Host. This is a guest-side kernel parameter. Default is 0 (Disabled).

kvmrt_gs_syscall_enabled=

[KVM_GUEST,x86] Enable KVM-RT Guest Services Syscall on KVM
Guest. Setting this option to 1 (Enable) permits guest kernel to advertise

RedHawk KVM-RT User’s Guide

7-9

KVMRT_GS syscall and its functions to the userspace applications running
on the Guest. This is a guest-side kernel parameter. Default is 0 (Disabled).

RedHawk KVM-RT User’s Guide

7-10

A-1

A
Appendix ANUMA mapping the Supermicro M12SWA-TF

1
1
1

This appendix describes the NUMA node mapping of device slots and I/O ports for the
Supermicro M12SWA-TF platform.

The KVM-RT Product features the Supermicro M12SWA-TF motherboard. This board
supports both the AMD Ryzen Threadripper PRO 5975WX and 5965WX. Both systems
have been pre-qualified for the KVM-RT product.

For more information on the KVM-RT product, see the section “The KVM-RT Product”
in the KVM-RT Release Notes.

NOTE

The board described in this document has the latest BIOS revision
provided by Supermicro as of this release, Supermicro M12SWA-
TF BIOS Revision 2.1. The BIOS must have this revision or be
updated in order to use these mappings.

Importance of NUMA Mappings in KVM-RT 1

Leveraging the topology of the system will lead to a more efficient KVM-RT
configuration. It will reduce the need to reassign device interrupts to different NUMA
nodes and will decrease latency for the real-time VMs.

NUMA node mapping is important in considering the placement of devices for host, real-
time and non real-time guest VMs. Placing devices on the same NUMA node as the real-
time VM ensures faster access to data and lower latencies when those devices are used. On
the other hand, devices not used by the real-time VM but allocated to the same NUMA
node as the real-time VM, increase the risk of interference and an increase in latency for
the real-time VM.

The first step in achieving an optimal configuration is selecting the best NUMA node for
the real-time VM by first examining the devices the VM will use, then selecting a NUMA
node where the devices to be used by the VM can be placed. For example, a real-time VM
that requires 2 PCIe slots, can be placed in NUMA node 1 or NUMA node 2; while one
that requires 1 PCIe slot and 1 USB port would be best placed in NUMA node 3. Refer to
diagrams in section below.

Note that compromises may have to be made since device slots and ports are not divided
evenly between all NUMA nodes. In addition, there is a preference for NUMA node 0
which is not an ideal choice for real-time VMs. If more PCIe slots and more devices are
needed beyond those mapped to the NUMA node chosen for the real-time VM, then the
IRQs currently handled by another NUMA node will need to be reassigned to the NUMA
node chosen for the real-time VM.

RedHawk KVM-RT User’s Guide

A-2

NUMA Node Mappings of devices and I/O ports 1

In an effort to optimize KVM-RT hardware configurations, the following diagrams are
provided that map device slots and I/O ports to their respective NUMA nodes.

NOTE

These mapping are only relevant to the Supermicro M12SWA-TF
running BIOS revision 2.1.

The bus addresses of on-board devices (e.g., NVME, SATA) and ports (e.g., USB) have
not been included in the diagrams. This is because those addresses vary depending on
which devices or ports are in use.

The PCIe diagram below contains a color-coded mapping of device slots to NUMA nodes.
Note the bus addresses displayed next to each PCIe slot are persistent across reboots. This
makes them easy to identify when selecting devices for PCIe passthrough to VMs.

Figure A-1 NUMA node mapping of devices in the Supermicro M12SWA-TF

RedHawk KVM-RT User’s Guide

A-3

The rear panel diagram below contains a table with NUMA node color-coded entries. The
numbers correspond to the port numbers (in black circles) indicated in the diagram. This
table also contains details about each port which can prove helpful when determining
which ports or device bridges will be passed through to a VM.

Figure A-2 NUMA node mapping of I/O Ports in the Supermicro M12SWA-TF

RedHawk KVM-RT User’s Guide

A-4

B-1

B
Appendix BSR-IOV Setup

2
2
2

This section covers SR-IOV setup. The example in this section utilizes an Intel Ethernet
Converged Network Adapter X550-T2.

Some setup is required before a Virtual Function can be utilized by a guest. Once an SR-
IOV capable card is installed on the host, begin SR-IOV setup as

1. Verify that the SR-IOV capable card has been installed on the host and
identify the card of interest with the pci command output:

pci | grep -i ether

0000:21:00.0 Ethernet: Intel Corporation Ethernet Controller 10G X550T
0000:21:00.1 Ethernet: Intel Corporation Ethernet Controller 10G X550T

2. Verify the device has SR-IOV capabilities as well as the total number of
VFs available and number of VFs in use.

lspci -vvv -s 0000:21:00.0

[...]
Capabilities: [160 v1] Single Root I/O Virtualization (SR-IOV)
 IOVCap: Migration-, Interrupt Message Number: 000
 IOVCtl: Enable+ Migration- Interrupt- MSE+ ARIHierarchy+
 IOVSta: Migration-
 Initial VFs: 64, Total VFs: 64, Number of VFs: 0, Function Dependency Link: 00
 VF offset: 128, stride: 2, Device ID: 1565
 Supported Page Size: 00000553, System Page Size: 00000001
 Region 0: Memory at 00000000b0d00000 (64-bit, non-prefetchable)
 Region 3: Memory at 00000000b0c00000 (64-bit, non-prefetchable)
 VF Migration: offset: 00000000, BIR: 0

Note that this device is capable of configuring up to 64 Virtual Functions
and currently has 0 configured.

3. Create VFs while the system is running. Determine the interface associated
with the Physical Function:

 # lshw -class net -businfo

Bus info Device Class Description
 ==
 pci@0000:21:00.0 enp33s0f0 network Ethernet Controller 10G X550T
 pci@0000:21:00.1 enp33s0f1 network Ethernet Controller 10G X550TG

In this example we are interested in the first port of the X550T card with
PCI address '0000:21:00.0' and interface 'enp33s0f0'.

RedHawk KVM-RT User’s Guide

B-2

Update the number of Virtual Functions to be configured for the desired
interface. For this example:

echo 2 > /sys/class/net/enp33s0f0/device/sriov_numvfs

View the configured VFs:

lshw -class net -businfo

 root@thor:~# lshw -class net -businfo

Bus info Device Class Description
 ==
 pci@0000:21:00.0 enp33s0f0 network Ethernet Controller 10G X550T
 pci@0000:21:00.1 enp33s0f1 network Ethernet Controller 10G X550T
 pci@0000:21:10.0 enp33s0f0v0 network X550 Virtual Function
 pci@0000:21:10.2 enp33s0f0v1 network X550 Virtual Function

Two VFs (enp33s0f0v0 and enp33s0f0v1) were created for the interface
specified above.

It is important to note that VFs are separated into their own IOMMU group,
thus making PCI passthrough of individual VFs sharing the same PF to
different guests possible.

pci -G

[...]
 IOMMU Group 45:
 0000:21:00.0 Ethernet: Intel Corporation Ethernet Controller 10G X550T
 IOMMU Group 46:
 0000:21:00.1 Ethernet: Intel Corporation Ethernet Controller 10G X550T
 IOMMU Group 56:
 0000:21:10.0 Ethernet: Intel Corporation X550 Virtual Function
 IOMMU Group 57:
 0000:21:10.2 Ethernet: Intel Corporation X550 Virtual Function

Note also how the Virtual Function will utilize a different driver.

pci -v 0000:21:00.0

0000:21:00.0 Ethernet: Intel Corporation Ethernet Controller 10G X550T
 (numa=2, iommu=45, driver=ixgbe, irq=48, msi_irqs=265-269)
 NIC "enp33s0f0" (ec:e7:a7:07:79:44)

 # pci -v 0000:21:10.0

0000:21:10.0 Ethernet: Intel Corporation X550 Virtual Function
 (numa=2, iommu=56, driver=ixgbevf, irq=0, msi_irqs=270-272)
 NIC "enp33s0f0v0" (76:da:1f:8f:a3:c5)

4. Make Virtual Functions persistent across reboot. There are two methods to
ensure Virtual Functions are configured when the system boots.

RedHawk KVM-RT User’s Guide

B-3

a. Boot line parameter.

Identify the Physical Function's driver as shown above and add a boot line
parameter with the maximum number of Virtual Functions to configure per
interface for each network card utilizing that driver. For this example:

ixgbe.max_vfs=2

Add the boot option to the end of GRUB_CMDLINE_LINUX in
/etc/default/grub and update the grub file using the appropriate
method for your base distribution.

Ubuntu systems:

update-grub

RHEL-compatible systems:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

b. Modprobe config file

Create a conf file in /etc/modprobe.d using the name of the Physical
Function's driver and add an option with the maximum number of Virtual
Functions to configure per interface for each network card utilizing that driver.

For this example:

echo ‘options ixgbe max_vfs=2’ >> /etc/modprobe.d/ixgbe.conf

5. Once Virtual Functions are set up, proceed to pass through the PCIe device
associated with the VF(s) to the guest, as one would with any other PCIe
device.

RedHawk KVM-RT User’s Guide

B-4

C-1

C
Appendix CPCI Passthrough Boot Parameters

3
3
3

The parameters listed in this section may be added to the RedHawk system's boot time
parameters. Use the blscfg(1) command to add and remove kernel boot parameters
and then reboot the system for the changes to take effect.

Required in RedHawk Release 8.x 3

On systems running RedHawk release 8.x, you will need to set:

intel_iommu=on

Intel-based systems running RedHawk 8.x must enable intel_iommu=on in
the kernel to enable passthrough.

Optional for enhancing host performance 3

To enhance host performance, you may also enable:

iommu=pt

This option only enables IOMMU for devices used in passthrough and will
provide better host performance.

NOTE

This option is not supported on all hardware. If passthrough fails,
remove this option.

Required for Graphic Cards 3

Most PCI-e (PCI Express) cards can be used for PCI passthrough without requiring any
additional kernel boot parameter to be set. Graphic cards are the exception. The graphics
card must be claimed by the VFIO driver early in the boot before it is claimed by the
host’s drivers.

The following boot parameters may be used to passthrough a graphics card. Note that
lspci -nnk command can be used to obtain the necessary information about the device.

RedHawk KVM-RT User’s Guide

C-2

The PCI vendor and device id codes are listed at the end of the line in brackets ([]). The
BUS:SLOT.FUNCTION information is listed at the very beginning. If more than one
device is listed for your graphics card, you must include all the devices.

You can use one of the two following boot parameters to specify the device(s). While the
first boot parameter is the simplest to use, the second one is needed when there are
multiple cards on the system with the same vendor and device IDs.

1. vfio-pci.ids =[vendor:device,...]

This parameter can be set to a comma-separated list of pci devices that will
be assigned to the VFIO driver. Each device is specified by vendor:device.

NOTE

If you use this boot parameter and there are multiple cards with
the same vendor and device IDS on the system, the host will not
be able to properly initialize and use any of the devices.

2. vfio-pci.addrs=[BUS:SLOT.FUNCTION,…]

This parameter is set to a comma-separated list of pci devices that will be
a s s i g n e d t o t h e V F I O d r i v e r . E a c h d e v i c e i s s p e c i f i e d b y
BUS:SLOT.FUNCTION.

This boot parameter should be used when you have multiple cards on the
system with the same vendor and device IDs and the host wants to be able
to use one or more of the cards.

NOTE

If there are changes to the physical placement of cards in the sys-
tem, the BUS:SLOT.FUNCTION setting will need to be re-evalu-
ated as it may have changed. If it has changed, then the kernel
boot parameter settings will have to be updated and the system
rebooted.

	Preface
	Contents
	Introduction to KVM-RT
	Introduction
	Host System Requirements and Installation

	Getting Started
	Building Virtual Machines
	Using Virtual Machine Manager to Create a Virtual Machine
	Using RedHawk Architect to Create a Virtual Machine
	Cloning a Virtual Machine Image

	Importing Virtual Machines into KVM-RT
	Booting and Shutting Down Virtual Machines
	Understanding QEMU/KVM Threads

	Configuring Virtual Machines
	The KVM-RT Configuration File
	Configuration Tools
	Advanced Libvirt Configuration
	Understanding the cpuset Configuration Attribute
	Understanding KVM-RT Use of RedHawk Real-Time Features
	KVM-RT Use of Threaded CPUs

	Configuring Real-Time Virtual Machines

	KVM-RT Tools
	RedHawk’s Real-time Tools
	Command line interfaces
	Graphical user interfaces

	KVM-RT Tools
	Start-Up Commands
	Configuration Commands
	Boot/Shutdown Commands

	Virtual Machine Time Synchronization
	Instructions to run chrony

	I/O Device Utilization in Virtual Environment
	Introduction
	Virtualization Techniques
	Device Emulation
	Paravirtualization
	PCI Passthrough
	IOMMU
	VFIO

	Networking
	Virtual Networking
	NAT
	MacVTap
	Virtual Networking Device Models
	Device Model Performance Comparison

	Physical Networking
	SR-IOV
	Physical Functions
	Virtual Functions
	SR-IOV vs MacVTap Performance

	Network PCI Passthrough

	Storage
	Virtual Disks
	Qcow2 Images
	Raw Images
	Virtual Disk Drawbacks

	Physical Disks
	Partition Assignment
	Storage PCI Passthrough

	Graphics
	VGA
	QXL
	Virtio GPU
	Display Protocols
	VNC
	SPICE

	Graphics PCI Passthrough

	Analysis and Debugging
	KVM Trace Events
	Kernel Tracing with xtrace
	Example: multi-merge Tracing with xtrace

	KVM-RT Guest Services
	KVM-RT Guest Services Library Interface
	KVM-RT Guest Services Command Line Interface
	KVM-RT Guest Services Trace Events
	KVM-RT Guest Services Kernel Boot Parameters

	NUMA mapping the Supermicro M12SWA-TF
	Importance of NUMA Mappings in KVM-RT
	NUMA Node Mappings of devices and I/O ports

	SR-IOV Setup
	PCI Passthrough Boot Parameters
	Required in RedHawk Release 8.x
	Optional for enhancing host performance
	Required for Graphic Cards

