Concurrent Fortran 95 Tutorial

@caucunnsur 0890498-000
GRPORATIC February 2002

CORPORATION™

Copyright 2002 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end—users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the infor-
mation contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the cor-
rection or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corporation,
2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “ Attention: Publications Department.”
This publication may not be reproduced for any other reason in any form without written permission of the publisher.

PowerMAX OS, Power Hawk, NightSim, NightTrace, and NightView are trademarks of Concurrent Computer Corporation.
Motorolais aregistered trademark of Motorola, Inc.

UNIX isaregistered trademark of The Open Group.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- February 2002 000 PowerMAX 0S 4.3

General Information

Scope of Manual

Preface

Concurrent Fortran 95 utilizes the Numerical Algorithms Group’s F95 compiler and Con-
current’s C/C++ compiler to produce highly optimized object code tailored to Concurrent
systems running PowerMAX OS™,

This manual is atutorial for Concurrent Fortran 95. In thistutorial, we will compile and
link a Fortran program and then document its usage with the NightView™ symbolic
debugger, the NightSim™ frequency-based scheduler, and the NightTrace™ event ana-

lyzer.

Structure of Manual

Syntax Notation

Thismanua consists of one chapter which is the tutorial for Concurrent Fortran 95.

The following notation is used throughout this guide:

italic

l'ist bold

list

emphasis

window

Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear initalic.

User input appears in | i st bol d type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appear in | i st bol d type.

Operating system and program output such as prompts and mes-
sages and listings of files and programs appearsin | i st type.
Keywords also appear inl i st type.

Words or phrases that require extra emphasis use emphasis type.

Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appear in window

type.

Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

Concurrent Fortran 95 Tutorial

{ 1} Braces enclose mutually exclusive choices separated by the pipe
(]) character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An éelipsisfollows an item that can be repeated.

= This symbol means is defined as in Backus-Naur Form (BNF).

Referenced Publications

The following publications are referenced in this document:

0890395 NightView User’s Guide
0890398 NightTrace Manual
0890458 NightSm User’s Guide

Chapter 1 Using Concurrent Fortran 95 with NightStar Tools

OVEIVIBW . oo e e
Beforeyoubegino
GettingStarted.
UsingNEdit. ...
Using the Concurrent Fortran 95 compiler
Viewing theintermediateCcode..................
Using NightSim. o
Invoking NightSim.
Configuringthe Scheduler
Scheduling @aprocesscovviiinennenn..
Activating user tracing and kernel tracing
Settingupthescheduler
Using NightView. i,
Adding atracepointintheprogram
Inserting amonitorpoint.,
Resuming execution.,
Startingthesmulation
Inserting apatchpoint.
Halting user tracing and kernel tracing
Disabling the patchpoint.
Exitingtheprogram
Removingthescheduler.........................
Using NightTrace. oo
Converting kernel traceevent files.
Invoking NightTrace.,
Cregting adefaultpage.,
Creating adefaultkernelpage
Searching for akernel traceevent
Searching for auser traceevent
ZOOMING N . .ttt
CoNCIUSION. . ..ot

lllustrations

Figure1-1. NEditEditor
Figure 1-2. NightSim Scheduler
Figure 1-3. NightSim EditProcess
Figure 1-4. NightView Dialogue

Figure 1-5. NightView Principal Debug Window

Figure 1-6. Setting anew tracepoint
Figure 1-7. Setting anew monitorpoint
Figure 1-8. NightView Monitor Window
Figure 1-9. Resumingexecution
Figure 1-10. Startingthesimulation

Contents

Contents

PowerWorks Linux Development Environment Tutorial

Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.
Figure 1-18.
Figure 1-19.
Figure 1-20.
Figure 1-21.
Figure 1-22.
Figure 1-23.
Figure 1-24.

Settinganew patchpoint i 1-25
Disablingapatchpoint i 1-27
RESUMING @XECULIONottt e e 1-28
Removingthescheduler L. 1-28
Removingthescheduler L. 1-29
NightTrace Mainwindow i, 1-31
NightTracedefaultpage, 1-32
Default Kernel Page. 1-33
Searching for akernel traceevent 1-34
Firstkernel traceevent. i 1-35
NightTrace display page repositioned accordingly 1-36
Searching for auser traceevent, 1-37
NightTracedisplay page« 1-38
Zoomed inkernel display page 1-39

Using Concurrent Fortran 95 with NightStar Tools

1

Using Concurrent Fortran 95 with NightStar Tools

Overview

Concurrent Fortran 95 compiles Fortran source using C as its intermediate language. The
Fortran source isfirst trandated to its equivalent in C and that resultant C code is then
compiled using the Concurrent C/C++ compiler.

Because of this, certain considerations must be taken into account. In the generated C
code, an underscore (“_") is appended to the names of all variables and function calls.
This must be taken into consideration when using any of the NightStar tools which refer-
ence the variables or function names in the Fortran source.

Thistutorial will demonstrate the interaction of a Fortran program with the various Night-
Star tools including the NightView™ symbolic debugger, NightTrace™ event analyzer,
and NightSim™ frequency-based scheduler.

This is a demonstration of the Concurrent Fortran 95 compiler and its interactions with
various NightStar tools, including:

- NEdit

NightSim

NightView

NightTrace
integrating them together into one cohesive example.

Please see “Before you begin” on page 1-1 for some important recommendations and con-
siderations.

Before you begin

For the sections of the tutorial that use the NightSim Scheduler and the NightView
Source-Level Debugger, thistutorial requires that the user have the following privileges:

e P_CPUBIAS
e P_PLOCK
e P RTIME

11

Concurrent Fortran 95 Tutorial

1-2

A convenient way to associate privileges with users is through the use of roles. A roleis
simply anamed description of aset of privileges that have been registered for certain exe-
cutablefiles, such asthe shell. The system administrator creates roles and assigns usersto
them. During the login process, users can request that their shell be granted the privileges
associated with their role. Such a request takes the form of an invocation of thet f ad-
m n(1M command. Once privileges have been granted to the user’s shell, subsequently
spawned processes automatically inherit those privileges.

The following commands create arole and register all the privileges required by this tuto-
rial to three commonly used shells (sh, ksh, and csh). The PowerMAX OS system
administrator should issue the following commands once.

/usr/bin/adm nrol e -n NSTAR_USERS

/usr/bin/adm nrole -a sh:/usr/bin/sh: cpubi as: pl ock: rtime NSTAR _USERS
/usr/bin/adm nrole -a ksh:/usr/bin/ksh: cpubi as: pl ock: rtime NSTAR_USERS
/usr/bin/adm nrole -a csh:/usr/bin/csh: cpubias: pl ock: rtime NSTAR USERS

The following command assigns an example user (JoeUser) to the NSTAR_USERS role.
The system administrator should issue the following command once.

/usr/bin/adm nuser -n -o NSTAR USERS JoeUser

JoeUser is now allowed to request that the above privileges be granted to his shell (assum-
ing JoeUser utilizes either the sh, ksh, or csh shell, asthese are the only shell commands
registered in the NSTAR_USERS role). However, by default, these privileges are not
granted. He must explicitly make the request by initiating a new shell with the t f ad-

m n(1M command. For convenience, it is recommended that the following command
be added to the end of his. profil e (or. | ogi n for csh users) file. (Thisfileis exe-
cuted during initialization of the login shell).

exec /shin/tfadnin NSTAR USERS: shell
where shell isthe shell of your choice (sh, ksh, or csh).

Proceed to “ Getting Started” on page 1-3 to begin the tutorial .

Using Concurrent Fortran 95 with NightStar Tools
Getting Started

We will start by creating a directory in which we will do all our work.

To create a working directory
- Usethenkdi r (1) command to create aworking directory.
We will name our directory t ut ori al using the following command:

nkdir tutorial

- Position yourself in the newly created directory using the cd(1) com-
mand:

cd tutorial

1-3

Concurrent Fortran 95 Tutorial
Using NEdit

Next, we will create one of the source files that will be used by our example program. We
will do this using the NEdit Editor. Although other editors may be used, NEdit comes
with PowerMAX OS and thus will be demonstrated in this tutorial.

Let's open the NEdit editor.

To start NEdit

- From the command line in a termina window, type the following com-
mand:

nedi t

The NEdit Editor will be opened, ready to accept input.

MEdit: Untitled

Untitled line 1, col O, O bytes

I

Figure 1-1. NEdit Editor

We will enter the source file for our example program. This program iswritten in Fortran
and is shown on the following pages:

1-4

Using Concurrent Fortran 95 with NightStar Tools

MODULE do_wor k_nodul e

REAL , DI MENSION(:), ALLOCATABLE :: results
CONTAI NS

SUBROUTI NE do_wor k(i terati on_count)

| NTEGER i
REAL , PONTER :: real _ptr => NULL()

ALLOCATE(r eal _ptr)
real _ptr = iteration_count * 2. 549
DOi =1, 500

ALLCCATE(resul ts(i))

DOj =1, i
results(j) =i * real _ptr
END DO
DEALLOCATE(r esul t s)
END DO

DEALLOCATE(r eal _ptr)

RETURN
END SUBROUTI NE do_wor k

END MODULE do_wor k_nodul e

MODULE traci ng_nodul e
CONTAI NS
SUBROUTI NE start_traci ng

I trace_start() takes a trace-event file nane as an argunent.

! The ntraceud daenon wites the trace events | ogged by the

! NightTrace library to the trace-event file. The trace_start()
! routine nust be called by a process to attach to the shared

! menory buffer used by the N ghtTrace library and the ntraceud
I daenon.

I trace_open() opens the current thread of execution for

! tracing. This routine is required for N ghtTrace to identify
I the process logging the trace events.

INTEGER trace_start, rc_trace_start
| NTEGER trace_open_thread, rc_trace_open_thread

rc_trace_start = trace_start(“prog.trace.data”)
rc_trace_open_thread = trace_open_t hread(“abc”)

RETURN
END SUBROUTI NE start _traci ng

SUBRQUTI NE end_traci ng
! The trace_close_thread() routine is used to close the
! currently running thread and disable it fromlogging trace

I events.

! The trace_end() routine disables the trace nmechanism

1-5

Concurrent Fortran 95 Tutorial

! detaches the shared nenory buffer, and frees all resources
I allocated for tracing.

I NTEGER trace_cl ose_thread, rc_trace_cl ose_thread
| NTEGER trace_end, rc_trace_end

rc_trace_close_thread = trace_cl ose_t hread()
rc_trace_end = trace_end()

RETURN
END SUBRQUTI NE end_traci ng

END MODULE traci ng_nodul e

PROGRAM pr og

USE do_wor k_nodul e
USE traci ng_nodul e

| NTEGER i st at
| NTEGER i

i =0

CALL start_tracing ! contained in the tracing_nodul e
CALL fbswait(istat)

DO WH LE (istat .GE. 0)

CALL do_work(i) ! contained in the do_work_nodul e
CALL fbswait (istat)
=i +1

END DO

CALL end_tracing ! contained in the tracing_nodul e

END PROGRAM pr og

Thisprogram utilizesthef bswai t service. f bswai t causesthe caling processto goto
sleep. The process will be awakened by a frequency-based scheduler at the process's
scheduled frequency. At that point, it will enter the loop. The subroutine do_wor k will
do some calculations. When do_wor k returns from its processing, the program will
encounter another f bswai t call which will cause the program to sleep until the fre-
guency-based scheduler allowsit continue.

To save an untitled file using the NEdit Editor

- Select Save from the File menu. Thiswill open afile dialog.

- Ensure the Directory is the same as the one you created in “Getting
Started” on page 1-3.

- Enter thenamepr og. f 95 inthe Save File As field.
- PressOK.

Now that we have saved the file, we may exit our NEdit session.

To exit NEdit

- Select Exit from the File menu.

1-6

Using Concurrent Fortran 95 with NightStar Tools
Using the Concurrent Fortran 95 compiler

Concurrent Fortran 95 utilizes the Numerical Algorithms Group’s F95 compiler and Con-
current’s C/C++ compiler to produce highly optimized object code tailored to Concurrent
systems running PowerMAX OS™,

To compile the Fortran program

- Open a terminal window and position yourself in the working directory
you created in “ Getting Started” on page 1-3.

- Execute the following command:

f95 -g -0 prog prog.f95 -Intrace -lud -1 F77rt

In order to debug the program using the NightView Source Level Debugger, we
need to compile the program with debug information so we specify the - g compile
option.

We specify the name of the resultant output file using the - o compile option (in this
example, our executable will be named pr 0g).

In order to generate trace data when we run the program and then subsequently ana-
lyzeit using the NightTrace Analyzer, we specify the compile options:

-Intrace -lud -l F77rt

At this point, we have a directory, t ut or i al , that has within it a Fortran executable,
pr og, and its corresponding sourcefile, pr og. f 95. Full debug information will be gen-
erated for the program and tracing functionality has been included so that we may gather
tracing data for later analysis.

Viewing the intermediate C code

Concurrent Fortran 95 compiles Fortran source using C as its intermediate language. The
Fortran source isfirst trandated to its equivalent in C and that resultant C code is then
compiled using the Concurrent C/C++ compiler.

This intermediate source can be viewed by using the - S compile option to f 95. For
instance,

f95 -S prog.f95

will generate afile named pr og. ¢ which consists of the Fortran source translated to C.
(References to the Fortran source appear throughout the C code.)

Because of this, certain considerations must be taken into account. In the generated C
code, an underscore (“_") is appended to the names of all variables and function calls.
This must be taken into consideration when using any of the NightStar tools which refer-

1-7

Concurrent Fortran 95 Tutorial

ence the variables or function names in the Fortran source. Some of these points will be
addressed in the following sections.

To view the intermediate C code

- Open a terminal window and position yourself in the working directory
you created in “ Getting Started” on page 1-3.

- Execute the following command:
f95 -S prog.f95

Thiswill generate afile named pr og. c. The following code fragment shows a
portion of that file:

line 1 "prog.f95"

#i ncl ude <f95. h>

typedef struct { Real *addr; Integer3 offset; Triplet dinf1]; }

AATypel

line 1 "prog.f95"

AATypel do_wor k_nodul e_MP_results

extern void do_work_nopdul e_MP_do_wor k()

line 26 "prog.f95"

line 7 "prog.f95"

voi d do_work_nodul e_MP_do_wor k(i teration_count_)
I nteger *iteration_count_;

{

I nteger Tnpl;

I nteger Tnp2;

I nteger Tnp3;

regi ster Integer j_;

regi ster Integer i_;

line 7 "prog.f95"

static Real *real _ptr_ = (Real *)O0

line 12 "prog. f95"

real _ptr_ = ((Real *)__NAG90_Allocate_s(4, (Integer *)0));

line 12 "prog. f95"

line 13 "prog. f95"

*real _ptr_ = *iteration_count_*2.549000025e+00f;
line 14 "prog. f95"
for(i_ = 1;i_ <= 500;i_++) {

line 15 "prog. f95"

if (do_work_nodul e_MP_results. addr)

__NAG 90_al ready_al | ocat ed(" RESULTS")

line 15 "prog. f95"

do_wor k_modul e_MP_resul ts.offset = 0

line 15 "prog. f95"

do_wor k_rmodul e_MP_resul ts.dinf0].lower = 1;
line 15 "prog. f95"

Tpl =i _;

line 15 "prog. f95"

if (Trmpl<0) Tnpl = 0

line 15 "prog. f95"

do_wor k_rodul e_MP_resul ts.dinf0].extent = Tnpl
line 15 "prog. f95"

do_work_rmodul e_MP_results.dinf0].muilt =1
line 15 "prog. f95"

1-8

Using Concurrent Fortran 95 with NightStar Tools
Using NightSim

NightSim isatool for scheduling and monitoring real -time applications which require pre-
dictable, repetitive process execution. NightSim provides a graphical interface to the
PowerMAX OS frequency-based scheduler and performance monitor. With NightSim,
application builders can control and dynamically adjust the periodic execution of multiple
coordinated processes, their priorities, and their CPU assignments. NightSim's perfor-
mance monitor tracks the CPU utilization of individual processes and provides a customi-
zable display of period times, minimums, maximums, and frame overruns. For more
information on NightSim, refer to the NightSm User’s Guide (0890480).

Invoking NightSim

Because our program uses the frequency-based scheduler, we will use the NightSim
Scheduler to schedule the process.

To invoke the NightSim Scheduler

- From the command line, type the following command:

nsim &

The NightSim Scheduler will be opened, ready to be configured.

NOTE

We specify the & so that the NightSim session runs in the back-
ground.

Configuring the Scheduler

The NightSim Scheduler window is opened, ready for us to configureit for our particular
simulation.

1-9

Concurrent Fortran 95 Tutorial

MightSim Scheduler Help

= On—Linel

MightSim Host: amber2

Caonfiguration file; (unnamed) /A

Scheduler key: IW Timing host: W_‘ Scheduler Simulation Run Status

Cycles per frame: |1_ Distribution: MNone - | @@ Set up Frame: =

ez tasks per cycle: 10 Timing source: Real-time clock 02— | Hangue Cycle: =

Max, tasks in scheduler: |10 Clock period: |50 msec — | " Sored e || an Target: Mo scheduler — |
Permissions: lﬁ rw —— —— (min=0.071, max=655.35) Rate: IT s
Target Sched Prio- Soft Halt/ Start Cycle Execution Schedule

System FPID Frogram Mame CPU Bias Plcy. rity Param Lim., owrn. cuycle Per, ©

Figure 1-2. NightSim Scheduler

To configure a NightSim Scheduler

- Specify a Scheduler key. The key is a user-chosen numeric identifier
with which the scheduler will be associated. For our example, we will use
100.

- Specify theCycles per frame. Thisfield allowsyou to specify the num-
ber of cyclesthat compose a frame on the specified scheduler. We will use
thevaue 1.

- Specify the Max. tasks per cycle. Thisfield allows you to specify the
maximum number of processesthat can be scheduled to execute during one
cycle. Enter 10 for our example.

- Specify the Max. tasks in scheduler. Thisfield alows you to specify
the maximum number of processes that can be scheduled on the specified
scheduler at one time. For our example, we will specify the value 10.

- Enter the name of a PowerMAX OS system which will act as the Timing
host for the simulation. You may use the drop down list associated with
thisfield for the names of systems previously used as timing hosts. For our
example, we will enter amber2, a Turbo Hawk system.

NOTE

When NightSim is operating in On-Line mode, an attempt will
be made to communicate with the system specified as the timing
host. The user may experience a slight delay and the message
Talking to Server... will appear in the Configuration File
Name Area of the NightSim Scheduler as this occurs. See the
NightSm User’s Guide (0890480) for more information.

1-10

Using Concurrent Fortran 95 with NightStar Tools

- Select aTiming source from the list provided. Thislist contains the set
of devices available on the timing host. We will use Real-time clock
Oc2.

NOTE
Do not use Real-time clock 0cO for the Timing source asit

is typically used by system utilities and could cause unwanted
effectsif used. Seehrt confi g(1) for moreinformation

Since we are using the real-time clock on the target system, we need to specify the clock
period. For our simulation, we would like the real-time clock to “fire” every .5 seconds
(or 500 milliseconds).

IMPORTANT

The following steps should be performed in the order presented
bel ow to ensure the correct value for the clock period.

- Choose the msec from the drop-down list next to the Clock period field.

- Specify Clock period. For our example, we will specify 500 for the
number of milliseconds.

-1

Concurrent Fortran 95 Tutorial

Scheduling a process

Once we have properly configured the Scheduler, we can add a process to the fre-
quency-based scheduler.

.
{tutorial/prog

itutorial

Figure 1-3. NightSim Edit Process

To add a process to the frequency-based scheduler

- Press the Edit... button on the NightSim Scheduler window. This will
bring up the Edit Process window.

- Pressthe Select... button next to the Process Name field. This brings
upthe Select a Program diaog.

- Either type the full pathname to your working directory, t ut ori al ,
inthe Directory field, or maneuver to that directory using the items
in the Directories list.

1-12

Using Concurrent Fortran 95 with NightStar Tools

- Choose the program we wish to schedule from the Files list. For our
example, we will select prog from the list.

- Press OK to select the program.

- Ensure that the Working Directory is the same directory that contains
our program (the directory of the Process Name selected in the previous
step).

- Check the Schedule program within a NightView dialogue check-
box. Thiswill bring the program up in the NightView debugger before the
program executes, allowing us to set tracepoints so that we may generate
trace data when the program executes.

- Specify the Priority for this process. The range of priority values that you
can enter is governed by the scheduling policy specified. NightSim dis-
plays the range of priority values that you can enter next to the Priority
field. Higher numerical values correspond to more favorable scheduling
priorities. For our example, we will give the process a priority of 50.

- Select Starting Cycle. Thisfield allows you to specify the first minor
cyclein which the specified program is to be wakened in each major frame.
We will choose the lowest value, 0, for our example.

- Select Period. This field allows you to establish the frequency with
which the specified program is to be wakened in each major frame. Enter
the number of minor cycles representing the frequency with which you
wish the program to be wakened. For our example, we will specify a
period of 1, indicating that the specified program is to be wakened every
minor cycle.

- Press Add to add the process to the frequency-based scheduler.

- Pressthe Close button to dismiss the Edit Process window.

Activating user tracing and kernel tracing

At this point in the tutorial, we are about to create the scheduler configured according to
the parameters we just specified and alow the program to run. However, wewould like to
generate trace data from this program while it is running so we need to start the Night-
Trace user daemon to log user trace events as well as Kernel Trace which will collect data
about the execution time of interrupts, exceptions, system calls, context switches, and 1/0
to various devices.

To activate the NightTrace user daemon

- Open a terminal window and position yourself in the working directory
you created in “ Getting Started” on page 1-3.

1-13

Concurrent Fortran 95 Tutorial

- Invoke the NightTrace user daemon. We issue the nt r aceud command
which takes as an argument the name of a file in which to save the trace
data. Thisfile should be named program _name. t r ace. dat a, where
program_name is the name of the program generating the trace data.

IMPORTANT

Itis essential that you are positioned in the working directory that
is associated with the user program being scheduled with
NightSim. The NightTrace user daemon will communicate with
the user program based on the file argument supplied in the next

step.

NOTE

By default, nt r aceud requires write access to system SPL
devices, e.g. / dev/ spl,/ dev/spl 1, etc. On most systems,
these devices are only writeable by the root user; therefore, you
should run the nt r aceud command as root.

However, since the use of SPL devicesisnot strictly necessary for
tracing single-threaded user applications (although, for optimal
real-time performance it is recommended), the - i pl di sabl e
option to nt r aceud is acceptable.

Since the application in this tutorial is single-threaded, you may
usethe-i pl di sabl e option asindicated below.

For our example, we will issue the following command:

ntraceud -ipldisable prog.trace.data

Now we can activate kernel tracing.

To activate kernel tracing

- Open a terminal window and position yourself in the working directory
you created in “ Getting Started” on page 1-3.

- Invokethe Kernel Trace utility. Weissuethe kt r ace command which can
take a number of arguments.

1-14

NOTE

The Kernel Trace utility requires root access in order to run.

Using Concurrent Fortran 95 with NightStar Tools

We will use the - 0 option which specifies the name of a file in which to save the
kernel trace data.

When generating kernel trace data, the resultant file can grow extremely large very
quickly. In order to circumvent any problems that may arise from the output file
growing extremely large, we will use the - buf f er wr ap option which limits the
size of the output file. Specifying a value of 50 to this option will limit the size of
the resulting output file to alittle over 2 megabytes.

NOTE

Dueto aproblem with the - buf f er wr ap option, user and kernel
data may not appear synchronized when viewing the trace data in
subsequent steps. This problem has been fixed in the kt r ace
andntfilter commandsin PowerMAX OS 4.3 Patch Set 6
(trace-004 and base- 006). If these packages are not
installed on your system, you may omit the - buf f er wr ap
option. However, be aware that the kernel trace file may grow
extremely large in ashort period of time.

So, for our example, we will issue the following command, as the root user:
ktrace -bufferwap 50 -o prog. ktrace.data
You should see output similar to the following:
I ocking into nenmory
setting priority to RT 59
open /dev/trace
initialize
set trace event tinme stanp source to Mdtorola Tine Base

Regi st er
gat her trace point data

Setting up the scheduler

To set up the scheduler
- Inthe NightSim Scheduler window, pressthe Set up button.
Thisaction:

¢ creates a scheduler that is configured according to the parameters we
specified

¢ schedules the processes that we have added to the NightSim Sched-
uler window and starts them running up to the first f bswai t call,
and

¢ attaches the timing source to the scheduler.

1-15

Concurrent Fortran 95 Tutorial

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-12), the NightView Source Level
Debugger will be started.

1-16

Using Concurrent Fortran 95 with NightStar Tools
Using NightView

NightView is a graphical source-level debugging and monitoring tool specifically
designed for real-time applications. NightView can monitor, debug, and patch multiple
real-time processes running on multiple processors with minima intrusion. In addition to
standard debugging capabilities, NightView supports application-speed eventpoint condi-
tions, hot patches, synchronized data monitoring, exception handling and loadable mod-
ules.

Because we have specified the Schedule program within a NightView dialogue
option when we added this process to the frequency-based scheduler (see “To add a pro-
cess to the frequency-based scheduler” on page 1-12), we are presented with a NightView
Dial ogue Window as well as a Principal Debug Window with the execution of the pro-

gram stopped.

ialoge: 1
local hachine: amber2
Iessages:

Warning: Process localil0935 is no longer debuggable. detaching,
[E-51ashProchethod-012]1
{errno=13} Permission denied

& [—

Dialogue 113 Bun your programs in this shell.

AuzrStnpdnzin-schedul e-program, 010702
“““““ conplete,

amber?y Afuzrdlib/NightYiew-5,3/ReadyTolebug
amber2> cd Atutorial

anber?y Afuzrdtmpdnsim-zchedule-program, 010702
fpid 0 assigned to process Atutorial/prog

-

[E—

I~ i
Qualifier: Command: Interrupt |
local _/l

e
Processes for this Dialogue

PID: Program name:

Detach kil

Figure 1-4. NightView Dialogue

During initialization, you will see a message similar to the following:

Warni ng: Process | ocal : 11749 is no | onger debuggabl e,
det achi ng.
[E- Sl ashProcMet hod- 012]

(errno=13) Pernission denied

Thisis an anomaly caused by an intermediate process which schedules the user program.
You may ignore this warning.

1-17

Concurrent Fortran 95 Tutorial

Principal Debug Mindow

only external symbols will be wizible,
Executable file set to

ftutorial /prog

Switched to process local 111312,

ro_trace_close_thread = trace_close_thread(:
ro_trace_end = trace_end{}

RETURN
EWD SUBROUTIME end_tracing

EWD MODULE tracing_module

PROGRAM prog

USE do_work_module
USE tracing_module

INTEGER istat
INTEGER i

i=0
CALL =tart_tracing | contained in the tracing_module

sesel
o |

Bresigen

local11312

Figure 1-5. NightView Principal Debug Window
Adding atracepoint in the program

Since we would like to generate user trace data, but did not place any calls within the code
before our program was compiled, we can use NightView to insert a tracepoint in the

1-18

Using Concurrent Fortran 95 with NightStar Tools

code. A tracepointisacall to oneof thent race(3X) library routines for recording the
time when execution reached the tracepoint.

To add a tracepoint in a program
- Inthe NightView Principal Debug Window, click on the line:

CALL do_work(i)

- Select Set Tracepoint... from the Eventpoint menu. This will open
theSet a New Tracepoint diaog.

Figure 1-6. Setting a new tracepoint

- Enter the 12 for the Event ID. Each trace event has a user-defined trace
event ID. ThisID is avalid integer in the range reserved for user trace
events (0-4095, inclusive). We have chosen 12 for this example.

- Enter i_ in the Value field. This will log the value of the variablei as
ar g1 inthetracefile every time this tracepoint is encountered.

1-19

Concurrent Fortran 95 Tutorial

IMPORTANT

Note the underscore appended to the name of the Fortran variable
i . When debugging a Concurrent Fortran 95 program, the Fortran
source (not the generated C code) will appear in the NightView
Source-Level Debugger. However, NightView uses the generated
C code asitsunderlying source for debugging. Assuch, an under-
score ("_") must be appended to variables or function names that

are referenced. See “Viewing the intermediate C code” on page
1-7 for more information.

- PressOK.

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

tracepoi nt 12 at line number val ue=i _
where line_number coincides with the line:
CALL do_wor k(i)

Seet racepoi nt for details on the use of this command.

Inserting a monitorpoint

1-20

NightView allows the use of monitorpoints while debugging a process. Monitorpoints
allow you to monitor the value of one or more variables without interrupting the execution

of your program.
In our example, we will insert a monitorpoint in the do_wor k subroutine contained in the
do_wor k_nodul e.
To insert a monitorpoint in a program
- Inthe NightView Principal Debug Window, click on the line:
real _ptr = iteration_count * 2.549
which appearsin thedo_wor k subroutinein thedo_wor k_nodul e.

- Select Set Monitorpoint... from the Eventpoint menu. Thiswill open
the Set a New Monitorpoint dialog.

Using Concurrent Fortran 95 with NightStar Tools

Location: prog.f45:14
) Ciptions:
Evertpoint
® Enable
Rharden:
) Enahle, disahle after next hit
) Disahle
Condition: f |
Ignore Count; I
Mame; ﬁ
} A . Al
Commands: | print *iteration_count_] J
£
I~ !

Figure 1-7. Setting a new monitorpoint

- Enter the expression:
print *iteration_count_

inthe Commands field.

IMPORTANT

Note the underscore appended to the name of the Fortran variable
iteration_count. When debugging a Concurrent Fortran 95
program, the Fortran source (not the generated C code) will
appear in the NightView Source-Level Debugger. However,
NightView uses the generated C code as its underlying source for
debugging. As such, an underscore ("_") must be appended to
variables or function names that are referenced. See“Viewing the
intermediate C code” on page 1-7 for more information.

Also, because arguments to Fortran functions and subroutines are
passed by reference, i t er at i on_count is actually a pointer
(see “Viewing the intermediate C code” on page 1-7). As such,
we must prepend a* toi t erati on_count to access the value
of the variable at the memory address stored in
iteration count.

1-21

Concurrent Fortran 95 Tutorial

- Press OK.

This will open a NightView Monitor Window which will display the value of
i teration_count whiletheprogramisrunning.

RBunning with 1000 milliseconds between samples
Legend: DUpdated Not Executed Not Zampled

*iteration_count_ A

Figure 1-8. NightView Monitor Window

NOTE

You may have also entered the following commands in the
Command field of the NightView Principal Debug Window:

noni t or poi nt at line_number
print *iteration_count_
end nonitor

where line_number coincides with the line:

real _ptr = iteration_count * 2.549

See noni t or poi nt for details on the use of this command.
Resuming execution

Now it’s time to let the program run and generate some trace data from the tracepoint we
just entered.

1-22

Using Concurrent Fortran 95 with NightStar Tools

To resume execution in NightView

- Pressthe Resume button in the NightView Principal Debug Window.

19 # | end loop:
20 |
I~
F%esume| step | Mext

Print | Breakpoint |

Figure 1-9. Resuming execution

Starting the simulation

Now we need to go back to our NightSim Scheduler window and start the simulation.
When you click on the Start button, NightSim carries out the following actions:

¢ Attaches the timing source to the scheduler if not already attached or if the
timing source has been changed

¢ |f area-time clock isbeing used as the timing source, sets the clock period
in accordance with the value entered in the Clock period field in the
Scheduler Configuration Area

¢ Starts the simulation with the values of the minor cycle, major frame, and
overrun counts set to zero

To start a simulation in NightSim

- Pressthe Start button on the NightSim Scheduler window.

1-23

Concurrent Fortran 95 Tutorial

Simulation
Frar
Cyel
Cn 'l
Fate
t Halt Start Cucle |

Figure 1-10. Starting the simulation

Once the simulation is started, notethevalue of i t er at i on_count incrementing in the
NightView Monitor Window. See “Inserting a monitorpoint” on page 1-20 for details.

Inserting a patchpoint

NightView alows the use of patchpointswhile debugging a process. Patchpointsareloca-
tions in the debugged process where a patch, usually an expression that alters the behavior
of the process, is inserted.

In our example, we will insert a patchpoint in the loop in program pr og to change the
value of thei st at variablein order to exit the loop:
DO WH LE (istat .GE. 0)
CALL do_work(i) ! contained in the do_work_nodul e
CALL fbswait(istat)
i =i +1
END DO

To insert a patchpoint in a program
- Inthe NightView Principal Debug Window, click on the line:

DO WHI LE (istat .GE. 0)

- Select Set Patchpoint... from the Eventpoint menu. This will open
the Set a New Patchpoint diaog.

1-24

Using Concurrent Fortran 95 with NightStar Tools

Location: prog 3331
) Ciptions:

Evertpoint
® Enable

Rharden:
) Enahle, disahle after next hit
) Disahle

Condition: If |

Ignore Count: I

Mame: I

® Insert an expression at this location

) Branch to a different location

Evaluate: I istat_ = -1 |

014 | Cancell Help |

Figure 1-11. Setting a new patchpoint

- Enter the expression:
istat = -1

inthe Evaluate field.

IMPORTANT

Note the underscore appended to the name of the Fortran variable
i st at. When debugging a Concurrent Fortran 95 program, the
Fortran source (not the generated C code) will appear in the
NightView Source-Level Debugger. However, NightView uses
the generated C code as its underlying source for debugging. As
such, an underscore ("_") must be appended to variables or func-

tion names that are referenced. See “Viewing the intermediate C
code” on page 1-7 for more information.

- Press OK.

When this patchpoint is encountered during the execution of the program, the value
of the Fortran variablei st at will be set to -1, breaking out of the loop, thereby ter-
minating the program.

1-25

Concurrent Fortran 95 Tutorial

NOTE

You may have also entered the following command in the
Command field of the NightView Principal Debug Window:

pat chpoi nt at line number eval istat_ = -1
where line_number coincides with the line:

DO WHI LE (istat .GE. 0)

See pat chpoi nt for details on the use of this command.

Halting user tracing and kernel tracing

Now that our program has finished, we can exit the Kernel Trace utility and stop the Night-
Trace user daemon.
To halt kernel tracing

- Intheterminal window where you invoked the Kernel Trace utility (see“To
activate kernel tracing” on page 1-14), press Ctrl-C.

You should see the message:

termnating

To halt the NightTrace user daemon

= In the termina window where you invoked the NightTrace user daemon
(see “To activate the NightTrace user daemon” on page 1-13), enter the fol-
lowing command:

ntraceud -quit program name trace. data

where program_name is the name of the program generating the trace data. So, for
our example, we will issue the following command:

ntraceud -quit prog.trace.data

Disabling the patchpoint

Before we exit NightView, we should disable the patchpoint that we set in “Inserting a
patchpoint” on page 1-24. NightView retains knowledge of all eventpoints for a particular
program in a current session and will reinitialize them if that program isre-run. If not dis-
abled, the patchpoint in our program will be encountered immediately if our program is
re-run under the current session of NightView, causing us to exit the loop and terminate
the program.

1-26

Using Concurrent Fortran 95 with NightStar Tools

To disable a patchpoint in NightView

- Select Summarize/Change... from the Eventpoint menu.

- Select the patchpoint from the list of eventpoints (listed with a P in the
Type column).

Zpecify the eventpoints to appear in the list

W Breakpoints W Monitorpoints W Patchpaints Check Al |
W Tracepoints W Agentpoints W ‘Watchpoints Clear All |

At this location: I Updatel

Yyith this name: I

Glualifier: local:11680
IUpdate List |
EvptID Type Enabled Frocess - Address
1 T Enabled local:11680 at prog, £95:92
2 il Enabled local:11680 at prog,f95:14

Dizabled local: 11680 at prog

Disabled 1 eventpoint: 3

Change...l Enable | Disable | Delete | Close | Help |

—_—

Figure 1-12. Disabling a patchpoint

- PressDisable.

- PressClose.

Exiting the program

NightView suspends the processit is debugging before it exits. We may allow the process
to complete its termination by resuming its execution.

To resume execution in NightView

- Pressthe Resume button in the NightView Principal Debug Window.

1-27

Concurrent Fortran 95 Tutorial

EEI *® I end loop:
20

ey ey

Figure 1-13. Resuming execution

Removing the scheduler

To remove the scheduler

= Inthe NightSim Scheduler window, press the Remove button.

| I
T
“ched Prio- Soft Hal

Figure 1-14. Removing the scheduler

You will be presented with the following dialog:

1-28

Using Concurrent Fortran 95 with NightStar Tools

Scheduler

| Yes || Mo | concel] hep |

Figure 1-15. Removing the scheduler

- Press Yes to kill the processes that are currently scheduled on the sched-
uler.

1-29

Concurrent Fortran 95 Tutorial

Using NightTrace

NightTrace is agraphical tool for analyzing the dynamic behavior of single and multipro-
cessor applications. NightTrace can log application data events from simultaneous pro-
cesses executing on multiple CPUs or even multiple systems. NightTrace combines appli-
cation events with PowerMAX OS events and presents a synchronized view of the entire
system. NightTrace allows users to zoom, search, filter, summarize, and analyze eventsin
awide variety of ways. PowerMAX OS events include individual system calls, context
switches, machine exceptions, page faults and interrupts. Application events are defined
by the user allowing logging of the data items associated with each event.

We may use NightTrace to analyze the trace data that we gathered during the execution of
our program but first we will need to convert the files so that they may be used by Night-
Trace.

Converting kernel trace event files

1-30

To convert kernel trace event files

- On the PowerMAX OS system where you invoked the Kernel Trace utility
(see “To activate kernel tracing” on page 1-14), enter the following com-
mand:

ntfilter -v < raw kernel_file > filtered kernel_file

where raw_kernel_file is the file we specified using the - o option to kt r ace and
filtered_kernel_fileis the name of the resultant output filefromntfil ter.

So, for our example, we will issue the following command:

ntfilter -v < prog. ktrace.data > prog. ntrace. kernel

The converted KernelTrace trace event file will then be saved to the file
prog. ntrace. kernel . The-v option createsavect or s files that will be
specified to NightTrace along with the converted Kernel Trace trace event file. The
vect or s fileis generated dynamically because it is system-configuration depen-
dent. Without avect or s file, NightTrace will not be able to display the names of
the system processes, interrupts, and exceptions that occurred during kernel tracing.

See “Converting Kernel Trace Trace Event Files with ntfilter” in the NightTrace
Manual (0890398) for more detail ed information about this process.

Using Concurrent Fortran 95 with NightStar Tools

Invoking NightTrace

Now that all our files are created and converted, we may invoke NightTrace and analyze
the results.

To invoke NightTrace

- In the working directory you created in “Getting Started” on page 1-3,
enter the following command

ntrace prog.ntrace. kernel prog.trace.data vectors
Thiswill start the NightTrace Analyzer and pass to it:

prog. ntrace. kernel the file created by “Converting kernel trace
event files’ on page 1-30

prog.trace. data the file created by “To activate the Night-
Trace user daemon” on page 1-13

vectors a file created by “Converting kernel trace
event files” on page 1-30 which allows
NightTrace to display the names of the sys-
tem processes, interrupts, and exceptions
that occurred during kernel tracing.

See ntrace Arguments for more information about invoking NightTrace.

NightTrace will present the NightTrace window which is shown below:

File Help

1 MightTrace performance analyzer - Yersion 4,2

2 Copyright ¢C} 2001, Concurrent Computer Corporation

3

4 2 trace event log files read.

h

B kernel trace event log file: prog,ntrace,kernel,

7 1329845 trace events pluz 100910 continuation events,

8 139845 events zaved in memory,

] 0 trace events lost,

10 22, 79568462 time span, from 35,1726280s to 57,9683126s=,

11

12 User trace event log file: prog.trace,data.

13 59 trace eventz plus 2 continuation events,

14 59 events saved in memory,

15 0 trace events lost,

1E B2, 7277788z time span, from 0,0000000s to B3,7277788=,

17

18 NightHauk interwal timer waz uzed to time stamp events,

19

20 129904 total events read from dizk plus 100912 continuation events,
I 21 139904 total events saved in memory: 5 ewvents internal to ntrace, hd I
—

Figure 1-16. NightTrace Main window

For more information on the NightTrace window, see ntrace Global Window in the
NightTrace Manual (0890398).

1-31

Concurrent Fortran 95 Tutorial

Creating a default page
In order to view our user trace events, we need to create a default page.

To create a default page

- IntheNightTrace window, select Default Page from the File menu.

Thiswill create a Default Page as shown below:

File Edit Create Configure Expressions Tools Help |
- Edit
& Wiew
E Thread; abc
E User Ewvents)
B [1= 2.5 S 4.5 b= :
L |||||||\|‘|||\||||||\|\||||||||\||||||||||||\|\||||||\ .
= — P
Time Start [0, 0000000s Time Length [5.46573385 Time End [5. 4857338
Ewent Start |o Event Count[2 Ewent End |1
Zoom Factor 2.0 Increment |25, 00z Current Time |2. 7328633z
| Apphy | Reset | Center | Mark | Zoom Region | Zoom In | Zoom Out | Refresh |

Figure 1-17. NightTrace default page

For more information on display pages, see The Display Page in the NightTrace Manual
(0890398).

Creating a default kernel page
In order to view our kernel trace events, we need to create a default kernel page.

To create a default kernel page

- Inthe NightTrace window, select Default Kernel Page fromthe File
menu.

Thiswill create a Default Kernel Page as shown below:

1-32

Using Concurrent Fortran 95 with NightStar Tools

File Edit Create Configure Expressions Tools Help |
- Edit
2 View
“[CPOD |
| |
T |
| |
-[cRU2 |
- [CPO3 |
| |
e e = = = = = :
<o+ [Inkerrupt [Eeception [Syscall]. - - ol e Dt b b e 0 :
= — -
Time Start |0, 000000 Time Length [5.4557338s Time End |5, 4657338
Ewvent Start|o Ewvent Count |2 Ewvent End |1
Zoom Factor [2.0 Increment 25,002 Current Time |2, 7328635
| Apply | Reset | Center | hark | Zoom Region | Zoom In | Zoom Qut | Refresh |

Figure 1-18. Default Kernel Page

For more information on the Default Kernel Page, see Kernel Display Pages in the Night-
Trace Manual (0890398).

Searching for a kernel trace event

Now that we have loaded our data into NightTrace and created the appropriate display
pages, we can search for the system call that correspondsto the f bswai t call madein our
program (see “Using NEdit” on page 1-4).

To search for a kernel trace event

- Select Search... from the Tools menu of the kernel display page (see
“Creating a default kernel page” on page 1-32).

You will be presented with the following dialog:

1-33

Concurrent Fortran 95 Tutorial

Search

Search
search Direction; Search Constraints;
< Fonvard < (Global Search
-~ Backward - Interval Search

Interval Manipulation:

< Seroll Current Time to Event
-~ Zoom to Include Event
-~ Do Mot Mowve Current Time

Ewent List |[TR_SYSCALL_RESUME
Mo Event List [NONE
If EXDFESSiOﬂ |aP92 == get_itemi{syzcall, "fbawait"}
CPU List [aLL
PID List [aL
TID List [ALL

| Applyl Resetl Prevl Nextl Searchl Closel
! |

Figure 1-19. Searching for a kernel trace event

- Enter TR_SYSCALL_RESUME in the Event List field. This trace
event is logged whenever a system call (syscall) is resumed (i.e., the pro-
cess that caused the syscall to occur, which was switched out before the
syscall could be completed, is switched back in).

- Enter arg2 == get_item(syscall, "fbswait") in the If Expression
field. Thefbswait system call correspondsto thef bswai t call we
made in our Fortran program.

- PressApply.
- PressSearch.

NightTrace will set the current time to that of the first logged kernel trace event that
matches the specified search criteria, positioning the grid on the kernel display page
accordingly. Thisis shown in the figure below. Note the Current Time. Inour exam-
ple, it isset to 72.1783521 seconds.

NOTE

Since we specified the - buf f er wr ap option to kt r ace (see
“To activate kernel tracing” on page 1-14), it is likely that the ear-
lier trace events may have been overwritten by buffer wraparound
during the execution of the program. Hence, we may not actually
see the first actual kernel trace event that corresponds to our
search criteria. However, thisis sufficient for our example.

1-34

Using Concurrent Fortran 95 with NightStar Tools

File Edit Create Configure Expressions Tools Help |

« Edit 1 Search criteria met at 4226th event.

- e

EERERREE Lo [rteinte

:‘CPU 0 | [data access

:‘p1d idle | rexit

E LTI hardelock

. ‘EPLI 1 | data access

E‘Pld idle | rexit

E LTIl hardelock .

[Puz | [data access [RN LT I

“[pid idle | [poll ptm AR AT

oo oo hardelock L H

-‘EPU 3 | data access |||

-‘p1d prog | fhawait |||

G = .

S |Intarrupt |Excaption | Syzcall |- e i | T

. — [
Time Start |34, 259571255 Time Length 3. 1853657 Time End |37, 48210125
Ewvent Start |43 Event Count 15625 Event End 15668

Zoom Factor [2.0 Increment |25, 0 Current Time |35.8333068s

Reset | Center | Mark | Zoom Region | Zoom In | Zoom COut | Refresh |

| Apply |

Figure 1-20. First kernel trace event

In addition to setting the current time and repositioning the grid on the kernel display page
when the search for the kernel trace event was performed, NightTrace will automatically
set the current time and reposition the display page that contains the user trace events as
well. Thisisshown in the following figure.

1-35

Concurrent Fortran 95 Tutorial

File Edit Create Configure Expressions Tools Help |

~ Edit
< Wiew

" loffset = 2290 id =12 argl = 118 ‘ :
E Thread: abc
E User Events:

ool .5 Tl,s s 73,8 T,z

Lol ||m|\|\||||||‘|\||||||||\i\|\||||||||\|\||||||||\|m:

= — |

Time Start 63, 44548225 Time Length [5. 46573385 Time End [74,91122205

Ewent Start 116 Event Count [15612 Ewvent End 18927
Zoom Factor 2.0 Increment |25, 00z Current Time |72.1783521

| App\yl Reset | Centerl Mark | Zoom Region | Zoom In | Zoom Ot | Refresh |
—J

Figure 1-21. NightTrace display page repositioned accordingly

Searching for a user trace event

Now that we have found the first logged kernel trace event, we can search for the user
trace eventsthat we logged using NightView (see “Adding atracepoint in the program” on
page 1-18).

To search for a user trace event

NOTE

You may use the same search dialog that you used in the previous
step, “Searching for akernel trace event” on page 1-33.

- Select Search... from the Tools menu of the display page containing the
user trace events (see “ Creating a default page” on page 1-32).

You will be presented with the following dialog:

1-36

Using Concurrent Fortran 95 with NightStar Tools

Search
search Direction; Search Constraints;
< Fonvard < (Global Search
-~ Backward - Interval Search

Interval Manipulation:

< Seroll Current Time to Event
-~ Zoom to Include Event
-~ Do Mot Mowve Current Time

Ewent List |12
Mo Event List [NONE
If Expression |TRUE

CPU List |ALL
PID List [ALL
TID List |ALL

|Apply| Resetl Prevl Nextl Searchl Closel
! |

Figure 1-22. Searching for a user trace event

- Enter 12 inthe Event List field. This corresponds to the Event ID for
the tracepoint we specified in NightView (see “Adding a tracepoint in the
program” on page 1-18).

- Ensure that the value of the If Expression fieldisTRUE.
- PressApply.
- PressSearch.

NightTrace will set the current time to the first user trace event after the current time that
matches the specified search criteria, positioning the grid on the kernel display page
accordingly. Thisisshown inthe figure below. Notethe Current Time now. In our
example, it is set to 72.1785713 seconds, 0.0002192 seconds after the f bswai t system
call we found in “Searching for akernel trace event” on page 1-33.

You can alternately search between the kernel display page (see “To search for a kernel
trace event” on page 1-33) and the display page which contains the user trace events (see
“To search for a user trace event” on page 1-36) to see that an f bswai t system call
always precedes the user trace event that we logged, which iswhat we would expect.

1-37

Concurrent Fortran 95 Tutorial

NOTE

If you used the same search dialog as you used for searching for a
kernel trace event, you may use the Prev button on the search
dialog for the previous search criteria. You can aternate between
searching for user trace events and kernel trace events using this
functiondity.

E B

File Edit Create Configure Expressions Tools Help |

1 Search criteria met at 3791st event, ﬂ

~ Edit
< Wiew

" loffset = 3741 id = 12 argl = 119 ‘ :
E Thread: abc
E User Events:

LoLnIiii . 70, 7l] 73,3 74,5

ol |\|||‘|\|||||||| |\||||||||i|||||\|‘|\||||||||\|\|||m:

= J— |

Time Start [63, 44548225 Time Length [5. 46573385 Time End|[74.9112220=

Ewvent Start[115 Event Count [18812 Ewent End 18927
Zoom Factor[2.0 Increment |25. ooz Current Time |72.1785713s

| Applyl Reset | Center | Mark | Zoom Region | Zoom In | Zoom Out | Refresh |
—J

Figure 1-23. NightTrace display page

Zooming in

To zoom in:

- You may usethe Zoom In button on the NightTrace Analyzer to see more
details.

For our example, we zoomed in on our kernel display page 13 times to see the fol-
lowing level of detail.

1-38

Using Concurrent Fortran 95 with NightStar Tools

File Edit Create Configure Expressions Tools Help
n 1 Search criteria met at 4226th event.
-~ Edit
- e
T rtcintr
:‘CPU 0 | data access
:‘p1d idle | rexit
E LTI hardelock
: ‘EPLI 1 | data access
:‘Pld idle | rexit
E LTIl hardelock
_‘EPU 2 | data access
:‘p1d idle | poll ptm
LIl hardelock
-‘EPU 3 | data access
. ‘p1d prog | fhawait _ B
[FE. B 35,8809 1 36,5830s 36,8891
- [Interropt TExeption [Suseall |- 7 P i D P
= i [
Time Start[35.58573325 Time Length [0.0003573= Time End [35.5331886=

Event Start |4224

Event Count |5

Zoom Factor [2.0

Increment 25, 00z

Event End|4223

Current Time |35.3383315s

Figure 1-24. Zoomed in kernel display page

| Apply | Reset | Center | Mark | Zoom Region | Zoom In | Zoom COut | Refresh |
—J

In the above figure, the first bar (red) listed for CPU 0 indicates the real-time clock inter-
rupt for thiscycle. The first bar (blue) listed for CPU 3 shows the target process pr og
exiting the f bswai t call in the Fortran code. The current time line is positioned at the
user trace event that we previously searched for.

Looking at the other display page (which shows our user trace events), we can see the user
trace event inserted through NightView (see“ Adding a tracepoint in the program” on page
1-18). Note that both displays are synchronized in time (the current time line represents
the same instant in time on both display pages). You may middle-click on the line repre-
senting the user trace event to see more detailed information.

Due to a problem with the - buf f er wr ap option to the kt r ace
command, user and kernel data may not appear synchronized.
This problem has been fixed inthektrace and ntfilter
commands in PowerMAX OS 4.3 Patch Set 6 (t r ace- 004 and
base- 006). See“To activate kernel tracing” on page 1-14 for
more information.

NOTE

1-39

Concurrent Fortran 95 Tutorial

Conclusion

This concludes our tutorial for using the Concurrent Fortran 95 compiler with the Night-
Star tools. We hope that we have given you a sufficient overview of the various tools and
the interactions between them.

1-40

	Using Concurrent Fortran 95 with NightStar Tools
	Overview
	Before you begin

	Getting Started
	Using NEdit
	Using the Concurrent Fortran 95 compiler
	Viewing the intermediate C code

	Using NightSim
	Invoking NightSim
	Configuring the Scheduler
	Scheduling a process
	Activating user tracing and kernel tracing
	Setting up the scheduler

	Using NightView
	Adding a tracepoint in the program
	Inserting a monitorpoint
	Resuming execution
	Starting the simulation
	Inserting a patchpoint
	Halting user tracing and kernel tracing
	Disabling the patchpoint
	Exiting the program
	Removing the scheduler

	Using NightTrace
	Converting kernel trace event files
	Invoking NightTrace
	Creating a default page
	Creating a default kernel page
	Searching for a kernel trace event
	Searching for a user trace event
	Zooming in

	Conclusion

