1.5
J‘ REDHAWK KVM-RT ™ User’s Guide

&concurrent
0898604-1.5

REAL-TIVIE December 2023

Copyright 2023 by Concurrent Real-Time, Inc. All rights reserved. This publication or any part thereof is intended for
use with Concurrent Real-Time products by Concurrent Real-Time personnel, customers, and end—users. It may not
be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Real-Time makes no warranties, expressed or implied, concerning the information con-
tained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Real-Time, 800 NW 33
Street, Pompano Beach, FL 33064. Mark the envelope “Attention: Publications Department.” This publication
may not be reproduced for any other reason in any form without written permission of the publisher.

Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-Time, Inc. All other Concurrent
Real-Time product names are trademarks of Concurrent Real-Time while all other product names are trademarks or
registered trademarks of their respective owners. Linux® is used pursuant to a sublicense from the Linux Mark
Institute.

Printed in U. S. A.

Revision History: Level: Effective With:

July 2019 1.0 RedHawk Linux 7.5
January 2020 1.1 RedHawk Linux 8.0
February 2021 1.2 RedHawk Linux 8.2
October 2021 1.3 RedHawk Linux 8.4
March 2023 1.4 RedHawk Linux 8.4

December 2023 1.5 RedHawk Linux 9.2

Scope of Manual

Preface

This manual provides information and instructions for using Concurrent Real-Time’s
RedHawk KVM-RT™.,

Structure of Manual

Syntax Notation

This manual consists of:

¢ Chapter 1 introduces you to KVM-RT.

¢ Chapter 2 explains the steps in setting up and booting virtual machines in
KVM-RT.

® Chapter 3 covers how to configure KVM-RT.

¢ Chapter 4 summarizes all the KVM-RT tools.

¢ Chapter 5 discusses time synchronization.

¢ Chapter 6 discusses ways to analyze and debug guest VMs in KVM-RT.

® Appendix A covers NUMA node mappings of the Supermicro M12SWA-
TF platform.

The following notation is used throughout this manual:

italic Books, reference cards, and items that the user must specify appear in
italic type. Special terms may also appear in italic.

list bold User input appears in 1ist bold type and must be entered exactly
as shown. Names of directories, files, commands, options and man
page references also appear in 1ist bold type.

list Operating system and program output such as prompts, messages and
listings of files and programs appears in 1ist type.

[] Brackets enclose command options and arguments that are optional.
You do not type the brackets if you choose to specify these options or
arguments.

hypertext links When viewing this document online, clicking on chapter, section,
figure, table and page number references will display the
corresponding text. Clicking on Internet URLs provided in blue type
will launch your web browser and display the web site. Clicking on
publication names and numbers in red type will display the
corresponding manual PDF, if accessible.

i

RedHawk KVM-RT User’s Guide

Related Publications

The following table lists Concurrent Real-Time documentation. Depending upon the
document, they are available online on RedHawk Linux systems or from Concurrent Real-
Time’s documentation web site at http://redhawk.concurrent-rt.com/docs.

RedHawk KVM-RT Pub. Number
RedHawk KVM-RT Release Notes 0898603
RedHawk KVM-RT User’s Guide 0898604
RedHawk Architect

RedHawk Architect Release Notes 0898600
RedHawk Architect User’s Guide 0898601
RedHawk Linux

RedHawk Linux Release Notes 0898003
RedHawk Linux User’s Guide 0898004
RedHawk Linux Cluster Manager User’s Guide 0898016
RedHawk Linux FAQ N/A
NightStar RT Development Tools

NightView User’s Guide 0898395
NightTrace User’s Guide 0898398
NightProbe User’s Guide 0898465
NightTune User’s Guide 0898515

v

http://redhawk.concurrent-rt.com/docs

Contents

Preface iii

Chapter 1 Introduction to KVM-RT

Introduction. 1-1
Host System Requirements and Installation. 1-1
Host Kernel Configuration i, 1-1
Kernel Boot Parameters 1-1
Migrating Managed IRQs. 1-3

Chapter 2 Getting Started

Building Virtual Machinesc i 2-1
Using Virtual Machine Manager to Create a Virtual Machine 2-1
Using RedHawk Architect to Create a Virtual Machine................... 2-1
Cloning a Virtual MachineImage 2-2

Importing Virtual Machines into KVM-RT 2-2

Booting and Shutting Down Virtual Machines. 2-2

Understanding QEMU/KVM Threads 2-3

Chapter 3 Configuring Virtual Machines

The KVM-RT Configuration File. i ... 3-1
Configuration TOOISttt e 3-4
Advanced Libvirt Configuration. i 3-4
Understanding the cpuset Configuration Attribute. 3-5
Understanding KVM-RT Use of RedHawk Real-Time Features. 3-5

KVM-RT Use of Threaded CPUSs 3-6
Configuring Real-Time Virtual Machines 3-6

Chapter 4 KVM-RT Tools

RedHawk’s Real-time Tools. i 4-1
Command line interfaces.ottt 4-1
Graphical userinterfacest 4-2

KVM-RT TOOIS. . . oottt e e e e 4-2
Start-Up Commandst 4-2
Configuration Commandsttt 4-3
Boot/Shutdown Commands.o i 4-3

Chapter 5 Virtual Machine Time Synchronization

Instructions torun chrony. 5-1

RedHawk KVM-RT User’s Guide

Chapter 6 Analysis and Debugging

KVM Trace EVents.ottt e et e e e e e 6-2
Kernel Tracing with Xtraceottt e e 6-2
Example: multi-merge Tracing with xtrace. 6-3
KVM-RT GUESE SETVICES . . o o vttt ittt e ettt e 6-4
KVM-RT Guest Services Library Interface 6-5
KVM-RT Guest Services Command Line Interface 6-7
KVM-RT Guest Services Trace Events. 6-7
KVM-RT Guest Services Kernel Boot Parameters....................... 6-8
Appendix A NUMA mapping the Supermicro M12SWA-TF A-1
Importance of NUMA Mappings in KVM-RT. A-1
NUMA Node Mappings of devicesand /O ports A-2

Vi

Introduction

1
Introduction to KVM-RT

This chapter provides a general overview and requirements for using RedHawk KVM-RT.

RedHawk KVM-RT is a Real-Time Hypervisor solution that utilizes QEMU/KVM and
RedHawk real-time features to extend RedHawk's real-time determinism to guest
RedHawk virtual machines.

It supports multiple guests, both real-time and non-real-time, running in virtual machines
on a single host system.

Host System Requirements and Installation

Refer to the RedHawk KVM-RT Release Notes for hardware host system requirements and
software installation instructions.

Though not a requirement, it is highly recommended that the entire host system be
dedicated to running the Real-Time Hypervisor. Administrators of the KVM-RT host
system must be careful not to disturb CPU shielding or CPU affinities on the system, or
else real-time performance of virtual machines may be compromised.

Once KVM-RT is installed, the following command can be run to test the suitability of the
host system.

$ sudo kvmrt-validate-host

Host Kernel Configuration

KVM-RT requires that a RedHawk kernel is booted on the host system while KVM-RT is
being used. Additional system configuration may be required.

Kernel Boot Parameters

The parameters listed in this section may be added to the RedHawk system's boot time
parameters.

1-1

RedHawk KVM-RT User’s Guide

1-2

These parameters are also documented in the file: /usr/srec/linux-<kernel-
name>/Documentation/admin-guide/kernel-parameters. txt.

Use the blscfg (1) command to add and remove kernel boot parameters. In the 7.5
release and all of the Ubuntu-based releases an equivalent command, ccur-grub2 (1),
is available. You must reboot the system for the changes to take effect.

intel iommu = on

Intel-based systems running RedHawk 7.5, and 8.x must enable
intel_iommu=on in the kernel to enable passthrough. AMD-based systems
have IOMMU enabled by default. Newer RedHawk releases (9.2 and
newer) have IOMMU enabled by default on both AMD and Intel platforms.

iommu = pt

To enhance host performance, you may also enable iommu=pt in the kernel.
This option only enables IOMMU for devices used in passthrough and will
provide better host performance. Note that this option is not supported on
all hardware. If passthrough fails, remove this option.

allow unsafe interrupts=I

On extremely old platforms, IOMMU lacks interrupt remapping support.
This may cause passthrough to fail. It is possible to perform passthrough by
adding allow_unsafe_interrupts=1 but that is not advised unless the virtual
machine is trusted. You are recommended to upgrade your hypervisor
platform.

Most PCI-e (PCI Express) cards can be used for PCI passthrough without requiring any
additional kernel boot parameter to be set. Graphic cards are the exception. The graphics
card must be claimed by the VFIO driver early in the boot before it is claimed by the host’s
drivers.

The following boot parameters may be used to passthrough a graphics card. Note that
1spci -nnk command can be used to obtain the necessary information about the device.
The PCI vendor and device id codes are listed at the end of the line in brackets ([]). The
BUS:SLOT.FUNCTION information is listed at the very beginning. If more than one
device is listed for your graphics card, you must include all the devices.

vfio-pci.ids =[vendor:device,...]

This parameter can be set to a comma-separated list of pci devices that will
be assigned to the VFIO driver. Each device is specified by vendor:device.

vfio-pci.addrs = [BUS:SLOT.FUNCTION,...]

This parameter is set to a comma-separated list of pci devices that will be
assigned to the VFIO driver. Each device is specified by
BUS:SLOT.FUNCTION.

This boot parameter should be used when you have multiple cards on the
system with the same vendor and device IDs and the host wants to be able
to use one or more of the cards. If you use the vfio-pci. ids boot
parameter the host will not be able to properly initialize and use any of the
devices.

RedHawk KVM-RT User’s Guide

Note that if you change the physical placement of cards in the system, the
BUS:SLOT.FUNCTION setting will need to be re-evaluated as it may
change. If it has changed, you must also change the kernel boot parameter
setting.

This option is supported in RedHawk releases 8.0 and later.

Migrating Managed IRQs

Per CPU interrupts can be classified as managed interrupts. Most modern NIC, RAID, and
NVME devices generate managed interrupts. In the RedHawk release version 8.2 changes
were made to allow managed interrupts to migrate to another CPU. This change has been
backported to releases 7.5 and later. If you have the latest release updates, you will have
this change. Note that managed interrupts did not exist in releases prior to 7.5.

Migration of managed interrupts is necessary in KVM-RT because they can impact the
real-time performance of VMs. Also KVM-RT attempts to take down hyperthreaded
CPUs. CPUS cannot be taken down if there are IRQs still associated with a CPU. The goal
is to migrate all IRQs away from CPUs responsible for vCPUs and move them to CPUs
responsible for emulation and VirtlO operations.

The KVM-RT tools, irg-affinity and task-affinity, display the CPU affinities
of IRQs and tasks respectively and are very useful in finding IRQs and tasks bound to
specific CPUs. Use the —-help option for more information and usage of these
commands.

The shield (1) command cannot be used to migrate managed interrupts as they only
have one CPU in their cpu affinity mask. Below are some of the ways to migrate managed
IRQS off CPUs.

1. Use the --set option of the irg-affinity command to migrate man-
aged IRQs from one set of CPUs to a different set of CPUs.

2. Setting the kernel boot parameter irgaffinity will set the affinity
mask for all MSI(X) managed interrupts at boot time.

irqaffinity = [cpulist]

cpulist must be set to a list of CPUs that must include CPU 0. The list can
include a range i.e. 0-5, or a comma separated list i.e. 0,3,4,5.

3. The systemd shield service may be used to set shielding attributes for
selected CPUs. Modifications are made to the file:
/etc/sysconfig/shield.

For example, you can assign the enp4s0f0 interrupt to CPUs 0 through 4 or
assign interrupts number 55, 60 and 61 to cpus 0 and 2 by adding these
lines to the shield service configuration file.

IRQ_ASSIGN+="0-4:enp4s0£0;"
IRQ_ASSIGN+="0,2:55; 0,2:60; 0,2:61;"

After editing the file you can restart the service with the command:
systemctl restart shield

1-3

RedHawk KVM-RT User’s Guide

And you can check the status of the command with:
systemctl status shield

14

2
Getting Started

This chapter explains the steps in setting up and booting virtual machines in KVM-RT.
Also discussed are the various QEMU/KVM threads that run on the host for each virtual
machine.

Building Virtual Machines

KVM-RT works with virtual machines that have been created and configured within the
libvirt framework. A virtual machine may be created and configured within libvirt in
several ways, including:

¢ with Virtual Machine Manager
¢ with RedHawk Architect

® by cloning another virtual machine

Detailed instructions on how to build virtual machines are beyond the scope of this book
but are well documented. General instructions and references to documentation are given
in the following sections.

Real-time virtual machines must contain a guest OS of RedHawk Linux 7.0 or later. The
guest CPU architecture must match that of the host.

Using Virtual Machine Manager to Create a Virtual Machine

The Virtual Machine Manager is a GUI tool that can be used to create, configure, and
manage virtual machines within the libvirt framework.
Start Virtual Machine Manager by running:

$ sudo run virt-manager

See the virt-manager (1) man page for more information.

Using RedHawk Architect to Create a Virtual Machine

RedHawk Architect is an optional product offered by Concurrent Real-Time that
specializes in creating, customizing and deploying RedHawk Linux disk images.

2-1

RedHawk KVM-RT User’s Guide

Architect can be used to create a RedHawk virtual machine and to export it to the Virtual
Machine Manager. Detailed instructions can be found in the documentation that comes
with RedHawk Architect. Below are the general steps required:

¢ run Architect

® create a new session and configure the image as desired
® build the image

® deploy the image to a virtual machine

¢ export the virtual machine to Virtual Machine Manager

Cloning a Virtual Machine Image

Any existing virtual machine within the libvirt framework can be cloned by using the virt-
clone command. For example:

$ sudo virt-clone -o old vm -n new_vm

See the virt-clone (1) man page for more information.

Importing Virtual Machines into KVM-RT

Once virtual machines have been created within the libvirt framework, they can be
imported into KVM-RT.

All libvirt virtual machines can be imported into KVM-RT with the following command:
$ sudo kvmrt-import

This command may be run at any time new VMs are created. Run kvmrt-import
--help for more information and options.

When a VM is imported into KVM-RT it inherits the VM configuration settings from
libvirt. Once this is done a VM may be further configured with KVM-RT as needed. See
“Configuring Virtual Machines” in Chapter 3 for more information.

Booting and Shutting Down Virtual Machines

2-2

A systemd service, named kvmrt, exists for KVM-RT. It may be enabled so that the
VMs configured with autostart set, will be automatically booted during system start-up
and VMs running when the system is shutting down will be shut down. The service is not
enabled by default. Once enabled, the service will automatically start on the next boot. If
you want it to start it immediately, you must enable the service and start it as follows:

systemctl enable kvmrt

RedHawk KVM-RT User’s Guide

systemctl start kvmrt

Note that the service start will fail if there are any VMs running since it invokes kmvrt-
boot with the --clean option.

The following KVM-RT tools can be used to boot, shutdown, and view the status of VMs.
To start up all configured VMs:
$ sudo kvmrt-boot
To shut down all the running VMs:
$ sudo kvmrt-shutdown
To query the state of all VMs:
$ sudo kvmrt-stat
Individual VMs can be specified to all these commands. For example:
$ sudo kvmrt-boot RedHawk-8.4VM WindowslO0VM
$ sudo kvmrt-shutdown RedHawk-8.4VM WindowslO0VM

Note that by default VMs are brought down in parallel. If the -v (verbose) option is used,
the shutdown will be serialized so that the output from the different VMs is not garbled
together.

Run any of the above commands with the —-help option for more information and
options.

Understanding QEMU/KVM Threads

QEMU/KVM runs multiple threads for each virtual machine. The names and purpose of
these threads are as follows:

gemu-kvm

These are emulator threads. There may be two or more of these.
gemu-system-x86

This is an alternate name for gemu-kvm in some distributions.
worker

These are dynamically created threads for long I/O operations being per-
formed by the emulator.

SPICE Worker
This is a thread for a virtual console.

IO mon _ioth

2-3

RedHawk KVM-RT User’s Guide

This is an optional thread used for some I/O.
CPU n/KVM

These are virtual CPU (vCPU) threads. There will be one per virtual CPU,
where n is the vCPU ID.

Use the kvimrt-stat -t command to display information about all currently running
VM threads.

2-4

3
Configuring Virtual Machines

Virtual machines that are configured within the libvirt framework have an XML
configuration file that controls all attributes of the virtual machine.

This file usually exists as "/etc/libvirt/qgemu/ {DOMAIN} .xml" for the given VM
domain name and is created when the VM is created or imported into the libvirt
framework. This file gets updated when VM configuration changes are made in the Virtual
Machine Manager.

KVM-RT uses a simplified configuration file, explained below, to manage multiple VMs.
KVM-RT updates libvirt XML configuration files as needed to keep the two files in sync.

The KVM-RT Configuration File

The default location of the KVM-RT configuration file is /etc/kvmrt.cfg, but all
kvmrt-* tools that use a configuration file accept a —£ option that allows the user to
specify an alternate configuration file.

The KVM-RT configuration file uses the INI file format, where each section describes a
VM. The first line of each section is the UUID, a unique VM identification number
generated by libvrt. An example configuration is shown below:

[aeecd46cc-0638-4949-ac04-146b233194a9]

name = RedHawk-8.4

title = RedHawk 8.4

description = RedHawk 8.4 VM.

nr_vcpus = 2

cpu_topology = auto

cpuset =

rt = False

rt memory = auto

numatune = auto

hide kvm = False

autostart = True

disabled = False

comments = This VM tends to run out of memory;
remember to clean up

[fde74e84-0el1lb-404e-90e7-72101e79c48a]
name = RedHawk-8.4-RT

title = Real-Time RedHawk 8.4
description = Configured for real-time.
nr_vcpus = 15

cpu_topology = auto

cpuset = nl-n2

3-1

RedHawk KVM-RT User’s Guide

3-2

rt = True

rt memory = auto

numatune = auto

hide kvm = False

autostart = True

disabled = False

comments = remember to change autostart to true after

testing

Defined below are the field types used in the attribute description that follows:

{string}: any string
{int}: any integer

{bool}: true|false|on|off |yes|no|1]|0
(case-insensitive)

{ID-set}: a string that describes a set of ranges of integers in a
human-readable form such as "0,2,4-7,12-15"

{CPUSET}:can be specified as a comma-separated list of CPUs or CPU
ranges (eg. 0,1,16-19) but also as integers prefixed with 'n’
for NUMA node, 'c' for core, 'd' for die, or 'p' for package.
Additionally, the string may be prefixed with '~' to create an
inverse set (eg. ~n0).

Each VM may be configured with the following attributes. Note that if an attribute is not
set or it is missing from the file, the default value is used.

name = { string }

This attribute sets the VM name. This is an arbitrary, user specified name that
must be unique to libvrt.
There is no default value, this attribute must be set but it can be changed.

title = {string}

This attribute sets the VM title.

"nn

The default value is "".
description = {string}

This attribute sets the VM description.

"nn

The default value is "".
nr vcpus = {int}

This attribute defines the number of virtual CPUs in the VM.
The default value is 1.

cpu_topology = {int}, {int}, {int} | auto
This attribute defines the CPU topology that is seen by the VM.

If not auto, the value must be a string of three positive integers separated by
commas ("sockets, cores, threads"), to describe the CPU topology. sockets is

RedHawk KVM-RT User’s Guide

the number of CPU sockets, cores is the number of cores per socket, and
threads is the number of threads per core.

When the value is auto, the topology is set to one socket, nr vcpus cores
per socket, and one thread per core.

The default value is auto.

NOTE

If the guest virtual machine is running a Windows operating sys-
tem, the cpu topology attribute may have been set to a
default value that will not work well in KVM-RT. It is best to
change this setting to auto. See the item labeleled “VMs running
the Windows operating system” in the Known Issues section of
the KVM-RT Release Notes document.

cpuset = {CPUSET}

This attribute defines host CPUs to which all VM threads are biased. CPUSET
is defined with the other field types above. See the section ‘“Understanding the
cpuset Configuration Attribute” later in this chapter for more information.

The default value is "" (no CPU biasing).
rt _memory = {bool} | auto
This attribute enables memory locking of all pages used by the VM.

When the value is auto, this option is enabled if the rt attribute is enabled
and disabled if rt is disabled.

The default value is auto.
numatune = {ID-set} | auto

This attribute sets the host NUMA node(s) to be used for memory allocation
to the VM.

If not auto, the value must describe a set of host NUMA node IDs. The set
may be empty, in which case memory will not be restricted to any host NUMA
nodes.

When the value is auto, all NUMA nodes used by cpuset will be used. If
cpuset is empty then memory will not be restricted to any host NUMA
nodes.

The default value is auto.
hide kvm= {bool}

This attribute hides KVM from the view of the guest OS in the VM.
The default value is £alse (do not hide KVM).

rt = {bool}

3-3

RedHawk KVM-RT User’s Guide

This attribute configures the VM for real-time.

The cpusetand rt memory attributes must be configured (enabled)
when this attribute is enabled. It is also recommended to configure and enable
numatune when this attribute is enabled.

The default value is £alse (not real-time).
autostart = {bool}

This attribute enables auto-starting of the VM with kvimrt-boot.
The default value is false (do not autostart).

comments = { string }

A place for user comments. For multiple lines of comments, indent the addi-
tional line(s) with a space or TAB.

Configuration Tools

A KVM-RT configuration can be edited by running the command:
$ sudo kvmrt-edit-config

Note that KVM-RT configuration files should not be edited directly. kvmrt-edit-
config validates and also synchronizes the configuration with libvirt.

A KVM-RT configuration, as interpreted by KVM-RT, can be displayed by running the
command:

$ sudo kvmrt-show-config

The kvmrt-validate-config and kvimrt-sync-config commands can be run to
validate and synchronize, respectively, a configuration. Users do not normally need to run
these commands directly when using kvmrt-edit-config.

Run any of the above commands with the —-help option for more information and
options.

Advanced Libvirt Configuration

3-4

Advanced configuration that is beyond the scope of the KVM-RT configuration file may
be made to the 1ibvirt XML files, using Virtual Machine Manager or 'virsh edit', but
additional synchronization and validation steps are required for KVM-RT. This is also true
when you remove a VM from libvrt.

Note that some combinations of configuration may be invalid and users are encouraged to
make configuration changes by editing the KVM-RT configuration file with kvmrt-
edit-config whenever possible.

RedHawk KVM-RT User’s Guide

If libvirt XML files are modified by the user outside of KVM-RT, then it is necessary to
run kvmrt-sync-config -r and kvmrt-validate-config, like so:

$ sudo kvmrt-sync-config -r
$ sudo kvmrt-validate-config

Also note that kvmrt-import -u may be used instead of kvmrt-sync-config -r,
as in:

$ sudo kvmrt-import -u
$ sudo kvmrt-validate-config

The kvmrt-validate-config command will display appropriate errors or warnings
for any invalid configuration.

Run any of the above commands with the —-help option for more information and
options.

Understanding the cpuset Configuration Attribute

The cpuset attribute controls host-CPU-biasing of the QEMU/KVM threads of a virtual
machine.

The cpuset attribute may be used for both real-time and non-real-time VMs.

For non real-time VMs, all the CPUs in the cpuset can be allocated to any QEMU/KVM
thread. Under-provisioning of host CPUs (less CPUs in cpuset than nr _vcpus +1)
results in more than one vCPU being biased to a host CPU. If cpuset is empty then the
VM will not be bound to any particular host CPUs.

For real-time VMs, host CPUs in cpuset are assigned to vCPUs in order, starting with
the lowest numbered CPU. The rest of the CPUs (at least one more is required) are used
for non-vCPU threads. Under-provisioning of host CPUs is not allowed for real-time VMs
and cpuset is not allowed to be empty.

Understanding KVM-RT Use of RedHawk Real-Time Features

When the rt configuration attribute is enabled in the configuration file, the following
RedHawk real-time system features are performed:
® All the CPUs in cpuset are shielded. See shield (1).

¢ Hyperthreaded siblings are downed. See cpu (1) and “KVM-RT Use of
Threaded CPUs” in the section below.

¢ Memory Locking is enabled. See the -L option of run (1).

It is recommended that when the rt configuration attribute is enabled, that numatune
also be enabled. When numatune is enabled NUMA nodes specified are to be used for
memory allocation to the real-time VM. See NUMA (7).

3-5

RedHawk KVM-RT User’s Guide

KVM-RT Use of Threaded CPUs

On host systems having a threaded-CPU architecture such as Intel's Hyper-Threading or
AMD’s SMT, KVM-RT gives special treatment to multi-threaded CPU cores when a real-
time VM is in use.

Real-time demands that only one threaded sibling CPU be in use to avoid contention of
CPU core resources (e.g. caches, etc.). To ensure this, KVM-RT shuts down all but one
threaded sibling CPU for each CPU core allocated to a real-time VM. This requires some
consideration when assigning VM cpusets.

A real-time VM will be given ownership of all threaded sibling CPUs that are related to
the CPUs specified in its cpuset. This may result in the VM consuming but not using
more CPUs than it has specified in it's cpuset. Only one CPU per threaded core will be
used for real-time and the others will be shutdown.

No special treatment is given to threaded cores hosting non-real-time VMs.

Configuring Real-Time Virtual Machines

3-6

Perform the following steps to configure a VM for real-time:

¢ enable the rt configuration attribute
® ecnable the rt memory attribute (auto is recommended)
® consider enabling the numa t ume attribute (auto is recommended)

¢ configure the cpuset attribute as described below

Configuring the cpuset attribute for a real-time VM requires some understanding of
the host system's CPU topology. Use the hwtopo or the cpustat command to see a
display of the host system's CPU topology. hwtopo displays the layout of NUMA nodes,
CPU cores, and logical CPUs. The following example shows the command output for a
multi-threaded architecture with multiple NUMA nodes:

$ hwtopo -v --no-io
Machine 0 (Supermicro M12SWA-TF, "TEST MACH1"):
Package 0 (AMD Ryzen Threadripper PRO 5975WX 32-
Cores) :
L3 Cache (32MiB):
NUMA Node 0 (31GiB)
Core O:
CPU O
CPU 32
Core 1:
CPU 1
CPU 33
Core 2:
CPU 2
CPU 34
Core 3:

RedHawk KVM-RT User’s Guide

CPU 3
CPU 35
Core 4:
CPU 4
CPU 36
Core 5:
CPU 5
CPU 37
Core 6:
CPU 6
CPU 38
Core 7:
CPU 7
CPU 39
L3 Cache (32MiB):
NUMA Node 1 (31GiB)
Core 8:
CPU 8
CPU 40
Core 9:
CPU 9
CPU 41
Core 10:
CPU 10
CPU 42
Core 11:
CPU 11
CPU 43
Core 12:
CPU 12
CPU 44
Core 13:
CPU 13
CPU 45
Core 14:
CPU 14
CPU 46
Core 15:
CPU 15
CPU 47
L3 Cache (32MiB):
NUMA Node 2 (31GiB)

The following rules should be observed when configuring a real-time VM for optimal
performance. The KVM-RT tools will display appropriate errors or warnings when any of
the rules are violated. Errors must be corrected to continue, but warnings serve as
reminders that your configuration may not be optimal.

® The cpuset of areal-time VM cannot overlap the cpuset of any other
VM.

® The cpuset of a real-time VM must not be under-provisioned for the
number of CPUs configured in the nr vcpus attribute.

3-7

RedHawk KVM-RT User’s Guide

¢ Careful consideration should be given if the cpuset of a real-time VM
spans multiple NUMA nodes.

® (Careful consideration should be given if the cpuset of any other VM
shares NUMA nodes with a real-time VM.

¢ Careful consideration should be given if numatune is not enabled for a
real-time VM, or if the numa tune node set is not contained within the
NUMA nodes used by the cpuset.

¢ Careful consideration should be given if the numatune node set of any
other VM overlaps with the NUMA nodes used by a real-time VM's
cpuset.

® The cpusets of all real-time VMs must not consume all host CPUs.
This is because some CPUs must be available for the KVM-RT host OS.

Adhering to the following recommendations will help simplify real-time VM
configuration:

* Always configure cpuset with a least nr_vcpus + 1 host CPUs.

® Do not configure the cpuset of any other VM to conflict with this VM's
cpuset, or to use any other CPUs in a NUMA node used by this VM.

® Do not let the cpuset span multiple NUMA nodes.
® Set numatune to auto.

¢ Do not configure the numatune of any other VM to include the NUMA
node used by this VM.

¢ Use the kvimrt-show-config command to view the real-time policy
configured for all VMs.

¢ Use the kvmrt-stat -t command to display the CPU-biasing of all
currently running VM threads.

3-8

4
KVM-RT Tools

RedHawk’s real time tools are shipped with both RedHawk Linux and KVM-RT in the
ccur-rttools package. Both set of tools, RedHawk’s and KVM-RT tools described
below are self-documented.

Following is a quick description of each tool arranged by function. Use the --help
option of the command for more information.

RedHawk’s Real-time Tools

Command line interfaces

cpustat:

hwtopo:

The cpustat command displays various information about CPUs
including: the CPU topology (CPU packaging, dies, cores, cache, and
memory); the IO bridge and device topology with locality to CPUs; the
online/offline state of CPUs; the state of RedHawk CPU shielding and
downing; the momentary per-CPU execution of IRQs and tasks and the
CPU affinity of IRQs and tasks.

You can specify a set of CPUs to show only those CPUs and more
options are available to control the information to display.

By default, displays the hardware topology of the current system.
Optionally you can display the hardware topology of another system.
Several options are also available to control the information to display.

irg-affinity:

By default displays the CPU affinity of IRQs on the current system. The
--set option can be used to move IRQs from one CPU or CPU set to
another. Several options are also available to control the information to
display.

task-affinity:

By default displays the CPU affinity of tasks on the current system. The
--set option can be used to move tasks from one CPU or CPU set to

4-1

RedHawk KVM-RT User’s Guide

Graphical user interfaces

cpustat-gui:

hwtopo-gui

interview:

KVM-RT Tools

another. Several options are also available to control the information to
display.

A graphical user interface version of the command cpustat.

A graphical user interface version of the command hwtopo.

A graphical user interface showing the interrupt counts per-CPU in real
-time, similar to /proc/interrupts, with menu options available
to control the information to display. Note that interview does not
have a command line interface counterpart.

Most of the KVM-RT tools use the /etc/kvmrt.c£fg file by default, however, a
different configuration file may be specified via the —£ option.

Start-Up Commands

kvmrt-validate-host:

Verifies if the current system configuration is valid for a KVM-RT host.
It will provide suggestions on changes to be made if not.

kvmrt-import:

4-2

Imports 1ibvirt virtual machines into a KVM-RT configuration file.
By default, all libvirt VMs on the current system will be imported, but
individual VMs may be specified instead. Any VMs already listed in the
KVM-RT configuration file will be skipped, unless the —u option is
used.

Configuration Commands

RedHawk KVM-RT User’s Guide

kvmrt-edit-config:

Allows a user to edit, validate, and synchronize the KVM-RT configura-
tion file /ete/kvmrt-edit-config. This is the default configura-
tion file but another may be specified with the —£ option.

kvmrt-show-config:

Displays the configuration of virtual machines in a KVM-RT configura-
tion. Options are available to control the information to display.

kvmrt-sync-config:

Synchronizes 1ibvirt VM configuration XML files with a KVM-RT
configuration file. By default, all VMs in the KVM-RT configuration
file are synchronized, but individual VMs may be specified instead.
Optionally you can just query the state.

kvmrt-validate-config:

All VMs in the configuration are individually validated as well as the
combined VMs are evaluated for conflicts. By default, only VMs in the
configuration that are not disabled are evaluated but —all option may
be used to override.

Boot/Shutdown Commands

kvmrt-boot:

Boots virtual machines in a KVM-RT configuration, after validating the
configuration. By default, all VMs in the configuration with the “auto-
start” configuration parameter enabled are booted, however the --all
option can be used to boot all VMs in the configuration. Individual VMs
may be also be specified instead.

If any VMs are running it simply re-tunes them as required for real-time
and boot errors are ignored. When the option —-clean is specified, no
virtual machine may already be running and no boot errors are tolerated.

kvmrt-shutdown:

kvmrt-stat:

Shuts down virtual machines and removes any real-time policy used by
those VMs. By default, all VMs in the configuration are shutdown in
parallel, but individual VMs may be specified instead. Using the -v ver-
bose option will serialize the shutdown so that the output from the shut-
down is not garbled. A --force option is available.

Displays the status of virtual machines in a KVM-RT configuration. By
default, all enabled VMs are shown but the ——all option will also
show disabled VMs. Individual VMs may also be specified instead.

4-3

RedHawk KVM-RT User’s Guide

4-4

5
Virtual Machine Time Synchronization

Chrony is a versatile time synchronization implementation of NTP. It is designed to
perform well in a wide range of conditions and can be run on virtual machines. Specific
instructions are included here on how to configure and start the chrony system on virtual
machines. The host system is assumed to be already configured with time synchronization.
See chronyd (1), chrony.conf (5) and on-line documentation for more
information.

NOTE

chronyd is supported by RedHawk releases 8.0 and later only.
For earlier releases use ntp synchronized to a local, remote or
public time server.

Complex applications may depend on the time of day to be synchronized between two or
more VMs or with the host. It is also required that the time of day on the virtual guests be
synchronized with the host when using RedHawk tracing to analyze performance issues or
debug system problems with real-time VMs.

Instructions to run chrony

There are various techniques to synchronize the time of day clock on the virtual guests but
we recommend kvm_clock synchronized with chrony via the ptp_kvm module.

The process of configuring chronyd to use ptp_kvm differs slightly depending on the
base distribution.

If you are using Ubuntu as your base distro, use these settings:

service=chrony
conf=/etc/chrony/chrony.conf
drift=/var/lib/chrony/chrony.drift

If you are using a CentOS-compatible distro, use these settings:

service=chronyd
conf=/etc/chrony.conf
drift=/var/lib/chrony/drift

The following instructions should help in configuring chrony on a virtual guest. Substitute
the variable settings below for the appropriate distro settings above.

1. If not already installed, install chrony.

5-1

RedHawk KVM-RT User’s Guide

5-2

dnf install chrony

Stop and disable chrony.

systemctl stop S$service
systemctl disable $service

Load the ptp_kvm module on boots.

echo ptp kvm > /etc/modules-load.d/ptp kvm.conf

Edit the appropriate chrony configuration file and comment out (place a #
sign in front) any lines that reference ‘refclock’ 'server’ ‘pool” or ‘peer'.

grep 'refclock|server|pool|peer' Sconf && vi $conf
Configure ‘refclock”.

echo "refclock PHC /dev/ptp0O poll 3 dpoll -2 \
offset 0" >> S$conf

Comment (place a # at the front) any lines with PEERNTP and append
PEERNTP=no to the /etc/sysconfig/network file.

grep PEERNTP /etc/sysconfig/network && \
vi /etc/sysconfig/network
echo "PEERNTP=no" >> /etc/sysconfig/network

Remove the appropriate $drift file.

rm -f $drift

Enable the appropriate chronyd service but do not start it.
systemctl enable S$service

Reboot for a clean start with the new configuration.

reboot

6
Analysis and Debugging

This chapter covers the system tools that can be used to analyze performance issues or
debug system problems in virtualized environments.

A new multi-merge tracing feature is included in the latest release of the RedHawk
operating system. It allows the merging of multiple system trace dumps into one view
organized by timestamp. This new feature is crucial to debugging virtualized
environments that often produce cross-VM and host interactions that can impact the
performance of real-time applications.

In order to take advantage of the multi-merge tracing feature, all the guest VMs to be
traced must be synchronized using the time of day clock (TOD). See the section
“Instructions to run chrony” on page 5-1 to start-up chrony on each of the guest VMs to be
traced.

NOTE

The time stamp counter (TSC) cannot be synchronized, therefore,
only the TOD timestamp type should be used when tracing multi-
ple systems. Be sure to select the TOD timestamp clock option in
the trace tools.

In this chapter, the following information is presented:

¢ the KVM trace events supported in RedHawk.

® a brief description of the RedHawk tracing tools collectively known as
xtrace. These tools use a simple command line interface. An example of
tracing the host and one guest VM using xtrace and the new multi-merge
feature is included.

¢ anew service named KVM-RT Guest Services. KVM-RT Guest Services is
a collection of application programmer interfaces which give guest
userspace applications access to functions exposed by the host hypervisor.

NightTrace is an optional product offered by Concurrent Real-Time. NightTrace is part of
the NightStar family and consists of an interactive debugging and performance analysis
tool, trace data collection daemons, and two Application Programming Interfaces (APIs)
allowing user applications to log data values as well as analyze data collected from user or
kernel.

For information on how to use NightTrace with KVM-RT see the "Kernel Tracing with
KVM-RT" section in the NightTrace User's Guide.

6-1

RedHawk KVM-RT User’s Guide

KVM Trace Events

Following are the KVM traceable events supported by the RedHawk operating system.
KVM_ENTER VM PID

This is a generic catch-all event which will be triggered any time
execution/control is transferred from the host kernel to the guest VM. It is
produced by the KVM module on the host system, right before the host-
guest transition.

KVM _EXIT VM PID

This is a generic catch-all event which will be triggered any time
execution/control is transferred from guest VM to host kernel. It is
produced by the KVM module on the host system, right after the guest-host
transition.

KVM_GUEST HC_START

This event is logged by the guest VM right before it makes a hypercall to
the host.

KVM GUEST HC_END

This event is logged by the guest VM right after control returns from a
hypercall.

KVM_HOST HC_ENTER

This event is logged by the host system right after execution reached the
generic hypercall handler.

KVM_HOST HC_EXIT

This event is logged by the host system right before execution exits the
generic hypercall handler.

Kernel Tracing with xtrace

6-2

xtrace is a command line interface used in the tracing and analysis of dumps.

xtrace comes with the RedHawk Operating system in the ccur-xtrace package and
contains several tools named xtrace-<function>. To see all the commands and libraries
provided by this package, on a RedHawk system execute:

rpm -gql ccur-xtrace

The following are the tools directly called in the example that follows. A brief description
and only a few options are mentioned below. For more information and to see more
options, use the —-help option:

RedHawk KVM-RT User’s Guide

xtrace-run:

captures xtrace data during the execution of a shell command. The command
must be specified in the command line. When the command exits xtrace-
run stops. The —o option specifies the output directory name where the
xtrace data will be saved. The -m overwrite option may be used when the trac-
ing will go for long periods of time and the xtrace data will grow very large.

xtrace-multi-merge:

merges into one multi-merge directory the xtrace-data directories specified in
the command line. These are the directories created when xtrace-run was
invoked. In the command line specify one directory for the host and one for
each guest VM traced. The —o option lets you specify the directory name of
the multi-merge directory to be created. The -t option sets the xtrace time-
stamp clock to be used. Note that only the time of day clock (TOD) can be
synchronized.

xtrace-view:

merges and displays xtrace data in a user-readable format. The xtrace data
directory must be specified.

xtrace-ctl:

provides control of the kernel xtrace module on one or more CPUs. In the non-
interactive mode, commands such as FLUSH, PAUSE, RESUME are speci-
fied in the command line.

Example: multi-merge Tracing with xtrace

This example captures a trace dump on the host system and a guest VM simultaneously,
and then merges the two trace dumps into one. The example assumes that the user
application is known to fail within the first five minutes.

NOTE

Time of day synchronization must be configured and running
before guest VM are traced. Refer to the section “Instructions to
run chrony” on page 5-1 to start-up chrony on each of the VMs to
be traced.

In step 1 below, the host system is traced in the background and sleeps for a span of time
greater than it takes the user application to fail.

In step 2 the tracing of the guest VM is started remotely from the host. When the user
application fails on the guest VM, the trace buffer is flushed.

In step 3 the trace buffer is flushed and tracing is stopped on the host.

6-3

RedHawk KVM-RT User’s Guide

In step 4 the trace data directory on the guest VM is copied to the host system. In step 5
the two trace directories are merged into one and in step 6 the merged trace is arranged
according to time stamp and viewed.

1. rm -rf xtrace-host
Xtrace-run -m overwrite -t tod -o xtrace-host \
sleep 600 &

2. ssh guest vm "rm -rf xtrace-vm;
Xtrace-run -m overwrite -t tod -o xtrace-vm \
bash -c '(userapp || xtrace-ctl flush)'"

3. xtrace-ctl flush stop
SCp —r guest-vm:Xxtrace-vin

xtrace-multi-merge -o xtrace-merged xtrace-host xtrace-vim

AU

xtrace-view xtrace-merged

The fields displayed are controlled by options to xtrace-view. The fields in the
following example output are: timestamp (TOD), hostname, CPU and event.

Note that CPUs are local to each host so in the excerpt that follows, "vm1 0" denotes
virtual CPU 0 in the guest VM whose hostname is "vm1".

23.404455270 host
23.404455720 host
23.404455898 host
23.404456627 host
23.404456854 host
23.404456971 host
23.407646071 vml
23.407646321 vml
23.407646512 vml
23.407647171 vml

INTERRUPT ENTER [apic_timer]

HRTIMER CANCEL [Oxffffffff8e8f84e0]
HRTIMER EXPIRE [Oxffffffff8e8f84e0]
SCHED WAKEUP [740216]

HRTIMER EXPIRE DONE[Oxffffffff8e8f84e0]
HRTIMER START [Oxffffffff8e8f84e0]
SYSCALL EXIT [openat]
SYSCALL ENTER [read]
FILE READ [3]
SYSCALL EXIT [read]

W w wwww

O O O O

KVM-RT Guest Services

6-4

Virtualized environments can produce complex cross-VM and host interactions which can
have detrimental effects on the performance of hard real-time applications running on the
VMs. Some of these interactions might be infrequent and/or hard to reproduce. In these
cases the standard approach of tracing may not suffice.

KVM-RT Guest Services is a collection of application programmer interfaces which give
guest userspace applications access to functions exposed by the host hypervisor.

One of the ways to reduce complexity is to leverage the implied domain knowledge
contained within each of the applications. Applications know the state the application
should be in at any particular time and when any timing or state violations occur. In that
context, KVM-RT Guest Services gives the application developer the ability to:

RedHawk KVM-RT User’s Guide

1. log relevant events/data from an application running on a guest-VM
directly to a central logging/tracing facility (i.e. syslog, NightTrace, xtrace)
on the host.

2. flush xtrace buffers on the host. This can be combined with local flushing
of xtrace buffers on the guest to flush both guest and host buffers at about
the same time.

3. log explicit pre-defined sequence of events, in the context of the host’s
clock, to establish ordering of events; "bracketing”. For example the fol-
lowing was logged by two different guest VMs on the host:

On VM1:
host: "VMl is about to start A"

host: "VM1l just finished A"

On VM2:
host: "VM2 is about to start B"
host: "VM2 just finished B”

On the host, you will be able to see the order of events in the context of the
host’s clock:

host: "VM1l is about to start A"
1.1('3:'3t: "VM2 is about to start B"
I.lc;:-st: "VM2 just finished B"
I.lc;:-st: "VM1 just finished A

The KVM-RT Guest Services functions provided in the command line interface kvmrt-
gs and the library 1ibccur_kvmrt gs are briefly discussed in the sections that
follow.

Also discussed below are the traceable KVM-RT Guest Services events and the kernel
boot parameters that must be enabled in the host and guest VMs.

KVM-RT Guest Services Library Interface

The following functions are provided via the library libccur_kvmrt gs. See the
libccur_kvmrt gs(3) man page for more information on options and usage.

Note that the man page can be invoked using the names of any of the functions listed
below. For example: man kvmrt gs_available.

bool kvmrt gs available (void);

bool kvmrt gs ping available(void);
bool kvmrt gs log msg available(void);

6-5

RedHawk KVM-RT User’s Guide

bool kvmrt gs xtrace flush available(void);
bool kvmrt gs xtrace log data available(void);

long kvmrt gs ping(unsigned long cookie);

long kvmrt gs log msg(char * msg);

long kvmrt gs xtrace flush (unsigned long scope) ;

long kvmrt gs xtrace log data(void * data, long size);

kvmrt gs available

Returns true if the KVMRT_GS interface is present, enabled, and
permitted. Smilarly, kvmrt_gs_<function>_available returns true if each
individual KVMRT_GS function is present, enabled, and permitted.

Note that availability of the interface does not imply availability of any
function. Further, an invocation of a function which is available may still
fail due to variety of reasons.

kvmrt gs ping

Ping a hypervisor with a cookie. The purpose of this function is to
provide a guest with a simple light-weight mechanism with no copying or
allocation to explicitly cause a VMEXIT event on a hypervisor in a way
which can easily be traced and matched from guest and host sides. This
interface produces corresponding xtrace events, when xtrace is available.

kvmrt gs log msg

Log a short ASCII text message via the standard kernel logging mechanism
on a hypervisor side. msg is a pointer to a standard Zero-terminated C
string. The hypervisor and any of the intermediate layers may restrict the
maximum length of the string, and/or truncate the message. See also
kvmrt_gs_xtrace_log_data below.

kvmrt gs xtrace flush
Trigger FLUSH xtrace event on host OS.

scope controls which CPUs are affected by the FLUSH:
KVMRT GS_XTRACE CPU CURRENT
KVMRT GS_XTRACE CPU VM
KVMRT GS XTRACE CPU ALL

issue FLUSH to the current CPU, all the CPUs servicing current VM, and
all the CPUs active on the host system respectively.

kvmrt gs xtrace log data

Log arbitrary binary da ta buffer containing size bytes as two matching
xtrace events on guest and host sides. The hypervisor and any of the
intermediate layers may restrict the maximum size of, and/or truncate the
data logged. See also kvmrt_gs_log_msg above.

RedHawk KVM-RT User’s Guide

KVM-RT Guest Services Command Line Interface
The following commands are provided via the kvmrt-gs command line interface. See
the kvmrt-gs (1) man page for more information on options and usage.
kvmrt-gs [OPTIONS] [COMMAND [ARGUMENTS] ...]
available
Return SUCCESS if KVM-RT Guest Services are available.
ping available
Return SUCCESS if 'ping' command is available.
pring COOKIE

ping a hypervisor with a COOKTIE - an arbitrary user-selected integer
(unsigned long int).

log msg available
Return SUCCESS if the 'log_msg' command is available.
log msg MESSAGE

Log a message on hypervisor. MESSAGE can be either a regular quoted
ASCII string or a hex-encoded byte sequence.

xtrace flush available
Return SUCCESS if the 'xtrace_flush' command is available.
xtrace flush SCOPE

Flush xtrace buffers on host OS. SCOPE can be one of the following: {0:
the current CPU; 1: all the VM CPUs; 2: all host CPUs}

xtrace log data available
Return SUCCESS if the 'xtrace_log_data' command is available.
xtrace log data DATA

Log xtrace event with binary data. DATA can be either a regular quoted
ASCII string or a hex-encoded byte sequence.

KVM-RT Guest Services Trace Events

KVM-RT Guest Services logs various trace events. Every event type comes as a pair,
where the *_GUEST part is logged on the guest side and the *_HOST is logged on the
host.

6-7

RedHawk KVM-RT User’s Guide

The purpose behind such double-logging is to provide predictable reference points within
the trace logs for cases where the host and the guest VM clocks might not be synchronized
or have drifted in relation to each other.

KVMRT GS_PING GUEST
KVMRT GS_PING HOST

These are produced by the "ping" function of KVM-RT Guest Services.
See kvmrt_gs_ping(3) for details.

KVMRT GS_FLUSH GUEST
KVMRT GS_FLUSH HOST

These are produced by the "xtrace_flush" function of KVM-RT Guest
Services. See kvimrt_gs_xtrace_flush (3) for details.

KVMRT GS_LOG_DATA GUEST
KVMRT GS_LOG_DATA HOST

These are produced by the "xtrace_log_data" function of KVM-RT Guest
Services and is similar to XTRACE EV CUSTOM. See
kvmrt_gs_xtrace_log_data(3) for details.

KVM-RT Guest Services Kernel Boot Parameters

6-8

KVM-RT Guest Services requires that the following kernel parameters must be enabled at
boot time. Note that one is specific to the host system and the others to the guest VMs.

kvm.kvmrt gs hc host enabled=

[KVM,x86] Enable KVM-RT Guest Services Hypercall on KVM Host.
Setting this to 1 (Enabled) permits host to advertise KVMRT_GS hypercall
and related GS functions to the guests. This is a host-side parameter for
KVM module. Default is O (Disabled).

kvmrt gs hc guest enabled=

[KVM_GUEST,x86] Enable KVM-RT Guest Services Hypercall on KVM
Guest. Setting this option to 1 (Enabled) permits guest kernel to discover
and use KVMRT_GS Hypercall and its functions if such is offered by the
Host. This is a guest-side kernel parameter. Default is 0 (Disabled).

kvmrt gs syscall enabled=

[KVM_GUEST,x86] Enable KVM-RT Guest Services Syscall on KVM
Guest. Setting this option to 1 (Enable) permits guest kernel to advertise
KVMRT_GS syscall and its functions to the userspace applications running
on the Guest. This is a guest-side kernel parameter. Default is O (Disabled).

A
NUMA mapping the Supermicro M12SWA-TF

This appendix describes the NUMA node mapping of device slots and I/O ports for the
Supermicro M12SWA-TF platform.

The KVM-RT Product features the Supermicro M12SWA-TF motherboard. This board
supports both the AMD Ryzen Threadripper PRO 5975WX and 5965WX. Both systems
have been pre-qualified for the KVM-RT product.

For more information on the KVM-RT product, see the section “The KVM-RT Product”
in the KVM-RT Release Notes.

NOTE

The board described in this document has the latest BIOS revision
provided by Supermicro as of this release, Supermicro M12SWA-
TF BIOS Revision 2.1. The BIOS must have this revision or be
updated in order to use these mappings.

Importance of NUMA Mappings in KVM-RT

Leveraging the topology of the system will lead to a more efficient KVM-RT
configuration. It will reduce the need to reassign device interrupts to different NUMA
nodes and will decrease latency for the real-time VMs.

NUMA node mapping is important in considering the placement of devices for host, real-
time and non real-time guest VMs. Placing devices on the same NUMA node as the real-
time VM ensures faster access to data and lower latencies when those devices are used. On
the other hand, devices not used by the real-time VM but allocated to the same NUMA
node as the real-time VM, increase the risk of interference and an increase in latency for
the real-time VM.

The first step in achieving an optimal configuration is selecting the best NUMA node for
the real-time VM by first examining the devices the VM will use, then selecting a NUMA
node where the devices to be used by the VM can be placed. For example, a real-time VM
that requires 2 PCle slots, can be placed in NUMA node 1 or NUMA node 2; while one
that requires 1 PCle slot and 1 USB port would be best placed in NUMA node 3. Refer to
diagrams in section below.

Note that compromises may have to be made since device slots and ports are not divided
evenly between all NUMA nodes. In addition, there is a preference for NUMA node 0
which is not an ideal choice for real-time VMs. If more PCle slots and more devices are
needed beyond those mapped to the NUMA node chosen for the real-time VM, then the
IRQs currently handled by another NUMA node will need to be reassigned to the NUMA
node chosen for the real-time VM.

A-1

RedHawk Architect User’s Guide

NUMA Node Mappings of devices and I/O ports

In an effort to optimize KVM-RT hardware configurations, the following diagrams are
provided that map device slots and I/O ports to their respective NUMA nodes.

NOTE

These mapping are only relevant to the Supermicro M12SWA-TF
running BIOS revision 2.1.

The bus addresses of on-board devices (e.g., NVME, SATA) and ports (e.g., USB) have
not been included in the diagrams. This is because those addresses vary depending on
which devices or ports are in use.

The PCle diagram below contains a color-coded mapping of device slots to NUMA nodes.
Note the bus addresses displayed next to each PCle slot are persistent across reboots. This
makes them easy to identify when selecting devices for PCle passthrough to VMs.

&

0000:21:00.0
0000:61:00.0
0000:42:00.0
0000:01:00.0
0000:41:00.0

NUMA NODE 0
NUMA NODE 1

NUMA NODE 3 @

NVME
SLOT1

3
NVME
S5LOT2 o
[

NVME Ol o |NvME

SLOT3 » SLOT4
W || A g

Front Pl m‘* = o § e

@sﬁ SATA W@ at] [l fpmrr s *2".‘?

Figure A-1 NUMA node mapping of devices in the Supermicro M12SWA-TF

A-2

RedHawk Architect User’s Guide

The rear panel diagram below contains a table with NUMA node color-coded entries. The
numbers correspond to the port numbers (in black circles) indicated in the diagram. This
table also contains details about each port which can prove helpful when determining
which ports or device bridges will be passed through to a VM.

e

o o
o of
oo
o of

NUMA NODE 0
NUMA NODE 1

NUMA NODE 3

Rear Panel I/O Ports
1/ COM1 0
2 | VGA Port 0
3|1Gb LAN Port (i210) 0
~ 4|USB3.2 Genl Type A, 5Gb/s
5|USB3.2 Gen2x2 Type C, 20Gb/s
6|USB3.2 Gen2 Type A, 10Gb/s
7|USB3.2 Gen2 Type A, 10Gb/s
8
9

NUMA Node

10Gb LAN port (AQC113C)
USB3.2 Genl Type A, 5Gb/s
10 USB3.2 Genl Type A, 5Gb/s
11 |/USB3.2 Gen2 Type A, 10Gb/s
12 |USB3.2 Gen2 Type A, 10Gb/s

O o0 O O|lWw w o

Figure A-2 NUMA node mapping of I/O Ports in the Supermicro M12SWA-TF

A-3

RedHawk Architect User’s Guide

A-4

	Preface
	Contents
	Introduction to KVM-RT
	Introduction
	Host System Requirements and Installation
	Host Kernel Configuration
	Kernel Boot Parameters
	Migrating Managed IRQs

	Getting Started
	Building Virtual Machines
	Using Virtual Machine Manager to Create a Virtual Machine
	Using RedHawk Architect to Create a Virtual Machine
	Cloning a Virtual Machine Image

	Importing Virtual Machines into KVM-RT
	Booting and Shutting Down Virtual Machines
	Understanding QEMU/KVM Threads

	Configuring Virtual Machines
	The KVM-RT Configuration File
	Configuration Tools
	Advanced Libvirt Configuration
	Understanding the cpuset Configuration Attribute
	Understanding KVM-RT Use of RedHawk Real-Time Features
	KVM-RT Use of Threaded CPUs

	Configuring Real-Time Virtual Machines

	KVM-RT Tools
	RedHawk’s Real-time Tools
	Command line interfaces
	Graphical user interfaces

	KVM-RT Tools
	Start-Up Commands
	Configuration Commands
	Boot/Shutdown Commands

	Virtual Machine Time Synchronization
	Instructions to run chrony

	Analysis and Debugging
	KVM Trace Events
	Kernel Tracing with xtrace
	Example: multi-merge Tracing with xtrace

	KVM-RT Guest Services
	KVM-RT Guest Services Library Interface
	KVM-RT Guest Services Command Line Interface
	KVM-RT Guest Services Trace Events
	KVM-RT Guest Services Kernel Boot Parameters

	NUMA mapping the Supermicro M12SWA-TF
	Importance of NUMA Mappings in KVM-RT
	NUMA Node Mappings of devices and I/O ports

