NightTrace Manual

(= concurrent 0890398-100
CORPORATION™ May 2003

Copyright 2003 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent products by Concurrent personnel, customers, and end—users. It may not be
reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent makes no warranties, expressed or implied, concerning the information contained in this
document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2881 Gateway Drive, Pompano Beach, FL 33069-4324. Mark the envelope “Attention: Publications Depart-
ment.” This publication may not be reproduced for any other reason in any form without written permission of the
publisher.

The license management portion of this product is based on:

Elan License Manager
Copyright 1989-1994 Elan Computer Group, Inc.
All rights reserved.

NightTrace, KernelTrace, NightView, NightStar, Power Hawk, RedHawk, and MAXAda are trademarks of Concurrent Computer Corporation.
Elan License Manager is a trademark of Elan Computer Group, Inc.
PowerPC is a trademark of International Business Machines, Corp.

Motif, OSF, and OSF/Motif, X Window System and X are trademarks of The Open Group

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- August 1992 000 NightTrace 1.0
Current Release -- May 2003 100 NightTrace 5.2

Scope of Manual

Preface

This manual is a reference document and users guide for NightTrace™, a graphical, inter-
active debugging and performance analysis tool, and KernelTrace™, a tool that collects
and textually analyzes system performance.

Structure of Manual

A brief description of the chapters and appendixes in this manual follows:

Chapter 1 contains introductory material on NightTrace.

Chapter 2 gives the syntax and examples of NightTrace library calls.
Chapter 3 introduces the NightTrace main window and its usage.

Chapter 4 describes the nt r aceud command line user daemon.

Chapter 6 describes how to invoke the nt r ace display utility.

Chapter 7 shows how to view trace event logs with nt r ace.

Chapter 8 describes display pages and their various components.

Chapter 9 details the methods for creating and configuring display objects.
Chapter 10 defines NightTrace expressions.

Chapter 11 tells about NightTrace’s built-in tools.

Chapter 12 describes kernel tracing.

This manual also contains three appendixes, a glossary, and an index.

Appendix A describes performance tuning.
Appendix B describes graphical user interface (GUI) customization.

Appendix C provides answers to common questions.

The glossary contains an alphabetical list of NightTrace, X™, and Motif™ words and
phrases used in this manual and their definitions. The index contains an alphabetical list of
topics, names, etc. found in the manual.

Man page descriptions of programs, system calls, subroutines, and file formats appear in
the system manual pages.

NightTrace Manual

Syntax Notation

The following notation is used throughout this guide:

italic

list bold

list

emphasis

window

[]

{}

Referenced Publications

Books, reference cards, and items that the user must specify
appear in italic type. Special terms and comments in code may
also appear in italic.

User input appears in | i st bol d type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appearin| i st bol d type.

Operating system and program output such as prompts and mes-
sages and listings of files and programs appears in | i St type.
Keywords also appear in | i St type.

Words or phrases that require extra emphasis use emphasis type.

Keyboard sequences and window features such as button, field,
and menu labels and window titles appear in window type.

Brackets enclose command options and arguments that are
optional. You do not type the brackets if you choose to specify
such option or arguments.

Braces enclose mutually exclusive choices separated by the pipe
() character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

The following publications are referenced in this document:

0830048
0830046
0890240
0890300
0890378
0890380
0890395
0890423
0890429
0890430
0890460
0890466

HN6200 Architecture Reference Manual
HN6800 Architecture Manual

hf77 Fortran Reference Manual

X Window® System User’s Guide

C: A Reference Manual

OSF/Motif™ Documentation Set (3 volumes)
NightView™! User’s Guide

PowerMAX OS™? Programming Guide
System Administration Volume 1

System Administration Volume 2
Compilation Systems Volume 2 (Concepts)
PowerMAX OS™ Real-Time Guide

1. NightView is a trademark of Concurrent Computer Corporation
2. PowerMAX OS is a trademark of Concurrent Computer Corporation

0890474
0890516
0891019
0891055
0891082

Preface

NightTrace™ Pocket Reference

MAXAda™ Reference Manual

Concurrent C Reference Manual

Elan™ License Manager Release Notes

Real-Time Clock and Interrupt Module User’s Guide

PowerPC™* 604 RISC Microprocessor User’s Manual (not avail-
able from Concurrent Computer Corporation)

3. Elan License Manager is a trademark of Elan Computer Group, Inc.
4. PowerPC is a trademark of International Business Machines, Corp.

NightTrace Manual

Contents

Chapter 1 Introduction

What is NightTrace?ttt e 1-1
Userand Kernel Tracing.t 1-2
Timestamp Source Selection, 1-2
Trace-Point Placement i 1-2
Languages Supported ot 1-3
Processes and CPUSt e 1-3
Information Displayed 1-3
Searches and Summariesot 1-3

Logging and Analysisttt 1-3
The User Trace Event Logging Procedure 1-4
The Kernel Trace Event Logging Procedure 1-5
The Trace Event Analysis Procedure 1-6

Recommended Reading. i 1-7

Chapter 2 Adding Library Calls to Your Application

Language-Specific Source Considerationsoo v, 2-1
o 2-1
Fortran 2-2
Ada . 2-2

Inter-Process Communication and Library Routines 2-2

Understanding NightTrace Library Calls 2-3
trace begin(). . .« oot 2-5
trace_open thread() 2-9
trace_event() and Its Variants. 2-10
trace_enable(), trace disable(), and Their Variants 2-16
trace_flush() and trace trigger()......... ... 2-20
trace _close thread().......... ... 2-22
trace end() 2-23

Disabling Tracingttt e e e 2-24

Compiling and Linking 2-24
CExampleo 2-25
Fortran Example. 2-25
AdaExample 2-25

Chapter 3 Using the NightTrace Main Window

Components of the NightTrace Main Window 3-2
NightTrace Main Window MenuBar. 33
NightTrace. . ..o e e e 3-4

OPEN SESSION .« o v vttt ettt e et 3-6

Save SeSSION. . ..ot 3-8

Unsaved Changes.ovitiii ittt 3-10

Daemons 3-11

NightTrace Manual

Login 3-14

Enter Password. 3-15
AttachDaemons. i 3-15

Pages ... 3-18
OPLIONS. .« o v ettt e e e e e 3-20
RefreshInterval, 3-20

Display Buffer Size Warning 3-21

T00lS .« 3-22
Help . .o 3-23
Session Configuration File Name Area 3-25
Daemon Control Area.ttt 3-26
Enable / Disable Trace Events., 3-31
Session OVEIVIEW ATCA. . . . oottt it ettt et et et et 3-33
Daemon Definition Dialog. 3-35
Import Daemon Definition 3-37
General 3-39
Target. . o e 3-39
Trace Events Output i 3-41
USEr TracCe. .« . v ov vttt e e e e e e e 3-44
Locking Policies i 3-44
Shared MemMOTryot 3-46
Timestamp Heartbeat. 3-47
UserEventBuffer 3-47
EVvents . ..o e 3-48
Runtime. 3-50
Scheduling 3-50
CPUBIAS . . . oot 3-51
NUM A . 3-52
Policies 3-53

Other . .o 3-54
Streaming OptionSo v ittt e 3-54
Kernel Trace Buffer Options 3-55

Chapter 4 Generating Trace Event Logs with ntraceud

The ntraceud Daemon i 4-1
The Default User Daemon Configuration, 4-2
ntraceud Modes 4-4
NEraceud OPLiONS . . . v vttt et e e e e e 4-5
Optionto Get Help (-help)o e 4-7
Option to Get Version Information (-version) 4-8
Option to Disable the IPL Register (-ipldisable) 4-9
Option to Prevent Page Locking (-lockdisable) 4-11
Option to Establish File-Wraparound Mode (-filewrap). 4-12
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-13
Option to Define Shared Memory Buffer Size (-memsize) 4-16
Option to Set Timeout Interval (-timeout) 4-17
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-18
Option to Select Timestamp Source (-clock) 4-19
Option to Reset the ntraceud Daemon (-reset)cooun... 4-20
Option to Quit Running ntraceud (-quit), 4-21
Option to Present Statistical Information (-stats) 4-22
Option to Disable Logging (-disable). 4-24

Contents

Option to Enable Logging (-enable). 4-26
Invoking ntraceud 4-28

Chapter 5 Generating Trace Event Logs with ntracekd

The ntracekd Daemon 5-1
ntracekd Modes 5-1
ntracekd OPtionsottt 5-2
ntracekd Invocations 5-4

Chapter 6 Invoking NightTrace

Command-line OPtionS vo ittt ettt e e e et e 6-1
SuMmAary Criteria. ov ettt et e ettt 6-5
Command-line ATgUMENLS.ottt ettt ettt 6-9
Trace Event Files o i 6-10
EventMap Files o 6-10
Page Configuration Files 6-12
Tables . ..o 6-13

String Tables i 6-14

Pre-Defined String Tables, 6-16

Format Tables. i 6-19

Pre-Defined Format Tables 6-23

Session Configuration Files 6-23
Trace Data Segments i 6-24

Chapter 7 Viewing Trace Event Logs

Mouse Button Operationsuutui it 7-3
VIEWING Strategy . . . o oottt e et e 7-3
Editing Single Fields 7-5
Editing Multiple Fields. 7-5
Editing Text Fields o 7-7
Positioning Within Text Fields. 7-8

Chapter 8 Display Pages

Default Display Page. e 8-1
Components of a Display Page i 8-3
Menu Bar. 8-4
Page . e 8-4
Bdit. ..o 8-5
Create . . oot 8-6
ACHIONS . . .ot 8-8
Help ..o e 8-10
Mode Buttons 8-12
Message Display AT€a. ... oo vttt e 8-13
Grid .. e 8-13
Interval Scroll Bar 8-15
Interval Control Area. e 8-16
Interval Push Buttons. 8-20

NightTrace Manual

Chapter 9 Display Objects

Types of Display Objects.o 9-3
Grid Label. 9-4
Data BoX o 9-5
COlUMN . .o 9-6
Event Graph e 9-7
State Grapht 9-8
DataGraph e 9-9
Ruler . .. 9-10

Operations on Display Objectsttt 9-12
Creating Display Objectst e 9-12
Selecting Display ObjectS. oo it 9-13
Moving Display Objects.ot 9-14
Resizing Display Objectst 9-14
Configuring Display Objectsc. i, 9-15

Grid Label 9-16
Data BOXo 9-18
Event Graph. 9-21
State Graph 9-23
DataGraph. e 9-27
Ruler ... 9-30
Common Configuration Parameters 9-32
Name. . oot 9-32
Event List.o 9-32
I EXPression.t e e 9-33
Then EXpression.out vttt i 9-34
CPU LiSt. o oottt e e e e 9-35
PID LiSt ..ottt e e e e e 9-35
TID LSt « oottt e e 9-36
Node List ..o ovt 9-37
Foreground Color.ot e 9-38
Background Color i 9-38
Font. ... 9-38
TextJustify 9-39
Text Gravity . ..ot 9-39
Configuration Form Push Buttons. 9-40

Chapter 10 Using Expressions

10

EXPIeSSIONS . ..ottt ettt e e 10-1
(00155 110 PP 10-1
OPeraANdS . . . oottt 10-2
COMSEANES. .« o vttt et 10-2
Functions.o 10-4

Function Parameters, 10-7
Function Terminology ot 10-8
Trace Event Functions.oi it 10-14
IA0) o 10-15
ATE() vt e 10-16
arg dbl() 10-17
UM ATZS() + v vt ettt e e e e e e et e 10-18
PIA0) e 10-19
raw_Pid() ..o 10-20

Contents

Iwpid() - .o 10-21
thread id() ... 10-22
task 1d() . ..o o 10-23
19 T) T 10-24
CPU) e - e et e 10-25
OffSet() . .o 10-26
ME() « ottt e 10-27
node id()ot 10-28
pid_table name() 10-29
tid table name() 10-30
node NAmMeE(). . ..ottt 10-31
Process NAME() - . v v vttt et e e e 10-32
task name() 10-33
thread name() 10-34
Multi-Event Functions 10-35
EVENE ZAP() -+ v vt 10-35
event matches() 10-36
State Functions 10-37
Start Functions 10-37
start 1d() . ..o 10-38
Start arg() - .o 10-39
start_arg dbl(). 10-40
start nUM_args() . . -« o vt 10-41
start pid() .. oo 10-42
start raw_pid() . ..o 10-43
start Iwpid()o 10-44
start thread id() 10-45
start task id().. ... 10-46
start tid(). . . oo 10-47
StArt CPU() .« vt 10-48
start offset() 10-49
Start time()ot 10-50
start node id() 10-51
start pid table name()............. 10-52
start_tid table name() 10-53
start node name() 10-54

End Functions i 10-55
end 1d(). 10-56

end arg(). ... 10-57
end arg dbl() 10-58

end num_args() 10-59

end pid(). ... oo 10-60
end raw pid().o 10-61

end Iwpid(). o 10-62

end thread id()......... 10-63

end task id() 10-64

end tid() 10-65

end cpu() - .ot 10-66
end offset(). ... 10-67

end time().ot 10-68

end node id()........ ... 10-69

end pid table name() 10-70

end tid table name()........... 10-71

end node name() 10-72

11

NightTrace Manual

Multi-State Functions. 10-73
state gap(). . ot 10-73
state dur() 10-74
state matches() 10-75
state Status() . ..ot 10-76
Offset Functions. 10-77
offset id(). ... oo 10-78
offset arg().o 10-79
offset arg dbl() 10-80
offset num_args(). oot 10-81
offset pid(). . ..o oo 10-82
offset raw pid(). oot 10-83
offset Iwpid().t 10-84
offset thread id()........... 10-85
offset task id().. 10-86
offset tid()o oot 10-87
offset cpu(). . oo e e 10-88
offset time().ot 10-89
offset node id()...... ... 10-90
offset pid table name()..........., 10-91
offset tid table name(), 10-92
offset node name()o 10-93
offset process name()oouiiiii i 10-94
offset task name()......... 10-95
offset thread name(), 10-96
Summary Functions. 10-97
1001181 PO 10-97
NAX(). + ettt e e e 10-98
AVE() + ot 10-99
SUIM).+ vttt et e e e e e e
10-100
min_offset()
10-101
max_offset()
10-102
summary matches()ou i
10-103
Format and Table Functions
10-104
et StNG() .« ot e
10-104
et TteM() . . oot
10-106
get format()
10-108
format().
10-110
MaACIOS .« . ettt e e
10-111
Qualified Events e
10-113
Qualified States.o e
10-116
NightTrace Qualified Expressions.ot .

12

Contents

10-119
Edit NightTrace Qualified Expression.,
10-122

Chapter 11 Search and Summarize

Searching for Points of Interest. 11-1
Search Optionsot 11-10
Summarizing Statistical Information. 11-12
CIIteria . . o oottt e 11-14
(0075 10) 4 T3 11-26

Chapter 12 Tracing the Kernel

Default Kernel Trace Pointsttt 12-1
Context Switch Trace Event. 12-2
Interrupt Trace Events 12-2
Exception Trace Events i 12-3
Syscall Trace Events. it e 12-4

Kernel Trace Points Not Enabled By Default 12-5
Page Fault Event. i 12-5
Protection Fault Event i, 12-5

Viewing Kernel Trace Event Files. i ... 12-6
Kernel Display Pagest i 12-6

RCIM Default Kernel Display Page 12-7
CPU Information.ottt 12-9
Running Process Information 12-10
Node Information it 12-11
Context Switch Information 12-11
Interrupt Information. 12-12
Exception Information. L 12-13
Syscall Information. i 12-15
Color Information it 12-16
Kernel String Tables. e 12-16

Kernel Reference. e 12-18

INterrupts. . . oo 12-19
Non-Device-Related Interrupts., 12-19
Device-Related Interruptsot 12-20

EXCOPUONS .o\ttt 12-20

SYSCallS. . . vt 12-21

Appendix A Performance Tuning

Preventing Trace Events Loss i A-1
Ensuring Accurate TIMIngsv ottt et A-3
Optimizing File Systemand CPUUsage, A-3
Conserving Disk Space o A-4
Conserving Memory and Acceleratingntrace.o . A-4

Appendix B GUI Customization

Default X-Resource Settings forntrace. B-2

13

NightTrace Manual

Exampleso B-5
Exercise: Customizing Display Colors., B-5

Appendix C Answers to Common Questions

lllustrations
Figure 1-1. Example of Instrumented CCode 1-4
Figure 1-2. Example of a User Display Page with Display Objects. 1-6
Figure 2-1. Inter-Process Communication and Library Routines. 2-4
Figure 3-1. NightTrace Main Window 3-2
Figure 3-2. NightTrace menuttt 3-4
Figure 3-3. Open Sessiondialog00t 3-7
Figure 3-4. Save Sessiondialog i 3-9
Figure 3-5. Unsaved Changes dialog i, 3-10
Figure 3-6. Daemons Menuounoninerninen e 3-11
Figure 3-7. Logindialogttt i 3-14
Figure 3-8. Enter Password dialog 3-15
Figure 3-9. Attach Daemonsdialog 3-16
Figure 3-10. Daemons MeNUouuuintntnterenenenenenenennns 3-18
Figure 3-11. New Display Page i, 3-19
Figure 3-12. Options MENUottt ettt e e e 3-20
Figure 3-13. Refresh Intervaldialog, 3-21
Figure 3-14. Display Buffer Size Warning dialog 3-21
Figure 3-15. Toolsmenuttt 3-22
Figure 3-16. Helpmenu it 3-23
Figure 3-17. Session Configuration File Name Area 3-25
Figure 3-18. Daemon Control Areaottt 3-26
Figure 3-19. Enable / Disable Trace Events dialog 3-31
Figure 3-20. Session OVerview Areaouiiit et 3-33
Figure 3-21. Daemon Definitiondialog 3-35
Figure 3-22. Import Daemon Definition dialog 3-37
Figure 3-23. Daemon Definition dialog - General 3-39
Figure 3-24. Daemon Definition dialog - User Trace 3-44
Figure 3-25. Daemon Definition dialog-Events 3-48
Figure 3-26. Daemon Definition dialog - Runtime 3-50
Figure 3-27. Daemon Definition dialog - Other 3-54
Figure 7-1. A Display PageinViewMode 7-2
Figure 7-2. Deciding What to Do Nextin ViewMode 7-4
Figure 8-1. A Default Display Page 8-2
Figure 8-2. Components of a DisplayPage 8-3
Figure 8-3. Display Page-Pagemenu................, 8-4
Figure 8-4. Display Page-Editmenu 8-5
Figure 8-5. Display Page - Createmenuc.ccoiiiirininnn... 8-6
Figure 8-6. Display Page - Actionsmenu, 8-8
Figure 8-7. Display Page-Helpmenu.............. 8-11
Figure 8-8. Mode Buttonsiiiitir i 8-12
Figure 8-9. Message Display Areacitntirieiin i 8-13
Figure 8-10. The Grid i e 8-14
Figure 8-11. The Interval Scroll Bar 8-15
Figure 8-12. Interval Control Areaottt 8-17
Figure 8-13. Amount of Scrolling Due to Increment Value 8-19
Figure 8-14. The Interval Push Buttons 8-20

14

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.
Figure 10-16.
Figure 10-17.
Figure 10-18.
Figure 10-19.
Figure 10-20.
Figure 10-21.
Figure 11-1.
Figure 11-2.
Figure 11-3.
10-114
Figure 11-4.
10-117
Figure 11-5.
10-119
Figure 11-6.
10-122
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 13-9.
Figure 13-10.
Figure 13-11.
Figure 13-12.
Events
Figure 13-13.
Figure 13-14.

Contents

Display Page with Display Objects 9-1
Grid Label Examples 9-4
Data Box Examples i 9-5
Column Example 9-6
Event Graph Example 9-7
State Graph Example, 9-8
Data Graph Examples 9-9
Ruler Example 9-10
Ruler Indicators i 9-11
Grid Label Configuration Form 9-16
Data Box Configuration Form 9-18
Event Graph Configuration Form 9-21
State Graph Configuration Form 9-23
Data Graph Configuration Form 9-27
Solidvs. No Fill 9-27
Maximum vs. Minimum Values 9-29
Ruler Configuration Form 9-30
Mark and Lost Event Markers 9-30
Left-, Center-, and Right-Justified Text 9-39
Top vs. Bottom Gravityt 9-39
Configuration Form Push Buttons 9-40
Function Terminology Illustrated 10-9
Statesand Events i 10-10
Choosing a Key / Value pair for a qualifiedevent
Customizing a qualifiedstate
NightTrace Qualified Expressions dialog
Edit NightTrace Qualified Expression dialog
Search NightTrace Eventsdialog 11-1
Search Options dialog 11-10
Summary results displayed in Summarize dialog 11-12
Summarize NightTrace Events dialog - Criteriapage 11-14
State Summary Graph 11-24
Summarize NightTrace Events dialog - Options page 11-26
Sample Kernel Display Page 12-7
Node Selection Dialog 12-8
Node Selection Warning Dialog 12-9
Per-CPU Information., 12-9
CPU BOX .ottt 12-9
Running Process Boxes 12-10
Node BOX ...t 12-11
Context SwitchLines 12-11
Last Interrupt Box and Interrupt Graph. 12-12
Last Exception Box and Exception Graph. 12-13
TR PAGEFLT ADDR and TR PROTFLT ADDR Events. 12-14
TR_SWITCHIN vs. TR PAGEFLT ADDR and TR PROTFLT ADDR
... 12-15
Last Syscall Box and Syscall Graph 12-15
Color Key . ..o 12-16

15

NightTrace Manual

Screens

Tables

Glossary

Index

16

Screen 4-1. Sample Output from the ntraceud -help Option. 4-7
Screen 4-2. Sample Output from ntraceud -stats Option 4-23
Table 4-1. NightTrace Configuration Defaults 4-4
Table 4-2. Mode-Selection Guidelines i n.... 4-5
Table 4-3. NightTrace Operating Modes., 4-5
Table 4-4. ntraceud Disable Sequence #1 4-25
Table 4-5. ntraceud Disable Sequence #2............ ..., 4-25
Table 4-6. ntraceud Enable Sequence #1 4-27
Table 4-7. ntraceud Enable Sequence #2 4-27
Table 7-1. View-Mode Mouse Button Operations 7-3
Table 7-2. Valid Multiple Field Changes, 7-6
Table 7-3. Making Editing Changes iiinininenann.. 7-7
Table 7-4. Positioning Withina Text Field............. 7-8
Table 8-1. Manipulating the Interval Scroll Bar. 8-16
Table 9-1. Examples of If Expressions n.... 9-33
Table 9-2. Examples of Then Expressions, 9-34
Table 10-1. Time Units and Constant Suffixes............................. 10-3
Table 10-2. NightTrace Functions. 10-5
Table 12-1. Example Logical CPUMappingovuiinienennnnn.. 12-10
Table 12-2. Non-Device-Related Interrupt Reference 12-19
Table 12-3. Device-Related Interrupt Reference 12-20
Table 12-4. Exception Reference 12-21
Table B-1. Meanings of Common Subobjects and Attributes. B-2
Table B-2. Suggested Colors for X Resources coven. .. B-5

What is NightTrace? . .

1

Introduction

User and Kernel Tracing.ttt
Timestamp Source Selection
Trace-Point Placement
Languages Supported
Processes and CPUSs
Information Displayed
Searches and Summaries

Logging and Analysis .

The User Trace Event Logging Procedure
The Kernel Trace Event Logging Procedure
The Trace Event Analysis Procedure

Recommended Reading

1-1
1-2

1-2
1-3
1-3
1-3
1-3
1-3
1-4
1-5
1-6
1-7

NightTrace Manual

1
Introduction

This chapter provides an overview of NightTrace, steps involved in using the toolset, and
recommended readings.

What is NightTrace?

The NightTrace toolset is part of the NightStar™ family consisting of an interactive
debugging and performance analysis tool, trace data collection daemons, and an Applica-
tion Programming Interface (API) allowing user applications to log data values. Night-
Trace allows you to graphically display information about important events in your appli-
cation and the kernel, for example, event occurrences, timings, and data values.
NightTrace consists of the following parts:

NightTrace API Libraries and include files for use in user applications that log
trace events to shared memory

ntrace A graphical tool that controls daemon sessions and displays
user and kernel trace events in trace event file(s)

nt r aceud A daemon program that copies user applications’ trace events
from shared memory to trace event file(s)

nt r acekd A daemon program that copies operating system kernel trace
events from kernel memory to trace event file(s)

NightTrace is flexible. As a user, you control:

¢ Selection of user tracing of your application or kernel tracing
® Selection of timestamp source

¢ Trace-point placement within your application

® The source language of the trace application

¢ The number of processes and CPUs you gather data on

¢ The amounts and types of information you display

® Trace event searches and summaries

1-1

NightTrace Manual

User and Kernel Tracing

If interactions are important, you can simultaneously capture event information from your
application and from the kernel. Alternatively, you can capture just user events or
pre-defined kernel events.

Timestamp Source Selection

By default, an architecture-specific timing source is utilized. For Intel-based machines,
the Intel Time Stamp Counter (TSC register); for Night Hawk 6000 series machine, the
interval timer; for PowerHawk and PowerStack series machines, the Time Base Register
(TBR). However, the Real-Time Clock and Interrupt Module (RCIM) can be also used as
a timestamp source.

The RCIM is an optional hardware module, attached to a single-board computer (SBC),
which contains a tick clock that can be synchronized between several SBCs by way of an
interconnection cable. This synchronized tick clock can be used as a common time base
for both kernel-level tracing and user-level tracing across multiple SBCs. NightTrace sup-
ports using the RCIM synchronized tick clock to timestamp trace events and also supports
displaying trace data generated on multiple SBCs having the common time base. The
RCIM also contains a POSIX clock. However, the POSIX clock is not supported as a
timestamp source by NightTrace.

For more information about the RCIM, please see the cl ock_synchroni ze(1M,
rcim7),rcinmconfig(1lM,andsync_cl ock(7) man pages.

Trace-Point Placement

1-2

A trace point is a place of interest in the source code. At each user trace point, you make
your application log some user-specified information along with a timestamp and some
additional system information. This logged information is collectively called a trace
event. In user traces, each trace event has a user-defined trace event ID number, and two
different trace event IDs delimit the boundaries of a user-defined state.

Some typical user trace-point locations include:

® Suspected bug locations

® Process, subprogram, or loop entry and exit points

* Timing points, especially for clocking I/O processing
¢ Synchronization points/multi-process interaction

¢ Endpoints of atomic operations

* Endpoints of shared memory access code

Careful trace point placement allows you to easily identify patterns and anomalies in your
application’s behavior.

Introduction

Kernel trace points and trace events are pre-defined and embedded in the kernel source.

Languages Supported

The NightTrace library is callable from C, Fortran and Ada. This means that your
application can be written in any combination of these languages and still log trace events.

Processes and CPUs

A user daemon is responsible for actually recording the trace events logged by an applica-
tion to disk. It can interact with single-process and multi-process applications; the pro-
cesses may even run on different CPUs. When you log a trace event, NightTrace identi-
fies both the originating process and optionally the CPU. User daemons are initiated and
managed via the nt r ace graphical tool or via the nt r aceud command line tool.

Information Displayed

The nt r ace display utility lets you examine some or all trace events. Data appear as
numerical statistics and as graphical images. You can create and configure the graphical
components called display objects or use the defaults. By creating your own display
objects, you can make the graphical displays more meaningful to you. You can customize
display objects to reflect your preferences in content, labeling, position, size, color, and
font.

Searches and Summaries

With the nt r ace display utility, you can perform searches and summaries. Searches let
you filter out unwanted data and zero-in on trouble spots and specific data. Summaries let
you define characteristics of the trace event data to be summarized in several different
ways.

Logging and Analysis

NightTrace supports two activities: trace event logging and trace event analysis.

1-3

NightTrace Manual

The User Trace Event Logging Procedure

The following text describes user trace event logging. Follow these steps in the order
shown:

1. Establish a suitable environment for running your application and captur-
ing trace data. Make sure you meet all the system requirements discussed
in the NightTrace Release Notes for the version you are running.

2. Select trace points in your source code. A trace point marks a point in your
application that is important to debugging or performance analysis.

3. Insert a call to a NightTrace trace event logging routine at each trace point
in your source code, so you can later see the trace event information graph-
ically in nt r ace. You can manually insert these calls into your source
code or insert them into the final executable with the NightView debugger.
See the NightView User s Guide for more information.

4. Insert calls at appropriate places in your application to initialize the Night-
Trace trace event logging library and terminate logging. This is necessary
for resource allocation and deallocation, file creation, and flushing trace
events to disk. Steps 3 and 4 are called instrumenting your code. Figure 1-1
shows instrumented C code.

#i ncl ude <ntrace. h>
#def i ne START 10
#def i ne END 20

mai n()

{
trace_begin("log", 0);
trace_open_thread("main_thread");
trace_event (START);

process();

trace_event(END);
trace_cl ose_thread();
trace_end();

exit(0);

Figure 1-1. Example of Instrumented C Code

5. Compile and link your application with the NightTrace trace event logging
library. For example:

$ cc main.c process.c -Intrace -lud # for Power VAX
$ cc main.c process.c -Intrace -lccur_rt # for RedHawk

1-4

6.

10.

Introduction

Start NightTrace and use it to define a deamon session used to capture user
and/or kernel data. For example:

$ ntrace &

In the NightTrace Main Manager window, select the Daemon -> New
menu item which brings up a Daemons Definition dialog. Click on the
User Application radio button to define this as a user daemon. Click on
the Stream checkbox to ensure it is now unchecked. Enter the filename
passed to the t race_begi n() routine in the text field for the Key File.
Click the OK button.

Start the user daemon by clicking on the Start button in the Main window.
Once the state for the daemon changes to Paused, click the Resume
button.

Run your application. As NightTrace trace event logging routines execute,
they write trace event information into a shared memory buffer. Periodi-
cally, the user daemon copies this information to a trace event file on disk.
For example:

$ a. out

When the application completes, or when you have captured sufficient data
that you now wish to analyze, stop the daemon by pressing the Flush but-
ton followed by the Stop button.

To display the data, press the Display button.

The Kernel Trace Event Logging Procedure

Alternatively, to log and view kernel data, invoke the nt r ace command and follow these

steps:
$ nt
I.

race &

Define a kernel daemon in the NightTrace Main window by selecting the
Daemon -> New menu item which brings up a Daemons Definition
dialog. Click on the Kernel radio button to define this as a kernel daemon.
Click on the Stream checkbox to ensure it is now unchecked. Enter an
output filename, such as / t np/ ker nel - dat a in the text field for Out-
put File. Click the OK button.

Start the kernel daemon by clicking on the Start button in the NightTrace
Main window. Once the state displayed in the Daemon Control area for the
daemon changes to Paused, click the Resume button.

Allow the daemon to capture data for a few seconds, then click on the
Flush button followed by the Stop button.

To display the kernel data, click on the Display button. This will cause a
default kernel page to pop up. Repeatedly click on the Zoom Out button
on that page until you see data in the display pane. Note: if any display
page is already open, clicking the Display button will not automatically

1-5

NightTrace Manual

create a kernel display page. In such a case, open a default kernel page
from the main NightTrace dialog.

The Trace Event Analysis Procedure

File Edit Create Configure Expressions Tools Help

Display Page i TN —— \ \
: {garcia’ 200970
: Thread:}qﬂ {cap 81570}

E User Events: ‘

N T3 Z.s Is :
o ||:

o [y -

Time Start[0,0000000s Time Length [4,2251336= Time End [4,8261896=
Event Start[o Event Count/[3 Event End |z
Zoom Factor[2,0 Increment |25, 00% Current Time [1.20854725

| | Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 1-2. Example of a User Display Page with Display Objects

5. Tteratively locate and analyze significant data.

¢ Search for trace events of interest. You do this by controlling the
window that displays a portion of the trace event file. This window is
called the interval. You can control the interval by zooming in or out,
scrolling, searching for specific trace events, or jumping to portions
of the trace event file.

® Display summary information. This information may be about your
entire trace session or the characteristics of particular trace events
and states in this trace session.

1-6

Introduction

Recommended Reading

Referenced publications appear in the front of this manual. Related text books that are
useful resources for general background information follow.

X Window System Users Guide

This text book by Valerie Quercia and Tim O’Reilly is published by O’Reilly &
Associates, Inc. It is available under publication number 0890300. This text book
introduces X terminology and concepts. It also discusses several popular window
managers, the Xt er mterminal emulator, X resources, and X desk accessories.

OSF/Motif Style Guide

This text book is published by Prentice-Hall, Inc. It and its companion books
OSF/Motif User’s Guide and OSF/Motif Programmer s Guide are packaged together
under publication number 0890380. This text book introduces Motif terminology
and concepts. It also provides information about Motif features.

1-7

NightTrace Manual

1-8

2
Adding Library Calls to Your Application

Language-Specific Source Considerations, 2-1
o 2-1
Fortran 2-2
Ada . 2-2

Inter-Process Communication and Library Routines 2-2

Understanding NightTrace Library Calls 2-3
trace begin(). . .. oot 2-5
trace_open thread() 2-9
trace_event() and Its Variants. 2-10
trace_enable(), trace disable(), and Their Variants 2-16
trace_flush() and trace trigger()......... ...t 2-20
trace close thread()......... ... 2-22
trace end() 2-23

Disabling Tracingttt e 2-24

Compiling and Linking 2-24
CExampleo 2-25
Fortran Example. 2-25

AdaExample 2-25

NightTrace Manual

2
Adding Library Calls to Your Application

This chapter describes language-specific considerations for using NightTrace with user
applications.

CAUTION

Do not call cl ock_set ti me() from your application. This sys-
tem call can corrupt both the system interval timer and Time Base
Register which NightTrace uses for trace event timings.

Language-Specific Source Considerations

NightTrace applications must be written in C, Fortran, or Ada. For your applications to
trace events, you must edit your source code and insert NightTrace library routine calls
(unless you are using the NightView debugger). This is called instrumenting your code.
Before you begin this task, you should read the appropriate language section below.

NightTrace applications written in C include the NightTrace header file
/usr/incl ude/ ntrace. h with the following line:

#i ncl ude <ntrace. h>
The nt r ace. h file contains the following:
¢ Function prototypes for all NightTrace library routines
® Return values for all NightTrace library routines
¢ C macros (described in “Disabling Tracing” on page 2-24)

The library routine return values identify the type of error, if any, the NightTrace routine
encountered. If you think you may want to disable the NightTrace library routines in the
future without having to remove them from your source code, then you must include this
file in your application.

C programs that are multi-thread can also be traced with the NightTrace library routines.
For multi-thread programs, a C thread identifier is stored in each trace event, uniquely
identifying which C thread was running at the time the trace event was logged.

2-1

NightTrace Manual

Fortran

Ada

For more information on C, see C: A Reference Manual and the Concurrent C Reference
Manual.

The Fortran version of the NightTrace library routines follow hf 77 function-naming and
argument-passing conventions. For more information on hf 77, see the hf77 Fortran
Reference Manual.

All NightTrace library routines return | NTEGERS, but because they begin with a “t”,
Fortran implicitly types them as REAL. You must explicitly type them as | NTEGER so that
they work correctly. For example, to explicitly type the t r ace_begi n routine, use the
following declaration:

i nteger trace_begin

Ada applications can access the NightTrace library routines via the Ada package
ni ght trace_bi ndi ngs which is included with the MAXAda product (currently
only available on PowerMAX OS systems). The bindings can be found in the bi nd-
i ngs/ gener al environment in the source file ni ght _trace. a.

The ni ght _t race_bi ndi ngs package contains the following:

* An enumeration type consisting of the return values for all NightTrace
library routines

¢ The bindings that permit Ada applications to call the C routines in the
NightTrace library and to link in the NightTrace library

Many of the NightTrace functions have been overloaded as procedures. These procedures
act as the corresponding functions, except they discard any error return values.

Ada programs that use tasking can also be traced with the NightTrace library routines. For
multitasking programs, an Ada task identifier is stored in each trace event, uniquely
identifying which Ada task was running at the time the trace event was logged.

For more information on Ada, see the section titled “NightTrace Binding” in the MAXAda
Reference Manual.

Inter-Process Communication and Library Routines

2-2

Your application logs trace events to the shared memory buffer. Later, a user daemon cop-
ies trace events from the shared memory buffer to the trace event file. The relationship
between your application and the user daemon and the sequence of library calls needed to
maintain this relationship appears in Figure 2-1.

Adding Library Calls to Your Application

Understanding NightTrace Library Calls

There is a C, Fortran, and Ada version of each NightTrace library routine. These routines
perform the following functions:

Initialize a trace

Open the current thread for trace event logging
Log trace events to shared memory

Enable and disable specified trace events

Copy trace events from shared memory to disk
Close the current thread for trace event logging

Terminate a trace

See the NightTrace Pocket Reference card for a syntax summary of these routines. The
next sections describe these routines in detail.

2-3

NightTrace Manual

Parent processes follow this sequence: Child processes follow this sequence:
® trace_begin() ® trace_open_thread()
® trace_open_thread() ® |og trace events
® |og trace events e trace_close_thread()

e trace_close_thread()
e trace_end()

Thread 1
Process A < Thread 2

Process B \
Child of B Shared
\ Memory |-a—| USeEr

ChidofB | — ——— Buffer daenon

Task 1 /

Process C <:
Task 2 Trace Event

File

An application written in C can log trace events using:

e trace_event()

e trace_event_arg()

e trace_event_flt()

e trace_event_two_flt()
e trace_event_dbl()

e trace_event_two_dbl()
e trace_event_four_arg()

and it can control which trace events are logged and when they are written to disk using:

e trace_enable()

e trace_enable_range()
e trace_enable_all()

® trace_disable()

e trace_disable_range()
e trace_disable_all()

e trace_flush()

e trace_trigger()

Figure 2-1. Inter-Process Communication and Library Routines

24

Adding Library Calls to Your Application

trace_begin()

The t race_begi n() routine initializes the trace mechanism and acquires resources for
your process.

SYNTAX

C: int trace_begin(char *key file,
ntconfig_t * config);

Fortran: i nteger function trace_begi n(trace file)
character *(*) trace file
i nteger config(7)

Ada: function trace_begi n(
trace_file : string;
buffer size : i nt eger
use_spl : bool ean :
use_resched : bool ean : = fal se;
lock_pages : bool ean : = true;
clock : ntclock t :=
NT_USE_ARCHI TECTURE_CLOCK;
shmid_perm : i nteger := 8#666%#;
inherit : bool ean : = true)
return ntrace_error;

1024* 16;
true;

PARAMETERS

key file the user daemon logs trace events to an output file, key file. When
you invoke the user daemon, you must specify this file’s name. For
the user daemon to log your process’ trace events to this file, the
trace event file parameter in yourt r ace_begi n() call must corre-
spond to the key file value on the daemon invocation. The names do
not have to exactly match textually, but they do have to refer to the
same actual pathname; for example, one path name may begin at
your current working directory and the other may begin at the root
directory.

config For C and Fortran, either a NULL pointer, in which case the default
settings are used, or a pointer to a nt confi g_t structure. For Ada,
the individual members of the structure are supplied directly as
parameters to the routine, with appropriate default values. Both the
user application and the user daemon associated with it must agree

2-5

NightTrace Manual

2-6

ntc_buffer size

ntc_use_spl

on the configuration settings (or indicate that the other’s settings may
be preferred).

The size of the shared memory buffer in units of trace events. The
user daemon default size is 1024*16 events. The size must be greater
or equal to 4096.

Specifies that SPL preemption-control will be used (see
spl_request(3C)). This feature is not available on RedHawk Linux
systems and is automatically translated to ntc_use resched. The user
daemon default value is TRUE for PowerMAX OS and FALSE for
RedHawk Linux.

ntc_use_resched

Specifies that rescheduling variable preemption-control will be used
(See resched cntl(2)). The user daemon default value is FALSE for
PowerMAX OS and TRUE for RedHawk Linux.

ntc_lock pages

ntc_clock

Specifies that critical pages will be locked in memory. The user dae-
mon default value is TRUE.

Specifies which clock to use as a timing source. This value must be
one of NT_USE_ARCHI TECTURE_CL OCK or
NT_USE_RClI M _TI CK_CLOCK. The user daemon default value is
NT_USE_ARCH TECTURE_CLOCK.

ntc_shmid_perm

Specifies the permissions to use when creating the shared memory
segment. The user daemon default value is 0666.

ntc_daemon_preferred

DESCRIPTION

Specifies that if a user daemon already exists and the configuration
settings differ from these configuration settings, that the user daemon
settings are preferred and these values are ignored (although the
value of ntc_buffer size specified to this routine must not be larger
than the size set by the daemon).

The t race_begi n() routine performs the following operations:

® Verifies that the version of the NightTrace library linked with the
application is compatible with the version used by the user daemon if
it is already running

Adding Library Calls to Your Application

® Verifies the supplied configuration settings are not in conflict with a
pre-existing daemon or defines the configuration with these settings
if the user daemon does not yet exist.

® Verifies that the RCIM synchronized tick clock is counting if it was
selected as the timestamp source

¢ Attaches the shared memory buffer (after creating it if needed)
¢ Initialized the preemption control mechanism
® Locks critical NightTrace library routine pages in memory

¢ [Initializes trace event tracing in this process

(PowerMAX Only) For more information on shared memory and the system’s inter-
rupt priority level (IPL) register, see the PowerMAX OS Real-Time Guide. For infor-
mation about page-locking privilege (P_PLOCK), see i ntro(2).

A process that results from the exec(2) system service does not inherit a trace
mechanism. Therefore, if that process is to log trace events, it must initialize the
trace with t r ace_begi n() . Processes that result from a fork in a process that has
already initialized the trace need not call t r ace_begi n() .

The t race_begi n() routine must be called only once per parent process (unless
atrace_end() call has been made).

For processes using C threads and PowerMAX OS Ada tasks, all threads and tasks
will inherit the trace context of the t r ace_begi n() call that is made by any
thread or task of the process.

RETURN VALUES

Upon successful operation, the t r ace_begi n() routine returns NTNOERROR or
NTLISTEN; the latter in the case where no daemon has yet been started. A list of
trace_begi n() return codes follows.

[NTNOERROR) A daemon has already been started that matches the filename
passed as key file. The application can begin to log trace
events after calling t race_open_t hr ead().

[NTLI STEN] All operations where successful, but no user daemon matching
the filename passed as key _file could be found. The application
can continue to make NightTrace API calls but attempts to log
events will fail until a daemon is started, at which point log-
ging of events will succeed.

[NTALREADY] The application has already initialized the trace without an
intervening t r ace_end() . Tracing can continue in spite of
this error. Solution: Remove redundant t race_begi n()
calls.

[NTBADVERSI ON] The calling application is linked with the static NightTrace
library and the static library is not compatible with the Night-
Trace library being used by the user daemon. Solution: Relink

2-7

NightTrace Manual

2-8

[NTMAPCLOCK]

[NTPERM SSI ON]

[NTMAPSPLREG

[NTPGLOCK]

[NTNOSHM D]

SEE ALSO

the application with the static library version which matches
the library version being used by the daemon.

The selected event timestamp source could not be attached.
Solution: If read access is lacking, see your system administra-
tor.

This can also occur if the RCIM synchronized tick clock is
selected as the event timestamp source but the tick clock is not
counting. Solution: Start the synchronized tick clock by using
the cl ock_synchroni ze(1M command and restart the
application.

The calling application lacks permission to attach the shared
memory buffer. Solution: Make sure that the same user who
started the user daemon is the current user logging trace events
in the application.

The system’s IPL register could not be attached. Solution: If
read or write access is lacking, see your system administrator
or set ntc_use_spl to FALSE.

Permission to lock the text and data pages of the NightTrace
library routines was denied. If the user is not privileged to lock

pages, see your system administrator or set ntc_lock _pages to
FALSE.

This can occur if the size of the shared memory buffer exceeds
the system limit (SHMMAX) or the shared memory buffer
already exists but the size required by ntc_buffer size (which is
roughly ntc_buffer size * si zeof (nt event _t)) exceeds the
current size.

Related routines include: trace_open_t hread(),trace_end()

Adding Library Calls to Your Application

trace_open_thread()

Thetrace_open_t hread() routine prepares the current process C thread or Ada task
for trace event logging.

SYNTAX
C: int trace_open_thread(char *thread name);
Fortran: i nteger function trace_open_thread(thread name)
character *(*) thread name
Ada: function trace_open_t hread(
thread name : string
)
return ntrace_error;
PARAMETERS

thread name

In NightTrace every thread of execution to be traced (whether a sepa-
rate process, or a C thread or Ada task within a process) must be
associated with a name, thread name, which may be null. Night-
Trace’s graphical displays and textual summary information show
which threads logged trace events. If the t r ace_open_t hr ead()
thread name is null, the nt r ace display utility uses the global thread
identifier (TID) as a label in these displays. For more information on
global thread identifiers see “TID List” on page 9-36.

Naming your threads can make the displays much more readable.
trace_open_t hread() lets you associate a meaningful character
string name with the current threads’ more cryptic numeric TID. If
you provide a character string as the thread name, the nt r ace dis-
play utility uses it as a label in its displays. Because nt r ace may be
unable to display long strings in the limited screen space available,
keep thread names short. (Long thread names cause NightTrace to
log an NT_CONTI NUE overhead trace event.)

The following words are reserved in NightTrace and should not be
used in upper case or lower case as thread names: NONE, ALL,
ALLUSER, ALLKERNEL, TRUE, FALSE, CALC. Sce
“Pre-Defined String Tables” on page 6-16 for more information
about thread names.

NOTE

Thread names must begin with an alphabetic character and consist
solely of alphanumeric characters and the underscore. Spaces and
punctuation are not valid characters.

2-9

NightTrace Manual

DESCRIPTION

A NightTrace “thread” can be a process, C thread or Ada task. For ntrace
displays, t race_open_t hread() associates a thread name with the process,
thread or task logging trace events. Each process, including child processes, that
logs trace events must have its own t race_open_t hr ead() call. In addition, C
threads and Ada tasks may callt r ace_open_t hr ead() individually to associate
unique thread names with their trace events. In this way, the different trace contexts
of multiple processes, threads and tasks can be easily distinguished from each other.

For more information on threads, see “Programming with the Threads Library” in
the PowerMAX OS Programming Guide.

A process that results from the exec(2) system service does not inherit a trace
mechanism. Therefore, if that process is to log trace events, it must call both
trace_begin() andtrace_open_t hread().

RETURN VALUES

The trace_open_t hread() routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A list of t race_open_t hr ead() error codes follows.

[NTI NI T] The NightTrace library routines were not initialized or they
were initialized but no user daemon has yet been initiated.
Ensure a t race_begi n() call precedes this call. If the pre-
ceding t race_begi n() call returned NTLI STEN, then a
value of NTI NI T is not a failure condition and once a user dae-
mon is started, subsequent attempts at logging events will suc-
ceed.

[NTI NVALI Dj An invalid thread name was specified. Solution: Choose a
thread name that meets the requirements mentioned earlier.

[NTRESOURCE] There are not enough resources to open this thread. Solution:
Ask your system administrator to increase the size of the pro-
cess table.

[NTPGLOCK] Permission to lock the text and data pages of the NightTrace
library routines was denied. If the user has insufficient privi-
leges to lock pages, see the system administrator or specify that
page locking is not requested on the t r ace_begi n() call
and/or with the user daemon invocation.

SEE ALSO

Related routines include: trace_begi n(),trace_cl ose_t hread().

trace_event() and Its Variants

2-10

The following routines log an enabled trace event and possibly some arguments to the
shared memory buffer.

SYNTAX

Fortran:

Ada:

Adding Library Calls to Your Application

int trace_event (int ID);

int trace_event_arg (int /D, long arg);

int trace_event_flt (int D, float arg);

int trace_event_two_flt (int D, float argl, float argl);

int trace_event_dbl (int /D, double arg);

int trace_event_two_dbl (int D, double argl/, double argl);

int trace_event_four_arg (

int ID, |ong argl,

long arg2,

long arg3, long arg4

)

integer function
nt eger ID

nt eger function
nteger ID, arg

nt eger function
nt eger ID
real arg

integer function
integer ID
real argl, arg?

integer function
integer ID
doubl e precision

integer function
i nteger ID

doubl e precision

integer function

trace_event (ID)

trace_event_arg (ID, arg)

trace_event _flt (ID, arg)

trace_event _two_flt (ID, argl, arg2)

trace_event _dbl (ID, arg)

arg

trace_event _two_dbl (ID, argl, arg2)

argl, arg2

trace_event _four_arg (ID, argl, arg2, arg3, arg4)

i nteger ID, argl, arg2, arg3, arg4

type event _type is range 0.4095;

(procedures)

procedure trace_event (ID : event_type);

procedure trace_event (/D : event_type; arg : integer);

procedure trace_event (/D: event_type; arg : float);

2-11

NightTrace Manual

2-12

(functions)

procedure trace_event (
ID : event_type,

argl : float; arg2 : float
)

procedure trace_event (ID : event_type;
procedure trace_event (

ID : event_type,

argl : long_float; arg2 : long_float

)

procedure trace_event (

ID : event_type,

argl : integer; arg2? : integer;

arg3 . integer; arg4 : integer

)

function trace_event (ID :

return ntrace_error;

function trace_event (ID :

return ntrace_error;

function trace_event (ID:
return ntrace_error;

function trace_event (
ID : event_type;

argl : float; arg2 : float
)

return ntrace_error;

function trace_event (ID :

return ntrace_error;

function trace_event (
ID : event_type;

event _type)

event _type;

event _type;

event _type;

argl : long_float; arg2 : long_fl oat

)

return ntrace_error;

arg .

arg

arg

arg

long_float);

i nt eger)

float)

| ong_f1 oat)

PARAMETERS

ID

argN

DESCRIPTION

Adding Library Calls to Your Application

function trace_event (

©oevent_type;
argl : integer; arg? : integer;
arg3 . integer; arg4 : integer

return ntrace_error;

Each trace event has a user-defined trace event ID, ID. This ID is a
valid integer in the range reserved for user trace events (0- 4095,
inclusive). See “Pre-Defined String Tables” on page 6-16 for more
information about trace event IDs.

Sometimes it is useful to log the current value of a variable or
expression, arg, along with your trace event. The trace event logging
routines provide this capability. They differ by how many and what
types of numeric arguments they accept. The t race_event () rou-
tine takes no args. The t race_event _ar g() routine takes a type

long arg. The trace_event _flt() and
trace_event _two_flt routines take (floating point) type of
float args. The trace_event_dbl () and

trace_event _two_dbl () routines take (floating point) type
double args. Thet race_event _four _arg() routine takes four
type long args. If you want the nt r ace display utility to display
these trace event arguments in anything but decimal integer format,
you can enter the trace event in an event-map file. See “Event Map
Files” on page 6-10 for more information on event-map files and for-
mats. Alternatively, you could call the f or mat () function. See
“format()” on page 10-110 for details.

Every call to t race_event _f our _ar g() causes NightTrace to
log an NT_CONTI NUE overhead trace event.

A trace point is a place in your application’s source code where you call a trace
event logging routine. Usually this location marks a line that is important to debug-
ging or performance analysis. Ideally, trace events provide enough information to be
useful, but not so much information that it is overwhelming. Meeting these goals
requires careful trace-point planning.

TIP:

To save time re-editing, recompiling, and relinking your application, consider
beginning with a few too many trace points in the source code. You can dynamically
enable or disable specific trace events. You can also save time by using ntr ace
options to restrict which trace events are loaded for analysis. See “Command-line
Options™ on page 6-1 for details.

2-13

NightTrace Manual

2-14

Some typical trace points include the following:

® Suspected bug locations

® Process, subprogram, or loop entry and exit points

¢ Timing points, especially for clocking I/O processing
® Synchronization points / multi-process interaction

¢ Endpoints of atomic operations

¢ Endpoints of shared memory access code

Call one trace event logging routine at each of the trace points you have selected.
When you call this routine, it writes the trace event information (including timings
and any arguments) to a shared memory buffer. By default, if this write fills the
shared memory buffer or causes the buffer-full cutoff percentage to be reached, the
user daemon wakes up and copies the trace event to the trace event file on disk.

Usually each trace event logging routine logs a different trace event ID number. This
lets you easily identify which source line logged the trace event, how often that
source line executed, and what order source lines executed in. However, it is some-
times useful to log the same trace event ID in multiple places. This makes it possible
to group trace events from related, but not identical, activities. In this case, a change
of trace event ID usually separates or subdivides groups.

Probably the most common use of trace events is to identify states. Two different
trace event IDs delimit the boundaries of a state. Most applications log recurring
states with different time gaps (from the end of one instance of a state to the start of
another) and different state durations (from the start of one instance of a state to its
end).

TIP:

Consider putting related trace event IDs within a range. Library routines and user
daemon options let you manipulate trace events by using trace event ID ranges.

By default, all trace events are enabled for logging. The NightTrace library contains
routines that allow you to selectively or globally enable or disable trace events. The
user daemon has options that provide similar control. Attempting to log a disabled
trace event has no effect. See “trace_enable(), trace_disable(), and Their Variants”
on page 2-16 for more information.

TIP:

Consider using symbolic constants instead of numeric trace event IDs. This would
make your calls to NightTrace routines more readable.

Once your application logs all of its trace events, you can look at them and their
arguments graphically with State Graphs, Event Graphs, and Data Graphs in the
nt r ace display utility. See “State Graph” on page 9-8, “Event Graph” on page 9-7,
and “Data Graph” on page 9-9 for more information about these display objects.

RETURN VALUES

Thetrace_event(),trace_event _arg(),trace_event _dbl (), and
trace_event four_arg() routines return a zero value (NTNOERROR) on

Adding Library Calls to Your Application

successful completion. Otherwise, they return a non-zero value to identify the error
condition. A list of error codes for these routines follows.

[NTI NVALI D]

[NTI NI T]

[NTLOSTDATA]

SEE ALSO

An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0-4095, inclusive.

The NightTrace library routines were not initialized or they
were initialized but no user daemon has yet been initiated.
Ensure atrace_begi n() andtrace_open_t hread()
call precede the trace event logging routine call. Once a user
daemon is started, subsequent attempts at logging events will
succeed.

The trace event was lost because the shared memory buffer
was full. This can occur if the user daemon cannot empty the
shared memory buffer quickly enough. Increase the priority of
the user daemon and/or schedule it on a CPU with less activity.
Additionally, the size of the shared memory buffer can be
increased.

Related routines include:

trace_flush(),trace_trigger(),
trace_enabl e(),trace_enabl e_range(),
trace_enable all (), trace_disable(),
trace_di sabl e_range().,trace_disable_all ()

2-15

NightTrace Manual

trace_enable(), trace_disable(), and Their Variants

2-16

By default, all trace events are enabled for logging to the shared memory buffer. The
trace_disable(),trace_di sable _range(),andtrace_disable_all ()
routines respectively make your application ignore requests to log one or more trace
events. The trace_enable(), trace_enabl e _range(), and
trace_enabl e_al | () routines respectively make your application notice previously
disabled requests to log one or more trace events.

SYNTAX

C: int trace_enable (int ID);
int trace_enable_range (int ID low, int ID high);
int trace_enable_all ();
int trace_disable (int ID);
int trace_disable_range (int ID low, int ID high);
int trace_disable_all ();

Fortran: integer function trace_enabl e (ID)
nt eger ID

nteger function trace_enabl e_range (/D low, ID_ high)
nteger ID low, ID high

nteger function trace_enable_all ()

nteger function trace_di sable (/D)
nt eger ID

nteger function trace_di sabl e_range (ID low, ID_high)
nteger I[D low, ID high

nteger function trace_disable_all ()

Ada: type event _type is range O..4095;

(procedures)
procedure trace_enable (/D : event_type);

procedure trace_enabl e (
ID low : event _type; ID high : event_type
)

procedure trace_enabl e_all;

procedure trace_di sable (/D : event_type);

(functions)

PARAMETERS

ID

ID low

ID high

DESCRIPTION

The enable

Adding Library Calls to Your Application

procedure trace_di sable (
D low : event_type; ID high : event_type
)

procedure trace_disable_all;

function trace_enable (ID : event_type)
return ntrace_error;

function trace_enabl e (
ID low : event_type; ID high : event_type
)

return ntrace_error;

function trace_enable_all
return ntrace_error;

function trace_disable (ID : event_type)
return ntrace_error;

function trace_disable (
ID low : event_type; ID high : event_type
)

return ntrace_error;

function trace_disable_all
return ntrace_error;

Each trace event has a user-defined trace event ID, ID. This ID is a
valid integer in the range reserved for user trace event IDs (0- 4095,
inclusive). See “trace_event() and Its Variants” on page 2-10 for
more information.

It is possible to manipulate groups of trace event IDs by specifying a
range of trace event IDs. ID [ow is the smallest trace event ID in the
range.

It is possible to manipulate groups of trace event IDs by specifying a
range of trace event IDs. ID_high is the largest trace event ID in the
range.

and disable library routines allow you to select which trace events are

enabled and which are disabled for logging. A discussion of disabling trace events
appears first because initially all trace events are enabled.

Sometimes,

so many trace events that it is hard to understand the nt r ace display.

Occasionally you know that a particular trace event or trace event range is not inter-
esting at certain times but is interesting at others. When either of these conditions
exist, it is useful to disable the extraneous trace events. You can disable trace events

NightTrace Manual

temporarily, where you disable and later re-enable them. You can also disable them
permanently, where you disable them at the beginning of the process or at a later
point and never re-enable them.

NOTE

These routines enable and disable trace events in all processes that
rely on the same user daemon to log to the same trace event file.

All disable library routines make your application start ignoring requests to log trace
event(s) to the shared memory buffer. The disable routines differ by how many
trace events they disable. trace_di sabl e() disables one trace event ID.
trace_di sabl e_range() disables a range of trace event IDs, including both
range endpoints. trace_di sabl e_al | () disables all trace events. Disabling an
already disabled trace event has no effect.

All enable library routines let you re-enable a trace event that you disabled with a
disable library routine or user daemon. The effect is that your application resumes
noticing requests to log the specified trace event to the shared memory buffer. The
enable routines differ by how many trace events they enable. trace_enabl e()
enables one trace event ID. trace_enabl e_range() enables a range of trace
event IDs, including both range endpoints. t race_enabl e_al | () enables all
trace events. Enabling an already enabled trace event has no effect.

TIP:

Consider invoking the user daemon with events disabled instead of calling the
trace_enabl e() andtrace_di sabl e() routines. Using these options saves
you from re-editing, recompiling and relinking your application.

TIP:

If you want to log only a few of your trace events, disable all trace events with
trace_di sabl e_al | () and then selectively enable the trace events of interest .

RETURN VALUES

The trace_disabl e(), trace_di sabl e_range(),
trace_disable all(),trace_enable(),trace_enabl e _range(),
andtrace_enabl e_al | () routines return a zero value (NTNOERROR) on suc-
cessful completion. Otherwise, they return a non-zero value to identify the error
condition. A list of error codes for these routines follows.

[NTI NIT] The NightTrace library routines were not initialized. Solution:
Besureatrace_begin() andtrace_open_t hread()
call precede the call to the disable or enable routine.

[NTI NVALI D] An invalid trace event ID has been supplied. Solution: Use
trace event IDs only in the range 0- 4095, inclusive.

2-18

Adding Library Calls to Your Application

SEE ALSO
Related routines include:

trace_event(),trace_event _arg(),
trace_event _dbl (), trace_event_four_arg()

2-19

NightTrace Manual

trace_flush() and trace_trigger()

Thetrace_flush() andtrace_trigger () routines asynchronously wake the user
and direct it to copy trace events from the shared memory buffer to the trace event file on
disk. Note: These routines do not wait for the copy to complete.

SYNTAX
C: int trace_flush();
int trace_trigger();
Fortran: i nteger function trace_flush()
i nteger function trace_trigger()
Ada:
(procedures)
procedure trace_flush
procedure trace_trigger;
(functions)
function trace_flush
return ntrace_error;
function trace_trigger
return ntrace_error;
DESCRIPTION

When the user daemon is idle, it sleeps. The process of copying trace events from
the shared memory buffer to a trace event file is called flushing the buffer. The user
daemon wakes up and flushes the buffer when any of these conditions exist:

* the user daemon’s sleep interval elapses
¢ The buffer-full cutoff percentage is exceeded
® The shared memory buffer is full of unwritten trace events

* Your application calls trace_fl ush(),trace_trigger(), or
trace_end()

* No event has been logged in a period of time in which the lower 32
bits of the timestamp source would roll over. It is important to detect
this rollover so that proper ordering of trace events is maintained.

User daemon options let you set limits for the first three conditions above. When
you invoke a user daemon with one of these options and it detects the corresponding
condition, it automatically flushes the buffer. There is one key way that
trace_flush() andtrace_trigger () differ from the flush control the user
daemon provides: withtrace _flush() andtrace_trigger() you decide
when to asynchronously flush the shared memory buffer based on your program

2-20

Adding Library Calls to Your Application

flow, and with certain options the user daemon flushes the shared memory buffer
automatically.

If the shared memory buffer becomes full of trace events, trace events may be lost.
To keep this situation from occurring, configure the user daemon to flush the buffer
regularly. This is particularly good to do if your application will soon be busy.

Waking the user daemon to flush the buffer takes time and this overhead can distort
trace event timings. Therefore, call trace_fl ush() andtrace_trigger()
only in parts of your application where time is not critical.

TIP:

trace_trigger () is identical to trace_flush(), except
trace_trigger () works only in buffer-wraparound mode. Call
trace_trigger () instead oftrace_fl ush() so that only buffer-wrap-
around’s performance is affected.

When you run in buffer-wraparound mode, you are telling NightTrace to intention-
ally discard older or less-vital trace events when the shared memory buffer gets full.
In buffer-wraparound mode, you must explicitly call trace_fl ush() or
trace_trigger (). Only then, does the user daemon copy the remaining trace
events from the shared memory buffer to the trace event file. However, do not call
trace_flush() ortrace_trigger() too often or you will reduce the effec-
tiveness of this mode. See “Option to Establish Buffer-Wraparound Mode (-buffer-
wrap)” on page 4-13 for more information on buffer-wraparound mode.

RETURN VALUES

Thetrace_flush() andtrace_trigger() routines returna zero value
(NTNCERROR) on successful completion. Otherwise, they return a non-zero value
to identify the error condition. A list of trace_flush() and
trace_trigger () error codes follows.

[NTFLUSH] A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of the user daemon; if
necessary, restart it and rerun the trace.

SEE ALSO

Related routines include:
trace_event(), trace_event_arg(),
trace_event _dbl (), trace_event_four_arg()

2-21

NightTrace Manual

trace_close_thread()

The trace_cl ose_t hread() routine disables trace event logging for the current
thread or process.

SYNTAX
C: int trace_close_thread();
Fortran: i nteger function trace_cl ose_thread()
Ada: function trace_close_thread return
ntrace_error;
DESCRIPTION

A NightTrace thread can be a process, C thread or Ada task. Each thread that C calls
trace_open_t hread() must have its owntrace_cl ose_t hread() call.
For more information on threads, see “Programming with the Threads Library” in
the PowerMAX OS Programming Guide.

RETURN VALUES
The trace_cl ose_t hread() routine returns a zero value (NTNOERROR) on
successful completion. Otherwise, it returns a non-zero value to identify the error
condition. A listoftrace_cl ose_t hread() error codes follows.
[NTI NI T] The NightTrace library routines were not initialized. Solution:

Calltrace_cl ose_t hread() only once if you previously
called t race_open_t hread().

SEE ALSO

Related routines include:t race_open_t hread(),trace_end()

2-22

Adding Library Calls to Your Application

trace_end()

Thet race_end() routine frees resources and terminates trace event tracing in your pro-

cess.
SYNTAX

C: int trace_end();

Fortran: i nteger function trace_end()

Ada: function trace_end

return ntrace_error;
DESCRIPTION

Generally, call t race_end() only once per logging process.However, for

processes using C threads or Ada t asks, trace_end() must also be called by

any individual threads or tasks that have previously called t race_begi n() .

trace_end() performs the following operations:

¢ Terminates trace event tracing in this process or thread

¢ Flushes trace events from the shared memory buffer to the trace
event file

® Detaches the shared memory buffer, timestamp source, and interrupt
priority level (IPL) register

* Notifies the user daemon that the current process has finished log-
ging trace events

RETURN VALUES

The t race_end() routine returns a zero value (NTNOERROR) on successful

completion. Otherwise, it returns a non-zero value to identify the error condition. A

listof t race_end() error codes follows.

[NTFLUSH]| A failure occurred while attempting to flush the shared mem-
ory buffer. Solution: Verify the status of the user daemon; if
necessary, restart it and rerun the trace.

[NTNODAEMON| There is no user daemon with a trace event file name that
matches the one on the t race_begi n() call attached to the
shared memory region. This condition is not always detect-
able. Solution: Use the nt r ace display utility to analyze
your logged trace events.

SEE ALSO

Related routines include:t r ace_begi n() ,trace_cl ose_t hread()

2-23

NightTrace Manual
Disabling Tracing

There are four ways to disable tracing in your application:

* For C applications, put a #i ncl ude <ntrace. h> in your source code.
You must either recompile your application with the - DNNTRACE
preprocessor option or insert the following preprocessor control statement
before the #i ncl ude <ntrace. h>.

#def i ne NNTRACE

The NightTrace header file, nt r ace. h, contains macro counterparts for each
NightTrace library routine. When you define NNTRACE, the compiler treats your
NightTrace routine calls as if they were macro calls that always return a success
(zero) status. For more information on preprocessor options, see cpp(1) .

Use a command similar to the following one to turn off tracing in your application,
fl_simec.

$ cc -DNNTRACE fl _simc -lud

By disabling tracing this way, you have to rebuild your application, but you save
compilation and execution time.

® (Call the trace_di sabl e_al | () routine near the top of the source,
recompile, and relink your application with the NightTrace library. (For
more information about this routine, see “trace_enable(), trace disable(),
and Their Variants” on page 2-16.) If your application calls any of the
enable routines, this method is not entirely effective.

By disabling tracing this way, you have to rebuild your application, and there is no
saving in compilation time or execution time.

® Start a user daemon with all events disabled.

By disabling tracing this way, you do not have to rebuild your application, but there
is no saving in compilation time or execution time.

* Do not start a user daemon.

By disabling tracing this way, you do not have to rebuild your application, but there
is no saving in compilation or execution time.

Compiling and Linking

You must link in the NightTrace library so that your application can initialize its trace
mechanism and log trace events. The name of this library depends on your source
language. C and Fortran applications must link in the /usr/ i b/l ibntrace. a
library.

2-24

Adding Library Calls to Your Application

C Example
$cc fl_simc -Intrace -lud # for Power MAX CS
$ cc fl_simc -Intrace -lccur_rt # for RedHawk Li nux
This step:
® Compiles the f| _si m ¢ application
¢ Links in the NightTrace library

* C(Creates an executable named a. out if there were no major errors

For more information on compiling and linking C programs, see the Concurrent C
Reference Manual.

Fortran Example

$ hf77 turn_matrix.f -Intrace -lud # for Power MAX OS
$ hf77 turn_matrix.f -Intrace -lccur_rt # for RedHawk
Li nux

This step:
* Compiles thet urn_matri x. f application

¢ Links in the NightTrace library

¢ Creates an executable named a. out if there were no major errors

For more information on compiling and linking hf 77 programs, see the 4f77 Fortran
Reference Manual.

Ada Example

For a complete example on accessing the NightTrace library routines from an Ada appli-
cation, see the section titled “NightTrace Binding” in the MAXAda Reference Manual.

2-25

NightTrace Manual

2-26

3
Using the NightTrace Main Window

Components of the NightTrace Main Window 3-2
NightTrace Main Window Menu Bar. 3-3
NightTrace.o 3-4
OPeN SESSION & . o\ vt i ettt e 3-6

Save SeSSION. . ..ot 3-8
Unsaved Changes.ooiii i 3-10
Daemons 3-11
Login ..o 3-14

Enter Password. 3-15

Attach Daemons.o 3-15

Pages . .. 3-18
OPLIONS © . ottt e e e e e e e 3-20
RefreshInterval 3-20

Display Buffer Size Warning, 3-21

T00IS .« o 3-22
Help. . oo 3-23
Session Configuration File Name Area 3-25
Daemon Control Area.ttt 3-26
Enable / Disable Trace Events. 3-31
Session OVEIVIEW ATCAo vttt ettt ettt et ettt e 3-33
Daemon Definition Dialog 3-35
Import Daemon Definition. 3-37
General 3-39
Target. . oo 3-39
Trace Events Output 3-41
USEr TIaCE. . . ottt e e e e e e 3-44
Locking Policiesuuii i 3-44
Shared MemMOIry.ot 3-46
Timestamp Heartbeat 3-47
UserEventBuffer......... 3-47
Events. . ..o 3-48
Runtime 3-50
Scheduling. 3-50
CPUBIAS. .« ottt 3-51
NUM A. 3-52
Policies.o 3-53

Other. . o 3-54
Streaming Options. ot et e 3-54

Kernel Trace Buffer Options. 3-55

NightTrace Manual

3
Using the NightTrace Main Window

NightTrace allows users to manage user and kernel NightTrace daemons. It provides
users with the ability to define a session consisting of one or more daemon definitions
which can be saved for future use. These definitions include daemon collection modes
and settings, daemon priorities and CPU bindings, and data output formats, as well as the
trace event types that are logged by that particular daemon.

Individual daemons within a session may or may not be related to each other in any mean-
ingful way. One might use a session simply to hold several daemon definitions that are
commonly used, but not necessarily all at the same time.

When creating and saving sessions, only the daemon definitions are being created or
saved, not the trace data that may be captured using the daemons.

Users can manage multiple daemons simultaneously on multiple target systems from a
central location and may start, stop, pause, and resume execution of any of the daemons
under its management. The user may also view statistics as trace data is being gathered as
well as dynamically enable and disable events while a particular daemon is executing.

In addition to sending trace output to a file for later analysis, NightTrace also offers a
streaming output method. When streaming, trace output is sent directly to the NightTrace
display buffer for immediate analysis even while additional trace data is being collected.

3-1

NightTrace Manual

Components of the NightTrace Main Window

3-2

MightTrace [Daemons Pages Options Tools

|

|

Help

Zession configuration file: Mew

Daemon Control

Type | Daemon Hame | Target State Attached Logged Buffer

Lost

| T— =

o

Session Overview Mo events loaded.
Type | Name | Description |
x=H Expressions MightTrace gualified expressions
1., eventmap MightTrace default event map file

L] tables MightTrace default format tables for summary data
Open .. | Edit..|

[

Figure 3-1. NightTrace Main Window

The NightTrace Main Window consists of the following components:
® NightTrace Main Window Menu Bar
¢ Session Configuration File Name Area
¢ Daemon Control Area

® Session Overview Area

NightTrace Main Window Menu Bar

Using the NightTrace Main Window

The NightTrace Main Window menu bar is a part of the NightTrace Main Window.

The NightTrace Main Window menu bar provides access to the following menus:

Each menu is described in the sections that follow.

NightTrace
Daemons
Pages
Options
Tools

Help

3-3

NightTrace Manual

NightTrace

The NightTrace menu contains session-related items such as initiating a new session,
saving the current session to a configuration file, and opening a previously-saved configu-
ration file.

The NightTrace menu appears on the NightTrace Main menu bar (see “NightTrace Main
Window Menu Bar” on page 3-3).

Mew Session

Open Session..

Save Session Ctrl+3
Save Session As..

Close Session

Tpen Trace File...

Mew Event Map File...

Cpen Event hap File..,

Close Window Ctrl+
Exit Ctrl+Q

Figure 3-2. NightTrace menu

New Session
Creates a new session.
If an existing session is open, it is first closed by this operation.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 3-10).

Open Session...

Opens a previously-saved session configuration file. Selecting this option brings up
the Open Session dialog (see “Open Session” on page 3-6).

If an attempt is made to open a previously-saved session configuration file when
changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 3-10).

34

Using the NightTrace Main Window

Save Session

Saves the current configuration to the current session configuration file (see “Ses-
sion Configuration Files” on page 6-23). The name of the current session configura-
tion file appears in the Session Configuration File Name Area (see “Session Config-
uration File Name Area” on page 3-25).

If the current configuration has not yet been saved, the name in the Session Config-
uration File Name Area will be displayed as New and the Save Session dialog
(see “Save Session” on page 3-8) will be presented when this menu item is selected
to allow the user to navigate to the desired directory in which to save the session
configuration file.

Save Session As...

Displays the Save Session dialog (see “Save Session” on page 3-8) allowing the
user to navigate to the desired directory in which to save the session configuration
file (see “Session Configuration Files” on page 6-23). The name of this file will
then appear in the Session Configuration File Name Area (see “Session Configura-
tion File Name Area” on page 3-25).

Close Session
Closes the current session but leaves the NightTrace running.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 3-10).

Open Trace File...

Presents the user with a standard file selection dialog so that they may select a trace
event file to load. The event file can be a user trace data file or a kernel trace data
file.

New Event Map File...

Presents the user with a standard file selection dialog to select a filename for the
new event map file. NightTrace then launches the editor defined by the EDI TOR
environment variable so the user may populate the new event map file with ASCII
names for specific trace event values. The file initially contains a template that
describes the format of event map file.

See “Event Map Files” on page 6-10 for more information.

Open Event Map File...

Presents the user with a standard file selection dialog to select an event map file to
load. An event map file provides ASCII names for specific trace event values.

See “Event Map Files” on page 6-10 for more information.

3-5

NightTrace Manual

Close Window

Closes the NightTrace Main Window but leaves any remaining display pages open.

Exit
Closes the session and exits NightTrace completely.

If changes have been made to the current configuration but have not yet been saved,
the Unsaved Changes dialog is presented to the user (see “Unsaved Changes”
on page 3-10).

Open Session

The Open Session dialog is a standard file selection dialog that allows the user to navi-
gate to the desired directory and select a previously-saved session configuration file to
open..

NOTE

Filenames are relative to the host system (the system where the
NightTrace GUI is running).

3-6

Using the NightTrace Main Window

Directory
Ia’samplea’ |
Filter Files
ntsess_config1
u ntsess_config?
Directories ntsess_config3
|
Selection
QK. | Filter | Cancell Help |

— e

Figure 3-3. Open Session dialog

Directory

The directory in which to find the desired session configuration file.

The user may type the path into this field directly.

Filter

Of all the files contained in the current Directory, display only those Files that
match the specified filter.

Directories

Contains a list of all the subdirectories within the current directory. Selecting any of
these will change the current Directory to that subdirectory. Double-clicking on

any of these directory names will change to that directory and update the Files list
accordingly.

3-7

NightTrace Manual

Save Session

3-8

Files

Within the current Directory, this is a list of the files that match the specified Fil-
ter. Any of these filenames can be selected. When selected, the filename appears in
the Selection field.

Selection

The name of the desired session configuration file appears here after being selected
from the Files list. The filename may be manually entered into this field by the
user as well.

The Save Session dialog is a standard file selection dialog that allows the user to navi-
gate to the desired directory and specify the name of the file to which the session configu-
ration will be saved.

NOTE

Filenames are relative to the fost system (the system where the
NightTrace GUI is running).

Using the NightTrace Main Window

Directory
Ia’sampleé
Filter Files
ntsess_config1
- ntsess_config2
Directories ntsess_config3
|
Selection

Figure 3-4. Save Session dialog

Directory
The directory in which to save the session configuration file.

The user may type the path into this field directly.

Filter

Of all the files contained in the current Directory, display only those Files that
match the specified filter.

Directories

Contains a list of all the subdirectories within the current directory. Selecting any of
these will change the current Directory to that subdirectory. Double-clicking on

any of these directory names will change to that directory and update the Files list
accordingly.

3-9

NightTrace Manual

Files

Within the current Directory, this is a list of the files that match the specified Fil-
ter. Any of these filenames can be selected. When selected, the filename appears in
the Selection field.

Selection

The name of the file to save the session configuration file to appears here after being
selected from the Files list. The filename may be manually entered into this field
by the user as well.

Unsaved Changes

This dialog is presented whenever the user attempts to terminate a session which has
changes that have not yet been saved to the session configuration file.

¢ [Ihere are unsaved changes to the new session.
= [oyouwish to save them?

Yes | [o Cancell Help |

=

Figure 3-5. Unsaved Changes dialog

Yes

When the user presses this button, the current configuration is saved to the current
session configuration file. The name of the current session configuration file
appears in the Session Configuration File Name Area (see “Session Configuration
File Name Area” on page 3-25).

If the current configuration has not yet been saved, the Save Session dialog (see

“Save Session” on page 3-8) will be presented to allow the user to navigate to the
desired directory in which to save the session configuration file.

No

When the user presses this button, any unsaved changes are discarded and the termi-
nation of the session completes.

Cancel

Cancels the termination action.

Help

Provides online help for this dialog.

3-10

Using the NightTrace Main Window

Daemons

The Daemons menu provides functionality for configuring new and existing daemon
definitions, as well as attaching to and detaching from running daemons.

The Daemons menu appears on the NightTrace Main Window menu bar (see “Night-
Trace Main Window Menu Bar” on page 3-3).

Mew .. Ctrl+D
Ctrl+E

Halt Ctrl+H

Fesume Ctrl+R

Flush Buffer Ctrl+F

Attach ...

Detach

Reset

Select All Ctrl+ A

Deselect All

Figure 3-6. Daemons menu

New...
Accelerator: Ctrl+D

Opens the Daemon Definition dialog (see “Daemon Definition Dialog” on page
3-35) allowing the user to configure a new daemon definition.

Edit...
Accelerator: Ctrl+E

Opens the Daemon Definition dialog (see “Daemon Definition Dialog” on page
3-35) for the daemon definition currently selected in the Daemon Control Area (see
“Daemon Control Area” on page 3-26) allowing the user to edit that particular defi-
nition.

3-11

NightTrace Manual

NOTE

The daemon definition may not be altered while the daemon is
executing.

Delete

Deletes the daemon definition(s) currently selected in the Daemon Control Area
(see “Daemon Control Area” on page 3-26).

The user is prompted for confirmation before the deletion is performed.

Launch
Accelerator: Ctrl+L

Starts execution of the daemon(s) currently selected in the Daemon Control Area.

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

Launch operations are time consuming and involve possibly connecting to a target
system, user authentication, etc. Once the daemon is launched, it is more efficient to
utilize the Pause and Resume operations which require less time and resources.

The same action is performed by pressing the Launch button in the Daemon Con-
trol Area (see “Launch” on page 3-28).

Halt
Accelerator: Ctrl+H
Stops execution of the daemon(s) currently selected in the Daemon Control Area.

The connection to the target system is terminated by this operation. Once the dae-
mon is launched, it may be more efficient to utilize the Pause and Resume oper-
ations.

The same action is performed by pressing the Halt button in the Daemon Control
Area (see “Halt” on page 3-29).

Pause
Accelerator: Ctrl+P

Pauses the execution of the daemon(s) currently selected in the Daemon Control
Area.

3-12

Using the NightTrace Main Window

NOTE

When a daemon is paused, incoming trace events are discarded
without notice.

The same action is performed by pressing the Pause button in the Daemon Control
Area (see “Pause” on page 3-29).

Resume
Accelerator: Ctrl+R

Resumes execution of the daemon(s) currently selected in the Daemon Control
Area. Once resumed, incoming events are placed into the daemon buffer for subse-
quent processing by the daemon.

The same action is performed by pressing the Resume button in the Daemon Con-
trol Area (see “Resume” on page 3-29).

Flush Buffer
Accelerator: Ctrl+F

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the Daemon Control Area to either the NightTrace display buffer (see
“Stream” on page 3-41) or to the output file (see “Output File” on page 3-42).

The same action is performed by pressing the Flush button in the Daemon Control
Area (see “Flush” on page 3-29).
Attach...

Allows the user to query any target system for user application trace daemons and
displays the results in the Attach Daemons dialog (see “Attach Daecmons” on
page 3-15). The user may then attach to the desired daemon and control it.

Detach
Relinquishes control of the running daemon(s) currently selected in the Daemon
Control Area (see “Daemon Control Area” on page 3-26).

Reset

Flushes the contents of trace buffers for the running daemon(s) currently selected in
the Daemon Control Area (see “Daemon Control Area” on page 3-26). Any events
in the buffer at the time of the reset are discarded. Events that have already been
written to the output device (file or stream) are unaffected.

Pressing the Reset button also places the selected daemons in a Paused state (see
“State” on page 3-27).

3-13

NightTrace Manual

Login

3-14

NOTE

This option is not supported for kernel trace daemons.

Select All
Accelerator: Ctrl+A

Selects all daemon definitions listed in the Daemon Control Area (see “Daemon
Control Area” on page 3-26).

Deselect All

Deselects all daemon definitions listed in the Daemon Control Area (see “Daemon
Control Area” on page 3-26)

This dialog is presented when attaching to a daemon on a remote system (see “Attach
Daemons” on page 3-15) or when importing daemon attributes based on a user application
running on a remote system (see “Import Daemon Definition” on page 3-37).

Target System: ‘ demo

User:

Figure 3-7. Login dialog

After filling in the required fields in the Login dialog, the Enter Password dialog (see
“Enter Password” on page 3-15) is displayed, allowing the user to enter the password for
the specified User on the specified Target System.

NOTE

Passwords are not included in the configuration files written by
NightTrace. They are retained only during the current invocation
of NightTrace.

Using the NightTrace Main Window

Target System

The name of the target system to which the user wishes to connect.

User

The login name of the user on the specified Target System.

Enter Password

The Enter Password dialog is displayed during user authentication on a target system.

NOTE

The Enter Password dialog is not displayed if a valid pass-
word has already been entered for the specified user on the speci-
fied target system during the current invocation of NightTrace.

Enter Pa:

Please enter password for user username on target host hostsystem:

)4 | Cancell Help |

-
L

Figure 3-8. Enter Password dialog

Enter the password for the specified user on the specified target system.

NOTE

Passwords are not included in the configuration files written by
NightTrace. They are retained only during the current invocation
of NightTrace.

Attach Daemons

The Attach Daemons dialog is displayed when the user attempts to attach to a daemon
running on a remote target system.

This dialog is presented following user authentication (see “Login” on page 3-14 and
“Enter Password” on page 3-15) on that system.

3-15

NightTrace Manual

3-16

Figure 3-9. Attach Daemons dialog

Program ID

The process ID (PID) of the user trace daemon on the remote system.

Creator

The login name of the user who owns the user trace daemon on the remote system.

Attach as User

The login name of the user attaching to the user trace daemon. This value defaults
to the user specified in the Login dialog (see “Login” on page 3-14) presented prior
to this dialog.

Key File

The filename which is used to calculate the shared memory segment identifier asso-
ciated with the logging of user trace events. See “Key File” on page 3-41 for more
information.

The following buttons appear at the bottom of the Attach Daemons dialog and have the
specified meaning:

Attach

Attaches to the daemon selected in the list and closes the Attach Daemons dia-
log.

Using the NightTrace Main Window

Set Attach as User...
Brings up a dialog allowing the user to specify the login name used to attach to the

selected daemon(s). Since the daemon's shared memory is owned by the creator, the
user attaching to the user trace daemon could be relevant in terms of permissions.

Refresh

Queries the target system for active trace daecmons.

Cancel

Closes the Attach Daemons dialog without attaching to any of the listed dae-
mons.

Help

Provides online help for this dialog.

NightTrace Manual

Pages

The Pages menu allows the user to open preconfigured display pages as well as empty
display pages. There is also an option for the user to open up a pre-existing display page.

The Pages menu appears on the NightTrace Main Window menu bar (see “NightTrace
Main Window Menu Bar” on page 3-3).

Mew Blank Page

Mew User Trace Page

aos Pags

Open Existing Page...

Figure 3-10. Daemons menu

New Blank Page

This menu choice opens a new display page (see Chapter 8 “Display Pages™) so that
the user may configure it from scratch. The Grid (see must be populated with dis-
play objects (see Chapter 9 “Display Objects”) before trace information can be ana-
lyzed or graphically examined.

NOTE

The new display page comes up in edit mode so that display
objects may be created and configured (see “Mode Buttons” on
page 8-12 for more information).

3-18

Using the NightTrace Main Window

File Edit Create Configure Expressions Tools Help

 Edit
s Wiew

-
_

P

|0‘00084003 |0‘00084003
|1 |0
|25‘002 0,0001518=

Figure 3-11. New Display Page

New User Trace Page

This menu choice opens the default application trace page which is automatically
pre-configured to show all user events and specific descriptions of the event ID and
the first argument of each event.

See “Default Display Page” on page 8-1 for more information.

New Kernel Trace Page

This menu choice opens a new kernel display page pre-configured to display the
standard kernel states and events but customized for the systems and CPUs that
NightTrace detects from loaded kernel trace data. If multiple systems are repre-
sented in the trace data, the user will be prompted with a system selection dialog to
aid in configuring the kernel page.

The menu item is disabled (desensitized) unless you provide a NightTrace kernel
trace file.

See “Kernel Display Pages” on page 12-6 for more information.

3-19

NightTrace Manual

Open Existing Page...

This menu choice presents the user with a standard file selection dialog so that they
may select a pre-existing configuration page from a previous NightTrace session.

Options

The Options menu appears on the NightTrace Main Window menu bar (see “NightTrace
Main Window Menu Bar” on page 3-3).

Fefresh Rate ...
Cisplay Buffer Size YWarning ...

Figure 3-12. Options menu

Refresh Rate...

Displays the Refresh Interval dialog (see “Refresh Interval” on page 3-20)
allowing the user to specify how often the statistics (displayed in the Daemon Con-
trol Area) are requested and updated for running daemons. This dialog sets the dis-
play rate for those daemons currently selected in the Daemon Control Area (see
“Daemon Control Area” on page 3-26).

Display Buffer Size Warning...

Presents the Display Buffer Size Warning dialog (see “Display Buffer Size
Warning” on page 3-21) allowing the user to specify a limit for the amount of mem-
ory used to hold trace data before a warning is issued. This dialog also allows the
user to instruct NightTrace to halt any active daemons when this limit is reached.

Refresh Interval

This dialog allows the user to specify how often the statistics (displayed in the Daemon
Control Area) are requested and updated for running daemons. This dialog sets the dis-
play rate for those daemons currently selected in the Daemon Control Area (see “Daemon
Control Area” on page 3-26).

3-20

Using the NightTrace Main Window

Fefresh Interval (secs): I

Ok,

Canc:ell Help |

=

Figure 3-13. Refresh Interval dialog

Refresh Interval

The number of seconds between queries.

Display Buffer Size Warning

When streaming trace data directly from the trace daemons to NightTrace (see “Stream”
on page 3-41), significant amounts of memory can be used quickly. To alleviate this prob-
lem, a display buffer is used to hold the available trace data.

This dialog allows the user to specify a limit on the amount of memory used by the display
buffer before a warning is issued. In addition, the user can select to halt active daemons
when the display buffer reaches the specified limit.

Display Buffer Size Warning

\Warn at Size (bytes): | 67108564

¥ Halt active daemaons when display buffer reaches above size

Ok | Cancell Help |

Figure 3-14. Display Buffer Size Warning dialog

Warn at Size

The number of bytes used by the display buffer before a warning is issued.

Halt active daemons when display buffer reaches above size

If checked, all active daemons in the current session will be halted when the size of
the display buffer reaches the limit specified in this dialog (see Warn at Size).

3-21

NightTrace Manual

Tools

The Tools menu appears on the NightTrace Main Window menu bar (see “NightTrace
Main Window Menu Bar” on page 3-3).

MightProbe
MightBench Builder
Mightsim Scheduler
Might'/iew Debugger

Figure 3-15. Tools menu

NightProbe

Opens the NightProbe Data Monitoring application. NightProbe is a real-time
graphical tool for monitoring, recording, and altering program data within one or
more executing programs without significant intrusion. NightProbe can be used in a
development environment as a tool for debugging, or in a production environment to
create a “control panel” for program input and output.

See also:

® NightProbe User’s Guide (0890480)

NightBench Builder

Opens the NightBench Program Development Environment. NightBench is a set of
graphical user interface (GUI) tools for developing software with the Concurrent
C/C++ and MAXAda™ compiler toolsets.

NOTE

NightBench is currently not available on RedHawk systems.

See also:

® NightBench User’s Guide (0890480)

NightSim Scheduler
Opens the NightSim Application Scheduler. NightSim is a tool for scheduling and

monitoring real-time applications which require predictable, repetitive process exe-
cution. With NightSim, application builders can control and dynamically adjust the

3-22

Using the NightTrace Main Window

periodic execution of multiple coordinated processes, their priorities, and their CPU
assignments.

See also:

® NightSim User's Guide (0890480)

NightView Debugger

Opens the NightView Source-Level Debugger. NightView is a graphical
source-level debugging and monitoring tool specifically designed for real-time
applications. NightView can monitor, debug, and patch multiple real-time processes
running on multiple processors with minimal intrusion.

See also:

® NightView Users Guide (0890395)

Help

The Help menu appears on the NightTrace Main Window menu bar (see “NightTrace
Main Window Menu Bar” on page 3-3).

n YWindow
n [tem
MightTrace User's Guide

Bookshelf
About MightTrace

Figure 3-16. Help menu

On Window

Displays the help topic for the current window.

On Item

Gives context-sensitive help on the various menu options, dialogs, or other parts of
the user interface.

Help for a particular item is obtained by first choosing the On ltem menu option,
then clicking the mouse pointer on the object for which help is desired (the mouse
pointer will become a floating question mark when the On Item menu item is
selected).

3-23

NightTrace Manual

In addition, context-sensitive help may be obtained for the currently highlighted
option by pressing the F1 key. The HyperHelp viewer will display the appropriate
topic.

NightTrace User’s Guide

Opens the online NightTrace User s Guide.

Bookshelf

Opens a HyperHelp window that lists all of the Concurrent online publications cur-
rently available on the local system.

About NightTrace

Displays version and copyright information for the NightTrace product.

3-24

Using the NightTrace Main Window

Session Configuration File Name Area

The area located directly beneath the NightTrace Main Window Menu Bar displays the
name of the current session configuration file (see “Session Configuration Files” on page
6-23).

I Session configuration file: Mew ‘l
I i

Figure 3-17. Session Configuration File Name Area

Session configuration file

The name of the current session configuration file. If the current session configura-
tion has not yet been saved to a file, New will be displayed in this area.

To save the current session configuration to a file, select either the Save Session
(see “Save Session” on page 3-5) or Save Session As... (see “Save Session
As...” on page 3-5) menu item from the NightTrace menu (see “NightTrace” on
page 3-4).

3-25

NightTrace Manual

Daemon Control Area

The area located directly beneath the Session Configuration File Name Area displays
information about the daemons defined in the current session.

Double-clicking on an entry in the Daemon Control Area brings up the Daemon Defini-
tion Dialog for the daemon associated with that entry (see “Daemon Definition Dialog” on
page 3-35).

Daemon Control

Type |Daemun Name Target State Attached | Logged Buffer Lost |

[T

-l_
Figure 3-18. Daemon Control Area
Type
Indicates what type of trace events the daemon is logging.
u indicates that the associated daemon is logging user trace
events
K indicates that the associated daemon is logging kernel trace
events

The type of trace event that the daemon is logging is configured by selecting either
the Kernel or the User Application radiobutton in the Trace section on the
General page of the Daemon Definition dialog (see “General” on page 3-39).

Daemon Name
The name of the daemon as configured in the Name field on the General page of
the Daemon Definition dialog (see “Name” on page 3-39).
NOTE
The Daemon Name is merely a label to aid the user in identify-

ing specific daemons with a session. It has no external meaning
and is unrelated to the NightTrace API.

3-26

Target

Using the NightTrace Main Window

The name of the system on which the associated daemon is running.

The target system is specified in the Target System field on the General page of
the Daemon Definition dialog (see “Target System” on page 3-40).

State

The state of the daemon.

Logging
Halted

Paused

Pausing

Resuming

Lauching

Halting

Attached

indicates the daemon is currently capturing events
indicates the daemon is not executing

indicates the daemon is started but is not capturing
events

While paused, attempts to log events from user applica-
tions or via the operating system kernel are discarded.
Note that these are not considered lost events (see “Lost”
on page 3-28).

indicates the daemon is going from a Logging state to a
Paused state

indicates the daemon is going from a Paused state to a
Logging state

indicates the daemon is going from a Halted state to a
Logging state

indicates the daemon is going from a Paused or Log-
ging state to a Halted state

The number of user application threads or processes that are associated with the dae-

mon.

Streaming

Indicates whether or not data from this daemon is being streamed to the NightTrace
display buffer. This is specified by the setting of the Stream checkbox on the
General page of the Daemon Definition dialog (see “Stream” on page 3-41).

Advanced settings with respect to streaming can be found on the Other page of the
Daemon Definition dialog (see “Other” on page 3-54).

If streaming is not in effect, data will be written to the output file (see “Output File”
on page 3-42) as specified on the General page of the Daemon Definition dia-

log.

3-27

NightTrace Manual

Logged

The number of trace events that have been written to the stream or written to the file
by the associated daemon. See Streaming above.

Buffer
The number of trace events currently held in the buffer.

These events will be flushed from the buffer either when the Flush Threshold
(see “Flush Threshold” on page 3-47) is reached or when the user flushes them man-
ually (see “Flush” on page 3-29).

Lost

Lost events occur when the daemon cannot keep up with the rate at which events are
being added to the buffer.

To combat this, adjust the Runtime attributes of the daemon by raising its Priority

and/or by changing its CPU Bias to bind it to a specific CPU. (See “Runtime” on
page 3-50 for a description of these settings.)

NOTE
Events that are discarded when a daemon is Paused (see “State”

on page 3-27) are not included in the Lost count.

Also, events that are discarded when the daemon is in Buffer
Wrap mode (see “Buffer Wrap” on page 3-43) (i.e. older events
being discarded in favor of new ones) are not included in the Lost
count.

The area located at the bottom of the Daemon Control Area contains a number of buttons
which control the daemons currently selected in the Daemon Control Area.

Launch
Accelerator: Ctrl+L

Starts execution of the daemon(s) currently selected in the Daemon Control Area.

NOTE

Starting a daemon does not imply that the daemon begins to col-
lect events.

3-28

Using the NightTrace Main Window

Launch operations are time consuming and involve possibly connecting to a target
system, user authentication, etc. Once the daemon is launched, it is more efficient to
utilize the Pause and Resume operations which require less time and resources.

Halt
Accelerator: Ctrl+H
Stops execution of the daemon(s) currently selected in the Daemon Control Area.

The connection to the target system is terminated by this operation. Once the dae-
mon is launched, it may be more efficient to utilize the Pause and Resume oper-
ations.

Pause
Accelerator: Ctrl+P

Pauses the execution of the daemon(s) currently selected in the Daemon Control
Area.

NOTE

When a daemon is paused, incoming trace events are discarded
without notice.

Resume
Accelerator: Ctrl+R

Resumes execution of the daemon(s) currently selected in the Daemon Control
Area. Once resumed, incoming events are placed into the daemon buffer for subse-
quent processing by the daemon.

Flush
Accelerator: Ctrl+F

Flushes trace events from the buffers associated with the daemon(s) currently
selected in the Daemon Control Area to either the NightTrace display buffer (see
“Stream” on page 3-41) or to the output file (see “Output File” on page 3-42).

Display

When data from the selected daemon(s) is being streamed to the NightTrace display
buffer (as specified by the setting of the Stream checkbox on the General page of
the Daemon Definition dialog (see “General” on page 3-39)), pressing this but-
ton causes a flush of the data currently in the trace buffer to the NightTrace display
buffer. If no display pages currently exist, a default display page will be created
when this button is pressed.

3-29

NightTrace Manual

NOTE

The user must scroll the NightTrace display in order to see the
most up-to-date data.

When data from the selected daemon(s) is written to output files, pressing this but-
ton causes the data in the output file to be displayed in the NightTrace display.

Trace Events...

Presents the Enable/Disable Trace Events dialog (see “Enable / Disable Trace
Events” on page 3-31) allowing the user to dynamically enable or disable selected
trace event types while a particular daemon is running. A currently executing dae-
mon must be selected from the Daemon Control Area.

3-30

Using the NightTrace Main Window

Enable / Disable Trace Events

The Enable/Disable Trace Events dialog allows the user to dynamically enable or
disable selected trace event types while a particular daemon is running. This dialog is
opened by selecting a currently executing daemon from the Daemon Control Area and
pressing the Trace Events... button in the Daemon Control Area of the NightTrace
Main Window (see “Daemon Control Area” on page 3-26).

Enable /

Trace Event Setting for daemon daemon_0 running on target demo:

Disabled Events | Enabled Events
A 0-4099
4356-4911

=

Trace Event or Range:

lUse Event Names: W

Ok Sy | Refreshl Cancell Help |

Figure 3-19. Enable / Disable Trace Events dialog

Disabled Events
This is a list of user trace or kernel trace event types that are disabled.

Disabled events are not logged to daemon buffers and therefore are not included in
event trace outputs.

Enabled Events
This is a list of user trace or kernel trace event types that are enabled.

Enabled events are allowed to be placed into daemon buffers and are subsequently
transferred to the output device (see “Trace Events Output” on page 3-41).

3-31

NightTrace Manual

Enable -->

Moves the selected items from the Disabled Events list or the Trace Event or
Range field to the Enabled Events list.

<-- Disable

Moves the selected items from the Enabled Events list or the Trace Event or
Range field to the Disabled Events list.

Trace Event or Range

Allows the user to enter a particular trace event type (or range of trace event types)
and subseqently Enable --> or Disable --> it.

The user may use the event name associated with the event type (e.g.
TR_SYSCALL_RESUME) or the numerical value of the trace event type (e.g.
4131).

The user may also enter a range of values either using the event names or their
numerical values (e.g. TR_INTERRUPT_ENTRY-TR_EXCEPTION_EXIT
or 4112-4117).

Use Event Names

Allows the user to view the event names of the trace event types in the Disabled
Events and Enabled Events lists instead of their numerical values.

For kernel events, these mappings are provided in the file
/usr/1ib/ N ghtTrace/ event map, which is automatically loaded by the
NightTrace.

For user trace events, the user may load user-defined event map files which

associate meaningful tags or labels with the user trace event ID numbers (see “Event
Map Files” on page 6-10).

3-32

Using the NightTrace Main Window

Session Overview Area

The area located directly beneath the Daemon Control Area displays information about
the files associated with the current session.

Session Overview 1225448 total events, 72,395 seconds
Type |Hame | Description [Lifespan |
K fvarftmpisiream Zofligk 122533 events, 22.538 seconds Session | £
U fvarftmpistream_eZMSVC d events, 4.552 seconds Session
=1 Untitled kernel page (2] Display page Temporary
=1 Untitled kernel page (3] Display page Temporary
=1 Untitled display page (4 Display page Temporary
£] fusrflibNightTrace/tables MightTrace default format tables for summary data Session
K fvarftmpistream_Zcfligkwec Wectors Session
K fvarfimpistream VsulZ\VW.wec Wectors Zession
oy, . dustlibNightTrace/eventmap NightTrace default event map file Session =

Cpen | Close| Edit...l

Figure 3-20. Session Overview Area

Type

This column displays an icon representing the type of item in the list.

K indicates kernel trace data

1] indicates user trace data
=] indicates a display page

ig| indicates a tables file
LU indicates an event map file
x= indicates an expressions file

Name

This column indicates the filename associated with the item.

Description

This column describes the item and may include statistics for trace data sets.

3-33

NightTrace Manual

3-34

The area located at the bottom of the Session Overview Area contains a number of buttons
which apply to the files currently selected in the Session Overview Area.

Open...

Presents the user with a standard file selection dialog which allows them to open
trace data files, trace configuration files, or trace event map files.

Close

Closes the selected files from the Session Overview list and removes them from the
session. When closing selected files that are Temporary, the files are deleted.

Edit...

Launches the selected file into an editor allowing the user to search and even modify
the selected file. This is most useful for event map files, configuration files contain-
ing tables, and kernel vector files which contain system call, interrupt, and exception
names.

Save Data Segment...

Presents the user with a standard file selection dialog allowing the user to save trace
data in a much more efficient format than raw trace event files providing for faster
initialization at startup.

Using the NightTrace Main Window

Daemon Definition Dialog

The Daemon Definition dialog allows the user to create and modify the various aspects
of a daemon configuration.

Draemon Definition

| wserrace | pvees | puneme | ower |

Figure 3-21. Daemon Definition dialog

The Daemon Definition dialog is divided into a number of pages that contain specific
information about the current configuration. These pages are:

- General

This page contains information such as the name of the daemon configuration, the
target system on which the daemon will run, the user’s login on that system, and set-
tings specifying whether kernel or user application tracing will be performed. Items
related to trace events output such as the names of output and key files and settings
such as whether or not streaming will be performed by this daemon are found on this
page as well.

See “General” on page 3-39 for more detailed information.

3-35

NightTrace Manual

3-36

- User Trace

This page contains settings for user trace daemons such as locking policies associ-
ated with the daemon, shared memory permissions, and the duration of the times-
tamp heartbeat, as well as specifications for the size and flush threshold of the user
event buffer.

See “User Trace” on page 3-44 for more detailed information.

- Events
This page allows the user to specify which events may be logged while tracing.
See “Events” on page 3-48 for more detailed information.

- Runtime

This page allows the user to specify the scheduling policy, CPU bias, and memory
binding policies for the daemon.

See “Runtime” on page 3-50 for more detailed information.
- Other

This page allows the user to specify advanced settings with respect to the transfer of
trace data from the daemon to the NightTrace display buffer.

See “Other” on page 3-54 for more detailed information.

The following buttons appear at the bottom of the Daemon Definition dialog and have
the specified meaning:

OK

This button applies changes made and closes the Daemon Definition dialog.

Apply

This button applies changes made but leaves the Daemon Definition dialog open.

Reset

This button restores the values of all items to the previously-applied values and
leaves the Daemon Definition dialog open.

Import...

Presents the Import Daemon Definition dialog (see “Import Daemon Defini-
tion” on page 3-37) allowing the user to define daemon attributes based on a user
application running on a remote system. The Import Daemon Definition dialog
is presented following user authentication (see “Login” on page 3-14 and “Enter
Password” on page 3-15).

Using the NightTrace Main Window

Cancel

This button restores the values of all items to the previously-applied values and
closes the Daemon Definition dialog.

Help

This button brings up the help topic for this page.

Import Daemon Definition

This dialog allows the user to define daemon attributes based on a running user applica-
tion containing NightTrace API calls. The Import Daemon Definition dialog is pre-
sented following user authentication (see “Login” on page 3-14 and “Enter Password” on
page 3-15).

The user may select an application, running on the specified target system, from which
they wish to import trace-related attributes.

Scan on target pteri complete.

Program ID Program

User Key File |

L

Refresh Cancel Help |

Figure 3-22. Import Daemon Definition dialog

Program ID

The process ID (PID) of the Program on the remote system.

Program

The name of the user application containing t r ace__ calls on the remote system.

User

The user who invoked the Program on the remote system.

3-37

NightTrace Manual

3-38

Key File

The filename which is used to calculate the shared memory segment identifier asso-
ciated with the logging of user trace events. See “Key File” on page 3-41 for more
information.

The following buttons appear at the bottom of the Import Daemon Definition dialog
and have the specified meaning:

OK
Imports daemon attributes into the current daemon definition from the user applica-
tion selected in the list.
Refresh
Queries the specified target system for user applications making trace-related calls.
Cancel
This button closes the Import Daemon Definition dialog without importing any
daemon attributes from any of the listed applications.
Help

Brings up online help for this dialog.

General

Target

Using the NightTrace Main Window

The General page of the Daemon Definition dialog (see “Daemon Definition Dialog”
on page 3-35) contains information such as the name of the daemon configuration, the tar-
get system on which the daemon will run, the user’s login on that system, and settings
specifying whether kernel or user application tracing will be performed. Items related to
trace events output such as the names of output and key files and settings such as whether
or not streaming will be performed by this daemon are found on this page as well.

Draemon Definition

| wserrace | pvees | puneme | ower |

Figure 3-23. Daemon Definition dialog - General

Name
The name for this daemon definition.

This field is automatically populated with the name daemon_x where x is a num-
ber, starting at 0, which increments with each new daemon definition.

The Name is merely a label to aid the user in identifying specific daemons with a
session. It has no external meaning and is unrelated to the NightTrace API. The
user may change this to a name of their choosing.

3-39

NightTrace Manual

Target System

The system on which this trace daemon will run.

User

The name of the user on the specified Target System responsible for running this
daemon.

Trace

Indicates what type of trace events this daemon will be logging.

Kernel
Indicates that the daemon is logging kernel trace events.

Kernel events are automatically generated by the operating system kernel
when a kernel daemon is initiated if the operating system kernel was built with
tracing support.

See the PowerMAX OS Real-Time Guide (0890466) for information on con-
figuring the kernel for kernel tracing on a PowerMAX OS system.

For systems running RedHawk Linux, see the Concurrent Real-Time Linux -
RT User Guide (0898004) for more detailed information.

User Application
Indicates that the daemon is logging user trace events.
User trace events are generated by:

- user applications that use the NightTrace API

- the NightProbe tool (see the description of the To
NightTrace menu item in the chapter titled “Using the Data
Recording Window” in the NightProbe User’s Guide
(0890480).

Timing Source

By default, an architecture-specific clock is used to timestamp trace events. On
NightHawk 6000 Series machines, the interval timer is used; on Power Hawk and
PowerStack systems, it is the PowerPC Time Base Register; on iHawk systems, the
Intel Time Stamp Counter is used.

NightTrace can also specify the Real-Time Clock and Interrupt Module (RCIM) as a
timestamp source (see “Timestamp Source Selection” on page 1-2 for more infor-
mation). This is most useful when concurrent traces running on multiple systems
are desired. Using the RCIM as a timing device allows NightTrace to present the
user with a synchronized view of concurrent activities on those systems.

3-40

Trace Events Output

Using the NightTrace Main Window

Default

Specifies that the architecture-specific clock will be used to timestamp trace
events. On NightHawk 6000 Series machines, the interval timer is used; on
Power Hawk and PowerStack systems, it is the PowerPC Time Base Register;
on iHawk systems, the Intel Time Stamp Counter is used.

RCIM Tick

Specifies that the Real-Time Clock and Interrupt Module (RCIM) tick clock
will be used to timestamp trace events.

NOTE

Use of this option requires that an RCIM board is installed and
configured on the target system.

Stream

When checked, this specifies that streaming is in effect so that the output trace
events will go directly to the NightTrace display buffer. Otherwise, the output will
be written to the Output File (see below).

Key File

Specifies a filename which is used to calculate the shared memory segment identi-
fier associated with the logging of user trace events. The daemon and the Night-
Trace API use the f t 0k(2) service to map the specified filename to a shared mem-
ory identifier as used by shmat (2) .

NOTE

When the output method is NOT streaming (see Stream above),
the Key File defines the name of the Output File where trace
events are written (see “Output File” on page 3-42).

The Key File is relative to the target system. It does not necessarily need to be
accessible from the host system (the system where the NightTrace GUI is running);
however, that can be convienient for subsequent analysis via NightTrace.

Furthermore, the Key File does not have to pre-exist. If a user application has not
already created it via a NightTrace API call, the daemon will create the file if it does
not exist.

3-41

NightTrace Manual

3-42

Browse...

Brings up a standard file selection dialog so that the user may navigate to the
desired location of the Key File.

In order to browse, the Target System (see “Target System” on page 3-40)
must be operational. The file selection dialog invoked by that button shows
files relative to the Target System.

Output File
The name of the file to which trace events are written.

The Output File is relative to the target system. It does not necessarily need to be
accessible from the host system (the system where the NightTrace GUI is running);
however, that can be convienient for subsequent analysis via NightTrace.

NOTE

When the output method is NOT streaming (see Stream above),
the Key File (see “Key File” on page 3-41) defines the name of
the Output File.

Browse...

Brings up a standard file selection dialog so that the user may navigate to the
desired location of the Output File.

In order to browse, the Target System (see “Target System” on page 3-40)
must be operational. The file selection dialog invoked by that button shows
files relative to the Target System.

File Wrap

When checked, allows the user to specify the Maximum File Size for the Key
File/Output File.

Maximum File Size
The maximum number of bytes for the Key File/Output File.

When the Maximum File Size is reached, subsequent events will overwrite
the oldest events. NightTrace automatically detects this and presents events in
chronological order, from oldest to newest. Events that are discarded due to
File Wrap are NOT considered “lost events” (see “Lost” on page 3-28) in
statistics provided by the NightTrace.

Using the NightTrace Main Window

NOTE

For a daemon capturing kernel trace events, the file wrap sizes
that the user specifies are rounded up to a multiple of kernel buffer
sizes. (On PowerMAX OS systems, a kernel trace buffer has a
fixed size of 4096*12 bytes; on RedHawk systems, a kernel trace
bufter is 500000 bytes.)

Buffer Wrap

When this is checked, the daemon will overwrite the least recently recorded events
in the trace buffer when it reaches its maximum size.

For user trace events, the size of the buffer is specified in the Buffer Size field on
the User Trace page of the Daemon Definition dialog (see “User Trace” on
page 3-44).

For kernel trace events, the size of the buffer is defined by the operating system.

On a PowerMAX OS system, a kernel trace buffer has a fixed size of 4096*12 bytes
which holds 4095 kernel events. The total number of trace buffers for kernel events
is specified by the kernel tunable TR BUFFER COUNT, the default value of which
is5.)

NOTE
The value of TR_BUFFER_COUNT may be changed on a Power-
MAX OS system via the conf i g command. However, if this

tunable is changed, the kernel must be rebuilt and the system
restarted for the change to take effect.

On RedHawk systems, there are two kernel trace buffers, each of which is 500000
bytes in size.

3-43

NightTrace Manual

User Trace

The User Trace page of the Daemon Definition dialog (see “Daemon Definition Dia-
log” on page 3-35) contains settings for locking policies associated with the daemon and
the corresponding user applications using the NightTrace API, shared memory permis-
sions, and the duration of the timestamp heartbeat, as well as specifications of the size and
flush threshold of the user event buffer.

" Daemon Definition

General | Events Runtime | Other |

Locking Policies

Zpin Lock Protection: System priority level (SPLY) — |

Page Critical Locking: W Lock Pages

Shared Memory

shmid Permissions: | 600

Timestamp Heartbeat

Log Heartbeat (secs): |5

User Event Buffer

Buffer Size (Events): | 16384

Flush Threshold (3 Full): |20

Inheritance

W Inherit settings from running user application

014 | Apply | Feset | Import...l Cancell Help

Figure 3-24. Daemon Definition dialog - User Trace

Locking Policies

Spin Lock Protection
The NightTrace API and associated daemons use high-performance, low-intrusion
spin locks to protect critical sections involved in logging and consuming trace

events.

These spin locks require preemption control so that processes on the same CPU
don't preempt a daemon or user process in the middle of a critical section and then
spin forever waiting for it to be unlocked.

The spin locks are held for extremely short periods of time.

3-44

Using the NightTrace Main Window

Failure to properly select a protection level may result in a process spinning forever
on a CPU in the event of unfortunate preemption.

In more severe cases, the system may hang; this is only a problem if a user-level
interrupt preempts another user process or daemon at an unfortunate time and
attempts to log trace events to the same trace daemon session.

Data corruption of the trace data will not occur in any case.

System priority level (SPL)

This is the safest form of preemption control as it prevents even machine
interrupts from preempting the locking process. This is required when a user
application will be logging events in a user-level interrupt handler (i.e. at sys-
tem interrupt level).

This is the default locking protection mechanism for PowerMAX OS systems.

NOTE

This mechanism is not available on RedHawk systems. If
selected for RedHawk systems, it is silently translated to the
Rescheduling Variables protection as described below.

Rescheduling Variables

This level of protection is sufficient for user applications that log trace events
as long as no user-level interrupt handlers will be logging trace events.

None

Selecting no protection opens up the real possibility that the user process or
the daemon could preempt each other if they are allowed to operate on the
same CPU.

However, the Runtime subpage allows the user to define the CPU binding
(CPU Bias) and priority (Priority) at which the daemon operates. (See
“Runtime” on page 3-50 for a description of these settings.) Thus, if the user
also takes similar care to schedule their user applications then selecting None
is sufficient.

Page Critical Locking

Page locking is required to prevent preemption while holding a spin lock. Without
this choice, it is possible that a page fault could occur while a spin lock is held,
allowing for a user application or daemon to spin forever.

3-45

NightTrace Manual

Lock Pages

When this option is selected, the daemon and user applications associated
with this daemon lock down the required pages and unlock them when the
NightTrace API is terminated.

Inheritance

When the daemon starts up, certain settings can be inherited from a running user
application that has set up a trace definition.

The NightTrace APItrace_begi n() call (an enhanced replacement for
trace_start ()) allows the user to define the following settings in a user appli-
cation:

- those values listed under the Spin Lock Protection and Page
Critical Locking categories on this page

- the Buffer Size also found on this page

- the setting for the Timing Source which appears on the General
page of the Daemon Definition dialog (see “General” on page
3-39)

See “trace begin()” on page 2-5 for more information on this APL.

Inherit settings from running user application

When this is checked, trace settings defined by a running user application are
silently preferred if those definitions differ from those made in NightTrace.

If not checked, trace settings defined by user applications must match those in
the current daemon definition.

See above for details on which trace settings may be inherited.

Shared Memory

The daemon and the user applications communicate with each other through shared mem-
ory. The shared memory segment identifier is calculated from the Key File setting (see
“Key File” on page 3-41).

The shared memory segment is automatically destroyed after the last user application
and/or the daemon exits normally (if the daemon or user applications are aborted, the
shared memory segment will remain; it will be reinitialized on subsequent use).

shmid Permissions

If the daemon is initiated before any user applications, then the shared memory seg-
ment will be created with the specified permissions.

3-46

Using the NightTrace Main Window

Timestamp Heartbeat

For performance reasons, NightTrace events normally include only the low 32 bits of a
full 64-bit timestamp. The heartbeat ensures that the daemon logs a full 64-bit timestamp
before the interval of time represented by 32-bits expires. The daemon automatically cal-
culates the heartbeat time when it determines how fast the timing source clock ticks.

Log Heartbeat

The frequency at which a full 64-bit timestamp will be generated.

NOTE

There would be no particular benefit by setting the heartbeat to a
value shorter than the automatically calcuated time unless trace
time anomolies are seen because the daemon is preempted by
higher priority processing and cannot otherwise log the heartbeat
in time.

User Event Buffer

Buffer Size

The number of events that can be held in memory before being written to the output
device.

Flush Threshold

The Flush Threshold, expressed as a percentage of the Buffer Size, is the point
at which the daemon begins to transfer events from the user event buffer to the out-
put device (see “Trace Events Output” on page 3-41). The threshold is important so
as not to lose events if the daemon cannot respond quickly enough.

NOTE

If events are being lost, a combination of changing the Buffer
Size, the Flush Threshold, and the runtime Priority (see “Pri-
ority” on page 3-51) of the daemon is normally sufficient to pre-
vent event loss.

3-47

NightTrace Manual

Events

3-48

The Events page of the Daemon Definition dialog (see “Daemon Definition Dialog”
on page 3-35) allows the user to specify which trace event types will be handled by the
daemon.

The user may also change this list dynamically while the daemon is executing by pressing
the Trace Events... button in the Daemon Control Area of the NightTrace Main Win-
dow (see “Daemon Control Area” on page 3-26) to bring up the Enable/Disable Trace
Events dialog (see “Enable / Disable Trace Events” on page 3-31).

™ 'Daemon Definition
General | User Tracel Runtime Other |
Disabled Events | Enabled Events
B 0-4039 B

4356-4311

Trace Event or Range:

Use Event Names: W

014 | Apply | Feset | Import...l Cancell Help

Figure 3-25. Daemon Definition dialog - Events

Disabled Events
This is a list of user trace or kernel trace event types that are disabled.

Disabled events are not logged to daemon buffers and therefore are not included in
event trace outputs.

Enabled Events

This is a list of user trace or kernel trace event types that are enabled.

Using the NightTrace Main Window

Enabled events are allowed to be placed into daemon buffers and are subsequently
transferred to the output device (see “Trace Events Output” on page 3-41).

Enable -->

Moves the selected items from the Disabled Events list or Trace Event field to
the Enabled Events list.

<-- Disable

Moves the selected items from the Enabled Events list or Trace Event field to
the Disabled Events list.

Trace Event

Allows the user to enter a particular trace event type (or range of trace event types)
and subsegently Enable --> or Disable --> it.

The user may use the event name associated with the event type (e.g.
TR_SYSCALL_RESUME) or the numerical value of the trace event type (e.g.
4131).

The user may also enter a range of values either using the event names or their
numerical values (e.g. TR_INTERRUPT_ENTRY-TR_EXCEPTION_EXIT
or4112-4117).

Use Event Names

Allows the user to view the event names of the trace event types in the Disabled
Events and Enabled Events lists instead of their numerical values.

For kernel events, these mappings are provided in the file
[usr/lib/NightTrace/ event map, which is automatically loaded by
NightTrace.

For user trace events, the user may load user-defined event map files which
associate meaningful tags or labels with the user trace event ID numbers (see “Event
Map Files” on page 6-10).

3-49

NightTrace Manual

Runtime
The Runtime page of the Daemon Definition dialog (see “Daemon Definition Dia-
log” on page 3-35) allows the user to specify the scheduling policy, CPU bias, and mem-
ory binding policies for the daemon.
Daemaon Definition
Figure 3-26. Daemon Definition dialog - Runtime
Scheduling

Scheduling Policy

POSIX defines three types of policies that control the way a process is scheduled by
the operating system. They are SCHED_FI FO(FIFO), SCHED_RR (Round
Robin), and SCHED OTHER (Time-Sharing). Each of these scheduling policies
is associated with one of the System V scheduler classes. See either the PowerMAX
OS Programming Guide (0890423) or the RedHawk Linux User's Guide (0898004)
for more detailed information regarding these policies and their associated classes.

3-50

CPU Bias

Using the NightTrace Main Window

FIFO

The FIFO (first—in—first—out) policy (SCHED FI FO) is associated with the
fixed-priority class in which critical processes and LWPs can run in predeter-
mined sequence. Fixed priorities never change except when a user requests a
change.

This policy is almost identical to the Round Robin (SCHED_RR) policy.
The only difference is that a process scheduled under the FIFO policy does
not have an associated time quantum. As a result, as long as a process sched-
uled under the FIFO policy is the highest priority process scheduled on a par-
ticular CPU, it will continue to execute until it voluntarily blocks.

Round Robin

The Round Robin policy (SCHED_RR), like the FIFO policy, is associated
with the fixed-priority class in which critical processes and LWPs can run in
predetermined sequence. Fixed priorities never change except when a user
requests a change.

A process that is scheduled under this policy (as opposed to the FIFO policy)
has an associated time quantum.
Time-Sharing

The Time-Sharing policy (SCHED_OTHER) is associated with the
time-sharing class, changing priorities dynamically and assigning time slices
of different lengths to processes in order to provide good response time to
interactive processes and LWPs and good throughput to CPU-bound processes
and LWPs.

Priority

The Priority is relative to the selected Scheduling Policy (see “Scheduling Pol-
icy” on page 3-50) and the range of allowable values is dependent on the operating
system.

For example, on PowerMAX OS systems, the priority values for the FIFO class
include 0..59, where 59 is the most urgent user priority available on the system.

On RedHawk systems, the priority values for the FIFO class include 1..99, where
99 is the most urgent user priority available on the system.

It is recommended that a reasonable urgent priority is specified when using the
FIFO scheduling policy to prevent event loss.

CPU Bias

Selection of a specific CPU or set of CPUs can be advantageous to prevent event
loss, reduce daemon instruction on the rest of the system, and for careful configura-

3-51

NightTrace Manual

NUMA

3-52

tion to allow for relaxed Spin Lock Protection (see “Spin Lock Protection” on page
3-44).

All CPUs

Selects all CPUs on the target system.

On platforms belonging to the local/global/remote subclass of non-uniform memory
access (NUMA) architectures, primary memory is divided into global and local memories.

Global memory is located on a memory board where it is equally distant, in terms of
access time, from all of the CPUs in the system. All CPUs share a single data path to glo-
bal memory known as the system bus.

Local memory is located on a CPU board where it is closer, in terms of access time, to the
co-resident CPUs. The path between a CPU and its local memory does not include the
system bus. Local memory usage improves the throughput of the system in two ways:
smaller access times for the co-resident CPUs and less system bus contention for the
remaining CPUs.

Applications can influence the page placement decisions made by the kernel by selecting
NUMA policies for different parts of their address spaces. NUMA policies specify where
data should reside in the local/global/remote hierarchy.

NOTE

These settings are ignored for non-NUMA target systems archi-
tectures, such as PowerHawk, PowerStack, and iHawk series
machines.

NOTE

These settings do not affect the memory associated with the trace
buffers. Kernel trace buffers are in kernel memory allocated out
of the global memoy pool and user trace buffers are in shared
memory allocated out of the global memory pool.

Text NUMA Flag
This item selects the NUMA policy to apply to text (code) pages.

Text pages are those pages in private mappings that belong to a file in a file system.
The traditional text segment falls into this category.

See “Policies” in the section below for a list of applicable NUMA policies.

Policies

Using the NightTrace Main Window

Private Data NUMA Flag
This item selects the NUMA policy to apply to private data pages.
Private data pages are those pages in private mappings that do not belong to a file in
a file system. The traditional stack and data segments fall into this category. Note
that the first time that a process writes to a page in a private, writable mapping to a

file, the page will move from the text category to the private data category.

See “Policies” in the section below for a list of applicable NUMA policies.

Shared Data NUMA Flag

This item selects the NUMA policy to apply to shared data pages. See “Policies” in
the section below for a list of applicable NUMA policies.

U-block NUMA Flag

This item selects the NUMA policy to apply to kernel data structures that contain
the stack used during system calls, the register save area used during context
switches, and miscellaneous other bits of information about the LWP.

See “Policies” in the section below for a list of applicable NUMA policies.

Each of the above flags can be set to one of the following:

Global

Specifies that the designated pages should be placed in global memory.

Soft Local

Specifies that the designated pages be placed in local memory if space is available,
otherwise they should be placed in global memory.

Hard Local

Specifies that the designated pages must be placed in local memory.

Default

Specifies that the default NUMA policy on the target system should be used.

3-53

NightTrace Manual

Other

The Other page of the Daemon Definition dialog (see “Daemon Definition Dialog” on
page 3-35) allows the user to specify advanced settings with respect to the transfer of trace
data from the daemon to the NightTrace display buffer.

Draemon Definition

Bz4zaa0

Figure 3-27. Daemon Definition dialog - Other

Streaming Options

Stream Buffer Size

The number of bytes for the buffer that the NightTrace uses to hold data from the
daemon before sending it to the NightTrace display buffer.

NOTE

This is an internal buffer. You should not need to adjust the size
of this buffer unless NightTrace finds that it cannot transfer data
quickly enough between the daemon and the NightTrace analyzer.
In such a circumstance, the daemon is forced into a Paused state
(see “State” on page 3-27).

3-54

Using the NightTrace Main Window

Stream Packet Size

The amount of data (in bytes) sent from the daemon to the NightTrace analyzer for
individual I/O transfers. Different network configurations may have different opti-
mal packet sizes.

Incomplete Packet Interval

This setting is intended for applications that have very low event rates. The user
may not want to wait for a full packet (specified by the Stream Packet Size) to
fill before the data is sent to the analyzer. If a packet cannot be filled in this amount
of time, the available trace data is sent anyway.

NOTE

The user can always hit the Flush button (see “Flush” on page
3-29) which causes all data in the trace buffer to be immediately
transmitted across the stream.

Kernel Trace Buffer Options

Kernel trace with default number of trace buffers

Number of Trace Buffers

Kernel trace with default trace buffer size

Trace Buffer Size

3-55

NightTrace Manual

3-56

4
Generating Trace Event Logs with ntraceud

The ntraceud Daemon it 4-1
The Default User Daemon Configuration 4-2
ntraceud Modes e 4-4
ntraceud OPLiONSot 4-5
Optionto Get Help (-help) 4-7
Option to Get Version Information (-version) 4-8
Option to Disable the IPL Register (-ipldisable) 4-9
Option to Prevent Page Locking (-lockdisable) 4-11
Option to Establish File-Wraparound Mode (-filewrap) 4-12
Option to Establish Buffer-Wraparound Mode (-bufferwrap) 4-13
Option to Define Shared Memory Buffer Size (-memsize) 4-16
Option to Set Timeout Interval (-timeout) 4-17
Option to Set the Buffer-Full Cutoff Percentage (-cutoff) 4-18
Option to Select Timestamp Source (-clock) 4-19
Option to Reset the ntraceud Daemon (-reset). 4-20
Option to Quit Running ntraceud (-quit) 4-21
Option to Present Statistical Information (-stats)........................ 4-22
Option to Disable Logging (-disable). 4-24
Option to Enable Logging (-enable). 4-26

Invoking ntraceud 4-28

NightTrace Manual

4
Generating Trace Event Logs with ntraceud

A user daemon is required in order to capture trace events logged by user applications.
There are two methods for controlling user daemons:

¢ Use the graphical user interface provided in the ntrace dialog as
described in the preceeding chapter

® Use the command line tool nt r aceud

The interactive is often more convenient and easier to use and additionally offers concur-
rent viewing of trace events while the application continues to log trace data; this optional
feature is called streaming. Alternatively, the nt r aceud command line tool is useful in
scripts where automation is required.

This chapter describes the nt r aceud command line tool broken down into the following
topics:

® The ntraceud dacmon

® The default user daemon configuration
* ntraceud modes

* ntraceud options

* Invoking nt r aceud

The ntraceud Daemon

When you start up nt r aceud, it creates a daemon background process and returns your
prompt. The daemon creates a shared memory buffer in global memory. Your application
writes trace events into this buffer, and the daemon copies these trace events to a trace
event file.

You supply the name of the trace event file on your nt r aceud invocation and in the
trace_begi n() library call in your application. If this file does not exist, nt r aceud
creates it; otherwise, nt r aceud overwrites it. Unless your unmask(1) setting overrides
this default, nt r aceud creates the file with mode 666, read and write permission to all
users. If you want to maximize performance, use a trace event file that is local to the
system where the nt r aceud daemon and your application run.

A single nt r aceud daemon may service several running applications or processes.
Several nt r aceud daemons can run simultaneously; the system identifies them by their
distinctive trace event file names. The nt r aceud daemon resides on your system
under/ usr/ bi n/ ntraceud.

NightTrace Manual

Whenever the daemon is idle, it sleeps. You can control the sleep interval with an
nt r aceud option. Logging a trace event may wake the daemon if the buffer-full cutoff
percentage is exceeded or if shared memory becomes full of trace events. Flushing trace
events from the shared memory buffer to disk always wakes the daemon.

The Default User Daemon Configuration

Invoking nt r aceud with a trace event file argument and without any options will
attempt to start a user daemon with the default user daemon configuration. You can over-
ride defaults by invoking nt r aceud with particular options. Table 4-1 summarizes these
options. Later sections provide detailed descriptions of these options and operating modes.

However, if a user application has already been initiated, it may have specified a
non-default configuration via the t r ace_begi n() call. If the critical settings in the con-
figuration defined by the user application differ from those specified by nt r aceud, then
nt r aceud will fail to initialize with an appropriate diagnostic.

In the default configuration, all trace events are enabled for logging. Your application logs
trace events to the shared memory buffer. By default, an architecture-specific timing
source is utilized. For Intel-based machines, the Intel Time Stamp Counter (TSC regis-
ter); for Night Hawk 6000 series machine, the interval timer; for PowerHawk and Power-
Stack series machines, the Time Base Register (TBR). However, the Real-Time Clock
and Interrupt Module (RCIM) can be used as a timestamp source by using the - ¢l ock
option to nt r aceud (see “Option to Select Timestamp Source (-clock)” on page 4-19).

The nt r aceud daemon operates in expansive mode. In expansive mode, nt r aceud
copies all trace events from the shared memory buffer to the trace event file. This behavior
differs from file-wraparound mode and buffer-wraparound mode. If the trace event file
does not exist when nt r aceud starts up, nt r aceud creates it; otherwise, nt r aceud
overwrites it.

nt r aceud and the NightTrace library routines use page locking to prevent page faults
during trace event logging.

nt r aceud uses high-performance, low-intrusion spin locks to protect critical sections
involved in logging and consuming trace events.

These spin locks require preemption control so that processes on the same CPU don't pre-
empt a daemon or user process in the middle of a critical section and then spin forever
waiting for it to be unlocked.

The spin locks are held for extremely short periods of time.

Failure to properly select a protection level may result in a process spinning forever on a
CPU in the event of unfortunate preemption.

In more severe cases, the system may hang; this is only a problem if a user-level interrupt
preempts another user process or daemon at an unfortunate time and attempts to log trace
events to the same trace daemon session.

Data corruption of the trace data will not occur in any case.

Generating Trace Event Logs with ntraceud

<default option>

IPL protection is the safest form of preemption control as it prevents even
machine interrupts from preempting the locking process. This is required
when a user application will be logging events in a user-level interrupt han-
dler (i.e. at system interrupt level).

This is the default preemption control mechanism for PowerMAX OS sys-
tems.

NOTE

This mechanism is not available on RedHawk systems. If
selected for RedHawk systems, it is silently translated to the
-resched protection as described below.

-resched

This level of protection is sufficient for user applications that log trace events
as long as no user-level interrupt handlers will be logging trace events. This is
the default preemption control setting for RedHawk Linux.

-i pldisable

Selecting no protection opens up the real possibility that the user process or
the daemon could preempt each other if they are allowed to operate on the
same CPU.

However, appropriate use of CPU bindings and/or priority at which the dae-
mon operates can prevent such occurrences Thus, if the user also takes simi-
lar care to schedule their user applications then selecting this is sufficient.

Page locking is required to prevent preemption while holding a spin lock. Without this
choice, it is possible that a page fault could occur while a spin lock is held, allowing for a
user application or daemon to spin forever.

When nt r aceud is idle, it sleeps. The process of copying trace events from the shared
memory buffer to a trace event file is called flushing the buffer. nt r aceud wakes up and
flushes the buffer when any of these conditions exist:

* ntraceud’s sleep interval elapses
® The buffer-full cutoff percentage is exceeded
¢ The shared memory buffer is full of unwritten trace events

* Your application calls trace_flush(), trace_trigger(), or
trace_end()

A summary of NightTrace configuration defaults follows.

4-3

NightTrace Manual

Table 4-1. NightTrace Configuration Defaults

Characteristic Default Modifying Option
nt r aceud sleep interval 5 seconds -ti meout seconds
Buffer-full cutoff percentage 20% full -cut of f percent
Shared memory buffer size 16K (16,384) trace - mensi ze count

events
Flush mechanism (See above) - buf f erwr ap
Trace event file size Indefinite -fil ewap bytes
Trace events enabled for log- All - di sabl e ID and
ging -enabl e ID
Page-fault handling Page locking -1 ockdi sabl e
Preemption control Modify IPL register -ipldisable

(PowerMAX OS)

Rescheduling variables
(RedHawk Linux) -resched

ntraceud Modes

NightTrace can operate in three modes: expansive (default), file-wraparound, and
buffer-wraparound. As the following two tables show, these modes meet different needs
and have different characteristics. They differ mainly by their handling of the shared
memory buffer and the trace event file on disk.

By default, NightTrace operates in expansive mode. NightTrace operates in file-wrap-
around mode when you specify the - f i | ewr ap option on the nt r aceud invocation
line. The nt raceud - buf f er wr ap option puts NightTrace in buffer-wraparound
mode. See “Option to Establish File-Wraparound Mode (-filewrap)” on page 4-12 and
“Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-13 for more
information on these options.

It is not possible to combine expansive mode with either file-wraparound or buffer-wrap-
around mode. Although you can mix file-wraparound and buffer-wraparound modes, it is
not recommended.

Table 4-2 provides some guidelines to help you decide which mode to use.

4-4

Generating Trace Event Logs with ntraceud

Table 4-2. Mode-Selection Guidelines

MODE
Constraint Expansive File-Wraparound Buffer-Wraparound
Trace event All trace events are Newest trace events Events just before a
importance important are important trace_flush()
are important
General Disk space and mem- Disk space is limited Program will run a
ory are plentiful long time

Table 4-3 shows how each NightTrace operating mode reacts to a particular condition.
The process of copying trace events from the shared memory buffer to the trace event file
on disk is called flushing the buffer.

Table 4-3. NightTrace Operating Modes

MODE

Condition Expansive File-Wraparound Buffer-Wraparound

nt r aceud sleep Flush the buffer Flush the buffer (No reaction)
interval exceeded

(-ti meout)

Buffer-full cutoff Flush the buffer Flush the buffer (No reaction)

percentage

exceeded

(-cut of f)

Shared memory Flush the buffer Flush the buffer Overwrite the

buffer is full buffer’s oldest

(- mensi ze) trace events with
the newest ones

Trace event file is N/A Overwrite the N/A

full (-fil ew ap) file’s oldest

trace events with
the newest ones

ntraceud Options

nt r aceud always copies trace events from the shared memory buffer to the trace event
file, trace_file. You can override some other NightTrace defaults by invoking nt r aceud

4-5

NightTrace Manual

4-6

with option(s). You can also use options to quit running or reset nt r aceud and to obtain

version, statistical, or invocation-syntax information. The full nt r aceud invocation

syntax is:
ntraceud hel p] [- versi on] [-i pl di sabl e][- | ockdi sabl e]

fil ew ap bytes] [- buf f er w ap] [- mensi ze count]

t i meout seconds] [- cut of f percent] [- cl ock source]

reset][-quit][-quit!][-stats][-join]

[- di sabl e ID[- ID]] [...]1 [[- enabl e ID[- ID]] [...]] trace_file

[
[
[
[
[

You can abbreviate all nt r aceud options to their shortest unambiguous length, but most
of the examples in this manual use the long option name. These options are
case-insensitive. The following examples are all equivalent:

ntraceud - hel p
nt raceud - hel
ntraceud - he
ntraceud-h
ntraceud-H
ntraceud - HE
nt raceud - Hel
ntraceud - HELP

You can invoke nt r aceud more than once with different options during a single trace
session; each invocation passes additional options and values to the running nt r aceud
daemon. Usually you do this to dynamically enable or disable trace events or to obtain
current statistical information. Options that are available only at nt r aceud start up are
described that way.

The following sections discuss the nt r aceud options.

Option to Get Help (-help)

Generating Trace Event Logs with ntraceud

The nt raceud - hel p option displays the nt r aceud invocation syntax on standard

output.

SYNTAX

ntraceud -

DESCRIPTION

hel p

The nt r aceud - hel p option displays a brief help message showing the complete
invocation syntax for nt r aceud. Screen 4-1 shows an example of - hel p option

output.

/usage: ntraceud [-help] [-version] [-ipldisable] [-Iockdisable] \

[-filewap bytes]
[-cutof f percent]
[-disable ID-1D]

Ceneral options:
-help
-version

out put

Options for a new ntr
-ipldisable
-1 ockdi sabl e
-filewap bytes
- buf ferw ap
-mensi ze count
-ti meout seconds
-cutof f percent
-cl ock source

def aul t
rcimtick

Options for an existi
-reset
-quit
-stats

-disable 1D -1D
-enable 1D -1D

Files:
trace_file

Valid values for source are:

Options for new and existing ntraceud daenons:

[-bufferwrap] [-nensize count] [-tineout seconds]
[-clock source] [-reset] [-quit] [-stats]
[-enable ID[-1D] trace_file

Wite this nmessage to standard out put
Wite the current ntraceud version stanp to standard

aceud daenon:

Di sabl e use of the IPL register

Di sabl e use of page | ocking

Use file waparound node with nax trace_file size in bytes
Use shared nenory buffer w aparound node

Set shared nmenory buffer size to specified event count

Set the ntraceud tinmeout to specified seconds

Flush events to disk at specified cutoff Ievel

Speci fy source of event time stanps

Use the default system cl ock
Use the RClI M synchronized tick clock

ng ntraceud daenon:

Reset the ntraceud daenon and the trace_file

Quit running ntraceud

Wite statistics (resource/environment) to standard out put

Di sabl e a specific event ID or ID range fromlogging
Enabl e a specific event ID or IDrange to |og

Hol ds events | ogged by your application and ntraceud

/

Screen 4-1. Sample Output from the ntraceud -help Option

4-7

NightTrace Manual

Option to Get Version Information (-version)

The ntraceud - ver si on option displays the current nt r aceud version stamp on
standard output.

SYNTAX

ntraceud -version

DESCRIPTION

The nt raceud - ver si on option displays version stamp information for this
nt r aceud daemon.

4-8

Generating Trace Event Logs with ntraceud

Option to Disable the IPL Register (-ipldisable)

The ntraceud - i pl di sabl e option disables the default use of the system’s interrupt
priority level (IPL) register by nt r aceud and by the NightTrace library routines in your
application.

SYNTAX

ntraceud -ipldisabl e face file

DESCRIPTION

On PowerMAX OS, by default, NightTrace modifies a shared memory region
bound to the system’s interrupt priority level (IPL) register to control preemption.

On RedHawk Linux, by default, NightTrace uses rescheduling variables to prevent
process preemption (this does not prevent preemption by machine interrupts, but
this is not of concern on RedHawk Linux since user applications cannot run at inter-
rupt level).

On PowerMAX OS, if your application lacks read and write privilege to
/ dev/ spl , the NightTrace daemon and library initialization routine exit with
errors.

On RedHawk Linux, if your application lacks privileges to be able to use rescheding
variables, the NightTrace daemon and library initialization routines will exit with
errors.

If you still want to trace events, you must invoke the nt r aceud daemon with the
-i pl di sabl e option. If you use the - i pl di sabl e option, you must start up
nt r aceud with it.

You must not use the - i pl di sabl e option if your user-level interrupt routine logs
trace events to the shared memory buffer.

CAUTION

The - i pl di sabl e option should be used with great care to
avoid deadlock. This may occur if more than one LWP, each
biased to run on the same CPU, is logging trace events to a trace
file created by an nt r aceud invoked with the - i pl di sabl e
option.

Consider the following scenario: an LWP, preparing to log a trace
event, locks the spin lock to protect the shared memory buffer. It
is preempted by a second LWP which also attempts to log a trace
event. However, due to priority inversion, the first LWP cannot
release the spin lock, causing the second LWP to loop infinitely

4-9

NightTrace Manual

waiting for the spin lock to be released.

This deadlock could be avoided if nt r aceud were invoked with-
out the - i pl di sabl e option. This would allow the first LWP to
release the spin lock before being preempted.

SEE ALSO

For more information on the IPL register, see the PowerMAX OS Programming
Guide.

4-10

Generating Trace Event Logs with ntraceud

Option to Prevent Page Locking (-lockdisable)

The nt raceud -1 ockdi sabl e option disables default page locking by nt r aceud
and by the NightTrace library routines in your application.

SYNTAX

ntraceud -1 ockdi sabl e #race file

DESCRIPTION

You can identify a running nt r aceud daemon by its trace event file name,
trace_file.

By default, NightTrace locks its pages in memory. This capability prevents page
faults during trace event logging that could distort trace event timings.

If you lack sufficient privileges required to lock your pages in memory, your
invocation of nt r aceud and your application exit with errors. If you still want to
trace events, you must invoke the nt r aceud daemon with the - | ockdi sabl e
option. This option makes nt r aceud and the NightTrace library routines in your
application run without locking their pages in memory. If you use the - | ockdi s-
abl e option, you must start up nt r aceud with it.

You must not use the - | ockdi sabl e option if your user-level interrupt routine
logs trace events to the shared memory buffer.

4-11

NightTrace Manual

Option to Establish File-Wraparound Mode (-filewrap)

4-12

By default, the trace event file can grow indefinitely. With the nt raceud -fil ew ap
option, you can make NightTrace operate in file-wraparound mode, rather than expansive
mode. In file-wraparound mode, you limit the trace event file size.

SYNTAX

ntraceud -filewap bytes trace file

DESCRIPTION

The ntraceud - fi | ew ap option lets you specify the maximum byte size, bytes,
of the trace event file, trace_file. Specify the bytes parameter as a number of bytes
or as a number with a K or M suffix to show that the bytes parameter is in kilobyte or
megabyte units, respectively. For example, 12K means 12,288 bytes. If you use the
- fi | ew ap option, you must start up nt r aceud with it.

Your application logs enabled trace events into a shared memory buffer. nt r aceud
copies these trace events to the trace event file. In expansive mode, this file can
grow indefinitely.

The ntraceud - fi | ew ap option makes NightTrace operate in file-wraparound
mode, rather than in expansive mode. In file-wraparound mode the trace event file
can become full of trace events. When this happens, nt r aceud overwrites the
oldest trace events in the beginning of the file with the newest ones, intentionally
discarding the oldest trace events to make room for the newest ones.

In expansive (default) and file-wraparound modes, you control automatic buffer
flushing by setting the nt r aceud sleep interval, shared memory size, and
buffer-full cutoff percentage. In contrast, there is no automatic buffer flushing in
buffer-wraparound mode; these values have no effect in this mode.

File-wraparound mode can be beneficial if you are short of disk space. With this
mode, you specify the maximum size of the trace event file, instead of allowing it to
grow indefinitely. Consider using this option if you are interested only in the most
recent of many trace events logged by an application over a long period of time. If
you want to determine how much disk space is available, run the df (1) command
with the - kK option and look at the “avai | ” column.

SEE ALSO

For a comparison of expansive, file-wraparound, and buffer-wraparound modes, see
“ntraceud Modes” on page 4-4.

Generating Trace Event Logs with ntraceud

Option to Establish Buffer-Wraparound Mode (-bufferwrap)

The process of copying trace events from the shared memory buffer to the trace event file
on disk is called flushing the buffer. With the nt r aceud - buf f er wr ap option, you can
make NightTrace operate in buffer-wraparound mode, rather than expansive mode. In
buffer-wraparound mode, the nt r aceud daemon flushes only the most recent trace

events, rather than all trace events. Your application asynchronously triggers every buffer
flush.

SYNTAX

ntraceud -bufferwap frace file

DESCRIPTION

The nt r aceud daemon always logs enabled trace events into a shared memory
buffer. In expansive mode, when the buffer is full (or when some other conditions
exist), nt r aceud automatically flushes the buffer to the trace event file, trace_file.

The nt raceud - buf f er wr ap option makes NightTrace operate in buffer-wrap-
around mode, rather than in expansive mode. When the buffer is full in buffer-wrap-
around mode, the application treats the shared memory buffer as a circular queue
and overwrites the oldest trace events with the newest ones, intentionally discarding
the oldest trace events to make room for the newest ones. This overwriting continues
until your application explicitly calls t race_f | ush() . Only then, does nt r a-
ceud copy the remaining trace events from the shared memory buffer to the trace
event file. If you use the - buf f er wr ap option, you must start up nt r aceud with
it.

NOTE

You control automatic buffer flushing by setting the nt r aceud
sleep interval and buffer-full cutoff percentage in expansive
(default) mode and in file-wraparound mode. In contrast, there is
no automatic buffer flushing in buffer-wraparound mode; these
values have no effect in this mode. Invoking nt r aceud with the
- buf f er wr ap option, makes nt r aceud ignore any -t i ne-
out and - cut of f options.

In buffer-wraparound mode, you can estimate the maximum number of trace events
to be written to your trace event file by using the following formula:

max_events = nax_events_in_buffer * flush_count
where:

max_event s The maximum number of trace events.

4-13

NightTrace Manual

4-14

max_events_in_buffer
The number of trace events the shared memory buffer
can hold. You can set this value when you invoke nt r a-
ceud with the - mensi ze option.

fl ush_count The number of t race_f | ush() calls your application
executes.

For example, if you set your shared memory buffer size to 1000 trace events, then
max_event s_i n_buf f er is 1000. If you expect your three t r ace_f | ush()
calls to execute two times each, then f | ush_count is six (3 * 2). Calculating
max_event s gives you about 6000 (1000 * 6) trace events in your trace event file.

Buffer-wraparound mode:

¢ Can help you with debugging
¢ Can reduce trace events to a manageable number

® May conserve disk space
Buffer-wraparound mode can be useful in debugging.

Assume that you are debugging a fault in a large application. Follow the steps
below to accomplish your task.

1. Insert atrace_flush() call in your code where you believe the
fault occurs.

2. Compile and link your application.
3. Invoke nt r aceud with the - buf f er wr ap option.

4. Run your application.

When your application executes thet race_f | ush() call, nt raceud copies all
trace events still in the shared memory buffer to the trace event file. You can then
use the nt r ace display utility to graphically analyze only the trace events
immediately preceding the fault.

Buffer-wraparound mode can also be useful in reducing trace events to a
manageable number. In this mode, when the shared memory buffer is full, the
newest trace events overwrite the oldest ones. This means that if the shared memory
buffer becomes full before your application executes the t race_fl ush() call,
nt r aceud copies only the current contents of the buffer to the trace event file. This
way, you can exclude the oldest trace events from your nt r ace displays.

In buffer-wraparound mode, nt r aceud usually flushes fewer trace events to the
trace event file than in expansive mode. Thus, this mode can conserve disk space.

If you want to determine how much disk space is available, run the df (1)

command with the - k option and look at the “avai | ” column. Use the following
command to see the system settings for the current, default, minimum, and
maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHWAX

See the i dt une(1M man page for more information.

Generating Trace Event Logs with ntraceud

SEE ALSO

For more information ont race_f | ush(), see “trace_flush() and trace_trigger()”
on page 2-20. For a comparison of expansive, file-wraparound, and buffer-wrap-
around modes, see “ntraceud Modes” on page 4-4. For information on limiting the
number of logged trace events, see “Option to Define Shared Memory Buffer Size
(-memsize)” on page 4-16.

4-15

NightTrace Manual

Option to Define Shared Memory Buffer Size (-memsize)

By default, the shared memory buffer can hold 16,384 trace events. When the buffer is full
of unwritten trace events, the nt r aceud daemon wakes up and copies the trace events to
the trace event file. The nt r aceud - mensi ze option lets you alter the size of the shared
memory buffer.

SYNTAX

ntraceud -mensi ze count trace file

DESCRIPTION

The ntraceud - mensi ze option lets you set the shared memory buffer size.
Specify the count parameter as a maximum number of trace events or as a number
with a K or M suffix to show that the count parameter is in kilobyte or megabyte
units, respectively. For example, 12K means 12,288 trace events. nt r aceud
rounds that number up to a full page boundary. A trace event with zero or one
argument takes up 16 bytes; a trace event with more arguments takes up 32 bytes: 16
bytes for the basic trace event and one argument and 16 bytes for the
NT_CONTI NUE overhead trace event and the remaining arguments.

On PowerMAX OS, use the following command to see the system settings for the
current, default, minimum, and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHWAX
See the i dt une(1M man page for more information.

By default, if the shared memory buffer becomes full, nt r aceud wakes up and
copies trace events from the shared memory buffer to the trace event file, frace_file.
You can increase the count parameter to prevent trace event loss. If you use the
- mensi ze option, you must start up nt r aceud with it.

By changing the shared memory buffer size, you can:

¢ Alter the buffer flush frequency

* Control the number of trace events copied to the trace event file in
buffer-wraparound mode

SEE ALSO

For information on limiting the number of logged trace events, see “Option to Estab-
lish Buffer-Wraparound Mode (-bufferwrap)” on page 4-13.

4-16

Generating Trace Event Logs with ntraceud

Option to Set Timeout Interval (-timeout)

By default, nt r aceud sleeps 5 seconds after writing trace events to disk. The
ntraceud -t i meout option lets you set this timeout interval.

SYNTAX

ntraceud -tineout seconds trace file

DESCRIPTION

You can identify a running nt r aceud daemon by its trace event file name,
trace_file.

When nt r aceud is idle, the daemon sleeps. By default, the sleep interval is a
maximum of 5 seconds. The ntraceud -t i meout option lets you establish the
maximum number of seconds, seconds, that the nt r aceud daemon sleeps.

Waking the nt r aceud daemon incurs overhead that can distort trace event timings;
decreasing the timeout parameter makes it more likely that the daemon will be
awake when needed. You can also decrease the timeout parameter to prevent trace
event loss. Note: If your application does not log events frequently, you can increase
the timeout to reduce the time the daemon runs and consumes CPU cycles.

If you use the - t i meout option, you must start up nt r aceud with it. If you
invoke nt r aceud with both the - ti meout and - buf f er wr ap options,
nt r aceud ignores the - t i meout option.

nt r aceud does not sleep for the full period if:

®* Your application executes a call to trace_flush(),
trace_trigger(),ortrace_end()

® Your application logs a trace event that causes shared memory to
become full or your buffer-full cutoff percentage to be reached

* You specify a timeout parameter which exceeds the time in which the
lower 32 bits of the timestamp source would roll over. This rollover
time varies from architecture to architecture (with a minimum value
0f 257.69803 seconds) and is calculated by nt r aceud as part of its
initialization. It is important to detect this rollover so that proper
ordering of trace events is maintained. If you specify a timeout inter-
val which exceeds the rollover time, nt r aceud uses the rollover
time as the timeout interval, ignoring the value specified.

NightTrace Manual

Option to Set the Buffer-Full Cutoff Percentage (-cutoff)

4-18

By default, when the shared memory buffer becomes 20-percent full of unwritten trace
events, the nt r aceud daemon wakes up and copies the trace events to the trace event
file. The nt r aceud - cut of f option lets you alter this percentage.

SYNTAX

ntraceud -cutoff percent trace file

DESCRIPTION

The ntraceud - cut of f option lets you set the buffer-full cutoff percentage,
percent, for the shared memory buffer. percent is an integer percentage in the range
0-99, inclusive.

The process of copying trace events from the shared memory buffer to the trace
event file, trace_file, on disk is called flushing the buffer. When a logged trace event
causes the buffer to reach the buffer-full cutoff percentage, nt r aceud wakes up
and flushes the buffer.

Waking the nt r aceud daemon incurs overhead that can distort trace event timings;
decreasing the shared memory buffer-full cutoff percentage makes it more likely
that the daemon will be wakened by the application. You can also decrease the per-
cent parameter to prevent trace event loss; the effect is an increase in the buffer flush
frequency.

If you use the - cut of f option, you must start up nt r aceud with it. If you invoke
nt r aceud with both the - cut of f and - buf f er wr ap options, nt r aceud
ignores the - cut of f option.

Generating Trace Event Logs with ntraceud

Option to Select Timestamp Source (-clock)

The nt raceud - cl ock option allows you to select which timing source will be used to
timestamp events.

SYNTAX

ntraceud -cl ock source trace file

DESCRIPTION

The nt r aceud - cl ock option lets you select the timing source used to timestamp
trace events. Valid source values are:

def aul t the interval timer (NightHawk 6000 Series) or the Time
Base Register (Power Hawk/PowerStack)

rcimtick the RCIM synchronized tick clock

If you invoke nt r aceud with the - cl ock option, you must supply a value for the
source.

If rci m ti ck is specified for the source and the system on which you are tracing
does not have an RCIM installed or configured or if the RCIM synchronized tick
clock on the system on which you are tracing is stopped, the NightTrace daemon
and library initialization routine exit with errors.

If the - cl ock option is not specified, the interval timer (NightHawk 6000 Series)
or the Time Base Register (Power Hawk/PowerStack) is used to timestamp trace
events.

4-19

NightTrace Manual

Option to Reset the ntraceud Daemon (-reset)
The nt raceud - r eset option resets a running nt r aceud daemon process.

SYNTAX

ntraceud -reset trace file

DESCRIPTION

Running nt r aceud daemons are located using the shared memory identifier keyed
by the trace event file name, frace_file.

By default, nt r aceud overwrites the trace event file if it is not currently in use. In
contrast, the nt r aceud - r eset option empties the file and prepares the running
daemon for another trace run. Use the - r eset option when you are no longer inter-
ested in the contents of an active trace event file. You can invoke nt r aceud multi-
ple times with the - r eset option.

SEE ALSO

For information on quitting an nt r aceud session without clearing the trace event
file, see “Option to Quit Running ntraceud (-quit)” on page 4-21.

4-20

Generating Trace Event Logs with ntraceud

Option to Quit Running ntraceud (-quit)

The ntraceud - qui t and - qui t! options terminate a running nt r aceud process.

SYNTAX
ntraceud -quit trace file
ntraceud -quit! trace file
DESCRIPTION

Running nt r aceud daemons are located using the shared memory identifier keyed
by the trace event file name, frace_file.

A process completes its NightTrace session by calling t r ace_end() or exiting
normally. The - qui t and - qui t! option instruct nt r aceud to terminate tracing.
When - qui t is used, nt r aceud will wait for all user processes associated with
this daemon that are currently tracing to terminate, whereas use of - qui t ! skips
this check. The following actions are then taken:

* Remaining trace events are flushed to the trace event file
¢ The output file is closed

¢ The shared memory buffer is removed (unless user applications still
exist)

* The running nt r aceud daemon terminates

TIP:

You cannot get statistical information after you quit running nt r aceud. Consider
getting statistical information before you quit running nt r aceud. For statistical
information on your trace session, see “Option to Present Statistical Information
(-stats)” on page 4-22.

Assume that you have invoked nt r aceud with the - qui t option, and you want to
reinvoke nt r aceud with the same trace event file. Your next nt r aceud
invocation will automatically overwrite the trace event file.

SEE ALSO

For information on resetting nt r aceud and the trace event file for another session,
see “Option to Reset the ntraceud Daemon (-reset)” on page 4-20.

4-21

NightTrace Manual

Option to Present Statistical Information (-stats)

The nt r aceud - st at s option presents a display of statistical information for a running
nt r aceud daemon on standard output.

SYNTAX

ntraceud -stats trace file

DESCRIPTION

Running nt r aceud daemons are located using the shared memory identifier keyed
by the trace event file name, frace_file.

The - st at s option provides statistical information that tells you about your current
NightTrace configuration and resource use. This information can help you deter-
mine if you have adequate resources for your application. If you are interested in
watching changes in the statistics, invoke nt r aceud multiple times with the
- st at s option.

Specifically, the - St at S option provides information on:

* ntraceud mode. ntraceud may run in the following modes:
- NT_M DEFAULT, meaning expansive (default) mode
- NT_M FI LEWRAP, meaning file-wraparound mode
- NT_M BUFFERWRAP, meaning buffer-wraparound mode
¢ Shared memory buffer size
¢ Buffer-full cutoff percentage
* ntraceud timeout interval
® Number of threads or processes logging in your application

* Number of times trace events were lost. This statistic refers to a
situation that infrequently arises during a NightTrace session.
nt r aceud may lose some trace events if the trace events enter the
shared memory buffer faster than nt r aceud can copy them to the
trace event file. For more information on this topic, see “Preventing
Trace Events Loss” on page A-1.

* Number of automatic buffer flushes (For more information on buffer
flushes, see “trace_flush() and trace_trigger()” on page 2-20.)

® Number of trace events logged to shared memory. nt r aceud and
some NightTrace library routines occasionally log predefined trace
events into the shared memory buffer. Therefore, the statistic for
number of trace events logged to shared memory may exceed the
number of times your application logs a trace event.

® Trace event IDs enabled

Screen 4-2 shows a sample of - St at S option output.

4-22

Generating Trace Event Logs with ntraceud

/S?sntraceud—stats | og \

NTRACEUD STATI STI CS

The ntraceud daenon is running in NT_MDEFAULT node.

There is a maxi mum of 16384 trace events in the shared nenory buffer
The buffer-full threshold is 20% or 3276 trace events

The daenon timeout period is 5 seconds

There are 1 thread(s) |ogging trace events

The shared nmenory buffer had 0 events | ost

There have been 0 unrequested buffer flushes

The total nunmber of trace events |logged to shared nmenory is 5

Enabl ed Events:
0- 4095

\ /

Screen 4-2. Sample Output from ntraceud -stats Option

Defaults for some of these values exist in the header file
/usr/include/ntrace. h. You can override the default values with
nt r aceud options. See Table 4-1 for more information on the default values and
the corresponding options used to override them.

SEE ALSO

For information on trace event loss prevention, see “Option to Establish File-Wrap-
around Mode (-filewrap)” on page 4-12, “Option to Set Timeout Interval (-timeout)”
on page 4-17, and “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)” on
page 4-18.

4-23

NightTrace Manual

Option to Disable Logging (-disable)

4-24

By default, all trace events are enabled for logging to the shared memory buffer. The
ntraceud - di sabl e option makes the application ignore requests to log a specific
trace event or range of trace events.

SYNTAX

ntraceud -disable ID [..] trace file

ntraceud -disable ID low-ID high [..] trace file
DESCRIPTION

Sometimes nt r aceud logs so many trace events that it is hard to understand the
nt r ace display. Occasionally you know that a particular trace event or trace event
range is not interesting at certain times but is interesting at others. When either of
these conditions exist, it is useful to disable the extraneous trace events. You can
disable trace events temporarily, where you disable and later re-enable them. You
can also disable trace events permanently, where you disable them before the
application runs or during its execution and never re-enable them.

In the first format, the ntr aceud - di sabl e option dynamically disables a
specific trace event ID, ID, from logging to the shared memory buffer. In the second
format, the nt r aceud - di sabl e option dynamically disables a range of trace
event IDs, ID low through ID_high, from logging to the shared memory buffer. In
either case, trace event IDs are integers in the range 0-4095, inclusive. At defined
times, Nt r aceud copies trace events from the shared memory buffer to the trace
event file, trace file.

NOTE

The - di sabl e option disables trace events in all processes that
rely on the same nt r aceud daemon to log to the same trace
event file.

This first format provides the same functionality as the t r ace_di sabl e() Night-
Trace library routine. The second format provides the same functionality as the
trace_di sabl e_range() NightTrace library routine. One advantage of using
the - di sabl e option rather than the library routine is that you do not have to
re-edit, recompile, and relink your application. For more information on disable
library routines, see “trace_enable(), trace disable(), and Their Variants” on page
2-16.

Note: In the following text, the names of the trace event files are varied for interest.

You can start up nt r aceud with the - di sabl e (- d) option. You can also
re-invoke nt r aceud with this option while nt r aceud is running. Furthermore,
using the - di sabl e option to disable an already disabled trace event has no effect.
For example, assume that you invoke nt r aceud three times, sequentially, before
your application terminates and that nt r aceud has not logged to the nt out put
file before.

Generating Trace Event Logs with ntraceud

$ ntraceud -d4 ntout put --trace event 4 is disabled
$ ntraceud -d7 ntoutput --trace events 4 & 7 are now disabled
$ ntraceud -d4 ntout put --no effect, trace events 4 & 7 disabled

There may be any number of - di sabl e options on an nt r aceud invocation line.
The following example illustrates this fact.

$ ntraceud -d10 -d15 nytrace -- trace events 10 & 15 are disabled

You may specify a hyphenated trace event range on the nt r aceud invocation line.
The following example depicts this case.

$ ntraceud -d23-25 traceout put --events 23, 24, and 25 disabled

The following two sequences show how important timing can be when you use the
- di sabl e option. The same steps appear in both sequences, but their order differs.
When the first sequence ends, nothing has been logged and all trace events are
enabled. In contrast, when the second sequence ends, trace event 52 has been logged
once and is now disabled.

Table 4-4. ntraceud Disable Sequence #1

From the Shell From the Application Comments
1. Invoke nt raceud All trace events enabled
2. Invoke ntraceud - d52 Trace event 52 disabled
3. Start application
4. Calltrace_event (52) Trace event 52 not logged
5. Calltrace_enabl e(52) Trace event 52 enabled

Table 4-5. ntraceud Disable Sequence #2

From the Shell From the Application Comments
1. Invoke nt raceud All trace events enabled
2. Start application Trace event 52 enabled
3. Calltrace_event (52) Trace event 52 logged
4. Calltrace_enabl e(52) No effect
5. Invoke nt raceud - d52 Trace event 52 disabled

SEE ALSO

For information on enabling trace events, see “Option to Enable Logging (-enable)”
on page 4-26 and “trace_enable(), trace_disable(), and Their Variants” on page 2-16.

4-25

NightTrace Manual

Option to Enable Logging (-enable)

4-26

By default, all trace events are enabled for logging to the shared memory buffer. The
nt r aceud - enabl e option makes the application notice previously disabled requests to
log a specific trace event or a range of trace events.

SYNTAX

ntraceud -enable ID [..] trace file

ntraceud -enable ID low-ID high [..] trace file
DESCRIPTION

In the first format, the nt r aceud - enabl e option dynamically re-enables a
specific disabled trace event ID, ID, for logging to the shared memory buffer. In the
second format, the nt r aceud - enabl e option dynamically re-enables a range of
disabled trace event IDs, ID_low through ID_high, for logging to the shared memory
buffer. In either case, trace event IDs are integers in the range 0-4095, inclusive. At
defined times, nt r aceud copies trace events from the shared memory buffer to the
trace event file, trace_file.

NOTE

The - enabl e option affects all processes that rely on the same
nt r aceud daemon to log to the same trace event file.

The first format provides the same functionality as the t r ace_enabl e() Night-
Trace library routine. The second format provides the same functionality as the
trace_enabl e_range() NightTrace library routine. One advantage of using
the nt r aceud option instead of the library routine is that you do not have to
re-edit, recompile, and relink your application. For more information on enable
library routines, see “trace_enable(), trace_disable(), and Their Variants” on page
2-16.

In the following text, the names of the trace event files are varied for interest.
Unless otherwise stated, all the following examples describe the results of a
non-startup nt r aceud invocation.

There may be any number of - enabl e (- €) options on an nt r aceud invocation
line. The following example illustrates this fact.

$ ntraceud -e10 -el5 nytrace -- trace events 10 and 15 enabled

You may specify a hyphenated trace event range on the nt r aceud invocation line.
The following example depicts this case.

$ ntraceud -e23-25 traceout put --trace events 23, 24, & 25
enabled

Generating Trace Event Logs with ntraceud

The - enabl e option acts differently when you use it:

* Onntraceud start up

® On later nt r aceud invocations

If you start up nt r aceud with the - enabl e option, the specified trace event(s) are
the only one(s) enabled; all other trace events are disabled. For example, if the fol-
lowing invocation starts up nt r aceud, then only trace event 18 is enabled.

$ ntraceud -el8 traceout

When you use the - enabl e option on non-startup nt r aceud invocations, Night-
Trace adds the specified trace event(s) to the list of enabled trace events. Further-
more, attempting to enable an already enabled trace event has no effect. For
example, assume that you invoke nt r aceud four times, sequentially, before your
application terminates and that nt r aceud has not logged to the nt out put file
before.

$ ntraceud ntout put -- all trace events enabled

$ ntraceud -d4 -d7 ntoutput --all except 4 and 7 enabled

$ ntraceud -e4 ntout put -- all except 7 enabled

$ ntraceud -e4 ntout put -- no effect; all except 7 enabled

The following two sequences show how important timing can be when you use the
- enabl e option. The same steps appear in both sequences, but their order differs.
When the first sequence ends, nothing has been logged and all trace events are
enabled. In contrast, when the second sequence ends, trace event 52 has been
logged once and is now disabled.

Table 4-6. ntraceud Enable Sequence #1

From the Shell From the Application Comments

vk wn

Invoke nt r aceud All trace events enabled

Start application

Calltrace_di sabl e(52) Trace event 52 disabled
Calltrace_event (52) Trace event 52 not logged
Invoke nt r aceud - e52 Trace event 52 enabled

Table 4-7. ntraceud Enable Sequence #2

From the Shell From the Application Comments

vk wn

Invoke nt r aceud All trace events enabled

Start application

Calltrace_event (52) Trace event 52 logged
Invoke nt r aceud - €52 No effect
Calltrace_di sabl e(52) Trace event 52 disabled

4-27

NightTrace Manual

SEE ALSO

For information on disabling trace events, see “Option to Disable Logging (-dis-
able)” on page 4-24 and “trace enable(), trace_disable(), and Their Variants” on
page 2-16.

Invoking ntraceud

4-28

This section shows a few common nt r aceud invocation examples. In each example, the
trace_file argument corresponds to the trace event file name you supply on your call to the
trace_begi n() library routine.

Normally, your first nt r aceud invocation looks something like the following sample.
nt r aceud trace_file

The next sample invocation assumes that you lack both page lock privilege
(-1 ockdi sabl e) and read and write access to / dev/ spl needed to modify the
interrupt priority level register (- i pl di sabl e), or lack sufficient privileges required for
rescheduling variables.

ntraceud - | ockdi sabl e -i pl di sabl e trace_file

The following invocation might be used when tuning your NightTrace configuration
because you lost trace events last time.

nt raceud - mensi ze count - cut of f percent trace_file

There are several times when you may want to use the following invocation. Usually this
invocation is appropriate if you are using t race_f | ush() calls to debug a fault in your
application or to reduce the number of logged trace events so the nt r ace display is more
readable.

nt raceud - buf f er wr ap frace_file

The following invocation is also useful on several occasions. One example is if you want
to conserve disk space.

ntraceud-fil ew ap bytes trace_file

The following invocation waits for all user applications associated with the running
nt r aceud daemon to terminate, flushes remaining trace events to the trace event file,
closes the file, removes the shared memory buffer, then terminates the running nt r a-
ceud.

ntraceud - qui t trace file

Similarly, the following invocation immediately flushes remaning trace events to the trace
file, closes the file, and terminates the running nt r aceud daemon. User applications can
continue to run and make NightTrace API calls, but no trace events will be logged. Subse-
quently, a new user daemon can be initiated and trace events will start beging logged
again:

Generating Trace Event Logs with ntraceud

ntraceud - qui t! frace file

At this point, you can begin data analysis.

4-29

NightTrace Manual

4-30

5
Generating Trace Event Logs with ntracekd

The ntracekd Daemon i 5-1
ntracekd Modeso 5-1
ntracekd OPtionso e 5-2

ntracekd Invocations 5-4

NightTrace Manual

5
Generating Trace Event Logs with ntracekd

A kernel daemon is required in order to capture trace events logged by the operating sys-
tem kernel. There are two methods for controlling kernel daemons:

¢ Using the graphical user interface provided in NightTrace Main Window

® Using the command line tool nt r acekd

The interactive method is often more convenient and easier to use and additionally offers
concurrent viewing of trace events while the kernel continues to log trace data; this
optional feature is called streaming. Alternatively, the nt r acekd command line tool is
useful in scripts where automation is required.

This chapter describes the nt r acekd command line tool and consists of the following
topics:

®* The nt r acekd daemon
* ntracekd modes
* ntracekd options

* Example nt r acekd invocations

The ntracekd Daemon

When you initiate nt r acekd, it creates a daemon background process and returns while
that daemon process executes. Once it returns to your prompt, the background process has
already initiated kernel tracing.

You supply the name of the trace event output file on your nt r acekd invocation. Since
the capture of kernel data can quickly consume vast quantities of disk space, the
nt r acekd tool requires that you specify a limit on the size of the output file. Once the
limit is reached, older kernel data in the file will be overwritten with newer data. The
interface does allow you to specify an unlimited file size; however, this is not recom-
mended.

The nt r acekd daemon resides on your system under/ usr / bi n/ nt r acekd.

ntracekd Modes

nt r acekd essentially always operates in a file-wraparound mode, since it requires you to
put a limit on the maximum size of the output file. If the limit is reached, then kernel trac-

5-1

NightTrace Manual

ing continues, but newer kernel events overwrite older events in the file. When viewed by
the NightTrace analyzer, the events will be appropriately displayed in chronological order.

nt r acekd also offers a buffer-wraparound mode. This mode stipulates that the kernel
continues to log kernel events to its internal buffers located in kernel memory, overwriting
the oldest kernel trace events with the newest ones. No disk activity occurs until
nt r acekd is terminated, at which time, all kernel trace buffers are copied to the output
file.

ntracekd Options

5-2

The full nt r acekd invocation syntax is:
nt racekd [options] filename

The filename parameter is required for all nt r acekd invocations. When starting a dae-
mon, it defines the output file. When requesting statistics for a running daemon or when
stopping a daemon, it identifies the running daemon.

The command-line options to nt r acekd are:

-b
--bufferwap

Collect events in kernel bufferwrap mode, delaying output to filename until
stopped. This delays the disk activity normally involved in copying kernel
buffers to the output file as they become full, until after kernel tracing has
been stopped.

-q
--quit

Stop an existing kernel daemon. Once kernel tracing has been stopped, all
remaining trace events already logged in the kernel buffers are copied to the
output file. The nt r acekd command will not return until the copy is com-
plete.

- W seconds
- - wWai t =seconds

Start the daemon and begin kernel tracing for seconds before stopping the dae-
mon.

-r
--rcim

Use the RCIM tick clock as the timing source instead of the default timing
source.

Generating Trace Event Logs with ntracekd

-X
--raw

Disable automatic filtration of the kernel data leaving the format of the output
file as a raw kernel file. Raw kernel files can be passed directly to NightTrace
which will execute the filtration process on the fly. By default, nt r acekd
filters the raw data to avoid otherwise unnecessary repetitive filtration by
NightTrace. The vectors file information obtained during filtration can be
retrieved from a filtered or raw file when loaded in NightTrace; it is available
in the Session Overview area of the NightTrace Main Window.

-
--info

This option can be specified to obtain statistics about a kernel daemon already
initiated by a previous nt r acekd command. It prints statistics to St dout .

-H
--hel p

Print a description of the available options and stop.

-k
--kill

Kill any active kernel daemon without regard to proper shutdown procedures.
This will allow subsequent kernel daemons to be initiated but data from the
previous daemon may be lost.

- S size
- -Si ze=size

This option is required when initiating a daemon and specifies the maximum
size of the output file. size may be specified as an integer number optionally
followed by a K, M or G which indicates kilobytes, megabytes, or gigabytes,
respectively. If no letter is specified, the units are assumed to be in bytes. size
may also be +, which indicates that the output may grow without limit. Use of
+ is not recommended as kernel tracing can quickly consume vast quantities
of disk space.

- Bs sz
--buf si ze=sz

This option defines the size of each kernel buffer. sz may be specified as an
integer number optionally followed by a K, M or G which indicates kilobytes,
megabytes, or gigabytes, respectively. If no letter is specified, the units are
assumed to be in bytes. On RedHawk systems, the default size of a kernel
buffer is 250000 bytes. This option is ignored on PowerMAX OS systems.

-Bnn
- - nunbuf s=n

This option defines the number of kernel buffers. » must be a integer number.
On RedHawk systems, the number of kernel buffers defaults to 4. This option
is ignored on PowerMAX OS systems.

5-3

NightTrace Manual

ntracekd Invocations

54

A typical invocation of nt r acekd to initiate kernel tracing would be
> ntracekd --size=10M ker nel - dat a

This starts a kernel trace daemon in the background and specifies a maximum size limit
for the output file ker nel - dat a of 10 megabytes. The command returns as soon as ker-
nel trace has begun.

To check on the status of the running daemon, the following command might be used:

> ntracekd --info kernel -data
st at us: runni ng
events | ost: 0

events capt ured: 13465
events witten: 13465
events in buffer: 1493

To terminate the running daemon, the following command would be used:
> ntracekd --quit kernel -data

To initiate a daemon to capture kernel data while a user application executes, then to ter-
minate the daemon and view the data, the following sequence of commands might be
used:

ntracekd --si ze=10M kernel -dat a
./ a.out

ntracekd --quit kernel-data
ntrace kernel -data

V V V V

6
Invoking NightTrace

Command-1ine OPtionSttt e e 6-1
Summary Criteria.ttt e 6-5
Command-line ArgUMENtS.ttt e 6-9
Trace Event Files 6-10
EventMap Files 6-10
Page Configuration Files 6-12
Tables . ..o 6-13

String Tables 6-14

Pre-Defined String Tables 6-16

Format Tables. i i 6-19

Pre-Defined Format Tables o ... 6-23

Session Configuration Files 6-23

Trace Data Segments i 6-24

NightTrace Manual

6
Invoking NightTrace

NightTrace is invoked using nt r ace which is normally installed in / usr/ bi n.

The full command syntax for nt r ace is:

ntrace

- h][--hel p][--hel p- summary]
-v][--version][-1][--1isting]
--stats][-n][--notimer]
val] [- - st ar t ={ offset | time{ S | U } | percent%}]
val] [- - end={ offset | time{ s | U } | percent% }]
m [- - hi de- mai n- wi ndow] [- Xoption ...]
[-u] [- - use-sessi on] [- - summar y=criteria]

[file ...]

e

> 0D W»n

Depending on the options and arguments specified to nt r ace, NightTrace:

Command-line Options

loads all trace event information into memory

checks the syntax of specifications in each file argument

processes each file argument

loads any display pages and their objects into memory

presents any display pages (see Chapter 8 “Display Pages”)

displays the NightTrace Main Window (see Chapter 3 “Using the Night-
Trace Main Window”)

The command-line options to nt r ace are:

-h

--hel p

- - hel p- summary

Display nt r ace invocation syntax and a list of all command line options to stan-
dard output.

Display help specific to the - - summar y option to standard output.

See “Summary Criteria” on page 6-5 for more information.

6-1

NightTrace Manual

-V

--version

Display the current version of NightTrace to standard output and exit.

--listing

Display a chronological listing of all trace events and their arguments from all sup-
plied trace-event data files to standard output and exit.

The output includes the following information about a trace event:
¢ relative timestamp
¢ trace event ID
® any trace event argument(s)
¢ the global process identifier (PID), process name, or thread name

* the CPU

The timestamp for the first trace event is zero seconds (0S). All other timestamps
are relative to the first one.

If you supply an event map file on the invocation line, NightTrace displays symbolic
trace event tags instead of numeric trace event IDs, and displays trace event argu-
ments in the format you specify in the file, rather than the hexadecimal default for-
mat. For more information on event map files, see “Event Map Files” on page 6-10.

NOTE

The CPU field is only meaningful for kernel trace events; for user
trace events, the CPU field is displayed as CPU=?7.

--stats

Display simple overall statistics about the trace-event data files to standard output
and exit.

The statistics are grouped by trace event file, with cumulative statistics for all trace
event files.

The statistics include:
¢ the number of trace event files
® their names
® the number of trace events logged

* the number of trace events lost

Invoking NightTrace

For example, the following command:
ntracekd --wait=2 kernel -data

collects kernel trace data for two seconds from the system on which it was issued
and saves the results to ker nel - dat a (see Chapter 5 “Generating Trace Event
Logs with ntracekd”).

Issuing the command:
ntrace --stats kernel -data

results in the output similar to the following:

Read 1 trace event segnent tinestanped with Intel TSC
(1) Kernel trace event log file: Kkernel-data.
226809 trace events plus 204596 continuation events.
105419 trace events |ost.
2.9707482s time span, from 0.0000000s to 2.9707482s.

226809 total events read fromdisk plus 204596 continuation events.
226808 total events saved in nenory; 117 events internal to ntrace.
105419 total trace events |ost.

2.9707482s total time span saved in nenory.

Detailed summary information about a trace data set is available via the
- - sunmar y option (see page 6-4).

-n
--noti mer

Exclude from analysis trace events for system timer interrupts in the kernel trace
file.

-S val
--start={offset| time{ s | U } | percent%}

Exclude from analysis trace events before the specified trace-event offset, relative
time in seconds (S) or microseconds (U), or percent of total trace events.

The specified values can be:

offset Load trace events after the specified trace event offset.
(See “Grid” on page 8-13 for information about trace
event offsets.)

time{ s | U} Load trace events after the specified relative time in sec-
onds (S) or microseconds (U).

percent% Load trace events after the specified percent of total trace
events. The %is required.

If you invoke NightTrace with several - - St art options, NightTrace pays attention
only to the last one.

6-3

NightTrace Manual

-e val
- - end={ offset | time{ S | U } | percent% }

Exclude from analysis trace events after the specified trace-event offset, relative
time in seconds (S) or microseconds (U), or percent of total trace events.

The specified values can be:
offset Load trace events before the specified trace event offset.

time{ s | U} Load trace events before the specified relative time in
seconds (S) or microseconds (U).

percent% Load trace events before the specified percent of total
trace events. The %is required.

If you invoke NightTrace with several - - end options, NightTrace pays attention
only to the last one.

-hm
- - hi de- mai n-wi ndow

Start NightTrace with the NightTrace Main Window hidden (see Chapter 3 “Using
the NightTrace Main Window”); only display pages are shown (see Chapter 8 “Dis-
play Pages”).

The NightTrace Main Window may be subsequently displayed using the
NightTrace Main Window... menu item on the Page menu from any display
page (see “Page” on page 8-4).

-u
--use-sessi on

Automatically load the last session used in a previous invocation of NightTrace. All
files associated with the previous session are automatically loaded.

- - sunmar y=criteria

Provide a textual summary of specified trace events using the supplied criteria.
Summary results are sent to standard output.

See “Summary Criteria” on page 6-5 for details regarding valid criteria.
- Xoption ...
Use any standard X Toolkit command line options. See X(1) .

file ...

You can invoke NightTrace with arguments such as trace event files, event map
files, page configuration files, session configuration files, or trace data segments.

See “Command-line Arguments” on page 6-9 for a description of these types of
files.

6-4

Invoking NightTrace

By default, when NightTrace starts up, it reads and loads a// trace events from all trace
event files into memory. The - - process, --start, and - - end options let you pre-
vent the loading (but not the reading) of certain trace events.

For example, the following invocation displays only those trace events logged 0.5 seconds
or more after the start of the data set.

ntrace --start=0.5s kernel -data

Summary Criteria
The - - sunmar y option is supplied with criteria for command-line usage without ever
using the GUI to perform summaries.
This criteria consists of a comma-separated list of any of the following:
crit

This allows previously-defined summary criteria to be referenced when doing
command line summaries.

Summary criteria may be named with a criteria tag (see “Criteria Tag” on page
11-21) in the Summarize NightTrace Events dialog (see “Summarizing
Statistical Information” on page 11-12). The tagged criteria can then be saved
into a NightTrace session configuration file (see “Session Configuration
Files” on page 6-23).

To use previously-defined summary criteria when executing a summary from
the command line, specify the desired criteria tag (crif) on the command line
along with the NightTrace session configuration file which contains that tag.

eVv: event

Summarize the number of occurrences of the specified event.
p: process

Summarize all events associated with the specified process.
t: thread

Summarize all events associated with the specified thread.
ge: name

Summarize all occurrences of the qualified event name.
gs: name

Summarize all occurrences of the qualified state name.
S: call

Summarize all events associated with the entry or resumption of the specified
system call.

NightTrace Manual

sl : call

Summarize all events associated with the exit or suspension of the specified
system call.

se: call
Summarize all events associated with the specified system call.
SS: call

Summarize all occurrences of a state defined by system call activity for the
specified system call.

i :intr

Summarize all events associated with the entry or resumption of the specified
interrupt intr.

il:intr

Summarize all events associated with the exit or interruption of the specified
interrupt intr.

i e:intr
Summarize all events associated with the specified interrupt intr.
i S:intr

Summarize all occurrences of a state defined by interrupt activity for the spec-
ified interrupt intr.

el exc

Summarize all events associated with the entry or resumption of the specified
exception exc.

el : exc

Summarize all events associated with the exit or interruption of the specified
exception exc.

ee: exc
Summarize all events associated with the specified exception exc.
es: exc

Summarize all occurrences of a state defined by exception activity for the
specified exception exc.

ski p: on

Suppresses summarization for all subsequent criteria in the list (or until a
ski p: of f criteria is seen) if there are no summarization matches for the cri-
teria.

6-6

Invoking NightTrace

ski p: of f

Reactivates summarization for all subsequent criteria in the list (or until a
ski p: on criteria is seen) if there are no summarization matches for the crite-
ria.

st : start- end

Summarize all occurrences of the state defined by the starting event start and
terminated by the ending event end.

These may be combined together along with tagged criteria from the Summarize
NightTrace Events dialog (see “Summarizing Statistical Information” on page 11-12)
in a comma-separated list.

Consider the following example:
ntrace --sunmmary=ss:read,ss:alarmev:5,crit_0 event_file ny_session

Using the trace event file event _fi | e as the trace data source (see “Trace Event Files”
on page 6-10), NightTrace will:

1. summarize the number of occurrences of r ead and al ar msystem call
states that occur in the data source; provide information pertaining to the
duration of each state (m n, max, avg, sun); and provide information
related to the gaps between each state (m n, max, avg, sum

2. summarize the number of occurences of user events with a trace event ID
of 5 as well as information about the gaps between the events (m n, max,

avg)

3. perform a summary using the criteria defined by criteria tag cri t _0 (see
“Criteria Tag” on page 11-21) in the my_sessi on session file (see
“Session Configuration Files” on page 6-23)

NOTE

In order to use a summary criteria tag on the command line, the
NightTrace session configuration file in which it was defined
must be specified on the command line as well (see “Session Con-
figuration Files” on page 6-23).

The following criteria may be specified alone (not part of a comma-separated list):
K[: proc]

Summarize kernel states: system calls, exceptions, and interrupts. If : proc is
provided, only those states involving process proc are summarized.

6-7

NightTrace Manual

6-8

kscl: proc]

Summarize kernel system call durations. If : proc is provided, only those sys-
tem calls involving process proc are summarized.

kexc[: proc]

Summarize kernel exception durations. If : proc is provided, only those
exceptions involving process proc are summarized.

Ki ntr[: proc]

Summarize kernel interrupt durations. If : proc is provided, only those inter-
rupts involving process proc are summarized.

evt [proc]

Summarize the number of occurrences of all events named in event map files.
User events which are not named in event map files are not shown. If: proc is
provided, only those events associated with proc are summarized.

proc

Summarize the number of events for each process.

Invoking NightTrace

Command-line Arguments

You can supply filenames as arguments to the nt r ace command when invoking Night-
Trace. These files may contain trace event data, display page layouts, additional configu-
ration information, or information related to a previously-saved session.

These arguments can be:

trace event files

Trace event files are captured by a user or kernel trace daemon and contain
sequences of trace events logged by your application or the operating system kernel.

See “Trace Event Files” on page 6-10 for more information.
event map files

Event map files map short mnemonic trace event tags to numeric trace event IDs
and associate data types with trace event arguments. These ASCII files are created
by the user.

See “Event Map Files” on page 6-10 for more information.
page configuration files

Configuration files define display pages, the display objects contained within them,
string tables, and format tables. These ASCII files are usually created by Night-
Trace.

See “Page Configuration Files” on page 6-12 for more information.
session configuration files

Session configuration files define a list of daemon sessions and their individual con-
figurations. In addition, session configuration files contain definitions of macros,
qualified events, qualified states, and search and summary configurations from pre-
vious uses of the session. Also, session configuration files contain a list of any files
the user associated with the session, such as event map files and trace data files.

See “Session Configuration Files” on page 6-23 for more information.
trace data segments

Trace data segments are conglomerations of all trace data saved in a much more effi-
cient format than raw trace event files providing for faster initialization at startup.
These files are created using the Save Data Segment... button on the Night-
Trace Main Window (see “Save Data Segment...” on page 3-34).

See “Trace Data Segments” on page 6-24 for more information.

NightTrace Manual

Trace Event Files

Event Map Files

6-10

Trace event files are created by user and kernel trace daemons. They consist of header
information and individual trace events and their arguments as logged by user applications
or the operating system. NightTrace detects trace event files as specified on the command
line and does the required initialization processing so that the trace events contained in the
files are available for display.

To load a trace event file, either:

¢ specify the trace event file as an argument to the nt r ace command when
you invoke NightTrace

® click on the Open... button in the Session Overview Area of the Night-
Trace Main Window (see “Session Overview Area” on page 3-33) and
select the trace event file from the file selection dialog

NightTrace does not require you to use event map files. However, if you use these file(s),
you can improve the readability of your NightTrace displays.

An event map file allows you to associate meaningful tags or labels with the more cryptic
trace event ID numbers. It also allows you to associate additional information with a trace
event including the number of arguments and the argument conversion specifications or
display formats. Although NightTrace does not require you to use event map files, labels
and display formats can make graphical NightTrace displays and textual summary infor-
mation much more readable.

To load an existing event map file, perform any of the following:

¢ specify the event map file as an argument to the nt r ace command when
you invoke NightTrace

* click on the Open... button in the Session Overview Area of the Night-
Trace Main Window (see “Session Overview Area” on page 3-33) and
select the event map file from the file selection dialog

* select the Open Event Map File... menu item from the NightTrace
menu on the NightTrace Main Window (see “Open Event Map File...” on
page 3-5)

You can create an event map file with a text editor before you invoke NightTrace. You
may also select the New Event Map File... menu item from the NightTrace menu on
the NightTrace Main Window (see “New Event Map File...” on page 3-5) which launches
the editor defined by the EDI TOR environment variable with a file initially containing a
template describing the format of an event map file. The user may then populate the new
event map file with associations of meaningful tags with specific trace event IDs.

There is one trace event tag mapping per line. White space separates each field except the
conversion specifications; commas separate the conversion specifications. NightTrace
ignores blank lines and treats text following a # as comments.

Invoking NightTrace

The syntax for the trace event mappings in the event map file follows:

event: ID “event tag" [nargs [conv spec, ...]|]

Fields in this file are:

event :

The keyword that begins all trace event name mappings.

D
A valid integer in the range reserved for user trace events (0-4095, inclusive).
Each time you call a NightTrace trace event logging routine, you must supply
a trace event ID.

event_tag

A character string to be associated with event ID. Trace event tags must begin
with a letter and consist solely of alphanumeric characters and underscores.
Keep trace event tags short; otherwise, NightTrace may be unable to display
them in the limited window space available.

The following words are reserved in NightTrace and should not be used in
uppercase or lowercase as trace event tags:

- NONE

- ALL

- ALLUSER
- ALLKERNEL
- TRUE

- FALSE

- CALC

TIP

Consider giving your trace events uppercase tags in event map
files and giving any corresponding qualified events the same
name in lowercase. For more information about qualified events,
see “Qualified Events” on page 10-113.

If your application logs a trace event with one or more numeric arguments, by default
NightTrace displays these arguments in decimal integer format. To override this default,
provide a count of argument values and one argument conversion specification or display
format per argument.

nargs

The number of arguments associated with a particular trace event. If nargs is
too small and you invoke NightTrace with the event map file and the

6-11

NightTrace Manual

-- 11 sting option, NightTrace shows only nargs arguments for the trace
event.

conyv_spec

A conversion specification or display format for a trace event argument.
NightTrace uses conversion specification(s) to display the trace event’s argu-
ment(s) in the designated format(s). There must be one conversion specifica-
tion per argument. Valid conversion specifications for displays include the fol-

lowing:
%l signed decimal integer (default)
% unsigned octal integer
U unsigned hexadecimal integer
% f signed double precision, decimal floating point

For more information on these conversion specifications, see pri nt f (3S) .
The following line is an example of an entry in an event map file:

event: 5 “Error” 2 % %f

NightTrace displays trace event 5 and labels the trace event “Er r or . Trace event 5 also
has two (2) arguments. NightTrace displays the first argument in unsigned hexadecimal
integer (%) format and the second argument in signed double precision decimal floating
point (9% f) format. (You may override these conversion specifications when you config-
ure display objects.)

For more information on event map files, see “Pre-Defined String Tables” on page 6-16
and the nt r ace(4) man page.

For information about trace event tags for kernel trace events, see the
[fusr/1ib/ N ght Trace/ event map file.

Page Configuration Files

6-12

A page configuration file contains information related to the layout of a particular display
page and includes the configurations of all display objects that have been created on that
page. In addition, any user-defined tables that have been created for that page is also con-
tained in this file. Although NightTrace does not require you to use page configuration
files, using a page configuration file improves the readability of your display pages and
saves you time laying out your display pages.

A page configuration file is an ASCII file containing such definitions as:
¢ display page definitions (see Chapter 8 “Display Pages™)
® string table definitions (see “String Tables” on page 6-14)

¢ format table definitions (see “Format Tables” on page 6-19)

Tables

Invoking NightTrace

NOTE

If you define a string table or format table more than once in a
configuration file, NightTrace merges the two tables; if there are
duplicate entries, values come from the last definition.

You can create, modify, save, and load configuration files from within NightTrace; how-
ever, you must use a text editor to create and modify tables in a configuration file. Night-
Trace ignores blank lines and treats text between a/ * and a */ as comments in configura-
tion files; however, saving a configuration file removes your comments.

To load an existing configuration file, either:

¢ specify the configuration file as an argument to the nt r ace command
when you invoke NightTrace

® click on the Open... button in the Session Overview Area of the Night-
Trace Main Window (see “Session Overview Area” on page 3-33) and
select the configuration file from the file selection dialog

The page configuration file (see “Page Configuration Files” on page 6-12) may contain
two types of tables, both of which can improve the readability of your NightTrace dis-

plays:
® string tables (see “String Tables” on page 6-14)

¢ format tables (see “Format Tables” on page 6-19)

A table lets you associate meaningful character strings with integer values such as trace
event arguments. These character strings may appear in NightTrace displays.

The following table names are reserved in NightTrace and should not be redefined in
uppercase or lowercase:

- event

- pid

- tid

- bool ean

- nanme_pid

- nane_tid

- node_nane

- pi d_nodename
- tid_nodename
- vector

- syscal

6-13

NightTrace Manual

String Tables

6-14

- device

- vect or _nodename

- syscal | _nodename

- devi ce_nodename

- event _sunmmary

- event_arg_sumary

- event _arg_dbl _sunmary

- state_summary

The results are undefined if you supply your own version of these tables.

NOTE

The only way to put tables into your configuration file is by text
editing the file before you invoke NightTrace. To avoid any for-
ward-reference problems, define all string tables before any for-
mat tables.

For more information on pre-defined tables, see “Pre-Defined String Tables” on page
6-16, “Pre-Defined Format Tables” on page 6-23, and page 12-16.

TIP

Put tables in separate configuration files from display pages. This
way tables do not get redefined if you close and reopen a display
page during a single NightTrace session.

If you define a string table or format table more than once in a configuration file, Night-
Trace merges the two tables; if there are duplicate entries, values come from the last defi-
nition.

You can log a trace event with one or more numeric arguments. Sometimes these
arguments can take on a nearly fixed set of values. A string table associates an integer
value with a character string. Labeling numeric values with text can make the values eas-
ier to interpret.

The syntax for a string table is:

string_table (tble name) = {
item = int const, “str_const’ ;

[default_item = "“str const” ;]

}s

Invoking NightTrace

Include all special characters from the syntax except the ellipsis (. . .) and square brackets

€.

The fields in a string table definition are:
string_table
The keyword that starts the definition of all string tables.
table_ name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this string table.

An item line associates an integer value with a character string. This line extends from the
keyword i t emthrough the ending semicolon. You may define any number of item lines
in a single string table. The fields in an item line are:

item
The keyword that begins all item lines.
int_const

An integer constant that is unique within table name. It may be decimal, octal,
or hexadecimal. Decimal values have no special prefix. Octal values begin
with a zero (0). Hexadecimal values begin with OX.

str_const

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \ n for a newline, not a carriage return in the middle of the
string.

The optional default item line associates all other integer values (those not explicitly refer-
enced) with a single string.

TIP

If your table needs only one entry, you may omit the item line and
supply only the default item line. A get _stri ng() call with
this table name as the first parameter needs no second parameter.

NightTrace returns a string of the item number in decimal if:

® there is no default item line, and the specified item is not found

¢ the string table is not found (The first time NightTrace cannot find a
particular string table, NightTrace flags it as an error.)

The following lines provide an example of a string table in a configuration file.

string_table (curr_state) = {
item= 3, “Processing Data”;

6-15

NightTrace Manual

item= 1, “Initializing”;
item= 99, “Termnating”;
default _item= “Qther”;

}s

In this example, your application logs a trace event with a numeric argument that identi-
fies the current state (cur r _st at e). This argument has three significant values (3, 1,
and 99). When cur r _st at e has the value 3, the NightTrace display shows the string
“Processi ng Dat a.” When it has the value 1, the display shows “I ni ti al i zi ng.”
When it has the value 99, the display shows “Ter mi nati ng.” For all other numeric
values, the display shows “Qt her .”

For more information on string tables and the get _stri ng() function, see page 10-104
and the / usr/ i b/ Ni ght Trace/ t abl es file.

Pre-Defined String Tables

6-16

The following string tables are pre-defined in NightTrace:

event

pi d

The event string table is a dynamically generated table which contains all trace
event tags. It is built up from the pre-defined file:

/fusr/1ib/N ghtTrace/ event nap
and any other eventmap files the user specifies.

This table is indexed by an event code or an event code name. Examples of using
this table are:

get _string(event, 4112)
get _iten(event, “TR_|I NTERRUPT_EXI T")

A dynamically generated string table internal to NightTrace. In user tracing, it asso-
ciates global process ID numbers with process names of the processes being traced.
In kernel tracing, it associates process ID numbers with all active process names and
resides in the dynamically generated vect or s file.

NOTE

When analyzing trace event files from multiple systems, process
identifiers are not guaranteed to be unique across nodes. There-
fore, accessing the pi d table may result in an incorrect process
name being returned for a particular process ID. To get the cor-
rect process name for a process ID, the pi d table for the node on
which the process identifier occurs should be used instead. The
pi d table is maintained for backwards compatibility.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

Invoking NightTrace

get _string(pid, pid())
get _iten(pid, “ntraceud”)

See “PID List” on page 9-35 for more information.
tid
A dynamically generated string table internal to NightTrace. In user tracing, it asso-

ciates NightTrace thread ID numbers with thread names. In kernel tracing, this table
is not used.

NOTE

When analyzing trace event files from multiple systems, thread
identifiers are not guaranteed to be unique across nodes. There-
fore, accessing the t i d table may result in an incorrect thread
name being returned for a particular thread ID. To get the correct
thread name for a thread ID, the t i d table for the node on which
the process identifier occurs should be used instead. Theti d
table is maintained for backwards compatibility.

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get _string(tid, tid())
get iten(tid, “cleanup_thread”)

See “TID List” on page 9-36 for more information.
bool ean

A string table defined in the / usr /| i b/ Ni ght Trace/ t abl es file. It associates
0 with f al se and all other values with t r ue.

name_pi d

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s process ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get _string(name_pid, node_id())
get _itenm(nane_pid, “systenl23”)

Consider the following example:
get _string(get_string(name_pid, node_id()), pid)

The nested call to get _stri ng(name_pi d, node_i d()) returns the name of
the process ID table on the system where this trace point was logged. We then index
that table with the current process ID (since processes IDs are guaranteed to be

6-17

NightTrace Manual

6-18

unique when analyzing mutipile trace event files obtained from multiple systems) to
obtain the name of the current process.

NOTE

The predefined pr ocess_nane() function is equivalent to the
expression above - and much simpler to write! (See
“process_name()” on page 10-32 for more information.)

nane_tid

A dynamically generated string table internal to NightTrace. It maps all known
node ID numbers (which are internally assigned by NightTrace) to the name of the
node’s thread ID table).

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get _string(name_tid, 1)
get _item(name_tid, “charon”)

node_nane

A dynamically generated string table internal to NightTrace. It associates node ID
numbers (which are internally assigned by NightTrace) with node names.

This table is indexed by a node identifier or a node name. Examples of using this
table are:

get _string(node_nanme, node_id())
get i tenm(node_nane, “gandal f")

pi d_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, it
associates process ID numbers with all active process names for a particular node
and resides in that node’s vect or s file. In user tracing, it associates global process
ID numbers with process names of the processes being traced for a particular node.

This table is indexed by a process identifier or a process name. Examples of using
this table are:

get _string(pid_sbcl, pid())
get _iten(pid_engsim “nfsd")

t i d_nodename

A dynamically generated string table internal to NightTrace. In kernel tracing, this
table is not used. In user tracing, it associates NightTrace thread ID numbers with
thread names for a particular node.

Format Tables

Invoking NightTrace

This table is indexed by a thread identifier or a thread name. Examples of using this
table are:

get _string(tid_harpo, 1234567)
get _iten(tid _shark, “reaper_thread”)

vect or

See page 12-16.
syscal |

See page 12-16.
devi ce

See page 12-16.
vect or _nodename

See page 12-16.
syscal | _nodename

See page 12-16.
devi ce_nodename

See page 12-16.

You can use pre-defined string tables anywhere that string tables are appropriate. Use the
get _string() function to look up values in string tables. For information about the
get _string() function, see page 10-104. For examples of function calls with these
tables, see “Then Expression” on page 9-34.

Like string tables, format tables let you associate an integer value with a character string;
however, in contrast to a string table string, a format table string may be dynamically
formatted and generated. Labeling numeric values with text can make the values easier to
interpret.

The syntax for a format table is:

format _table (table name) = {
item = int const, “format string” [, “valuel” | ... ;

[default _item = “jformat string” [, “valuel” 1 ... ;]

}s

Include all special characters from the syntax except the ellipses (. . .) and square brack-

ets([]1).

6-19

NightTrace Manual

The fields in a format table are:
format _table
The keyword that begins the definition of all format tables.
table_name

The unique, user-defined name of this table. This name describes the relation-
ship of the numeric values in this format table.

An item line associates a single integer value with a character string. This line extends
from the keyword i t emthrough the ending semicolon. You may have any number of
item lines in a single format table.
The fields in an item line are:
item
The keyword that begins all item lines.

int_const

An integer constant that is unique within table_name. This value may be deci-
mal, octal, or hexadecimal. Decimal values have no special prefix. Octal val-
ues begin with a zero (0). Hexadecimal values begin with OX.

Sformat string

A character string to be associated with int_const. Keep this string short; oth-
erwise, NightTrace may be unable to display it in the limited window space
available. Use a \ n for a newline, not a carriage return in the middle of the
string.

6-20

Invoking NightTrace

The string contains zero or more conversion specifications or display formats.
Valid conversion specifications for displays include the following:

% Signed integer

% Unsigned decimal integer

%l Signed decimal integer

% Unsigned octal integer

U Unsigned hexadecimal integer

% f Signed double precision, decimal floating point

% Signed decimal floating point, exponential nota-
tion

% Single character

Y% Character string

%% Percent sign

\n Newline

For more information on these conversion specifications, see pri nt f (3S) .

format_string may contain any number of conversion specifications. There is a
one-to-one correspondence between conversion specifications and quoted val-
ues. A particular conversion specification-quoted value pair must match in
both data type and position. For example, if format string contains a %6 and a
%, the first quoted value must be of type string and the second one must be of
type integer. If the number or data type of the quoted value(s) do not match
format_string, the results are not defined.

valuel

A value associated with the first conversion specification in format string.
The value may be a constant string (literal) expression or a NightTrace expres-
sion. A string literal expression must be enclosed in double quotes. An
expression may beaget _string() call (see page 10-104). For more infor-
mation on expressions, see Chapter 10 “Using Expressions”.

The optional def aul t _i t emline associates all other integer values with a single format
item. NightTrace flags it as an error if an expression evaluates to a value that is not on an
item line and you omit the default item line.

TIP
If your table needs only one entry, you may omit the item line and

supply only the default item line. A get _f or mat () call with
this table name as the first parameter needs no second parameter.

6-21

NightTrace Manual

6-22

The following lines provide an example of a string table and format table in a
configuration file.

string_table (curr_state) = {
item= 3, “Processing Data”;
item= 1, “Initializing”;
item= 99, “Termnating”;
default_item= “Qher”;

}

format _table (event _info) = {

item= 186, “Search for the next tine we process data”;

item= 25, “The current state is %",
“get_string (curr_state, argl())”;

item= 999, “Current state is %, current trace event is %",
“get_string (curr_state, argl())”,
“offset()”;

default_item= “Qher”;

}

In this example, the first numeric argument associated with a trace event represents the
current state (cur r _st at e), and the event _i nf o format table represents information
associated with the trace event IDs. When trace event 186 occurs, a
get _fornat (event _i nf o, 186) makes NightTrace display:

Search for the next time we process data

When trace event 25 occurs, NightTrace replaces the conversion specification (%) with
the result of the get _stri ng() call. If arg1() has the value 1, then NightTrace dis-

plays:
The current state is Initializing

When trace event 999 occurs, NightTrace replaces the first conversion specification (¥8)
with the result of the get _string() call and replaces the second conversion
specification (%@) with the integer result of the numeric expression of f set () . If
ar g(1) has the value 99 and of f set () has the value 10, then NightTrace displays:

Current state is Terminating, current trace event is
10

For all other trace events, NightTrace displays “Ct her ™.
For more information on get _stri ng(), see “get_string()” on page 10-104.

For more information on format tables and the get f or mat () function, see
“get format()” on page 10-108. See also the / usr/ 1 i b/ Ni ght Trace/t abl es file.

For more information about ar g1() , see “arg()” on page 10-16.

For more information about of f set (), see “offset()” on page 10-26.

Invoking NightTrace

Pre-Defined Format Tables

The following format tables are pre-defined in the / usr/ | i b/ Ni ght Trace/ t abl es
file:

state_sunmary

Formats statistics about the state matches summarized, state durations, and
state time gaps. This table provides the default state summary output format.

event _sunmary

Formats statistics about the trace event matches and trace event time gaps.
This table provides the default trace event summary output format.

event _arg_sunmary

Formats statistics about the trace event matches and their type long trace event
arguments.

event _arg_dbl _sunmary

Formats statistics about the trace event matches and their type double trace
event arguments.

For more information about summaries, see “Summarizing Statistical Information” on
page 11-12.

You can use pre-defined format tables anywhere that format tables are appropriate. Use
the get _f ormat () function to look up values in format tables. For information about
the get _f ornmat () function, see “get format()” on page 10-108. For examples of func-
tion calls with format tables, see “Then Expression” on page 9-34.

Session Configuration Files
Session configuration files contain information specific to a particular session of Night-
Trace. This information can include:

® daemon definitions

* cvent map files

See “Event Map Files” on page 6-10 for more information.
® qualified state information

See “Qualified States” on page 10-116 for more information.
® qualified event information

See “Qualified Events” on page 10-113 for more information.
¢ user-defined macros

See “Macros” on page 10-111 for more information.

6-23

NightTrace Manual

® previously-executed searches
See “Searching for Points of Interest” on page 11-1 for more information.
® previously-executed summaries
See “Summarizing Statistical Information” on page 11-12 for more information.

® vector files (containing data-specific mappings for system calls, interrupts,
exceptions, PIDs, nodes)

¢ display page configurations (including any user-defined string and format
tables)

See “Page Configuration Files” on page 6-12 for more information.
® saved trace data segments

See “Trace Data Segments” on page 6-24 for more information.

Session configuration files are saved using the Save Session or Save Session As...
menu items from the NightTrace menu on the NightTrace Main Window (see ‘“Night-
Trace” on page 3-4).

Trace Data Segments

6-24

Trace data segments are conglomerations of all trace data saved in a much more efficient
format than raw trace event files providing for faster initialization at startup.

Trace data segments are saved using the Save Data Segment... button on the Night-
Trace Main Window (see “Save Data Segment...” on page 3-34).

7
Viewing Trace Event Logs

Mouse Button Operationsttt 7-3
VIEWING Strategy . . . o oottt et e et e 7-3
Editing Single Fields 7-5
Editing Multiple Fields. 7-5
Editing Text Fields o 7-7

Positioning Within Text Fields. 7-8

NightTrace Manual

7
Viewing Trace Event Logs

NightTrace’s display page has two modes: Edit mode and View mode. The words “Edit”
and “View” pertain to the operations you can perform on the graphical display, not the text
fields or scroll bar. This chapter discusses View mode, the mode that displays trace events
and states from your trace event file(s). NightTrace displays this information:

¢ Graphically in configured display object(s) on the grid
¢ Statistically in fields of the interval control area

¢ Uniformly on all display page(s). (This means that changes on one page
are reflected on all pages.)

NightTrace uses the same display page(s) in both Edit and View modes. However, tog-
gling between modes changes the interval scroll bar, fields in the interval control area, and
the push buttons. In View mode, the message display area shows some statistics, as well as
errors and warnings. The default mode for an existing display is View mode. (See “Mode
Buttons” on page 8-12 for more information.)

View mode lets you locate interesting parts of your trace session by:
® Shifting with the interval scroll bar
¢ C(Clicking on some of the interval push buttons
¢ Editing some field(s) in the interval control area

® Using the built-in Search tool (See Chapter 11 for more information.)

See Chapter 8 for more information on the components of the display page and Chapter 9
for detailed information abou the various display objects.

This chapter assumes that you have already created or loaded a display page with
configured display objects. This manual uses the following term conventions:

<Enter> The key on your keyboard that issues a carriage return and line feed.

<Backspace> The key on your keyboard that issues a <Ctrl> <h>. In NightTrace
this is also <Delete>.

interval A time period in the trace session that has a specific starting and end-
ing time. It is the “window” into the trace session that appears on the
display page.

7-1

NightTrace Manual

Menu Bar

File Edit Create Configure Expressions Tools Helg

Mode -
Buttons [- Edit Message
+ View Display

E offget = 3

argl = 0

The Grid

E Thread; threadl

E User Events:

)
o T Interval
Seroll

Bar

113 2.5 s 4.5 :
|I||||||||||||||||||||||||||||||||||:

Time Start[0,0000000s Time Length [4,50085725 Time End [4,50085725
Event Start[o Event Count|5 Event End|[4 Interval
Zoom Factor[2.0 Increment |25, 002 Current Time [1.1252140s Control
| Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut r Refresh Area
Interval
Push
Buttons
Figure 7-1. A Display Page in View Mode
current time The instance in time currently being displayed. It occurs within the

interval. Searches begin at the current time.

current time line The dashed vertical bar that represents the current time in a Column.
This line moves to the location of your pointer when you click with
mouse button 1 in a Column. The position of the current time line
determines the values that appear on display pages.

This chapter covers the following topics:

* Mouse button operations in View mode

® Deciding what to do next in View mode

7-2

Viewing Trace Event Logs

Mouse Button Operations

Mouse button operations in View mode appear in Table 7-1 and in the NightTrace Pocket

Reference card. Unfamiliar terminology is defined later in this chapter.

Table 7-1. View-Mode Mouse Button Operations

Button

Use Within a Column

Mouse button 1

Hold down <Ctrl> and
click mouse button 1

Hold down <Ctrl>,
hold down mouse but-
ton 1, and drag horizon-
tally

Mouse button 2

Hold down <Ctrl> and
click mouse button 2

Mouse button 3

Hold down <Ctrl> and
click mouse button 3

Move the current time line to the place where the pointer rests, or put the text cursor
where you clicked in the text field.

Move the mark and the current time line to the place where the pointer rests.

Move the mark to the beginning point of the drag region, and move the current time line
to the ending point of the drag region. The drag region is highlighted as you drag the
pointer.

Write a statistic in the message display area that tells about the trace event where the
pointer rests in a StateGraph or EventGraph.

Write a statistic in the message display area that tells how far the pointer is from the
mark. A positive number means the pointer is to the right of the mark. A negative
number means the pointer is to the left of the mark.

Write a statistic in the message display area that tells about the data item where the
pointer rests in a DataGraph.

Write a statistic in the message display area that tells how far the pointer is from the cur-
rent time line. A positive number means the pointer is to the right of the current time
line. A negative number means the pointer is to the left of the current time line.

Viewing Strategy

NightTrace is a flexible tool. Depending on your personal preferences and how much you
know about your trace events, there are several ways to locate intervals of interest. The
following flowchart provides information to help you decide what to do next in View
mode.

7-3

NightTrace Manual

Look at the grid

[]

Is the displayed No o
information —P

interesting yet? ®

[

[

Do one of the following:

Use interval scroll bar to slowly scroll through total trace
run

Click on Zoom Out

Return to Edit mode, alter the display page, and return
to View mode

Click on Tools I Search and set the search criteria

Change settings in the interval control area

Could the No
display use —
improvement?

Analyze trace event information

¢ Yes

Do one of the following:

Click on Zoom In

Click on Center

Click on Mark, align the interval, and click on
Zoom Region

:

74

Figure 7-2. Deciding What to Do Next in View Mode

Viewing Trace Event Logs

Editing Single Fields

Changing the interval control area fields allows you to examine different intervals in your
trace session. Usually you modify fields in the interval control area when you already
know something about your trace events and their distribution.

When you press <Enter> or click on the Apply push button at the end of your editing,
NightTrace validates the data in each field you modified and takes appropriate action. If
NightTrace detects an invalid value, it restores the affected field to its previous value. For
more information on the Apply push button, see “Interval Push Buttons” on page 8-20.

NightTrace displays all times in the interval control area in seconds with the “s” suffix.
You can enter times into time-related fields in the following ways:

¢ Numeric time. NightTrace assumes that the time unit is seconds.
¢ Numeric time in seconds with a “S” suffix.

® Numeric time in microseconds with a “u” suffix.

Editing Multiple Fields

Sometimes it makes sense to change multiple fields for a single effect; for example, you
may wish to change both the Time Start and Time End fields or you may wish to
change both the Time Start and Event Count fields. In these cases, apply your
changes only once, after you have edited each field of interest.

Changing some combinations of fields is not meaningful; for example, you may try to
change both Time Length and Event Count. When NightTrace detects a meaningless
combination of changes, it displays an error message in the message display area and
restores the affected fields to their previous values. When NightTrace detects an invalid
value, it restores the affected field to its previous value.

Some general rules apply to multiple field editing.

* You must not simultaneously apply changes to more than two trace event
fields.

* You must not simultaneously apply changes to more than two time fields;
for these purposes Current Time is not considered to be a time field.

® You can change Current Time with any other valid field changes as long
as Current Time falls within the new interval.

® You can change Zoom Factor with any other valid field changes.
® You can change Increment with any other valid field changes.

¢ Simultaneously modifying one time field and clearing another time field
makes NightTrace use the static and modified fields to determine the val-
ues of the cleared time field and the other fields.

7-5

NightTrace Manual

7-6

¢ Simultaneously modifying one trace event field and clearing another trace
event field makes NightTrace use the static and modified fields to
determine the values of the cleared trace event field and the other fields.

The following table shows all the valid multiple field changes except those that involve
Current Time, Zoom Factor, or Increment. For information on editing specific
fields of the interval control area, see “Interval Control Area” on page 8-16.

Table 7-2. Valid Multiple Field Changes

Fields Result

Time Start The new interval starts at Time Start and ends at Time End.
Time End

Time Start The new interval starts at Time Start and has a length of the speci-
Time Length fied Time Length.

Time Length The new interval ends at Time End and has a length of the specified
Time End Time Length.

Event Start The new interval starts at ordinal trace event number (offset) Event
Event End Start and ends at ordinal trace event number (offset) Event End.

Event Start
Event Count

Event Count
Event End

Time Start
Event Count

Time End
Event Count

Event Start
Time Length

Event End
Time Length

The new interval starts at ordinal trace event number (offset) Event
Start and includes the specified quantity of trace events.

The new interval ends at ordinal trace event number (offset) Event
End and includes the specified quantity of trace events.

The new interval starts at Time Start and includes the specified
quantity of trace events unless the Time Length forces Time Start
to change.

The new interval ends at Time End and includes the specified
quantity of trace events unless the Time Length forces Time End
to change.

The new interval starts at ordinal trace event number (offset) Event
Start and has a length of the specified Time Length unless the
Time Length forces Event Start to change.

The new interval ends at ordinal trace event number (offset) Event
End and has a length of the specified Time Length unless the
Time Length forces Event End to change.

Viewing Trace Event Logs

Editing Text Fields

Table 7-3. Making Editing Changes

Goal

Replace all
character(s)

Restore the
default value

Undo editing change(s)
since the last <Enter>
or Apply

Steps to Attain Goal

Position the text cursor anywhere in the field you want to modify.
Simultaneously press <Ctrl> <u>. This highlights all characters in the field.
Type in the new character(s).

el bl

—_—

Replace all character(s) in the field with either a single space character or the word
default. Note: Some fields do not have default values.
2. Press <Enter> or click on Apply.

—_—

Position in the window you want to modify.
2. Press <Esc> (or click on Reset if this is available).

Sometimes it is desirable to change multiple fields before applying the changes. In these
cases, apply your changes only once, after you have edited each field of interest.

When you press <Enter> or click on Apply at the end of your editing, NightTrace vali-
dates the data in each field you modified. NightTrace rarely issues error messages about
editing errors it detects. Usually it takes a default action. Some of the default actions
include:

¢ If you enter an invalid value, for example alphabetic characters in a
numeric field, NightTrace ignores the changes and restores the previous
values.

¢ Usually, if you enter a number that exceeds the maximum value, Night-
Trace replaces it with the maximum value.

* If a range’s starting value exceeds its ending value, NightTrace swaps
them.

7-7

NightTrace Manual

Positioning Within Text Fields

You can either position the text cursor to a particular place within a field by either clicking
or typing in key sequences. The following key sequences move the text cursor only if you
are already positioned in a text field.

Table 7-4. Positioning Within a Text Field

Goal Steps to Attain Goal
Move text cursor left Press <LeftArrow> or simultaneously press <Ctrl> .
one character This action may cause scrolling.

Move text cursor right ~ Press <RightArrow> or simultaneously press <Ctrl> <f>,
one character This action may cause scrolling.

Move text cursor tonext Press <Tab>.
field

Move text cursor to pre- Press <Shift> <Tab>.
vious field

7-8

8
Display Pages

Default Display Page. 8-1
Components ofa Display Page 8-3
Menu Bar. 8-4
Page .. 8-4
Edit. .o 8-5
CEatE . . .ottt 8-6
ACHIONS . . ottt 8-8
Help .o 8-10
Mode BUttons 8-12
Message Display Area.ttt 8-13
GIid .o 8-13
Interval Scroll Bar 8-15
Interval Control Area. i 8-16

Interval Push Buttons. i 8-20

NightTrace Manual

8
Display Pages

A display page lets you view trace event data by allowing you to:

® create and configure display objects to graphically depict your trace ses-
sion (see Chapter 9 “Display Objects™)

® examine trace events, trace event arguments, states, and timings using dif-
ferent display objects (see Chapter 7 “Viewing Trace Event Logs”)

® define macros, qualified events, and qualified states (see Chapter 10
“Using Expressions”) to aid in the analysis of trace data

¢ search for certain trace events based on specific critiera (see “Searching for
Points of Interest” on page 11-1)

* summarize data into statistical information regarding particular trace
events and states (see “Summarizing Statistical Information” on page
11-12)

Default Display Page

The default display page contains a number of preconfigured display objects (see
Chapter 9 “Display Objects”) that allow you to analyze your trace data with minimal
effort. If this page does not exactly meet your needs, you can modify it according to your
specifications. NightTrace brings up this page in view mode (see “Mode Buttons” on page
8-12 for more information).

A default display page contains a Grid Label (see “Grid Label” on page 9-4) and a State
Graph (see “State Graph” on page 9-8) for each thread logging trace events in your trace
event file(s). Each State Graph is configured to display only those events logged by a par-
ticular thread; the associated Grid Label identifies that thread. An additional State Graph
is also created which is configured to display all user events from all threads combined. If
the number of threads is so large that their associated State Graphs will not all fit on the
grid, then NightTrace does not display any State Graphs.

In addition, Data Boxes (see “Data Box” on page 9-5) appear at the top of the default dis-
play page containing information related to the current trace event. This information
includes the offset, trace event ID, and first trace event argument logged by that particular
trace event.

When analyzing trace event files from multiple systems, if a thread name is not unique in
the trace events, NightTrace prints a node name along with the process ID number and
thread ID number in the associated Grid Label to identify that thread.

Figure 8-1 shows a default display page for two threads, j ane and t ar zan, logging trace
events. The information in the Data Boxes at the top of the grid relate to the last trace

8-1

NightTrace Manual

event on or before the current time line. A State Graph has been created showing the trace
events logged by the thread j ane; another has been created showing those logged by
tar zan. A third State Graph appears below the others displaying the trace events logged
by both threads.

[MightTrace: Un y (=1 (=]]
Page Edit Create Actions Help
~ Edit j
< Yiew
F
- |offset = 569 ‘E:id:E ‘3farg1=o ‘
T
I
I
I
I
: |
- |Threads jane |
: I
E Thread: tarzan 1
: I
~ |User Events: !
. I
7.9z | 8.0=
| I I} | I
| = =
Time Start|7,8318446s Time Length|0,2222643s Time End |&,0541083s
Event Start 548 Event Count 44 Event End [551
Zoom Factor|2.0 Increment |25, 00% Current Time |7, 34237675
| Apply | Feset | Center | tlark. | Trim | Zoom Region | Zoom In | Zoom Jut Refresh

Figure 8-1. A Default Display Page

8-2

Display Pages
Components of a Display Page

Figure 8-2 shows an example of a display page and points out its various components.

Menu Bar

File Edit Create Configure Expressions Tools Helg

Mode
Buttons [- Edit Message
& View Display

< |offset = 3 id = 1662 argl = 0
T
|
: The Grid
|
: |
- |Threads threadl 1
: |
User Events: |
s [11IS 2.z 3.z 4,5
:::||: Interval
Scroll
Bar
Time Start[0,0000000s Time Length [4,50085725 Time End [4,50085725
Event Start[o Event Count|5 Event End|[4 Interval
Zoom Factor[2,0 Increment |25, 00% Current Time [1.1252140s Control
| Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut r Refresh Area
Interval
Push
Buttons

Figure 8-2. Components of a Display Page

A display page consists of the following components:

¢ Menu Bar (see “Menu Bar” on page 8-4)

* Mode Buttons (see “Mode Buttons” on page 8-12)

® Message Display Area (see “Message Display Area” on page 8-13)
® Grid (see “Grid” on page 8-13)

® Interval Scroll Bar (see “Interval Scroll Bar” on page 8-15)

* Interval Control Area (see “Interval Control Area” on page 8-16)

¢ Interval Push Buttons (see “Interval Push Buttons” on page §-20)

NightTrace Manual

Menu Bar

The menu bar on all display pages provides access to the following menus:
* Page (see “Page” on page 8-4)
¢ Edit (see “Edit” on page 8-5)
* Create (see “Create” on page 8-6)
* Actions (see “Actions” on page 8-8)

* Help (see “Help” on page 8-10)

Page

The Page menu appears on the menu bar of all display pages (see “Menu Bar” on page
8-4).

Save Ctrl+5
Save As..,

MightTrace hain Window... Cirl+hkd
Close Ctrl+y

Figure 8-3. Display Page - Page menu

Save

Saves the current display page configuration (see “Page Configuration Files” on
page 6-12) to the external file specified with the Save As... menu item. Any
changes you have made since the last save operation will be saved to that file; this
menu item is disabled (desensitized) if no changes have been made.

This menu item is also disabled if this is a new display page; in this case, use the
Save As menu item to specify a filename.

Save As...

Presents a file selection dialog to specify a filename to which the current display
page configuration will be saved (see “Page Configuration Files” on page 6-12).

NightTrace Main Window...

Opens the NightTrace Main Window if not currently opened; otherwise, brings the
NightTrace Main Window to the foreground.

8-4

Display Pages

See Chapter 3 “Using the NightTrace Main Window” for more information.

Close

Ends the current editing/viewing session, resets all field and radio button settings,
and clears the message display area. If you have unsaved changes, a warning dialog
box appears, asking if you want to save your changes.

Edit
The Edit menu appears on the menu bar of all display pages (see “Menu Bar” on page
8-4).
Select All Crl+ A,
Deselect All
Configure... Cirl+C
Delete Ctrl+#
Expressions.. Ctrl+E

Figure 8-4. Display Page - Edit menu

Select All

Selects every display object on the grid. This is useful when you want to perform
some operation on every display object on the grid (for example, moving or deleting
every display object).

This operation is enabled only when the display page is in edit mode (see “Mode
Buttons” on page 8-12).

Deselect All
Deselects every selected display object on the grid.
This operation is enabled only when the display page is in edit mode (see “Mode
Buttons” on page 8-12).
Configure...
Opens the configuration form(s) for the selected display object(s).
See “Configuring Display Objects” on page 9-15 for details.

This operation is enabled only when the display page is in edit mode (see “Mode
Buttons” on page 8-12).

8-5

NightTrace Manual

Delete
Deletes the selected display object(s).

This operation is enabled only when the display page is in edit mode (see “Mode
Buttons” on page 8-12).

Expressions...
Opens the NightTrace Qualified Expressions dialog (see “NightTrace Quali-

fied Expressions” on page 10-119) allowing the user to create or edit qualified
expressions such as qualified states, qualified events, and macros.

Create

The Create menu appears on the menu bar of all display pages (see “Menu Bar” on page
8-4) and allows you to add display objects to a display page.

NOTE

The display page must be in edit mode in order to use these selec-
tions (see “Mode Buttons” on page 8-12 for more information).

Grid Label
Data Box

Column
Event Graph
state Graph
Data Graph
Ruler

Figure 8-5. Display Page - Create menu

Grid Label
Allows the user to add a Grid Label to the current display page.

See “Grid Label” on page 9-4 for more information.

8-6

Display Pages

Data Box
Allows the user to add a Data Box to the current display page.

See “Data Box” on page 9-5 for more information.

Column
Allows the user to add a Column to the current display page.

See “Column” on page 9-6 for more information.

Event Graph
Allows the user to add a Event Graph to the current display page.

See “Event Graph” on page 9-7 for more information.

State Graph
Allows the user to add a State Graph to the current display page.

See “State Graph” on page 9-8 for more information.

Data Graph
Allows the user to add a Data Graph to the current display page.

See “Data Graph” on page 9-9 for more information.

Ruler
Allows the user to add a Ruler to the current display page.

See “Ruler” on page 9-10 for more information.

8-7

NightTrace Manual

Actions

The Actions menu appears on the menu bar of all display pages (see “Menu Bar” on page

8-4).
Change Search Criteria... Clrl+F
Search Backward <
Search Fonvard =

Change Summary Criteria.. Crl+£

Summarize Ctrl+1
Zoom In Cown
Zoom Jut p
Scroll Forward -
Scroll Backward <=
Fefresh Alt+R

Figure 8-6. Display Page - Actions menu

Change Search Criteria...
Accelerator: Ctrl+F

Opens the Search NightTrace Events dialog, allowing the user to locate areas
of interest in their trace event file(s)

See “Searching for Points of Interest” on page 11-1 for more information.

Search Backward

Accelerator: <

NOTE

It is not necessary to press the Shift key when using this accelera-
tor.

Furthermore, it is not necessary to have the Search Night-
Trace Events window open when using this accelerator (see
“Searching for Points of Interest” on page 11-1). The search crite-
ria specified from the previous search is used.

Attempts to find the first trace event occurring before the current time line that
matches the search criteria.

8-8

Display Pages

See “Searching for Points of Interest” on page 11-1 for more information.

Search Forward

Accelerator: >

NOTE

It is not necessary to press the Shift key when using this
accelerator.

Furthermore, it is not necessary to have the Search
NightTrace Events window open when using this accelerator
(see “Searching for Points of Interest” on page 11-1). The search
criteria specified from the previous search is used.

Attempts to find the next trace event occurring after the current time line that
matches the search criteria.

See “Searching for Points of Interest” on page 11-1 for more information.

Change Summary Criteria...
Accelerator: Ctrl+Z

Opens the Summarize NightTrace Events dialog, allowing the user to locate
areas of interest in their trace event file(s)

See “Summarizing Statistical Information” on page 11-12 for more information.

Summarize
Accelerator: Ctrl+U

Performs a summary of the information in the current trace event file based on the
criteria specifed in the Summarize NightTrace Events dialog.

See “Summarizing Statistical Information” on page 11-12 for more information.

Zoom In
Accelerator: down-arrow

Reduces the interval by the Zoom Factor (see “Zoom Factor” on page 8-18) pro-
viding a more detailed view of the smaller interval; the interval is centered around
the current time line.

Functionality is identical to that of the Zoom In button at the bottom of the display
page (see “Zoom In” on page 8-22 for more details).

NightTrace Manual

Zoom Out
Accelerator: up-arrow

Enlarges the interval by the Zoom Factor (see “Zoom Factor” on page 8-18) pro-
viding a higher-level view of the larger interval; the interval is centered around the
current time line.

Functionality is identical to that of the Zoom Out button at the bottom of the dis-
play page (see “Zoom Out” on page 8-22 for more details).

Scroll Forward
Accelerator: right-arrow

Scrolls the interval forward Increment seconds or Increment percent of the cur-
rent display interval allowing you to examine different intervals in your trace ses-
sion (see “Increment” on page 8-19).

See “Interval Scroll Bar” on page 8-15 for related information.

Scroll Backward
Accelerator: left-arrow

Scrolls the interval backward Increment seconds or Increment percent of the
current display interval allowing you to examine different intervals in your trace ses-
sion (see “Increment” on page 8-19).

See “Interval Scroll Bar” on page 8-15 for related information.

Refresh
Accelerator: Alt+R

Updates the grid to reflect the result of changes in configuration (see “Grid” on page
8-13).

This action should be performed when:
- opening a display page

- switching from edit mode to view mode (see “Mode Buttons” on page
8-12)

- changing a configuration parameter from view mode

- resizing the grid
Help
The Help menu appears on the menu bar of all display pages (see “Menu Bar” on page

8-4).

8-10

Display Pages

Online Manuall

Figure 8-7. Display Page - Help menu

Online Manual

Opens the online version of the NightTrace Manual (0890398) in the HyperHelp
viewer.

The online NightTrace Manual can also be accessed using the nhel p utility
shipped with the X Window System. The manual name is nt r ace. For example,
from the command line:

nhel p ntrace

opens the most recently installed version of the NightTrace Manual in the Hyper-
Help viewer.

8-11

NightTrace Manual

Mode Buttons

Display pages can be operated in one of two modes: edit mode or view mode.

Page Edit

-~ Edit
< e

Figure 8-8. Mode Buttons

Edit

Selecting the Edit mode button places the user in edit mode allowing the user to cre-
ate, edit, or configure display objects on a display page. (See “Operations on Dis-
play Objects” on page 9-12 for more information.)

NOTE

When the display page is in edit mode, you will not be able to per-
form any of the operations related to viewing the information in
the trace event file, including searching for points of interest or
summarizing statistical information. The display page must be in
view mode for those types of operations.

View

Selecting the View mode button places the user in view mode allowing the user to
view the contents of their trace event file. (See Chapter 7 for more information.)

NOTE

When the display page is in view mode, you will not be able to
create, edit, or configure display objects. The display page must
be in edit mode for those types of operations.

8-12

Display Pages

Message Display Area

Gr

d

The Message Display Area presents various diagnostic and informational messages.
Figure 8-9 shows some of these types of messages in a Message Display Area.

o0~ O

ERROR: StateGraph(exceptiond) had errors setting CPU list,

Around the 4576th trace event you selected 54 trace events,

Search match: offzet=£943 id=NT_TIMER pid=0'1 tid=1'0 time=2,0144 argl=0x3d3c8d,
time from current time = -0,153755s,

Figure 8-9. Message Display Area

The Message Display Area can include such messages as:

error messages (e.g. from incorrect values entered in configuration dialogs)

detailed textual information about specific events (see “Grid” on page
8-13)

the time between the current time line and the mouse cursor (by pressing
mouse button 3 at a particular point on the grid)

the time between the mouse cursor and the mark (see “Mark” on page
8-20)

results of search operations (see “Searching for Points of Interest” on page
11-1)

results of summary operations (see “Summarizing Statistical Information”
on page 11-12)

el

The grid is a region of the display page that is filled with parallel rows and columns of
dots. These dots serve as reference points for display-object alignment. You can alter the
grid dimensions by changing the size of the display page. To change the display page size,
resize your window by using features of your window manager.

NightTrace Manual

8-14

E offget = 3

E Thread; threadl

E User Events:

id = 1EG2 argl = 0

R s 75 I Is :
sl IIII|IIII|IIIII|IIII|IIII|IIII|IIII|IIII|IIII|:

Figure 8-10. The Grid

NightTrace assigns each trace event in the trace session a unique ordinal number or offset
beginning with ordinal number 0. These ordinal numbers appear in the interval control
area and in the message display area. For more information on ordinal trace events, see
“Interval Control Area” on page 8-16.

Some display objects on the grid contain vertical lines. Each vertical line in a State Graph
(see “State Graph” on page 9-8) or Event Graph (see “Event Graph” on page 9-7) repre-
sents one or more user trace events, kernel trace events, or NightTrace internal trace
events. If more than one event is represented by a vertical line, zooming in will provide
sufficient resolution to display each trace event as a separate verticle line (see “Zoom In”
on page 8-22).

If you click on a trace event with mouse button 2, NightTrace writes information about
that trace event in the message display area. Each vertical line in a Data Graph (see “Data
Graph” on page 9-9) represents a trace event argument. If you click on a data value with
mouse button 3, NightTrace writes information about the data value in the message dis-
play area.

If your grid has a Column (see “Column” on page 9-6) and you have not already posi-
tioned your interval somewhere else, NightTrace displays in the Column the earliest 5 per-
cent of your trace session. Usually this information is uninteresting and you want to see
other parts of your trace session. The following list shows the ways you can get Night-
Trace to locate interesting parts of your trace session:

® Scroll through the interval using the interval scroll bar
® Zoom in or zoom out using interval push buttons
® Change the parameters defining the interval by editing its fields

* Use the Search NightTrace Events dialog to search for a specific
trace event or condition. (See “Searching for Points of Interest” on page
11-1 for more information.)

Display Pages

Interval Scroll Bar

Moving the slider of the interval scroll bar allows you to examine different intervals in
your trace session. By moving the slider, you change the displays in display objects on the
grid and in the interval control area (see “Interval Control Area” on page 8-16). Changes
in the display objects are most obvious when you have a Column that contains both a State
Graph and a Ruler. See Chapter 9 “Display Objects” for more information on display
objects.

The interval scroll bar is horizontal and extends the entire width of the grid. The left
arrowhead represents the beginning of the entire trace session, not just the part displayed
on the grid or by the interval control area fields. The right arrowhead represents the end of
the entire trace session.

If you have not already positioned your interval somewhere else, the movable slider of the
interval scroll bar is adjacent to the scroll bar’s left arrowhead. When the slider is here, the
Time Start statistic in the interval control area is 0.0000000 seconds. The length of the
slider is proportionate to the amount of the trace session displayed in the interval. By
default, a display page shows 5% of a trace session.

In the following interval scroll bar descriptions, the fields in the interval control area that
are affected by the interval scroll bar include: Current Time, Time Start, Time End,
Event Start, Event End, and Increment. For more information on these fields, see
“Interval Control Area” on page 8-16.

Trough

'T Lo |

Left Arrowhead Right Arrowhead

Figure 8-11. The Interval Scroll Bar

8-15

NightTrace Manual

Manipulating the interval scroll bar in the following ways has the following results.

Table 8-1. Manipulating the Interval Scroll Bar

Action Mouse Location Result
Button
Click Any Left If the interval scroll bar slider is not already at the leftmost position:
arrowhead
* Moves the slider to the left.
* Scrolls backward Increment seconds or Increment percent of
the current display interval.
Click Any Right If the interval scroll bar slider is not already at the rightmost position:
arrowhead
* Moves the slider to the right.
* Scrolls forward Increment seconds or Increment percent of
the current display interval.
Click 1 Between an * Moves the slider to the side you clicked on.
arrowhead and * Scrolls the current interval by twice the number of seconds in
the slider Increment or by twice the percentage in Increment.
Click or 2 Between an * Moves the slider where you clicked and/or dragged.
Drag arrowhead and Scrolls the current interval accordingly.
the slider » If your current time line was not centered, centers it.
Drag 1or2 Slider (Same as preceding entry.)
Pressand Any Left or right Causes animated scrolling of data in the direction the arrow points
Hold arrowhead

Interval Control Area

8-16

The interval control area is a region of the display page that contains nine fields of
statistics. If you have not already positioned your interval somewhere else, NightTrace
displays in the interval control area the earliest 5 percent of your trace session. Usually
this information is uninteresting and you want to see other parts of your trace session. You
can do two things with the statistics in the interval control area:

® Read the fields to obtain information about the interval

¢ Edit the fields to change the interval

Display Pages

Time Start[4+,5124876s Time Length [12, 0000000 Time End [15, 31245765
Event Starﬂs Event Count|15 Event End |20
Zoom Factor[2.00 Increment [25. 00z Current Time [10, 31245765

Figure 8-12. Interval Control Area

All field values in the interval control area are non-negative numbers. Some fields have
default values. Time fields all display the time in seconds with the “s” suffix. A
description of each field follows. In the following text, interval is the time from Time
Start through Time End.

Time Start
The beginning time of the interval in seconds.

A valid change keeps Time Start less than the ending time in the trace session.
The new interval starts at the specified time. Time Length remains unchanged,
but other fields, including Time End, change appropriately.

If you set Time Start to the word st ar t, NightTrace resets Time Start to the
start time (0 microseconds) of the trace session.

Time End
The ending time of the interval in seconds.

A valid change keeps Time End greater than the beginning time in the trace ses-
sion and greater than or equal to Time Length. The new interval ends at the spec-
ified time. Time Length remains unchanged, but other fields, including Time
Start, change appropriately.

If you change Time End so it is smaller than Time Length, NightTrace sets
Time End to Time Length. If you set Time End to the word end or an arbi-
trarily large number, NightTrace resets Time End to the last time recorded in the
trace event file(s) and changes other fields appropriately.

Time Length

The amount of time between Time Start and Time End. Also known as the
interval.

A valid change keeps Time Length greater than 0 and less than or equal to the last
recorded time in the trace session. The new interval length is the specified length.
Time End and other fields change appropriately.

If you set Time Length to the word al | or an arbitrarily large number, NightTrace
resets Time Length to the last time recorded in the trace event file(s) and changes
other fields appropriately.

NightTrace Manual

8-18

Current Time

The present time within the interval in seconds.

If the new current time is inside the current interval, the current time line moves
appropriately in any Columns (see “Column” on page 9-6) and the current interval
remains unchanged.

If the new current time is outside the current interval, the interval shifts so the cur-
rent time is centered in the interval, the current time line is centered in any Columns,
and the interval length remains unchanged.

Event Start

The ordinal number (offset), not the trace event ID, of the first trace event in this
interval.

A valid change keeps Event Start less than the number of trace events logged in
the trace session. The new interval starts at the specified ordinal trace event number
(offset). Time Length remains unchanged, but other fields change appropriately.

If you set Event Start to the word st ar t, NightTrace resets Event Start to 0
and Time Start to 0 microseconds.

Event End

The ordinal number (offset), not the trace event ID, of the last trace event in this
interval.

A valid change keeps Event End non-negative. The new interval ends at the spec-
ified ordinal trace event number (offset). Time Length remains unchanged, but
other fields change appropriately.

If you set Event End to the word end, or an arbitrarily large number, NightTrace
resets Event End to the total number of trace events in your trace event file(s).

Event Count

The quantity of trace events present in this interval. It is the difference between
Event End and Event Start plus one.

A valid change keeps Event Count less than or equal to the ordinal position (off-
set) of the last trace event recorded in the trace session. The new trace event count
is the specified count. Fields change appropriately.

If you set Event Count to the word al | or an arbitrarily large number, NightTrace
resets Event Count to the total number of trace events in your trace event file(s)
and changes other fields appropriately.

Zoom Factor

The number of times to magnify (or reduce) the interval each time you click on
Zoom Out (or Zoom In). The default is 2. (See “Interval Push Buttons” on page
8-20 for more information about these buttons.)

Display Pages

A valid change keeps Zoom Factor greater than or equal to 1. If you set Zoom
Factor to the word def aul t or a space, NightTrace resets Zoom Factor to the
default value.

Increment
Controls how much the current interval scrolls (and the slider moves) when you:

- click on an arrowhead of the interval scroll bar (see “Interval Scroll
Bar” on page 8-15)

- click between an arrowhead and the slider on the interval scroll bar

- select either the Scroll Forward or Scroll Backward menu item
from the Actions menu of any display page (see “Actions” on page
8-8)

- use the < or > accelerator keys to scroll forward or backward (Note
that it is not necessary to press the Shift key when using these accel-
erators.)

This field may contain either a percentage or an absolute amount of time in seconds.
The default is 25%.

A valid change keeps percentages greater than 0% and less than or equal to 100%
and absolute numbers greater than 0 microseconds and less than or equal to the end
time of the trace session. If you set Increment to the word def aul t or a space,
NightTrace resets Increment to the default value.

If Increment is less than 100% when you click on an interval scroll bar arrowhead,
you see part of the previous interval in this interval; if Increment is equal to 100%,
you see a completely new interval.

Increment Increment

multiplied —— multiplied ——
; by 2 Y ; by 2 Y
| f ' T

Increment Increment

Figure 8-13. Amount of Scrolling Due to Increment Value

8-19

NightTrace Manual

Interval Push Buttons

8-20

The interval push buttons let you examine different intervals in your trace session. The
eight push buttons appear just below the grid (see “Grid” on page 8-13) on the display
page.

Center tlark. | Trim | Zoom Region Zoom In Zoom Jut Refresh

| Apply | Feset

Figure 8-14. The Interval Push Buttons

Apply

Validates any field change(s) in the interval control area (see “Interval Control
Area” on page 8-16) and makes corresponding changes to other field(s), updates dis-
play objects on the grid (see “Grid” on page 8-13), and positions the current time
line appropriately.

Reset

Restores changed field(s) in the interval control area (see “Interval Control Area” on
page 8-16) to the value(s) they had the last time changes were applied.

Center

Centers the interval around the current time line in a Column (see “Column” on
page 9-6).

Makes corresponding changes to Time Start, Time End, Event Start, and
Event End.

Mark

Places a mark (represented by a solid triangle) at a particular time on the Ruler (see
“Ruler” on page 9-10). The mark defaults to time 0.

The mark references a particular position and may be used to determine distances
from the current time line as well as from any position where the mouse pointer is
clicked. The area between the mark and the current time line is referred to as a
region and is used by both the Zoom Region (see “Zoom Region” on page 8-22)
and Trim (“Trim” on page 8-21) features of NightTrace.

NOTE

NightTrace currently supports only one mark.

Trim

Display Pages

Simultaneously pressing Ctrl and clicking on mouse button 1 moves the mark and
the current time line to the place where the mouse is pointing.

Simultaneously holding down Ctrl and clicking on mouse button 2 causes Night-
Trace to write a statistic in the message display area (see “Message Display Area”
on page 8-13) that tells the distance (in seconds) that the mouse pointer is from the
mark. If the mouse pointer is to the right of the mark, the number will have a posi-
tive value; if the mouse pointer is to the left of the mark, the number will have a neg-
ative value.

Simultaneously holding down Ctrl and clicking on mouse button 3 causes Night-
Trace to write a statistic in the message display area that tells the distance (in sec-
onds) that the mouse pointer is from the current time line. If the mouse pointer is to
the right of the current time line, the number will have a positive value; if the mouse
pointer is to the left of the current time line, the number will have a negative value.

Simultaneously holding down Ctrl, holding down mouse button 1, and dragging the
mouse pointer horizontally in a Column (see “Column” on page 9-6) moves the
mark to the beginning point of the drag region and moves the current time line to the
ending point of the drag region. The region is highlighted as you drag the pointer.
This action is useful when using the Zoom Region (see “Zoom Region” on page
8-22) or Trim (“Trim” on page 8-21) features.

Reduces the set of trace data to the region between the mark and the current time
line (inclusive). Data excluded from the region is discarded.

NOTE
See “Mark” on page 8-20 for more information on specifying a

region.

A warning dialog is presented to verify that this action is intentional.

The trimmed data set may be saved by selecting the corresponding entry in the Ses-
sion Overview Area of the NightTrace Main Window (see “Session Overview Area”
on page 3-33) and pressing the Save Data Segment... button (see “Save Data
Segment...” on page 3-34).

§8-21

NightTrace Manual

8-22

Zoom Region

Sets the interval to the region between the mark and the current time line (inclusive).

NOTE

See “Mark” on page 8-20 for more information on specifying a
region.

When this action is performed:

- Time Start is set to the value of the either the mark or the current
time line, whichever is leftmost

- Time End is set to the value of either either the mark or the current
time line, whichever is rightmost

- Current Time is set to the midpoint of the new interval; the current
time line is positioned appropriately

Zoom In

Accelerator: down-arrow

Each time the Zoom In button is pressed, the Time Length is reduced by the
value of Zoom Factor thereby providing a more detailed view of a smaller inter-
val. The interval is centered around the current time line.

The values of Time Start, Time End, Event Start, Event End, and Event
Count are changed accordingly. (See “Interval Control Area” on page 8-16 for
more information about these fields.)

Zoom Out

Accelerator: up-arrow

Each time the Zoom Out button is pressed, the Time Length is multiplied by the
value of Zoom Factor thereby providing a higher-level view of a larger interval.
The interval is centered around the current time line.

The values of Time Start, Time End, Event Start, Event End, and Event
Count are changed accordingly. (See “Interval Control Area” on page 8-16 for
more information about these fields.)

Display Pages

Refresh
Accelerator: Alt+R

Updates the grid to reflect the result of changes in configuration (see “Grid” on page
8-13).

Should be used when:

opening a display page

- switching from edit mode to view mode (see “Mode Buttons” on page
8-12)

- changing a configuration parameter from view mode

- resizing the grid

8-23

NightTrace Manual

8-24

9
Display Objects

Types of Display Objects.ot 9-3
Grid Label. 9-4
Data BoxX. o 9-5
ColumMN. . .o 9-6
Event Graph 9-7
State Graph. o 9-8
Data Graph 9-9
Ruler. 9-10

Operations on Display Objectst 9-12
Creating Display Objectsttt 9-12
Selecting Display Objects.t 9-13
Moving Display Objects.ottt 9-14
Resizing Display Objectsot 9-14
Configuring Display Objects 9-15

Grid Label 9-16
Data Box 9-18
Event Graph. 9-21
State Graph 9-23
Data Graph 9-27
Ruler 9-30
Common Configuration Parameters 9-32
Name 9-32
Event List.o 9-32
IEEXPressionttt 9-33
Then EXpression.t 9-34
CPU LiSt. . oot e 9-35
PID LiSt . oottt e e e 9-35
TID List . oo 9-36
Node List . .. oot 9-37
Foreground Color. 9-38
Background Color 9-38
Font ... 9-38
TextJustify. o 9-39
TeXt Gravityot 9-39

Configuration Form Push Buttons. 9-40

NightTrace Manual

Display Page

9

Display Objects

- [Thread: thr
: (9}&(2053\ N

N

: Thread:}qﬂ (cap BIE 02

E User Events:

‘\

il

B [

Ly 2.5 4.5 .
IIII|IIII|IIII|IIII|IIII|IIII|IIII|II|:

P

Time Start[0,0000000s Time Length [4,2251336= Time End [4,8261896=
Event Start[o Event Count/[3 Event End |z

Zoom Factor[2,0

Increment |25, 00% Current Time [1.20854725

Apply | Feset | Center | hlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 10-1. Display Page with Display Objects

A display page contains display objects which filter, process, and display the information
in the trace event file. These display objects are created and viewed on the display page.

Display objects, which are created via the Create menu (see “Create” on page 8-6) on the
display page, can be thought of as combination filters and formatters for the data stored in
the trace event file. Every time a display object is updated, it filters through the data in the
trace event file. The display object accepts input in the form of a trace event record, pro-
cesses and reformats the information, and displays it.

NightTrace Manual

The following information is in a trace event record:

® numeric trace event ID

* global process identifier (PID)

® NightTrace thread identifier (TID)

® time

¢ ordinal number (offset)

® optional arguments

You can use NightTrace functions to express any of these values (see “Functions” on page

10-4).

Although the trace event file contains trace events, it also implicitly contains states. The
concepts of trace events and states are key to understanding display objects.

trace event

State

Corresponds to the point in the execution of your application when a
trace_event () call was executed. All the data logged at that
time (trace event ID, arguments, etc.) is considered a trace event.

A state is bounded by two trace events, a start event and an end
event. An instance of a state is the period of time between the start
event and end event, including the start and end events themselves.
Additional conditions may be specified in a state definition to further
constrain the state. Instances of individual states do not nest; that is,
once a state becomes active, events that might normally satisfy the
conditions for the start event are ignored until the end event is
encountered.

Different types of display objects display information in different ways. Depending on the
type of information you want to display, you choose the display object or objects you wish
to create. You can then configure those display objects to filter out unwanted data and dis-
play the information that you want.

All display objects are rectangular with user-specified dimensions and have the following

properties:

¢ Display objects can be dynamic or static. Dynamic means the contents
vary depending on values in the trace event file and may change depending
on the current trace event. Static means the contents do not change. All
display objects except Grid Labels are dynamic (see “Grid Label” on page

9-4).

* Display objects can be textual or graphical. Textual means the contents
consist of words or numbers. Graphical means the contents are lines or
shapes, like a bar chart.

* Display objects can be scrollable or non-scrollable. Scrollable means the
display object acts as a movable window into the trace event file.

Display Objects
Types of Display Objects

The basic types of display objects are listed below and are discussed in the following sec-
tions.

® Grid Label

Static textual display object that contains a user-specified string of text and is used
to label other display objects for clarity.

See “Grid Label” on page 9-4 for more information.
¢ Data Box

Dynamic display object that displays textual or numeric information related to a
trace event or state attribute associated with the current time line. The main use of a
Data Box is to display data that is variable in nature and does not lend itself to
graphical representation.

See “Data Box” on page 9-5 for more information.
¢ Column

Dynamic display object that does not display data itself but holds the scrollable
graphical display objects: State Graphs, Event Graphs, Data Graphs, and Rulers. Its
purpose is to group together related graphical display objects.

See “Column” on page 9-6 for more information.
¢ Event Graph

Dynamic, scrollable display object that graphically displays trace events as vertical
lines in a Column and indicates relative chronological positions of trace events since
the trace started.

See “Event Graph” on page 9-7 for more information.
¢ State Graph

Dynamic, scrollable display object that graphically displays states as bars and other
trace events as vertical lines in a Column and indicates relative chronological posi-
tions of trace events and states since the trace started. This display object is usually
used if you want to know when the application enters and exits a particular
user-defined state.

See “State Graph” on page 9-8 for more information.
¢ Data Graph

Dynamic, scrollable display object that graphically displays trace event expressions
as vertical lines or bars in a Column and indicates the relative chronological posi-
tions of trace event arguments since the trace started. The height of the line or bar is

9-3

NightTrace Manual

Grid Label

9.4

proportional to the value of the expression. Use this display object to display rela-
tive values of arguments in the trace event record.

See “Data Graph” on page 9-9 for more information.
* Ruler

Static, scrollable display object resembling a ruler that graphically displays the time.
Rulers are used in a Column with State Graphs, Event Graphs, and Data Graphs to
show what time a trace event occurred.

See “Ruler” on page 9-10 for more information.

Each display page can hold multiple instances of these display objects, usually with each
display object uniquely configured. All display objects on all display pages reflect the
same interval and current time line; display object type, size, configuration, and position
have no bearing.

A Grid Label is a rectangle that contains a string of text. This text usually is a title or
description of an adjacent display object on the grid and makes the display page easier to
interpret. Grid Labels can appear anywhere on the grid, but they cannot go inside a
Column. You can put several Grid Labels on a grid.

Hit Count | @0 po i il

Available For | - - - - - - - -

Too HuchJ Quick Leading [...

Samples From Distribution #6

Figure 10-2. Grid Label Examples

Grid Labels are created by selecting the Grid Label menu item from the Create menu
on the display page (see “Create” on page 8-6). See “Creating Display Objects” on page
9-12 for more information.

If the text is too long to fit into the Grid Label, the lower right corner of the box is filled in.
If this occurs, you should resize the Grid Label. This is described in “Resizing Display
Objects” on page 9-14. A newly created label contains the word | abel .

Grid Labels are static display objects. That is, a Grid Label does not change its appear-
ance or contents depending on the trace event data.

In addition to specifying the text inside of the Grid Label, you also specify the color of the
text (and background), the font of the text, and where in the box the text will appear (for
example, top vs. bottom).

Data Box

Display Objects

See “Grid Label” on page 9-16 for more information on configuring Grid Labels.

A Data Box is a rectangle that textually displays data from the trace event file. Although
the data is usually related to the last trace event received, it can also be a cumulative total
or other manipulations of data in the trace event file. Data Boxes are useful when you
want to display data that does not lend itself to graphical representation, as shown in
Figure 10-3. This figure shows three Data Boxes: the top Data Box contains the interrupt
name, the middle contains the exception name and the bottom contains the syscall name.

hardclock
data access
poll mip

Figure 10-3. Data Box Examples

Data Boxes are created by selecting the Data Box menu item from the Create menu on
the display page (see “Create” on page 8-6). See “Creating Display Objects” on page 9-12
for more information.

If a value is too large to fit into the Data Box (e.g., a long trace event tag), the lower right
corner of the box is filled in. If this occurs, you should resize the Data Box (see “Resizing
Display Objects” on page 9-14).

By default, numeric data is displayed in decimal integer. (For information about overrid-
ing this default, see “Event Map Files” on page 6-10, “format()” on page 10-110, and
“get format()” on page 10-108.) A newly created Data Box contains a 0.

Data Boxes can appear anywhere on the grid except within a Column. You can put several
Data Boxes on a grid.

Some examples of data that you can configure a Data Box to show are:

® The tag of the last trace event before the current time (see “Then Expres-
sion” on page 9-34).

¢ The NightTrace thread name of the last trace event before the current time
(see “Then Expression” on page 9-34)

® A particular argument logged with the last trace event before the current
time (See “arg()” on page 10-16.)

® The total amount of time the application was in a particular state before the
current time (See “state_dur()” on page 10-74 and “sum()” on page
10-100.)

¢ The number of times a particular trace event has occurred before the
current time (See “event_matches()” on page 10-36.)

9-5

NightTrace Manual

Column

9-6

* A string of characters generated by a format expression (See “format()” on
page 10-110.)

See “Data Box™ on page 9-18 for more information on configuring Data Boxes.

A Column holds State Graphs, Event Graphs, Data Graphs and Rulers. It provides a con-

venient way of associating these graphical display objects. Figure 10-4 shows a Column
with a Ruler added to it.

Figure 10-4. Column Example

Columns are created by selecting the Column menu item from the Create menu on the
display page (see “Create” on page 8-6). See “Creating Display Objects” on page 9-12 for
more information.

When a Column is first created, it is an empty rectangle that does not display data of its
own.

Columns ensure that all graphical display objects within them have the same physical
starting point and ending point and the same time scale. Columns are not configured, so
the only variations between Columns are in their height and width.

Without a Column, you cannot put any State Graphs, Event Graphs, Data Graphs or Rul-
ers on your grid, so you must create a Column before you can create any of these display
objects.

You can place a Column anywhere on the grid. You can put more than one Column on a
grid. This allows you to group related graphical objects together. All of the Columns,
however, show the same interval and current time in View mode.

To hold a Ruler and any other graphical display object, Columns must be at least five grid
dots high. Wider Columns are recommended because they determine the resolution to
which trace events can be displayed.

Event Graph

Display Objects

TIP

On a monochrome display, make sure that you can differentiate
among display objects within a Column. The easiest way to do
this is to leave at least one grid dot between display objects in a
Column and to make the background color of the Column black.
For more information on setting a Column’s background color,
see “Default X-Resource Settings for ntrace” on page B-2.

An Event Graph represents trace events as a thin vertical line. Figure 10-5 shows an Event
Graph with a Ruler below it.

12,=
L

[3‘? E.s RS 15,= é
b tebe et et e e e e e b 0

Figure 10-5. Event Graph Example

Event Graphs are created by selecting the Event Graph menu item from the Create
menu on the display page (see “Create” on page 8-6). See “Creating Display Objects” on
page 9-12 for more information.

Event Graphs must be placed in a Column (see “Column” on page 9-6).
Some examples of information that an Event Graph can be used to display are:

* The times your application starts executing a particular subroutine
® The sequence of execution of various modules in your application

¢ The timing of the birth and death of child processes

NOTE
In view mode (see “Mode Buttons” on page 8-12), to find out
more information about a particular trace event, position the cur-

sor on the line and click once with mouse button 2. Information
about that trace event is displayed in the message display area.

See “Event Graph” on page 9-21 for more information on configuring Event Graphs.

9-7

NightTrace Manual

State Graph

9-8

A State Graph represents an instance of a state as a solid horizontal bar that starts when
the state is active and ends when the state is inactive. A state is bounded by two
user-specified trace events, a start event and an end event. A State Graph and a Ruler are
shown in Figure 10-6.

|2 4135 2,414s 2,415 2,416s 2,417s |
||

Figure 10-6. State Graph Example

State Graphs are created by selecting the State Graph menu item from the Create
menu on the display page (see “Create” on page 8-6). See “Creating Display Objects” on
page 9-12 for more information.

State Graphs must be placed in a Column (see “Column” on page 9-6).

An instance of a state is the period of time between the start event and end event, including
the start and end events themselves. Instances of the same state do not nest; thus, once a
state becomes active, events that might normally satisfy the conditions for the start event
are ignored until the end event is encountered.

A State Graph can display trace events in a manner identical to an Event Graph. This can
be useful for saving screen space or detecting when state start and state end trace events
occur out of order. For example, the trace event lines can show multiple state start trace
events occurring before a state end trace event.

Some examples of information that State Graphs can be used to display are:

¢ The times your application is executing a particular subroutine
¢ The differences in the execution speed of parallel threads

® The time spent in contention for resources

NOTE

In view mode (see “Mode Buttons” on page 8-12), to find out
more information about a particular trace event, position the cur-
sor on a trace event line and click once with mouse button 2.
Information about that trace event is displayed in the message dis-
play area. You can also click with mouse button 2 on the start and
end of a displayed state to obtain information about the state start
and state end trace events.

See “State Graph” on page 9-23 for more information on configuring State Graphs.

Display Objects

Data Graph

A Data Graph represents data as either vertical lines or bars of varying height. The height
of the line or bar is proportional to data from the trace event file. This display object is
usually used to display values of arguments in the trace event record. In Figure 10-7, the
same set of data is used to draw the two basic types of Data Graph. The top Data Graph is
a line Data Graph, which shows the data as vertical lines of varying height. The bottom
Data Graph is a bar Data Graph, which consists of bars of varying height.

18,4722= 18,4723= 18‘4?24! 18,4720 18,4726= 18,4727s |-

Figure 10-7. Data Graph Examples

Data Graphs are created by selecting the Data Graph menu item from the Create menu
on the display page (see “Create” on page 8-6). See “Creating Display Objects” on page
9-12 for more information.

Data Graphs must be placed in a Column (see “Column” on page 9-6).
Some examples of ways that a Data Graph can be used are:

¢ track the value of an expression over time

® identify when an application variable takes on an abnormally high or low
value

When choosing a size for your Data Graphs, make sure that they are high enough for you
to distinguish differences in data values.

TIP

The higher you make the Data Graph, the easier it is to differenti-
ate similar data points.

NOTE

In view mode (see “Mode Buttons” on page 8-12), to find out
about the trace event that caused the data value expression to be
evaluated at a particular point, position the cursor on the line (or
bar) and click once with mouse button 2. Information about the
trace event is displayed in the message display area.

9-9

NightTrace Manual

In view mode, to find out the value of a particular data item, posi-
tion the cursor on the line (or bar) and click once with mouse but-
ton 3. The value of that data item is displayed in the message dis-
play area.

See “Data Graph” on page 9-27 for more information on configuring Data Graphs.

Ruler

A Ruler graphically displays the time interval for the current dataset. Ruler display
objects have major and minor hash marks to mark divisions of time since the first trace
event was logged.

18.47225 18,4723 18, 47245 18,4720 18.4706s 18.4707=
T P T I N A T A AT A T I

Figure 10-8. Ruler Example

Rulers are created by selecting the Ruler menu item from the Create menu on the dis-
play page (see “Create” on page 8-6). See “Creating Display Objects” on page 9-12 for
more information.

Rulers must be placed in a Column (see “Column” on page 9-6) and should be at least
three grid dots high.

In addition to hash marks and numbers, other indicators that provide useful information
about the trace data being displayed are:

L a location in time where NightTrace lost data (see “Pre-
venting Trace Events Loss” on page A-1)

P a point in time where the daemon logging trace data was
paused

R the point in time where the daemon logging trace data was
resumed

? a point in time where an erroneous timestamp was

detected on a kernel trace data point

v a mark set by the user (see “Mark” on page 8-20)

Figure 10-9 shows both a mark and a lost data indicator on a Ruler.

9-10

Display Objects

0, 06621z 0,06624=
Ll ko b e Y

Figure 10-9. Ruler Indicators

The indicators appear in reverse-video with the indicator displayed as white text over a
colored background except for the mark which appears as a solid triangle. The back-
ground colors can be customized using the appropriate X resources (see Appendix B “GUI
Customization™). In addition, the background color of the lost data indicator as well as the
color of the mark can be set using the Ruler Configuration Form.

See “Ruler” on page 9-30 for more information on configuring Rulers.

9-11

NightTrace Manual
Operations on Display Objects

This section describes some operations you can perform on display objects. The
operations discussed are:

¢ Creating display objects

See “Creating Display Objects” on page 9-12.
* Selecting display objects

See “Selecting Display Objects” on page 9-13.
* Moving display objects

See “Moving Display Objects” on page 9-14.
* Resizing display objects

See “Resizing Display Objects” on page 9-14.
* Configuring display objects

See “Configuring Display Objects” on page 9-15.

Creating Display Objects

Creating display objects involves three steps: selecting (loading) the type of display object
to be drawn, selecting the place on the grid where the display object will go, and selecting
the size of the display object.

State Graphs, Event Graphs, Data Graphs and Rulers must be created inside a Column
(see “Column” on page 9-6).

To create a display object and place it on the grid, do the following:

1. Select the type of display object you want to create from the Create menu
(see “Create” on page 8-6) of the display page. (The mouse pointer
changes to a crosshair).

2. Move the pointer until it is on the grid where you want to place a corner of
the display object. As mentioned previously, some display objects go only
inside of Columns. If the cursor is on the border of a Column or outside of
one, you will not be able to draw these display objects. Note that the left
and right sides of these display objects are determined by the Column, and
you only have to place the pointer somewhere on the intended top or
bottom edge of the display object.

3. Click and drag mouse button 1 until the display object is the size you want
it to be. While you are sizing a display object, its boundaries are shown as
dashed lines. Note that if you press the <Esc> key before releasing mouse
button 1, the operation aborts. The display object is still loaded, as signified
by the crosshair at the pointer location, so you can immediately try to

9-12

Display Objects

recreate the display object. Also note that display objects must not overlap
(except for graphical display objects, which must overlap a Column).

4. Release mouse button 1. The display object should appear on your grid
with solid line boundaries, unless there was an error (e.g., you placed a
Data Box on top of an existing Grid Label). Notice that the display object is
also selected (corners have handles). This is in case you want to move,
configure, or resize it at this time.

Selecting Display Objects

Often, you must select a display object before performing grid and edit operations. For
example, before you can resize a display object you must first select the display object.

To select a single display object, simply click on the display object with mouse button 1.
The display object now has handles at the corners, indicating that the display object is
selected.

When display objects are inside a Column, it is sometimes difficult to select the Column.
To select an unselected Column, hold down the <Control> key and click mouse button 1.
If you perform the same action in a selected Column, the Column is deselected.

You can select multiple display objects three different ways. The first way to select
multiple display objects is as follows:

1. Position the cursor outside the display objects you want to select.

2. Click mouse button 1 and drag the mouse until the rectangle that is formed
completely surrounds only the display objects you want to select. If a
display object is not completely surrounded by the rectangle, it will not be
selected.

3. Release mouse button 1. The display objects that were within the rectangle
will now have handles at each corner.

The second way to select multiple display objects is by using the <Shift> key. Holding
down the <Shift> key and clicking mouse button 1 while the cursor is in an unselected
display object selects that display object without deselecting any other display objects.
This allows you to select any set of display objects that you want. If you perform the same
action in a display object that is already selected, the display object is deselected.

The third way to select multiple display objects is by using the Select All menu item on
the Edit menu (see “Select All” on page 8-5).

9-13

NightTrace Manual

Moving Display Objects

To move a display object to somewhere else on the grid, do the following:

1. Select the display object(s). Refer to “Selecting Display Objects” on page
9-13.

2. Using the mouse button 2, click anywhere on or within the selected display
object(s) and drag to the desired location.

3. Release the middle button.

When display objects are inside a Column, it is sometimes difficult to move the Column.
To move a selected Column, hold down the <Control> key and click mouse button 2.

Display objects must not overlap, except certain display objects must be placed inside a
Column. If you try to move a display object on top of another display object, NightTrace
displays an error message in the message display area and aborts the move.

Resizing Display Objects

To resize a display object on the grid, do the following:

1. Select the display object. See “Selecting Display Objects” on page 9-13 for
more information.

2. Using mouse button 3, click on a handle and drag until the desired size is
reached.

3. Release the right button.

When display objects are inside a Column, it is sometimes difficult to resize the Column.
To resize a selected Column, hold down the <Control> key and click mouse button 3.
Note that a Column cannot be vertically resized smaller than the minimum space required
to hold all the State Graphs, Event Graphs, Data Graphs and Rulers that it contains.

Display objects must not overlap, with the exception that certain display objects need to be
placed inside a Column. If you try to resize a display object on top of another display
object, NightTrace displays an error message in the message display area and aborts the
resize.

9-14

Configuring Display Objects

Display Objects

Customizing a display object so that it displays only the information you want it to — in the

way that you want it to — is called configuring.

The following sections discuss the configuration parameters for each of the following
display objects:

Grid Label

See “Grid Label” on page 9-16.
Data Box

See “Data Box™ on page 9-18.

Event Graph

See “Event Graph” on page 9-21.

State Graph

See “State Graph” on page 9-23.
Data Graph

See “Data Graph” on page 9-27.
Ruler

See “Ruler” on page 9-30.

See “Common Configuration Parameters” on page 9-32 for descriptions of the common

configuration parameters that many of the display objects use.

9-15

NightTrace Manual

Grid Label

The configuration form for the Grid Label (see “Grid Label” on page 9-4) is shown in
Figure 10-10.

F2 Grid Label Configuration Farm

Marne Iunnamed_object

Text |User Events:

Foreground Color |
Background Color |
Font |

Text Justify @ Default - Left « Center - Right

Text Gravity < Default - Bottom - Center - Top

| Apply | Feset Festore Close

Figure 10-10. Grid Label Configuration Form

Name

See “Name” on page 9-32.

Text

The Text parameter is the only parameter that is unique to Grid Labels. This param-
eter is set to the characters that are to appear in the Grid Label. For example, if you
want a box on the grid containing the phrase, “Flight Simulation Trace Screen,” you
would enter the following text in the Text field:

Fl'ight Sinulation Trace Screen

Foreground Color

See “Foreground Color” on page 9-38.

Background Color

See “Background Color” on page 9-38.

Font

See “Font” on page 9-38.

9-16

Text Justify

See “Text Justify” on page 9-39.

Text Gravity

See “Text Gravity” on page 9-39.

See “Grid Label” on page 9-4 for more information.

Display Objects

NightTrace Manual

Data Box

The configuration form for the Data Box (see “Data Box” on page 9-5) is shown in
Figure 10-11.

onfiguration Form o i [=][=] [*

Marne Iunnamed_object

Mode List |ALL
Event List |ALLUSER
If Expression |TRUE
Then Expression |format("argéd = 24", 1, argl)
CPU List AL
PID List |ALL
TID List |ALL

Fareground Caolor |
Background Color |
Font |
Text Justify < Default - Left - Center - Right

Text Gravity < Default - Bottom - Center - Top

| Apply | | Set Fields... | Reset | Restore | Close |
—_———————————————————————————

Figure 10-11. Data Box Configuration Form

Name

See “Name” on page 9-32.

Node List

See “Node List” on page 9-37.

NOTE

The Node List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Event List

See “Event List” on page 9-32.

9-18

Display Objects

If Expression

See “If Expression” on page 9-33.

Then Expression

See “Then Expression” on page 9-34.

CPU List

See “CPU List” on page 9-35.

PID List

See “PID List” on page 9-35.

TID List

See “TID List” on page 9-36.

Foreground Color

See “Foreground Color” on page 9-38.

Background Color

See “Background Color” on page 9-38.

Font

See “Font” on page 9-38.

Text Justify

See “Text Justify” on page 9-39.

Text Gravity

See “Text Gravity” on page 9-39.

A Data Box can be used as a counter. A counter is simply a Data Box that counts the
occurrences of a particular trace event or other condition up to the current time.

For example, if you wanted to display the number of trace events occurring before the
current time, set the Event List parameter to ALL and put the following expression in the
Then Expression field:

event _mat ches()

9-19

NightTrace Manual

This expression counts the number of times the criteria were met. See Chapter 10 for more
information on expressions.

To determine the format of the data displayed in the Data Box, give the Then Expres-
sion parameter an expression value (see “Then Expression” on page 9-34).

See “Data Box” on page 9-5 for more information.

9-20

Display Objects

Event Graph

The configuration form for the Event Graph (see “Event Graph” on page 9-7) is shown in
Figure 10-12.

[Eg Event Graph Configuration Form

Marme Iunnamed_object

Mode List |ALL
Event List JALL

If Expression |TRUE
CPU List [aLL
PID List [ALL

TID List [ALL

Foreground Color |

Background Color |

Set Fields... | Resetl Restore | Close |

| Apply |
—_—————————————a

Figure 10-12. Event Graph Configuration Form

Name

See “Name” on page 9-32.

Node List

See “Node List” on page 9-37.

NOTE
The Node List field appears in this dialog only when NightTrace

is configured to use an RCIM to timestamp events.

Event List

See “Event List” on page 9-32.

If Expression

The If Expression of an Event Graph determines whether a trace event should be
graphed. If the If Expression is true, then a vertical line is drawn at the point in
time that the trace event occurred.

9-21

NightTrace Manual

9-22

See “If Expression” on page 9-33.

CPU List

See “CPU List” on page 9-35.

PID List

See “PID List” on page 9-35.

TID List

See “TID List” on page 9-36.

Foreground Color

See “Foreground Color” on page 9-38.

Background Color

See “Background Color” on page 9-38.

See “Event Graph” on page 9-7 for more information.

State Graph

Display Objects

The configuration form for the State Graph (see “State Graph” on page 9-8) is shown in

Figure 10-13.

araph Configuration Form

Marme Iunnamed_object

Start Events |HOWE
End Events [MINE
Start Expression |TRUE
End Expression |TRUE
Mode List [ALL
Event List |ALLUSER

If Expression |TRUE
CPU List ALl

PID List |ALL

TID List |ALL

Foreground Color |
Background Color |

Event Color |

Set Fields... | Resetl Restore | Close |

| Apply |

Figure 10-13. State Graph Configuration Form

Name

See “Name” on page 9-32.

Start Events

The Start Events parameter defines the trace events that can begin a state. Addi-
tional criteria that must be met for a state to begin may be specified in the form of an
expression using the Start Expression parameter (see “Start Expression” on page

9-24).

The Start Events parameter works in combination with the End Events
parameter which defines the trace events that can end a state (see “End Events” on

page 9-24).

9-23

NightTrace Manual

9.24

End Events

The End Events parameter defines the trace events that can end a state. Addi-
tional criteria that must be met for a state to end may be specified in the form of an
expression using the End Expression parameter (see “End Expression” on page
9-24).

The End Events parameter works in combination with the Start Events
parameter which defines the trace events that can begin a state (see “Start Events”
on page 9-23).

Start Expression

The Start Expression parameter allows the user to define criteria which must be
met for a state to begin. This criteria is specified in the form of an expression (see
“Expressions” on page 10-1).

NightTrace evaluates this expression along with the Start Events parameter (see
“Start Events” on page 9-23) and any other criteria specified in this dialog (e.g.
CPU List, PID List, etc.) to determine whether the state can begin.

End Expression

The End Expression parameter allows the user to define criteria which must be
met for a state to end. This criteria is specified in the form of an expression (see
“Expressions” on page 10-1).

NightTrace evaluates this expression along with the End Events parameter (see
“End Events” on page 9-24) and any other criteria specified in this dialog (e.g. CPU
List, PID List, etc.) to determine whether the state can end.

Node List

See “Node List” on page 9-37.

NOTE

The Node List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Event List

See “Event List” on page 9-32.

If Expression

See “If Expression” on page 9-33.

CPU List

See “CPU List” on page 9-35.

Display Objects

PID List

See “PID List” on page 9-35.

TID List

See “TID List” on page 9-36.

Foreground Color

See “Foreground Color” on page 9-38.

Background Color

See “Background Color” on page 9-38.

Event Color

The Event Color parameter specifies the color of the vertical lines that represent
the events in the Event List.

The possible values are the colors your X server supports as specified in the
rgb. t xt file (see Appendix B “GUI Customization” for more information)

Colors may also be specified in RGB notation. For example,

rgb: 55/ 99/ 55

A state is bounded by two user-specified trace events, a start event and an end event. An
instance of a state is the period of time between the start event and end event, including the
start and end events themselves. Instances of the same state do not nest; thus, once a state
becomes active, events that might normally satisfy the conditions for the start event are
ignored until the end event is encountered.

The following semantic rules apply to these expressions. In these rules, defining state
means a state with trace events in the Start-Events and End-Events lists.

e Start Expression must not refer to its defining states. For example, it
must not call st at e_dur (), st at e_gap(), start or end functions for
these states. (See “Multi-State Functions” on page 10-73, “Start Functions”
on page 10-37, and “End Functions” on page 10-55 for details.) Calling
these functions for these states would be an attempt to define a state based
on its own definition. Note that Start Expression may call all of these
functions for qualified states.

* End Expression must not refer to its defining states. For example, it
must not call state_dur (), state_gap(), or end functions for these
states. Calling these functions for these states would be an attempt to
define a state based on its own definition. Note that End Expression
may call start functions for these states because at this point in the state
definition, the state has started. Note also that End Expression may call
all of these functions for qualified states.

9-25

NightTrace Manual

9-26

State Graphs indicate when a state is active by drawing a rectangle in the Foreground
Color that spans the time when the start state and end state criteria are met. In addition to
drawing this state rectangle, State Graphs can behave exactly like Event Graphs by using
the Event List and If Expression fields. Trace event lines are superimposed on the
state rectangle, which is useful for diagnosing problems where the criteria for starting the
state are met multiple times before the criteria for ending the state are met.

See “State Graph” on page 9-8 for more information.

Data Graph

rﬁ Diata Graph Configuration Form

Mame |unnamed_object

Fill Style < MNone - Solid
Minimum |CALC
hviaximum |CALC
Mode List |ALL
Ewent List |ALL
If Expression |TRUE
Then Expression [NONE
CPU List ALl
FID List JALL
TID List JALL

Foreground Color |
Background Color |

SetFields...l Resetl Restorel Closel

| Apply |

Display Objects

Figure 10-14. Data Graph Configuration Form

Name

See “Name” on page 9-32.

Fill Style

The configuration form for the Data Graph (see “Data Graph” on page 9-9) is shown in
Figure 10-14.

The Fill Style parameter determines the style of Data Graph created. The possible
choices are None or Solid. If None is chosen, then a vertical line is drawn only at
the time of a trace event. If Solid is chosen, then all space to the right of a trace
event will be filled until the next trace event is encountered. Figure 10-15 shows the

difference between Solid and None.

Figure 10-15. Solid vs. No Fill

9-27

NightTrace Manual

9-28

Minimum

The Minimum parameter determines what data value corresponds to the bottom of
the Data Graph. The possible values are integers or CALC. If an integer is specified
as the minimum, any data that is equal to or less than that value will result in no line
or bar on the Data Graph. If CALCis specified, the minimum value will be the small-
est value found in the trace event run up to that point in time. Note that the minimum
can change as time increases and new minimums are encountered.

Maximum

The Maximum parameter determines what data value corresponds to the top of the
Data Graph. The possible values are integers or CALC. If an integer is specified as
the maximum, any data that is equal to or greater than that value results in a line or
bar that goes to the top of the Data Graph. If CALC is specified, the maximum value
will be the greatest value found in the trace event run up to that point in time. Note
that the maximum can change as time increases and new maximums are encoun-
tered.

Node List

See “Node List” on page 9-37.

NOTE

The Node List field appears in this dialog only when NightTrace
is configured to use an RCIM to timestamp events.

Event List

See “Event List” on page 9-32.

If Expression

See “If Expression” on page 9-33.

Then Expression

See “Then Expression” on page 9-34.

CPU List

See “CPU List” on page 9-35.

PID List

See “PID List” on page 9-35.

Display Objects

TID List

See “TID List” on page 9-36.

Foreground Color

See “Foreground Color” on page 9-38.

Background Color

See “Background Color” on page 9-38.

Figure 10-16 shows the same set of data drawn in three Data Graphs, each configured
differently. The data range in value from 1 to 6 and are shown at the bottom of the figure.

¢ The top Data Graph is configured with a minimum of 2 and a maximum of
4. Notice that several bars reach the top of the Data Graph even though
they represent different data values; also note that there is no bar where
data has a value less than the minimum.

¢ The middle Data Graph is configured with a minimum of 0 and a maxi-
mum of 10. Notice that the bars do not reach the top of the Data Graph and
that the differences between values are harder to discern.

¢ The bottom Data Graph is configured with a minimum of 0 and a maxi-
mum set to CALC. Notice that the two occurrences of the maximum value
of six cause bars to reach the top of the Data Graph.

Figure 10-16. Maximum vs. Minimum Values

See “Data Graph” on page 9-9 for more information.

9-29

NightTrace Manual

Ruler

The configuration form for the Ruler (see “Ruler” on page 9-10) is shown in Figure 10-17.

IR Ruler Configuration Farm

Mame |urramed_object

Lost Event Color |
kark Colar |

Foreground Color |
Background Color |
Font |

| Applyl Resetl Restorel Closel

Figure 10-17. Ruler Configuration Form

Name

See “Name” on page 9-32.

Lost Event Color

The Lost Event Color parameter specifies the color of the reverse-video “L”
(shown in Figure 10-18) that is placed on a Ruler where NightTrace lost data. The
possible values are the colors your X server supports, as specified in the r gb. t xt
file. See “Preventing Trace Events Loss” on page A-1 for more information on lost
data.

Mark Color

The Mark Color parameter specifies the color of the mark indicator, a triangle that
appears on the Ruler (shown in Figure 10-18). The possible values are the colors
your X server supports. See “Mark” on page 8-20 for more information about the
mark.

0, 06621z 0,06624=
Ll ko b e Y

Figure 10-18. Mark and Lost Event Markers

9-30

Foreground Color

See “Foreground Color” on page 9-38.

Background Color

See “Background Color” on page 9-38.

Font

See “Font” on page 9-38.

See “Ruler” on page 9-10 for more information.

Display Objects

9-31

NightTrace Manual

Common Configuration Parameters

Name

Event List

9-32

Many of the display objects share common configuration parameters. These common
configuration parameters are:

* Name (see “Name” on page 9-32)

* Event List (see “Event List” on page 9-32)

* |f Expression (see “If Expression” on page 9-33)

* Then Expression (see “Then Expression” on page 9-34)

* CPU List (see “CPU List” on page 9-35)

* PID List (see “PID List” on page 9-35)

* TID List (see “TID List” on page 9-36)

* Node List (see “Node List” on page 9-37)

* Foreground Color (see “Foreground Color” on page 9-38)
¢ Background Color (see “Background Color” on page 9-38)
* Font (see “Font” on page 9-38)

* Text Justify (see “Text Justify” on page 9-39)

* Text Gravity (see “Text Gravity” on page 9-39)

For each configuration parameter that pertains to color, there is an equivalent X resource.
See Appendix B for more information.

Note that you can type def aul t or just a space in a field to get the default value.

The name of the display object can be any alphanumeric string beginning with a letter.
Underscores are also allowed. However, spaces are not allowed.

This parameter allows:

* you to name a particular display object configuration. (By default, newly
created display objects bear the name unnamed_obj ect .)

® you to later define X resources to apply to the named display object. See
Appendix B for more information.

* NightTrace to reference the display object by name in error messages.

The Event List parameter restricts the trace events on which the display object can
display information. The display object ignores any trace event IDs or trace event tags
that are not on the trace event list. If an explicit list of trace event tags and trace event IDs
is specified, the tags and IDs on the list must be separated by commas. Only listed trace
events are examined. Qualified events and qualified states must not appear in the list;

If Expression

Display Objects

however, they can be referenced as part of the If Expression to further refine the selec-
tion criteria (see “If Expression” on page 9-33).

The Event List parameter can be any meaningful combination of the following:

ALL

ALLUSER

ALLKERNEL

NONE

0, 1, 2, ..., 4095

4100, 4101, 4102, ..., 4300

A comma-separated list of alphanumeric
strings beginning with letters (underscores
are allowed; spaces are not allowed)

All trace events

All user trace events

All kernel trace events

No trace events

Listed user trace event IDs
Listed kernel trace events IDs

Trace event tags as specified in an event
map file (see “Event Map Files” on page
6-10 for more information)

The If Expression parameter determines whether the Then Expression parameter is
evaluated. If Expressions are boolean, i.e., they should evaluate to f al se (O) ort r ue
(non-zero). If the If Expression is true, the Then Expression is evaluated and
displayed in the display object (assuming all other criteria are met). If an If Expression
evaluates to false, the Then Expression retains its last value. See Chapter 10 for more

information on expressions.

Some examples of valid If Expressions and their effect on the Then Expression are

shown in Table 9-1.

Table 9-1. Examples of If Expressions

If Expression

Effect on Then Expression

true

fal se

id() == 200
id() < 200
pid() == 237
tid() == 895

cpu() == 2 || cpu() ==

Always evaluated
Never evaluated

Evaluated if current trace event ID is
equal to 200

Evaluated if current trace event ID is less
than 200

Evaluated if current global process ID is
equal to 237

Evaluated if current NightTrace thread ID
is equal to 895

Evaluated if current trace event occurred
on CPU 2 or 4

9-33

NightTrace Manual

Then Expression

Table 9-2. Examples of Then Expressions

The Then Expression parameter determines what the output of the display object is
when the If Expression is true. If the If Expression is false, the Then Expression
retains its last value. The possible values are a numeric expression or string. See
Chapter 10 for more information on expressions.

Some examples of valid Then Expressions and their resulting values are shown in
Table 9-2.

Then Expression

Resulting Value or Meaning

id()
arg2()

format (“abc=%l",

get _string

get _string

get _string

get _string

get _string

get _string

get _string

(curr_state,

(event, id())

(pid, pid())

(tid, tid())

(bool ean, arg)

(syscal |, arg)

(vector, arg)

argi())

id())

The current trace event ID
The second argument of the current trace event

The string “ abc=10" ifar g1() is 10 (See “format()” on
page 10-110.)

The string from the cur r _st at e string table pointed to by
i d() (if any)

Depending on whether trace event ID returned by i d() is in
the pre-defined event table, either the trace event ID num-
ber or its corresponding trace event tag is displayed. (See
“get string()” on page 10-104, “Pre-Defined String Tables”
on page 6-16, and “id()” on page 10-15.)

Depending on whether the global process identifier returned
by pi d() is in the pre-defined pi d table, either the global
process identifier (PID) or its corresponding process name is
displayed. (See “get_string()” on page 10-104, “Pre-Defined
String Tables” on page 6-16, and “pid()” on page 10-19.)

Depending on whether the NightTrace thread identifier
returned by t i d() is in the pre-defined t i d table, either
the NightTrace thread identifier (TID) or its corresponding
thread name is displayed. (See “get_string()” on page
10-104, “Pre-Defined String Tables” on page 6-16, and
“tid()” on page 10-24.)

If arg has the value 0, f al se is displayed. Otherwise, t r ue
is displayed. (See “get_string()”” on page 10-104 and
“Pre-Defined String Tables” on page 6-16)

arg’s value is looked up in the pre-defined syscal | table,
and its corresponding system call name is displayed. (This is
meaningful only for NightTrace kernel trace event files.)
(See “get_string()” on page 10-104 and “Kernel String
Tables” on page 12-16.)

arg’s value is looked up in the pre-defined vect or table,
and its corresponding interrupt or exception name is
displayed. (This is meaningful only for NightTrace kernel
trace event files.) (See “get_string()” on page 10-104 and
“Kernel String Tables” on page 12-16.)

9-34

Display Objects

Table 9-2. Examples of Then Expressions (Cont.)

Then Expression Resulting Value or Meaning

get _format (next_state, id()) The formatted string from the next _st at e format table

indexed by the integer returned by i d() (if any)

get _format (state_summary) Display statistics about state matches, the state gaps, and the

state durations. (See “get_format()” on page 10-108 and
“Pre-Defined Format Tables” on page 6-23.)

get _format(event _sumary) Display statistics about trace event matches and trace event

gaps. (See “get_format()” on page 10-108 and “Pre-Defined
Format Tables” on page 6-23.)

get _format(event _arg _sumary, 3) Display statistics about trace event matches and their type

long third argument. (See “get format()” on page 10-108
and “Pre-Defined Format Tables” on page 6-23.)

get _format(event _arg_dbl _sunmary, 1) Display statistics about trace event matches and their type

double first argument. (See “get format()” on page 10-108
and “Pre-Defined Format Tables” on page 6-23.)

CPU List

PID List

The CPU List parameter determines from which logical central processing units (CPUs)
the display object will process trace events. Only processes that run on one of the CPUs on
this list will be considered by this display object. If the trace event sent to the display
object is not on the list of CPUs, then the trace event is ignored. A CPU number can be
specified only if a NightTrace kernel trace event file is specified. Multiple CPU numbers
must be separated by commas.

ALL All CPUs
NONE No CPUs
1, 2, 3, ... Listed CPUs

On Linux systems, a global process identifier (PID) is the operating system process identi-
fier.

On PowerMAX OS systems, a global process identifier (PID) is a 32-bit integer which
includes a 16-bit integer raw PID and a 16-bit integer lightweight process identifier
(LWPID). The syntax for specifying a PID on a PowerMAX OS system is:

raw PID" LWPID

The PID List parameter is the list of global process identifiers (PIDs) or process names
that the display object will accept trace events from. If the trace event did not occur in a
process listed in this parameter, the trace event is ignored. If a number or name is specified

9-35

NightTrace Manual

TID List

9-36

that is not a valid PID, a warning message is displayed. Multiple numbers and names must
be separated by commas.

NOTE

Prior to Version 4.1, NightTrace converted process identifiers into
process names during PID List input verification for a display
object. For each process identifier in the PID List, NightTrace
would try to find its associated process name and display that
name in the PID List. However, because multiple processes hav-
ing the same name may exist on a system, changing a process
identifier into a process name introduces the possibility that the
display object will accept trace events from undesirable processes.
Therefore, NightTrace no longer performs this conversion.

For example, suppose that two processes named a. out existon a
particular system and that one has a PID of 1234 and the other
has a PID of 5678. Further suppose that you wish to create a
State Graph to display events only for PID 1234. Prior to Version
4.1, if you entered 1234 in the PID List parameter, NightTrace
would have converted that to a. out . As the events were being
analyzed, any event that had a PID of 5678 would also have been
displayed by the State Graph since a process named a. out also
existed with a PID of 5678.

The PID List parameter can be any meaningful combination of the following:

ALL All PIDs
NONE No PIDs
123, 456, 789, ... Listed PIDs

A comma-separated list of alphanumeric Process names
strings beginning with letters (underscores
are allowed; spaces are not allowed)

A NightTrace thread identifier (TID) is a 32-bit integer. It includes a 16-bit integer raw
PID and a 16-bit integer C thread or Ada task identifier. If neither C threads nor Ada tasks
are in use, then the 16-bit integer will always be zero. The syntax for specifying a TID is:

raw_PID' task_id
or:
raw_PID' thread id

The TID List parameter is the list of NightTrace thread identifiers (TIDs) or thread names
that the display object will accept trace events from. If the trace event did not occur in a
thread listed in this parameter, the trace event is ignored. If a number or name is specified

Node List

Display Objects

that is not a valid TID, a warning message is displayed. Multiple numbers and names must
be separated by commas.

NOTE

Prior to Version 4.1, NightTrace converted thread identifiers into
thread names during TID List input verification for a display
object. For each thread identifier in the TID List, NightTrace
would try to find its associated thread name and display that name
in the TID List. However, because multiple threads having the
same name may exist on a system, changing a thread identifier
into a thread name introduces the possibility that the display
object will accept trace events from undesirable threads. There-
fore, NightTrace no longer performs this conversion.

For example, suppose that two threads named daenon exist on a
particular system and that one has a TID of 1234’ 1 and the other
has a TID of 5678’ 3. Further suppose that you wish to create a
State Graph to display events only for TID 1234’ 1. Prior to Ver-
sion 4.1, if you entered 1234’ 1 in the TID List parameter,
NightTrace would have converted that to daenon. As the events
were being analyzed, any event that had a TID of 5678’ 3 would
also have been displayed by the State Graph since the thread
daenon also existed with a TID of 5678 3.

The TID List parameter can be any meaningful combination of the following:

ALL All TIDs
NONE No TIDs
123’1, 456’1, 789’1, ... Listed TIDs

A comma-separated list of alphanumeric The name of a thread as specified in the

strings beginning with letters (underscores trace_open_t hread() call (see

are allowed; spaces are not allowed) “trace_open_thread()” on page 2-9 for
more information)

When NightTrace processes a trace file which was timestamped by an RCIM synchro-
nized tick clock, it internally assigns a node identifier to each node/host name represented
by atrace file. If no trace file was generated using the tick clock, this parameter is not dis-
played.

The Node List parameter is the list of node identifiers or node names from which the dis-
play object will accept trace events. If the trace event did not occur on a node listed in this
parameter, the trace event is ignored. If a number or name is specified that is not a valid

9-37

NightTrace Manual

Foreground Color

Background Color

Font

9-38

node, a warning message is displayed. Multiple numbers and names must be separated by
commas.

The Node List parameter can be any meaningful combination of the following:

ALL All nodes
NONE No nodes
0, 1, 4 Listed node IDs

A comma-separated list of host names The name of a node/host
(spaces are not allowed)

The Foreground Color parameter determines the color of items in the foreground of the
display object, which usually corresponds to the data being displayed by the display
object.

The Foreground Color can be any of the colors your X server supports, as specified in
the r gb. t xt file.

Colors may also be specified in RGB notation. For example,

rgb: 55/ 99/ 55

The Background Color parameter determines the color of the background of the
display object. Although this is not the color used to display the data of interest in the
display object, it should be a color that contrasts well with the Foreground Color. This
will make the data easier to read.

The Background Color can be any of the colors your X server supports, as specified in
the r gb. t xt file.

Colors may also be specified in RGB notation. For example,

r gb: 55/ 99/ 55

The Font parameter determines the font that characters in the display object are displayed
in. Use of a small font size is recommended due to the fact that there is generally a lot of
data being displayed and a small font size will help conserve screen space. All examples in
this manual use the default “f i xed” font that is supplied with all X servers.

The Font parameter can be any of the fonts your X server supports or are installed are in
the directory / usr/1i b/ X11/fonts.

Text Justify

Text Gravity

Display Objects

The Text Justify parameter determines the justification of the text in the display object.
Figure 10-19 shows what each type of text-justification looks like.

Thiz i=
- |This is o |center—jus| - This is
Coleft=justi| o tified © o {right-just | -
<o |fFied text | - - text <o |ified text| -

Figure 10-19. Left-, Center-, and Right-Justified Text

Left

Text is justified on the left side of the display object.

Center

Text is horizontally centered in the display object.

Right

Text is justified on the right side of the display object.

Default

Same as Left, unless a different default is specified in an X resource.

The Text Gravity parameter determines whether text in the object will float to the top or
sink to the bottom of the display object. Figure 10-20 shows what each type of text gravity
looks like.

S - [This is
: o co|Thiz is oo |top

: Thiz is . center C o |gravity
- |bottom D |aravity

- |gravity :

Figure 10-20. Top vs. Bottom Gravity

Bottom

Text sinks to the bottom of the display object.

9-39

NightTrace Manual

Center

Text is vertically centered in the display object.

Top

Text floats to the top of the display object.

Default

Same as Bottom, unless a different default is specified in an X resource.

Configuration Form Push Buttons

Figure 10-21 shows the push buttons that all display object configuration forms have.

| Apply Feset Festore Close

Figure 10-21. Configuration Form Push Buttons

After you have changed the configuration parameters of a display object, these buttons
allow you to perform the following operations:

Apply

Validate the changes you made to the configuration parameters, and apply the
changes to the display object.

Reset

Discard all changes made since the last Apply or Restore.

Restore

Discard all changes made since the window was opened.

Close

Discard any changes made since the last change was applied and close the window.

9-40

10
Using Expressions

EXPressionsottt e 10-1
OPETATOTS .« . o ottt e e e e e e e 10-1
Operands. oot 10-2
CONSLANTS . . .ttt 10-2
Functions 10-4

Function Parameters 10-7
Function Terminology. i 10-8
Trace Event Functions. 10-14
IA0) o 10-15
ATE() « e 10-16
arg dbl(). 10-17
NUML_ATES() - o v et ettt e e e e e e 10-18
PIA() -t 10-19
raw_Pid() ..o 10-20
Iwpid() - .o 10-21
thread id() oo 10-22
task 1d() . ..o o 10-23
1516 L 10-24
CPU) e - e e e 10-25
OffSet() ..o 10-26
ME() « ottt e 10-27
node id()ot 10-28
pid_table name() 10-29
tid table name() 10-30
Node NAME(). . ..ottt 10-31
Process NAME() - . v v vttt et e e e e e 10-32
task name() 10-33
thread name() 10-34
Multi-Event Functions 10-35
EVENE @AP() .+ - ottt 10-35
event matches()vii i 10-36
State Functions 10-37
Start Functions 10-37
start 1d() ... 10-38
Start arg() - .o 10-39
start_arg dbl(). 10-40
start nUM_args() . . - .o vt 10-41
start pid() . ..o 10-42
start raw_ pid() 10-43
start Iwpid() oo 10-44
start thread id() 10-45
start task id()....... ... 10-46
start tid(). .. oo 10-47
Start CPU() .« vt 10-48
start offset() 10-49
Start time()ot 10-50

start node id() 10-51

NightTrace Manual

start pid table name() 10-52
start_tid table name().............. 10-53
start node name(). 10-54
End Functions.ot i 10-55
end 1d() . .. o 10-56
end arg() 10-57
end arg dbl() 10-58
end num_args(). 10-59
end pid() 10-60
end raw pid().o 10-61
end Iwpid(). 10-62
end thread id()........... 10-63
end task id(). 10-64
end tid() 10-65
end CPU(). - v 10-66
end offset(). 10-67
end time()t 10-68
end node id()...... ... 10-69
end pid table name()............. 10-70
end tid table name() 10-71
end node name()t 10-72
Multi-State Functions.o i 10-73
State gap(). . -t 10-73
state dur() 10-74
state matches() 10-75
state Status() . ..ot 10-76
Offset Functions.t e 10-77
offset id(). ... oo 10-78
offset arg().o 10-79
offset arg dbl() 10-80
offset num_args(). ooi it 10-81
offset pid(). . ..o oot 10-82
offset raw pid().ot 10-83
offset Iwpid().o oo 10-84
offset thread id()........... 10-85
offset task id().. 10-86
offset tid()o oot 10-87
offset cpu(). . o oo v e 10-88
offset time().ot 10-89
offset node id()....... ... i 10-90
offset pid table name()........., 10-91
offset tid table name() 10-92
offset node name()o 10-93
offset process name()oouiiiii i 10-94
offset task name()........... 10-95
offset thread name(), 10-96
Summary Functions. 10-97
1001181 PO 10-97
NAX(). + ettt e e 10-98
AVE() « ot 10-99
SUIM().+ vttt et e e e e e e 10-
100
min_offset() 10-

101

max_offset().........

102
summary_matches(). . .
103
Format and Table Functions
104
get_string().
104
get item()...........
106
get format().........
108
format()
110
Macros ...
111
Qualified Events.............
113
Qualified States
116
NightTrace Qualified Expressions. . .
119

Edit NightTrace Qualified Expression
122

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

NightTrace Manual

Expressions

Operators

10
Using Expressions

NightTrace allows you to define expressions in the form of macros, qualified events, and
qualified states to aid in the analysis of trace data (see “Expressions” on page 10-1).

Macros are named expressions provided for flexibility and convenience (see “Macros” on
page 10-111).

Qualified events provide a means for referencing a set of one or more trace events which
may be restricted by conditions specified by the user (see “Qualified Events” on page
10-113).

Qualified states provide a means for defining regions of time based on specific starting
and ending events and restricted by conditions specified by the user (see “Qualified
States” on page 10-116).

NightTrace qualified expressions are created and configured using the Edit NightTrace
Qualified Expression dialog (see “Edit NightTrace Qualified Expression” on page
10-122) and are managed using the NightTrace Qualified Expressions dialog (sece
“NightTrace Qualified Expressions” on page 10-119).

NightTrace expressions are comprised of a combination of operators and operands and
can evaluate to numbers, strings, or boolean values.

See “Operators” on page 10-1 for a list of valid operators and “Operands” on page 10-2
for a discussion of valid operands.

Operators in NightTrace expressions include:
® arithmetic operators: (), *,/, % (modulo), +, -, unary -
* shift operators: <<, >>
® bitwise operators: ~ (not), & (and), * (exclusive or), | (or)
® logical operators: ! (not), & (and), | | (or)
¢ relational operators: <, <=, >, >=, == (equivalence), ! = (non-equivalence)
® conditional operator: expr ? true value : false value

® unary casts to data types (where the parentheses are required): e.g., (i nt)

10-1

NightTrace Manual

NightTrace operators follow the operator precedence rules of the C programming lan-
guage.

Operands

Operands include:

® constants (see “Constants” on page 10-2)
* macro calls (see “Macros” on page 10-111)
¢ function calls (see “Functions” on page 10-4)

® qualified events (in functions only) (see “Qualified Events” on page
10-113)

® qualified states (in functions only) (see “Qualified States” on page 10-116)

Operand types are largely based on the C programming language and include:
* integer
® double-precision floating point
¢ character
® string

®* boolean

Constants

Constants are one type of operand that may be used in NightTrace expressions.
Integer literals may be expressed using typical C language notation:

¢ decimal literals have no special prefix
® octal literals begin with a zero

* hexadecimal literals begin with a Ox
Floating point literals are always considered to be double-precision floating point literals.

String literals must be enclosed within double quotes; to include a double quote in a con-
stant string literal, precede the double quote with a backslash character. For example:

“possi bl e \"nel tdown\” alert”

The case-insensitive boolean constants TRUE and FALSE have the values 1 and O,
respectively.

10-2

Using Expressions

Table 10-1 shows units and suffixes for time constants.

Table 10-1. Time Units and Constant Suffixes

Time Unit Suffix
Seconds (This is the default) S
Milliseconds (10e-3 seconds) ns
Microseconds (10e-6 seconds) us
Nanoseconds (10e-9 seconds) ns

10-3

NightTrace Manual

Functions

Functions are pre-defined NightTrace entities that may be used in an expression. Night-
Trace defines five classes of functions:

® trace event functions (see “Trace Event Functions” on page 10-14)

* state functions (see “State Functions” on page 10-37)

* offset functions (see “Offset Functions” on page 10-77)

* summary functions (see “Summary Functions” on page 10-97)

¢ format and table functions (see “Format and Table Functions” on page

10-104)

The general syntax of all function calls except summary, format, and table functions is as
follows. (Optional parts of function calls are in brackets ([]).)

Sfunction_name] ([parameter]) |

The prefix of the function_name determines its class as follows:

of fset

start_

end_

state_

event _

Functions with this prefix provide information about the trace event
at the specified offset (or ordinal trace event number). See “Offset
Functions” on page 10-77.

Functions with this prefix provide information about the start event
of the most recent instance of a state. See “Start Functions” on page
10-37.

Functions with this prefix provide information about the end event of

the last completed instance of a state See “End Functions” on page
10-55.

Functions with this prefix provide information about instances of
states. See “Multi-State Functions” on page 10-73.

Functions with this prefix provide information about instances of
events. See “Multi-Event Functions” on page 10-35.

Some functions can be optionally suffixed by a number, N, which specifies the Nth argu-
ment logged with the trace event. N defaults to 1 and can have the values 1 through the
maximum argument logged. For example,

arg() Returns the first argument

argl() Returns the first argument

arg3() Returns the third argument

start_id() Returns a trace event ID

state_gap() Returns the time between instances of a state

10-4

Using Expressions

Table 10-2 contains a complete list of functions.

Table 10-2. NightTrace Functions

Syntax

Return Type

id [([QE])]
start_id[([OS])]

end_i d [([0S])]
of fset _i d (offset_expr)

The integer trace event ID.

ar g[N] [([QED)]

start _ar g[N] [([OS])]
end_ar g[N] [([SD]

of f set _ar g[N] (offset_expr)

The integer trace event argument.

ar g[N]_dbl [([QF])]
start_arg[N]_dbl [([OS])]

end_ar g[N]_dbl [([OS])]
of f set _ar g[N]_dbl (offset_expr)

The double-precision floating point trace
event argument.

num ar gs [([QE])]
start_num args [([OS])]

end_num ar gs [([OS])]
of f set _num ar gs (offset_expr)

The number of arguments associated with a
trace event.

pi d [([QED)]
start_pi d [([OS]]

end_pi d [([OS])]
of f set _pi d (offset_expr)

The integer global process identifier (PID)
associated with a trace event.

raw_pi d [([QE])]
start _raw pid[([OS])]

end_r aw_pi d [([OS])]
of f set _raw _pi d (offset_expr)

The integer process identifier (raw PID)
associated with a trace event.

I wpi d [([QE])]
start _| wpi d [([OS])]

end_| wpi d [([OS])]
of f set _| wpi d (offset_expr)

The integer lightweight process identifier
(LWPID) associated with a trace event.

thread_i d [([QE])]
start_thread_id[(OS]]

end_t hread_id [([OS])]
of fset _thread_i d (offset_expr)

The integer thread identifier (thread ID)
associated with a trace event.

task_i d [([QE])]
start _task_id[([OS])]

end_task_id[([OSD]
of f set _task_i d (offset_expr)

The integer Ada task identifier associated
with a trace event.

tid[([QE])]
start _tid[([OS)]

end_ti d [([OS])]
of fset _ti d (offset_expr)

The integer NightTrace thread identifier
(TID) associated with a trace event.

10-5

NightTrace Manual

Table 10-2. NightTrace Functions

Syntax

Return Type

cpu [([QED]
start_cpu [([0S])]
]

end_cpu [([OS])
of f set _cpu (offset_expr)

The integer logical CPU number associated
with a trace event. This function is only
valid when applied to events from Night-
Trace kernel trace event files.

ti me [([QE])]
start _tine [([OS])]
end_ti e [([OS])]

of f set _ti me (offset_expr)

The double-precision floating point time,
expressed in units of seconds, between a
trace event and the earliest trace event from
all trace event files currently in use.

node_i d [([QE])]
start_node_i d [([OS)]

end_node_i d [([OS])]
of f set _node_i d (offset_expr)

The internally-assigned integer node identi-

fier associated with a trace event.

pi d_t abl e_nare [([QE]]
start_pid_tabl e name [([0S])]

end_pi d_tabl e_nane [([OS])]
of f set _pi d_t abl e_nane (offset_expr)

The string describing the name of the pro-
cess identifier table (PID table) associated
with a trace event.

tid_tabl e nane [([OF])]
start_tid_tabl e _name [([0S])]
end_tid_tabl e_nane [([OS])]

of fset _ti d_tabl e_nane (offset_expr)

The string describing the name of the inter-
nally-assigned thread identifier table (77D
table) associated with a trace event.

node_nane [([QE])]
start _node_nane [([OS])]

end_node_nane [([OS])]
of f set _node_nare (offset_expr)

The string describing the name of the sys-
tem from which a trace event was logged.

process_namne [([QE])]
of f set _process_nane (offset_expr)

The string describing the name of the pro-
cess (PID) associated with a trace event.

t ask_nane [([QE])]

of f set _t ask_narme (offset_expr)

The string describing the name of the Ada
task associated with a trace event.

t hr ead_nane [([QE])]
of f set _t hr ead_nane (offset_expr)

The string describing the name of the C
thread associated with a trace event.

event _gap [([QF])]
state_gap [([0SD]

The double-precision floating point time,
expresed in units of seconds, between the
instances of either a trace event or a state.

state_dur [([OS])]

The double-precision floating point time,
expressed in units of seconds, of an instance
of a state.

event _mat ches [([QE])
st at e_mat ches [([0S)])
sunmary_nat ches [()

The integer number of instances of either a
trace event or a state.

]
]
]
]

st at e_st at us [([QS])

The boolean status of a state; true if the cur-
rent time line is within an instance of the
state, false otherwise. See “state status()”
on page 10-76 for important details.

10-6

Table 10-2. NightTrace Functions

Using Expressions

Syntax

Return Type

of f set [([QE])]
start _of fset [([OS])]

(
end_of fset [([OS])]

The integer ordinal number (offset) of a
trace event.

m n_of f set (expr)
nmax_of f set (expr)

The integer ordinal number (offset) of a
trace event associated with a minimum or
maximum occurrence of expr.

m n (expr)
mex (expr)
avg (expr)
sum(expr)

The minimum, maximum, average, or sum
of expr values before the current time. The
return type is that of expr.

get _stri ng (table_namel, int_expr])

The character string associated with item
int_expr in string table table name.

get _i t em(table_name, “str_const”)

The first integer item number associated
with string s#_const in string table
table_name.

get _f ormat (table_name], int_expr])

The character string associated with item
int_expr in format table table name.

format (“format string” [, arg] ...)

A character string to format and display.

Function Parameters

If the function has a parameter, the parentheses are required. Otherwise, they are optional.
For example,

arg2 No parentheses are required
arg2() No parentheses are required
ar g2(GAK) Parentheses are required

In many functions, the parameter is optional because it can be inferred from context. For
trace event functions, the current trace event is used if the parameter is omitted. For state
functions, the state being defined is used if the parameter is omitted. (Thus, state func-
tions without parameters can only be used inside state definitions). For example,

arg1()

argl(ny_event)

Operates on the current trace event
Operates on the qualified event y _event

end_argl() Operates on the last completed instance of

the state being defined and can only appear
within a state definition

10-7

NightTrace Manual

end_argl(nmy_state) Operates on the last completed instance of

the qualified state my_st at e

This manual uses the following conventions for function parameters:

OF

os

offset_expr

expr

table_name

int_expr

str_const

format_string

arg

A user-defined qualified event. If supplied, the function applies
to the specified qualified event. For more information, see
“Qualified Events” on page 10-113.

A user-defined qualified state. If supplied, the function applies
to the specified qualified state. For more information, see
“Qualified States” on page 10-116.

An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

Any valid NightTrace expression (see “Expressions” on page
10-1).

An unquoted character string that represents the name of a
string table or format table.

An integer expression that acts as an index into the specified
string table or format table. int_expr must either match an
identifying integer value in the table_name table, or the
table_name table must have a def aul t i t emline.

A string constant literal that acts as an index into the specified
string table.

A character string that contains literal characters and
conversion specifications. Conversion specifications modify
Zero or more args.

An optional expression to be formatted and displayed.

NOTE

NightTrace does not perform semantic error checking of func-
tions. For example, if you ask for information about the second
argument, but no second argument was logged, NightTrace does
not tell you. Similarly, NightTrace does not flag the use of unde-
fined macros, qualified events, and qualified states.

Function Terminology

10-8

In order to use the NightTrace functions effectively, it may be useful to understand some
of the concepts associated with them.

A trace event represents a user-defined or kernel-defined event, logged with optional data
arguments. Events are given discrete numbers to identify them; this number is called the
trace event ID. A state is defined to be the interval of time between two specific events.

Using Expressions

The descriptions of the functions further speak in terms of “instances” of states. These are
best defined as:

current instance The instance of a state which has begun but
has not yet completed. Thus, the current
time line would be positioned within the
region from the start event up to, but not
including, the end event.

last completed instance The most recent instance of a state that has
already completed. Thus, the current time
line would be positioned either on, or after,
the end event for a state.

most recent instance If the current time line is positioned within a
current instance of a state, then it is that
instance of the state. Otherwise, it is the last
completed instance of a state.

Figure 11-1 illustrates some of these concepts with a State Graph.

Event Gap

State
Duration

L i
1.6308= .60 T.6310s
1 1 1 | 1 1 1 1 | 1 1 1 &I | 1 1 1 If | 1 I| | 1 | 1 1 1 1 | 1 1
\ f \Current
Time
State Gap Line

Figure 11-1. Function Terminology lllustrated

10-9

NightTrace Manual

A more detailed example is illustrated in Figure 11-2.

& o [&
& & § & f.'? .cf‘:b
o & & & & &
/ I I
- A B C
|
1,6316s 1,6317s 16318 | 1.6319=

time line z
time line y
time line x

Figure 11-2. States and Events

The following discusses the terminology with respect to time line x, time line y, and time
line z.

Assuming the current time line was positioned at time line x in Figure 11-2, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is not positioned within any
instance of a state.

last completed instance Instance B

most recent instance Instance B. Since the current time line is not
positioned within any instance of a state, the
most recent instance is the last completed
instance.

10-10

Using Expressions

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line x in Figure 11-2.

state_status() false The current time line was not posi-
tioned within a current instance of a
state.

state_gap() ~0.000020 The duration of time in seconds

between event b and event c. The
function operated the most recent
instance of the state (instance B) and
the immediately preceding instance
(instance A).

state_dur() ~0.000090 The duration of time in seconds
between event ¢ and event d. The
function operated on the last com-
pleted instance of the state (instance
B).

state_mat ches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start_time() ~1.631750 The time associated with event ¢c. The
function operated on the most recent
instance of the state (instance B).

end_tinme() ~1.631840 The time associated with event d. The
function operated on the last com-

pleted instance of the state (instance
B).

Assuming the current time line was positioned at time line y in Figure 11-2, the various
“instances” would be defined as:

current instance Instance C
last completed instance Instance B
most recent instance Instance C

10-11

NightTrace Manual

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line y in Figure 11-2.

state_status() true The current time line was positioned
inside a current instance of the state
(instance C).

state_gap() ~0.000030 The duration of time in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

state_dur () ~0.000090 The duration of time in seconds
between event ¢ and event d. The
function operated on the last com-

pleted instance of the state (instance
B).

st at e_nmat ches() 2 Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A and B).

start _time() ~1.631870 The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

end_tinme() ~1.631840 The time associated with event d. The
function operated on the last com-

pleted instance of the state (instance
B).

Assuming the current time line was positioned at time line z in Figure 11-2, the various
“instances” would be defined as:

current instance No current instance is defined since the cur-
rent time line is positioned on the end event
of an instance of a state.

last completed instance Instance C

most recent instance Instance C

10-12

Using Expressions

The table below indicates the information returned by various NightTrace functions
assuming the current time line was positioned at time line z in Figure 11-2.

state_status()

state_gap()

state_dur()

state_mat ches()

start_time()

end_tine()

false

~0.000030

~0.000040

~1.631870

~1.631910

The current time line was not posi-
tioned inside a current instance of the
state. Even though the current time
line is positioned on an end event of
the state (event f), the corresponding
instance is said to have already com-
pleted.

The duration of time in seconds
between event d and event e. The
function operated on the most recent
instance of the state (instance C) and
the immediately preceding instance
(instance B).

The duration of time in seconds
between event e and event f. The func-
tion operated on the last completed
instance of the state (instance C).

Assuming no other instances of the
state preceded those shown in the fig-
ure. The function operated on all com-
pleted instances of the state (which
included instances A, B, and C).

The time associated with event e. The
function operated on the most recent
instance of the state (instance C).

The time associated with event f. The
function operated on the last com-
pleted instance of the state (instance
O).

10-13

NightTrace Manual

Trace Event Functions

The trace event functions operate on either the qualified event specified to that function or
the current trace event. They include the following:

* id()

e arg()

e arg dbl ()

* num args()

* pid()

e raw_pid()

o | wpid()

* cpu()

e thread_id()

e task_id()

o tid()

e of fset()

o time()

* node_id()

* pid_table name()
e tid_table name()
* node_name()

* process_nane()

* task _name()

e thread_name()

® Multi-event functions

10-14

id()

Using Expressions

DESCRIPTION

The i d() function returns the trace event ID of the last instance of a trace event.

SYNTAX
i d [([QED]
PARAMETERS
(0)2) A user-defined qualified event. If supplied, the function returns

the trace event ID of the last instance of the trace event which
satisfies the conditions of the specified qualified event. If
omitted, the function returns the trace event ID of the current
trace event. For more information, see “Qualified Events” on
page 10-113.

RETURN TYPE

integer

SEE ALSO
* “start id()” on page 10-38
* “end id()” on page 10-56
* “offset id()” on page 10-78

10-15

NightTrace Manual

arg()

DESCRIPTION

The ar g() function returns the value of a particular trace event argument.

SYNTAX
ar g[N] [([Q£])]
PARAMETERS
N Specifies the Nth argument logged with the frace event.
Defaults to 1.
QOF A user-defined qualified event. If supplied, the function returns

the specified argument for the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the specified argument for the
current trace event. For more information, see “Qualified
Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO
* “arg dbl()” on page 10-17
® “num_args()” on page 10-18
® “start arg()” on page 10-39
* “end_arg()” on page 10-57

* “offset arg()” on page 10-79

10-16

Using Expressions

arg_dbl()

DESCRIPTION

The ar g_dbl () function returns the value of a particular trace event argument.

SYNTAX
ar g[N]_dbl [([QED)]

PARAMETERS
N Specifies the Nth argument logged with the frace event.
Defaults to 1.
QOF A user-defined qualified event. If supplied, the function returns

the specified argument for the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the specified argument for the
current trace event. For more information, see “Qualified
Events” on page 10-113.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg()” on page 10-16
® “num_args()” on page 10-18
® “start arg dbl()” on page 10-40
¢ “end arg dbl()” on page 10-58

* “offset arg dbl()” on page 10-80

10-17

NightTrace Manual

num_args()

DESCRIPTION

The num_ar gs() function returns the number of arguments logged with a trace
event.

SYNTAX

num ar gs [([QE])]

PARAMETERS
OFE A user-defined qualified event. 1f supplied, the function returns
the number of arguments of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the number of arguments of the
current trace event. For more information, see “Qualified
Events” on page 10-113.
RETURN TYPE
integer
SEE ALSO

* “arg()” on page 10-16
® “start num_args()” on page 10-41
¢ “end num_args()” on page 10-59

* “offset num args()” on page 10-81

10-18

pid()

Using Expressions

DESCRIPTION

The pi d() function returns the global process identifier (PID) associated with a
trace event.

NOTE

On PowerMAX OS systems, a global process identifier does not
have the same meaning as the typical operating system definition
of pi d. A PID within NightTrace is a 32-bit integer value that
contains the operating system process identifier (raw PID) in the
upper 16 bits and the lightweight process identifier (LWPID) in
the lower 16 bits. Consult the | wp_gl obal _sel f (2) man
page for more information.

On Linux systems, the pi d() is the same as the operating system
process identifier.

SYNTAX

pi d [([QE]]

PARAMETERS

QOE A user-defined qualified event. If supplied, the function returns
the global process identifier of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the global process iden-
tifier of the current trace event. For more information, see
“Qualified Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO

“PID List” on page 9-35
“raw_pid()” on page 10-20
“lwpid()” on page 10-21
“start_pid()” on page 10-42
“end_pid()” on page 10-60

“offset_pid()” on page 10-82

10-19

NightTrace Manual

raw_pid()

DESCRIPTION

The raw_pi d() function returns the process identifier (raw PID) associated with a
trace event.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The r aw_pi d() function
returns the upper 16 bits.

On Linux systems, the r aw_pi d() is the same as the operating
system process identifier.

SYNTAX
raw_pi d [([QED)]
PARAMETERS
OFE A user-defined qualified event. If supplied, the function returns

the process identifier of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the process identifier of the cur-
rent trace event. For more information, see “Qualified Events”
on page 10-113.

RETURN TYPE

integer

SEE ALSO
* “PID List” on page 9-35
* “pid()” on page 10-19
* “Iwpid()” on page 10-21
® “start raw_pid()” on page 10-43
¢ “end raw_pid()” on page 10-61

* “offset raw_pid()” on page 10-83

10-20

Using Expressions

Iwpid()

DESCRIPTION

The | wpi d() function returns the lightweight process identifier (LWPID) associ-
ated with a frace event.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The | wpi d() function returns
the lower 16 bits. See the _| wp_sel f (2) man page for more
information.

On Linux systems, the | wpi d() is the same as the operating sys-
tem process identifier.

SYNTAX
I wpi d [([QED]
PARAMETERS
QOE A user-defined qualified event. If supplied, the function returns

the lightweight process identifier of the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the lightweight
process identifier of the current trace event. For more infor-
mation, see “Qualified Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO
* “PID List” on page 9-35
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “start Ilwpid()” on page 10-44
¢ “end Iwpid()” on page 10-62
* “offset Iwpid()” on page 10-84

10-21

NightTrace Manual

thread_id()

DESCRIPTION
Thethread_i d() function returns the thread identifier associated with a trace
event.
NOTE

See thet hr _sel f (3t hr ead) man page for more information.

SYNTAX

t hread_i d [([QE])]

PARAMETERS

OF A user-defined qualified event. If supplied, the function returns
the thread identifier of the last instance of the trace event which
satisfies the conditions for the specified qualified event. If
omitted, the function returns the thread identifier of the current

trace event. For more information, see “Qualified Events” on
page 10-113.

RETURN TYPE

integer

SEE ALSO
® “start thread id()” on page 10-45
¢ “end thread id()” on page 10-63
* “offset thread id()” on page 10-85

10-22

Using Expressions

task_id()

DESCRIPTION

The task_i d() function returns the Ada task identifier associated with a trace
event.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX

task_id [([QE])]

PARAMETERS

OE A user-defined qualified event. If supplied, the function returns
the Ada task identifier of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the Ada task identifier of the
current trace event. For more information, see “Qualified
Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO
* “start task id()” on page 10-46
¢ “end task id()” on page 10-64
* “offset task id()” on page 10-86

10-23

NightTrace Manual

tid()

DESCRIPTION

The tid() function returns the internally-assigned NightTrace thread identifier
(TID) associated with a trace event.

SYNTAX

tid[([QE]]

PARAMETERS

OFE A user-defined qualified event. If supplied, the function returns
the NightTrace thread identifier of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the NightTrace thread
identifier of the current trace event. For more information, see
“Qualified Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO
¢ “TID List” on page 9-36
® “start tid()” on page 10-47
¢ “end_tid()” on page 10-65

* “offset tid()” on page 10-87

10-24

Using Expressions

cpu()

DESCRIPTION

The cpu() function returns the logical CPU number associated with a trace event.
CPUs are logically numbered starting at 0 and monotonically increase thereafter.

NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

cpu [([QED]

PARAMETERS

OE A user-defined qualified event. If supplied, the function returns
the logical CPU number of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the logical CPU number of the
current trace event. For more information, see “Qualified
Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO
® “start cpu()” on page 10-48
¢ “end cpu()” on page 10-66

* “offset cpu()” on page 10-88

10-25

NightTrace Manual

offset()

DESCRIPTION

The of f set () function returns the ordinal number (offset) of a trace event.

SYNTAX

of f set [([QE])]

PARAMETERS

OF A user-defined qualified event. If supplied, the function returns
the ordinal number (offsef) of the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the ordinal number (off-
set) of the current trace event. For more information, see
“Qualified Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO

* “start offset()” on page 10-49
¢ “end offset()” on page 10-67
* “min_offset()” on page 10-101

* “max_offset()” on page 10-102

10-26

Using Expressions

time()

DESCRIPTION

The ti me() function returns the time, in seconds, associated with a trace event.
Times are relative to the earliest trace event from all trace data files currently in use.

SYNTAX

time [([QE])]

PARAMETERS

OE A user-defined qualified event. If supplied, the function returns
the time, in seconds, of the last instance of the trace event
which satisfies the conditions for the specified qualified event.
If omitted, the function returns the time, in seconds, of the cur-
rent trace event. For more information, see “Qualified Events”
on page 10-113.

RETURN TYPE

double-precision floating point

SEE ALSO

* “event_gap()” on page 10-35
® “start time()” on page 10-50
¢ “end time()” on page 10-68

* “state gap()” on page 10-73

* “state_dur()” on page 10-74

* “offset time()” on page 10-89

10-27

NightTrace Manual

node_id()

DESCRIPTION

The node_i d() function returns the internally-assigned node identifier associated
with a trace event.

NOTE

The node_i d() function is of limited usefulness since the node
identifier is an internally-assigned integer number assigned by
NightTrace. The node_name() function is more useful, as it
returns the name of the system from which a trace event was
logged. (See “node name()” on page 10-31 for more information
about this function.)

SYNTAX

node_i d [([QED)]

PARAMETERS
OFE A user-defined qualified event. If supplied, the function returns
the node identifier of the last instance of the trace event which
satisfies the conditions for the specified qualified event. If
omitted, the function returns the node identifier of the current
trace event. For more information, see “Qualified Events” on
page 10-113.
RETURN TYPE
integer
SEE ALSO

* “start node id()” on page 10-51
* “offset node id()” on page 10-90
¢ “end node id()” on page 10-69

10-28

Using Expressions
pid_table_name()

DESCRIPTION

The pi d_t abl e_nane() function returns the name of the internally-assigned
NightTrace process identifier table (PID table) associated with a trace event.

SYNTAX
pi d_t abl e_nane [([QE])]
PARAMETERS
OE A user-defined qualified event. If supplied, the function returns

the name of the process identifier table (PID table) of the last
instance of the trace event which satisfies the conditions for the
specified qualified event. If omitted, the function returns the
name of the process identifier table (PID table) of the current

trace event. For more information, see “Qualified Events” on
page 10-113.

RETURN TYPE

string

SEE ALSO

® “start pid table name()” on page 10-52
* “offset pid table name()” on page 10-91

¢ “end pid_table name()” on page 10-70

10-29

NightTrace Manual

tid_table_name()

DESCRIPTION

Thetid_tabl e_nane() function returns the name of the internally-assigned
NightTrace thread identifier table (71D table) associated with a trace event.

SYNTAX

tid_tabl e_nane [([QE])]

PARAMETERS

OF A user-defined qualified event. If supplied, the function returns
the name of the thread identifier table (71D table) of the last
instance of the trace event which satisfies the conditions for the
specified qualified event. If omitted, the function returns the
name of the thread identifier table (TID table) of the current
trace event. For more information, see “Qualified Events” on
page 10-113.

RETURN TYPE

string

SEE ALSO
* “start tid table name()” on page 10-53
* “offset tid table name()” on page 10-92

¢ “end tid table name()” on page 10-71

10-30

Using Expressions

node_name()

DESCRIPTION

The node_nane() function returns the name of the system from which a trace
event was logged.

SYNTAX

node_nane [([QE])]

PARAMETERS

OE A user-defined qualified event. If supplied, the function returns
the name of system from which the last instance of the trace
event which satisfies the conditions for the specified qualified
event was logged. If omitted, the function returns the name of
the system from which the current trace event was logged. For
more information, see “Qualified Events” on page 10-113.

RETURN TYPE

string

SEE ALSO

® “start node name()” on page 10-54
* “offset node name()” on page 10-93

¢ “end node name()” on page 10-72

10-31

NightTrace Manual

process_name()

DESCRIPTION

The pr ocess_name() function returns the name of the process (PID) associated
with a trace event.

See “Processes” on page 10-127 for a discussion of the usage of this function.

SYNTAX
process_nanmne [([QFE])]
PARAMETERS
QOF A user-defined qualified event. If supplied, the function returns

the name associated with the PID of the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the name asso-
ciated with the PID of the current trace event. For more infor-
mation, see “Qualified Events” on page 10-113.

RETURN TYPE

string

SEE ALSO

* “offset process_name()” on page 10-94

10-32

Using Expressions

task_name()

DESCRIPTION

The t ask_nane() function returns the name of the task associated with a trace
event.

NOTE
This function is only meaningful for trace events which were
logged from Ada tasking programs.
SYNTAX

t ask_nane [([QE])]

PARAMETERS
OE A user-defined qualified event. If supplied, the function returns
the name of the task associated with the last instance of the
trace event which satisfies the conditions for the specified
qualified event. If omitted, the function returns the name of the

task associated with the current trace event. For more infor-
mation, see “Qualified Events” on page 10-113.

RETURN TYPE

string

SEE ALSO

* “offset task name()” on page 10-95

10-33

NightTrace Manual

thread_name()

DESCRIPTION

The t hread_nane() function returns the thread name associated with a trace
event.

See “Threads” on page 10-128 for a discussion of the usage of this function.

SYNTAX
t hr ead_nane [([QE])]
PARAMETERS
QOF A user-defined qualified event. If supplied, the function returns

the thread name associated with the last instance of the trace
event which satisfies the conditions for the specified qualified
event. If omitted, the function returns the thread name associ-
ated with the current trace event. For more information, see
“Qualified Events” on page 10-113.

RETURN TYPE

string

SEE ALSO

* “offset thread name()” on page 10-96

10-34

Using Expressions

Multi-Event Functions
Multi-event functions return information about one or more instances of an event:

e event_gap()

e event_nat ches()

event_gap()

DESCRIPTION

The event _gap() function returns the time, in seconds, between the most recent
occurrence of a specific event and its immediately preceeding occurrence.

SYNTAX
event _gap [([QE])]
PARAMETERS
QOF A user-defined qualified event. If supplied, the function calclu-

ates the gap between the two most recent occurrences of events
which satisfy the conditions of the specified qualilfied event.
If omitted, the function calculates the gap between the current
trace event and the event immediately preceeding it. For more
information, see “Qualified Events” on page 10-113.

RETURN TYPE

double-precision floating point

SEE ALSO
* “time()” on page 10-27
® “state gap()” on page 10-73
* “state_dur()” on page 10-74

10-35

NightTrace Manual

event_matches()

DESCRIPTION

The event _nat ches() function returns the number of occurrences of a trace
event on or before the current time line.

SYNTAX

event _mat ches [([QE])]

PARAMETERS

OF A user-defined qualified event. If supplied, the function calcu-
lates the number of occurrences of events which satisfy the
conditions of the specified qualified event on or before the cur-
rent time line. If omitted, the function calculates the number of
occurrences of all events on or before the current time line.
For more information, see “Qualified Events” on page 10-113.

RETURN TYPE

integer

SEE ALSO

® “summary matches()” on page 10-103

10-36

State Functions

Start Functions

Using Expressions

In its simplest form, a state is a region of time bounded by two trace events. A state defi-
nition requires the specification of two trace events, a start event and an end event, respec-
tively. Additional conditions may be specified in a state definition to further constrain the
state. The state functions include the following:

¢ start functions (see “Start Functions” on page 10-37)
¢ end functions (see “End Functions” on page 10-55)

* multi-state functions (see “Multi-State Functions” on page 10-73)

NOTE

Currently, NightTrace does not supported nesting of states. Thus,
once the conditions which satisfy a start event are met, no other
instances of that state can begin until the end condition has been
met.

The start functions provide information about the start event of the most recent instance of
a state. The state to which the start function applies is either the qualified state specified to
the function, or the state being currently defined. Thus, if a qualfied state is not specified,
start functions are only meaningful when used in expressions associated within a state def-
inition. In addition, start functions should not be used in a recursive manner in a Start
Expression; a start function should not be specified in a Start Expression that
applies to the state definition containing that Start Expression. Conversely, an End
Expression may include start functions that apply to the state definition containing that
End Expression.

NOTE

Start functions provide information about the most recent instance
of a state, whereas end functions (see “End Functions” on page
10-55) provide information about the last completed instance of a
State.

Start functions include the following:
e start_id()
e start_arg()
e start_arg_dbl ()
e start_num args()
e start_pid()

e start_raw pid()

10-37

NightTrace Manual

e start_thread_id()

e start_task_id()

e start_tid()

e start | wpid()

e start_cpu()

e start_offset()

e start_tine()

e start_node_id()

e start_pid_table_nane()
e start_tid _table_name()

e start_node_name()

start_id()

DESCRIPTION

The start _i d() function returns the trace event ID of the start event of the most
recent instance of a state.

SYNTAX
start_id [([OS])]
PARAMETERS
oS A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
® “id()” on page 10-15
* “end_id()” on page 10-56

* “offset id()” on page 10-78

10-38

Using Expressions

start_arg()

DESCRIPTION

The st art _ar g() function returns the value of a particular trace event argument
associated with the start event of the most recent instance of a state.

SYNTAX

start_arg[N] [([OS])]

PARAMETERS
N Specifies the Nth argument logged with the start event.
Defaults to 1.
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “arg()” on page 10-16
* “start arg dbl()” on page 10-40
® “start num_args()” on page 10-41
* “end_arg()” on page 10-57

* “offset arg()” on page 10-79

10-39

NightTrace Manual

start_arg_dbl()

DESCRIPTION

The start _arg_dbl () function returns the value of a particular trace event
argument associated with the start event of the most recent instance of a state.

SYNTAX
start_arg[N]_dbl [([OSD]
PARAMETERS
N Specifies the Nth argument logged with the start event.
Defaults to 1.
oS A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg dbl()” on page 10-17
® “start arg()” on page 10-39
® “start num_args()” on page 10-41
¢ “end arg dbl()” on page 10-58
* “offset arg dbl()” on page 10-80

10-40

Using Expressions

start_num_args()

DESCRIPTION

The start _num ar gs() function returns the number of arguments associated
with the start event of the most recent instance of a state.

SYNTAX

start _num args [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
® “start arg()” on page 10-39
* “num_args()” on page 10-18
¢ “end num_args()” on page 10-59

* “offset num args()” on page 10-81

10-41

NightTrace Manual

start_pid()

10-42

DESCRIPTION

The start _pi d() function returns the PID associated with the start event of the
most recent instance of a state.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. Consult the
_lwp_gl obal _sel f (2) man page for more information.

On Linux systems, the PID is the same as the operating system
process identifier.

SYNTAX

start _pid [([OS]]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 10-19
“raw_pid()” on page 10-20
“lwpid()” on page 10-21
“end_pid()” on page 10-60
“offset_pid()” on page 10-82

Using Expressions

start_raw_pid()

DESCRIPTION

The start _raw _pi d() function returns the process identifier (raw PID) associ-
ated with the start event of the most recent instance of a state.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The start _raw_pi d()

function returns the upper 16 bits.

On Linux systems, the st art _r aw_pi d() returns the operating
system process identifier.

SYNTAX

start_raw pi d [([OS]D]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “end pid()” on page 10-60
* “offset pid()” on page 10-82

10-43

NightTrace Manual

start_lwpid()

10-44

DESCRIPTION

The start _| wpi d() function returns the lightweight process identifier (LWPID)
associated with the start event of the most recent instance of a state.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The start | wpi d() func-
tion returns the lower 16 bits. See the | wp_sel f (2) man
page for more information.

On Linux systems, st art _| wpi d() returns the operating sys-
tem process identifier.

SYNTAX
start_| wpi d [([OS])]
PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “end pid()” on page 10-60
* “offset pid()” on page 10-82

start_thread_id()

DESCRIPTION

Using Expressions

The start _thread_ i d() function returns the thread identifier associated with
the start event of the most recent instance of a state.

NOTE

See thet hr _sel f (3t hr ead) man page for more information.

SYNTAX

start_thread_i d[([OS]D]

PARAMETERS

os

RETURN TYPE

integer

SEE ALSO

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

* “thread id()” on page 10-22

¢ “end thread id()” on page 10-63

* “offset thread id()” on page 10-85

10-45

NightTrace Manual

start_task_id()

DESCRIPTION
The start _task_id() function returns the Ada task identifier associated with
the start event of the most recent instance of a state.
NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.
SYNTAX

start_task_id[(OS]D]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “task id()” on page 10-23
¢ “end task id()” on page 10-64

* “offset task id()” on page 10-86

10-46

Using Expressions

start_tid()

DESCRIPTION

The start _tid() function returns the internally-assigned NightTrace thread
identifier (71D) associated with the start event of the most recent instance of a state.

SYNTAX

start_tid[([OS]]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “tid()” on page 10-24
* “end tid()” on page 10-65
* “offset tid()” on page 10-87

10-47

NightTrace Manual

start_cpu()

DESCRIPTION
The st art _cpu() function returns the logical CPU number associated with the
start event of the most recent instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.

NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.
SYNTAX

start_cpu [([9SD]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
® “cpu()” on page 10-25
¢ “end cpu()” on page 10-66

* “offset cpu()” on page 10-88

10-48

Using Expressions

start_offset()

DESCRIPTION

The start_of f set () function returns the ordinal number (offset) of the start
event of the most recent instance of a state.

SYNTAX

start_of fset [([OS])]

PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO

* “offset()” on page 10-26

* “end offset()” on page 10-67

10-49

NightTrace Manual

start_time()

10-50

DESCRIPTION

Thestart _tinme() function returns the time, in seconds, associated with the start
event of the most recent instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

start _time [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

double-precision floating point

SEE ALSO
* “time()” on page 10-27
¢ “end time()” on page 10-68
* “state_gap()” on page 10-73
* “state dur()” on page 10-74

* “offset time()” on page 10-89

Using Expressions

start_node_id()

DESCRIPTION

The start _node_i d() function returns the internally-assigned node identifier
associated with the start event of the most recent instance of a state.

SYNTAX

start_node_i d [([OS]]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “node_id()” on page 10-28
* “offset node id()” on page 10-90
¢ “end node id()” on page 10-69

10-51

NightTrace Manual

start_pid_table_name()

10-52

DESCRIPTION
The start _pid_tabl e name() function returns the name of the inter-

nally-assigned NightTrace process identifier table (PID table) associated with the
start event of the most recent instance of a state.

SYNTAX

start_pi d_tabl e_name [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

string

SEE ALSO
* “pid_table name()” on page 10-29
* “offset pid table name()” on page 10-91

* “end pid _table name()” on page 10-70

Using Expressions

start_tid_table_name()

DESCRIPTION
The start _tid_tabl e name() function returns the name of the inter-

nally-assigned NightTrace thread identifier table (77D table) associated with the
start event of the most recent instance of a state.

SYNTAX

start_tid_tabl e_name [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

string

SEE ALSO
¢ “tid table name()” on page 10-30
* “offset tid table name()” on page 10-92

¢ “end tid table name()” on page 10-71

10-53

NightTrace Manual

start_node_name()

DESCRIPTION

The st art _node_name() function returns the name of the system from which
the start event of the most recent instance of a state was logged.

SYNTAX

start_node_nane [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

string

SEE ALSO

® “node name()” on page 10-31
* “offset node name()” on page 10-93

¢ “end node name()” on page 10-72

10-54

End Functions

Using Expressions

The end functions provide information about the end event of the last completed instance
of a state. The state to which the end function applies is either the qualified state specified
to the function, or the state being currently defined. Thus, if a qualfied state is not speci-
fied, end functions are only meaningful when used in expressions associated within a state
definition.

NOTE

End functions provide information about the last completed
instance of a state, whereas start functions (see “Start Functions”
on page 10-37) provide information about the most recent
instance of a state.

End functions include:
* end_id()
* end_arg()
* end_arg _dbl ()
* end_num args()
e end_pid()
e end_raw pid()
e end_| wpi d()
e end _thread_id()
e end_task_id()
e end_tid()
e end_cpu()
* end_of fset()
e end_tine()
* end_node_id()
* end_pid_tabl e _name()
e end_tid table nane()

* end_node_nane()

10-55

NightTrace Manual

end_id()

DESCRIPTION

The end_i d() function returns the trace event ID associated with the end event of
the last completed instance of a state.

SYNTAX

end_i d [([0S]]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
® “id()” on page 10-15
® “start id()” on page 10-38
* “offset id()” on page 10-78

10-56

Using Expressions

end_arg()

DESCRIPTION

The end_ar g() function returns the value of a particular trace event argument
associated with the end event of the last completed instance of a state.

SYNTAX

end_ar g[N] [([OS])]

PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaults to 1.
oS A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “arg()” on page 10-16
® “start arg()” on page 10-39
¢ “end arg dbl()” on page 10-58
¢ “end num_args()” on page 10-59

* “offset arg()” on page 10-79

10-57

NightTrace Manual

end_arg_dbl()

DESCRIPTION

The end_ar g_dbl () function returns the value of a particular trace event argu-
ment associated with the end event of the last completed instance of a state.

SYNTAX
end_ar g[N]_dbl [([OSD)]
PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaults to 1.
oS A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg dbl()” on page 10-17
* “start arg dbl()” on page 10-40
* “end arg()” on page 10-57
* “end num_args()” on page 10-59

* “offset arg dbl()” on page 10-80

10-58

Using Expressions

end_num_args()

DESCRIPTION

The end_num ar gs() function returns the number of arguments associated with
the end event of the last completed instance of a state.

SYNTAX

end_num ar gs [([OSD]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
® “num_args()” on page 10-18
® “start num_args()” on page 10-41
* “end_arg()” on page 10-57

* “offset num args()” on page 10-81

10-59

NightTrace Manual

end_pid()

DESCRIPTION

The end_pi d() function returns the PID associated with the end event of the last
completed instance of a state.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. Consult the
_lwp_gl obal _sel f (2) man page for more information.

On Linux systems, the PID is the same as the operating system
process identifier.

SYNTAX

end_pi d [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “start pid()” on page 10-42
* “offset pid()” on page 10-82

10-60

Using Expressions

end_raw_pid()

DESCRIPTION

The end_r aw_pi d() function returns the process identifier (raw PID) associated
with the end event of the last completed instance of a state.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The end_r aw_pi d() func-
tion returns the upper 16 bits.

On Linux systems, the end_raw_pi d() is the same as the oper-
ating system process identifier.

SYNTAX

end_raw_pi d [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “start pid()” on page 10-42
* “offset pid()” on page 10-82

10-61

NightTrace Manual

end_lwpid()

10-62

DESCRIPTION

The end_| wpi d() function returns the lightweight process identifier (LWPID)
associated with the end event of the last completed instance of a state.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The end_| wpi d() function
returns the lower 16 bits. See the | wp_sel f (2) man page for
more information.

On Linux systems, the end_| wpi d() returns the operating sys-
tem process identifier.

SYNTAX
end_I wpi d [([OS])]
PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO

“pid()” on page 10-19
“raw_pid()” on page 10-20
“lwpid()” on page 10-21
“start_pid()” on page 10-42
“offset_pid()” on page 10-82

Using Expressions

end_thread_id()

DESCRIPTION

The end_t hread_i d() function returns the thread identifier associated with the
end event of the last completed instance of a state.

NOTE

See thet hr _sel f (3t hr ead) man page for more information.

SYNTAX
end_t hread_i d [([OS])]
PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “thread id()” on page 10-22
® “start thread id()” on page 10-45
* “offset thread id()” on page 10-85

10-63

NightTrace Manual

end_task_id()

DESCRIPTION
The end_t ask_i d() function returns the Ada task identifier associated with the
end event of the last completed instance of a state.
NOTE
This function is only meaningful for trace events logged by Ada
tasking programs.
SYNTAX

end_t ask_i d [([OSD]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “task id()” on page 10-23
* “start task id()” on page 10-46

* “offset task id()” on page 10-86

10-64

Using Expressions

end_tid()

DESCRIPTION

The end_t i d() function returns the internally-assigned NightTrace thread identi-
fier (TID) associated with the end event of the last completed instance of a state.

SYNTAX

end_tid [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
* “tid()” on page 10-24
® “start tid()” on page 10-47
* “offset tid()” on page 10-87

10-65

NightTrace Manual

end_cpu()

DESCRIPTION
The end_cpu() function returns the logical CPU number associated with the end
event of the last completed instance of a state. CPUs are logically numbered start-
ing at 0 and monotonically increase thereafter.
NOTE
This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX

end_cpu [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO
® “cpu()” on page 10-25
® “start cpu()” on page 10-48

* “offset cpu()” on page 10-88

10-66

Using Expressions

end_offset()

DESCRIPTION

The end_of f set () function returns the ordinal number (offset) of the end event
of the last completed instance of a state.

SYNTAX

end_of f set [([OS])]

PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO

* “offset()” on page 10-26

* “start offset()” on page 10-49

10-67

NightTrace Manual

end_time()

10-68

DESCRIPTION

The end_t i ne() function returns the time, in seconds, associated with the end
event of the last completed instance of a state. Times are relative to the earliest trace
event from all trace data files currently in use.

SYNTAX

end_time [([OS])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

double-precision floating point

SEE ALSO
* “time()” on page 10-27
® “start time()” on page 10-50
* “state_gap()” on page 10-73
* “state dur()” on page 10-74

* “offset time()” on page 10-89

end_node_id()

DESCRIPTION

Using Expressions

The end_node_i d() function returns the internally-assigned node identifier asso-
ciated with the end event of the last completed instance of a state.

SYNTAX

end_node_i d [([OS]]

PARAMETERS

0S

RETURN TYPE

integer

SEE ALSO

A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

* “node_id()” on page 10-28

* “start node id()” on page 10-51

* “offset node id()” on page 10-90

10-69

NightTrace Manual

end_pid_table_name()

10-70

DESCRIPTION
The end_pi d_t abl e_name() function returns the name of the inter-

nally-assigned NightTrace process identifier table (PID table) associated with the
end event of the last completed instance of a state.

SYNTAX

end_pi d_t abl e_narre [([0S])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

string

SEE ALSO
* “pid_table name()” on page 10-29
® “start pid table name()” on page 10-52

* “offset pid table name()” on page 10-91

Using Expressions

end_tid_table_name()

DESCRIPTION
The end_ti d_tabl e _name() function returns the name of the inter-

nally-assigned NightTrace thread identifier table (71D table) associated with the end
event of the last completed instance of a state.

SYNTAX

end_tid_tabl e_nare [([0S])]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

string

SEE ALSO
¢ “tid table name()” on page 10-30
® “start tid table name()” on page 10-53

* “offset tid table name()” on page 10-92

10-71

NightTrace Manual

end_node_name()

DESCRIPTION

The end_node_nane() function returns the name of the system from which the
end event of the last completed instance of a state was logged.

SYNTAX

end_node_nane [([OS]]

PARAMETERS

os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

string

SEE ALSO

® “node name()” on page 10-31
® “start node name()” on page 10-54

* “offset node name()” on page 10-93

10-72

Multi-State Functions

state_gap()

Using Expressions

Multi-state functions return information about one or more instances of a state:
e state_gap()
e state dur()
e state_matches()

* state_status()

For restrictions on usage, see “State Graph” on page 9-23.

DESCRIPTION

The st at e_gap() function returns the time in seconds between the start event of
the most recent instance of the state and the end event of the instance immediately
preceeding it or zero if there was no previous instance.

SYNTAX
state_gap [([0SD]
PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

double-precision floating point

SEE ALSO
* “start time()” on page 10-50
* “end time()” on page 10-68
* “event_gap()” on page 10-35

* “state_dur()” on page 10-74

10-73

NightTrace Manual

state_dur()

DESCRIPTION

The st at e_dur () function returns the time in seconds between the start event and the
end event of the last completed instance of a state. Thus, if the current time line occurs
within an instance of the state but before it has ended, st at e_dur () returns the duration
of the previous instance or zero if there was no previous instance.

SYNTAX
state_dur [([OS])]
PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that
state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

double-precision floating point

SEE ALSO

* “state gap()” on page 10-73

10-74

Using Expressions

state_matches()

DESCRIPTION

The st at e_mat ches() function returns the number of completed instances of a
state on or before the current time line.

SYNTAX

stat e_mat ches [([OS])]

PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state
to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

integer

SEE ALSO

* “Start Functions” on page 10-37

* “summary_matches()” on page 10-103

10-75

NightTrace Manual

state_status()

DESCRIPTION

The st at e_st at us() function indicates whether the current time line resides
within a current instance of a state. Thus, if the current time line is positioned in the
region from the start event up to, but not including, the end event of an instance of
the state, the return value is TRUE. Otherwise, it is FALSE.

SYNTAX
state_status [([OS])]
PARAMETERS
os A user-defined qualified state. If supplied, it specifies the state

to which the function applies. If omitted, the function may
only be used within a state definition and then applies to that

state. For more information, see “Qualified States” on page
10-116.

RETURN TYPE

boolean

10-76

Offset Functions

Using Expressions

All offset functions take an expression that evaluates to an ordinal trace event (offset) as a
parameter. (Offsets begin at zero.) These functions include the following:

e offset _id()

e of fset_arg()

e of fset_arg_dbl ()

e offset_num args()

e of fset_pid()

e of fset_raw pid()

e of fset |wpid()

e of fset _thread_id()

e of fset _task_ id()

e offset _tid()

e of fset_cpu ()

e of fset tinme()

e offset _node_id()

e of fset_pid_tabl e_name()
e offset _tid_table nane()
e of fset _node_nane()

e of fset _process_namne()

e of fset _task_nane()

e offset _thread _name()

Usually, these functions take one of the following functions as a parameter:

e of fset()

e start_offset()
* end_of fset()

* mn_of fset()

* max_of fset()

For information about these functions, see “offset()” on page 10-26, “start _offset()” on
page 10-49, “end_offset()” on page 10-67, “min_offset()” on page 10-101, and

“max_offset()” on page 10-102.

10-77

NightTrace Manual

offset_id()

DESCRIPTION

The of fset _i d() function returns the trace event ID of the ordinal trace event

(offser).

SYNTAX

of f set _i d(offset expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
® “id()” on page 10-15
® “start id()” on page 10-38
¢ “end_id()” on page 10-56

10-78

Using Expressions

offset_arg()

DESCRIPTION

The of f set _ar g() function returns the value of a particular trace event argument
for the ordinal trace event (offset).

SYNTAX

of f set _ar g[N] (offset_expr)

PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaults to 1.
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “arg()” on page 10-16
® “start arg()” on page 10-39
* “end arg()” on page 10-57
* “offset arg dbl()” on page 10-80

* “offset num args()” on page 10-81

10-79

NightTrace Manual

offset_arg_dbl()

DESCRIPTION

The of f set _arg_dbl () function returns the value of a particular trace event
argument for the ordinal trace event (offset).

SYNTAX
of f set _ar g[N]_dbl (offset_expr)
PARAMETERS
N Specifies the Nth argument logged with the trace event.
Defaults to 1.
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO
* “arg dbl()” on page 10-17
* “start arg dbl()” on page 10-40
¢ “end arg dbl()” on page 10-58
* “offset arg()” on page 10-79

* “offset num args()” on page 10-81

10-80

offset_num_args()

Using Expressions

DESCRIPTION

The of f set _num ar gs() function returns the number of arguments logged with
the ordinal trace event (offset).

SYNTAX

of f set _num ar gs (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
® “num_args()” on page 10-18
® “start num_args()” on page 10-41
¢ “end num_args()” on page 10-59
* “offset arg()” on page 10-79
* “offset arg dbl()” on page 10-80

10-81

NightTrace Manual

offset_pid()

DESCRIPTION

The of f set _pi d() function returns the PID from which the ordinal trace event
(offset) was logged.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. See the
_lwp_gl obal _sel f (2) man page for more information.

On Linux systems, the of f set _pi d() returns the operating
system process identifier.

SYNTAX
of f set _pi d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “start pid()” on page 10-42
¢ “end pid()” on page 10-60

10-82

Using Expressions

offset_raw_pid()

DESCRIPTION

The of f set _raw pi d() function returns the process identifier (raw PID) from
which the ordinal trace event (offset) was logged.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The of f set _raw _pi d()
function returns the upper 16 bits. See the get pi d(2) man
page for more information.

On Linux systems, the of f set _raw pi d() returns the operat-

ing system process identifier.

SYNTAX

of f set _raw_pi d (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “start pid()” on page 10-42
¢ “end pid()” on page 10-60

10-83

NightTrace Manual

offset_lwpid()

DESCRIPTION

The of f set _| wpi d() function returns the lightweight process identifier
(LWPID) from which the ordinal trace event (offset) was logged.

NOTE

On PowerMAX OS systems, a PID within NightTrace is a 32-bit
integer value that contains the operating system process identifier
(raw PID) in the upper 16 bits and the lightweight process identi-
fier (LWPID) in the lower 16 bits. The of f set | wpi d() func-
tion returns the lower 16 bits. See the | wp_sel f (2) man
page for more information.

On Linux systems, of f set _| wpi d() returns the operating sys-
tem process identifier.

SYNTAX
of f set _| wpi d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “pid()” on page 10-19
* “raw_pid()” on page 10-20
* “Iwpid()” on page 10-21
* “start lwpid()” on page 10-44

¢ “end Iwpid()” on page 10-62

10-84

Using Expressions

offset_thread_id()

DESCRIPTION

The of fset _thread_i d() function returns the thread identifier from which the
ordinal trace event (offsef) was logged.

NOTE

See thet hr _sel f (3t hr ead) man page for more information.

SYNTAX

of f set _t hread_i d (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “thread id()” on page 10-22
® “start thread id()” on page 10-45
¢ “end thread id()” on page 10-63

10-85

NightTrace Manual

offset_task_id()

DESCRIPTION

The of f set _task_i d() function returns the Ada task identifier from which the
ordinal trace event (offsef) was logged.

NOTE

This function is only meaningful for trace events logged by Ada
tasking programs.

SYNTAX
of f set _task_i d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “task id()” on page 10-23
* “start task id()” on page 10-46
¢ “end task id()” on page 10-64

10-86

Using Expressions

offset_tid()

DESCRIPTION

The of f set _ti d() function returns the internally-assigned NightTrace thread
identifier (7ID) from which the ordinal trace event (offsef) was logged.

SYNTAX
of f set _ti d (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “tid()” on page 10-24
® “start tid()” on page 10-47
¢ “end_tid()” on page 10-65

10-87

NightTrace Manual

offset_cpu()

DESCRIPTION
The of f set _cpu() function returns the logical CPU number on which the ordinal
trace event (offset) occurred. CPUs are logically numbered starting at 0 and mono-
tonically increase thereafter.

NOTE

This function is only valid when applied to events from Night-
Trace kernel trace event files.

SYNTAX
of f set _cpu (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
® “cpu()” on page 10-25
® “start cpu()” on page 10-48

¢ “end_cpu()” on page 10-66

10-88

Using Expressions

offset_time()

DESCRIPTION

The of f set _ti me() function returns the time in seconds between the beginning
of the trace run and the ordinal trace event (offser).

SYNTAX
of f set _ti me (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

double-precision floating point

SEE ALSO
* “time()” on page 10-27
® “start time()” on page 10-50

¢ “end time()” on page 10-68

10-89

NightTrace Manual

offset_node_id()

10-90

DESCRIPTION

The of f set _node_i d() function returns the internally-assigned node identifier
from which the ordinal trace event (offsef) was logged.

SYNTAX

of f set _node_i d (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

integer

SEE ALSO
* “node_id()” on page 10-28
® “start node id()” on page 10-51

¢ “end node id()” on page 10-69

Using Expressions

offset_pid_table_name()

DESCRIPTION

The of fset _pi d_tabl e_name() function returns the name of the inter-
nally-assigned NightTrace process identifier table (PID table) for the ordinal trace
event (offset).

SYNTAX

of f set _pi d_t abl e_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO
* “pid_table name()” on page 10-29
® “start pid table name()” on page 10-52

¢ “end pid_table name()” on page 10-70

10-91

NightTrace Manual

offset_tid_table_name()

DESCRIPTION
The of fset _tid table name() function returns the name of the inter-

nally-assigned NightTrace thread identifier table (71D table) for the ordinal trace
event (offset).

SYNTAX

of f set _ti d_t abl e_nane (offset expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO
* “tid table name()” on page 10-30
® “start tid table name()” on page 10-53

¢ “end tid table name()” on page 10-71

10-92

Using Expressions

offset_node_name()

DESCRIPTION

The of f set _node_name() function returns the name of the system from which
the ordinal trace event (offsef) was logged.

SYNTAX
of f set _node_nane (offset_expr)
PARAMETERS
offset_expr An expression that evaluates to the offset (or ordinal trace

event number) of a trace event.

RETURN TYPE

string

SEE ALSO
® “node name()” on page 10-31
® “start node name()” on page 10-54

¢ “end node name()” on page 10-72

10-93

NightTrace Manual

offset_process_name()

DESCRIPTION

The of f set _process_nane() function returns the name of the process (PID)
from which the ordinal trace event (offsef) was logged.

SYNTAX

of f set _process_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

® “process_name()” on page 10-32

10-94

Using Expressions

offset_task_name()

DESCRIPTION

The of f set _task_nane() function returns the name of the task from which the
ordinal trace event (offsef) was logged.

NOTE

This function is only meaningful for trace events which were
logged from Ada tasking programs.

SYNTAX

of f set _t ask_namne (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

* “task name()” on page 10-33

10-95

NightTrace Manual

offset_thread_name()

DESCRIPTION

The of f set _t hread_nane() function returns the thread name from which the
ordinal trace event (offsef) was logged.

SYNTAX

of f set _t hr ead_nane (offset_expr)

PARAMETERS

offset_expr An expression that evaluates to the offset (or ordinal trace
event number) of a trace event.

RETURN TYPE

string

SEE ALSO

¢ “thread name()” on page 10-34

10-96

Using Expressions

Summary Functions

You usually use summary functions on the Summarize Form. Except for
sunmmar y_mat ches(), all of these functions take another expression as a parameter.
They include the following:

* mn()
e max()
* avg()
* sum()
* min_offset()
* max_of fset()

e sumary_mat ches()
min()

DESCRIPTION

The m n() function returns the minimum value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

m n (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

® “Summary Functions” on page 10-97

* “Summarizing Statistical Information” on page 11-12

10-97

NightTrace Manual

max()

10-98

DESCRIPTION

The max() function returns the maximum value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX

max (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

® “Summary Functions” on page 10-97

* “Summarizing Statistical Information” on page 11-12

avg()

Using Expressions

DESCRIPTION

The avg() function returns the average value of all occurrences of expr within a
time range. When used in a Summarize Form, the time range is defined by that
form. When used elsewhere, the time range is defined as the region starting with the
first trace event and ending with the current trace event.

SYNTAX
avg (expr)
PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

® “Summary Functions” on page 10-97

* “Summarizing Statistical Information” on page 11-12

10-99

NightTrace Manual

sum()

10-100

DESCRIPTION

The sum() function returns the sum value of all occurrences of expr within a time
range. When used in a Summarize Form, the time range is defined by that form.
When used elsewhere, the time range is defined as the region starting with the first
trace event and ending with the current trace event.

SYNTAX

sum(expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

data type of expr

SEE ALSO

® “Summary Functions” on page 10-97

* “Summarizing Statistical Information” on page 11-12

min_offset()

Using Expressions

DESCRIPTION
The m n_of f set () function returns the ordinal trace event (offset) where the
minimum value of the parameter occurred for matches in the time range. Thus, if

the same minimum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

m n_of f set (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the minimum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

offset _id(mn_offset(argl()))

SEE ALSO

® “Summary Functions” on page 10-97

* “Summarizing Statistical Information” on page 11-12

10-101

NightTrace Manual

max_offset()

10-102

DESCRIPTION

The max_of f set () function returns the ordinal trace event (offset) where the
maximum value of the parameter occurred for matches in the time range. Thus, if
the same maximum was seen more than once, the offset corresponds to the first one
seen.

SYNTAX

max_of f set (expr)

PARAMETERS

expr A numeric expression.

RETURN TYPE

integer

NOTE

There is no function that returns the trace event ID where the maximum value of the
first argument occurred for all matches in the time range. You could obtain this
value by nesting the functions as follows:

of fset _id(max_offset(argl()))

SEE ALSO

¢ “Summary Functions” on page 10-97

* “Summarizing Statistical Information” on page 11-12

Using Expressions

summary_matches()

DESCRIPTION

The sunmary_nat ches() function returns the number of times the summary cri-

teria was matched in the time range.

NOTE
This function should only used in the Summarize NightTrace
Events dialog. Its behavior elsewhere is undefined. (See “Sum-

marizing Statistical Information” on page 11-12 for more infor-
mation.)

SYNTAX

sunmary_mat ches ()

RETURN TYPE

integer

SEE ALSO

* “event matches()” on page 10-36

* ‘“state_matches()” on page 10-75

10-103

NightTrace Manual

Format and Table Functions

get_string()

10-104

The format function allows you to display a string. The table functions allow you to
extract information from user-defined and pre-defined string and format tables. These
functions include the following:

e get _string()
e get_item()

e get format()

e format ()

For more information about tables, see “Tables” on page 6-13 and “Kernel String Tables”
on page 12-16.

The get _string() routine dynamically looks up a string in a string table.

SYNTAX

get _stri ng (table_name|, int_expr])

PARAMETERS

table name table_ name is an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make your get _stri ng() calls refer to pre-
viously-defined string tables. The following string table names
are pre-defined in NightTrace: event, pid, tid, bool -
ean, name_pid, name_tid, node_name,
pi d_nodename, tid_nodename, vector, syscall,
devi ce, event_summary, event_arg_summary,
event _arg dbl _summary, state_ summary. For more
information on these tables, see “Pre-Defined String Tables”
on page 6-16 and “Kernel String Tables” on page 12-16.

int_expr int_expr is an integer expression that acts as an index into the
specified string table. int_expr must either match an identifying
integer value in the table _name string table, or the table name
string table must have a default item line; otherwise
get _string() returns a string of int_expr in decimal. Often
int_expr is based on a NightTrace function.

If your table consists of only a default item line, omit this
parameter.

Using Expressions

DESCRIPTION

The following NightTrace constructs can call get _stri ng() to dynamically
locate a static string in a string table:

* A Then-Expression of a display object configuration

® A value field of a format table
For each get _stri ng() call, NightTrace follows these steps:

1. Evaluates int_expr
2. Uses this value as an index into table_name
3. Retrieves the associated string from table_name

4. Returns a string
The following lines provide a brief example of a call to get _string().

string_table (conditions) = {
item= 1, “normal”;
item= 50, “YELLOW ALERT";
item= 99, “RED ALERT";
default item= “NA";

H

In this example the numeric argument associated with a trace event represents the
current conditions (condi t i ons). If the argument has the value 99, NightTrace:

1. Uses the value 99 as in index into condi t i ons
2. Retrieves the associated string (“RED ALERT”) from condi ti ons

3. Returns “RED ALERT”

RETURN TYPES

On successful completion, get _stri ng() returns a string from a string table.
NightTrace returns a string of the item number, int_expr, in decimal if table_name is
not found, or if int_expr is not found and there is no default item line. The first time
table_name is not found, NightTrace issues an error message. Because
get _string() returns a string, you can use it anywhere a string expression is
appropriate.

For more information on string tables, see “String Tables” on page 6-14, “Then Expres-
sion” on page 9-34, and the / usr/ | i b/ Ni ght Tr ace/ t abl es file.

10-105

NightTrace Manual

get_item()

The get _i t en() routine looks up an item number in a string table.

SYNTAX

i nt get_item(table name, “str_const”)

PARAMETERS

table_name

str_const

DESCRIPTION

table_name is an unquoted character string that represents the
name of a string table. To avoid possible forward reference
problems, try to make your get _i t en{() calls refer to previ-
ously-defined string tables. The following string table names
are pre-defined in NightTrace: event, pid, tid, bool -
ean, name_pid, name_tid, node_name,

pi d_nodename, ti d_nodename, vector, syscall,

devi ce, event_sumrary, event_arg_sumrary,

event _arg_dbl _sunmmary, state_sumrary. For more
information on these tables, see “Pre-Defined String Tables”
on page 6-16 and “Kernel String Tables” on page 12-16.

str_const is a string constant literal that acts as an index into the
specified string table. str_const must either exactly match a
string value in the table name string table, or the table name
string table must have a default item line; otherwise the results
are undefined. A table name may contain several item lines
with the same str_const value.

Typically, a get _i t en() call is used in conditional expressions for qualified
expressions, searches, summaries, or display object configurations.

The get _i t enm() call returns an index number into the specified string table
(table_name) for the first item in the table which matches the specified string

(str_const).

For example, assume that the following string table definition is in your page con-
figuration file (see “String Tables” on page 6-14):

string_table (fruit) ={

i tem
i tem
i tem

item=

3, “apple’;
4, “orange”;
5, “cherry”;
6, “banana”

default item = “Unknown”;

}s

A get _iten() call can be used in an If Expression when configuring a Data
Box (see “Data Box™ on page 9-18):

If Expression argl = get _iten(fruit,"cherry")

10-106

Using Expressions

requiring the first argument of the associated trace event to be the same as the index
value matching the entry for cherry in the f rui t string table (which, in our
example, is 5).

RETURN TYPES

On successful completion, get _i t en() returns an item number from a string
table. If several item lines within the string table have the same string value as
str_const, get _i t em() returns the first item number from one of these item lines.
If table_name is not found, NightTrace issues an error message, and the results are
undefined. If str_const is not found and there is no default item line, the results are
undefined. Because get _i t en{) returns an integer, you can use it anywhere an
integer expression can be used.

For more information on string tables, see “String Tables” on page 6-14 and the
[fusr/1ib/NightTrace/tabl es file. For more examples of function calls with
pre-defined string tables, see “Then Expression” on page 9-34.

10-107

NightTrace Manual

get_format()

The get _f or mat () routine dynamically looks up a string in a format table.

SYNTAX

get _format (table_name|, int_expr])

PARAMETERS

table_name table_name is an unquoted character string that represents the
name of a format table. To avoid possible forward reference
problems, try to make your get _f or mat () calls refer to pre-
viously-defined format tables.

int_expr int_expr is an integer expression that acts as an index into the
specified format table. int_expr must either match an identify-
ing integer value in the table _name format table, or the
table_name format table must have a default item line; other-
wise, the results are undefined. Often int expr is based on a
NightTrace function.

If your table consists of only a default item line, omit this
parameter.

DESCRIPTION

A call to get _f or mat () must be the first function call in an expression. You
must not nest calls to get _f or mat ().

The Then-Expression parameter of a Data Box configuration and the
Summarize-Expression on a Summary Form can call get _format () to
dynamically locate a string in a format table. For each get _f or mat () call, Night-
Trace follows these steps:

1. Evaluates int_expr

2. Uses this value as an index into fable_name

3. Retrieves the associated string from table_name

4. Replaces any conversion specifications in the associated string

5. Returns a string
Assume that the following format table definition is in your configuration file.
format _table (what_pid) = {
item= 1, “Trace event 1 logged by pid %' %", “raw pid()”,
“lwpi d()";
default _item = “Unaccounted for event ID (%)”, “id()";
}
Assume that you make the following call in the Then-Expression of a Data Box.

get format (what _pid, id())

10-108

Using Expressions

In this example, the what _pi d format table associates one dynamically-generated

string with trace event ID 1 (i d() == 1) and another string with all other trace
events (def aul t _i t em). When NightTrace processes a trace event for the display
object with the above get _f or mat (), it:

1.
2.

Evaluates the NightTrace i d() function. (Assume it evaluates to 1)

Calls get _format ()

. Uses this value (1) as an index into the what _pi d format table

Retrieves the associated string (“ Trace event 1 | ogged by
pi d %’ %") from the what _pi d format table

. Evaluates the NightTrace raw_pi d() and | wpi d() functions.

(Assume they evaluate to 213 and 1 respectively)

Replaces the %l conversion specifiers with the raw_pi d() and
[wpi d() values

Displays “ Trace event 1 |ogged by pid 213 1"

RETURN TYPES

On successful completion, get _f or mat () returns a format table string. Other-
wise, it returns an empty string.

For more information on format tables, see “Format Tables” on page 6-19 and the
fusr/1ib/Ni ghtTrace/tabl es file. For more examples of function calls with
pre-defined format tables, see “Then Expression” on page 9-34.

10-109

NightTrace Manual

format()

The f or mat () routine displays a string.

SYNTAX
format (“format_string” [, arg] ...)
PARAMETERS
format_string format_string controls how the optional args are displayed.
format_string is based on the format parameter used in the
printf (3S) routine in C. It is a character string enclosed in
double quotes that contains literal characters and conversion
specifications. The literals are copied as is to the display
object. Conversion specifications modify zero or more args.
arg arg is an optional expression to be formatted and displayed.
DESCRIPTION

Call the f or mat () function to display a string. You can do this only from the
Then-Expression parameter of a display object configuration or the
Summary-Expression of the Summarize Form. A call to f or mat () must
be the first function call in an expression. You must not nest calls to f or mat () .

The following lines provide examples of f or mat () statements and what they dis-

play. Assume all variables have a value of 10 (decimal).

format("Error”) Error

format ("Event=9%d", id()) Event =10

format ("Argunment is %', argl()) Argurment is A
RETURN TYPES

On successful completion, format () returns a string. Otherwise, it returns an
empty string.

10-110

Macros

Using Expressions

Macros are user-defined expressions provided for flexibility and convenience. Unlike
functions, they do not have any parameters. They are invoked by calling the macro with a
$ before the macro name.

To create a macro definition:

- select the Expressions... menu item from the Edit menu on any display
page (see “Edit” on page 8-5)

- press the Add... button on the NightTrace Qualified Expressions
dialog (see “NightTrace Qualified Expressions” on page 10-119)

- choose Macr o from the Key drop-down menu in the Edit NightTrace
Qualified Expression dialog (see “Edit NightTrace Qualified Expres-
sion” on page 10-122)

- enter a valid expression in the Expansion field (see “Expressions” on
page 10-1)

- assign a Name to this macro (or use the name generated by NightTrace)

- press the OK button

NOTE

Macros cannot be called recursively; if attempted, the results are
undefined and NightTrace will issue an error.

Furthermore, macros must not call the f or mat () and
get _format () functions (see “format()” on page 10-110 and
“get_format()” on page 10-108).

For example, a macro is useful when configuring a State Graph (see “State Graph” on
page 9-23) because it has two expressions that are often related. Consider the following
configuration:

Start Events FOO
Start Expression argl() == 0x1234 &&
(arg2() == 0 || arg3() > 700)
End Events BAR
End Expression argl() == 0x1234 &&

(arg2() == 0 || arg3() > 700)

This display object graphs states of trace event FOOthrough trace event BAR, where the
arguments of the trace events must meet an identical criteria to be considered interesting.

10-111

NightTrace Manual

10-112

Since the same expression:
argl() == 0x1234 && (arg2() == 0 || arg3() > 700)

is used in both the Start Expression and the End Expression, it is an ideal candidate
for a macro.

Therefore, a macro definition of:
Name f oobar

Expansion argl() == 0x1234 &&
(arg2() == 0 || arg3() > 700)

would allow our earlier State Graph configuration to be defined as:

Start Events FOO
Start Expression $f oobar
End Events BAR
End Expression $f oobar

Using the macro name in place of the expression reduces possible errors that might occur
when manually entering the expression. In addition, using a macro provides the flexiblity
of changing the expression in the macro definition and having those changes propagated
wherever the macro is used.

Using Expressions

Qualified Events

Qualified events provide a means for referencing a set of one or more trace events which
may be restricted by conditions specified by the user.

Qualified events can be used within trace event functions (see “Trace Event Functions” on
page 10-14).

To create a qualified event definition:

- select the Expressions... menu item from the Edit menu on any display
page (see “Edit” on page 8-5)

- press the Add... button on the NightTrace Qualified Expressions
dialog (see “NightTrace Qualified Expressions” on page 10-119)

- choose Event from the Key drop-down menu in the Edit NightTrace
Qualified Expression dialog (see “Edit NightTrace Qualified Expres-
sion” on page 10-122)

NOTE
You may also select any of the predefined qualified events pro-
vided in the Key drop-down menu (e.g. Syst emCal | Event s,
I nterrupt Leave, Excepti on, etc.) and further customize
them to your specifications. See “Key / Value” on page 10-123

for a description of the predefined qualified events in the Key
drop-down menu.

- select the desired event from the Value drop-down menu
NOTE

The event selected in the Value drop-down menu will be added
to the Events field.

10-113

NightTrace Manual

10-114

P T I

o] Rewn]

Figure 11-3. Choosing a Key / Value pair for a qualified event

- check the Customize button to configure the qualified expression to your
specifications assigning values to Events, Condition, Processes,
Threads, Nodes, and CPUs as appropriate

- assign a Name to this qualified event (or use the name generated by
NightTrace)

- press the OK button

TIP

Consider giving your trace events uppercase names in event-map
files (see “Event Map Files” on page 6-10) and giving any
corresponding qualified event the same name in lowercase.

Qualified events can be useful when you are interested in seeing a trace event (or state)
that occurs within a certain amount of time after another trace event.

Using Expressions

For example, given the following qualified event configuration:

Name fire
Events FI RE
CPUs 2

an Event Graph (see “Event Graph” on page 9-21) can be configured to show only BAR
trace events that happen within 100 microseconds of a FI RE trace event on CPU 2:

Event List BAR
If Expression time() - tinme(fire) < 100us

Note that although the BAR trace events themselves can happen on any CPU, they will be
graphed only if they occur with 100 microseconds of a FI RE trace event on CPU 2 (see
“time()” on page 10-27).

10-115

NightTrace Manual

Qualified States

Qualified states provide a means for defining regions of time based on specific starting
and ending events and restricted by conditions specified by the user.

Qualified states can be used to reference user-defined regions of time within start func-
tions (see “Start Functions” on page 10-37), end functions (see “End Functions” on page
10-55), and multi-state functions (see “Multi-State Functions” on page 10-73).

To create a qualified state definition:

- select the Expressions... menu item from the Edit menu on any display
page (see “Edit” on page 8-5)

- press the Add... button on the NightTrace Qualified Expressions
dialog (see “NightTrace Qualified Expressions” on page 10-119)

- choose St at e from the Key drop-down menu in the Edit NightTrace
Qualified Expression dialog (see “Edit NightTrace Qualified Expres-
sion” on page 10-122)

NOTE

You may also create a qualified state using a previously-defined
qualified state as a basis by choosing Qual i fi ed St at e from
the Key drop-down menu and selecting the desired item from the
Value drop-down menu. (Only qualified states previously
defined in the current session will appear in the Value list.)

Furthermore, you may select any of the predefined qualified states
provided in the Key drop-down menu (e.g. Syst emcCal |
State, I nterrupt State, Exception Stat e) and further
customize them to your specifications. See “Key / Value” on page
10-123 for a description of the predefined qualified states in the
Key list.

- check the Customize button (if necessary) to configure the qualified
expression to your specifications assigning values to Start Events, End
Events, Start Condition, End Condition, Processes, Threads,
Nodes, and CPUs as appropriate

10-116

Using Expressions

EIGIES)

key/ WValue: | Sustem Call State

Customize: W
Start Events: |TR_SYSCALL_ENTRY, TR_SYSCALL_NESTED_ENTRY, TR_SYSCALL_RESUME Browse...

End Events: | TR_SYSCALL_EXIT, TR_SYSCALL_MESTED_EXIT, TR_SYSCALL_SUSPEND Browse...

il

Start Condition: | TRUE

End Condition: | TRUE
Processes: |HLL Browse...
Threads: |#HLL Browse...

Modes: |#LL Browse...

it

34567
CPUs: NNV W AllCPUs

Mame: |fexpr_1

014 | Revert | Cancell Help

i

Figure 11-4. Customizing a qualified state

- assign a Name to this qualified state (or use the name generated by Night-
Trace)

- press the OK button

Qualified states can be useful when you are interested in a trace event that occurs while a
certain state is active. For example, the following qualified state:

Name foo_state
Start Events PROG A BEG N
End Events PROG A EXIT

defines a state that is active whenever program A is running. Assume that another process
is logging FOOtrace events asynchronously. If you are interested only in the FOOtrace
events that are logged while program A is running, you can define an Event Graph (see
“Event Graph” on page 9-21) as follows:

Event List FQO
If Expression state status(foo_state) == true
This will graph only FOOtrace events that occur while the qualified state f 00_st at e is

active (see “state_status()” on page 10-76). Thus, you see only FOOtrace events logged
while program A is running.

10-117

NightTrace Manual

NOTE
The “== true”inthe If Expression is not necessary since the
type of value returned from the st at e_st at us() call is bool-

can.

10-118

Using Expressions
NightTrace Qualified Expressions

The NightTrace Qualified Expressions dialog allows the user to define new quali-
fied expressions (qualified events, qualified states, and macros) in the current session as
well as edit existing qualified expressions (see “Qualified Events” on page 10-113, “Qual-
ified States” on page 10-116, and “Macros” on page 10-111).

The NightTrace Qualified Expressions dialog presents an alphabetical list of all
qualified expressions defined in the current session. Qualified expressions are global to
all the display pages in the current session; that is, if a qualified expression is created by
one display page, it may be used by any other display page.

The NightTrace Qualified Expressions dialog is presented when the Expres-
sions... menu item is selected from the Edit menu of a display page (see “Expres-
sions...” on page 8-6).

I NightTrace Qualified Ex| s T [=][=1[x]
Type |Name | Description |
=l expr 1 MightTrace gualified event =
x=H expr_2 MightTrace qualified state

$x expr 3 MightTrace macro
il
‘ Add... | | Close Help

Figure 11-5. NightTrace Qualified Expressions dialog

Type

This column displays an icon representing the type of qualified expression in the
list.

n= indicates a qualified event
x= indicates a qualified state
$x indicates a macro

10-119

NightTrace Manual

Name

The name to reference this qualified expression. This value is defined in the Name
field of the Edit NightTrace Qualified Expression dialog (see “Edit Night-
Trace Qualified Expression” on page 10-122).

Description
This column contains one of the following descriptions:

- NightTrace qualified event
- NightTrace qualified state

- NightTrace macro

depending on the type of qualified expression in the list.

The following buttons appear at the bottom of the NightTrace Qualified Expres-
sions dialog and have the specified meaning:

Add...

Presents the Edit NightTrace Qualified Expression dialog (see “Edit Night-
Trace Qualified Expression” on page 10-122) allowing the user to create a new qual-
ified event, qualified state, or macro.

Once added, the new qualified expression will appear in the NightTrace Quali-
fied Expressions dialog.

Delete

Deletes the expression(s) selected in the NightTrace Qualified Expressions
dialog from the current session.

Edit...
Presents the Edit NightTrace Qualified Expression dialog (see “Edit Night-

Trace Qualified Expression” on page 10-122) allowing the user to edit the qualified
expression selected in the NightTrace Qualified Expressions dialog.

Duplicate

Creates a copy of the expression(s) selected in the NightTrace Qualified
Expressions dialog and adds them to the list presented in this dialog.

The new expression(s) will be named
orig_Ccopyn

where orig is the name of the duplicated expression and # is an integer value.

10-120

Using Expressions

Close

Closes the NightTrace Qualified Expressions dialog.

Help

Opens the HyperHelp viewer to the online help topic for this dialog.

Double-clicking on any item in the list will open the Edit NightTrace Qualified
Expression dialog (see “Edit NightTrace Qualified Expression” on page 10-122) allow-
ing the user to edit that particular qualified expression.

10-121

NightTrace Manual
Edit NightTrace Qualified Expression

The Edit NightTrace Qualified Expression dialog allows the user to create new
qualified expressions in the form of qualified events, qualified states, and macros (see
“Qualified Events” on page 10-113, “Qualified States” on page 10-116, and “Macros” on
page 10-111). In addition, the user can edit qualified expressions that have been previ-
ously defined in the current session.

The Edit NightTrace Qualified Expression dialog is presented when either the
Add... or Edit... button is pressed on the NightTrace Qualified Expressions dialog
(see “NightTrace Qualified Expressions” on page 10-119).

Edit MightTrac

o ousel
o ol
o ol

o

S T R

Tespr 1

Figure 11-6. Edit NightTrace Qualified Expression dialog

10-122

Using Expressions

Key / Value

These two drop-down menus are used in combination to provide a quick and effi-
cient method for defining a NightTrace qualified expression.

The value chosen for the Key will determine the type of expression being created:

Event

create a qualified event (see “Qualified Events” on page 10-113)
State

create a qualified state (see “Qualified States” on page 10-116)
Qualified State

create a qualified state using a previously-defined qualified state as a
basis (see “Qualified States” on page 10-116)

Macr o

create a macro (see “Macros” on page 10-111)
Process ID

create a qualified event restricted to selected processes
Thread | D

create a qualified event restricted to certain threads
System Cal |

create a qualified event for those instances when the kernel starts (or
resumes) executing the source code for the particular system call
selected in the Value drop-down menu

System Cal | Leave

create a qualified event for those instances when the kernel exits (or sus-
pends execution of) the particular system call selected in the Value
drop-down menu

System Cal | Events

create a qualified event for those instances when the kernel starts (or
resumes) executing the source code for the particular system call
selected in the Value drop-down menu as well as when the kernel exits
(or suspends execution of) that particular system call

System Cal|l State

create a qualified state whose start events are defined as those instances
when the kernel starts (or resumes) executing the source code for partic-
ular system call selected in the Value drop-down menu and whose end

10-123

NightTrace Manual

10-124

events are comprised of those events when the kernel exits (or suspends
execution of) that particular system call

I nterrupt

create a qualified event for those instances when the kernel starts exe-
cuting the source code for the particular interrupt selected in the Value
drop-down menu

Interrupt Leave

create a qualified event for those instances when the kernel finishes exe-
cuting the source code for the particular interrupt selected in the Value
drop-down menu

Interrupt Events

create a qualified event for those instances when the kernel starts exe-
cuting the source code for the particular interrupt selected in the Value
drop-down menu as well as when the kernel exits that particular inter-
rupt

Interrupt State

create a qualified state whose start events are defined as those instances
when the kernel starts executing the source code for the particular inter-
rupt selected in the Value drop-down menu and whose end events are
comprised of those events when the kernel exits that particular interrupt

Exception

create a qualified event for those instances when the kernel starts (or
resumes) executing the source code for the particular exception selected
in the Value drop-down menu

Excepti on Leave

create a qualified event for those instances when the kernel exits (or sus-
pends execution of) the particular exception selected in the Value
drop-down menu

Excepti on Events

create a qualified event for those instances when the kernel starts (or
resumes) executing the source code for the particular exception selected
in the Value drop-down menu as well as when the kernel exits (or sus-
pends execution of) that particular exception

Exception State

create a qualified state whose start events are defined as those instances
when the kernel starts (or resumes) executing the source code for partic-
ular exception selected in the Value drop-down menu and whose end
events are comprised of those events when the kernel exits (or suspends
execution of) that particular exception

Using Expressions

The Value drop-down menu provides a list of possible choices associated with the
selected Key. The choices in this list are based on the trace dataset; for instance, if
Process ID is selected for the Key, the Value drop-down menu will consist of
those processes in the current dataset that logged trace events and/or those that were
executing when kernel trace events were collected.

The qualified expression can be further customized by selecting the Customize
checkbox (see below) and modifying the remaining fields.

Customize
Use this option to further configure your qualified expression.

When Customize is checked, the Key / Value drop-down menus become dis-
abled (desensitized). The remaining fields (which are populated with values corre-
sponding to the Key / Value pair) may be modified to tailor the qualified expres-
sion to your needs.

NOTE

Once customization has occurred, unchecking the Customize
button will result in all customized changes being discarded in
favor of the displayed Key / Value selections.

Events

The trace events upon which this qualified expression is based.

NOTE

This field is labeled Start Events when defining a qualified
state (see “Qualified States” on page 10-116).

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ 1 i b/ Ni ght -
Trace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on
page 6-10).

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

10-125

NightTrace Manual

Start Events

A set of trace events, any of which may mark the beginning of this qualified state
(see “Qualified States” on page 10-116).

NOTE

In order for a trace event to be considered a start event, all other
criteria specified in this qualified state must be met: Start Con-
dition, Processes, Threads, Nodes, and CPUs.

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ 1 i b/ Ni ght -
Trace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on

page 6-10).
NOTE
To select multiple items, hold the Ctrl key while selecting items
in the list.
End Events

A set of trace events, any of which may define the end of this qualified state (see
“Qualified States” on page 10-116).

NOTE

In order for a trace event to be considered an end event, all other
criteria specified in this qualified state must be met: End Condi-
tion, Processes, Threads, Nodes, and CPUs.

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ 1 i b/ Ni ght -
Trace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on
page 6-10).

10-126

Using Expressions

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Condition

A boolean expression specifying criteria that must be met as part of this qualified
event. (See “Expressions” on page 10-1 for more information.)

NOTE

This field is labeled Start Condition when defining a qualified
state (see “Qualified States” on page 10-116).

This field is labeled Expansion when defining a macro (sece
“Macros” on page 10-111).

Start Condition

A boolean expression which specifies criteria that must be met for this qualified
state to begin. (See “Expressions” on page 10-1 for more information.)

NOTE

Currently, NightTrace does not supported nesting of states. Thus,
once the conditions which satisfy a start event are met, no other
instances of that state can begin until the End Condition has
been met.

Expansion

The expression to be substituted by the macro (see “Macros” on page 10-111).

End Condition

A boolean expression which specifies criteria that must be met for this qualified
state to complete. (See “Expressions” on page 10-1 for more information.)

Processes
Specify the processes to which this qualified expression is restricted.

You may specify either PID values or the names of processes to which NightTrace
has corresponding PID associations (e.g. from kernel trace data).

10-127

NightTrace Manual

Browse

Presents a dialog allowing the user to select from a list of the names of all pro-
cesses that NightTrace discovers in the current trace data.

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Threads
Specify the threads to which this qualified expression is restricted.

You may specify either TID values or the names of threads to which NightTrace has
corresponding TID associations (e.g. from kernel trace data).

Browse

Presents a dialog allowing the user to select from a list of the names of all
threads that NightTrace discovers in the current trace data.

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Nodes

Specify the system node names to which this qualified expression is restricted.

NOTE

The Nodes field is only meaningful for datasets captured from
more than one system and is used to differentiate between them.
Use of the RCIM timing source on daemon invocations is required
for time synchronization in such cases. See the Real-Time Clock
and Interrupt Module User's Guide (0891082) for more informa-
tion.

Browse

Presents a dialog allowing the user to select from a list of the names of all
nodes that NightTrace discovers in the current trace data.

10-128

Using Expressions

NOTE

Press the Ctrl key while selecting items in the list to select multi-
ple items.

CPUs

Specify which CPUs to which this qualified expression is restricted.

All CPUs

All CPUs are selected when this checkbox is checked.

Name

The name by which this qualified expression will be referenced. The user may
either specify a name or use the name generated by NightTrace.

The following buttons appear at the bottom of the Edit NightTrace Qualified
Expression dialog and have the specified meaning:

OK

Saves all changes and closes the Edit NightTrace Qualified Expression dia-
log. New qualified expressions are added to the list in the NightTrace Qualified
Expressions dialog (see “NightTrace Qualified Expressions” on page 10-119).

Revert

Reverts all fields in the Edit NightTrace Qualified Expression dialog back to
the values they had before any changes were made in this dialog.

Cancel

Closes the Edit NightTrace Qualified Expression dialog without saving any
changes.

Help

Opens the HyperHelp viewer to the online help topic for this dialog.

10-129

NightTrace Manual

10-130

11
Search and Summarize

Searching for Points of Interest

... 11-1
Search Optionsottt 11-10

Summarizing Statistical Information. 11-12
(3515 o T 11-14
Options

NightTrace Manual

11

Search and Summarize

NightTrace makes it easier for you to pinpoint important trace events and numerically ana-

lyze aspects of your trace session.

“Searching for Points of Interest” on page 11-1 describes the Seach NightTrace

Events dialog and its usage.

“Summarizing Statistical Information” on page 11-12 describes the Summarize Night-

Trace Events dialog and its usage.

Searching for Points of Interest

The Seach NightTrace Events dialog allows you to locate areas of interest in your
trace event file(s). This dialog allows you to provide search specifications and define con-
ditions you wish to find in your trace event file(s).

™S sarch Nghtirace Evenls CEE
Search Status: | Search match at offset &
Key/ Value: s o’ _"rl
Customize: W Search History: ﬂ ﬂ
Ewvents: |HT_TIMER Browse...l
Skip Events: | NONE Browse...l
Condition: | TRUE
Processes: |hLL Browse...l
Threads: |ALL Browse...l
Modes: |ALL Browse...l
CPUS: g v it i ¥ AICRUS
= | L= | Options...l Close Help

Figure 12-1. Search NightTrace Events dialog

11-1

NightTrace Manual

The Search NightTrace Events dialog is opened by selecting the Change Search
Criteria... item from the Actions menu on any display page (see “Change Search Crite-
ria...” on page 8-8) or by pressing Ctrl-F from any display page.

NOTE

Once search critieria has been specified, subsequent searches for
the same criteria can be made without opening the Search
NightTrace Events dialog. Pressing the > or < keys executes
a forward or backward search, respectively, using the current
search criteria. (Note that it is not necessary to press the Shift
key when using these accelerators.)

By default, in a new NightTrace session, if no search criteria has
been entered, NightTrace will search for all events.

Search criteria is saved as part of the session configuration file
(see “Session Configuration Files” on page 6-23). Specifying a
session configuration file on subsequent invocations of Night-
Trace reloads all search criteria from that session designating the
last search executed from that session as the current search criteria
for the current session. (See “Invoking NightTrace” on page 6-1
and “Command-line Arguments” on page 6-9 for more informa-
tion.)

Search Status
Displays the results from the current search.
When viewing criteria from previously-executed searches, the text:
Cached search n

appears in this field where n is the number assigned to this set of search criteria in
the search history (see “Search History” on page 11-5).

Search and Summarize

Key / Value

These two drop-down menus are used in combination to provide a quick and effi-
cient method for specifying search criteria.

Event

search for a particular event
Excl ude Event

search for all events except the particular event specified
Qualified Event

search for a particular qualified event (see “Qualified Events” on page
10-113)

Qualified State

search for a particular qualified state (see “Qualified States” on page
10-116)

Process ID

search for events associated with a particular process
Thread 1D

search for events associated with a particular thread
System Cal |

search for those instances when the kernel starts (or resumes) executing
the source code for the particular system call selected in the Value
drop-down menu

System Cal | Leave

search for those instances when the kernel exits (or suspends execution
of) the particular system call selected in the Value drop-down menu

System Cal | Events

search for those instances when the kernel starts (or resumes) executing
the source code for the particular system call selected in the Value
drop-down menu as well as when the kernel exits (or suspends execu-
tion of) that particular system call

I nterrupt

search for those instances when the kernel starts executing the source
code for the particular interrupt selected in the Value drop-down menu

I nterrupt Leave

search for those instances when the kernel finishes executing the source
code for the particular interrupt selected in the Value drop-down menu

11-3

NightTrace Manual

Interrupt Events

search for those instances when the kernel starts executing the source
code for the particular interrupt selected in the Value drop-down menu
as well as when the kernel exits that particular interrupt

Exception

search for those instances when the kernel starts (or resumes) executing
the source code for the particular exception selected in the Value
drop-down menu

Excepti on Leave

search for those instances when the kernel exits (or suspends execution
of) the particular exception selected in the Value drop-down menu

Exception Events

search for those instances when the kernel starts (or resumes) executing
the source code for the particular exception selected in the Value
drop-down menu as well as when the kernel exits (or suspends execu-
tion of) that particular exception

The Value drop-down menu provides a list of possible choices associated with the
selected Key. The choices in this list are based on the trace dataset; for instance, if
Process ID is selected for the Key, the Value drop-down menu will consist of
those processes in the current dataset that logged trace events and/or those that were
executing when kernel trace events were collected.

NOTE

To specify user trace events that do not have trace event tags asso-
ciated with them and therefore do not appear in the Value
drop-drop menu, check the Customize checkbox and enter the
numeric trace event ID in the appropriate field (e.g. Events,
Skip Events, etc.). User-defined trace event tags are associated
with trace event ID numbers using an event map file (see “Event
Map Files” on page 6-10).

The search criteria can be further customized by selecting the Customize check-
box (see below) and modifying the remaining fields.

Customize
Use this option to further configure your search criteria.

When Customize is checked, the Key / Value drop-down menus become dis-
abled (desensitized). The remaining fields (which are populated with values corre-
sponding to the Key / Value pair) may be modified to tailor the search criteria to
your needs.

Search and Summarize

NOTE

Once customization has occurred, unchecking the Customize
button will result in all customized changes being discarded in
favor of the displayed Key / Value selections.

Search History

These buttons allow the user to cycle through criteria from previously-executed
searches.

Cycles backward to the previous set of criteria
ﬂ saved in the search history and displays those set-
tings in the fields of this dialog.

If the first set of criteria saved in the cache is dis-
played, pressing this button will display the last
set of search criteria saved in the cache.

N Cycles forward to the next set of criteria saved in
J the search history and displays those settings in
the fields of this dialog.

If the criteria from the most recently executed
search is displayed, pressing this button will dis-
play the first set of search criteria saved in the
cache.

Events

Specify the trace events of interest for this particular search.

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ | i b/ Ni ght -
Trace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on
page 6-10).

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

11-5

NightTrace Manual

Skip Events

Specify the trace events to be ignored for this particular search.

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ 1 i b/ Ni ght -
Trace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on
page 6-10).

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Condition

A boolean expression specifying additional criteria for this particular search. (See
“Expressions” on page 10-1 for more information.)

Processes
Specify the processes to which this search is restricted.

You may specify either PID values or the names of processes to which NightTrace
has corresponding PID associations (e.g. from kernel trace data).

Browse

Presents a dialog allowing the user to select from a list of the names of all pro-
cesses that NightTrace discovers in the current trace data.

NOTE
To select multiple items, hold the Ctrl key while selecting items

in the list.

Threads
Specify the threads to which this search is restricted.

You may specify either TID values or the names of threads to which NightTrace has
corresponding TID associations (e.g. from kernel trace data).

Search and Summarize

Browse

Presents a dialog allowing the user to select from a list of the names of all
threads that NightTrace discovers in the current trace data.

NOTE
To select multiple items, hold the Ctrl key while selecting items

in the list.

Nodes

Specify the system node names to which this search is restricted.

NOTE

The Nodes field is only meaningful for datasets captured from
more than one system and is used to differentiate between them.
Use of the RCIM timing source on daemon invocations is required
for time synchronization in such cases. See the Real-Time Clock
and Interrupt Module User's Guide (0891082) for more informa-
tion.

Browse

Presents a dialog allowing the user to select from a list of the names of all
nodes that NightTrace discovers in the current trace data.

NOTE

Press the Ctrl key while selecting items in the list to select multi-
ple items.

CPUs

Specify which CPUs to which this search is restricted.

All CPUs

All CPUs are selected when this checkbox is checked.

The following buttons appear at the bottom of the Search NightTrace Events dialog
and have the specified meaning:

11-7

NightTrace Manual

Q|

Accelerator: <

NOTE

It is not necessary to press the Shift key when using this accelera-
tor.

Furthermore, it is not necessary to have the Search Night-
Trace Events window open when using this accelerator (see
“Searching for Points of Interest” on page 11-1). The search crite-
ria specified from the previous search is used.

Searches backward from the current time for the state or event meeting the specified
criteria according to the selected search options (see “Search Options” on page
11-10).

Results from this search appear in the message display area of the display page from
which this search was executed (see “Message Display Area” on page §-13).

q—r|

Accelerator: >

NOTE

It is not necessary to press the Shift key when using this
accelerator.

Furthermore, it is not necessary to have the Search
NightTrace Events window open when using this accelerator
(see “Searching for Points of Interest” on page 11-1). The search
criteria specified from the previous search is used.

Searches forward from the current time for the state or event meeting the specified
criteria according to the selected search options (see “Search Options” on page
11-10).

Results from this search appear in the message display area of the display page from
which this search was executed (see “Message Display Area” on page §-13).

Options...

Opens the Search Options dialog (see “Search Options” on page 11-10) allowing
the user to choose what action takes place when a trace event meets the specified

11-8

Search and Summarize

search criteria, the scope of the search, wrapping preferences, and the number of
items to be held in the search history.

Close

Closes the Search NightTrace Events dialog.

11-9

NightTrace Manual

Search Options

The Search Options dialog allows the user to choose what action takes place when a
trace event meets the specified search criteria, the scope of the search, wrapping prefer-
ences, and the number of items to be held in the search history.

rch Options

Action:) Scroll to event @ Zoom to event) Do nothing

Scope: @ Allevents _) Displayed events

Yrap: @ Ask aboutwrapping _J Automatic wrap) Do not wrap

History Size: | 1100

0K | Resetl Cancell Help |

Figure 12-2. Search Options dialog

Action

These radio buttons allow you to choose the action NightTrace takes if a trace event
meets the specified criteria.

Scroll to event

NightTrace sets the current time to the time when the trace event
occurred and moves the interval.

Zoom to event

Zoom out the interval end time (for forward searches) or the interval
start time (for backward searches) to include the found trace event. The
current time is updated accordingly.

Do nothing

NightTrace writes a message to the message display area of the display
page without repositioning you on the grid or in the interval control
area.

A side-effect of this setting is that repeatedly clicking on the Search
push button does not find trace events after the first one found. This is
because the current time has not changed.

11-10

Search and Summarize

Scope
This setting determines the portion of the dataset to be included in the search.
All events
All items in the dataset are included in the search.
Displayed events
Only those items in the current interval are included in the search.

The current interval is defined to be the region delimited by the Time
Start and Time End fields of the interval control area (see “Interval
Control Area” on page 8-16).

Wrap

This setting determines the behavior when the end of the dataset is reached during a
search.

Ask about wrapping

A dialog is presented to the user when the end of the dataset is reached,
asking if the user would like to continue the search from the beginning
of the dataset.

Automatic wrap

When the end of the dataset is reached, the search is automatically con-
tinued from the beginning of the dataset.

Do not wrap

The search does not continue when the end of the dataset is reached.

History Size

The maximum number of searches to be saved in the search history cache (see
“Search History” on page 11-5).

11-11

NightTrace Manual

Summarizing Statistical Information

11-12

The Summarize NightTrace Events dialog lets you get statistical information about
trace events and states, allowing you to constrain the information to be summarized to
your specifications. In addition, this dialog allows you to reposition the current time line
to the state with either the shortest or longest duration as well as display a Data Graph (see
“Data Graph” on page 9-9) showing the durations of each state on which the summary is
based.

The Summarize NightTrace Events dialog is opened by selecting the Change
Summary Criteria... item from the Actions menu on any display page (see “Change
Summary Criteria...” on page 8-9) or by pressing Ctrl-Z from any display page.

The following checkbox appears at the top of the Summarize NightTrace Events
dialog:
Show summary results in this dialog

When this checkbox is checked, results from the summary appear at the top of the
Summarize NightTrace Events dialog as well as in the message display area
of the display page from which this summary was executed.

NOTE

Summary results always appear in the message display area (see
“Message Display Area” on page 8-13) regardless of this setting.

Figure 12-3 shows an example of summary results displayed in the Summarize
NightTrace Events dialog.

EIGIES)

W Show summary results in this dialog

=

Rezultz for summary event:

Summarizing from offzet 0 thru offset 14937,

Mo event matches to summarize
Rezultz for summary event: -|
£

Summarizing from offzet 0 thru offset 14937,

4042 event matches summarized,

gap min of 00000025 @ offset 102353 gap max of 0,017508s @ offset 12664
gap avg of 0,000547s

Crieria | Opsions |
Key! Value Ewnt (] msvaoaL Bt f I
Customize: Criteria History: 4| b |

Figure 12-3. Summary results displayed in Summarize dialog

Search and Summarize

The Summarize NightTrace Events dialog is divided into a number of pages that
contain specific information about the current summary. These pages are:

- Criteria
See “Criteria” on page 11-14 for more detailed information.
- Options

See “Options” on page 11-26 for more detailed information.

The following buttons appear at the bottom of the Summarize NightTrace Events
dialog and have the specified meaning:

Summarize

Performs a summary based on the criteria specified in this dialog according to the
options specified on the Options page (see “Options” on page 11-26).

Results from this summary appear in the message display area of the display page
from which this search was executed (see “Message Display Area” on page 8-13).

In addition, the user may check the Show summary results in this dialog
checkbox (see “Show summary results in this dialog” on page 11-12) to view the
results from the summary directly in the Summarize NightTrace Events dia-
log.

Clear Results

Clears the cache containing the results of summaries performed in the current ses-
sion.

Save Results...

Presents a file selection dialog allowing the user to save the cache containing the
results of the summaries to an external file.

Close

Closes the Summarize NightTrace Events dialog.

Help

Opens the HyperHelp viewer to the online help topic for this dialog.

11-13

NightTrace Manual

Criteria

11-14

The Criteria page allows the user to specify the conditions on which a particular sum-
mary is based. Events of interest, starting and ending events for states of interest, and any
other conditions including processes, threads, nodes, and CPUs to which this summary is
restricted are all specified on this page.

In addition, when summarizing instances of a particular state, an option is provided to
reposition the current timeline to either the shortest or longest instance of that state. The
user may also request a state summary graph showing the durations of each state on which
the summary is based.

v

F¥vivviviviw

inew_criteria

Figure 12-4. Summarize NightTrace Events dialog - Criteria page

Search and Summarize

Key / Value

These two drop-down menus are used in combination to provide a quick and effi-
cient method for specifying summary criteria.

Event

summarize the number of occurrences of the specified event
Excl ude Event

search for all events except the one selected
Qualified Event

summarize all occurrences of the selected qualified event (see “Quali-
fied Events” on page 10-113)

Qualified State

summarize all occurrences of the selected qualified state (see “Qualified
States” on page 10-116)

Process ID

summarize all events associated with the specified process
Thread 1D

summarize all events associated with the specified thread
System Cal |

summarize those instances when the kernel starts (or resumes) execut-
ing the source code for the particular system call selected in the Value
drop-down menu

System Cal | Leave

summarize those instances when the kernel exits (or suspends execution
of) the particular system call selected in the Value drop-down menu

System Cal| Events

summarize those instances when the kernel starts (or resumes) execut-
ing the source code for the particular system call selected in the Value
drop-down menu as well as when the kernel exits (or suspends execu-
tion of) that particular system call

I nterrupt

summarize those instances when the kernel starts executing the source
code for the particular interrupt selected in the Value drop-down menu

11-15

NightTrace Manual

11-16

Interrupt Leave

summarize those instances when the kernel finishes executing the
source code for the particular interrupt selected in the Value drop-down
menu

Interrupt Events

summarize those instances when the kernel starts executing the source
code for the particular interrupt selected in the Value drop-down menu
as well as when the kernel exits that particular interrupt

Exception

summarize those instances when the kernel starts (or resumes) execut-
ing the source code for the particular exception selected in the Value
drop-down menu

Exception Leave

summarize those instances when the kernel exits (or suspends execution
of) the particular exception selected in the Value drop-down menu

Excepti on Events

summarize those instances when the kernel starts (or resumes) execut-
ing the source code for the particular exception selected in the Value
drop-down menu as well as when the kernel exits (or suspends execu-
tion of) that particular exception

The Value drop-down menu provides a list of possible choices associated with the
selected Key. The choices in this list are based on the trace dataset; for instance, if
Process ID is selected for the Key, the Value drop-down menu will consist of
those processes in the current dataset that logged trace events and/or those that were
executing when kernel trace events were collected.

NOTE

To specify user trace events that do not have trace event tags asso-
ciated with them and therefore do not appear in the Value
drop-drop menu, check the Customize checkbox and enter the
numeric trace event ID in the appropriate field (e.g. Events,
Start Events, etc.). User-defined trace event tags are associated
with trace event ID numbers using an event map file (see “Event
Map Files” on page 6-10).

The summary criteria can be further customized by selecting the Customize
checkbox (see below) and modifying the remaining fields.

Customize

Search and Summarize

Use this option to further configure your summary criteria.

When Customize is checked, the Key / Value drop-down menus become dis-
abled (desensitized). The remaining fields (which are populated with values corre-
sponding to the Key / Value pair) may be modified to tailor the qualified expres-

sion to your needs.

Criteria History

NOTE

Once customization has occurred, unchecking the Customize
button will result in all customized changes being discarded in
favor of the displayed Key / Value selections.

These buttons allow the user to cycle through criteria from previously-executed
summaries.

Events

Kl

Cycles backward to the previous set of criteria
saved in the summary history and displays those
settings in the fields of this dialog.

If the first set of criteria saved in the cache is dis-
played, pressing this button will display the last
set of summary criteria saved in the cache.

Cycles forward to the next set of criteria saved in
the summary history and displays those settings
in the fields of this dialog.

If the criteria from the most recently executed
summary is displayed, pressing this button will
display the first set of summary criteria saved in
the cache.

The trace events upon which this summary is based.

NOTE

This field is labeled Start Events when summarizing the
instances of states (see “Qualified States” on page 10-116).

11-17

NightTrace Manual

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ | i b/ Ni ght -
Tr ace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on
page 6-10).

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Start Events

The events that can be considered as the beginning of a state to be included in this
summary.

NOTE

In order for a trace event to be considered a start event, all other
criteria specified for this summary must be met: Start Condi-
tion, Processes, Threads, Nodes, and CPUs.

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ 1 i b/ Ni ght -
Trace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on

page 6-10).
NOTE
To select multiple items, hold the Ctrl key while selecting items
in the list.
End Events

The events that can be considered as the end of a state to be included in this sum-
mary.

11-18

Search and Summarize

NOTE

In order for a trace event to be considered an end event, all other
criteria specified for this summary must be met: Start Condi-
tion, Processes, Threads, Nodes, and CPUs.

Browse

Presents a dialog allowing the user to select from a list of defined trace event
tags.

Kernel trace event tags are defined in the /usr/ 1 i b/ Ni ght -
Tr ace/ event map file. User-defined trace event tags are associated with
trace event ID numbers using an event map file (see “Event Map Files” on

page 6-10).
NOTE
To select multiple items, hold the Ctrl key while selecting items
in the list.
Condition

A boolean expression specifying criteria that must be met when summarizing the
instances of events. (See “Expressions” on page 10-1 for more information.)

NOTE

This field is labeled Start Condition when summarizing the
instances of states (see “Qualified States” on page 10-116).

Start Condition

A boolean expression specifying criteria that must be met at the beginning of a par-
ticular state for it to be included in the summary. (See “Expressions” on page 10-1
for more information.)

End Condition

A boolean expression specifying criteria that must be met at the end of a particular
state for it to be included in the summary. (See “Expressions” on page 10-1 for
more information.)

Processes
Specify the processes to which this summary is restricted.

You may specify either PID values or the names of processes to which NightTrace
has corresponding PID associations (e.g. from kernel trace data).

11-19

NightTrace Manual

Browse

Presents a dialog allowing the user to select from a list of the names of all pro-
cesses that NightTrace discovers in the current trace data.

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Threads
Specify the threads to which this summary is restricted.

You may specify either TID values or the names of threads to which NightTrace has
corresponding TID associations (e.g. from kernel trace data).

Browse

Presents a dialog allowing the user to select from a list of the names of all
threads that NightTrace discovers in the current trace data.

NOTE

To select multiple items, hold the Ctrl key while selecting items
in the list.

Nodes

Specify the system node names to which this summary is restricted.

NOTE

The Nodes field is only meaningful for datasets captured from
more than one system and is used to differentiate between them.
Use of the RCIM timing source on daemon invocations is required
for time synchronization in such cases. See the Real-Time Clock
and Interrupt Module User's Guide (0891082) for more informa-
tion.

Browse

Presents a dialog allowing the user to select from a list of the names of all
nodes that NightTrace discovers in the current trace data.

11-20

Search and Summarize

NOTE

Press the Ctrl key while selecting items in the list to select multi-
ple items.

CPUs

Specify which CPUs to which this summary is restricted.

All CPUs

All CPUs are selected when this checkbox is checked.

Criteria Tag

The name by which this summary will be referenced. The user may either specify a
name or use the system-generated default.

The Criteria Tag may be used with the - - sunmar y option when performing
command-line summaries (see “Command-line Options” on page 6-1 and “Sum-
mary Criteria” on page 6-5).

If a state summary graph is requested (see “State Summary Graph” on page 11-22),
a qualified state (see “Qualified States” on page 10-116) based on the specified cri-
teria is created. This qualified state takes the name specified in the Criteria Tag
field and is added to the list of qualified expressions for this session (see “Night-
Trace Qualified Expressions” on page 10-119). This qualified state can then be used
to search for other instances by specifiying its name in the Search NightTrace
Events dialog (see “Searching for Points of Interest” on page 11-1).

NOTE

The list of qualified expressions for a particular session can be
found in the NightTrace Qualified Expressions dialog (see
“NightTrace Qualified Expressions” on page 10-119).

State Summary Action

The user may select to position the current timeline to either the shortest or longest
instance of the state on which a particular summary is based or may elect not to
reposition the timeline at all.

The user may select one of the following choices from the drop-down menu:
Go to shortest instance of state

The current timeline is repositioned to the end of the state having the
shortest duration.

11-21

NightTrace Manual

Go to longest instance of state

The current timeline is repositioned to the end of the state having the
longest duration.

Do not move timeline

The current timeline is not repositioned.

State Summary Graph

Display a Data Graph (see “Data Graph” on page 9-9) showing either the durations
of each state on which the summary is based or the gaps between the states.

NOTE

The scale factor for these graphs is automatically determined by
the shortest and longest values found. This can sometimes have
the effect of obscuring useful data. Consider a situation where
99% of the state instances had a duration on the order of 10-30
microseconds, but a single instance lasted 500000 microseconds.
The resulting graph would have a single large spike with the
details of the remaining states difficult to ascertain. Use the (n X
Std. Dev.) menu items in such instances.

The user may select one of the following choices from the drop-down menu:
Display graph of state durations

Display a Data Graph showing the durations of each state on which the
summary is based.

Display graph of state durations (1 x Std. Dev.)

Display a Data Graph showing the durations of each state on which the
summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum state duration that fall within one standard devia-
tion of the actual minimum and maximum. All state durations will
appear on the graph.

Display graph of state durations (2 x Std. Dev.)

Display a Data Graph showing the durations of each state on which the
summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum state duration that fall within two standard devia-
tions of the actual minimum and maximum. All state durations will
appear on the graph.

11-22

Search and Summarize

Display graph of state gaps

Display a Data Graph showing the durations of the gap between the
states on which the summary is based.

Display graph of state gaps (1 x Std. Dev.)

Display a Data Graph showing the durations of the gap between the
states on which the summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum duration of the gaps between states that fall within
one standard deviation of the actual minimum and maximum. All state
durations will appear on the graph.

Display graph of state gaps (2 x Std. Dev.)

Display a Data Graph showing the durations of the gap between the
states on which the summary is based.

The scale factor for the graph is automatically determined by the mini-
mum and maximum duration of the gaps between states that fall within
two standard deviations of the actual minimum and maximum. All state
durations will appear on the graph.

Do not display graph

No state summary graph is displayed.

When a state summary graph is requested, a qualified state (see “Qualified States”
on page 10-116) based on the specified criteria is created. This qualified state takes
the name specified in the Criteria Tag field and is added to the list of qualified
expressions for this session. This qualified state can then be used to search for other
instances by specifiying its name in the Search NightTrace Events dialog (see
“Searching for Points of Interest” on page 11-1).

NOTE
The list of qualified expressions for a particular session can be

found in the NightTrace Qualified Expressions dialog (see
“NightTrace Qualified Expressions” on page 10-119).

Figure 12-5 shows an example of a state summary graph.

11-23

NightTrace Manual

[=1(=1(]
Page Edit Create Actions Help
i 3 Summarizing from offzet 0 thru offset 14937, A
A ity 23 state matches summarized,
& View |3 state_duri min 0,000114=: max 0,00046Bs: avg 0,000270s: sum 0,006193= _J
B state_gap: min 0,000869s: max 0,43419%s: avg 0,074025s: sum 1,628557= r
E State duration graph for state crit_12
. |Statistics for state durations left of current time:
©[min = 0,000154s @ 70223 max = 0,000466s @ 73541 avg = 0,000281s
- |active = falser last_duration = 0,000466s
E Overall statistics for state durations:
- |min = 0,000114s @ 9893: max = 0,0004E6s @ ¥954: awg = 0,000270s
E— I
2,1645s 2‘1ﬁ553 2,1EE4s
L1 [| L1 | |I L1 [| L1 L1
|
|~4 A =
Time Start[2,1635404= Time Length [o,00316825 Time End [2,1667088=
Event Start 7302 Event Count|[a7 Event End [7334
Zoom Factor[2.0 Increment [25. 002 Current Time [2,16512465
| Apply | Resetl Center | tlark. | Zoom Region | Zoom In | Zoom Outl Refresh |

Figure 12-5. State Summary Graph

In Figure 12-5:

- the blue bars represent instances of the state specified in the summary

- the vertical lines represent the duration of that instance of the state

NOTE

Since this is a Data Graph (see “Data Graph” on page 9-9), taller
lines represent longer durations.

- the statistics above the graphs provide information about the last completed
instance of the state and the overall statistics covering the time interval
specified on the Options page of the Summarize NightTrace Events
dialog (which defaults to the entire trace session - see “Options” on page
11-26)

11-24

Search and Summarize

NOTE

The statistics for the last completed instance of the state are
updated as you change the position of the current time line.

11-25

NightTrace Manual

Options

The options on this page lets you limit the summary to the current interval, to the time
between a mark and the current time, or to the entire trace session.

Figure 12-6. Summarize NightTrace Events dialog - Options page

Summary Range
The user may select one of the following choices from the drop-down menu:
All events
Summarize data throughout the trace session.
Region

Summarize data only between the mark and the current time (see .

11-26

Search and Summarize

Interval
Summarize data included in the current interval only.

The current interval is defined to be the region delimited by the Time
Start and Time End fields of the interval control area (see “Interval
Control Area” on page 8-16).

11-27

NightTrace Manual

11-28

12
Tracing the Kernel

Default Kernel Trace Points i, 12-1
Context Switch Trace Event. 12-2
Interrupt Trace Events 12-2
Exception Trace Events i 12-3
Syscall Trace Events. 12-4

Kernel Trace Points Not Enabled By Default 12-5
Page Fault Event. 12-5
Protection Fault Event 12-5

Viewing Kernel Trace Event Files. 12-6
Kernel Display Pages i 12-6

RCIM Default Kernel Display Page 12-7
CPU Information.ttt 12-9
Running Process Information 12-10
Node Information i 12-11
Context Switch Information 12-11
Interrupt Information. 12-12
Exception Information. 12-13
Syscall Information. 12-15
Color Information 12-16
Kernel String Tables. 12-16

Kernel Reference. e 12-18

Interrupts.o 12-19
Non-Device-Related Interrupts. 12-19
Device-Related Interrupts 12-20

EXCeptionsot 12-20

Syscalls. . ..o 12-21

NightTrace Manual

12
Tracing the Kernel

This chapter provides a description of the trace points logged by the kernel. It also
discusses the steps required to produce a highly detailed picture of kernel activity with
NightTrace. This lets you customize the default NightTrace kernel display pages or com-
bine kernel information with user-application trace information.

Kernel trace event files are logged in raw format by the kernel trace daemon. ntrace
accepts files of this type as arguments. When it detects such a file on the command line,
or when the indicates such a file should be displayed, it automatically filters the raw data
file and creates two new files. The first file created is the filtered data, which contains
trace events in a manner suitable for display within NightTrace. This file is saved with a
pathname constructed from the original raw Kkernel trace event filename with a “ . nt f”
suffix appended to it. The second file saved is commonly referred to as the “vectors” file.
It contains tables that are specific to the actual raw data. The “vectors” file is saved with a
pathname constructed from the orignal raw kernel trace event filename with a “. vec”
suffix appended to it. A more detailed description of the vectors file is given subsequently
in this chapter.

On subsequent invocations of NightTrace, either the raw kernel file may be specified, or,
alternatively, the “ . ntf” and “. vec” files may be specified together.

Default Kernel Trace Points

The following kernel trace points are enabled by default:

e TR SWTCH N

e TR | NTERRUPT_ENTRY and TR | NTERRUPT EXI T
e TR EXCEPTI ON_ENTRY and TR_EXCEPTI ON_EXI T
e TR SYSCALL_ENTRY

e TR |10 VNODE

e TR ALT_|I NT_DI SPATCH

e TR PROCESS NAMVE

These default kernel trace points are required to get meaningful kernel performance data
in a KernelTrace trace event file. However, these trace points are not the only trace points
that you will see with NightTrace when viewing kernel data. Specifically, the following
trace points are introduced during raw kernel trace data processing by NightTrace:

e TR SYSCALL_EXI T
e TR SYSCALL_SUSPENDand TR_SYSCALL_RESUVE

12-1

NightTrace Manual

e TR_EXCEPTI ON_SUSPEND and TR_EXCEPTI ON_RESUME

The following sections discuss the trace events that you will see in NightTrace as a result
of logging the default kernel trace points.

Context Switch Trace Event

There is only one context switch trace event:

TR_SWTCH N argl

This trace event is logged whenever a process has been switched in and is ready to
be run on a specific CPU. Because only one process can run on a given CPU at a
time, this trace event also signifies that the process that was running on the CPU
immediately prior to the context switch trace event has been switched out and can
no longer run. This trace event has one argument:

argl

Interrupt Trace Events

The numeric 32-bit global process identifier (PID) of the process
being switched in. This information is redundant, since it is identical
to the PID that is already associated with the trace event. A PID of O
indicates that the CPU is idle.

The 32-bit global process identifier uniquely identifies the running
process on the system. This identifier is identical to the return value
ofthe _| wp_gl obal _sel f () system call for PowerMAX OS and
the getpid() system call under RedHawk Linux. See “pid()” on page
10-19.

There are two trace events associated with interrupts:

TR_I NTERRUPT_ENTRY argl arg? arg3

This trace event is logged whenever an interrupt is entered. It has three arguments:

argl

arg2

12-2

The interrupt vector number that indicates the type of interrupt. This
is an index into the vect or string table that is contained within the
vectors file generated by NightTrace when consuming kernel data.
For more information about the vect or string table, see “Kernel
String Tables” on page 12-16.

The interrupt nesting level used by the pre-defined kernel pages to
graph the different heights associated with the nesting level. This
argument will be 1 for the first interrupt, 2 for a second interrupt that

Tracing the Kernel

interrupted the first interrupt, 3 for a third interrupt that interrupted
the second interrupt, etc.

arg3 The interrupt vector number of the previous interrupt that this inter-
rupt entry is interrupting, if any.

TR I NTERRUPT_EXI T argl arg? arg3

This trace event is logged whenever an interrupt is exited. Its arguments are identi-
cal to those of the TR_| NTERRUPT_ENTRY trace event.

Exception Trace Events

There are four trace events associated with exceptions:
TR_EXCEPTI ON_ENTRY argl
This trace event is logged whenever an exception is entered. It has one argument:

argl The exception vector number that indicates the type of exception.
This is an index into the vect or string table that is contained within
the vectors file. For more information about the vect or string table,
see “Kernel String Tables” on page 12-16.

TR_EXCEPTI ON_SUSPEND argl

This trace event is logged whenever an exception is suspended by a context switch.
It has one argument that is identical to the argument logged with the
TR_EXCEPTI ON_ENTRY trace event.

TR_EXCEPTI ON_RESUME arg]

This trace event is logged whenever an exception is resumed (i.e., the process that
caused the exception to occur, which was switched out before the exception could
be completed, is switched back in). A TR_EXCEPTI ON_RESUME trace event will
always follow a TR_EXCEPTI ON_SUSPEND event, unless the process is being
switched in for the first time since kernel tracing began.

It is possible for several TR_EXCEPTI ON_SUSPEND—FR_EXCEPTI ON_RESUME
trace event pairs to occur if the process is switched in and out several times before
the exception completes.

The TR_EXCEPTI ON_RESUME trace event has one argument that is identical to the
argument logged with the TR_EXCEPTI ON_ENTRY trace event.

TR _EXCEPTI ON_EXI T arg!

This trace event is logged whenever an exception is completed. It has one argument
that is identical to the argument that is logged with the TR_EXCEPTI ON_ENTRY
trace event.

12-3

NightTrace Manual

Syscall Trace Events

12-4

There are four trace events associated with syscalls:

TR _SYSCALL_ENTRY argl arg2 arg3
This trace event is logged whenever a syscall is entered. It has three arguments:
argl This argument is always zero for historical reasons.

arg? The syscall number that identifies the syscall. This is an index into
the pre-defined syscal | string table.

arg3 The device number that indicates the type of device that is associated
with the syscall, if any. This is an index into the pre-defined devi ce
string table.

For more information about the pre-defined syscal | and devi ce string tables,
see “Kernel String Tables” on page 12-16.

TR_SYSCALL_SUSPEND argl arg2 arg3

This trace event is logged whenever a syscall is suspended by a context switch. It
has three arguments that are identical to the arguments logged with the
TR_SYSCALL_ENTRY trace event.

TR _SYSCALL_RESUNVE argl arg? arg3

This trace event is logged whenever a syscall is resumed (i.e., the process that
caused the syscall to occur, which was switched out before the syscall could be
completed, is switched back in). A TR_SYSCALL_RESUVE trace event will always
follow a TR_SYSCALL_SUSPEND trace event, unless the process is being switched
in for the first time since kernel tracing began.

It is possible for several TR_SYSCALL_SUSPEND—FR_SYSCALL_RESUME trace
event pairs to occur if the process is switched in and out several times before the
syscall completes.

The TR_SYSCALL_RESUME trace event has three arguments that are identical to
the arguments logged with the TR_SYSCALL_ENTRY trace event. However, if a
TR_SYSCALL_RESUME trace event does not follow a TR_SYSCALL_SUSPEND
trace event (i.e., it is the first syscall trace event logged by the process since kernel
tracing began) arg? identifies the syscall as “can’ t det er m ne.”

TR SYSCALL_EXI T argl arg? arg3

This trace event is logged whenever a syscall is completed. It has three arguments
that are identical to the arguments logged with the TR_SYSCALL_ENTRY trace
event.

Tracing the Kernel

Kernel Trace Points Not Enabled By Default

There are several kernel trace points which are not enabled by default but two of them
deserve special mention. These two events allow you to determine areas in your applica-
tion code where address faults are occurring, to minimize such faults, and thus improve
the application's performance. The following sections discuss the page fault and protec-
tion fault kernel trace points.

Page Fault Event

There is one page fault trace event:
TR _PACGEFLT_ADDR argl arg? arg3

This trace event is logged whenever a kernel or user page fault occurs. The page fault can
be either on a data address or on an instruction address. This trace event is not enabled by
default because, depending upon system activity, page faults may occur reasonably fre-
quently. This trace event has three arguments:

argl The data address which caused the page fault. If the page fault
occurred on an instruction, this will be set to zero.

arg? The program counter value at the time of the page fault.

arg3 The flag indicating whether the fault occurred on a kernel address or

on a user address. A value of zero indicates that the fault occurred on
a user address. A value of one indicates that the fault occurred on a
kernel address.

Protection Fault Event

There is one protection fault trace event:
TR _PROTFLT_ADDR argl arg? arg3

This trace event is logged whenever a kernel or user protection fault occurs. The protec-
tion fault can be either on a data address or on an instruction address. This trace event is
not enabled by default because, depending upon system activity, protection faults may
occur reasonably frequently. This trace event has three arguments:

argl The data address which caused the protection fault. If the protection
fault occurred on an instruction, then this will be set to zero.

arg? The program counter value at the time of the protection fault.

arg3 The flag indicating whether the fault occurred on a kernel address or
on a user address. A value of zero indicates that the fault occurred on

12-5

NightTrace Manual

a user address. A value of one indicates that the fault occurred on a
kernel address.

Viewing Kernel Trace Event Files

All of the kernel trace -event tags are defined in the
fusr/1ib/NightTrace/ event map file. This file is automatically read by
NightTrace at start-up time.

You may design your own display pages to view kernel trace event files; see Chapter 8 and
Chapter 9 for more information. Alternatively, you may use pre-defined kernel display
pages. These pages are discussed in the following sections.

Kernel Display Pages

Figure 13-1 shows a sample kernel display page in View mode constructed from trace files
on two different nodes.

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

12-6

File Edit Create

Tracing the Kernel

Configure Expressions Tools Help

- Edit
o e

buzzard

N

buzzard

N

cap

hardclock

“leroo

- |pid idle

poll mip

papio

N

papio

N

0.5

| p—

R EREE R = s T = — =
-+ [Interrupt JException [Suseall |- b))y b e B o Bt I

|

Time Start [0, 00000005 Time Length|&.,29075525 Time End |&,2307552s

Ewvent Start [0

Ewent Count [3221 Ewvent End |3220

Zoom Factor 2.0

| Apply |

Increment |25. 00z Current Time |3.1453776s

Reset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 13-1. Sample Kernel Display Page

NightTrace determines the number of CPUs on the system from information in the con-
verted KernelTrace trace event file.

RCIM Default Kernel Display Page

When viewing KernelTrace trace event files that have been timestamped by the RCIM tick
clock, NightTrace determines the number of distinct nodes/hosts which have trace files
and constructs a default display page accordingly. When you create a default kernel dis-
play page from trace event files that have been timestamped by the RCIM tick clock,
NightTrace pops up a dialog box that allows you to select the nodes you wish to display on
that kernel page.

12-7

NightTrace Manual

12-8

Auwailable Modes:

Select Modes To Display

* rudi
* papio
hiezard

Zelect the nodes you wish to display on this kernel page

Zelected Modes:

L

rudi
papio
garcia

* garcia o1
g p
[* cap

darth '_'>|

pochba

shugs

pookie

oipap

idur

aicrag T

Eh

Cancel

Figure 13-2. Node Selection Dialog

The Available Nodes list shows all nodes that NightTrace has found in the trace files.
The Selected Nodes list contains all nodes you want shown on the kernel display page
you are building.

NOTE

An asterisk (*) next to a node in the Available Nodes list indi-
cates that the particular node has already been selected through
the Node Selection Dialog.

You may select the nodes you wish to be included on the kernel display page you are
building by either double-clicking each node name in the Available Nodes list or by
selecting a node from that list and using the right arrow button to add it to the list of
Selected Nodes. When the list of Selected Nodes contains all the nodes you wish
to display on your kernel display page, you may press the Build button.

As each node is added to the list of Selected Nodes, NightTrace figures out how much
vertical real estate the grid needs (based upon the number of nodes you wish to display
and how many CPUs each node has). If the required vertical space does not exceed the
maximum grid height, NightTrace will allow the page to be created. Otherwise, Night-
Trace will pop up a warning dialog window and will not allow the page to be created.

Tracing the Kernel

Warning Dialog
T e e

% Adding this node would exceed maximum display page height

QK |

=

Figure 13-3. Node Selection Warning Dialog

Figure 13-4 shows the display of information for a CPU on a particular node on a dynam-
ically-built kernel page.

NOTE

The node information is displayed only when NightTrace is con-
figured to use an RCIM to timestamp events.

Node Last Interrupt Interrupt Graph
CPU Last Exception Exception Graph
\Running Process Last Syscall Syscall Graph
AR RS TOE 1 . \ .
: i \ cap \ decintr .." i i :
- |CRU [\ data access .u' E ; # ; ﬁ :
: pid 81571 i mprotect ! ' :

Color Key

Current Time Line

Figure 13-4. Per-CPU Information

There are several pieces of information being displayed for each CPU. The position of the
current time line determines the values that appear on the kernel display pages. Moving
the current time line within the current interval does not change the graphical displays.
However, the textual displays always reflect the last values prior to the current time line.

The following sections discuss all of the different pieces of information in detail.

CPU Information

- [ePu o | -
Figure 13-5. CPU Box

12-9

NightTrace Manual

Figure 13-5 shows a CPU box. The CPU box simply identifies which logical CPU the
displayed data corresponds to. Logical CPU numbers are related to, but not necessarily
identical to, physical CPU numbers.

Each CPU in a system has a four-bit physical CPU number. The physical CPU number is
dependent on which card slot the CPU card containing the CPU is in and which location
on the card the CPU is in. The low two bits of the number specify the location on the card
that the CPU is in. These bits are either 00 for the first CPU location or 01 for the second.
The high two bits of the physical CPU number contain the CPU card slot number. These
bits can be 00, 01, 10, or 11 (or, in decimal, 0, 1, 2, or 3).

For simplicity, most kernel utilities translate the physical CPU numbers into logical CPU
numbers. The mapping is accomplished by listing the physical CPU numbers of all
configured CPUs in ascending order and then numbering them sequentially, starting with
zero. For example, a four-CPU system having two CPUs on a card in slot 1 and two CPUs
on a card in slot 3 will have physical CPU numbers 4 (0100), 5 (0101), 12 (1100) and 13
(1101). Table 12-1 shows the logical CPU mapping of this example system.

Table 12-1. Example Logical CPU Mapping

Physical CPU Number Logical CPU Number

4(0100) 0
5(0101) 1
12 (1100) 2
13 (1101) 3

The CPU box is a Grid Label (“Grid Label” on page 9-4). See “Configuring Display
Objects” on page 9-15 for more information on configuring Grid Labels.

Running Process Information

12-10

[pid in.rlogind | - [L1

Figure 13-6. Running Process Boxes

Figure 13-6 shows two examples of running process boxes. The running process box
shows the process that is executing at the current time on the associated CPU. The process
is listed by name, or by its raw PID and LWPID if no name is available. See “PID List” on
page 9-35 for more information about PIDs, raw PIDs and LWPIDs.

You can supply NightTrace trace event files to nt r ace along with converted KernelTrace
trace event files. NightTrace uses the process names of all processes that logged trace
events when displaying the running process.

The running process box is a Data Box (“Data Box” on page 9-5). See “Configuring Dis-
play Objects” on page 9-15 for more information on configuring Data Boxes.

Tracing the Kernel

Node Information

E| buzzard |E

Figure 13-7. Node Box

Figure 13-6 shows a node box. The node box simply identifies which node the displayed
data corresponds to.

NOTE
The node information is displayed only when NightTrace is con-

figured to use an RCIM to timestamp events.

The node box is a Grid Label (“Grid Label” on page 9-4). See “Configuring Display
Objects” on page 9-15 for more information on configuring Grid Labels.

Context Switch Information

Context Switch Lines

|
|]]
|

—

Current Time Line

Figure 13-8. Context Switch Lines

Figure 13-8 shows an example of several context switch lines. Context switch lines are
superimposed on the exception and syscall graphs. They indicate that the kernel has
switched out the process that was previously running on the CPU and switched in a new
process. There is a direct correlation between context switch lines and the running process
box: the running process box shows the process associated with the context switch line
that immediately precedes the current time line.

12-11

NightTrace Manual

Interrupt Information

Last Interrupt Name Current Time Line

\

=

/ :

Interrupts

|r'esched-str‘sched |

Nested Interrupts

Figure 13-9. Last Interrupt Box and Interrupt Graph

12-12

Figure 13-9 shows a last interrupt box and an interrupt graph. The interrupt graph displays
a state that is drawn whenever an interrupt is executing on the associated CPU. Interrupts
can be interrupted while executing, and the interrupt graph shows this interrupt nesting by
increasing the height of the state bar. Although interrupts can nest, all interrupts must
complete before the process they interrupt can be switched out. Therefore, you will never
see a context switch occur in the middle of an interrupt.

The last interrupt box displays the name of the last interrupt prior to the current time line
that executed (and may still be executing) on the associated CPU. It can be used with the
interrupt graph to identify any interrupts that are currently visible on the graph. Simply
move the current time line onto a graphed interrupt, and the last interrupt box will update
to display the name of the interrupt.

Because the last interrupt box displays the name of the last interrupt that executed, it is
possible for there to be no interrupts visible on the interrupt graph even though the last
interrupt box contains a valid interrupt name. This just signifies that the last interrupt on
the CPU ended prior to the beginning of the current interval.

An interrupt that is seen very often is the hardclock interrupt, which usually accounts for
15% of the total number of trace events logged by the kernel. If you are not interested in
hardclock interrupts, they can be ignored by NightTrace, improving performance and
readability. See “Command-line Options” on page 6-1 for more information.

The last interrupt box is a Data Box (“Data Box” on page 9-5) and the last interrupt graph
is a Data Graph (“Data Graph” on page 9-9). See “Configuring Display Objects” on page
9-15 for more information on configuring Data Boxes and Data Graphs.

Tracing the Kernel

Exception Information

Last Exception Name Current Time Line Exceptions

o~

E|data access ¢ |] j
oLl ‘: | I/_ :

Context Switch Lines

Figure 13-10. Last Exception Box and Exception Graph

Figure 13-10 shows a last exception box and an exception graph. The exception graph
displays a state that is drawn whenever an exception is executing on the associated CPU.
Unlike interrupts, exceptions cannot nest, so they are always graphed with the same
height.

Context switch lines are superimposed on exception graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of an exception. Usually, this
does not indicate that the exception has ended, only that it has been suspended because the
process that originated the exception has switched out. The exception resumes when the
process is switched back in again. An example of an exception being suspended and
resumed can be seen at the left end of the exception graph in Figure 13-10.

The last exception box displays the last exception prior to the current time line that
executed (and may still be executing) on the associated CPU. It can be used with the
exception graph to identify any exceptions that are currently visible on the graph. Simply
move the current time line onto a graphed exception, and the last exception box will
update to display the name of the exception.

Because the last exception box displays the name of the last exception that executed, it is
possible for there to be no exceptions visible on the exception graph even though the last
exception box contains a valid exception name. This just signifies that the last exception
on the CPU ended prior to the beginning of the current interval.

The last exception box is a Data Box (“Data Box” on page 9-5) and the last exception
graph is a State Graph (see “State Graph” on page 9-8). See “Configuring Display
Objects” on page 9-15 for more information on creating and configuring Data Boxes and
State Graphs.

Lines indicating TR_PAGEFLT_ADDRand TR _PROTFLT_ADDR events are also superim-
posed on exception graphs. Exception graphs display these trace points to allow you to
obtain a formatted dump of them in the message display area by clicking on the events
with mouse button 2. An example of a TR_PAGEFLT_ADDRand a TR_PROTFLT_ADDR
event as well as their associated data in the message display area can be seen in
Figure 13-11.

12-13

NightTrace Manual

NightTrace: ntrach

File Edit Create Configure Expressions Tools Help

-~ Edit

1
2

o e

offzet=1451 id=TR_PROTFLT_ADIR pid=inetd tid=304"0 cpu=l time=9,459738s argl=0xb0172b04 arg?=0xb00fechl® arg3=0x0,
of fzet=1461 id=TR_PAGEFLT_ADIR pid=inetd tid=304"0 cpu=l time=9,460080s argl=0xelf(0000 arg?=0x96ebc arg3=0xl,

o

~[ePuo

- - [resched-strached

NET

data acoess e e — : e |

open file

E|pid inetd

EE EE |Interrupt |Exception | Syzcall |E EEE |

9,4596= 9,4597= 9,4593= 59‘45993 93,4600 9,4601= |:
Ll || il || Ll ||'|| RN || N || N A || :

4 P

Time Start |3, 45359555 Time Length |0, 00060635 Time End |4, 46020235

Ewvent Start [1443
Zoom Factor 2.0

Ewent Count |20 Ewvent End |1462

Increment | 25,002 Current Time [9, 45383875

| Apply | Reset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |

Figure 13-11. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

12-14

Note the TR_PROTFLT_ADDR event to the left of the current time line at t i me=9.459738
and the TR_PAGEFLT_ADDR event to the right of the current time line at t i me=9.460050
and the corresponding data in the message display area. (See Chapter 8 for more informa-
tion on the message display area and other elements of the display page.)

Note also that the TR_PROTFLT_ADDR and TR_PAGEFLT_ADDR events are represented
by a vertical line that only intersects the exception state graph whereas a TR_SW TCHI N
event (see “Context Switch Trace Event” on page 12-2) intersects both the exception and
syscall state graphs. In addition, TR_PROTFLT_ADDRand TR_PAGEFLT_ADDR events
will only appear within a currently executing exception. This can be seen in Figure 13-12.

Tracing the Kernel

File Edit Create Configure Expressions Tools Help |

i 1 of fset=729 id=TR_SWITCHIN pid=in,rwhod tid=166"0 cpu=l time=4,922322z argl=10878977,
~ it 2 of fset=738 id=TR_PAGEFLT_ALDR pid=in.rwhod tid=166"0 cpu=l time=4,922573z argl=0xe21a0000 arg2=0x96evc argd=(xl,
2 View 3 of fset=r51 id=TR_SWITCHIN pid=idle tid=0"0 cpu=l time=4,922808= argl=0,

~[ePuo |
E::::::::::::::::r'esched-str‘sched . :
S[PUL | [data access | : E— [:
- [pid in.ruhod | [gtine _J_-__I___-_-_l_l_— :
S R l 4,9223= 4,9224= 4,925z 4,9226= 4,9227s 4,9228s .
ZZZZlInterruPtlExcePtlonlSUSC&”|ZZZZ|||||||||||||||||||||||'|||||||||||||||||||||||||||||||||||||j
=y d -
Time Start [4,59222695s Time Length |0, 00060625 Time End |4,9228757s
Ewvent Start [728 Ewent Count |24 Event End [751
Zoom Factor 2.0 Increment |25. 00z Current Time |4. 92250615

=

| Apply | Reset | Center | tlark. | Zoom Region | Zoom In | Zoom Jut | Refresh |
—J

Figure 13-12. TR_SWITCHIN vs. TR_PAGEFLT_ADDR and TR_PROTFLT_ADDR Events

Syscall Information

Last Syscall Name Current Time Line

4

Context Switch Lines

Syscalls

Associated Device (if any)

Figure 13-13. Last Syscall Box and Syscall Graph

Figure 13-13 shows a last syscall box and a syscall graph. The syscall graph displays a
state that is drawn whenever a system call (syscall) is executing on the associated CPU.
Unlike interrupts, syscalls cannot nest, so they are always graphed with the same height.

Context switch lines are superimposed on syscall graphs. It is common to see a context
switch line at what looks like the very end (or beginning) of a syscall. Usually, this does
not indicate that the syscall has ended, only that it has been suspended because the process
that originated the syscall has switched out. The syscall resumes when the process is
switched back in again. An example of a syscall being suspended and resumed can be seen
at the right end of the syscall graph in Figure 13-13.

The last syscall box displays the last syscall prior to the current time line that executed
(and may still be executing) on the associated CPU. If the syscall is associated with a
device, the name of the device is shown after the name of the syscall.

12-15

NightTrace Manual

Color Information

The last syscall box can be used with the syscall graph to identify any syscalls that are
currently visible on the graph. Simply move the current time line onto a graphed syscall,
and the last syscall box will update to display the name of the syscall.

Because the last syscall box displays the name of the last syscall that executed, it is
possible for there to be no syscalls visible on the syscall graph even though the last syscall
box contains a valid syscall name. This just signifies that the last syscall on the CPU ended
prior to the beginning of the current interval.

It is possible for the first syscall logged by a process since kernel tracing began to be
unknown. This can occur if the process is switched in and immediately resumes a syscall
that was previously suspended. If this occurs, the last syscall box will display “can’ t
det er m ne” for the name of the syscall.

The last syscall box is a Data Box (see “Data Box™ on page 9-5), and the last syscall graph
is a State Graph (see “State Graph” on page 9-8). See “Configuring Display Objects” on
page 9-15 for more information on configuring Data Boxes and State Graphs.

| Interrupt |Exu:eptiu:un | Syzcall |
Figure 13-14. Color Key

Figure 13-14 shows the color key that is located on the bottom left of the grid on the
pre-defined kernel display pages. The color key is useful only on X terminals that support
more colors than just black and white.

The text in the color key is color-coded. By default, the word “Interrupt” is red, and all
display objects on the kernel display page that display information about interrupts are
also red. By default, the word “Exception” is green, and all display objects that display
information about exceptions are also green. By default, the word “Syscall” is blue, and
all display objects that display information about syscalls are also blue.

The default colors of the different groups of kernel objects can be controlled with X
resources. The colors are specified on a per-CPU basis. The default resources for logical
CPU 0 are:

Nt race* Col or *Gri dCbj ect *i nt errupt 0*f or eground: red
Nt race* Col or *Gi dCbj ect *excepti on0*f or egr ound: green
Nt race* Col or *Gri dCbj ect *syscal | 0*f or egr ound: bl ue

See Appendix B for more information on X resources.

Kernel String Tables

12-16

There are seven kernel related pre-defined string tables. They are:

vect or

syscal |

devi ce

nanme_pi d

node_nane

pi d_nodename

Tracing the Kernel

This string table contains the interrupt and exception vector names
associated with the system that the kernel tracing was performed on.
It is contained in the vectors file.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using this table are:

get _string(vector, arg3())
get _string(vector, 15)
get item(vector, “ncr_intr”)

This string table contains the names of all the possible syscalls that
can occur on the system. It is contained in the vectors file. For brief
descriptions of the entries in the syscal | table, see “Syscalls” on
page 12-21.

This table is indexed by a system call number or a system call name.
Examples of using this table are:

get _string(syscall, 44)
get _string(syscall, arg2())
get iten(syscall, “fork”)

This string table contains the names the devices that are currently
configured in the kernel. It is contained in the vectors file.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get _string(device, arg3())
get _string(device, 720900)
get _i ten{device, “gd")

This string table contains the name of each node's process ID table.
It is dynamically built as the trace event files are processed upon ini-
tialization.

This string table contains the names of all nodes that have a trace
event file associated with them. It is dynamically built as the trace
event files are processed upon initialization.

This string table contains the names associated with all process iden-
tifiers found in trace event files for node name nodename. 1t is
dynamically built as the trace event files are processed upon initial-
ization. It is contained in the vectors file. Because process identifiers
are not guaranteed to be unique across nodes, using the predefined
string table pi d_to get the process name for a process ID may result
in an incorrect name being returned from the table. Using the node
process ID tables ensures that the correct process name is returned
for a process ID unless the process name is not unique on that partic-
ular node.

These tables are indexed by a process identifier or a process name.
Examples of using these tables are:

12-17

NightTrace Manual

get _string(pid_hal, pid())
get _iten(pid_sinulator, “odyssey”)

syscal | _nodenameThis string table contains the names of all possible system calls that
can occur in trace event files for node name nodename. It is con-
tained in the vectors file.

This table is indexed by a system call number or a system call name.
Examples of using this table are:

get _string(syscall_systenx, 31)
get _string(syscall _systeny, arg2())
get _iten(syscall_systene, “read”)

vect or _nodename This string table contains the interrupt and exception vector names
associated with trace event files for node name nodename. 1t is con-
tained in the vectors file.

This table is indexed by an exception/interrupt vector number or an
exception/interrupt vector name. Examples of using this table are:

get _string(vector_nachi nel, arg3())
get _string(vector_nachi ne2, 585)
get itenm(vector_systenB, “data access”)

devi ce_nodename This string table contains the names of devices configured in the ker-
nel for trace event files from node name nodename. It is contained in
the vectors file.

This table is indexed by a device number or a device name. Exam-
ples of using this table are:

get _string(device_simulatorl, arg3())
get _string(device_simul ator4, 3604484)
get _iten(device_controller, “rtc”)

The pi d string table is also used by the kernel display pages. For more information on the
pi d string table, see “Pre-Defined String Tables” on page 6-16. For examples of function
calls with these tables, see “Then Expression” on page 9-34.

Kernel Reference

The following sections provide a brief reference to the most common interrupts,
exceptions, and syscalls.

12-18

Interrupts

Tracing the Kernel

There are many different types of interrupts that can be logged by the kernel. The possible
types are listed in the system-dependent vect or string table in the vectors file. There are
two main categories of interrupts:

¢ Non-device-related interrupts

® Device-related interrupts

The members of these two categories are described in the following two sections.

Non-Device-Related Interrupts

Table 12-2 provides an alphabetical list of the most common non-device-related inter-

rupts.

Table 12-2. Non-Device-Related Interrupt Reference

Interrupt

Description

callout int
console wake

int on no int

power fail

rescheduling

softclock

spurious int

sysfault int

user int

xcall int

A real time clock interrupt that is used internally by the kernel.
An interrupt caused by the console wakeup button.

An interrupt that occurs during the processing of another
interrupt.

A power fail interrupt.

A rescheduling interrupt used to trigger a context switch to run
the highest priority process that is ready to run.

An interrupt used to process system callout queue entries.

An interrupt that usually indicates an unreported or
already-removed interrupt. This interrupt appears only in kernel
traces.

An interrupt indicating that a fatal hardware condition has been
detected.

A user-level interrupt. See i connect (3C) for a description of
enabling user-level interrupts.

An inter-processor interrupt used for cache flushing, delivering
exceptions to another processor, performance monitoring, and
halting processors.

For more information about interrupts see i nt st at (1M and ui stat (1M .

12-19

NightTrace Manual

Device-Related Interrupts

The names printed for device interrupts correspond to the device names in the system
configuration files. See System Administration Volume 2 for information on adding
devices to a system.

Table 12-3 provides an alphabetical list of the most common device-specific interrupts.
For more information on a device-specific interrupt, refer to the documentation associated
with the particular device.

Table 12-3. Device-Related Interrupt Reference

Interrupt Description
consintr A console terminal interrupt.

eg An Eagle ethernet controller interrupt.
eti_intr An edge-triggered interrupt.

ex An Excellan ethernet controller interrupt.
gpib An IEEE-488 GPIB controller interrupt.
hardclock A 60-Hertz clock interrupt.

hd An HDC disk-controller interrupt.

hps An HPS serial line-controller interrupt.
hrm A reflective memory interrupt.

hsa An HSA disk controller interrupt.

hsd An HSD controller interrupt.

ie An integral ethernet interrupt.

is An integral SCSI controller interrupt.
mpcc An MPCC controller interrupt.

pgintr An FDDI controller interrupt.

rtcintr A real-time clock interrupt.

Xy A Xylogics tape-controller interrupt.

Exceptions

There are many different types of exceptions that can be logged by the kernel. The
possible types are listed in the system-dependent vect or string table in the vectors file.

12-20

Syscalls

Tracing the Kernel

Table 12-4 is an alphabetical list of the most common exceptions. See the PowerPC 604
RISC Microprocessor User s Manual for more information.

Table 12-4. Exception Reference

Exception

Description

data access

decrementer

float unavail

inst access

inst brkpt

kstack overflow

machine check

misaligned

program

trace

An exception indicating that a page fault for a data page
occurred.

An exception that occurs when the decrementer register counts
down to zero.

An exception that occurs the first time a process attempts to use
the floating-point unit.

A page fault exception that occurs during an instruction fetch.

An exception indicating that a breakpoint instruction was
executed.

A fatal exception generated due to kernel errors.

A fatal exception generated for various reasons including parity
errors, hardware failures, and kernel errors.

An exception indicating that a load, store, or exchange
instruction was attempted with a destination memory address not
consistent with the size of the access.

An exception indicating one of several possible conditions
including divide by zero, invalid instruction, and privilege
violation.

An exception generated during single stepping of the CPU.

The list system calls can be found in the architecture-dependent syscal | string table that
is dynamically generated into the vectors file.

12-21

NightTrace Manual

12-22

A
Performance Tuning

Although NightTrace’s defaults are designed for maximum efficiency, your NightTrace
environment and application may have special requirements that warrant some
performance tuning. You may want to investigate the following issues:

* Preventing trace event loss

¢ Ensuring accurate timings

* Optimizing file system and CPU usage
¢ Conserving disk space

¢ Conserving memory and accelerating nt r ace

Preventing Trace Events Loss

By default, NightTrace copies all user trace events from the shared memory buffer to the
trace event file. This means that normally NightTrace neither discards nor loses trace
events.

To conserve disk space, you may invoke nt r aceud with the - f i | ewr ap or - buf f er -
wr ap option. However, by doing so, you are telling NightTrace to intentionally discard
older or less-vital trace events. If discarding trace events is undesirable, run nt r aceud in
expansive mode. To do this, invoke nt r aceud without the - f i | ewr ap and - buf f er -
wWr ap options. See “Conserving Disk Space” on page A-4 for more information.

When NightTrace discards trace events, it is intentional. When NightTrace loses trace
events, it is not. NightTrace does not report discarded trace events; it does, however, report
lost trace events. Most trace event loss is preventable by flushing the shared memory
buffer often.

NightTrace shows trace event loss in the following ways:

* As a non-zero “events lost” statistic from nt r aceud - st at s race_file,
fromntrace-fil estats, oronthe nt race Global Window

* As areverse video “L” on the nt r ace display page Ruler at the location
where the trace event was lost

If trace event loss seems excessive, you can do the following:

A-1

NightTrace Manual

A-2

Action Reason

Decrease - cut of f, the shared memory buffer-full Increase the chance that the

cutoff percentage for nt r aceud nt r aceud daemon will have
enough time to copy the trace
events in the shared memory
buffer to disk before the shared
memory buffer fills up.

Decrease - t i meout , the nt r aceud timeout (Same)
interval

Calltrace_flush() ortrace_trigger() (Same)
often from within your application, especially when
your application is at a non-time critical point

Increase - mensi ze, the shared memory buffer (Same)
size for nt r aceud

Use the following command to see the system settings for the current, default, minimum,
and maximum shared memory segment size:

$ /etc/conf/bin/idtune -g SHWAX
See the i dt une(1M man page for more information.

A few other factors can affect trace event loss. Processes in your application may write
trace events into the shared memory buffer at the same time that nt r aceud is flushing
trace events from the shared memory buffer to the trace event file; if the trace event
incoming rate exceeds the flush rate, trace events may not be recorded. Furthermore, when
NightTrace must choose between operating unobtrusively and logging all trace events, it
favors being unobtrusive.

See Chapter 4 for more information on nt r aceud options and modes. For more
information ontrace_flush() ortrace_trigger(), see “trace_flush() and
trace_trigger()” on page 2-20.

If events are being lost during kernel tracing:

* Verify that the output KernelTrace trace event file is on a local file system
and not an NFS file system. If you run the following command and there is
a colon (:) in the “Fi | esyst enm’ column, the file is on an NFS file
system.

$ df kernel_trace_file

® Ask your system administrator to increase the size of TR_BUFFER_COUNT
in/ et c/ conf/ nm une. d/ trace by running the i dt une(1M com-
mand, rebuild, and reboot the system. (Usually a TR_BUFFER_COUNT of
5 is sufficient.) The kernel allocates buffers of 3 pages each (12,288 bytes)
for kernel tracing. This is part of the kernel’s initialized global data, mean-
ing these are reserved physical pages.

Performance Tuning
Ensuring Accurate Timings

If you lack the privilege to lock your pages in memory (P_PLOCK), you must invoke
nt r aceud with the - | ockdi sabl e option. If your application lacks read and write
privilege to / dev/ spl you must invoke nt r aceud with the - i pl di sabl e option.
Invoking nt r aceud with either the - | ockdi sabl e or - i pl di sabl e option, may
introduce delays and waiting within your application. Use the - | ockdi sabl e and
-i pl di sabl e options only when necessary. For more information on the
-1 ockdi sabl e option, see “Option to Prevent Page Locking (-lockdisable)” on page
4-11. For more information on the - i pl di sabl e option, see “Option to Disable the IPL
Register (-ipldisable)” on page 4-9.

By default, nt r aceud and NightTrace library routines use page locking to prevent page
faults during trace event logging. NightTrace also modifies the interrupt priority level
(IPL) register; this action prevents rescheduling and interrupts during trace event logging.
NightTrace prevents the operating system from pre-empting your trace event logging
application to make itself most unobtrusive to your application.

If the application must wake the nt r aceud daemon unexpectedly, overhead can cause
trace event timings to be distorted. Do one or more of the following to increase the
likelihood that the daemon will be awake when needed and to make sure that disk write
rates are as fast as the application’s logging rate:

* Increase the shared memory buffer size (- mensi ze)
® Decrease the shared memory buffer-full cutoff percentage (- cut of f)
® Decrease the nt r aceud timeout interval (- t i neout)

® Calltrace_flush() ortrace_trigger () appropriately

For more information on the - mensi ze, - cut of f, and -t i meout options, and
trace_flush(), see, respectively, “Option to Define Shared Memory Buffer Size
(-memsize)” on page 4-16, “Option to Set the Buffer-Full Cutoff Percentage (-cutoff)” on
page 4-18, “Option to Set Timeout Interval (-timeout)” on page 4-17, and “trace flush()
and trace_trigger()” on page 2-20.

Optimizing File System and CPU Usage

Different systems may share files via the Network File System (NFS); however, accessing
an NFS-mounted file takes longer than accessing a local file. You get the best NightTrace
and KernelTrace performance if you avoid NFS accesses; put your trace event file on the
same system where both the daemons and your application run. To determine whether
your disk is local to your system, verify that it is mounted on / dev and not on another
host. You can do this by running the df (1) command and looking for a colon (:) in the
“Fi | esyst en? column.

A single system may have more than one CPU. Consider assigning the daemon and your
application to different CPUs on the same system; this way, the daemos will not interfere
with your application.

A-3

NightTrace Manual

You can use the npadvi se(3C) library routine to help you determine which CPUs exist
on this system. You can the trace daemon and your application to particular CPUs with the
run(1l) command.

$ run -bbias command

Conserving Disk Space

To determine how much disk space is available on your system, run the df (1) command
with the - k option and look at the “avai | ” column. You can conserve disk space if you
permit NightTrace to discard some trace events. To do this, invoke nt r aceud with either
the - fi | ewr ap option or the - buf f er wr ap option.

The nt raceud - fi | ewr ap option makes NightTrace operate in file-wraparound mode,
rather than in expansive mode. In file-wraparound mode the trace event file can become
full of trace events. When this happens, nt r aceud overwrites the oldest trace events at
the beginning of the file with the newest ones. The overwriting is called discarding trace
events. For more information on file-wraparound mode, see “Option to Establish
File-Wraparound Mode (-filewrap)” on page 4-12.

The nt r aceud - buf f er wr ap option makes NightTrace operate in buffer-wraparound
mode, rather than in expansive mode. When the buffer is full in buffer-wraparound mode,
the application treats the shared memory buffer as a circular queue and overwrites the
oldest trace events with the newest ones. This overwriting continues until your application
explicitly callst race_fl ush() ortrace_trigger (). Only then, does nt raceud
copy the remaining trace events from the shared memory buffer to the trace event file. The
overwriting is called discarding trace events. For more information on buffer-wraparound
mode, see “Option to Establish Buffer-Wraparound Mode (-bufferwrap)” on page 4-13.

By default, nt r aceud operates in expansive mode, not file-wraparound or buffer-wrap-
around mode. In expansive mode, NightTrace uses the most disk space because it does
not discard any trace events.

You can also conserve disk space by invoking nt r aceud with the - di sabl e option so
it logs fewer trace events. For details, see “trace_enable(), trace_disable(), and Their Vari-
ants” on page 2-16.

Conserving Memory and Accelerating ntrace

A-4

nt r ace can be a memory-intensive tool. By default, when nt r ace starts up, it loads all
trace event information into memory; therefore, the more trace events in your trace event
file(s), the more memory nt r ace uses. When you move the scroll bar on the Display
Page to change the displayed interval, nt r ace processes all trace events between the last
interval and this one; if there are many trace events, the display update (or search) may
seem slow. To conserve memory and accelerate nt r ace:

* Log only trace events you are really interested in.

Performance Tuning

¢ Invoke ntrace only with the trace event files that are essential to your
analysis.

* Invoke ntrace with options (- nohardcl ock, - process -start,
and - end) that restrict which trace events get loaded. For more informa-
tion about nt r ace options, see “Command-line Options” on page 6-1.

A-5

NightTrace Manual

A4-6

B
GUI Customization

The graphical user interface (GUI) for nt r ace is based on OSF/Motif. nt r ace runs in
the environment of the X Window System. Your X terminal vendor supplies you with
vendor-specific directories and files that pertain to colors and fonts. The file that contains
available colors is called r gb. t xt . The fonts that your X server supports are in the
fusr/1ib/X11/fonts directory.

nt r ace has default values for X resources. These resources include fonts, some push
button names, window titles, window-component dimensions, and colors. You can over-
ride the following default X resource settings by providing new values in the following
places:

* Inyour. Xdef aul t s file
® On the nt r ace invocation line

® In a resource file that the xr db(1) X resource database manager reads

If you specify the same X resource on the ntr ace invocation line and in your
. Xdef aul t s file, the setting on the invocation line overrides the one in the file.

An X resource line has the following format:
object* subobject| * subobject. . . | * attribute: value
where:
object Is the name of the X client program, Nt r ace.

subobject Is a level in the widget (window component) hierarchy with the most
general level first; this always begins on an upper-case letter. In
nt r ace, the first subobject is often Col or for color displays or
Mono for monochrome displays. The last subobject may be the name
of your display object. For more information about display object
names, see “Name” on page 9-32.

attribute Is a characteristic of the last subobject; this always begins on a
lower—case letter.

value Is a setting for the attribute.

It is possible to omit levels from the widget hierarchy. If you specify all levels of the
widget hierarchy and then a value, the value applies to that specific widget. If you leave
out levels of the widget hierarchy, the attribute applies more generally, possibly to a class
of widgets.

For more information on X resources, see “Recommended Reading” on page 1-7 and the
X Window System User's Guide.

B-1

NightTrace Manual
Default X-Resource Settings for ntrace

nt r ace’s default X-resource settings follow. They are primarily grouped by window and
display object. There are some subobjects and attributes that appear in many settings.
Table B-1 lists several common subobjects and attributes along with their meanings.

Table B-1. Meanings of Common Subobjects and Attributes

Subobject/Attribute Meaning

Text Scrol | box The message (or summary) display area

Di al og The dialog box

nane The window title. Any window that has a name attribute

also has a geometry attribute.

geonetry The location and dimensions of the window. See “Recom-
mended Reading” on page 1-7 for more information.

open A push button name in a File Selection Dialog Box

caption The descriptive text within a window

In the following X-resource strings, default values are shown where they exist.

The resource strings for the global window message display area dimensions and window
title are:

Nt race*d obal W ndow* Text Scr ol | box*def aul t Li nes: 20

Nt race*d obal W ndow* Text Scr ol | box*def aul t Chars: 80

Nt race* d obal W ndow* nane: N ght Tr ace
Nt race*d obal W ndow* geonetry:

The resource strings for the line count of the display page message area follow. Note:
m ni munli nes must be less than or equal to def aul t Li nes, and def aul t Li nes
must be less than or equal to maxi munlLi nes.

Nt race* Di spl ayPage* Text Scrol | box*def aul t Li nes: 3
Nt race* Di spl ayPage* Text Scr ol | box* maxi nunii nes: 3
Nt race* Di spl ayPage* Text Scr ol | box* ni ni nunii nes: 3

The resource strings for grid attributes follow. nt r ace uses the def aul t Dot sHi gh
and def aul t Dot SW de attributes only for new display pages. Note: if
def aul t Dot sSW de is too narrow to accommodate all the display page push buttons,
nt r ace overrides this setting.

Nt race* & i d*f or egr ound:

Nt race* G i d*backgr ound:

Nt race*Gid*font:

Nt race*G i d*def aul t Dot sH gh: 30
Nt race*G i d*def aul t Dot sWde: 60

The resource strings for the File Selection Dialog Box width, window titles, push
buttons, and prompt strings follow. A File Selection Dialog Box is the type of

B-2

GUI Customization

window Nt r ace uses to prompt for file names, for example, configuration file names to

open and save.
Nt race*Fi | eChooser *wi dt h:

Nt r ace* OpenPopup* nane:

Nt r ace* OpenPopup* open:

Nt r ace* QpenPopup* capt i on:
Nt r ace* OpenPopup* geonetry:

Nt r ace* ReadPopup* nane:

Nt r ace* ReadPopup* open:

Nt r ace* ReadPopup* capt i on:
Nt r ace* ReadPopup* geonetry:

Nt r ace* SaveAsPopup* nane:

Nt r ace* SaveAsPopup* open:

Nt r ace* SaveAsPopup* capt i on:
Nt r ace* SaveAsPopup* geonetry:

180

Open Di al og
Open

Enter configuration file nane:

Read Di al og
Read
Enter event-map file name:

Save As Dial og
Save
Enter configuration file nane to save:

The resource strings for the other dialog box titles and descriptive text are:

Nt r ace* War ni ngDi al og* nane:
Nt race* Questi onDi al og* nane:
Nt race*Wor ki ngDi al og* nane:

Nt race* Macr oDi al og* nane:
Nt race* Macr oDi al og*capti on:

Nt race*Qual i fi edEvent Di al og*
Nt race*Qual i fi edEvent Di al og*

Nt race*Qual i fi edSt at eDi al og*
Nt race*Qual i fi edSt at eDi al og*

War ni ng Di al og
Question Dial og
Wor ki ng Di al og

Macr os
Li st of Macros:

namne: Qualified Events
caption: List of Qualified Events:

namne: Qualified States
caption: List of Qualified States:

The resource strings for the window title and descriptive text for all Forms are:

Nt r ace* Sear chFor n¥ nane:

Nt r ace* Summrar i zeFor nf nane:

Sear ch

Sumari ze

Nt race* Sunmar i zeFor n¥ Text Scrol | box: def aul t Chars: 84
Nt race* Summar i zeFor nt Text Scr ol | box: def aul t Li nes: 14

Nt r ace* Summar i zeFor n¥ SaveText AsPopup*nane: Save Summary Text As Dial og
Nt race* Sunmar i zeFor n¥ SaveText AsPopup* open: Save
Nt race* Summar i zeFor n¥ SaveText AsPopup* capt i on:

to:

Enter file name to save text

Nt race* Sunmar i zeFor n¥ SaveText AsPopup*geonetry:

TIP:

If you sometimes work at a monochrome monitor, you may want to have two sets of the
following X resource settings: one for color and one for monochrome. The color settings
follow. The resource names for monochrome settings are identical except they say Mono

instead of Col or.

B-3

NightTrace Manual

TIP:

Experiment with colors and shadings until you find a set you like. To avoid visual fatigue,
use highly-contrasting colors and values sparingly.

The resource strings for the specific display objects are:

Nt race* Col or *G i dLabel *backgr ound:
Nt race* Col or *G i dLabel *f or egr ound:
Nt race*Col or*G i dLabel *font:

Nt race*Col or *Gi dLabel *t ext Justi fy:
Nt race*Col or *Gri dLabel *text Gavity:

Nt r ace* Col or * Dat aBox* backgr ound:
Nt r ace* Col or * Dat aBox* f or egr ound:
Nt r ace* Col or * Dat aBox* f ont :

Nt race* Col or * Dat aBox*t ext Justi fy:
Nt r ace* Col or * Dat aBox*t ext G avi ty:

Nt race* Col or * Col umm* backgr ound:
Nt r ace* Col or * Col umm* f or egr ound:

Nt race* Col or * St at eG aph* backgr ound:
Nt r ace* Col or * St at eG aph*f or egr ound:
Nt race* Col or * St at eG aph*event Col or :

Nt r ace* Col or * Event G aph* backgr ound:
Nt r ace* Col or * Event G- aph*f or egr ound:

Nt r ace* Col or * Dat aG aph* backgr ound:
Nt r ace* Col or * Dat aG aph*f or egr ound:

Nt r ace* Col or * Rul er *backgr ound:

Nt race* Col or *Rul er *f or egr ound:

Nt race*Col or*Rul er*font :

Nt r ace* Col or *Rul er * mar kCol or :

Nt race* Col or *Rul er *| ost Event Col or :

TIP:

On a monochrome display, make sure that you can differentiate among display objects
within a Column. The easiest way to do this is to leave at least one grid dot between dis-
play objects in a Column and to make the background color of the Column black.

Grid object settings apply if you have not set the corresponding setting for a specific
display object. The general grid object resource strings are:

Nt race* Col or *G i dObj ect *backgr ound:

Nt race* Col or *G i dCbj ect *f or egr ound:

Nt race* Col or *G i dObj ect *bor der Col or :

For information about setting X resources for kernel displays, see “Color Information” on
page 12-16.

B4

Examples

GUI Customization

Setting X resources to values is most consistent if the values of the X resources do not
contain spaces. For example, even if your r gb. t Xt color file contains a color called
“navy blue,” for simplicity type it as one word without any quotation marks.

In the following examples, you are making navy blue (navybl ue) the foreground color
(f or egr ound) of all grid objects (Gri dCbj ect) on a color monitor (Col or) for
nt race (Nt r ace). This example shows how this line may appear in your . Xdef aul t s
file.

Nt race*col or*Gri dCbj ect *f oreground: navybl ue

The following example shows how you can use this setting on the nt r ace invocation
line. Note: there must not be any spaces between the colon and the value.

$ ntrace -xrm Ntrace*col or*Gi dObj ect *f or egr ound: navybl ue

Exercise: Customizing Display Colors

Edit your . Xdef aul t s file so it defines background colors for the following display
objects. Suggested colors are provided.

Table B-2. Suggested Colors for X Resources

Display Object Suggested Color
Column CornflowerBlue
DataGraph PowderBlue
StateGraph LightSteelBlue
Ruler PaleGreen
DataBox Aquamarine
GridObject SkyBlue

B-5

NightTrace Manual

A possible solution follows:

Nt r ace* Col or * Col um*backgr ound: Cor nf | ower Bl ue

Nt r ace* Col or * Dat aG aph*backgr ound: Powder Bl ue

Nt r ace* Col or * St at eGr aph*backgr ound: Li ght St eel Bl ue
Nt r ace* Col or *Rul er *backgr ound: Pal eG een

Nt r ace* Col or * Dat aBox* backgr ound: Aquanari ne

Nt race* Col or *Gi dObj ect *backgr ound: SkyBl ue

To test your entries at an X terminal, invoke nt r ace with the | og trace event file, and
bring up the default display page.

B-6

Z 2

Z 2

2

Z 2

Z 2

C
Answers to Common Questions

What can I do if trace events are not logging at all?

Verify that the trace event file name on the t race_begi n() call matches the one on the user daemon
invocation. Furthermore, check that the file exists and that you have permission to read and write it.
Additionally, be sure your thread name contains no embedded spaces or punctuation, including periods. See
“trace_begin()” on page 2-5 and “trace_open_thread()” on page 2-9 for more information.

When should I log a different trace event ID number?

Each endpoint of a state should have a different trace event ID number. Usually each trace event logging
routine logs a different trace event ID number. This lets you easily identify which source line logged the trace
event, how often that source line executed, and what order source lines executed in. However, it is sometimes
useful to log the same trace event ID in multiple places. This makes it possible to group trace events from
related, but not identical, activities. For more information, see “trace_event() and Its Variants” on page 2-10.

How can I prevent user trace events from being discarded or lost?

Use expansive mode; avoid use of buffer or file wrapping options. Flush the shared memory buffer more
often by tuning:

¢ The shared memory buffer size
¢ The shared memory buffer’s flush percentage
® Increase the priority of the user trace daemon

¢ Bind the user trace daemon to a CPU with minimal activity

See “Preventing Trace Events Loss” on page A-1 and Chapter 4 for more information.

What can I do if trace events are not appearing in an ntrace display?

Press Refresh, fill out the Search Form, fill in values in the interval control area, use the interval scroll bar,
keep pressing the Zoom Out push button until you see trace events, examine a display object configuration
so you know what it is “listening” for, add or reconfigure display objects on the grid. See Chapter 7 “Viewing
Trace Event Logs” for more information.

My trace event timings occasionally have huge gaps of time between them. What is the cause?

You are probably running your application on a Series 6000 system and are calling cl ock_set ti ne().
This system call can corrupt the system interval timer which NightTrace uses for trace event timings.

C-1

NightTrace Manual

Q: How can I prevent kernel trace events from being lost?
A:
L]

® Verify that the raw kernel trace output file is on a local file system and not an NFS file sys-
tem.

® Ask your system administrator to increase the size of TR_BUFFER_CCOUNT kernel tunable
parameter (PowerMAX Only)

¢ Increase the priority of the kernel trace daemon

* Bind the kernel trace daemon to a CPU with minimal activity

C-2

Glossary

This glossary defines terms used in the documentation. Terms in ifalics are defined here.

Ada task

Add

Apply

argument

boolean table

buffer-wraparound mode

button

click

An Ada task is a construct of statements which logically execute in parallel with
other tasks within an Ada program (process). Tasks communicate asynchronously
via variables whose visibility is defined by normal Ada scoping rules. Tasks
communicate synchronously via rendezvous between a calling and accepting task.

A push button that creates a new macro, qualified event, or qualified state on the
current display page.

A push button that validates and saves all changes. The same functionality is
available by pressing <Enter> in a modified field.

See trace event argument.

A pre-defined string table defined in the / usr/ 1 i b/ Ni ght Tr ace/ t abl es file.
It associates O with f al se and all other values with t r ue.

The mode that causes the nt r aceud daemon to treat the shared memory buffer as a
circular queue and to overwrite the oldest trace events with the newest ones; this
means that nt r aceud intentionally discards the oldest trace events to make room
for the newest ones. Invoke nt r aceud with the - buf f er wr ap option to obtain
this behavior. The two other nt r aceud modes are expansive mode and file-wrap-
around mode.

See mouse button, push button, and radio button.

To press and release a mouse button without moving the pointer. Usually you do
this in NightTrace to select menu items, push buttons, or radio buttons.

Glossary-1

NightTrace Manual

Close

color display

Column

configuration

configuration file

Configuration Form

Configure

context switch

context switch line

control

Glossary-2

A push button that closes a dialog box. This can also be a menu item that makes a
window close.

An X server display that contains greater color variety than black, gray, and white.
See also monochrome display.

A display object that constrains the width of StateGraphs, EventGraphs, Data-
Graphs, and Rulers.

The definition of a display object, macro, qualified event, or qualified state.

An NightTrace-generated ASCII file that holds display pages, macro, qualified
event, and qualified state definitions. This can also be a hand-edited table file, con-
taining definition of string tables and/or format tables.

The NightTrace form that allows you to define a display object’s data content,
constraints, and graphic attributes, the value of a macro or the constraints of a
qualified event or qualified state.

A push button that reconfigures and renames the selected macro, qualified event, or
qualified state.

An action that occurs inside the kernel. Its functions are to save the state of the
process that is currently executing, to initialize the state of the process to be run, and
to begin execution of the new process.

A vertical line superimposed on an exception graph or a syscall graph on a kernel
display page. It indicates that the kernel has switched out the process that was
previously running on the CPU and switched in a new process.

See mouse button, push button and radio button.

CPU box

current instance of a state

current time

current time line

current trace event

cursor

daemon definition

DataBox

DataGraph

Default Kernel Page

Glossary

A GridLabel on a kernel display page. It identifies which logical central processing
unit the displayed data corresponds to. Logical CPU numbers are related to, but not
necessarily identical to, physical CPU numbers.

The instance of a state which has begun but has not yet completed. Thus, the cur-
rent time line would be positioned within the region from the start event up to, but
not including, the end event.

The time in the interval up to which all display objects on a display page have been
updated.

The dashed vertical bar that represents the current time in a Column.

The last trace event on or before the current time line.

See text cursor.

The configuration of a particular trace daemon which includes daemon collection
modes and settings, daemon priorities and CPU bindings, and data output formats,
as well as which trace event types are handled by that daemon.

A display object that displays possibly variable textual or numeric information.

A scrollable display object that graphically displays a bar chart of an expression’s
value as it changes over the interval.

A menu item that automatically creates a display page to depict context switches,
interrupts, exceptions, and system calls with display objects for each CPU on the
system.

Glossary-3

NightTrace Manual

Default Page

Delete

device table

dialog box

dimmed

disabled

discarded trace event

display object

display page

dotted area

Glossary-4

A menu item that automatically creates a display page with a StateGraph for each
trace event logging process in your trace event file(s).

Remove the selected macro, qualified event, or qualified state.

A pre-defined, dynamically generated string table in the vect or s file created by
nt r ace when consuming raw kernel trace data files. string table contains the
names of the devices that are currently configured in the kernel.

A transient secondary window that accepts input or conveys a message, for example
information, errors, warnings, and questions. This construct is occasionally called a
pop-up window.

See disabled.

To flag a component, such as a menu item or push button, as temporarily unavail-
able by graying out the label.

A trace event that nt r aceud intentionally did not log in buffer-wraparound or
file-wraparound mode.

A user-configured graphical component of a display page that shows trace events,
states, trace event arguments, other numeric and text data. Display objects include
the following: GridLabels, DataBoxes, Columns, StateGraphs, EventGraphs, Data-
Graphs and Rulers.

The NightTrace window that allows you to layout display objects and see trace event
and state information in them. You can store display pages in configuration files.

See grid.

drag

duration

Edit mode

ellipses (...)

end function

event

Glossary

To press and hold down a mouse button while moving the mouse. Usually you do
this in NightTrace to position a display object.

The period of time between the start and end frace events of some state.

The display-page mode that allows you to create, edit, and configure display
objects, macros, qualified events, and qualified states. The other display-page mode
is View mode.

An indicator at the end of a menu item that tells you this selection makes a dialog
box appear. Also, an indicator in command line option summaries and syntax
listings that tells you more than one occurrence of the previous syntactic component
is allowed.

A state function that provides information about the ending trace event of the last
completed instance of a state. The state to which the end function applies is either
the qualified state specified to the function, or the state being currently defined.
Thus, if a qualfied state is not specified, end functions are only meaningful when
used in expressions associated within a state definition.

See trace event.

event_arg_dbl_summary table

event_arg_summary table

EventGraph

A pre-defined format table defined in / usr/ | i b/ Ni ght Trace/tabl es. It
contains formats for statistical displays of trace event matches and type double argu-
ments.

A pre-defined format table defined in / usr/1i b/ Ni ght Trace/t abl es. It
contains formats for statistical displays of trace event matches and type long
arguments.

A scrollable display object that graphically displays trace events as vertical lines in
a Column.

Glossary-5

NightTrace Manual

event ID

event map file

event_summary table

event table

event tag

exception

exception graph

expansive mode

expression

Exit

Glossary-6

See trace event ID.

User-generated ASCII file that lets you associate or map short mnemonic fags or
labels with numeric trace event IDs. Kernel trace event tags are defined in
/usr/lib/ N ght Trace/ event nap.

A pre-defined format table defined in /usr/1i b/ Ni ght Trace/tabl es. It
contains formats for statistical displays of trace event matches and trace event time
gaps. It determines the default event-summary output format.

A pre-defined, dynamically generated string table. 1t is internal to NightTrace and
maps all known numeric trace event IDs with symbolic trace event tags.

See trace event tag.

An event internal to the currently executing process that stops the current execution
stream. Exceptions can be suspended and resumed.

A StateGraph on a kernel display page. 1t displays states representing exceptions
executing on the associated CPU.

The (default) mode that causes the nt r aceud daemon to copy all trace events that
ever reach the shared memory buffer to the indefinitely-sized trace event file.
Invoke nt r aceud without the - fi | ewr ap and - buf f er wr ap options to obtain
this behavior. The two other nt r aceud modes are buffer-wraparound mode and
file-wraparound mode.

A combination of operators and operands that evaluate to a value. Operands include
constants, macro calls, function calls, qualified events, and qualified states.

A menu item that terminates an NightTrace session.

file-wraparound mode

flushing the buffer

font

format function

format table

function

gap

global process identifier

Global Window

graphical user interface

Glossary

The mode that causes the nt r aceud daemon to overwrite the oldest frace events in
the beginning of the trace event file with the newest ones; this means that
nt r aceud intentionally discards the oldest trace events to make room for the
newest ones. Invoke nt r aceud with the - fi | ewr ap option to obtain this
behavior. The two other nt r aceud modes are expansive mode and buffer-wrap-
around mode.

The process of the nt r aceud daemon copying trace events from the shared
memory buffer to a trace event file.

A style of text characters.

A function that allows you to display a string.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding dynamically-formatted
and generated character string. You hand-edit format tables into configuration files.
The related structure is a string table.

A pre-defined NightTrace entity that may be used in an expression. NightTrace pro-
vides several classes of functions: trace event, multi-event, start, end, multi-state,
offset, summary, format, and table functions.

The period of time between two trace events, possibly the end of one state and the
beginning of another.

See PID.

The NightTrace window that displays summary statistics pertaining to your trace
event files and allows you to open NightTrace-related files.

The mechanism NightTrace uses to receive input and provide displays. It is based on
the X Window System and Motif.

Glossary-7

NightTrace Manual

grid

GridLabel

GUI

Help

host system

icon

instrumented code

interrupt

interrupt graph

The region of the display page filled with parallel rows and columns of dots that
holds display objects.

A display object that displays constant textual information.

See graphical user interface.

A menu item that presents the online manual using the HyperHelp viewer.

The system on which the NightTrace GUI is running.

The small graphical image and/or text label that represents a window or window
family when the window is minimized. The text label is either the window title or
an abbreviated form of the title. Iconified windows are still active.

See trace event ID.

Source code after you have put calls to NightTrace library routines into it.

An event external to the currently executing process; an interrupt stops the current
execution stream to begin execution of a higher-priority execution stream. There are
device-related and software-generated interrupts. Interrupts have an associated
priority known as the interrupt priority level (IPL), which allows an interrupt to
interrupt the execution stream of a lower-IPL interrupt.

A DataGraph on a kernel display page. 1t displays states representing interrupts
executing on the associated CPU.

interrupt priority level (IPL) register

Glossary-8

A system register than can be used by the NightTrace library to prevent rescheduling
and interrupts during trace event logging.

interval

interval control area

interval timer

Kernel Trace Event File

keyboard

Glossary

A time period in the trace session delimited by the Time Start and Time End
fields of the interval control area.

The region of the display page that holds nine numeric fields that define and
manipulate the interval and the display objects on the grid.

The system timer on the NightHawk 6000 Series and TurboHawk systems that
NightTrace uses to timestamp trace events.

A trace event file is generated by a kernel trace daemon. This file contains raw ker-
nel data and is automatically transformed into a filtered file (with a new filename
using the “ . nt f” suffix) by nt r ace. Either a raw kernel trace event file or a fil-
tered file may be specified to nt r ace. The filtering process also creates a vectors
file which is formed by appending a “. vec” suffix to the original trace event file
name.

A traditional input device for entering text into fields. In this manual, this is a
standard 101-key North American keyboard.

last completed instance of a state

last exception box

last interrupt box

last syscall box

The most recent instance of a state that has already completed. Thus, the current
time line would be positioned either on, or after, the end event for a state.

A DataBox on a kernel display page. It displays the last exception prior to the
current time line that executed (and may still be executing) on the associated CPU.

A DataBox on a kernel display page. 1t displays the name of the last interrupt prior
to the current time line that executed (and may still be executing) on the associated
CPU.

A DataBox on a kernel display page. 1t displays the last syscall prior to the current
time line that executed (and may still be executing) on the associated CPU.

lightweight process identifier

See LWPID.

Glossary-9

NightTrace Manual

lost trace event

LWPID

macro

mark

match

menu

menu bar

message display area

monochrome display

A trace event nt r aceud was unable to log. Several nt r aceud options exist to
prevent this trace event loss.

An integer that represents an operating system lightweight process identifier. It
makes up the second half of a PID.

A user-defined named expression stored in a configuration file. When you call a
macro, precede the macro name with a dollar sign.

The solid triangle on a Ruler that points to a particular time.

A trace event or state that meets user-defined qualifying configuration criteria.

A list of user-selectable choices.

The horizontal band near the top of a window that contains a list of labeled
pull-down menus.

The scrolling region of the Global Window or the display page that holds textual
statistics, as well as error and warning messages.

A black, gray, and white X-server display. See also color display.

most recent instance of a state

mouse

Glossary-10

If the current time line is positioned within a current instance of a state, then it is
that instance of the state. Otherwise, it is the last completed instance of a state.

In this manual, a three-button pointing device for point-and-click interfaces.

mouse button

multi-event function

multi-state function

name_pid table

name_tid table

New Page

NightTrace

NightTrace thread

NightTrace thread identifier

Glossary

A part of the mouse that you can press to alter aspects of the application. Each
mouse button has a different purpose. Button 1 is usually for selecting or dragging.
Button 2 is usually for moving display objects. Button 3 is usually for resizing
display objects. You can make multiple selections by simultaneously pressing
<Shift> and clicking mouse button 1. You may click, drag, press, and release
mouse buttons.

Multi-event functions return information about ocurrences of events, or relation-
ships between occurrences of events, before the current time line.

Multi-state functions return information about instances of states, or relationships
between instances of states, before the current time line.

A pre-defined, dynamically generated string table. 1t is internal to NightTrace and
associates node ID numbers with the the name of each node's process ID table.

A pre-defined, dynamically generated string table. 1t is internal to NightTrace and
associates node ID numbers with the the name of each node's thread ID table.

A menu item that creates an empty display page.

The interactive debugging and performance analysis tool that is part of the Night-
Star tool kit. It consists of the nt r aceud daemon, NightTrace library routines, and
the nt r ace display utility. This product allows you to log trace events and data
from applications written in C, Fortran, or Ada; these applications may be composed
of one or more processes, running on one or more CPUs. You can then examine
these trace events and those from the kernel through the nt r ace display utility.

A process, thread or Ada task (or a set of any combination of these) that is
associated with a uniquely named trace context. The thread name is derived from
the argument specified to the t r ace_open_t hread() function.

See TID.

Glossary-11

NightTrace Manual

NightView

node

node box

node ID

node name

node_name table

node PID table

node TID table

NT_ASSOC_PID

Glossary-12

A symbolic debugger that is part of the NightStar tool kit. It lets you debug C and
Fortran applications; these applications may be composed of one or more processes,
running on one or more CPUs. Among other things, NightView can automatically
patch trace event logging routines into your executable application.

A system from which a trace event file can come from.

If the RCIM synchronized tick clock is used to timestamp events, this is a GridLabel
on a kernel display page. 1t identifies which node to which the displayed data corre-
sponds.

A unique identifier internally assigned by NightTrace to every node that has an trace
event file in a trace file analysis.

The name of a system from which a trace event file can come.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates node ID numbers with node names.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names for a particular node. The
name of each node's table is pi d_nodename where nodename is the node's name. If
kernel tracing, this table is stored in the vect or s file.

A pre-defined, dynamically generated string table. 1t is internal to NightTrace. If
user tracing, it associates NightTrace thread ID numbers with thread names for a
particular node. If kernel tracing, this table is not used. The name of each node's
table is t i d_nodename where nodename is the node's name.

An overhead trace event that nt r aceud logs at the beginning and end of each
process.

NT_ASSOC_TID

NT_CONTINUE

ntrace display utility

ntraceud

object

offset

offset function

OK

Open

ordinal trace event number

panel

Glossary

An overhead trace event that nt r aceud logs at the beginning and end of each
thread and Ada task.

An overhead trace event that nt r aceud logs for multi-argument trace events.

The part of NightTrace that graphically displays trace events, trace event data, and
states for debugging and performance analysis.

The NightTrace daemon process that allows you to log user-defined trace events
and data from user applications written in C, Fortran, or Ada. These applications
may be composed of one or more processes, running on one or more CPUs.

See display object.

The number that identifies the position of a trace event in the chronologi-
cally-ordered sequence of trace events, regardless of the trace event ID. Counting
starts from zero. For example, if a trace event with trace event ID 71 is the third
trace event in the trace session, then its offset is 2.

A function that takes an expression that evaluates to an offset as a parameter.

A push button that acknowledges the warning in a dialog box.

A menu item and push button that opens an existing file.

See offset.

A window component that groups related buttons, for example push buttons.

Glossary-13

NightTrace Manual

PID

PID table

point

pointer

pop-up window

press

pull-down menu

push button

qualified event

qualified state

Glossary-14

A 32-bit integer that represents an operating system process. The following syntax
numerically specifies a PID: raw_PID’LWPID. The operating system process iden-
tifier (raw PID) is contained in the upper 16 bits and the lightweight process identi-
fier (LWPID) is contained in the lower 16 bits.

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates process identifiers (PIDs) with process names. If kernel tracing, the pi d
string table in the vect or s file.

To move the mouse so the mouse pointer is positioned at the place of interest.

A graphical symbol that represents the mouse pointer’s current location in the
window. The shape of the pointer shows the current usage. Usually a pointer is
shaped like an arrow pointing to the upper left.

See dialog box.

To hold down a mouse button without releasing it or to depress a keyboard key.

A list of related choices called menu items pulled down from the menu bar. Click
on a menu item to select it.

A graphic image of a labeled button. Click on a push button to select it.

Qualified events provide a means for referencing a set of one or more trace events
which may be restricted by conditions specified by the user.

Qualified states provide a means for defining regions of time based on specific start-
ing and ending events and restricted by conditions specified by the user.

radio button

raw PID

RCIM

Glossary

A graphic, labeled diamond-shape that represents a mutually exclusive selection
from related radio buttons. Click on a radio button to select it.

A 16-bit integer that makes up the first half of a PID.

The Real-Time Clock and Interrupt Module is a multi-function PCI mezzanine card
(PMC) designed for time-critical applications that require rapid response to external
events, synchronized clocks, and/or synchronized interrupts. The RCIM provides
synchronized clocks (tick timer and posix format clock), edge-triggered interrupts,
real-time clocks, and programmable interrupts.

RCIM synchronized tick clock

Read

record

region

release

Reset

Restore

Ruler

The primary clock on an RCIM. It is a 64-bit non-interrupting counter that counts
each tick of the clock (400 nanoseconds). When connected to other RCIMs, the
synchronized tick clock provides a time base that is consistent for all connected sin-
gle board computers.

A menu item and push button that read an existing file.

See trace event.

The period of time between the mark and the current time.

To let go of the currently-pressed mouse button.

A push button that cancels (undoes) all unapplied changes.

A push button that cancels all changes since the dialog box was displayed.

A scrollable display object that appears as a hash-marked timeline within a Column.
The Ruler may also contain reverse video “L”s indicating lost trace events and
user-defined marks.

Glossary-15

NightTrace Manual

running process box

Save

Save As

Save Text

Save Text As

SBC

scroll bar

Search Form

selection

separator

Glossary-16

A DataBox that shows the process that is executing at the current time line on the
associated CPU. If the RCIM module is used to timestamp events, this DataBox will
show the process that is executing at the current time line on both the associated
CPU and node.

A menu item and push button that overwrite an existing configuration file with the
current display page.

A menu item that saves the current display page in a new configuration file.

A menu item that overwrites an existing summary text file with text from the
summary display area.

A menu item that saves the current summary text from the summary display area
into a new summary text file.

Single-board computer.

The narrow, rectangular graphic device used to change a display that would not
otherwise fit in the window. It consists of a trough, a slider, and arrowhead buttons.
If the slider does not fill the trough, there is a gap on one or both sides.

The NightTrace form that allows you to define criteria to be used to locate a trace
event in a trace event file by its configured characteristics and its location in the file.

The display object that you clicked on. Alternatively, a selection may be the region
of a text field you dragged the mouse over. For menu items, push buttons, and radio
buttons NightTrace indicates selection by highlighting your choice. For display
objects, NightTrace places handles on the display object. For dragged-over text
fields, NightTrace displays that text in reverse video.

A line that groups related window components or menu components.

session

shared memory buffer

slider

spin lock

start function

state

state function

StateGraph

Glossary

A collection of one or more daemon definitions.

The intermediate destination of trace events before nt r aceud copies them to the
trace event file on disk.

The graphic part of a scroll bar that you move in the trough to change the display.
This component is sometimes called a thumb.

A device used to protect a resource, for example, the shared memory buffer.

A state function that provides information about the start event of the most recent
instance of a state. The state to which the start function applies is either the quali-
fied state specified to the function, or the state being currently defined. Thus, if a
qualfied state is not specified, start functions are only meaningful when used in
expressions associated within a state definition. In addition, start functions should
not be used in a recursive manner in a Start Expression; a start function should
not be specified in a Start Expression that applies to the state definition contain-
ing that Start Expression. Conversely, an End Expression may include start
functions that apply to the state definition containing that End Expression.

A state is a region of time bounded by two trace events, a start event and an end
event. An instance of a state is the period of time between the start event and end
event, including the start and end events themselves. Additional conditions may be
specified in a state definition to further constrain the state. Instances of states do not
nest; that is, once a state becomes active, events that might normally satisfy the con-
ditions for the start event are ignored until the end event is encountered. See also
qualified state.

The class of NightTrace functions which provide information about states, includ-
ing: start functions, end functions, and multi-state functions.

A scrollable display object that graphically displays states as bars and trace events
as vertical lines in a Column.

Glossary-17

NightTrace Manual

state_summary table

streaming

string table

Summarize Form

summary display area

summary function

summary syscall

syscall

syscall graph

Glossary-18

A pre-defined format table defined in / usr/ | i b/ Ni ght Trace/tabl es. It
contains formats for statistical displays of state matches, state durations, and state
time gaps. It determines the default state-summary output format.

The method used by the NightTrace of sending trace data from daemons directly to
the NightTrace display.

The pre-defined or user-defined structure that allows you to group related integer
values together and associate each one with a corresponding static character string.
You hand-edit string tables into configuration files. The related structure is a format
table.

The NightTrace form that allows you to obtain trace event and state statistics, such
as minimum, maximum, average, and total values of gaps, durations, and trace
event arguments.

The scrolling region of the Summarize Form that holds textual summary
statistics.

A function that takes another expression as a parameter (except for
sunmary_mat ches()).

A system call that is a special type of exception. A syscall is made when a user
program forces a trap into the operating system via a special machine instruction. A
syscall is used to request a given service from the kernel. Many library routines
supplied as part of the operating system make syscalls to accomplish their functions.
Syscalls can be suspended and resumed.

System call.

A StateGraph on a kernel display page. 1t displays states representing system calls
(syscalls) executing on the associated CPU.

syscall table

table

table function

tag

task

task ID

text cursor

thread

thread ID

TID

Glossary

A pre-defined, dynamically generated string table in the vect or s file. This string
table contains the names of all the possible system calls (syscalls) that can occur on
the system.

See format table and string table.

A function that allows you to extract information from user-defined and pre-defined
string tables and format tables.

See trace event tag.

See Ada task.

A 16-bit integer chosen by the Ada run-time executive that uniquely identifies an
Ada task within an Ada program.

The blinking vertical bar in an editable text field that shows your current edit
position within the field.

A sequence of instructions and associated data that is scheduled and executed as an
independent entity. Every UNIX process linked with the Threads Library contains at
least one, and possibly many, threads. Threads within a process share the address
space of the process.

A 16-bit integer chosen by the threads library that uniquely identifies a thread
within a given process.

A 32-bit integer that represents a unique context to which trace events can be
associated. The following syntax numerically specifies a TID: raw PID’task id,
raw_PID thread_id, or raw_PID 0 (if neither Ada tasks nor threads are in use). The
operating system process ID (raw PID) is contained in the upper 16 bits and either a
thread ID, task ID, or zero is contained in the lower 16 bits.

Glossary-19

NightTrace Manual

TID table

timestamp

Time Base Register

time quantum

trace context

trace event

trace event argument

trace event file

trace event function

Glossary-20

A pre-defined, dynamically generated string table. It is internal to NightTrace and
associates NightTrace thread identifiers (77Ds) with thread names. This table is not
used in kernel tracing.

The time at which a specific trace event was logged. This provides the means by
which the chronology of the trace events logged by multiple processes can be
assembled. The timestamp is obtained from the system interval timer, the Time
Base Register, or the RCIM synchronized tick clock, depending on either the system
architecture or user-specified options to nt r aceud.

The system timer on the Power Hawk/PowerStack systems that NightTrace uses to
timestamp trace events.

The fixed period of time for which the kernel allocates the CPU to a process.

All trace points are associated with a log file (established viat race_start)anda
thread name (established viat r ace_open_t hr ead). If two processes (or tasks,
or threads) are associated with the same log file and thread name, then they are said
to have the same trace context. If they differ in log file, thread name, or both, then
they have different trace contexts.

A user-defined point of interest in an application’s source code that NightTrace
represents with an integer trace event ID. Alternatively this may be a predefined
point of interest in the kernel. Along with the trace event ID, NightTrace records the
timestamp when the trace event occurred, any arguments logged with the trace
event, and the logging process identifier (PID).

A user-defined numeric value logged by an application via a trace event.

An nt r aceud-created binary file that contains sequences of trace events and data
that your application and the nt r aceud daemon logged.

The class of NightTrace functions that provide information about trace events. They
operate on either the qualified event specified to that function or, if unspecified, the
current trace event. Trace event functions include multi-event functions.

trace event ID

trace event tag

trace point

trough

vector table

View mode

widget

window

window manager

wraparound mode

Glossary

An integer that identifies a trace event. User trace event IDs are in the range
0- 4095, inclusive. Kernel trace event IDs are in the range 4100- 4300, inclusive.

A symbolic name mapped to a numeric trace event ID in an event map file.

A place of interest in the source code. In user tracing, at each trace point in your
application you call a trace event logging routine to log a trace event, possibly with
additional data describing part of your program’s state at that time. Kernel trace
points and trace events are already defined and embedded in the kernel source.

The graphic part of a scroll bar that holds the slider.

A pre-defined, dynamically generated string table in the vect or s file. This string
table contains the interrupt and exception vector names associated with the system
on which the kernel tracing was performed.

The display page mode that allows you to see, search for, and summarize trace event
information in the message display area, the summary display area, and display
objects on the grid; create, edit, and configure macros, qualified events, and quali-
fied states. The other display-page mode is Edit mode.

A window component, for example a scroll bar or push button.

A rectangular screen area that permits the display and/or entry of data. The Night-
Trace display utility consists of several windows.

The program that controls window placement, size, and operations.

The mode that causes the nt r aceud daemon to intentionally discard old events.
There are two forms of wraparound mode: buffer-wraparound and file-wraparound.
The other nt r aceud mode is expansive mode.

Glossary-21

NightTrace Manual

Glossary-22

Index

Symbols Buffer-wraparound mode 2-21, 4-4, 4-13, 4-17, 4-18,
A-1, A-4
Xdefaults file B-1, B-5
/dev A-3
/dev/spl A-3 C

/etc/conf/mtune.d/trace A-2

/usr/bin/ntracekd 5-1

/usr/bin/ntraceud 4-1

/usr/include/ntrace.h 2-1, 2-24, 4-23

/usr/lib/libntrace.a 2-24

/usr/lib/NightTrace/eventmap 6-12, 10-125, 10-126,
11-5,11-6, 11-18, 11-19, 12-6

/usr/lib/NightTrace/tables 6-16, 6-17, 6-22, 6-23,
10-105, 10-107, 10-109

/usr/lib/X11/fonts 9-38, B-1

C language 1-3
compiling and linking 2-25
source considerations 2-1
C thread identifier 9-36
Center push button 8-20
cl ock_settime(3C) routine 2-1, C-1
cl ock_synchroni ze(1M command 2-8
Color display 12-16, B-1, B-3
Column 7-2, 7-3, 8-14, 9-6, B-4
Comments
configuration file 6-13
A event-map file 6-10
Common configuration parameters 9-32
Configuration file 6-12
Configuration form 9-16, 9-18, 9-21, 9-23, 9-27, 9-30,
9-40
DataBox 9-18
DataGraph 9-27
EventGraph 9-21
GridLabel 9-16
Ruler 9-30
StateGraph 9-23
Configuration parameters
Background Color 9-38
common 9-32
CPU List 9-35
B Event Color 9-25
Event List 9-32
Fill Style 9-27
Fonts 9-38
Foreground Color 9-38
If-Expression 9-33
Lost Event Color 9-30
Mark Color 9-30
Maximum 9-28
Minimum 9-28
Node List 9-37
PID List 9-35

Ada language 1-3
compiling and linking 2-25
Ada task identifier 9-36, 10-5, 10-23, 10-46, 10-64,
10-86
Apply push button 7-5, 7-7, 8-20
ar g function 10-4, 10-16
arg_dbl function 10-17
ar g1 function 6-22,9-34, 10-4, 10-110
ar g2 function 9-34, 10-7
avg function 10-99

Background Color configuration parameter 9-38
boolean table 6-17, 9-34
Box

CPU 12-10

last exception 12-13

last interrupt 12-12

last syscall 12-15

Node 12-11

running process 12-10

Index-1

NightTrace Manual

Text 9-16
Text Gravity 9-39
Text Justify 9-39
Then-Expression 9-34, 10-105, 10-108, 10-110
TID List 9-36
Configuring
display object 9-15
Conserving disk space 4-28, A-1, A-4
Constant string literals 6-21, 10-8, 10-106
Constant times 10-3
Context switch 12-1, 12-4
lines 12-11, 12-13, 12-15
Counters 9-5, 9-19
cpp(1) command 2-24
CPU box 12-10
cpu function 9-33, 10-25
CPU List configuration parameter 9-35
CPU List field 9-35
CPU number
logical 9-35, 12-10
physical 12-10
Create menu 9-1, 9-12
Create mouse operation 9-12
crossref trace_flush_and trace trigger 4-17
Current time 7-2
Current Time field 8-15, 8-18
Current time line 7-2, 7-2, 12-9, 12-12, 12-13
centering 8-20
Cutoff 4-4, 4-5, 4-18, A-3, C-1

D

DataBox 9-5,9-18, 10-108, 12-10, 12-12, 12-13, 12-16,
B-4
configuration form 9-18
using as a counter 9-5,9-19
DataGraph 8-14, 9-9, 9-27, 12-12, B-4
configuration form 9-27
Fill Style configuration parameter 9-27
Maximum configuration parameter 9-28
Minimum configuration parameter 9-28
Debugger
NightView 1-4, 2-1
device table 6-19, 12-4, 12-17
device_nodename table 6-19, 12-18
df (1M command 4-12, 4-14, A-2, A-3
Dialog box
Macro B-3
Qualified Event B-3
Qualified State B-3
Warning B-3
Dimmed menu item. see Disabled menu item

Index-2

Directory
/dev A-3
/etc/conf/mtune.d A-2
/ust/lib/NightTrace 6-12, 6-16, 6-17, 6-22, 6-23,
10-105, 10-107, 10-109, 10-125, 10-126,
11-5,11-6,11-18, 11-19, 12-6
/usr/lib/X11/fonts 9-38, B-1
Disabled menu item 3-19
Disabling
IPL usage 4-4, 4-9,4-28, A-3
library routines 2-1, 2-16, 2-24
page locking 4-4, 4-11, 4-28, A-3
trace events 2-17, 4-4, 4-24
tracing 2-16, 2-24
Discarding trace events 2-21, A-1, A-4, C-1
Display
color 12-16, B-1, B-3
monochrome 9-7, B-1, B-3, B-4
Display object 1-3, 9-1
Column 7-2,7-3, 8-14, 9-6, B-4
configuring 9-15
creating 9-1, 9-12
DataBox 9-5, 9-18, 10-108, 12-10, 12-12, 12-13,
12-16, B-4
DataGraph 8-14, 9-9, 9-27, 12-12, B4
EventGraph 8-14,9-7,9-21, B-4
GridLabel 9-4, 9-16, 12-10, 12-11, B4
moving 9-14
overlapping 9-14
placement 9-12
resizing 9-14
Ruler 8-20, 9-30, A-1, B-4
selecting 9-13
StateGraph 8-14, 9-8, 9-23, 10-111, 12-13, 12-16,
B-4
Display object configuration parameters
Background Color 9-38
common 9-32
CPU List 9-35
Event Color 9-25
Event List 9-32
Fill Style 9-27
Font 9-38
Foreground Color 9-38
If-Expression 9-33
Lost Event Color 9-30
Mark Color 9-30
Maximum 9-28
Minimum 9-28
Node List 9-37
PID List 9-35
Text 9-16
Text Gravity 9-39
Text Justify 9-39

Then-Expression 9-34, 10-105, 10-108, 10-110

TID List 9-36
Display page 7-2, B-2

X resources B-2
Display page area

grid 8-14, B-2

interval scroll bar C-1

message display area 7-1, 7-5, 8-14, 8-21, 9-7, 9-8,

9-9, 9-14
Dotted area. see Grid
Duration
state 10-74

Edit mode 3-18, 7-1
Editing operation

positioning 7-8

restore the default 7-7

undo 7-7
Enabling

trace events 2-17, 4-4, 4-26
End functions 10-55
end_ar g function 10-57
end_ar g_dbl function 10-58
end_cpu function 10-66
end_i d function 10-56
end_| wpi d function 10-62
end_node_i d function 10-69
end_node_nare function 10-72
end_num ar gs function 10-59
end_of f set function 10-67
end_pi d function 10-60
end_pi d_t abl e_nane function 10-70
end_r aw_pi d function 10-61
end_t ask_i d function 10-64
end_t hread_i d function 10-63
end_ti d function 10-65
end_ti d_tabl e_nane function 10-71
end_t i e function 10-68
Event

gap 10-35

matches 9-19, 9-35, 10-36

qualified 10-113

tag. see Trace event

tag

Event Color configuration parameter 9-25
Event Color field 9-25
Event Count field 8-18
Event End field 8-15, 8-18
Event ID. see Trace event

1D

Event List configuration parameter 9-32

Event Start field 8-15, 8-18

event table 6-16, 9-34

Event. see Trace event

event_arg_dbl summary table 6-23, 9-35

event_arg_summary table 6-23, 9-35

event _gap function 10-35

event _mat ches function 9-19, 10-36

event_summary table 6-23,9-35

EventGraph 8-14,9-7,9-21, B-4
configuration form 9-21

Event-map file 2-13, 6-2, 6-10, 12-6

Index

eventmap file 6-12, 10-125, 10-126, 11-5, 11-6, 11-18,

11-19, 12-6
Exception 12-3,12-13, 12-17, 12-18, 12-20
graph 12-13
reference 12-21
resumption 12-3, 12-13
suspension 12-3, 12-13
exec(2) service 2-7,2-10

Expansive mode 4-2,4-4,4-5,4-12,4-13, 4-14, A-1,

A-4
Expressions

constant string literals 6-21, 10-8, 10-106

functions 10-4

macros 6-9, 8-1

operands 10-2

operators 10-1

qualified events 6-9, 6-11, 8-1, 9-32
qualified states 6-9, 8-1, 9-32

Field
CPU List 9-35
Current Time 8-15, 8-18
editing operations 7-7
Event Color 9-25
Event Count 8-18
Event End 8-15, 8-18
Event Start 8-15, 8-18
Font 9-38
Foreground Color 9-38
Increment 8-15, 8-19
Lost Event Color 9-30
Mark Color 9-30
Maximum 9-28
Minimum 9-28
Summary-Expression 10-110
Text 9-16
Time End 8-15, 8-17
Time Length 8-17

Index-3

NightTrace Manual

Time Start 8-15, 8-17
Zoom Factor 8-18
Field editing
multiple fields 7-5
single fields 7-5
File
Xdefaults B-1, B-5
/dev/spl A-3
/etc/conf/mtune.d/trace A-2
/usr/bin/ntracekd 5-1
/usr/bin/ntraceud 4-1
/usr/include/ntrace.h 2-1, 2-24, 4-23
/usr/lib/libntrace.a 2-24
/usr/lib/NightTrace/eventmap 6-12, 10-125,
10-126, 11-5, 11-6, 11-18, 11-19, 12-6
/usr/lib/NightTrace/tables 6-16, 6-17, 6-22, 6-23,
10-105, 10-107, 10-109
configuration 6-12
event-map 2-13, 6-2, 6-10, 12-6
NightTrace kernel trace event 3-19
rgb.txt 9-25, 9-30, 9-38, B-1, B-5
trace event 1-5, 2-5, 4-1, 4-12,4-13, 6-9, A-4
vectors 6-16, 12-2, 12-17, 12-18
File Selection Dialog Box B-2
File system
NFS A-2, A-3,C-2
File-wraparound mode 4-4,4-5,4-12, A-1, A-4
Fill Style configuration parameter 9-27
Finding. see Searching
Flushing shared memory buffer 2-20, 4-5, 4-13, 4-18,
4-21,4-28, A-1, A-2
Font configuration parameter 9-38
Font field 9-38
Fonts 9-38, B-1
Foreground Color configuration parameter 9-38
Foreground Color field 9-38
fork(2) service 2-7
Form
Configuration 9-16, 9-18, 9-21, 9-23,9-27, 9-30,
9-40
DataBox configuration 9-18
DataGraph configuration 9-27
EventGraph configuration 9-21
GridLabel configuration 9-16
Ruler configuration 9-30
Search B-3, C-1
StateGraph configuration 9-23
Summarize B-3
Format
functions 10-104
f or mat function 9-34, 10-110, 10-111
Format table 6-9, 6-19, 10-108
event_arg dbl summary 6-23, 9-35
event arg summary 6-23, 9-35

Index-4

event summary 6-23, 9-35
get _f or mat function 6-23, 9-35, 10-108, 10-111
state_summary 6-23, 9-35

Fortran language 1-3

compiling and linking 2-25
source considerations 2-2

Functions 10-4

arg 10-4,10-16

arg_dbl 10-17

argl 6-22,9-34,10-4,10-110
arg2 9-34,10-7

avg 10-99

cpu 9-33,10-25

end 10-55

end_arg 10-57

end_ar g_dbl 10-58
end_cpu 10-66

end_i d 10-56

end_I| wpi d 10-62
end_node_i d 10-69
end_node_nane 10-72
end_num args 10-59
end_of f set 10-67

end_pi d 10-60

end_pi d_t abl e_nane 10-70
end_raw pid 10-61
end_task_id 10-64
end_thread_id 10-63
end_tid 10-65
end_tid_table_nanme 10-71
end_tine 10-68

event _gap 10-35

event _mat ches 9-19, 10-36
format 10-104

format 9-34,10-110, 10-111
get _format 6-23,9-35,10-108, 10-111
get _item10-106

get _string 6-19, 6-21, 6-22, 9-34, 10-104
id 9-33,9-34,10-15, 10-108, 10-110
| wpi d 10-21

max 10-98

max_of f set 10-102

m n 10-97

m n_of f set 10-101
multi-event 10-35

multi-state 10-73

node_i d 10-28

node_nane 10-31

num args 10-18

offset 10-77

of fset 6-22,10-26

of fset _arg 10-79

of fset _arg_dbl 10-80

of fset _cpu 10-88

of fset _id 10-78, 10-101, 10-102
of fset | wpi d 10-84

of fset _node_id 10-90
of f set _node_nane 10-93

of fset _num args 10-81

of fset _pid 10-82

of fset _pid_tabl e name 10-91
of fset _process_nane 10-94
of fset _raw pid 10-83

of fset _task_id 10-86

of fset _task_nane 10-95

of fset _thread_id 10-85

of fset _thread_nane 10-96
of fset _tid 10-87

of fset _tid_tabl e _nane 10-92
of fset _time 10-89

pi d 9-34,10-19, 10-108

pi d_tabl e_name 10-29
process_nane 10-32

raw _pi d 10-20

start 10-37

start_arg 10-39
start_arg_dbl 10-40
start_cpu 10-48

start_id 10-4,10-38
start | wpid 10-44
start_node_id 10-51

start _node_nane 10-54
start_num args 10-41
start_offset 10-49
start_pid 10-42

start _pid_tabl e_nane 10-52
start_raw pid 10-43
start_task_id 10-46
start _thread_id 10-45
start _tid 1047

start _tid_tabl e_nane 10-53
start _time 10-50
state_dur 10-74

st at e_gap 10-4,10-73

st at e_mat ches 10-75
state_status 10-76

sum 10-100

summary 10-97

summary_rmat ches 10-103
table 10-104

task_id 10-23

task_name 10-33

thread_i d 10-22

t hr ead_nane 10-34

tid 9-34,10-24

tid_tabl e _nane 10-30

time 10-27

trace event 10-14

G

Gap

event 10-35
state 10-73

Index

get _f ormat function 6-23,9-35,10-108, 10-111

get

_i t emfunction 10-106

get _stri ng function 6-19, 6-21, 6-22, 9-34, 10-104
Global process identifier 9-2, 9-33, 9-34, 9-35, 10-5,

10-19, 12-2

Graph

data 8-14,9-9, 12-12

event 8-14, 9-7

exception 12-13

interrupt 12-12

state 8-14,9-8, 10-111, 12-13, 12-16
syscall 12-15

Graphical user interface B-1

resources 12-16

Grid 8-14, B-2
GridLabel 9-4, 9-16, 12-10, 12-11, B4

configuration form 9-16
Text configuration parameter 9-16

GridObject B-4

H

Hardclock interrupts 12-12, 12-20
Help

ntraceud 4-7

hf 77(1) command 2-2

i connect (3C) routine 12-19

i d function 9-33, 9-34, 10-15, 10-108, 10-110

i dt

une(1M command 4-14, 4-16, A-2

If-Expression configuration parameter 9-33
Increment field 8-15, 8-19

Inter-process communication 2-4

Interrupt 12-1, 12-2, 12-12, 12-17, 12-18, 12-19, 12-20

device-related 12-20
graph 12-12

hardclock 12-12, 12-20
non-device-related 12-19
user-level 4-9, 4-11

Interval 1-6, 7-1

IPL

scroll bar C-1
register

Index-5

NightTrace Manual

disabling 4-9
failure to attach 2-8
use 4-9

K

Kernel
buffer allotment A-2
NightTrace trace event file 3-19
Kernel tracing 1-1, 6-16, 6-17, 9-34, 9-35, 12-1

Language
Ada 1-3,2-25
C 1-3,2-1,2-25
Fortran 1-3, 2-2, 2-25
Last exception box 12-13
Last interrupt box 12-12
Last syscall box 12-15
libntrace.a 2-24
Library routines 2-1
disabling 2-1
overloading in Ada 2-2
return values 2-1
trace_cl ose_thread 2-22
trace_di sabl e 2-16, 4-24
trace_disable_all 2-16,2-24
trace_di sabl e_range 2-16, 4-24
trace_enabl e 2-16, 4-26
trace_enable_all 2-16
trace_enabl e_range 2-16, 4-26
trace_end 2-7,2-20,2-23, 4-3, 4-17, 4-21
trace_event 2-11,9-2
trace_event _arg 2-11
trace_event _dbl 2-11
trace_event flt 2-11
trace_event four_arg 2-11
trace_event _two_dbl 2-11
trace_event _two _flt 2-11
trace_flush 2-20,4-3,4-5,4-13, 4-14, 4-17,
4-28, A-2, A-3
trace_open_t hread 2-9,2-15, 2-18, 2-22,
9-37
trace_start 2-5,2-10,2-15,2-18,2-23, 4-1,
4-28, C-1
trace_trigger 2-20,4-3,4-17, A-2, A-3, A4
Lightweight process identifier 9-35, 10-5, 10-21, 10-44,
10-62, 10-84
Loading

Index-6

trace event 6-5, A-5
Locating. see Searching

Logging
trace event 1-3, 1-4, 4-12, 4-13, 4-24, 4-26, A-4,
C-1
Loss

trace event 2-15, 2-21, 4-16, 4-28, 9-30, A-1, C-1
Lost Event Color configuration parameter 9-30
Lost Event Color field 9-30
LWPID 9-35, 10-5, 10-21, 10-44, 10-62, 10-84
| wpi d function 10-21

Macros 6-9, 8-1, 10-113
Map file. see Event-map file
Mark
inside Ruler 9-30
push button 8-20
Mark Color configuration parameter 9-30
Mark Color field 9-30
Matches
event 9-19, 9-35, 10-36
state 9-35, 10-75
summary 10-103
max function 10-98
max_of f set function 10-102
Maximum configuration parameter 9-28
Maximum field 9-28
Maximum value 9-28, 10-98, 10-102
Memory size 4-4, 4-5, 4-16, A-3, C-1
Menu
Create 9-1, 9-12
Menu item
desensitized 3-19
dimmed. see Menu item
disabled
disabled 3-19
Message display area 7-1, 7-5, 8-14, 9-7, 9-8, 9-9, 9-14
statistics 8-21
m n function 10-97
m n_of f set function 10-101
Minimum configuration parameter 9-28
Minimum field 9-28
Minimum value 9-28, 10-97, 10-101
Mode
buffer-wraparound 2-21, 4-4,4-13,4-17,4-18, A-1,
A-4
Edit 3-18, 7-1
expansive 4-2,4-4,4-5,4-12,4-13, 4-14, A-1, A-4
file-wraparound 4-4, 4-5, 4-12, A-1, A-4
View 7-1,7-4, 8-1, 12-6

Monochrome display 9-7, B-1, B-3, B-4
Motif 1-7
Mouse button
1 7-2,7-3,8-16, 8-21, 9-13
2 7-3,8-14, 8-16, 8-21, 9-7, 9-8, 9-9, 9-14
3 7-3,8-14, 8-21,9-10, 9-14
Mouse operation
create 9-12
move 9-14
resize 9-14
select 9-13
Move mouse operation 9-14
npadvi se(3C) routine A-4
Multi-event functions 10-35
Multi-state functions 10-73

N

name_pid table 6-17,12-17
name_tid table 6-18
NFS file system A-2, A-3, C-2
NightStar tool kit 1-1
NightTrace
environment defaults 4-2
product 1-1
NightTrace thread identifier 9-2,9-33,9-34, 9-36, 10-5,
10-24, 10-47, 10-65, 10-87
NightView debugger 1-4, 2-1
Node box 12-11
Node identifer 10-28
Node identifier
ending trace event 10-69
offset 10-90
starting trace event 10-51
Node List configuration parameter 9-37
Node name 10-31
ending trace event 10-72
ordinal trace event 10-93
starting trace event 10-54
node_i d function 10-28
node_nane function 10-31
node name table 6-18, 12-17
NT CONTINUE 2-9, 2-13,4-16
NT M BUFFERWRAP. see Buffer-wraparound mode
NT M DEFAULT. see Expansive mode
NT M _FILEWRAP. see File-wraparound mode
ntrace 1-3
format tables 6-9, 6-19
functions 10-4
operands 10-2
operators 10-1
performance considerations 6-5, A-5

Index

string tables 6-9, 6-14
viewing strategy 7-3
ntrace field
CPU List 9-35
Current Time 8-15, 8-18
Event Color 9-25
Event Count 8-18
Event End 8-15, 8-18
Event Start 8-15, 8-18
Font 9-38
Foreground Color 9-38
Increment 8-15, 8-19
Lost Event Color 9-30
Mark Color 9-30
Maximum 9-28
Minimum 9-28
Text 9-16
Time End 8-15, 8-17
Time Length 8-17
Time Start 8-15, 8-17
Zoom Factor 8-18
ntrace functions 10-4
ntrace macros 6-9, 8-1
ntrace mode
Edit 3-18, 7-1
View 7-1,7-4, 8-1, 12-6
ntrace option
--end (load events before constraint) 6-4
-end (load events before constraint) A-5
-filestats (list statistics and trace events) A-1
--listing (list trace events) 6-12
-nohardclock (strip hardclock) A-5
-process (load process’s events) A-5
--start (load events after constraint) 6-3
-start (load events after constraint) A-5
ntrace qualified events 6-9, 6-11, 8-1, 9-32
ntrace qualified states 6-9, 8-1,9-32,10-8, 10-38, 10-39,
10-40, 10-41, 10-42, 10-43, 10-44, 10-45,
10-46, 10-47, 10-48, 10-49, 10-50, 10-51,
10-52, 10-53, 10-54, 10-56, 10-57, 10-58,
10-59, 10-60, 10-61, 10-62, 10-63, 10-64,
10-65, 10-66, 10-67, 10-68, 10-69, 10-70,
10-71, 10-72, 10-73, 10-74, 10-75, 10-76
ntrace window
Configuration 9-16, 9-18, 9-21, 9-23, 9-27, 9-30,
9-40
Display Page 7-2
File Selection Dialog Box B-2
Global A-1, B-2
Search B-3, C-1
Summarize B-3
ntrace.h 2-1, 2-24, 4-23
ntracekd
daemon 5-1

Index-7

NightTrace Manual

ntraceud
buffer-full cutoff. see ntraceud
cutoff
cutoff 4-4, 4-5,4-18, A-3, C-1
daemon 1-3, 4-1
flush mechanism 4-4
help 4-7
invoking 4-28
memory size 4-4,4-5,4-16, A-3, C-1
page-fault handling 4-4
performance considerations 4-1,4-17, 4-18, A-1
quit running 4-21, 4-28, 4-29
reset 4-20
shared memory buffer size. see ntraceud
memory size
sleep interval 4-3, 4-4, 4-17
statistical information 4-22, A-1
timeout interval 4-4, 4-5, 4-17, A-3
trace event file size 4-4, 4-12
trace event logging 4-4
version information 4-8
ntraceud mode
buffer-wraparound 2-21,4-4,4-13,4-17,4-18, A-1,
A-4
expansive 4-2,4-4,4-5,4-12,4-13, 4-14, A-1, A-4
file-wraparound 4-4, 4-5, 4-12, A-1, A-4
ntraceud option
-bufferwrap (buffer-wraparound mode) 4-4, 4-13,
4-17,4-18, A-1, A-4

10-84, 10-85, 10-86, 10-87, 10-88, 10-89,
10-90, 10-91, 10-92, 10-93, 10-94, 10-95,
10-96
of f set function 6-22, 10-26
Offset functions 10-77
of f set _ar g function 10-79
of fset _arg_dbl function 10-80
of f set _cpu function 10-88
of f set _i d function 10-78, 10-101, 10-102
of f set _| wpi d function 10-84
of f set _node_i d function 10-90
of f set _node_nane function 10-93
of f set _num ar gs function 10-81
of f set _pi d function 10-82
of fset _pi d_t abl e_name function 10-91
of f set _process_nane function 10-94
of fset _raw pi d function 10-83
of fset _task_i d function 10-86
of f set _t ask_nane function 10-95
of fset _t hread_i d function 10-85
of f set _t hread_nane function 10-96
of fset _tid function 10-87
of fset _tid_tabl e_name function 10-92
of f set _ti nme function 10-89
Operands
constants 10-2
functions 10-4
macros 6-9, 8-1
qualified events 6-9, 6-11, 8-1, 9-32

-cutoff (cutoff percentage) 4-4, 4-5, 4-18, A-3, C-1

-disable (disable logging) 4-4, 4-24

-enable (enable logging) 4-4, 4-26

-filewrap (file-wraparound mode) 4-4, 4-5, 4-12,
A-1, A4

qualified states 6-9, 8-1, 9-32, 10-8, 10-38, 10-39,
10-40, 10-41, 10-42, 10-43, 10-44, 10-45,
10-46, 10-47, 10-48, 10-49, 10-50, 10-51,
10-52, 10-53, 10-54, 10-56, 10-57, 10-58,
10-59, 10-60, 10-61, 10-62, 10-63, 10-64,

10-65, 10-66, 10-67, 10-68, 10-69, 10-70,

_ipldisable (do not set IPL) 4-4, 4-9, 4-28, A-3 10-71, 10-72, 10-73, 10-74, 10-75, 10-76

-lockdisable (do not lock pages) 4-4, 4-11, 4-28, Operands in expressions 10-2
A-3 Operators in expressions 10-1

Options. see ntrace option
Options. see ntraceud option
Options. see System configuration option

-help (help) 4-7

-memsize (memory size) 4-4, 4-5, 4-16, A-3, C-1

-quit (quit running) 4-21, 4-29

-reset (reset ntraceud) 4-20

-stats (statistical information) 4-22, A-1

-timeout (timeout interval) 4-4, 4-5, 4-17, A-3

-version (version information) 4-8 P
num_ ar gs function 10-18

P PLOCK A-3
Page
o configuration file 6-12
display B-2
lock disable 4-11
lock privilege 4-28, A-3
Performance considerations
ntrace 6-5, A-5

Object. see Display object
Offset 6-3, 7-6, 8-14, 8-18,9-2, 10-4, 10-7, 10-8, 10-77,
10-78, 10-79, 10-80, 10-81, 10-82, 10-83,

Index-8

ntraceud 4-1, 4-17, 4-18, A-1
PID 9-2,9-33, 9-34, 9-35, 10-5, 10-19, 12-2
pi d function 9-34, 10-19, 10-108
PID List configuration parameter 9-35
pid table 6-16, 9-34, 12-18
PID table name 10-29
pid_nodename table 6-18, 12-17
pi d_t abl e_nane function 10-29
Pop-up window

Open B-3

Read B-3

SaveAs B-3

SaveTextAs B-3
Pre-defined tables 6-16, 6-23, 12-4, 12-16
printf(3S) routine 6-12, 6-21, 10-110
Privilege

page lock 4-28, A-3
Process box 12-10
Process identifier

ending trace event 10-70

offset 10-91

starting trace event 10-52
Process identifier table name 10-29
Process name 10-32

ordinal trace event 10-94
pr ocess_namne function 10-32
Push button

Apply 7-5,7-7, 8-20

Center 8-20

Mark 8-20

on configuration form 9-40

Refresh 8-23

Reset 8-20

Zoom In 8-18, 8-22

Zoom Out 8-18, 8-22, C-1

Zoom Region 8-22

Q

Qualified events 6-9, 6-11, 8-1, 9-32, 10-113

Qualified states 6-9, 8-1, 9-32, 10-8, 10-38, 10-39,
10-40, 10-41, 10-42, 10-43, 10-44, 10-45,
10-46, 10-47, 10-48, 10-49, 10-50, 10-51,
10-52, 10-53, 10-54, 10-56, 10-57, 10-58,
10-59, 10-60, 10-61, 10-62, 10-63, 10-64,
10-65, 10-66, 10-67, 10-68, 10-69, 10-70,
10-71, 10-72, 10-73, 10-74, 10-75, 10-76,
10-116

Index

R

Raw PID 9-35, 9-36
raw PID 10-5, 10-20, 10-43, 10-61, 10-83
raw_pi d function 10-20
Record. see Trace event
Refresh push button 8-23
Reset push button 8-20
Resize mouse operation 9-14
Resizing
display objects 9-14
Return values 2-1
rgb.txt file 9-25, 9-30, 9-38, B-1, B-5
Ruler 8-20, 9-30, A-1, B-4
configuration form 9-30
Lost Event Color configuration parameter 9-30
Mark Color configuration parameter 9-30
run(1l) command A-4
Running process box 12-10

S

Scroll bar C-1
Search form B-3, C-1
Searching
trace event 1-3, 1-6, 7-1, 11-1
Select mouse operation 9-13
Shared memory
buffer 1-5,4-13, 4-16
failure to attach 2-8
flushing 2-20, 4-5, 4-13, 4-18, A-1, A-2
SHMMAX 4-14, 4-16, A-2
Start functions 10-37
start _ar g function 10-39
start _arg_dbl function 10-40
st art _cpu function 10-48
start _id function 10-4, 10-38
start _| wpi d function 10-44
start _node_i d function 10-51
start _node_nane function 10-54
start_num ar gs function 10-41
start _of f set function 10-49
start _pi d function 10-42
start _pi d_t abl e_nane function 10-52
start _raw _pi d function 10-43
start _task_i d function 10-46
start _thread_i d function 10-45
start _ti d function 10-47
start _tid_tabl e_nane function 10-53
start _ti me function 10-50
State 1-2, 2-14,9-2,9-8, 9-25, 12-12, 12-13

Index-9

NightTrace Manual

duration 10-74

gap 10-73

matches 9-35, 10-75

qualified 10-116
st at e_dur function 10-74
st at e_gap function 10-4, 10-73
st at e_mat ches function 10-75
st at e_st at us function 10-76
state_summary table 6-23, 9-35

StateGraph 8-14, 9-8, 9-23, 10-111, 12-13, 12-16, B-4

configuration form 9-23
Statistics
multi-event 10-35
multi-state 10-73
ntrace 8-21, A-1
ntraceud 4-22, A-1
summary 10-97
String table 6-9, 6-14, 10-104, 10-106
boolean 6-17, 9-34
device 6-19, 12-4, 12-17
device_nodename 6-19, 12-18
event 6-16, 9-34
get _i t emfunction 10-106

get _stri ng function 6-19, 6-21, 6-22, 9-34,

10-104
name pid 6-17, 12-17
name_tid 6-18
node name 6-18, 12-17
pid 6-16, 9-34, 12-18
pid_nodename 6-18, 12-17

syscall 6-19,9-34, 12-4,12-17, 12-21

syscall nodename 6-19, 12-18
tid 6-17, 9-34
tid nodename 6-18

vector 6-19, 9-34, 12-2, 12-3,12-17, 12-19

vector_nodename 6-19, 12-18
sumfunction 10-100
Summarize form B-3
Summarize form fields

Summary-Expression 10-110
Summarizing

trace event 1-3, 11-12

trace session 1-6
Summary

matches 10-103
Summary functions 10-97
summary_mat ches function 10-103
Summary-Expression field 10-110
Syscall 12-4, 12-15, 12-17

graph 12-15

resumption 12-4

suspension 12-4, 12-15

syscall table 6-19, 9-34, 12-4,12-17, 12-21

syscall nodename table 6-19, 12-18

Index-10

System call 12-4, 12-15, 12-17

T

Table
boolean 6-17,9-34
device 6-19, 12-4, 12-17
device_nodename 6-19, 12-18
event 6-16, 9-34
event_arg dbl summary 6-23, 9-35
event arg summary 6-23,9-35
event summary 6-23, 9-35
format 6-9, 6-19, 10-108
functions 10-104
name pid 6-17,12-17
name_tid 6-18
node_name 6-18, 12-17
pid 6-16,9-34, 12-18
pid_nodename 6-18, 12-17
pre-defined 6-16, 6-23, 12-4, 12-16
state_summary 6-23, 9-35
string 6-9, 6-14, 10-104, 10-106
syscall 6-19,9-34, 12-4,12-17, 12-21
syscall nodename 6-19, 12-18
tid 6-17, 9-34
tid nodename 6-18
vector 6-19,9-34, 12-2, 12-3, 12-17, 12-19
vector_nodename 6-19, 12-18
tables file 6-16, 6-17, 6-22, 6-23, 10-105, 10-107,
10-109
Task name 10-33
ordinal trace event 10-95
task_i d function 10-23
t ask_narme function 10-33
Text configuration parameter 9-16
Text field 9-16
CPU List 9-35
Current Time 8-15, 8-18
editing operations 7-7
Event Color 9-25
Event Count 8-18
Event End 8-15, 8-18
Event Start 8-15, 8-18
Font 9-38
Foreground Color 9-38
Increment 8-15, 8-19
Lost Event Color 9-30
Mark Color 9-30
Maximum 9-28
Minimum 9-28
Summary-Expression 10-110
Text 9-16

Time End 8-15, 8-17

Time Length 8-17

Time Start 8-15, 8-17

Zoom Factor 8-18
Text Gravity configuration parameter 9-39
Text Justify configuration parameter 9-39
Then-Expression configuration parameter 9-34, 10-105,

10-108, 10-110

Thread event

ordinal 10-92
Thread identifier

ending trace event 10-71

offset 10-92

starting trace event 10-53
Thread identifier table name 10-30
Thread name 10-34

ordinal trace event 10-96
Thread names 6-2, 6-17, 9-36, 9-37
t hr ead_i d function 10-22
t hr ead_nan® function 10-34
TID 9-2,9-33, 9-34, 9-36, 10-5, 10-24, 10-47, 10-65,

10-87

ti d function 9-34, 10-24
TID List configuration parameter 9-36
tid table 6-17, 9-34
TID table name 10-30
tid_nodename table 6-18
tid_tabl e_nane function 10-30
Time End field 8-15, 8-17
ti me function 10-27
Time Length field 8-17
Time Start field 8-15, 8-17
Timeout interval 4-4, 4-5, 4-17, A-3
Times

constant 10-3
Timestamp 1-2, 6-2, 8-15, 10-27, 10-50, 10-68, 10-89
TR _BUFFER_COUNT tunable parameter A-2, C-2
TR_EXCEPTION_ ENTRY trace event 12-3
TR_EXCEPTION_EXIT trace event 12-3
TR_EXCEPTION_ RESUME trace event 12-3
TR_EXCEPTION SUSPEND trace event 12-3
TR_INTERRUPT ENTRY trace event 12-2
TR_INTERRUPT EXIT trace event 12-3
TR_PAGEFLT_ ADDR trace event 12-5, 12-13
TR _PROTFLT ADDR trace event 12-5, 12-13
TR_SWITCHIN trace event 12-2
TR_SYSCALL ENTRY trace event 12-4
TR_SYSCALL EXIT trace event 12-4
TR_SYSCALL RESUME trace event 12-4
TR_SYSCALL SUSPEND trace event 12-4
Trace event 1-2, 9-2

arguments 2-13, 6-2, 6-11, 6-13, 9-2, 9-3, 9-10,

9-34,10-16, 10-17, 10-18, 10-39, 10-40,
10-41, 10-57, 10-58, 10-59, 10-79, 10-80,

Index

10-81

average size 4-16

context switch 12-2

disabling 2-17, 4-4, 4-24

discarding 2-21, A-1, A-4, C-1

enabling 2-17, 4-4, 4-26

exception 12-3

file 1-5,2-5,4-1, 6-9

file size 4-12, 4-13, A-4

functions 10-14

ID 1-2,2-13,2-17,4-24,4-26, 6-2, 6-9, 6-11, 9-32,
9-34, C-1

information 9-7, 9-8, 10-14

interrupt 12-2

loading 6-5, A-5

logging 1-3, 1-4, 4-12, 4-13, 4-24, 4-26, A-4, C-1

loss 2-15,2-21, 4-16, 4-28, 9-30, A-1, C-1

NightTrace kernel file 3-19

node identifer (ending trace event) 10-69

node identifer (offset) 10-90

node identifer (starting trace event) 10-51

node identifier 10-28

node name 10-31

node name (ending trace event) 10-72

node name (ordinal trace event) 10-93

node name (starting trace event) 10-54

NT _CONTINUE 2-9, 2-13, 4-16

offset 10-77

offset. see Offset

ordinal 10-90, 10-91, 10-93, 10-94, 10-95, 10-96

ordinal number. see Offset

PID table name 10-29

process identifer (ending trace event) 10-70

process identifer (offset) 10-91

process identifer (starting trace event) 10-52

process identifier table name 10-29

process name 10-32

process name (ordinal trace event) 10-94

searching 1-3, 1-6, 7-1, 11-1

summarizing 1-3, 11-12

syscall 12-4

tag 6-2,6-9,6-10,6-11, 10-125,10-126, 11-5, 11-6,
11-18, 11-19, 12-6

task name 10-33

task name (ordinal trace event) 10-95

thread identifer (ending trace event) 10-71

thread identifer (offset) 10-92

thread identifer (starting trace event) 10-53

thread identifier table name 10-30

thread name 10-34

thread name (ordinal trace event) 10-96

TID table name 10-30

timestamp 1-2, 6-2, 10-27, 10-50, 10-68, 10-89

timing distortion 2-21,4-17

Index-11

NightTrace Manual

TR_EXCEPTION_ENTRY 12-3
TR_EXCEPTION_EXIT 12-3
TR_EXCEPTION_RESUME 12-3
TR_EXCEPTION_SUSPEND 12-3
TR_INTERRUPT ENTRY 12-2
TR_INTERRUPT EXIT 12-3
TR_PAGEFLT_ADDR 12-5,12-13
TR_PROTFLT _ADDR 12-5,12-13
TR_SWITCHIN 12-2
TR_SYSCALL _ENTRY 12-4
TR_SYSCALL EXIT 12-4
TR_SYSCALL RESUME 12-4
TR_SYSCALL _SUSPEND 12-4
Trace event. see Event
Trace point 1-2, 1-4, 2-13
trace_cl ose_thread 2-22
trace_di sabl e 2-16, 4-24
trace_disable_all 2-16,2-24
trace_di sabl e_range 2-16, 4-24
trace_enabl e 2-16, 4-26
trace_enable_all 2-16
trace_enabl e_range 2-16, 4-26
trace_end 2-7,2-20,2-23, 4-3, 4-17, 4-21
trace_event 2-11,9-2
trace_event _arg 2-11
trace_event _dbl 2-11
trace_event flt 2-11
trace_event four_arg 2-11
trace_event _two_flt 2-11
trace_fl ush 2-20,4-3,4-5,4-13, 4-14, 4-17, 4-28,
A-2, A-3
trace_open_t hread 2-9,2-15, 2-18, 2-22, 9-37
trace_start 2-5,2-10,2-15,2-18, 2-23, 4-1, 4-28,
C-1
trace_trigger 2-20,4-3,4-17, A-2, A-3, A4
Tracing
disabling 2-16, 2-24
kernel 1-1, 6-16, 6-17, 9-34, 9-35, 12-1
user 1-1

U

umask(1l) command 4-1
User tracing 1-1
User-level interrupts 4-9, 4-11

\"

vector table 6-19, 9-34, 12-2, 12-3,12-17, 12-19
vector_nodename table 6-19, 12-18

Index-12

vectors file 6-16, 12-2, 12-17, 12-18
Version

ntraceud 4-8
View mode 7-1, 7-4, 8-1, 12-6
Viewing strategy

ntrace 7-3

w

Window
Configuration 9-16, 9-18, 9-21, 9-23, 9-27, 9-30,
9-40
Display Page 7-2
File Selection Dialog Box B-2
Global A-1, B-2
Search B-3, C-1
Summarize B-3

X

X resources
display page B-2
X Window System
desk accessories 1-7
resources 1-7,12-16
xrdb(1) command B-1
xterm(1) utility 1-7

z

Zoom Factor field 8-18

Zoom In push button 8-18, 8-22
Zoom Out push button 8-18, 8-22, C-1
Zoom Region push button 8-22

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

<
Q
=3
~—r
-]
q
Q
0
®

Manual

0890398

	NightTrace Manual
	Preface
	Contents
	Appendix A Performance Tuning
	Appendix B GUI Customization
	Appendix C Answers to Common Questions

	Introduction
	What is NightTrace?
	User and Kernel Tracing
	Timestamp Source Selection
	Trace-Point Placement
	Languages Supported
	Processes and CPUs
	Information Displayed
	Searches and Summaries

	Logging and Analysis
	The User Trace Event Logging Procedure
	The Kernel Trace Event Logging Procedure
	The Trace Event Analysis Procedure

	Recommended Reading

	Adding Library Calls to Your Application
	Language-Specific Source Considerations
	C
	Fortran
	Ada

	Inter-Process Communication and Library Routines
	Understanding NightTrace Library Calls
	trace_begin()
	trace_open_thread()
	trace_event() and Its Variants
	trace_enable(), trace_disable(), and Their Variants
	trace_flush() and trace_trigger()
	trace_close_thread()
	trace_end()

	Disabling Tracing
	Compiling and Linking
	C Example
	Fortran Example
	Ada Example

	Using the NightTrace Main Window
	Components of the NightTrace Main Window
	NightTrace Main Window Menu Bar
	NightTrace
	Open Session
	Save Session
	Unsaved Changes

	Daemons
	Login
	Enter Password
	Attach Daemons

	Pages
	Options
	Refresh Interval
	Display Buffer Size Warning

	Tools
	Help

	Session Configuration File Name Area
	Daemon Control Area
	Enable / Disable Trace Events

	Session Overview Area

	Daemon Definition Dialog
	Import Daemon Definition
	General
	Target
	Trace Events Output

	User Trace
	Locking Policies
	Shared Memory
	Timestamp Heartbeat
	User Event Buffer

	Events
	Runtime
	Scheduling
	CPU Bias
	NUMA
	Policies

	Other
	Streaming Options
	Kernel Trace Buffer Options

	Generating Trace Event Logs with ntraceud
	The ntraceud Daemon
	The Default User Daemon Configuration
	ntraceud Modes
	ntraceud Options
	Option to Get Help (-help)
	Option to Get Version Information (-version)
	Option to Disable the IPL Register (-ipldisable)
	Option to Prevent Page Locking (-lockdisable)
	Option to Establish File-Wraparound Mode (-filewrap)
	Option to Establish Buffer-Wraparound Mode (-bufferwrap)
	Option to Define Shared Memory Buffer Size (�memsize)
	Option to Set Timeout Interval (-timeout)
	Option to Set the Buffer-Full Cutoff Percentage (-cutoff)
	Option to Select Timestamp Source (-clock)
	Option to Reset the ntraceud Daemon (-reset)
	Option to Quit Running ntraceud (-quit)
	Option to Present Statistical Information (-stats)
	Option to Disable Logging (-disable)
	Option to Enable Logging (-enable)

	Invoking ntraceud

	Generating Trace Event Logs with ntracekd
	The ntracekd Daemon
	ntracekd Modes
	ntracekd Options
	ntracekd Invocations

	Invoking NightTrace
	Command-line Options
	Summary Criteria

	Command-line Arguments
	Trace Event Files
	Event Map Files
	Page Configuration Files
	Tables
	String Tables
	Pre-Defined String Tables
	Format Tables
	Pre-Defined Format Tables

	Session Configuration Files
	Trace Data Segments

	Viewing Trace Event Logs
	Mouse Button Operations
	Viewing Strategy
	Editing Single Fields
	Editing Multiple Fields
	Editing Text Fields
	Positioning Within Text Fields

	Display Pages
	Default Display Page
	Components of a Display Page
	Menu Bar
	Page
	Edit
	Create
	Actions
	Help

	Mode Buttons
	Message Display Area
	Grid
	Interval Scroll Bar
	Interval Control Area
	Interval Push Buttons

	Display Objects
	Types of Display Objects
	Grid Label
	Data Box
	Column
	Event Graph
	State Graph
	Data Graph
	Ruler

	Operations on Display Objects
	Creating Display Objects
	Selecting Display Objects
	Moving Display Objects
	Resizing Display Objects
	Configuring Display Objects
	Grid Label
	Data Box
	Event Graph
	State Graph
	Data Graph
	Ruler
	Common Configuration Parameters
	Name
	Event List
	If Expression
	Then Expression
	CPU List
	PID List
	TID List
	Node List
	Foreground Color
	Background Color
	Font
	Text Justify
	Text Gravity

	Configuration Form Push Buttons

	Using Expressions
	Expressions
	Operators
	Operands
	Constants
	Functions
	Function Parameters
	Function Terminology
	Trace Event Functions
	id()
	arg()
	arg_dbl()
	num_args()
	pid()
	raw_pid()
	lwpid()
	thread_id()
	task_id()
	tid()
	cpu()
	offset()
	time()
	node_id()
	pid_table_name()
	tid_table_name()
	node_name()
	process_name()
	task_name()
	thread_name()
	Multi-Event Functions
	event_gap()
	event_matches()

	State Functions
	Start Functions
	start_id()
	start_arg()
	start_arg_dbl()
	start_num_args()
	start_pid()
	start_raw_pid()
	start_lwpid()
	start_thread_id()
	start_task_id()
	start_tid()
	start_cpu()
	start_offset()
	start_time()
	start_node_id()
	start_pid_table_name()
	start_tid_table_name()
	start_node_name()

	End Functions
	end_id()
	end_arg()
	end_arg_dbl()
	end_num_args()
	end_pid()
	end_raw_pid()
	end_lwpid()
	end_thread_id()
	end_task_id()
	end_tid()
	end_cpu()
	end_offset()
	end_time()�
	end_node_id()
	end_pid_table_name()
	end_tid_table_name()
	end_node_name()

	Multi-State Functions
	state_gap()
	state_dur()
	state_matches()
	state_status()

	Offset Functions
	offset_id()
	offset_arg()
	offset_arg_dbl()
	offset_num_args()
	offset_pid()
	offset_raw_pid()
	offset_lwpid()
	offset_thread_id()
	offset_task_id()
	offset_tid()
	offset_cpu()
	offset_time()
	offset_node_id()
	offset_pid_table_name()
	offset_tid_table_name()
	offset_node_name()
	offset_process_name()
	offset_task_name()
	offset_thread_name()

	Summary Functions
	min()
	max()
	avg()
	sum()
	min_offset()
	max_offset()
	summary_matches()

	Format and Table Functions
	get_string()
	get_item()
	get_format()
	format()

	Macros
	Qualified Events
	Qualified States

	NightTrace Qualified Expressions
	Edit NightTrace Qualified Expression

	Search and Summarize
	Searching for Points of Interest
	Search Options

	Summarizing Statistical Information
	Criteria
	Options

	Tracing the Kernel
	Default Kernel Trace Points
	Context Switch Trace Event
	Interrupt Trace Events
	Exception Trace Events
	Syscall Trace Events

	Kernel Trace Points Not Enabled By Default
	Page Fault Event
	Protection Fault Event

	Viewing Kernel Trace Event Files
	Kernel Display Pages
	RCIM Default Kernel Display Page
	CPU Information
	Running Process Information
	Node Information
	Context Switch Information
	Interrupt Information
	Exception Information
	Syscall Information
	Color Information

	Kernel String Tables

	Kernel Reference
	Interrupts
	Non-Device-Related Interrupts
	Device-Related Interrupts

	Exceptions
	Syscalls

	Performance Tuning
	Preventing Trace Events Loss
	Ensuring Accurate Timings
	Optimizing File System and CPU Usage
	Conserving Disk Space
	Conserving Memory and Accelerating ntrace

	GUI Customization
	Default X-Resource Settings for ntrace
	Examples
	Exercise: Customizing Display Colors

	Answers to Common Questions
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

