Compilation Systems Volume 2 (Concepts)

g CONCURRENT 0890460-050
COMPUTER April 1099

CORPORATION™

Copyright 1999 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309-1892. Mark the entattgation: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.
Acknowledgment: This manual contains material contributed by 88open Consortium, Ltd. and UNIX International

In this document, the term 601 is used as an abbreviation for the phrase “PowerPC 601 RISC microprocessor.” The
terms 603, 604, and 620 are used similarly.

Escala is a trademark of Bull Information Systems.

IBM, RS/6000, PowerPC, PowerPC 601, PowerPC 603, PowerPC 604, and PowerPC 620 are trademarks of International Business Machines Cor-
poration.

PowerUX is a trademark of Concurrent Computer Corporation.

UNIX is a registered tradematrk, licensed exclusively by X/Open Company Ltd.

Other products mentioned in this document are trademarks, registered trademarks or trade names of the manufactur-
ers or marketers of the products with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- October 1994 000 PowerUX r1.0
Previous Release -- July 1996 034 PowerUX 3.1

Current Release -- April 1999 050 PowerMAX OS 4.3

Preface

Scope of Manuals

The Compilation Systems Manual set is composed of two manGalsipilation Systems
Volume 1 (Toolspnd Compilation Systems Volume 2 (ConcepfE)e Compilation
Systems Volume 1 (Tools)anual describes the features and use of several software
development environment tools, analysis tools, and project-control tool<Caimgpilation
Systems Volume 2 (Conceptsanual describes the concepts behind compilation systems
including environments, performance analysis, and formats.

Information in this manual applies to the Power®®latforms described in the
Concurrent Computer Corporation Product Catalog

Structure of Manuals

A brief description of the parts, chapters, and appendixes irCdvapilation Systems
Volume 1 (Toolsinanual follows:

Part 1 discusses software development environment tools.
Chapter 1 introduces compilation system tools and concepts.
Chapter 2 describes the assembly language, and it discusses the assesnbler,

Chapter 3 summarizes the instructions, condition codes, operands, and registers
associated with the PowerPC.

Chapter 4 covers the link editdd . It also discusses dynamic linking, plus the
creation and use of shared objects.

Chapter 5 describes the macro processdr,
Chapter 6 presents the lexical analyZex, .
Chapter 7 presents the compiler-compilgrcc .
Part 2 describes analysis tools.
Chapter 8 provides an introduction to the other chapters in this part.
Chapter 9 presents the C code browsscope .
Chapter 10 discusses the C code chedkr, .

Chapter 11 discusses performance analysis and use ahtigze andreport
utilities.

Part 3 presents project-control tools.

Compilation Systems Volume 2 (Concepts)

Chapter 12 provides an introduction to the other chapters in this part.
Chapter 13 presents timeake utility.
Chapter 14 covers theecs source code control system.

A brief description of the parts, chapters, and appendixes irCdvapilation Systems
Volume 2 (Conceptshanual follows:

Part 4 discusses environments.
Chapter 15 provides an introduction to the other chapters in this part.
Chapter 16 provides an overview of commonly-used system libraries.

Chapter 17 discusses the IEEE floating-point operations used on supporting hard-
ware platforms.

Chapter 18 describes interfaces between C and Fortran routines on supporting hard-
ware platforms.

Part 5 describes performance analysis concepts.
Chapter 19 provides an introduction to the other chapters in this part.

Chapter 20 provides a tutorial on program optimization, focusing on the
optimizations performed by the Concurrent compilers.

Part 6 covers formats.
Chapter 21 provides an introduction to the other chapters in this part.
Chapter 22 describes the executable and linking format, ELF.
Chapter 23 discusses text description information, tdesc.

Chapter 24 describes the debugging information format, DWARF. It is primarily a
reprint of the DWARF specification from UNIX International.

Chapter 25 covers the libdwarf library that provides access to DWARF debugging
and line number information. It is primarily a reprint of a document from UNIX
International.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear intalic type. Special terms and comments in code may
also appear iitalic.

list bold User input appears itist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appeéisinbold type.

Preface

list Operating system and program output such as prompts and
messages and listings of files and programs appeadist in type.
Keywords also appear iist type.

emphasis Words or phrases that require extra emphasis use empfpsis
window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appeaviimdow
type.
[Brackets enclose command options and arguments that are

optional. You do not type the brackets if you choose to specify
such option or arguments.

{ Braces enclose mutually exclusive choices separated by the pipe
() character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

The window images in this manual come from a Motif environment. If you are using
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0890240 hf77 Fortran Reference Manual
0890288 HAPSE Reference Manual
0890395 NightView User’s Guide
0890398 NightTrace Manual

0891019 Concurrent C Reference Manual

The vendor publications referenced in this manual may be viewed on the respective’s
companies WWW site.

Compilation Systems Volume 2 (Concepts)

Vi

Part1 Software Development Environments

Chapter 1

Introduction to SDEs

Introduction
Programming Languages
Compilation Systems Concepts
Concurrent Computer Corporation Compilation Systems
ObjectFiles i
Stack Frames,
Static and Dynamic Linking

Floating-Point Arithmetic

Chapter 2 Assembler and Assembly Language

Introduction.
Assembler Operation...................
Usingthe Assembler
Assembler Invocation
CharacterSet.........................
Source Statements
Null Statements
Alphanumeric Labels
Numeric (Local) Labels
Comments.............cciiiiien...
Identifiers.

Predefined Symbols
User-Defined Symbols
Constants
Integer Constants

Floating-Point Constants

CharacterConstants
Expressions
Expression Operators
Operator Precedence.
ExpressionTypes
ExpressionValues.
Assembler Directives

Location Counter Control

Section Switching.
Data Initialization.
Symbol Definitions.
ELF Symbol Attributes.
Miscellaneous Operations
Summary of Directives Mnemonics

Contents

Contents

Vii

Compilation Systems Volume 2 (Concepts)

EXample 2-20
Position-Independent Code 2-21

Assembly Syntax 2-21

EXample 2-22

Chapter 3 PowerPC Instruction Set Summary

PowerPC INStrUCtion Set 3-2
Condition Codes.ot 3-25
Trap Operand 3-26
Operand Abbreviations 3-26
Special-Purpose Registers 3-28
Time Base ReQISterS. 3-31
Implementation-Specific and Optional Instructions 3-31

Chapter 4 Link Editor and Linking

Chapter 5 m4 Macro Processor

viii

INtrOdUCHION . . . oo 4-1
Usingthe Link Editor. 4-1
Basics Of LINKING oo 4-8
Default Arrangement 4-9
Linking with Standard Libraries. 4-10
Creating and Linking with Archive and Shared Object Libraries 4-11
Specifying Directories to Be Searched by the Link Editor. 4-13
Specifying Directories to Be Searched by the Dynamic Linker............. 4-15
Checking for Run-Time Compatibility. 4-16
Dynamic Linking Programming Interface 4-17
Implementation. e 4-17
Guidelines for Building Shared Objects. 4-18
Multiply-Defined Symbols 4-22
Mapfiles 4-23
Using the Mapfile Option e 4-24
Mapfile Structure and Syntax 4-24
Segment Declarations. 4-25
Mapping Directiveso 4-27
Extended Mapping Directives i 4-28
Size-Symbol Declarations i 4-28
Mapping Example 4-29
Mapfile Option Defaults. o i 4-30
Internal Map Structure 4-31
Error MeSSages. . ..ottt 4-34
Quick-Reference GUIde i e 4-35
INtrOdUCTION . . . oo 5-1
M4 MACIOS . . ottt e e 5-2
Defining MacroSot 5-2
QUOLING . . oot 5-3
AU NS, . . oo e 5-5
Arithmetic BUilt-INS 5-7
File Inclusion 5-7
DIVEISIONS . . ettt 5-8

System Command.

Conditionals

String Manipulation
Printing...............

Chapter 6 Lexical Analysis with lex

Introduction

Conte

Generating a Lexical Analyzer Programt

Writing lex Source.
The Fundamentals of lex
Regular Expressions
Operators.........

Actions
Advanced lex Usage. . ..

Rules........

Some Special Features

lex Routines.
Definitions.
Start Conditions. . . .
User Routines
Using lex withyacc
Miscellaneous

Summary of Source Format. .

Chapter 7 Parsing with yacc

Introduction
Basic Specifications.

Actions
Lexical Analysis........
Parser Operation
Ambiguity and Conflicts

Precedence..............

The yacc Environment.

Error Handling.

Hints for Preparing Specifications.

InputStyle

Left Recursion

Lexical Tie-Ins

Reserved Words
Advanced Topics

Simulating error and acceptin Actions i .
Accessing Values in EnclosingRules. o
Support for Arbitrary Value Typeso

yacc Input Syntax.
Examples................

1. A Simple Example

2. An Advanced Example

nts

5-8
5-8

5-10

6-1

6-3
6-3

6-4
6-6
6-7
6-8
6-10
6-12
6-13
6-14
6-15
6-17
6-18

7-1
7-3

7-5

7-7

7-12
7-16
7-20
7-22
7-23
7-24
7-24
7-25
7-26
7-26
7-26
7-26
7-27
7-29
7-30
7-30
7-33

Compilation Systems Volume 2 (Concepts)

Part 2 Analysis

Chapter 8 Introduction to Analysis

Introduction

.. 8-1
Chapter 9 Browsing Through Your Code with cscope
INtrOdUCHION . . . oo 9-1
HOW €SCOPe WOTKS . . . oo 9-1
HOW 10 USE CSCOPE. . . o ot ittt e e e e e e e 9-1
Step 1: SetUpthe Environment i 9-2
Step 2: INVOKE CSCOPE . . o v it ittt et e e e e e 9-2
Step 3: Locatethe Code. 9-3
Step4: Editthe Code. 9-9
Command Line Optionst 9-10
Using Viewpaths 9-13
Stacking cscopeand EditorCalls 9-14
EXamples. 9-14
Changing a Constant to a Preprocessor Symbol 9-14
Adding an Argumenttoa Function. 9-17
Changing the Value ofa Variable 9-18
Technical TIPS . .. oo 9-18
Unknown Terminal TYpe.ot 9-18
Command Line Syntax for EAitors. 9-18
Chapter 10 Analyzing Your Code with lint
Introductionto lint. e 10-1
Options and DIreCtivesot 10-1
lintand the Compiler e 10-2
Message FOrmats e 10-2
What lINt DOBS oo 10-2
Consistency Checks 10-2
Portability Checks. 10-3
SUSPICIOUS CONSEIIUCES . . . oo e e e e 10-5
USA0E . o ottt i e 10-6
lintLibraries 10-7
Nt FIterS . 10-8
Options and Directives Listed. 10-8
lint-specific MeSSages oo 10-12
argument unusedin function. 10-13
array subscript cannotbe >value:value. 10-13
array subscript cannot be negative:value oL 10-13
assignment causes implicit narrowing conversion 10-14
assignment of negative constant to unsignedtype 10-14
assignment operator ?=? found where ?==? was expected 10-14
bitwise operation on signed value nonportable. 10-15
constant in conditional context. i 10-16
constantoperand to Op: 212 10-16
constant truncated by assignment 10-16
conversion of pointerloses bits. 10-17
conversion to larger integral type may sign-extend incorrectly 10-17

Contents

declarationunused inblock. 10-18
declared global, could be static i 10-18
equality operator ?=="? found where ?=? was expected. 10-18
evaluation order undefined: name 10-19
fallthrough on case statement. 10-19
function argument (number) declared inconsistently.................... 10-20
function argument (number) used inconsistently 10-20
function argument type inconsistent with format. 10-21
function called with variable number of arguments. 10-21
function declared with variable number ofarguments. 10-22
function falls off bottom without returningvalue 10-23
function mustreturnint main() 10-23
function returns pointer to [automatic/parameter] L. 10-24
function returns value thatis alwaysignored. 10-24
function returns value that is sometimesignored. 10-25
function value is used, butnonereturned. 10-25
logical expression always false: 0p 2&&? 10-26
logical expression always true: op 2[|?o oot 10-26
malformed format string. 10-27
may be indistinguishable due to truncationorcase 10-27
name declared but neverused ordefined L. 10-27
name defined butneverused 10-28
name multiply defined 10-28
name used butnotdefined 10-28
nonportable bit-field type. 10-29
nonportable characterconstant. 10-29
only 0 or 2 parameters allowed: main() 10-29
pointer cast may result in improper alignment. 10-30
pointer casts may be troublesome. i 10-30
precedence confusion possible; parenthesize............. 10-31
precision lost in bit-field assignment oL 10-31
setbutnotusedinfunction. 10-32
statementhas noconsequent:else 10-32
statementhas noconsequent: if i 10-32
statementhasnulleffect. 10-33
statementnotreached. 10-33
Static UNUSEd.o 10-34
suspicious comparison of char with value: op ?0p?.......... 10-34
suspicious comparison of unsigned with value: op?20p? 10-35
too few argumentsforformat. 10-35
too many arguments forformat 10-36
value type declared inconsistently i 10-36
value type used inconsistently 10-37
variable may be used beforeset:name.......... 10-37
variable unused infunction. 10-37

Chapter 11 Performance Analysis

INtrOdUCTION . . . e 11-1

ANAlYZE . . . 11-1
INformation. e 11-1
StAlISHICS . . o oot 11-3
Profiling . ..o 11-3

Xi

Compilation Systems Volume 2 (Concepts)

Part 3 Project Control

Chapter 12

USBI0E . .ot 11-4
Assumptions and Constraints e 11-9
1] 00] 11-9
USA0E . o ittt 11-10
Assumptions and Constraints. 11-12

Introduction to Project Control

INErOdUCTION . . . e e e e e 12-1

Chapter 13 Managing File Interactions with make

INtrOdUCHION . . . o e e 13-1
BasiC Featureso 13-2
Parallel make. 13-5
Description Files and Substitutions 13-6
COMIMENES . . . et e e e e e e 13-6
Continuation LINESottt e e 13-6
Macro Definitions. 13-6
General FOrmM ... e 13-6
Dependency Information e 13-7
Executable Commands e 13-7
Extensions of $*, $@, and $<. oo 13-8
Output Translations. 13-8
Recursive Makefiles 13-8
Suffixes and Transformation Rules. 13-9
Implicit Rules 13-9
Archive Libraries e 13-11
Source Code Control System File Names.o ... 13-13
The NUll SUFfiX. e e e e 13-13
Included Files 13-14
SCCS MakKefiles e 13-14
Dynamic Dependency Parameters i, 13-14
Viewpaths (VPATH)o 13-15
Command USageottt e e 13-16
Themake Command.t e 13-16
EnvironmentVariables 13-18
Suggestions and Warningso 13-19
Internal RUIES e 13-19

Chapter 14 Tracking Versions with SCCS

xii

INtrOdUCTION . . . oo 14-1

BasSiC USa0eot 14-1
Terminologyo 14-1
Creating an SCCS Filewithadmin. o ... 14-2
Retrievinga Filewithget 14-2
Recording Changes withdelta 14-3
More ON get. 14-4
The helpCommand. e 14-5

Contents

Delta Numbering 14-5
SCCS Command CoNVENLIONS.ttt et e et e 14-7
xfilesand zfiles. e 14-8
ErrOr MESSagesS . . o . it ittt 14-8
SCCS COMMANAS . .ottt e e e e 14-8
ThegetCommand 14-9
IDKEYWOIdSo 14-10
Retrieval of Different\Versions 14-10
ToUpdate SOUICEo i e 14-12
Undoingaget-eo 14-13
Additional get Options 14-13
Concurrent Edits of DifferentSID 14-13
ConcurrentEditsof Same SID e 14-15
Key letters that Affect Output. 14-16
ThedeltaCommand e e 14-17
TheadminCommand. e e 14-19
Creation of SCCSFiles i e 14-19
Inserting Commentary for the Initial Delta. 14-20
Initialization and Modification of SCCS File Parameters. 14-20
TheprsCommand 14-21
Thesact Command.t e e 14-23
ThehelpCommand e 14-23
ThermdelCommand e 14-23
ThecdcCommand e e 14-24
ThewhatCommand e e 14-24
ThescesdiffCommand. 14-25
ThecombCommand i 14-25
ThevalCommand e 14-26
SCCS FIlES. ..t 14-26
ProteCtion . .. 14-26
Formatting 14-27
AUItINg . ..o 14-28

Index

Part4 Environments

Chapter 15 Introduction to Environments

INErOdUCTION . .« . . e e e e e 15-1

Chapter 16 Run-Time Libraries

INtrOUCHION . . .o e 16-1
System Libraries. 16-1
CLibrary 16-1
Alternate C Libraryo 16-2

Math Library 16-2
Alternate Math Library 16-2

ELF Library. ... 16-3

xii

Compilation Systems Volume 2 (Concepts)

Xiv

DWARF Library 16-3
General-Purpose Library 16-3
Including FunctionsandData. 16-3
Including Declarations 16-4
Listing of FUNCLiONS o 16-4
Input/Output Control. e 16-4
File and /O Control and ACCESSottt 16-5
Fileand /O Status.o 16-6
DIrECIONIES . . o it 16-7
File Systems. 16-7
General INput. 16-8
General QULPULot e 16-9
Terminal I/O. 16-10
STREAMS . 16-11
Pipesand FIFOS. 16-12
DBVICES . ottt 16-12
Special Files 16-12
File Systems Table File 16-13
File Systems Mount Table File. it 16-14
Password File. 16-14
Shadow Password File. 16-15
Group File . ..o 16-15
User and Accounting Information Files 16-16
ELF Files . o 16-17
DWARF Debugging Information., 16-18
Shared ObjectS.o 16-22
Temporary Files. 16-22
Stringsand Characters i 16-22
String Manipulation. 16-23
Wide String Manipulation 16-24
Character Testo 16-25
Wide Character TeSt.ot 16-26
Character Translation. e 16-26
Multibyte and Wide Characters. 16-27
Regular Expression and Pattern Matching 16-27
M eMIOTY . . o e 16-28
Memory Manipulation. 16-28
Memory Allocation 16-29
Memory Control 16-30
Shared Memory 16-30
Data StrUCIUIESt e e 16-31
TableS. . 16-31
Hash Tables e 16-31
File Trees . ..o 16-32
Binary Trees. . .. oot 16-32
Message QUEBUESttt e e e 16-32
QUEBUEBS . . i e e 16-33
SeMAPNOrES .« o e 16-33
Date and Time.o 16-33
GeneralDateand TimMe i e 16-34
Interval TIMer 16-35
POSIX TIMer . .o 16-35
Internationalization 16-35
LOCalES. . ot 16-36

Contents

Message Catalogso oottt 16-36
Mathematicand NUmMeriC. i i e 16-36
THQONOMELIIC. . o ot 16-37
BeSSel ... 16-37
Hyperbolic. 16-38
Miscellaneous Mathematic Functions. 16-38
NUMENC CONVEISION . . .ot e e e e e 16-39
Other Arithmetic e 16-41
Floating-Point Environment i 16-41
Pseudo-Random Number Generation Functions. 16-42
PrOgrams. . .. e 16-44
FlOW. .. e 16-44
Profile . ..o 16-44
Parameters. 16-45
PrOCESSES. .\ttt e 16-45
CONtrOl. . .o 16-46
SIgNalS . . . 16-47
User-Level Interrupts. 16-49
Lightweight Processes.ot e 16-49
SBCUNY . .« ottt 16-50
Access Control ListS 16-51
AUditing. . .. 16-51
LeVElS .. 16-51
Other SECUNtYo e e 16-52
Encryption and Decryption 16-52
System Environment 16-53
Loadable KernelModules. i 16-53
Other System Environment. i 16-53

Chapter 17 Floating-Point Operations

INtrOdUCHION . . .o e 17-1
IEEE ArithmetiC o 17-1
Data Typesand Formatso 17-2
Single-Precision 17-2
Double-Precision. 17-2
Language Mappingsot e 17-3
Normalized Numbers 17-3
Denormalized NUmbers 17-3
Maximum and Minimum Representable Floating-Point Values 17-4
Special-Case Values 17-4
NaNs and Infinities. 17-5
Rounding Control. 17-6
Floating-Point EXCEPLioNS oot 17-6
Exceptions, Status Bits, and Control Bits., 17-7
Exception Handling 17-9
Single-Precision Floating-Point Operations 17-9
Single-Precision FUNCLIONS. e 17-11
Double-Extended-Precision. 17-11
IEEE ReqUIrementso e 17-11
Conversion of Floating-Point Formatsto Integer. 17-11
Square ROOL 17-12

Compares and Unordered Condition

XV

Compilation Systems Volume 2 (Concepts)

NaNs and Infinities in Input/Output it 17-12
Chapter 18 Inter-Language Interfacing
INtrOdUCHION . . . oo 18-1
Subroutine Linkage 18-1
The Stack Frame 18-1
Parameters. 18-2
Return Values 18-3
Prologueand Epilogue 18-3
Register Usaget 18-4
External Names 18-5
Data TYPES . . .t 18-5
SCalar TYPES . ottt 18-5
SHUCIUIES . ..o e 18-6
Common BIoCKS 18-6
Part5 Program Optimization
Chapter 19 Introduction to Program Optimization
INtrOdUCHION . . . oo 19-1
Chapter 20 Program Optimization
Introduction to Compiler Technology. - i 20-1
Compiler Optimization OptioNS. 20-2
Setting the Compiler Optimization Level. 20-2
Controlling Compiler Optimizations i, 20-3
Giving Hints to Compiler Optimizations (C++only)..................... 20-8
Obtaining Optimization Messagesottt 20-10
Classes of Optimizations it 20-10
Branch Optimizations. 20-10
Straightening Blocks 20-11
Folding Conditional Testso e 20-11
Eliminating Unreachable Code 20-11
Inserting Zero Trip TeStS . . . oo oottt e 20-11
Duplicating Partially-Constant Conditional Branches. 20-12
Variable Optimizations e 20-12
Dead Code Elimination 20-13
Copy Propagation 20-14
Separate Lifetimes. 20-15
Copy Variables. 20-15
Expression Optimizations. 20-16
Algebraic Simplification 20-16
Address Mode Determinationt 20-17
Common Subexpression Elimination 20-17
Code MOLION . ..ot 20-17
Loop Optimizations 20-18
Loops with Multiple Entry Points 20-19
Strength Reduction 20-20
TestReplacement. 20-21

Contents

Duplicating LOOp EXit TeStS oot v i 20-21
Loop Unrolling and Software Pipelining 20-22
Register Allocation. 20-24
Instruction Scheduling 20-24
Post-Linker Optimization 20-25
Inline Expansion of Subprograms (Adaonly) 20-26
Optimization of Constraints (Adaonly)........... 20-27
Inline Expansion of Subprograms (C++only) 20-29
Precise Alias Analysis (C++0nly) i 20-30
Programming Techniques e 20-30
CodiNg TIPS - v oot i e e 20-31
Identifying Performance Problems. 20-32
Debugging Optimized Code. -t 20-32
Understanding Optimization’s Effects on Debugging 20-33
Examining Your Program. 20-34

Part 6 Formats

Chapter 21 Introduction to Formats

INtrOUCHION . . .o e 21-1
Chapter 22 Executable and Linking Format (ELF)

INtrOdUCHION . . .o e 22-1
File Format 22-1
Data Representation 22-2

Program LinKingo 22-3
ELF Header o 22-3

ELF Identification. 22-6
ELFHeaderFlags 22-9
Section Header o 22-9
Special SECHiONS. oo 22-15
Vendor SECHiONo 22-18
String Table 22-22
Symbol Table 22-23
SymbolValues. 22-26
Relocation.o 22-27
Relocation TYpeS. . ..o v 22-28
Program EXeCULION 22-35
Program Header 22-35
Base AdAress.o 22-38
Segment PermissSions i 22-39
Segment CoNtentsS 22-40
NOte SECHONo 22-41
Program Loadingo 22-42
Program Interpreter 22-45
Dynamic Linker 22-46
Dynamic SECHiONo 22-47
Shared Object Dependencies.t 22-52
Link Mapo 22-53
Global Offset Table. 22-54

XVii

Compilation Systems Volume 2 (Concepts)

Function AddreSses oottt 22-57
Procedure Linkage Table. i 22-58
Hash Table. 22-59
Initialization and Termination Functions. 22-60
Symbolic Debugging Information. 22-61
Chapter 23 tdesc Information
INtrodUCHioN 23-1
tdesC ChUNKS o 23-2
tdesc in Executable Programs and Shared Objects 23-10
EXamples 23-13

Chapter 24 DWARF Debugging Information Format

INtrOdUCTION . . . oo e 24-1
PUrpose and SCOPE oot e 24-2
OVBIVIBW . . ot ettt e e e 24-2
Vendor Extensibility 24-3
ChangesfromVersion 1 e 24-3

General DesCriptiono 24-4
The Debugging Information Entry. i L. 24-4
ARHDULE TYPES . o oo 24-5
Relationship of Debugging Information Entries.. 24-7
Location DesCriptions.ttt 24-7

Location EXPressions. oot e 24-8
Register Name Operators. vttt e 24-8
Addressing Operations e 24-8
Literal Encodings oot 24-9
Register Based Addressing. 24-10
Stack Operations.t 24-10
Arithmetic and Logical Operations 24-11
Control Flow Operations i 24-13
Special Operations 24-13
Sample Stack Operations. i 24-13
Example Location EXpressions i 24-14
Location LiStSot 24-15
Typesof Declarations 24-16
Accessibility of Declarations 24-16
Visibility of Declarations 24-16
Virtuality of Declarations 24-17
Artificial Entries 24-17
Target-Specific Addressing Information. 24-17
Non-Defining Declarations. i 24-18
Declaration Coordinatesttt 24-19
Identifier Names 24-19

Program Scope ENntries. 24-19
Compilation Unit ENtriest e 24-20
Module ENtries e 24-22
Subroutine and Entry PointEntries 24-23

General Subroutine and Entry Point Information 24-23
Subroutine and Entry Point Return Types. oo, 24-23
Subroutine and Entry Point Locations. 24-24

Xviii

Contents

Declarations Owned by Subroutines and Entry Points. 24-24
Low-Level Information. 24-24
Types Thrown by Exceptions 24-25
Function Template Instantiations 24-26
Inline Subroutines 24-26
Abstract Instances 24-27
Concrete Inlined Instances. i 24-27
Out-of-Line Instances of Inline Subroutines 24-28
Lexical BIoCK ENtries e 24-29
Label ENtries.o 24-29
With Statement Entries. 24-30
Try and Catch Block Entries e 24-30
Data Object and Object List Entries 24-31
Data ObjeCt ENtries.o 24-31
Common BIOCK ENtrieso e 24-33
Imported Declaration Entries 24-33
Namelist ENtries oo 24-33
TYPE ENtrieS . . . 24-34
Base Type ENtries. oo 24-34
Type Modifier Entries.o 24-35
Typedef Entries. 24-36
Array Type ENtriesot 24-36
Structure, Union, and Class Type Entries. 24-37
General Structure Description. 24-38
Derived Classes and Structures.t 24-38
Friends. 24-39
Structure Data Member Entries. 24-39
Structure Member Function Entries oL 24-41
Class Template Instantiations 24-41
Variant Entries. 24-42
Enumeration Type ENntrieso 24-43
Subroutine Type Entrieso 24-44
String Type ENtries.o 24-44
Set ENtrieS. . o o 24-45
Subrange Type ENntrieso 24-45
Pointer to Member Type Entries. 24-46
File Type ENtries.o 24-47
Other Debugging Information. 24-47
Accelerated ACCESS. . ..ottt 24-47
Lookup by Name. 24-48
LoOKUP by ADAressSot 24-48
Line Number Information. 24-49
DefinitioNs. 24-49
State Machine Registers i 24-50
Statement Program Instructions 24-51
The Statement Program Prologue 24-51
The Statement Program.t 24-53
Special Opcodes.o 24-53
Standard Opcodes 24-54
Extended Opcodes 24-55
Macro Information 24-56
Macinfo TYPES. . ..ot 24-57
Define and Undefine Entries i 24-57
Start File Entries. 24-57

XiX

Compilation Systems Volume 2 (Concepts)

EndFile Entries 24-58
Vendor Extension Entries 24-58
Base Source ENtries.o 24-58
Macinfo Entries for Command Line Options 24-58
General Rulesand Restrictions o 24-58
Call Frame Information 24-59
Structure of Call Frame Information............. 24-60
Call Frame INStructions 24-62
Call Frame InstructionUsagec i, 24-64
Data Representation. 24-64
Vendor Extensibility 24-64
Reserved Error Values. 24-65
Executable Objects and Shared Objects 24-65
File Constraints.o 24-65
Format of Debugging Information L. 24-65
Compilation UnitHeader. i 24-66
Debugging Information Entry. 24-66
Abbreviation Tables. 24-67
Attribute Encodings. 24-67
Variable Length Data 24-71
Location DesCriptionSs.ot 24-74
Location EXPressSions. oot e 24-74
Location LiStSo 24-77
Base Type ENcodingso oottt e 24-77
Accessibility Codes. 24-78
Visibility Codes. 24-78
Virtuality Codes 24-79
SOUICE LANQUAGES o oottt e e e e e e e e e 24-79
Address Class ENCOdiNgS oottt e 24-79
Identifier Case. 24-80
Calling Convention Encodingsottt 24-80
INNE COUES . . .o 24-80
Array Orderingot 24-81
Discriminant ListS.o 24-81
Name Lookup Table. i 24-81
Address Range Table i 24-82
Line Number Information. 24-82
Macro Information 24-83
Call Frame Information 24-83
DependencCies 24-84
Future DIreCtionS oot e 24-85
Appendix 1 -- Current Attributes by Tag Value 24-85
Appendix 2 -- Organization of Debugging Information................. 24-96
Appendix 3 -- Statement Program Examples 24-99
Appendix 4 -- Encoding and decoding variable lengthdata.
24-100
Appendix 5 -- Call Frame Information Examples
24-102

Chapter 25 DWARF Access Library (libdwarf)

Introduction
PUrpose and SCOPEottt e 25-1

Illustrations

Screens

Contents

Definitions 25-2
OVBIVIBW .ottt e 25-2
Type Definitions 25-2
General DesCription 25-2
Scalar TYPES . o ot 25-3
Aggregate TYPeS . . .ottt 25-3
Location Record 25-4
Location Description. 25-4
Element List o 25-4
Subscript Bounds Information oL 25-5
DataBIOCK.o 25-5
OPAQUE TYPES . . ottt e et et e 25-5
Error Handling.o 25-6
Memory Management 25-8
Read-only Properties 25-8
Storage Deallocation 25-8
Functional Interface. 25-9
Initialization Operations. 25-9
Debugging Information Entry Delivery Operations...... 25-10
Debugging Information Entry Query Operations 25-12
Array Subscript Query Operations. 25-15
Type Information Query Operations 25-16
Attribute FOrm QUENIES. e e 25-16
Line Number Operationst e 25-18
Global Name Space Operationsottt 25-20
Utility Operations.t e 25-20
Appendix1--libdwarf.h. 25-22
Figure 4-1. User-Defined Mapfile i i .. 4-29
Figure 4-2. Default Mapfile 4-30
Figure 4-3. Simple Map Structure 4-32
Figure 6-1. Creation and Use of a Lexical Analyzer withlex 6-3
Figure 13-1. Summary of Default Transformation Path 13-10
Figure 14-1. Evolutionofan SCCSFile 14-5
Figure 14-2. Tree Structure with BranchDeltas 14-6
Figure 14-3. Extended Branching Concept i, 14-7
Figure 22-1. Data Encoding ELFDATA2LSB 22-8
Figure 22-2. Data Encoding ELFDATA2MSB 22-8
Figure 22-3. Relocatable Fields i 22-29
Figure 23-1. The PartsofaBodyofCode 23-1
Screen 9-1. Thecscope MenuofTasks 9-3
Screen 9-2. Requesting a Searchfora TextString.......... 9-4
Screen 9-3. cscope Lists Lines Containing the Text String 9-5
Screen 9-4. Examining a Line of Code Found by cscope. 9-6
Screen 9-5. Requesting a List of Functions That Call alloctest()............... 9-7
Screen 9-6. cscope Lists Functions That Call alloctest() 9-7
Screen 9-7. cscope Lists Functions That Call mymalloc().................... 9-8
Screen 9-8. Viewing dispinit() inthe Editor. 9-9

XXi

Compilation Systems Volume 2 (Concepts)

Tables

Screen 9-9. Using cscopeto Fixthe Problem. 9-10
Screen 9-10. Changinga TextStringoo i 9-14
Screen 9-11. cscope Prompts for LinestoBe Changed 9-15
Screen 9-12. Marking LinestoBe Changed. 9-16
Screen 9-13. cscope Displays Changed Linesof Text 9-16
Screen 9-14. Escaping from cscopetothe Shell. 9-17
Screen 11-1. Sample Outputfromanalyze 11-2
Screen 13-1. make Internal Rules. 13-20
Table 1-1. Compilersand Utilities 1-4
Table 2-1. Available Directives 2-19
Table 3-1. PowerPC Instruction Set 3-2
Table 3-2. Condition Codes (CC)o ittt e 3-25
Table 3-3. Trap Operand (TO)ot i 3-26
Table 3-4. Operand Abbreviations 3-26
Table 3-5. Special-Purpose Registers i 3-28
Table 3-6. Time Base RegiSterst 3-31
Table 3-7. Implementation-Specific and Optional Instructions 3-31
Table 6-1. 1eX Operatorsttt e 6-6
Table 9-1. Menu Manipulation Commandscoiiieieana... 9-3
Table 9-2. Commands for Use after Initial Search 9-5
Table 9-3. Commands for Selecting Linesto BeChanged 9-15
Table 14-1. Determination of New SID i, 14-14
Table 16-1. File and I/0 Control and Access Functions 16-5
Table 16-2. File and I/O Status Functionso .. 16-6
Table 16-3. Directories FUNCLIONS 16-7
Table 16-4. File Systems FUNCLIONS it e 16-7
Table 16-5. General Input Functions i 16-8
Table 16-6. General Output FUNCtions i, 16-9
Table 16-7. Terminal IO FuNnctions 16-10
Table 16-8. STREAMS FUNCHIONSot 16-11
Table 16-9. Pipesand FIFOsFunctions it .. 16-12
Table 16-10. Devices Control Functions, 16-12
Table 16-11. File Systems Table File Functions 16-13
Table 16-12. File Systems Mount Table File Functions 16-14
Table 16-13. Password File Functions 16-14
Table 16-14. Shadow Password File Functions 16-15
Table 16-15. Group File Functions 16-15
Table 16-16. User and Accounting Information Files 16-16
Table 16-17. ELF FileS FUNCLIONS e e 16-17
Table 16-18. DWARF Debugging Information Functions. 16-18
Table 16-19. Shared Objects Functions 16-22
Table 16-20. Temporary Files e 16-22
Table 16-21. String Manipulation Functions 16-23
Table 16-22. Wide String Manipulation Functions 16-24
Table 16-23. Character TeStFUNCLONS e 16-25
Table 16-24. Wide Character Test FUNCtionsccoveiine.... 16-26
Table 16-25. Character Translation Functions 16-26
Table 16-26. Multibyte and Wide Characters Functions 16-27
Table 16-27. Regular Expression and Pattern Matching Functions 16-27
Table 16-28. Memory Manipulation Functions 16-28

Table 16-29.
Table 16-30.
Table 16-31.
Table 16-32.
Table 16-33.
Table 16-34.
Table 16-35.
Table 16-36.
Table 16-37.
Table 16-38.
Table 16-39.
Table 16-40.
Table 16-41.
Table 16-42.
Table 16-43.
Table 16-44.
Table 16-45.
Table 16-46.
Table 16-47.
Table 16-48.
Table 16-49.
Table 16-50.
Table 16-51.
Table 16-52.
Table 16-53.
Table 16-54.
Table 16-55.
Table 16-56.
Table 16-57.
Table 16-58.
Table 16-59.
Table 16-60.
Table 16-61.
Table 16-62.
Table 16-63.
Table 16-64.
Table 16-65.

Table 18-1.
Table 18-2.
Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 22-1.
Table 22-2.
Table 22-3.
Table 22-4.
Table 22-5.
Table 22-6.
Table 22-7.
Table 22-8.
Table 22-9.
Table 22-10

Contents

Memory Allocation Functions 16-29
Memory Control Functions 16-30
Shared Memory Control Functions 16-30
Tables Functions 16-31
Hash Tables Functions i ... 16-31
File Trees Functions 16-32
Binary TreesFunctions i 16-32
Message Queues FUNCtionsc.. it 16-32
Queues FUNCLIONS e 16-33
Semaphores Functions i 16-33
General Date and Time Functions 16-34
Interval Timer Functions 16-35
POSIX Timer FUNCLIONS i 16-35
Locales Functions i 16-36
Message Catalogs Functions 16-36
Trigonometric Functions i 16-37
Bessel FUNCHIONS o 16-37
Hyperbolic Functions 16-38
Miscellaneous Mathematical Functions 16-38
Numeric Conversion Functions, 16-39
Other Arithmetic Functions. i, 16-41
Floating-Point Environment Functions 16-41
Pseudo-Random Number Generation Functions 16-42
Flow Functions 16-44
Profile Functions 16-44
Parameters Functions i 16-45
Control Functions 16-46
Signals FUNCtions 16-47
User-Level Interrupts Functions 16-49
Lightweight Processes Functions 16-49
Access Control Lists Functions 16-51
Auditing Functions 16-51
Levels Functions 16-51
Other Security Functions 16-52
Encryption and Decryption Functions 16-52
Loadable Kernel Modules Functions. 16-53
Other System Environment Functions 16-53
Stack Frame 18-2
Where Parameters Are Passed 18-2
General Registers 18-4
Floating-point Registers i 18-4
Special Registers 18-5
C o Scalar TYPES ..ottt 18-5
Fortran Scalar Types oot 18-6
ObjectFile Format. 22-2
32-Bit Data TYPES . . oot it 22-3
e_ident[] Identification Indexes 22-6
PowerUX Identification,e_ident. 22-9
Processor-Specific Flags,e flags 22-9
Special Section Indexes 22-10
Section Types, sh_type 22-12
Section Header Table Entry: Index 0. 22-14
Section Attribute Flags, sh_flags. 22-14
. sh_link and sh_info Interpretation. 22-15

XXiii

Compilation Systems Volume 2 (Concepts)

XXiv

Table 22-11.
Table 22-12.
Table 22-13.
Table 22-14.
Table 22-15.
Table 22-16.
Table 22-17.
Table 22-18.
Table 22-19.
Table 22-20.
Table 22-21.

Table 22-22. Symbol Types, ELF32_ST TYPE 22-25
Table 22-23. Symbol Table Entry: Index 0. 22-26
Table 22-24. Relocation TYPES oot e 22-32
Table 22-25. Segment Types, P_type oot 22-37
Table 22-26. Segment Flag Bits,p_flags i i . 22-39
Table 22-27. Segment Permissionst 22-39
Table 22-28. Text Segment 22-40
Table 22-29. Data Segment.t e 22-40
Table 22-30. Note Information i 22-41
Table 22-31. Example Note Segment i 22-42
Table 22-32. Executable File. 22-43
Table 22-33. Program Header Segments.o, 22-43
Table 22-34. Process Image Segmentsttt 22-44
Table 22-35. Example Shared Object Segment Addresses. 22-45
Table 22-36. Dynamic Array Tags, d_tagc. ... 22-48
Table 22-37. GOTP Binding Entry Stack Frame 22-56
Table 22-38. GOTP Binding Entry i 22-56
Table 22-39. GOTP Binding Helper. i 22-57
Table 22-40. PLT ENtry.ot e 22-59
Table 22-41. Symbol. e 22-60
Table 24-1. Tag NamMesSo 24-4
Table 24-2. Attribute Names 24-5
Table 24-3. Accessibility Codes 24-16
Table 24-4. Visibility Codes 24-16
Table 24-5. Virtuality Codes. 24-17
Table 24-6. Example Address Class Codes.ttt 24-18
Table 24-7. Language Names...ttt e 24-20
Table 24-8. Identifier Case Codes.t 24-21
Table 24-9. Inline Codes i 24-26
Table 24-10. Encoding Attribute Values 24-34
Table 24-11. Type Modifier Tagsot e 24-35
Table 24-12. Array Ordering.ottt e e e 24-37
Table 24-13. Discriminant DescriptorValues. 24-43
Table 24-14. Tag Encodings (Part1) 24-68
Table 24-15. Tag Encodings (Part2) 24-69
Table 24-16. Child Determination Encodings. 24-70
Table 24-17. Attribute Encodings (Part1) 24-70
Table 24-18. Attribute Encodings (Part2) 24-72
Table 24-19. Attribute Form Encodings i 24-73
Table 24-20. Examples of unsigned LEB128 Encodings 24-74
Table 24-21. Examples of signed LEB128 Encodings 24-75
Table 24-22. Location Operation Encodings (Part1) 24-75
Table 24-23. Location Operation Encodings (Part2) 24-76

Special Sections 22-15
Vendor Section Rounding Modes, round_mode 22-19
Vendor Section Floating-Point Exceptions Kind, fp_except_kind ... 22-19
Vendor Section Enabled Exceptions, float_exceptions 22-20
Vendor Section PowerPC Features, IBM_mode 22-20

Vendor Section Extended Double-Precision Use, float_precision. ... 22-21
Vendor Section Process Private Data Pointer Use, ppdp. used 22-21

Vendor Section FP Speculative Execution Use, fp_spec_exec 22-22
StringTable 22-22
String Table Indexes. 22-22

Symbol Binding, ELF32_ST BINDo 22-24

Contents

Table 24-24. Base Type EncodingValues 24-78
Table 24-25. Accessibility Encodings 24-78
Table 24-26. Visibility Encodings 24-78
Table 24-27. Virtuality Encodings 24-79
Table 24-28. Language Encodingsttt 24-79
Table 24-29. Identifier Case Encodingst 24-80
Table 24-30. Calling Convention Encodings o iiiiien... 24-80
Table 24-31. Inline ENcodings oottt 24-80
Table 24-32. Ordering ENncodingst 24-81
Table 24-33. Discriminant Descriptor Encodings, 24-81
Table 24-34. Standard Opcode Encodings, 24-82
Table 24-35. Extended Opcode Encodingscoiiiiiiinanan.. 24-83
Table 24-36. Macinfo Type Encodingst iinnnan.. 24-83
Table 24-37. Call Frame Instruction Encodings 24-84
Table 24-38. Current Attributesby TagValue 24-85
Table 25-1. Scalar TYPeS. . . . oot 25-3
Table 25-2. Error Indications 25-7
Table 25-3. Allocation/Deallocation Identifiers. 25-9
Table 25-4. Error COAesot 25-21

XXV

Compilation Systems Volume 2 (Concepts)

XXVi

4
Environments

Replace with Part 4 tab

Compilation Systems Volume 2 (Concepts)

Part 4 - Environments

Part 4 - Environments

Part4 Environments

Chapter 15 Introduction to ENVIrONMENLSc.coeiiiiiiiiiiiiiiiiieee e 15-1
Chapter 16 RuUN-TIME LIDraries 16-1
Chapter 17 Floating-Point Operations
Chapter 18 Inter-Language Interfacingcccceeeiiiiiiiiiiiniei e, 18-1

Compilation Systems Volume 2 (Concepts)

15
Introduction to Environments

INtrOdUCTION . . . o e e e e e e e e e

Compilation Systems Volume 2 (Concepts)

Introduction

15
Introduction to Environments

You can save time writing routines by calling system functions instead. You know how to
write and tune your math-intensive and multi-language programs if you understand the
concepts behind floating-point operations and inter-language interfacing.

This part of the manual describes implementation-dependent aspects of the environment.

Chapter 16 (“Run-Time Libraries”) categorizes, groups, and briefly describes the
functions in the C, ELF, and math system libraries.

Chapter 17 (“Floating-Point Operations”) discusses IEEE single-precision and double-
precision floating-point arithmetic, exception handling, operations, and implementations.

Chapter 18 (“Inter-Language Interfacing”) describes the interfaces between C and Fortran
routines on supporting hardware platforms. Topics include stack frames, parameter
passing, return values, register use, external names, and data types.

15-1

Compilation Systems Volume 2 (Concepts)

15-2

16
Run-Time Libraries

INtrOdUCHION . . .o e 16-1
System Libraries. 16-1
CLibrary 16-1
Alternate C Library 16-2
Math Library 16-2
Alternate Math Library 16-2
ELF Library. ... 16-3
DWARF Libraryo 16-3
General-Purpose Library. ... 16-3
Including FunctionsandData. i 16-3
Including Declarations 16-4
Listing of FUNCLiONS. 16-4
Input/Output Control 16-4
File and I/O Control and ACCESSo v i 16-5
Fileand /O Status. 16-6
DIrECIONIES . . o\ ot 16-7
File Systems 16-7
General INpuUt. 16-8
General QUIPULot 16-9
Terminal /O . ..o 16-10
STREAMS . 16-11
Pipesand FIFOS e 16-12
DBVICES . ittt 16-12
Special Fileso 16-12
File Systems Table File. 16-13
File Systems Mount Table File 16-14
Password File 16-14
Shadow Password File. 16-15
Group File . ..o 16-15
User and Accounting Information Files 16-16
ELF Files. . 16-17
DWARF Debugging Information 16-18
Shared Objects.ot 16-22
Temporary Files. 16-22
Stringsand Characters i 16-22
String Manipulation. 16-23
Wide String Manipulation. 16-24
Character Test oo 16-25
Wide Character TeStt 16-26
Character Translation i 16-26
Multibyte and Wide Characters. 16-27
Regular Expression and Pattern Matching 16-27
MOy . . 16-28
Memory Manipulation. 16-28
Memory Allocation 16-29
Memory Control 16-30

Shared Memory. 16-30

Compilation Systems Volume 2 (Concepts)

Data StIUCTUIES . . o o e e et e 16-31
TablES. . . 16-31
Hash Tables e 16-31
File Trees. ..o 16-32
Binary Trees. . .. oot 16-32
Message QUEBUESttt e 16-32
QUEBUEBS . . e e e 16-33
SeMAPNOrES . o 16-33

Date and Time.o e 16-33
GeneralDateand Time i e e 16-34
Interval TImer 16-35
POSIX TiMEr. . . e 16-35

Internationalization. 16-35
LoCales. . . 16-36
Message Catalogsot 16-36

Mathematicand NUMENIC e e 16-36
THGONOMELIIC . oot 16-37
BesSel. ... 16-37
Hyperbolic. 16-38
Miscellaneous Mathematic Functions. 16-38
NUMENC CONVEISIONo e e e e 16-39
Other ArithmetiC e e 16-41
Floating-Point Environment i 16-41
Pseudo-Random Number Generation Functions. 16-42

PrOgramsS . . o 16-44
Flow . . . 16-44
Profile 16-44
Parameters e 16-45

PrOCESSES. . 16-45
CONtIOl . . o e 16-46
SIgNalS . . 16-47
User-Level Interrupts. oo e 16-49
Lightweight Processes.ot e 16-49

SBCUNY . o ot 16-50
AcCCessS Control ListSo e e 16-51
AUdItINgo 16-51
LeVEIS. . 16-51
Other SEeCUNtY e 16-52
Encryption and Decryption 16-52

System EnNVIFONMENt. o e 16-53
Loadable KernelModules i 16-53

Other System Environment i 16-53

Introduction

System Libraries

C Library

16
Run-Time Libraries

PowerUX provides several system libraries which are available to software developers.
This chapter introduces three of these libraries. A brief synopsis of each function in the
libraries is presented. More detailed information can be found in the manual pages for the
functions.

The following system libraries are available:
e C
* Math
¢ Alternate math
* ELF
* DWARF

* General-purpose

This is the basic library for C language programs. It contains functions and declarations
used for file access, string testing and manipulation, character testing and manipulation,
memory allocation, and other capabilities.

The following man page sections pertain to the library:
2 System Calls
3C Standard C Library
3S Standard I/O Library

The static C library igusr/ccs/lib/libc.a . Itis used when link editing programs
which do not perform dynamic linking. Programs which do perform dynamic linking are
link edited with/usr/ccs/lib/libc.so . This library contains a shared object,
Just/lib/libc.so.1 , which contains the dynamic linker and other position indepen-
dent functions.

16-1

Compilation Systems Volume 2 (Concepts)

Alternate C Library

Math Library

An alternate static C libraryusr/ccs/lib/libnc.a , Is available under Power
UNIX. It does not support reentrancy of its functions, as does the default C library. Pro-
grams that are link edited with this alternate library will exhibit better performance. Only
those programs which do not use dynamic linking and which do not depend upon the reen-
trancy quality of the library, however, can use this library. Programs which use dynamic
linking must continue to usaisr/ccs/lib/libc.so . Programs which depend upon
reentrancy in the library, such as programs that are link edited with the system threads
library, cannot useusr/ccs/lib/libnc.a . This library may be referenced during
invocation of the C compiler as follows:

cc file.c -Inc

The math library provides interfaces for commonly used mathematical functions. The
functions reside irusr/ccs/lib/libm.a . This library may be referenced during
invocation of the C compiler as follows:

cc file.c -Im

The following man page section pertains to this library:
3M Math Library

Alternate Math Library

16-2

An alternate math libraryusr/ccs/lib/libM.a , Is available under PowerUX. It is
intended for use when the characteristics of the arguments are well-understood and higher
performance is preferred to increased accuracy. This library differs from the standard
math library,/usr/ccs/lib/libm.a , in the following ways:

* Arguments are not checked to ensure that they are valid IEEE float-
ing-point numbers.

* Arguments are not checked for mathematical validity (for example,
sqrt(-2)).

* For the single-precision functions, certain calculations that are performed
in double precision in the standard library are performed in single precision
in the alternate library. As a result, 1-bit errors can occur in some calcula-
tions.

* This alternate library uses large tables of constants as a repository of data
for its calculations. Use of this library will require a larger address space
than is needed with the standard library.

This alternate library may be referenced during invocation of the C compiler as follows:

cc file.c -IM

Run-Time Libraries

The Fortran and Ada compilation systems reference the standard math litimary
by default. The C compilation system has no default math library.

ELF Library

This library provides functions that access and manipulate ELF object files. Refer to
Chapter 22 (“Executable and Linking Format (ELF)”") for information on ELF.

The functions reside ihusr/ccs/lib/libelf.a . This library may be referenced
during invocation of the C compiler as follows:

cc file.c -lelf

The following man page section pertains to this library:
3E Executable and Linking Format Library

DWARF Library

This library provides functions that access and manipulate DWARF debugging informa-
tion in ELF object files.

The functions reside ifusr/ccs/lib/libdwarf.a . This library may be referenced
during invocation of the C compiler as follows:

cc file.c -ldwarf

The following man page section pertains to this library:
3DWARF Debugging with Arbitrary Record Format Library

General-Purpose Library

This library provides general-purpose functions, often maintained for compatibility with
previous versions of UNIX

The functions reside itusr/ccs/lib/libgen.a . This library may be referenced
during invocation of the C compiler as follows:

cc file.c -lgen

The following man page section pertains to this library:
3G General-Purpose Library

Including Functions and Data

When a program is being compiled, the compilation system automatically directs the link
editor to search the C library to locate and resolve references to functions and data needed
by the program. For it to locate and include functions and data from other libraries, you
must specify these libraries on the invocation line. For example, when using functions of

16-3

Compilation Systems Volume 2 (Concepts)

the math library, you must request that the math library be searched by inchirdingn
the invocation line:

cc file.c -Im

The -Im must appear after all files that reference functions in the math library. In this
way, the link editor is able to use the math library to resolve references to math library
functions, and thereby include these functions inatwut file.

Including Declarations

To operate properly, some functions need a set of declarations. These declarations are in
header files under thiisr/include directory. To include these header files, you must
code requests in your C source program. A request is of the form:

#include < file.h>

wherefile.h is the name of the file. Because the header files define the types of functions
and various preprocessor constants, they must be included before invoking the declared
functions.

Listing of Functions

Input/Output Control

16-4

The input/output control functions are grouped into the following categories:

* “File and 1/0O Control and Access” on page 16-5
* “File and I/O Status” on page 16-6

¢ “Directories” on page 16-7

* “File Systems” on page 16-7

¢ “General Input” on page 16-8

¢ “General Output” on page 16-9

¢ “STREAMS” on page 16-11

* “Pipes and FIFOs” on page 16-12

* “Devices” on page 16-12

File and I/0O Control and Access

Run-Time Libraries

Table 16-1. File and I/O Control and Access Functions

Function Reference Brief Description

access access(2) Determine the accessibility of afile.

basename basename(3G) Provide the last element of a path name.

chmod, chmod(2) Change the mode of a file.

fchmod

chown, chown(2) Change the owner and group of a file.

fchown,

Ichown

close close(2) Close a file descriptor.

copylist copylist(3G) Copy a file into memory.

creat creat(2) Create a new file or rewrite an existing file.

dirname dirname(3G) Provide the parent directory name of a file path name.

dup dup(3C) Duplicate an open file descriptor.

dup2 dup2(3C) Duplicate an open file descriptor.

fclose fclose(3S) Close an open stream.

fentl fentl(2) Control an open file.

fdopen fopen(3S) Associate a file stream with an open file.

fgetpos fsetpos(3C) Get the position of a file pointer in a file stream.

fileno ferror(3S) Identify the file descriptor associated with an open stream.

filepriv filepriv(2) Control the privileges associated with a file.

flockfile flock(3S), Grant thread ownership of a file.
flockfile(3S)

fopen fopen(3S) Open a file with specified permissions.

fpathconf, fpathconf(2) Get configurable path name variables.

pathconf

freopen fopen(3S) Substitute a named file in place of an open file stream.

fseek fseek(3S) Reposition the file pointer in a file stream.

fsetpos fsetpos(3C) Set the position of a file pointer in a file stream.

fsync fsync(2) Synchronize a file’s in-memory state with that on a physical

medium.

ftrylockfile flock(3S), Grant thread ownership of a file, and indicate a status of suc-
ftrylockfile(3S) cess or failure.

funlockfile flock(3S), Relinquish file ownership granted to a thread.
funlockfile(3S)

getdtablesize getdtablesize(3C) Get the file descriptor table size.

16-5

Compilation Systems Volume 2 (Concepts)

Table 16-1. File and I/O Control and Access Functions (Cont.)

Function Reference Brief Description

link link(2) Create a new link for a file.

lockf lockf(3C) Record locking on files.

Iseek Iseek(2) Move a read/write file pointer.

open open(2) Open a file descriptor.

pathfind pathfind(3G) Find a named file in named directories.

poll poll(2) Multiplex 1/O.

rename rename(2) Change the name of afile.

remove remove(3C) Remove a file.

rewind fseek(3S) Reposition the file pointer to the beginning of a file.
select select(3C) Perform synchronous 1/O multiplexing.

setbuf setbuf(3S) Assign buffering to a file stream.

setvbuf setbuf(3S) Assign buffering to a file streapbut allow finer control.
symlink symlink(2) Make a symbolic link to a file.

truncate, truncate(3C) Set a file to a specified length.

ftruncate

unlink unlink(2) Remove a directory entry.

userdma userdma(2) Prepare a buffer for DMA transfers.

utime utime(2) Set file access and modification times.

File and I/O Status

16-6

These functions provide status information on files and I/O operations.

Table 16-2. File and I/O Status Functions

Function Reference Brief Description

clearerr ferror(3S) Reset an error condition on a file stream.
feof ferror(3S) Test for end-of-file on a file stream.

ferror ferror(3S) Test foran error condition on afile stream.
ftell fseek(3S) Indicate the current position in the file.
readlink readlink(2) Read the value of a symbolic link.
realpath realpath(3C) Return a file name.

stat, stat(2) Obtain file status information.

fstat,

Istat

Directories

File Systems

Run-Time Libraries

These functions support operations on directories.

Table 16-3. Directories Functions
Function Reference Brief Description
alphasort scandir(3C) Sort directory entries.
chdir, chdir(2) Change the working directory.
fchdir
chroot chroot(2) Change the root directory.
closedir directory(3C) Close a directory.
getdents getdents(2) Read directory entries.
mkdir mkdir(2) Make a directory.
mkdirp mkdirp(3G) Create directories in a path.
mknod mknod(2) Make a directory, or a special or ordinary file.
opendir directory(3C) Open a directory.
rmdir rmdir(2) Remove a directory.
rmdirp mkdirp(3G) Remove directories in a path.
readdir, directory(3C) Read a directory.
readdir_r
rewinddir directory(3C) Reset the file position to the beginning of a
directory.
scandir scandir(3C) Scan a directory.
seekdir directory(3C) Seek in a directory.
telldir directory(3C) Provide a pointer to the current location in a

directory.

These functions support operations on file systems.

Table 16-4. File Systems Functions

Function Reference Brief Description

mount mount(2) Mount a file system.

statvfs, statvfs(2) Obtain file system status information.
fstatvfs

16-7

Compilation Systems Volume 2 (Concepts)

Table 16-4. File Systems Functions (Cont.)

Function Reference Brief Description

sysfs sysfs(2) Obtain file system type information.
umount umount(2) Unmount a file system.

ustat ustat(2) Obtain file system statistics.

General Input

These functions support a variety of general input operations.

Table 16-5. General Input Functions

16-8

Function Reference Brief Description

bgets bgets(3G) Read a stream up to the next delimiter.

fgetc getc(3S) Read a character from standard input.

fgets gets(3S) Read a string from a file stream.

fread fread(3S) Read buffered data from a file stream.

fscanf scanf(3S) Read characters from a file stream.

fwscanf fwscanf(3S) Read wide characters from a file stream.

getc, getc(3S) Read character from a file stream.

getc_unlocked

getchar, getc(3S) Read a character from standard input.

getchar_unlocked

gets gets(3S) Read a string from standard input.

getw getc(3S) Read a word from a file stream.

pread pread(2) Perform an atomic position and read.

read read(2) Read from a file.

scanf scanf(3S) Read characters from standard input.

sscanf scanf(3S) Read characters from a string.

swscanf fwscanf(3S) Read wide characters from a string.

ungetc ungetc(3S) Put one character back on standard input.

vfscanf vscanf(3S) Read characters from a file stream by
varargs argument list.

viwscanf vfwscanf(3S) Read wide characters from a file stream by
varargs argument list.

vscanf vscanf(3S) Read characters from standard input by

varargs argument list.

General Output

Table 16-6. General Output Functions

Run-Time Libraries

Table 16-5. General Input Functions (Cont.)

Function Reference Brief Description

vsscanf vscanf(3S) Read characters from a string by
varargs argument list.

wscanf vscanf(3S) Read characters from standard input by
varargs argument list.

vswcanf vfwscanf(3S) Read wide characters from a string by
varargs argument list.

vwscanf vfwscanf(3S) Read wide characters from standard input

by varargs argument list.

These functions support a variety of general output operations.

Function Reference Brief Description

addsev addsev(3C) Define additional severities.

addseverity addseverity(3C) Build a list of severity levels.

fflush fclose(3S) Write all currently buffered characters to a file stream.

fmtmsg fmtmsg(3C) Display a message on standard error or the system console.

fprintf printf(3S) Write characters to a file stream.

fputc putc(3S) Write a character to standard output.

fputs puts(3S) Write a string to a file stream.

funflush funflush(3S) Discard buffered data.

fwprintf fwprintf(3S) Write wide characters to a file stream.

fwrite fread(3S) Write buffered data to a file stream.

Ifmt Ifmt(3C) Display an error message and pass it to logging and monitor-
ing services.

perror perror(3C) Write an error message to standard error.

printf printf(3S) Write characters to standard output.

putc, putc(3S) Write a character to standard output.

putc_unlocked

putchar, putc(3S) Write a character to standard output.

putchar_unlocked

puts puts(3S) Write a string to standard output.

putw putc(3S) Write a word to a file stream.

16-9

Compilation Systems Volume 2 (Concepts)

Table 16-6. General Output Functions (Cont.)

Function Reference Brief Description

pwrite pwrite(2) Perform an atomic position and write.

pfmt pfmt(3C) Display an error message.

setlabel setlabel(3C) Define the label fopfmt .

snprintf printf(3S) Write a specified number of characters to a string.

sprintf printf(3S) Write characters to a string.

strerror strerror(3C) Write an error message to standard error.

swprintf fwprintf(3S) Write wide characters to a string.

viprintf vprintf(3S) Write characters to a file stream bigrargs argument list.

viwprintf viwprintf(3S) Write wide characters to a file stream bgrargs argu-
ment list.

vifmt Ifmt(3C) Display an error message and pass it to logging and monitor-
ing services, byarargs argument list.

vpfmt pfmt(3C) Display an error message, bgrargs argument list.

vprintf vprintf(3S) Write characters to standard output\grargs argument
list.

vsprintf vprintf(3S) Write characters to a string lwarargs argument list.

vswprintf viwprintf(3S) Write wide characters to a string lbgrargs argumentlist.

vwprintf viwprintf(3S) Write wide characters to standard outputayargs argu-
ment list.

wprintf fwprintf(3S) Write wide characters to standard output.

write write(2) Write to a file.

Terminal 1/0

These functions support terminal I/O operations.

Table 16-7. Terminal I/O Functions

16-10

Function Reference Brief Description

cfgetispeed termios(2) Get the input baud rate.

cfsetispeed termios(2) Set the input baud rate.

cfgetospeed termios(2) Get the output baud rate.

cfsetospeed termios(2) Set the output baud rate.

ctermid ctermid(3S) Indicate the file name for the controlling terminal.
grantpt grantpt(3C) Grant access to a slave pseudo-terminal device.

Run-Time Libraries

Table 16-7. Terminal /O Functions (Cont.)

Function Reference Brief Description
isatty ttyname(3C) Determine if the file descriptor is associated with a terminal.
ptshame ptsname(3C) Provide the name of a slave pseudo-terminal device.
tcdrain termios(2) Wait for transmission of all output.
tcflow termios(2) Suspend transmission or reception of data.
tcflush termios(2) Discard untransmitted or unread data.
tcgetattr termios(2) Get terminal attributes.
tcgetpgrp termios(2) Get the foreground process group ID.
tcsendbreak termios(2) Send data to generate a break condition.
tcsetattr termios(2) Set terminal attributes.
tcsetpgrp termios(2) Set the foreground process group ID.
tcsetsid termios(2) Set the session ID.
ttyname, ttyname(3C) Provide the path name of the terminal associated with the
ttyname_r file descriptor.
unlockpt unclockpt(3C) Unlock a pseudo-terminal master/slave pair.
STREAMS

These functions support operations on STREAMS files.

Table 16-8. STREAMS Functions

Function Reference Brief Description

fattach fattach(3C) Attach a STREAMS-based file descriptor to a
file system object.

fdetach fdetach(3C) Detach a name from a STREAMS-based file
descriptor.

getmsg, getmsg(2) Get the next message off a stream from a

getpmsg STREAMS file.

isastream isastream(3C) Determine if a file descriptor represents a
STREAMS file.

putmsg, putmsg(2) Set a message to a STREAMS file.

putpmsg

16-11

Compilation Systems Volume 2 (Concepts)

Pipes and FIFOs

These functions support operations on pipes and FIFOs.

Table 16-9. Pipes and FIFOs Functions

Function Reference Brief Description

mkfifo mkfifo(3C) Create a new FIFO special file.

p2close p2close(3G) Close a pipe from a command.

p2open p2open(3G) Open a pipe to a command.

pclose popen(3S) Close a stream opened bgpen .

pipe pipe(2) Create an inter-process channel

popen popen(3S) Create a pipe as a stream between the calling

process and a command.

Devices
These functions support general control of devices.
Table 16-10. Devices Control Functions
Function Reference Brief Description
devstat, devstat(2) Get or set device security attributes.
fdevstat
ioctl ioctl(2) Control a device.
major makedev(3C) Provide the major number component from a
device.
makedev makedev(3C) Make a device.
minor makedev(3C) Provide the minor number component from a
device.
Special Files

The special files functions support a variety of operations on special files. They are
grouped into the following categories:

* “File Systems Table File” on page 16-13
* “File Systems Mount Table File” on page 16-14
¢ “Password File” on page 16-14

¢ “Shadow Password File” on page 16-15

16-12

Run-Time Libraries

* “User and Accounting Information Files” on page 16-16

* “ELF Files” on page 16-17
¢ “Shared Objects” on page 16-22

* “Temporary Files” on page 16-22

File Systems Table File

These functions search and access information stored in the file systems table file

(/etcivfstab).

Table 16-11. File Systems Table File Functions

Function Reference Brief Description

endfsent getfsent(3C) Close/etc/vfstab

getfsent getfsent(3C) Read the next line dftc/vfstab

getfsfile getfsent(3C) Read the next line ofetc/vfstab that
matches the file system file name.

getfsspec getfsent(3C) Read the next line ofetc/vfstab that
matches the special file name

getfstype getfsent(3C) Read the next line ofetc/vfstab that
matches the file system type.

getvfsany getvfsent(3C) Read the next line ofetc/vfstab that
matches the vfs table entry.

getvfsent getvfsent(3C) Read the next line detc/vfstab

getvfsfile getvfsent(3C) Read the next line ofetc/vfstab that
matches the file system file name.

getvfsspec getvfsent(3C) Read the next line ofetc/vfstab that
matches the special file name

getvfstype getvfsent(3C) Read the next line ofetc/vfstab that
matches the file system type.

setfsent getfsent(3C) Open and rewindetc/vfstab

16-13

Compilation Systems Volume 2 (Concepts)

File Systems Mount Table File

These functions search and access information stored in the file systems mount table file
(/fetc/mnttab).

Table 16-12. File Systems Mount Table File Functions

Function Reference Brief Description

addmntent getmntent(3C) Add a mount entry to the end of
letc/mnttab

endmntent getmntent(3C) Close/etc/mnttab

getmntany getmntent(3C) Read the next line ofetc/mnttab that
matches the mount entry.

getmntent getmntent(3C) Read the next line otc/mnttab

hasmntopt getmntent(3C) Obtain the options subfield of a mount

entry that has the option.

setmntent getmntent(3C) Open and rewindetc/mnttab

Password File

These functions search and access information stored in the password file
(/fetc/passwd).

Table 16-13. Password File Functions

Function Reference Brief Description

endpwent getpwent(3G) Close/etc/passwd

fgetpwent getpwent(3G) Read the next line of a password file.

getpw getpw(3G) Read the next line oftc/passwd that matches
the user id.

getpwent getpwent(3G) Read the next line afetc/passwd

putpwent putpwent(3C) Write a line to a password file.

getpwnam getpwent(3G) Read the next line oftc/passwd that matches
the login name.

getpwuid getpwent(3G) Read the next line oftc/passwd that matches
the user id.

setpwent getpwent(3G) Open and rewindetc/passwd

16-14

Run-Time Libraries

Shadow Password File

These functions search and access information stored in the shadow password file
(/fetc/shadow).

Table 16-14. Shadow Password File Functions

Function Reference Brief Description

endspent getspent(3G) Close/etc/shadow

fgetspent getspent(3G) Read the next line of a shadow password file.

getspent getspent(3G) Read the next line afetc/shadow

putspent putspent(3G) Write a line to a shadow password file.

getspnam getspent(3G) Read the next line oftc/shadow that matches
the login name.

Ickpwdf getspent(3G) Obtain an exclusive lock for modification of
/etc/shadow and/etc/passwd

setspent getspent(3G) Open and rewindetc/shadow

ulckpwdf getspent(3G) Relinquish an exclusive lock for modification of

/etc/shadow and/etc/passwd

Group File

These functions search and access information stored in the groufefdigfoup).

Table 16-15. Group File Functions

Function Reference Brief Description

endgrent getgrent(3G) Close/etc/group

fgetgrent getgrent(3G) Read the next line of a group file.

getgrent getgrent(3G) Read the next line afetc/group

getgrgid getgrent(3C) Read the next line ofetc/group that matches
the group id.

getgrnam getgrent(3C) Read the next line ofetc/group that matches

the group name.

setgrent getgrent(3G) Open and rewindetc/group

16-15

Compilation Systems Volume 2 (Concepts)

User and Accounting Information Files

These functions search and access information stored in the user information files
(varfadm/utmp , /varfadm/utmpx J/varfadm/wtmp , and/var/adm/wtmpx).

Table 16-16. User and Accounting Information Files

Function Reference Brief Description

endtutent getut(3G) Close/var/adm/utmp

endtutxent getutx(3G) Close/var/adm/utmpx

getlogin, getlogin(3C) Provide the login name fromvar/adm/utmp

getlogin_r

getutent getut(3G) Read the next entry dfar/adm/utmp

getutid getut(3G) Read the next entry ofvar/adm/utmp that
matches the id.

getutline getut(3G) Read the next entry ofvar/adm/utmp that
matches the line.

getutmp getutx(3G) Copyutmp fields toutmpx fields.

getutmpx getutx(3G) Copyutmpx fields toutmp fields.

getutxent getutx(3G) Read the next entry dfar/adm/utmpx

getutxid getutx(3G) Read the next entry ofvar/adm/utmpx that
matches the id.

getutxline getutx(3G) Read the next entry ofvar/adm/utmpx that
matches the line.

pututline getut(3G) Write an entry ta'var/adm/utmp

pututxline getutx(3G) Write an entry ta'var/adm/utmpx

setutent getut(3G) Rewind/var/fadm/utmp

setutxent getutx(3G) Rewind/var/adm/utmpx

ttyslot ttyslot(3C) Find the slot of the current user in
Ivarfadm/utmp

updwtmp getutx(3G) Update /var/adm/wtmp and
Ivarfadm/wtmpx

updwtmpx getutx(3G) Update /var/adm/wtmpx and
Ivarfadm/wtmp

utmpname getut(3G) Change the name frofmar/adm/utmp

utmpxname getutx(3G) Change the name frofear/adm/utmpx

ELF Files

Run-Time Libraries

These functions access and manipulate ELF object files.

These functions usdescriptors , which provide private handles to the various pieces
of an ELF object file. A more detailed overview of the ELF files access functions is avail-
able inelf(3E)

Table 16-17. ELF Files Functions

Function Reference Brief Description

elf_begin elf_begin(3E) Make a file descriptor.

elf_cntl elf_cntl(3E) Control a file descriptor.

elf_end elf_end(3E) Finish using an object file.

elf_errmsg elf_error(3E) Return an error message.

elf_errno elf_error(3E) Return an internal error number.

elf_fill elf_fill(3E) Set the fill byte.

elf_flagdata elf_flag(3E) Manipulate flags for a data descriptor.
elf_flagehdr elf_flag(3E) Manipulate flags for an ELF header descriptor.
elf_flagelf elf_flag(3E) Manipulate flags for an ELF descriptor.
elf_flagphdr elf_flag(3E) Manipulate flags for a program header descriptor.
elf_flagscn elf_flag(3E) Manipulate flags for a section descriptor.
elf_flagshdr elf_flag(3E) Manipulate flags for a section header descriptor.
elf32_fsize elf_fsize(3E) Return the size of an object file.

elf_getarhdr
elf_getarsym
elf_getbase
elf_getdata
elf_newdata
elf_rawdata
elf32_getehdr
elf32_newehdr
elf_getident
elf32_getphdr
elf32_newphdr
elf_getscn
elf_ndxscn

elf_newscn

elf_getarhdr(3E)

elf_getarsym(3E)

elf_getbase(3E)
elf_getdata(3E)
elf_getdata(3E)
elf_getdata(3E)
elf_getehdr(3E)
elf_getehdr(3E)
elf_getident(3E)
elf_getphdr(3E)
elf_getphdr(3E)
elf_getscn(3E)

elf_getscn(3E)

elf_getscn(3E)

Retrieve an archive member header.
Retrieve the archive symbol table.
Get the base offset for an object file.
Get a data buffer.

Create a new data descriptor.

Get uninterpreted bytes of a data buffer.
Get an ELF header.

Create an ELF header.

Retrieve file identification data.

Get a program header.

Create a program header.

Return a section descriptor.

Return a section table index.

Create a section.

16-17

Compilation Systems Volume 2 (Concepts)

Table 16-17. ELF Files Functions (Cont.)

Function Reference Brief Description

elf_nextscn elf_getscn(3E) Return a section descriptor for the next higher section.
elf32_getshdr elf_getshdr(3E) Return a section header.

elf_hash elf_hash(3E) Compute a hash value.

elf_kind elf_kind(3E) Determine the file type.

elf_next elf_next(3E) Provide sequential access to the next archive member.
elf_rand elf_rand(3E) Provide random access to an archive member.
elf_rawfile elf_rawfile(3E) Retrieve uninterpreted file contents.

elf_strptr elf_strptr(3E) Create a string pointer.

elf_update elf_update(3E) Update an ELF descriptor.

elf_version elf_version(3E) Determindibelf s internal version.

elf32_xlateof elf_xlate(3E)

elf32_xlateom elf_xlate(3E)

Translate memory representations to 32-bit class file
representations.

Translate 32-bit class file representations to memory
representations.

DWARF Debugging Information

These functions access and manipulate DWARF debugging information in ELF object
files.

These functions usdescriptors which provide private handles to the various pieces of
DWARF debugging information. A more detailed overview of the DWARF debugging
information access functions is available in Chapter 25.

Table 16-18. DWARF Debugging Information Functions

Function Reference Brief Description

dwarf_arrayorder dwarf_arrayorder(3DWARF)
dwarf_atname(3DWARF)
dwarf_attr(3DWARF)

dwarf_attrlist(3DWARF)

Return a code indicating array ordering.
dwarf_atname Return the attribute name of an attribute.
dwarf_attr Return an attribute desciptor.

Return the number of elements in an attribute
list.

dwarf_attrlist

dwarf_bitoffset dwarf_bitoffset(3DWARF) Return the bit offset of a bit field value.
dwarf_bitsize(3SDWARF)
dwarf_bytesize(3DWARF)
dwarf_child(3DWARF)

dwarf_childent(3SDWARF)

dwarf_bitsize Return the number of bits in a bit field value.
dwarf_bytesize
dwarf_child

dwarf_childent

Return the byte size for a DIE.
Identify the first child of a DIE.

Return the number of children for a DIE.

16-18

Run-Time Libraries

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function

Reference

Brief Description

dwarf_dealloc
dwarf_dieline
dwarf_diename
dwarf_dieoffset

dwarf_elemlist

dwarf_errmsg
dwarf_errno
dwarf_finish
dwarf_formaddr
dwarf_formblock
dwarf_formref
dwarf_formsdata
dwarf_formstring
dwarf_formudata
dwarf_fundtype
dwarf_globdie
dwarf_globname
dwarf_hasattr

dwarf_hasform

dwarf_hibounds
dwarf_highpc

dwarf_init

dwarf_islstline

dwarf_ishitfield

dwarf_isfundtype

dwarf_lineaddr

dwarf_lineno

dwarf_lineoff

dwarf_dealloc(3DWARF)
dwarf_dieline(3DWARF)
dwarf_diename(3DWARF)
dwarf_dieoffset(3DWARF)
dwarf_elemlist(3DWARF)

dwarf_errmsg(3DWARF)
dwarf_errno(3DWARF)
dwarf_finish(3DWARF)
dwarf_formaddr(3DWARF)
dwarf_formblock(3DWARF)
dwarf_formref(3DWARF)
dwarf_formsdata(3DWARF)
dwarf_formstring(3DWARF)
dwarf_formudata(3DWARF)
dwarf_fundtype(3DWARF)
dwarf_globdie(3DWARF)
dwarf_globname(3DWARF)
dwarf_hasattr(3DWARF)
dwarf_hasform(3DWARF)

dwarf_hibounds(3DWARF)
dwarf_highpc(3DWARF)
dwarf_init(3DWARF)

dwarf_islstline(3DWARF)
dwarf_isbitfield(3DWARF)

dwarf_isfundtype(3DWARF)

dwarf_lineaddr(3DWARF)
dwarf_lineno(3DWARF)

dwarf_lineoff(3DWARF)

Free dynamic storage.

Return a line number descriptor.
Return the name for a DIE.
Return the offset of a DIE.

Return the number of an elements in an ele-
ment list.

Return an error message string.

Return an error number.

Release internal resources.

Return the address value of an attribute.
Return a block structure.

Return the reference value of an attribute.
Return the signed value of an attribute.
Return the string of an attribute.

Return the unsigned value of an attribute.
Return the fundamental type of a type.
Return a global DIE.

Return the name for a global DIE.
Indicate if a DIE has a particular attribute.

Indicate if a DIE has a particular attribute
form.

Return the upper bound of an array subscript.
Return the high pc for a DIE.

Return a handle for accessing DWARF infor-
mation.

Indicate if a line is the first in a block.

Indicate whether if a DIE represents a bit field
member.

Indicate whether a type represents a fundamen-
tal type.

Return the address for a line number.

Return the source statement line number for a
line number.

Return the offset for a line number.

16-19

Compilation Systems Volume 2 (Concepts)

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function

Reference

Brief Description

dwarf_linesrc

dwarf_lobounds

dwarf_loclist

dwarf_lowpc

dwarf_modlist

dwarf_nextdie
dwarf_nextglob
dwarf_nextline
dwarf_nthsubscr
dwarf_offdie
dwarf_pcfile
dwarf_pclines
dwarf_pcscope
dwarf_pcsubr
dwarf_prevline
dwarf_seterrarg
dwarf_seterrhand

dwarf_srclang

dwarf_srclines

dwarf_stringlen

dwarf_subscrent

dwarf_subscrtype
dwarf_tag
dwarf_typeof
dwarf_udtype
dwarf_islstline

dwarf_ishitfield

dwarf_linesrc(3DWARF)

dwarf_lobounds(3DWARF)
dwarf_loclist(3DWARF)

dwarf_lowpc(3DWARF)
dwarf_modlist(3DWARF)

dwarf_nextdie(3SDWARF)
dwarf_nextglob(3SDWARF)
dwarf_nextline(3DWARF)
dwarf_nthsubscr(3DWARF)
dwarf_offdie(3DWARF)
dwarf_pcfile(3DWARF)
dwarf_pclines(3SDWARF)
dwarf_pcscope(3DWARF)
dwarf_pcsubr(3DWARF)
dwarf_prevline(3SDWARF)
dwarf_seterrarg(3DWARF)
dwarf_seterrhand(3DWARF)
dwarf_srclang(3DWARF)

dwarf_srclines(3DWARF)

dwarf_stringlen(3DWARF)

dwarf_subscrcnt(3DWARF)

dwarf_subscrtype(3DWARF)
dwarf_tag(3DWARF)
dwarf_typeof(3DWARF)
dwarf_udtype(3DWARF)
dwarf_islstline(3DWARF)
dwarf_ishitfield(3DWARF)

Return the name of a compilation unit for a
line number.

Return the lower bound of an array subscript.

Return the number of elements in a location
list.

Return the low pc for a DIE.

Return the number of elements in a type modi-
fier list.

Return the next DIE.

Return the next global DIE.

Return the next line number.

Return a subscript.

Return the DIE at a particular offset.
Return the compilation unit DIE for a pc.
Create a block of line numbers.

Return the DIE for a pc scope.

Return the subroutine DIE for a pc.
Return the previous line number.
Replace the error handler communication area.
Replace the error handler.

Return the source language for a compilation
unit.

Place all compilation unit line numbers into a
block.

Return the length of a string represented by a
DIE.

Return the number of subscript attributes for a

type.

Return the type of a subscript element.
Return the tag for a DIE.

Return a type descriptor for a type.
Return a DIE for a user defined type.
Indicate if a line is the first in a block.

Indicate whether if a DIE represents a bit field
member.

16-20

Run-Time Libraries

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function

Reference

Brief Description

dwarf_isfundtype

dwarf_lineaddr

dwarf_lineno

dwarf_lineoff

dwarf_linesrc

dwarf_lobounds

dwarf_loclist

dwarf_lowpc

dwarf_modlist

dwarf_nextdie
dwarf_nextglob
dwarf_nextline
dwarf_nthsubscr
dwarf_offdie
dwarf_pcfile
dwarf_pclines
dwarf_pcscope
dwarf_pcsubr
dwarf_prevline
dwarf_seterrarg
dwarf_seterrhand

dwarf_srclang

dwarf_srclines

dwarf_stringlen

dwarf_subscrent

dwarf_subscrtype

dwarf_isfundtype(3DWARF)

dwarf_lineaddr(3DWARF)
dwarf_lineno(3DWARF)

dwarf_lineoff(3DWARF)
dwarf_linesrc(3DWARF)

dwarf_lobounds(3DWARF)
dwarf_loclist(3DWARF)

dwarf_lowpc(3DWARF)
dwarf_modlist(3DWARF)

dwarf_nextdie(3SDWARF)
dwarf_nextglob(3SDWARF)
dwarf_nextline(3DWARF)
dwarf_nthsubscr(3DWARF)
dwarf_offdie(3DWARF)
dwarf_pcfile(3DWARF)
dwarf_pclines(3SDWARF)
dwarf_pcscope(3DWARF)
dwarf_pcsubr(3DWARF)
dwarf_prevline(3SDWARF)
dwarf_seterrarg(3DWARF)
dwarf_seterrhand(3DWARF)
dwarf_srclang(3DWARF)

dwarf_srclines(3DWARF)

dwarf_stringlen(3DWARF)

dwarf_subscrcnt(3DWARF)

dwarf_subscrtype(3DWARF)

Indicate whether a type represents a fundamen-
tal type.

Return the address for a line number.

Return the source statement line number for a
line number.

Return the offset for a line number.

Return the name of a compilation unit for a
line number.

Return the lower bound of an array subscript.

Return the number of elements in a location
list.

Return the low pc for a DIE.

Return the number of elements in a type modi-
fier list.

Return the next DIE.

Return the next global DIE.

Return the next line number.

Return a subscript.

Return the DIE at a particular offset.
Return the compilation unit DIE for a pc.
Create a block of line numbers.

Return the DIE for a pc scope.

Return the subroutine DIE for a pc.
Return the previous line number.
Replace the error handler communication area.
Replace the error handler.

Return the source language for a compilation
unit.

Place all compilation unit line numbers into a
block.

Return the length of a string represented by a
DIE.

Return the number of subscript attributes for a

type.

Return the type of a subscript element.

16-21

Compilation Systems Volume 2 (Concepts)

Table 16-18. DWARF Debugging Information Functions (Cont.)

Function Reference Brief Description

dwarf_tag dwarf_tag(3DWARF) Return the tag for a DIE.
dwarf_typeof dwarf_typeof(3DWARF) Return a type descriptor for a type.
dwarf_udtype dwarf_udtype(3DWARF) Return a DIE for a user defined type.

Shared Objects

These functions support control of shared objects.

Table 16-19. Shared Objects Functions

Function Reference Brief Description

diclose diclose(3C) Close a shared object.

dlerror dlerror(3C) Obtain diagnostic information..

dlopen dlopen(3C) Open a shared object.

disym disym(3C) Obtain the address of a symbol in a shared object.

Temporary Files

These functions support control of temporary files.

Table 16-20. Temporary Files

Function Reference Brief Description

mktemp mktemp(3C) Create file name using a template.
tempnam tmpnam(3S) Create a temporary file name.
tmpfile tmpfile(3S) Create a temporary file.

tmpnam tmpnam(3S) Create a temporary file name.

Strings and Characters

These functions provide operations on characters and strings of characters. They are
grouped into the following categories:

* “String Manipulation” on page 16-23
* “Wide String Manipulation” on page 16-24

16-22

String Manipulation

Run-Time Libraries

“Wide String Manipulation” on page 16-24
“Wide Character Test” on page 16-26

“Wide Character Test” on page 16-26
“Multibyte and Wide Characters” on page 16-27

“Regular Expression and Pattern Matching” on page 16-27

These functions manipulate character strings.

Table 16-21. String Manipulation Functions

Function Reference Brief Description

confstr confstr(3C) Obtain a configurable string.

index string(3C) Locate the first occurrence of a character in a string.

rindex string(3C) Locate the last occurrence of a character in a string.

strcadd strcepy(3G) Copy a string, compressing escape codes, and point to
the terminating null byte.

strcat string(3C) Concatenate two strings.

strccpy strcepy(3G) Copy a string, compressing escape codes.

strchr string(3C) Search a string for character.

stremp string(3C) Compare two strings.

strcoll strcoll(3C) Sort strings using locale-specific collation tables.

strcpy string(3C) Copy a string.

strcspn string(3C) Obtain the length of the initial string not containing a
set of characters.

strdup string(3C) Obtain a pointer to a new string.

streadd strcepy(3G) Copy a string, expanding escape codes, and point to the
terminating null byte.

strecpy strcepy(3G) Copy a string, expanding escape codes.

strfind str(3G) Locate the first occurrence of a string.

strlen string(3C) Obtain the length of a string.

strncat string(3C) Concatenate two strings, with a maximum length.

strncmp string(3C) Compare two strings, with a maximum length.

strncpy string(3C) Copy a string, with a maximum length.

strpbrk string(3C) Search a string for a set of characters.

strrchr string(3C) Search a string backwards for a character.

16-23

Compilation Systems Volume 2 (Concepts)

Table 16-21. String Manipulation Functions (Cont.)

Function Reference Brief Description

strrspn str(3G) Locate the first character to be trimmed.

strspn string(3C) Obtain the length of the initial string containing a set of
characters.

strstr string(3C) Locate the first occurrence of a substring in a string.

strtok, string(3C) Search a string for a token separated by any of a set of

strtok_r characters.

strtrns str(3G) Transform a string.

strxfrm strxfrm(3C) Transform a string.

Wide String Manipulation

These functions manipulate wide character strings.

Table 16-22. Wide String Manipulation Functions

Function Reference Brief Description

wcscat wcscat(3C) Concatenate two wide character strings.

weschr wceschr(3C) Scan a wide character string.

wesemp wesemp(3C) Compare two wide character strings.

wescoll wcscoll(3C) Compare two wide character strings using collating information.
wescpy wescpy(3C) Copy a wide character string.

wescespn wcescspn(3C) Obtain the length of a complementary wide character substring.
wcsftime wcsftime(3C) Convert a date and time to a wide character string.

wcslen wcslen(3C) Obtain the length of a wide character string.

wcsncat wcesncat(3C) Concatenate two wide character strings, with bound.

wesnemp wesnemp(3C) Compare two wide character strings, with bound.

wesnepy wcesnepy(3C) Copy a wide character string, with bound.

wespbrk wcespbrk(3C) Scan a wide character string for wide characters.

wesrchr wcsrchr(3C) Reverse the scan of a wide character string for wide characters.
wesspn wcesspn(3C) Obtain the length of a wide character substring.

wcesstr wcsstr(3C) Find a wide character substring in a wide character string.
westod wcstod(3C) Convert a wide character string to a double-precision value.
westof wcstof(3C) Convert a wide character string to a single-precision value.
westok wcstok(3C) Split a wide character string into tokens.

wcstold wcstod(3C) Convert a wide character string to a long double-precision value.

16-24

Run-Time Libraries

Table 16-22. Wide String Manipulation Functions (Cont.)

Function Reference Brief Description

wcstol wcsstrtol(3C) Convert a wide character string to a long integer value.

westoul wcsstrtol(3C) Convert a wide character string to an unsigned long integer value.
weswidth weswidth(3C) Determine the number of column positions for a wide character string.
wesxfrm wesxfrm(3C) Transform a wide character string.

wctob wctob(3C) Provide the single byte representation of a wide character.

Character Test

These functions test characters.

Table 16-23. Character Test Functions

Function Reference Brief Description

isalnum ctype(3C) Determine if the character is an alphanumeric character.
isalpha ctype(3C) Determine if the character is an alphabetic character.
isascii ctype(3C) Determine if the character is an ASCII character.
iscntrl ctype(3C) Determine if the character is a control character.
isdigit ctype(3C) Determine if the character is a digit.

isgraph ctype(3C) Determine if the character is a printable character.
islower ctype(3C) Determine if the character is a lowercase letter.
isprint ctype(3C) Determine if the character is a printing character.
ispunct ctype(3C) Determine if the character is a punctuation character.
isspace ctype(3C) Determine if the character is a white space character.
isupper ctype(3C) Determine if the character is an uppercase letter.
isxdigit ctype(3C) Determine if the character is a hex digit.

16-25

Compilation Systems Volume 2 (Concepts)

Wide Character Test

These functions test wide characters.

Table 16-24. Wide Character Test Functions

Function Reference Brief Description

iswalnum wctype(3C) Determine if the wide character is an alphanumeric character.
iswalpha wctype(3C) Determine if the wide character is an alphabetic character.

iswentrl wctype(3C) Determine if the wide character is a control character.

iswctype iswctype(3C) Determines if the wide character is of a particular wide character class.
iswdigit wctype(3C) Determine if the wide character is a digit.

iswgraph wctype(3C) Determine if the wide character is a printable character.

iswlower wctype(3C) Determine if the wide character is a lowercase letter.

iswprint wctype(3C) Determine if the wide character is a printing character.

iswpunct wctype(3C) Determine if the wide character is a punctuation character.

iswspace wctype(3C) Determine if the wide character is a white space character.

iswupper wctype(3C) Determine if the wide character is an uppercase letter.

iswxdigit wctype(3C) Determine if the wide character is a hex digit.

wewidth wcwidth(3C) Determine the number of column positions for a wide character.
weswidth weswidth(3C) Determine the number of column positions for a wide character string.

Character Translation

These functions translate characters and character strings.

Table 16-25. Character Translation Functions

Function Reference Brief Description

iconv iconv(3C) Convert characters from one code set to another.
iconv_close iconv_close(3C) Close a code set conversion file descriptor.
iconv_open iconv_open(3C) Open a code set conversion file descriptor.
toascii conv(3C) Convert an integer value to ASCII character.
tolower, conv(3C) Convert character to lowercase.

_tolower

toupper, conv(3C) Convert character to uppercase.

_toupper

16-26

Multibyte and Wide Characters

Run-Time Libraries

These functions support operations on multibyte and wide characters.

Table 16-26. Multibyte and Wide Characters Functions

Function Reference Brief Description

mblen mbchar(3C) Determine the number of bytes in a multibyte character.

mbrlen mbchar(3C) Determine the number of bytes in a multibyte character, using a conver-
sion state.

mbrtowc mbchar(3C) Convert a multibyte character to a wide character, using a conversion
state.

mbsrtowcs mbstring(3C) Convert a multibyte character string to a wide character string, using a
conversion state

mbstowcs mbstring(3C) Convert a multibyte character string to a wide character string.

mbtowc mbchar(3C) Convert a multibyte character to a wide character.

sisinit sisinit(3C) Test for an initial multibyte conversion state.

wcrtomb mbchar(3C) Convert a wide character to a multibyte character, using a conversion
state.

wcsrtombs mbstring(3C) Convert a wide character string to a multibyte character string, using a
conversion state.

wcstombs mbstring(3C) Convert a wide character string to a multibyte character string.

Regular Expression and Pattern Matching

These functions support operations involving regular expressions and patterns.

Table 16-27. Regular Expression and Pattern Matching Functions

Function Reference Brief Description

advance regexpr(3G) Step and perform a restricted comparison with a regular expression.
bufsplit bufsplit(3G) Split a buffer into fields.

compile regexpr(3G) Compile a regular expression.

fnmatch fnmatch(3C) Match a file name or pattern.

glob glob(3C) Generate a path name matching a pattern.

globfree glob(3C) Free space allocated in a previous calgtob .

gmatch gmatch(3G) Perform shell global pattern matching.

regcmp regcmp(3G) Compile a regular expression.

regcomp regcomp(3C) Compile a regular expression.

16-27

Compilation Systems Volume 2 (Concepts)

Table 16-27. Regular Expression and Pattern Matching Functions (Cont.)

Function Reference Brief Description

regerror regcomp(3C) Provide a printable error string.

regex regcmp(3G) Execute a compiled regular expression.

regexec regcomp(3C) Compare with a regular expression.

regfree regcomp(3C) Free space allocated in a previous caltegcomp .

step regexpr(3G) Step and compare with a regular expression.

wordexp wordexp(3C) Perform word expansions.

wordfree wordexp(3C) Free space allocated in a previous caliwordexp .
Memory

These functions provide operations on blocks of memory. They are grouped into the fol-
lowing categories:

* “Memory Manipulation” on page 16-28
* “Memory Allocation” on page 16-29

¢ “Memory Control” on page 16-30

¢ “Shared Memory” on page 16-30

Memory Manipulation

These functions locate characters in a memory area and copy characters from one memory
area to another.

Table 16-28. Memory Manipulation Functions

Function Reference Brief Description

bcmp bstring(3C) Compare two blocks of memory.
bcopy bstring(3C) Copy a block of memory.

bzero bstring(3C) Zero out a block of memory.

ffs ffs(3C) Find the first set bit in a value.

memccpy memory(3C) Copy characters from one memory area to another
until a given character is found.

memchr memory(3C) Obtain a pointer to the first occurrence of a given
character in a memory area.

memcmp memory(3C) Compare two memory areas.

16-28

Run-Time Libraries

Table 16-28. Memory Manipulation Functions (Cont.)

Function Reference Brief Description

memcpy memory(3C) Copy characters from one memory area to another.

memset memory(3C) Set the first characters in a memory area to a char-
acter value.

memmove memory(3C) Copy characters from one memory area to another
until a given character is found.

swab swab(3C) Swap bytes.

Memory Allocation

These functions provide a means by which memory can be dynamically allocated or freed.

Table 16-29. Memory Allocation Functions

Function Reference Brief Description

brk, brk(2) Change the data segment space allocation.

sbrk

calloc malloc(3C) Allocate an area of zeroed storage.

free malloc(3C) Free some previously allocated storage.

mallinfo malloc(3C) Provide information describing the usage of
allocated storage.

malloc malloc(3C) Allocate storage.

memalign malloc(3C) Allocate storage on a specific byte-aligned
boundary.

realloc malloc(3C) Change the size of allocated storage.

valloc malloc(3C) Allocate storage on a page-aligned boundary.

16-29

Compilation Systems Volume 2 (Concepts)

Memory Control

These functions control pages in memory.

Table 16-30. Memory Control Functions

Function Reference Brief Description

memcntl memcntl(2) Control operations over the address space.
mincore mincore(2) Determine the residency of memory pages.
mlock mlock(3C) Lock pages in memory.

mlockall mlockall(3C) Lock an address space in memory.

mmap mmap(2) Map pages of memory.

munmap munmap(2) Unmap pages of memory.

mprotect mprotect(2) Set the protection of memory mapping.
msync msync(3C) Synchronize memory with physical storage.
munlock mlock(3C) Unlock pages in memory.

munlockall mlockall(3C) Unlock an address space in memory.

plock plock(2) Lock segments into memory, or unlock text or

data segments.

Shared Memory

These functions support operations on shared memory.

Table 16-31. Shared Memory Control Functions

Function Reference Brief Description

shmat shmop(2) Attach the shared memory segment to the data
segment of the calling process.

shmbind ~ shmbind(2) Bind a shared memory segment to a physical
address.

shmctl shmctl(2) Perform shared memory control operations.

shmdt shmop(2) Detach the shared memory segment from the

data segment of the calling process.

shmget shmget(2) Get a shared memory segment identifier.

16-30

Run-Time Libraries

Data Structures

These functions provide operations on tables, trees, and queues. They are grouped into the
following categories:

* “Tables” on page 16-31

¢ “Hash Tables” on page 16-31

* “File Trees” on page 16-32

¢ “Binary Trees” on page 16-32

* “Message Queues” on page 16-32

* “Queues” on page 16-33

Tables
These functions manage tables. Because none of these functions allocate storage, suffi-
cient memory must be allocated before using them.
Table 16-32. Tables Functions
Function Reference Brief Description
bsearch bsearch(3C) Search a table using a binary search.
Ifind Isearch(3C) Find an element in a library tree.
Isearch Isearch(3C) Look for and add an element in a binary tree.
gsort gsort(3C) Sort a table using the quick-sort algorithm.
Hash Tables

These functions manage hash search tables.

Table 16-33. Hash Tables Functions

Function Reference Brief Description
hcreate hsearch(3C) Create a hash table.
hdestroy hsearch(3C) Destroy a hash table.
hsearch hsearch(3C) Search a hash table.

16-31

Compilation Systems Volume 2 (Concepts)

File Trees

Binary Trees

Message Queues

16-32

These functions traverse file trees.

Table 16-34. File Trees Functions

Function Reference Brief Description
ftw ftw(3C) Walk a file tree.
nftw ftw(3C) Walk a file tree in an enhanced mode.

These functions manage binary trees.

Table 16-35. Binary Trees Functions

Function Reference Brief Description

tdelete tsearch(3C) Delete nodes from a binary tree.

tfind tsearch(3C) Find an element in a binary tree.

tsearch tsearch(3C) Look for and add an element to a binary tree.
twalk tsearch(3C) Walk through a binary tree.

These functions support operations on message queues.

Table 16-36. Message Queues Functions

Function Reference Brief Description

mg_close mq_close(3) Close a message queue.

mq_getattr mq_getattr(3) Get attributes of a message queue.

mq_notify mq_notify(3) Attach notification request to a message queue.
mg_open mg_open(3) Open a message queue.

mg_receive mq_receive(3) Receive a message from a message queue.
mq_send mq_send(3) Send a message to a message queue.
mq_setattr mq_setattr(3) Set attributes of a message queue.

mq_unlink mq_unlink(3) Unlink a message queue.

msgctl msgctl(2) Control message operations.

Run-Time Libraries

Table 16-36. Message Queues Functions (Cont.)

Function Reference Brief Description

msgget msgget(2) Get a message queue identifier.
msgrcv msgop(2) Receive a message.

msgsnd msgop(2) Send a message.

Queues
These functions manipulate queues built from doubly linked lists.
Table 16-37. Queues Functions
Function Reference Brief Description
insque insque(3C) Insert element into a queue.
remque insque(3C) Delete element from a queue.
Semaphores

These functions support operations on semaphores.

Table 16-38. Semaphores Functions

Function Reference Brief Description

semctl semctl(2) Control semaphores.
semget semget(2) Get a set of semaphores.
semop semop(2) Atomically perform sema-

phore operations.

Date and Time

These functions access and reformat the current date and time, access the POSIX timer,
and access the interval timer. They are grouped into the following categories:

¢ “General Date and Time” on page 16-34
¢ ‘“Interval Timer” on page 16-35

¢ “POSIX Timer” on page 16-35

16-33

Compilation Systems Volume 2 (Concepts)

General Date and Time

These functions access and manipulate the current date and time.

Table 16-39. General Date and Time Functions

Function Reference Brief Description

adjtime adjtime(2) Correct the time to allow synchronization of the system clock.

asctime, ctime(3C) Return the string representation of the date and time.

asctime_r

ascftime strftime(3C) Return the string representation of the date and time based on a
format string.

ctime, ctime(3C) Return the string representation of the date and time, given an

ctime_r integer form.

cftime strftime(3C) Return the string representation of the date and time based on a
format string, given an integer form.

clock clock(3C) Report the CPU time used.

difftime difftime(3C) Compute the difference between two calendar times.

getdate getdate(3C) Convert a user-defined date and/or time specification.

gettimeofday gettimeofday(3C) Get the system’s current time.

gmtime, ctime(3C) Return the Greenwich mean time.

gmtime_r

localtime, ctime(3C) Return the local time.

localtime_r

mktime mktime(3C) Convert a time to a calendar time.

settime stime(2) Set the system’s time and date.

settimeofday settimeofday(3C) Set the system’s current time.

strftime strftime(3C) Convert a date and time to a string.

strptime strtime(3C) Convert a string to a date and time.

time time(2) Obtain the time since UTC.

times times(2) Obtain process and child process times.

tzset ctime(3C) Set the time zone field from an environment variable.

16-34

Run-Time Libraries

Interval Timer

These functions access the interval timer.

Table 16-40. Interval Timer Functions

Function Reference Brief Description
getitimer getitimer(3C) Get the value of the interval timer.
setitimer getitimer(3C) Set the value of the interval timer.

POSIX Timer

These functions access the POSIX clock and per-process timer.

Table 16-41. POSIX Timer Functions

Function Reference Brief Description

clock_getres clock_getres(3C) Get the resolution of the POSIX clock.
clock_gettime clock_gettime(3C) Get the value of the POSIX clock.
clock_settime clock_settime(3C) Set the value of the POSIX clock.
posix_clocks posix_clocks(2) Get or set a POSIX clock.

posix_timers posix_timers(2) Support the per-process POSIX timers.
timer_create timer_create(3C) Create a POSIX per-process timer.
timer_delete timer_delete(3C) Delete a POSIX per-process timer.
timer_getoverrun timer_getoverrun(3C) Get the overrun count for a POSIX per-process timer.
timer_gettime timer_gettime(3C) Get the value of a POSIX per-process timer.
timer_settime timer_settime(3C) Arm a POSIX per-process timer.

Internationalization

The functions support the internationalization of data and messages. They are grouped
according to the following categories:

* “Locales” on page 16-36

* “Message Catalogs” on page 16-36

16-35

Compilation Systems Volume 2 (Concepts)

Locales

These functions support the use of locales.

Table 16-42. Locales Functions

Function Reference Brief Description

nl_langinfo nl_langinfo(3C) Obtain locale-specific information.

setlocale setlocale(3C) Establish the current locale name.

localeconv localeconv(3C) Obtain numeric and monetary formatting infor-
mation.

strfmon strfmon(3C) Convert a monetary value to a string.

Message Catalogs

These functions support the use of message catalogs.

Table 16-43. Message Catalogs Functions

Function Reference Brief Description

catopen catopen(3C) Open a message catalog.

catclose catopen(3C) Close a message catalog.

catgets catgets(3C) Read a message from a message catalog.
gettxt gettxt(3C) Read a text string from a message catalog.
setcat setcat(3C) Define the default message catalog.

Mathematic and Numeric

16-36

The functions provide mathematical, arithmetic, and numeric operations, as well as con-
trol over the floating-point environment They are grouped according to the following cat-
egories:

“Trigonometric” on page 16-37

“Bessel” on page 16-37

“Hyperbolic” on page 16-38

“Miscellaneous Mathematic Functions” on page 16-38
“Numeric Conversion” on page 16-39

“Other Arithmetic” on page 16-41

“Floating-Point Environment” on page 16-41

Run-Time Libraries

* “Pseudo-Random Number Generation Functions” on page 16-42

Trigonometric
These functions are used to compute angles (in radian measure), sines, cosines, and tan-
gents.

Table 16-44. Trigonometric Functions
Function Reference Brief Description
acos, trig(3M) Arc cosine.
acosf
asin, trig(3M) Arc sine.
asinf
atan, trig(3M) Arc tangent.
atanf
atan2, trig(3M) Arc tangent of a ratio.
atan2f
cos, trig(3M) Cosine.
cosf
sin, trig(3M) Sine.
sinf
tan, trig(3M) Tangent.
tanf

Bessel

These functions are used to calculate bessel functions of the first and second kinds of sev-
eral orders.

Table 16-45. Bessel Functions

Function Reference Brief Description

jo bessel(3M) Bessel function of the first kind of order 0.

j1 bessel(3M) Bessel function of the first kind of order 1.

jn bessel(3M) Bessel function of the first kind or order n.

y0 bessel(3M) Bessel function of the second kind of order 0.
yl bessel(3M) Bessel function of the second kind of order 1.
yn bessel(3M) Bessel function of the second kind of order n.

16-37

Compilation Systems Volume 2 (Concepts)

Hyperbolic

These functions are used to compute the hyperbolic sine, cosine, and tangent.

Table 16-46. Hyperbolic Functions

Function Reference Brief Description

acosh sinh(3M) Inverse hyperbolic cosine.
asinh sinh(3M) Inverse hyperbolic sine.
atanh sinh(3M) Inverse hyperbolic tangent.
cosh, sinh(3M) Hyperbolic cosine.

coshf

sinh, sinh(3M) Hyperbolic sine.

sinhf

tanh, sinh(3M) Hyperbolic tangent.

tanhf

Miscellaneous Mathematic Functions
These functions cover a wide variety of operations, such as natural logarithm, exponential,

and absolute value. In addition, several functions are provided to truncate the integer por-
tion of floating-point values.

Table 16-47. Miscellaneous Mathematical Functions

Function Reference Brief Description

ceil, floor(3M) Smallest integral value not less than a given value.
ceilf

cbrt exp(3M) Cube root.

erf erf(3M) Error function.

erfc erf(3M) Complementary error function.

copysign floor(3M) Copy of given value with a given sign.

exp, expf exp(3M) Exponential (base e).

expml exp(3M) Equivalent to exp(x)-1.0.

fabs, floor(3M) Absolute value.

fabsf

floor, floor(3M) Largest integral value not greater than a given
floorf value.

fmod, floor(3M) Remainder of division of two given values.

fmodf

16-38

Run-Time Libraries

Table 16-47. Miscellaneous Mathematical Functions (Cont.)

Function Reference Brief Description

gamma, gamma(3M) Natural logarithm of the absolute value of the result

lgamma of applying the gamma function to a given value.

hypot hypot(3M) Square root of the sum of the squares of two values.

log, exp(3M) Natural logarithm.

logf

logl0, exp(3M) Logarithm base ten.

log10f

loglp exp(3M) Equivalent to log(1.0+x).

matherr matherr(3M) Error-handling function for math functions.

pow, exp(3M) A given value raised to another given value.

powf

remainder floor(3M) Remainder of division of two given values.

rint floor(3M) Nearest integral value to a given floating-point
value.

sqrt, exp(3M) Square root.

sqrtf

Numeric Conversion

These functions perform numeric conversions.

Table 16-48. Numeric Conversion Functions

Function Reference Brief Description

a64l a64l(3C) Convert a base-64 ASCII string to a long integer
value.

abs abs(3C) Obtain the absolute integer value.

atof strtod(3C) Convert a string to a single-precision value.

atoi strtol(3C) Convert a string to an integer value.

atol strtol(3C) Convert a string to a long integer value.

ecvt ecvt(3C) Convert a double-precision value to a string.

ecvtl ecvt(3C) Convert a long double-precision value to a string.

fevt ecvt(3C) Convert a double-precision value to a string using
Fortran format.

fevtl ecvt(3C) Convert a long double-precision value to a string

using Fortran format.

16-39

Compilation Systems Volume 2 (Concepts)

16-40

Table 16-48. Numeric Conversion Functions (Cont.)

Function Reference Brief Description

frexp frexp(3C) Split a double-precision value into mantissa and
exponent.

frexpl frexp(3C) Split a long double-precision value into mantissa
and exponent.

gevt ecvt(3C) Convert a double-precision value to a string in the
style of Fortrar or E format.

gevtl ecvt(3C) Convert a long double-precision value to a string in
the style of Fortrark or E format.

labs abs(3C) Return the absolute integer value.

Idexp frexp(3C) Combine the mantissa and the exponent of a dou-
ble-precision value.

Idexpl frexp(3C) Combine the mantissa and the exponent of a long
double-precision value.

logb frexp(3C) Obtain the radix exponent of a double-precision
value.

logbl frexp(3C) Obtain the radix exponent of long double-precision
value.

Itol3 13tol(3C) Convert long integer values to 3-byte integer val-
ues.

[3tol 13tol(3C) Convert 3-byte integer values to long integer values

I64a, a64l(3C) Convert a long integer value to a base-64 ASCII

64a_r string.

modf frexp(3C) Split the mantissa of a double-precision value into
integer and fraction parts.

modff frexp(3C) Split the mantissa of long double-precision value
into integer and fraction parts.

modfi frexp(3C) Split mantissa of a single-precision value into inte-
ger and fraction parts.

nextafter frexp(3C) Return the next representable double-precision
value.

nextafter! frexp(3C) Return the next representable long double-precision
value.

scalb frexp(3C) Perform radix scaling for a double-precision value.

scalbl frexp(3C) Perform radix scaling for a long double-precision
value.

strtod strtod(3C) Convert a string to a double-precision value.

Run-Time Libraries

Table 16-48. Numeric Conversion Functions (Cont.)

Function Reference Brief Description

strtold strtod(3C) Convert a string to a long double-precision value.
strtol strtol(3C) Convert a string to a long integer value.

strtoul strtol(3C) Convert a string to an unsigned long integer value.

Other Arithmetic

These functions provide simple arithmetic operations.

Table 16-49. Other Arithmetic Functions

Function Reference Brief Description

div div(3C) Divide two integers.
[div div(3C) Divide two long integers.

Floating-Point Environment

These functions provide control over the IEEE floating-point environment used by the
program.

Table 16-50. Floating-Point Environment Functions

Function Reference Brief Description

finite, isnan(3C) Determine if the number is neither infinity nor
finitel a NaN.

fpclass, isnan(3C) Provide the class to which the number belongs.
fpclassl

fpgetieee fpgetieee(3C) Get the current IEEE mode bit.

fpgetmask fpgetmask(3C) Get the current exceptions mask.

fpgetround fpgetround(3C) Get the current rounding mode.

fpgetsticky fpgetsticky(3C) Get the current exceptions sticky flags.
fpsetieee fpsetieee(3C) Set the current IEEE mode.

fpsetmask fpsetmask(3C) Set the current exceptions mask.

fpsetround fpsetround(3C) Set the current rounding mode.

16-41

Compilation Systems Volume 2 (Concepts)

Table 16-50. Floating-Point Environment Functions (Cont.)

Function Reference Brief Description

fpsetsticky fpsetsticky(3C) Set the current exceptions sticky flags.
isnan, isnan(3C) Determine if the number is a NaN.
isnand,

isnanf

unordered, isnan(3C) Determine if the numbers are unordered.
unordered|

Pseudo-Random Number Generation Functions

The following functions generate pseudo-random numbers.

Table 16-51. Pseudo-Random Number Generation Functions

16-42

Function Reference Brief Description

drand48 drand48(3C) Obtain a random double-precision value over the
interval (0 to 1).

erand48 drand48(3C) Obtain a random double-precision value over the
interval (0 to 1), but without the need for an ini-
tialization entry point.

jrand48 drand48(3C) Generate a random integer value over the interval
(-2**32-1 to 2**32-1), but without the need for
an initialization entry point.

Ilcong48 drand48(3C) Set the parameters forand48 , Irand48 , and
mrand48 .

initstate random(3C) Initialize a state array

Irand48 drand48(3C) Generate a random integer value over the interval
(0 to 2**32-1).

mrand48 drand48(3C) Generate a random integer value over the interval
(-2**32-1 to 2**32-1).

nrand48 drand48(3C) Generate a random integer value over the interval
(0 to 2**32-1), but without the need for an initial-
ization entry point.

rand, rand(3C) Generate a random integer value over the interval

rand_r (O to 32767).

random random(3C) Generate a random integer value over the interval
(0 to 2**32-1).

seed48 drand48(3C) Seed the generator fdrand48 , Irand48 , and
mrand48 .

setstate random(3C) Set a state array

Run-Time Libraries

Table 16-51. Pseudo-Random Number Generation Functions (Cont.)

Function Reference Brief Description

srand rand(3C) Seed the generator foand.

srandom random(3C) Seed the generator feandom.

srand48 drand48(3C) Seed the generator fdrand48 , Irand48 , and

mrand48 using a long integer.

16-43

Compilation Systems Volume 2 (Concepts)

Programs
These functions provide control over a running program and access to its invocation envi-
ronment. They are grouped according to the following categories:
* “Flow” on page 16-44
* “Profile” on page 16-44
* “Parameters” on page 16-45
Flow
These functions provide control over the flow of a program.
Table 16-52. Flow Functions
Function Reference Brief Description
atexit atexit(3C) Add a program termination routine.
longjmp setjmp(3C) Restore the environment saveddstjmp .
setjimp setjmp(3C) Save the environment for later use lopgjmp .
siglongjmp sigsetjmp(3C) Restore the environment saved $igsetimp
sigsetjmp sigsetjmp(3C) Save the environment, with signal state, for later use by
siglongjmp
Profile

These functions prepare an execution profile of a program.

Table 16-53. Profile Functions

Function Reference Brief Description

monitor monitor(3C) Cause the process to record a histogram of the
program counter location.

profil profil(2) Provide an execution time profile.

16-44

Run-Time Libraries

Parameters
These functions support the getting and setting of program invocation arguments and envi-
ronment information.
Table 16-54. Parameters Functions
Function Reference Brief Description
getopt getopt(3C) Get the next option letter from the option vector.
getsubopt getsubopt(3C) Parse suboptions in a flag argument initially parsed
by getopt
getcwd getcwd(3C) Get the path name of the current directory.
getenv getenv(3C) Obtain the string value associated with an environ-
ment variable.
getpass, getpass(3C) Read a string from the terminal without echoing.
getpass_r
getwd getwd(3C) Get the path name of the current directory.
putenv putenv(3C) Change or add the value of an environment vari-
able.
Processes

These functions provide control over the IEEE floating-point environment used by the
program. They are grouped according to the following categories:

¢ “Control” on page 16-46
* “Signals” on page 16-47
* “User-Level Interrupts” on page 16-49

¢ “Lightweight Processes” on page 16-49

16-45

Compilation Systems Volume 2 (Concepts)

Control

These functions support operations on processes and control of processes.

Table 16-55. Control Functions

Function Reference Brief Description

abort abort(3C) Cause an 10T signal to be sent to the process.

alarm alarm(2) Set the process’ alarm clock.

cuserid cuserid(3S) Indicate the login name for the owner of the current pro-
cess.

execl, exec(2) Overlay a process image on an old process.

execle,

execlp,

execv,

execve,

execvp

exit, exit(2) Terminate a process.

_exit

ftok stdipc(3C) Create a key for use by the inter-process communication
facilities.

fork, fork(2) Create a new process.

fork1,

forkall

getcontext getcontext(2) Get a user-level context.

getegid getuid(2) Get the effective group ID of the calling process.

geteuid getuid(2) Get the effective user ID of the calling process.

getgid getuid(2) Get the real group ID of the calling process.

getpgid getpid(2) Get the process group ID of the calling process.

getpgrp getpid(2) Get the process group ID of the calling process.

getpid getpid(2) Get the process ID of the calling process.

getppid getpid(2) Get the parent process ID of the calling process.

getsid getsid(2) Get the session ID of the calling process.

getuid getuid(2) Get the real user ID of the calling process.

kill kill(2) Send a signal to a process or group of processes.

makecontext makecontext(3C) Make a user-level context.

nanosleep nanosleep(3C) Suspend execution of current process for an interval,
using high-resolution timing.

nice nice(2) Change the priority of a time-sharing process.

pause pause(2) Suspend the process until a signal is received.

priocntl priocntl(2) Control the scheduling of active processes.

16-46

Table 16-55. Control Functions (Cont.)

Run-Time Libraries

Function

Reference

Brief Description

priocntlset

processor_bind

priocntlset(2)
processor_bind(3C)

Change the scheduling properties of running processes.

Bind a process or LWP(s) to a specific processor.

procpriv procpriv(2) Control privileges associated with the calling process.
procprivl procprivl(3C) Control privileges associated with the calling process.
ptrace ptrace(2) Trace a process.
setcontext setcontext(2) Set a user-level context.
setgid setuid(2) Set the real group ID of the calling process.
setpgid setpgid(2) Set the process group ID of the calling process.
setpgrp setpgrp(2) Set the process group ID of the calling process.
setgid setsid(2) Set the session ID of the calling process.
setuid setuid(2) Set the real user ID of the calling process.
tcsetpgrp tcsetpgrp(3C) Set a terminal foreground process group ID.
sleep sleep(3C) Suspend execution of current process for an interval.
swapcontext swapcontext(3C) Swap a user-level context.
system system(3S) Execute a shell command.
vfork vfork(2) Spawn a new process efficiently.
wait wait(2) Wait for a child process to stop or terminate.
waitid, waitid(2) Wait for a child process to change state.
waitpid
Signals

These functions support the use of signals

Table 16-56. Signals Functions

Function Reference Brief Description

bsd_signal bsd_signal(3C) Alternative tosignal(2)

gsignal ssignal(3C) Send a software signal.

psiginfo psignal(3C) Write a signal message to standard error.
psignal psignal(3C) Write a signal message to standard error.
sig2str st2sig(3C) Obtain the suffix name of a system signal.
sigaction sigaction(2) Perform detailed signal management.
sigaddset sigsetops(3C) Add a signal to a set.

16-47

Table 16-56. Signals Functions (Cont.)

Compilation Systems Volume 2 (Concepts)

Function Reference Brief Description

sigalstack sigalstack(2) Get or set a signal alternate stack context.

sigdelset sigsetops(3C) Delete a signal from a set.

sigemptyset sigsetops(3C) Exclude from a set all signals defined by the sys-
tem.

sigfillset sigsetops(3C) Include in a set all signals defined by the system.

sighold signal(2) Add a signal to the calling process’ signal mask.

sigignore signal(2) Set the disposition of a signal to SIG_IGN.

sigismember sigsetops(3C) Determine if a signal is in a set.

signal signal(2) Modify signal disposition.

sigpause signal(2) Remove a signal from the calling process’ signal
mask, and suspend the calling process.

sigpending sigpending(2) Obtain signals that are blocked and pending.

sigprocmask

sigrelse

sigsend,
sigsendset

sigset

sigsuspend

ssignal

sigsendset

sigsend
sigwait
ssignal

str2sig

sigprocmask(2)

signal(2)

sigsend(2)

signal(2)

sigsuspend(2)

ssignal(3C)
sigsend(2)

sigsend(2)
sigwait(2)
ssignal(3C)
st2sig(3C)

Examine and/or change the calling process’ signal
mask.

Remove a signal from the calling process’ signal
mask.

Send a signal to a process or group of processes.

Add a signal to the calling process’ signal mask
before executing the signal handler.

Install a sighal mask and suspend the calling pro-
cess.

Arrange for handling of software signals.

Provides an alternate interface for sending signals
to sets of processes.

Send a signal to a process or group of processes.
Wait for a signal to be posted.
Arrange for handling of software signals.

Obtain the number of a system signal.

Run-Time Libraries

User-Level Interrupts

These functions support the use of user-level interrupts.

Table 16-57. User-Level Interrupts Functions

Function Reference Brief Description
iconnect iconnect(3C) Provide a user-level interrupt connection.
ienable ienable(3C) Enable a user-level interrupt.

Lightweight Processes

These functions support lightweight processes (LWPs).

Table 16-58. Lightweight Processes Functions

Function Reference Brief Description

_lwp_cond_broadcast _lwp_cond_broadcast(2) Wake up all LWPs waiting on a condition.

_lwp_cond_signal _lwp_cond_signal(2) Wake up a single LWP waiting on a condition.

_lwp_cond_timedwait _lwp_cond_timedwait(2) Wait on a condition variable for a limited time.

_lwp_cond_wait _lwp_cond_wait(2) Wait on a condition.

_lwp_continue _lwp_continue(2) Continue LWP execution.

_lwp_create _lwp_create(2) Create a new LWP.

_lwp_exit _lwp_exit(2) Terminate the calling LWP.

_lwp_getprivate _lwp_getprivate(2) Get an LWP-specific reference.

_lwp_global_self _lwp_global_self(2) Get the current LWP’s global identifier.

_lwp_info _lwp_info(2) Get time-accounting information of a single
LWP.

_lwp_kill _lwp_kill(2) Send a signal to a sibling LWP.

_lwp_makecontext _lwp_makecontext(2) Make an LWP context.

_lwp_mutex_lock _lwp_mutex_lock(2) Lock a mutex on behalf of the calling LWP.

_lwp_mutex_trylock _lwp_mutex_trylock(2) Conditionally lock a mutex on behalf of the
calling LWP.

_lwp_mutex_unlock _lwp_mutex_unlock(2) Unlock a mutex.

_lwp_self _lwp_self(2) Provide the current LWP's identifier.

_lwp_sema_init _lwp_sema_init(2) Initialize a semaphore.

_lwp_sema_post _lwp_sema_post(2) Release a semaphore.

_lwp_sema_trywait _lwp_sema_trywait(2) Conditionally acquire a semaphore.

16-49

Compilation Systems Volume 2 (Concepts)

Table 16-58. Lightweight Processes Functions (Cont.)

Function Reference Brief Description

_lwp_sema_wait _lwp_sema_wait(2) Acquire a semaphore.

_lwp_setprivate
_lwp_suspend
_lwp_wait

client_block

client_wakel
client_wakechan

cpu_bias

priocntllist

server_block
server_wakel

server_wakechan

_lwp_setprivate(2)
_lwp_suspend(2)
_lwp_wait(2)

client_block(2)

client_block(2)
client_block(2)
cpu_bias(2)

priocntllist(2)

server_block(2)
server_block(2)

server_block(2)

Set an LWP-specific reference.
Suspend LWP execution.
Wait for termination of a sibling LWP.

Block a client LWP and establish a server
LWP.

Wake a client LWP.
Wake all client LWPs on a chain.

Control CPU biasing and assignment for
LWPs.

Control the scheduling of active processes for a
set of LWPs.

Block a server LWP.
Wake a blocked server LWP.

Wake all blocked server LWPs on a chain.

Security

These functions support user- and system-level security. They are grouped into the follow-
ing categories:

* “Access Control Lists” on page 16-51

¢ “Auditing” on page 16-51

* “Levels” on page 16-51

¢ “Other Security” on page 16-52

¢ “Encryption and Decryption” on page 16-52

16-50

Access Control Lists

Run-Time Libraries

These functions access Access Control Lists (ACLS).

Table 16-59. Access Control Lists Functions

Brief Description

Function Reference
acl acl(2)
aclipc aclipc(2)
aclsort aclsort(3C)

Set a file’'s ACL.
Get or set an IPC object’s ACL.
Sort an ACL.

Auditing
These functions support auditing operations.
Table 16-60. Auditing Functions

Function Reference Brief Description

auditbuf auditbuf(2) Get or set audit buffer attributes.

auditctl auditctl(2) Get or set the status of auditing.

auditdmp auditdmp(2) Write an audit record to an audit buffer.

auditevt auditevt(2) Get or set auditable events.

auditlog auditlog(2) Get or set audit log file attributes.
Levels

These functions control levels.

Table 16-61. Levels Functions

Function Reference Brief Description

Ividom Ividom(2) Determine the domination relationship of
two levels.

Iviequal Ivlequal(2) Determine the equality of two levels.

Ivifile Ivifile(2) Get or set the level of a file.

Ivlin Ivlin(3C) Translate a level from text format to internal
format.

Ivlintersect Ivlintersect(3C) Perform the intersection of two levels.

Ivlipc Ivlipc(2) Manipulate an IPC object’s level.

16-51

Compilation Systems Volume 2 (Concepts)

Table 16-61. Levels Functions (Cont.)

Function Reference Brief Description

Iviout Ivlout(3C) Translate a level from internal format to text
format.

Iviproc Iviproc(2) Get or set the level of a process.

Ivliunion Ivlunion(3C) Perform the union of two levels.

Ivivalid Ivlivalid(3C) Check the validity of a level.

Ivivfs Ivivfs(2) Get or set the level ceiling of a mounted file
system.

Other Security

These functions support miscellaneous security operations.

Table 16-62. Other Security Functions

Function Reference Brief Description

initgroups initgroups(3C) Initialize the supplementary group access
list.

mkmld mkmld(2) Make a Multilevel Directory.

mldmode mldmode(2) Get or set the Multilevel Directory mode of
a process.

secadvise secadvise(2) Obtain kernel advisory access information.

secsys secsys(2) Initialize enhanced security.

Encryption and Decryption

The following functions allow access to the Data Encryption Standard (DES) algorithm
and other encryption/decryption algorithms.

Table 16-63. Encryption and Decryption Functions

Function Reference Brief Description

crypt crypt(3C) Encode a string.

encrypt crypt(3C) Encode/decode a string.

isencrypt isencrypt(3G) Determine if a character buffer is encrypted.

setkey crypt(3C) Initialize a key for subsequent use by
encrypt

16-52

Run-Time Libraries

System Environment

These functions provide support operations that access and control system-wide resources
and configurations. They are grouped into the following categories:

* “Loadable Kernel Modules” on page 16-53

* “Other System Environment” on page 16-53

Loadable Kernel Modules

These functions provide control over loadable kernel modules.

Table 16-64. Loadable Kernel Modules Functions

Function Reference Brief Description

modload modload(2) Load a loadable kernel module on demand.

modpath modpath(2) Change the search path for loadable kernel
modules.

modstat modstat(2) Get information for loadable kernel modules.

moduload moduload(2) Unload a loadable kernel module on demand.

Other System Environment

These functions support other operations on the system-wide environment.

Table 16-65. Other System Environment Functions

Function Reference Brief Description

access access(2) Enable or disable process accounting.

eti_map eti_request(3C) Map an edge-triggered interrupt into the process’ address
space.

eti_request eti_request(3C) Issue a control operation to an edge-triggered interrupt.

eti_unmap eti_unmap(3C) Detach a shared memory region from a process.

getpagesize getpagesize(3C) Get the system page size.

getgroups getgroups(2) Get supplementary group access list IDs.

getksym getksym(2) Get information for a global kernel symbol.

getrlimit getrlimit(2) Get a maximum system resource consumption limit.

hrdclk hrdclk(2) Control hardclock interrupt handling.

keyctl keyctl(2) Get and set user and processor limits.

mpadvise mpadvise(3C) Provide multiprocessor control.

16-53

Compilation Systems Volume 2 (Concepts)

Table 16-65. Other System Environment Functions (Cont.)

Function

Reference

Brief Description

processor_info
resched_cntl
setgroups
setrlimit
swapctl
sysconf
Syscx

sync
sysinfo
uadmin
ulimit

umask
uname

vme_address

processor_info(2)
resched_cntl(2)
getgroups(2)
setrlimit(2)
swapctl(2)
sysconf(3C)
syscx(2)
sync(2)
sysinfo(2)
uadmin(2)
ulimit(2)
umask(2)
uname(2)

vme_address(3C)

Provide information about a processor.

Provide CPU rescheduling control.

Set supplementary group access list IDs.

Set a maximum system resource consumption limit.
Manage swap space.

Provide the value of a configurable system variable.
Perform machine-specific functions.

Update a super block.

Get and set system information strings.

Control basic administrative operations.

Get and set user limits.

Get and set the file creation mask.

Obtain the name of the current UNIX system.

Obtain a (H)VME physical address.

16-54

17
Floating-Point Operations

INtrOdUCHION . . .o e 17-1
IEEE ArithmetiC 17-1
Data Typesand Formats i 17-2
Single-Precision 17-2
Double-Precision. 17-2
Language Mappingsot e 17-3
Normalized Numbers 17-3
Denormalized NUumbers 17-3
Maximum and Minimum Representable Floating-Point Values 17-4
Special-Case Values 17-4
NaNs and Infinities. 17-5
Rounding Control. 17-6
Floating-Point EXCEPLioNSot 17-6
Exceptions, Status Bits, and Control Bits. 17-7
Exception Handlingo 17-9
Single-Precision Floating-Point Operations 17-9
Single-Precision FUNCLIONS. 17-11
Double-Extended-Precision. 17-11
IEEE RequUIrementso 17-11
Conversion of Floating-Point Formatsto Integer. 17-11
Square ROOL 17-12
Compares and Unordered Condition, 17-12

NaNs and Infinities in Input/Output

Compilation Systems Volume 2 (Concepts)

Introduction

17
Floating-Point Operations

The supporting hardware platforms support LBEE Standard for Binary Floating-Point
Arithmetic(ANSI/IEEE Standard 754-1985). Concurrent Computer Corporation’s compi-
lation systems use the IEEE standard single- and double-precision data types, operations,
and conversions specified in this standard. Library functions are provided for further IEEE
support.

You will probably not need any special functions to use floating-point operations in your
programs. If you do, however, you can find information about floating-point support in
this chapter. (For more details on how the compilation systems support the IEEE standard
see “IEEE Requirements” on page 17-11.)

This chapter contains sections on the following topics:
* The details of IEEE arithmetic
* Floating-point exception handling
¢ Single-precision floating-point operations
* Implicit precision of subexpressions
* |EEE requirements

If your code depends on a side effect of a floating-point operation (such as the setting of a
trap), note that the optimizer may remove the floating-point operation if the result of the
operation is not used elsewhere. Therefore, your process may never see the side effect it
depends on. For example, if your program depends on a trap resulting from the following
operation:

XxX=a+b

and the operation is removed by the optimizer because the result is not used anywhere
else, the trap never occurs.

IEEE Arithmetic

This section provides the details of floating-point representation and exception handling.
Most users need not be concerned with the details of the floating-point environment.
Floating-point formats, values, and operations are based diEie Standard for Binary
Floating-Point ArithmeticANSI/IEEE Standard 754-1985.

17-1

Compilation Systems Volume 2 (Concepts)

Data Types and Formats

Single-Precision

Double-Precision

17-2

Single-precision floating-point numbers have the following format:

0 1 89 31
‘ Sign ‘ Exponent Fraction
N
binary point

Field Bit Position Full Name
Sign 0 Sign bit (O==positive, 1==negative)
Exponent 1-8 Exponent (biased by 127)
Fraction 9-31 Fraction (bits to right of binary point)

Double-precision floating-point numbers have the following format:

0 1 11 12
‘ Sign ‘ Exponent Fraction
N
binary point

Field Bit Position Full Name
Sign 0 Sign bit (O==positive, 1==negative)
Exponent 1-11 Exponent (biased by 1023)
Fraction 12-63 Fraction (bits to right of binary point)

Floating-Point Operations

Language Mappings

The IEEE single- and double-precision data types are denoted by the following language

data types.
Data Type C Fortran Ada
Single float REAL float (digits 1..9)
REAL*4
Double double DOUBLE PRECISION long_float (digits 10..16)
REAL*8

Normalized Numbers

A number is normalized if the exponent field contains other than all 1's or all 0’s. The
exponent field contains a biased exponent, where the bias is 127 in single-precision, and
1023 in double-precision. Thus, the exponent of a normalized floating-point number is in
the range -126 to 127, inclusive, for single-precision, and in the range -1022 to 1023,
inclusive, for double-precision.

There is an implicit bit associated with both single- and double-precision formats. The
implicit bit is not explicitly stored anywhere (thus its name). Logically, for normalized
operands the implicit bit has a value of 1 and resides immediately to the left of the binary
point (in the 2 position). Thus the implicit bit and fraction field together can represent
values in the range 1 to 2 -2, inclusive, for single-precision, and in the range 1 to 2 -
252 inclusive, for double-precision.

Thus normalized single-precision numbers can be in the range (plus or mittfdp 22
- 2'28) x 21?7 inclusive.

Normalized double-precision numbers can be in the range (plus or mind®td (2
- 2°2) x 21923 inclusive.

Denormalized Numbers

A number is denormalized if the exponent field contains all O's and the fraction field does
not contain all 0's.

Thus denormalized single-precision numbers can be in the range (plus or miitis) 2
222= 21480 (1 - 2%) x 2128 inclusive.

Denormalized double-precision numbers can be in the range (plus or mitiidx 25t =
210730 (1 - 25%) x 21922 inclusive.

Both positive and negative zero values exist, but they are treated the same during float-
ing-point calculations.

17-3

Compilation Systems Volume 2 (Concepts)

Maximum and Minimum Representable Floating-Point Values

Special-Case Values

17-4

The maximum and minimum representable values in floating-point format are defined in
the C header filowalues.h . They evaluate to the following values:

Symbolic Constant Value
MAXDOUBLE 1.79769313486231470e+308
MAXFLOAT ((float)3.402823466385288540e+38)
MINDOUBLE 2.22507385850720270e-308
MINFLOAT ((float)1.17549435082228740e-38)

The Fortran run-time library provides functions which return these values. Refer to
flmin(3F) for further information.

Refer to Appendix F in thélAPSE Reference Manufdr the use and values of the model
numbers of floating-point type.

The following table gives the names of special cases and how each is represented.

Value Name Sign Exponent Fraction
MSB Rest of Fraction
NaN (non-trapping) X Max 0 Nonzero
Trapping NaN X Max 1 X
Positive Infinity 0 Max Min
Negative Infinity 1 Max Min
Positive Zero 0 Min Min
Negative Zero 1 Min Min
Denormalized Number X Min Nonzero
Normalized Number X NotMM X

Key:
X
Max
Min

NaN

Does not matter
Maximum value that can be stored in the field (all 1's)
Minimum value that can be stored in the field (all 0’s)

Not a number

Floating-Point Operations

NotMM Field is not equal to either Min or Max values
Nonzero Field contains at least one “1” bit

MSB Most Significant Bit
The algorithm for classification of a value into special cases follows:

If (Exponent==Max)
If (Fraction==Min)
Then the number is Infinity (Positive or Negative
as determined by the Sign bit).
Else the number is NaN (Trapping if FractionMSB==0,
non-Trapping if FractionMSB==1).

Else If (Exponent==Min)
If (Fraction==Min)
Then the number is Zero (Positive or Negative
as determined by the Sign bit).
Else the number is Denormalized.
Else the number is Normalized.

NaNs and Infinities

The floating-point system supports two special representations:

* Infinity - Positive infinity in a format compares greater than all other repre-
sentable numbers in the same format. Arithmetic operations on infinities
are quite intuitive. For example, adding any representable number to infin-
ity is a valid operation, the result of which is positive infinity. Subtracting
positive infinity from itself is invalid. If some arithmetic operation over-
flows, and the overflow trap is disabled, in some rounding modes the result
is infinity.

* Not-a-Number(NaN) - These floating-point representations are not num-
bers. They can be used to carry diagnostic information. There are two kinds
of NaNs: signaling NaNs and quiet NaNs. Signaling NaNs raise the invalid
operation exception whenever they are used as operands in floating-point
operations. Quiet NaNs propagate through most operations without raising
any exception. The result of these operations is the same quiet NaN. NaNs
are sometimes produced by the arithmetic operations themselves. For
example, 0.0 divided by 0.0, when the invalid operation trap is disabled,
produces a quiet NaN.

The C header fileeeefp.h defines the interface for the floating-point exception and
environment control. This header defines three interfaces:

17-5

Compilation Systems Volume 2 (Concepts)

* Rounding Control
* Exception Control

* Exception Handling

The Fortran compilation system provides intrinsic functions for compile-time generation
of NaNs forREALandCOMPLEXata types. Refer toan(3F) andhf77(1) for more
information.

Rounding Control

The floating-point arithmetic provides four rounding modes that affect the result of most
floating-point operations. (These modes are defined in the hézekfp.h):

FP_RN Round to nearest representable number, tie -> even
FP_RP Round toward plus infinity
FP_RM Round toward minus infinity
FP_RZ Round toward zero (truncate)
You can check the current rounding mode with the function
fp_rnd fpgetround(void); /return current rounding mode*/
You can change the rounding mode for floating-point operations with the function:

fp_rnd fpsetround(fp_rnd);
/* set rounding mode, return previous */

(fp_rnd is an enumeration type with the enumeration constants listed and described
above. The values for these constants aneéefp.h .) Alternatively, this can be done
with the-Qfpcr linker option; see “Using the Link Editor” on page 4-1 for detalils.

The examples in this section, such as the one directly above, illustrate function prototypes.
For information on function prototypes, see the Concur@feference Manual

The default rounding mode is round-to-nearest. In C and Fortran, floating-point to integer
conversions are always done by truncation, and the current rounding mode has no effect
on these operations.

(For more information, see thpgetround(3C) and fpsetround(3C) manual
pages.)

Floating-Point Exceptions

17-6

Floating-point exception interrupts are enabled, and they operate in imprecise mode by
default on the supporting hardware platforms for C and Fortran programs. Ada programs
generate the exceptions if checks are not suppressed. The supporting hardware platforms

Floating-Point Operations

provide the ability to enable or disable floating-point exceptions, as well as to specify
whether the exceptions are precise or imprecise. If this interrupt is enabled, the operating
system will receive &8IGFPE signal any time an enabled floating-point exception is
raised by the hardware. A floating-point exception is enabled if its corresponding bit is on
in thefpcsr register. If this interrupt is disabled, the operating system will not be notified
when a floating-point exception is raised by the hardware. If an exception is imprecise, it
may not be possible for a program to recover from the exception because the system pro-
vides insufficient information for doing so. Complete information is provided for a precise
exception.

The disabling of this interrupt provides for improved performance. Use of imprecise
exceptions rather than precise exceptions provides for improved performance when float-
ing-point exceptions are enabled. By default, programs run iimpnecise excep-

tions mode. Concurrent Computer Corporation’s compilation systems provide two ways
of creating programs which will execute with floating-point exceptions disabled or
enabled as precise or imprecise. One way is to use@figrap option with the C
compiler,cc(1) , or the Fortran compilef77(1) . This option directs the compilers to
produce additional code to detect and trap floating-point exceptions. The other way is to
use theQfpexcept= option with the link editor]d(1) . This option directs the link
editor to set thép_except_kind field in the program’s vendor section. The kernel sets
bits 52 and 55 of thensr register, at program start up, based upon the setting of the
fp_except_kind field.

Exceptions, Status Bits, and Control Bits

Floating-point operations can lead to any of the following types of floating-point excep-

tions:

Divide by zero This exception happens when a non-zero number is divided by
floating-point zero.

Invalid operation All operations on signaling NaNs raise an invalid operation
exception. Zero divided by zero, infinity subtracted from infinity,
and infinity divided by infinity all raise this exception. When a
quiet NaN is compared with the greater or lesser relational opera-
tors, an invalid operation exception is raised.

Overflow This exception occurs when the result of any floating-point opera-
tion is too large in magnitude to fit in the intended destination.

Underflow When the underflow trap is enabled, an underflow exception is

signaled when the result of some operation is a very tiny non-zero
number that may cause some other exception later (such as over-
flow upon division). When the underflow trap is disabled, an
underflow exception occurs only when both the result is very tiny
(as explained above) and a loss of accuracy is detected.

Inexact or imprecise This exception is signaled if the rounded result of an operation is
not identical to the infinitely precise result. Inexact exceptions are
quite common. 1.0/ 3.0 is an inexact operation. Inexact excep-
tions also occur when the operation overflows without an over-
flow trap. The above examples for the exception types do not con-

17-7

Compilation Systems Volume 2 (Concepts)

17-8

stitute an exhaustive list of the conditions when an exception can
occur.

Whenever an exception occurs, a corresponding status bit is set (=1) for that exception. On
the supporting hardware platforms, these bits are contained iipshe register. When

status bits are set by the hardware and/or operating system, they remain set until cleared by
user software.

You can check the status of the status bits by using the function

fp_except fpgetsticky(void);
/* return logged exceptions */

fp_except is an enumeration type that can have any combination of the following con-
stant values:

FP_X_Dz Divide-by-zero exception
FP_X_INV Invalid operation exception
FP_X_OFL Overflow exception
FP_X_UFL Underflow exception
FP_X_IMP Imprecise (loss of precision)

(The values for these constants aréeieefp.h .)
You can change the status bits by using the function

fp_except fpsetsticky(fp_except);
/* set logged exceptions, return previous */

There is also a control bit (mask bit) associated with each exception. On the supporting
hardware platforms, these bits are contained infiser register. When an exception
occurs, if the corresponding control bit is enabled (=1), a trap occurs. When a trap occurs,
the result of the operation is not written and a signal is sent to the user process. You can
check the status of these mask bits by using the function

fp_except fpgetmask(void); /* current exception mask */
You can also selectively enable or disable any of the exceptions by calling the function

fp_except fpsetmask(fp_except);
/* set mask, return previous */

with appropriate mask values.

In Ada programs, aaumeric_error is raised for each of these exceptions except
underflow

By default, programs built with Concurrent Computer Corporation’s compilation systems
will begin execution having only the underflow and imprecise exception control bits
masked off.

Alternatively, this can be done with th®fpcr linker option; see “Using the Link Edi-
tor” on page 4-1 for details. For more information, see the following manual pages:

Floating-Point Operations

fpgetsticky(3C) ,
fpsetsticky(3C) ,
fpgetmask(3C)
fpsetmask(3C)
and

fpgetround(3C)

Exception Handling

If a floating-point trap is enabled, your process is signaled when the corresponding float-
ing-point exception occurs. PowerUX signals your process by serfliG§PE. If you

intend to handle the exception, you must specify a handleBfGFPE. You can specify

the handler by calling the €ignal() routine as follows:

#include <signal.h>
extern void myhandler ();
foo ()

(void) signal (SIGFPE, myhandler);
}

The Fortran compilation system also providesignal function. Refer tosig-
nal(3F) for more information.

Ada users who set up a signal handler should note that the Ada executive reSEbves
FPE. Use of a signal handler f&IGFPE will cause non-standard behavior in Ada pro-
grams.

Single-Precision Floating-Point Operations

The ANSI standard for C has a provision that allows expressions to be evaluated in sin-
gle-precision arithmetic if there is rdouble (orlong double) operand inthe expres-
sion. The C compiler supports this provision.

Floating-point constants are double-precision, unless explicitly statedftodie . For
example, in the statements

float a,b;

a=0>b+ 1.0;
because the constah has typedouble , b is promoted talouble before the addition
and the result is converted backftoat . However, the constant can be made explicitly a

float

a=>b + 1.0f

17-9

Compilation Systems Volume 2 (Concepts)

or
a=>b + (float) 1.0;

In this case, the statement can potentially be compiled to a single instruction. Single-preci-
sion operations tend to be faster than double-precision operations.

Whether a computation can be done in single-precision is decided based on the operands
of each operator. Consider the following:

float s;
double d;
d=d+ s * s

s * s is computed to produce a single-precision result, which is promoted to double-pre-
cision and added td.

The IEEE P854 task force responsible for format independent floating-point environment
issues may disallow the multiplication to be carried in single-precision in this context.

Note that using single-precision (as versus double-precision) arithmetic can result in loss
of precision, as illustrated in the following example.

float f = 8191.f * 8191.f; [* evaluate as a float */
double d = 8191. * 8191. ; /* evaluate as a double */
printf ("As float: %f\nAs double: %f\n", f, d);

The result is:

As float: 67092480.000000
As double: 67092481.000000

Also, long int variables (same agt) have more precision thdioat variables.
Consider the following example:

int i,j;

i = OXTIfffff;
j=1*10;
printf("j = %x\n", j);
j =i * 1.0f

printf("j = %x\n", j);

The firstprintf() statement output#ffffff , While the second print8. The second
printf() prints 0 because the nearest float 07 fffffff has a value of
0x80000000 . When the value is converted to an integer, the result,iand a float-
ing-point imprecise result exception occurs. A trap occurs if this exception was enabled.

A function that is declared to returnfibat may actually return either fioat ora
double . If the function declaration is a prototype declaration in which at least one of the
parameters ifloat , the function returns dloat . Otherwise, it returns double with
precision limited to that of #oat . (All of this is transparent.) For example:

float retflt(float); [* actually returns a float */
float retdbll1(); /* actually returns a double */
float retdbl2(int); [* actually returns a double */

17-10

Floating-Point Operations

Arguments work as follows:

double takeflt(float x); [* takes a float */

double takedbl(x)
float x; /* takes a double */

Single-Precision Functions

The system math librariedifm.a andlibM.a) contain single-precision versions of
several functions. These floating-point functions all have names that eéndtéke and
returnfloats , and do most internal computations in single-precision arithmetic. For a
complete list of floating-point functions in the math libraries, see Chapter 16 (“Run-Time
Libraries”).

The Ada packagenath includeslibm.a

Double-Extended-Precision

Concurrent Computer Corporation’s compilation systems do not produce code that uses
IEEE double-extended-precision arithmetic, either for intermediate or final results. All
results are computed with the precision implicit in their type.

The Clong double data type is computationally equivalent to #heuble data type.
In the futurelong double may be used for double-extended-precision values; there-
fore, it is best to avoid usinpng double , for compatibility reasons.

IEEE Requirements

All arithmetic computations generated by Concurrent Computer Corporation’s compila-
tion systems strictly conform to IEEE requirements. The following is a discussion of some
topics where the compilation systems fall short of completely meeting the ANSI/IEEE
Standard 754-1985 requirements or the spirit of the requirements.

Conversion of Floating-Point Formats to Integer

IEEE requires floating-point to integer format conversions to be affected by the current
rounding mode. However, the C and Fortran languages require these conversions to be
done by truncation (which is the same as round-to-zero). In the compilation systems, float-
ing-point to integer conversions are done by truncation.

17-11

Compilation Systems Volume 2 (Concepts)

Square Root

IEEE requires the square root of a negative non-zero number to raise invalid operation,
whereas PowerUX system compatibility requires square root to return 0.@mith set
to EDOMThe PowerUX math libraries provide this level of compatibility.

Compares and Unordered Condition

In addition to the usual relationships between floating-point values (less than, equal,
greater than), there is a fourth relationship: unordered. The unordered case arises when at
least one operand is a NaN. Every NaN compares unordered with any value, including
itself. The C compilation system provides the following predicates required by IEEE
between floating-point operands:

While there is no predicate to test for unordered, you canamsad() orisnanf() to
test whether an argument is a NaN. For informationssrand() andisnanf() , see
theisnan(3C) manual page.

The relations>, >=, <, and<= raise invalid operation for unordered operands. The com-
piler generated code does not guard against the unordered outcome of a comparison. If the
trap is masked, the path taken for unordered conditions is the same as if the conditional
were true, which may result in incorrect behavior.

For the predicates= and!=, unordered condition does not lead to invalid operation. The
path taken for unordered condition is the same as when the operands are non-equal, which
is correct.

(@ > b) isnotthesameas!(a <= b)) inIEEE floating-point arithmetic. The dif-
ference occurs whelm or a compares unordered. The C compiler generates the same code
for both cases.

NaNs and Infinities in Input/Output

17-12

The printf() family of functions prints NaNs or infinities as symbolic names. Ideally,
whateverprintf() outputs,scanf() should be able to read using the same format.
However,scanf() does not recognize NaNs and infinities for floating-point formats.
Since these special cases serve mostly as diagnostics for erroneous floating-point compu-
tation, outputting these cases was considered more important than being able to read them.

18
Inter-Language Interfacing

INtrOdUCHiON 18-1
Subroutine Linkage oo 18-1
The Stack Frame. e e 18-1
Parameters e 18-2
Return Values e 18-3
Prologueand Epilogue 18-3
Register Usageot 18-4
EXternal Names e 18-5
Data TYPES . . . ettt e 18-5
Scalar TYPES . o ot 18-5
SHTUCTUIES . . . oo e e e e 18-6

Common BIOCKSo 18-6

Compilation Systems Volume 2 (Concepts)

18
Inter-Language Interfacing

Introduction

Calling subroutines written in one language from routines written in another requires a
knowledge of calling conventions and data types specific to the architecture on which the
program will run and the languages the program is written in. This chapter discusses
inter-language interfacing between C and Fortran on the supporting hardware platforms.
For more information about C, see t@®ncurrent C Reference Manudior more infor-
mation about Fortran, see th&/7 Fortran Reference Manual

For information about inter-language interfacing with Ada, seeHAWé&SE Reference
Manual

Subroutine Linkage

The Stack Frame

Every routine’s stack frame has the following three areas:

link area This area occupies the lowest addresses of the stack frame and is
24 bytes in size. It holds the return address sometimes. Other
words in it are reserved for future use.

parameter area This area is reserved for parameters. Every parameter, even one
passed in a register, is assigned space in this area. This area starts
24 bytes above the address where the stack pointey goints
and is always at least 32 bytes in size.

temp area This area holds local variables, compiler temporaries, saved regis-
ters, etc.

18-1

Compilation Systems Volume 2 (Concepts)

Parameters

18-2

Table 18-1 illustrates stack frame layout.

Table 18-1. Stack Frame

Siyztisin Contents
High Address 32+ Caller's parameter area
24 Caller’s link area
Any Callee’s temp area
32+ Callee’s parameter area
Low Address 24 Callee’s link area

If a routine needs no temp area and does not call another subroutine, it is acceptable to
have a zero-sized stack frame.

The first thirteen floating-point parameters are passed in floating-point regifdters
throughf13 . Integer, character, pointer and structure parameters are passed in gen-
eral-purpose register8 throughrl0 . If there are no more parameter registers left (or, in

the case of structures, not enough parameter registers left), then the parameter is passed in
the parameter area.

Even when passed in a register, space exists for each parameter in the parameter area. If
the parameter has alignment constraints, space in the parameter area is skipped so that the
slot for the parameter in the parameter area has the appropriate alignment. This space is

frequently referred to asfole.

Take the following C function definition as an example:

f(int il,struct {int i[10];} s1, struct {int i[2];} s2,
double di, float f1, int i2) {...}

The following table shows where each parameter gets passed and where its slot in the
parameter area is:

Table 18-2. Where Parameters Are Passed

Parameter Area Slot

Parameter Where Passed (offset in bytes)
il r3 0-3
sl parameter area (becaus 4-43
of general-
register shortage)
s2 r4 ,r5 44-51

Inter-Language Interfacing

Table 18-2. Where Parameters Are Passed (Cont.)

Parameter Area Slot

Parameter Where Passed (offset in bytes)
" 0 56-63
o 2 64-67
- " 68-71

The length of a Fortra®RHARACTERarameter is in a hidden extra integer parameter
appended to the parameter list.

Return Values

Integer, character, and pointer values are returned in the general registétoat-
ing-point values are returned in the floating-point register

Cstruct andunion return values require the caller to provide a block of memory to
hold the return value. The C compiler passes the address of that block as a hidden first
parameter (i.e., in general regist8r) to the callee. When this is the case, actual parame-
ters are passed beginningrat.

FortranCOMPLEXeturn values are treated as ssttuct consisting of twdfloat s or
two double s. FortranCHARACTEReturn values are similar, except that the caller passes
two hidden parameters to the callee: the address of the block and the size of the block.

Prologue and Epilogue

The caller places the parameters in registers or its own parameter area and exétutes a
instruction to branch and link to the callee. The callee’s prologue code then performs the
following operations:

¢ Adjust the stack pointerr{) downward to allocate space for its own stack
frame. The stack pointer always maintains 16-byte alignment.

¢ Save the return address at offset 8 bytes in the caller’s link area if the callee
needs to use thiink register.

¢ Save in the temp area any register that the callee is not allowed to kill but
wants to use.

Before returning, each of these operations is undone in reverse order. For more informa-
tion about the prologue and epilogue, see “Introduction” on page 23-1.

18-3

Compilation Systems Volume 2 (Concepts)

Register Usage

The following tables document the usage and reserved status of the various classes of reg-
isters:

Table 18-3. General Registers

Register Use
r0 Scratch register _(Warningsome instructions treat this reg-
ister as a constant zero)
ri Stack pointer
r2 Frame pointer, if needed falloca or stack frames larger
than 32K
r3 int , char and pointer return values;

first word of non-float parameters;
scratch register

r4-r10 Second through eighth words of nfloat parameters;
scratch registers

ril Static link;
scratch register

r12-r15 Scratch registers

r16-r27 Preserved registers (These registers must be saved and
restored by any function that uses them.)

r28-r30 Reserved for post-linker optimizations

r3l Reserved for post-linker optimizations;

thread register

Table 18-4. Floating-point Registers

Register Use
fo Scratch register
fl Floating-point return value;

first floating-point parameter;
scratch register

f2-f13 Second through thirteenth floating-point parameter
scratch registers

f14-f21 Scratch registers

f22-f31 Preserved registers (These registers must be saved and
restored by any function that uses them)

18-4

Inter-Language Interfacing

Table 18-5. Special Registers

Register Use
Link Return address; the caller is responsible for saving and
restoring this register
Count Scratch register
crfo-crf7 All condition-register fields are scratch registers
MQ Scratch register (PowerPC 601 system only)

External Names

For C, all external names appear in the object file exactly as they are spelled in the source
file.

For Fortran, all external names are folded to lower case. Subroutines get a single under-
score appended and common block nhames get two underscores appended to their names.
Blank common is spelled BLNK_ .

Data Types

Scalar Types

The following tables give a brief description of the size and alignment constraints given
various data types by default:.

Table 18-6. C Scalar Types

Type Size Alignment Description
char 1 1 character
short int 2 2 integer
long int 4 4 integer
float 4 4 float
double 8 8 float

type * 4 4 pointer

18-5

Compilation Systems Volume 2 (Concepts)

Structures

Common Blocks

18-6

On the supporting hardware platforms, ttiear type isunsigned by default. The
-Qchars_signed option makes the default Isigned .

The-W1,-7 option to the C compiler cause®uble to be aligned to 4 bytes. This
results in a minor performance penalty on the supporting hardware platforms.

Table 18-7. Fortran Scalar Types

Type Size Alignment Description
LOGICAL*1 1 1 boolean
LOGICAL*2 2 2 boolean
LOGICAL 4 4 boolean
INTEGER*1 1 1 integer
INTEGER*2 2 2 integer
INTEGER 4 4 integer
REAL 4 4 float
DOUBLE PRECISION 8 8 float
COMPLEX 8 4 complex
COMPLEX*16 16 8 complex

The-Qalign_double=4 option to the Fortran compiler cause©UBLE PRECISION
to be aligned to 4-byte boundaries. This results in a minor performance penalty on the sup-
porting hardware platforms.

The alignment of a structure is the alignment of its most restrictive field. Padding is freely
added to make each individual field maintain its alignment requirements. The size of a
structure is an integer multiple of its alignment requirement. Bit fields that are of type

char , short , orlong mustnotcross 1, 2 or 4-byte alignment boundaries, respectively.

Common blocks align their variables much like C structure€HARACTER/pe takes up
space as though it waschar array. The Fortran standard requires tB@UBLE PRE-
CISION be aligned to only a 4-byte boundary. Use t@align_double=4 option to
achieve this. Beware of the minor performance penalty for doing so on the supporting
hardware platforms.

5
Program Optimization

Replace with Part 5 tab

Compilation Systems Volume 2 (Concepts)

Part 5 - Program Optimization

Part 5 - Program Optimization

Part5 Program Optimization

Chapter 19 Introduction to Program Optimization............ccccccceveeiiiiiiiineenn. 19-1

Chapter 20 Program Optimization..............cueeiiieiieiniiiiiiieiee e 20-1

Compilation Systems Volume 2 (Concepts)

19

Introduction to Program Optimization

Introduction

Compilation Systems Volume 2 (Concepts)

Introduction

19
Introduction to Program Optimization

If you want to reduce the time your program takes to run or the resources your program
uses, you should understand program optimization. This part of the manual deals with per-
formance tuning through program optimization.

Chapter 20 (“Program Optimization”) discusses optimization concepts, options, parame-
ters, considerations, and strategies.

For information about program performance and profiling with #malyze and
report tools, see Chapter 11 (“Performance Analysis”).

19-1

Compilation Systems Volume 2 (Concepts)

19-2

20
Program Optimization

Introduction to Compiler Technology. i 20-1
Compiler Optimization OptionNs i e 20-2
Setting the Compiler Optimization Level. 20-2
Controlling Compiler Optimizations 20-3
Giving Hints to Compiler Optimizations (C++only). 20-8
Obtaining Optimization Messagesottt e 20-10
Classes of Optimizationst 20-10
Branch Optimizations. 20-10
Straightening Blocks 20-11
Folding Conditional TeStSot e 20-11
Eliminating Unreachable Code ot 20-11
Inserting Zero Trip TeStS . . .o oot 20-11
Duplicating Partially-Constant Conditional Branches 20-12
Variable Optimizations. 20-12
Dead Code Elimination. 20-13
Copy Propagation 20-14
Separate Lifetimes. 20-15
Copy Variables 20-15
Expression Optimizations. e 20-16
Algebraic Simplification. 20-16
Address Mode Determinationt 20-17
Common Subexpression Elimination 20-17
Code MOLIONt 20-17
Loop Optimizationso 20-18
Loops with Multiple Entry Points... 20-19
Strength Reduction 20-20
TestReplacement 20-21
Duplicating LOOp EXit TeStSot e 20-21
Loop Unrolling and Software Pipelining 20-22
Register Allocation. 20-24
Instruction Scheduling 20-24
Post-Linker Optimization 20-25
Inline Expansion of Subprograms (Adaonly) 20-26
Optimization of Constraints (Adaonly)........... 20-27
Inline Expansion of Subprograms (C++only) 20-29
Precise Alias Analysis (C++0nly) i 20-30
Programming Techniques 20-30
CodiNg TIPS - v oottt e e 20-31
Identifying Performance Problems. 20-32
Debugging Optimized Code. -t 20-32
Understanding Optimization’s Effects on Debugging 20-33

Examining Your Program. 20-34

Compilation Systems Volume 2 (Concepts)

20
Program Optimization

This chapter provides an overview of the features of Concurrent’s compiler technology
that make program optimization possible. It explains the compiler optimization options

and parameters and describes in detail all of the types of optimization that the compilers
can perform. It provides a set of programming techniques that you can use to improve the
optimizer's performance, and it explains the procedures for debugging optimized code.

Introduction to Compiler Technology

The Concurrent Computer Corporation’s compilers for the Ada, C, C++, and Fortran pro-
gramming languages are based on the Common Code Generator (CCG) technology. It is
this technology that makes it possible to provide source-level compatibility across multi-
ple architectures, a key component of Concurrerﬁlsplicy. One of the major focuses of

CCG is to produce the highest quality code possible so that your application attains the
highest performance possible. Part of this process is perforoyptighizations-that is,
transformations of your code so that it does the same work either by taking less time or by
using fewer machine resources.

Many of the optimizations are complex and interrelated. It is not always possible for an
optimizer to determine the best form in which to express code; therefore, CCG compilers
provide a wide range of options and parameters to help you obtain the best performance
from your application.

One of the major features of the CCG optimizer is that it strives to ensure that optimiza-
tions areprofitable-that is, that the optimized program runs at least as fast as the original,
if not faster. That the optimizer should do so may seem obvious, but it is not always easy.
Many loop optimizations, for instance, are profitable only if the loop is executed many
times once it is entered. Other optimizations depend on a favorable allocation of values to
registers for their profitability.

One result of the concern with profitability is that the compiler may fail to perform an
optimization because it cannot determine whether or not the change will be profitable. You
may be able to assist the compiler in such cases by making slight changes in your pro-
gram.

Optimization options and parameters are explained in “Compiler Optimization Options”
on page 20-2. The classes of optimizations that the compilers perform are described in
“Classes of Optimizations” on page 20-10. Programming techniques for optimization are
presented in “Programming Techniques” on page 20-30. Procedures for debugging opti-
mized programs are explained in “Debugging Optimized Code” on page 20-32.

It is assumed that you are familiar with the procedures for using one or more of the com-
pilers. For information specific to a compiler, refer to tHAPSE Reference Manuahd
theada(l) system manual page; the ConcurrénReference Manuand thehc(1)

20-1

Compilation Systems Volume 2 (Concepts)

system manual page; or thd77 Fortran Reference Manuahd thehf77(1) system
manual page.

Compiler Optimization Options

Compiler optimization options include th® option, which enables you to set the com-
piler optimization level, and theQ option, which enables you to control the optimizer’'s
behavior. Procedures for using these options are explained in “Setting the Compiler Opti-
mization Level” on page 20-2 and “Controlling Compiler Optimizations” on page 20-3,
respectively. Each compiler has a verbose option that you can use to obtain information
about the compilation and about optimization. This option is described in“Obtaining Opti-
mization Messages” on page 20-10.

Setting the Compiler Optimization Level

20-2

The -On option allows you to select one of five levels of optimization. These levels are
described as follows:

Level O This level is called NONE; it performs only relatively simple optimizations
and limits the register allocator to binding only a small number of global vari-
ables to registers (se®huge_heuristic) . The NONE level is provided
to compile extremely huge, usually machine-generated, programs rapidly.

Level 1 This level is called MINIMAL; it performs only relatively simple optimiza-
tions. The MINIMAL level is provided for fast compilation.

Level 2 This level is called GLOBAL; it selects more optimizations than MINIMAL.
The GLOBAL level provides a compromise between compile speed and exe-
cution speed by placing limits on how much certain optimizations can do.

Level 3 This level is called MAXIMAL,; it sets the limits placed on the GLOBAL opti-
mizations higher.

Level 4 This level is called ULTIMATE; it sets time and space limits to extremely high
levels.

MINIMAL is the default level if you do not specify theO option. Compilations at the
MAXIMAL level may take significantly longer than those at the MINIMAL level, but the
generated code is usually significantly faster code. “Classes of Optimizations” on page
20-10 provides more detail on the optimizations that are included in each level.

Optimizations are also classified sa&feor unsafe An unsafe optimization may change the
behavior of the program under certain boundary conditions whose occurrence is usually
rare; for instance, if your program manipulates integer values that are close to the mini-
mum or maximum possible integer values, then an unsafe optimization can cause those
computations to overflow. By default, unsafe optimizations are enabled at the GLOBAL
MAXIMAL, and ULTIMATE levels. You can disallow unsafe optimizations by using the
-Qopt_class option (see “Controlling Compiler Optimizations” on page 20-3). In gen-

Program Optimization

eral, you obtain less performance from your program if you disable the unsafe optimiza-
tions; you should disable them only if your program fails otherwise.

Optimizations that are potentially unsafe are identified in “Classes of Optimizations” on
page 20-10. These currently include test replacement and some cases of algebraic simplifi-
cation.

Controlling Compiler Optimizations

The-Q option-spe®ption provides more precise control over the optimizer’s behavior by
allowing you to selectively enable or disable some of the optimizations described in
“Classes of Optimizations” on page 20-10. In general, you want to use these forms of the
-Q option only after you have analyzed your application thoroughly and have understood
which parts are the most important to optimize. It is suggested that youanse

lyze(1) to perform this analysis. Use of this tool is described in “Identifying Perfor-
mance Problems” on page 20-32.

Optimization--especially of very large programs--can often take a large amount of CPU
time and memory. The compiler has built-in time and space limits to prevent it from using
excessive time or space; however, these limits can be overridden by other forms of the
-Q option-spe®ption.

Forms of the-Q option that can be used for optimization are presented next.

-Qalias_array_elements_limit= N
(C++ only) Limits the number of objects (variables, array elements, structure
fields) in an array element that the alias analysis will tell the optimizer about.
The defaultis 100. A value of zero indicates unlimited.

-Qalias_const_subscripts_limit= N
(C++ only) Limits the number of array elements that the alias analysis will
track. The default is 3. If your source uses a lot of constant subscripted array
elements, increasing this option will allow the optimizer to treat those ele-
ments as separate variables. Setting this option to a high number or most pro-
grams, however, will just increase compile time without significantly increas-
ing the precision of the alias analysis.

-Qalias_object_limit= N
(C++ only) Limits the number of objects (variables, array elements, structure
fields) that the alias analysis will tell the optimizer about. The default is
10,000. A value of zero indicates unlimited.

-Qalias_structure_fields_limit= N
(C++ only) Limits the number of objects (variables, array elements, structure
fields) contained in a given structure or union that the alias analysis will tell
the optimizer about. The default is 100. A value of zero indicates unlimited.

-Qalias_object_limit= N
(C++ only) Limits the number of objects (variables, array elements, structure
fields) that the alias analysis will tell the optimizer about. The default is
10,000.

20-3

Compilation Systems Volume 2 (Concepts)

-Qalign_double= N
(Fortran only) Specifies the byte boundary to whREAL*8, COMPLEX*8
andCOMPLEX*16variables are aligned within common blocks.

Specifying-Qalign_double=8 is equivalent to the default operation.
Using the defaultQalign_double=8 option, or-Qalign_double

aligns variables of these types to double-word boundaries. This eliminates
having to manually align the variables.

Programs compiled withQalign_double=8 may not be strictly “stan-
dard-conforming” because the standard does not permit gaps in common
block layout. On the PowerPC, doubles aligned on a 4-byte boundary but not
on an 8-byte boundary have a small execution-time penalty.

-Qavoid_overflow

(Fortran only) For some complicated operations, such as, dividibiyIPLEX
numbers or taking the absolute value o€COMPLEXiumber, the most
straight-forward and efficient implementation can encounter overflow on
intermediate results even though the final answer is representable. This is pos-
sible only if the real or imaginary portions are greater in magnitude than the
square root of the largest real number (greater than about 1.844674e+19 for
single precision and 1.340780793e+154 for double precision). The use of this
option causes the compiler to generate slower code to avoid these overflows.

-Qbenchmark
Sets the optimization level to MAXIMAL; enables all unsafe optimizations;
sets all time and space limits to extremely high values.

-Qblock_limit= N
(Fortran only) Limits the number of differel@OMMONDbIocks that will be
treated as unique entities by the optimizetNoThe default is 128 at GLO-
BAL and 10,000 at MAXIMAL and ULTIMATE. Normally an assignment to
a variable in one€OMMODblock does not affect variable and expression opti-
mizations involving variables in oth€OMMOBDlocks. This may not be true if
-Qblock_limit is exceeded. This option has no effect@®@MMODblocks
that do not exceed the limit specified BQvariable_limit

-Qgrowth_limit= N
Limits the percent by which the optimizer is allowed to increase program size
(for each subprogram) td. N is an integer representing a percent; the default
is 50 percent at GLOBAL, 200 percent at MAXIMAL and 10,000 percent at
ULTIMATE for the supporting hardware platforms. This option controls sev-
eral optimizations that replicate program code.

Keep in mind that the optimizer operates on an intermediate representation of
the program; the size of this intermediate representation does not always accu-
rately reflect the actual size of the generated code. Therefore, the percent that
you specify for-Qgrowth_limit is only an approximation.

-Qhuge_heuristic= N
Limits the number of simultaneously alive global variables that the register allo-
cator will attempt to bind to a register. This is very useful for compiling
extremely huge, usually machine-generated, modules. The default is 33 at NONE
and 1,000,000 (i.e., unlimited) otherwise.

20-4

Program Optimization

-Qignore_optimization_hints
(C++ only) Directs the compiler to ignore optimization hint pragmas (See
“Giving Hints to Compiler Optimizations (C++ only)” on page 20-8) embed-
ded in the source.

-Qinline= routine list
(C only) Directs the compiler to treat the comma separated list of routines as
though they had been specifiediane in the source. This will also work
in C++ on routines with C linkageektern “C” { ..}).

-Qinline_depth= N
(C, C++only) Limits the depth that inline functions will actually be inlined in
other inline functions. Beyond that depth, out-of-line instances are invoked
instead. The defaultis 1 for NONE and MINIMAL (meaning no inline expan-
sion will happen inside a routine that is being expanded inline), 2 for GLO-
BAL, MAXIMAL, and ULTIMATE (meaning that routines can be inline
expanded inside other routines that are inline expanded, but they in turn will
not have routines inline expanded in them). Set the limit to higher numbers
with caution as it can result in an huge increase in program size and hurt per-
formance.

-Qalias_object_limit= N
(C++ only) Limits the number of objects (variables, array elements, structure
fields) that the alias analysis will tell the optimizer about. The default is
10,000.

-Qinvert_divides
Hoists divides by region constants (an expression whose value will not change
during the execution of the loop containing it) out of loops and replace them
with a multiply by the reciprocal in the loop. In C and Ada, it also will trans-
form divides by literals into multiplies by the reciprocal. (Fortran always does
this unlessQno_reciprocal_multiply is used.) This is the default for
ULTIMATE.

-Qflow_insensitive_alias_analysis

(C++ only) Normally, the alias analysis takes into account whether a particu-
lar assignment to a pointer can actually reach a particular use of that pointer,
i.e., makes use of the actual program flow. This option causes the alias analy-
sis to assume all definitions of a pointer can reach all uses of it. Usually, this
makes the analysis run a little faster at the expense of making some pessimal
aliasing assumptions. Sometimes, however, this option will greatly increase
compile time.

-Qno_multiply_add
Disables combining multiplies with adds in a single instruction.

-Qloops= N
Limits the number of loops for which the compiler will perform the copy-vari-
able optimization toN (see “Copy Variables” on page 20-15). The default is
20 at GLOBAL and 1000 at MAXIMAL and ULTIMATE.

-Qno_float var_args

(PowerPC only) Causes floating point registers to not be dumped to an array
an the stack whewmar_args is used. Using this option causes the compiler

20-5

Compilation Systems Volume 2 (Concepts)

to not store the floating point registers. It should only be used if floating point
arguments will never be passed to tfe&_args subroutine being compiled.

-Qno_invert_divides
(Fortran only) Disables the transformation of divide by a floating-point con-
stant into multiply by the reciprocal of that constant.

-Qno_multiply_add
Disables combining multiplies with adds in a single instruction.

-Qno_reciprocal_multiply
(Fortran only) Disables the transformation of divide by floating-point constant
into multiply by the reciprocal of that constant.

-Qno_short_circuit
(Fortran only) Do not short-circuit logical operations. The result?ddD. or
.OR. may be known by evaluating only the first operand, i.ecALSE.
AND. anything is .FALSE. ; (. TRUE. .OR. anything is .TRUE. By
default, the compiler may or may not short-circldND. and.OR. logical
operators depending on the estimated efficiency of the operations. Where the
terms of a logical expression are scalar variable references and literals, the full
logical expression is evaluated. In cases where a logical expression has more
complicated operands with possible side effects, it is short-circuited. There-
fore, short-circuit semantics are maintained unless the
-Qno_short_circuit option is specified.

-Qno_skew_large_arrays
(Fortran only) Disables skewing large arrays. Sg@skew_large_arrays
This is the default at GLOBAL and MAXIMAL.

-Qobjects= N
Sets the number of variables that the compiler will optimiz<¢See “Vari-
able Optimizations” on page 20-12.) The default is 128 at GLOBAL and
10,000 at MAXIMAL and ULTIMATE.

-Qopt_class= setting
Enables or disables unsafe optimizations according to the valsettafg The
value ofsettingmay besafe, unsafe, or standard. Specify either
safe to disable unsafe optimizations ansafe to enable them. Specify
standard to enable unsafe optimizations specifically allowed by the lan-
guage standard.

Individual compilers may allow additional values for setting. Refer to the
appropriate language reference manual to determine the acceptable setting
values, precise meanings and defaults.

-Qoptimize_for_space
Specifies that space rather than time is the critical factor in optimizing this
program. Note that this option set®growth_limit to zero.

-Qpeel_limit_const =N
Specifies the minimum number of iterations the loop unrolling algorithm will
peel from a loop (see “Loop Unrolling and Software Pipelining” on page
20-22). This is used to achieve the effect of software pipelining so that each
iteration of the resulting loop might overlap instructions frivn1 iterations

20-6

Program Optimization

of the original loop. The default is 1 at GLOBAL and 2 at MAXIMAL and
ULTIMATE.

-Qpeel_var
Enables peeling a single iteration off a loop when the iteration count is
unknown at compile time (i.e., is variable). This is used to achieve the effect
of software pipelining so that each iteration of the resulting loop might over-
lap instructions from 2 iterations of the original loop. This is done by moving
instructions from the loop into the loop’s preheader, and moving the corre-
sponding instruction from the peeled iteration into the loop. Thus the pre-
header primes the software pipeline, and the remaining instructions in the
peeled iteration drain it. Because this can adversely effect cache behavior in
loops that execute only a few times, this optimization is off by default.

-Qprecise_alias
(C++ only) Directs the alias analysis to perform precise alias analysis. This is
default for GLOBAL, MAXIMAL, and ULTIMATE. See also
-Qquick_alias

-Qquick_alias
(C++ only) Directs the alias analysis to quickly make worst case assumptions
about everything. Elements of arrays and fields of structures are not dealt
with as separate objects. Any local variable whose address is taken is
assummed to be aliased by all pointer indirections and function calls. This is
default for NONE and MINIMAL. See alseQprecise_alias

-Qskew_large_arrays
(Fortran only) Skew the start of large local arrays onto unique data cache sets
to prevent primary cache collisions. Membership in a primary cache set
depends on the memory address modulo page size, which is further subdi-
vided modulo cache line size. This is the default for ULTIMATE.
Thus, data at similar page offsets cannot occupy the same primary cache line
at the same time. By aligning the start of large arrays to unique cache sets,
array elements with similar indices such)d@$) andY(l) do notoccupy the
same data cache line and may be co-resident in the cache, improving cache hit
frequency for proximate references. On the PowerPC, cache lines are assumed
to be 128 bytes and that 512 such cache lines fit into the 64KB cache.

A large array is considered larger than the primary cache. Note that this skew-
ing applies only to uninitialized, non-equivalencies, non-character local
arrays. For further information see the “Cache and Bus Interface Unit Opera-
tion” chapter in thePowerPC 604 RISC Microprocessor User's Manual

-Qunroll_limit= N
Limits the number of times a loop with an iteration count that is a com-
pile-time constant may be unrolled b (see “Loop Unrolling and Software
Pipelining” on page 20-22). The default is 1 at GLOBAL and 10 at MAXI-
MAL and ULTIMATE.

The resulting code consists of the unrolled loop plus zero or more remainder
iterations that are placed immediately after the unrolled loop. See also
-Qpeel_limit_const to control the number of iterations in the remainder
portion of the unrolled code.

20-7

Compilation Systems Volume 2 (Concepts)

-Qunroll_limit_var= N
Limits the number of times a loop with an iteration count that is not a com-
pile-time constant (i.e., that is variable) may be unrolledNtqsee “Loop
Unrolling and Software Pipelining” on page 20-22). The default is 1.

The resulting code consists of the unrolled loop plus a cleanup loop for the
remainder iterations. If the loop is unrolled twice, the cleanup “loop” executes
at most once, and so is not a loop. This option is disabled)peel_var.

-Qvariable_limit= N
(Fortran only) Limits the number of variables in ea2®MMONock that will
be treated as unique entities by the optimizeNtdarhe default is 128. Nor-
mally an assignment to a variable irCOMMODIock does not affect variable
and expression optimizations involving other variables in @@MMOBlock.
This may not be true ifQvariable_limit is exceeded.

These options are explained in more detail in “Classes of Optimizations” on page 20-10.

If you have an application about which you know very little and you want to try to obtain
the maximum performance from it, enable H@4 option. Specifying04 removes all
safety limits on compile time and space; hence, you should use it only when plenty of
CPU and memory resources are available. You can reimpose limits removéd hlyy
specifying otherQ options after theO4 specification.

Giving Hints to Compiler Optimizations (C++ only)

The alias analysis phase of the C++ compiler may be given several hint¢pvlgma s
embedded in the source. These allow the user to specify information that can normally
only be obtained through interprocedural analysis. Use them with caution, as incorrect
hints can cause invalid optimizations to occur in later optimization phases. To specify a
routine in these pragmas, an entire signature must be used. For example,

#pragma never_returns void print_error_and_exit(int, char *)

Variable lists are comma separated names of variables (with scoping operators as needed)
and may be an empty list.

#pragma nonrecursive routine-signature
Tells the compiler that calling the designated routine will not result in the
caller routine being called, i.e., will not result in recursion. Further, if desig-
nated routine is the routine being defined, it means that no routine called by
the designated routine will result in itself being called recursively.

The effect of this pragma is to let the alias analysis and optimizer know that
local static variables will not be modified by function calls unless their address
as been made visible to other routines.

#pragma explicit_use_def routine-signature
Tells the compiler that no variable visible to the caller routine will be used or
modified (defined) by calling the designated routine, unless there are excep-
tions listed in subsequeipragmas (seemaybe_use, maybe_def , and
definitely_def below).

20-8

#pragma

#pragma

#pragma

#pragma

#pragma

#pragma

#pragma

Program Optimization

Ordinarily, the optimizer must assume function calls kill every externally visi-
ble variable, a worst case assumption that is rarely true.

maybe_use routine-signaturg variable-lis§ [,parameters][,all]

Tells the compiler that the specified, comma separated, list of variables are the
only variables visible to the caller whose values are referenced by the desig-
nated routine. Using this pragma implies #xplicit_use_def pragma.

This pragma may be used several times on the same designated routine: the
effects are cumulative.

The optional,parameters designation tells the compiler that objects
pointed to by pointer parameters may also be referenced. Note that this does
not apply to objects pointed to by pointers contained in objects referenced. If
you pass a pointer to a node in a linked list and usepgheameters desig-
nation, the compiler will assume the fields of that node are referenced, but not
other objects pointed to by fields of that node.

The optional,all designation directs the compiler to make worst case
assumptions about what the designated routine might reference. This may not
be combined with a variable list or thparameters designation.

maybe_def routine-signature { variable-lis§ [,parameters][,all]

Tells the compiler what variables visible to the caller might be defined by call-
ing the designated routine. The optimizer will assume after the call that the
designated variables might have whatever values they had before the call, or a
new value given them by the call. As foraybe_use , this pragma will imply

the explicit_use_def pragma, and also may be used multiple times to
build up a longer list of variables.

The optional,parameters and,all designations operate the same way
they do for themaybe _use pragma.

definitely_def routine-signature{ variable-lis§

Tells the compiler what variables visible to the caller will definitely be given a
new value by calling the designated routine. Asrfmaybe use, this pragma

will imply the explicit_use_def pragma, and also may be used multiple
times to build up a longer list of variables.

returns_new_object functon-signature

Tells the compiler that the object pointed to by the pointer return value of the
designated function is an uninitialized object that is newly allocated. Do not
use this pragma on functions that return pointers to initialized structures,
unions, or variables.

returns_new_zeroed_object function-signature

Tells the compiler that the object pointed to by the pointer return value of the
designated function is newly allocated and all its bits have been set to zero.
never_returns routine-signature

Tells the compiler that the designated routine will never return. This gives the
compiler more accurate flow information.

pure_function function-signature

Tells the compiler that the designated function neither uses nor modifies any
variable that is visible to the caller and that it computes its return value

20-9

Compilation Systems Volume 2 (Concepts)

entirely from its actual arguments in a deterministic manner. This means that
the compiler can eliminate the call if its result isn’t used or if its result is
redundantly computed elsewhere in the caller routine (common subexpression
elimination). If an actual argument is of pointer type, it is implied that the
result is computed by manipulating the actual bits of the pointer value, not by
referencing the object pointed to by the pointer.

Obtaining Optimization Messages

Each compiler has a verbos& () option that produces output giving you more informa-
tion about the compilation. Part of this output may include informative messages about
optimization.

These messages inform you when the optimizer has been unable to perform one or more
optimizations because of the limits in effect for the compilation. You can usually correct
the problem by using theQ option to specify a higher limit. Refer to the appropriate lan-
guage reference manual or compiler man page to learn how to specify the verbose option.

Classes of Optimizations

CCG compilers perform the following classes of optimizations:

* Branch optimizations Page 20-10
* Variable optimizations Page 20-12
¢ Expression optimizations Page 20-16
* Loop optimizations Page 20-18
* Register allocation Page 20-24
* Instruction scheduling Page 20-24

* Inline expansion of subprograms (Ada only) Page 20-26

¢ Optimization of constraints (Ada only) Page 20-27

Branch Optimizations
The compiler performs branch optimizations to minimize the number of branches in the
program and to reduce memory requirements. These optimizations include the following:

¢ Straightening blocks
* Folding conditional tests

¢ Eliminating unreachable code

20-10

Program Optimization

* Inserting zero trip tests

¢ Duplicating partially-constant conditional branches

Each of these optimizations is described in the sections that follow. All are performed at
the GLOBAL, MAXIMAL, and ULTIMATE levels.

Straightening Blocks

If two sections of code are executed in sequence, the optimizer rearranges the blocks to
place them in sequence in the program so that it is not necessary to branch from one sec-
tion to the other. Subprograms with very complicated flow of control (especially those
using manyGOTGstatements) benefit most from this optimization.

Folding Conditional Tests

If all of the operands of a conditional test are constant, then the test can be replaced by a
branch to the appropriate location. Programmers seldom intentionally write programs with
such conditional tests. Most of the time, opportunities for this type of optimization arise as
a result of other optimizations. Constant propagation often makes all the operands of con-
ditional tests become constant (see “Copy Propagation” on page 20-14 for a description of
this optimization). Inline expansion of a subprogram may also create opportunities for this
type of optimization--especially if one or more arguments in the expanded call are con-
stant values (see “Instruction Scheduling” on page 20-24 for a description of this optimi-
zation). Using macros in C also frequently generates opportunities for this optimization.

Eliminating Unreachable Code

The compiler eliminates code that it determines can never be executed. Code that cannot
be executed is callednreachable Code most often becomes unreachable as a result of
folding a conditional test. Unreachable code usually results from programs that have a
long history of modification and maintenance--especially in large and complicated sub-
programs, or from folding conditional tests.

Inserting Zero Trip Tests

To minimize the amount of branching within loops, the optimizer may insem-trip tests

prior to the loop. This technique is used with loops that exit at the beginning of the loop
rather than at the end. These “early exit” tests are duplicated before the loop; then the body
of the loop is rearranged so that the test appears at the end of the loop. Inserting zero-trip
tests also helps in such optimizations as code motion and strength reduction (see “Code
Motion” on page 20-17 and “Strength Reduction” on page 20-20, respectively, for
descriptions of these optimizations).

The-Qgrowth_limit option controls zero-trip test insertion. If the optimizer is unable
to insert a zero-trip test because of the specifieawth_limit , YOU may receive an
informative message similar to the following:

20-11

Compilation Systems Volume 2 (Concepts)

foo.c, line 98: information: 50% growth limit prevents
any more zero trip tests for this routine.
See -Qgrowth_limit=N.

Duplicating Partially-Constant Conditional Branches

Another technique for minimizing branches is to duplicate conditional tests backward in
the program to paths in which all of the operands of the test are assigned constant values.
Constant propagation and folding conditional tests then replace the duplicated test with a
direct branch (see “Copy Propagation” on page 20-14 and “Folding Conditional Tests” on
page 20-11 for descriptions of these optimizations). On such paths of the program, then,
no test is necessary.

The following Fortran fragment illustrates this type of optimization:

1. IF(ETI.LT.0.0ETI = 0.0
2. IF(ETI.GT.1.0)GO TO 110
3. IF(XFFINT)ETI = 10.0

4. 110 ...

If the program executes the assignmenEfd on line 1, the test on line 2 is obviously
false. After optimization, this fragment is modified so that following the assignment on
line 1, the program branches directly to line 3.

Variable Optimizations

For purposes of optimization,\ariableis any scalar entity in the program that either has

or can have a unique memory address. Not all of the variables that the compiler considers
optimizing have names that you have declared, however, and some of the variables that
you have declared may not be considered because they are not susceptible to optimization.
Note the following:

* |n some cases, an array element accessed by a constant subscript may be
considered a variable.

* A scalar dummy argument in Fortran is usually considered a variable
although it is passed by address.

* Scalar variables in larg€OMMOMNIocks may not always be considered
variables.

CCG compilers perform the following optimizations on variables in your program:
¢ Dead code elimination
¢ Copy propagation
* Separate lifetimes
¢ Copy variables

Variable optimizations are performed only at the GLOBAL, MAXIMAL, and ULTIMATE
levels. At the MAXIMAL and ULTIMATE levels, dead code elimination and copy propa-

20-12

Program Optimization

gation are repeated several times. They are repeated because other optimizations can intro-
duce additional opportunities for them; for instance, strength reduction may render a pro-
gram variable unnecessary.

The number of variables that the compiler optimizes is limited by default. The optimizer
chooses which of the variables in a subprogram to optimize according to the number of
times that the variable is referenced. You can increase or decrease the number of variables
that the optimizer will optimize by specifying th@objects= N option, whereN repre-

sents the number of variables. Note, however, that this number may include some “artifi-
cial” variables created by the compiler as part of its translation of the source program.

If the verbose option is enabled and the optimizer observes more variables th@okhe
jects option allows it to optimize, the compiler issues an informative message such as
the following:

foo.c, line 34: information: only first 128 most
frequently occurring variables out of 337 total
variables were optimized. See -Qobjects=N option.

Note that substantially increasing the value for t®bjects option may significantly
increase compilation time and the amount of memory consumed by the compiler.

Each of the variable optimizations is described in the sections that follow.

Dead Code Elimination

An assignment to a variable that is not subsequently used or is always assigned another
value before being used is callddad codeA set of assignments to a variable may also be
dead if the values computed for the variable are used only in one or more of the assign-
ments in the set. The following C fragment provides an example:

1. i=0;

2. j=0;

3. while (j < 100) {
4, i=i+1;
5. foo() ;

6. =i+ 2;
7. j=j+1;
8. }

The assignments to (a local variable) on lines 4 and 6 compute values that are used only
in those assignments (line 6 computes a value that will be used only on line 4, and vice
versa). Those two assignments are actually dead code.

Most dead assignments occur because other optimizations have removed the uses of the
variable. Strength reduction, for example, replaces some occurrences of an induction vari-
able with compiler-generated temporary variables (see “Strength Reduction” on page
20-20 for a description of this optimization and a definitionimduction variablg. This
procedure may cause the assignments to the induction variable to become dead code.

Dead code may also occur in large and complicated subprograms when new assignments
are added or old code is removed. A new assignment may transform another assignment to
the same variable into dead code. Removing old code may remove all of the uses for a par-
ticular assignment.

20-13

Compilation Systems Volume 2 (Concepts)

Copy Propagation

20-14

When debugging your program, you may notice that some assignments appear to be
skipped or do not appear to have any associated code. Such discrepancies may be the
result of dead code removal, or they may be caused by several other optimizations. See
“Debugging Optimized Code” on page 20-32 for an explanation of the procedures for
debugging optimized programs.

Copy propagation is an optimization in which an assignment to a variaplep@gatedo

uses of that value of the variable. This propagation is performed by replacing references to
the variable by the right-hand side of the assignment. In some cases, propagation allows
the assignment to be removed; in other cases, it allows faster access to the value or reduces
the usage of registers. There are three distinct types of copy propagation: constant, vari-
able, and expression. Each type is explained in the paragraphs that follow.

Constant propagatiois performed if the right-hand side of the assignment is a constant.

In this type of propagation, the optimizer replaces as many references to the variable as it
can. (It cannot, for example, replace a reference in which the address of the variable is
used, as is the case when passing the variable by reference to another subprogram.) If all
of the references that use the assigned value are replaced, then the assignment is removed.

A special form of constant propagation is performed for Fortran programs. A local vari-
able (not in aCOMMOIMNocK) that is initialized with @ATAstatement and never modified

in the subprogram can usually be replaced by the initializing constant. This form of con-
stant propagation is performed primarily to accommodate older Fortran/66 programs in
which DATAstatements frequently substituted for the absencePARAMETERtate-
ment.

Variable propagatiormay be performed if the right-hand side of the assignment is another
variable. Variable propagation is usually performed only if all references to the assigned
value can be replaced and the assignment then removed. Even if the assignment cannot be
removed, the optimizer may decide to perform the propagation if it determines that the
variable on the right-hand side can usually be accessed faster than the variable on the left.

NOTE

In C, if the variable on the left-hand side of the assignment is
declaredregister , variable propagation is not performed.

Expression propagatiois attempted if the right-hand side of the assignment is an expres-
sion. To prevent unprofitable optimizations, the optimizer’'s use of this form of propaga-
tion has quite a few restrictions; for instance, only one reference to the assigned variable is
replaced. If more than one reference uses the assigned value, the compiler refuses to prop-
agate the expression. Furthermore, the replaced reference must not be inside a loop if the
original assignment is not also in that loop.

Copy propagation may affect your debugging efforts even more than dead code removal.
In addition to possibly removing assignment statements, copy propagation also affects the
values of variables. Refer to “Debugging Optimized Code” on page 20-32 for additional
information on this problem.

Separate Lifetimes

Copy Variables

Program Optimization

Using the same variable name for different purposes is fairly common practice. It often
happens with loop-control variables; you may use the same variable to control two unre-
lated loops in a subprogram when you can as easily use two variables. The following For-
tran program fragment provides an example:

A = F(X)
IF (A .GT. 0) THEN
Y=A+B
ELSE
Y=B-A
ENDIF
A = G(X)

NogosrwbdE

In this example, the referencesAan lines 1-5 are distinct from the reference on line 7.
You can use another variable name in the first set of lines without affecting the behavior
of the program.

In these cases, the compiler makes each use of the variable a logically different variable
(but maintains the same name). The separate variables can then be allocated to different
locations (either to different registers or one instance to a register and the other to mem-
ory--the compiler never allocates separate lifetimes of a variable to two different memory
locations). With this approach, a register is more likely to be available to hold the variable.

In addition to the naturally occurring opportunities for separate lifetimes of variables, the
optimizer creates more opportunities by inserting new assignments at strategic locations in
the program. These assignments copy the variable to itself to introduce multiple separate
lifetimes of the variable. Copy assignments for a variable used inside a loop, for example,
may be inserted before and after the loop. In this way, the variable can be placed in a reg-
ister for the duration of the loop, although outside the loop, a register is not available (or
the variable must reside in memory for some other reason).

Copy variables are particularly effective with Fortr&®©MMOMariables and Ada
library-level package variables. Normally these variables must reside in memory so that
other subprograms can access them; however, if a loop that uses such a variable does not
call any other subprograms, then that variable can be allocated to a register during the
loop.

Note that some variables are not subject to the copy-variables optimization; instead, they
are treated as expressions (see “Expression Optimizations” on page 20-16 for a description
of expression optimizations). Some examples of such variables are scalar Fortran dummy
arguments and Ada variables that are declared in an enclosing subprogram.

The copy-variable optimization is restricted to thenost deeply nested loops in a routine,
whereN is specified with theQloops= N option. If you have more than this number of
loops in your program and the verbose option is enabled, you may receive an informative
message similar to the following:

20-15

Compilation Systems Volume 2 (Concepts)

foo.c, line 34: information: copy variables applied only
to first 20 most deeply nested loops out of 37 total
loops. See -Qloops=N option.

Copy variables can affect debugging of optimized programs by making it difficult or
impossible to examine the value of a variable. See “Debugging Optimized Code” on page
20-32 for an explanation of the procedures for debugging optimized programs.

Expression Optimizations

Expression optimizations refer to efforts made by the compiler either to eliminate the eval-
uation of an expression or to reduce the time or space required for that evaluation. The
CCG optimizer applies the following expression optimizations:

¢ Algebraic simplification
¢ Address mode determination
¢ Common subexpression elimination

¢ Code motion

Algebraic simplification and address mode determination are always performed. Common
subexpression elimination and code motion are performed only at the GLOBAL, MAXI-
MAL, and ULTIMATE levels. Each of these optimizations is explained in the sections that
follow.

Algebraic Simplification

20-16

The compiler performs many transformations on expressions in order to eliminate unnec-
essary computations, take advantage of special hardware, and make optimum use of
machine resources. The specific transformations performed vary from language to lan-
guage and from one target architecture to another.

NOTE

The compiler does not perform an algebraic simplification if
doing so violates the language’s rules concerning parentheses or
the order in which expressions are evaluated.

Some of the transformations that are performed are described as follows:

1. An operation in which all of the operands are constants is folded into a sin-
gle constant.

2. Constants within an expression are collected whenever possible by apply-
ing the laws of commutation, association, and distribution to the operations
of addition, subtraction, multiplication, and division. This transformation
creates additional opportunities for constant-folding.

Program Optimization

Except for special cases, these transformations are limited to integer
expressions to prevent introduction of unwanted round-off errors in float-
ing-point operations. Even for integer operations, however, some of the
transformations can be unsafe because of possible overflow. These trans-
formations are enabled only if unsafe optimizations are allowed.

3. Arithmetic identity operations (for example, multiplying by zero or one and
adding zero) are eliminated for both integer and floating-point operands.

4. Constants are factored out of integer expressions when possible; for exam-
ple, the expressioA*5)+(B*5) is transformed intdA+B)*5 . This
transformation is performed only if unsafe optimizations are allowed.

5. Whenever possible, additive constants that appear in address computations
are collected (for example, accessing array eleméhtl)). If the base
address of the item being accessed is also constant, the additive constants
are combined with it, thus eliminating one or more addition operations. If
the base address is not constant, then the compiler attempts to rearrange the
computation so that the addition can be performed by the addressing hard-
ware.

6. For Fortran, some trigonometric and transcendental identities are also
applied to expressions; for instan@N(X) * COS(X) is transformed
into 0.5*SIN(2*X)

Address Mode Determination

System processors have the capability of combining the computation of an array-element
address with the access to memory. Using these conguldsess modesan improve per-
formance by reducing the amount of explicit computation required to access data. CCG
compilers take advantage of this capability by analyzing address computations and by
selecting the best address mode to use in each case.

Common Subexpression Elimination

Code Motion

Common subexpression eliminatimfers to the optimizer’'s attempt to avoid evaluating

an expression whose value has already been computed. The optimizer analyzes each sub-
program to determine the flow of data and the occurrence of each unique expression. If an
expression is evaluated at a point where its value has previously been computed, the first
evaluation saves the value, and the subsequent evaluation only references it. If there are
some code paths to the point of evaluation that evaluate the expression and some paths
that do not, the optimizer may insert computations of the expression on the paths where it
is missing.

An expression that is computed inside a loop and whose value doebarnge within that

loop is a candidate fatode motionThe optimizer inserts a computation of the expression
before entering the loop and saves that value. The computation within the loop is replaced
with a reference to the saved value.

20-17

Compilation Systems Volume 2 (Concepts)

Code motion can sometimes be applied to an expression whose valuetdoege within
the loop. Consider the following Fortran program fragment:

1 DO 10 | = 1N

2 IF (I .GT. M) THEN
3. A=A-2

4. ELSE

5 cC=Cc+1

6 ENDIF

7 X() = A + B

8. 10 CONTINUE

In this example, the value & + Bcan be computed outside the loop and recomputed
only whenA's value changes on line 3.

If you are programming in Ada, note that code motion may affect the behavior of the pro-
gram if an expression raises a predefined exception sudthHdERIC_ERRQRor
instance, although an expression may appear after an assignment to a variable, code
motion may cause the expression to be evaluated before the assignment. Therefore, your
program should not depend on this ordering unless the assignment and expression occur in
different exception frames. (Code motion does not move an expression evaluation outside
of any exception frame in which it occurs.)

Loop Optimizations

Because most programs spend the majority of their execution time in one or more loops,
CCG provides an extensive set of loop optimizations. These optimizations are performed
only at the MAXIMAL and ULTIMATE levels because they may significantly increase
compile time. They may also significantly increase the amount of memory that your pro-
gram requires, so you may need to use i@growth_limit option to control their
behavior more precisely.

NOTE

The optimizer does not restrict its attention to loops formed by
using high-level language constructs. Loops formed from condi-
tional tests and explicit branches are also considered in loop opti-
mizations.

Loop optimizations cannot be applied to loops with multiple entry points. Procedures for
identifying such loops are explained in “Loops with Multiple Entry Points” on page 20-19.

The following optimizations are applied to loops:
¢ Strength reduction (See “Strength Reduction” on page 20-20.)
* Testreplacement (See “Test Replacement” on page 20-21.)

¢ Duplicating loop exit tests (See “Duplicating Loop Exit Tests” on page
20-21))

20-18

Program Optimization

* Loop unrolling (See “Loop Unrolling and Software Pipelining” on page
20-22))

Loops with Multiple Entry Points

Loop optimizations cannot be applied to loops with more than one point of entry. If the
verbose option is enabled, the compiler warns you about such loops and attempts to trans-
form them into single-entry loops by duplicating part of the loop body. The following For-
tran procedure, for example, contains a loop with multiple entries:

1. subroutine irred (arr,n)
2. integer arr(n)
3. i=n-1

4. goto (10,20,30), i

5. 10 continue

6. arr(i) = arr(n) - arr(i+1)
7. 20 continue

8. arr (i+1) = arr(i) + arr(n)
9. 30 continue

10. i=i-1

11. if (i .gt. 0) goto 20
12. end

The messages you receive may be similar to the following:

At irreducible.f:7: information: Forward branch into

loop number 1 repaired: Routine grew to 114%.
At irreducible.f:9: information: Forward branch into

loop number 1 ends here and originates at line 4

Each loop is numbered internally by the compiler so that messages can refer to them
uniquely. The messages provided in the example both refer to the same loop. The first
message indicates whether or not the compiler has been able to repair the problem--if it
has not, the message indicates why. This message also refers to the line in the source in
which one of the entry points of the loop occurs--in this case, line 7. If the compiler has
been able to repair the problem, this message tells you approximately how much more
memory the transformed code occupies. In this example, the transformed code occupies
about 14 percent more memory than the original.

The second message informs you where the second entry into the loop originates and ter-
minates. This information enables you to modify your program to remove the problem. In
this example, line 4 branches into the loop to line 9. If there are more than two entry
points, the compiler repeats the second message for each one.

NOTE

You may occasionally see a message that refers to “unknown
line.” Such a message means that the compiler cannot determine
exactly which line has caused the extra entry point into the loop. It
usually happens with programs that contain m&QT Gstate-
ments.

20-19

Compilation Systems Volume 2 (Concepts)

Strength Reduction

20-20

The compiler repairs loops with multiple entries only if doing so does not violate the spec-
ified growth_limit . Note that the percent increase that the compiler reports is only an
approximation because it is based on the compiler’s internal representation of the program
rather than the actual instructions generated. Furthermore, the compiler uses at most half
of the allowedgrowth_limit in repairing these loops. If you specify
-Qgrowth_limit=30 , for example, repairing multiple-entry loops will increase pro-
gram size by a maximum of 15 percent.

When the compiler repairs forward branches, it reports percent increases that are cumula-
tive; that is, the amount of increase reflects the new total size of the procedure, including
all previous repairs. Reporting a cumulative total helps you to select appropriate values for
the -Qgrowth_limit option. It is important to note that the messages about repairs to
multiple-entry loops are not necessarily generated in the same order in which the loops
have been repaired. The new size reported in one message may be greater than that
reported in a subsequent message. This indicates that the loops were repaired in a different
order.

The following C program segment illustrates how you may unwittingly create a loop with
multiple entry points by using goto :

if (@ < b) {
lab1:
a+=b ;
}
if (@ == b) goto labl ;

agprOdE

This loop has two entry points because line 5 is part of the loop. When the test on line 1 is
true, the loop is entered at ladabl . When the test on line 1 is false, the loop is entered
at line 5.

Many of the loop optimizations involve the concepts of a region constant and an induction
variable. Aregion constants an expression whose value does not change within a loop. A
variable is classified as anduction variableif all assignments to it within a loop have
one of the following forms:

IVl = IVl + RC
IVl = IVl - RC
Vi = V2
IVl = RC

whereRCis a region-constant expression, ded andIV2 are induction variables.

Strength reductioms an optimization that is applied to integer expressions in loops; it is
applied to expressions that involve only addition and multiplication. One of the operands
of the expression must be an induction variable; all of the other operands must be
region-constant expressions. Such expressions can be reduced to simple addition opera-
tions that execute much faster.

Expressions to which strength reduction optimization can be applied occur more often
than you may think. References to array elements that are indexed by an induction variable
are usually candidates for strength reduction because the computation of the array-element
address typically involves a multiplication (by the stride of the array) and one or more

Test Replacement

Program Optimization

addition operations. Multidimensional arrays usually involve more than one multiplica-
tion, so they benefit even more from strength reduction.

To ensure profitability, the optimizer performs strength reduction on an expression only if
the expression is computed every time the loop body is executed. Expressions computed
only inside an if-test in the loop, for instance, are not reduced. When possible, you should
avoid writing loops in which a test for exiting the loop precedes other computations in the
loop. Doing so prevents the optimizer from performing strength reduction on expressions
appearing after the exit test. It may also prevent other useful optimizations from being
performed.

In many loops, an induction variable controls the number of iterations. The following C
fragment provides an example:

for (i = 1; i < ending_value ; ++i) {

}

In this examplej is an induction variable whose value determines when the loop termi-
nates. If there are one or more expressions involving which strength reduction can be
applied and if the value df is not required after the loop terminates, then the loop exit test
can be modified to test the value of the reduced expression (the value to wkiaom-
pared is also suitably modified). This modification allows the variable be eliminated.

Althoughtest replacememarely causes a failure, it is potentially an unsafe optimization.

If the induction variable used in the test can become large enough to cause one of the
reduced expressions to overflow, then test replacement can cause a program to behave
incorrectly. The problem most likely to occur is that the program loops infinitely. If you
suspect that test replacement has caused a program to fail, disable unsafe optimizations,
and recompile your program.

Duplicating Loop Exit Tests

At the MAXIMAL and ULTIMATE levels, the optimizer may duplicate a loop exit test
elsewhere in the loop to avoid an unconditional branch. The following C fragment from a
binary search algorithm illustrates the need for this optimization:

1. min = 0 ;

2. max = N - 1 ;

3. while (1) {

4. target = (min + max)/2 ;

5. if (arr [target] == elem) {

6. break ; /* exit the loop, found */
7. } else if (arr [target] < elem) {

8. max = target - 1 ;

9. } else {

10. min = target + 1 ;

11. }

12. if (min > max) break ; [* exit the loop,

20-21

Compilation Systems Volume 2 (Concepts)

not found */
13. }

Normally, after executing line 8, the program has to branch to line 12, where it tests
whether to exit the loop. In this case, the optimizer may decide to duplicate the test on line
12 after line 8, thus eliminating an unconditional branch.

Internal limits and theQgrowth_limit option prevent this optimization from drasti-
cally increasing the size of the program. Because this optimization occurs after the other
optimizations that are controlled b@growth_limit , the optimizer reserves 5 percent

of the specifiedyrowth_limit for this optimization. If the preceding optimizations use
less than 95 percent of the allowgtbwth_limit , this optimization is allowed to use

all that remains.

If the growth_limit prevents a loop exit from being duplicated and the verbose option
is enabled, you may see the following informative message:

foo.c, line 56: information: 25% growth limit prevents
replacing unconditional branch with loop exit code.
See -Qgrowth_limit=N.

Loop Unrolling and Software Pipelining

20-22

Unrolling a loop means that the loop body is duplicated one or more times, with the dupli-
cates and the original body concatenated. The loop exit test, however, is not repeated for
each duplication, so the unrolled loop executes one test for several executions of the loop
body. This procedure reduces the overhead involved for each execution of the loop body
and makes the loop run faster. Programs benefit more from loop unrolling because on
pipelined and/or superscalar machines, computations from one copy of the loop may be
overlapped with computations from another (see “Inline Expansion of Subprograms (Ada
only)” on page 20-26 for a description of instruction scheduling).

Because the number of iterations may not be an integer multiple of the unrolling factor,
there may be some clean up iterations following the unrolled loop. We refer to these as
“peeled” iterations.reorder can take advantage of these peeled iterations to do an opti-
mization called software pipelining. The basic idea of this optimization is to schedule
some instructions from subsequent iterations during the current iteration. Some instruc-
tions from the unrolled body are moved into the block that branches to the loop, and the
corresponding instructions in the peeled iterations are moved into the loop.

Loop unrolling is controlled by several of th® options.Loops with an iteration count
that is known at compile-time are controlled separately from those with a variable itera-
tion count. This is because unrolling a loop that iterates only a few times is often unprofit-
able. The compiler can make profitability decisions for the former, but the user must make
them for the latter.

The -Qunroll_limit_const option specifies the maximum unroll factor for each
loop whose iteration count is a compile time constant. A valud ofeans that the body of

the loop is duplicatedi-1 times to get a total ol copies of the body in the unrolled loop
(thus, specifying a limit of one or zero disables this optimization). The optimizer deter-
mines the best unroll factor for each loop, but it never chooses a factor that exceeds
unroll_limit or a factor that is greater than eight. th@peel_limit_const

option specifies a minimum number of times to be peeled off from the unrolled loop. This can
be used to force software pipelining to be done even if the loop is not unrolled.

Program Optimization

The-Qunroll_limit_var option specifies the unroll factor for loops with an iteration
count that is not known at compile time (i.e., whose count is variable). Because the com-
piler does not know how many times the loop iterates, it also does not know how many
iterations are peeled off. Thus there is a clean-up loop that is not unrolled after the
unrolled loop. If the unroll factor is 2, this clean up loop is not actually a loop, but is a sin-
gle iteration with a zero trip test before it. Software pipelining on these loops is done only
if the -Qpeel_var option is used. This option turns off unrolling of those loops and
peels a single iteration off. It is difficult, if not impossible, to predict when this is profit-
able.

The choice of unroll factor may be further limited by th@growth_limit
option.When loop unrolling is performed, the amount of available growth that remains
from previous optimizations minus approximately 5 percent (to allow for duplication of
loop exit tests as explained in “Duplicating Loop Exit Tests” on page 20-21) is appor-
tioned equally to all of the candidate loops. Thus, large loops may have a smaller unroll
factor than small loops.

To be a candidate for loop unrolling, a loop must be controlled by an induction variable. If
the initial value, increment, and final value of the induction variable are all constants, then
the optimizer can determine exactly how many iterations the loop will perform. If possi-
ble, it chooses an unroll factor that evenly divides the total number of iterations. Other-
wise, the unrolled loop is preceded by one or more copies of the loop body to make the
number of iterations a multiple of the unroll factor.

If any one of the initial value, increment, or final value of the induction variable isanot
constant, then the optimizer cannot replace the original loop. Instead, it constructs appro-
priate conditional tests that determine whether to execute the unrolled loop or the original.
Furthermore, if the number of iterations is not a multiple of the unroll factor, the original
loop may be executed after exiting the unrolled loop.

If the optimizer is unable to compute the total number of iterations, then unrolling the loop

may gain little or nothing in performance. If, for instance, the loop is seldom executed or

usually executed once, unrolling may actually degrade performance by adding additional
overhead to the subprogram. You should probably disable loop unrolling for the subpro-
gram.

The optimizer cannot choose the optimum unroll factor for loops with an unknown itera-
tion count. In some cases, the unrolled loop may require more registers than are available,
thus increasing memory accesses. As a result, the performance gain may be significantly
less than you expect. Correction of these problems requires trial and error choice of the
unroll limit and analysis of the program’s behavior.

In rare cases, loop unrolling may also worsen instruction-cache behavior by increasing the
program size. If you suspect this is happening, disable loop unrolling, specify a very small
growth_limit , or specify a smaller unroll limit.

If the specifiedgrowth_limit prevents the optimizer from unrolling a loop that other-
wise can be unrolled and if you have enabled the verbose option on the compilation, you
may receive one or more informative messages. The following message appears if the
specifiedgrowth_limit prevents anyoop from being unrolled:

foo.c, line 98: information: 25% growth limit prevents
unrolling any loops in this routine.
See -Qgrowth_limit=N.

20-23

Compilation Systems Volume 2 (Concepts)

If one or more loops are simply too large to be unrolled under the specified
growth_limit , however, you may receive the following message for each of the loops:

foo.c, line 98: information: 25% growth limit prevents
unrolling this loop. See -Qgrowth_limit=N.

Register Allocation

At all levels of optimization, the compiler performs sophisticated register allocation algo-
rithms to make the best use of the machine registers and to minimize accesses to main
memory. At the GLOBAL, MAXIMAL and ULTIMATE levels, however, the compiler
performs more preliminary analysis of the program to provide even better register alloca-
tion.

The register allocator does not necessarily try to minimize the number of registers used,; its
goal is to minimize the amount of data movement between two registers or between regis-
ters and memory. Furthermore, the register allocator attempts to provide the instruction
scheduler with more opportunities for rearranging instructions by evaluating expressions
in different registers when possible.

Because of this approach, optimization may, in rare cases, cause a subroutine to execute
more slowly than the un-optimized version. Slower execution results when some sections
of the subroutine are rarely executed but require many registers for efficient execution.
Those registers may have to be saved in memory when entering the subroutine and loaded
again when exiting. Hence, the entry and exit code takes longer to execute, and the extra
registers do not improve execution speed because the code in which they are used is sel-
dom executed.

Instruction Scheduling

20-24

Instructions are divided into several classes. A different functional unit executes each class
of instructions. As a result, several instructions can be executing simultaneously. The com-
pilers take advantage of this capability éghedulingor reordering, the instructions of the
program and attempting to keep all of the functional units as busy as possible.

Instruction schedulingisually causes parts of several statements to be intermixed. You
may be affected in two ways. First, instruction scheduling has effects similar to code
motion when exceptions caused by evaluation of expressions occur (see “Code Motion”
on page 20-17 for a description of code motion optimization). An expression that occurs
after an assignment in the text may, in fact, be partially or completely evaluated before the
assignment occurs. If that evaluation raises an exception, you cannot depend on the value
of the variable to which the assignment is made. Note, however, that instruction schedul-
ing obeys all of the rules of Ada so that an expression is never evaluated outside the excep-
tion frame in which it occurs.

Second, you may observe the effects of instruction scheduling when you are debugging
the program; for instance, if you try to single step through the lines of the program, you
may notice that the program seems to skip back and forth among two or more statements.
The reason is that the instructions for those statements have been intermixed, yet each still
carries with it the line number of the associated program text. Such information can be

Program Optimization

invaluable if an exception occurs: once you find the offending instruction, you know
exactly which line of your program has caused the failure. Unfortunately, debugging
becomes somewhat more difficult.

When instructions are moved out of a basic block (eight linear set of instructions without
branches), either to a place where it is being executed speculatively or to another block
that always executes if the source block executes and vice versa. line number information
is not carried along. Thus some parts of a statement might be executed long before debug
information indicates.

By default, instruction scheduling is performed at the GLOBAL, MAXIMAL and ULTI-
MATE optimization levels. The C and Fortran compilers provide command-line options to
disable instruction scheduling at the GLOBAL, MAXIMAL and ULTIMATE levels and
enable it at the NONE and MINIMAL levels. For details, refer to the system manual pages
for these compilers. Enabling instruction scheduling at MINIMAL is typically the cheap-
est compile-time method to get a significant performance boost.

Post-Linker Optimization

analyze optimizes programs during the post-linking stage. It uses program-wide, com-
mon subexpressions to optimize address and constant computation. (Refeatmathe
lyze(1) man page for more information abcantalyze).

During the post-linking process, the compiler drivers pass@heption to analyze, which
invokes the post-linker optimization-codeanalyze . This creates program-wide, com-

mon sub-expressions, and insures that the target instruction cache doesn't fail because of
instruction misalignment.

Four reserved registen28 throughr31 on the PowerPC, are set equal to the most com-
mon values that were loaded into registers using tt&e fD,imm " on the PowerPC.

These values are usually the high-order, sixteen bits of the address of external variables.
These same values get loaded repeatedly. By loading the reserved registers with the most
common values at program start-up time, most loads and stores of external variables can
be performed with one instruction instead of two instructions.

Additionally, if two different registers are loaded with the same value %igh instruc-
tions, and one of them reaches all of the uses of the o#malyze will substitute the
former for the latter and eliminate the lattés’ instruction even if its value isn’t
loaded into one of the registers.

The-W and-n options ofanalyze may be used to adjust the weighting of the static
count oflis instructions.

The Concurrent compilation system puts additional relocation information into the vendor
section to handle Fortran programs with assigB€ir Gtatements. Handwritten assembly
code, or code produced by non-Concurrent compilers, might not be compatible with this
optimization. The X option can be used to exclude such routines.

If analyze detects a routine that references any of the reserved registers prior to optimi-
zation,analyze will generate a fatal error and refuse to optimize the program. Some-
times, certain assembly routines can reference these registers in a harmless fashion. The
setimp andlongjmp routines, along with some signal handling code sigtramp

are known routines that are automatically excluded from optimization. Any other routines

20-25

Compilation Systems Volume 2 (Concepts)

that reference these registers can still be optimized by naming them witiX tbetion.
This will causeanalyze to ignore them.

Programs that use the threads library use regiter as a process private data pointer
(also called thehreads register.

The link editor,ld , scans all object linked together, including both statically and dynami-
cally linked libraries, and sets thgodp_used flag in the vendor section if certain threads
library routines are used. Whemalyze sees this flag set, it does not use register r31 to
optimizelis instructions. See also thbread(3thread) man page.

Inline Expansion of Subprograms (Ada only)

20-26

The Ada compiler supports the substitution of subprogram bodies for subprogram calls.
Such substitutions are controlled by user application of the predefined Ada language
pragmaJNLINE , and by inline configuration parameter limits.

The intent of pragm#&NLINE is to notify the compiler that particular subprograms should

be considered for inline substitution, thereby eliminating the overhead associated with
subprogram calls. PragmBbILINE can, therefore, be effective in maximizing perfor-
mance while allowing the user to adhere to such higher level programming methodologies
as modularity, data abstraction, and information hiding.

While the intent of pragm#\LINE is to improve execution speed, there is no guarantee
that the resultant code will actually run faster. In some cases, the overhead involved in the
preservation of Ada language rules for subprogram calls (for example,
copy-in/copy-out argument semantics, exception handling, and so on) may equal or
even overshadow the savings achieved in removal of the actual subprogram call. Addi-
tionally, through repeated inline substitution within a single subprogram, the actual size of
the subprogram may prevent other optimizations from occurring (for example, see the
information on variable optimizations presented in “Variable Optimizations” on page
20-12). PragmdNLINE also creates additional compilation unit dependencies (as
required by the Ada language), which cause additional routines to be recompiled after the
body of a subprogram that has been expanded inline is modified. You can circumvent the
overhead associated with implementitapy-in/copy-out semantics when the argu-
ments on the subprogram call are constants or stack variables that are not visible to the
body of the subprogram.

You can realize the most effective use of pragiN&INE by judiciously applying it in
time-critical areas. Inline expansion is especially effective when it creates opportunities
for other optimizations to occur; for instance, if a subprogram uses the value of an argu-
ment to select among various actions, and calls to the subprogram often pass a constant
value for that argument, inline expansion, together with constant propagation, can elimi-
nate the test and remove the unused actions (see “Copy Propagation” on page 20-14 for a
description of constant propagation optimization). A subprogram called inside a loop is
also a good candidate for inline expansion because it may allow code motion to move
some of the expressions in the subprogram outside the loop; strength reduction may also
be applied to the expressions in the subprogram (see “Code Motion” on page 20-17 and
“Strength Reduction” on page 20-20 for descriptions of code motion and strength reduc-
tion optimizations, respectively).

Program Optimization

The Ada compiler does not always honor the user’s request to inline a subprogram call.
The compiler issues a warning message when it rejects inline substitutions because of lim-
itations on the form of subprograms or the form and type of subprogram arguments and
when HAPSE inline configuration parameters are exceeded. Inline limitations and config-

uration parameters are described in &P SE Reference Manual

Optimization of Constraints (Ada only)

The Ada programming language is more stringent concerning the integrity of data than
such languages as C and Fortran. Ada declarations of variables and data types include the
provision for specifying the values that are allowed for those entities. In many cases, the
compiler must insert run-time tests to ensure that those constraints are obeyed; these tests
are callecconstraint checksThey generally occur in one of the following contexts:

* An assignment to a variable may require a constraint check to ensure that
the value being stored is valid.

* An operation such as addition may require a constraint check to ensure that
the result is a valid value of the result’s data type.

* An argument to a function or procedure may require a constraint check to
ensure that the argument’s value is within the range required by the formal
parameter’s data type.

* A dereference of an access variable may require a check to ensure that the
access variable is not null.

At the GLOBAL, MAXIMAL and ULTIMATE levels, the CCG optimizer has the capabil-
ity to remove these constraint checks when it can determine that they are unnecessary. As
a simple example, consider the following Ada program fragment:

procedure doit is
subtype little is integer range 1..10 ;

a, b : little ;

c : integer ;
begin

c:=a+b;

end procedure doit ;

Normally, the additiora + b checks that its result does not exceed the bounds of an inte-
ger. In this case, however, the range of the operands precludes the possibility of overflow;
therefore, the check can be removed.

Another example is provided by the following Ada program fragment:

procedure doit is
subtype little is integer range 1..10 ;
subtype bigger is integer range 1..100 ;

a, b : little ;
c : bigger ;
begin

20-27

Compilation Systems Volume 2 (Concepts)

20-28

c:=a+b;
end procedure doit ;

The assignment to normally requires a constraint check to ensure that the result of the
addition is a valid value of typbigger . In this example, however, the typesafindb
guarantee that their sum will be within the boundshadger ; the constraint check is
unnecessary.

The following Ada program fragment contains function calls:

package pkg is
subtype little is integer range 1..10 ;
subtype bigger is integer range 1..100 ;

function funl (a, b: little) return bigger ;
function fun2 (a, b: bigger) return bigger ;

procedure doit is
a, b : integer ;
c : bigger ;
begin

c := funl (a, b) + fun2 (a, b) ;
end procedure doit ;
end package pkg ;

The call tofunl imposes constraint checks on batlandb. Ordinarily, the call tdfun2

also imposes these constraint checks; however, the optimizer can remove these checks
because they have been previously performed. Also note that the ranges of the operands of
the addition imply that the result can never be smaller than two; thus, the assignngent to
needs to check only the upper bound of its constraints.

The optimizer also uses comparisons in the program to narrow range restrictions on vari-
ables; for instance, in the following Ada program fragment:

procedure doit is
subtype little is integer range 1..10 ;
a, b : little ;
c : integer ;

begin

if ¢ >= 1 then
a:=c;
if ¢ <= 10 then
b :=c;
end if ;
end if ;
end procedure doit ;

the assignment ta must check that the value ofdoes not exceetl0. It does not have to
check the lower bound because the if-test guarantees thleady meets that condition.
Similarly, the assignment b needs no constraint checks because the combination of the
two if-tests guarantees thatlies in the rangd...10

Program Optimization

In some cases, the range information derived from the program can be used to replace a
variable with a constant. The following Ada program fragment provides an example:

procedure doit is
subtype little is integer range 1..10 ;

a, b : little ;
c : integer ;
begin
c:=a,;
if ¢ < 2 then
b :=c;
end if ;

end procedure doit ;

After the assignment := a, c is known to lie in the rang&..10 . Within the if-test,
c is further restricted to be less th&nthe only possible value for, then, isl. In the
assignment td, therefore, the optimizer will replacewith the valuel.

Obviously, the examples used here to explain the various types of constraint optimizations
are very simple. Nevertheless, typical Ada applications benefit substantially from these
optimizations.

Constraint optimizations are performed at the GLOBAL, MAXIMAL and ULTIMATE
levels even when run-time constraint checks are suppressed by the user (either-8ia the
option or the predefined language pragrB&PPRESY As indicated in the preceding
paragraphs, constraint optimizations benefit general code sequences and remove redun-
dant constraint checks.

Inline Expansion of Subprograms (C++ only)

The C++ compiler supports the substitution of subroutine bodies for their calls. Such sub-
stitutions are controlled by use of tiidine C++ keyword (which is implied in some
contexts). For language specifics, the user is directed to any good C++ text.

The intent ofinline is to notify the compiler that particular subroutines should be con-
sidered for inline substitution, thereby eliminating the overhead associated with subrou-
tine calls. Inlining can, therefore, be effective in maximizing performance while allowing
the user to adhere to such higher level programming methodologies as modularity, data
abstraction, and information hiding.

While the intentinline is to improve execution speed, there is no guarantee that the
resultant code will actually run faster. In some cases, the overhead involved in the preser-
vation of C++ language rules for subroutine calls (for example, exception handling) may
equal or even overshadow the savings achieved in removal of the actual subroutine call.
Additionally, through repeated inline substitution within a single subroutine, the actual
size of the subroutine may prevent other optimizations from occurring (for example, see
the information on variable optimizations presented in “Variable Optimizations” on page
20-12).

You can realize the most effective useioline by judiciously applying it in time-criti-
cal areas. Inline expansion is especially effective when it creates opportunities for other
optimizations to occur; for instance, if a subroutine uses the value of an argument to select

20-29

Compilation Systems Volume 2 (Concepts)

among various actions, and calls to the subroutine often pass a constant value for that
argument, inline expansion, together with constant propagation, can eliminate the test and
remove the unused actions (see “Copy Propagation” on page 20-14 for a description of
constant propagation optimization). A subroutine called inside a loop is also a good candi-
date for inline expansion because it may allow code motion to move some of the expres-
sions in the subroutine outside the loop; strength reduction may also be applied to the
expressions in the subroutine (see “Code Motion” on page 20-17 and “Strength Reduc-
tion” on page 20-20 for descriptions of code motion and strength reduction optimizations,
respectively).

The C++ compiler does not always honor the user’s request to inline a subroutine call. In
this case, an out-of-line instance is called instead.

Precise Alias Analysis (C++ Only)

All compilers do a certain amount of alias analysis to drive the optimization algorithms.
Alias analysis determines what variables are being referred to by an expression such as
*p , i.e., it determines what variables that expression is an alias for. Most compilers make
simple worst case assumptions about aliasing, though some languages have more restric-
tive rules, such as the FORTRANT7Y7 rule that a formal argument does not alias another for-
mal argument or other variable visible to the subroutine.

The C++ does a more sophisticated analysis. It takes advantage of the assumptions
allowed by the emerging C++ standard and also tracks assignments so that it has a more
precise idea of the set of variables a pointer might be pointing too. Also, when the address
of a variable is taken, it is possible to determine if that address gets passed to an external
routine by way of a global variable or actual argument. If not, meaning that the address is
used locally in a single subroutine only, it isn’t necessary to assume that the variable
whose address was taken is killed by function calls.

This framework makes it easy and advantageous to add pragmas (See “Giving Hints to
Compiler Optimizations (C++ only)” on page 20-8) to provide information to the opti-
mizer about things that ordinarily could only be obtained by having an interprocedural
optimizer analyzing the whole program and will be the enabling technology for future pro-
gram analysis and debugging tools in the future.

Programming Techniques

20-30

The programming techniques that you can use for optimization of your code include cod-
ing techniques and performance analysis techniques. Coding tips are presented in “Coding
Tips” on page 20-31. Performance analysis is discussed in “Identifying Performance Prob-
lems” on page 20-32.

Program Optimization

Coding Tips

The CCG compilers are designed to obtain the highest performance code possible for your
program, but they can go only so far in optimizing your program. It is recommended that
you use the following techniques to improve a compiler’s ability to optimize your pro-
gram:

1. If you need to evaluate the same expression twice, write it exactly the same
way each time. Do notwrita + b + c onetimeand + ¢ + b the
next.

2. Do not write loops with multiple entry points. Although the optimizer may
be able to repair such loops, it may not be able to do so as well as you can.

3. Avoid writing loops that seldom execute more than once. If you cannot
avoid writing such a loop, consider putting it in a separate subroutine so
that any extra overhead imposed by optimizing the loop is confined to that
routine. As an alternative, consider turning off loop unrolling for that rou-
tine.

4. If you are stepping through an array with a loop, try to makesthiee a
constant. The stride is the number of elements between successive ele-
ments examined by the loop. It is possible to make a loop with a stride that
is not a constant although the increment of the loop counter is a constant.
The following Fortran fragment provides an example:

SUBROUTINE SUB(ARR,N,M)

REAL ARR(M,N)

DO 20 I=1,N

.. ARR(L,l) ...
20 CONTINUE

END
The reference to arra#RRhas a stride that is not a constant because For-
tran arrays are stored in column-major order. Thus, each elem&RRf
that is accessed by the loophtelements away from the last one accessed.

5. Traverse your data as compactly as possible to minimize paging and cache
misses. This implies traversing Fortran column-order arrays from first
index to last index, and C and Ada row-order arrays from last index to first
index.

6. Avoid writing routines that contain a large amount of code but usually
check a condition and exit. Large routines typically require that several reg-
isters be saved on entry and restored on exit. The overhead becomes signif-
icant if the routine does little else once it is entered.

If you are programming in C, consider writing a macro to perform the
checks, thus avoiding a subroutine call when the “early exit” is taken.

If you are programming in Ada, consider putting the checks in another rou-
tine for which you specifyoragma INLINE .

7. If possible, use a local variable instead of a global variable. Global vari-
ables are less susceptible to optimization. If a routine performs many oper-
ations on a global variable, consider using a temporary local variable for all

20-31

Compilation Systems Volume 2 (Concepts)

of the computations. Store the resulting value in the global variable only at
the last possible moment.

If you are programming in C, avoid frequent accesses to data through glo-
bal pointers. The optimizer must assume that these pointers can change
each time a subroutine is called or memory is modified through any
pointer. If the global pointer does not change, consider copying it to a local
variable.

8. Excessively large routines are generally less susceptible to optimization
than small ones. The more complicated the logic of a large routine, the less
optimization is likely to improve its performance. You must simply use
your best judgment in considering whether such a routine should be split
into two or more routines.

9. Ada programmers should specifyagma INLINE only on relatively
small, simple routines. fragma INLINE is specified too often, the call-
ing routines may become very large, thus limiting the amount of optimiza-
tion performed.

Identifying Performance Problems

If you wish to obtain the highest possible performance from your program, usmtie
lyze(1) tool to profile your program more accurately so that you can identify specific
sections within routines where time is consumaadhalyze can also give you a disassem-
bly listing of a routine that includes information about how well the various functional
units are being utilized. For additional information on the use of these tools, refer to the
corresponding system manual pages.

You can use the information gained from using these tools to determine the routines on
which to focus efforts to increase the performance of your program. In the context of opti-
mization, make sure that those routines are receiving the full benefit of the optimizer. Ver-
ify that none of the optimizer’s safety limits has been encountered during the compilation.
Also check the code in these routines for any of the problems listed in “Coding Tips” on
page 20-31.

Debugging Optimized Code

20-32

Successfully debugging optimized code requires that you understand optimization’s
effects on debugging. It may require that you examine your code to ensure that you have
not violated assumptions that the language rules allow the optimizer to make. “Under-
standing Optimization’s Effects on Debugging” on page 20-33 describes how debugging is
affected by optimization. “Examining Your Program” on page 20-34 provides some tips
for examining your program.

Program Optimization

Understanding Optimization’s Effects on Debugging

Throughout this chapter, aspects of optimization that can affect the debugging of your pro-
gram have been pointed out. Note that, before trying to debug an optimized program, you
should first make sure that the bug is not reproducible at MINIMAL optimization. You can
count on the following when you are debugging an optimized program:

* You can examine the values of global variables and obtain the value that
has last been stored in memory. If the program is not currently executing a
loop in which a particular variable is modified, the value you obtain is,
indeed, the correct one.

* Because of limitations in the format of debug information in executable
files, the debugger expects a given variable to reside in one and only one
location throughout a subprogram; yet if the variable has been copied, it
may reside in different locations at different points in the subprogram (see
“Copy Variables” on page 20-15 for a description of copy variables optimi-
zation). For global variables, the location that the debugger examines is
usually the one in memory.

* The line number reported by the debugger is correct to the extent that some
partof that line is being executed.

More detailed debugging usually requires that you obtain an assembly listing of the sec-

tion of the program that you are debugging. Most debuggers have some capability for

relating a specific instruction to the line in the program that has generated that instruction.

If you are reasonably adept at reading assembly language, you can usually determine
where the instructions for a particular line are located. You can probably also determine

the registers used for each variable involved.

You cannotcount on the following when you are debugging an optimized program:

¢ Setting a breakpoint on a given line may not stop the program before that
line is executed; in fact, it may not stop the program at all because another
copy of the line may exist elsewhere and the program will execute that
instead.

¢ Printing the value of a local variable does not necessarily yield the correct
value; for instance, if an assignment to variahlaas been propagated and
eliminated, you may see an outdated value when you print variable
although your program is about to evaluate an expression involving vari-
ablea. When you examine the results of an expression such as b)
and then examine variabl@sandb, you may be surprised to find that the
values of the variables do not match the computed value.

If the program has executed past the last use of a particular variable in the
current routine, the variable’s value may not exist anywhere. It may have
been allocated to a register, and that register may have been reused for
something else.

¢ On the supporting hardware platforms, floating-point exceptions are impre-
cise by default. See “Floating-Point Exceptions” on page 17-6 for details
on how to make them precise or to disable them.

20-33

Compilation Systems Volume 2 (Concepts)

* An exception may not occur precisely on the instruction that has caused the
fault, although it will usually be close by. The reasons include (1) varia-
tions in the time required for different instructions to execute and (2) the
machine’s ability to execute multiple instructions at the same time.

NOTE

The Ada compiler ensures that exceptions occur in the correct
frame by preventing the overlapped execution of instructions from
different frames. The supporting hardware platforms support pre-
cise exceptions so the exception will be on the correct instruction.

Debugging inlined routines has some special considerations. While the line number infor-
mation will reflect the source of the inlined routine, the stack frame is still that of the call-
ing routine since calling the inlined routine did not create a new stack frame. Thus when
you go up a frame while in an inlined routine, you will not find you self at the call site of
the inlined routine, but at the call site of the caller of the inlined routine. Also the fact that
optimizations may move code out of the place where the inlined routine was originally
located and scatter it in various places in the calling routine, can also result in seemingly
inexplicable behavior from the debugger. Optimization can, in fact, make it seem that the
inlined routine as completely disappeared when in fact its operations have just been folded
into the operations of the calling routine.

Examining Your Program

20-34

You may compile a program without enabling optimization, successfully execute it, then
recompile it with optimization enabled, and find that it fails. It is important to note that it
may notbe the optimizer that is causing the failure. You should first determine the subpro-
gram in which the problem has occurred and then verify that you have not violated any of
the rules of the language of which the optimizer takes advantage; for example, check your
code to determine whether or not you are (1) depending on the ordering of execution of
statements, (2) using an uninitialized variable that has not been assigned a value, or (3)
omitting thevolatile attribute on a variable that is modified asynchronously. Examples
that show what can happen in the first and second instances are presented in the para-
graphs that follow.

The example Ada code sequence that follows erroneously assumes that the variable
cycle will be incremented at least once. In the presence of optimization, the evaluation
of x/y may be moved outside of the loop and cause an exception to occur before the exe-
cution of the loop (Ada R.M. 11.6(3)).

procedure erroneous(x,y : in float ; z : in out float) is
cycle : integer == 0 ;
begin
loop
cycle := cycle + 1 ;
z=z-x1y;
exit when z < 0.0 ;
end loop ;
z := z |/ float(cycle) ;

Program Optimization

exception
when numeric_error =>

z := z |/ float(cycle) ;

-- <<< -- erroneous assumption that cycle > 0
end erroneous ;

If you forget to initialize a variable before using its value, your program may behave dif-
ferently with optimization turned on. Consider the following C example:

1. double foof(i, j)

2. int i, j;

3. {

4, double a, b ;
5. int k ;

6

7 for (k =i ; k <j; ++k) {
8 a=b+ 10 ;
9. b=i*a;
10. }

11. return a + b ;
12. }

The first time that line 8 is executed, varialidewill not have a defined value. Further-
more, ifj >= i , the loop body will not be executed, and neitlzenor b will have a
defined value when line 11 is executed. The value used will be the value last stored in the
variable’s location. Because optimization may caase b to be stored in a different loca-

tion from the one in which it is stored without optimization, the value used in the compu-
tation can be different.

The optimizer can help you locate such problems as these. If you enable caution messages
on your compilation (with the C compiler, you can do so by using-theption), the opti-

mizer will report variables that it finds are uninitialized. The preceding example produces
the following messages:

"examplel.c", line 11: caution: Possibly un-initialized
item <a> detected

"examplel.c", line 11: caution: Possibly un-initialized
item detected

"examplel.c", line 8: caution: Possibly un-initialized
item detected

The wordpossibly in these messages means that there is at least one path through the
program that assigns a value to the given variable, but there are also one or more paths to
that line that do not assign a value to the variable.

20-35

Compilation Systems Volume 2 (Concepts)

20-36

6
Formats

Replace with Part 6 tab

Compilation Systems Volume 2 (Concepts)

Part 6 - Formats

Part 6 - Formats

Part 6 Formats

Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25

INtroduction t0 FOIMALS.........ccoiiiiiieiiiiiiii e 21-1
Executable and Linking Format (ELF)cccccceeiiniiiiiiiiienee 22-1
tdesc INfOrmMationcceeeeiiiiiiii e 23-1
DWARF Debugging Information Formatccccccceeieeninnne 24-1
DWARF Access Library (libdwarf) ... 25-1

Compilation Systems Volume 2 (Concepts)

21
Introduction to Formats

INtrOdUCTION . . . o e e e e e e e e e

Compilation Systems Volume 2 (Concepts)

21
Introduction to Formats

Introduction

If you are writing programs that operate on other programs or if you require low-level
knowledge of the system to perform debugging, then you should understand the formats
supported by the software development environment.

This part of the manual describes these formats.

Chapter 22 (“Executable and Linking Format (ELF)") describes the executable and link-
ing format, ELF.

Chapter 23 (“tdesc Information”) discusses text description information, tdesc.

Chapter 24 (“DWARF Debugging Information Format”) describes the debugging informa-
tion format, DWARF. It is primarily a reprint of the DWARF specification from UNIX
International.

Chapter 25 (“DWARF Access Library (libdwarf)”) covers the libdwarf library that pro-
vides access to DWARF debugging and line number information.

21-1

Compilation Systems Volume 2 (Concepts)

21-2

22
Executable and Linking Format (ELF)

INtrOdUCHION . . .o e 22-1
File FOormat 22-1
Data Representation 22-2

Program LinKingo 22-3
ELF Header 22-3

ELF Identification. 22-6
ELFHeaderFlags oo 22-9
Section Header 22-9
Special SECHIONS. o 22-15
Vendor SECHiOno 22-18
String Table 22-22
Symbol Table 22-23
SymbolValues. 22-26
Relocation. 22-27
Relocation TYpesS. . ..o vt 22-28
Program EXeCULION 22-35
Program Header 22-35
Base AdAress.o 22-38
Segment Permissions o 22-39
Segment CoNtentst 22-40
NOte SECHIONo 22-41
Program Loadingo 22-42
Program Interpreter 22-45
Dynamic Linker 22-46
Dynamic SECHiONot 22-47
Shared Object Dependencies.t 22-52
Link Map 22-53
Global Offset Table. e 22-54
FUuNction AddresseSot 22-57
Procedure Linkage Table. i 22-58
Hash Table. e 22-59

Initialization and Termination Functions
Symbolic Debugging Information

Compilation Systems Volume 2 (Concepts)

Introduction

File Format

22
Executable and Linking Format (ELF)

This chapter describes the executable and linking format (ELF) object files. The first sec-
tion, “Program Linking” on page 22-3, focuses on how the format pertains to building pro-
grams. The second section, “Program Execution” on page 22-35, focuses on how the for-
mat pertains to loading programs. For background, see Chapter 4 (“Link Editor and
Linking”). There are three main types of ELF object files.

Relocatable file Holds code and data suitable for linking with other object files to
create an executable or a shared object file.

Executable file Holds a program suitable for execution; the file specifies how
exec() creates a program’s process image.

Shared object file Holds code and data suitable for linking in two contexts. First, the
link editor processes the shared object file with other relocatable
and shared object files to create another object file. Second, the
dynamic linker combines it with an executable file and other
shared objects to create a process image.

Programs manipulate object files with the functions contained in the ELF access library,
libelf . See thg3E) man pages, “ELF Library” on page 16-3, and “ELF Files” on
page 16-17 for details.

As indicated, object files participate in program linking and program execution. For con-
venience and efficiency, the object file format provides parallel views of a file's contents,
reflecting the differing needs of these activities. Table 22-1 shows an object file’s organi-
zation.

22-1

Compilation Systems Volume 2 (Concepts)

Table 22-1. Object File Format

Linking View Execution View
ELF header ELF header
Program header table Program header table

optional
Section 1 Segment 1
Sectionn Segment 2
Section header table Section header table
optional

An ELF headerresides at the beginning and holds a “road map” describing the file's orga-
nization.Sectionshold the bulk of object file information for the linking view: instruc-
tions, data, symbol table, relocation information, and so on. Descriptions of special sec-
tions appear in the first part of this chapter. The second part of this chapter discusses
segmentsind the program execution view of the file.

A program header tablef present, tells the system how to create a process image. Files
used to build a process image (execute a program) must have a program header table; relo-
catable files do not need one.gection header tableontains information describing the

file's sections. Every section has an entry in the table; each entry gives information such
as the section name, the section size, and so forth. Files used during link editing must have
a section header table; other object files may or may not have one.

Although Table 22-1 shows the program header table immediately after the ELF header,
and the section header table following the sections, actual files may differ. Moreover, sec-
tions and segments have no specified order. Only the ELF header has a fixed position in
the file.

Data Representation

22-2

As described here, the object filermatsupports various processors with 8-bit bytes and
32-bit architectures. Nevertheless, it is intended to be extensible to larger (or smaller)
architectures. Object files, therefore, represent some control data with a machine-indepen-
dent format, making it possible to identify object files and interpret their contents in a
common way. Remaining data in an object file use the encoding of the target processor,
regardless of the machine on which the file was created. See Table 22-2.

Executable and Linking Format (ELF)

Table 22-2. 32-Bit Data Types

Name Size Alignment Purpose
Elf32_Addr 4 4 Unsigned program address
Elf32_Half 2 2 Unsigned medium integer
Elf32_Off 4 4 Unsigned file offset
Elf32_Sword 4 4 Signed large integer
Elf32_Word 4 4 Unsigned large integer
unsigned char 1 1 Unsigned small integer

All data structures that the object file format defines follow the “natural” size and align-
ment guidelines for the relevant class. If necessary, data structures contain explicit padding
to ensure 4-byte alignment for 4-byte objects, to force structure sizes to a multiple of 4,
and so forth. Data also have suitable alignment from the beginning of the file. Thus, for
example, a structure containing &if32_Addr member will be aligned on a 4-byte
boundary within the file.

For portability reasons, ELF uses no bit-fields.

Program Linking

ELF Header

This section describes the object file information and system actions that create static pro-
gram representations from relocatable files and shared objects.

Some obiject file control structures can grow, because the ELF header contains their actual
sizes. If the object file format changes, a program may encounter control structures that
are larger or smaller than expected. Programs might therefore ignore “extra” information.
The treatment of “missing” information depends on context and will be specified when
and if extensions are defined.

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[El_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
EIf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;

22-3

Compilation Systems Volume 2 (Concepts)

22-4

Elf32_Off

e_shoff;

Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e _phnum;
EIf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} EIf32_Ehdr;

e_ident

e_type

e_machine

The initial bytes mark the file as an object file and provide
machine-independent data with which to decode and interpret the
file's contents. Complete descriptions appear in “ELF Identifica-
tion” on page 22-6.

This member identifies the object file type.

Name Value Meaning
ET_NONE 0 No file type
ET_REL 1 Relocatable file
ET_EXEC 2 Executable file
ET_DYN 3 Shared object file
ET_CORE 4 Core file
ET_LOPROC 0xff00 Processor-specific
ET_HIPROC Oxffff Processor-specific

Values fromET_LOPROGhroughET_HIPROC(inclusive) are
reserved for processor-specific semantics. Other values are
reserved and will be assigned to new object file types as neces-
sary.

This member’s value specifies the required architecture for an
individual file.

Name Value Meaning

EM_NONE 0 No machine

EM_M32 1 AT&T WE 32100
EM_SPARC 2 SPARC

EM_386 3 Intel 80386M
EM_68K 4 Motorola 68000M
EM_88K 5 Motorola 88000M
EM_860 7 Intel 80860M

e_version

e_entry

e_phoff

e_shoff

e_flags

e_ehsize

e_phentsize

e_phnum

Executable and Linking Format (ELF)

Name Value Meaning
EM_MIPS 8 MIPS R2000M
EM_S370 9 Amdah™
EM_IBM 11 IBM® RS/6000M & PowerPCM

Other values are reserved and will be assigned to new machines as
necessary. Processor-specific ELF names use the machine name to
distinguish them. For example, the flags mentioned in “ELF
Header Flags” on page 22-9 use the prefix_; a flag named
WIDGETfor the EM_XYZmachine would be called
EF_XYZ_WIDGET

This member identifies the object file version.

Name Value Meaning

EV_NONE 0 Invalid version
EV_CURRENT 1 Current version

The valuel signifies the original file format; extensions will cre-
ate new versions with higher numbers. The value of
EV_CURRENThough given ag above, will change as necessary
to reflect the current version number.

This member gives the virtual address to which the system first
transfers control, thus starting the process. If the file has no asso-
ciated entry point, this member holds zero.

This member holds the program header table’s file offset in bytes.
If the file has no program header table, this member holds zero.

This member holds the section header table’s file offset in bytes.
If the file has no section header table, this member holds zero.

This member holds processor-specific flags associated with the
file. Flag names take the forfBF_machine flag . See “ELF
Header Flags” on page 22-9 for flag definitions.

This member holds the ELF header’s size in bytes.

This member holds the size in bytes of one entry in the file’s pro-
gram header table; all entries are the same size.

This member holds the number of entries in the program header
table. Thus the product & phentsize ande_phnum gives

the table’s size in bytes. If a file has no program header table,
e_phnum holds the value zero.

22-5

Compilation Systems Volume 2 (Concepts)

e_shentsize This member holds a section header’s size in bytes. A section
header is one entry in the section header table; all entries are the
same size.

e_shnum This member holds the number of entries in the section header

table. Thus the product & shentsize ande_shnum gives
the section header table’s size in bytes. If a file has no section
header tablee_shnum holds the value zero.

e_shstrndx This member holds the section header table index of the entry
associated with the section name string table. If the file has no
section name string table, this member holds the value
SHN_UNDEFSee “Section Header” on page 22-9 and “String
Table” on page 22-22 for more information.

ELF Identification

As mentioned above, ELF provides an object file framework to support multiple proces-
sors, multiple data encodings, and multiple classes of machines. To support this object file
family, the initial bytes of the file specify how to interpret the file, independent of the pro-
cessor on which the inquiry is made and independent of the file's remaining contents. The
initial bytes of an ELF header (and an object file) correspond tcetlident member.

See Table 22-3.

Table 22-3. e_ident[] Identification Indexes

Name Value Purpose
El_MAGO 0 File identification
El_MAG1 1 File identification
El_MAG2 2 File identification
El_MAG3 3 File identification
El_CLASS 4 File class
El_DATA 5 Data encoding
El_VERSION 6 File version
El_PAD 7 Start of padding bytes
EI_NIDENT 16 Size ofe_ident]]

These indexes access bytes that hold the following values.

El_MAGOto EI_MAG3
Afile’s first 4 bytes hold a “magic number,” identifying the file as
an ELF object file.

22-6

El_CLASS

El_DATA

EI_VERSION

Executable and Linking Format (ELF)

Name Value Position

ELFMAGO O0x7f e_ident[El_MAGO]
ELFMAG1 'FE’ e_ident[El_MAG1]
ELFMAG2 'L e_ident[El_MAG2]
ELFMAG3 'F e_ident[El_MAG3]

The next bytee_ident[El_CLASS] , identifies the file's class,
or capacity.

Name Value Position

ELFCLASSNONE 0 Invalid class
ELFCLASS32 1 32-bit objects
ELFCLASS64 2 64-bit objects

The file format is designed to be portable among machines of var-
ious sizes, without imposing the sizes of the largest machine on
the smallest. ClasELFCLASS32supports machines with files
and virtual address spaces up to 4 gigabytes; it uses the basic
types defined above.

ClassELFCLASS64is reserved for 64-bit architectures. Its
appearance here shows how the object file may change, but the
64-bit format is otherwise unspecified. Other classes will be
defined as necessary, with different basic types and sizes for
object file data.

Byte e_ident[El_DATA] specifies the data encoding of the
processor-specific data in the object file. The following encodings
are currently defined.

Name Value Meaning
ELFDATANONE 0 Invalid data encoding
ELFDATA2LSB 1 See below
ELFDATA2MSB 2 See below

More information on these encodings appears below. Other values
are reserved and will be assigned to new encodings as necessary.

Byte e_ident[El_VERSION] specifies the ELF header ver-
sion number. Currently, this value must B& CURRENTas
explained above foe_version

227

Compilation Systems Volume 2 (Concepts)

El_PAD This value marks the beginning of the unused bytes iident
These bytes are reserved and set to zero; programs that read object
files should ignore them. The value Bf PAD will change in the
future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As described
above, clas€LFCLASS32files use objects that occupy 1, 2, and 4 bytes. Under the
defined encodings, objects are represented as shown below. Byte numbers appear in the
upper left corners.

EncodingELFDATA2LSBspecifies 2's complement values, with the least significant byte
occupying the lowest address.

0
0x01 02
0 1
0x0102 01 01
0 1 2 3
0x01020304 04 01 02 01

Figure 22-1. Data Encoding ELFDATA2LSB

EncodingELFDATA2MSBpecifies 2's complement values, with the most significant byte
occupying the lowest address.

0
0x01 01
0 1
0x0102 01 02
0 1 2 3
0x01020304 04 02 03 04

Figure 22-2. Data Encoding ELFDATA2MSB

22-8

ELF Header Flags

Section Header

Executable and Linking Format (ELF)

For file identification ine_ident , PowerUX uses the following values.

Table 22-4. PowerUX ldentification, e_ident

Position Value
e_ident[El_CLASS] ELFCLASS32
e_ident[El_DATA] ELFDATA2MSB

Processor identification resides in the ELF header'mmachine member and has the
valuell, defined as the nameM_IBM, or the valueb, defined as the nameM_88K

The ELF header's_flags member holds bit flags associated with the file.

Table 22-5. Processor-Specific Flags, e_flags

Name Value
EF_PPC_SYSINUSER 0x2
EF_PPC_ADA 0x40000000
EF_PPC_ARMS 0x80000000

EF_PPC_SYSINUSER

EF_PPC_ADA

EF_PPC_ARMS

This flag is defined by the 88open 88K ABI, but it is not presently
used by PowerUX. If this flag is reset, it indicates that the applica-
tion wishes full control of the layout of the virtual address space at
addresses less than 0x80000000. If this flag is set, the operating
system may place the stack and/or dynamic segments at lower
addresses. This flag may be set for object files of tifje EXEC

This flag shall not be set for object files of ty@el REL and
ET_DYN

The link editor sets this flag if the program was link edited with
the-QAda option.

The link editor sets this flag if the object was link edited with a
map file that defined a Concurrent Ada ARMS segment.

An object file's section header table lets one locate all the file’s sections. The section
header table is an array 8f32_Shdr structures as described below. A section header
table index is a subscript into this array. The ELF header'shoff member gives the
byte offset from the beginning of the file to the section header tahlshnum tells how
many entries the section header table contanshentsize gives the size in bytes of

22-9

Compilation Systems Volume 2 (Concepts)

22-10

each entry. Some section header table indexes are reserved; an object file will not have
sections for these special indexes.

Table 22-6. Special Section Indexes

Name Value
SHN_UNDEF 0
SHN_LORESERVE 0xff00
SHN_LOPROC 0xff00
SHN_HIPROC Oxffaf
SHN_ABS Oxfffl
SHN_COMMON 0x(fff2

SHN_HIRESERVE Oxffff

SHN_UNDEF This value marks an undefined, missing, irrelevant, or otherwise
meaningless section reference. For example, a symbol “defined”
relative to section numb&HN_UNDEFRs an undefined symbol.

Although index 0 is reserved as the undefined value, the section
header table contains an entry for index 0. That is, if the
e_shnum member of the ELF header says a file has 6 entries in
the section header table, they have the indexes 0 through 5. The
contents of the initial entry are specified later in this section.

SHN_LORESERVE This value specifies the lower bound of the range of reserved
indexes.

SHN_LOPROGhrough SHN_HIPROC
Values in this inclusive range are reserved for processor-specific
semantics.

SHN_ABS This value specifies absolute values for the corresponding refer-
ence. For example, symbols defined relative to section number
SHN_ABShave absolute values and are not affected by relocation.

SHN_COMMON Symbols defined relative to this section are common symbols,
such as Fortra@ROMMO®F unallocated C external variables.

SHN_HIRESERVE This value specifies the upper bound of the range of reserved
indexes. The system reserves indexes betvgi¢N L ORESERVE
and SHN_HIRESERVEinclusive; the values do not reference the
section header table. That is, the section header table mutes
contain entries for the reserved indexes.

Sections contain all information in an object file except the ELF header, the program
header table, and the section header table. Moreover, object files’ sections satisfy several
conditions.

Executable and Linking Format (ELF)

* Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

¢ Each section occupies one contiguous (possibly empty) sequence of bytes

within a file.

* Sections in a file may not overlap. No byte in a file resides in more than

one section.

* An object file may have inactive space. The various headers and the sec-
tions might not “cover” every byte in an object file. The contents of the
inactive data are unspecified.

A section header has the following structure.

typedef struct {

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;

Elf32_Off

sh_offset;

ElIf32_Word sh_size;
ElIf32_Word sh_link;
ElIf32_Word sh_info;
Elf32_Word sh_addralign;
ElIf32_Word sh_entsize;

} EIf32_Shdr;

sh_name

sh_type

sh_flags

sh_addr

sh_offset

sh_size

This member specifies the name of the section. Its value is an
index into the section header string table section (see “String
Table” on page 22-22), giving the location of a null-terminated
string.

This member categorizes the section’'s contents and semantics.
Section types and their descriptions are listed in Table 22-7 and in
the paragraphs fd8HT_SYMTARNASHT_DYNSYNmmediately
following Table 22-7.

Sections support 1-bit flags that describe miscellaneous attributes.
Flag definitions are given in Table 22-9.

If the section will appear in the memory image of a process, this
member gives the address at which the section’s first byte should
reside. Otherwise, the member contains 0.

This member’s value gives the byte offset from the beginning of
the file to the first byte in the section. One section type,
SHT_NOBITSdescribed below, occupies no space in the file, and
its sh_offset member locates the conceptual placement in the
file.

This member gives the section’s size in bytes. Unless the section
type isSHT_NOBITS the section occupiesh_size bytes in the

file. A section of typeSHT_NOBITSmay have a non-zero size,
but it occupies no space in the file.

22-11

Compilation Systems Volume 2 (Concepts)

sh_link This member holds a section header table index link, whose inter-
pretation depends on the section type. Table 22-10 describes the
values.

sh_info This member holds extra information, whose interpretation

depends on the section type. Table 22-10 describes the values.

sh_addralign Some sections have address alignment constraints. For example, if
a section holds a doubleword, the system must ensure doubleword
alignment for the entire section. That is, the valuesbf addr
must be congruent to 0, modulo the valuesbf addralign
Currently, only 0 and positive integral powers of two are allowed.
Values 0 and 1 mean the section has no alignment constraints.

sh_entsize Some sections hold a table of fixed-size entries, such as a symbol
table. For such a section, this member gives the size in bytes of
each entry. The member contains 0 if the section does not hold a
table of fixed-size entries.

A section header'sh_type member specifies the section’s semantics.

Table 22-7. Section Types, sh_type

&
c
D

Name

SHT_NULL
SHT_PROGBITS
SHT_SYMTAB
SHT_STRTAB
SHT_RELA
SHT_HASH
SHT_DYNAMIC
SHT_NOTE
SHT_NOBITS
SHT_REL
SHT_SHLIB
SHT_DYNSYM 11
SHT_LOPROC 0x70000000
SHT_HIPROC OX7fffff
SHT LOUSER 0x80000000
SHT VENDOR 0x80000000
SHT_HIUSER OXfffffff

© 00 N o 00~ W N -, O

[y
o

22-12

SHT_NULL

SHT_PROGBITS

Executable and Linking Format (ELF)

This value marks the section header as inactive; it does not have
an associated section. Other members of the section header have
undefined values.

The section holds information defined by the program, whose for-
mat and meaning are determined solely by the program.

SHT_SYMTARNASHT_DYNSYM

SHT_STRTAB

SHT_RELA

SHT_HASH

SHT_DYNAMIC

SHT_NOTE

SHT_NOBITS

SHT_REL

SHT_SHLIB

These sections hold a symbol table. Currently, an object file may
have only one section of each type, but this restriction may be
relaxed in the future. Typicalh\GHT_SYMTABrovides symbols

for link editing, though it may also be used for dynamic linking.
As a complete symbol table, it may contain many symbols unnec-
essary for dynamic linking. Consequently, an object file may also
contain aSHT_DYNSYMection, which holds a minimal set of
dynamic linking symbols, to save space. See “Symbol Table” on
page 22-23 for details.

The section holds a string table. An object file may have multiple
string table sections. See “String Table” on page 22-22 for detalils.

The section holds relocation entries with explicit addends, such as
type EIf32_Rela for the 32-bit class of object files. An object
file may have multiple relocation sections. See “Relocation” on
page 22-27 for details.

The section holds a symbol hash table. Currently, an object file
may have only one hash table, but this restriction may be relaxed
in the future. See “Hash Table” on page 22-59 for details.

The section holds information for dynamic linking. Currently, an
object file may have only one dynamic section, but this restriction
may be relaxed in the future. See “Dynamic Section” on page
22-47 for details.

The section holds information that marks the file in some way.
See “Note Section” on page 22-41 for details.

A section of this type occupies no space in the file but otherwise
resembleSHT_PROGBITSAlthough this section contains no
bytes, thesh_offset member contains the conceptual file off-
set.

The section holds relocation entries without explicit addends,
such as typ&lf32_Rel for the 32-bit class of object files. An
object file may have multiple relocation sections. See “Reloca-
tion” on page 22-27 for details.

This section type is reserved but has unspecified semantics.

SHT_LOPROG@hroughSHT_HIPROC

SHT_LOUSER

Values in this inclusive range are reserved for processor-specific
semantics.

This value specifies the lower bound of the range of indexes
reserved for application programs.

22-13

Compilation Systems Volume 2 (Concepts)

SHT_HIUSER This value specifies the upper bound of the range of indexes
reserved for application programs. Section types between
SHT_LOUSERINASHT_HIUSERmay be used by the application,
without conflicting with current or future system-defined section
types. PowerUX reserves the low vall&1T_VENDORor ven-
dor section information. See “Vendor Section” on page 22-18 for
more information.

Other section type values are reserved. As mentioned before, the section header for index
0 (SHN_UNDEF)exists, even though the index marks undefined section references. This
entry holds the following.

Table 22-8. Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address
sh_offset 0 No file offset
sh_size 0 No size

sh_link SHN_UNDEF No link information
sh_info 0 No auxiliary information
sh_addralign 0 No alignment
sh_entsize 0 No entries

A section header'sh_flags member holds 1-bit flags that describe the section’s
attributes. See Table 22-9 for defined values; other values are reserved.

Table 22-9. Section Attribute Flags, sh_flags

Name Value
SHF_WRITE Ox1
SHF_ALLOC 0x2
SHF_EXECINSTR 0x4

SHF_MASKPROC 0xf0000000

If a flag bit is set insh_flags , the attribute is “on” for the section. Otherwise, the
attribute is “off” or does not apply. Undefined attributes are set to zero.

SHF_WRITE The section contains data that should be writable during process
execution.

22-14

SHF_ALLOC

Executable and Linking Format (ELF)

The section occupies memory during process execution. Some

control sections do not reside in the memory image of an object
file; this attribute is off for those sections.

SHF_EXECINSTR

SHF_MASKPROC

The section contains executable machine instructions.

All bits included in this mask are reserved for processor-specific

semantics.
Two members in the section headeh, link andsh_info , hold special information,
depending on section type.
Table 22-10. sh_link and sh_info Interpretation
sh_type sh_link sh_info
SHT_DYNAMIC The section header index of the string tat 0
used by entries in the section.
SHT_HASH The section header index of the symbol table 0
which the hash table applies.
SHT_REL The section header index of the associa The section header index of the section to
SHT_RELA symbol table. which the relocation applies.
SHT_SYMTAB The section header index of the associa One greater than the symbol table index of
SHT_DYNSYM string table. the last local symbol (binding
STB_LOCAL.
SHT_VENDOR The section header index of the associa The section header index of the associated
symbol table. text section.
other SHN_UNDEF 0

Special Sections

Various sections hold program and control information. Sections in the list below are used
by the system and have the indicated types and attributes.

Table 22-11. Special Sections

Name Type Attributes

bss SHT_NOBITS SHF_ALLOC + SHF WRITE
.comment SHT_PROGBITS none

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.datal SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.debug_abbrev
.debug_arranges

.debug_info

SHT_PROGBITS
SHT_PROGBITS
SHT_PROGBITS

none

none

none

22-15

Compilation Systems Volume 2 (Concepts)

22-16

Table 22-11. Special Sections (Cont.)

Name Type Attributes

.debug_line SHT_PROGBITS none

.debug_loc SHT_PROGBITS none

.debug_pubnames SHT_PROGBITS none

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF _WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got SHT_PROGBITS see below

.hash SHT_HASH SHF_ALLOC

JInit SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

Interp SHT_PROGBITS none

.note SHT_NOTE none

plt SHT_PROGBITS see below

.relname SHT_REL see below

.relaname SHT_RELA see below

rodata SHT_PROGBITS SHF_ALLOC

.rodatal SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

tdesc SHT_PROGBITS SHF_ALLOC

text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

$0001300 SHT_VENDOR see below

.bss This section holds uninitialized data that contribute to the pro-
gram’s memory image. By definition, the system initializes the
data with zeros when the program begins to run. The section occu-
pies no file space, as indicated by the section tg¢T NOBITS
.comment This section holds version control information.

.data and.datal These sections hold initialized data that contribute to the pro-

gram’'s memory image.

.debug_abbrev
.debug_arranges

.debug_info

This section holds DWARF abbreviation tables.
This section holds DWARF address ranges tables.

This section holds DWARF debugging information entries.

.debug_line
.debug_loc
.debug_pubname

.dynamic

.dynstr

.dynsym

fini

.got

.hash

.init

interp

.note

plt

Executable and Linking Format (ELF)

This section holds DWARF line number information.
This section holds DWARF location lists information.
This section holds DWARF name lookup tables.

This section holds dynamic linking information. See “Dynamic
Linker” on page 22-46 for more information.

This section holds strings needed for dynamic linking, most com-
monly the strings that represent the names associated with symbol
table entries. See the section starting with “Dynamic Linker” on
page 22-46 for more information.

This section holds the dynamic linking symbol table. See “Sym-
bol Table” on page 22-23.

This section holds executable instructions that contribute to the
process termination code. That is, when a program exits normally,
the system arranges to execute the code in this section.

This section holds the global offset table. See “Global Offset
Table” on page 22-54 for more information.

This section holds a symbol hash table. See “Hash Table” on page
22-59 for more information.

This section holds executable instructions that contribute to the
process initialization code. That is, when a program starts to run,
the system arranges to execute the code in this section before call-
ing the main program entry point (callesgin for C programs).

This section holds the path name of a program interpreter. See
“Program Interpreter” on page 22-45 for more information.

This section holds information as described in “Note Section” on
page 22-41.

This section holds the procedure linkage table. See “Procedure
Linkage Table” on page 22-58 for more information.

.rel nameand.rela name

.rodata

.shstrtab

and.rodatal

These sections hold relocation information, as “Relocation” on
page 22-27 describes. If the file has a loadable segment that
includes relocation, the sections’ attributes will include the
SHF_ALLOGhit; otherwise, that bit will be off. Conventionally,
nameis supplied by the section to which the relocations apply.
Thus a relocation section fotext normally would have the
name.rel.text or .rela.text

These sections hold read-only data that typically contribute to a
non-writable segment in the process image. See “Program
Header” on page 22-35 for more information.

This section holds section names.

22-17

Compilation Systems Volume 2 (Concepts)

.strtab This section holds strings, most commonly the strings that repre-
sent the names associated with symbol table entries. If the file has
a loadable segment that includes the symbol string table, the sec-
tion’s attributes will include th&sHF_ALLOGhit; otherwise, that
bit will be off.

.symtab This section holds a symbol table, as “Symbol Table” on page
22-23 describes. If the file has a loadable segment that includes
the symbol table, the section’s attributes will include the
SHF_ALLOit; otherwise, that bit will be off.

.tdesc This section holds “text description” (tdesc) information. See
Chapter 23 for more information.

text This section holds the “text,” or executable instructions, of a pro-
gram.

$0001300 This section holds “vendor” information specific to applications
built on PowerUX. See “Vendor Section” on page 22-18 for more
information.

Section names with a dot) prefix are reserved for the system, although applications may
use these sections if their existing meanings are satisfactory. Applications may use names
without the prefix to avoid conflicts with system sections. The object file format lets one
define sections not in the list above. An object file may have more than one section with
the same name.

Vendor Section

A PowerUX-specific vendor section has the following structure.

struct {
unsigned long magic;
unsigned long text reloc;
unsigned char round_mode;
unsigned char fp_except_kind,;
unsigned char float_exceptions;
unsigned char IBM_mode;
unsigned char float_precision;
unsigned char ppdp_used;
unsigned char fp_spec_exec;

char filler[21];
%

magic This member specifies the magic number. Itis currently zero.

text_reloc This member provides the virtual address of relocation informa-
tion pertaining to the “text” section, if there is any relocation
information. This information is used by tlanalyze(1) util-
ity.

round_mode This member specifies the IEEE floating-point rounding mode

under which the program should begin execution. The various
rounding modes and their values appear in Table 22-12.

22-18

fp_except_kind

float_exceptions

IBM_mode

float_precision

ppdp_used

fp_spec_exec

Executable and Linking Format (ELF)

This member specifies whether floating-point exceptions inter-
rupts should be enabled when the program begins execution and
whether enabled exceptions should be precise or imprecise.

This member specifies the mask of the floating-point exceptions
which should be enabled when the program begins execution. The
various exceptions and their values appear in Table 22-14.

This member indicates whether the program uses any features
unique to members of the PowerPC family. The various modes
and their values appear in Table 22-15.

This member specifies whether or not the program uses IEEE,
80-bit floating-point precision. The values for this member appear
in Table 22-16.

This member indicates whether the program uses the process pri-
vate data pointer (i.e., register r31). This information is used by
theanalyze(1) utility. The values for this member appear in
Table 22-16.

This member indicates whether the program contains float-
ing-point code that is executed speculatively. This information is
used by thdd(1) utility. The values for this member appear in
Table 22-16.

Table 22-12. Vendor Section Rounding Modes, round_mode

Name

Value Meaning

_VND_RND_IEEENEAR
_VND_RND_IEEEZERO
_VND_RND_IEEEPINF
_VND_RND_IEEENINF
_VND_RND_IEEECOMP

Round to nearest
Round to zero
Round to positive infinity

Round to negative infinity

A W N B O

This value indicates that the object file is com-
patible with object files of any other rounding
mode. It is typically used in object files of sys-
tem archives.

Table 22-13. Vendor Section Floating-Point Exceptions Kind,

fp_except_kind

Name

Value Meaning

_VND_FPE_IMPRECISE 0 Enable imprecise floating-point exceptions

_VND_FPE_PRECISE 1 Enable precise floating-point exceptions
_VND_FPE_DISABLED 2 Disable floating-point exceptions interrupt

22-19

Compilation Systems Volume 2 (Concepts)

22-20

Table 22-14. Vendor Section Enabled Exceptions,
float_exceptions

Name Value Meaning
_VND_FPX_INV 16 Invalid operation
_VND_FPX Dz Divide-by-zero

_VND_FPX_UFL
_VND_FPX_OFL
_VND_FPX_IMP

8

4 Underflow
2 Overflow
1

Imprecise (inexact)

Table 22-15. Vendor Section PowerPC Features, IBM_mode

Name

Value Meaning

_VND_MODE_POWERP:!

_VND_MODE_601

_VND_MODE_603

_VND_MODE_604

_VND_MODE_620

_VND_MODE_604_620

_VND_MODE_N603

_VND_MODE_N601

0

0oxc

Oxd

Oxe

This value indicates that the program does not
contain features unique to any of the PowerPC
architectures.

This value indicates that the program contains
features unique to the PowerPC 601 architec-
ture only.

This value indicates that the program contains
features unique to the PowerPC 603 architec-
ture only.

This value indicates that the program contains
features unique to the PowerPC 604 architec-
ture only.

This value indicates that the program contains
features unique to the PowerPC 620 architec-
ture only.

This value indicates that the program contains
features unique to the PowerPC 604 and the
620 architectures only.

This value indicates that the program contains
features not on the PowerPC 603 architecture.

This value indicates that the program contains
features not on the PowerPC 601 architecture.

Executable and Linking Format (ELF)

Table 22-15. Vendor Section PowerPC Features, IBM_mode

Name Value Meaning

_VND_MODE_POWERPt 0xf This value indicates that the program contains
a mixture of features unique to particular Pow-
erPC architectures.

_VND_MODE_604E 0x10 This value indicates that the program contains
features unique to the PowerPC 604e architec-
ture only.

_VND_MODE_601_604E O0x11 This value indicates that the program contains
features unique to the PowerPC 601 and the
604e architectures only.

Table 22-16. Vendor Section Extended Double-Precision Use,
float_precision

Name Value Meaning

_VND_FLOAT _NOT _EXT DBL O Extended double-precision floating-point
is not used

_VND_FLOAT_EXT_DBL 1 Extended double-precision floating-point
is used.

Table 22-17. Vendor Section Process Private Data Pointer Use,
ppdp_used

Name Value Meaning

_VND_PPDP_NOT_USEI 0 Extended double precision floating-point
is not used

_VND_PPDP_USED 1 Extended double-precision floating-point
is used.

22-21

Compilation Systems Volume 2 (Concepts)

Table 22-18. Vendor Section FP Speculative Execution Use, fp_spec_exec

Name Value Meaning

_VND_FP_NOT_SPEC EXE' O Floating-point speculative execution not
done.

_VND_FP_SPEC_EXEC 1 Floating-point speculative execution done.

String Table

String table sections hold null-terminated character sequences, commonly called strings.
The object file uses these strings to represent symbol and section names. One references a
string as an index into the string table section. The first byte, which is index zero, is
defined to hold a null character. Likewise, a string table’s last byte is defined to hold a null
character, ensuring null termination for all strings. A string whose index is zero specifies
either no name or a null name, depending on the context. An empty string table section is
permitted; its section headesh_size member would contain zero. Non-zero indexes

are invalid for an empty string table.

A section header'sh_name member holds an index into the section header string table
section, as designated by teeshstrndx member of the ELF header. The following
figures show a string table with 25 bytes and the strings associated with various indexes.

Table 22-19. String Table

Index +0 +1 +2 +3 +4 +4 +6 +7 +8 +9

0 \O n a m e . \O \Y/ a r
10 i a b | e \O a b | e
20 \O \O X X \O

Table 22-20. String Table Indexes

Index String

0 none

1 name.

7 Variable
11 able

16 able
24 null string

22-22

Symbol Table

Executable and Linking Format (ELF)

As the example shows, a string table index may refer to any byte in the section. A string
may appear more than once; references to substrings may exist; and a single string may be
referenced multiple times. Unreferenced strings also are allowed.

An object file's symbol table holds information needed to locate and relocate a program’s
symbolic definitions and references. A symbol table index is a subscript into this array.
Index 0 both designates the first entry in the table and serves as the undefined symbol
index. The contents of the initial entry are specified later in this section.

Name Value

STN_UNDEF 0

A symbol table entry has the following format.

typedef struct {
EIf32_Word st_name;
EIf32_Addr st_value;
EIf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
EIf32_Half st_shndx;

} EIf32_Sym;

st_name This member holds an index into the object file's symbol string
table, which holds the character representations of the symbol
names. If the value is non-zero, it represents a string table index
that gives the symbol name. Otherwise, the symbol table entry has
no name.

st_value This member gives the value of the associated symbol. Depending
on the context, this may be an absolute value, an address, and so
forth; details appear below.

st_size Many symbols have associated sizes. For example, a data object’s
size is the number of bytes contained in the object. This member
holds 0 if the symbol has no size or an unknown size.

st_info This member specifies the symbol’s type and binding attributes. A
list of the values and meanings appears in Table 22-21. The fol-
lowing code shows how to manipulate the values.

#define ELF32_ST BIND() ((i)>>4)
#define ELF32_ST TYPE() ((i)&Oxf)
#define ELF32_ST_INFO(b,t) \

((b)<<4)+(()&0xf))

st_other This member indicates whether or not the symbol was assembled
with the -A option toas. A value of 0 indicates that theA

22-23

Compilation Systems Volume 2 (Concepts)

option was not used. A value of 1 indicates thattheoption was
used.

st_shndx Every symbol table entry is “defined” in relation to some section;
this member holds the relevant section header table index. Some
section indexes indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

Table 22-21. Symbol Binding, ELF32_ST_BIND

Name Value

STB_LOCAL 0
STB_GLOBAL 1
STB_WEAK 2
STB_LOPROC 13
STB_HIPROC 15

STB_LOCAL Local symbols are not visible outside the object file containing
their definition. Local symbols of the same name may exist in
multiple files without interfering with each other.

STB_GLOBAL Global symbols are visible to all object files being combined. One
file's definition of a global symbol will satisfy another file’s unde-
fined reference to the same global symbol.

STB_WEAK Weak symbols resemble global symbols, but their definitions have
lower precedence.

STB_LOPROCthrough STB_HIPROC
Values in this inclusive range are reserved for processor-specific
semantics.

Global and weak symbols differ in two major ways.

* When the link editor combines several relocatable object files, it does not
allow multiple definitions ofSTB_GLOBALsymbols with the same name.
On the other hand, if a defined global symbol exists, the appearance of a
weak symbol with the same name will not cause an error. The link editor
honors the global definition and ignores the weak ones.

* When the link editor searches archive libraries, it extracts archive members
that contain definitions of undefined global symbols. The member’s defini-
tion may be either a global or a weak symbol. The link editor does not
extract archive members to resolve undefined weak symbols. Unresolved
weak symbols have a zero value.

In each symbol table, all symbols wiiTB_LOCALbinding precede the weak and global
symbols. As “Section Header” on page 22-9 describes, a symbol table sestioiriéo
section header member holds the symbol table index for the first non-local symbol.

22-24

Executable and Linking Format (ELF)

A symbol’s type provides a general classification for the associated entity.

STT_NOTYPE

STT_OBJECT

STT_FUNC

STT_SECTION

STT_FILE

Table 22-22. Symbol Types, ELF32_ST_TYPE

Name Value
STT_NOTYPE 0
STT_OBJECT 1
STT_FUNC 2
STT_SECTION 3
STT_FILE 4
STT_LOPROC 13
STT_PPC_FCOMM 13
STT_HIPROC 15

The symbol’s type is not specified.

The symbol is associated with a data object, such as a variable, an
array, and so forth.

The symbol is associated with a function or other executable code.

The symbol is associated with a section. Symbol table entries of
this type exist primarily for relocation and normally have
STB_LOCALbinding.

Conventionally, the symbol’s name gives the name of the source
file associated with the object file. A file symbol h&3B_LOCAL
binding, its section index iISHN_ABSand it precedes the other
STB_LOCALsymbols for the file, if it is present.

STT_LOPROCthrough STT_HIPROC

Values in this inclusive range are reserved for processor-specific
semantics.

STT_PPC_FCOMM The symbol represents a Fortr&®MMOMNock.

Function symbols (those with ty@&TT_FUNC)in shared object
files have special significance. When another object file refer-
ences a function from a shared object, the link editor automati-
cally creates a procedure linkage table entry for the referenced
symbol. Shared object symbols with types other t8aT_FUNC

will not be referenced automatically through the procedure link-
age table.

If a symbol’s value refers to a specific location within a section,

its section index membest_shndx , holds an index into the sec-
tion header table. As the section moves during relocation, the

22-25

Compilation Systems Volume 2 (Concepts)

SHN_ABS

SHN_COMMON

SHN_UNDEF

As mentioned above
holds the following.

symbol’s value changes as well, and references to the symbol con-
tinue to “point” to the same location in the program. Some special
section index values give other semantics.

The symbol has an absolute value that will not change because of
relocation.

The symbol labels a common block that has not yet been allo-
cated. The symbol’s value gives alignment constraints, similar to a
section’ssh_addralign = member. That is, the link editor will
allocate the storage for the symbol at an address that is a multiple
of st_value . The symbol’s size tells how many bytes are
required.

This section table index means the symbol is undefined. When the
link editor combines this object file with another that defines the
indicated symbol, this file's references to the symbol will be
linked to the actual definition.

, the symbol table entry for indexsUN_UNDEFis reserved; it

Table 22-23. Symbol Table Entry: Index 0
Name Value Note
st_name 0 No name
st value 0 Zero value
st_size 0 No size
st_info 0 No type, local binding
st_other 0 (no ‘other’ information)
st_shndx SHN_UNDEF No section

Symbol Values

Symbol table entries for different object file types have slightly different interpretations
for thest value member.

* |n relocatable fil

esst_value holds alignment constraints for a symbol

whose section index SHN_COMMON

* Inrelocatable filesst_value holds a section offset for a defined symbol.
That is,st_value is an offset from the beginning of the section that

st shndx ident

ifies.

* In executable and shared object filas,value holds a virtual address.
To make these files’ symbols more useful for the dynamic linker, the sec-
tion offset (file interpretation) gives way to a virtual address (memory
interpretation) for which the section number is irrelevant.

22-26

Relocation

Executable and Linking Format (ELF)

Although the symbol table values have similar meanings for different object files, the data
allow efficient access by the appropriate programs.

Relocation is the process of connecting symbolic references with symbolic definitions.
For example, when a program calls a function, the associated call instruction must transfer
control to the proper destination address at execution. In other words, relocatable files
must have information that describes how to modify their section contents, thus allowing
executable and shared object files to hold the right information for a process’s program
image.Relocation entrieare these data.

deputed struct {
EIf32_Addrr_offset;
EIf32_Wordr_info;
} EIf32_Rel;

typedef struct {
ElIf32_Addr r_offset;
ElIf32_Word r_info;
EIf32_Sword r_addend;
} EIf32_Rela;

r_offset This member gives the location at which to apply the relocation
action. For a relocatable file, the value is the byte offset from the
beginning of the section to the storage unit affected by the reloca-
tion. For an executable file or a shared object, the value is the vir-
tual address of the storage unit affected by the relocation.

r_info This member gives both the symbol table index with respect to
which the relocation must be made, and the type of relocation to
apply. For example, a call instruction’s relocation entry would
hold the symbol table index of the function being called. If the
index isSTN_UNDEFthe undefined symbol index, the relocation
uses 0 as the “symbol value.” Relocation types are processor-spe-
cific; descriptions of their behavior appear below. When the text
below refers to a relocation entry’s relocation type or symbol table
index, it means the result of applyirgLF32_R_TYPEor
ELF32_R_SYMrespectively, to the entry’s info member.

#define ELF32_R_SYM(i) (()>>8)

#define ELF32_R_TYPE(i) \
((unsigned char)(i))

#define ELF32_R_INFO(s,t) \
(((s)<<8)+(unsigned char)(t))

r_addend This member specifies a constant addend used to compute the
value to be stored into the relocatable field.

As shown above, onl¥£lf32_Rela entries contain an explicit addend. Entries of type
EIf32_Rel store an implicit addend in the location to be modified. Depending on the
processor architecture, one form or the other might be necessary or more convenient. Con-

22-27

Compilation Systems Volume 2 (Concepts)

sequently, an implementation for a particular machine may use one form exclusively or
either form depending on context.

A relocation section references two other sections: a symbol table and a section to modify.
The section headersh_info andsh_link members, described in “Section Header”

on page 22-9, specify these relationships. Relocation entries for different object files have
slightly different interpretations for the offset member.

* Inrelocatable filesr_offset holds a section offset. That is, the reloca-
tion section itself describes how to modify another section in the file; relo-
cation offsets designate a storage unit within the second section.

* |n executable and shared object filespffset holds a virtual address.
To make these files’ relocation entries more useful for the dynamic linker,
the section offset (file interpretation) gives way to a virtual address (mem-
ory interpretation).

Although the interpretation of offset changes for different object files to allow effi-
cient access by the relevant programs, the relocation types’ meanings stay the same.

Relocation Types

Relocation entries describe how to alter the following instruction and data fields (bit num-
bers appear in the lower box corners; byte numbers appear in the upper box corners).

22-28

Executable and Linking Format (ELF)

byte8
7 0
half16
16 0
word32
31
uawd32
31
low16
31 16 |15
low26
31 26 | 25
lowl4
31 16 | 15
low24
31 26 | 25

Figure 22-3. Relocatable Fields

byte8 This specifies an 8-bit field occupying 1 byte with arbitrary alignment.

half16 This specifies a 16-bit field occupying 2 bytes with 2-byte alignment.

0x0102

01

02

word32 This specifies a 32-bit field occupying 4 bytes with 4-byte alignment. These

values use the byte order illustrated below.

uawd32 This specifies a 32-bit field occupying 4 bytes with arbitrary alignment. These
values use the same byte order asviord32.

22-29

Compilation Systems Volume 2 (Concepts)

22-30

low16

low26

lowl4

low24

0x01020304 01 02 03 04

This specifies a 16-bit field occupying the least significant bits of a field simi-
lar toword32.These bits represent values in the same byte ordenes$3?2.

This specifies a 26-bit field occupying the least significant bits of a field simi-
lar toword32.These bits represent values in the same byte ordened3?2.

This specifies a 14-bit field occupying the least significant bits (except for bits
1 and 0) of a field similar tavord32.These bits represent values in the same
byte order asvord32.

This specifies a 24-bit field occupying the least significant bits (except for bits
1 and 0) of a field similar tavord32.These bits represent values in the same
byte order asvord32.

Calculations below assume the actions are transforming a relocatable file into either an
executable or a shared object file. Conceptually, the link editor merges one or more relo-
catable files to form the output. It first decides how to combine and locate the input files,
then updates the symbol values, and finally performs the relocation. Relocations applied to
executable or shared object files are similar and accomplish the same result. Descriptions
below use the following notation.

A

AB

GP

This means the addend used to compute the value of the relocatable field.
This means the addressing base for the object.

This means the base address at which a shared object has been loaded into
memory during execution. The base address for an executable file is 0. Gener-
ally, a shared object file is built with a 0 base virtual address, but the execution
address will be different. See “Program Header” on page 22-35 for more
information about the base address.

This means the place (section offset or address) of a global offset table entry
for the symbol. See “Global Offset Table” on page 22-54 for more informa-
tion.

This means the place (section offset or address) of a global offset table proce-
dure entry for the symbol. See “Global Offset Table” on page 22-54 for more
information.

This means the place (section offset or address) of the procedure linkage table
entry for a symbol. A procedure linkage table entry redirects a function call to
the proper destination. The link editor builds the initial procedure linkage
table, and the dynamic linker modifies the entries during execution. See “Pro-
cedure Linkage Table” on page 22-58 for more information.

This means the place (section offset or address) of the storage unit being relo-
cated (computed using offset).

This means the value of the symbol whose index resides in the relocation
entry.

Executable and Linking Format (ELF)

Relocation entries apply to bytdsyted, halfwords palf16), or words (the others). A relo-
cation entry’'sr_offset value designates the offset or virtual address of the first byte of
the affected storage unit. The relocation type specifies which bits to change and how to
calculate their values. Because PowerUX uses &iflJ2_Rela relocation entries with
explicit addends, the_ added member serves as the relocation addend. In all cases, the
addend and the computed result use the same byte order.

The following general rules apply to the interpretation of the relocation types shown
below.

e “+"and “- " denote 32-bit modulus addition and subtraction, respectively.
“>>" denotes arithmetic right shifting of the value of the left operand by
the number of bits given by the right operand.

* For relocation types whose names end ilDfSP14 " or “_DISP16 ", the
upper 15 bits of the value computed before shifting must all be the same.
For relocation types whose names end iDISP24 " or “_DISP26", the
upper 5 bits of the value computed before shifting must all be the same.
For relocation types whose names end in eitheDtSP16" or
“_DISP26 ", the low 2 bits of the value computed before shifting must all
be zero.

* A relocation type whose name ends in DISP14", “ DISP16",
“ DISP24”, or“_DISP26 " must be used only in an instruction context,
that is, where the target address computed from the relocated field is used
as the destination of a transfer of control.

* For relocation types whose names end if8*, the upper 24 bits of the
computed value must all be zero. For relocation types whose names end in
“_8S”, the upper 25 bits of the computed value must all be the same. For
relocation types whose names end ii4” or “_16", the upper 16 bits of
the computed value must all be zero. For relocation types whose names
end in “_16S”, the upper 17 bits of the computed value must all be the
same.

¢ uhil6(valug, hil6(valug andlol6(valug denote the high, high,
and low 16 bits, respectively, of the indicated value. The difference
betweeruhil6() andhil6() is explained below.

* Reference in a calculation to the valu@ ‘implicitly creates a global offset
table entry for the indicated symbol. Reference in a calculation to the
value “GP implicitly creates a global offset table procedure entry for the
indicated symbol. Reference in a calculation to the valueray implic-
ity create a procedure linkage table entry for the indicated symbol.

* For relocation types whose names begin witR_PPC_ABDIFF ",
“R_PPC_ABREL”, or “R_PPC_SREL”, the address represented by the
symbol’s value and the address of the storage unit affected by the reloca-
tion must both be in the same shared object, or both must be in an execut-
able file.

* Where a relocation type does not use the associated symbol, the symbol
index in the relocation entry must be zero.

22-31

Compilation Systems Volume 2 (Concepts)

22-32

* The link editor detects and reports violations of restrictions described

above.

Table 22-24. Relocation Types

Name Value Field Calculation
R_PPC_NONE 0 none none
R_PPC_COPY 1 none see below
R_PPC_GOTP_ENT 2 word32 see below

R _PPC_8 4 byte8 S+A
R_PPC_8S 5 byte8 S+A
R_PPC_16S 7 halfl6 S+A

R _PPC 14 8 lowl4 S+A
R_PPC_DISP16 8 low16 (S+A-P)>>2
R_PPC_DISP14 9 lowl4 (S+A-P)>>2
R _PPC 24 10 low24 S+A
R_PPC_DISP24 11 low24 (S+A-P)>>2
R_PPC_PLT DISP24 14 low24 (L+A-P)>>2
R_PPC_BBASED 16HU 15 halflé uhil6(B +A)
R_PPC_BBASED 32 16 word32 B+A
R_PPC_BBASED 32UA 17 uawd32 B+A
R_PPC_BBASED_16H 18 half16 hil6(B +A)
R_PPC_BBASED_16L 19 halflé lo16(B +A)
R_PPC_ABDIFF_16HU 23 halflé uhil6(AB-S +A)
R_PPC_ABDIFF_32 24 word32 AB-S+A
R_PPC_ABDIFF_32UA 25 uawd32 AB-S+A
R_PPC_ABDIFF_16H 26 halflé hil6(AB-S+A)
R_PPC_ABDIFF_16L 27 halflé lo16(AB-S+A)
R_PPC_ABDIFF_16 28 halfl6 AB-S +A
R_PPC_16HU 31 halfi6 uhil6(S+A)
R_PPC 32 32 word32 S+A
R_PPC_32UA 33 uawd32 S+A
R_PPC_16H 34 halfl6 hil6(S +A)
R_PPC_16L 35 halfl6 lo16(S +A)
R_PPC_16 36 halfl6 S+A
R_PPC_GOT_16HU 39 halflé uhil6(G +A)
R_PPC_GOT_32 40 word32 G+A

Table 22-24. Relocation Types (Cont.)

Executable and Linking Format (ELF)

Name Value Field Calculation
R_PPC_GOT_32UA 41 uawd32 G+A
R_PPC_GOT_16H 42 half16 hil6(G +A)
R_PPC_GOT_16L 43 half16 l016(G +A)
R_PPC_GOT 16 44 halfl6 G+A
R_PPC_GOTP_16HU 47 halfl6 uhil6(GP + A)
R_PPC_GOTP_32 48 word32 GP+A
R_PPC_GOTP_32UA 49 uawd32 GP+A
R_PPC_GOTP_16H 50 halfl6 hil6(GP + A)
R_PPC_GOTP_16L 51 halflé lo16(GP + A)
R_PPC_GOTP_16 52 halflé GP+A
R_PPC_PLT_16HU 55 halfl6 uhil6(L +A)
R _PPC _PLT 32 56 word32 L+A
R_PPC_PLT 32UA 57 uawd32 L+A
R _PPC_PLT_16H 58 halfl6 hil6(L + A)
R_PPC PLT 16L 59 halfl6 lol6(L +A)
R _PPC PLT 16 60 halfl6 L+A
R_PPC_ABREL_16HU 63 halfl6 uhil6(S + A - AB)

(See text below)
R_PPC_ABREL_32 64 word32 S+A-AB

(See text below)
R_PPC_ABREL_32UA 65 uawd32 S+A-AB

(See text below)
R_PPC_ABREL_16H 66 halfl6 hil6(S +A - AB)

(See text below)
R_PPC_ABREL_16L 67 halflé l016(S + A - AB)

(See text below)
R_PPC_ABREL_16 68 halfl6 S+A-AB

(See text below)
R_PPC_GOT ABREL 16HU 71 halfl6 uhil6(G + A - AB)
R_PPC_GOT_ABREL_32 72 word32 G+A-AB
R_PPC_GOT ABREL 32UA 73 uawd32 G+A-AB
R _PPC_GOT ABREL 16H 74 halfl6 hil6(G + A - AB)
R_PPC_GOT_ABREL_16L 75 halflé 1016(G + A - AB)
R_PPC_GOT_ABREL_16 76 halfl6 G+A-AB
R_PPC_GOTP_ABREL 16H! 79 halfl6 uhil6(GP + A - AB)

22-33

Compilation Systems Volume 2 (Concepts)

22-34

Table 22-24. Relocation Types (Cont.)

Name Value Field Calculation

R_PPC_GOTP_ABREL 32 80 word32 GP+A-AB
R_PPC_GOTP_ABREL 32U, 81 wuawd32 GP+A-AB

R_PPC_GOTP_ABREL 16H 82 halfl6 hil6(GP + A- AB)
R_PPC_GOTP_ABREL 16L 83 halfl6 lo16(GP + A-AB)
R_PPC_GOTP_ABREL 16 84 halfl6 GP +A-AB

R _PPC PLT ABREL 16HU 87 halfl6 uhil6(L +A-AB)
R_PPC_PLT ABREL 32 88 word32 L+A-AB

R _PPC PLT ABREL 32UA 89 uawd32 L+A-AB
R_PPC_PLT _ABREL_16H 90 halfl6 hil6(L +A-AB)
R_PPC_PLT ABREL_16L 91 halflé lol6(L +A-AB)
R_PPC_PLT ABREL 16 92 halfl6 L+A-AB
R_PPC_SREL_16HU 95 halfl6 uhil6(S+A-P)
R_PPC_SREL_32 96 word32 S+A-P
R_PPC_SREL_32UA 97 uawd32 S+A-P
R_PPC_SREL_16H 98 halfl6 hil6(S+A-P)
R_PPC_SREL_16L 99 halfl6 lo16(S+A-P)

R PPC REL _EXT 1 254 word32 See text below

R PPC_REL_EXT 2 255 word32 See text below

The semantics dfil6() are different from those ofhil6() . Forhil6() , if bit 16 of
the 32-bit operand value is set, then a value of 1 is added to the high-order 16 bits of the
32-bit operand.

Some relocation types have semantics beyond simple calculation.

R_PPC_COPY This relocation type assists dynamic linking. Its offset member
refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file
and in a shared object. During execution, the dynamic linker cop-
ies data associated with the shared object’s symbol to the location
specified by the object.

R_PPC_GOTP_ENT This relocation type assists dynamic linking. The relocation offset
gives the location of a global offset table procedure entry. The
relocation symbol names the procedure. The relocation addend
gives the address of the associated GOTP binding entry. For an
executable file, this address is absolute; for a shared object file, it
is relative to the base address for the shared object. The use of
relocation types whose names end ii6” is generally subject to
failure, because the value computed may not fit in 16 bits. How-
ever, the use of theR_PPC_GOT_ABREL_16and

Executable and Linking Format (ELF)

R_PPC_GOTP_ABREL_1éelocation types does not fail unless
the total number of distinct GOT and GOTP entries for the execut-
able or shared object being link edited exceeds 16,380. In other
words, the link editor is obliged to favor GOT and GOTP entries
when choosing an addressing base and laying out the private data
of either the executable or shared object file.

R_PPC_GOT_ABREL_1&ndR_PPC_GOTP_ABREL_16elocation types do not falil
unless the total number of distinct GOT and GOTP entries for the
executable or shared object being link edited exceeds 16,380. In
other words, the link editor is obliged to favor GOT and GOTP
entries when choosing an addressing base and laying out the pri-
vate data of either the executable or shared object file.

The relocation types that typically remain after link editing and which require processing
by the dynamic linker includ® _PPC_COPYR_PPC_GOTP_ENTheR_PPC_BBASED
family, andR_PPC_32 However, the dynamic linker is prepared to handle all relocation
types except those whose calculations involve any of the val@g$ GP, and “L".

R_PPC_REL _EXT_1 The PowerUX implementation of DWARF symbolic debugging
information requires an ability to subtract two symbolic defini-
tions to obtain a single symbolic reference. This relocation type is
equivalent tdR_PPC_32 for the minuend. The subtrahend is rep-
resented in the next relocation entry.

R_PPC_REL_EXT_2 This relocation type identifies a relocation entry which must
appear immediately after the corresponding relocation entry of
type R_PPC_REL_EXT_1This relocation entry pertains to the
subtrahend.

The R_PPC_ABREL_* relocation types have a different calculation whenditi¢
-QAda option is used. In this case, the base address of the shared object, rather than the
addressing base, is used in the calculations.

Program Execution

This section describes the object file information and system actions that create running
programs.

Executable and shared object files statically represent programs. To execute such pro-
grams, the system uses the files to create dynamic program representations, or process
images.

Program Header

An executable or shared object file’'s program header table is an array of structures, each
describing a segment or other information the system needs to prepare the program for
execution. An object filsegmentontains one or morgectionsas “Segment Contents” on

page 22-40 describes.

22-35

Compilation Systems Volume 2 (Concepts)

22-36

Program headers are

meaningful only for executable and shared object files. A file speci-

fies its own program header size with the ELF header'’phentsize ande_phnum
members (see “ELF Header” on page 22-3).

typedef struct {

Elf32_Word _type;

Elf32_Off

p_offset;

Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} EIf32_Phdr;

p_type

p_offset

p_vaddr

p_paddr

p_filesz

p_memsz

p_flags

p_align

This member tells what kind of segment this array element
describes or how to interpret the array element’s information.
Type values and their meanings appear below.

This member gives the offset from the beginning of the file at
which the first byte of the segment resides.

This member gives the virtual address at which the first byte of
the segment resides in memory.

On systems for which physical addressing is relevant, this mem-
ber is reserved for the segment’s physical address. Because Pow-
erUX ignores physical addressing for application programs, this
member has unspecified contents for executable files and shared
objects.

This member gives the number of bytes in the file image of the
segment; it may be zero.

This member gives the number of bytes in the memory image of
the segment; it may be zero.

This member gives flags relevant to the segment. Defined flag val-
ues appear in Table 22-25.

As “Program Linking” on page 22-3 describes, loadable process
segments must have congruent values povaddr and
p_offset , modulo the page size. This member gives the value
to which the segments are aligned in memory and in the file. Val-
ues 0 and 1 mean no alignment is required. Othervgisalign
should be a positive, integral power of 2, andvaddr should
equalp_offset , modulop_align

Some entries describe process segments; others give supplementary information and do
not contribute to the process image. Segment entries may appear in any order, except as

Executable and Linking Format (ELF)

explicitly noted below. Defined type values follow; other values are reserved for future

use.

PT_NULL

PT_LOAD

PT_DYNAMIC

PT_INTERP

PT_NOTE

PT_SHLIB

Table 22-25. Segment Types, p_type

Name Value
PT_NULL 0
PT_LOAD 1
PT_DYNAMIC 2
PT_INTERP 3
PT_NOTE 4
PT_SHLIB 5
PT_PHDR 6
PT_LOPROC 0x70000000
PT_PPC_DEBINFADDR 0x70000001
PT_PPC_VENDOR Ox7fffffff

PT_HIPROC Ox 7 fffffff

The array element is unused; other members’ values are unde-
fined. This type lets the program header table have ignored
entries.

The array element specifies a loadable segment, described by
p_filesz andp_memsz The bytes from the file are mapped to
the beginning of the memory segment. If the segment’s memory
size (p_mems2) is larger than the file sizep(filesz), the
“extra” bytes are defined to hold the value 0 and to follow the seg-
ment’s initialized area. The file size may not be larger than the
memory size. Loadable segment entries in the program header
table appear in ascending order, sorted omptheaddr member.

The array element specifies dynamic linking information. See
“Dynamic Section” on page 22-47 for more information.

The array element specifies the location and size of a null-termi-
nated path name to invoke as an interpreter. This segment type is
meaningful only for executable files (though it may occur for
shared objects); it may not occur more than once in a file. If it is
present, it must precede any loadable segment entry. See “Pro-
gram Interpreter” on page 22-45 for further information.

The array element specifies the location and size of auxiliary
information. See “Note Section” on page 22-41 for details.

This segment type is reserved but has unspecified semantics.

22-37

Compilation Systems Volume 2 (Concepts)

Base Address

22-38

PT_PHDR The array element, if present, specifies the location and size of the
program header table itself, both in the file and in the memory
image of the program. This segment type may not occur more
than once in a file. Moreover, it may occur only if the program
header table is part of the memory image of the program. If it is
present, it must precede any loadable segment entry. See “Pro-
gram Interpreter” on page 22-45 for further information.

PT_LOPROGhroughPT_HIPROC
Values in this inclusive range are reserved for processor-specific
semantics.

PT_PPC_DEBINFADDR
The array element, if present, specifies the address of the “text
description” (tdescylebug infoprotocol.

PT_PPC_VENDOR The array element, if present, specifies the address of the vendor
section.

Unless specifically required elsewhere, all program header segment types are optional.
That is, a file's program header table may contain only those elements relevant to its con-
tents.

No two loadable segments in an executable or shared object file occupy the same 64K
region. More precisely, given the virtual addresses of any two bytes in different loadable
segments of an executable or shared object file, the integer quotients of those addresses,
upon division by 64, differ. Executable and writable sections must occupy different 256M
regions.

For every loadable segment in an executable or shared object file, if that segment does not
have write permission, then either the segmept'§lesz value is zero, or the seg-
ment’sp_memszandp_filesz values are the same.

No segment defined in an executable file occupies space at or above address 0x80000000.

An executable file defines at least one writable segment, that is, a segment with write per-
mission.

Thebreak areais a writable area of memory whose size can be increased by the applica-
tion. (Seebrk(2) .) Thebreakvalue defines the current extent of the break area. The ini-
tial break value is the end of the highest writable segment in the executable file. More pre-
cisely, the initial break value is the sum of tpevaddr andp_memsz values for the
executable file's writable segment with largestvaddr value. The break value is not set
lower than its initial value.

If the program header in a shared object file contairidTa INTERP array element, then it
also contains T_PHDRarray element.

Executable and shared object files havgage addreswhich is the lowest virtual address

associated with the memory image of the program’s object file. One use of the base
address is to relocate the memory image of the program during dynamic linking. An exe-
cutable or shared object file's base address is calculated during execution from three val-

Executable and Linking Format (ELF)

ues: the memory load address, the maximum page size, and the lowest virtual address of a
program'’s loadable segment. As “Program Loading” on page 22-42 describes, the virtual
addresses in the program headers might not represent the actual virtual addresses of the
program’s memory image. To compute the base address, one determines the memory
address associated with the lowestvaddr value for aPT_LOADsegment. One then
obtains the base address by truncating the memory address to the nearest multiple of the
maximum page size. Depending on the kind of file being loaded into memory, the mem-
ory address might or might not match thevaddr values.

Segment Permissions

A program to be loaded by the system must have at least one loadable segment (although
this is not required by the file format). When the system creates loadable segments’ mem-
ory images, it gives access permissions as specified iptflags member. All bits
included in thePF_MASKPRO®ask are reserved for processor-specific semantics.

Table 22-26. Segment Flag Bits, p_flags

Name Value Meaning
PF_X Ox1 Execute
PF W 0x2 Write
PF R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

If a permission bit is 0, that type of access is denied. Actual memory permissions depend
on the memory management unit, which may vary from one system to another. Although
all flag combinations are valid, the system may grant more access than requested. In no
case, however, will a segment have write permission unless it is specified explicitly. The
following table shows both the exact flag interpretation and the allowable flag interpreta-
tion.

Table 22-27. Segment Permissions

Flags Value Exact Allowable

none 0 All access denied All access denied
PF_X 1 Execute only Read, execute
PF_W 2 Write only Read, write, execute
PF W + PF_X 3 Write, execute Read, write, execute
PF_R 4 Read only Read, execute

22-39

Compilation Systems Volume 2 (Concepts)

Segment Contents

22-40

Table 22-27. Segment Permissions

Flags Value Exact Allowable
PF R + PF X 5 Read, execute Read, execute
PF R + PF W 6 Read, write Read, write, execute

PF R + PF W + PF X 7 Read, write, execute Read, write, execute

For example, typical text segments have read and execute - but not write - permissions.
Data segments normally have read, write, and execute permissions.

An object file segment comprises one or more sections, though this fact is transparent to
the program header. Whether the file segment holds one or many sections also is immate-
rial to program loading. Nonetheless, various data must be present for program execution,
dynamic linking, and so on. The diagrams below illustrate segment contents in general

terms. The order and membership of sections within a segment may vary; moreover, pro-
cessor-specific constraints may alter the examples below.

Text segments contain read-only instructions and data, typically including the following
sections described earlier in this chapter. Other sections may also reside in loadable seg-
ments; these examples are not meant to give complete and exclusive segment contents.

Table 22-28. Text Segment

text
.rodata
.hash
.dynsym
.dynstr
plt
rel.got

Data segments contain writable data and instructions, typically including the following
sections.

Table 22-29. Data Segment

.data

Note Section

Executable and Linking Format (ELF)

Table 22-29. Data Segment

.dynamic
.got

.bss

A PT_DYNAMICprogram header element points at thgnamic section, explained in
“Dynamic Section” on page 22-47. Thgot and.plt sections also hold information
related to position-independent code and dynamic linking. Althoughpthe appears in

a text segment above, it may reside in a text or a data segment, depending on the proces-
sor. See “Global Offset Table” on page 22-54 and “Procedure Linkage Table” on page
22-58 for details.

As described in “Section Header” on page 22-9, thes section has the type
SHT_NOBITS Although it occupies no space in the file, it contributes to the segment’s
memory image. Normally, these uninitialized data reside at the end of the segment,
thereby makingp_memsz larger thanp_filesz in the associated program header ele-
ment.

Sometimes a vendor or system builder needs to mark an object file with special informa-
tion that other programs will check for conformance, compatibility, and so forth. Sections
of type SHT_NOTEand program header elements of typ& NOTEcan be used for this
purpose. The note information in sections and program header elements holds any number
of entries, each of which is an array of 4-byte words in the format of the target processor.
Labels in Table 22-30 help explain note information organization, but they are not part of
the specification.

Table 22-30. Note Information

namesz

descsz

type

name

desc

namesz andname The firstnamesz bytes inname contain a null-terminated char-
acter representation of the entry’s owner or originator. There is no
formal mechanism for avoiding name conflicts. By convention,
vendors use their own name, such as “XYZ Computer Company,”
as the identifier. If no name is presengmesz contains 0. Pad-
ding is present, if necessary, to ensure 4-byte alignment for the
descriptor. Such padding is not includednamesz .

22-41

Compilation Systems Volume 2 (Concepts)

Program Loading

22-42

descsz anddesc The firstdescsz bytes indesc hold the note descriptor. If no
descriptor is presentlescsz contains 0. Padding is present, if
necessary, to ensure 4-byte alignment for the next note entry. Such
padding is not included idescsz .

type This word gives the interpretation of the descriptor. Each origina-
tor controls its own types; multiple interpretations of a single type
value may exist. Thus, a program must recognize both the name
and the type to “understand” a descriptor. Types currently must be
non-negative.

To illustrate, the following note segment holds two entries.

Table 22-31. Example Note Segment

+0 +1 +2 +3
namesz 7
descsz 0 No descriptor
type 1
name| X Y 4
C o] \0 pad
namesz 7
descsz 8
type 3
name| X Y Y4
C o] \0 pad
desc word 0
word 1

The system reserves note information with no nanaesz==0) and with a zero-length
name fame[0]=="\0") but currently defines no types. All other names must have at
least one non-null character.

As the system creates or augments a process image, it logically copies a file's segment to a
virtual memory segment. When--and if--the system physically reads the file depends on
the program'’s execution behavior, system load, and so forth. A process does not require a
physical page unless it references the logical page during execution, and processes com-
monly leave many pages unreferenced. Therefore, delaying physical reads frequently
obviates them, improving system performance. To obtain this efficiency in practice, exe-
cutable and shared object files must have segment images whose file offsets and virtual
addresses are congruent, modulo the page size.

Executable and Linking Format (ELF)

The virtual addressp(_ vaddr) and file offset p_vaddr) for segments are congruent,
modulo 64K 0x10000). The value of the_align member of each program header
element in an executable or shared object file is 64K. The following examples show 64K
alignment.

Table 22-32. Executable File

File Offset File Virtual Address

0 ELF Header

Program Header Table

Other Information

0x1000 Text Segment 0x10001000

size = Oxaf48 bytes
0xc000 RO Data Segment | 0x1003c000

size = 0x430 bytes
0xd000 Data Segment 0x3000d000

size = 0x113c bytes

Oxel3c Other Information

Table 22-33. Program Header Segments

Member Text Data

type PT_LOAD PT_LOAD
p_offset 0x100 0x2bf00
p_vaddr 0x10100 0x4bf00
p_paddr unspecified unspecified
p_filesz 0x2be00 0x4e00
p_memsz 0x2be00 0x5e24
p_flags PF R + PF X PF R+ PF W
p_align 0x10000 0x10000

Although the example’s file offsets and virtual addresses are congruent modulo 64K
for both text and data, up to four file pages hold impure text or data (depending on
page size and file system block size).

22-43

Compilation Systems Volume 2 (Concepts)

22-44

* The first text page contains the ELF header, the program header
table, and other information.

* The last text page holds a copy of the beginning of data.
* The first data page has a copy of the end of text.

* The last data page may contain file information not relevant to the
running process.

Logically, the system enforces the memory permissions as if each segment were
complete and separate; segments’ addresses are adjusted to ensure each logical page
in the address space has a single set of permissions. In the example above, the region
of the file holding the end of text and the beginning of data will be mapped twice: at
one virtual address for text and at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data, which
the system defines to begin with zero values. Thus if a file’s last data page includes
information not in the logical memory page, the extraneous data must be set to zero,
not the unknown contents of the executable file. “Impurities” in the other three
pages are not logically part of the process image; whether the system expunges them
is unspecified. The memory image for this program follows, assuming 4 KB
(0x1000) pages.

Table 22-34. Process Image Segments

Virtual Address Contents

0x20000| Header Padding
0xe0 zero bytes

0x200e0| Text Segment

0x6458 bytes

0x26538| RO Data Padding
Oxac8 zero bytes

0x46000| Text Padding
0x538 zero bytes

0x46538| RO Data Segment

0x18 bytes
0x46550| Data Padding
OxabO zero bytes

0x56000| RO Data Padding
0x550 zero bytes

0x56550| Data Segment

0x5884 bytes

Executable and Linking Format (ELF)

Table 22-34. Process Image Segments (Cont.)

Virtual Address Contents

0x574c0| Uninitialized Data
0x4914 zero bytes

0x5bdd4| Page Padding
0x230 zero bytes

Hardware requires that pages be “pure”; thus sections always start on a page bound-
ary.

One aspect of segment loading differs between executable files and shared objects.
Executable file segments typically contain absolute code. To let the process execute
correctly, the segments must reside at the virtual addresses used to build the execut-
able file. Thus the system uses fhevaddr values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent
code. (For background, see Chapter 4 (“Link Editor and Linking”).) This lets a seg-
ment’s virtual address change from one process to another, without invalidating exe-
cution behavior. Though the system chooses virtual addresses for individual pro-
cesses, it maintains the segmenmtdative positionsBecause position-independent
code uses relative addressing between segments, the difference between virtual
addresses in memory must match the difference between virtual addresses in the
file. The following table shows possible shared object virtual address assignments
for several processes, illustrating constant relative positioning. The table also illus-
trates the base address computations.

Table 22-35. Example Shared Object Segment Addresses

Source Text Data Base Address
File 0x200 0x2a400 0x0

Process 1 0xc0000200 0xc002a400 0xcO000000
Process 2 0xc0010200 0xc003a400 0xc0010000
Process 3 0xd0020200 0xd004a400 0xd0020000
Process 4 0xd0030200 0xd005a400 0xd0030000

Program Interpreter

An executable file may have of®T_INTERP program header element. Duriegec()

the system retrieves a path name from Bie_ INTERP segment and creates the initial
process image from the interpreter file's segments. That is, instead of using the original
executable file’s segment images, the system composes a memory image for the inter-
preter. It then is the interpreter’s responsibility to receive control from the system and pro-
vide an environment for the application program.

22-45

Compilation Systems Volume 2 (Concepts)

The interpreter receives control in one of two ways. First, it may receive a file descriptor
to read the executable file, positioned at the beginning. It can use this file descriptor to
read and/or map the executable file’s segments into memory. Second, depending on the
executable file format, the system may load the executable file into memory instead of
giving the interpreter an open file descriptor. With the possible exception of the file
descriptor, the interpreter’s initial process state matches what the executable file would
have received. The interpreter itself may not require a second interpreter. An interpreter
may be either a shared object or an executable file.

* A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area usethimap() and related ser-
vices. Consequently, a shared object interpreter typically will not conflict
with the original executable file's original segment addresses.

* An executable file is loaded at fixed addresses; the system creates its seg-
ments using the virtual addresses from the program header table. Conse-
guently, an executable file interpreter’s virtual addresses may collide with
the first executable file; the interpreter is responsible for resolving con-
flicts.

* The default program interpreter on PowerUX is
{usr/lib/libc.so.1

Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a program
header element of tygeT_INTERP to an executable file, telling the system to invoke the
dynamic linker as the program interpretezxec() and the dynamic linker cooperate to
create the process image for the program, which entails the following actions:

¢ Adding the executable file’s memory segments to the process image;
* Adding shared object memory segments to the process image;
* Performing relocations for the executable file and its shared objects;

¢ Closing the file descriptor that was used to read the executable file, if one
was given to the dynamic linker;

* Transferring control to the program, making it look as if the program had
received control directly frorexec()

The link editor also constructs various data that assist the dynamic linker for executable
and shared object files. As shown in “Program Header” on page 22-35, these data reside in
loadable segments, making them available during execution.

* A .dynamic section with typeSHT_DYNAMICholds various data. The
structure residing at the beginning of the section holds the addresses of
other dynamic linking information.

* The.hash section with typeSHT_ HASHolds a symbol hash table.

* The.got and.plt sections with typeSHT PROGBITShold two sepa-
rate tables: the global offset table and the procedure linkage table. Sections

22-46

Dynamic Section

Executable and Linking Format (ELF)

below explain how the dynamic linker uses and changes the tables to create
memory images for object files.

As explained in “Program Loading” on page 22-42, shared objects may occupy virtual
memory addresses that are different from the addresses recorded in the file's program
header table. The dynamic linker relocates the memory image, updating absolute
addresses before the application gains control. Although the absolute address values
would be correct if the library were loaded at the addresses specified in the program
header table, this normally is not the case.

If the process environment contains a variable nai@dBIND_NOWvith a non-null
value, the dynamic linker processes all relocations before transferring control to the pro-
gram. For example, all the following environment entries would specify this behavior.

« LD_BIND_NOW=1
 LD_BIND_NOW=on
* LD_BIND_NOW=off

Otherwise LD_BIND_NOVWeither does not occur in the environment or has a null value. In
this case, dynamic linker is permitted to evaluate procedure linkage table entries lazily,
thus avoiding symbol resolution and relocation overhead for functions that are not called.
See “Procedure Linkage Table” on page 22-58 for more information.

If an object file participates in dynamic linking, its program header table will have an ele-
ment of typePT_DYNAMIC This “segment” contains thelynamic section. A special
symbol, DYNAMIG labels the section, which contains an array of the following struc-
tures.

typedef struct {
EIf32_Sword d_tag;
union {
ElIf32_Word d_val;
Elf32_Addr d_ptr;
} d_un;
} EIf32_Dyn;

extern EIf32_Dyn _DYNAMICT];

For each object with this type, tag controls the interpretation af_un.

d_val TheseEIf32_Word objects represent integer values with various interpreta-
tions.
d_ptr TheseEIf32_Addr objects represent program virtual addresses. As men-

tioned previously, a file's virtual addresses might not match the memory vir-
tual addresses during execution. When interpreting addresses contained in the
dynamic structure, the dynamic linker computes actual addresses, based on
the original file value and the memory base address. For consistency, files do
not contain relocation entries to “correct” addresses in the dynamic structure.

22-47

Compilation Systems Volume 2 (Concepts)

The following table summarizes the tag requirements for executable and shared object
files. If a tag is marked “mandatory,” then the dynamic linking array must have an entry of
that type. Likewise, “optional” means an entry for the tag may appear but is not required.

Table 22-36. Dynamic Array Tags, d_tag

Name Value d_un Executable Shared Object
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d.val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_RELA 7 d_ptr mandatory optional
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH 15 d_val optional ignored
DT_SYMBOLIC 16 ignored ignored optional
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional
DT_PLTREL 20 d_val optional optional
DT_DEBUG 21 d_ptr optional ignored
DT_TEXTREL 22 ignored optional optional
DT_JMPREL 23 d_ptr optional optional
DT_LOPROC 0x70000000 unspecified unspecified unspecified
DT_PPC_ADDRBASE 0x70000001 d_ptr optional required
DT_PPC_PLTSTART 0x70000002 d_ptr optional optional
DT_PPC_PLTEND 0x70000003 d_ptr optional optional
DT_PPC_TDESC 0x70000004 d_ptr optional optional

22-48

Executable and Linking Format (ELF)

Table 22-36. Dynamic Array Tags, d_tag (Cont.)

Name Value d_un Executable Shared Object
DT_PPC_ARMS 0x70000100 d_val optional optional
DT_PPC_BIND_SYM 0x70000101 d_ptr optional optional
DT_HIPROC Ox7fffffff unspecified unspecified unspecified
DT_NULL An entry with aDT_NULLtag marks the end of theDYNAMIC
array.
DT_NEEDED This element holds the string table offset of a null-terminated

DT_PLTRELSZ

DT_PLTGOT

DT_HASH

DT_STRTAB

DT_SYMTAB

DT_RELA

string, giving the name of a needed library. The offset is an index
into the table recorded in theT_STRTABentry. See “Shared
Object Dependencies” on page 22-52 for more information about
these names. The dynamic array may contain multiple entries with
this type. These entries’ relative order is significant, though their
relation to entries of other types is not.

This element holds the total size, in bytes, of the relocation entries
associated with the global offset table. This relocation table con-
tains all relocation entries of tyge_PPC_GOTP_ENT®&Nd only
those entries. In particular, relocation entries applying to the pro-
cedure linkage table are found with all other relocation entries in
the relocation table specified by tiel RELA DT_RELASZ and
DT_RELAENTentries.

This element holds an address of three consecutive words in the
private data of an executable or shared object file. These 12 bytes
are 4-byte aligned. The first word is set by the link editor and con-
tains the address of the symbdDYNAMIC the address is abso-
lute for an executable file and relative to the base address for a
shared object. The second word is set by the dynamic linker and
points to the link map entry for the object (see below). The third
word is used to support lazy binding. TRE_PLTGOTentry is
required in every object file that participates in dynamic linking.
The link editor chooses where to locate the three words, usually at
the beginning of the global offset table.

This element holds the address of the symbol hash table,
described in “Hash Table” on page 22-59.

This element holds the address of the string table, described in the
first part of this chapter. Symbol names, library names, and other
strings reside in this table.

This element holds the address of the symbol table, described in
the first part of this chapter, witklf32_Sym entries for the
32-hit class of files.

This element holds the address of a relocation table, described in
the first part of this chapter. Entries in the table have explicit
addends, such @&9f32_Rela for the 32-bit file class. An object

22-49

Compilation Systems Volume 2 (Concepts)

22-50

DT_RELASZ

DT_RELAENT

DT_STRSZ
DT_SYMENT

DT_INIT

DT_FINI

DT_SONAME

DT_RPATH

DT_SYMBOLIC

DT_REL

DT_RELSZ

DT_RELENT

file may have multiple relocation sections. When building the
relocation table for an executable or shared object file, the link
editor concatenates those sections to form a single table. Although
the sections remain independent in the object file, the dynamic
linker sees a single table. When the dynamic linker creates the
process image for an executable file or adds a shared object to the
process image, it reads the relocation table and performs the asso-
ciated actions. If this element is present, the dynamic structure
must also hav®T_RELASZandDT_RELAENTelements. When
relocation is “mandatory” for a file, eithddT_RELAor DT_REL

may occur (both are permitted but not required).

This element holds the total size, in bytes, of i€ RELArelo-
cation table.

This element holds the size, in bytes, of & _RELArelocation
entry.

This element holds the size, in bytes, of the string table.
This element holds the size, in bytes, of a symbol table entry.

This element holds the address of the initialization function, dis-
cussed in “Initialization and Termination Functions” on page
22-60.

This element holds the address of the termination function, dis-
cussed in “Initialization and Termination Functions” on page
22-60.

This element holds the string table offset of a null-terminated
string, giving the name of the shared object. The offset is an index
into the table recorded in theT_STRTABentry. See “Shared
Object Dependencies” on page 22-52 for more information about
these names.

This element holds the string table offset of a null-terminated
search library search path string, discussed in “Shared Object
Dependencies” on page 22-52. The offset is an index into the table
recorded in théT_STRTABentry.

This element’'s presence in a shared object library alters the
dynamic linker's symbol resolution algorithm for references
within the library. Instead of starting a symbol search with the
executable file, the dynamic linker starts from the shared object
itself. If the shared object fails to supply the referenced symbol,
the dynamic linker then searches the executable file and other
shared objects as usual.

This element is not used on PowerUX.
This element is not used on PowerUX.

This element is not used on PowerUX.

DT_PLTREL

DT_DEBUG

DT_TEXTREL

DT_JMPREL

Executable and Linking Format (ELF)

This member specifies the type of relocation entry to which the
global offset table refers. This relocation table contains all reloca-
tion entries of typdR_PPC_GOTP_EN®BNd only those entries. In
particular, relocation entries applying to the procedure linkage
table are found with all other relocation entries in the relocation
table specified by theDT_RELA DT_RELASZ and
DT_RELAENTentries.

This member is used for debugging.

This member’s absence signifies that no relocation entry should
cause a modification to a non-writable segment, as specified by
the segment permissions in the program header table. If this mem-
ber is present, one or more relocation entries might request modi-
fications to a non-writable segment, and the dynamic linker can

prepare accordingly.

This element holds the total size, in bytes, of the relocation entries
associated with the global offset table. This relocation table con-
tains all relocation entries of typge_PPC_GOTP_ENT®&Nd only
those entries. In particular, relocation entries applying to the pro-
cedure linkage table are found with all other relocation entries in
the relocation table specified by tiel RELA DT_RELASZ and
DT_RELAENTentries.

DT_LOPROGhroughDT_HIPROC

Values in this inclusive range are reserved for processor-specific
semantics.

DT_PPC_ADDRBASEThis entry’sd_ptr member gives the address base for the object

file. If this entry is missing for an executable that participates in
dynamic linking, the addressing base is 0.

DT_PPC_PLTSTART This entry'sd_ptr member gives the low address (inclusive) of

DT_PPC_PLTEND

DT_PPC_TDESC

the PLT region in an object file. If this entry is present, then
DT_PPC_PLTENDs also present.

This entry’sd_ptr member gives the high address (exclusive) of
the PLT region in an object file. If this entry is present, then
DT_PPC_PLTSTARTs also present.

This entry’sd_ptr member gives the low address (inclusive) of
the “text description” (tdesc) information in an object file.

Except for theDT_NULLelement at the end of the array, and the
relative order oDT_NEEDE[RIements, entries may appear in any
order. Tag values not appearing in the table are reserved.

The PLT region is that portion of an object file that is made exe-
cutable by the dynamic linker after relocations are performed in
the region. The PLT region includes all PLT entries for the object
file that require relocation by the dynamic linker. The region of
memory between (T_PPC_PLTSTARWValue) / 64K) * 64K)
(inclusive) and (([DT_PRC_PLTENDvalue) + 64K - 1) / 64K) *

22-51

Compilation Systems Volume 2 (Concepts)

64K) (exclusive) is subject to being made executable by the
dynamic linker.

DT_PPC_ARMS This entry is present if the object was link edited with a map file
that defined a Concurrent Ada ARMS segment.

DT_PPC_BIND_SYM This entry is present if a function is to be non-lazily bound to the
shared object during dynamic linking. One or more of these
entries may be present in a shared object. The dynamic linker
fully binds each named symbol to the shared object, even if other
symbols are lazily bound.

Shared Object Dependencies

22-52

When the link editor processes an archive library, it extracts library members and copies
them into the output object file. These statically linked services are available during execu-
tion without involving the dynamic linker. Shared objects also provide services, and the
dynamic linker must attach the proper shared object files to the process image for execu-
tion. Thus executable and shared object files describe their specific dependencies.

When the dynamic linker creates the memory segments for an object file, the dependen-
cies (recorded ilDT_NEEDERntries of the dynamic structure) tell what shared objects
are needed to supply the program’s services. By repeatedly connecting referenced shared
objects and their dependencies, the dynamic linker builds a complete process image.
When resolving symbolic references, the dynamic linker examines the symbol tables with
a breadth-first search. That is, it first looks at the symbol table of the executable program
itself, then at the symbol tables of tlel NEEDER®ntries (in order), then at the second

level DT_NEEDELRntries, and so on.

Even when a shared object is referenced multiple times in the dependency list, the
dynamic linker will connect the object only once to the process.

Names in the dependency list are copies either ofDfie SONAMEtrings or the path
names of the shared objects used to build the object file. For example, if the link editor
builds an executable file using one shared object wibitTa SONAMEntry oflibl and
another shared object library with the path natus/lib/lib2 , the executable file

will containlibl and/ust/lib/lib2 in its dependency list.

If a shared object name has one or more slash)(characters anywhere in the name, such
as/usr/lib/lib2 above ordirectory/file , the dynamic linker uses that string
directly as the path name. If the name has no slashes, suitfiasabove, three facilities
specify shared object path searching, with the following precedence.

* First, the dynamic array taDT_RPATHmay give a string that holds a list
of directories, separated by colons (). For example, the string
/home/dir/usr/lib:/home/dir2/usr/lib: tells the dynamic
linker to search first the directoryhome/dir/lib , then
/home/dir2/usr/lib , and then the current directory to find dependen-
cies.

* Second, a variable calldd LIBRARY_PATHin the process environment
may hold a list of directories as above, optionally followed by a semicolon
(;) and another directory list. The following values would be equivalent to
the previous example:

Link Map

Executable and Linking Format (ELF)

LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:
LD_LIBRARY_PATH=/home/dir/usr/lib;/home/dir2/usr/lib:
LD_LIBRARY_PATH=/home/dir/usr/lib:/lhome/dir2/usr/lib:;

All LD_LIBRARY_PATHdirectories are searched after those frbfi_RPATH
Although some programs (such as the link editor) treat the lists before and after the
semicolon differently, the dynamic linker does not. Nevertheless, the dynamic linker
accepts the semicolon notation, with the semantics described above.

* Finally, if the other two groups of directories fail to locate the desired
library, the dynamic linker searchéssr/lib

For security, the dynamic linker ignores environmental search specifications (such as
LD_LIBRARY_PATH for set-user and set-group ID programs. It does, however, search
DT_RPATHlirectories andust/lib

The dynamic linker creates and maintains a linked list of link map entries to describe the
address space of a program using dynamic linking. The first entry in the list describes the
executable file; subsequent entries describe the shared objects used by the program. The
order of the link map entries is the result of performing the following conceptual algo-
rithm. The list of link map entries is initialized to contain only the entry for the executable
file. For each entry on the list (in order), the dynamic linker scans the corresponding
object’s_ DYNAMIGCsection (in order) and, for each previously unreferenced shared object
named by eDT_NEEDELRntry, appends a link map entry for that object to the list. The
result is a breadth-first linearization of the graph of shared object dependencies.

The structure of a link map entry is as follows.

struct link_map {

unsigned long |_addr;
char *|_name;
Elf32_Dyn * |d;

struct link_map *_next;
struct link_map *I_prev;

|_addr For a shared object, this is the base address of the shared object. This field is
zero for an executable file.

|_name For a shared object, this is the virtual address of the path name of that object
(e.g.,/usr/lib/libc.so0.1).

|_name Thisis the virtual address of thédYNAMICstructure of the object.

|_next This is the virtual address of the next link map entry. For the last object on the
chain, this field contains a null pointer.

|_prev This is the virtual address of the previous link map entry. For the first object
on the chain, this field contains a null pointer.

22-53

Compilation Systems Volume 2 (Concepts)

Global Offset Table

22-54

Position-independent code cannot, in general, contain absolute virtual addresses. Global
offset tables hold absolute addresses in private data, thus making the addresses available
without compromising the position-independence and “sharability” of a program’s text. A
program can reference its global offset table in several ways:

* An executable file can reference its global offset table absolutely, as it
would any data, because the address of the global offset table is known to
the link editor.

* A shared object can reference its global offset table with position-indepen-
dent references, because all of the text and data of a shared object file
remains fixed relative to itself no matter where the shared object segments
are assigned in memory.

* A shared object typically references its global offset table relative to the
shared object’s addressing base. The link editor establishes the addressing
base and the location of the global offset table, so it can calculate constant
offsets to global offset table entries. The addressing base value can be
computed by a function in a shared object in a position-independent man-
ner.

¢ References from a shared object’s procedure linkage table to the global off-
set table procedure entries are made absolutely. This is possible because
the procedure linkage table is private to the shared object.

Initially, the global offset table holds information as required by its relocation entries (see
“Relocation” on page 22-27). After the dynamic linker creates memory segments for a
loadable object file, it processes the relocation entries, some of which will refer to the glo-
bal offset table. The dynamic linker determines the associated symbol values, calculates
their absolute addresses, and sets the appropriate memory table entries to the proper val-
ues. Although the absolute addresses are unknown when the link editor builds an object
file, the dynamic linker knows the addresses of all memory segments and can thus calcu-
late the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will
have a global offset table entry. Because the executable file and shared objects have sepa-
rate global offset tables, a symbol's address may appear in several tables. The dynamic
linker processes all the global offset table relocations before giving control to any code in
the process image, thus ensuring the absolute addresses are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure, referenced
with the symbol DYNAMIC This allows a program, such as the dynamic linker, to find its
own dynamic structure without having yet processed its relocation entries. This is espe-
cially important for the dynamic linker, because it must initialize itself without relying on
other programs to relocate its memory image.

A global offset table entry provides direct access to the absolute address of a symbol,
without compromising position independence and sharability. Because the executable file
and shared objects have separate global offset tables, a symbol may appear in several
tables. The dynamic linker processes all the global offset table relocations giving control

to any code in the process image, thus ensuring the absolute addresses are available during
execution.

Executable and Linking Format (ELF)

The dynamic linker may choose different memory segment addresses for the same shared
object in different programs; it may even choose different library addresses for different
executions of the same program. Nonetheless, memory segments do not change addresses
once the process image is established. As long as a process exists, its memory segments
reside at fixed virtual addresses.

Global offset table (“GOT") entries are created by the link editor in response to the use of
certain relocation types. A GOT entry is 4 bytes long and 4-byte aligned and is allocated in
writable memory private to the executable or shared object file. After relocation by the
link editor, the dynamic linker, or both, a GOT entry generally contains the value of its
associated symbol, which is usually the address of the entity (object or function) repre-
sented by the symbol. The one exception is the case of a function for which there is a PLT
entry in the executable file. In this case the GOT entry contains the address of that PLT
entry. In this way, the address by which the executable file knows the function (its PLT
entry address) is also the address by which all shared objects know the function.

More efficient access to functions is provided by special GOT entries known as “global
offset table procedure” (“GOTP”) entries. Like GOT entries, GOTP entries are created by
the link editor in response to use of certain relocation types, are 4 bytes long and 4-byte
aligned, are allocated in writable memory private to the executable or shared object file,
and are relocated by the link editor, dynamic linker, or both. A GOTP entry, however, may
only refer to a function. During execution, the GOTP entry contains an address to which
control can be transferred in order to reach the function represented by the symbol associ-
ated with the GOTP entry. Moreover, the contents of the GOTP entry may change during
execution. This is “lazy binding”, described below. Although the contents of a GOTP
entry may change during execution, every value contained in a GOTP entry serves to
transfer control correctly to the associated function.

A GOTP entry has an associated relocation of tiRdPC_GOTP_ENTT he relocation
information and the initial contents of the entry are described under the
R_PPC_GOTP_ENrelocation type.

The dynamic linker may perform one of two separate relocation operations for a GOTP
entry. The first, called “pre-binding,” is performed during the dynamic linker’s relocation
phase when lazy binding is in effect (when the_BIND_NOWenvironment variable is
missing or null). In pre-binding, the dynamic linker rewrites the GOTP entry so that call-
ing through it invokes the dynamic linker. When the first invocation is made through the
GOTP entry, the dynamic linker gains control and performs the second relocation opera-
tion on the GOTP entry, called “binding.” Binding involves locating the relocation table
entry associated with the GOTP entry, looking up the associated symbol to find where the
function resides in memory, rewriting the GOTP entry to point directly to the function,
and finally transferring control to the function. If lazy binding is not in effect (the value of
the LD_BIND_NOWenvironment is non-null), the dynamic linker simply performs the
binding operation during its relocation phase, bypassing the pre-binding step altogether.

Lazy binding generally improves overall application performance, because unused sym-
bols do not incur the dynamic linking overhead. Nevertheless, two situations make lazy
binding undesirable for some applications. First, the initial reference to a shared object
function takes longer than subsequent calls, because the dynamic linker intercepts the call
to resolve the symbol. Some applications cannot tolerate this unpredictability. Second, if
an error occurs and the dynamic linker cannot resolve the symbol, the dynamic linker will
terminate the program. Under lazy binding, this might occur at arbitrary times. Once
again, some applications cannot tolerate this unpredictability. By turning off lazy binding,
the dynamic linker forces the failure to occur during process initialization.

22-55

Compilation Systems Volume 2 (Concepts)

The link editor and the dynamic linker collaborate to support lazy binding. For each
GOTP entry, the link editor creates a “GOT binding” entry, a sequence of instructions that
serves to transfer control to the dynamic linker. When lazy binding is in effect, the
dynamic linker stores the address of the GOTP binding entry in the GOTP entry. (The
addend in the relocation entry for the GOTP entry locates the GOTP binding entry.) The
dynamic linker also stores a word identifying the executable or shared object file and the
address of its binding routine in the second and third words, respectively, of the three
words located by theDT_PLTGOTvalue for the executable or shared object file.

The GOTP binding entry is responsible for transferring control to the address contained in

the word at DT_PLTGOTvalue”+8, having extended the stack by 16 bytes with the fol-
lowing values:

Table 22-37. GOTP Binding Entry Stack Frame

r31 Offset Contents

12 return address value at time of call
8 reloc_off value

4 word at ‘DT_PLTGOTvalue” + 4

0 the value 0

Thereloc_off value is the offset, in bytes, from th&T _JMPRELvalue for the execut-
able or shared object file containing the GOTP entry, to the relocation entry for the GOTP
entry.

The GOTP binding entry may destroy the contents of certain registers. The GOTP bind-
ing entry, in transferring to the dynamic linker, must place an appropriate return address in
the return address register, to maintain a proper return address chain for text description
information purposes.

There are many ways for the link editor to satisfy the above requirements. One possible
implementation of the GOTP binding entry is:

Table 22-38. GOTP Binding Entry

addis r13,r0,uhil6(reloc_off)
ori r13,r13,lo16(reloc_off)
b GOTP_binding_helper

whereGOTP_binding_helper is a sequence of instructions particular to the given
executable or shared object file. A GOTP binding helper routine that cooperates with
GOTP binding entries as shown above could be:

22-56

Function Addresses

Executable and Linking Format (ELF)

Table 22-39. GOTP Binding Helper

addic rl,r1,-16
mfspr rl4,LR
stw r14,12(rl)
stw r13,8(rl)

bl here
here: addis r13,r0,uhil6(DT_PLTGOT-here)
ori r13,r13,l016(DT_PLTGOT-here)

mfspr rl4,LR

add ri3,ri3,ri4
Iwz r14,4(r13)
stw r14,4(rl)
Iwz r13,8(r13)

stw 0,0(r1)
mtspr CTR,r13
bctr

The expressionDT_PLTGOT-here” represents the distance from laldiedre to the
DT_PLTGO%specified value.

The example sequences shown for the GOTP binding entry and GOTP binding helper rou-
tine are designed not to require any relocation by the dynamic linker. Hence, they can be
part of the normal text of a shared object. In particular, they don't need to reside along
with PLT entries in the PLT region. However, it is convenient for the link editor to create a
procedure linkage table consisting of the GOTP binding helper routine followed by PLT
and GOTP binding entries for each GOTP entry.

References to the address of a function from an executable file and the shared objects
associated with it might not resolve to the same value. References from within shared
objects will normally be resolved by the dynamic linker to the virtual address of the func-
tion itself. References from within the executable file to a function defined in a shared
object will normally be resolved by the link editor to the address of the procedure link-
age table entry for that function within the executable file.

To allow comparisons of function addresses to work as expected, if an executable file ref-
erences a function defined in a shared object, the link editor will place the address of the
procedure linkage table entry for that function in its associated symbol table entry. The
dynamic linker treats such symbol table entries specially. If the dynamic linker is search-

22-57

Compilation Systems Volume 2 (Concepts)

ing for a symbol, and it encounters a symbol table entry for that symbol in the executable
file, it normally follows the rules below.

¢ If the st_shndx member of the symbol table entry is n8HN_UNDEF
the dynamic linker has found a definition for the symbol and uses its
st value member as the symbol’s address.

¢ If the st_shndx member isSHN_UNDEFand the symbol is of type
STT_FUNCand thest_value member is not zero, the dynamic linker
recognizes this entry as special and usessthgalue member as the
symbol’s address.

¢ Otherwise, the dynamic linker considers the symbol to be undefined within
the executable file and continues processing.

Some relocations are associated with procedure linkage table entries. These entries are
used for direct function calls rather than for references to function addresses. These relo-
cations are not treated in the special way described above because the dynamic linker
must not redirect procedure linkage table entries to point to themselves.

Procedure Linkage Table

22-58

The procedure linkage table is a repository for short sequences of code that provide conve-
nient access to GOTP entries. A procedure linkage table (“PLT") entry is a sequence of
instructions that passes control on to a procedure identified by a particular GOTP entry.
The benefit of a PLT entry is that it provides an address (the address of its first instruction)
to which control can simply be transferred (as blysa instruction, for example) in order

to invoke a GOTP entry with the appropriate protocol.

It is usually better to access a GOTP entry directly rather than indirectly through a PLT
entry. However, there are some situations in which a PLT entry can be useful.

* When code is compiled for inclusion in an executable file (and, in particu-
lar, not for inclusion in a shared object), it is generally best to compile a
call into simply absr instruction, under the assumption that most calls
from outside of all shared objects will be to procedures that are not in a
shared object. If it turns out for such a call that the procedure being called
is in a shared object, a PLT entry can be created by the link editor, and the
bsr instruction can simply be adjusted to reference the PLT entry.

* When code is compiled for inclusion in a shared object, the compiler can
emit instructions to access the GOTP entry directly. It may be useful, how-
ever, for either convenience of the compiler or compactness of the call
(when many are made statically to the same GOTP entry), to use simply a
bsr instruction and a PLT entry. The procedure linkage table is unlike a
normal table in one respect--its entries are not necessarily all the same size.
(Nevertheless, typically the entries will all be the same size.) The form of a
typical PLT entry, for a hypothetical procedure named “name”, is shown
below, as if it were written in assembly language.

Hash Table

Executable and Linking Format (ELF)

Table 22-40. PLT Entry

name: addis r13,r0,hil6(name@gotp)
Iwz r13,lo16(name@gotp)(rl3)
mtspr CTR,r13
bctr

Although the instruction sequence shown above is only one of many possible sequences,
the following points will invariably be true:

* The GOTP entry for the procedure is referenced absolutely. Because the
global offset table for a shared object may reside at different locations in
different processes, the PLT entry code cannot be shared by different pro-
cesses.

* Registerl3 is used to load the contents of the GOTP entry.

* No general purpose register other thtd8 orrll is changed by the PLT
entry sequence.

Executable files and shared object files have separate procedure linkage tables, just as they
have separate global offset tables. The treatment by the link editor and dynamic linker can
vary in two different cases. The procedure linkage table in an executable file can be relo-
cated by the link editor, so it can be placed in the text area and shared by all processes exe-
cuting that file. Note that, in this case, the dynamic linker doesn’t act on the procedure
linkage table at all. Because the PLT entry refers to absolute addresses in the global offset
table, however, the procedure linkage table in a shared object file cannot be relocated until
the shared object has had its memory assigned by the dynamic linker. In the shared object
case, the link editor constructs the procedure linkage table in a segment that is initially
writable but not executable. The link editor records the extent of the PLT region with the
DT_PRC_PLTSTARTandDT_PPC_PLTENDnformation. The dynamic linker loads the
shared object, performs relocations (including those on the procedure linkage table), then
usesmprotect(KE_OS) to change the segment containing the procedure linkage table
from writable to executable. Note that the area of memory subject to being changed from
writable to executable is the area containing the PLT region, rounded outward on each end
to a 64K boundary.

A hash table ofEIf32_Word objects supports symbol table access. Labels in
Table 22-41 help explain the hash table organization, but they are not part of the specifica-
tion.

22-59

Compilation Systems Volume 2 (Concepts)

Table 22-41. Symbol

nbucket

nchain
bucket[0]

bucket[nbucket - 1]
chain[0]

chain[nchain - 1]

Thebucket array containsibucket entries, and thehain array containsichain

entries; indexes start at 0. Boblucket andchain hold symbol table indexes. Chain
table entries parallel the symbol table. The number of symbol table entries should equal
nchain ; so symbol table indexes also select chain table entries. A hashing function
(shown below) accepts a symbol name and returns a value that may be used to compute a
bucket index. Consequently, if the hashing function returns the valfer some name,
bucket[x%nbucket] gives an indexy into both the symbol table and the chain table.

If the symbol table entry is not the one desiredainly] gives the next symbol table
entry with the same hash value. One can follow¢hain links until either the selected
symbol table entry holds the desired name or thain entry contains the value
STN_UNDEF

unsigned long
elf_hash(const unsigned char *name)

{
unsigned long h = 0, g;
while (*name)
{
h = (h << 4) + *name++;
if (g = h & 0xf0000000)
h N= g >> 24,
h &= ~g;
}
return h;
}

Initialization and Termination Functions

22-60

After the dynamic linker has built the process image and performed the relocations, each
shared object gets the opportunity to execute some initialization code. These initialization
functions are called in no specified order, but all shared object initializations happen
before the executable file gains control. Similarly, shared objects may have termination
functions, which are executed with tlaexit() mechanism after the base process
begins its termination sequence. (2#exit(3C) .) Once again, the order in which the
dynamic linker calls termination functions is unspecified. Shared objects designate their
initialization and termination functions through tb& INIT andDT_FINI entries in the

Executable and Linking Format (ELF)

dynamic structure, described in “Dynamic Section” on page 22-47. Typically, the code for
these functions resides in thieit ~ and.fini sections, mentioned in “Section Header”
on page 22-9.

Although theatexit() termination processing normally will be done, it is not guaran-
teed to have executed upon process death. In particular, the process will not execute the
termination processing if it callsexit() or if the process dies because it received a sig-

nal that it neither caught nor ignored.

Symbolic Debugging Information

ELF does not specify a format for representation of symbolic debugging information. Sys-
tems vendors are free to provide a representation of their choice. The Concurrent C, For-
tran, and Ada compilers produce DWARF symbolic debugging information as described
in the DWARF version 2 draft 6 specification (See Chapter 24 (“DWARF Debugging
Information Format”).) with the exceptions noted below.

Several attributes have been added to support Concurrent Fortran 77 extensions. These
attributes are described below.

AT_datapool The presence of an AT_datapool flag in a
TAG_common_block DIE indicates that the
TAG_common_block DIE is actually a data pool. The DIEs
owned by that data pool afBAG_variable DIEs rather than
TAG_memberDIEs.

AT_pointer_block (SeeAT_pointer_base below)

AT_pointer_base The presence of anAT_pointer_block flag in a
TAG_common_block DIE indicates that the
TAG_common_block DIE is actually a pointer block. Each
pointer block DIE also contains &kl _pointer_base attribute
which is a reference to thEAG_variable or TAG_member
which holds the block’s base address. EA&G_memberDIE
owned by the pointer block contains an
AT _data_member_location which evaluates to the offset of
the member from the base address.

To facilitate the access of DWARF symbolic debugging information, some systems ven-
dors provide a library of routines which may be used by a user’s program. PowerUX pro-
vides/usr/ccs/lib/libdwarf.a , which complies to DWARF Access Library spec-
ification, version 1, draft 1. (See Chapter 25 (“DWARF Access Library (libdwarf)”).),
with the following exceptions.

The type information query operations have been modified to more closely map to the
DWARF version 2 draft 6 specification. The functions described in section 5.5 of this
specification have been replaced with the following:

5.5 Type Information Query Operations

These operations return information concerning data types.

22-61

Compilation Systems Volume 2 (Concepts)

22-62

Dwarf_Signed dwarf _modtags (
Dwarf_Type typ,
Dwarf_Half **tagbuf,
Dwarf_Error *error)

The functiondwarf_modtags() setstagbuf to point to an array of modifier tags rep-
resented by th®warf_Type descriptoityp and returns the number of elements in the
array; DLV_NOCOUNSE returned on error. The storage pointed tddybuf after a suc-
cessful return oflwarf_modtags() should be free’d when no longer of interest (see
dwarf_dealloc()).

Dwarf_Bool dwarf_isbasetype (
Dwarf_Type typ,
Dwarf_Error *error)

The functiondwarf_isbasetype() returns non-zero if th®warf_Type descriptor
typ represents a base type; zero is returned otherwise.

Dwarf_Die dwarf_basetype (
Dwarf_Type typ,
Dwarf_Error *error)

The functiondwarf_basetype() returns abwarf _Die descriptor that represents the
base type of the type represented by the descrigpor, NULL s returned if type does not
represent a base type or an error occurred.

char* dwarf_base_name (
Dwarf_Die base,
Dwarf_Error *error)

The functiondwarf_base _name() returns a pointer to &AlULL terminated string of
characters that represents the name of the base type representedDwatieDie
descriptor baseNlULL is returned on error.

Dwarf_Small dwarf_base_encoding (
Dwarf_Die base,
Dwarf_Error *error)

The functiondwarf_base_encoding() returns a code representing the encoding of
the base type represented by fhwarf Die descriptor base; 0 is returned on error.

Dwarf_Signed dwarf_base_size (
Dwarf_Die base,
Dwarf_Error *error)

The functiondwarf_base_size() returns an integer representing the size of the base
type represented by thawarf_Die descriptor basé)LV_NOCOUNS returned on error.

Dwarf_Die dwarf_udtype (
Dwarf_Type typ,
Dwarf_Error *error)

The functiondwarf_udtype() returns theDwarf_Die descriptor representing the
user-defined type given by tHawarf Type descriptortyp ; NULL s returned on error
or if typ is not a user-defined type.

23
tdesc Information

INtrOdUCHION . . .o e 23-1

tdeSC ChUNKS ... oo 23-2

tdesc in Executable Programs and Shared Objects 23-10
23-13

EXamples

Compilation Systems Volume 2 (Concepts)

Introduction

23
tdesc Information

In order to obtain meaningful stack walkbacks (traces) when debugging programs, these
programs need information describing the tekthe various modules in the program. The
88open Object Compatibility Standard (OCS) defines this information, callibexit
description(or tdesg¢ information. This information also permits an Ada program to per-
form correct exception handling. Concurrent compilation systems for the supporting hard-
ware platforms produce and use this information.

Every module of code has one or more accompanying blocks of information ¢adéed
chunks These chunks will be described below. Compilers--C, Fortran, and Ada--automat-
ically produce these chunks. Assembly writers must provide these chunks in their assem-
bly code. The link editor combines the tdesc chunks from the various modules to be link
edited, and the link edited executable program contains the final collection of tdesc
chunks. The portion of text described bydesc chunls known as aext chunk.

A body of code consists of three general parts:

prologue Establishes the stack frame pointer, saves any registers that need
to be saved in the stack frame, and saves the return address in the
stack frame, when necessary.

epilogue Adjusts the stack pointer to its incoming value and returns to the
caller.

procedure body Is the unchanging part of the code (with respect to the above
actions).

Figure 23-1 illustrates these parts.

Prologue Procedure Epilogue Procedure Epilogue
Body Body
tdesc tdesc
Chunk Chunk

Figure 23-1. The Parts of a Body of Code

23-1

Compilation Systems Volume 2 (Concepts)

Currently, tdesc information is meaningful only for the procedure body. Epilogue code can
be interspersed through the procedure body, however, so the tdesc information described
below is usually adequate for covering epilogue code as well. Often, a single tdesc chunk
describes an entire function or module. If epilogue code (or any code which modifies the
stack frame pointer) is placed in the middle of the procedure body, then multiple tdesc
chunks are needed to ensure none of their coverages include the epilogue code. No more
than one tdesc chunk may describe the same piece of code. (l.e., text chunks may not over-

lap.)

tdesc information is specified in assembly language as part atdkeec section. The
assembly syntax for assembling into this section is:

section .tdesc,"x"

A series of words is assembled into this section to define the chunk.

tdesc Chunks

The header filadesc.h provides declarations and definitions for the various compo-
nents of tdesc information. The C structure definition for a tdesc chunk is as follows.

struct __tdesc_chunk {
unsigned int zeroes:8; /* zeroes */
unsigned int length:22; /* info length */
unsigned int alignment:2; /* alignment exponent */

int protocol_number; [* protocol number */
int *start; [* start address of text chunk */
int *end; /* end address of text chunk */

tdesc Chunk Declaration:

Field Name Contents

zeroes This member contains a zero.

length This member gives the length in bytes of the tdesc chunk.
alignment This member gives the required alignment of the info protocol

contained in the chunk.

Value Byte Alignment

1

w N = O

2
4
8

23-2

tdesc Information

protocol_number This member identifies the protocol associated with the chunk.

Name Value
_INFO_GENERAL_PROTOCOL_NUMBER 1
_INFO_PIC_PROTOCOL_NUMBER 2
_INFO_EXTENDED_PROTOCOL_NUMBER 3
_INFO_PIC_EXTENDED_PROTOCOL_NUMBER 4
_INFO_EXCEPTION_PROTOCOL_NUMBER ox7f
_INFO_PIC_EXCEPTION_PROTOCOL_NUMBER Ox7e

_INFO_EXTENDED_EXCEPTION_PROTOCOL_NUMBER 0x7d
_INFO_PIC_EXTENDED_EXCEPTION_PROTOCOL_NUMB 0x7c

Substrings in the preceding names identify the kind of protocol.

GENERAL This is the standard protocol. The following protocols
are extensions to this protocol.

PIC This protocol provides position-independent starting
and ending addresses, for use in shared objects.

EXTENDED This protocol provides information on features unique
to particular systems. Presently, this includes the
floating-point registers which are saved by the text

chunk.
EXCEPTION This protocol provides a pointer to an Ada exception
table.
start This member contains a pointer to the starting address (inclusive)

of the corresponding text chunk. The address is after the prologue
code and at the start of the procedure body.

end This member contains a pointer to the ending address (exclusive)
of the corresponding text chunk. The address is immediately after
the procedure body.

Following these initial four words of the tdesc chunk is the data for the chumidgroto-
col. Some protocols may have more than one variant. The C union/structure definition for
the various info protocols is as follows.

23-3

Compilation Systems Volume 2 (Concepts)

union ___info_protocol {
struct __general_protocol {
unsigned int variant:8; /* info variant */
unsigned int unused_1:5; [* reserved for future use */
unsigned int save_mask:13; [* register save mask */

unsigned int discriminant:1; /* return address info
discriminant */
unsigned int frame_register:5; /* frame address register */

int frame_offset; [* frame address offset */

int return_info; [* return address info */

int save_offset; [* register save offset */
} general;

struct __extended_protocol {

unsigned int variant:8; /* info variant */
unsigned int unused_1:5; I* reserved for future use */
unsigned int save_mask:13; [* register save mask *

unsigned int discriminant:1; /* return address info
discriminant*/
unsigned int frame_register:5; /* frame address register */

int frame_offset; [* frame address offset */
int return_info; [* return address info */
int save_offset; I* register save offset */

unsigned int extended_save_mask:10;/* floating register
save mask */
unsigned int unused_2:22; I* reserved for future use*/
} extended;

struct __exception_protocol {

unsigned int variant:8; /* info variant */
unsigned int unused_1:5; /* reserved for future use */
unsigned int save_mask:13; [* register save mask *

unsigned int discriminant:1; /* return address info
discriminant */
unsigned int frame_register:5; /* frame address register */

int frame_offset; [* frame address offset */

int return_info; [* return address info */

int save_offset; I* register save offset */

int *ada_entry; [* start of prologue pointer*/

int *ada_exception; /* Ada exception pointer */
} exception;

struct __extended_exception_protocol {

unsigned int variant:8; /* info variant */
unsigned int unused_1:5; I* reserved for future use */
unsigned int save_mask:13; [* register save mask */

unsigned int discriminant:1; /* return address info
discriminant */
unsigned int frame_register:5; /* frame address register */

int frame_offset; [* frame address offset */
int return_info; [* return address info */

int save_offset; I* register save offset */

int *ada_entry; [* start of prologue pointer*/

23-4

tdesc Information

int *ada_exception; /* Ada exception pointer */
unsigned int extended_save_mask:10;/* floating register
save mask */
unsigned int unused_2:22; [* reserved for future use */
} extended_exception;
struct __full_save_protocol {

unsigned int variant:8; /* info variant */
unsigned int frame_register:5; /* frame address register */
unsigned int indirect:1; /* interpretation of
save_offset */
unsigned int mask ; /* mask defining saved
registers */
int frame_offset; [* frame address offset */
int save_offset; [* register save offset */
int *ada_exception; [* pointer to exception handler */
b
struct __info_indirect_protocol {
unsigned int variant:8; /* info variant */
int *alternate_pc ; [* alternate PC address */
b

Info Protocols Declaration:

Field Name Contents
variant This member identifies the variant of the info protocol.
Name Value
_INFO_GENERAL_VARIANT 1
_INFO_EXTENDED_VARIANT 3
_INFO_EXCEPTION_VARIANT ox7f
_INFO_EXTENDED_EXCEPTION_VARIAN™ 0x7d
_INFO_SIGACTHANDLER_VARIANT 0x7b
_INFO_FULL_SAVE_VARIANT 0x71
_INFO_INDIRECT_VARIANT 0x70

_INFO_GENERAL_VARIANT
This is the standard variant. Most of the following
variants are extensions to this variant.

_INFO_EXTENDED_VARIANT
This variant provides information on features unique
to particular systems. Presently, this includes the
extended registers which are saved by the text chunk.

23-5

Compilation Systems Volume 2 (Concepts)

_INFO_EXCEPTION_VARIANT
This variant provides a pointer to an Ada exception
table.

_INFO_EXTENDED_EXCEPTION_VARIANT
This variant provides information on features unique
to particular systems. Presently, this includes the
extended registers which are saved by the text chunk.
This variant also provides a pointer to an Ada excep-
tion table.

_INFO_SIGACTHANDLER_VARIANT
This variant indicates that the corresponding text
chunk is in the C librarsigacthandler() func-
tion. The prototype for this function is:

void _sigacthandler(int sig, siginfo_t *sip,
ucontext_t *ucp, void (*handler)())

Walkback information for identifying the approximate
location where the signal was raised can be deter-
mined as follows:

* The value ofucp is at:

stack pointer + info_protocol.general.frame_offset + 8

* The approximate address of the instruction where the signal
was raised is at:

ucp->uc_mcontext.gregs[R_SRRO]

* The address of the stack pointer for the text chunk of the rou-
tine where the signal was raised is at:

ucp->uc_mcontext.gregs[R_R1]

save_mask This mask generally identifies the general-purpose registers which
are preserved by the corresponding text chunk in the custank
frame A bit is on insave_mask if the corresponding register is

preserved.

Bit in .

Word Register
18 r2
17 ri6
16 ri7
6 r27

Zero This field contains a zero bit.

23-6

discriminant

frame_register

frame_offset

return_info

save_offset

tdesc Information

This member provides information on how to determine the return
address from the corresponding text chunidistriminant is

0, then the return register is the general-purpose register whose
number is contained in theeturn_info member. Ifdis-
criminant is 1, then the return address is the value of the word
at the stack frame position specified by tieéurn_info mem-

ber.

This member gives the number of the general-purpose register
which is used to locate the current stack frame. This register is
often the stack pointer itself, but it need not be. In the prologue:

addi ri,rl,-40
frame_reqister isrl.

This member provides the value which is added to the frame reg-
ister to locate the current stack frame. Often, the prologue code
decrements the incoming stack pointer, providing room on the
stack for local variables and arguments to functions called by the
current procedure. The frame offset is usually the value that is
subtracted from the incoming stack pointer. In the prologue:

addi ri1,rl1,-40
frame_offset is 40.

This member identifies the return-address register or the location
where the return address resides within the current stack frame, as
described above. Upon entry to the procedure, the return address
is in registerlr . If no other procedure calls are made from the
current procedure, and if that register is not modified in the proce-
dure body, then the return address can be found in that register. In
this casediscriminant is 0, andreturn_info is 65 (for

Ir). If the return-address register is modified in the procedure
body, then the prologue code will save it on the stack. In this case
discriminant is 1, andreturn_info provides an offset
from (frame_register + frame_offset) at which the
return address can be obtained. For the prologue:

addi rl,rl,-40

mflr ri3
stw r13,48(rl)
discriminant is 1 andreturn_info is +8 or +48, relative

to the caller’s frame.

For most variants, this member gives the base offset within the
current stack frame of the start of the general-purpose saved regis-
ters. It provides an offset fronfframe_register +
frame_offset) at which the first general-purpose register is
preserved. Generally, only those registers specified in
save_mask are saved in this area. For r16-r27, inclusive, suc-
cessively higher-numbered registers are stored at successively

237

Compilation Systems Volume 2 (Concepts)

ada_entry

ada_exception

extended_save_mask

unused_1
unused_2

indirect

mask

23-8

higher addresses within the register save area, and r2 (if it is pre-
served) is saved at the next higher address after the r16-r27 group.

For the INFO_FULL_SAVE_VARIANT this member gives the
base offset within the current stack frame of the start of the regis-
ter save area. See the discussionngfirect (below) for the
interpretation ofsave_offset . See the discussion afiask
(below) for information about the register save area.

This member provides the address of the start of the prologue.

This member provides the address of an Ada exception table
pointer.

This mask generally identifies the floating-point registers which
are preserved by the corresponding text chunk in the current stack
frame. A bit is on in the mask if the corresponding register is pre-
served.

Bit in

Word Register
31 f22
30 23
22 31

Generally, the preserved floating-point registers immediately pre-
cede the preserved general-purpose registers, with alignment to
the next 16-byte boundary. For all variants, successively
higher-numbered registers are stored at successively higher
addresses within the register save area.

This member is reserved for future use.
This member is reserved for future use.

This member indicates hosave_offset isto be interpreted. If

indirect is 0, save_offset is the offset from
(frame_register + frame_offset) of the register save
area. Ifindirect is 1, save_offset is the offset from
(frame_register + frame_offset) of the word contain-

ing a byte pointer to the register save area.

This mask identifies which registers are saved in the stack frame.
A bit is on in mask if the corresponding register(s) is/are saved.
The bits are

tdesc Information

Name Value Registers
_INFO_FULL_SAVES FPSCR 0x1 floating-point status and
control register
(fpscr)
_INFO_FULL_SAVES FPREGS 0x2 floating-point registers
(fo-f31)
_INFO_FULL_SAVES CR 0x4 condition register
(cr)
_INFO_FULL_SAVES_XER 0x8 integer exception
register
(xer)
_INFO_FULL_SAVES LR 0x10 link register
(Ir)
_INFO_FULL_SAVES _CTR 0x20 count register
(ctr)

The register save area for the full-save protocol is laid out as fol-
lows. Note that even if optional registers do not contain meaning-
ful information, they still have space allocated for them.

ro-r31

f0-f31 (optional)
cr (optional)
reserved word
pc

xer (optional)
ctr (optional)

Ir (optional)
reserved word

fpscr (optional)

alternate_pc This member identifies an alternate PC value that should be used
for locating the actual tdesc information for this code.

23-9

Compilation Systems Volume 2 (Concepts)
tdesc in Executable Programs and Shared Objects

PowerUX provides facilities for the creation and execution of both statically linked pro-
grams and dynamically linked programs. A statically linked program contains all of the
code and data in the on-disk image of the program. A dynamically linked program consists
of a statically linked portion, which is the on-disk image of the program, and one or more
shared objects which are dynamically linked into the process’ address space during execu-
tion of the program. (See Chapter 4 (“Link Editor and Linking”) and Chapter 22 (“Execut-
able and Linking Format (ELF)") for additional information on shared objects and
dynamic linking.)

The link editor concatenates tdesc chunks from the object files which constitute an object,
whether it be the statically linked portion of a program or a shared object. These concate-
nated tdesc chunks reside in a separaesc section of the object.

Two linker-provided protocols describe and locate the body of tdesc chunks. The first is
thedebug info protocolA C structure definition for it is as follows.

struct __debug_info_protocol {
int protocol_number; /* protocol number */

int tdesc; /* pointer to map protocol */
int number_text; /* number of text words */
int *text_words; [* pointer to text words */

int number_data; /* number of data words */
int *data_words; [* pointer to data words */

Debug Info Protocol Declaration:
Field Name Contents

protocol_number This member identifies the particular debug info protocol. The
_DEBUG_INFO_PROTOCOL_NUMB#Btocol has the value 1.

tdesc This member provides the virtual address of the map protocol.

number_text This member indicates how many words are available in the text
segment for use by debuggers.

text_words This member provides the virtual address of the available words in
the text segment.

number_data This member indicates how many words are available in the data
segment for use by debuggers.

data_words This member provides the virtual address of the available words
in the data segment.

If the symbol table is present in the program, the value of the symibebug_info is
the virtual address of the debug info protocol. Both the program header and the section
header provide this address.

23-10

tdesc Information

Themap protocolocates and gives the lengths of the concatenated tdesc chunks. Concur-
rent compilation systems provide two different map protocols. The C union/structure defi-
nition for them is as follows.

union __map_protocol {
struct __minimal_protocol {
int protocol_number; [* protocol number */
int tdesc_end; /* address beyond end
of tdesc chunks */
} minimal ;

struct __pointer_protocol {
int protocol_number; [* protocol number */
int tdesc_end; /* address beyond end
of tdesc chunks */
int pointer_array_length; /* length of pointer
array */
int filler; [* filler for 8-byte
boundary alignment */
} pointer ;

I3
Map Protocols Declaration:
Field Name Contents

protocol_number This member identifies the particular map protocol.

Name Value

_MAP_MINIMAL_PROTOCOL_NUMBEI 1
_MAP_POINTER_PROTOCOL_NUMBE 0x10001

_MAP_MINIMAL_PROTOCOL_NUMBER
This is the standard protocol. In this protocol, the tdesc chunks are
concatenated together in an arbitrary order immediately after the
map protocol.

_MAP_POINTER_PROTOCOL_NUMBER
In this protocol, the tdesc chunks are concatenated together in an
arbitrary order, but a sorted array of pointers allows debuggers to
locate a particular tdesc chunk through a binary search of starting
addresses. The sorted array of pointers immediately follows the
first four words of this protocol, and the concatenated tdesc
chunks immediately follow the array.

An array element provides both the virtual address of a tdesc
chunk and the virtual starting address of the corresponding text
chunk. The array is sorted in increasing order of the virtual start-

ing addresses of the corresponding text chunks. The C structure
definition of an array element is as follows.

23-11

Compilation Systems Volume 2 (Concepts)

23-12

struct __tdesc_pointer {

int *start; /* start address of
text chunk */
int *tdesc; [* address of

tdesc chunk */

%
Pointer Array Declaration :

start This member provides the virtual starting
address of the text chunk.

tdesc This member provides the virtual starting
address of the corresponding tdesc chunk.

tdesc_end This member gives the virtual address of the byte immediately
after the last byte of the concatenated tdesc chunks.

pointer_array_length
This member provides the byte length of the sorted array of point-
ers.

filler This member merely forces alignment of succeeding information.

Dynamically Linked Programs:

For a dynamically linked program, a linked list of tdesc maps identifies the tdesc informa-
tion for each object (static or shared) which makes up the program. A tdesc map has the
following format:

word 0: 2 (the version humber)
word 1: The address of the byte immediately beyond the end of this tdesc map

words 2 through end-of-map:
An array of pointers, where an array element corresponds to an object (static
or shared) which makes up the program. Each array element is a pair of words:

word i: The virtual address of the map protocol for the object

word i+1: The virtual address of the base of the object (or 0, for the static
object in the program)

In the last element of a tdesc map, word i may or may not be zero. If it is zero, then there
are no more tdesc maps. If it is nonzero, then it is the address of the next tdesc map in the
linked list.

The first tdesc map in the list corresponds to ffdesc_map2 section in the static por-

tion of the program. The contents of this tdesc map are supplied by the link editor and the
system program interpreter (dynamic linker). The contents of any other tdesc maps are
supplied by the dynamic linker, typically through invocationdbdpen(3X)

When dynamic linking takes place for ELF programs, the link maps identify the various
objects, and their base addresses, which comprise the running program. See Chapter 22
(“Executable and Linking Format (ELF)") for more information on dynamic linking and

link maps.

tdesc Information

Special Symbols:

If a symbol table is present in an object (static or shared), the following symbols will be

present:

_tdesc : In a statically linked program and in a shared object, the value of
this symbol is the virtual address of the map protocol. In the static
portion of a dynamically linked program, the value of this symbol
is the virtual address of the beginning of the contents of the
tdesc_map2 section.

_debug_info : In a statically linked program and in the static portion of a dynam-

ically linked program, the value of this symbol is the virtual
address of the debug info protocol. In a shared object, the value of
this symbol is 0.

Examples

The examples that follow show C functions and corresponding assembly code for the
text andthetdesc sections.

Examples:

func (@, b, c, d, €)
double a, b, c, d, €;

{
printf (" %e ", d+e);
proc ();
printf (" %e ", d+e);
}

23-13

Compilation Systems Volume 2 (Concepts)

addi ri,rl,-96 frame_offset =96

stfd f22,64(r1) fp save_mask =

stfd 23,72(r1) 1100000000

mfir ri3 save_offset =64-96 =

stw r13,104(rl) -32

fmr f23,f4 return_info = 104-96 = 8

fmr f22,15 return discriminant = 1

@LSTART: start of procedure body

(start of text chunk)

lis r3,uhil6(@L10)

ori r3,r3,lo16(@L10)

fadd f1,f23,f22

bl printf Ir is modified

bl proc

lis r3,uhil6(@L11)

ori r3,r3,lo16(@L11)

fadd f1,f23,f22

bl printf

Ifd f22,64(r1)

Ifd f23,72(r1)

Iwz r13,104(rl)

mtlr ri3

addi ri,r1,96
start of epilogue
end of procedure body
end of epilogue

@LEND: (end of text chunk)

section .tdesc,"x" start of tdesc chunk

word 0x52

word 0x3

word @LSTART

word @LEND

word 0x30000021

word 96

word 8

word -32

word 0x300 end of tdesc chunk

text change back to text section

23-14

tdesc Information

sub (a, b, ¢)
{ . .
int i;
i=z=a+b+c
}
no prologue code
no frame pointer needed
no registers saved
returndiscriminant =0
return_info =rl
@LSTART: text chunk = entire module
add r3,r3,r4
add r3,r3,r5
bir
@LEND:
section .tdesc,"x"
word 0x42
word 0x1
word @LSTART
word @LEND
word 0x1000001
word 0
word 1
word 0
func ()
{

int a[70000];
int b[70000];
a[3] = 4;

b[3] = 4;
proc (&a, &b);

23-15

Compilation Systems Volume 2 (Concepts)

addi
stw
mflr
stw
mr
addis
addi
subfc
lis

ori
add

@LSTART:

stw
li

lis
ori
stwx
mr
lis
ori
add
mr
bl
mr
Iwz
Iwz
mtir
addi
bir

@LEND:

section
word
word
word
word
word
word
word
word
text

ri,rl,-16 frame_offset =16
r2,0(r1) save_offset =-16
ri3 return_info =8
r13,24(rl) stack frame pointer =r2
r2,rl

r13,r0,9

r13,r13,35776

r1,ri3,rl

r3,uhil6(0xfff77480)
r3,r3,l016(0xfff77480)

r3,r2,r3
start of procedure body
(start of text chunk)
r4,1016(4)
r4,12(r3)
r5,1016(4)

r4,uhil6(0x445cc)
rd,r4,1016(0x445cc)
r5,r3,r4
r5,r3
r4,uhi16(0x445cc)
rd,r4,1016(0x445cc)
r4,r3,r4
r3,r5
proc
ri,r2
r2,0(rl)
r13,24(rl)
ri3
ri,ri,16

begin epilogue

end of procedure body
end of epilogue

(end of text chunk)

.tdesc,"x"
0x42

Ox1
@LSTART
@LEND
0x1040022
16

8

-16

23-16

24
DWARF Debugging Information Format

INtrOdUCHION . . .o e 24-1
PUrpose and SCOPE oo o it 24-2
OVBIVIBW . .ot 24-2
Vendor Extensibility 24-3
Changesfrom\Version 1. i 24-3

General DesCrptioN 24-4
The Debugging Information Entry 24-4
ARHDULE TYPES . o . ot 24-5
Relationship of Debugging Information Entries 24-7
Location DesCriptions.ttt 24-7

Location EXPressionst 24-8
Register Name Operatorst 24-8
Addressing Operationst 24-8
Literal Encodings.o oot 24-9
Register Based Addressing i 24-10
Stack Operationst 24-10
Arithmetic and Logical Operations 24-11
Control Flow Operations i 24-13
Special Operations 24-13
Sample Stack Operations i 24-13
Example Location EXpressions. 24-14
Location LiStSo 24-15
Typesof Declarations. 24-16
Accessibility of Declarations 24-16
Visibility of Declarations 24-16
Virtuality of Declarations 24-17
Artificial ENtries. 24-17
Target-Specific Addressing Information 24-17
Non-Defining Declarations 24-18
Declaration Coordinates.t 24-19
Identifier Names. 24-19

Program Scope ENntries e 24-19
Compilation Unit Entriesot 24-20
Module ENtrieso 24-22
Subroutine and Entry PointEntries 24-23

General Subroutine and Entry Point Information 24-23
Subroutine and Entry Point Return Types. 24-23
Subroutine and Entry Point Locations 24-24
Declarations Owned by Subroutines and Entry Points. 24-24
Low-Level Information. 24-24
Types Thrown by Exceptions 24-25
Function Template Instantiations 24-26
Inline Subroutines 24-26
Abstract INStanCes 24-27
Concrete Inlined Instances. 24-27
Out-of-Line Instances of Inline Subroutines 24-28

Lexical BIoCK ENtrieso oo e e e e 24-29

Compilation Systems Volume 2 (Concepts)

Label ENtries.o 24-29
With Statement Entries. 24-30
Try and Catch Block Entries. s 24-30
Data Object and Object List Entriesc ... 24-31
Data ObjeCt ENtries.ot e 24-31
Common BIOCK ENtries.o e 24-33
Imported Declaration Entries 24-33
NamelisSt ENtrieso 24-33
TYPe ENtriesS . . .o 24-34
Base Type ENtrieso 24-34
Type Modifier Entries.o 24-35
Typedef Entries. 24-36
Array Type ENtries oo 24-36
Structure, Union, and Class Type Entries. 24-37
General Structure Description. 24-38
Derived Classes and Structurest 24-38
Friends. 24-39
Structure Data Member Entries. i 24-39
Structure Member Function Entries L. 24-41
Class Template Instantiations 24-41
Variant Entrieso 24-42
Enumeration Type Entries. 24-43
Subroutine Type Entrieso 24-44
String Type ENtrieso 24-44
Set ENtriES . o o 24-45
Subrange Type ENtries i 24-45
Pointer to Member Type Entries. 24-46
File Type ENtries.o e 24-47
Other Debugging Information 24-47
Accelerated ACCESSot 24-47
Lookup by Name 24-48
LOOKUP by ADAresSS ... oo ot 24-48
Line Number Information. 24-49
Definitionso 24-49
State Machine Registers i 24-50
Statement Program Instructions. i i 24-51
The Statement Program Prologue 24-51
The Statement Programt 24-53
Special Opcodesottt 24-53
Standard Opcodes. 24-54
Extended Opcodes 24-55
Macro Information 24-56
MacCinfo TYPES . . oot 24-57
Define and Undefine Entries 24-57
StartFile Entries.o 24-57
EndFile Entries 24-58
Vendor Extension Entries. 24-58
Base Source Entries.o 24-58
Macinfo Entries for Command Line Options 24-58
General Rulesand Restrictions i 24-58
Call Frame Information i 24-59
Structure of Call Frame Information............... 24-60
Call Frame Instructionst e 24-62

Call Frame InstructionUsaget 24-64

Data Representation. i 24-64

Vendor Extensibility 24-64
Reserved ErrorValues 24-65
Executable Objects and Shared Objects. 24-65
File Constraints. 24-65
Format of Debugging Information. 24-65
Compilation UnitHeader 24-66
Debugging Information Entry. 24-66
Abbreviation Tables 24-67
Attribute Encodings. 24-67
Variable Length Data 24-71
Location DesCriptions.ot 24-74
Location EXPressionst 24-74
Location LiStSot 24-77
Base Type ENCOdiNgS oottt e 24-77
Accessibility Codes 24-78
Visibility Codes 24-78
Virtuality Codes 24-79
SOUICE LANQUAGES. . . . ottt et e e e e e e e e e e 24-79
Address Class ENCOdiNgSo ot 24-79
Identifier Caseo 24-80
Calling Convention Encodings.ottt 24-80
INNE COdeS . . .o 24-80
Array Orderingo 24-81
Discriminant LiStS 24-81
Name Lookup Table. 24-81
Address Range Table 24-82
Line Number Information. i 24-82
Macro Information 24-83
Call Frame Information 24-83
DependencCies e 24-84
Future DIreCtionSot 24-85
Appendix 1 -- Current Attributes by TagValue 24-85
Appendix 2 -- Organization of Debugging Information 24-96
Appendix 3 -- Statement Program Examples. 24-99
Appendix 4 -- Encoding and decoding variable lengthdata 24-
100
Appendix 5 -- Call Frame Information Examples 24-

102

Compilation Systems Volume 2 (Concepts)

Introduction

24
DWARF Debugging Information Format

The material in this document represents work in progress of the UNIX International Pro-
gramming Languages SIG, unapproved Revision: Version 2, Draft 6 (April 12, 1993).

Copyright 1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appears in all cop-
ies and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name UNIX International not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. UNIX
International makes no representations about the suitability of this documentation for any
purpose. It is provided “as is” without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS. IN NO EVENT SHALL UNIX INTERNATIONAL
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS DOCUMENTATION.

Trademarks:
Intel386 is a trademark of Intel Corporation.

UNIX® is a registered trademark of UNIX System Laboratories in the United States
and other countries.

This document defines the format for the information generated by compilers, assemblers
and linkage editors that is necessary for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. Instead, the
goal is to create a method of communicating an accurate picture of the source program to
any debugger in a form that is economically extensible to different languages while retain-
ing backward compatibility.

The design of the debugging information format is open-ended, allowing for the addition
of new debugging information to accommodate new languages or debugger capabilities
while remaining compatible with other languages or different debuggers.

24-1

Compilation Systems Volume 2 (Concepts)

Purpose and Scope

Overview

24-2

The debugging information format described in this document is designed to meet the
symbolic, source-level debugging needs of different languages in a unified fashion by
requiring language independent debugging information whenever possible. Individual
needs, such as C++ virtual functions or Fortran common blocks are accommodated by cre-
ating attributes that are used only for those languages. The UNIX International Program-
ming Languages SIG believes that this document sufficiently covers the debugging infor-
mation needs of C, C++, FORTRAN77, Fortran90, Modula2 and Pascal.

This document describes DWARF Version 2, the second generation of debugging informa-
tion based on the DWARF format. While DWARF Version 2 provides new debugging
information not available in Version 1, the primary focus of the changes for Version 2 is
the representation of the information, rather than the information content itself. The basic
structure of the Version 2 format remains as in Version 1: the debugging information is
represented as a series of debugging information entries, each containing one or more
attributes (name/value pairs). The Version 2 representation, however, is much more com-
pact than the Version 1 representation. In some cases, this greater density has been
achieved at the expense of additional complexity or greater difficulty in producing and
processing the DWARF information. We believe that the reduction in I/O and in memory
paging should more than make up for any increase in processing time.

Because the representation of information has changed from Version 1 to Version 2, Ver-
sion 2 DWARF information is not binary compatible with Version 1 information. To make

it easier for consumers to support both Version 1 and Version 2 DWARF information, the
Version 2 information has been moved to a different object file section,.debug_info.

The intended audience for this document are the developers of both producers and con-
sumers of debugging information, typically language compilers, debuggers and other tools
that need to interpret a binary program in terms of its original source.

There are two major pieces to the description of the DWARF format in this document. The
first piece is the informational content of the debugging entries. The second piece is the
way the debugging information is encoded and represented in an object file.

“General Description” on page 24-4 describes the overall structure of the information and
attributes that are common to many or all of the different debugging information entries.
“Program Scope Entries” on page 24-19, “Data Object and Object List Entries” on page
24-31, and “Type Entries” on page 24-34 describe the specific debugging information
entries and how they communicate the necessary information about the source program to
a debugger. “Other Debugging Information” on page 24-47 describes debugging informa-
tion contained outside of the debugging information entries, themselves. The encoding of
the DWARF information is presented in “Data Representation” on page 24-64.

“Future Directions” on page 24-85 describes some future directions for the DWARF spec-
ification.

In the following sections, text in normal font describes required aspects of the DWARF
format. Text in italics is explanatory or supplementary material, and not part of the format
definition itself.

DWARF Debugging Information Format

Vendor Extensibility

This document does not attempt to cover all interesting languages or even to cover all of
the interesting debugging information needs for its primary target languages (C, C++,
FORTRANT77, Fortran90, Modula2, Pascal). Therefore the document provides vendors a
way to define their own debugging information tags, attributes, base type encodings, loca-
tion operations, language names, calling conventions and call frame instructions by
reserving a portion of the name space and valid values for these constructs for vendor spe-
cific additions. Future versions of this document will not use names or values reserved for
vendor specific additions. All names and values not reserved for vendor additions, how-
ever, are reserved for future versions of this document. See “Data Representation” on page
24-64 for details.

Changes from Version 1

The following is a list of the major changes made to the DWARF Debugging Information
Format since Version 1 of the format was published (January 20, 1992). The list is not
meant to be exhaustive.

* Debugging information entries have been moved from the .debug to the
.debug_info section of an object file.

* The tag, attribute names and attribute forms encodings have been moved
out of the debugging information itself to a separate abbreviations table.

¢ Explicit sibling pointers have been made optional. Each entry now speci-
fies (through the abbreviations table) whether or not it has children.

* New more compact attribute forms have been added, including a variable
length constant data form. Attribute values may now have any form within
a given class of forms.

* Location descriptions have been replaced by a new, more compact and
more expressive format. There is now a way of expressing multiple loca-
tions for an object whose location changes during its lifetime.

* There is a new format for line number information that provides informa-
tion for code contributed to a compilation unit from an included file. Line
number information is now in the .debug_line section of an object file.

* The representation of the type of a declaration has been reworked.
* A new section provides an encoding for pre-processor macro information.

* Debugging information entries now provide for the representation of
non-defining declarations of objects, functions or types.

* More complete support for Modula2 and Pascal has been added.
* There is now a way of describing locations for segmented address spaces.

* A new section provides an encoding for information about call frame acti-
vations.

24-3

Compilation Systems Volume 2 (Concepts)

* The representation of enumeration and array types has been reworked so
that DWARF presents only a single way of representing lists of items.

* Support has been added for C++ templates and exceptions.

General Description

The Debugging Information Entry

DWARF uses a series of debugging information entries to define a low-level representa-
tion of a source program. Each debugging information entry is described by an identifying

tag and contains a series of attributes. The tag specifies the class to which an entry
belongs, and the attributes define the specific characteristics of the entry.

The set of required tag names is listed in Table 24-1. The debugging information entries
they identify are described in “Program Scope Entries” on page 24-19, “Data Object and
Object List Entries” on page 24-31, and “Type Entries” on page 24-34.

The debugging information entries in DWARF Version 2 are intended to exist in the
.debug_info section of an object file.

Table 24-1. Tag Names

DW_TAG_access_declaration DW_TAG_array_type
DW_TAG_base_type DW_TAG_catch_block
DW_TAG_class_type DW_TAG_common_block
DW_TAG_common_inclusion DW_TAG_compile_unit
DW_TAG_const_type DW_TAG_constant
DW_TAG_entry point DW_TAG_enumeration_type
DW_TAG_enumerator DW_TAG _file_type
DW_TAG_formal_parameter DW_TAG _friend
DW_TAG_imported_declaration DW_TAG_inheritance
DW_TAG inlined_subroutine DW_TAG_label
DW_TAG_lexical_block DW_TAG_member
DW_TAG_module DW_TAG_namelist
DW_TAG_namelist_item DW_TAG_packed_type
DW_TAG_pointer_type DW_TAG_ptr_to_member_type
DW_TAG_reference_type DW_TAG_set_type
DW_TAG_string_type DW_TAG_structure_type
DW_TAG_subprogram DW_TAG_subrange_type

24-4

Attribute Types

Table 24-1. Tag Names (Cont.)

DWARF Debugging Information Format

DW_TAG_subroutine_type
DW_TAG_template_value_param
DW_TAG_try block
DW_TAG_union_type
DW_TAG_variable
DW_TAG_variant_part
DW_TAG_with_stmt

DW_TAG_template_type param
DW_TAG_thrown_type
DW_TAG_typedef
DW_TAG_unspecified_parameters
DW_TAG_variant
DW_TAG_volatile_type

Each attribute value is characterized by an attribute name. The set of attribute names is

listed in Table 24-2.

The permissible values for an attribute belong to one or more classes of attribute value
forms. Each form class may be represented in one or more ways. For instance, some
attribute values consist of a single piece of constant data. “Constant data” is the class of
attribute value that those attributes may have. There are several representations of constant
data, however (one, two, four, eight bytes and variable length data). The particular repre-
sentation for any given instance of an attribute is encoded along with the attribute name as
part of the information that guides the interpretation of a debugging information entry.
Attribute value forms may belong to one of the following classes.

Table 24-2. Attribute Names

DW_AT_abstract_origin
DW_AT address_class
DW_AT base_types
DW_AT bit_size
DW_AT_calling_convention
DW_AT_comp_dir
DW_AT_containing_type
DW_AT data_member_locatior
DW_AT decl_file
DW_AT_declaration
DW_AT discr

DW_AT discr_value
DW_AT external

DW_AT friend

DW_AT_accessibility
DW_AT _artificial
DW_AT bit_offset
DW_AT byte size
DW_AT _common_reference
DW_AT const_value
DW_AT_count

DW_AT decl_column
DW_AT decl_line
DW_AT_default_value
DW_AT discr_list
DW_AT_encoding
DW_AT frame_base
DW_AT_high_pc

24-5

Compilation Systems Volume 2 (Concepts)

Table 24-2. Attribute Names (Cont.)

DW_AT identifier_case DW_AT_import
DW_AT _inline DW_AT is_optional
DW_AT_language DW_AT location
DW_AT low_pc DW_AT lower_bound
DW_AT_macro_info DW_AT name
DW_AT namelist_item DW_AT_ordering
DW_AT_priority DW_AT_producer
DW_AT_prototyped DW_AT return_add
DW_AT_segment DW_AT_sibling
DW_AT_specification DW_AT_start_scope
DW_AT _static_link DW_AT stmt_list
DW_AT _stride_size DW_AT_string_length
DW_AT _type DW_AT_upper_bound
DW_AT use_location DW_AT variable_parameter
DW_AT _virtuality DW_AT _visibility

DW_AT vtable elem_location

address

block

constant

flag

reference

string

24-6

Refers to some location in the address space of the described pro-
gram.

An arbitrary number of uninterpreted bytes of data.

One, two, four or eight bytes of uninterpreted data, or data
encoded in the variable length format known as LEB128 (see
“Variable Length Data” on page 24-71).

A small constant that indicates the presence or absence of an
attribute.

Refers to some member of the set of debugging information
entries that describe the program. There are two types of refer-
ence. The firstis an offset relative to the beginning of the compila-
tion unit in which the reference occurs and must refer to an entry
within that same compilation unit. The second type of reference is
the address of any debugging information entry within the same
executable or shared object; it may refer to an entry in a different
compilation unit from the unit containing the reference.

A null-terminated sequence of zero or more (non-null) bytes. Data
in this form are generally printable strings. Strings may be repre-
sented directly in the debugging information entry or as an offset
in a separate string table.

DWARF Debugging Information Format

There are no limitations on the ordering of attributes within a debugging information
entry, but to prevent ambiguity, no more than one attribute with a given name may appear
in any debugging information entry.

Relationship of Debugging Information Entries

A variety of needs can be met by permitting a single debugging information entry to
“own” an arbitrary number of other debugging entries and by permitting the same debug-
ging information entry to be one of many owned by another debugging information entry.
This makes it possible to describe, for example, the static block structure within a source
file, show the members of a structure, union, or class, and associate declarations with
source files or source files with shared objects.

The ownership relation of debugging information entries is achieved naturally because the
debugging information is represented as a tree. The nodes of the tree are the debugging
information entries themselves. The child entries of any node are exactly those debugging
information entries owned by that node.

The tree itself is represented by flattening it in prefix order. Each debugging information
entry is defined either to have child entries or not to have child entries (see “Abbreviation
Tables” on page 24-67). If an entry is defined not to have children, the next physically suc-
ceeding entry is the sibling of the prior entry. If an entry is defined to have children, the
next physically succeeding entry is the first child of the prior entry. Additional children of
the parent entry are represented as siblings of the first child. A chain of sibling entries is
terminated by a null entry.

In cases where a producer of debugging information feels that it will be important for con-
sumers of that information to quickly scan chains of sibling entries, ignoring the children
of individual siblings, that producer may attach an AT_sibling attribute to any debugging
information entry. The value of this attribute is a reference to the sibling entry of the entry
to which the attribute is attached.

Location Descriptions

The debugging information must provide consumers a way to find the location of program
variables, determine the bounds of dynamic arrays and strings and possibly to find the
base address of a subroutine's stack frame or the return address of a subroutine. Further-
more, to meet the needs of recent computer architectures and optimization techniques, the
debugging information must be able to describe the location of an object whose location
changes over the object's lifetime.

Information about the location of program objects is provided by location descriptions.
Location descriptions can be either of two forms:

1. While the ownership relation of the debugging information entries is represented as a tree, other relations
among the entries exist, for example, a pointer from an entry representing a variable to another entry rep-
resenting the type of that variable. If all such relations are taken into account, the debugging entries form
a graph, not a tree.

24-7

Compilation Systems Volume 2 (Concepts)

1. Location expressions which are a language independent representation of
addressing rules of arbitrary complexity built from a few basic building
blocks, or operations. They are sufficient for describing the location of any
object as long as its lifetime is either static or the same as the lexical block
that owns it, and it does not move throughout its lifetime.

2. Location lists which are used to describe objects that have a limited life-
time or change their location throughout their lifetime. Location lists are
more completely described below.

The two forms are distinguished in a context sensitive manner. As the value of an attribute,
alocation expression is encoded as a block and a location list is encoded as a constant off-
set into a location list table.

Note: The Version 1 concept of “location descriptions” was replaced in Version 2 with this
new abstraction because it is denser and more descriptive.

Location Expressions

A location expression consists of zero or more location operations. An expression with
zero operations is used to denote an object that is present in the source code but not
present in the object code (perhaps because of optimization). The location operations fall
into two categories, register names and addressing operations. Register names always
appear alone and indicate that the referred object is contained inside a particular register.
Addressing operations are memory address computation rules. All location operations are
encoded as a stream of opcodes that are each followed by zero or more literal operands.
The number of operands is determined by the opcode.

Register Name Operators

The following operations can be used to name a register.

Note that the register number represents a DWARF specific mapping of numbers onto the
actual registers of a given architecture. The mapping should be chosen to gain optimal
density and should be shared by all users of a given architecture. The Programming Lan-
guages SIG recommends that this mapping be defined by the ABI authoring committee for
each architecture.

1. DW_OP_reg0, DW_OP_reql, ...,.DW_OP_reg31
The DW_OP_regn operations encode the names of up to 32 registers, num-
bered from 0 through 31, inclusive. The object addressed is in register n.

2. DW_OP_regx
The DW_OP_regx operation has a single unsigned LEB128 literal operand
that encodes the name of a register.

Addressing Operations

24-8

Each addressing operation represents a postfix operation on a simple stack machine. Each
element of the stack is the size of an address on the target machine. The value on the top of
the stack after “executing” the location expression is taken to be the result (the address of
the object, or the value of the array bound, or the length of a dynamic string). In the case of

DWARF Debugging Information Format

locations used for structure members, the computation assumes that the base address of
the containing structure has been pushed on the stack before evaluation of the addressing
operation.

Literal Encodings
The following operations all push a value onto the addressing stack.

1. DW_OP_lito, DW_OP_lit1, ...,.DW_OP_lit31
The DW_OP_litn operations encode the unsigned literal values from 0
through 31, inclusive.

2. DW_OP_addr
The DW_OP_addr operation has a single operand that encodes a machine
address and whose size is the size of an address on the target machine.

3. DW_OP_constlu
The single operand of the DW_OP_constluoperation provides a 1-byte
unsigned integer constant.

4. DW_OP_constls
The single operand of the DW_OP_constlsoperation provides a 1-byte
signed integer constant.

5. DW_OP_const2u
The single operand of the DW_OP_const2uoperation provides a 2-byte
unsigned integer constant.

6. DW_OP_const2s
The single operand of the DW_OP_const2soperation provides a 2-byte
signed integer constant.

7. DW_OP_const4u
The single operand of the DW_OP_const4uoperation provides a 4-byte
unsigned integer constant.

8. DW_OP_const4s
The single operand of the DW_OP_const4soperation provides a 4-byte
signed integer constant.

9. DW_OP_const8u
The single operand of the DW_OP_const8u operation provides an 8-byte
unsigned integer constant.

10. DW_OP_const8s
The single operand of the DW_OP_const8soperation provides an 8-byte
signed integer constant.

11. DW_OP_constu
The single operand of the DW_OP_constu operation provides an unsigned
LEB128 integer constant.

12. DW_OP_consts
The single operand of the DW_OP_consts operation provides a signed
LEB128 integer constant.

24-9

Compilation Systems Volume 2 (Concepts)

Register Based Addressing

The following operations push a value onto the stack that is the result of adding the con-
tents of a register with a given signed offset.

1. DW_OP_fbreg
The DW_OP_fbreg operation provides a signed LEB128 offset from the
address specified by the location descriptor in the DW_AT_frame_base
attribute of the current function. (This is typically a “stack pointer” register
plus or minus some offset. On more sophisticated systems it might be a
location list that adjusts the offset according to changes in the stack pointer
as the PC changes.)

2. DW_OP_breg0, DW_OP_bregl,DW_OP_breg31
The single operand of the DW_OP_bregn operations provides a signed
LEB128 offset from the specified register.

3. DW_OP_bregx
The DW_OP_bregx operation has two operands: a sighed LEB128 offset
from the specified register which is defined with an unsigned LEB128
number.

Stack Operations

The following operations manipulate the “location stack.” Location operations that index
the location stack assume that the top of the stack (most recently added entry) has index O.

1. DW_OP_dup
The DW_OP_dup operation duplicates the value at the top of the location
stack.

2. DW_OP_drop
The DW_OP_drop operation pops the value at the top of the stack.

3. DW_OP_pick
The single operand of the DW_OP_pick operation provides a 1-byte index.
The stack entry with the specified index (0 through 255, inclusive) is
pushed on the stack.

4. DW_OP_over
The DW_OP_over operation duplicates the entry currently second in the
stack at the top of the stack. This is equivalent to an DW_OP_pick opera-
tion, with index 1.

5. DW_OP_swap
The DW_OP_swap operation swaps the top two stack entries. The entry at
the top of the stack becomes the second stack entry, and the second entry
becomes the top of the stack.

6. DW_OP_rot
The DW_OP_rot operation rotates the first three stack entries. The entry at
the top of the stack becomes the third stack entry, the second entry becomes
the top of the stack, and the third entry becomes the second entry.

7. DW_OP_deref
The DW_OP_deref operation pops the top stack entry and treats it as an
address. The value retrieved from that address is pushed. The size of the

24-10

DWARF Debugging Information Format

data retrieved from the dereferenced address is the size of an address on the
target machine.

8. DW_OP_deref_size

The DW_OP_deref_size operation behaves like the DW_OP_deref opera-
tion: it pops the top stack entry and treats it as an address. The value
retrieved from that address is pushed. In the DW_OP_deref_size operation,
however, the size in bytes of the data retrieved from the dereferenced
address is specified by the single operand. This operand is a 1-byte
unsigned integral constant whose value may not be larger than the size of
an address on the target machine. The data retrieved is zero extended to the
size of an address on the target machine before being pushed on the expres-
sion stack.

9. DW_OP_xderef

The DW_OP_xderef operation provides an extended dereference mecha-
nism. The entry at the top of the stack is treated as an address. The second
stack entry is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements are
popped, a data item is retrieved through an implementation-defined address
calculation and pushed as the new stack top. The size of the data retrieved
from the dereferenced address is the size of an address on the target
machine.

10. DW_OP_xderef_size
The DW_OP_xderef_size operation behaves like the DW_OP_xderef oper-
ation: the entry at the top of the stack is treated as an address. The second
stack entry is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements are
popped, a data item is retrieved through an implementation-defined address
calculation and pushed as the new stack top. In the
DW_OP_xderef_sizeoperation, however, the size in bytes of the data
retrieved from the dereferenced address is specified by the single operand.
This operand is a 1-byte unsigned integral constant whose value may not be
larger than the size of an address on the target machine. The data retrieved
is zero extended to the size of an address on the target machine before
being pushed on the expression stack.

Arithmetic and Logical Operations

The following provide arithmetic and logical operations. The arithmetic operations per-
form “addressing arithmetic,” that is, unsigned arithmetic that wraps on an address-sized
boundary. The operations do not cause an exception on overflow.

1. DW_OP_abs
The DW_OP_abs operation pops the top stack entry and pushes its absolute
value.

2. DW_OP_and
The DW_OP_and operation pops the top two stack values, performs a bit-
wise and operation on the two, and pushes the result.

3. DW_OP_div
The DW_OP_div operation pops the top two stack values, divides the

24-11

Compilation Systems Volume 2 (Concepts)

24-12

10.

11.

12.

13.

14.

15.

former second entry by the former top of the stack using signed division,
and pushes the result.

DW_OP_minus
The DW_OP_minus operation pops the top two stack values, subtracts the
former top of the stack from the former second entry, and pushes the result.

DW_OP_mod

The DW_OP_mod operation pops the top two stack values and pushes the
result of the calculation: former second stack entry modulo the former top
of the stack.

DW_OP_mul
The DW_OP_mul operation pops the top two stack entries, multiplies them
together, and pushes the result.

DW_OP_neg
The DW_OP_neg operation pops the top stack entry, and pushes its nega-
tion.

DW_OP_not
The DW_OP_not operation pops the top stack entry, and pushes its bitwise
complement.

DW_OP_or
The DW_OP_or operation pops the top two stack entries, performs a bit-
wise or operation on the two, and pushes the result.

DW_OP_plus
The DW_OP_plus operation pops the top two stack entries, adds them
together, and pushes the result.

DW_OP_plus_uconst

The DW_OP_plus_uconst operation pops the top stack entry, adds it to the
unsigned LEB128 constant operand and pushes the result. This operation is
supplied specifically to be able to encode more field offsets in two bytes
than can be done with “DW_OP_litn DW_OP_add".

DW_OP_shl

The DW_OP_shl operation pops the top two stack entries, shifts the former
second entry left by the number of bits specified by the former top of the
stack, and pushes the result.

DW_OP_shr

The DW_OP_shr operation pops the top two stack entries, shifts the former
second entry right (logically) by the number of bits specified by the former
top of the stack, and pushes the result.

DW_OP_shra

The DW_OP_shra operation pops the top two stack entries, shifts the
former second entry right (arithmetically) by the number of bits specified
by the former top of the stack, and pushes the result.

DW_OP_xor
The DW_OP_xor operation pops the top two stack entries, performs the
logical exclusive-or operation on the two, and pushes the result.

DWARF Debugging Information Format

Control Flow Operations
The following operations provide simple control of the flow of a location expression.

1. Relational operators

The six relational operators each pops the top two stack values, compares
the former top of the stack with the former second entry, and pushes the
constant value 1 onto the stack if the result of the operation is true or the
constant value 0 if the result of the operation is false. The comparisons are
done as signed operations. The six operators are DW_OP_le (less than or
equal to), DW_OP_ge (greater than or equal to), DW_OP_eq (equal to),
DW_OP_lt (less than), DW_OP_gt (greater than) and DW_OP_ne (not
equal to).

2. DW_OP_skip
DW_OP_skip is an unconditional branch. Its single operand is a 2-byte
signed integer constant. The 2-byte constant is the number of bytes of the
location expression to skip from the current operation, beginning after the
2-byte constant.

3. DW_OP_bra
DW_OP_bra is a conditional branch. Its single operand is a 2-byte signed
integer constant. This operation pops the top of stack. If the value popped is
not the constant 0, the 2-byte constant operand is the number of bytes of the
location expression to skip from the current operation, beginning after the
2-byte constant.

Special Operations
There are two special operations currently defined:

1. DW_OP_piece
Many compilers store a single variable in sets of registers, or store a vari-
able partially in memory and partially in registers.DW_OP_pieceprovides a
way of describing how large a part of a variable a particular addressing
expression refers to.

DW_OP_piece takes a single argument which is an unsigned LEB128

number. The number describes the size in bytes of the piece of the object
referenced by the addressing expression whose result is at the top of the
stack.

2. DW_OP_nop
The DW_OP_nop operation is a place holder. It has no effect on the loca-
tion stack or any of its values.

Sample Stack Operations

The stack operations defined in “Stack Operations” on page 24-10 are fairly conventional,
but the following examples illustrate their behavior graphically.

24-13

Compilation Systems Volume 2 (Concepts)

Before Operation After
0 17 DW_OP_dup 0 17
1 29 1 17
2 1000 2 29

3 1000
0 17 DW_OP_drop 0 29
1 29 1 1000
2 1000
0 17 DW_OP_pick 2 0 1000
1 29 1 17
2 1000 2 29

3 1000
0 17 DW_OP_over 0 29
1 29 1 17
2 1000 2 29

3 1000
0 17 DW_OP_swap 0 29
1 29 1 17
2 1000 2 1000
0 17 DW_OP_rot 0 29
1 29 1 1000
2 1000 2 17

Example Location Expressions

24-14

The addressing expression represented by a location expression, if evaluated, generates the
run-time address of the value of a symbol except where the DW_OP_regn, or
DW_OP_regx operations are used.

Here are some examples of how location operations are used to form location expressions:

DW_OP_reg3
The value is in register 3.

DW_OP_regx 54
The value is in register 54.

DW_OP_addr 0x80d0045¢c
The value of a static variable is at machine address 0x80d0045c.

Location Lists

DWARF Debugging Information Format

DW_OP_bregl11 44
Add 44 to the value in register 11 to get the address of an auto-
matic variable instance.

DW_OP_fbreg -50
Given an DW_AT_frame_base value of “OPBREG31 64,” this
example computes the address of a local variable that is -50 bytes
from a logical frame pointer that is computed by adding 64 to the
current stack pointer (register 31).

DW_OP_bregx 54 32 DW_OP_deref
A call-by-reference parameter whose address is in the word 32
bytes from where register 54 points.

DW_OP_plus_uconst 4
A structure member is four bytes from the start of the structure
instance. The base address is assumed to be already on the stack.

DW_OP_reg3 DW_OP_piece 4 DW_OP_reg10 DW_OP_piece 2
A variable whose first four bytes reside in register 3 and whose
next two bytes reside in register 10.

Location lists are used in place of location expressions whenever the object whose loca-
tion is being described can change location during its lifetime. Location lists are contained

in a separate object file section called.debug_loc. A location list is indicated by a location

attribute whose value is represented as a constant offset from the beginning of the
.debug_loc section to the first byte of the list for the object in question.

Each entry in a location list consists of:

1. A beginning address. This address is relative to the base address of the
compilation unit referencing this location list. It marks the beginning of the
address range over which the location is valid.

2. An ending address, again relative to the base address of the compilation
unit referencing this location list. It marks the first address past the end of
the address range over which the location is valid.

3. A location expression describing the location of the object over the range
specified by the beginning and end addresses.

Address ranges may overlap. When they do, they describe a situation in which an object
exists simultaneously in more than one place. If all of the address ranges in a given loca-
tion list do not collectively cover the entire range over which the object in question is
defined, it is assumed that the object is not available for the portion of the range that is not
covered.

The end of any given location list is marked by a 0 for the beginning address and a O for
the end address; no location description is present. A location list containing only such a 0
entry describes an object that exists in the source code but not in the executable program.

24-15

Compilation Systems Volume 2 (Concepts)

Types of Declarations

Any debugging information entry describing a declaration that has a type has a
DW_AT _type attribute, whose value is a reference to another debugging information
entry. The entry referenced may describe a base type, that is, a type that is not defined in
terms of other data types, or it may describe a user-defined type, such as an array, structure
or enumeration. Alternatively, the entry referenced may describe a type modifier: constant,
packed, pointer, reference or volatile, which in turn will reference another entry describing

a type or type modifier (using a DW_AT _type attribute of its own). See “Type Entries” on
page 24-34 for descriptions of the entries describing base types, user-defined types and
type modifiers.

Accessibility of Declarations

Some languages, notably C++ and Ada, have the concept of the accessibility of an object
or of some other program entity. The accessibility specifies which classes of other pro-
gram objects are permitted access to the object in question.

The accessibility of a declaration is represented by a DW_AT_accessibility attribute,
whose value is a constant drawn from the set of codes listed in Table 24-3.

Table 24-3. Accessibility Codes

DW_ACCESS_public
DW_ACCESS private
DW_ACCESS_protected

Visibility of Declarations

24-16

Modula2 has the concept of the visibility of a declaration. The visibility specifies which
declarations are to be visible outside of the module in which they are declared.

The visibility of a declaration is represented by a DW_AT _visibility attribute, whose value
is a constant drawn from the set of codes listed in Table 24-4.

Table 24-4. Visibility Codes

DW_VIS local
DW_VIS_exported
DW_VIS_qualified

DWARF Debugging Information Format

Virtuality of Declarations

Artificial Entries

C++ provides for virtual and pure virtual structure or class member functions and for vir-
tual base classes.

The virtuality of a declaration is represented by a DW_AT _virtuality attribute, whose
value is a constant drawn from the set of codes listed in Table 24-5.

Table 24-5. Virtuality Codes

DW_VIRTUALITY_none
DW_VIRTUALITY _virtual
DW_VIRTUALITY_pure_virtual

A compiler may wish to generate debugging information entries for objects or types that
were not actually declared in the source of the application. An example is a formal param-
eter entry to represent the hiddhis parameter that most C++ implementations pass as
the first argument to non-static member functions.

Any debugging information entry representing the declaration of an object or type artifi-
cially generated by a compiler and not explicitly declared by the source program may have
a DW_AT _artificial attribute. The value of this attribute is a flag.

Target-Specific Addressing Information

In some systems, addresses are specified as offsets within a given segment rather than as
locations within a single flat address space.

Any debugging information entry that contains a description of the location of an object or
subroutine may have a DW_AT_segment attribute, whose value is a location description.
The description evaluates to the segment value of the item being described. If the entry
containing the DW_AT_segment attribute has a DW_AT_low_pc or DW_AT _high_pc
attribute, or a location description that evaluates to an address, then those values represent
the offset portion of the address within the segment specified by DW_AT_segment.

If an entry has no DW_AT_segment attribute, it inherits the segment value from its parent
entry. If none of the entries in the chain of parents for this entry back to its containing
compilation unit entry have DW_AT_segment attributes, then the entry is assumed to exist
within a flat address space. Similarly, if the entry has a DW_AT_segment attribute con-
taining an empty location description, that entry is assumed to exist within a flat address
space.

Some systems support different classes of addresses. The address class may affect the way
a pointer is dereferenced or the way a subroutine is called.

24-17

Compilation Systems Volume 2 (Concepts)

Any debugging information entry representing a pointer or reference type or a subroutine
or subroutine type may have a DW_AT_address_class attribute, whose value is a constant.
The set of permissible values is specific to each target architecture. The value
DW_ADDR_none, however, is common to all encodings, and means that no address class
has been specified.

For example, the Intel386Sprocessor might use the following values:

Table 24-6. Example Address Class Codes

Name Value Meaning

DW_ADDR_none
DW_ADDR_nearl6
DW_ADDR_far16
DW_ADDR_hugel6
DW_ADDR_near32
DW_ADDR_far32

no class specified

16-bit offset, no segment
16-bit offset, 16-bit segment
16-bit offset, 16-bit segment

32-bit offset, no segment

gaa A~ W N O

32-bit offset, 16-bit segment

Non-Defining Declarations

24-18

A debugging information entry representing a program object or type typically represents
the defining declaration of that object or type. In certain contexts, however, a debugger
might need information about a declaration of a subroutine, object or type that is not also a
definition to evaluate an expression correctly.

As an example, consider the following fragment of C code:

void myfunc()

int x;
{

extern float x;
a(x);

}

ANSI-C scoping rules require that the value of the variable x passed to the function g is
the value of the global variable x rather than of the local version.

Debugging information entries that represent non-defining declarations of a program
object or type have a DW_AT _declaration attribute, whose value is a flag.

DWARF Debugging Information Format

Declaration Coordinates

Identifier Names

It is sometimes useful in a debugger to be able to associate a declaration with its occur-
rence in the program source.

Any debugging information entry representing the declaration of an object, module, sub-
program or type may have DW_AT_decl_file, DW_AT_decl_line and
DW_AT_decl_column attributes, each of whose value is a constant.

The value of the DW_AT_decl_file attribute corresponds to a file number from the state-
ment information table for the compilation unit containing this debugging information
entry and represents the source file in which the declaration appeared (see “Line Number
Information” on page 24-49). The value 0 indicates that no source file has been specified.

The value of the DW_AT_decl_line attribute represents the source line number at which
the first character of the identifier of the declared object appears. The value 0 indicates
that no source line has been specified.

The value of the DW_AT_decl_column attribute represents the source column number at
which the first character of the identifier of the declared object appears. The value 0 indi-
cates that no column has been specified.

Any debugging information entry representing a program entity that has been given a

name may have a DW_AT_name attribute, whose value is a string representing the name
as it appears in the source program. A debugging information entry containing no name

attribute, or containing a name attribute whose value consists of a name containing a sin-
gle null byte, represents a program entity for which no name was given in the source.

Note that since the names of program objects described by DWARF are the names as they
appear in the source program, implementations of language translators that use some form
of mangled name (as do many implementations of C++) should use the unmangled form
of the name in the DWARFDW_AT_name attribute, including the keywaperator , if
present. Sequences of multiple whitespace characters may be compressed.

Program Scope Entries

This section describes debugging information entries that relate to different levels of pro-
gram scope: compilation unit, module, subprogram, and so on. These entries may be
thought of as bounded by ranges of text addresses within the program.

24-19

Compilation Systems Volume 2 (Concepts)

Compilation Unit Entries

An object file may be derived from one or more compilation units. Each such compilation
unit will be described by a debugging information entry with the tag
DW_TAG_compile_unit.

A compilation unit typically represents the text and data contributed to an executable by a
single relocatable object file. It may be derived from several source files, including
pre-processed “include files.”

The compilation unit entry may have the following attributes:

1. A DW_AT low_pc attribute whose value is the relocated address of the
first machine instruction generated for that compilation unit.

2. A DW_AT_high_pc attribute whose value is the relocated address of the
first location past the last machine instruction generated for that compila-
tion unit.

The address may be beyond the last valid instruction in the executable, of
course, for this and other similar attributes.

The presence of low and high pc attributes in a compilation unit entry
imply that the code generated for that compilation unit is contiguous and
exists totally within the boundaries specified by those two attributes. If that
is not the case, no low and high pc attributes should be produced.

3. ADW_AT_name attribute whose value is a null-terminated string contain-
ing the full or relative path name of the primary source file from which the
compilation unit was derived.

4. ADW_AT_language attribute whose constant value is a code indicating the
source language of the compilation unit. The set of language names and
their meanings are given in Table 24-7.

Table 24-7. Language Names

DW_LANG_C Non-ANSI C, such as K&R
DW_LANG_C89 ISO/ANSI C
DW_LANG_C plus _plus C++
DW_LANG_Fortran77 FORTRAN77
DW_LANG_Fortran90 Fortran90
DW_LANG_Modula2 Modula2
DW_LANG_Pascal83 ISO/ANSI Pascal

5. A DW_AT_stmt list attribute whose value is a reference to line number
information for this compilation unit.

This information is placed in a separate object file section from the debug-
ging information entries themselves. The value of the statement list

24-20

DWARF Debugging Information Format

attribute is the offset in the .debug_line section of the first byte of the line
number information for this compilation unit. See “Line Number Informa-
tion” on page 24-49.

. A DW_AT _macro_info attribute whose value is a reference to the macro
information for this compilation unit.

This information is placed in a separate object file section from the debug-
ging information entries themselves. The value of the macro information
attribute is the offset in the .debug_macinfo section of the first byte of the
macro information for this compilation unit. See “Macro Information” on
page 24-56.

. ADW_AT_comp_dir attribute whose value is a null-terminated string con-
taining the current working directory of the compilation command that pro-
duced this compilation unit in whatever form makes sense for the host sys-
tem.

The suggested form for the value of the DW_AT_comp_dir attribute on
UNIX systems is “hostname:pathname”. If no hostname is available, the
suggested form is “:pathname”.

. ADW_AT_producer attribute whose value is a null-terminated string con-
taining information about the compiler that produced the compilation unit.
The actual contents of the string will be specific to each producer, but
should begin with the name of the compiler vendor or some other identify-
ing character sequence that should avoid confusion with other producer
values.

. A DW_AT identifier_case attribute whose constant value is a code
describing the treatment of identifiers within this compilation unit. The set
of identifier case codes is given in Table 24-8.

Table 24-8. Identifier Case Codes

DW_ID_case_sensitive
DW_ID_up_case
DW_ID_down_case

DW_ID_case_insensitive

DW_ID_case_sensitive is the default for all compilation units that do not have this
attribute. It indicates that names given as the values of DW_AT_name attributes in
debugging information entries for the compilation unit reflect the names as they
appear in the source program. The debugger should be sensitive to the case of iden-
tifier names when doing identifier lookups.

DW_ID_up_case means that the producer of the debugging information for this
compilation unit converted all source names to upper case. The values of the name
attributes may not reflect the names as they appear in the source program. The
debugger should convert all names to upper case when doing lookups.

24-21

Compilation Systems Volume 2 (Concepts)

Module Entries

24-22

DW_ID_down_case means that the producer of the debugging information for this
compilation unit converted all source names to lower case. The values of the name
attributes may not reflect the names as they appear in the source program. The
debugger should convert all names to lower case when doing lookups.

DW_ID_case_insensitive means that the values of the name attributes reflect the
names as they appear in the source program but that a case insensitive lookup should
be used to access those names.

10. A DW_AT base_types attribute whose value is a reference. This attribute
points to a debugging information entry representing another compilation
unit. It may be used to specify the compilation unit containing the base type
entries used by entries in the current compilation unit (see “Base Type
Entries” on page 24-34).

This attribute provides a consumer a way to find the definition of base

types for a compilation unit that does not itself contain such definitions.

This allows a consumer, for example, to interpret a type conversion to a
base type correctly.

A compilation unit entry owns debugging information entries that represent the declara-
tions made in the corresponding compilation unit.

Several languages have the concept of a “module.”

A module is represented by a debugging information entry with the tag
DW_TAG_module. Module entries may own other debugging information entries describ-
ing program entities whose declaration scopes end at the end of the module itself.

If the module has a name, the module entry has a DW_AT_name attribute whose value is a
null-terminated string containing the module name as it appears in the source program.

If the module contains initialization code, the module entry has a DW_AT_low_pc
attribute whose value is the relocated address of the first machine instruction generated for
that initialization code. It also has a DW_AT _high_pc attribute whose value is the relo-
cated address of the first location past the last machine instruction generated for the initial-
ization code.

If the module has been assigned a priority, it may have a DW_AT _priority attribute. The
value of this attribute is a reference to another debugging information entry describing a
variable with a constant value. The value of this variable is the actual constant value of the
module's priority, represented as it would be on the target architecture.

A Modula2 definition module may be represented by a module entry containing a
DW_AT_declaration attribute.

DWARF Debugging Information Format

Subroutine and Entry Point Entries

The following tags exist to describe debugging information entries for subroutines and
entry points:

DW_TAG_subprogram A global or file static subroutine or function.
DW_TAG_inlined_subroutine A particular inlined instance of a subroutine or function.

DW_TAG_entry point A Fortran entry point.

General Subroutine and Entry Point Information

The subroutine or entry point entry has a DW_AT_name attribute whose value is a
null-terminated string containing the subroutine or entry point name as it appears in the
source program.

If the name of the subroutine described by an entry with the tag DW_TAG_subprogram is
visible outside of its containing compilation unit, that entry has a DW_AT_external
attribute, whose value is a flag.

Additional attributes for functions that are members of a class or structure are described in
“Structure Member Function Entries” on page 24-41.

A common debugger feature is to allow the debugger user to call a subroutine within the

subject program. In certain cases, however, the generated code for a subroutine will not
obey the standard calling conventions for the target architecture and will therefore not be
safe to call from within a debugger.

A subroutine entry may contain a DW_AT_calling_convention attribute, whose value is a

constant. If this attribute is not present, or its value is the constant DW_CC_normal, then
the subroutine may be safely called by obeying the “standard” calling conventions of the
target architecture. If the value of the calling convention attribute is the constant

DW_CC_nocall, the subroutine does not obey standard calling conventions, and it may
not be safe for the debugger to call this subroutine.

If the semantics of the language of the compilation unit containing the subroutine entry
distinguishes between ordinary subroutines and subroutines that can serve as the “main
program,” that is, subroutines that cannot be called directly following the ordinary calling
conventions, then the debugging information entry for such a subroutine may have a call-
ing convention attribute whose value is the constant DW_CC_program.

The DW_CC_program value is intended to support Fortran main programs. It is not
intended as a way of finding the entry address for the program.

Subroutine and Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then its debugging infor-
mation entry has a DW_AT _type attribute to denote the type returned by that function.

Debugging information entries for @id functions should not have an attribute for the
return type.

24-23

Compilation Systems Volume 2 (Concepts)

In ANSI-C there is a difference between the types of functions declared using function
prototype style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have a
DW_AT_prototyped attribute, whose value is a flag.

Subroutine and Entry Point Locations

A subroutine entry has a DW_AT _low_pc attribute whose value is the relocated address of
the first machine instruction generated for the subroutine. It also has a DW_AT _high_pc

attribute whose value is the relocated address of the first location past the last machine
instruction generated for the subroutine.

Note that for the low and high pc attributes to have meaning, DWARF makes the assump-
tion that the code for a single subroutine is allocated in a single contiguous block of mem-
ory.

An entry point has a DW_AT_low_pc attribute whose value is the relocated address of the
first machine instruction generated for the entry point.

Subroutines and entry points may also have DW_AT_segmentand DW_AT_address_class
attributes, as appropriate, to specify which segments the code for the subroutine resides in
and the addressing mode to be used in calling that subroutine.

A subroutine entry representing a subroutine declaration that is not also a definition does
not have low and high pc attributes.

Declarations Owned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point are represented by debugging
information entries that are owned by the subroutine or entry point entry. Entries repre-
senting the formal parameters of the subroutine or entry point appear in the same order as
the corresponding declarations in the source program.

There is no ordering requirement on entries for declarations that are children of subroutine
or entry point entries but that do not represent formal parameters. The formal parameter
entries may be interspersed with other entries used by formal parameter entries, such as
type entries.

The unspecified parameters of a variable parameter list are represented by a debugging
information entry with the tag DW_TAG_unspecified_parameters.

The entry for a subroutine or entry point that includes a Fortran common block has a child
entry with the tag DW_TAG_common_inclusion. The common inclusion entry has a
DW_AT_common_reference attribute whose value is a reference to the debugging entry
for the common block being included (see “Common Block Entries” on page 24-33).

Low-Level Information

A subroutine or entry point entry may have a DW_AT_return_addr attribute, whose value
is a location description. The location calculated is the place where the return address for
the subroutine or entry point is stored.

24-24

DWARF Debugging Information Format

A subroutine or entry point entry may also have a DW_AT_frame_base attribute, whose
value is a location description that computes the “frame base” for the subroutine or entry
point.

The frame base for a procedure is typically an address fixed relative to the first unit of
storage allocated for the procedure's stack frame. The DW_AT_frame_base attribute can
be used in several ways:

1. In procedures that need location lists to locate local variables, the
DW_AT frame_base can hold the needed location list, while all variables'
location descriptions can be simpler location expressions involving the
frame base.

2. Itcan be used as a key in resolving “up-level” addressing with nested rou-
tines. (See DW_AT _static_link, below)

Some languages support nested subroutines. In such languages, it is possible to reference
the local variables of an outer subroutine from within an inner subroutine. The
DW_AT_static_link and DW_AT_frame_base attributes allow debuggers to support this
same kind of referencing.

If a subroutine or entry point is nested, it may have a DW_AT _static_link attribute, whose
value is a location description that computes the frame base of the relevant instance of the
subroutine that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the DW_AT_frame_base attribute value
should obey the following constraints:

1. It should compute a value that does not change during the life of the proce-
dure, and

2. The computed value should be unique among instances of the same subrou-
tine. (For typical DW_AT_frame_base use, this means that a recursive sub-
routine's stack frame must have non-zero size.)

If a debugger is attempting to resolve an up-level reference to a variable, it uses the nesting
structure of DWARF to determine which subroutine is the lexical parent and the
DW_AT_static_link value to identify the appropriate active frame of the parent. It can then
attempt to find the reference within the context of the parent.

Types Thrown by Exceptions

In C++ a subroutine may declare a set of types for which that subroutine may generate or
“throw” an exception.

If a subroutine explicitly declares that it may throw an exception for one or more types,
each such type is represented by a debugging information entry with the tag
DW_TAG_thrown_type. Each such entry is a child of the entry representing the subrou-
tine that may throw this type. All thrown type entries should follow all entries representing
the formal parameters of the subroutine and precede all entries representing the local vari-
ables or lexical blocks contained in the subroutine. Each thrown type entry contains a
DW_AT _type attribute, whose value is a reference to an entry describing the type of the
exception that may be thrown.

24-25

Compilation Systems Volume 2 (Concepts)

Function Template Instantiations

In C++ a function template is a generic definition of a function that is instantiated differ-
ently when called with values of different types. DWARF does not represent the generic
template definition, but does represent each instantiation.

A template instantiation is represented by a debugging information entry with the tag
DW_TAG_subprogram. With three exceptions, such an entry will contain the same
attributes and have the same types of child entries as would an entry for a subroutine
defined explicitly using the instantiation types. The exceptions are:

1. Each formal parameterized type declaration appearing in the template defi-
nition is represented by a debugging information entry with the tag
DW_TAG_template_type parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the
formal type parameter as it appears in the source program. The template
type parameter entry also has a DW_AT_type attribute describing the
actual type by which the formal is replaced for this instantiation. All tem-
plate type parameter entries should appear before the entries describing the
instantiated formal parameters to the function.

2. If the compiler has generated a special compilation unit to hold the tem-
plate instantiation and that compilation unit has a different name from the
compilation unit containing the template definition, the name attribute for
the debugging entry representing that compilation unit should be empty or
omitted.

3. If the subprogram entry representing the template instantiation or any of its
child entries contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not to any source gen-
erated artificially by the compiler for this instantiation.

Inline Subroutines

A declaration or a definition of an inlinable subroutine is represented by a debugging
information entry with the tag DW_TAG_subprogram. The entry for a subroutine that is
explicitly declared to be available for inline expansion or that was expanded inline implic-
itly by the compiler has a DW_AT _inline attribute whose value is a constant. The set of
values for the DW_AT _inline attribute is given in Table 24-9.

Table 24-9. Inline Codes

Name Meaning
DW_INL_not_inlined Not declared inline nor inlined by the compiler
DW_INL_inlined Not declared inline but inlined by the compiler

DW_INL_declared_not_inlined Declared inline but not inlined by the compiler

DW_INL_declared_inlined Declared inline and inlined by the compiler

24-26

Abstract Instances

DWARF Debugging Information Format

For the remainder of this discussion, any debugging information entry that is owned
(either directly or indirectly) by a debugging information entry that contains the
DW_AT _inline attribute will be referred to as an “abstract instance entry.” Any subroutine
entry that contains a DW_AT _inline attribute will be known as an “abstract instance root.”
Any set of abstract instance entries that are all children (either directly or indirectly) of
some abstract instance root, together with the root itself, will be known as an “abstract
instance tree.”

A debugging information entry that is a member of an abstract instance tree should not
contain a DW_AT_high_pc, DW_AT_low_pc, DW_AT _location, DW_AT_return_addr,
DW_AT_start_scope, or DW_AT_segment attribute.

It would not make sense to put these attributes into abstract instance entries since such
entries do not represent actual (concrete) instances and thus do not actually exist at
run-time.

The rules for the relative location of entries belonging to abstract instance trees are exactly
the same as for other similar types of entries that are not abstract. Specifically, the rule that
requires that an entry representing a declaration be a direct child of the entry representing
the scope of the declaration applies equally to both abstract and non-abstract entries. Also,
the ordering rules for formal parameter entries, member entries, and so on, all apply

regardless of whether or not a given entry is abstract.

Concrete Inlined Instances

Each inline expansion of an inlinable subroutine is represented by a debugging informa-
tion entry with the tag DW_TAG_inlined_subroutine. Each such entry should be a direct
child of the entry that represents the scope within which the inlining occurs.

Each inlined subroutine entry contains a DW_AT_low_pc attribute, representing the
address of the first instruction associated with the given inline expansion. Each inlined
subroutine entry also contains a DW_AT _high_pc attribute, representing the address of the
first location past the last instruction associated with the inline expansion.

For the remainder of this discussion, any debugging information entry that is owned
(either directly or indirectly) by a debugging information entry with the tag
DW_TAG_inlined_subroutinewill be referred to as a “concrete inlined instance entry.”
Any entry that has the tag DW_TAG_inlined_subroutinewill be known as a “concrete
inlined instance root.” Any set of concrete inlined instance entries that are all children
(either directly or indirectly) of some concrete inlined instance root, together with the root
itself, will be known as a “concrete inlined instance tree.”

Each concrete inlined instance tree is uniquely associated with one (and only one) abstract
instance tree.

Note, however, that the reverse is not true. Any given abstract instance tree may be associ-
ated with several different concrete inlined instance trees, or may even be associated with
zero concrete inlined instance trees.

Also, each separate entry within a given concrete inlined instance tree is uniquely associ-
ated with one particular entry in the associated abstract instance tree. In other words, there
is a one-to-one mapping from entries in a given concrete inlined instance tree to the entries
in the associated abstract instance tree.

24-27

Compilation Systems Volume 2 (Concepts)

Note, however, that the reverse is not true. A given abstract instance tree that is associated
with a given concrete inlined instance tree may (and quite probably will) contain more
entries than the associated concrete inlined instance tree (see below).

Concrete inlined instance entries do not have most of the attributes (except for
DW_AT_low_pc, DW_AT_high_pc, DW_AT_location, DW_AT_return_addr,
DW_AT_start_scope and DW_AT_segment) that such entries would otherwise normally
have. In place of these omitted attributes, each concrete inlined instance entry has a
DW_AT_abstract_origin attribute that may be used to obtain the missing information
(indirectly) from the associated abstract instance entry. The value of the abstract origin
attribute is a reference to the associated abstract instance entry.

For each pair of entries that are associated via a DW_AT_abstract_origin attribute, both
members of the pair will have the same tag. So, for example, an entry with the tag
DW_TAG_local_variable can only be associated with another entry that also has the tag
DW_TAG_local_variable. The only exception to this rule is that the root of a concrete
instance tree (which must always have the tag DW_TAG_inlined_subroutine) can only be
associated with the root of its associated abstract instance tree (which must have the tag
DW_TAG_subprogram).

In general, the structure and content of any given concrete instance tree will be directly
analogous to the structure and content of its associated abstract instance tree. There are
two exceptions to this general rule however.

1. No entries representing anonymous types are ever made a part of any con-
crete instance inlined tree.

2. No entries representing members of structure, union or class types are ever
made a part of any concrete inlined instance tree.

Entries that represent members and anonymous types are omitted from concrete inlined
instance trees because they would simply be redundant duplicates of the corresponding
entries in the associated abstract instance trees. If any entry within a concrete inlined
instance tree needs to refer to an anonymous type that was declared within the scope of the
relevant inline function, the reference should simply refer to the abstract instance entry for
the given anonymous type.

If an entry within a concrete inlined instance tree contains attributes describing the decla-
ration coordinates of that entry, then those attributes should refer to the file, line and col-
umn of the original declaration of the subroutine, not to the point at which it was inlined.

Out-of-Line Instances of Inline Subroutines

24-28

Under some conditions, compilers may need to generate concrete executable instances of
inline subroutines other than at points where those subroutines are actually called. For the
remainder of this discussion, such concrete instances of inline subroutines will be referred
to as “concrete out-of-line instances.”

In C++, for example, taking the address of a function declared to be inline can necessitate
the generation of a concrete out-of-line instance of the given function.

The DWARF representation of a concrete out-of-line instance of an inline subroutine is
essentially the same as for a concrete inlined instance of that subroutine (as described in
the preceding section). The representation of such a concrete out-of-line instance makes
use of DW_AT_abstract_origin attributes in exactly the same way as they are used for a

DWARF Debugging Information Format

concrete inlined instance (that is, as references to corresponding entries within the associ-
ated abstract instance tree) and, as for concrete instance trees, the entries for anonymous
types and for all members are omitted.

The differences between the DWARF representation of a concrete out-of-line instance of a
given subroutine and the representation of a concrete inlined instance of that same subrou-
tine are as follows:

1. The root entry for a concrete out-of-line instance of a given inline subrou-
tine has the same tag as does its associated (abstract) inline subroutine
entry (that is, it does not have the tag DW_TAG_inlined_subroutine).

2. The root entry for a concrete out-of-line instance tree is always directly
owned by the same parent entry that also owns the root entry of the associ-
ated abstract instance.

Lexical Block Entries

Label Entries

A lexical block is a bracketed sequence of source statements that may contain any number
of declarations. In some languages (C and C++) blocks can be nested within other blocks
to any depth.

A lexical block is represented by a debugging information entry with the tag
DW_TAG_lexical_block.

The lexical block entry has a DW_AT_low_pc attribute whose value is the relocated
address of the first machine instruction generated for the lexical block. The lexical block
entry also has a DW_AT_high_pc attribute whose value is the relocated address of the first
location past the last machine instruction generated for the lexical block.

If a name has been given to the lexical block in the source program, then the correspond-
ing lexical block entry has a DW_AT_name attribute whose value is a null-terminated
string containing the name of the lexical block as it appears in the source program.

This is not the same as a C or C++ label (see below).

The lexical block entry owns debugging information entries that describe the declarations
within that lexical block. There is one such debugging information entry for each local
declaration of an identifier or inner lexical block.

A label is a way of identifying a source statement. A labeled statement is usually the target
of one or more “go to” statements.

A label is represented by a debugging information entry with the tag DW_TAG_label. The
entry for a label should be owned by the debugging information entry representing the
scope within which the name of the label could be legally referenced within the source
program.

24-29

Compilation Systems Volume 2 (Concepts)

The label entry has a DW_AT_low_pc attribute whose value is the relocated address of the
first machine instruction generated for the statement identified by the label in the source
program. The label entry also has a DW_AT_name attribute whose value is a null-termi-
nated string containing the name of the label as it appears in the source program.

With Statement Entries

Both Pascal and Modula support the concept of a “with” statement. The with statement
specifies a sequence of executable statements within which the fields of a record variable
may be referenced, unqualified by the name of the record variable.

A with statement is represented by a debugging information entry with the tag
DW_TAG_with_stmt. A with statement entry has a DW_AT_low_pc attribute whose value
is the relocated address of the first machine instruction generated for the body of the with
statement. A with statement entry also has a DW_AT _high_pc attribute whose value is the
relocated address of the first location after the last machine instruction generated for the
body of the statement.

The with statement entry has a DW_AT _type attribute, denoting the type of record whose
fields may be referenced without full qualification within the body of the statement. It also
has a DW_AT _location attribute, describing how to find the base address of the record
object referenced within the body of the with statement.

Try and Catch Block Entries

24-30

In C++ a lexical block may be designated as a “catch block.” A catch block is an exception
handler that handles exceptions thrown by an immediately preceding “try block.” A catch
block designates the type of the exception that it can handle.

A try block is represented by a debugging information entry with the tag
DW_TAG_try block. A catch block is represented by a debugging information entry with
the tag DW_TAG_catch_block. Both try and catch block entries contain a
DW_AT_low_pc attribute whose value is the relocated address of the first machine
instruction generated for that block. These entries also contain a DW_AT_high_pc
attribute whose value is the relocated address of the first location past the last machine
instruction generated for that block.

Catch block entries have at least one child entry, an entry representing the type of excep-
tion accepted by that catch block. This child entry will have one of the tags
DW_TAG_formal_parameter or DW_TAG_unspecified_parameters, and will have the
same form as other parameter entries.

The first sibling of each try block entry will be a catch block entry.

DWARF Debugging Information Format

Data Object and Object List Entries

This section presents the debugging information entries that describe individual data
objects: variables, parameters and constants, and lists of those objects that may be grouped
in a single declaration, such as a common block.

Data Object Entries

Program variables, formal parameters and constants are represented by debugging infor-
mation entries with the tags DW_TAG_variable, DW_TAG_formal_parameter and
DW_TAG_constant, respectively.

The tag DW_TAG_constant is used for languages that distinguish between variables that
may have constant value and true named constants.

The debugging information entry for a program variable, formal parameter or constant
may have the following attributes:

1. ADW_AT_name attribute whose value is a null-terminated string contain-
ing the data object name as it appears in the source program.

If a variable entry describes a C++ anonymous union, the name attribute is
omitted or consists of a single zero byte.

2. Ifthe name of a variable is visible outside of its enclosing compilation unit,
the variable entry has a DW_AT_external attribute, whose value is a flag.

The definitions of C++ static data members of structures or classes are rep-
resented by variable entries flagged as external. Both file static and local
variables in C and C++ are represented by non-external variable entries.

3. ADW_AT location attribute, whose value describes the location of a vari-
able or parameter at run-time.

A data object entry representing a non-defining declaration of the object
will not have a location attribute, and will have the DW_AT _declaration
attribute.

In a variable entry representing the definition of the variable (that is, with
no DW_AT_declaration attribute) if no location attribute is present, or if
the location attribute is present but describes a null entry (as described in
“Location Descriptions” on page 24-7), the variable is assumed to exist in
the source code but not in the executable program (but see number 9,
below).

The location of a variable may be further specified with a
DW_AT_segment attribute, if appropriate.

4. A DW_AT _type attribute describing the type of the variable, constant or
formal parameter.

24-31

Compilation Systems Volume 2 (Concepts)

24-32

5.

10.

If the variable entry represents the defining declaration for a C++ static
data member of a structure, class or union, the entry has a
DW_AT_specification attribute, whose value is a reference to the debug-
ging information entry representing the declaration of this data member.
The referenced entry will be a child of some class, structure or union type
entry.

Variable entries containing the DW_AT _specification attribute do not need
to duplicate information provided by the declaration entry referenced by
the specification attribute. In particular, such variable entries do not need to
contain attributes for the name or type of the data member whose definition
they represent.

Some languages distinguish between parameters whose value in the calling
function can be modified by the callee (variable parameters), and parame-
ters whose value in the calling function cannot be modified by the callee
(constant parameters).

If a formal parameter entry represents a parameter whose value in the call-
ing function may be modified by the callee, that entry may have a
DW_AT_variable_parameter attribute, whose value is a flag. The absence
of this attribute implies that the parameter's value in the calling function
cannot be modified by the callee.

Fortran90 has the concept of an optional parameter.

If a parameter entry represents an optional parameter, it has a
DW_AT _is_optional attribute, whose value is a flag.

A formal parameter entry describing a formal parameter that has a default
value may have a DW_AT_default_value attribute. The value of this
attribute is a reference to the debugging information entry for a variable or
subroutine. The default value of the parameter is the value of the variable
(which may be constant) or the value returned by the subroutine. If the
value of the DW_AT_default_value attribute is 0, it means that no default
value has been specified.

An entry describing a variable whose value is constant and not represented
by an object in the address space of the program, or an entry describing a
named constant, does not have a location attribute. Such entries have a
DW_AT_const_value attribute, whose value may be a string or any of the
constant data or data block forms, as appropriate for the representation of
the variable's value. The value of this attribute is the actual constant value
of the variable, represented as it would be on the target architecture.

If the scope of an object begins sometime after the low pc value for the
scope most closely enclosing the object, the object entry may have a
DW_AT_start_scope attribute. The value of this attribute is the offset in
bytes of the beginning of the scope for the object from the low pc value of
the debugging information entry that defines its scope.

The scope of a variable may begin somewhere in the middle of a lexical
block in a language that allows executable code in a block before a variable
declaration, or where one declaration containing initialization code may

DWARF Debugging Information Format

change the scope of a subsequent declaration. For example, in the follow-
ing C code:

float x = 99.99;
int myfunc()

float f = x;
float x = 88.99;

return O;

}

ANSI-C scoping rules require that the value of the variable x assigned to the vari-
able fin the initialization sequence is the value of the global variable x, rather than
the local x, because the scope of the local variable x only starts after the full declara-
tor for the local x.

Common Block Entries

A Fortran common block may be described by a debugging information entry with the tag
DW_TAG_common_block. The common block entry has a DW_AT_name attribute
whose value is a null-terminated string containing the common block name as it appears in
the source program. It also has a DW_AT _location attribute whose value describes the
location of the beginning of the common block. The common block entry owns debugging
information entries describing the variables contained within the common block.

Imported Declaration Entries

Namelist Entries

Some languages support the concept of importing into a given module declarations made
in a different module.

An imported declaration is represented by a debugging information entry with the tag
DW_TAG_imported_declaration. The entry for the imported declaration has a
DW_AT_name attribute whose value is a null-terminated string containing the name of the
entity whose declaration is being imported as it appears in the source program. The
imported declaration entry also has a DW_AT_import attribute, whose value is a reference
to the debugging information entry representing the declaration that is being imported.

At least one language, Fortran90, has the concept of a namelist. A namelist is an ordered
list of the names of some set of declared objects. The namelist object itself may be used as
a replacement for the list of names in various contexts.

A namelist is represented by a debugging information entry with the tag
DW_TAG_namelist.

24-33

Compilation Systems Volume 2 (Concepts)

Type Entries

If the namelist itself has a nhame, the namelist entry has a DW_AT_name attribute, whose
value is a null-terminated string containing the namelist’s name as it appears in the source
program.

Each name that is part of the namelist is represented by a debugging information entry
with the tag DW_TAG_namelist_item. Each such entry is a child of the namelist entry, and
all of the namelist item entries for a given namelist are ordered as were the list of names
they correspond to in the source program.

Each namelist item entry contains a DW_AT_namelist_item attribute whose value is a ref-
erence to the debugging information entry representing the declaration of the item whose
name appears in the namelist.

This section presents the debugging information entries that describe program types: base
types, modified types and user-defined types.

If the scope of the declaration of a named type begins sometime after the low pc value for
the scope most closely enclosing the declaration, the declaration may have a
DW_AT_start_scope attribute. The value of this attribute is the offset in bytes of the begin-
ning of the scope for the declaration from the low pc value of the debugging information
entry that defines its scope.

Base Type Entries

24-34

A base type is a data type that is not defined in terms of other data types. Each program-
ming language has a set of base types that are considered to be built into that language.

A base type is represented by a debugging information entry with the tag
DW_TAG_base_type. A base type entry has a DW_AT_name attribute whose value is a
null-terminated string describing the name of the base type as recognized by the program-
ming language of the compilation unit containing the base type entry.

A base type entry also has a DW_AT_encoding attribute describing how the base type is
encoded and is to be interpreted. The value of this attribute is a constant. The set of values
and their meanings for the DW_AT_encoding attribute is given in Table 24-10.

Table 24-10. Encoding Attribute Values

Name Meaning
DW_ATE_address linear machine address
DW_ATE_boolean true or false

DW_ATE_complex_float complex floating-point number

DW_ATE_float floating-point number

DWARF Debugging Information Format

Table 24-10. Encoding Attribute Values (Cont.)

Name Meaning
DW_ATE_signed signed binary integer
DW_ATE_signed_char signed character
DW_ATE_unsigned unsigned binary integer

DW_ATE_unsigned_char unsigned character

All encodings assume the representation that is “normal” for the target architecture.

A base type entry has a DW_AT_byte_size attribute, whose value is a constant, describing
the size in bytes of the storage unit used to represent an object of the given type.

If the value of an object of the given type does not fully occupy the storage unit described
by the byte size attribute, the base type entry may have a DW_AT_bit_size attribute and a
DW_AT bit_offset attribute, both of whose values are constants. The bit size attribute
describes the actual size in bits used to represent a value of the given type. The bit offset
attribute describes the offset in bits of the high order bit of a value of the given type from
the high order bit of the storage unit used to contain that value.

For example, the C typmt on a machine that uses 32-bit integers would be represented
by a base type entry with a name attribute whose value was “int,” an encoding attribute
whose value was DW_ATE_signed and a byte size attribute whose value was4.

Type Modifier Entries

A base or user-defined type may be modified in different ways in different languages. A
type modifier is represented in DWARF by a debugging information entry with one of the
tags given in Table 24-11.

Table 24-11. Type Modifier Tags

Tag Meaning

DW_TAG_const_type C or C++ const qualified type
DW_TAG_packed_type Pascal packed type

DW_TAG_pointer_type The address of the object whose
type is being modified

DW_TAG_reference_type A C++ reference to the object
whose type is being modified

DW_TAG_volatile_type C or C++ volatile qualified type

Each of the type modifier entries has a DW_AT _type attribute, whose value is a reference
to a debugging information entry describing a base type, a user-defined type or another
type modifier.

24-35

Compilation Systems Volume 2 (Concepts)

Typedef Entries

A modified type entry describing a pointer or reference type may have a
DW_AT_address_class attribute to describe how objects having the given pointer or refer-
ence type ought to be dereferenced.

When multiple type modifiers are chained together to modify a base or user-defined type,
they are ordered as if part of a right-associative expression involving the base or
user-defined type.

As examples of how type modifiers are ordered, take the following C declarations:
const char * volatile p;

which represents a volatile pointer to a constant character. This is encoded in
DWARF as:

DW_TAG_volatile_type -->
DW_TAG_pointer_type -->
DW_TAG_const_type -->
DW_TAG_base_type

volatile char * const p;

on the other hand, represents a constant pointer to a volatile character. This is
encoded as:

DW_TAG_const_type -->
DW_TAG_pointer_type -->
DW_TAG_volatile_type -->
DW_TAG_base_type

Any arbitrary type named via a typedef is represented by a debugging information entry
with the tag DW_TAG_typedef. The typedef entry has a DW_AT_name attribute whose

value is a null-terminated string containing the name of the typedef as it appears in the
source program. The typedef entry also contains a DW_AT _type attribute.

If the debugging information entry for a typedef represents a declaration of the type that is
not also a definition, it does not contain a type attribute.

Array Type Entries

24-36

Many languages share the concept of an “array,” which is a table of components of identi-
cal type.

An array type is represented by a debugging information entry with the tag
DW_TAG_array_type.

If a name has been given to the array type in the source program, then the corresponding
array type entry has a DW_AT_name attribute whose value is a null-terminated string con-
taining the array type name as it appears in the source program.

Structure, Union,

DWARF Debugging Information Format

The array type entry describing a multidimensional array may have a DW_AT_ordering
attribute whose constant value is interpreted to mean either row-major or column-major
ordering of array elements. The required attribute names are listed in Table 24-12. If no
ordering attribute is present, the default ordering for the source language (which is indi-
cated by the DW_AT_language attribute of the enclosing compilation unit entry) is

assumed.

Table 24-12. Array Ordering

DW_ORD_col_major
DW_ORD_row_major

The ordering attribute may optionally appear on one-dimensional arrays; it will be
ignored.

An array type entry has a DW_AT _type attribute describing the type of each element of
the array.

If the amount of storage allocated to hold each element of an object of the given array type
is different from the amount of storage that is normally allocated to hold an individual
object of the indicated element type, then the array type entry has a DW_AT_stride_size
attribute, whose constant value represents the size in bits of each element of the array.

If the size of the entire array can be determined statically at compile time, the array type
entry may have a DW_AT_byte_size attribute, whose constant value represents the total
size in bytes of an instance of the array type.

Note that if the size of the array can be determined statically at compile time, this value
can usually be computed by multiplying the number of array elements by the size of each
element.

Each array dimension is described by a debugging information entry with either the tag
DW_TAG_subrange_type or the tag DW_TAG_enumeration_type. These entries are chil-
dren of the array type entry and are ordered to reflect the appearance of the dimensions in
the source program (i.e. leftmost dimension first, next to leftmost second, and so on).

In languages, such as ANSI-C, in which there is no concept of a “multidimensional array,”
an array of arrays may be represented by a debugging information entry for a multidimen-
sional array.

and Class Type Entries

The languages C, C++, and Pascal, among others, allow the programmer to define types
that are collections of related components. In C and C++, these collections are called
“structures.” In Pascal, they are called “records.” The components may be of different
types. The components are called “members” in C and C++, and “fields” in Pascal.

The components of these collections each exist in their own space in computer memory.
The components of a C or C++ “union” all coexist in the same memory.

24-37

Compilation Systems Volume 2 (Concepts)

Pascal and other languages have a “discriminated union,” also called a “variant record.”
Here, selection of a number of alternative substructures (“variants”) is based on the value
of a component that is not part of any of those substructures (the “discriminant”).

Among the languages discussed in this document, the “class” concept is unique to C++. A
class is similar to a structure. A C++ class or structure may have “member functions”
which are subroutines that are within the scope of a class or structure.

General Structure Description

Structure, union, and class types are represented by debugging information entries with
the tags DW_TAG_structure_type, DW_TAG_union_type and DW_TAG_class_type,
respectively. If a name has been given to the structure, union, or class in the source pro-
gram, then the corresponding structure type, union type, or class type entry has a
DW_AT_name attribute whose value is a null-terminated string containing the type name
as it appears in the source program.

If the size of an instance of the structure type, union type, or class type entry can be deter-
mined statically at compile time, the entry has a DW_AT_byte_size attribute whose con-

stant value is the number of bytes required to hold an instance of the structure, union, or
class, and any padding bytes.

For C and C++, an incomplete structure, union or class type is represented by a structure,
union or class entry that does not have a byte size attribute and that has a
DW_AT_declaration attribute.

The members of a structure, union, or class are represented by debugging information
entries that are owned by the corresponding structure type, union type, or class type entry
and appear in the same order as the corresponding declarations in the source program.

Data member declarations occurring within the declaration of a structure, union or class
type are considered to be “definitions” of those members, with the exception of C++
“static” data members, whose definitions appear outside of the declaration of the enclos-
ing structure, union or class type. Function member declarations appearing within a struc-
ture, union or class type declaration are definitions only if the body of the function also
appears within the type declaration.

If the definition for a given member of the structure, union or class does not appear within
the body of the declaration, that member also has a debugging information entry describ-
ing its definition. That entry will have a DW_AT_specification attribute referencing the
debugging entry owned by the body of the structure, union or class debugging entry and
representing a non-defining declaration of the data or function member. The referenced
entry will not have information about the location of that member (low and high pc
attributes for function members, location descriptions for data members) and will have a
DW_AT_declaration attribute.

Derived Classes and Structures

24-38

The class type or structure type entry that describes a derived class or structure owns
debugging information entries describing each of the classes or structures it is derived
from, ordered as they were in the source program. Each such entry has the tag
DW_TAG inheritance.

DWARF Debugging Information Format

An inheritance entry has a DW_AT _type attribute whose value is a reference to the debug-
ging information entry describing the structure or class from which the parent structure or

class of the inheritance entry is derived. It also has a DW_AT_data_member_location

attribute, whose value is a location description describing the location of the beginning of

the data members contributed to the entire class by this subobject relative to the beginning
address of the data members of the entire class.

An inheritance entry may have a DW_AT_accessibility attribute. If no accessibility
attribute is present, private access is assumed. If the structure or class referenced by the
inheritance entry serves as a virtual base class, the inheritance entry has a
DW_AT _virtuality attribute.

In C++, a derived class may contain access declarations that change the accessibility of
individual class members from the overall accessibility specified by the inheritance decla-
ration. A single access declaration may refer to a set of overloaded names.

If a derived class or structure contains access declarations, each such declaration may be
represented by a debugging information entry with the tag DW_TAG_access_declaration.
Each such entry is a child of the structure or class type entry.

An access declaration entry has a DW_AT_name attribute, whose value is a null-termi-
nated string representing the name used in the declaration in the source program, including
any class or structure qualifiers.

An access declaration entry also has a DW_AT _accessibility attribute describing the
declared accessibility of the named entities.

Friends

Each “friend” declared by a structure, union or class type may be represented by a debug-
ging information entry that is a child of the structure, union or class type entry; the friend
entry has the tag DW_TAG_friend.

A friend entry has a DW_AT _friend attribute, whose value is a reference to the debugging
information entry describing the declaration of the friend.

Structure Data Member Entries

A data member (as opposed to a member function) is represented by a debugging informa-
tion entry with the tag DW_TAG_member. The member entry for a named member has a
DW_AT_name attribute whose value is a null-terminated string containing the member
name as it appears in the source program. If the member entry describes a C++ anonymous
union, the name attribute is omitted or consists of a single zero byte.

The structure data member entry has a DW_AT _type attribute to denote the type of that
member.

If the member entry is defined in the structure or class body, it has a
DW_AT_data_member_location attribute whose value is a location description that
describes the location of that member relative to the base address of the structure, union,
or class that most closely encloses the corresponding member declaration.

24-39

Compilation Systems Volume 2 (Concepts)

The addressing expression represented by the location description for a structure data
member expects the base address of the structure data member to be on the expression
stack before being evaluated.

The location description for a data member of a union may be omitted, since all data mem-
bers of a union begin at the same address.

If the member entry describes a bit field, then that entry has the following attributes:

1. ADW_AT_byte_size attribute whose constant value is the number of bytes
that contain an instance of the bit field and any padding bits.

The byte size attribute may be omitted if the size of the object containing
the bit field can be inferred from the type attribute of the data member con-
taining the bit field.

2. ADW_AT bit offset attribute whose constant value is the number of bits
to the left of the leftmost (most significant) bit of the bit field value.

3. A DW_AT_ bit_size attribute whose constant value is the number of bits
occupied by the bit field value.

The location description for a bit field calculates the address of an anonymous object con-
taining the bit field. The address is relative to the structure, union, or class that most
closely encloses the bit field declaration. The number of bytes in this anonymous object is
the value of the byte size attribute of the bit field. The offset (in bits) from the most signif-
icant bit of the anonymous object to the most significant bit of the bit field is the value of
the bit offset attribute.

For example, take one possible representation of the following structure definition in both
big and little endian byte orders:

struct S {
int j:5;
int k:6;
int m:5;
int n:8;
h

In both cases, the location descriptions for the debugging information entries for j, k, m
and n describe the address of the same 32-bit word that contains all three members. (In the
big-endian case, the location description addresses the most significant byte, in the lit-
tle-endian case, the least significant). The following diagram shows the structure layout
and lists the bit offsets for each case. The offsets are from the most significant bit of the
object addressed by the location description.

24-40

DWARF Debugging Information Format

Bit Offsets: Big-Endian

j:0

k:5 0

m:11 a1 26 K 20 M 15 N 7 pad 0
n:16

Bit Offsets: Little-Endian

j:27

k:21 0
mém 31p 23n 15m10k410

Structure Member Function Entries

A member function is represented in the debugging information by a debugging informa-
tion entry with the tag DW_TAG_subprogram. The member function entry may contain
the same attributes and follows the same rules as non-member global subroutine entries
(see “Subroutine and Entry Point Entries” on page 24-23).

If the member function entry describes a virtual function, then that entry has a
DW_AT _virtuality attribute.

An entry for a virtual function also has a DW_AT_vtable_elem_location attribute whose
value contains a location description yielding the address of the slot for the function within
the virtual function table for the enclosing class or structure.

If the member function entry represents the defining declaration of a member function and
that definition appears outside of the body of the enclosing class or structure declaration,
the member function entry has a DW_AT_specification attribute, whose value is a refer-
ence to the debugging information entry representing the declaration of this function
member. The referenced entry will be a child of some class or structure type entry.

Member function entries containing the DW_AT_specification attribute do not need to
duplicate information provided by the declaration entry referenced by the specification
attribute. In particular, such entries do not need to contain attributes for the name or return
type of the function member whose definition they represent.

Class Template Instantiations

In C++ a class template is a generic definition of a class type that is instantiated differently
when an instance of the class is declared or defined. The generic description of the class
may include both parameterized types and parameterized constant values. DWARF does
not represent the generic template definition, but does represent each instantiation.

A class template instantiation is represented by a debugging information with the tag
DW_TAG_class_type. With four exceptions, such an entry will contain the same attributes

24-41

Compilation Systems Volume 2 (Concepts)

Variant Entries

24-42

and have the same types of child entries as would an entry for a class type defined explic-
itly using the instantiation types and values. The exceptions are:

1. Each formal parameterized type declaration appearing in the template defi-
nition is represented by a debugging information entry with the tag
DW_TAG_template_type parameter. Each such entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the name of the
formal type parameter as it appears in the source program. The template
type parameter entry also has a DW_AT _type attribute describing the
actual type by which the formal is replaced for this instantiation.

2. Each formal parameterized value declaration appearing in the templated
definition is represented by a debugging information entry with the tag
DW_TAG_template_value_parameter. Each such entry has a
DW_AT_name attribute, whose value is a null-terminated string containing
the name of the formal value parameter as it appears in the source program.
The template value parameter entry also has a DW_AT _type attribute
describing the type of the parameterized value. Finally, the template value
parameter entry has a DW_AT_const_value attribute, whose value is the
actual constant value of the value parameter for this instantiation as repre-
sented on the target architecture.

3. If the compiler has generated a special compilation unit to hold the tem-
plate instantiation and that compilation unit has a different name from the
compilation unit containing the template definition, the name attribute for
the debugging entry representing that compilation unit should be empty or
omitted.

4. If the class type entry representing the template instantiation or any of its
child entries contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not to any source gen-
erated artificially by the compiler.

A variant part of a structure is represented by a debugging information entry with the tag
DW_TAG_variant_part and is owned by the corresponding structure type entry.

If the variant part has a discriminant, the discriminant is represented by a separate debug-
ging information entry which is a child of the variant part entry. This entry has the form of

a structure data member entry. The variant part entry will have a DW_AT _discr attribute
whose value is a reference to the member entry for the discriminant.

If the variant part does not have a discriminant (tag field), the variant part entry has a
DW_AT _type attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging information entry
with the tag DW_TAG_variant and is a child of the variant part entry. The value that
selects a given variant may be represented in one of three ways. The variant entry may
have a DW_AT_discr_value attribute whose value represents a single case label. The value
of this attribute is encoded as an LEB128 number. The number is signed if the tag type for
the variant part containing this variant is a signed type. The number is unsigned if the tag
type is an unsigned type.

DWARF Debugging Information Format

Alternatively, the variant entry may contain a DW_AT_discr_list attribute, whose value
represents a list of discriminant values. This list is represented by any of the block forms
and may contain a mixture of case labels and label ranges. Each item on the list is prefixed
with a discriminant value descriptor that determines whether the list item represents a sin-
gle label or a label range. A single case label is represented as an LEB128 number as
defined above for the DW_AT_discr_value attribute. A label range is represented by two
LEB128 numbers, the low value of the range followed by the high value. Both values fol-
low the rules for signedness just described. The discriminant value descriptor is a constant
that may have one of the values given in Table 24-13.

Table 24-13. Discriminant Descriptor Values

DW_DSC_label

DW_DSC_range

If a variant entry has neither a DW_AT_discr_value attribute nor a DW_AT_discr_list
attribute, or if it has a DW_AT _discr_list attribute with O size, the variant is a default vari-
ant.

The components selected by a particular variant are represented by debugging information
entries owned by the corresponding variant entry and appear in the same order as the cor-
responding declarations in the source program.

Enumeration Type Entries

An “enumeration type” is a scalar that can assume one of a fixed humber of symbolic val-
ues.

An enumeration type is represented by a debugging information entry with the tag
DW_TAG_enumeration_type.

If a name has been given to the enumeration type in the source program, then the corre-
sponding enumeration type entry has a DW_AT_name attribute whose value is a null-ter-
minated string containing the enumeration type name as it appears in the source program.
These entries also have a DW_AT_byte_size attribute whose constant value is the number
of bytes required to hold an instance of the enumeration.

Each enumeration literal is represented by a debugging information entry with the tag
DW_TAG_enumerator. Each such entry is a child of the enumeration type entry, and the
enumerator entries appear in the same order as the declarations of the enumeration literals
in the source program.

Each enumerator entry has a DW_AT_name attribute, whose value is a null-terminated
string containing the name of the enumeration literal as it appears in the source program.
Each enumerator entry also has a DW_AT_const_value attribute, whose value is the actual
numeric value of the enumerator as represented on the target system.

24-43

Compilation Systems Volume 2 (Concepts)

Subroutine Type Entries

Itis possible in C to declare pointers to subroutines that return a value of a specific type. In
both ANSI C and C++, it is possible to declare pointers to subroutines that not only return
a value of a specific type, but accept only arguments of specific types. The type of such
pointers would be described with a “pointer to” modifier applied to a user-defined type.

A subroutine type is represented by a debugging information entry with the tag
DW_TAG_subroutine_type. If a name has been given to the subroutine type in the source
program, then the corresponding subroutine type entry has a DW_AT_name attribute
whose value is a null-terminated string containing the subroutine type name as it appears
in the source program.

If the subroutine type describes a function that returns a value, then the subroutine type
entry has a DW_AT _type attribute to denote the type returned by the subroutine. If the
types of the arguments are necessary to describe the subroutine type, then the correspond-
ing subroutine type entry owns debugging information entries that describe the arguments.
These debugging information entries appear in the order that the corresponding argument
types appear in the source program.

In ANSI-C there is a difference between the types of functions declared using function
prototype style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have a
DW_AT_prototyped attribute, whose value is a flag.

Each debugging information entry owned by a subroutine type entry has a tag whose value
has one of two possible interpretations.

1. Each debugging information entry that is owned by a subroutine type entry
and that defines a single argument of a specific type has the tag
DW_TAG_formal_parameter.

The formal parameter entry has a type attribute to denote the type of the
corresponding formal parameter.

2. The unspecified parameters of a variable parameter list are represented by a
debugging information entry owned by the subroutine type entry with the
tag DW_TAG_unspecified_parameters.

String Type Entries

A “string” is a sequence of characters that have specific semantics and operations that sep-
arate them from arrays of characters. Fortran is one of the languages that has a string type.

A string type is represented by a debugging information entry with the tag

DW_TAG_string_type. If a name has been given to the string type in the source program,
then the corresponding string type entry has a DW_AT_name attribute whose value is a
null-terminated string containing the string type name as it appears in the source program.

The string type entry may have a DW_AT_string_length attribute whose value is a loca-
tion description yielding the location where the length of the string is stored in the pro-

24-44

Set Entries

DWARF Debugging Information Format

gram. The string type entry may also have a DW_AT_byte_size attribute, whose constant
value is the size in bytes of the data to be retrieved from the location referenced by the
string length attribute. If no byte size attribute is present, the size of the data to be retrieved
is the same as the size of an address on the target machine.

If no string length attribute is present, the string type entry may have a DW_AT _byte_size
attribute, whose constant value is the length in bytes of the string.

Pascal provides the concept of a “set,” which represents a group of values of ordinal type.

A set is represented by a debugging information entry with the tag DW_TAG_set_type. If

a name has been given to the set type, then the set type entry has a DW_AT_name attribute
whose value is a null-terminated string containing the set type name as it appears in the
source program.

The set type entry has a DW_AT _type attribute to denote the type of an element of the set.

If the amount of storage allocated to hold each element of an object of the given set type is
different from the amount of storage that is normally allocated to hold an individual object
of the indicated element type, then the set type entry has a DW_AT_byte_size attribute,
whose constant value represents the size in bytes of an instance of the set type.

Subrange Type Entries

Several languages support the concept of a “subrange” type object. These objects can rep-
resent a subset of the values that an object of the basis type for the subrange can represent.
Subrange type entries may also be used to represent the bounds of array dimensions.

A subrange type is represented by a debugging information entry with the tag
DW_TAG_subrange_type. If a name has been given to the subrange type, then the sub-
range type entry has a DW_AT_name attribute whose value is a null-terminated string
containing the subrange type name as it appears in the source program.

The subrange entry may have a DW_AT _type attribute to describe the type of object of
whose values this subrange is a subset.

If the amount of storage allocated to hold each element of an object of the given subrange
type is different from the amount of storage that is normally allocated to hold an individual
object of the indicated element type, then the subrange type entry has a DW_AT_byte_size
attribute, whose constant value represents the size in bytes of each element of the subrange

type.

The subrange entry may have the attributes DW_AT_lower_bound and
DW_AT_upper_bound to describe, respectively, the lower and upper bound values of the
subrange. The DW_AT_upper_bound attribute may be replaced by a DW_AT_count
attribute, whose value describes the number of elements in the subrange rather than the
value of the last element. If a bound or count value is described by a constant not repre-
sented in the program's address space and can be represented by one of the constant

24-45

Compilation Systems Volume 2 (Concepts)

attribute forms, then the value of the lower or upper bound or count attribute may be one
of the constant types. Otherwise, the value of the lower or upper bound or count attribute
is a reference to a debugging information entry describing an object containing the bound
value or itself describing a constant value.

If either the lower or upper bound or count values are missing, the bound value is assumed
to be a language-dependent default constant.

The default lower bound value for C or C++ is 0. For Fortran, itis 1. No other default val-
ues are currently defined by DWARF-.

If the subrange entry has no type attribute describing the basis type, the basis type is
assumed to be the same as the object described by the lower bound attribute (if it refer-
ences an object). If there is no lower bound attribute, or it does not reference an object, the
basis type is the type of the upper bound or count attribute (if it references an object). If
there is no upper bound or count attribute or it does not reference an object, the type is
assumed to be the same type, in the source language of the compilation unit containing the
subrange entry, as a signed integer with the same size as an address on the target machine.

Pointer to Member Type Entries

24-46

In C++, a pointer to a data or function member of a class or structure is a unique type.

A debugging information entry representing the type of an object that is a pointer to a
structure or class member has the tag DW_TAG_ptr_to_member_type.

If the pointer to member type has a name, the pointer to member entry has a
DW_AT_name attribute, whose value is a null-terminated string containing the type name
as it appears in the source program.

The pointer to member entry has a DW_AT _type attribute to describe the type of the class
or structure member to which objects of this type may point. The pointer to member entry

also has a DW_AT_containing_type attribute, whose value is a reference to a debugging
information entry for the class or structure to whose members objects of this type may

point.

Finally, the pointer to member entry has a DW_AT_use_location attribute whose value is a
location description that computes the address of the member of the class or structure to
which the pointer to member type entry can point.

The method used to find the address of a given member of a class or structure is common
to any instance of that class or structure and to any instance of the pointer or member type.
The method is thus associated with the type entry, rather than with each instance of the

type.

The DW_AT _use_locationexpression, however, cannot be used on its own, but must be
used in conjunction with the location expressions for a particular object of the given
pointer to member type and for a particular structure or class instance. The
DW_AT_use_location attribute expects two values to be pushed onto the location expres-
sion stack before the DW_AT_use_locationexpression is evaluated. The first value pushed
should be the value of the pointer to member object itself. The second value pushed should
be the base address of the entire structure or union instance containing the member whose
address is being calculated.

DWARF Debugging Information Format

So, for an expression like
object.*mbr_ptr
where mbr_ptr has some pointer to member type, a debugger should:

1. Push the value of mbr_ptr onto the location expression stack.
2. Push the base address of object onto the location expression stack.

3. Evaluate the DW_AT_use_locationexpression for the type of mbr_ptr.

File Type Entries

Some languages, such as Pascal, provide a first class data type to represent files.

A file type is represented by a debugging information entry with the tag
DW_TAG _file_type. If the file type has a hame, the file type entry has a DW_AT_name
attribute, whose value is a null-terminated string containing the type name as it appears in
the source program.

The file type entry has a DW_AT _type attribute describing the type of the objects con-
tained in the file.

The file type entry also has a DW_AT_byte_size attribute, whose value is a constant repre-
senting the size in bytes of an instance of this file type.

Other Debugging Information

This section describes debugging information that is not represented in the form of debug-
ging information entries and is not contained within the .debug_info section.

Accelerated Access

A debugger frequently needs to find the debugging information for a program object
defined outside of the compilation unit where the debugged program is currently stopped.
Sometimes it will know only the name of the object; sometimes only the address. To find
the debugging information associated with a global object by name, using the DWARF
debugging information entries alone, a debugger would need to run through all entries at
the highest scope within each compilation unit. For lookup by address, for a subroutine, a
debugger can use the low and high pc attributes of the compilation unit entries to quickly
narrow down the search, but these attributes only cover the range of addresses for the text
associated with a compilation unit entry.

To find the debugging information associated with a data object, an exhaustive search
would be needed. Furthermore, any search through debugging information entries for dif-

24-47

Compilation Systems Volume 2 (Concepts)

Lookup by Name

Lookup by Address

24-48

ferent compilation units within a large program would potentially require the access of
many memory pages, probably hurting debugger performance.

To make lookups of program objects by name or by address faster, a producer of DWARF
information may provide two different types of tables containing information about the
debugging information entries owned by a particular compilation unit entry in a more con-
densed format.

For lookup by name, a table is maintained in a separate object file section called
.debug_pubnames. The table consists of sets of variable length entries, each set describing
the names of global objects whose definitions or declarations are represented by debug-
ging information entries owned by a single compilation unit. Each set begins with a header
containing four values: the total length of the entries for that set, not including the length
field itself, a version number, the offset from the beginning of the .debug_info section of
the compilation unit entry referenced by the set and the size in bytes of the contents of the
.debug_info section generated to represent that compilation unit. This header is followed
by a variable number of offset/name pairs. Each pair consists of the offset from the begin-
ning of the compilation unit entry corresponding to the current set to the debugging infor-
mation entry for the given object, followed by a null-terminated character string represent-
ing the name of the object as given by the DW_AT_name attribute of the referenced
debugging entry. Each set of names is terminated by zero.

In the case of the name of a static data member or function member of a C++ structure,
class or union, the name presented in the .debug_pubnames section is not the simple name
given by the DW_AT_name attribute of the referenced debugging entry, but rather the
fully class qualified name of the data or function member.

For lookup by address, a table is maintained in a separate object file section called
.debug_aranges. The table consists of sets of variable length entries, each set describing
the portion of the program's address space that is covered by a single compilation unit.
Each set begins with a header containing five values:

1. The total length of the entries for that set, not including the length field
itself.

2. Aversion number.

3. The offset from the beginning of the .debug_info section of the compilation
unit entry referenced by the set.

4. The size in bytes of an address on the target architecture. For segmented
addressing, this is the size of the offset portion of the address.

5. The size in bytes of a segment descriptor on the target architecture. If the
target system uses a flat address space, this value is 0.

This header is followed by a variable number of address range descriptors. Each descriptor
is a pair consisting of the beginning address of a range of text or data covered by some
entry owned by the corresponding compilation unit entry, followed by the length of that

DWARF Debugging Information Format

range. A particular set is terminated by an entry consisting of two zeroes. By scanning the
table, a debugger can quickly decide which compilation unit to look in to find the debug-
ging information for an object that has a given address.

Line Number Information

Definitions

A source-level debugger will need to know how to associate statements in the source files
with the corresponding machine instruction addresses in the executable object or the
shared objects used by that executable object. Such an association would make it possible
for the debugger user to specify machine instruction addresses in terms of source state-
ments. This would be done by specifying the line number and the source file containing
the statement. The debugger can also use this information to display locations in terms of
the source files and to single step from statement to statement.

As mentioned in “Compilation Unit Entries” on page 24-20, above, the line number infor-
mation generated for a compilation unit is represented in the .debug_line section of an
object file and is referenced by a corresponding compilation unit debugging information
entry in the .debug_info section.

If space were not a consideration, the information provided in the .debug_line section
could be represented as a large matrix, with one row for each instruction in the emitted
object code. The matrix would have columns for:

¢ the source file name

¢ the source line number

¢ the source column number

¢ whether this instruction is the beginning of a source statement

¢ whether this instruction is the beginning of a basic block.

Such a matrix, however, would be impractically large. We shrink it with two techniques.
First, we delete from the matrix each row whose file, line and source column information
is identical with that of its predecessors. Second, we design a byte-coded language for a
state machine and store a stream of bytes in the object file instead of the matrix. This lan-
guage can be much more compact than the matrix. When a consumer of the statement
information executes, it must “run” the state machine to generate the matrix for each com-
pilation unit it is interested in. The concept of an encoded matrix also leaves room for
expansion. In the future, columns can be added to the matrix to encode other things that
are related to individual instruction addresses.

The following terms are used in the description of the line number information format:

state machine The hypothetical machine used by a consumer of the line number
information to expand the byte-coded instruction stream into a
matrix of line number information.

statement program A series of byte-coded line number information instructions repre-
senting one compilation unit.

24-49

Compilation Systems Volume 2 (Concepts)

basic block A sequence of instructions that is entered only at the first instruc-
tion and exited only at the last instruction. We define a procedure
invocation to be an exit from a basic block.

sequence A series of contiguous target machine instructions. One compila-
tion unit may emit multiple sequences (that is, not all instructions
within a compilation unit are assumed to be contiguous).

sbyte Small signed integer.

ubyte Small unsigned integer.

uhalf Medium unsigned integer.

sword Large signed integer.

uword Large unsigned integer.

LEB128 Variable length signed and unsigned data. See “Variable Length

Data” on page 24-71.

State Machine Registers

24-50

The statement information state machine has the following registers:

address The program-counter value corresponding to a machine instruc-
tion generated by the compiler.

file An unsigned integer indicating the identity of the source file cor-
responding to a machine instruction.

line An unsigned integer indicating a source line number. Lines are
numbered beginning at 1. The compiler may emit the value 0 in
cases where an instruction cannot be attributed to any source line.

column An unsigned integer indicating a column number within a source
line. Columns are numbered beginning at 1. The value 0 is
reserved to indicate that a statement begins at the “left edge” of
the line.

is_stmt A boolean indicating that the current instruction is the beginning
of a statement.

basic_block A boolean indicating that the current instruction is the beginning
of a basic block.

end_sequence A boolean indicating that the current address is that of the first
byte after the end of a sequence of target machine instructions.

At the beginning of each sequence within a statement program, the state of the registers is:

address 0
file 1
line 1
column 0

Statement Program

DWARF Debugging Information Format

is_stmt determined by default_is_stmt in the
statement program prologue

basic_block "false"

end_sequence "false"

Instructions

The state machine instructions in a statement program belong to one of three categories:

special opcodes These have a ubyte opcode field and no arguments. Most of the
instructions in a statement program are special opcodes.

standard opcodes These have a ubyte opcode field which may be followed by zero
or more LEB128 arguments (except for
DW_LNS_fixed_advance_pc, see below). The opcode implies the
number of arguments and their meanings, but the statement pro-
gram prologue also specifies the number of arguments for each
standard opcode.

extended opcodes These have a multiple byte format. The first byte is zero; the next
bytes are an unsigned LEB128 integer giving the number of bytes
in the instruction itself (does not include the first zero byte or the
size). The remaining bytes are the instruction itself.

The Statement Program Prologue

The optimal encoding of line number information depends to a certain degree upon the
architecture of the target machine. The statement program prologue provides information
used by consumers in decoding the statement program instructions for a particular compi-
lation unit and also provides information used throughout the rest of the statement pro-
gram. The statement program for each compilation unit begins with a prologue containing
the following fields in order:

1. total_length(uword)
The size in bytes of the statement information for this compilation unit (not
including the total_length field itself).

2. version(uhalf)
Version identifier for the statement information format.

3. prologue_length(uword)
The number of bytes following the prologue_length field to the beginning
of the first byte of the statement program itself.

4. minimum_instruction_length(ubyte)
The size in bytes of the smallest target machine instruction. Statement pro-
gram opcodes that alter the address register first multiply their operands by
this value.

5. default_is_stmt(ubyte)
The initial value of the is_stmt register.

A simple code generator that emits machine instructions in the order implied by the source
program would set this to “true,” and every entry in the matrix would represent a statement

24-51

Compilation Systems Volume 2 (Concepts)

boundary. A pipeline scheduling code generator would set this to “false” and emit a spe-
cific statement program opcode for each instruction that represented a statement boundary.

6. line_base(sbyte)
This parameter affects the meaning of the special opcodes. See below.

7. line_range(ubyte)
This parameter affects the meaning of the special opcodes. See below.

8. opcode_base(ubyte)
The number assigned to the first special opcode.

9. standard_opcode_lengths(array of ubyte)
This array specifies the number of LEB128 operands for each of the stan-
dard opcodes. The first element of the array corresponds to the opcode
whose value is 1, and the last element corresponds to the opcode whose
value is opcode_base - 1. By increasing opcode_base, and adding elements
to this array, new standard opcodes can be added, while allowing consum-
ers who do not know about these new opcodes to be able to skip them.

10. include_directories(sequence of path names)
The sequence contains an entry for each path that was searched for
included source files in this compilation. (The paths include those directo-
ries specified explicitly by the user for the compiler to search and those the
compiler searches without explicit direction). Each path entry is either a
full path name or is relative to the current directory of the compilation. The
current directory of the compilation is understood to be the first entry and
is not explicitly represented. Each entry is a null-terminated string contain-
ing a full path name. The last entry is followed by a single null byte.

11. file_names(sequence of file entries)
The sequence contains an entry for each source file that contributed to the
statement information for this compilation unit or is used in other contexts,
such as in a declaration coordinate or a macro file inclusion. Each entry has
a null-terminated string containing the file name, an unsigned LEB128
number representing the directory index of the directory in which the file
was found, an unsigned LEB128 number representing the time of last mod-
ification for the file and an unsigned LEB128 number representing the
length in bytes of the file. A compiler may choose to emit LEB128(0) for
the time and length fields to indicate that this information is not available.
The last entry is followed by a single null byte.

The directory index represents an entry in the include_directories section.
The index is LEB128(0) if the file was found in the current directory of the
compilation, LEB128(1) if it was found in the first directory in the
include_directories section, and so on. The directory index is ignored for
file names that represent full path names.

The statement program assigns numbers to each of the file entries in order,
beginning with 1, and uses those numbers instead of file names in the file
register.

A compiler may generate a single null byte for the file names field and
define file names using the extended opcode DEFINE_FILE.

24-52

DWARF Debugging Information Format

The Statement Program

Special Opcodes

As stated before, the goal of a statement program is to build a matrix representing one
compilation unit, which may have produced multiple sequences of target-machine instruc-
tions. Within a sequence, addresses may only increase. (Line numbers may decrease in
cases of pipeline scheduling.)

Each 1-byte special opcode has the following effect on the state machine:
1. Add a signed integer to the line register.

2. Multiply an unsigned integer by theminimum_instruction_length field of
the statement program prologue and add the result to the address register.

3. Append a row to the matrix using the current values of the state machine
registers.

4. Setthe basic_block register to “false.”

All of the special opcodes do those same four things; they differ from one another only in
what values they add to thelineandaddressregisters.

Instead of assigning a fixed meaning to each special opcode, the statement program uses
several parameters in the prologue to configure the instruction set. There are two reasons
for this. First, although the opcode space available for special opcodes now ranges from 10
through 255, the lower bound may increase if one adds new standard opcodes. Thus, the
opcode_base field of the statement program prologue gives the value of the first special
opcode. Second, the best choice of special-opcode meanings depends on the target archi-
tecture. For example, for a RISC machine where the compiler-generated code interleaves
instructions from different lines to schedule the pipeline, it is important to be able to add a
negative value to the line register to express the fact that a later instruction may have been
emitted for an earlier source line. For a machine where pipeline scheduling never occurs, it
is advantageous to trade away the ability to decrease the line register (a standard opcode
provides an alternate way to decrease the line number) in return for the ability to add
larger positive values to the address register. To permit this variety of strategies, the state-
ment program prologue defines a line_base field that specifies the minimum value which a
special opcode can add to the line register and a line_range field that defines the range of
values it can add to the line register.

A special opcode value is chosen based on the amount that needs to be added to the line
and address registers. The maximum line increment for a special opcode is the value of the
line_base field in the prologue, plus the value of the line_range field, minus 1 (line base +
line range - 1). If the desired line increment is greater than the maximum line increment, a
standard opcode must be used instead of a special opcode. The “address advance” is calcu-
lated by dividing the desired address increment by the minimum_instruction_length field
from the prologue. The special opcode is then calculated using the following formula:

opcode = (desired line increment - line_base) +
(line_range * address advance) + opcode_base

If the resulting opcode is greater than 255, a standard opcode must be used instead.

24-53

Compilation Systems Volume 2 (Concepts)

Standard Opcodes

24-54

To decode a special opcode, subtract the opcode_base from the opcode itself. The amount
to increment the address register is the adjusted opcode divided by the line_range. The
amount to increment the line register is the line_base plus the result of the adjusted opcode
modulo the line_range. That is,

line increment = line_base + (adjusted opcode % line_range)

As an example, suppose that the opcode_base is 16,line_baseis -1 and line_range is 4. This
means that we can use a special opcode whenever two successive rows in the matrix have
source line numbers differing by any value within the range [-1, 2] (and, because of the
limited number of opcodes available, when the difference between addresses is within the
range [0, 59]).

The opcode mapping would be:

Opcode Line advance Address advance

16 -1 0
17 0 0
18 1 0
19 2 0
20 -1 1
21 0 1
22 1 1
23 2 1
253 0 59
254 1 59
255 2 59

There is no requirement that the expression255 - line_base + 1be an integral multiple
ofline_range.

There are currently 9 standard ubyte opcodes. In the future additional ubyte opcodes may
be defined by setting the opcode_base field in the statement program prologue to a value
greater than 10.

1. DW_LNS_copy
Takes no arguments.Append a row to the matrix using the current values of
the state-machine registers. Then set the basic_block register to “false.”

2. DW_LNS_ advance _pc
Takes a single unsigned LEB128 operand, multiplies it by the
minimum_instruction_length field of the prologue, and adds the result to
the address register of the state machine.

DWARF Debugging Information Format

3. DW_LNS_advance_line
Takes a single signed LEB128 operand and adds that value to the line regis-
ter of the state machine.

4. DW_LNS_ set file
Takes a single unsigned LEB128 operand and stores it in the file register of
the state machine.

5. DW_LNS_set _column
Takes a single unsigned LEB128 operand and stores it in the column regis-
ter of the state machine.

6. DW_LNS_negate_stmt
Takes no arguments.Set the is_stmt register of the state machine to the log-
ical negation of its current value.

7. DW_LNS_set basic_block
Takes no arguments.Set the basic_block register of the state machine to
“true.”

8. DW_LNS_const_add_pc
Takes no arguments.Add to the address register of the state machine the
address increment value corresponding to special opcode 255.

The motivation for DW_LNS_const_add_pc is this: when the statement
program needs to advance the address by a small amount, it can use a sin-
gle special opcode, which occupies a single byte.When it needs to advance
the address by up to twice the range of the last special opcode, it can use
DW_LNS_const_add_pc followed by a special opcode, for a total of two
bytes. Only if it needs to advance the address by more than twice that range
will it need to use both DW_LNS_advance_pc and a special opcode,
requiring three or more bytes.

9. DW_LNS fixed_advance_pc
Takes a single uhalf operand. Add to the address register of the state
machine the value of the (unencoded) operand. This is the only extended
opcode that takes an argument that is not a variable length number.

The motivation for DW_LNS_fixed_advance_pc is this: existing assem-
blers cannot emit DW_LNS_advance_pc or special opcodes because they
cannot encode LEB128 numbers or judge when the computation of a spe-
cial opcode overflows and requires the use of DW_LNS_advance_pc.
Such assemblers, however, can use DW_LNS_fixed_advance_pcinstead,
sacrificing compression.

Extended Opcodes

There are three extended opcodes currently defined. The first byte following the length
field of the encoding for each contains a sub-opcode.

1. DW_LNE_end_sequence
Set the end_sequence register of the state machine to “true” and append a
row to the matrix using the current values of the state-machine registers.
Then reset the registers to the initial values specified above.

Every statement program sequence must end with a

24-55

Compilation Systems Volume 2 (Concepts)

DW_LNE_end_sequence instruction which creates a row whose address is
that of the byte after the last target machine instruction of the sequence.

2. DW_LNE_set_address
Takes a single relocatable address as an operand. The size of the operand is
the size appropriate to hold an address on the target machine. Set the
address register to the value given by the relocatable address.

All of the other statement program opcodes that affect the address register
add a delta to it. This instruction stores a relocatable value into it instead.

3. DW_LNE_define_file
Takes 4 arguments. The first is a null terminated string containing a source
file name. The second is an unsigned LEB128 number representing the
directory index of the directory in which the file was found. The third is an
unsigned LEB128 number representing the time of last modification of the
file. The fourth is an unsigned LEB128 number representing the length in
bytes of the file. The time and length fields may contain LEB128(0) if the
information is not available.

The directory index represents an entry in the include_directories section of
the statement program prologue. The index is LEB128(0) if the file was
found in the current directory of the compilation, LEB128(1) if it was
found in the first directory in the include_directories section, and so on.
The directory index is ignored for file names that represent full path names.

The files are numbered, starting at 1, in the order in which they appear; the
names in the prologue come before names defined by the
DW_LNE_define_fileinstruction. These numbers are used in the file regis-
ter of the state machine.

“Appendix 3 -- Statement Program Examples” on page 24-99 gives some sample state-
ment programs.

Macro Information

24-56

Some languages, such as C and C++, provide a way to replace text in the source program
with macros defined either in the source file itself, or in another file included by the source
file. Because these macros are not themselves defined in the target language, it is difficult
to represent their definitions using the standard language constructs of DWARF. The
debugging information therefore reflects the state of the source after the macro definition
has been expanded, rather than as the programmer wrote it. The macro information table
provides a way of preserving the original source in the debugging information.

As described in “Compilation Unit Entries” on page 24-20, the macro information for a
given compilation unit is represented in the .debug_macinfo section of an object file. The
macro information for each compilation unit is represented as a series of “macinfo”
entries. Each macinfo entry consists of a “type code” and up to two additional operands.
The series of entries for a given compilation unit ends with an entry containing a type code
of 0.

Macinfo Types

DWARF Debugging Information Format

The valid macinfo types are as follows:

DW_MACINFO_define A macro definition.

DW_MACINFO_undef A macro un-definition.
DW_MACINFO_start_file The start of a new source file inclusion.
DW_MACINFO_end_file The end of the current source file inclusion.

DW_MACINFO_vendor_ext Vendor specific macro information directives that do not
fit into one of the standard categories.

Define and Undefine Entries

Start File Entries

All DW_MACINFO_define and DW_MACINFO_undef entries have two operands. The
first operand encodes the line number of the source line on which the relevant defining or
undefining pre-processor directives appeared.

The second operand consists of a null-terminated character string. In the case of a
DW_MACINFO_undef entry, the value of this string will be simply the name of the
pre-processor symbol which was undefined at the indicated source line.

In the case of a DW_MACINFO_define entry, the value of this string will be the name of
the pre-processor symbol that was defined at the indicated source line, followed immedi-
ately by the macro formal parameter list including the surrounding parentheses (in the case
of a function-like macro) followed by the definition string for the macro. If there is no for-
mal parameter list, then the name of the defined macro is followed directly by its defini-
tion string.

In the case of a function-like macro definition, no whitespace characters should appear
between the name of the defined macro and the following left parenthesis. Also, no
whitespace characters should appear between successive formal parameters in the formal
parameter list. (Successive formal parameters should, however, be separated by commas.)
Also, exactly one space character should separate the right parenthesis which terminates
the formal parameter list and the following definition string.

In the case of a “normal” (i.e. non-function-like) macro definition, exactly one space char-
acter should separate the name of the defined macro from the following definition text.

Each DW_MACINFO_start_file entry also has two operands. The first operand encodes
the line number of the source line on which the inclusion pre-processor directive occurred.

The second operand encodes a source file name index. This index corresponds to a file
number in the statement information table for the relevant compilation unit. This index
indicates (indirectly) the name of the file which is being included by the inclusion direc-
tive on the indicated source line.

24-57

Compilation Systems Volume 2 (Concepts)

End File Entries

A DW_MACINFO_end_file entry has no operands. The presence of the entry marks the
end of the current source file inclusion.

Vendor Extension Entries

A DW_MACINFO_vendor_ext entry has two operands. The first is a constant. The sec-
ond is a null-terminated character string. The meaning and/or significance of these oper-
ands is intentionally left undefined by this specification.

A consumer must be able to totally ignore all DW_MACINFO_vendor_ext entries that it
does not understand.

Base Source Entries

In addition to producing a matched pair of DW_MACINFO_start_file and
DW_MACINFO_end_file entries for each inclusion directive actually processed during
compilation, a producer should generate such a matched pair also for the “base” source
file submitted to the compiler for compilation. If the base source file for a compilation is
submitted to the compiler via some means other than via a named disk file (e.g. via the
standard input stream on a UNIX system) then the compiler should still produce this
matched pair of DW_MACINFO_start_file and DW_MACINFO_end_file entries for the
base source file, however, the file name indicated (indirectly) by the
DW_MACINFO_start_file entry of the pair should reference a statement information file
name entry consisting of a null string.

Macinfo Entries for Command Line Options

In addition to producing DW_MACINFO_define and DW_MACINFO_undef entries for
each of the define and undefine directives processed during compilation, the DWARF pro-
ducer should generate a DW_MACINFO_define or DW_MACINFO_undef entry for each
pre-processor symbol which is defined or undefined by some means other than via a
define or undefine directive within the compiled source text. In particular, pre-processor
symbol definitions and un-definitions which occur as a result of command line options
(when invoking the compiler) should be represented by their own DW_MACINFO_define
and DW_MACINFO_undef entries.

All such DW_MACINFO_define and DW_MACINFO_undef entries representing compi-
lation options should appear before the first DW_MACINFO_start_file entry for that com-
pilation unit and should encode the value 0 in their line number operands.

General Rules and Restrictions

24-58

All macinfo entries within a.debug_macinfo section for a given compilation unit should
appear in the same order in which the directives were processed by the compiler.

All macinfo entries representing command line options should appear in the same order as
the relevant command line options were given to the compiler. In the case where the com-
piler itself implicitly supplies one or more macro definitions or un-definitions in addition

to those which may be specified on the command line, macinfo entries should also be pro-

DWARF Debugging Information Format

duced for these implicit definitions and un-definitions, and these entries should also
appear in the proper order relative to each other and to any definitions or undefinitions
given explicitly by the user on the command line.

Call Frame Information

Debuggers often need to be able to view and modify the state of any subroutine activation
that is on the call stack. An activation consists of:

* A code location that is within the subroutine. This location is either the
place where the program stopped when the debugger got control (e.g. a
breakpoint), or is a place where a subroutine made a call or was interrupted
by an asynchronous event (e.g. a signal).

* An area of memory that is allocated on a stack called a “call frame.” The
call frame is identified by an address on the stack. We refer to this address
as the Canonical Frame Address or CFA.

* A set of registers that are in use by the subroutine at the code location.

Typically, a set of registers are designated to be preserved across a call. If a callee wishes
to use such a register, it saves the value that the register had at entry time in its call frame
and restores it on exit. The code that allocates space on the call frame stack and performs
the save operation is called the subroutine's prologue, and the code that performs the
restore operation and deallocates the frame is called its epilogue. Typically, the prologue

code is physically at the beginning of a subroutine and the epilogue code is at the end.

To be able to view or modify an activation that is not on the top of the call frame stack, the
debugger must “virtually unwind” the stack of activations until it finds the activation of
interest. A debugger unwinds a stack in steps. Starting with the current activation it
restores any registers that were preserved by the current activation and computes the pre-
decessor's CFA and code location. This has the logical effect of returning from the current
subroutine to its predecessor. We say that the debugger virtually unwinds the stack
because it preserves enough information to be able to “rewind” the stack back to the state
it was in before it attempted to unwind it.

The unwinding operation needs to know where registers are saved and how to compute the
predecessor's CFA and code location. When considering an architecture-independent way
of encoding this information one has to consider a number of special things.

* Prologue and epilogue code is not always in distinct blocks at the begin-
ning and end of a subroutine. It is common to duplicate the epilogue code
at the site of each return from the code. Sometimes a compiler breaks up
the register save/unsave operations and moves them into the body of the
subroutine to just where they are needed.

¢ Compilers use different ways to manage the call frame. Sometimes they
use a frame pointer register, sometimes not.

* The algorithm to compute the CFA changes as you progress through the
prologue and epilogue code. (By definition, the CFA value does not
change.)

* Some subroutines have no call frame.

24-59

Compilation Systems Volume 2 (Concepts)

* Sometimes a register is saved in another register that by convention does
not need to be saved.

* Some architectures have special instructions that perform some or all of the
register management in one instruction, leaving special information on the
stack that indicates how registers are saved.

* Some architectures treat return address values specially. For example, in
one architecture, the call instruction guarantees that the low order two bits
will be zero and the return instruction ignores those bits. This leaves two
bits of storage that are available to other uses that must be treated specially.

Structure of Call Frame Information

24-60

DWARF supports virtual unwinding by defining an architecture independent basis for
recording how procedures save and restore registers throughout their lifetimes. This basis
must be augmented on some machines with specific information that is defined by either
an architecture specific ABI authoring committee, a hardware vendor, or a compiler pro-
ducer. The body defining a specific augmentation is referred to below as the “augmenter.”

Abstractly, this mechanism describes a very large table that has the following structure:

LOC CFA RO R1 ... RN
LO
L1

LN

The first column indicates an address for every location that contains code in a program.
(In shared objects, this is an object-relative offset.) The remaining columns contain virtual
unwinding rules that are associated with the indicated location. The first column of the
rules defines the CFA rule which is a register and a signed offset that are added together to
compute the CFA value.

The remaining columns are labeled by register number. This includes some registers that
have special designation on some architectures such as the PC and the stack pointer regis-
ter. (The actual mapping of registers for a particular architecture is performed by the aug-
menter.) The register columns contain rules that describe whether a given register has been
saved and the rule to find the value for the register in the previous frame.

The register rules are:

undefined A register that has this rule has no value in the previous frame.
(By convention, it is not preserved by a callee.)

same value This register has not been modified from the previous frame. (By
convention, it is preserved by the callee, but the callee has not
modified it.)

offset(N) The previous value of this register is saved at the address CFA+N

where CFA is the current CFA value and N is a signed offset.

register(R) The previous value of this register is stored in another register
numbered R.

DWARF Debugging Information Format

architectural The rule is defined externally to this specification by the aug-
menter.

This table would be extremely large if actually constructed as described. Most of the
entries at any point in the table are identical to the ones above them. The whole table can
be represented quite compactly by recording just the differences starting at the beginning
address of each subroutine in the program.

The virtual unwind information is encoded in a self-contained section called.debug_frame.
Entries in a.debug_frame section are aligned on an addressing unit boundary and come in
two forms: A Common Information Entry (CIE) and a Frame Description Entry (FDE).
Sizes of data objects used in the encoding of the .debug_frame section are described in
terms of the same data definitions used for the line number information (see “Definitions”
on page 24-49).

A Common Information Entry holds information that is shared among many Frame
Descriptors. There is at least one CIE in every non-empty.debug_frame section. A CIE
contains the following fields, in order:

1. length
A uword constant that gives the number of bytes of the CIE structure, not
including the length field, itself (length mod<addressing unit size>== 0).

2. CIE_id
A uword constant that is used to distinguish CIEs from FDEs.

3. version
A ubyte version number. This number is specific to the call frame informa-
tion and is independent of the DWARF version number.

4. augmentation
A null terminated string that identifies the augmentation to this CIE or to
the FDEs that use it. If a reader encounters an augmentation string that is
unexpected, then only the following fields can be read:
ClE:length,CIE_id,version,augmentation; FDE:length, CIE_pointer,
initial_location, address_range. If there is no augmentation, this value is a
zero byte.

5. code_alignment_factor
An unsigned LEB128 constant that is factored out of all advance location
instructions (see below).

6. data_alignment_factor
A signed LEB128 constant that is factored out of all offset instructions (see
below.)

7. return_address_register
A ubyte constant that indicates which column in the rule table represents
the return address of the function. Note that this column might not corre-
spond to an actual machine register.

8. initial_instructions
A sequence of rules that are interpreted to create the initial setting of each
column in the table.

24-61

Compilation Systems Volume 2 (Concepts)

9. padding
Enough DW_CFA_nop instructions to make the size of this entry match the
length value above.

An FDE contains the following fields, in order:

1. length
A uword constant that gives the number of bytes of the header and instruc-
tion stream for this function (not including the length field itself) (length
mod<addressing unit size>==0).

2. CIE_pointer
A uword constant offset into the .debug_frame section that denotes the CIE
that is associated with this FDE.

3. initial_location
An addressing-unit sized constant indicating the address of the first loca-
tion associated with this table entry.

4. address_range
An addressing unit sized constant indicating the number of bytes of pro-
gram instructions described by this entry.

5. instructions
A sequence of table defining instructions that are described below.

Call Frame Instructions

Each call frame instruction is defined to take 0 or more operands. Some of the operands
may be encoded as part of the opcode (see “Call Frame Information” on page 24-83). The
instructions are as follows:

1. DW_CFA_advance_loctakes a single argument that represents a constant
delta. The required action is to create a new table row with a location value
that is computed by taking the current entry's location value and adding
(delta *code_alignment_factor). All other values in the new row are ini-
tially identical to the current row.

2. DW_CFA_offset takes two arguments: an unsigned LEB128 constant rep-
resenting a factored offset and a register number. The required action is to
change the rule for the register indicated by the register number to be an
offset(N) rule with a value of (N = factored offset *data_alignment_factor).

3. DW_CFA restore takes a single argument that represents a register num-
ber. The required action is to change the rule for the indicated register to
the rule assigned it by the initial_instructions in the CIE.

4. DW_CFA_set_loc takes a single argument that represents an address. The
required action is to create a new table row using the specified address as
the location. All other values in the new row are initially identical to the
current row. The new location value should always be greater than the cur-
rent one.

5. DW_CFA_advance_locltakes a single ubyte argument that represents a
constant delta. This instruction is identical to DW_CFA_advance_loc
except for the encoding and size of the delta argument.

24-62

10.

11.

12.

13.
14.

15.

16.

17.

18.

DWARF Debugging Information Format

DW_CFA_advance_loc2takes a single uhalf argument that represents a
constant delta. This instruction is identical to DW_CFA_advance_loc
except for the encoding and size of the delta argument.

DW_CFA_advance_loc4takes a single uword argument that represents a
constant delta. This instruction is identical to DW_CFA_advance_loc
except for the encoding and size of the delta argument.

DW_CFA_offset_extended takes two unsigned LEB128 arguments repre-
senting a register number and a factored offset. This instruction is identical
to DW_CFA_offset except for the encoding and size of the register argu-
ment.

DW_CFA_restore_extended takes a single unsigned LEB128 argument
that represents a register number. This instruction is identical to

DW_CFA_restore except for the encoding and size of the register argu-
ment.

DW_CFA_undefined takes a single unsigned LEB128 argument that repre-
sents a register number. The required action is to set the rule for the speci-
fied register to “undefined.”

DW_CFA_same_value takes a single unsigned LEB128 argument that rep-
resents a register number. The required action is to set the rule for the spec-
ified register to “same value.”

DW_CFA_register takes two unsigned LEB128 arguments representing
register numbers. The required action is to set the rule for the first register
to be the same as the rule for the second register.

DW_CFA _remember_state

DW_CFA _restore_state

These instructions define a stack of information. Encountering the
DW_CFA_remember_stateinstruction means to save the rules for every
register on the current row on the stack. Encountering the
DW_CFA_restore_state instruction means to pop the set of rules off the
stack and place them in the current row. (This operation is useful for com-
pilers that move epilogue code into the body of a function.)

DW_CFA_def _cfa takes two unsigned LEB128 arguments representing a
register number and an offset. The required action is to define the current
CFA rule to use the provided register and offset.

DW_CFA_def _cfa_register takes a single unsigned LEB128 argument rep-
resenting a register number. The required action is to define the current
CFA rule to use the provided register (but to keep the old offset).

DW_CFA_def _cfa_offset takes a single unsigned LEB128 argument repre-
senting an offset. The required action is to define the current CFA rule to
use the provided offset (but to keep the old register).

DW_CFA_nop has no arguments and no required actions. It is used as pad-
ding to make the FDE an appropriate size.

24-63

Compilation Systems Volume 2 (Concepts)

Call Frame Instruction Usage

To determine the virtual unwind rule set for a given location (L1), one searches through
the FDE headers looking at theinitial_locationandaddress_range values to see if L1 is con-
tained in the FDE. If so, then:

1. Initialize a register set by reading theinitial_instructionsfield of the associ-
ated CIE.

2. Read and process the FDE's instruction sequence until a
DW_CFA _advance_loc, DW_CFA_set loc, or the end of the instruction
stream is encountered.

3. Ifa DW_CFA_advance_loc or DW_CFA_set_loc instruction was encoun-
tered, then compute a new location value (L2). If L1>= L2 then process the
instruction and go back to step 2.

4. The end of the instruction stream can be thought of as a DW_CFA_set_loc(
initial_location + address_range) instruction. Unless the FDE is
ill-formed, L1 should be less than L2 at this point.

The rules in the register set now apply to location L1.

For an example, see “Appendix 5 -- Call Frame Information Examples” on page 24-102.

Data Representation

This section describes the binary representation of the debugging information entry itself,
of the attribute types and of other fundamental elements described above.

Vendor Extensibility

24-64

To reserve a portion of the DWARF name space and ranges of enumeration values for use
for vendor specific extensions, special labels are reserved for tag names, attribute names,
base type encodings, location operations, language names, calling conventions and call
frame instructions.

The labels denoting the beginning and end of the reserved value range for vendor specific
extensions consist of the appropriate prefix (DW_TAG DW_AT, DW_ATE, DW_OP,
DW_LANG, or DW_CFA respectively) followed by _lo_user or _hi_user. For example,
for entry tags, the special labels are DW_TAG_lo_user and DW_TAG_hi_user. Values in
the range between prefix _lo_user and prefix _hi_user inclusive, are reserved for vendor
specific extensions. Vendors may use values in this range without conflicting with current
or future system-defined values. All other values are reserved for use by the system.

Vendor defined tags, attributes, base type encodings, location atoms, language names,
calling conventions and call frame instructions, conventionally use the form prefix
_vendor_id_name, where vendor_id is some identifying character sequence chosen so as
to avoid conflicts with other vendors.

DWARF Debugging Information Format

To ensure that extensions added by one vendor may be safely ignored by consumers that
do not understand those extensions, the following rules should be followed:

1. New attributes should be added in such a way that a debugger may recog-
nize the format of a new attribute value without knowing the content of that
attribute value.

2. The semantics of any new attributes should not alter the semantics of previ-
ously existing attributes.

3. The semantics of any new tags should not conflict with the semantics of
previously existing tags.

Reserved Error Values

As a convenience for consumers of DWARF information, the value O is reserved in the
encodings for attribute names, attribute forms, base type encodings, location operations,
languages, statement program opcodes, macro information entries and tag names to repre-
sent an error condition or unknown value. DWARF does not specify names for these
reserved values, since they do not represent valid encodings for the given type and should
not appear in DWARF debugging information.

Executable Objects and Shared Objects

File Constraints

The relocated addresses in the debugging information for an executable object are virtual
addresses and the relocated addresses in the debugging information for a shared object are
offsets relative to the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects position indepen-
dent. Virtual addresses in a shared object may be calculated by adding the offset to the
base address at which the object was attached. This offset is available in the run-time
linker's data structures.

All debugging information entries in a relocatable object file, executable object or shared
object are required to be physically contiguous.

Format of Debugging Information

For each compilation unit compiled with a DWARF Version 2 producer, a contribution is
made to the .debug_info section of the object file. Each such contribution consists of a
compilation unit header followed by a series of debugging information entries. Unlike the
information encoding for DWARF Version 1, Version 2 debugging information entries do
not themselves contain the debugging information entry tag or the attribute name and form

24-65

Compilation Systems Volume 2 (Concepts)

encodings for each attribute. Instead, each debugging information entry begins with a code
that represents an entry in a separate abbreviations table. This code is followed directly by
a series of attribute values. The appropriate entry in the abbreviations table guides the
interpretation of the information contained directly in the .debug_info section. Each com-
pilation unit is associated with a particular abbreviation table, but multiple compilation
units may share the same table.

This encoding was based on the observation that typical DWARF producers produce a
very limited number of different types of debugging information entries. By extracting the
common information from those entries into a separate table, we are able to compress the
generated information.

Compilation Unit Header

The header for the series of debugging information entries contributed by a single compi-
lation unit consists of the following information:

1. A 4-byte unsigned integer representing the length of the .debug_info con-
tribution for that compilation unit, not including the length field itself.

2. A 2-byte unsigned integer representing the version of the DWARF informa-
tion for that compilation unit. For DWARF Version 2, the value in this field
is 2.

3. A4-byte unsigned offset into the .debug_abbrev section. This offset associ-
ates the compilation unit with a particular set of debugging information
entry abbreviations.

4. A 1-byte unsigned integer representing the size in bytes of an address on
the target architecture. If the system uses segmented addressing, this value
represents the size of the offset portion of an address.

The compilation unit header does not replace the DW_TAG_compile_unit debugging
information entry. It is additional information that is represented outside the standard
DWARF tag/attributes format.

Debugging Information Entry

24-66

Each debugging information entry begins with an unsigned LEB128 number containing
the abbreviation code for the entry. This code represents an entry within the abbreviation
table associated with the compilation unit containing this entry. The abbreviation code is
followed by a series of attribute values.

On some architectures, there are alignment constraints on section boundaries. To make it
easier to pad debugging information sections to satisfy such constraints, the abbreviation
code 0 is reserved. Debugging information entries consisting of only the 0 abbreviation
code are considered null entries.

DWARF Debugging Information Format

Abbreviation Tables

The abbreviation tables for all compilation units are contained in a separate object file sec-
tion called.debug_abbrev. As mentioned before, multiple compilation units may share the
same abbreviation table.

The abbreviation table for a single compilation unit consists of a series of abbreviation
declarations. Each declaration specifies the tag and attributes for a particular form of
debugging information entry. Each declaration begins with an unsigned LEB128 number
representing the abbreviation code itself. It is this code that appears at the beginning of a
debugging information entry in the .debug_info section. As described above, the abbrevia-
tion code 0 is reserved for null debugging information entries. The abbreviation code is
followed by another unsigned LEB128 number that encodes the entry's tag. The encodings
for the tag names are given in Table 24-14 and Table 24-15.

Following the tag encoding is a 1-byte value that determines whether a debugging infor-
mation entry using this abbreviation has child entries or not. If the value is
DW_CHILDREN_yes, the next physically succeeding entry of any debugging information
entry using this abbreviation is the first child of the prior entry. If the 1-byte value follow-
ing the abbreviation's tag encoding is DW_CHILDREN_no, the next physically succeed-
ing entry of any debugging information entry using this abbreviation is a sibling of the
prior entry. (Either the first child or sibling entries may be null entries). The encodings for
the child determination byte are given in Table 24-16. (As mentioned in “Relationship of
Debugging Information Entries” on page 24-7, each chain of sibling entries is terminated
by a null entry).

Finally, the child encoding is followed by a series of attribute specifications. Each attribute
specification consists of two parts. The first part is an unsigned LEB128 number repre-
senting the attribute's name. The second part is an unsigned LEB128 number representing
the attribute's form. The series of attribute specifications ends with an entry containing 0
for the name and O for the form.

The attribute form DW_FORM _indirect is a special case. For attributes with this form, the
attribute value itself in the .debug_info section begins with an unsigned LEB128 number
that represents its form. This allows producers to choose forms for particular attributes
dynamically, without having to add a new entry to the abbreviation table.

The abbreviations for a given compilation unit end with an entry consisting of a 0 byte for
the abbreviation code.

See “Appendix 2 -- Organization of Debugging Information” on page 24-96 for a depic-
tion of the organization of the debugging information.

Attribute Encodings

The encodings for the attribute names are given in Table 24-17 and Table 24-18.

The attribute form governs how the value of the attribute is encoded. The possible forms
may belong to one of the following form classes:

address Represented as an object of appropriate size to hold an address on the target
machine (DW_FORM_addr). This address is relocatable in a relocatable
object file and is relocated in an executable file or shared object.

24-67

Compilation Systems Volume 2 (Concepts)

block Blocks come in four forms. The first consists of a 1-byte length followed by 0
to 255 contiguous information bytes (DW_FORM_block1). The second con-
sists of a 2-byte length followed by 0 to 65,535 contiguous information bytes
(DW_FORM_block?2). The third consists of a 4-byte

Table 24-14. Tag Encodings (Part 1)

Tag name Value
DW_TAG_array_type 0x01
DW_TAG_class_type 0x02
DW_TAG_entry_point 0x03
DW_TAG_enumeration_type 0x04
DW_TAG_formal_parameter 0x05
DW_TAG_imported_declaration 0x08
DW_TAG_label 0x0a
DW_TAG_lexical_block 0x0b
DW_TAG_member 0xod
DW_TAG_pointer_type 0xOf

DW_TAG_reference_type 0x10
DW_TAG_compile_unit 0x11
DW_TAG_string_type 0x12
DW_TAG_structure_type 0x13
DW_TAG_subroutine_type 0x15
DW_TAG_typedef 0x16
DW_TAG_union_type 0x17
DW_TAG_unspecified_parameters 0x18
DW_TAG_variant 0x19
DW_TAG_common_block Oxla
DW_TAG_common_inclusion 0x1b
DW_TAG_inheritance Oxlc
DW_TAG inlined_subroutine Ox1d
DW_TAG_module Oxle
DW_TAG_ptr_to_member_type Ox1f

DW_TAG_set type 0x20
DW_TAG_subrange_type 0x21
DW_TAG_with_stmt 0x22
DW_TAG_access_declaration 0x23

24-68

DWARF Debugging Information Format

Table 24-14. Tag Encodings (Part 1) (Cont.)

Tag name Value
DW_TAG_base_type 0x24
DW_TAG_catch_block 0x25
DW_TAG_const_type 0x26
DW_TAG_constant 0x27
DW_TAG_enumerator 0x28
DW_TAG _file_type 0x29

length followed by 0 to 4,294,967,295 contiguous information bytes
(DW_FORM_block4). The fourth consists of an unsigned LEB128 length followed
by the number of bytes specified by the length (DW_FORM_block). In all forms,
the length is the number of information bytes that follow. The information bytes may
contain any mixture of relocated (or relocatable) addresses, references to other
debugging information entries or data bytes.

constant There are six forms of constants: one, two, four and eight byte values (respec-
tively, DW_FORM_datal, DW_FORM_data2, DW_FORM_data4, and

DW_FORM_data8). There are also variable

Table 24-15. Tag Encodings (Part 2)

Tag name Value
DW_TAG _friend 0x2a
DW_TAG_namelist 0x2b
DW_TAG_namelist_item 0x2c
DW_TAG_packed_type ox2d
DW_TAG_subprogram 0x2e
DW_TAG_template_type param Oox2f
DW_TAG_template_value_param 0x30
DW_TAG_thrown_type 0x31
SDW_TAG_try_block 0x32
DW_TAG_variant_part 0x33
DW_TAG_variable 0x34
DW_TAG_volatile_type 0x35
DW_TAG lo_user 0x4080
DW_TAG_hi_user Oxffff

24-69

Compilation Systems Volume 2 (Concepts)

24-70

flag

reference

Table 24-16. Child Determination Encodings

Child determination name Value

DW_CHILDREN_no 0
DW_CHILDREN_yes 1

length constant data forms encoded using LEB128 numbers (see below). Both
signed (DW_FORM_sdata) and unsigned (DW_FORM _udata) variable length
constants are available.

A flag is represented as a single byte of data (DW_FORM _flag). If the flag
has value zero, it indicates the absence of the attribute. If the flag has a
non-zero value, it indicates the presence of the attribute.

There are two types of reference. The first is an offset relative to the first byte
of the compilation unit header for the compilation unit containing the refer-
ence. The offset must refer to an entry within that same compilation unit.
There are five forms for this type of reference: one, two, four and eight byte
offsets (respectively, DW_FORM_refl, DW_FORM_ref2, DW_FORM_ref4,
and DW_FORM_ref8). There are is also an unsigned variable length offset
encoded using LEB128 numbers (DW_FORM_ref_udata).

The second type of reference is the address of any debugging information
entry within the same executable or shared object; it may refer to an entry in a
different compilation unit from the unit containing the reference. This type of
reference (DW_FORM_ref_addr) is the size of an address on the target archi-
tecture; it is relocatable in a relocatable object file and relocated in an execut-
able file or shared object.

The use of compilation unit relative references will reduce the number of
link-time relocations and so speed up linking.

The use of address-type references allows for the commonization of informa-
tion, such as types, across compilation units.

Table 24-17. Attribute Encodings (Part 1)

Attribute name Value Classes
DW_AT_sibling 0x01 reference
DW_AT location 0x02 block, constant
DW_AT name 0x03 string
DW_AT_ordering 0x09 constant
DW_AT_byte size 0x0b constant
DW_AT bit_offset 0x0c constant
DW_AT bit_size 0xod constant
DW_AT_stmt_list 0x10 constant

DWARF Debugging Information Format

Table 24-17. Attribute Encodings (Part 1) (Cont.)

Attribute name Value Classes

DW_AT low_pc 0x11 address

DW_AT_high_pc 0x12 address

DW_AT_language 0x13 constant

DW_AT discr 0x15 reference

DW_AT discr_value 0x16 block

DW_AT _visibility 0x17 constant

DW_AT_import 0x18 reference

DW_AT_string_length 0x19 block, constant

DW_AT_common_reference Oxla reference

DW_AT_comp_dir 0x1b string

DW_AT const_value Oxlc string, constant, block

DW_AT_containing_type 0x1d reference

DW_AT_default_value Oxle reference

DW_AT _inline 0x20 constant

DW_AT_is_optional 0x21 flag

DW_AT lower_bound 0x22 constant, reference

DW_AT_producer 0x25 string

DW_AT_prototyped 0x27 flag

DW_AT return_addr 0x2a block, constant

DW_AT_start_scope 0x2c constant

DW_AT _stride_size 0x2e constant

DW_AT_upper_bound Oox2f constant, reference
string A string is a sequence of contiguous non-null bytes followed by one null byte.

A string may be represented immediately in the debugging information entry
itself (DW_FORM_string), or may be represented as a 4-byte offset into a
string table contained in the .debug_str section of the object file
(DW_FORM_strp).

The form encodings are listed in Table 24-19.

Variable Length Data

The special constant data forms DW_FORM_sdata and DW_FORM_udata are encoded
using “Little Endian Base 128" (LEB128) numbers. LEB128 is a scheme for encoding
integers densely that exploits the assumption that most integers are small in magnitude.

24-71

Compilation Systems Volume 2 (Concepts)

(This encoding is equally suitable whether the target machine architecture represents data
in big-endian or little-endian order. It is “little endian” only in the sense that it avoids using
space to represent the “big” end of an unsigned integer, when the big end is all zeroes or
sign extension bits).

Table 24-18. Attribute Encodings (Part 2)

Attribute name Value Classes
DW_AT_abstract_origin 0x31 reference
DW_AT_accessibility 0x32 constant
DW_AT address_class 0x33 constant
DW_AT _artificial 0x34 flag

DW_AT base_types 0x35 reference
DW_AT_calling_convention 0x36 constant
DW_AT_count 0x37 constant, reference
DW_AT data_member_locatior 0x38 block, reference
DW_AT decl_column 0x39 constant
DW_AT decl_file 0x3a constant
DW_AT decl _line 0x3b constant
DW_AT_declaration 0x3c flag

DW_AT discr_list 0x3d block
DW_AT_encoding 0x3e constant
DW_AT external 0x3f flag

DW_AT frame_base 0x40 block, constant
DW_AT friend 0x41 reference
DW_AT identifier_case 0x42 constant
DW_AT_macro_info 0x43 constant
DW_AT namelist_item 0x44 block
DW_AT_priority 0x45 reference
DW_AT_segment 0x46 block, constant
DW_AT_specification 0x47 reference
DW_AT _static_link 0x48 block, constant
DW_AT _type 0x49 reference
DW_AT use_location Ox4a block, constant

DW_AT variable_parameter 0x4b flag
DW_AT virtuality Ox4c constant

24-72

DWARF Debugging Information Format

Table 24-18. Attribute Encodings (Part 2) (Cont.)

Attribute name Value Classes
DW_AT vtable _elem_location 0x4d block, reference
DW_AT lo_user 0x2000 --

DW_AT hi_user Ox3fff --

DW_FORM_udata(unsigned LEB128) numbers are encoded as follows: start at the low
order end of an unsigned integer and chop it into 7-bit chunks. Place each chunk into the
low order 7 bits of a byte. Typically, several of the high order bytes will be zero; discard
them. Emit the remaining bytes in a stream, starting with the low order byte; set the high
order bit on each byte except the last emitted byte. The high bit of zero on the last byte
indicates to the decoder that it has encountered the last byte.

The integer zero is a special case, consisting of a single zero byte.

Table 24-20 gives some examples of DW_FORM_udata nhumbers. The0x80in each case is
the high order bit of the byte, indicating that an additional byte follows:

The encoding for DW_FORM_sdata (signed, 2s complement LEB128) numbers is similar,

except that the criterion for discarding high order bytes is not whether they are zero, but
whether they consist entirely of sign extension bits. Consider the 32-bit integer-2. The

three high level bytes of the number are sign extension, thus LEB128 would represent it as
a single byte

Table 24-19. Attribute Form Encodings

Form name Value Class

DW_FORM_addr 0x01 address
DW_FORM_blocK2 0x03 block
DW_FORM_blocK4 0x04 block

DW_FORM_data2 0x05 constant
DW_FORM_data4 0x06 constant
DW_FORM_data8 0x07 constant
DW_FORM_string 0x08 string
DW_FORM_block 0x09 block
DW_FORM_blockl 0x0a block
DW_FORM_datal 0xOb constant
DW_FORM_flag 0x0c flag
DW_FORM_sdata 0x0d constant
DW_FORM_strp Ox0e string

DW_FORM_udata 0x0f constant

24-73

Compilation Systems Volume 2 (Concepts)

Table 24-19. Attribute Form Encodings (Cont.)

Form name Value Class

DW_FORM_ref addr 0x10 reference

DW_FORM_refl 0x11 reference
DW_FORM_ref2 0x12 reference
DW_FORM_ref4 0x13 reference
DW_FORM_ref8 0x14 reference

DW_FORM_ref udata 0x15 reference

DW_FORM _indirect 0x16 (see “Abbreviation
Tables” on page 24-67)

Table 24-20. Examples of unsigned LEB128 Encodings

Number First byte Second byte

2 2 -
127 127 --
128 0+0x80 1
129 1+0x80 1
130 2+0x80 1

12857 57+0x80 100

containing the low order 7 bits, with the high order bit cleared to indicate the end of the
byte stream. Note that there is nothing within the LEB128 representation that indicates
whether an encoded number is signed or unsigned. The decoder must know what type of
number to expect.

Table 24-21 gives some examples of DW_FORM_sdata numbers.

“Appendix 4 -- Encoding and decoding variable length data” on page 24-100 gives algo-
rithms for encoding and decoding these forms.

Location Descriptions

Location Expressions

24-74

A location expression is stored in a block of contiguous bytes. The bytes form a set of
operations. Each location operation has a 1-byte code that identifies that operation. Opera-
tions can be followed by one or more bytes of additional data. All operations in a location.
expression are concatenated from left to right. The encodings for the operations in a loca-
tion expression are described in Table 24-22 and Table 24-23.

DWARF Debugging Information Format

Table 24-21. Examples of signed LEB128 Encodings

Number Firstbyte Second byte
2 2 -

-2 Ox7e -

127 127+0x80 O

-127 1+0x80 ox7f

128 0+0x80 1

-128 0+0x80 ox7f

129 1+0x80 1

-129 0x7f+0x80 Ox7e

Table 24-22. Location Operation Encodings (Part 1)

Operation Code No. of Operands Notes
DW_OP_addr 0x03 1 constant addres

(size target spe

cific)
DW_OP_deref 0x06 0
DW_OP_constlu 0x08 1 1-byte constant
DW_OP_constls 0x09 1 1-byte constant
DW_OP_const2u 0x0a 1 2-byte constant
DW_OP_const2s 0x0b 1 2-byte constant
DW_OP_const4u 0x0c 1 4-byte constant
DW_OP_const4s 0xod 1 4-byte constant
DW_OP_const8u 0x0e 1 8-byte constant
DW_OP_const8s 0xof 1 8-byte constant
DW_OP_constu 0x10 1 ULEB128 constant
DW_OP_consts Ox11 1 SLEB128 constant
DW_OP_dup 0X12 0
DW_OP_drop 0X13 0
DW_OP_over 0X14 0
DW_OP_pick 0X15 1 1-byte stack index
DW_OP_swap 0X16 0
DW_OP_rot 0X17 0

24-75

Compilation Systems Volume 2 (Concepts)

24-76

Table 24-22. Location Operation Encodings (Part 1) (Cont.)

Operation Code No. of Operands Notes
DW_OP_xderef 0x18 0

DW_OP_abs 0X19 0

DW_OP_and 0Xla 0

DW_OP_div 0X1b 0

DW_OP_minus Oxlc 0

DW_OP_mod 0X1d 0

DW_OP_mul 0X1le 0

DW_OP_neg 0Xaf 0

DW_OP_not 0X20 0

DW_OP_or 0Xx21 0

DW_OP_plus 0X22 0

DW_OP_plus_uconst 0x23 1 ULEB128 addend
DW_OP_shl 0X24 0

DW_OP_shr 0X25 0

DW_OP_shra 0X26 0

Table 24-23. Location Operation Encodings (Part 2)

No. of

Operation Code Operands Notes

DW_OP_xor ox27 0

DW_OP_skip oX2f 1 signed 2-byte constant
DW_OP_bra 0X28 1 signed 2-byte constant
DW_OP_eq 0X29 0

DW_OP_ge OX2A 0

DW_OP_gt 0X2B 0

DW_OP_le 0X2C 0

DW_OP_lt 0X2D 0

DW_OP_ne OX2E 0

DW_OP_lit0 0X30 0 literals 0..31

(DW_OP_LITOlliteral)

DW_OP_lit1 0X31 0

DW_OP_it31 ox4f 0

DWARF Debugging Information Format

Table 24-23. Location Operation Encodings (Part 2) (Cont.)

No. of

Operation Code Operands Notes

DW_OP_reg0 0X50 0 reg 0..31 = (DW_OP_REGO|reg-
num)

DW_OP_regl 0X51 0

DW_OP_reg31 Oxe6f 0

DW_OP_breg0 0x70 1 SLEB128 offset

DW_OP_bregl 0x71 1 base reg 0..31 =
(DW_OP_BREGO|regnum)

DW_OP_breg31 0Ox8f 1

DW_OP_regx 0X90 1 ULEB128 register

DW_OP_fbreg 0x91 1 SLEB128 offset

DW_OP_bregx 0x92 2 ULEB128 register followed by
SLEB128 offset

DW_OP_piece 0x93 1 ULEB128 size of piece
addressed

DW_OP_deref size 0X94 1 1-byte size of data retrieved

DW_OP_xderef_size 0X95 1 1-byte size of data retrieved

DW_OP_nop 0X96 0

DW_OP_lo_user 0xe0

DW_OP_hi_user Oxff

Location Lists
Each entry in a location list consists of two relative addresses followed by a 2-byte length,
followed by a block of contiguous bytes. The length specifies the number of bytes in the

block that follows. The two addresses are the same size as used by DW_FORM_addr on
the target machine.

Base Type Encodings

The values of the constants used in the DW_AT_encoding attribute are given in
Table 24-24.

24-T7

Compilation Systems Volume 2 (Concepts)

Accessibility Codes

The encodings of the constants used in the DW_AT_accessibility attribute are given in
Table 24-25.

Table 24-24. Base Type Encoding Values

Base type encoding name Value
DW_ATE_address 0x1
DW_ATE_boolean 0x2
DW_ATE_complex_float 0x3
DW_ATE _float 0x4
DW_ATE_signed 0x5
DW_ATE_signed_char 0x6
DW_ATE_unsigned 0x7
DW_ATE_unsigned_char 0x8
DW_ATE_lo_user 0x80
DW_ATE_hi_user Oxff

Table 24-25. Accessibility Encodings

Accessibility code name Value

DW_ACCESS_public 1
DW_ACCESS protected 2
DW_ACCESS private 3

Visibility Codes

The encodings of the constants used in the DW_AT _visibility attribute are given in
Table 24-26.

Table 24-26. Visibility Encodings

Visibility code name Value

DW_VIS local 1
DW_VIS_exported 2
DW_VIS_qualified 3

24-78

DWARF Debugging Information Format

Virtuality Codes

The encodings of the constants used in the DW_AT_virtuality attribute are given in
Table 24-27.

Table 24-27. Virtuality Encodings

Virtuality code name Value
DW_VIRTUALITY_none 0
DW_VIRTUALITY _virtual 1

DW_VIRTUALITY_pure_virtual 2

Source Languages

The encodings for source languages are given in Table 24-28. Names marked with ??? and
their associated values are reserved, but the languages they represent are not supported in
DWARF Version 2.

Address Class Encodings

The value of the common address class encoding DW_ADDR_none is 0.

Table 24-28. Language Encodings

Language name Value
DW_LANG_C89 0x0001
DW_LANG_C 0x0002

DW_LANG_Ada83?7?? 0x0003
DW_LANG_C_plus_plus 0x0004
DW_LANG_Cobol74??? 0x0005
DW_LANG_Cobol85??? 0x0006

DW_LANG_Fortran77 0x0007
DW_LANG_Fortran90 0x0008
SDW_LANG_Pascal83 0x0009S
DW_LANG_Modula2 0x000a
DW_LANG_lo_user 0x8000
DW_LANG_hi_user Oxffff

24-79

Compilation Systems Volume 2 (Concepts)

Identifier Case

The encodings of the constants used in the DW_AT _identifier_case attribute are given in
Table 24-29.

Table 24-29. Identifier Case Encodings

Identifier Case Name Value

DW_ID_case_sensitive
DW_ID_up_case

DW_ID_down_case

w N = O

DW_ID_case_insensitive

Calling Convention Encodings

The encodings for the values of the DW_AT_calling_convention attribute are given in
Table 24-30.

Table 24-30. Calling Convention Encodings

Calling Convention Name Value

DW_CC_normal 0x1
DW_CC_program 0x2
DW_CC_nocall 0x3
DW_CC _lo_user 0x40
DW_CC_hi_user Oxff

Inline Codes

The encodings of the constants used in the DW_AT _inline attribute are given in
Table 24-31.

Table 24-31. Inline Encodings

Inline Code Name Value

DW_INL_not_inlined 0

24-80

DWARF Debugging Information Format

Table 24-31. Inline Encodings (Cont.)

Inline Code Name Value

DW_INL inlined 1
DW_INL_declared_not_inlined 2
DW_INL_declared_inlined 3

Array Ordering

The encodings for the values of the order attributes of arrays is given in Table 24-32.

Table 24-32. Ordering Encodings

Ordering name Value

DW_ORD_row_major 0
DW_ORD_col_major 1

Discriminant Lists

The descriptors used in the DW_AT_dicsr_list attribute are encoded as 1-byte constants.

The defined values are presented in Table 24-33.

Table 24-33. Discriminant Descriptor Encodings

Descriptor Name Value
DW_DSC_label 0
DW_DSC_range 1

Name Lookup Table

Each set of entries in the table of global names contained in the .debug_pubnames section
begins with a header consisting of: a 4-byte length containing the length of the set of
entries for this compilation unit, not including the length field itself; a 1-byte version iden-
tifier containing the value 2 for DWARF Version 2; a 4-byte offset into the .debug_info
section; and a 4-byte length containing the size in bytes of the contents of the .debug_info
section generated to represent this compilation unit. This header is followed by a series of
tuples. Each tuple consists of a 4-byte offset followed by a string of non-null bytes termi-
nated by one null byte. Each set is terminated by a 4-byte word containing the value 0.

24-81

Compilation Systems Volume 2 (Concepts)

Address Range Table

Each set of entries in the table of address ranges contained in the .debug_aranges section
begins with a header consisting of: a 4-byte length containing the length of the set of
entries for this compilation unit, not including the length field itself; a 2-byte version iden-
tifier containing the value 2 for DWARF Version 2; a 4-byte offset into the .debug_info
section; a 1-byte unsigned integer containing the size in bytes of an address (or the offset
portion of an address for segmented addressing) on the target system; and a 1-byte
unsigned integer containing the size in bytes of a segment descriptor on the target system.
This header is followed by a series of tuples. Each tuple consists of an address and a
length, each in the size appropriate for an address on the target architecture. The first tuple
following the header in each set begins at an address that is a multiple of the size of a sin-
gle tuple (that is, twice the size of an address). The header is padded, if necessary, to the
appropriate boundary. Each set of tuples is terminated by a 0 for the address and 0 for the
length.

Line Number Information

The sizes of the integers used in the line number and call frame information sections are as

follows:

shyte Signed 1-byte value.
ubyte Unsigned 1-byte value.
uhalf Unsigned 2-byte value.
sword Signed 4-byte value.
uword Unsigned 4-byte value.

The version number in the statement program prologue is 2 for DWARF Version 2. The
boolean values “true” and “false” used by the statement information program are encoded
as a single byte containing the value 0 for “false,” and a non-zero value for “true.” The
encodings for the pre-defined standard opcodes are given in Table 24-34.

Table 24-34. Standard Opcode Encodings

Opcode Name Value
DW_LNS_copy 1
DW_LNS_advance_pc 2
DW_LNS_advance_line 3
DW_LNS_set file 4
DW_LNS_set _column 5
DW_LNS_negate_stmt 6

24-82

DWARF Debugging Information Format

Table 24-34. Standard Opcode Encodings (Cont.)

Opcode Name Value

DW_LNS_set basic_block 7
DW_LNS_const_add_pc 8
DW_LNS_fixed_advance_pc 9

The encodings for the pre-defined extended opcodes are given in Table 24-35.

Table 24-35. Extended Opcode Encodings

Opcode Name Value

DW_LNE_end_sequence 1
DW_LNE_set address 2
DW_LNE_define_file 3

Macro Information

The source line numbers and source file indices encoded in the macro information section
are represented as unsigned LEB128 numbers as are the constants in an
DW_MACINFO_vend_ext entry. The macinfo type is encoded as a single byte. The
encodings are given in Table 24-36.

Table 24-36. Macinfo Type Encodings

Macinfo Type Name Value

DW_MACINFO_define 1
DW_MACINFO_undef 2
DW_MACINFO_start_file 3
DW_MACINFO _end_file 4
DW_MACINFO_vend_ext 255

Call Frame Information

The value of the CIE id in the CIE header isOxffffffff. The initial value of the CIE version
number is 1.

Call frame instructions are encoded in one or more bytes. The primary opcode is encoded
in the high order two bits of the first byte (that is, opcode = byte>>6). An operand or

24-83

Compilation Systems Volume 2 (Concepts)

extended opcode may be encoded in the low order 6 bits. Additional operands are encoded
in subsequent bytes.

The instructions and their encodings are presented in Table 24-37.

Table 24-37. Call Frame Instruction Encodings

Instruction ;”Igirt]s Low 6 Bits Operand 1 Operand 2
DW_CFA_advance_loc 0x1 delta

DW_CFA_offset 0x2 register ULEB128offset

DW_CFA_restore 0x3 register

DW_CFA_set _loc 0 0x01 address

DW_CFA_advance_locl 0 0x02 1-byte delta
DW_CFA_advance_loc2 0 0x03 2-byte delta
DW_CFA_advance_loc4 0 0x04 4-byte delta
DW_CFA_offset_extended 0 0x05 ULEB128 register ULEB128 offset
DW_CFA_restore_extended 0 0x06 ULEB128 register
DW_CFA_undefined 0 0x07 ULEB128 register
DW_CFA_same_value 0 0x08 ULEB128 register
DW_CFA_register 0 0x09 ULEB128 register ULEB128 register
DW_CFA_remember_state 0 0x0a

DW_CFA_restore_state 0 0x0b

DW_CFA_def cfa 0 0x0c ULEB128 register ULEB128 offset
DW_CFA_def _cfa_register 0 0xod ULEB128 register

DW_CFA_def _cfa offset 0 0x0e ULEB128 offset

DW_CFA_nop 0 0

DW_CFA _lo_user 0 Oxlc

DW_CFA_hi_user 0 0x3f

Dependencies

The debugging information in this format is intended to exist in the .debug_abbrev,
.debug_aranges, .debug_frame, .debug_info, .debug_line, .debug_loc, .debug_macinfo,
.debug_pubnames and .debug_str sections of an object file. The information is not
word-aligned, so the assembler must provide a way for the compiler to produce 2-byte and
4-byte quantities without alignment restrictions, and the linker must be able to relocate a
4-byte reference at an arbitrary alignment. In target architectures with 64-bit addresses, the
assembler and linker must similarly handle 8-byte references at arbitrary alignments.

24-84

DWARF Debugging Information Format

Future Directions

The UNIX International Programming Languages SIG is working on a specification for a
set of interfaces for reading DWARF information, that will hide changes in the representa-
tion of that information from its consumers. It is hoped that using these interfaces will
make the transition from DWARF Version 1 to Version 2 much simpler and will make it
easier for a single consumer to support objects using either Version 1 or Version 2
DWARF.

A draft of this specification is available for review from UNIX International. The Pro-
gramming Languages SIG wishes to stress, however, that the specification is still in flux.

Appendix 1 -- Current Attributes by Tag Value

The list below enumerates the attributes that are most applicable to each type of debugging
information entry. DWARF does not in general require that a given debugging information
entry contain a particular attribute or set of attributes. Instead, a DWARF producer is free
to generate any, all, or none of the attributes described in the text as being applicable to a
given entry. Other attributes (both those defined within this document but not explicitly
associated with the entry in question, and new, vendor-defined ones) may also appear in a
given debugging entry. Therefore, the list may be taken as instructive, but cannot be con-
sidered definitive.

Table 24-38. Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
DW_TAG_access_declaration DECL???
DW_AT_accessibility
DW_AT _name
DW_AT_sibling
DW_TAG_array_type DECL

DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte size
DW_AT_declaration
DW_AT _name
DW_AT_ordering
DW_AT_sibling
DW_AT_start_scope
DW_AT stride_size
DW_AT _type

24-85

Compilation Systems Volume 2 (Concepts)

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES

DW_AT _visibility
DW_TAG_base_type DW_AT bit_offset
DW_AT bit_size
DW_AT_byte size
DW_AT_encoding
DW_AT _name
DW_AT_sibling
DW_TAG_catch_block DW_AT_abstract_origin
DW_AT_high_pc
DW_AT low_pc
DW_AT_segment
DW_AT_sibling
DW_TAG_class_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte size
DW_AT_declaration
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _visibility
DW_TAG_common_block DECL
DW_AT_declaration
DW_AT location
DW_AT _name
DW_AT_sibling
DW_AT _visibility
DW_TAG_common_inclusion DECL
DW_AT_common_reference
DW_AT_declaration
DW_AT_sibling
DW_AT _visibility
DW_TAG_compile_unit DW_AT_base_types

24-86

DWARF Debugging Information Format

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_const_type

DW_TAG_constant

DW_TAG_entry_point

DW_TAG_enumeration_type

DW_AT_comp_dir
DW_AT identifier_case
DW_AT_high_pc
DW_AT_language
DW_AT low_pc
DW_AT_macro_info
DW_AT _name
DW_AT_producer
DW_AT_sibling
DW_AT_stmt_list
DW_AT_sibling

DW_AT _type

DECL
DW_AT_accessibility
DW_AT_constant_value
DW_AT_declaration
DW_AT external
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _type

DW_AT _visibility
DW_AT_ address_class
DW_AT low_pc
DW_AT _name

DW_AT return_addr
DW_AT_segment
DW_AT_sibling

DW_AT _static_link
DW_AT _type

DECL
DW_AT_abstract_origin
DW_AT_accessibility

24-87

Compilation Systems Volume 2 (Concepts)

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_enumerator

DW_TAG_file_type

DW_TAG_formal_parameter

DW_TAG_friend

DW_AT_byte size
DW_AT_declaration
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _visibility
DECLS

DW_AT const_value
DW_AT _name
DW_AT_sibling

DECL
DW_AT_abstract_origin
DW_AT_byte size
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _type

DW_AT _visibility

DECL
DW_AT_abstract_origin
DW_AT _artificial
DW_AT_default_value
DW_AT is_optional
DW_AT location
DW_AT _name
DW_AT_segment
DW_AT_sibling

DW_AT _type
DW_AT_variable_parameter
DECL
DW_AT_abstract_origin
DW_AT friend
DW_AT_sibling

24-88

DWARF Debugging Information Format

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_imported_declaration

DW_TAG_inheritance

DW_TAG inlined_subroutine

DW_TAG_label

DW_TAG_lexical_block

DW_TAG_member

DECL
DW_AT_accessibility
DW_AT_import
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DECL
DW_AT_accessibility
DW_AT data_member_location
DW_AT_sibling

DW_AT _type

DW_AT _virtuality
DECL
DW_AT_abstract_origin
DW_AT_high_pc
DW_AT low_pc
DW_AT_segment
DW_AT_sibling

DW_AT return_addr
DW_AT_start_scope
DW_AT_abstract_origin
DW_AT low_pc
DW_AT _name
DW_AT_segment
DW_AT_start_scope
DW_AT_sibling
DW_AT_abstract_origin
DW_AT_high_pc
DW_AT low_pc
DW_AT _name
DW_AT_segment
DW_AT_sibling

DECL

24-89

Compilation Systems Volume 2 (Concepts)

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES

DW_AT_accessibility
DW_AT_byte size
DW_AT bit_offset
DW_AT bit_size
DW_AT data_member_location
DW_AT_declaration
DW_AT _name
DW_AT_sibling
DW_AT _type
DW_AT _visibility
DW_TAG_module DECL
DW_AT_accessibility
DW_AT_declaration
DW_AT_high_pc
DW_AT_low_pc
DW_AT _name
DW_AT_priority
DW_AT_segment
DW_AT_sibling
DW_AT _visibility
DW_TAG_namelist DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_declaration
DW_AT_sibling
DW_AT _visibility
DW_TAG_namelist_item DECL

DW_AT_namelist_item

DW_AT_sibling
DW_TAG_packed_type DW_AT_sibling

DW_AT _type
DW_TAG_pointer_type DW_AT_ address_class

DW_AT_sibling

24-90

DWARF Debugging Information Format

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_ptr_to_member_type

DW_TAG_reference_type

DW_TAG_set type

DW_TAG_string_type

DW_AT _type

DECL
DW_AT_abstract_origin
DW_AT_ address_class
DW_AT_containing_type
DW_AT_declaration
DW_AT _name
DW_AT_sibling

DW_AT _type

DW_AT use_location
DW_AT _visibility
DW_AT_ address_class
DW_AT_sibling

DW_AT _type

DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte size
DW_AT_declaration
DW_AT _name
DW_AT_start_scope
DW_AT_sibling

DW_AT _type

DW_AT _visibility

DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_byte size
DW_AT_declaration
DW_AT _name
DW_AT_segment
DW_AT_sibling
DW_AT_start_scope

24-91

Compilation Systems Volume 2 (Concepts)

24-92

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_structure_type

DW_TAG_subprogram

DW_AT_string_length
DW_AT _visibility

DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte size
DW_AT_declaration
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _visibility

DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_ address_class
DW_AT _artificial
DW_AT_calling_convention
DW_AT_declaration
DW_AT external
DW_AT frame_base
DW_AT_high_pc
DW_AT _inline

DW_AT low_pc
DW_AT _name
DW_AT_prototyped
DW_AT return_addr
DW_AT_segment
DW_AT_sibling
DW_AT_specification
DW_AT_start_scope
DW_AT _static_link
DW_AT _type

DW_AT _visibility

DWARF Debugging Information Format

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_subrange_type

DW_TAG_subroutine_type

DW_TAG_template_type param

DW_TAG_template_value_param

DW_AT_virtuality
DW_AT vtable elem_location
DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte size
DW_AT_count
DW_AT_declaration
DW_AT lower_bound
DW_AT _name
DW_AT_sibling

DW_AT _type
DW_AT_upper_bound
DW_AT _visibility

DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_ address_class
DW_AT_declaration
DW_AT _name
DW_AT_prototyped
DW_AT_sibling
DW_AT_start_scope
DW_AT _type

DW_AT _visibility

DECL

DW_AT _name
DW_AT_sibling

DW_AT _type

DECL

DW_AT _name

DW_AT const_value
DW_AT_sibling

24-93

Compilation Systems Volume 2 (Concepts)

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES

DW_AT _type
DW_TAG_thrown_type DECL

DW_AT_sibling

DW_AT _type
DW_TAG_try_block DW_AT_abstract_origin

DW_AT_high_pc
DW_AT low_pc
DW_AT_segment
DW_AT_sibling
DW_TAG_typedef DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_declaration
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _type
DW_AT _visibility
DW_TAG_union_type DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte size
DW_AT_declaration
DW_AT friends
DW_AT _name
DW_AT_sibling
DW_AT_start_scope
DW_AT _visibility
DW_TAG_unspecified_parameters DECL
DW_AT_abstract_origin
DW_AT _artificial
DW_AT_sibling
DW_TAG_ variable DECL

24-94

DWARF Debugging Information Format

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_variant

DW_TAG_variant_part

DW_TAG_volatile_type

DW_TAG_with_statement

DW_AT_accessibility
DW_AT_constant_value
DW_AT_declaration
DW_AT external
DW_AT location
DW_AT _name
DW_AT_segment
DW_AT_sibling
DW_AT_specification
DW_AT_start_scope
DW_AT _type

DW_AT _visibility

DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_declaration
DW_AT discr_list
DW_AT discr_value
DW_AT_sibling

DECL
DW_AT_accessibility
DW_AT_abstract_origin
DW_AT_declaration
DW_AT discr
DW_AT_sibling

DW_AT _type
DW_AT_sibling

DW_AT _type
DW_AT_accessibility
DW_AT_ address_class
DW_AT_declaration
DW_AT_high_pc
DW_AT location

24-95

Compilation Systems Volume 2 (Concepts)

Table 24-38. Current Attributes by Tag Value (Cont.)

TAG NAME APPLICABLE ATTRIBUTES

DW_AT low_pc
DW_AT_segment
DW_AT_sibling
DW_AT _type
DW_AT _visibility

??? - DW_AT_decl_column, DW_AT decl_file, DW_AT_decl_line.

Appendix 2 -- Organization of Debugging Information

The following diagram depicts the relationship of the abbreviation tables contained in the
.debug_abbrev section to the information contained in the .debug_info section. Values are
given in symbolic form, where possible.

24-96

DWARF Debugging Information Format

Compilation Unit 1 - .debug_info

el:

e2:

length
2
al (abbreviation table offset)

4

1

"myfile.c"

"Best Compiler Corp: Version 1.3"
"mymachine:/home/mydir/src:"
DW_LANG_C89

0x0

0x55

DW_FORM_data4

0x0

2

“char"
DW_ATE_unsigned_char
1

3
el

4
"POINTER"
e2

0

24-97

Compilation Systems Volume 2 (Concepts)

Compilation Unit 2 - .debug_info

length
2
al (abbreviation table offset)

4

"strp"
e2

Abbreviation Table - .debug_abbrev

al: 1
DW_TAG_compile_unit
DW_CHILDREN_yes
DW_AT name DW_FORM_string
DW_AT producer DW_FORM_string
DW_AT_compdir DW_FORM_string
DW_AT_language DW_FORM_datal
DW_AT low_poc DW_FORM_addr
DW_AT_high_pc DW_FORM_addr
DW_AT stmt_list DW_FORM_indirect
0 0

2

DW_TAG_base_type
DW_CHILDREN_no

DW_AT name DW_FORM_string
DW_AT_encoding DW_FORM_datal
DW_AT_byte size DW_FORM_datal
0 0

3

DW_TAG_pointer_type
DW_CHILDREN_no
DW_AT_type DW_FORM_ref4

24-98

DWARF Debugging Information Format

0 0

4

DW_TAG_typedef
DW_CHILDREN_no

DW_AT name DW_FORM_string
DW_AT_type DW_FORM_refd
0 0

0

Appendix 3 -- Statement Program Examples

Consider this simple source file and the resulting machine code for the Intel 8086 proces-
sor:

1: int

2: main()

0x239: push pb

0x23a: mov bp,sp

{

4: printf("Omit needless words\n");
0x23c: mov ax,0xaa
0x23f: push ax
0x240: call _printf
0x243: pop cx

5: exit(0);
0x244: xor ax,ax
0x246: push ax
0x247: call _exit
Ox24a: pop cx

w

6: }
0x24b: pop bp
0x24c: ret

7.
0x24d:

If the statement program prologue specifies the following:

minimum_instruction_length 1

opcode_base 10
line_base 1
line_range 15

Then one encoding of the statement program would occupy 12 bytes (the opcode SPE-
CIAL(m, n) indicates the special opcode generated for a line increment of m and an
address increment of n):

24-99

Compilation Systems Volume 2 (Concepts)

Opcode Operand Byte Stream

DW_LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04

SPECIAL(2, 0) Oxb
SPECIAL(2, 3) 0x38
SPECIAL(1, 8) 0x82
SPECIAL(1, 7) 0x73
DW_LNS_advance_pc LEB128(2) 0x2, 0x2
DW_LNE_end_sequence 0x0, 0x1, Ox1

An alternate encoding of the same program using standard opcodes to advance the pro-
gram counter would occupy 22 bytes:

Opcode Operand Byte Stream
DW_LNS_fixed_advance_pc 0x239 0x9, 0x39, 0x2
SPECIAL(2, 0) Oxb
DW_LNS_fixed_advance_pc 0x3 0x9, 0x3, 0x0
SPECIAL(2, 0) Oxb
DW_LNS_fixed_advance_pc 0x8 0x9, 0x8, Ox0
SPECIAL(1, 0) Oxa
DW_LNS_fixed_advance_pc 0x7 0x9, 0x7, Ox0
SPECIAL(1, 0) Oxa
DW_LNS_fixed_advance_pc 0x2 0x9, 0x2, 0x0
DW_LNE_end_sequence 0x0, 0x1, Ox1

Appendix 4 -- Encoding and decoding variable length data

Here are algorithms expressed in a C-like pseudo-code to encode and decode signed and
unsigned numbers in LEB128:

24-100

DWARF Debugging Information Format

Encode an unsigned integer:

do
{
byte = low order 7 bits of value;
value >>= 7;
if (value != 0) /* more bytes to come */
set high order bit of byte;
emit byte;
} while (value !'= 0);

Encode a signed integer:

more = 1,
negative = (value < 0);
size = no. of bits in signed integer;
while(more)
{
byte = low order 7 bits of value;
value >>= 7;
/* the following is unnecessary if the
* implementation of >>= uses an arithmetic
* rather than logical shift for a signed
* left operand
*/
if (negative)
/* sign extend */
value |= - (1 << (size - 7));
/* sign bit of byte is 2nd high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) ||

(value == -1 && sign bit of byte is set))
more = O;

else
set high order bit of byte;

emit byte;

}

Decode unsigned LEB128 number:

result = O;
shift = O;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)
break;
shift += 7;

24-101

Compilation Systems Volume 2 (Concepts)

Decode signed LEB128 number:

result = O;

shift = 0;

size = no. of bits in signed integer;
while(true)

{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;
/* sign bit of byte is 2nd high order bit (0x40) */
if (high order bit of byte == 0)
break;

}

if ((shift < size) && (sign bit of byte is set))
[* sign extend */
result |= - (1 << shift);

Appendix 5 -- Call Frame Information Examples

24-102

The following example uses a hypothetical RISC machine in the style of the Motorola
88000.

Memory is byte addressed.

Instructions are all 4-bytes each and word aligned.
Instruction operands are typically of the form:
<destination reg> <source reg> <constant>

The address for the load and store instructions is computed by adding the
contents of the source register with the constant.

There are 8 4-byte registers:

RO always 0

R1 holds return address on call

R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call

R7 stack pointer.

The stack grows in the negative direction.

The following are two code fragments from a subroutine called foo that uses a frame
pointer (in addition to the stack pointer.) The first column values are byte addresses.

DWARF Debugging Information Format

;; start prologue

foo sub R7, R7, <fsize> ; Allocate frame

foo+4 store R1, R7, (<fsize>-4) ; Save the return address
foo+8 store R6, R7, (<fsize>-8) ; Save R6

foo+12 add R6, R7, 0 ; R6 is now the Frame ptr
foo+16 store R4, R6, (<fsize>-12) ; Save a preserve reg.

;; This subroutine does not change R5

;; Start epilogue (R7 has been returned to entry value)

foo+64 load R4, R6, (<fsize>-12) ; Restore R4

foo+68 load R6, R7, (<fsize>-8) ; Restore R6

foo+72 load R1, R7, (<fsize>-4) ; Restore return address
foo+76 add R7, R7, <fsize> ; Deallocate frame
foo+80 jump R ; Return

foo+84

The table for the foo subroutine is as follows. It is followed by the corresponding frag-
ments from the .debug_frame section.

Loc CFA RO R1 R2 R3 R4 R5 R6 R7 R8
foo [R7]+0 S u u u S S S S

foo+4 [R7]+fsize s u u u S S S S ri

foo+8 [R7]+fsize s u u u S S S S cd
foo+12 [R7]+fsize s u u u S S c8 S cd
foo+16 [R6]+fsize s u u u S S c8 S cd
foo+20 [R6]+fsize s u u u cl2 S c8 S cd
foo+64 [R6]+fsize s u u u cl2 S c8 S cd
foo+68 [R6]+fsize s u u u S S c8 S cd
foo+72 [R7]+fsize s u u u S S S S cd
foo+76 [R7]+fsize s u u u S S S S ri

foo+80 [R7]+0

n
c
c
c
n
n
n
n
n

24-103

Compilation Systems Volume 2 (Concepts)

24-104

1
2
3.
4
5

NOTES

R8 is the return address

. s =same_value rule

u = undefined rule

. N =register(N) rule

. cN = offset(N) rule

Common Information Entry (CIE):

cie
cie+4
cie+8
cie+9
cie+10
cie+11
cie+12
cie+13
cie+16
cie+18
cie+20
cie+22
cie+24
cie+26
cie+28
cie+30
cie+32
cie+35
cie+36

cie+37

32
Oxfrffffff

1
0
4
4
8

DW_CFA_def _cfa (7, 0)
DW_CFA_same_value (0)
DW_CFA_undefined (1)
DW_CFA_undefined (2)
DW_CFA_undefined (3)
DW_CFA_same_value (4)
DW_CFA_same_value (5)
DW_CFA_same_value (6)
DW_CFA_same_value (7)
DW_CFA_register (8, 1)
DW_CFA_nop
DW_CFA_nop

; length
; CIE_id
; version
; augmentation
; code_alignment_factor
; data_alignment_factor
; R8 is the return addr.
; CFA =[R7]+0
; RO not modified (=0)
; R1 scratch
; R2 scratch
; R3 scratch
; R4 preserve
; R5 preserve
; R6 preserve
; R7 preserve
; R8isin R1
; padding
; padding

DWARF Debugging Information Format

Frame Description Entry (FDE):

fde
fde+4
fde+8
fde+12
fde+16
fde+17
fde+19
fde+20
fde+23
fde+24
fde+27
fde+28
fde+30
fde+31
fde+34
fde+35
fde+36
fde+37
fde+38
fde+40
fde+41
fde+42
fde+43
fde+45
fde+46
fde+47
fde+48

44 ; length

cie ; CIE_ptr

foo ; initial_location
84 ; address_range
DW_CFA_advance_loc(1) ; instructions

DW_CFA_def _cfa_offset(<fsize>/4) ; assuming <fsize> <512
DW_CFA_advance_loc(1)
DW_CFA_offset(8,1)
DW_CFA_advance_loc(1)
DW_CFA_offset(6,2)
DW_CFA_advance_loc(1)
DW_CFA_def _cfa_register(6)
DW_CFA_advance_loc(1)
DW_CFA_offset(4,3)
DW_CFA_advance_loc(12)
DW_CFA_restore(4)
DW_CFA_advance_loc(1)
DW_CFA_restore(6)
DW_CFA_def _cfa_register(7)
DW_CFA_advance_loc(1)
DW_CFA_restore(8)
DW_CFA_advance_loc(1)
DW_CFA_def cfa_offset(0)

DW_CFA_nop ; padding
DW_CFA_nop ; padding
DW_CFA_nop ; padding

24-105

Compilation Systems Volume 2 (Concepts)

24-106

25
DWARF Access Library (libdwarf)

INtrOdUCHION . . .o e 25-1
PUrpose and SCOPE oo o it 25-1
Definitions 25-2
OVBIVIBW .ottt 25-2

Type Definitions 25-2
General DesCription 25-2
SCalar TYPES . o ot 25-3
Aggregate TYPES . . .ottt 25-3

Location Record 25-4
Location Description. 25-4
Element List o 25-4
Subscript Bounds Information oL 25-5
Data BIOCK.o 25-5
OPAQUE TYPES . . ottt e et e e 25-5

Error Handling.o 25-6

Memory Managementt 25-8
Read-only Properties 25-8
Storage Deallocation 25-8

Functional Interface. 25-9
Initialization Operations. 25-9
Debugging Information Entry Delivery Operations...... 25-10
Debugging Information Entry Query Operations 25-12
Array Subscript Query Operations. 25-15
Type Information Query Operationso, 25-16
Attribute FOrm QUErIeS. 25-16
Line Number Operations e 25-18
Global Name Space Operationsottt e 25-20
Utility Operations.t 25-20

Appendix1--libdwarf.h. 25-22

Compilation Systems Volume 2 (Concepts)

25
DWARF Access Library (libdwarf)

The material in this document represents work in progress of the UNIX International Pro-
gramming Languages SIG.

Copyright 1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appears in all cop-
ies and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name UNIX International not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. UNIX
International makes no representations about the suitability of this documentation for any
purpose. It is provided “as is” without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS, IN NO EVENT SHALL UNIX INTERNATIONAL
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS DOCUMENTATION.

Trademarks:

UNIX® is a registered trademark of UNIX System Laboratories in the United States
and other countries.

Introduction

This document describes the libdwarf interface, a library of functions to provide access to
DWARF debugging information records and DWARF line number information.

Purpose and Scope

As the DWARF information format evolves, the need exists for a functional interface to
insulate client programs from the representation changes while preserving the relationship
and semantics of current DWARF debugging information. The purpose of this document is
to specify such an interface that shields DWARF consumers from the changes to the
on-disk layout of DWARF debugging information. There is no effort made in this docu-
ment to address the creation of DWARF debugging information records as that issue will
be addressed in subsequent specifications.

25-1

Compilation Systems Volume 2 (Concepts)

Additionally, the focus of this document is the functional interface, and as such, imple-
mentation as well as optimization issues are intentionally ignored.

Definitions

DWARF debugging information entries (DIE) are the segments of information placed in
the .debug* section by compilers, assemblers, and linkage editors that, in conjunction with
line number entries, are necessary for symbolic source-level debugging. Refer to the docu-
ment “DWARF Debugging Information Format” from UIPLSIG for a more complete
description of these entries.

Line number entries are the information that is used to map executable statements to their
corresponding location in the source file of their origin. Further information concerning
line number entries can be found in the document cited above.

Overview

The remaining sections of this document describe the interface to libdwarf, first by
describing the additional types defined by the interface, error handling, memory manage-
ment, and finally descriptions of the functional interface. This document assumes you are
thoroughly familiar with the information contained in the DWARF Debugging Informa-
tion Format document.

Type Definitions

General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and
symbolic names used to reference objects of libdwarf. The types defined by typedefs con-
tained in libdwarf.h all use the convention of adding Dwarf_ as a prefix and can be placed
in three categories:

* Scalar types: The scalar types defined in libdwarf.h are defined primarily
for notational convenience and identification. Depending on the individual
definition, they are interpreted as a value, a pointer, or as a flag.

* Aggregate types: Some values cannot be represented by a single scalar
type; they must be represented by a collection of, or as a union of, scalar
and/or aggregate types.

* Opagque types: The complete definition of these types is intentionally omit-
ted; their use is as handles for query operations, which will yield either an
instance of another opaque type to be used in another query, or an instance
of a scalar or aggregate type, which is the actual result.

25-2

DWARF Access Library (libdwarf)

A complete listing of libdwarf.h can be found in “Appendix1--libdwarf.h” on page 25-22.

Scalar Types

The following scalar types are defined by libdwarf.h:

typedef int Dwarf_Bool;
typedef unsigned long Dwarf_Off;
typedef unsigned long Dwarf_Unsigned;
typedef unsigned short Dwarf_Half;
typedef unsigned char Dwarf_Small;
typedef signed long Dwarf_Signed;
typedef void* Dwarf_Addr;

typedef void (*Dwarf_Handler)(Dwarf_Error*error, Dwarf_Addr errarg);

A description of these scalar types is given in Table 25-1.

Table 25-1. Scalar Types

NAME SIZE Q"E'E_T PURPOSE

Dwarf_Bool 24|18 24|18 Boolean states

Dwarf_Off 4|8 4|8 Unsigned file offset

Dwarf_Unsigned 4|8 4|8 Unsigned large integer

Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 4|8 4|8 Signed large integer

Dwarf_Addr 4|8 4|8 Unsigned program address
Dwarf_Handler 4|8 4|8 Pointer to libdwarf error handler

function

Aggregate Types

The following aggregate types are defined by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwarf_Ellist, Dwarf_Bounds, and Dwarf_Block.

25-3

Compilation Systems Volume 2 (Concepts)

Location Record

The Dwarf_Loc type identifies a single atom of a location description or a location expres-
sion.

typedef struct {

Dwarf_Small Ir_atom;
Dwarf_Unsigned Ir_number;
} Dwarf_Loc;

The Ir_atom identifies the atom corresponding to the OP_* definition in dwarf.h and it
represents the operation to be performed in order to locate the item in question.

The Ir_number field is the operand to be used in the calculation specified by the Ir_atom
field; not all atoms use this field.

Location Description

Element List

25-4

The Dwarf_Locdesc type represents an ordered list of Dwarf_Loc records used in the cal-
culation to locate an item. Note that in many cases, the location can only be calculated at
run time of the associated program.

typedef struct {

Dwarf_Addr Id_lopc;
Dwarf_Addr Id_hipc;
Dwarf_Unsigned Id_cents;
Dwarf_Loc* Id_s;

} Dwarf_Locdesc;

The Id_lopc and Id_hipc fields provide an address range for which this location descriptor
is valid. Both of these fields are set to zero if the location descriptor is valid throughout the
scope of the item it is associated with.

The Id_cents field contains a count of the number of Dwarf_Loc entries pointed to by the
Id_s field.

The Id_s field points to an array of Dwarf_Loc records.

The Dwarf_Ellist type describes an element of an enumerated type.

typedef struct {

Dwarf_Signed el_value;
char* el_name;
} Dwarf_Ellist;

The el_value field is the value associated with the corresponding element.

The el_name field is a pointer to a NULL terminated character string giving the name of
the element.

DWARF Access Library (libdwarf)

Subscript Bounds Information

Data Block

Opaque Types

The Dwarf_Bounds type describes an upper or lower bound of an array subscript.

typedef struct {

Dwarf_Bool bo_isconst;
union {
Dwarf_Signed constant;
Dwarf_Locdesc locdesc;
tbo_;

} Dwarf_Bounds;

The bo_isconst field is non-zero if the bound is a constant value; otherwise, the bound is a
location description or expression, which implies that it must be calculated at run time of
its associated program.

The bo_field is a union of either a constant value or a location description that specifies
the upper or lower bound of the subscript.

The Dwarf_Block type is used to contain the value of an attribute whose form is either
FORM_BLOCK2 or FORM_BLOCKA4; its intended use is to deliver the value for an
attribute of either of these two forms.

typedef struct {
Dwarf_Unsigned bl_len;
Dwarf_Addr* bl_data;
} Dwarf_Block;

The bl_len field contains the length in bytes of the data pointed to by the bl_data field.

The bl_data field contains a pointer to the uninterpreted data.

The opaque types declared in libdwarf.h are used as descriptors for queries against dwarf
information stored in various debugging sections. Each time an instance of an opaque type
is returned as a result of a libdwarf operation (Dwarf_Debug excepted), it should be free'd
using dwarf_dealloc() When it's no longer of use. The list of opaque types defined in libd-
warf.h and their intended use is described below.

typedef struct Debug* Dwarf_Debug;

An instance of the Dwarf_Debug type is created as a result of a successful call to
dwarf_init() and is used as a descriptor for subsequent access to debugging information
entries and/or line number entries.

typedef struct Die* Dwarf_Die;

25-5

Compilation Systems Volume 2 (Concepts)

Error Handling

25-6

An instance of a Dwarf_Die type is returned from a successful call to a debugging infor-
mation delivery operation and is used as a descriptor for queries about information con-
tained in that entry.

edef struct Line* Dwarf Line;
p

An instance of a Dwarf_Line type is returned from a successful call to a line number deliv-
ery operation and is used asa descriptor for queries about information contained in line
number entries.

typedef struct Attribute* Dwarf_Attribute;

An instance of a Dwarf_Attribute type is returned from a successful call to an attribute
delivery operation and is used as a descriptor for queries about attribute values.

typedef struct Subscript* Dwarf_Subscript;

An instance of a Dwarf_Subscript type is returned from a successful call to
dwarf_nthsubscr() and is used as a descriptor for queries about array subscripts.

typedef struct Type* Dwarf Type;

An instance of a Dwarf_Type type is returned from a successful call to dwarf_typeof() or
dwarf_subscrtype() and is used as a descriptor for queries concerning data types.

typedef struct Global* Dwarf_Global;

An instance of a Dwarf_Global type is returned from a successful call to dwarf_nextglob()
and is used as a descriptor for queries concerning items in the global name space.

typedef struct Error* Dwarf Error;

For functions which accept an error argument, an instance the Dwarf_Error type is placed
in the space pointed to by this argument if supplied by the client program and an error
occurred within the libdwarf function. This type is used as a descriptor for queries to
obtain more information concerning the error.

The method for detection and disposition of error conditions that arise during access of
debugging information via libdwarf is consistent across all libdwarf functions that are
capable of producing an error. This section describes the method used by libdwarf in noti-
fying client programs of error conditions.

Most functions within libdwarf accept as an argument a pointer to a Dwarf_Error descrip-
tor where error information is stored if an error is detected by the function. Routines in the
client program that provide this argument can query the Dwarf_Error descriptor to deter-
mine the nature of the error and perform appropriate processing.

A client program can also specify a function to be invoked upon detection of an error at
the time the library is initialized (see dwarf_init()). When a libdwarf routine detects an
error, this function is called with two arguments: a code indicating the nature of the error

DWARF Access Library (libdwarf)

and a pointer provided by the client at initialization (again see dwarf_init()). This pointer
argument can be used to relay information between the error handler and other routines of
the client program. A client program can specify or change both the error handling func-
tion and the pointer argument after initialization using dwarf_seterrhand() and
dwarf_seterrarg().

In the case where libdwarf functions are not provided an error number parameter and no
error handling function was provided at initialization, libdwarf functions terminate execu-
tion by calling abort(3C).

The following lists the processing steps taken upon detection of an error:

1. Check the error argument; if not a NULL pointer, allocate and initialize a
Dwarf_Error descriptor with information describing the error, place this
descriptor in the area pointed to by error, and return a value indicating an
error condition.

2. If an errhand argument was provided to dwarf_init() at initialization, call
errhand() passing it the error descriptor and the value of the errarg argu-
ment provided to dwarf_init(). If the error handling function returns, return
a value indicating an error condition.

3. Terminate program execution by calling abort(3C).

As can be seen from the above steps, the client program can provide an error handler at
initialization, and still provide an error argument to libdwarf functions when it is not
desired to have the error handler invoked.

If a libdwarf function is called with invalid arguments, the behavior is undefined. In partic-
ular, supplying a NULL pointer to a libdwarf function (except where explicitly permitted),

or pointers to invalid addresses or uninitialized data causes undefined behavior; there turn
value in such cases is undefined, and the function may fail to invoke the caller supplied
error handler or to return a meaningful error number. Implementations also may abort exe-
cution for such cases.

Values returned by libdwarf functions to indicate errors are enumerated in Table 25-2.

Table 25-2. Error Indications

SYMBOLIC NAME VALUE USED BY

NULL 0 Functions returning a pointer
DLV_NOCOUNT ((Dwarf_Signed)-1) Functions returning a count
DLV_BADADDR ((Dwarf_Addr) 0) Functions returning an address
DLV_BADOFFSET ((Dwarf_Off)0) Functions returning an offset

It is important to note that some functions can return NULL though an error did not actu-

ally occur. For example, dwarf_nextdie() returns NULL when its die argument represents
the last debugging information entry to indicate that there are no further records to be pro-
cessed.

257

Compilation Systems Volume 2 (Concepts)

Memory Management

Several of the functions that comprise libdwarf return values that have been dynamically
allocated by the library. To aid in the management of dynamic memory, the function
dwarf_dealloc() is provided to free storage allocated asa result of a call to a libdwarf func-
tion. This section describes the strategy that should be taken by a client program in manag-
ing dynamic storage.

Read-only Properties

All pointers returned by or as a result of a libdwarf call should be assumed to point to
read-only memory. The results are undefined for libdwarf clients that attempt to write to a
region pointed to by a return value from a libdwarf call.

Storage Deallocation

25-8

For most storage allocated by libdwarf, the client can simply free the storage for reuse by
calling dwarf_dealloc(), providing it with a pointer to the area and an identifier that speci-
fies what the pointer points to. For example, to free a Dwarf_Die allocated by a call to
dwarf_nextdie(), the call to dwarf_dealloc() would be:

dwarf_dealloc(die, DLA_DIE);

To free storage allocated in the form of a list of pointers, each member of the list should be
deallocated, followed by deallocation of the actual list itself. The following code fragment
uses an invocation of dwarf_attrlist() as an example to illustrate a technique that can be
used to free storage from any libdwarf routine that returns a list:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;

if ((atcnt = dwarf_attrlist(adie,&atlist, &error))
I= DLV_NOCOUNT) {
for (i = 0; i< atent; ++i) {
[* use atlist[i] */
dwarf_dealloc(atlist[i]l, DLA_ATTR);

dwarf_dealloc(atlist, DLA_LIST);
}

The Dwarf_Debug returned from dwarf_init() is the only dynamic storage that cannot be
free'd using dwarf_dealloc(); the function dwarf_finish() will deallocate all dynamic stor-
age associated with an instance of a Dwarf_Debug type.

The codes that identify the storage pointed to in calls to dwarf_dealloc() are described in
Table 25-3.

Functional Interface

DWARF Access Library (libdwarf)

Table 25-3. Allocation/Deallocation Identifiers

IDENTIFIER USED TO FREE
DLA_STRING char*

DLA_LOC Dwarf_Loc*

DLA _LOCDESC Dwarf_Locdesc*
DLA_ELLIST Dwarf_ELlist*
DLA BOUNDS Dwarf_Bounds*
DLA BLOCK Dwarf_Block*
DLA DIE Dwarf_Die

DLA _LINE Dwarf_Line
DLA_LINEBUF Dwarf_Line*
DLA_ATTR Dwarf_Attribute
DLA_TYPE Dwarf_Type
DLA_SUBSCR Dwarf_Subscript
DLA GLOBAL Dwarf_Global
DLA_ERROR Dwarf_Error
DLA_LIST all other lists

This section describes the functions available in the libdwarf library. Each function
description includes its definition, followed by a paragraph describing the function's oper-

ation.

The functions may be categorized into nine groups: initialization operations, debugging
information entry delivery operations, debugging information entry query operations,

array subscript query operations, type information query operations, attribute form que-
ries, line number operations, global name space operations, and utility operations.

The following sections describe these functions.

Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the
functions in libdwarf and with releasing allocated resources when access is complete.

25-9

Compilation Systems Volume 2 (Concepts)

Dwarf_Debug dwarf_init(
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Addr errarg,
Dwarf_Error *error)

The function dwarf_init() returns a Dwarf_Debug descriptor that represents a handle for
accessing debugging records associated with the open file descriptor fd; NULL is returned

if the object does not contain debugging information or an error occurred. The access
argument indicates what access is allowed for the section. Currently, only the DLC_READ
parameter is valid, but once libdwarf creation routines are added to the library,
DLC_RDWR and DLC_WRITE will be supported. The errhand argument is a pointer to a
function that will be invoked whenever an error is detected as a result of a libdwarf opera-
tion; the errarg argument is passed as an argument to the errhand function. The file
descriptor associated with the fd argument must refer to an ordinary file (i.e. not a pipe,
socket, device, /proc entry, etc.), be opened with the same access permissions as specified
by the access argument, and cannot be closed or used as an argument to any system calls
by the client until after dwarf_finish() is called; the seek position of the file associated
with fd is undefined upon return of dwarf_init(). Since dwarf_init() uses the same error
handling processing as other libdwarf functions (see “Error Handling” on page 25-6), cli-
ent programs will generally supply an error parameter to bypass the default actions during
initialization unless the default actions are appropriate.

void dwarf_finish(
Dwarf_Debug dbg)

The function dwarf_finish() releases all libdwarf internal resources associated with the
descriptor dbg and invalidates dbg.

Debugging Information Entry Delivery Operations

25-10

These functions are concerned with accessing debugging information entries.

Dwarf_Die dwarf_nextdie(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_nextdie() returns the next Dwarf_Die descriptor following die or
NULL if die is the last entry or an error occurred. If die is NULL, the first entry is
returned.

Dwarf_Die dwarf_siblingof(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_sibling of() returns the Dwarf_Die descriptor of the sibling of die or
NULL if die is the last entry of a sibling chain or an error occurred. If die is NULL, the
first entry is returned. Note that dwarf_nextdie(dbg, NULL, &error) and
dwarf_siblingof(dbg, NULL, &error) are equivalent.

DWARF Access Library (libdwarf)

Dwarf_Die dwarf_offdie(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Error *error)

The function dwarf_offdie() returns the Dwarf_Die descriptor of the debugging informa-
tion entry at offset in the section containing debugging information entries or NULL if off-
set is not the start of a valid debugging information entry.

Dwarf_Die dwarf_pcfile(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error *error)

The function dwarf_pcfile() returns the Dwarf_Die descriptor of the compilation unit
debugging information entry that contains the address of pc; NULL is returned if no entry
exists or an error occurred. Currently compilation unit debugging information entries are
defined as those having a tag of: TAG_compile_unit.

Dwarf_Die dwarf_pcsubr(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error *error)

The function dwarf_pcsubr() returns the Dwarf_Die descriptor of the subroutine debug-
ging entry that contains the address of pc, or NULL if no entry exists or an error occurred.
Currently subroutine debugging information entries are defined as those having a tag of:
TAG_subroutine, TAG_inlined_subroutine,or TAG_global_subroutine.

Dwarf_Die dwarf_pcscope(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error *error)

The function dwarf_pcscope() returns the Dwarf_Die descriptor for the debugging infor-
mation entry that represents the inner most enclosing scope containing pc, or NULL if no
entry exists or an error occurred. Debugging information entries that represent a scope are
those containing a low pc attribute and either a high pc or byte size attribute that deliniates
arange. For example: a debugging information entry for a lexical block is considered one
having a scope whereas a debugging information entry for a label is not.

Dwarf_Die dwarf_child(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_child() returns the Dwarf_Die descriptor of the first child of die or
NULL if die does not have any children or an error occurred. The function
dwarf_siblingof() can be used with the return value of dwarf_child() to access other chil-
dren of die.

25-11

Compilation Systems Volume 2 (Concepts)

Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a
descriptor that can be used on subsequent queries when given a Dwarf_Die descriptor.
Note that some operations are specific to debugging information entries that are repre-
sented by a Dwarf_Die descriptor of a specific type. For example, not all debugging infor-
mation entries contain an attribute having a name, so consequently, a call to dwarf_name()
using a Dwarf_Die descriptor that does not have a name attribute will return NULL. There
are three methods that can be used:

1. Call dwarf_hasattr() to determine if the debugging information entry has
the attribute of interest prior to issuing the query for information about the
attribute.

2. Supply an error argument and check its value after a call to a query indi-
cates an unsuccessful return to determine the nature of the problem.

3. Arrange to have an error handling function invoked upon detection of an
error (see dwarf_init()).

Dwarf_Signed dwarf_childcnt(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_childcnt() returns the number of children debugging information
entries of die or DLV_NOCOUNT if an error occurred. The return value represents the
number of debugging information entries that exist between die and its next sibling debug-
ging information entry.

Dwarf_Half dwarf_tag(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_tag() returns the tag of die.

Dwarf_Off dwarf_dieoffset(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_dieoffset() returns the position of die in the section containing debug-
ging information entries; DLV_BADOFFSET is returned on error.

char* dwarf_diename(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_diename() returns a pointer to a NULL terminated string of characters
that represents the name of die; NULL is returned if die does not have a hame attribute or
an error occurred. The storage pointed to by a successful return of dwarf_diename()
should be free'd when no longer of interest (see dwarf_dealloc()).

Dwarf_Bool dwarf_hasattr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Error *error)

25-12

DWARF Access Library (libdwarf)

The function dwarf_hasattr() returns non-zero if die has the attribute attr and zero other-
wise.

Dwarf_Attribute dwarf_attr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Error *error)

The function dwarf_attr() returns an Dwarf_Attribute descriptor of die having the attribute
name attr if die represents a debugging information entry with that attribute; NULL is
returned if attr is not contained in die or an error occurred.

Dwarf_Type dwarf_typeof(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_typeof() returns a Dwarf_Type descriptor that describes the type of

die; NULL is returned if die does not contain a type attribute or an error occurred. In the

case where die represents an array type debugging information entry, the Dwarf_Type
descriptor returned by dwarf_typeof() applies to the element type of the array.

Dwarf_Signed dwarf_loclist(
Dwarf_Die die,
Dwarf_Locdesc **lbuf,
Dwarf_Error *error)

The function dwarf_loclist() sets llbuf to point atan array of Dwarf_Locdesc pointers and
returns the number of elements in the array; DLV_NOCOUNT is returned on error. The
storage pointed to by lIbuf after a successful return of dwarf_loclist() should be free'd
when no longer of interest (see dwarf_dealloc()).

Dwarf_Locdesc* dwarf_stringlen(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_stringlen() returns a pointer to a Dwarf_Locdesc that when evaluated,
yields the length of the string represented by die; NULL is returned if die does not contain
a string length attribute or an error occurred. The storage pointed to by a successful return
of dwarf_stringlen() should be free'd when no longer of interest (see dwarf_dealloc()).

Dwarf_Signed dwarf_subscrent(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_subscrcnt() returns the number of subscript attributes that are owned
by the array type represented by die; DLV_NOCOUNT is returned on error.

Dwarf_Subscript dwarf_nthsubscr(
Dwarf_Die die,
Dwarf_Unsigned ssndx,
Dwarf_Error *error)

The function dwarf_nthsubscr() returns a Dwarf_Subscript descriptor that represents the
ssndx member of the array type debugging information entry represented by die where 1 is
the first member; NULL is returned if die does not have an ssndx member or an error
occurred.

25-13

Compilation Systems Volume 2 (Concepts)

25-14

Dwarf_Addr dwarf_lowpc(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_lowpc() returns the low program counter value associated with the die
descriptor if die represents a debugging information entry having this attribute;
DLV_BADADDR is returned if die does not have this attribute or an error occurred.

Dwarf_Addr dwarf_highpc(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_highpc() returns the high program counter value associated with the
die descriptor if die represents a debugging information entry having this attribute;
DLV_BADADDR is returned if die does not have this attribute or an error occurred.

Dwarf_Signed dwarf_elemlist(
Dwarf_Die die,
Dwarf_Ellist** elbuf,
Dwarf_Error *error)

The function dwarf_elemlist() sets elbuf to point at an array of Dwarf_Ellist pointers and
returns the number of elements in the array; DLV_NOCOUNT is returned on error. The
storage pointed to by elbuf after a successful return of dwarf_elemlist() should be free'd
when no longer of interest (see dwarf_dealloc()).

Dwarf_Signed dwarf_bytesize(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_bytesize() returns the number of bytes needed to contain an instance
of the aggregate debugging information entry represented by die; -1 is returned if die does
not contain a byte size attribute or an error occurred.

Dwarf_Bool dwarf_isbitfield(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_isbitfield() returns non-zero if die is a descriptor for a debugging
information entry that represents a bit field member; zero is returned if die is not associ-
ated with a bit field member.

Dwarf_Signed dwarf_bitsize(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_bitsize() returns the number of bits occupied by the bit field value; -1
is returned if die does not contain a bit size attribute or an error occurred.

Dwarf_Signed dwarf_bitoffset(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_bitoffset() returns the number of bits to the left of the most significant
bit of the bit field value; -1 is returned if die does not contain a bit offset attribute or an
error occurred.

DWARF Access Library (libdwarf)

Dwarf_Signed dwarf_srclang(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_srclang() returns a code indicating the source language of the compi-
lation unit represented by the descriptor die; -1 is returned if die does not represent a
source file debugging information entry or an error occurred.

Dwarf_Signed dwarf_arrayorder(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_arrayorder() returns a code indicating the ordering of the array repre-
sented by the descriptor die; if die represents an array without an ordering attribute, the
code indicating row major is returned; -1 is returned if die does not represent an array type
debugging information entry or an error occurred.

Dwarf_Signed dwarf_attrlist(
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Error *error)

The function dwarf_attrlist() sets attrbuf to point at an array of Dwarf_Attribute descriptor
and returns the number of elements in the array; DLV_NOCOUNT is returned on error.
The storage pointed to by attrbuf after a successful return of dwarf_attrlist() should be
free'd when no longer of interest (see dwarf_dealloc()).

Array Subscript Query Operations

These operations return information concerning array subscripts.

Dwarf_Type dwarf_subscrtype(
Dwarf_Subscript ss,
Dwarf_Error *error)

The function dwarf_subscrtype() returns a Dwarf_Type descriptor that represents the type
information for the subscript element represented by the Dwarf_Subscript descriptor ss.
NULL is returned on error.

Dwarf_Bounds* dwarf_lobounds(
Dwarf_Subscript ss,
Dwarf_Error *error)

The function dwarf_lobounds() returns a pointer to a Dwarf_Bounds structure that
describes the lower bound of the array subscript represented by the Dwarf_Subscript
descriptor ss; NULL is returned on error. The storage pointed to by a successful return of
dwarf_lobounds() should be free'd when no longer of interest (see dwarf_dealloc()).

Dwarf_Bounds* dwarf_hibounds(
Dwarf_Subscriptss,
Dwarf_Error *error)

25-15

Compilation Systems Volume 2 (Concepts)

The function dwarf_hibounds() returns a pointer to a Dwarf_Bounds structure that
describes the upper bound of the array subscript represented by the Dwarf_Subscript
descriptor; NULL is returned on error. The storage pointed to by a successful return of
dwarf_hibounds() should be free'd when no longer of interest (see dwarf_dealloc()).

Type Information Query Operations

These operations return information concerning data types.

Dwarf_Signed dwarf_modlist(
Dwarf_Type typ,
Dwarf_Small** modbuf,
Dwarf_Error *error)

The function dwarf_modlist() sets modbuf to point to an array of type modifiers repre-
sented by the Dwarf_Type descriptor typ and returns the number of elements in the array;
DLV_NOCOUNT is returned on error. The storage pointed to by modbuf after a success-
ful return of dwarf_modlist() should be free'd when no longer of interest (see
dwarf_dealloc()).

Dwarf_Bool dwarf_isfundtype(
Dwarf_Type typ,
Dwarf_Error *error)

The function dwarf_isfundtype() returns non-zero if the Dwarf_Type descriptor typ repre-
sents a fundamental type; zero is returned otherwise.

Dwarf_Half dwarf_fundtype(
Dwarf_Type typ,
Dwarf_Error *error)

The function dwarf_fundtype() returns a code that indicates the fundamental type of the
type represented by the descriptor typ; zero is returned if typ does not represent a type that
is fundamental or an error occurred.

Dwarf_Die dwarf_udtype(
Dwarf_Type udt,
Dwarf_Error *error)

The function dwarf_udtype() returns a Dwarf_Die descriptor that represents the debug-
ging information entry for the user defined type represented by the descriptor udt; NULL
is returned if typ does not represent a type that is user defined or an error occurred.

Attribute Form Queries

25-16

Based on the attribute's form, these operations are concerned with returning uninterpreted
attribute data. For compatibility with future DWARF versions, these functions mask off
the attribute form from the name in deciding what attribute is intended. This applies to all
Attribute Form Queries with the exception of dwarf_hasform(). Since it is not always
obvious from the return value of these functions if an error occurred or not, one should

DWARF Access Library (libdwarf)

always supply an error parameter or have arranged to have an error handling function
invoked (see dwarf_init()) to determine the validity of the return and the nature of any
errors that may have occurred.

Dwarf_Half dwarf_atname(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_atname() returns the attribute name of the attribute represented by the
Dwarf_Attribute descriptor attr. A zero is returned on error.

Dwarf_Bool dwarf_hasform(
Dwarf_Attributeattr,
Dwarf_Half form,
Dwarf_Error *error)

The function dwarf_hasform() returns non-zero if the attribute represented by the
Dwarf_Attribute descriptor attr has the data format of form. A zero is returned otherwise.

Dwarf_Off dwarf_formref(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formref() returns the reference value of the attribute represented by
the descriptor attr.

Dwarf_Addr dwarf_formaddr(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formaddr() returns the address value of the attribute represented by
the descriptor attr.

Dwarf_Unsigned dwarf_formudata(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formudata() returns a Dwarf_Unsigned value of the attribute repre-
sented by the descriptor attr. This can be used for attributes having the form of either
FORM_DATA2 or FORM_DATA4 and also FORM_DATAS8 for machines supporting
Dwarf_Unsigned types of 8 bytes or larger.

Dwarf_Signed dwarf_formsdata(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formsdata() returns a Dwarf_Signed value of the attribute represented
by the descriptor attr. This can be used or attributes having the form of either
FORM_DATA2 or FORM_DATA4 and also FORM_DATAS8 for machines supporting
Dwarf_Signed types of 8 bytes or larger. If the size of the data attribute referenced is
smaller than the size of the Dwarf_Signed type, its value is sign extended.

Dwarf_Block* dwarf_formblock(
Dwarf_Attributeattr,
Dwarf_Error *error)

25-17

Compilation Systems Volume 2 (Concepts)

The function dwarf_formblock() returns a pointer to a Dwarf_Block structure containing
the block value of the attribute represented by the descriptor attr. This can be used for
attributes having the form of either FORM_BLOCK2or FORM_BLOCK4. The storage
pointed to by a successful return of dwarf_formblock() should be free'd when no longer of
interest (see dwarf_dealloc()).

char* dwarf_formstring(
Dwarf_Attributeattr,
Dwarf_Error *error)

The function dwarf_formstring() returns a pointer to a null-terminated string containing
the string value of the attribute represented by the descriptor attr. The storage pointed to by
a successful return of dwarf_formstring() should be free'd when no longer of interest (see
dwarf_dealloc()).

Line Number Operations

25-18

These functions are concerned with accessing line number entries, mapping debugging
information entry objects to their corresponding source lines, and providing a mechanism
for obtaining information about line number entries.

Dwarf_Line dwarf_nextline(
Dwarf_Debug dbg,
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_nextline() returns the next line number descriptor following line or
NULL if line is the last entry or an error occurred. If line is NULL, the first entry is
returned.

Dwarf_Line dwarf_prevline(
Dwarf_Debug dbg,
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_prevline() returns the line number descriptor preceding line or NULL
if line is the first entry or an error occurred. If line is NULL, the first entry is returned.

Dwarf_Signed dwarf_pclines(
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Line **linebuf,
Dwarf_Signed slide,
Dwarf_Error *error)

The function dwarf_pclines() places all line number descriptor that correspond to the
value of pc into a single block and sets linebuf to point to that block; a count of the number
of Dwarf_Line descriptor that are in this block is returned. For most cases, the count
returned will be one, though this count may be higher if optimizations such as common
subexpression elimination result in multiple line number entries for a given value of pc.
The slide argument specifies the direction to search for the nearest line number entry in the
event that there is no line number entry that contains an exact match for pc. This argument
may be one of: DLS_BACKWARD, DLS_NOSLIDE, DLS_FORWARD.

DWARF Access Library (libdwarf)

DLV_NOCOUNT is returned on error. Each entry in the block pointed to by a successful
return of dwarf_pc lines should be free'd using dwarf_dealloc() when no longer of interest.

Dwarf_Line dwarf_dieline(
Dwarf_Die die,
Dwarf_Error *error)

The function dwarf_dieline() returns the line number descriptor that corresponds to the
low pc value of die or NULL if die does not contain a low pc attribute or an error occurred.

Dwarf_Signed dwarf_srclines(
Dwarf_Die die,
Dwarf_Line **linebuf,
Dwarf_Error *error)

The function dwarf_srclines() places all line number descriptor for a single compilation
unit into a single block, sets linebuf to point to that block, and returns the number of
descriptor in this block; DLV_NOCOUNT is returned on error. The die argument must
represent a debugging information entry for a compilation unit. Each entry in the block
pointed to by a successful return of dwarf_srclines should be free'd using dwarf_dealloc()
when no longer of interest.

Dwarf_Bool dwarf_is1stline(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_islstline() returns non-zero if line represents a line number entry that
is the first of a block of line number entries for a given compilation unit. A non-zero return
from dwarf_isl1stline() implies that a call to dwarf_lineaddr() giving line as a descriptor
will return an address that represents the base address for the source file.

Dwarf_Unsigned dwarf_lineno(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_lineno() returns the source statement line number corresponding to
the descriptor line.

Dwarf_Addr dwarf_lineaddr(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_lineaddr() returns the address associated with the descriptor line.

Dwarf_Signed dwarf_lineoff(
Dwarf_Line line,
Dwarf_Error *error)

The function dwarf_lineoff() returns the off set in bytes from the beginning of the line in
which the statement appears. If the generator of line number information represents state-
ments in terms of source lines only, a-lisreturned.

char* dwarf_linesrc(
Dwarf_Line line,
Dwarf_Error *error)

25-19

Compilation Systems Volume 2 (Concepts)

The function dwarf_linesrc() returns a pointer to a NULL terminated string of characters
that represents the name of the compilation unit where line appears; NULL is returned on
error. The storage pointed to by a successful return of dwarf_linesrc() should be free'd
when no longer of interest (see dwarf_dealloc()).

Global Name Space Operations

Utility Operations

25-20

Dwarf_Global dwarf_nextglob(
Dwarf_Debug dbg,
Dwarf_Global glob,
Dwarf_Error *error)

The function dwarf_nextglob() returns the next Dwarf_Global descriptor representing the
next global entry following glob; NULL is returned if glob is the last global entry or an
error occurred. If glob is NULL, the first global entry is returned. A global entry is cur-
rently defined as an entry that is associated with a debugging information entry having a
d_tag value of: TAG_global_variable or TAG_global_subroutine.

char* dwarf_globname(
Dwarf_Global glob,
Dwarf_Error *error)

The function dwarf_globname() returns a pointer to a NULL terminated string of charac-
ters that represents the name of glob; NULL is returned on error. The storage pointed to by
a successful return of dwarf_globname() should be free'd when no longer of interest (see
dwarf_dealloc()).

Dwarf_Die dwarf_globdie(
Dwarf_Global glob,
Dwarf_Error *error)

The function dwarf_globdie() returns the Dwarf_Die descriptor of the debugging informa-
tion entry associated with the global entry glob; NULL is returned on error.

These functions aid with the management of errors encountered when using functions in
the libdwarf library and releasing memory allocated as a result of a libdwarf operation.

Dwarf_Unsigned dwarf_errno(
Dwarf_Error error)

dwarf_errno() returns the error number corresponding to the error specified by error.

const char* dwarf_errmsg(
Dwarf_Error error)

The function dwarf_errmsg() returns a pointer to an error message string corresponding to
the error specified by error or NULL if the error is out of bounds. Note that the string
returned by dwarf_errmsg() should not be deallocated using dwarf_dealloc().

DWARF Access Library (libdwarf)

The minimum set of errors are enumerated in Table 25-4.

Table 25-4. Error Codes

SYMBOLIC NAME DESCRIPTION

DLE_NE No error (0)

DLE_VMM Version of DWARF information newer than libdwarf
DLE_MAP Memory map failure

DLE_LEE Propagation of libelf error

DLE_NDS No debug section

DLE_NLS No line section

DLE_ID Requested information not associated with descriptor
DLE_IOF I/O failure

DLE_MAF Memory allocation failure

DLE_IA Invalid argument

DLE_MDE Mangled debugging entry

DLE_MLE Mangled line number entry

DLE_FNO File descriptor does not refer to an open file
DLE_FNR File is not a regular file

DLE_FWA File is opened with wrong access

DLE_NOB File is not an object file

DLE_MOF Mangled object file header

DLE_LAST Upper bound of libdwarf errors

DLE_LO_USER Lower bound of implementation specific codes

This list of errors is not necessarily complete; additional errors might be added when func-
tionality to create debugging information entries are added to libdwarf and by the imple-
mentors of libdwarf to describe internal errors not addressed by the above list.

Dwarf_Handler dwarf_seterrhand(
Dwarf_Debug dbg,
Dwarf_Handler errhand)

The function dwarf_seterrhand() replaces the error handler (see dwarf_init()) with err-
hand; the old error handler is returned.

Dwarf_Addr dwarf_seterrarg(
Dwarf_Debug dbg,
Dwarf_Addr errarg)

The function dwarf_seterrarg() replaces the pointer to the error handler communication
area (see dwarf_init()) with errarg; a pointer to the old area is returned.

25-21

Compilation Systems Volume 2 (Concepts)

void dwarf_dealloc(
void* space,
Dwarf_Unsigned typ)

The function dwarf_dealloc frees all dynamic storage allocated to area pointed to by
space. The argument typ. is an integer code that specifies the type pointed to by the space
argument. Refer to “Memory Management” on page 25-8 for details on libdwarf memory
management.

Appendix1--libdwarf.h

#ifndef _LIBDWARF_H
#define _LIBDWARF_H

typedef int Dwarf_Bool; /* boolean type*/

typedef unsigned long Dwarf_Off; /* 4 or8 byte file offset */
typedef unsigned long Dwarf_Unsigned; [* 4 or8 byte unsigned value */
typedef unsigned short Dwarf Half; /* 2 byte unsigned value */
typedef unsigned char Dwarf_Small; /* 1 byte unsigned value */
typedef signed long Dwarf_Signed; /* 4 or8 byte signed value */
typedef void* Dwarf_Addr; /* memory address */

/* uninterpreted block of data

*

typedef struct {
Dwarf_Unsigned bl_len; /*length of block */
Dwarf_Addr bl_data; [*uninterpreted data */

} Dwarf_Block;

/* location record

*

typedef struct {

Dwarf_Small Ir_atom; [*location operation */
Dwarf_Unsigned Ir_number; [*operand */
} Dwarf_Loc;

/* location description
*
typedef struct {

Dwarf_Addr Id_lopc; /*beginning ofactive range */
Dwarf_Addr Id_hipc; /*end ofactive range */
Dwarf_Half Id_cents; [*count oflocation records */
Dwarf_Loc* Id_s; [*pointer tolist ofsame */

} Dwarf_Locdesc;
I* element list

*

typedef struct {

Dwarf_Signed el_value; /*value ofelement */
char* el_name; /*name of element */
} Dwarf_Ellist;

[* subscript bounds information
*
typedef struct {

Dwarf_Bool bo_isconst;
union {
Dwarf_Signed constant;

25-22

}

Dwarf_Locdesc*

bo_;

} Dwarf_Bounds;

[* opaque types

*

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
* error
*

typedef

struct Debug*
Die*

Line*
Attribute*
Subscript*
Type*
Global*
Error*

struct
struct
struct
struct
struct
struct
struct
handler function

void

locdesc;

Dwarf_Debug;

Dwarf_Die;
Dwarf_Line;

Dwarf_Attribute;

Dwarf_Subscript;
Dwarf_Type;
Dwarf_Global;

Dwarf_Error;

/* dwarf_dealloc() typ arguments

*

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DLA_STRING
DLA_LOC
DLA_LOCDESC
DLA_ELLIST
DLA_BOUNDS
DLA_BLOCK
DLA_DEBUG
DLA_DIE
DLA_LINE
DLA_ATTR
DLA_TYPE
DLA_SUBSCR
DLA_GLOBAL
DLA_ERROR
DLA_LIST

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
oxod
0x0e
0xO0f

/* dwarf_openscn() access arguments

*/

#define
#define
#define

DLC_READ
DLC_WRITE
DLC_RDWR

0
1
2

/* dwarf_pcline() slide arguments

*

#define DLS_BACKWARD

#define

#define DLS_FORWARD
/* libdwarf error numbers

*

#define
#define
#define
#define
#define
#define
#define
#define

DLS_NOSLIDE

DLE_NE
DLE_VMM
DLE_MAP
DLE_LEE
DLE_NDS
DLE_NLS
DLE_ID
DLE_IOF

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

DWARF Access Library (libdwarf)

(*Dwarf_Handler)(Dwarf_Error error, Dwarf_Addr errarg);

/* argument points to char* */

[* argument points to Dwarf _Loc */

/* argument points to Dwarf_Locdesc */

[* argument points to Dwarf_Ellist */

/* argument points to Dwarf_Bounds */

/* argument points to Dwarf_Block */

/* argument points to Dwarf_Debug */

[* argument points to Dwarf_Die */
[* argument points to Dwarf_Line */

[* argument points to Dwarf_Attribute */
[* argument points to Dwarf_Type */

/* argument points to Dwarf_Subscr */

[* argument points to Dwarf_Global */

[* argument points to Dwarf_Error */

/* argument points to a list */

/* readonly access */

[* write only access */

[* read/write access */

/* slide backward tofind line*/
/* match exactly without sliding */
/* slide forward to findline */

/* noerror */

/* dwarf format/library version mismatch */
/* memory map failure */

/* libelf error */

/* nodebug section */

/* noline section */

/* invalid descriptor for query */
/* /0 failure */

25-23

Compilation Systems Volume 2 (Concepts)

25-24

#define DLE_MAF 0x08 /* memory allocation failure */
#define DLE_IA 0x09 /* invalid argument */

#define DLE_MDE 0x0a /* mangled debugging entry */
#define DLE_MLE 0x0b /* mangled line number entry */
#define DLE_FNO 0x0c /* filenot open */

#define DLE_FNR 0x0d /* filenot a regular file*/

#define DLE_FWA 0x0e /* fileopen with wrong access */
#define DLE_NOB 0x0f /* not anobject file */

#define DLE_MOF 0x10 /* mangled object file header */
#define DLE_LAST DLE_MOF

#define DLE_LO_USER 0x10000

[* error return values

*

#define DLV_BADADDR ((Dwarf_Addr) 0) /* for functions returning address */
#define DLV_NOCOUNT ((Dwarf_Signed)-1) /* for functions returning count */
#define DLV_BADOFFSET ((Dwarf_Off)0) /* for functions returning offset */
[* initialization and termination operations

*

Dwarf_Debug dwarf_init (
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Addr errarg,
Dwarf_Error *error

)i

void dwarf_finish (
Dwarf_Debug dbg

)

/* DIE delivery operations

*

Dwarf_Die dwarf_nextdie (
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Die dwarf_siblingof (
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Die dwarf_offdie (
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Error* error

)

Dwarf_Die dwarf_pcfile (
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error* error

)

Dwarf_Die dwarf_pcsubr (
Dwarf_Debug dbg,
Dwarf_Addr pc,

Dwarf_Error* error

)

Dwarf_Die dwarf_pcscope
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Error* error

)

Dwarf_Die dwarf_child (
Dwarf_Die die,
Dwarf_Error* error

)

[* query operations for DIEs

*

Dwarf_Signed dwarf_childcnt
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Half dwarf_tag (
Dwarf_Die die,
Dwarf_Error* error

)i

Dwarf_Off dwarf_dieoffset

Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Attribute dwarf_attr
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Error* error

)

char* dwarf_diename (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Bool dwarf_hasattr
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Error* error

)

Dwarf_Type dwarf_typeof
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_loclist
Dwarf_Die die,

Dwarf_Locdesc **lbuf,

Dwarf_Error* error

)

Dwarf_Locdesc* dwarf_stringlen

Dwarf_Die die,
Dwarf_Error *error

)

Dwarf_Signed dwarf_subscrcnt

Dwarf_Die die,

DWARF Access Library (libdwarf)

25-25

Compilation Systems Volume 2 (Concepts)

Dwarf_Error* error

)

Dwarf_Subscript dwarf_nthsubscr (
Dwarf_Die die,
Dwarf_Unsigned ssndx,
Dwarf_Error* error

)

Dwarf_Addr dwarf_lowpc (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Addr dwarf_highpc (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_elemlist (
Dwarf_Die die,
Dwarf_Ellist** elbuf,
Dwarf_Error* error

)

Dwarf_Signed dwarf_bytesize (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Bool dwarf_ishitfield (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_bitsize (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_bitoffset (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_srclang (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_arrayorder (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_attrlist (
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Error* error

)

[* query operations for subscripts

*

Dwarf_Type dwarf_subscrtype (
Dwarf_Subscript ss,
Dwarf_Error* error

25-26

DWARF Access Library (libdwarf)

)

Dwarf_Bounds* dwarf_lobounds (
Dwarf_Subscript ss,
Dwarf_Error* error

)

Dwarf_Bounds* dwarf_hibounds (
Dwarf_Subscript ss,
Dwarf_Error* error

)

[* query operations for types

*

Dwarf_Signed dwarf_modlist (
Dwarf_Type typ,
Dwarf_Small** modbuf,
Dwarf_Error* error

)

Dwarf_Bool dwarf_isfundtype (
Dwarf_Type typ,
Dwarf_Error* error

)i

Dwarf_Half dwarf_fundtype (
Dwarf_Type typ,
Dwarf_Error* error

)

Dwarf_Die dwarf_udtype (
Dwarf_Type udt,
Dwarf_Error* error

)

[* query operations for attributes

*

Dwarf_Half dwarf_atname (
Dwarf_Attribute attr,
Dwarf_Error* error

)

Dwarf_Bool dwarf_hasform (
Dwarf_Attribute attr,
Dwarf_Half form,
Dwarf_Error* error

)

Dwarf_Off dwarf_formref (
Dwarf_Attribute attr,
Dwarf_Error* error

)

Dwarf_Addr dwarf_formaddr (
Dwarf_Attribute attr,
Dwarf_Error* error

)

Dwarf_Unsigned dwarf_formudata (
Dwarf_Attribute attr,
Dwarf_Error* error

)

Dwarf_Signed dwarf_formsdata (
Dwarf_Attribute attr,
Dwarf_Error* error

25-27

Compilation Systems Volume 2 (Concepts)

)

Dwarf_Block* dwarf_formblock (
Dwarf_Attribute attr,
Dwarf_Error* error

)

char* dwarf_formstring (
Dwarf_Attribute attr,
Dwarf_Error* error

)

/* line number operations

*

Dwarf_Line dwarf_nextline (
Dwarf_Debug dbg,
Dwarf_Line line,
Dwarf_Error* error

)

Dwarf_Line dwarf_previine (
Dwarf_Debug dbg,
Dwarf_Line line,
Dwarf_Error* error

)

Dwarf_Signed dwarf_pclines (
Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Line **linebuf,
Dwarf_Signed slide,
Dwarf_Error* error

)

Dwarf_Line dwarf_dieline (
Dwarf_Die die,
Dwarf_Error* error

)

Dwarf_Signed dwarf_srclines (
Dwarf_Die die,
Dwarf_Line **linebuf,
Dwarf_Error* error

)

Dwarf_Bool dwarf_islstline (
Dwarf_Line line,
Dwarf_Error* error

)

Dwarf_Unsigned dwarf_lineno (
Dwarf_Line line,
Dwarf_Error* error

)

Dwarf_Addr dwarf_lineaddr (
Dwarf_Line line,
Dwarf_Error* error

)

Dwarf_Signed dwarf_lineoff (
Dwarf_Line line,
Dwarf_Error* error

)

char* dwarf_linesrc (

25-28

Dwarf_Line line,
Dwarf_Error* error

)

/* global name space operations

*

Dwarf_Global dwarf_nextglob (
Dwarf_Debug dbg,
Dwarf_Global glob,
Dwarf_Error *error

)

char* dwarf_globname (
Dwarf_Global glob,
Dwarf_Error *error

)

Dwarf_Die dwarf_globdie (
Dwarf_Global glob,
Dwarf_Error *error

)i

[* utility operations

*

Dwarf_Unsigned dwarf_errno (
Dwarf_Error error

)

const char* dwarf_errmsg (
Dwarf_Error error

)

Dwarf_Handler dwarf_seterrhand
Dwarf_Debug dbg,
Dwarf_Handler errhand

)

Dwarf_Addr dwarf_seterrarg (
Dwarf_Debug dbg,
Dwarf_Addr errarg

)

void dwarf_dealloc (
void* space,
Dwarf_Unsigned typ

)

#endif /*_LIBDWARF_H */

DWARF Access Library (libdwarf)

25-29

Compilation Systems Volume 2 (Concepts)

25-30

Symbols

#pragma 4-23
.align directive 2-12
.ascii directive 2-16
.asciiz directive 2-16
.bss directive 2-17
.bss section 2-1, 2-11, 2-17
.byte directive 2-14
.comm directive 2-17
.comment section 2-18, 2-19
.data directive 2-13
.data section 2-1, 2-3, 2-11, 2-13
.def directive 2-16
.double directive 2-16
.extern directive 2-16
file directive 2-18
float directive 2-15
.globl directive 2-16
.int directive 2-15
Jong directive 2-15
.org directive 2-12
.rela_* section 2-2
.set directive 2-16
.short directive 2-14
.space directive 2-12
.symtab section 2-2
.text directive 2-13
.text section 2-1, 2-5, 2-11, 2-13
.vbyte directive 2-14
.word directive 2-14
/etc/group file 16-15
/etc/mnttab 16-14
/etc/passwd 16-14
/etc/shadow file 16-15
letc/vfstab 16-13
/tmp directory 2-2
lusr

lib 4-15, 4-16
/varladm/utmp 16-16
/varfadm/utmpx 16-16
/varfadm/wtmp 16-16
/varladm/wtmpx 16-16
/var/tmp directory 2-2

Index

A

Access control list functions 16-51
acpp(1) 1-4
Ada 2-3
Ada compiler 1-4
Ada programming language 1-2
ada(1) 1-4
adb(1) 1-4
Address mode determination 20-16, 20-17
Address modes 20-17
admin(1) 14-2, 14-9, 14-19-14-21, 14-28-14-29
Algebraic simplification 20-16, 20-17
align directive 2-12, 2-17
Alphanumeric labels 2-4
Alternate math library 16-2
Analyze
detecting references to reserved registers 20-25
optimizing programs during post-linking stage
20-25
analyze(1) 1-4
ar(l) 1-4,4-11
Archive 1-3
archive libraries 4-9
implementation 4-17
linking with 4-9, 4-15, 4-35
archive libraries, creating
creating 4-11
archive libraries, maintaining 13-11-13-12
Archiver 1-3, 1-4
Arithmetic functions 16-41
as
invocation 2-2
as(1) 1-4
Assembler 1-2,1-4
Assembler directive 2-6
Assembly language 1-2, 2-1, 2-2, 2-4, 2-5, 2-6, 2-8, 2-9,
2-10, 2-11, 2-12, 2-15, 2-17, 2-19, 2-20, 2-21
Alphanumeric labels 2-4
Assembler directives 2-12, 2-17, 2-19
Assembler invocation 2-2
Assembly syntax 2-21
Character constants 2-9
Character set 2-4

Index-1

Compilation Systems Volume 2 (Concepts)

Constants 2-8, 2-9
Directives mnemonics 2-19
Expression operators 2-10
Expression types 2-10, 2-11
Expression values 2-11
Expressions 2-9, 2-10, 2-11
Floating point constants 2-8
Identifiers 2-6, 2-8
identifiers 2-5
Integer constants 2-8
Location counter control 2-12
Null statements 2-4
Numeric (local) labels 2-5
Operator precedence 2-10
Position-independent code 2-21
Predefined symbols 2-5, 2-6
Source statements 2-4, 2-5
Symbol attributes 2-17
User-defined symbols 2-8
Using the assembler 2-2, 2-20

Assembly language, Comments
Comments 2-5

Auditing functions 16-51

Back end 1-3
Backward reference 2-5
base address 22-38
Bessel Functions 16-37
Bessel functions 16-37
Binary tree functions 16-32
Binary Tree Management 16-32
bit-fields 10-4
Branch displacement optimization 2-20
Branch optimizations 20-10, 20-11, 20-12
Browser
C 15
bss directive 2-17
byte directive 2-14

C

C code browser 1-5
C code checkter 1-5
C compiler 1-4
C library 16-1, 16-2
linking with 4-9, 4-11
C preprocessor 1-4
C programming language 1-2

Index-2

CC(1)
creating shared objects 4-13
cc(l) 14
creating shared objects 4-12, 4-18, 4-21, 4-22
library linking option 4-9, 4-16, 4-35
library search option 4-16, 4-36
static linking options 4-10, 4-11, 4-14, 4-15, 4-35
cc(1), 4-13
CCG 1-3
cdc(1) 14-9, 14-24
cflow(1) 1-5
Character Manipulation 16-22, 16-25, 16-26
Character test functions 16-25
Character Translation Functions 16-26
Character translation functions 16-26
Code checker
C 15
Code motion 20-16, 20-17
COFF 1-5
comb(1) 14-9, 14-25-14-26
comm directive 2-17
Comment 2-5
Common code generator 1-3
Common Object File Format 1-5
Common subexpression elimination 20-16, 20-17
Compilation system 1-2
Compiler 1-2
Ada 1-4
C 14
Fortran 1-4
Compiler optimization classes 20-10, 20-11, 20-12,
20-14, 20-15, 20-16, 20-17, 20-18, 20-19,
20-20, 20-21, 20-22, 20-24, 20-26, 20-27,
20-28, 20-29
Branch optimizations 20-10, 20-11, 20-12
Expression optimizations 20-10, 20-16, 20-17
Inline expansion of subprograms 20-10, 20-26
Instruction scheduling 20-10, 20-24
Loop optimizations 20-10, 20-18, 20-19, 20-20,
20-21, 20-22
Optimization of constraints 20-10, 20-27, 20-28,
20-29
Register allocation 20-10, 20-24
Variable optimizations 20-10, 20-12, 20-14, 20-15,
20-16
Compiler optimization levels 20-2
Compiler optimization options 20-2
O 20-2
Q 20-2, 20-3, 20-8
Compiler options, Verbose
Verbose 20-10
Compiler technology 20-1
Compiler-compiler 1-4
Compressor 1-5

const 4-20
Constant propagation 20-11
Control functions 16-46
Control level functions 16-51
Controlling compiler optimizations 20-3, 20-8
Copy propagation 20-12, 20-14, 20-15, 20-16
Expression 20-14
Copy propagation, Constant
Constant 20-14
Copy propagation, Variable
Variable 20-14
Copy variables 20-12, 20-15, 20-16
cpp(l) 1-4
cprs(1) 1-5
Cross reference 1-5
cscope(l) 1-5,9-1-9-19
cscope(l), command line 9-2,9-10-9-13
cscope(1), environment setup 9-2, 9-18-9-19
cscope(1), environment variable 9-13
cscope(l), usage examples 9-1-9-10, 9-14-9-18
ctrace(1) 1-4
cxref(1) 1-5

D

data directive 2-11, 2-13
data representation 22-2

data segment (see also object files) 4-17, 4-18, 4-19,

4-20, 4-21
Data structures functions 16-31
Date and time functions 16-34
Dead code elimination 20-12, 20-13, 20-14
Debugger
object 1-4
symbolic 1-3,1-4

Debugging optimized code 20-32, 20-33, 20-34, 20-35

Debugging with arbitrary record format 1-5, 1-6
def directive 2-8, 2-16
Delimeter

comment 2-5
delta(1) 14-3, 14-8, 14-17-14-19
DES Algorithm Access 16-41, 16-52
Devices functions 16-12
Directive 2-1

.align 2-12

.ascii 2-16

.asciiz 2-16

.bss 2-17

.byte 2-14

.comm 2-17

.data 2-13

.def 2-16

Index

.double 2-16
.extern 2-16
file 2-18
float 2-15
.globl 2-16
.int 2-15
long 2-15
.org 2-12
.set 2-16
.short 2-14
.Space 2-12
text 2-13
.vbyte 2-14
.word 2-14
align 2-12,2-17
byte 2-14
comm 2-17
data 2-11, 2-13
def 2-8, 2-16
double 2-16
extern 2-16
file 2-8, 2-18
float 2-15
gloabl 2-16
half 2-14
ident 2-18, 2-19
local 2-17
previous 2-14
shyte 2-14
section 2-13
set 2-16
shalf 2-15
short 2-14
size 2-18
string 2-16
text 2-13
type 2-18
uahalf 2-15
uaword 2-15
ubyte 2-14
uhalf 2-15
vhyte 2-14
version 2-4, 2-6, 2-7,2-18
weak 2-17
zero 2-12
directive
bss 2-17
word 2-15
Directory
tmp 2-2
/var/tmp 2-2
Directory functions 16-7
Directory Use Functions 16-7
Diretive

Index-3

Compilation Systems Volume 2 (Concepts)

assembler 2-6 Executable program 1-3
dis(1) 1-5 Expression optimizations 20-10, 20-16, 20-17
Disassembler 1-5 Expressions
double directive 2-16 Optimizing 20-16
dump(l) 1-5 Propagating 20-14
Dumper 1-5 Simplifying 20-16
Duplicating loop exit tests 20-18, 20-22 extensions 22-61
Duplicating partially-constant conditional branches extern directive 2-16

20-11, 20-12

DWARF 1-5,1-6
DWARF Access Library 22-61

DWARF address ranges tables 22-16 F

DWARF debugging 22-16

DWAREF line number information 22-16 fr7(1) 1-4

DWARF name lookup tables 22-17 Flle

DWAREF version 2 draft 5 specification 22-61 /var/adm/utmpx 16-16

Dwarf_base_encoding() 22-62 File

dwarf_dealloc() 22-62 /etc/group 16-15

Dwarf_Error *error 22-62 /etc/mnttab 16-14

Dwarf_Half** tagbuf 22-62 /etc/passwd 16-14

dwarf_isbasetype() 22-62 /etc/shadow 16-15

Dwarf_Signed dwarf_modtags 22-62 /etc/vfstab 16-13

Dwarf_Type 22-62 /var/adm/utmp 16-16

Dwarf_Type typ 22-62 /var/adm/wtmp 16-16

Dynamic link 1-6 /var/adm/wtmpx 16-16

dynamic linking 4-8 common object format 1-5
implementation 4-17, 4-18, 22-27, 22-45 object 1-5

relocatable object 1-3, 2-1, 2-2
File Access Functions 16-5, 16-11, 16-12
File and 1/O status functions 16-6

E file directive 2-8, 2-18
File functions 16-7
EDITOR environment variable 9-2, 9-18 File Status Functions 16-6
ELF 1-5,1-6, 2-1 File systems tables file functions 16-13
ELF (see also object files) 22-1 File tree functions 16-32
ELF file functions 16-17, 16-18 float directive 2-15
ELF library 16-3 Floating point 1-7
Eliminating unreachable code 20-10, 20-11 Floating-point functions 16-41
Encryption functions 16-52 Floating-point operations 17-1, 17-12
Environment variable compares 17-12
EDITOR 9-2, 9-18 control bits 17-7
LD_BIND_NOW 4-16, 22-47, 22-55 data representation 17-1,17-6
LD _LIBRARY_PATH 4-7, 4-14, 4-36, 22-52 data types and formats 17-2
LD_RUN_PATH 4-7, 4-15, 4-36 denormalized numbers 17-3
MAKEFLAGS 13-18 double-extended 17-11
PARALLEL 13-5, 13-17 double-precision 17-2
STATIC_LINK 4-8 exception handling 17-7, 17-9
TERM 9-2 exceptions 17-7
TMPDIR 2-2,9-13 floating point to integer conversion 17-11
VIEWER 9-2 IEEE requirements 17-11
VPATH 9-2,9-13 infinities 17-5
exceptions 22-61 infinities /10 17-12
Executable and linking format 1-5, 1-6, 2-1 language mappings 17-3
executable files 22-1 maximum and minimum values 17-4

Index-4

NaNs 17-5
NaNs I/0 17-12
normalized numbers 17-3
rounding 17-6
single-precision 17-2,17-9, 17-11
single-precision functions 17-11
special-case values 17-4
square root 17-12
status bits 17-7
unordered condition 17-12
Floating-point register name 2-6
Flow functions 16-44
Flow grapher 1-5
Folding conditional tests 20-10, 20-11
Format
DWARF 1-5, 1-6
ELF 1-5,1-6, 2-1
Fortran compiler 1-4
Fortran programming language 1-2
Forward reference 2-5
Frame
stack 1-6
Function
message queue 16-32
function prototypes, lint(1) 10-2

function prototypes, lint(1) checks for 10-7

Functions
access control lists 16-51
arithmetic 16-41
auditing 16-51
bessel 16-37
binary tree 16-32
character test 16-25
character translation 16-26
control 16-46
control levels 16-51
data structures 16-31
devices 16-12
directory 16-7
ELF files 16-17, 16-18
encryption 16-52
file 16-7
file and I/O status 16-6
file systems tables file 16-13
file tree 16-32
floating-point 16-41
flow 16-44
general date and time 16-34
general input 16-8
general output 16-9
group file 16-15

internationalization 16-35
interval timer 16-35

loadable kernel modules 16-53
locales 16-36

LWP 16-49

mathematic 16-38
mathematic and numeric 16-36
memory 16-28

memory allocation 16-29
memory control 16-30
memory manipulation 16-28
message catalog 16-36

mount table file 16-14
multibyte and wide characters 16-27
numeric conversion 16-39
other security 16-52
parameter 16-45

password file 16-14

pipes and FIFOs 16-12

POSIX timer 16-35

processes 16-45

profile 16-44

program 16-44

queues 16-33

random number 16-42

Index

regular expression and pattern matching 16-27

security 16-50

semaphores 16-33

shadow password file 16-15
shared memory 16-30

shared object 16-22

signal 16-47

special files 16-12

STREAMS 16-11

string and characters 16-22
string manipulation 16-23
system environment 16-53
tables 16-31

temporary file 16-22

terminal /O 16-10

trees 16-31

trigonometric 16-37

user and accounting files 16-16
user-level interrupt 16-49
wide character test 16-26
wide string manipulation 16-24

G

hash table 16-31
hyperbolic 16-38
I/0O control 16-4

gdb(1) 1-4
General input functions 16-8
General output functions 16-9

Index-5

Compilation Systems Volume 2 (Concepts)

General register name 2-6
General-purpose library 16-3
get(l) 14-2-14-4,14-8, 14-9-14-17
global directive 2-16

global symbols 4-22

Grapher 1-5

Group file functions 16-15

half directive 2-14

Hash table functions 16-31
Hash Table Management 16-31
header files, lint(1)ing 10-6-10-7
help(1) 14-5, 14-9, 14-23
High-level language 1-2
Hyperbolic Functions 16-38
Hyperbolic functions 16-38

I/0 control functions 16-4
ident directive 2-18, 2-19
Identifier

ordering 1-5

predefined 2-6

user-defined 2-6
Identifiers 2-5
ifiles 4-23
Induction variable 20-20
Inline expansion 20-11, 20-26
Inline expansion of subprograms 20-10, 20-26
Input Functions 16-8
Inserting zero trip tests 20-11, 20-12
Instruction mnemonic 2-1
Instruction mnemonics 2-6
Instruction scheduling 20-10, 20-24
Instruction set

PowerPC 3-2
Internal table

Table

internal 2-1

Internationalization functions 16-35
Interpreter 1-2

program 1-6
Interval timer functions 16-35
Invocation

as 2-2

Index-6

Label
numeric 2-5
Labels
alphanumeric 2-4
Language
high-level 1-2
low-level 1-2
machine 2-1
processor 1-2
programming 1-1
ld(1) 1-4
LD_BIND_NOW 4-16, 22-47
LD_BIND_NOW environment variable 4-16, 22-47,
22-55
LD_LIBRARY_PATH 4-14, 4-16
LD_LIBRARY_PATH environment variable 4-7,4-14,
4-36, 22-52
LD_RUN_PATH 4-15, 4-16
LD_RUN_PATH environment variable 4-7, 4-15, 4-36
ldd(1) 4-16
lex(1) 1-4, 6-1-6-19
lex(1), command line 6-1-6-2
lex(1), definitions 6-12-6-14, 6-17
lex(1), disambiguating rules 6-9
lex(1), how to write source 6-3-6-15
lex(1), library 6-2, 6-17
lex(1), operators 6-4-6-6
lex(1), quick reference 6-18-6-19
lex(1), routines 6-7, 6-10-6-12
lex(1), source format 6-3, 6-18-6-19
lex(1), start conditions 6-13-6-14
lex(1), use with yacc(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-
7-8,7-22-7-23
lex(1), user routines 6-10-6-11, 6-14-6-15
lex(1), yylex() 6-2, 6-15
Lexical analyzer 1-4
lexical analyzer (see lex(1)) 6-2
libraries
archive 4-9
creating 4-11, 4-13, 4-18, 4-22
libc 4-9, 4-11
libdl 4-10, 4-11, 4-17
libelf 22-1
libm 4-11
linking with 4-35
naming conventions 4-35
shared object 4-8, 22-27, 22-45
standard place 4-11
libraries, lint(1) 10-7-10-8
libraries, maintaining 13-11-13-12
Library 1-3

Index

alternate math 16-2 M

C 16-1, 16-2

DWARF Access Library 22-61

ELF 16-3 m4(1) 1-5, 2-2, 2-3, 5-1-5-10

m4(1), argument handling 5-5-5-7

?ne;tﬁrailg-);rpose 16-3 m4(1), arithmetic capabilities 5-7

shared 1-6 m4(1), commgnd line 5-1—5-2_

system 16-1 m4(1), coqd_ﬁmnal preprocessing 5-8-5-9
Link m4(1), d.eflnlng.macr.os 5-2-5-5

dynamic 1-6 m4(1), file mampulatlon 5-7-5-8

static 1-6 m4(1), quoting 5-3-5-5

m4(1), string handling 5-9-5-10

Machine language 2-1

Macro preprocessor 1-5

make(1) 13-1-13-24

make(1), command line 13-16-13-18
make(1), environment variables 13-18-13-19
make(1), how to write source 13-2-13-8
make(1), macros 13-3-13-8, 13-10, 13-12
make(1), maintaining libraries 13-11-13-12

link editing 22-23, 22-45
library linking options 4-9, 4-16, 4-35
multiply defined symbols 4-22, 4-23
quick reference 4-35
undefined symbols 4-8

link editing, dynamic
dynamic 4-8, 22-27, 22-45

link editing, static

. StaF'C 4-8 make(1), makefile convention 13-1
Link editor 1-3,1-4 make(1), sample output 13-4-13-5
Linking 4-1 ' P P

make(1), source format 13-6
make(1), suffix transformation rules 13-9-13-11, 13-19-
13-24

make(1), usage example 13-4-13-5
make(1), use with SCCS 13-13-13-14
MAKEFLAGS environment variable 13-18
Manipulator 1-5
mapfiles 4-35

defaults 4-30

error messages 4-34

example 4-29

map structure 4-31

mapping directives 4-27

segment declarations 4-25

size-symbol declarations 4-28

structure 4-24

syntax 4-24

usage 4-24
Math library 16-2
math library, linking with

linking with 4-11
Mathematic and numeric functions 16-36
Mathematic functions 16-38
mcs(1) 1-5
Memory Allocation 16-29, 16-30
Memory allocation functions 16-29
Memory control functions 16-30
Memory functions 16-28
Memory Manipulation Functions 16-28
Memory manipulation functions 16-28
Message catalog functions 16-36
Message queue functions 16-32

lint(1) 1-5,10-1-10-38
lint(1), command line 10-6-10-8
lint(1), consistency checks 10-2-10-3
lint(1), filters 10-8
lint(1), libraries 10-7-10-8
lint(1), message formats 10-2
lint(1), messages 10-12-10-38
lint(1), options and directives 10-1-10-2, 10-8-10-12
lint(1), portability checks 10-3-10-5
lint(1), suspicious constructs 10-5-10-6
Lister
name 1-5
Loadable kernel module functions 16-53
local directive 2-17
Locale functions 16-36
Locale Information 16-36
Location counter 2-5
Loop optimizations 20-10, 20-18, 20-19, 20-20, 20-21,
20-22
Loop unrolling 20-18, 20-22
Loops
Forward branch into 20-19
Optimizing 20-17, 20-18, 20-19, 20-20, 20-21,
20-22
Test replacement 20-21
Unrolling 20-22
With multiple entries 20-19, 20-20
lorder(1) 1-5
Low-level language 1-2
LWP functions 16-49

Index-7

Compilation Systems Volume 2 (Concepts)

Messages
About copy variables 20-15
About forward branch into loop 20-19
About loop exits 20-22
About loop unrolling 20-23, 20-24
About optimizing variables 20-13
About uninitialized variables 20-35
About zero trip tests 20-11
at unknown line 20-19
Miscellaneous Functions 16-10, 16-12, 16-27, 16-38,
16-44, 16-45, 16-51, 16-52, 16-53
Mnemonic
instruction 2-1, 2-6
Mount table file functions 16-14
Multibyte and wide character functions 16-27
multiply defined symbols 4-22, 4-23

Name lister 1-5

NightTrace(1) 1-4

NightView(1) 1-4

nm(1) 1-5

Null statement 2-4

Numeric conversion functions 16-39
Numeric Conversions 16-39

O

O option 20-2
Object
shared 1-6
Object debugger 1-4
Object file 1-5
relocatable 1-3, 2-1, 2-2
Object File Library 16-2, 16-17, 16-18, 16-35, 16-36
Object files
80-bit precision 22-21, 22-22
FP rounding modes 22-19
object files 22-1
data representation 22-2
function addresses 22-57
global offset table 22-54
procedure linkage table 22-58
program header 22-35
program interpreter 22-45
program linking 22-3
program loading 22-42
section alignment 22-12
section attributes 22-14

Index-8

section header 22-9
segment contents 22-40
segment permissions 22-39
tools for manipulating 22-1
object files, base address
base address 22-38
object files, ELF header
ELF header 22-3
Object files, FP exceptions
FP exceptions 22-19
object files, hash table
hash table 22-59
object files, libelf
libelf 22-1
object files, note section
note section 22-41
object files, relocation
relocation 22-27, 22-54
object files, section names
section names 22-18
object files, section types
section types 22-12
object files, segment types
segment types 22-36
Object files, string table
string table 22-22
object files, symbol table
symbol table 22-23
Object files, zero page
zero page 22-21, 22-22
Optimization
during post-linking stage 20-25
longjmp routine 20-25
setjmp routine 20-25
Optimization of constraints 20-10, 20-27, 20-28, 20-29
Optimization programming techniques 20-30, 20-31,
20-32
Coding tips 20-30, 20-31
Performance analysis techniques 20-30, 20-32
Optimizations, Safe
Safe 20-2
Optimizations, Unsafe
Unsafe 20-2
Optimize 1-2
Optimizer 1-4
Options
O 20-2
Q 20-13, 20-15, 20-18, 20-20, 20-22
Ordering identifier 1-5
Other security functions 16-52
Output Functions 16-9

paging 4-18, 4-20, 4-21, 22-42

PARALLEL environment variable 13-5, 13-17
Parameter functions 16-45

parser (see yacc(1)) 7-1

Password File Access 16-13, 16-14, 16-15, 16-16

Password file functions 16-14
pctolf(1) 1-5
Performance analysis 11-1
Performance analyzer 1-4
Pipe and FIFO functions 16-12
portability, lint(1) checks for 10-3-10-5
position-independent code 4-18, 22-45, 22-54
POSIX timer functions 16-35
Post-Linker Optimization 20-25
PowerPC
condition codes 3-25
implementation-specific instructions 3-31
operand abbreviations 3-26
optional instructions 3-31
special-purpose registers 3-28
time base registers 3-31
trap operand 3-26
PowerPC instructions 3-1
Precprocessor
macro 1-5
Predefined identifer 2-6
Preprocessor
C 14
previous directive 2-14
Process functions 16-45
Processor
language 1-2
prof(1) 1-4
Profile functions 16-44
Profiler 1-4
Profiling 1-3
Program
executable 1-3
Program counter 1-5, 2-5
Program functions 16-44
Program interpreter 1-6
Program Monitoring 16-44
Program optimization 20-1, 20-2
Programming language 1-1
Ada 1-2
assembly 1-2
C 1-2
Proramming language
Fortran 1-2
prs(1) 14-9, 14-21-14-22
Pseudo-op 2-1

Index

Pseudo-random number functions 16-42
Pseudo-random Number Generation 16-42

Q

Q option 20-3, 20-8, 20-18
benchmark 20-8
block_limit= 20-8
fast_math 20-8
growth_limit= 20-11, 20-20, 20-22
loops= 20-15
objects= 20-13
opt_class= 20-2
optimize_for_space 20-8
variable_limit= 20-8

-Qalign_double
see Table 2-1 20-3

-Qavoid_overflow
see Table 2-1 20-3

-Qinline_divide
see Table 2-1 20-3

-Qinvert_divides
see Table 2-1 20-3

-Qnotic
see Table 2-1 20-3

-Qschedule_tn_window
see Table 2-1 20-3

-Qskew_large_arrays
see Table 2-1 20-3

-Qtic
see Table 2-1 20-3

guery operations 22-61

Queue functions 16-33

Queue Management 16-32, 16-33

-Qunaligned_args
see Table 2-1 20-3

R

Random number functions 16-42
Reference

backward 2-5

forward 2-5
Region constant 20-20
Register allocation 20-10, 20-24
Register name

floating-point 2-6

general 2-6

special-purpose 2-6
Regular expression and pattern matching functions

Index-9

Compilation Systems Volume 2 (Concepts)

16-27
regular expressions 6-4-6-6
relocatable files (see also object files) 4-9, 22-1
Relocatable object file 1-3, 2-1, 2-2
relocation 22-27
report(1l) 1-4
rmdel(1) 14-9, 14-23-14-24

sact(1) 14-9, 14-23

sbyte directive 2-14

SCCS 14-1-14-29

SCCS, auditing files 14-28-14-29
SCCS, changing comments 14-24

SCCS, changing file parameters 14-19, 14-20-14-21

SCCS, commands 14-7-14-26
SCCS, creating files 14-2, 14-19-14-21
SCCS, file format 14-27-14-28
SCCS, file protection 14-26-14-27
SCCS, ID keywords 14-10
SCCS, marking differences 14-19, 14-25
SCCS, printing files 14-21-14-23
SCCS, removing versions 14-23-14-24
SCCS, retrieving files 14-2-14-3, 14-9-14-17
SCCS, updating files 14-3, 14-17-14-19
SCCS, usage example 14-2-14-4
SCCS, use with make(1) 13-13-13-14
SCCS, version numbering 14-5-14-7
scesdiff(1) 14-9, 14-25
Section
Jbss 2-1, 2-11, 2-17
.comment 2-18, 2-19
.data 2-1, 2-3, 2-11, 2-13
rela_* 2-2
.symtab 2-2
text 2-1, 2-5, 2-11, 2-13
section directive 2-13
Security functions 16-50
Selecting compiler optimization levels 20-2
Semaphore functions 16-33
Separate lifetimes 20-12, 20-15
set directive 2-16
Shadow password file functions 16-15
shalf directive 2-15
Shared library 1-6
Shared memory functions 16-30
Shared object 1-6
Shared object functions 16-22
shared objects 4-8
guidelines for building 4-18, 4-22
implementation 4-17, 4-18, 22-27, 22-45

Index-10

linking with 4-9, 4-16, 4-35
shared objects, creating

creating 4-12, 4-13, 4-18
short directive 2-14
Signal functions 16-47
Signal Handling Functions 16-47
size directive 2-18
size(1) 1-5
Sizer 1-5
Sorter

topological 1-5
Special files functions 16-12
Special-purpose register name 2-6
Stack 1-6
Stack frame 1-6
Statement

null 2-4
Static link 1-6
static linking 4-8

implementation 4-17
STATIC_LINK environment variable 4-8
Straightening blocks 20-10, 20-11
STREAMS functions 16-11
Strength reduction 20-13, 20-18, 20-20, 20-21
String and characters functions 16-22
string directive 2-16
String Manipulation Functions 16-22
String manipulation functions 16-23
strip(1) 1-5
Stripper 1-5
Subprograms

inline expansion 20-26
Symbol table 1-5, 2-1

Table

symbol 1-6

Symbolic debugger 1-3, 1-4
Symbols 2-2, 2-6
System environment functions 16-53
System libraries 16-1

Table

symbol 1-5, 2-1
Table functions 16-31
Table Management 16-31
tdesc 1-6
tdesc (text description) 23-1
Temporary file functions 16-22
TERM environment variable 9-2
Terminal I/O functions 16-10
Test replacement 20-18, 20-21

Text description (tdesc) 23-1

Text description information 1-6

text directive 2-13

text segment (see also object files) 4-17, 4-18, 4-19,
4-20, 4-21

Time Functions 16-33

TMPDIR environment variable 2-2,9-13

Topological sorter 1-5

Translator 1-5

Tree functions 16-31

Trigonometric Functions 16-37

Trigonometric functions 16-37

Trigonometric identities 20-17

tsort(1) 1-5

type directive 2-18

type information 22-61

uahalf directive 2-15

uaword directive 2-15

ubyte directive 2-14

uhalf directive 2-15

undefined symbols 4-8

unget(1) 14-8, 14-13

Unreachable code 20-11

Unsafe optimizations 20-21

User and accounting file functions 16-16
User-defined identifier 2-6
User-level interrupt functions 16-49

\%

val(1) 14-9, 14-26
Variable
EDITOR 9-2,9-18
LD_BIND_NOW 4-16, 22-47, 22-55
LD_LIBRARY_PATH 4-7, 4-14, 4-36, 22-52
LD_RUN_PATH 4-7, 4-15, 4-36
MAKEFLAGS 13-18
PARALLEL 13-5,13-17
STATIC_LINK 4-8
TERM 9-2
TMPDIR 9-13
VIEWER 9-2
VPATH 9-2,9-13
Variable length displacements 2-20
Variable optimizations 20-10, 20-12, 20-14, 20-15,
20-16
Variables

Index

Copy 20-15, 20-16
Number to optimize 20-13
Optimizing 20-12
Separate lifetimes 20-15
vbyte directive 2-14
version directive 2-4, 2-6, 2-7, 2-18
Version number
assembler 2-3
VIEWER environment variable 9-2
virtual addressing 22-42
VPATH environment variable 9-2, 9-13

W

weak directive 2-17

weak symbols 4-22, 4-23

what(1) 14-9, 14-24-14-25

Wide character test functions 16-26
Wide string manipulation functions 16-24
word directive 2-15

Y

yacc(l) 1-4, 7-1-7-39

yacc(1), definitions 7-7-7-8

yacc(1l), disambiguating rules 7-12-7-20

yacc(1), error handling 7-20-7-22

yacc(1), how to write source 7-3-7-7

yacc(1), library 6-17, 7-22-7-23

yacc(1l), parser actions 7-9-7-12

yacc(1), routines 7-26

yacc(1), source format 7-3

yacc(1l), symbols 7-3-7-7

yacc(1), typing 7-27-7-28

yacc(1l), usage examples 7-29-7-39

yacc(1l), use with lex(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-
7-8,7-22-7-23

yacc(l), yylex() 7-22

yacc(l), yyparse() 7-22-7-23

zero directive 2-12
Zero-trip test 20-11

Index-11

Compilation Systems Volume 2 (Concepts)

Index-12

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

-
)
=
@
<
>
X
O
w

Programmer

Compilaton Systems
Volume 2 (Concepts)

0890460

	Compilation Systems Volume 2 (Concepts)
	Preface
	Contents
	Part 4 - Environments
	Introduction to Environments
	Introduction

	Run-Time Libraries
	Introduction
	System Libraries
	C Library
	Alternate C Library
	Math Library
	Alternate Math Library
	ELF Library
	DWARF Library
	General-Purpose Library

	Including Functions and Data
	Including Declarations

	Listing of Functions
	Input/Output Control
	File and I/O Control and Access
	File and I/O Status
	Directories
	File Systems
	General Input
	General Output
	Terminal I/O
	STREAMS
	Pipes and FIFOs
	Devices

	Special Files
	File Systems Table File
	File Systems Mount Table File
	Password File
	Shadow Password File
	Group File
	User and Accounting Information Files
	ELF Files
	DWARF Debugging Information
	Shared Objects
	Temporary Files

	Strings and Characters
	String Manipulation
	Wide String Manipulation
	Character Test
	Wide Character Test
	Character Translation
	Multibyte and Wide Characters
	Regular Expression and Pattern Matching

	Memory
	Memory Manipulation
	Memory Allocation
	Memory Control
	Shared Memory

	Data Structures
	Tables
	Hash Tables
	File Trees
	Binary Trees
	Message Queues
	Queues
	Semaphores

	Date and Time
	General Date and Time
	Interval Timer
	POSIX Timer

	Internationalization
	Locales
	Message Catalogs

	Mathematic and Numeric
	Trigonometric
	Bessel
	Hyperbolic
	Miscellaneous Mathematic Functions
	Numeric Conversion
	Other Arithmetic
	Floating-Point Environment
	Pseudo-Random Number Generation Functions

	Programs
	Flow
	Profile
	Parameters

	Processes
	Control
	Signals
	User-Level Interrupts
	Lightweight Processes

	Security
	Access Control Lists
	Auditing
	Levels
	Other Security
	Encryption and Decryption

	System Environment
	Loadable Kernel Modules
	Other System Environment

	Floating-Point Operations
	Introduction
	IEEE Arithmetic
	Data Types and Formats
	Single-Precision
	Double-Precision
	Language Mappings

	Normalized Numbers
	Denormalized Numbers
	Maximum and Minimum Representable Floating-Point Values
	Special-Case Values
	NaNs and Infinities
	Rounding Control

	Floating-Point Exceptions
	Exceptions, Status Bits, and Control Bits
	Exception Handling

	Single-Precision Floating-Point Operations
	Single-Precision Functions

	Double-Extended-Precision
	IEEE Requirements
	Conversion of Floating-Point Formats to Integer
	Square Root
	Compares and Unordered Condition
	NaNs and Infinities in Input/Output

	Inter-Language Interfacing
	Introduction
	Subroutine Linkage
	The Stack Frame
	Parameters
	Return Values
	Prologue and Epilogue
	Register Usage

	External Names
	Data Types
	Scalar Types
	Structures
	Common Blocks

	Part 5 - Program Optimization
	Introduction to Program Optimization
	Introduction

	Program Optimization
	Introduction to Compiler Technology
	Compiler Optimization Options
	Setting the Compiler Optimization Level
	Controlling Compiler Optimizations
	Giving Hints to Compiler Optimizations (C++ only)
	Obtaining Optimization Messages

	Classes of Optimizations
	Branch Optimizations
	Straightening Blocks
	Folding Conditional Tests
	Eliminating Unreachable Code
	Inserting Zero Trip Tests
	Duplicating Partially-Constant Conditional Branches

	Variable Optimizations
	Dead Code Elimination
	Copy Propagation
	Separate Lifetimes
	Copy Variables

	Expression Optimizations
	Algebraic Simplification
	Address Mode Determination
	Common Subexpression Elimination
	Code Motion

	Loop Optimizations
	Loops with Multiple Entry Points
	Strength Reduction
	Test Replacement
	Duplicating Loop Exit Tests
	Loop Unrolling and Software Pipelining

	Register Allocation
	Instruction Scheduling
	Post-Linker Optimization
	Inline Expansion of Subprograms (Ada only)
	Optimization of Constraints (Ada only)
	Inline Expansion of Subprograms (C++ only)
	Precise Alias Analysis (C++ Only)

	Programming Techniques
	Coding Tips
	Identifying Performance Problems

	Debugging Optimized Code
	Understanding Optimization’s Effects on Debugging
	Examining Your Program

	Part 6 - Formats
	Introduction to Formats
	Introduction

	Executable and Linking Format (ELF)
	Introduction
	File Format
	Data Representation

	Program Linking
	ELF Header
	ELF Identification
	ELF Header Flags

	Section Header
	Special Sections
	Vendor Section

	String Table
	Symbol Table
	Symbol Values

	Relocation
	Relocation Types

	Program Execution
	Program Header
	Base Address

	Segment Permissions
	Segment Contents
	Note Section

	Program Loading
	Program Interpreter
	Dynamic Linker
	Dynamic Section
	Shared Object Dependencies
	Link Map
	Global Offset Table
	Function Addresses
	Procedure Linkage Table
	Hash Table
	Initialization and Termination Functions

	Symbolic Debugging Information

	tdesc Information
	Introduction
	tdesc Chunks
	tdesc in Executable Programs and Shared Objects
	Examples

	DWARF Debugging Information Format
	Introduction
	Purpose and Scope
	Overview
	Vendor Extensibility
	Changes from Version 1

	General Description
	The Debugging Information Entry
	Attribute Types
	Relationship of Debugging Information Entries
	Location Descriptions
	Location Expressions
	Register Name Operators
	Addressing Operations
	Literal Encodings
	Register Based Addressing
	Stack Operations
	Arithmetic and Logical Operations
	Control Flow Operations
	Special Operations

	Sample Stack Operations
	Example Location Expressions
	Location Lists

	Types of Declarations
	Accessibility of Declarations
	Visibility of Declarations
	Virtuality of Declarations
	Artificial Entries
	Target-Specific Addressing Information
	Non-Defining Declarations
	Declaration Coordinates
	Identifier Names

	Program Scope Entries
	Compilation Unit Entries
	Module Entries
	Subroutine and Entry Point Entries
	General Subroutine and Entry Point Information
	Subroutine and Entry Point Return Types
	Subroutine and Entry Point Locations
	Declarations Owned by Subroutines and Entry Points
	Low-Level Information
	Types Thrown by Exceptions
	Function Template Instantiations
	Inline Subroutines
	Abstract Instances
	Concrete Inlined Instances
	Out-of-Line Instances of Inline Subroutines

	Lexical Block Entries
	Label Entries
	With Statement Entries
	Try and Catch Block Entries

	Data Object and Object List Entries
	Data Object Entries
	Common Block Entries
	Imported Declaration Entries
	Namelist Entries

	Type Entries
	Base Type Entries
	Type Modifier Entries
	Typedef Entries
	Array Type Entries
	Structure, Union, and Class Type Entries
	General Structure Description
	Derived Classes and Structures
	Friends
	Structure Data Member Entries
	Structure Member Function Entries
	Class Template Instantiations
	Variant Entries

	Enumeration Type Entries
	Subroutine Type Entries
	String Type Entries
	Set Entries
	Subrange Type Entries
	Pointer to Member Type Entries
	File Type Entries

	Other Debugging Information
	Accelerated Access
	Lookup by Name
	Lookup by Address

	Line Number Information
	Definitions
	State Machine Registers
	Statement Program Instructions
	The Statement Program Prologue
	The Statement Program
	Special Opcodes
	Standard Opcodes
	Extended Opcodes

	Macro Information
	Macinfo Types
	Define and Undefine Entries
	Start File Entries
	End File Entries
	Vendor Extension Entries

	Base Source Entries
	Macinfo Entries for Command Line Options
	General Rules and Restrictions

	Call Frame Information
	Structure of Call Frame Information
	Call Frame Instructions
	Call Frame Instruction Usage

	Data Representation
	Vendor Extensibility
	Reserved Error Values
	Executable Objects and Shared Objects
	File Constraints
	Format of Debugging Information
	Compilation Unit Header
	Debugging Information Entry
	Abbreviation Tables
	Attribute Encodings

	Variable Length Data
	Location Descriptions
	Location Expressions
	Location Lists

	Base Type Encodings
	Accessibility Codes
	Visibility Codes
	Virtuality Codes
	Source Languages
	Address Class Encodings
	Identifier Case
	Calling Convention Encodings
	Inline Codes
	Array Ordering
	Discriminant Lists
	Name Lookup Table
	Address Range Table
	Line Number Information
	Macro Information
	Call Frame Information
	Dependencies

	Future Directions
	Appendix 1 -- Current Attributes by Tag Value
	Appendix 2 -- Organization of Debugging Information
	Appendix 3 -- Statement Program Examples
	Appendix 4 -- Encoding and decoding variable length data
	Appendix 5 -- Call Frame Information Examples

	DWARF Access Library (libdwarf)
	Introduction
	Purpose and Scope
	Definitions
	Overview

	Type Definitions
	General Description
	Scalar Types
	Aggregate Types
	Location Record
	Location Description
	Element List
	Subscript Bounds Information
	Data Block

	Opaque Types

	Error Handling
	Memory Management
	Read-only Properties
	Storage Deallocation

	Functional Interface
	Initialization Operations
	Debugging Information Entry Delivery Operations
	Debugging Information Entry Query Operations
	Array Subscript Query Operations
	Type Information Query Operations
	Attribute Form Queries
	Line Number Operations
	Global Name Space Operations
	Utility Operations
	Appendix1--libdwarf.h

	Index

